b2
—
|

C.2.1 Determination of the Modal Damping Cocfli-
cient

fn order 1o sclect the materizl damping constant @ to achieve a presceibel

relative proportional modal darnping tocfficiene in the first mede ¢, the free
response of the cguation for gft] may e exatmined:
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Thus:
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f[' the: muaterial damping coefficient ts aclected on the basts of the wwnlal damp-

+Th o
i I.]S T il.l. IU, LOETI:

26

iy

1L
[

and, it follows that:

in = E—
Ly

This demonstrates that {, is prupunmnal to Lhe ratio of the n** natural fre-

quency of the fandamental wy. iHence il @ i3 selected ou the haria of the
will become ancoessively more danped and
fundamental, the higher modes 1

lesa riguificant in the response.
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C.3 General Proportional Damping

Greenway[1989] provided a rudimentary damping estimate regarding the damp-
ing coefficient extracted from free response data captured during deceleration

tests at Deelkraal Mine. This estimate was obtained from the logarithmic
decrement of first longitudinal mode; Greenway{1989] showed that if a rela-

tive proportional damping model was applied, a material damping coefficient

u could be defined. A viscous relative proportional damping model results
in the higher modes becoming successively more damped. Since the damp-
ing factor is critical to the steady state stability analysis, further site tests
were conducted to determine if the damping estimate related to the higher
modes followed such a relationship. In that test it was found that the higher
modes were more lightly damped than the fundamental, and that the damp-
ing estimate obtained for the fundamental was

tension. These results are presented and discussed in detail in Appendix G.
Greenway([1993] demonstrated that if the dependence of the first mode on mean

. : i viscous damping model could be
constructed, which accounts for the lower damping estimates measured in the

higher modes.

The analysis presented regarding the relative proportional damped longitudi-
nal response, can be readily modified to include the case of general viscous
sroportional damping. For general viscous proportional damping, two mate-

PLUPULLIVIIGL UGilipiiig. &< CliClal

rial damping coefficients are introduced, pa, M5, Where the first relates to
a damping force which is proportional to the mass properties of the system,
whilst the second relates to a damping force which is proportional to the stiff-

ness properties of the system. This is analogous to a Rayleigh damping form
in a discrete system. The linear longitudinal equation of motion is governed

ke,
vYy.

2
Uge + Palit = UbUt,ss T C Uss
For a forced response at frequency w:

u(s,t) = ¢(s)e“‘"
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Thus:

#(s) = Acosys + Bsinys

where:

w? —ipw
2+ ppw

)2

7= (

The modal damping factor can be obtained by applying a normal mode ex-
pansion, and considering the principal modes ¢;.

endix G, the material damping constants a, b would be

n nn LI
s 4 ltlrl AANAmL i

18s = czh

[ M v

The forced response for general proportional viscous damping can be obtained
2 by iate substitution for 7.

: J 1 3 ey o rr ANTMITANTIA
from the equations developed in section U.2 by appropriate
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C.4 Longitudinal Response - Kloof Mine

The steady state forced longitudinal response for the Kloof Mine is exam-
ined. This exercise demonstrates the difference between a relative proportional,

nal damping factors extracted by Greenway{1989] from free decay results at
Deelkraal Mine and by Constancon[1992] from free decay results obtained from
Elandsrand Mine. Since no other data is available, this data will be utilised
as being representative of the Kloof Mine rope damping properties.

C.4.1 Relative Proportional Damping Model

The relative proportional material damping co-efncient g, 1s selected on the
basis of the Deelkraal! data as presented in table G.1 of Appendix G. This data
indicated that the material damping constant b increased roughly in proportion

1111V AUVCL V1ILGWW Vil iaa CaaGa VeI AE2
0

defined as:

u(s) = c*bs/l

where s represents the length of the rope.

The data tabulated in Appendix
ength of 3/ of the depth ol the

!

By selecting the damping constant p, the modal damping factor of the nt*
mode is set to (n = (1%2. The modal damping factors for the first four modes
wy

are presented in figure C.2. As is evident, in comparison to the fundamental,

the second and hiWH%mmaﬂideamped.

