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Abstract 

 

The dissertation describes the synthesis of sulfonylimine ligands from N-sulfonylpyrrole. 

These ligands form metal complexes with various transition metals and are to be tested 

for activity against cancer cells. The introductory chapter sets the scene by describing 

transition metals in existing therapy and current investigations on transition metals in 

therapy. It also covers current methodology for deprotonation of N-sulfonylpyrrole 

leading to carbon-carbon bond formation. 

 

The second chapter describes the experimental work performed in this project. A 

synthetic route towards sulfonylimine ligands, 4-methyl-N-[phenyl(1H-pyrrol-

2yl)methylene]benzenesulfonamide 15 and N-[phenyl(1H-pyrrol-

2yl)methylene]benzenesulfonamide  6, is described. The mechanism for the 1,4-

migration of the sulfonyl group was investigated in a crossover experiment and was 

found to occur via an intra molecular shift. 

 

The sulfonylimine ligands were complexed with late transition metals from the first row 

(cobalt(II), nickel(II), copper (I), copper(II) and zinc(II)), second row (palladium(II) and 

silver(I))and third  row (platinum(II)), and were submitted for testing against cancer cells. 

The first row transition metal complexes did not show activity against HeLa cancer cells, 

while in the second row, activity was observed for the silver complexes. The third row 

metal complex also showed anti-cancer activity. 

 

Previously reported methodology employing Grignard reagent and catalytic amine base 

to deprotonate N-sulfonylpyrrole and quenching with electrophiles was extended to 

indole, imidazole and benzimidazole ring systems. Results obtained were comparable to 

those reported using lithium bases. Addition of lithium chloride to the Grignard reagent 

reduces the mole equivalent of the reagent required for deprotonation.  



 

 

 

A comparison between the arylsulfonyl and dimethylsulfamoyl protecting groups in 

pyrrole and imidazole showed that arylsulfonyl are better protecting groups for pyrrole, 

while dimethylsulfamoyl is a better protecting group for imidazole. 

 

All synthesized organic structures were characterized by NMR spectral data, mass 

spectrometry and melting points where applicable. The synthesized metal complexes 

were characterized by mass spectroscopy, infrared spectroscopy and X-ray 

crystallography where applicable. 
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Chapter 1:         Introduction 
 

1.1 Background on transition metals in biological systems 

 

Transition metals play essential roles in the functioning of physiological life. They 

participate in important biological functions, e.g. iron (Fe) in hemoglobin, cobalt (Co) in 

vitamin B12, molybdenum (Mo) in the molybdenum cofactor (Moco)1, just to mention a 

few.  Deficiency in these essential transition metals leads to serious illness and in some 

cases death. Not all transition metals, however, are used biologically. This is due to their 

bioavailability; nature appears to prefer metals that are easily obtained from the soil.  

 

Transition metals that are bioavailable include manganese (Mn), iron (Fe), cobalt (Co), 

copper (Cu), zinc (Zn) and the second row metal molybdenum (Mo)2. Much research is 

currently focused on making complexes which contain these essential transition metals 

and testing their activity against various diseases. The research involves collaboration of 

various disciplines in the field of science e.g. chemistry and biochemistry.  

 

A brief overview containing current transition metals in therapy and current 

investigations of transition metals in therapy is given below. 

 

1.2 Background on transition metals in therapy 

 

1.2.1 Existing transition metal-based therapy 

 

Transition metals that are not bioavailable have also been investigated for activity against 

various diseases. The most useful complex is without doubt cisplatin 1, discovered in the 

1960s3, used in the treatment of cancer. The complex contains a platinum metal bonded 

to two nitrogen ligands and two chlorine ligands. The mode of action of cisplatin is 

believed to involve the binding of the complex into the two DNA strands, blocking 



 

 

replication and transcription of nucleic acids into proteins. It has also been shown to 

trigger programmed cell death (apoptosis)1. Other findings in this research show that the 

platinum complex binds to one DNA strand and causes distortion that results in cell 

death4-6. 
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Figure 1. Cisplatin (1) 

 

Cisplatin is currently being used for the treatment of cancer, and has shown high activity 

against various cancer cell lines. The IC50 value, the concentration of a drug required to 

kill 50% of infected cells, is below 5 µM in most cell lines. The drug 1 has shown side 

effects such as nephrotoxicity, neurotoxicity, vomiting and nausea. Other cancer cell lines 

are resistant to cisplatin7-8. These limitations have led to research into finding drugs that 

are as active as, or more active than, cisplatin but with fewer side effects.  

 

Gold compounds have also been used in therapy. The use of gold in medicine can be 

dated back to 2500 B.C.9-10 where it has been used to treat leprosy, epilepsy and other 

diseases.  

 

In 1928 gold-thiolate drugs (Figure 2) found their use in the treatment of rheumatoid 

arthritis (RA) and even today they are still used9. These drugs contain gold in its +1 

oxidation state and act as anti-inflammatory agents. However, they have been shown to 

have severe side effects and are only used as a last line of defense. Treatment of RA in 

the early stages usually involves more conventional organic drugs known as non-steroid 

anti-inflammatory agents (NSAIDs) and corticosteroids. The NSAIDs drugs act by 

blocking cyclooxygenase enzymes, COX-1 and COX-2, and in turn block prostaglandins 

generated by the COX enzymes. The prostaglandins are important mediators for both 

pain and inflammation9. The corticosteroids act as anti-inflammatory and 

immunoregulatory agents.  
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Figure 2. Gold-thiolate drugs 

 

1.2.1 Current investigations into transition metals as therapeutic agents 

 

Much research is currently focused on making transition metal complexes that contain 

both the bioavailable and non-bioavailable transition metals and many publications have 

shown some of these complexes to have some biological activity.  

 

Cobalt complexes have shown anti-malarial effects11 where they target the plasmodium 

parasite. The activity of the compounds was comparable to that of the currently used 

drug, amodiaquine, at similar concentrations (Figure 3 a). These studies were in vitro 

studies and only show the toxicity to the parasite not the host. No further biological 

testing information was reported. Other studies have shown cobalt complexes to have 

anti-bacterial activity which is also comparable to the presently available drug, 

imipenium12. These results were also done in vitro and there is no mention of further 

biological testing on these compounds (Figure 3 b). Cobalt is a redox active metal where 

the +2 and +3 oxidation states are most common.  
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Figure 3. An example of cobalt complexes used in anti-malaria (a) and anti-bacteria 

(b) studies.  

 

Molybdenum complexes (e.g. Figure 4) have shown anti-cancer activity13 against the cell 

line, V79 Chinese hamster lung cells. These complexes were used to study the 

relationship between cellular uptake and toxicity and were only performed in vitro. 

Unlike most transition metals in biological systems, Mo has a high oxidation state of +6 

and a high coordination number.  
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Figure 4. An example of a molebdenum complex used in an anti-cancer study. 

 

A number of synthetic copper complexes have been shown to have anti-malarial 

activity11, anti-cancer activity14-15, nuclease activity16, anti-inflammatory activity in 

rheumatoid arthritis17, and they also catalyse several reactions, such as nitration of 

aromatic compounds, which are usually catalysed by the enzyme superoxide dismutase18. 

The mode of action of these complexes is unclear and both oxidation states of the metal, 

i.e. +1 and +2, are used. Promising results have been observed from both oxidation states. 

These reported results were performed in vitro and there appear to be no further mention 

of other biological testing. 



 

 

Zinc complexes have been shown to bind strongly to an HIV receptor CXCR4, used for 

membrane fusion, and hence inhibit the spread of the virus19. The complexes were shown 

to be ten times more active than the metal-free ligand, showing the importance of the 

metal (Figure 5). Other zinc complexes have been shown to have anti-malarial activity11 

and also anti-bacterial activity12 in similar studies to those of cobalt.  
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Figure 5. An example of a Zn complex used in an anti-HIV study. 

 

Many platinum-containing complexes (e.g. Figure 6) have since been synthesized, after 

cisplatin, and some have shown promising results 7, 20-22. The focus has been in trying to 

incorporate ligands that are similar to those in biological systems and also less toxic. 

Other platinum complexes have been shown to have anti-HIV activity23. Complexes 

containing metals that are isoelectronic to platinum(II), i.e. palladium(II) and gold(III) 

have also been investigated for their activity against cancer. 
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Figure 6. An example of a platinum complex used in an anti-cancer study. 

 

 Palladium complexes (e.g. Figure 7) have shown anti-cancer activity similar to their 

platinum counterparts7,23 and in some cases have been more active than cisplatin24. Pd(II) 

is a d8 ion which has square planar geometry around the metal, similar to Pt(II). In 

catalysis the processes catalysed by platinum can also be catalysed by palladium and in 

some cases palladium is better25. 
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Figure 7. An example of a palladium complex used in an anti-cancer study. 

 

Gold complexes (e.g. Figure 8) have also shown anti-cancer activity but, interestingly, 

both oxidation states of gold, i.e. +1 and +3 have shown activity23- 30. The different 

oxidation states of the gold metal have been shown to direct the metal to different target 

areas, Au(I) complexes have been shown to interact strongly with the mitochondria, 

while Au(III) has been shown to interact with the DNA with a mechanism suggested to 

be related to that of cisplatin the platinum complexes31. 
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Figure 8. An example of a gold complex used in an anti-cancer study.  

 

The use of silver in medicine has been known for some time. For example, silver nitrate 

(AgNO3) has been used as an anti-microbial agent since the 1800s. Silver complexes 

have also shown anti-cancer19, 31-32 and anti-malarial activity11, and in other experiments 

silver complexes were more active when compared to the platinum and palladium 

complexes. Nickel complexes have also shown significant activity against certain cancer 

cell lines33-34. 

 

1.2.3 Toxicity 

 

Although some transition metal complexes have shown activity against several diseases, 

most of the results obtained were from in vitro studies. This type of study involves only 

affected cells and no information about healthy cells can be obtained. When in vivo or 



 

 

clinical tests are performed, most of the metal complexes have been shown to be toxic to 

healthy cells and thus not effective for the treatment of a particular disease. In most cases, 

the infected cells and the normal cells are very similar i.e. they have similar DNA, 

protein, RNA structure and other molecules essential for the functioning of the cells1. The 

difference between healthy cells and infected cells is usually the disruption of one 

pathway which leads to overproduction or underproduction of certain molecules which 

result in disease. Cancer cells have been shown to be more metabolically active than 

normal cells and this result in cancer cells replicating faster than normal cells and 

spreading over a large area in the body1. 

 

It is important to have compounds that are selective for only the infected cells but not the 

healthy ones. This helps in minimizing side effects. The way of achieving this goal is to 

identify the major difference between the normal and infected cell, then target those 

specific areas in the cell. Cisplatin targets the DNA of the cancer cells since they replicate 

faster than normal cells and hence minimize the spread of the cancer cells35. It should be 

noted that the mode of action of most of these metal complexes is not known and thus it 

is difficult to make target-specific metal complexes.  

 

Transition metals in their free ion form are toxic and not target-specific. They also have a 

high risk of being excreted by the kidneys before they can be absorbed by the cells. Other 

metal salts e.g. Au(CN)2
- are insoluble and have to be administered orally. One way of 

making soluble target-specific metal complexes is by ligand design. 

 

1.3 Background on ligand design 

 

Designing a ligand is one of the challenging parts of drug design since many variables are 

involved. These variables include polarity, size, shape and metal binding ability and 

strength. The polarity of the ligand must be able to allow the metal complex to be soluble 

in the host medium, which is aqueous and also be able to interact with the cell membrane 

which is mainly hydrophobic1, 36. Once the drug is on the membrane it should be able 

pass through into the cell or it must interact with the membrane receptors and induce 



 

 

other physiological pathways. This requires the metal complex to have polar groups that 

can interact with the aqueous medium and also non-polar groups to interact with the 

hydrophobic portion of the cell membrane36. 

 

The balance between the polar and non-polar properties of the molecule is measured by 

the log p value (equation 1), which measures the concentration of the molecule in the 

organic phase versus the aqueous phase36. This is obtained by dissolving a known amount 

of the compound in a solvent mixture of water and octanol, shaking the mixture and 

measuring the concentration in both phases. 

 

                log p =        Concentration of compound in octanol                         (1)     

                             Concentration of compound in aqueous solution 

 

The higher the value of log p, the more non-polar the compound will be, and vice versa. 

