The absolute increase in percentage extraction, 2e, per cent, from
a continuous miner pillar compared to that from a drill and blast
pillar then becomes

Ae,% =100][e,, - e].

i -2Aw,)? 2]
Ne,% = lootl—ﬂ—cr“iﬂ)—,— 1 +‘(""_2J
4A -Aw,
Ne, % = 100[ w"(g’, )]. (5.8)
: 1

A plot of the absolute increase in areal percentage extraction versus
e, Figure 5.24, shows that the greatest increase

is 4,75 per cent at 12 m pillar centre distance, assuming 24w, is
0,6 m and a bord width of 6,0 m. Thereafter the gain in
percentage extraction reduces with increasing pillar width.

Figure 5.25 shows the actual areal percentage extraction for a drill
uivalent continuous miner

¥ Cais UL ARt

and biast formed pillar and fo
fromed pillar, both versus pillar centre distance. The percentage
increase in percentage extraction gained through the use of a

.
1mnmmnnNiie
IZR B BT axsassve

also plotted on this graph. Figure 5.25 shows that the percentage
increase in percentage extraction, over that obtained by drill and
blast extraction, is six per cent for an 11 m pillar centre distance

and nine per cent for a 31 m pillar centre distance. Although the
strength difference between the larger pillar widths mined by the

R N . ..
e nine per cent gain 1n

two methods is about one per cen

¢ ¢
i, UiV 131 Saizs

percentage increase in percentage exir i
extraction (about 33 per cent) associated with the larger pillar

widths.
As an example of the application of the above calculations, assume

designed dimensions of

depth to seam 100 m
mining height 30m

D-—m

bord width 6,0 m
safety factor 1,6.
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This resweits i & driil and biast formed pillar widih of (0.1 m and
an areal percentage extraction of 60,7 per cent,

J— hlact d F 0.3 m. the pillar width of

continugus mingr Tormed pillac would Lthen be 9.5 m and the boed
width & 8 m, giving an arenl perceniage extraction of a5,2 per cenl
This iz an abselute increase in exiraction of 4,53 per cent,

LIRITATIONS OF APPLICATION

Uz of @ conninuous miner permiss the designed pillar wideh to be reduced
by the pxtent of the blasi damage zone, This can be applicd, however, only
where 1 reduction in piflar width deos not cesull 10 EXCESSIVE SIress
cancentratinn over the pillar's edge cavsing siress-induced fracturing.

I .
.'Fh'ess{u}-_—l- [a.t]

-

Figure 5,26 shows the percenllge change in ihe arca of the blast damage
zone uver the designed pillar ares foc varying pillar width, The infuence
of 1he Blast damage zope on average pillar stregs goncentrution reduces

nd raatatl Tor pillars lese than

]
=i o' LS g

e = llae wiAdrh ]
131 &

whre i Bl jagidl CmcammpE e -zl
FURIL Y Wi T CAD g N d ™ B b

&0 1 in width, Stress-induced Tractures at the pillar's cdge could result in
the ingiability af smaller pillers, because af the reduclion o ared leading o

cuntinued slabbing of the sidewall.

Alzn, us the depth of mining increases the stress coacentration over the

L ol o Aaml Trhles € 4 chaweren
1 1RE Tirde. t@ol S5 SaGiFW3

piliar's vdgo approaches the materigi sirengih o
1he ﬂ'r'E'lﬂ.gL'.' pi"ﬂr Slrggs Qver pﬂlars minﬂd kD A Sﬂl'et].-' Fﬂﬂ[l:l‘r Df |.6
atsuming 3 pillar height of 3,06 m and a bord width of 4,0 m.

Chapter & 5.18



Table 5.4 Average Stress Over Pillars Mined to a Safety Factor of 1,6.