1The data was recorded by Thomas et al.[1987], and the logarithmic decrement was

yreenway[1989].
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C.4.2 General Proportional Damping Model

A’ general proportional damping model is presented in Appendix G. This

Constancon[1992] and Page[1992] at Elandsrand Gold Mine. Measurements
were captured at 73 level, which represents an active rope length between the
drum and skip of 2090m. Due to time limitations, further measurements were
not obtained at a different level, and thus the variation of the damping con-
stants with rope length could not be determined. However at 73 level, material
damping coefficients of ya = 0.159 and s ='Q.001641c? were c‘ietermined fr.om
the test data. As stated in Appendix G, this model provides a convenient
fit to the measured data, rather than physical evidence of a general viscous
damping mechanism. Further experimental results would be required to define

e phvsical basis for such-a model. Since the mea ements at Deelkraal mine
indicate that the relative damping coefficient b increases in proportion to rope
length, a similar effect is assumed with regard to the proportional damping

coefficient y;. Thus the damping model proposed is:

. =0 150
’lta — e AUV
2_%2_ _ 10.49s
po(s2) = 0.001644c” j—— = 10.4952
LIV
L ndal damning coefficients based on this model are presented in figure C.3.
1 1€ modai aamping CO€IRCiCiive e g
. . . damental mode more dambped than the
is evident in :

higher modes. This emphasises the difference between the damping models,
and consequently the need to accurately determine the damping mechanism.
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C.4.3 Forced Longitudinal Response

The Kloof Mine system parameters are presented in table C.1. The natural

frequencies of the first four modes, for a full ascending skip, are presented in
figure C.4(a). In figure C.4(a), the horizontal lines represent the Lebus groove

excitation frequencies at the first and second harmonic of the coil cross-over

AL iVEuiINa ~Y1 222 L Liic 111 all

frequency.

The modulus of the longitudinal forced response at the sheave wheel due to
the first and second harmonic excitation at the winder drum, is presented in
figure C.4(b),(c) respectively. The response amplitude is dramatically affected
by the damping model assumed. It is clear that the higher modes would

ﬂﬂﬂﬂﬂﬂ "1[\ l ‘716[“1’\110 r]nm l“ﬂ mnr]n] QT\Y\IIOA rF]'\A

be active if the 5c11c1a.1 proportional viscous damping model appied. The
damping models proposed have been formulated on the basis of extremely
limited data, and as such are approximate. However, at this stage the general
proportional damping model is the most representative model available, and

will be utilised until further experimental studies provide a better description.
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Figure C.4: Linear steady state forced response

(a) Longitudinal Natural Frequencies vs Shaft depth

(b) Forced Longitudinal Response at the Sheave Wheel - First Harmonic

(c) Forced Longitudinal Response at the Sheave Wheel - Second Harmonic
------ Relative proportional damping. —- General proportional damping.
u(0,t) = 2.89 X 10~%cos(Syt + ¢1) + 1.05 x 10~ *cos(28t + ¢2)

Q = ¥ = 14.01rad/s, » = 1.6697ad, ¢ = —1.374rad
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M | Skip Mass. 7920 kg
MO | Skip Pay-load. 9664 kg

m_ | Linear Rope density. 8.4 kg/m
V | Nominal Winding Speed. 15 m/s

De | Depth of wind. 2100m

Lc | Catenary Length. 74.95 m

E | Effective Youngs Modulus of the rope. | 1.1 x 10! N/m?
Ax | Effective steel area of the rope. 0.001028m?
B | Cross over arc. 0.2 rad

Dd | Drum Diameter. 428 m

Ds | Sheave Diameter. 4.26 m

Dr | Rope Diameter. 0.048 m




Appendix D

Linear Lateral Catenary
Response

This appendix presents the linear analysis of the catenary, in the absence of
curvature, and longitudinal coupling. In this context, the equation of motion
governing the in and out-of-plane motion reduces to the linear wave equation
associated with a taut string. It is well established that the undamped wave
equation is variable separable, ie v(s,t) = ¥ ¢i(s)qi(t). The natural frequency
of the ith vrincipal mode of a string with pinned end conditions is given by

Vi vl v ) o axav;pw- 22

w; = zicz‘{ where ¢; represents the lateral wave speed which is related to the

tension T and linear mass density of the rope m, by ¢ = /T/m, and [

represents the chord length between the pinned ends.

The eigenfunction for this configuration is given by:

T

#i(s) = sin(is)

Since curvature is neglected, the in-plane and out-of-plane eigenfunctions and

natural frequencies are identical.
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D.1 Forced Response

The lateral response of the catenary to an out-of-plane harmonic boundary

_ excitation We™t at the drum end, in the presence of relative proportional

viscous damping is presented'. The equation of motion has the same form as
that presented in Appendix C, governing the damped longitudinal behaviour

of the rope. ie.

Fw  Pw | 0w
otz ~ Moas?at T 0s?