It has been shown that compounds with a high log p value are more biologically active 

than those with lower values36. This may be due to the compounds(low log p) being too 

polar and not being able to pass through the membrane, resulting in their excretion by the 

kidneys1, 36. The range of log p value shown to be effective is between +1 and +5. Above 

+5, the molecule is very non-polar and not soluble in the aqueous medium but gets 

absorbed by the fat tissues instead. This results in the molecule not reaching its target and 

subsequently getting excreted without performing its intended function36. 

 

The size of the molecule must not be too large since this tends to increase the number of 

polar groups attached on the molecule. The molecular weight of the molecule should be 

less than 500 g/mol, but this value is difficult to obtain with metal complexes since 

metals have high coordination number and require more than one ligand. Transition 

metals also have high molecular weights per atom which results in the overall complex 

being heavy. If the complex has a high molecular weight then it should also have a high 

log p value to make the complex less polar36. 

 



 

 

The shape of the ligand plays a very important role in making the molecule target-

specific since a target area requires specific geometry of substrates. Drugs targeting the 

DNA are planar and disrupt the DNA replication by intercalating with the double strand. 

Proteins usually require a 3-D structure to bind in their active site and hence the 

molecules need not to be planar but must have a size similar to those that naturally bind 

the active site of the protein36. Metal complexes are usually too large to compete for the 

active site of proteins and they probably target areas away from or near the active site and 

modify activity by an allosteric mechanism1. 

 

The ability of the ligand to bind the metal and form a stable complex is extremely 

important and will determine if the complex will survive in biological solution, which 

contains a large pool of molecules capable of complexing metals. The molecules include 

the amino acids, nucleotides and carbohydrates which contain OH, NH and SH groups 

that can coordinate with metals1, 2 ,36. It is extremely important to design ligands that will 

form strong interactions with metals when compared to interactions with other biological 

ligands. A strong metal-ligand interaction ensures that the complex will have a high 

binding constant. This is usually achieved by using appropriate chelating ligands chosen 

on the basis of hard-soft acid-base (HSAB) theory. 

 

Chelating ligands have two or more donor atoms in the molecule, which can bind the 

metal ion at the same time2. This is very useful since it reduces the number of molecules 

coordinating to the metal centre. Chelating ligands have been shown to form stable 

complexes with metals when compared to non-chelating ligands. This is due to less 

repulsion around the metal since the number of molecules around the metal centre is 

reduced. Also of importance are the kinetics of formation of the metal-chelate complex, 

which are usually fast compared with a non-chelate-metal complex2. 

 

The hard-soft acid-base (HSAB) theory states that soft metals (Lewis acids) will form 

strong interactions with soft ligand donors (Lewis bases), and likewise hard metals with 

hard ligand donors2. Soft metals and ligand donors are those with a polarisable electron 

density cloud around the nucleus, while hard metals and ligand donors have an 



 

 

unpolarised electron cloud. Hard metals are found in the top and left of the periodic table 

and metals become softer when moving to the left and bottom of the periodic table. High 

oxidation states favour hard metals while soft are favoured by low oxidation states.  

 

Hard donor ligands are often those with oxygen donor groups and their strength increases 

with the negative charge on the oxygen, and also fluorine and chlorine. Soft donor 

ligands are those with phosphorus, bromine, iodine and in rare cases carbon ligands. 

Other donor atoms such as nitrogen and sulfur have been shown to be intermediate in 

their bonding strength. They form stable complexes with both the hard and soft metals2. 

 

Most of the transition metals being investigated for biological activity are those found in 

the right and bottom of the periodic table, hence they are soft or slightly soft in nature. 

Most of the ligands designed for complexing these metals are chelating and contains 

intermediate to soft donor ligands depending on the nature of the metal. Most of these 

ligands contain at least one nitrogen donor atom and in other cases all the donor atoms 

are nitrogen atoms. 

 

 Very soft metals such as gold(I), silver(I) and copper(I) are usually complexed with soft 

donor ligands containing  nitrogen, sulfur or phosphorus atoms4, 23, 24, 27, 28 and 29. The 

slightly soft metals such as Pt(II), Pd(II), Ni(II), Cu(II), Zn(II), Co(II) and Au(III) form 

strong interactions with nitrogen and sulfur donor atoms, but in some cases oxygen donor 

atoms can be used11, 29, 31-32.  

 

Many synthetic transition metal complexes are being investigated for their anti-cancer 

activity, but synthesizing a particular molecule with specific target areas is very difficult 

since the causes of cancer are very diverse and hence there are many target areas 

involved1, 37-38.  

 

 

 

 



 

 

1.4 Background on cancer 

 

Cancer is a disease caused by cells with uncontrollable cell growth37.  This uncontrollable 

growth is caused mainly by two factors, i.e., cells not responding to growth factors, and 

overproduction or underproduction of various proteins responsible for growth regulation. 

Growth factors (GFs) are molecules which send signal to cells to start or stop cell 

division and also to undergo programmed cell death (a process known as apoptosis) when 

the cells are damaged or old1, 37 -38.  These GFs ranges from small organic molecules to 

small peptide molecules such as hormones. 

 

When cells overproduce proteins responsible for cell division, e.g. DNA polymerase, the 

DNA of the cell will continuously replicate and this will lead to uncontrollable cell 

division. Other proteins that can be overproduced are those that signal the start of cell 

division. Underproduction of proteins that stop cell division or induce apoptosis also 

results in uncontrollable cell division or growth38. 

 

More than 90% of all cancer is caused by the damage to the cell DNA, which is 

responsible for the production of all proteins in the cell39. Damage to the DNA is caused 

by mutations and cleavage of DNA fragments. Mutations can arise from a change of one 

nucleotide to another, e.g. guanine (G) to thymine (T), or cytosine (C ) to uracil (U). 

They can also occur due to the translocation between chromosomes. The resulting 

mutations result in a change in the genes responsible for protein coding and synthesis, 

resulting in modified proteins being produced. These modified proteins may perform 

different functions compared to the normal ones and, in the worst cases, change the cell 

from being normal to a cancer cell37-39.  

 

DNA damages occur naturally and can also be induced by environmental factors known 

as carcinogens, which are: 

(i) Physical agents (radiation), 

(ii)  Chemical agents (organic compounds), and 

(iii)  Infectious agents (viruses). 



 

 

Radiations, e.g. X-rays, have been shown to cleave DNA, and when DNA repair occurs, 

mutations are likely to occur. In other cases the DNA is not repaired and as a result other 

proteins are no longer produced. Chemical agents cause mutations by altering the DNA 

sequence where one nucleotide is replaced by another. In other cases, the nucleotide is 

methylated and is no longer recognized by the replicating enzymes, resulting in loss of 

protein production40. The role of viruses in the cause of cancer is not fully known but it is 

believed that the virus DNA gets incorporated into the host DNA and in other cases the 

virus produces proteins that inhibit apoptosis38. 

 

DNA from natural cells has been shown to undergo mutations even when not exposed to 

environmental factors causing cancer. The history of cancer has been known since 

humans first learnt to record their activities38 but it used to be an old-age disease. As 

humans grown old, the rate of DNA mutations increases, since their DNA has replicated 

so many times. The rate of mutation for normal cells, however, is very low compared to 

cells exposed to carcinogens40.  High occurrence of cancer in human is also observed in 

infants since their cells replicate faster than adult cells thus high rate of mutations is 

possible.                                

 

Since most metal-complexes are too large to mimic molecules binding to the active site 

of enzymes, their target area is mainly on the DNA. These molecules need to be planar 

for them to be effective since they should intercalate with the DNA strands and stop 

DNA replication. Planar metal complexes must have a square planar geometry in the 

metal centre, as well as planar ligands. Planar ligands are made from aromatic 

compounds and since coordinating atoms are required, heteroaromatic compounds are 

usually used. 

 

 

 

 

 

 



 

 

1.5 Introduction to this project 

 

1.5.1 Synthesis of N-phenylsulfonylimine ligands 

 

The N-phenylsulfonylimine ligands were synthesized in our laboratory by Patil and 

Mandy41 in an effort to generate precursors for azinomycin synthesis. The most 

demanding step in azinomycin synthesis is the generation of a densely functionalized 

pyrolidine-aziridine ring system42, which has been previously synthesized from 

carbohydrate precursors. An alternative disconnection of the pyrolidine ring 2 leads to 

azafulvene synthon 3 or its tautomeric form of pyrrole 4 (Scheme 1).  
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Scheme 1. 

 

Azafulvenes are intermediates in a number of reactions but they are highly reactive 

molecules43-45. They undergo rapid dimerisation43,44 and also react with various 

nucleophiles42. Azafulvene species are formed from electron rich pyrrole molecules43-45. 

Introducing an electron-withdrawing group (EWG) into a pyrrole ring, on the nitrogen 

atom, suppresses the formation of azafulvene42.  This has led to exploration into using 

electron deficient pyrrole systems as alternative to azafulvenes. 

 

The EWG chosen in our laboratory was the phenylsulfonyl group, which also has an 

additional advantage of being a directing ortho metallation (DOM) group. Phenylsulfonyl 

chloride, source of the phenylsulfonyl group, is crystalline in nature, and this crystallinity 

is usually transferred to molecules bearing the sulfonyl group. The sulfonyl group can be 

introduced into a pyrrole, in a presence of base (Scheme 2), to give N-

phenylsulfonylpyrrole 5. Itahara et al.46 made use of sodium hydride in DMF, Gaare et 

al.47 made use of LDA, Ottoni et al.48 made use of potassium hydroxide and Anderson49, 



 

 

Artico50 and Zelikin51 all made use of sodium hydroxide under varying conditions. The 

sulfonyl group can be easily removed under basic hydrolytic conditions (Scheme 2) with 

sodium hydroxide52, sodium methoxide53, and potassium hydroxide49 or potassium 

carbonate54. 
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Dinsmore et al.55 explored the functionalization of pyrrole 5 using magnesiation 

conditions, where the pyrrole was deprotonated at the 2-position and various electrophiles 

were introduced. Patil and Mandy41 made use of lithium bases to deprotonate pyrrole 5 

and various electrophiles were introduced, but of importance were the nitrile electrophiles 

as they give products that could be potential precursors to azinomycin synthesis. 

Unexpectedly, these workers found that nitrile electrophiles allows a 1,4-migration of the 

sulfonyl group, believed to occur via intra-molecular process, from the pyrrole into the 

imine (Scheme 3) and thus make products similar to 4. 
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The 1,4-migration was first observed from the reaction of lithiated N-

phenylsulfonylindole with benzonitrile, where 2-ketoindole was isolated. The product is 

believed to have occurred from the hydrolysis of the imine (not isolated or characterized) 

into a ketone, following the 1,4-migration (Scheme 4). Unlike the indole reaction, Patil 



 

 

and Mandy41 found that the hydrolysis step does not occur with pyrrole when subjected to 

similar conditions as indole. 
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Scheme 4. 

 

In an attempt to generate methodology for making 4, lithiated pyrrole 5 was reacted with 

benzonitrile to give the N-phenylsulfonylimine 6 and an amidine product 7 (Scheme 5). 

The formation of the amidine product involves an inter-molecular step whereby the 

sulfonyl group is transferred from the sulfonylpyrrole 2. These results suggests that the 

rates of intra- and inter-molecular steps might be comparable, and also the 1,4-migrartion 

of the sulfonyl group might proceed via the suggested intra-molecular shift and also via 

the inter-molecular shift. 
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Scheme 5. 

 

1.5.2 Crossover experiment 

 

To investigate the 1,4-migration of the sulfonyl, an experiment which involved mixing a 

lithiated sulfonyl pyrrole 5 and a lithiated substituted N-toluenesulfonylpyrrole, then 

quenching with benzonitrile (Scheme 6), was attempted. In their attempt, Patil and 

Mandy41 tried to substitute the pyrrole hydrogen of N-toluenesulfonylpyrrole 8, with 

deuterium. Their hypothesis was as follows: exclusive production of products designated 



 

 

A and C will support the intramolecular shift while if in addition to A and C, products B 

and D are detected, then the intermolecular mechanism will be taking place as well.  Due 

to the inability to label the pyrrole ring appropriately, the crossover experiment was not 

performed. A successful completion of such a crossover experiment is described in this 

thesis. 
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Scheme 6. 