Depth Pillar Width Average Stress
H (m) w (m) MPa
50 6,0 5,00
100 10,1 6,32
150 14,5 7,46
200 19,4 8,53
250 25,0 9,56
300 31,3 10,60

The stress profile across a pillar is such that near the edge of the pillar the
stress has a peak. (Refer to Figure 5.13). If the peak stress exceeds the
material strength, stress-induced fracturing occurs, the load carrying
capacity of the fractured slab is reduced and the peak stress progresses

towarda illar’s cenire. The stress is then redistributed over fAda
WOWaras ulc piuiar’s centre. 1née Siress is in€in reaistrivutea over a wider

area and the peak stress is reduced. Further fracturing occurs until the
"failed" slabs are in an equilibrium with the load acting across the pillar.
This process of fracturing reaches an equilibrium in wider pillars because

of the failed material carrying part of the load and because of the
frictional forces acting on the roof and floor contact.

Maximum benefit, in terms of increased extraction when using a
continuous miner, occurs between pillars of a width greater than 5,0 m and
at depths of not more than approximately 175 m at which point the onset

of stress-induced fracturing Occurs.

The use of a continuous miner results in improved mining conditions as a
result of smoother sidewall profiles and greater roof control at depths in

5.8

excess of 175 m. Because of stress-induced sidewall slabbing, however, the
benefits of increased extraction are reduced at these depths.

ESTIMATED SAVINGS

In South African collieries approximately 17 million tons of coal were
mined by continuous miners in bord and pillar panels in 1985. This
represents 11,3 million cubic metres of coal extracted by continuous

miners. Assuming an average mining height of 3,0 m and the specific

gravity of coal to be 1,5 the equivalent area of the 17 million tons of coal
would be 3,78 million squared metres. Again assuming the average pillar

Chapter 5 5.17



dimensions for a 1,6 safety factor production panel at a depth of 100 m to

be 10,1 m in width, an areal percentage extraction of 60,1 percent would

be equivalent to the 3,78 million squared metres. Using a continuous miner
would allow a reduction in the pillar width by 0,6 m and an increase in the
_ bord width by the same amount. This would result in an areal percentage
extraction of 65,18 per cent or 4,06 million squared metres. Multiplying
this figure by the assumed average mining height of 3,0 m and by the
specific gravity of coal of 1,5, the potential increase in extractable reserves

could be about 1,28 million tons per annum.

per estimate as not all continudus miner formed
pillars are mined to a safety factor of 1,6 and the assumed average
dimensions may be inaccurate; it however indicates the potential benefit of
exploiting the increased strength of a continuous miner formed pillar. Since
the strength of the smaller continuous miner formed pillars will be
equivalent to the blast damaged drill and blast formed pillar, increased

- ~ atnliliewr AF tl\e aganmatryv

extraction will result without a reductio in the stability of the geometry.

5.9 CONCLUSIONS

The investigation showed that the f ractured side of a pillar is the result of
the weakening effect of blasting on a pillar’s side and is correctly termed
the blast damage zone. This zone extends 0,25-0,30 m into a coal pillar

side.

Slabbing in a conventional drill and blast section reduces the pillar width

—byweﬁmvaemdmund blast-induced fractures extend

0,1-0,2 m into the sidewall of a pillar after slabbing has occurred.

cmma Aaas

The pillar formed by a continuous miner to the same design
as a drill and blast formed pillar has greater strength due t0

the blast damage zone. Therefore, when mining by continuous miner, the

reduced b3 last damage
designed pillar width can be reduced by the extent of the blas g

zone from that of a drill and blast pillar without increasing the risk of
pillar failure. When calculating continuous miner formed pillar dimensions,
ion in pillar width, rather than a fixed reduction in safety

L
(o)

G

formed pillar r that of a

v
min
..v

ar
KiwA

The increase in strength of a continuous mi
lar is greatest tor smmmmﬂ%ﬂ—

drill and blast formed pil illar width,
cent at 5,0 m width, and rapidly reduces with an increase in pillar widt
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1,0 per cent at 30 m width. The increase in percentage extraction is
greatest at 12 m pillar centres, 4,75 per cent d declines with an increase
Bpivaivon U ie M Pingr COMITS, 7/ v pva VUit Gl USR0S THasis s ivivaow

in pillar width to a 4,2 per cent increase at 19 m centres. The increase in
extraction, expressed as a percentage over actual extraction, increases with
an increase in pillar width from 6,0 per cent at 11 m centres to

approximately 9,0 per cent at 31 m centres. Based on the 1985 production
figures, approximately one million tons of coal could be added to the
country’s reserves annually by utilizing the increased strength of a

continuous miner formed pillar.