~
)
;_4
N’

where y; represents the coefficient of lateral dissipation, and co-ordinate s,
represents the distance measured along the rope from the drum to the sheave.
This equation is variable separable, and thus the solution may be expressed

as:
w(s1,t) = di(s1)q()
#i1(8) = Acosyis1 + Bsinysq
where:
w p
C -tay
" T
1w
a; = tan I-TI:—
<
T
a=L
m
The boundary conditions are

w(0,t) = We*
W represents both phase and amplitude and is a complex entity
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w(il, t) =0

Under these boundary conditions, the solution can be shown to be:

1wt

sin(yi(ly — sl))e = ¢i(s1)e’

w(si,t) = zn71

Since v, is complex, the response is phase shifted with re

Considering the first harmonic of the excitation as w(0,
w is the excitation frequency, the response is:

w(sy,t) = (Re(di)coswt — Im(¢y)sinwt) = Ai(s1)cos(wt + &)

where:

Ai(s1,t) = \/Re($1)? + Im($)?

®, = tan‘l( Re(¢;)

The forced lateral catenary response due to a periodic lateral excitation at the
winder drum can thus be constructed v1a superposmon of the forced response

VY 11aNATE KA WRiaa Gas MISRAY




Appendix E

Tineocar Clonnled Svstem
AJ1AATCAL VU“PL\JU Ty oV asa
Response

is appendix prese e solution to the linearised stationa

system response as proposed in Chapter 4. The equations of motion devel-
oped in Chapter 4, considered the stationary steadyrsta,te sqlution, for small
lateral amplitudes in the absence of curvature, such that nonlinear terms were
neglected in the lateral equations of motion, but retained in the longitudinal
equation of motion. The in-plane lateral excitation is significantly less than

| P dinal aveitation and i1e concenniantly na.

the Out-of-pia,ne la,teral aﬁd 1uuslt‘duu;m €XCivailoll, an 18 CONsSequenuy ne-
glected. Thus planar response occurs in the u — w plane, and consequently the
equations of motion under consideration for the catenary section are:

0%u Puy uy 40w 0w
nml = K529, + cz a2 + 5: ds? (El)
ot® Us10¢ U8y 081 U8
2
Pw _ Ow 00 (E.2)
otz ~ "0stat Ost )

The vertical rope is laterally restrained and consequently the equation of mo-

tion describing longitudinal motion ug(sz,t) is:

0%*u 0u 823‘1
it 2 4 (E.3)

ot? ”asgat te 0s3
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where ¢, ¢ represent the longitudinal and lateral wave speeds respectively, and
s1, 2 represent the co-ordinates measured along the catenary from the drum

end to the sheave, and along the vertical rope from the sheave to the conveyance

respectively. u;(s1,1),1 12( 83, f\ represent the longitudinal disnlacement in the
Lbol.lbbul i J Ul, lll’ W‘\ - o Rl I~

o +‘"c.ln

1
catemary and vertical rope respectively:

Since the equation of motion for the lateral response is uncoupled from the
longitudinal equation of motion, the lateral response due to forced bound-
ary excitation Y W,cos(nwt) can be derived in closed form', as presented in
Appendix D. The lateral response couples independently to the longitudinal

= A anmanniently thic counline term mav ]'\p vn:nxrorl ac a
equa,uon of quuuu, ana comsequentiy tnis coupiung erm m ay viewed as a

distributed forcing function over the catenary length.

The boundary conditions for the system, in the absence of longitudinal exci-

tation at the drum end are:

/0 4\ n (E.4)
u(0,1) =10 (E.4)
w(0,t) = Z W,cos(nwt) (E.5)

a 62 a2‘l‘l'2l /T NN\
{AEa + p{tAa J‘I(Ig,t) -M—— 912 [(12:2) (L.90)

n addition, si e is
given as: :
I 0%y, _ _6_"_13 %u,
[Zzgm e = [EAZ,, ”"Aas,at“(""’

ou; 10%*w 0%y
- [EA{B;I- + 5—5;%—} + Az 5710 (E.7)

The quadratic nature of the coupling term ctg¥ g’” %—’;‘i in the longitudinal equation

of motion (E.1), and 1( 3‘”)2 in equation (E.7) descrlblng the inertial balance

a2iJvaSsaz Ji ===

—aeresr&hﬁshe&ve,—lﬂesu]rts in the generation and transmission of longitudinal

excitation induced by the forced lateral catenary motion, to the catenary and

sections, subscript 1,2 will refer to terms evaluated at the first and second
citation frequency respectively
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vertical rope. This excitation consists of a time independent component, and
a dynamic component at multiples and beats of the lateral response frequency.