 

1.5.3 Metal Complexes 

 

The N-phenylsulfonylimine 6 was investigated for its ability to complex metal ions via its 

two nitrogen atoms, thus acting as a bidentate ligand. Complexes with copper(II) 9, 

copper(I) 10 and palladium(II) 11 (Figure 9) were synthesized by Patil and Mandy41. 

These complexes were tested for anti-cancer activity and promising results were 

observed, where IC50 values were below 10 µM in in vitro assays.   
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Figure 9. Metal complexes previously synthesized in our laboratory. 

 

The less soft metals, i.e. Cu (II) and Pd (II) were chelated with two ligands while the 

more soft metal contains one chelate ligand and two soft phosphine ligands. Complex 10 

was more active than 9, indicating that the phosphine ligands may enhance the activity of 

the complex. The complexes are prepared by treating pyrrole 6 and a metal salt in a 

presence of a base. The palladium complex 11 was also tested for catalytic activity in the 

Heck-type coupling reaction between iodobenzene and an activated sulfonylpyrrole. No 

activity was observed as only the starting materials were recovered without any trace of 

products. 

 

1.5.4 Magnesium amide bases in C-C bond formation 

 

N-Heterocyclic compounds, e.g. pyrrole, indole, imidazole, pyridine, are very important 

in organic synthesis, where they serve as starting materials. These compounds are able to 

form a carbon-carbon bond, which is one of the most important steps in organic 

synthesis56. A popular way of making a C-C bond is by nucleophilic electrophilic 

reaction. The N-heterocyclic compounds contain acidic protons that can be extracted by a 



 

 

base and generate a nucleophilic carbon that can then react with an electrophilic carbon 

making a C-C bond. 

 

Although N-heterocyclic compounds may have acidic protons, their pkas are high such 

that normal bases can not deprotonate them. Very strong bases are used to deprotonate 

these compounds, and the most commonly used bases are the lithium bases R-Li (R= 

alkyl or amide)43. Many lithiation reactions have been performed on pyrrole56-60, indole56, 

60 and imidazole56, 61-62, with subsequent quenching with electrophiles resulting in a C-C 

bond formation. The heterocyclic compounds are first protected at the nitrogen atom to 

remove the more acidic N-H proton thus leaving the acidic C-H proton available for 

deprotonation (Scheme 7).   
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Scheme 7.         X=H, pyrrole; X=N, imidazole, R = protecting group and R’= alkyl 

 

Organolithium bases react irreversibly with many electrophiles and as a result they are 

very unstable. They react with moisture forming LiOH and RH and at this stage the base 

is no longer effective. Their storage requires inert atmosphere and low temperatures. 

Their reactions also require very low temperatures, e.g. –78 °C, since the reactions are 

very exothermic. Low temperatures also help in reducing the number of side reactions 

that can occur since these bases can also react with other functional groups present in the 

molecule, leading to undesired products. An alternative to using lithium bases is the use 

of magnesium bases. 

 

Magnesium is mainly used as a constituent of Grignard reagents, RMgX (R= alkyl, aryl, 

ect.; X = Cl, Br), and these reagents are widely used in C-C bond formation reactions63. 



 

 

These reagents contain a carbon metal bond which is a good nucleophile for C-C bond 

formation but, unlike lithium reagents, they are not good bases for deprotonating 

heterocyclic compounds. Grignard reagents are usually converted into amides or 

bisamides (Scheme 8), which are good bases for deprotonating acidic protons on a 

carbon. Various methods used are shown below 

 

     

      i)         2R2NH  +  Mg            
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64 

        ii)         Hg(NR2)2 + Mg             Mg(NR2)2  + Hg65 

      iii)       2RMgNR’2                    Mg(NR’2)2  + MgR2
66 
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Scheme 8. 

 

The bis(amides) have been shown to deprotonate acidic protons from ketones and also 

from benzene rings without reacting with the functional groups present (Scheme 5), 

showing greater functional group tolerance than lithium reagents70- 75.  
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Scheme 9. 

 



 

 

Work by Kondo et al. showed that in addition to magnesium bis(amide) bases, 

magnesium amides (known as Hauser bases) can be used to deprotonate heterocyclic 

protons76-77. N-protected indoles, which are reactive at the 3-position, were deprotonated 

exclusively at the 2-position using diisopropylaminomagnesium chloride (iPr2NMgCl) 

12, and quenched with different electrophiles76 (Scheme 10).  
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Scheme 10. 

 

Thiophenes and thiazoles, containing functional groups, were also deprotonated at the 2-

position using 1277
 (Scheme 11). These reactions, unlike lithium reactions, were 

performed at ambient temperature and the yields obtained were comparable. 
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By realizing that the active species in deprotonation is the magnesium amide species, 

Dinsmore et al., successfully used diisopropylamine in catalytic amounts with respect to 

the Grignard reagent55. N-Phenylsulfonylpyrrole 5 was deprotonated at the 2-position 

using this method, and different electrophiles were introduced in moderate to good yields 

(Scheme 12). 
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Scheme 12. 

 

The downfall of using Hauser bases is the formation of dimers, where there is bridging in 

the chlorides. This was determined from the crystal structure, determined by Power, of  

[(Me3Si)2NMgCl.(Et2O)]2 (Figure 10)78. A large excess of the base, as high as 355, is used 

as a result of this dimer formation.   
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Figure 10.  

 

In an attempt to reduce the base equivalent amount, Knochel et al., very recently found 

that adding lithium chloride (LiCl) to the Grignard reagent isopropylmagnesium chloride 

(iPrMgCl) 13, reduces the amount of the reagent required in a reaction79- 81. The new 

Grignard reagent isopropylmagnesium chloride-lithium chloride (iPrMgCl.LiCl) 14, has 

been shown to be superior to 13 in I/Mg exchange reactions (Scheme 13). The LiCl is 



 

 

believed to prevent dimer formation and thus providing monomers of the Grignard 

species81. 
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Scheme 13. 

 

Hauser bases containing lithium chloride have also been prepared with a general formula, 

R2NMgCl.LiCl82-83. These bases were shown to be superior to normal Hauser bases and 

lithium bases in that they required fewer equivalents of base (1.1 eq.) and their yields 

were generally higher. These bases were used in the deprotonation of benzene substrates 

bearing different functional groups82 (Scheme 14), and also with several heterocyclic 

compounds83. These bases are used at ambient temperatures and can tolerate a wide range 

of functional groups.  
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The drawbacks in using these new Grignard reagent is that they are not atom economic. 

Equivalent amount of LiCl, Mg and TMP are required to prepare the base and thus the 

cost of preparing these bases is high. 

 

 

 



 

 

1. 6 Aims of this project. 

 

The aims of the project are: 

i) To investigate the mechanism behind the 1,4-migration of the 

sulfonyl group, 

ii)  To make more metal complexes using N-toluenesulfonylimine 

ligand and to test the complexes for anti-cancer activity, 

iii)  To extend the scope of magnesiation, developed by Dinsmore55, to 

other N-heteraromatic compounds, and finally to try to improve the 

magnesiation conditions reported by Knochel82-83, by making use of 

catalytic amine. 

These aims are described in detail below. 

 

1.6.1 Investigating the 1,4-migartion of the sulfonyl group 

 

The approach in determining the mechanism was intended to be very similar to the one 

attempted by Patil and Mandy41. Instead of substituting the pyrrole protons with 

deuterium, a different substituent was to be introduced in the 2-position of N-

toluenesulfonylpyrrole 8. The substituent introduced must not be reactive under lithiating 

conditions, and a few that attracted our attention were the trimethylsilyl group (SiMe3), 

the methyl group (Me) and the phenyl group. Once the 2-substituted pyrrole 8 has been 

made, it will be mixed with pyrrole 5, lithiated, quenched with benzonitrile and the 

resulting products characterized (Scheme 15). 
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Scheme 15. 

 

1.6.2 Metal complexes with N-toluenesulfonylimine ligands 

 

We were interested in synthesizing metal complexes containing the chelate N-

toluenesulfonylimine ligand 15 in order to test their activity against cancer cells. We were 

mostly interested in the late second and third row transition metals, i.e. Pt(II), Pd(II), 

Ag(I), and Au(III) since they have previously shown good activity against cancer cells. 

The first row transition metals, i.e. Co(II), Ni(II), Cu(I) and Cu(II), and Zn(II) were also 

considered in the study. The ligand 15 (Figure 11) is very similar to the 

phenylsulfonylimine ligand 6 with the only difference being the presence of toluyl 

instead of phenyl group. The ligand contains a sulfonamide portion which, for many 

years, has been used as an anti-bacterial drug84.  
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Figure  11. The sulfonylimine ligand to be used for complexation in this project.                                              

 

The initial approach will be to repeat the complexes made with ligand 6, using ligand 15, 

then after methodology has been established, more transition metal complexes will be 

synthesized. We aim to expand the range of these complexes by making Pt(II) 16, Ag(I) 

17, Co(II) 18, Ni(II) 19, Zn(II) 20 and Au(III) 21. We aim to chelate the soft Ag metal 

with one ligand and two phosphine ligands, while the rest we aim to chelate with two 

ligands (Figure 12). 
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Figure 12. Metal complexes intended to be synthesized in this project. 

 

1.6.3 Comparing the magnesiation conditions reported by Dinsmore55 and 

Knochel82-83 

 

Although these new generation Hauser bases (described in section 1.5.2) are very 

effective, the cost of making them is high. Equimolar amounts of LiCl, TMP or iPr2NH 

and iPrMgCl are needed. We aim to investigate whether LiCl and/or the amine bases can 

used in catalytic amounts, as described by Dinsmore et al.55, and see if the same 

efficiency can be obtained. Our investigation will start using N-phenylsulfonylpyrrole 5 



 

 

as a substrate, comparing results to those from Dinsmore, then moving to other N-

heterocyclic compounds, i.e., indole, imidazole, benzimidazole, quinoline and pyridine.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Chapter 2 
Results and Discussion 

 

 

 

 

 

 

 

 



 

 

Chapter 2:             Results and Discussion 

 

2.1.Ligand synthesis 

 

We started by first preparing the N-protected pyrrole, using a variation of the method of 

Zelikin et al51. Adding pyrrole to a suspension of dichloromethane and sodium hydroxide 

then adding, dropwise, arylsulfonyl chloride to the mixture, stirring overnight at room 

temperature gave N-toluenesulfonylpyrrole 8 in 81% yield and N-phenylsulfonyl pyrrole 

5 in 50% yield (Scheme 16). Spectroscopic data and melting points of our products were 

all consistent with those reported previously41,51. Later X-ray crystal structures of 

compounds derived from pyrrole 8 also confirmed the formation of the product 8 (see 

later).   
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Scheme 16. 

 

With the N-toluenesulfonylpyrrole 8 in hand, we then proceeded to the addition reaction 

with benzonitrile. The starting material requires deprotonation by means of very strong 

bases and our first choice was the lithium bases. Previous work by Patil and Mandy41 

employed lithiumdiisopropylamide (LDA) and lithium-tetramethylpiperidine (LiTMP) to 

deprotonate pyrrole 5 with subsequent quenching with benzonitrile to give the 

sulfonylimine 6. Our attention was drawn to the mention of butyllithium as a base to 

deprotonate N-phenylsulfonylimidazole 22 at –20 °C (Scheme 17)61. We were interested 

in using butyllithium to deprotonate pyrroles 5 and 8 and compare the results with those 

from imidazole. 
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Scheme 17. 

 

Treating pyrrole 8 with butyllithium and quenching with benzonitrile gave the desired 

product 4-methyl-N-[phenyl(1H-pyrrol-1yl)methylene]benzenesulfonamide 15 in 60% 

yield. Treating pyrrole 5 with n-BuLi and quenching with benzonitrile gave N-

[phenyl(1H-pyrrrol-1yl)methylene]benzenesulfonamide 6 in 30% yield (Scheme 18). 

These results were similar to those reported by Patil and Mandy41 and to our delight no 

side products resulting from the reaction of benzonitrile with butyllithium were observed. 

The amidine 7 (Chapter 1, section 1.5.1) was observed as a side product, resulting from 

the reaction of LDA and benzonitrile, by Patil and Mandy41. 
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Scheme 18. 