The limitation of this method is that stress-induced damage could result in
th

pillar failure in pillars less n 5,0 m wide. Stress-induced fractures occur

in pillars mined to a safety factor of 1,6 at a depth of about 100 m and
slabbing occurs on pillars in workings in the region of 175 m depth.

This design method is being used to design continuous miner formed panels
s o Aa
9

P heed s d il a Colliery and, over the past three
111 vulJ anyu pliiai ivia Novaiava

0
1 f‘
years, an estimated 4,> per cent mcreasmﬁextraeﬂeﬂ4ﬁfrbeei¥eb€a...eu.

At Khutala Colliery, according to Bradbury and Hill (1989), the design

method described in this chapter has been responsible for adding up to an

estimated 32 million tons to the colliery’s reserves. This has been achieved

through both the reduction in pillar widths required and, as a consequence,

.| Wi~ A Qoneno
INU, 4 OCaiib.

the non-superimposition of panel pillars in the No.
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Figure 5.5

Chamber of Mines Research Organization petroscope.
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Figure 5.6 Panels investigated at Cornelia Colliery.

5.25

Chapter 5



0,0 00
%521 soiL aND CLAY “[o-o
42 -e- SOIL AND CLAY
v 67—
v —-— —
v .-
v iy
v | | DOLERITE -
v =
v — — -
v —--—-
v s
27, 4 f—— S SANDSTONE

- 42,7 —
== SANDSTONE =——1 SHALEY SANDSTONE
=2 T:
by —_

o o

62,5(—= ~ Z | SHALE
=] MicacEOUS SHALE -
p— 80717="1 SANDY SHALE
j— =

83,5[===1 sHALE/SANDSTONE ==l cLALEY COAL
——1 CARBONACEQOUS T
——| SHALE 7- TOP SEAM
== 1
T=={ SANDSTONE/ ET™
:-__: S.'ALE ('H) "v)
=~=| SHALEY COAL

! 07.6- TOP SEAM
(m) (7a)

Figure 5.7 Geology of Cornelia Colliery.

5.26
Chapter 5



A1 Drill & Blast Old

! A3 Continuous Miner Qid

A 12 Continuous Miner Recent

F17 Drill & Blast Recent

)

P i) ol
T 7

)

49‘/ // oy 2 /, y

s @
707 /4 /0120020024274 7 3
A - ==

2
4
g .

2

Figure 5.8 Panels investigated at Kriel Colliery.

74
7,

o’

////’/////

Chapter 5



4HTWWT%D—KMME]—

GENERALIZED STRATIGRAPHIC COLUMN

pepH THICKNESS
0,0 17711
as U 4,5 SOIL and CLAY.

KRR 13,0 SANDSTONE, fine grained, micaceous, laminated. Some shale and
siltstone bands.

17,5
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glauconitic sandstone at base.
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+1,0m shales out in areas.

Y
[(o]

61,1

63,5 Lo I
63,7 [+ - 2.4 SANDSTONE/SILTSTONE, fine grained laminated sandstone and
66,5 sandy siltstone.
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79,8 — up to laminated sandstone. Impersistant shale in lower C,6m.
8,9 2,1 - s i m. Thickness
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L ,7 SILTSTONE/SHALE, sandy, impersistant.
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104,3 T 2;5 SANDSTONE, fine grained, laminated with shale bands, impersistant.
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_ Figure 5.9 Geology of Kriel Colliery.
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Figure 5.10 Depth and frequency of fractures observed, Cornelia

Colliery.
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