This can be demonstrated by considering the case where the forced lateral

response is comprised of two frequencies, namely at the fundamental and the
nnnnn Ph B I Y £ +h Le"\‘i 1 3

g tion freauencv. Thus the lateral forced
wvuo Vi F v AANs Y o A AAVAY ViAAL 4

ave
b MM J Quvliar 104U

response could be represented by:
w(s,t) = |wi(s,t)|cos(wt + ¢1) + [wa(s, t)[cos(2wt + ¢2)

wharas lan (e, #)I |qn2(e )| represent. t

WIEIEe |Wi\S1,v))y (W2 21y v/ *°0°

any point along the catenary, due to the first and second harmonic of the
excitation spectrum respectively.

maximum value of the response at

The longitudinal excitation induced via the lateral response w(s, ?) is:

2 o v N
czggé; t: _ Le? [(wlwl + Wowy ) + wyw, cos(2wt + 2¢1)

1

+ w;w:){cos(wt + ¢2 — ¢1) + cos(3wt + ¢1 + ¢2) }+
wywy cos(4wt + 2¢2)] (E.8)

1
o
TAT172

4w, w
\

The first term on the right hand side of equation (E.8) is independent of time,

and represents a static distributed force, which induces drift in the longitudinal

response. Effectively this drift represents the mean displacement about which

ongitudinal motion occurs. .

w. 2w. 3w. 4w demonstrates the autoparametric nature of the system, whereby
b ? )

the lateral motion induces longitudinal excitation.

The longitudinal system response due to the dynamic component of the exci-
tation induced by the lateral motion follows, whilst the response due to the

i - = - 1 » _ :‘_ r‘\ 1
drift term is considered in section L.i.

Consider the longitudinal excitation induced by the linear lateral response of
the catenary to the fundamental lateral excitation Wicos(wt). The longitudinal
excitation occurs due to the coupling term %‘;—’1’-%—;‘? in the longitudinal equation

of motion. Since:

1wt

Wi . _
wy(81,t) = Re pry sin(y, (h — s1))e
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Thus it can be shown that?.

awl
681

Re( )Re(da:;l) = Re [xlsin27ll(l - sl)ej(z“’t)] + Di(s1)
1

where D (s;) represents the static or drift excitation term. This term will be
considered further in section E.1.

= Wi,
17 (2siny, L)?

where® A = =gy and u(s1,t) and uz(s2,t) represent the forced

4\—‘7“* cf —w? j+Bpwyy

longitudinal motion of the catenary and vertical rope at frequency 2w respec-

tively.

The constants A;, B; are determined by the solution to the equations.

[A]{z} = {b}

where:

/8w Dol B2w1Y

2 8Re(w,) 82Re(w:) _ Re(2)Re(%5)
5 5'1 I 8]

3In the case of general viscous damping, as introduced in Appendix G, 4 =

<xa .
4(v7 cI—wd)+jw(Bpay, +He )



233

[A] =
1 0 0 0
cosyaly sinyaly -1 0
3,
%26087211 + sinyqly %—8"17211 — cosy2ly 0 1
0 0 A2cosyzly + Asinyaly  A%siny,ly — Acosyaly |
( A4,
B,
{z} = A,
B,
[ —Asin2y, 1y ]
0
{b} = l . Wi, y2 2w A }
l (ﬂgnn-nlll} Y3
0
where:
2 i —iaf2
A= T =i M = TR
o = tan~1 24 C2=1%GE’ZI 0 = pAp
) o —iot/2 gy = tan—1Y4L
Ao=v+1ia Y= (1+(+”c '5)2)1748 n c;
2_ T
2 = % G =m

~ce induced by the forced lateral response due to the

The longitudinal response induced oy : ‘ .
second harmonic of the lateral excitation Wqcos2wt, is obtained by appropriate

substitution into the above equations.

The longitudinal response due to the interaction of the first and second lateral
harmonic motions is developed along the same lines below. In this case time
independent terms do not arise, but rather dynamic terms at w and 3w arise.