 

Mass spectroscopy showed the correct molecular ion [M+ 324 for 6 and 310 for 15] and 

the fragment ion [169 (M+ - SO2Ar] was observed for both products. This was also 

supported by 1H NMR spectrum, in which a peak at 10.16, corresponding to an N-H peak 

was, observed. A crystal structure of 6 was obtained (Appendix 1), confirming the 

formation of the desired products.  

 

With the idea of extending the sulfonyl transfer chemistry, we examined the possible 

reaction between lithiated imidazole 22 and benzonitrile (Scheme 19) but, to our 

disappointment, only the starting materials were obtained. The lithiation of 22 and 



 

 

subsequent reaction with electrophiles, has been reported to be in low yields61 and this 

could be the reason as to why no products were observed. The failure of imidazole 22 to 

react with benzonitrile meant that it could not be used in the study of the sulfonyl shift 

mechanism.   
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Scheme 19. 

 

2.2 Crossover experiment 

 

Having made the desired ligands, 6 and 15, we then investigated the mechanism by which 

the sulfonyl group migrates. We were interested in making 2-substituted pyrrole, where 

the substituent placed must be able to tolerate harsh conditions, such as those of n-BuLi. 

The functional groups investigated were the trimethylsilyl (TMS), methyl (Me) and 

phenyl (Ph). 

 

The first substituent to be investigated was the trimethylsilyl (Me3Si) group, after it was 

shown to be stable under lithiating conditions61. Treating pyrrole 8 consecutively with n-

BuLi and trimethylsilyl chloride (TMS-Cl) gave the 2-trimethylsilytoluenesufonylpyrrole 

23, but the product could not be separated from the disilylated and trisilylated product 

(Scheme 20). This was shown from mass spectrometry where peaks [M+ 294.12 

corresponding to 23, 366.12 corresponding to disilylated product and 438.12 

corresponding to trisilylated product] were observed on analysis of the crude product. 

Attempts to purify the products by chromatography and distillation failed to give 23 in a 

pure form. 
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Scheme 20. 

 

 

    

We then attempted to make 2-methyltoluenesulfonylpyrrole 24 by treating 8 with n-BuLi 

and methyl iodide (MeI). The product was obtained in reasonable yield (75% from 1H 

NMR spectroscopy) but it could not be separated from unreacted starting material 

regardless of the purification techniques (Scheme 21). The product and the starting 

material have the same Rf value in all solvents examined, thus chromatography could not 

separate them. Attempts to recrystallize the mixture failed to separate the compounds as 

crystals contained both compounds.     
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Scheme 21.                 

 

Treating 8 with iPrMgCl/ 5% iPr2NH and MeI reduced the yield (15%) of 24 as shown by 
1H NMR spectroscopy (Scheme 21). This suggest that full deprotonation of 8 is required 

for the clean production of 24. We then turned our attention to phenyl group as a marker 

on the pyrrole ring. 

 

Three routes to a 2-phenylated sulfonylpyrrole were investigated and compared. These 

were either (i) an investigation of recently published novel, and very attractive methods 

to allow the regiospecific Pd-catalysed arylation of electron rich heterocycles and (ii) a 



 

 

comparison of these with the Pd-catalysed phenylation of a magnesiated sulfonylpyrrole, 

methodology that was previously developed in our laboratory55. 

                                                    

The first method was a modification of a method reported by Sames85, in which the 

electron rich N-heterocyclic compounds i.e., pyrrole, indole and imidazole, were treated 

with catalytic tetrakis(triphenylphosphine)palladium [Pd(Ph3P)4] and MgO with refluxing 

in dioxane to afford 2-phenylated products in good yields. This method does not require 

an activated carbon, where in most cases a carbon-halogen bond is required for C-C bond 

coupling. When subjecting pyrrole 8 to the same conditions, no product was obtained. 

Our initial explanation was that free pyrrole is needed for these conditions since it is  

electron-rich. We then treated free pyrrole under the same conditions but only managed 

to get 3% yield of the product, 2-phenylpyrrole 25 (Scheme 22 condition a). It later 

emerged, following communications with the authors, that these reactions must be 

performed in a glove box under strictly anhydrous conditions for them to work. 
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Scheme 22. 

 

The second method is a two step reaction in which free pyrrole is first converted into 2-

phenylpyrrole 25, after which sulfonation would provide the desired pyrrole 26 (Scheme 

22 condition b). This method also does not require an activated carbon site. The first 

example was reported by Sanford86 who employed ambient conditions. PdCl2 or 

Pd(OAc)2, which are stable to air, are used instead of the air sensitive Pd(Ph3P)4. These 

Pd salts have an oxidation state of +2 and are suggested to undergo a +2/+4 oxidation 

change, unlike the 0/+2 oxidation state change that is involved in the coupling 

reactions86,87. The phenyl source diphenyliodonium-tetrafluoroborate [Ph2I]BF4 is 

different from the usual Ph-I or Ph-B(OH)2. Ph2I
+ is described as an oxidative source of 



 

 

phenyl and it is suggested that it this allows the Pd to cycle between oxidation state 2 and 

4 during the course of the catalytic reaction. The reactions are done at room temperature 

as compared to the first method, where high temperatures (~150 oC) are required 

 

We began by preparing the phenyl source [Ph2I]BF4, which is made by the method of 

Skulski88, using a one pot synthesis (Scheme 23). Iodobenzene is first oxidized by 

chromium trioxide (CrO3) and sulfuric acid (H2SO4) in a solvent mixture of acetic acid 

(AcOH) and acetic anhydride (Ac2O). Acidic coupling with benzene followed by 

washing with aqueous potassium iodide (KI) gave the diphenyliodonium iodide ([Ph2I]I) 

27 in 50% yield. The melting point of the solid (162-163 oC) and its mass spectrometry 

data [M+ 281 corresponding to (Ph2I)
+] were in agreement with the literature88. Treating 

pyrrole with 27 and PdCl2 in AcOH yielded no product and this was due to the 

insolubility of 27 in AcOH. We then converted 27 into a more soluble diphenyliodonium 

tetrafluoroborate [Ph2I]BF4 28, by adding HBF4 and H2O2 to 27 dissolved in methanol89 

(Scheme 23). The more soluble product 28 was obtained in 94% yield and its melting 

point (134 oC) was in agreement with literature89.  
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Scheme 23. 

 

Treating pyrrole with 28 and PdCl2 in AcOH gave 26 in 40% yield but it require a large 

ratio of pyrrole to 28 (10: 1) due to pyrrole having two reactive sites. Trace amounts of 

diphenylated pyrrole were also detected by mass spectrometry. When subjecting indole to 

the same conditions, the ratio of indole to 28 changes to (1: 2) since indole has only one 

reactive site in this reaction86. The requirement of a large excess of pyrrole means that 

starting with one gram of pyrrole will yield 84 mg of product and this is certainly not 

very economical. 

 



 

 

The third method requires the activation of carbon but, unlike most activation where a 

carbon-halogen bond is required, the method uses a carbon-magnesium bond. This was 

first reported by Dinsmore et al 55, who showed that treating 5 with iPrMgCl/ 5% iPr2NH 

to deprotonate, followed by catalytic Pd(Ph3P)4 and iodobenzene permitted arylation to 

occur (Scheme 24). When treating 8 to the same conditions, 26 was obtained in 51% 

yield. The melting point (123-124 oC) and molecular mass ion spectrum [M+ 298] were in 

agreement with literature values90. The reactions are done at room temperature and can 

also be extended to other N-heterocyclic compounds, to be discussed later. This method, 

when compared to above mentioned methods, is superior.  It does not require a glove box 

and high temperatures as in method 1. The phenyl source is easily obtainable and it is not 

required in large excess as in method 2.  By this method we were able to prepare gram 

quantities of pyrrole 26. 
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Scheme 24. 

 

Having made 26, we then subjected it to the lithiating conditions used to make 6 and 15, 

and to our delight, (E)-4-methyl-N-[phenyl(5-phenyl-1H-pyrrol-2-

yl)methylene]benzenesulfonamide 29 was obtained in 36% yield (Scheme 25). The 1H 

NMR spectrum showed the presence of two pyrrole C-H protons and also a peak at 10.81 

belonging to NH. Mass spectrometry showed the correct parent peak [M+ 400] and the 

fragmentation [245 (M+- SO2Tol)].  
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A crystal structure was also obtained, confirming that the correct product has been made 

(Figure 13, appendix 2). The crystal structure shows that 29 was obtained as a solvate 

solid with acetone. The results also show the geometry around the C=N bond to be E. 

 

Figure 13. Crystal structure of the sulfonylimine 29. 

 

With the required starting materials for a cross-over experiment and with three of the four 

expected products fully characterized, it was time to perform the experiment (Scheme 15, 

chapter 1). Treating 5 and 26, in 1:1 ratio, with n-BuLi at –20 °C and benzonitrile gave 

two fractions after purification by chromatography and they were characterized by mass 

spectrometry (Scheme 26). The first fraction collected had a parent peak [M+ 310 (60) 

which correspond to 6], no peak at 324 corresponding to 15 was observed. The second 

fraction had a parent peak [M+ 400 (65) corresponding to 29]. No peak at 386 was 

observed and this led to the conclusion that the sulfonyl shift occurs mainly via the 1,4-

intramolecular migration and the intermolecular migration can be neglected (Scheme 27). 
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Scheme 27. 

 

With the ligands synthesized and the mechanism of formation investigated, we then 

proceeded to making metal complexes.   

 

 

2.3 Metal complexes 

 

The first row transition metals were the ideal starting point since they are cheaper  

compared to the second and third row metals. The copper complexes were the first to be 

made since preparations of structurally related complexes (complexes 9 and 10, Figure 9) 

have been reported by Patil and Mandy41. Patil reported the synthesis of copper(II) 

complex (9)  and Mandy reported the synthesis of copper(I) complex (10). 

 

Copper(II) complex 30 was prepared by treating sulfonylimine 15 with copper(II)acetate, 

in the presence of the base DBU, and refluxing in methanol (Scheme 28). The product 

was obtained as dark green crystals which were not suitable for diffraction but were 



 

 

characterized by mass spectrometry and infrared spectroscopy (IR). NMR spectroscopy 

could not be used to characterize the complex since it contains a spin active d9 metal. 

Mass spectrometry showed a parent peak at m/z 732 [M + Na]+ and m/z 710 [M + H]+ and 

fragmentations [347 and 324 corresponding to the ligand + Na+ and ligand + H+, 

respectively]. The IR spectrum showed the disappearance of the N-H stretch but no other 

obvious peak caused by the metal complexation could be observed. Elemental analysis 

data were also in agreement with the formation of the product.  
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Scheme 28. 

 

Copper(I) complex 31 was prepared by treating sulfonylimine 15 with DBU and 

CuBr(PPh3)3 in chloroform (Scheme 29). The product was obtained as yellow crystals 

suitable for X-ray diffraction (Figure 14, appendix 3).  
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Scheme 29. 

The complex has two triphenylphosphine ligands in addition to the chelating ligand 15. 

The geometry around the copper atom is tetrahedral as expected for d9 metal ions. The 

disappearance of the N-H proton was confirmed by 1H NMR and IR spectroscopy. The 

mass spectrometry data were very interesting because the molecular ion peak [M]+ was 

not observed either by FAB or ESI MS analysis. Peaks that were observed were m/z 587 

[M – ligand]+ i.e. Cu(PPh3)2
+ and m/z 325 [CuPPh3]

+, and these peaks were obtained in 

both ESI and FAB. This can be explained by the HSAB theory2 since Cu(I) is a soft 



 

 

Lewis acid and phosphorus is a soft Lewis base compared to nitrogen. The Cu-P 

interactions will weaken the Cu-N bond causing the bond to break off easily. This was 

also observed with the silver (I) complexes, to be discussed later. 

 

Figure 14. Crystal structure of the copper(I) complex. 

 

Synthesis of the nickel(II) complex 19 followed that for the preparation of 30. Treating 

sulfonylimine 15 with DBU and nickel(II) chloride did not give the desired product even 

after increasing the reflux time. Replacing the NiCl2 salt with the more reactive nickel(II) 

acetylacetonate gave the desired product as light green crystals (Scheme 30) which were 

not suitable for X-ray diffraction. 1H NMR spectroscopy show that the complex is spin 

active, indicating that the geometry around the metal is tetrahedral instead of square 

planar as experienced by most d8 metal ions2. Other studies of Ni, coordinated to four 

nitrogen atoms, have reported tetrahedral geometry around the metal centre91. Square 

planar complexes of Ni are favored by soft donor ligands, while tetrahedral is favored by 

intermediate to hard donor ligands2. IR spectroscopy showed the disappearance of the N-

H stretch, while mass spectroscopy gave two parent peaks at m/z 727 [M + Na]+ and m/z 

705 [M + H]+. A fragment peak at m/z 381 [M – ligand]+ was also observed. From these 

results we concluded that the desired compound was made. 
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Scheme 30. 

 

An attempt to make the Co complex 18 following the above procedure, and entailing 

treatment of sulfonylimine 15 with DBU and cobalt(II)chloride-hydrate (CoCl2.6H2O) 

gave an unexpected product, CoL2DBU 31, which in addition to the two chelating ligands 

around the metal, also include the base DBU coordinating the metal through nitrogen 

(Scheme 31). 
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Scheme 31. 

 

 A crystal structure of the compound was obtained (Figure 15, appendix 4), showing the 

two chelating ligands in an equatorial position and the DBU occupying the axial position. 

Mass spectrometry also gave a parent peak at m/z 858 [M + H]+, confirming the 

formation of complex 32. Attempts to make complex 18 by removing DBU gave no 

products, indicating the importance of a base in the reaction. The crystal structure shows 

that complex 32 was obtained as a solute with dichloromethane.  



 

 

 

Figure 15. Crystal structure of cobalt(II) complex. 

 

 

 

Similarly to the cobalt(II) complex, the intended zinc(II) complex 20 was never obtained 

after treating the ligand with DBU and zinc(II) chloride, ZnL2DBU 33 (Figure 16) was 

obtained instead. Mass spectrometry gave the parent peak at m/z 863 [M]+ and the 

fragments [711, 539 and 387 corresponding to ZnL2, ZnLDBU and ZnL, respectively] 

were also observed. The isotopic distribution of the parent ion agreed with a simulated 

distribution. The IR spectrum showed the disappearance of the N-H bond.  
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Figure 16. Line drawing structure of the zinc(II) complex. 

 



 

 

Having investigated the late first row transition metals, we then investigated the ability of 

the ligands to coordinate to late second and third row transition metals i.e. Pd, Ag, Pt and 

Au.  The Pd complex 34 was synthesized, using a variation of the method of Mandy41, 

where the ligand 15 is treated with sodium acetate and Li2[PdCl2Br2]  in methanol to give 

the product as a yellow solid. Attempts to recrystallize the solid were not successful as 

the compound was not soluble at room temperature in all solvents examined. Solubility 

was only observed in hot solvents but the product precipitated as small crystalline 

particles as soon as the solvent cooled down and as a result the crystal structure of the 

complex was not obtained. Mass spectrometry showed the parent peak  at m/z 775 [M + 

Na]+ and the IR spectrum showed the disappearance of the N-H peak, leading us to 

conclude the desired product had been formed (Scheme 32). 
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Scheme 32. 

Attempts to make a silver complex containing only the chelate ligand were unsuccessful. 

When ligand 15 was treated with silver nitrate in methanol according to the method of 

Fenton92 no product was obtained. We then reasoned that since Ag(I) is a soft metal an 

addition of a soft ligand might enhance the binding of the chelate ligand. We then treated 

15 with DBU, silver nitrate and triphenylphosphine and refluxed in methanol hoping to 

make 17, the analogue of the copper complex 10 and 31. A different compound AgLPPh3
 

35 was formed instead of the desired product (Scheme 33). 
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 The complex has the Ag metal with a coordination number of three, as shown by the 

crystal structure (Figure 17, appendix 5), where the chelate ligand is present with one 

triphenylphosphine. Metal complexes containing Ag with a coordination number of three 

have also been reported in the work of Fenton92. Mass spectrometry showed similar 

results to those obtained on the copper(I) complex 31; the molecular ion peak was not 

observed but the fragment at m/z 369 [AgPPh3]
+ was observed. Another interesting peak 

at m/z 633 [Ag(PPh3)2]
+ was also observed. ESI mass spectrometry studies on the 

complex, showed the presence of more additional species present in solution. In the 

negative mode a peak at m/z 755 [AgL2]
- was observed, while the positive mode gave 

peaks at m/z 1062, 631 and 369 which correspond to Ag2L(PPh3)2
+, Ag(PPh3)2

+ and 

AgPPh3
+, respectively. Again the HSAB theory supports the observations2.  

 

Figure 17. Crystal structure of the silver complex AgL(PPh3). 

 

In an effort to increase the coordination number on the silver atom, we then decided to 

use similar conditions to those used in formation of  the copper complex 31 i.e., by 

attaching phosphine ligands to the Ag metal before complexing the sulfonylimine ligand. 

We first prepared Ag(PPh3)3Cl 36 using the method of Sanghani93, in which AgCl is 

treated with triphenylphosphine in dichloromethane. The product was obtained as white 

crystalline solid and its melting point (185 °C) was consistent with the literature93. 

Treating ligand 15 with DBU and silver complex 36 in chloroform gave the desired 

product AgL(PPh3)2 17 as a yellow solid (Scheme 34). Recrystallization from 

ethanol/DCM mixture gave crystals suitable for X-ray diffraction (Appendix 6). The 

structure is similar to the one obtained for the copper(I) complex 31 and the mass 



 

 

spectrometry data has similar features to that of 31 and 35. The molecular ion peak was 

not observed in the spectrum but fragments at m/z 631 and 369 corresponding to 

[Ag(PPh3)2]
+ and [AgPPh3]

+ respectively, were observed. 
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Scheme 34. 

 

Moving down to the third row transition metals, we attempted to make PtL2 16 by 

modifying the method of Bhyrappa94. The platinum source was PtCl2(cyclooctadiene) 37, 

which has previously substituted its ligands for nitrogen ligands depending on the 

conditions. The complex 37 can substitute its cyclooctadiene (COD) ligand for two 

nitrogen ligands when refluxed with a ligand in toluene95, and can substitute all its 

ligands for four nitrogen ligands when refluxed in DMF94. We then decided to try the 

second method as it was expected to introduce four nitrogen ligands, coming from two 

chelating ligands 15.  

 

Treating ligand 15 with DBU and 37 in refluxing DMF did not yield any product. This is 

possibly due to the nature of our ligand which is not macrocyclic, as in previous studies93. 

We then decided to try out the first method to see if different results could be obtained 

and to our delight, a product was obtained. The product obtained however, was not the 

desired product 16. What we found was a platinum complex PtL(COD) 38, containing 

one chelate ligand 15 and the COD ligand (Scheme 35). This was confirmed by the 

crystal structure (Figure 18, appendix 7). Neutral nitrogen ligands were used to substitute 

the COD ligand95 and since our ligand 2 carries a negative charge, the chloride ligands 

are substituted first. 
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Scheme 35. 

 

 

Figure 18. Crystal structure of the platinum(II) complex 

 

The complex is neutral but since the ligand 15 carries a -1 charge, the COD ligand should 

also contribute a -1 charge. Crystal structure shows that the platinum has a sigma bond to 

a carbon and one double bond from COD has migrated to another carbon. This suggests 

that HCl is given off during the process in a mechanism still unknown. Mass 

spectrometry gave the parent peak at m/z 625 [M]+ confirming the formation of complex 

38. Other sources of platinum such as [PtCl4]
2-, which is an analogue of [PdCl2Br2]

2-, 

were not available to us and we could not make further attempts to synthesize the desired 

product 16. 

 

Attempts to make the gold complex 21 by treating ligand 15 with DBU and [AuCl4]
- 

were unsuccessful. When treating the gold salt with ligand 15 following the above 



 

 

mentioned conditions a yellow oil was obtained but could not be characterized. No other 

gold salts we available to us thus no further experiments were carried. 

 

2.3.2 Comparison of the metal complexes with literature precedent 

 

We performed a Gmelin search to check for metal complexes with similar features to 

those synthesized. 4732 hits were found for copper(I) complexes with two chelate 

ligands, each having two nitrogen donor atoms, but no results were found for complexes 

with a sulfonyl-containing ligand. For the copper(I) complex, 527 hits were found for 

complexes with a bidentate ligand containing two nitrogen atoms and two 

triphenylphosphine units, but no hits were found for sulfonyl-containing ligands.  

 

Five-coordinate complexes were found for searches performed on both the cobalt(II) and 

zinc(II), but few results were obtained when compared to six and four-coordinate 

complex. 17 hits were found for complexes with two bidentate ligands and an axial 

ligand, all having nitrogen donor ligands, for cobalt(II) while 50 hits were found for 

zinc(II) complexes. 1403 hits were found for cobalt(II) complexes coordinated to six 

nitrogen atoms, while 845 hits were found for zinc(II) complexes. No hits were found for 

complexes with a sulfonyl-containing ligand.     

 

For the d8 metal ions, four-coordinate complexes with two bidentate nitrogen ligands 

were very common. 3273 hits were found for nickel(II) while 389 hits were found for 

palladium(II). No hits were found for complexes with a sulfonyl containing ligand.     

 

Silver(I) complexes with one bidentate nitrogen ligand and triphenylphosphine (TPP) 

unit(s) were found to be common. 33 hits were found for complexes having a bidentate 

ligand and two TPP units, while 166 hits were found for complexes having a bidentate 

ligand and one TPP unit. No hits were found for complexes with a sulfonyl containing 

ligand.     

 



 

 

Only three hits were found for a platinum complex having a bidentate nitrogen ligand and 

a cyclooctadiene (COD) ligand. The loss of one hydrogen atom and a shift of one double 

bond in the COD ring are also observed in these three complexes. No hits were found for 

complexes with a sulfonyl containing ligand.     

 

From the search results obtained, we observe that the complexes synthesized all posses 

similar features to those previously reported with the exception that the newly 

synthesized complexes contain a sulfonyl portion in their ligands.  

 

2.4 In vitro  studies of the metal complexes 

 

The synthesized metal complexes were sent to Prof. C. Medlin’s laboratory for screening 

against cancer cells. The in vitro cytotoxic properties of the metal complexes were 

assessed by measuring the effect on proliferation of the tumour cell line, human 

adenocarcinoma of the cervix (HeLa). The HeLa cell lines are the most sensitive cancer 

cells and are usually used as the start point in finding active compounds. Active 

compounds are those with IC50 (concentration resulting in 50% inhibition of tumour 

growth) less than 10 µM36. The active compounds are then screened against resistant 

cancer cell lines and if they are still active, they undergo in vivo studies to test their 

toxicity toward the host. 

 

The metal complexes were incubated for seven days in the HeLa cells and the results are 

shown in table 1. The cell concentration was 5 × 102 cells per well, and the experiments 

were repeated three times for each compound. 

 

 

 

 

 

 

 



 

 

Table 1. In vitro results for the metal complexes. 

Drug IC50 (µM) ± SEM No exp done 

CuL(Ph3P)2  31 Was not done***   

CuL2 30 48.657 ± 1.343 3 

ZnL2DBU 33 44.82 ± 2.539 3 

CoL2DBU 32 17.855 ± 1.47 3 

NiL2 19 >50  3 

PdL2 34 Was not done***   

PtL(COD) 38 5.432 ± 1.96 3 

AgL(Ph3P)2 17 3.368 ± 0.488 3 

AgL(Ph3P)  35 4.363 ± 0.475 3 

Ag(Ph3P)3Cl 36 1.187 ± 0.023 3 

cisplatin 0.852 ± 0.117 3 

 *** Compounds did not dissolve in ethanol and could not be used in the study. 

 

None of the first row transition metal complexes showed activity against the HeLa cell 

line with IC50 values all above 10 µM. The three silver compounds were all active with 

IC50 less than 5 µM with 36 being the most active with IC50 1.187 µM. It appears from 

the results that the number of triphenylphosphines in the molecule enhances the activity 

of the compound. The complex 36 is the most active with three Ph3P groups followed by 

17 with two Ph3P groups and finally 35 with just one Ph3P group. 