Re(342) Re(%2) + Re(§22) Re( ) =

[(_22aWiWs (0o 4 e Ysinl(m, + 77, )01 = )]+ (12 = 73)sinl(n, = 77,)(1 = 8)]) ej““] +

g e l\ﬂn‘y,‘lluinm,lt} W\

lp

3

[( 12 WiWa Y {(my. + 71, )sin[(71, + 1) (h = 9] + (12 = )sin{(v, = m,)(1h - 5)]} eaj““]
e | 7 ) {0

\lln'nlll'lln"n,l ]

where 7, , W} refers to the complex conjugate of v,, Wh.
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The longitudinal system response at e’“* is thus obtained as:

uy(s,t) = Re [e!“ (Asin(y, + 71,)(lh — s1) + Bsin(m, — ¥[,)(h = s1) + Ajcosys; + Bysinysy )]

uz(s,t) = Re [ej“'(Agcosysl + stz’n'ysl)]

where?:

e L WiWa (v, + 7,
= asinyf lsinyh[(, + 7)€ + jpw) - WP

B - 2y v, Wi Wa(, — 1iy)
= dsinyg hsinyph(, — 7 )2(c? + jpw) - w?]

and the loading vector {b} is:

—Asin(yi, +7{,)h = Bsin(v, — 7, )h

0
{b} = wl.’Y“I WZ'le _ ('Vlg +'71=1 )‘A+('712 _’7(!1)'3
7X1.sm'y,'1 l1snm, {y "
0
By appropriate substitution, the longitudinal response at the third harmonic
of the Lebus excitation frequency can be obtained.

The total steady state longitudinal response may thus be obtained as a linear
combination of that due to the longitudinal excitation at the winder drum,

4In the case of general viscous damping as described in Appendix G:

2y v, Wi Wa(oi, +113)
A= Tsiny Lsiny, L [(y, + 77)2(c? + imw) + 2jwpa — w?]

sy L1817, 3

3 v v, Wi Walya — i)

=Tz .. 7 0/ _ a*\2(a2 L daa)
481717,1!1.917171,!1[\7:, Vi, )\E" T JH)
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as presented in Appendix C and that induced by the lateral response of the
catenary®.

Clearly, the direct longitudinal excitation at the winder drum results in axial

due to lateral catenary coupling accentuates these components, and introduces
additional excitation at 3w, 4w, as well as a drift term.

The drift in the longitudinal response as derived above causes a change in the
average tension in the rope. As a consequence of this, the natural frequencies
related to the lateral modes of the the variational equations of motion presented

LikulTia AC QUL Gl JAADLES UL il

in Chapter 4, increase.

51t is noted that the results presented consider the case where the lateral excitation
harmonics have a zero phase angle. Different phase angles can easily be accommodated in
the analysis by including the phase information in the harmonic amplitudes W,. Thus in

general W,, would be a complex number.
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E.1 Longitudinal Drift Term

The drift induced in the longitudinal response due to the static component of
~ theexcitation D(s;), is examined in this section. This occurs as a result ofthe
quadratic term Re[w ] Re[w ] in the longitudinal equation of motion. Con-
sider the steady state lateral response w; due'to the fundamental of the lateral
excitation at the drum, Re[W;e™]. The static component of the excitation
applied to the longitudinal system is:

b 1

i 1 -
D(sy) = §Rfi['w1,,1 wl,,l.l] = Z[wl,slwl,,l].sl

2
0w = —D(s;) 0<s1<h (E.9)
ds?
62’11,2
552 = 0 h <s2<ly

and the boundary conditions:

ul(O,t) =0
uz(0,t) = wi(h,t)
3(11 I ow Oug

2 TN
2 —
681 + 2(631) I(Ix.t) 632 |(°")

The resulting drift in the longitudinal response is given by integrating equation
(E.9) and satisfying the boundary conditions. This leads to:

W2, = —glwwlls (E.10)
P
'u,e = —Z[w.sw.a] (E'll)
1 2 *
WPlsr) = —= [ [wewslds (E.12)
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Evaluating equation (E.12), and accounting for the first and second harmonic
of the lateral response leads to:

L}

sin[2Re(m, )({ — s1)]cosdr + ————zsinh{2Im(y,)(I — s1)]sing,

1 ) .
uD(sl) =x1 {Wsm[?Re(‘yh)(l - sl)]co:sqﬁl + msmh[ﬂm('y,1 (I - 31)]sin¢1}
1
f

3 2
h’l'll !WL!
X1

~ 16|siny, L|?