 

 The platinum complex 38 was also active against the HeLa cell line but it had a high ± 

SEM value. The palladium complex was not soluble in ethanol as we experienced during 

the synthesis of the compound. What was surprising was the insolubility of the copper(I) 

complex which contains two triphenylphosphine units. We expected the Ph3P group to 

enhance solubility of a compound, but this appears to have favoured solubility in non-

polar solvents e.g. chloroform and DCM. The silver complexes containing the Ph3P 

groups were all soluble in ethanol, suggesting that the metal ion might also have an 

influence on the solubility of a compound. 

 



 

 

 None of the active compounds were more active than cisplatin which has an IC50 0.852 

µM, but they will be investigated for activity against resistant cancer cell lines. 

 

2.5 Magnesium amide bases in the synthesis of substituted N-heterocycles 

 

Our initial investigation was to extend the scope of the magnesiation protocol, using the 

method of Dinsmore et al.55, from pyrrole to indole. We first prepared the Grignard 

reagent isopropylmagnesium chloride (iPrMgCl) 15 by combining isopropyl chloride and 

magnesium in a 1.2: 1 ratio in tetrahydofuran (THF) at room temperature. The 

concentration of the base was determined by the method of Paquette96, and found to be 

0.9 M. We then repeated the magnesiation of N-phenylsulfonylpyrrole 5 by treating with 
iPrMgCl/ 5% iPr2NH and quenching with iodine (I2) to afford 2-iodo-N-

phenylsulfonylpyrrole 39 in 70% yield (Scheme 36). 
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Scheme 36. 

 

N-Phenylsulfonylindole 40 was subjected to the similar conditions and afforded 2-iodo-

N-phenylsulfonylindole 41 in 75% yield. Having made the iodoindole 41, we investigated 

the one-pot coupling reaction, in which 40 is treated with iPrMgCl/ 5% iPr2NH then 

Pd(Ph3)4 and arylhalide. Different 2-arylindoles were synthesized in this manner in a 

MSc work reported by Leboho97 (Scheme 37). These results concluded that the method is 

compatible with indole. 
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Scheme 37. 

 

We then reasoned that since tetramethylpiperidine (TMP) is much better than 

diisopropylamine in lithiation, using TMP in place of diisopropylamine (DA) may 

optimize this method. The number of equivalents of the Grignard may be reduced, the 

yields may increase and the reaction times may also be reduced. We began by repeating 

the preparation of iodosulfonylpyrrole 39 by modifying the general method by adding 

TMP in place of diisopropylamine. The product was obtained in less than 10% 

conversion, as shown from the 1H NMR spectrum. This could due to TMP being more 

bulky compared to DA; and since the amine base is used in catalytic amounts, the rate of 

regenerating the magnesium amide base is slower in TMP than in diisopropylamine. 

Increasing the mol % of TMP and reducing the amount of base did lead to improved 

yields (Table 2). Results by Dinsmore, using equimolar amounts of DA and iPrMgCl in 

preparation of 39 gave a 55% yield55, indicating that diisopropylamine is superior to TMP 

in magnesiation. 

 

 

 



 

 

Table 2. 

                                               

N
SO2Ph

N
SO2Ph

I

i) iPrMgCl; R2NH
ii)  I2

 

13 (mmol) iPrMgCl (mmol) R2NH (mmol) Yield (%) 

2.42  6.05 (2.5 eq.) 0.121 (5%) iPr2NH 

(18hrs) 

70 

2.49 6.08 (2.5 eq.) 0.123 (5%) TMP 

(18hrs) 

 9%a 

2.49 2.904 (1.2 eq.) 2.904 (1.2 eq) TMP 

(4hrs) 

39%a 

2.42 3.63 (1.5 eq) 0.242 (10%) TMP 

(18hrs) 

6%a 

a= yields quoted from 1H NMR 

 

The work by Knochel79-81 demonstrated a new generation of Hauser bases; 

R2NMgCl.LiCl, and Grignard reagents; iPrMgCl.LiCl 14 to be superior to the previously 

reported species. We were interested in modifying the Hauser bases and attempted to use 

the amine in catalytic amounts, as reported by Dinsmore55. The initial step was preparing 

the Grignard reagent iPrMgCl.LiCl, using the method of Knochel79-80, by which 

equimolar amounts of lithium chloride (LiCl) and magnesium (Mg) were mixed with 

excess isopropyl chloride in THF under argon. The concentration of the base was found 

to be 1.33 M, by the method of Paquette96. This is higher than the concentration of the 

first generation Grignard reagents, supporting the findings of Knochel that LiCl increases 

the solubility of the Grignard reagent in THF80-81. 

 

The initial investigation using iPrMgCl.LiCl 14 and catalytic amine, was the iodination of 

N-phenylsulfonylpyrrole 5. Results were compared with those reported by Dinsmore55. 

We began by finding optimum conditions for magnesiation, starting with catalytic TMP. 

Using 1.5 equivalents of 14 and 10 mol% TMP gave the iodopyrrole 39 in 19% yield. 

Replacing TMP with diisopropylamine gave 39 in 65% yield. Because these results 



 

 

suggest that catalytic diisopropylamine is superior to TMP, further optimizing conditions 

were done using diisopropylamine. Reducing the mol% of diisopropylamine to 5 mol% 

gave 39 in 48% yield. When reducing the amount of Grignard reagent to 1.2 equivalents 

and keeping the amine at 10 mol%, gave 39 in 40% yield. Increasing the Grignard 

reagent to 1.8 equivalents and keeping the amine at 10 mol% gave 39 in 72% yield, 

which is comparable to results reported by Dinsmore55 (Table 3). 

 

  Table 3. 

                             

N
SO2Ph

N
SO2Ph

I

i) iPrMgCl.LiCl; R2NH
ii)  I2

 
iPrMgCl.LiCl equivalent Amine mol% % yield  

1.5 10 (TMP) 19 

1.5 10 (Diisopropylamine) 65 

1.2 5 (Diisopropylamine) 48 

1.2 10 (Diisopropylamine) 40 

1.8 10 (Diisopropylamine) 72 

 

The downfall experienced with this method was the strength of the Grignard reagent with 

time. Repeating the above experiment with iPrMgCl.LiCl that was more than one week 

old gave yields lower than those initially obtained. Yields were reduced from 65% to 

30% using conditions from entry 2 (Table 3) and from 48% to 18% from entry 3. When 

looking at the state of the Grignard reagent, we observed precipitates at the bottom of the 

flask. Initially it was assumed the base was decomposing but, when checking the 

concentration, it had not changed. We then concluded that the LiCl was precipitating 

from the solution, resulting in formation of magnesiated dimers (Scheme 38), hence the 

strength is reduced.  
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Scheme 38. 



 

 

 

Stirring the solution for two hours before using the aged base solution gave improved 

results but could not reproduce the results obtained from a freshly prepared reagent. 

Yields improved from 30% to 53% (in entry 2) and from 18% to 40% (in entry 3) (Table 

3). Although the previous studies showed the Grignard reagent and Hauser bases to be 

stable for over a month79-80, our results show the best results are obtained using a freshly 

prepared reagent and yields drop as the Grignard reagent ages. 

 

Different N-heterocyclic compounds were subjected to the optimum conditions, 

mentioned above, and then iodine and dimethylformide (DMF) were added as 

electrophiles (Table 4). Treating 5 with 1.8 eq. iPrMgCl.LiCl/ 10% iPr2NH and quenching 

with DMF, gave 45 in 60% yield (entry 1b) which is higher than the previously reported 

using the method of Dinsmore55. The spectroscopic data of the product were comparable 

to previously reported results. 

 

 The iodoimidazole 47 was obtained from 46 in 78% yield (entry 2). Mass spectrometry 

gave the parent peak [M+, 100] and the fragment [193 corresponding to the loss of –

SO2NMe2]. 
1H NMR gave two imidazole protons, while 13C NMR gave four carbon 

peaks corresponding to the desired product, thus we concluded that the desired product 

was formed. 

 

The 2-formylpyrrole 49 was obtained in 31% yield (entry 3). The compound was 

obtained as oil, and this came as a surprise since the starting material 48 (its preparation 

to be discussed later) was a solid. Sulfonyl groups are known promote crystallization of 

many compounds.  Mass spectrometry and NMR spectroscopy confirmed the formation 

of the product, however. A parent peak at m/z 202 [M]+, three pyrrole protons together 

with an aldehyde proton, and six carbon peaks, led us to conclude the right product was 

made.  
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46 47

48 49

50 51

52 53

54

a.

b.DMF

a.

b. DMF

H

H

H

DMF

 



 

 

The iodoindole 51, prepared from indole 50, was obtained in 85% yield (entry 4) which is 

higher than the yield of iodoindole 41 obtained using the method of Dinsmore55 (75%). 

Mass spectrometry gave the parent peak at m/z 412 [M]+ and the fragment at m/z 271 [M 

–SO2Ph]+. 1H NMR spectrum gave signals which integrated to the correct compound and 

lead us to conclude that the right molecule has been made. Treating indole 50 with 1.8 eq. 
iPrMgCl.LiCl/ 10% iPr2NH and adding catalytic Pd(PPh3)4 together with iodobenzene, 

gave the 2-phenylindole 55 in 60% yield (figure 19). The product was obtained as an oil 

even though it contains a sulfonyl group and the starting material 50 is a solid. A parent 

peak at m/z 363 [M]+ is obtained from mass spectrometry. 1H NMR spectrum gave a 

singlet at δ 6.48 ppm which correspond to the proton in the 3-position. These results led 

us to conclude that the desired product has been formed and that the new method can be 

used for one pot coupling reactions. 
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 Figure 19. 

 

Deprotonation of N-benzylbenzimidazole 52 has been reported98-100, where lithium bases 

were employed. Treating 52 with 1.8 eq. iPrMgCl.LiCl/ 10% iPr2NH and quenching with 

I2 gave the iodoproduct 53 in 85% yield, while quenching with DMF gave 54 in 75% 

yield. The spectroscopic data for both compounds were comparable with literature 

results, and also the melting points were in agreement with literature98,100, leading to the 

conclusion that the right products were formed. 

 

Knochel reported the deprotonation of 3-chloroquinoline 56, at the 2 position83. We did 

not have 56 at our disposal so we used quinoline 57 instead. Treating 57 with 
iPrMgCl.LiCl/ 10% iPr2NH resulted in an immediate exothermic reaction and the flask 

had to be cooled down. Quenching with iodine did not the yield the 2-iodoquinoline 58 as 

expected. What was obtained was 2-isopropylquinoline 59 (Scheme 39). This was 



 

 

confirmed by mass spectrometry which showed a parent peak at m/z 172 [M + H]+. The 
1H NMR spectrum also showed the isopropyl protons.  
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Scheme 39. 

 

This suggests that iPrMgCl.LiCl acted as a nucleophile in a similar manner observed 

from the Tschitschibabin reaction101, where NaNH2 acts as nucleophile toward quinoline 

to give 2-aminoquinoline 60 (Figure 20). Similar results were obtained with pyridine as 

the substrate, where 2-isopropylpyridine 61 was formed. 
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Figure 20. 

 

Employing our method with the substituted benzene, ethyl-3-chlorobenzoate 62, resulted 

in addition to the ester group, giving 3-(3-chlorophenyl)-2,4-dimethylpentan-3-ol  63, 

instead of deprotonation at the 2-position (Scheme 40). This was confirmed by mass 

spectrometry where the parent peak at m/z 225[M - H]- was obtained when the instrument 

was run in negative ion mode.  
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Scheme 40. 

 

These results suggest that the Grignard reagent is reactive toward electrophiles but not 

basic enough to deprotonate, and hence should be converted into the less reactive and 

more basic magnesium amide base.   

 

2.6 Sulfonyl protecting groups 

 

Lastly we report differences between the two different sulfonyl protecting groups used in 

pyrrole and imidazole. The two were arylsulfonyl i.e., phenylsulfonyl and 

toluenesulfonyl, and N,N-dimethylsulfamoyl groups. The arylsulfonyl groups have been 

used extensively in pyrrole and indole protection41,55,57,60,102, and good yields were 

obtained over a variety of reactions. These protecting groups however, reduce the 

reactivity of imidazole and thus are not used as protecting groups for imidazole. We also 

observed this in our experiment when trying to react benzonitrile with lithiated 

phenylsulfonylimidazole 22 and found no products. 

 

 The use of N,N-dimethylsulfamoyl  protecting groups in pyrrole has been reported in 

substituted pyrrole58-59. Chadwick et al. showed the N,N-dimethylsulfamoyl  to be better 



 

 

protecting groups for imidazole61. The protecting group can be removed under basic 

conditions similar to those of removing arylsulfonyl protecting groups49,52,61. We were 

interested in introducing the N,N-dimethylsulfamoyl  protecting group into a free pyrrole 

and perform similar reactions performed on the arylsulfonylpyrrole. 

 

Preparation of the arylsulfonylpyrrole has already been reported in this chapter. The 

sulfamoylpyrrole 48 was prepared using the method of Wong et al.103 who treated a 

disubstistuted pyrrole with sodium hydride followed by N,N-dimethylsulfamoyl  chloride 

in DMF. We managed to get 48 in 99% yield using the method of Wong (Scheme 41). 

The 1H NMR spectrum gave two signals in the aromatic region corresponding to the four 

protons but since the molecule is symmetrical, only two peaks are observed. Mass 

spectrometry gave the parent peak at m/z 174 [M]+ and the fragment at m/z 108 which 

correspond to the [N,N-dimethylsulfamoyl]+. These led us to conclude the desired 

compound was made. When trying methods used for arylsulfonyl protection, no products 

were obtained. 
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Scheme 41. 

 

The sulfamoylimidazole 46 was prepared using the methods of Chadwick61. Imidazole is 

treated with triethylamine and N,N-dimethylsulfamoyl  chloride in benzene at room 

temperature (Scheme 42). The product was obtained in 78% yield. Spectroscopic data 

and melting point were similar to previously published data. 
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The first comparison of the different protecting groups was in the iodination reaction; 

arylsulfonylpyrrole 5 and 8 iodination yield was in the range of 60-75% (Scheme 36), 

while arylsulfonylimidazole 22 could not be iodated (Scheme 43). The second 

comparison is the addition of benzonitrile to the lithiated arylsulfonylheterocycle; the 

yields for benzonitrile addition to arylsulfonylpyrrole ranged from 30-60% (Scheme 18) 

while no products were found in the addition to arylsulfonylimidazole (Scheme 19). 

Arylsulfonylpyrrole was methylated while its imidazole analogue could not be. These 

results led us to conclude that arylsulfonyl protecting groups are suitable for pyrrole and 

not for imidazole. 
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Scheme 43. 

 

Moving on to the N,N-dimethylsulfamoyl  protecting group; the sulfamoylpyrrole 48 

iodination was found to be 65% by 1H NMR analysis while the iodination of 

sulfamoylimidazole 46 was 78%. Methylation of sulfamoylpyrrole was not observed, 

while that of sulfamoylimidazole occured in 71% yield. The methods used for 

methylation were reported by Chadwick et al. and his results61 were comparable to those 

obtained in our laboratory. These results suggest the N,N-dimethylsulfamoyl  protecting 

group is suitable for both the imidazole and pyrrole but, it favours imidazole over pyrrole. 

 



 

 

From the above mentioned comparisons, both protecting groups are compatible with 

pyrrole but the arylsulfonyl protecting group is a better protecting group for pyrrole. The 

last reaction performed to support these observations was the benzonitrile addition to 

lithiated sulfamoylpyrrole 48. The reaction was performed under similar conditions to 

those for arylsulfonylpyrrole (Scheme 18), treating 48 with butyllithium followed by 

benzonitrile gave the sulfamide 64 in 25% yield (Scheme 44).  
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1H NMR spectrum showed three pyrrole protons and mass spectrometry gave the parent 

peak [M+ 277] and the fragment [169 corresponding to the loss of N,N-

dimethylsulfamoyl]. These results led us to conclude that the correct molecule was made.  

We also concluded that arylsulfonyl chloride are better protecting groups for pyrrole 

when compared to N,N-dimethylsulfamoyl chloride. 

 

2.7 Conclusion and Recommendations 

 

In this dissertation, we were successful in achieving our aims. We started by investigating 

the 1,4-migration of the sulfonyl group during the synthesis of N-sulfonylimine ligands 6 

and 15. The investigation required the preparation of a 2-substituted N-

toluenesulfonylpyrrole 8 which is mixed with N-phenylsulfonylpyrrole 5 in the crossover 

experiment. Attempts to make a silyl and methyl substituted pyrrole did not yield the 

desired products in pure form. We were successful in preparing 2-phenyl-N-

toluenesulfonylpyrrole 26 in gram quantities using the method developed by Dinsmore et 

al. Other methods investigated for the preparation of 26 either required the reaction to be 

performed in a glove box or required a large excess of starting material for the reaction to 

occur. We then concluded that the method developed by Dinsmore et al. is superior over 



 

 

the current existing methods. When performing the crossover experiment, we found that 

the 1,4-migration of the sulfonyl group occurs via an intramolecular shift. 

 

The N-toluenesulfonylimine ligand 15 was successfully complexed with various 

transition metals and the metal complexes formed were sent for testing against cancer 

cells.  Although we intended that the metal ion should have a coordination number of 

four either by complexing two chelate ligands 15 or one chelate ligand with two 

triphenylphosphine units, as in the case for copper(I) and silver(I) metal ions, we 

observed metal complexes with coordination number of five, as in cobalt(II) 32 and 

zinc(II) 33, where in addition to the two chelate ligands a DBU unit is coordinated to the 

metal. When preparing the silver complex, we discovered that depending on the source of 

triphenylphosphine (TPP), we can produce metal complexes with one TPP unit 35 and 

also with two TPP units 17. The platinum complex 38 contains one chelate ligand 15 and 

a cyclooctadiene ligand as the second chelate ligand. The metal complexes that showed 

anti-cancer activity were the silver complexes and the platinum complex, and these 

complexes are currently undergoing further tests. 

 

We extended the scope of magnesiation, developed for the deprotonation of 

sulfonylpyrrole by Dinsmore et al., into sulfonylindole and found the method to work. 

Iodination of sulfonylindole was achieved in more than 70% yield, also the phenylation 

of sulfonylindole was achieved in more than 70% yield.  

 

Finally we investigated the magnesiation methodology recently developed by Knochel et 

al. which used a combination of  lithium chloride and Grignard reagent. We were 

interested in using catalytic amine base as opposed to the stochiometric amount required 

in the published report. We found that catalytic diisopropylamine was superior over 

tetramethylpiperidine, when using 10% mole equivalent, but found that the reaction time 

for deprotonation increases. The newly developed methodology was used to deprotonate 

N-sulfonylpyrrole, N-sulfonylindole, N-sulfonylimidazole and N-benzylbenzimidazole in 

moderate to good yields.  

 



 

 

For future work we recommend the following; 

- Solution studies on the complexes made, using UV-VIS and ESI mass 

spectrometry in trying to understand the stability and binding constants of the 

complexes in different media. This will be very important for the metal 

complexes which showed promising results as it might give insight on the mode 

of action of these compounds; 

- Further testing on the metal complexes against other diseases such as HIV and 

malaria, and also investigating the mode of action of the compounds;  

- Further investigation on the magnesiation methodology employing lithium 

chloride and catalytic amine and to try and use lithium chloride in catalytic 

amounts; 

- The total synthesis of the densely functionalized pyrolidine-aziridine ring system 

2 starting from N-sulfonylimine 4. This will require changing the nitrile source 

from benzonitrile to cyano-N,N-dimethylformamide or its derivatives, when 

reacting lithiated N-sulfonylpyrrole with nitriles. If the synthesis of 2 is 

successful, the total synthesis of azinomycin can be attempted. 

  

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Chapter 3 
Experimental 

 

 

 

 

 

 

 

 



 

 

Chapter 3:                    Experimental 
 

3.1 General  

 

   a) Purification of reagents and solvents 

        - THF and diethyl ether were distilled from sodium/benzophenone 

        - Dichloromethane and DMF were distilled from calcium hydride 

        - Benzene and toluene were distilled from sodium 

        - Hexane and ethyl acetate were distilled without addition of reagents 

  

    b) Spectroscopic and Physical data 

 - Melting points were obtained using a Reichert hot-stage microscope, and are        

uncorrected 

- 1H and 13C NMR spectra were recorded at 300.139 MHz and 75.035 MHz, 

respectively, on Bruker Avance-300 spectrometer. Spectra were recorded in 

deuteriated chloroform (CDCl3) unless otherwise specified. Chemical shifts are 

reported in parts per million (ppm) relative to tetramethylsilane as internal standard 

at zero ppm. The 1H NMR chemical shifts are reported: value (number of 

hydrogens, description of signal, coupling constant(s) in hertz (Hz) where 

applicable, assignment) and the 13C NMR chemical shifts are reported: value 

(assignment). Abbreviations used: s = singlet, d = doublet, t = triplet and m= 

multiplet. 

- Infrared spectra were obtained on Bruker Tensor 27 spectrometer. Samples were 

placed on a diamond tip. The absorptions are reported on the wavenumber (cm-1) 

scale, in the range 400 – 4000 cm-1. 

- High-resolution, low-resolution and fast atom bombardment (FAB) mass spectra 

were recorded on a VG70-SEQ instrument, electrospray ionization (ESI) mass 

spectra were recorded on a Thermo Fischer LXQ instrument. Data are quoted: m/z 

value (relative abundance). Samples ran on FAB were dissolved in a 3-nba matrix, 

while those in ESI were dissolved in a ethanol/water mixture. 



 

 

- The crystal structure data sets was obtained on a Bruker SMART 1K CCD area 

detector diffractometer with graphite monochromator Mo Kα radiation (50 kV, 30 

mA). 

 

 c) Nomenclature and numbering of compounds 

The compounds prepared during the course of this project are named in the 

following experimental section according to systematic nomenclature. However, the 

numbering system used to illustrate the diagrams of these compounds is one 

adopted for convenience and is not meant to reflect systematic numbering of these 

compounds. 

 

3.2 Synthetic procedures 

 

Isopropylmagnesium chloride (iPrMgCl) 13 

 

A flame dried three neck round bottom flask containing Mg (4.89 g, 0.201 mol) pre-dried 

under high vacuum at 90 °C for 50 minutes, was fitted with a dropping funnel containing 

isopropyl chloride (30 ml, excess), reflux condenser, and  250 ml flask containing dry 

THF (200 ml) via a cannula. THF (50 ml) was transferred to the flask followed by 

isopropyl chloride (~6 ml) and few crystals of iodine. The flask was heated to initiate the 

reaction and placed in an ice-water bath once the reaction started. The remaining 

isopropyl chloride was added drop-wise at such a rate to maintain a gentle reflux and the 

resulting solution was stirred at room temperature until all Mg has reacted. The final 

solution was diluted with dry THF, allowed to settle and transferred into a dry Ar flushed 

flask via a cannula. The concentration of the solution was determined using the method 

of Paquette83. In a flame dried, one-neck round bottomed flask, menthol (0.312 g, 2 

mmol) and 1,10-phenanthroline (4mg) were dissolved in dry THF and stirred for 2 

minutes under Ar. The Grignard solution was added drop-wise via syringe until a distinct 

violet color persisted for longer than a minute. The concentration was found to be 0.91 

M. 

 



 

 

Isopropylmagnesium chloride- lithium chloride (iPrMgCl.LiCl)  14 

 

The base was prepared using the method of Knochel67-68. Mg (2.673 g, 110 mmol) and 

anhydrous LiCl (4.25 g, 100 mmol) were dried under high vacuum at 90 °C for 30 

minutes. Isopropyl chloride (9.14 ml, 100 mmol) dissolved in dry THF (50 ml) was 

added slowly added into the flask along with few crystals of I2 and the mixture stirred 

under Ar at room temperature. The reaction which starts within a few minutes was kept at 

room temperature and left stirring for 16 hours. The concentration was determined as 

mentioned above, and found to be 1.33 M. 