31rx7 12

Il
Y3 1Vv2]

X2 = 16|sinyi, 1|2

The drift in the longitudinal reSponmmdﬁUmﬂW

average tension in the rope. As a consequence of this, the natural frequencies
related to the lateral modes of the the variational equations of motion presented
in Chapter 4, increase. The drift induced by the lateral response due to the
second harmonic of the lateral excitation at the winder drum can be evaluated
by appropriate substitution. Thus the total longitudinal response of the system
consists of a static drift to account for the lateral motion, and a dynamic
component. The influence of the drift terms on the variational equations is
considered further in Appendix F.3.
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Append

Parametric coupling Matrices

Chapter 4 presented a discussion which led to the proposition that the stability
of the coupled linear steady state motion, as determined in appendices C,D,E,

could serve as a criterion for determining design parameters so as to minimise
the potential for nonlinear system behaviour. The homogeneous component
of the linearised variational equations pertaining to the system are presented
below, where the boundary conditions at the sheave and conveyance have been
introduced with the use of the dirac delta function é(s — /) and the Heaviside

step function H(s — ).

[1+c6(s-11)+n(s—12)]‘ﬁtt = Uy 55+ T 0s+C*{w,sW 5} ,5[H(8)— H(s5~11)](F.1)

1, 5
Vst = WiTt,ss + T + {(Tsu,s)s + 5("{2,",,),3} (F.2)

— 3 _
Wt = Wt ss + Ez'ii)",, + cz{(Tv',,u',),, + (w,s8s),s + 'i(wfsw,s).a} (F.3)

C=I/pAR2, 7’=M/pA

where ¢?, @ represent the longitudinal and lateral wave speeds respectively.
u(s,t) represents the total longitudinal steady state response due to the lon-
o1 avcitation at the winder drum, and that induced by the lateral cate-

git‘u'.uiua.x excivation at tne winael
i ents

AU

b . . .
the steady state out-of-plane lateral catenary response as derived in Appendix
D. @, s, W represents the variation of the motion about the steady state linear
response in the longitudinal, in-plane lateral and out-of-plane lateral directions
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respectively. [, represents the catenary length, whilst [, represents the total
cable length. The longitudinal equation (F.1) is defined over the entire length
of the rope 0 < s < I, whilst the lateral equations (F.2),(F.3) are defined only
over the catenary length 0 < s < 4.

By applying a normal mode technique, where:

T=7 ¢i(s)pi(t)
v =2 ®i(s)ai(t)
w=3 Oi(s)ri(t) (F.4)

the equations of motion were reduced to a set'of coupled linear parametrically
excited ordinary differential equations of the form:

4
Ny 4190w it + I—rl_‘,,"’]-g. [Ag] + VfP(th)]-I {y} =0 (F.5)
J T i« JlJ'[LnJ 3 J nL_dlt\ _I \ 7

where:

9T =i, i)

4 0 0 Uw (2, 201)
3" (P(nat)] = 0 Vo (Q, 201, 301, 4Qt) 0
nal L Wau (2, 201) 0 Wau(Qt,20t, 301, 401) |

Where [Aq4] represents an initial stress matrix. This matrix describes the
change in the variational natural frequencies as a result in a change in the

aiai ad vait allad

average tension in the catenary due to the forced excitation. [A4] is defined in

section F.3.

The parametric coupling matrices are obtained on orthogonalising equations
(F.1),(F.2),(F.3) with respect to the undamped longitudinal and lateral mode
shapes #;(s), ®;(s). It is evident from the above equation that parametric

2GS

_ excitation occurs at multiples of the coil cross-over frequency (1.

The submatrices [Uw(nﬂt)], [Vau(n2)], [Wou(nQt)], [Wyw(nt)] are derived in
subsequent sections.
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F.1 Longitudinal Parametric Coupling

In order to extract the submatrix [U,,(nf2t)] in the parametric coupling matrix
[P(nQt)], 2 normal mode approximation is applied to the longitudinal equation

\Tveet jyy, & 120222

—of motion (F.1). This is accomplished by assuming:
1) g

i . .(s) respectively, where:

Where the undamped longitudinal and lateral mode shapes of the it* longitu-

where §; = ir/l;,7? = w?/c?, where w; is the i*" longitudinal natural frequency.
Substituting the above equations into equation (F.1), and pre-multiplying by
the it* undamped longitudinal mode #;, and integrating over the domain of

the rope leads to:

0 ¢l Bw "_ 32 N
+ [ i {3 8T T mr L &rjpds
11+ 9 (8 '
+1limy,_ -y, A f,! ¢1z;;{ ‘;’E‘I’jrj}ds (F.6)

The integrals fé’[l+(5(8-—l1)+n5(8—12)]¢i<f_>jfls and c? [ ¢i¢,ds are orthogonal
for the normal modes of a system by definition. These expressions are termed
the modal mass and modal stiffness m;, ki; respectively, where the ratio k;; /m;;

is equal to the square of the undamped natural frequency w?. Thus it is only

necessary to calculate the modal mass and the remaining integrals on the right

side of equation of equation (F.6). ie:

mis = [[1+C8(s = h) +nd(s ~ L)gidids



o
oS
4N

) ploye epresen o y
wheel coupling the catenary to the vertical rope. ThlS term may be 1ntegrated

by parts as:

lim c2/!1 { S @ }ds_ o aqu)’, 17
i 7 as J 117‘]

h_—h,

Thus the submatrix [U,,(n§t)] is evaluated as:

4 nz,]

EPI%’

st =~ [ [ 160,52 + 68,5 2005~ o]

it

1 1 . 1 1 . .
=(h - -2—;-_31112"/;11) + i(A? + Bl + H(A? — B?)sin2y;ly + AiB; sin?y;ly
3

my = .
+Ci(1)? + ndi(l)?
F=8inYi ;= Ay = Dosinyly
vi =wife n= pMA (= P_j%,

Where w; is the it undamped natural frequency of the longitudinal system.

th -
If one considers the response due to the n'* lateral harmonic of the out-of-

plane excitation at the wmder drum, W,ei™¥ where the response Wn(s,t) in

complex form is given by':

wn(5,8) = — 22 sin(y,(h = 8))e™™ (F.7)

sinvyi 4

IW,, represents the amphtude and phase of the excitation and 1s generally a complex

entity.
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where

nQl

]
—in

A
(1+ (o)

Vin =

- an
o, = tan ll—‘—;—
C

n

Evaluation of the integral for [Uy,.(nf)t)] leads to:

et ["’”""'""'»'n)uzw?—vfn>—<—1>fe-'n<~-m<~?<6,°+w?,>-<s,°--~3,.>=}]

Uuw(nQt))i; = 5 { o] | 65+ =72 W(85—7)2 =7 ] ]

s _ h1
—%(—1)-"11,.51Wn—"-m}c"‘n'

sinyp [}

e Dard S I ing ma n§) S ILE E e the torm of the
matrix due to an excitation Re{W,e™} will be Re([U,.(nQt)]). If the first
and second harmonic of the Lebus excitation frequency are considered, two sets
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F.2 Lateral Parametric Coupling

This section presents the lateral parametric coupling matrices [W,,(nQt)],
[Wow(nf2t)], [Vas(nQt)]. The lateral out-of-plane equation of motion is:

_ _ 9 _ _ 3
Wt = UiWt,ss + CQw,as + cz{(w,,u,,),, + (wv’uv’)vs + E(w,zswus);a} (FS)

Substituting the normal mode approximations (F.4) into equation (F.8), and
pre-multiplying by the i** undamped lateral mode ®;, and integrating the

equation over the domain of the catenary? leads to:

l i ]
/IQeZ‘I’j*}'ds 52/ ;) ®;rjds
0 0

A rh ra‘w-—\ " azw‘—‘ '
+ ) Qi{lgL%Pﬁg@L%Pj
au " 62’U, ’
+ Z’EEQjTJ’-l-WZQJ’Tj}dS
3 11 3’!1) 2 Q’ . d
+ 5 [ UG L 8iridads (F.9)

Since the normal modes of the catenary are‘orthogona,l by definition and hence
the integrals [ ®;®;ds = mii , a fél ®;®;ds = kii, where the terms my;, k;;

TOT T T vy

—Eefer—te—th&rﬂodal—ma« and stiffneés Of the ca.tenary, and the ratio k,-;/m,-.-

is represents the square of the it* undamped natural frequency of lateral vi-
bration of the catenary @?. Thus it is necessary to calculate the modal mass

and the remaining integrals in the last two terms on the right hand side of

equation(F.9).

h
mi = ./(; (I>,—<I>.'d.9 = 11/2

-2 h " —2
ki;=°¢ @.‘Q‘ ds = W;mg
0

T the domaim reduces to the catenary length, as the lateral mode is only

defined for the catenary
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The remaining integrals are defined by:

. et rho waﬁ " 8210‘—‘ /]
Westn)l; = = [ @4 G256 + 5 56] s
- ¢ rh@,rau._.@,,;@ﬁ ]d 32 h 8_1_72 .
[ ww(n t)]z] —m“ 0 t aSL J 832L j 3— j {( LQj},sds

Parametric coupling matrix [W,.(n{t)]

Substituting the solution for the lateral out-of-plane response w, from equation
(F.7), due to the n'* harmonic of the lateral out-of-plane excitation at the
Lebus drum, W,e™*, and carrying out the integration for the first integral
above leads to:

64 % W [(=1)'v;sin(v;11)(82 =97 + 7 ) + W, 0in(n, 1)(82 +47 =42 )] e
[Wuw(nt)l,i = masin(m, 1) l [5'2 — (v - ‘Yl,.)2][5,-2 — (v, + ,n”)z] J e

Parametric coupling matrix [Wyw(n§2t)]

The second integral above for [Wy,.(n2t)] is simplified into two separate com-

Lo
ponents. The integral depends on the forced response u due to the longitudinal

excitation at the drum and as a result of the lateral catenary motxon and on
the forced lateral response w.

Considering the first part of the integral which is due to the total longitudinal

response u.ie:

[Wano(n28)); =—r—2%/oh {WE@ P Z@}

The total dynamic longitudinal response including the fundamental and the
second harmonic longitudinal and lateral excitation at 2,24 is:

ul(s’ t) = Re [Rleim + Rzezim + R3eaim + R4e4"m+
. y Qe

* - sin - -

1
+Agsin2y, (h — 8)e™™ +

{Assin[(yi2 + 7)1 — 8) + Basin[(viz — vi,)(l — s)}e
4i0t)

3|Qt

.A4sm4712\¢1 — s;c ]
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where A, B, are determined [roin Appendix E a3

A, = L TP BT T, T g = T T W W = ]
L= M:‘ﬂ[‘.ﬂn’;]am-}-‘h.:'.';,ﬂiTz‘:+'h|I:|:'|._|!* F2uabi—adE, - = da:ﬂ__-*.I'Ih','u'::.[-.-.?.',_:[:’-fl N e e
A _ -1-i'| “r._:Jl.l‘Jl;h“_{l.l—J:'
T = [Eanlme, 00, Pl au—did]
gt W Waly )

S T Lk L P e P

LERY igts 1 a
1, Wirini2, (i -

Aq = [Zdnr, T [ Tig T+ aiplks - LS,

B, = Aqeosves + Hyestnpgs

and Ax, I, 7 are obtained from the selution: to the forced longilndingl sys
tem reapanar as defined in Appendix E.

The parametric coupling matrix relating to Lhe loogitudinal response will be
evaluated as two componenl matrices. i

(WA nid )] p=1.2.00 = R ESLISTERRPORE Y 1L VN2 .7 AR

"I-:"r'-hEI'E.' [H_me['nﬂr]]:‘:1 .34 rmu]ts fmm Ll'l.l:!' lers Rnf"ﬂ'“ i]] 1.|::IC |nngitudiﬂ.ﬂ]
responac, whilst [y (1 3]2_, 4 g pesnlls from the reraining terrns.

Considering the coupling matrix [[#F{nit]]! dne to Lhe longitudinal response
term A e®t, the integral [Wau(nfH)]" is given i

I P i f+el-m .
(Wun (@il = B b | GETET A0S — 57— )

ol

Gn = Ao — (117 [ Ancos(hi} + Basinitdi]

The parametric coupling matrix [ (nE2J]%; s obtained by considering the
term Aasin2a{l, — s)e™ separately. Carrying out the appropriate integration

berads 1o
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‘The matrices [Wuw(nQt)]? for n = 1,3,4 can be evaluated by appropriate
substitution in the above equation.

The coupling matrix due to the forced lateral response w is defined by:

2 ol

3e ow 5 N
[I/wa(nnt)]3 = —2m~/o (I)i{(_g;) Z,(I)_j},sd‘S (FlO)

If one considers the forced lateral response due to the first and second harmonic
of the Lebus frequency then:

.sm'y[,,(ll - s)e‘"m) = wy + Wws

w——R(Y‘

IS'L Yin

Consequently dynamic® components of (w,)? occur at nfd, n =1---4, given

rpqpprhvp]y as

R ﬁwla ; +R (8w1)2+2Re(5w1 8w2\+R ,awg\a.
= - _ E\—{— . € -
(w,)? [26( ~ 55 ) Bs 9s 0s ) T el )
Consider the second Component. ne(%"‘-)zi

_ Ow; ., 1, ., 7‘1W1 \2.002., (] PRI

s ) = 27" Nsin, e

Substituting this expression into equation (F.10) and performing the 1ntegra—

tion:

3¢, Wi . 0;6;v1, 8102y, 1y .
3 _ 1 _ 1937
Waun(20)F = 3 —{ o) | 16— 6,0 = (27, )71 + 852 — (2,7

whereA:%ifi:j,andA:Oifi;éj.

3 7The gtatic component of this term affects the lateral variational frequencies, and is

considered further in section F.3.