 

N-Toluenesulfonylpyrrole  8 
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In a flame dried flask, pyrrole (5 ml, 0.07 mol) and NaOH (8.4 g, 0.21 mol) were 

suspended in dry DCM (50 ml) and stirred at room temperature for 5 minutes to give a 

finely divided mixture. p-Toluenesulfonyl chloride (19 g, 0.1 mol), dissolved in  DCM 

(40 ml), was added to the mixture, the flask was capped with a drying tube and stirred at 

room temperature for 48 hours. The reaction was quenched with water, the resulting 

solution extracted with  DCM (3 × 50 ml), the combined organic layers washed with 

brine (15 ml), dried over MgSO4, filtered and the solvent was removed under reduced 

pressure to give a brown solid which was purified by column chromatography, eluting 

with hexane / EtOAc (80 :20). N-Toluenesulfonylpyrrole was isolated as a brown-tan 

solid, (12.578 g, 81.3%); mp 93-95 °C (Lit87. 98-100oC); νmax (NaCl) /cm-1 3054 (m), 

1596 (m, C=N), 1455 (m), 1371 (m),1265 (s) and 1189 (m, -SO2-); δH (300 MHz; CDCl3; 

Me4Si) 7.98 (2H, d, J 7.8, Ar-H), 7.29 (2H, d, J 7.3, Ar-H), 7.15 (2H, m, Pyrrole-H), 6.28 

(2H, m, pyrrole-H) and 2.40 (3H, s, -Me); δC (75 MHz; CDCl3) 142.9, 134.1, 127.9, 

124.8, 118.7, 111.5 and 19.6; LREI m/z 221 (M+, 100), 155 (32), 91 (71) and 65 (18).  



 

 

N-Phenylsulfonylpyrrole  5 
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The above method was repeated using phenylsulfonyl chloride as an electrophile. After 

purification, N-phenylsulfonylpyrrole was isolated as a grey solid, (7.635 g, 50%); mp 

82-84 oC (Lit88. 87-88 oC); νmax (NaCl / cm-1) 3054 (m), 1596 (m, C=N), 1455 (m), 1371 

(m),1265 (s) and 1189 (m, -SO2-); δH (75 MHz; CDCl3; Me4Si) 7.85 (2H, t, J 2.3, pyrrole 

-H), 7.57 (3H, m, Ar-H), 7.17 (2H, m, Ar-H), 6.30 (2H, t, J 2.3, pyrrole-H); δC (75 MHz; 

CDCl3) 139.5, 134.2 , 129.8 , 127.14, 121.2  and 114; m/z 207 (M+, 70), 141 (35), 115 

(5), 77 (100) and 51 (16) (Found: 207.0343. C10H9NSO2 requires 207.03540). 

 

N,N-Dimethylsulfamoyl chloride 

 

Using the variation to the methods of Hendrickson89, N,N-dimethylamine hydrochloride 

(30 g, 0.369 mol)  was added to a 250 ml r.b. flask. The flask was then placed in an ice-

bath then sulfuryl chloride (SO2Cl2) (99.6 g, 0.729 mol) was added drop-wise over 5 

minutes into the flask. The flask was then capped with a drying tube and gently refluxed 

for 24 hours. The excess SO2Cl2 was removed under reduced pressure then dry THF (45 

ml) was added to precipitate the unreacted N,N-dimethylamine hydrochloride. The 

solution was filtered through a plug of celite, then THF removed under reduced pressure 

to give a clear oil which was purified by distillation to give the title compound as a clear 

oil (45.953 g, 89.6 %). b.p 54 oC at 2.8 mmHg (Lit.89 67 oC at 8 mmHg); δH (300 MHz; 

CDCl3; Me4Si) 2.693 (6H, s, Me);  δC (75 MHz; CDCl3) 39.5914; (LREI) m/z 143.6 (M+ , 

50), 108.1 (100).  

 

 



 

 

N,N-Dimethyl-1H-pyrrole-1-sulfonamide  48 
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NaH (1.22 g, 0.05 mol) was suspended in DMF (20 ml) and placed in an ice bath. Pyrrole 

(2.63 ml, 0.0368 mol) was added drop-wise into the solution where a thick creamy 

solution formed. N,N-Dimethylsulfamoyl chloride (4.36 ml, 0.041mol) was added drop-

wise at 0 oC over 5 minutes, then the resulting mixture was allowed to warm to room 

temperature and left stirring for 4 hours. DMF was removed under high vacuum. The 

resulting dark oil was partitioned between EtOAc/water (1: 1) (50 ml), the organic layer 

extracted, the aqueous layer washed twice more with EtOAc (20 ml). The combined 

organic layers were washed with brine (10 ml), dried over MgSO4, and the solvent 

removed to give a dark oil which crystallized upon standing to give a black solid. The 

solid was then dissolved in DCM and filtered through silica plug to give N,N-Dimethyl-

1H-pyrrole-1-sulfonamide (6.356 g, 99%) of a light brown solid. mp. 55 ºC; δH (300 

MHz; CDCl3; Me4Si) 7.08 (2H, m, pyrrole H), 6.31 (2H, m, pyrrole H), 2.81 (6H, s, -

Me); δC (75 MHz; CDCl3) 124.1, 112.1, 38.6; LREI m/z 174 (M+, 80), 108 (100), 68 (93). 

 

N,N-Dimethylimidazole-1-sulfonamide  46 
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Using the method of Chadwick48, imidazole (3.010 g, 0.0528 mol), triethylamine (6 ml, 

0.043 mol) and N,N-dimethylsulfamoyl chloride (6 ml, 0.055 mol) were dissolved in 

benzene (40 ml) and stirred at room temperature for 20 hours. The mixture was filtered 

and the precipitate washed with benzene (2 x 15 ml). The filtrate and the washings were 

combined and the solvent removed under reduced pressure to give a clear oil which was 

dried under vacuum to give N,N-dimethylimidazole-1-sulfonamide (7.563 g, 78%) as a 



 

 

white solid; mp 40-42˚C (lit.48 42-44˚C) ; νmax (NaCl / cm-1) 3127 (w), 1625.4 (w), 1391 

(m)1153 (m, -SO2-); δH (300 MHz; CDCl3; Me4Si) 7.92 (1H, s, imidazole-2-H), 7.27 (1H, 

s, imidazole-4-H), 7.16 (1H, s, imidazole-5-H) and 2.86 (6H, s, -Me); δC (75 MHz; 

CDCl3) 137.1, 130.9, 118.1 and 38.5; LREI m/z 175 (M+, 30), 108 (100), 69.2 (20). 

 

N,N-Dimethyl-2-methylimidazole-1-sulfonamide48       
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Following the method of Chadwick48, the sulfonamide 46 (0.5 g, 2.9 mmol) was 

dissolved in dry THF (10ml) and the solution cooled to -78 oC in a N2/ acetone bath, n-

BuLi (1.6 M, 2.19 ml, 3.5 mmol) was added and the resulting solution stirred for 15 

minutes at -78˚C. The reaction was quenched with iodomethane (0.3 ml, 4.8 mmol). The 

stirring was continued at room temperature for 20 hours and the mixture was extracted 

with 2M HCl (5 x 12ml). The combined acidic solutions were washed once with Et2O (10 

ml) and basified with 10% NaOH solution. The solution was saturated with NaCl, 

extracted five times with chloroform (10 ml), the combined organic phase dried over 

MgSO4 and the solvent removed to give N,N-dimethyl-2-methylimidazole-1-sulfonamide 

as a brown mobile oil (0.39 g , 71%). δH (300 MHz; CDCl3; Me4Si); 7.22 (1H, d, J 1.7 

Hz, imidazole 4-H), 6.93 (1H, d, J 1.7 Hz, imidazole 5-H),  2.91( 6H, s, NMe2), 2.63 (3H, 

s, Me); δC (75 MHz; CDCl3) 145.7, 130.5, 119.7, 38.2 and 15.3; LREI m/z  189.1 (M+, 

38), 108.1 (100), 83.2 (26) and 54.3 (9). 

 

General Method for Magnesation  

Method A65 

To N-toluenesulfonyl pyrrole 8 was added iPrMgCl (0.86 M, 2.5 eq. with respect to 8, in 

THF) and (iPr)2NH (0.05 eq. with respect to 8). The mixture was maintained at room 



 

 

temperature under an argon atmosphere for 18 hours. An electrophile (2 eq. with respect 

to 8) was added and the mixture was stirred at room temperature. The reaction was 

quenched by addition of saturated aqueous NH4Cl (20 ml), and a saturated Na2S2O3 

solution (20 ml) in the case of I2 as an electrophile. The mixture was extracted three times 

with EtOAc, the organic layer was dried over MgSO4, filtered and the solvent was 

removed under reduced pressure. Further details are given for each individual 

preparation, described below. 

Method B 

To an N-heterocycle was added a solution of iPrMgCl.LiCl (1.11M, 1.8 eq. with respect 

to N-heterocycle, in THF) and (iPr)2NH (0.1 with respect to N-heterocycle). The mixture 

was stirred at room temperature under an argon atmosphere for 18 hours. An electrophile 

was added and the mixture was stirred at room temperature for 20 minutes. The reaction 

was quenched by addition of saturated aqueous NH4Cl (20 ml), and a saturated Na2S2O3 

solution (20 ml) in the case of I2 as an electrophile. The mixture was extracted three times 

with EtOAc, the organic layer was dried over MgSO4, filtered and the solvent was 

removed under reduced pressure. 

 

2-Iodo- N-Phenylsulfonylpyrrole 39 
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N-Phenylsulfonylpyrrole 5 (1.00 g, 4.82 mmol) was treated according to method A, with 

iPrMgCl (12.05 mmol, 14 ml, 2.5 eq.) and (iPr)2NH (28 µl, 0.2 mmol, 5 mol %). After 

standing at room temperature for 18 hours, the reaction was treated with I2 (3.00 g, 12.0 

mmol) followed by aqueous work-up and recrystallized from 96% EtOH  to give 2-iodo  

- N-phenylsulfonylpyrrole 39 (1.12 g, 70% ) as brown crystals; mp. 96-98 (Lit.65 97-98) 



 

 

δH (300 MHz; CDCl3; Me4Si) 7.91-7.94 (2H, m, Ar-H), 7.61-7.66 (1H, m, Ar-H), 7.59 

(1H, dd, J 3.4 and 1.8, pyrrole-H), 7.50-7.56 (2H, m, Ar-H), 6.52 (1H, dd, J 3.4 and 1.8, 

pyrrole-H), and  6.27 (1H, apparent t, J 3.4, pyrrole-H); δC (75 MHz; CDCl3) 147.5, 

138.2, 134.2, 129.2, 128.1, 127.9, 126.7 and 114.6;  HREI m/z 333 (M+ , 85), 207 (7), 192 

(9), 141 (46) and 77 (100) (Found: 332.9392. C10H8NO2SI requires 332.9321). 

The reaction was also performed using method B and 2-iodo- N-phenylsulfonylpyrrole 

was obtained in 68% yield. Spectroscopic and physical properties obtained, were 

identical to those reported above. 

 

2-Phenyl- N-toluenesulfonylpyrrole  26 
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 N-Toluenesulfonylpyrrole 8 (0.884 g, 3.98 mmol) was treated according to method A, 

with iPrMgCl (0.86 M, 9.95 mmol, 2.5 eq.) and (iPr)2NH (28 µl, 0.2 mmol, 5 mol %). 

Iodobenzene (0.89 ml, 7.96 mmol) and Pd(Ph3P)4 (0.231 g, 0.2 mmol). After stirring at 

room temperature for 48 hours, the reaction was partitioned between EtOAc (50 ml) and 

sat. aq. NH4Cl (50 ml), the organic phase separated, the aqueous phase washed further 

with EtOAc. The combined organic phase were dried over MgSO4 and the solvent 

removed under reduced pressure to give a brown oil which was further purified by 

column chromatography on silica gel, eluting with dichloromethane / hexane (1:4) to 

yield the title compound as a brown solid (600 mg, 51%) mp. 122 C̊  (Lit. 123-124 ˚C)77 

δH (300 MHz; CDCl3; Me4Si) 7.05-7.44 (10H, m, 9Ar-H and 1 pyrrole-H), 6.30 (1H, 

apparent t, J 3.3, pyrrole-H), 6.15 (1H, apparent dd, J 1.8 and 3.3, pyrrole-H) and 2.35 

(3H, s, Me);   δC (75 MHz; CDCl3) 145.0, 136.4, 136.0, 131.7, 131.3, 129.7, 128.6, 127.7, 

127.5, 124.5, 116.1, 112.4 and 21.9; HREI m/z 297.08 (M+, 100).  



 

 

N-Phenylsulfonylpyrrole-2-carbaldehyde 45 

                                                           

N
S OO

O

 

N-Phenylsulfonylpyrrole (2.42 mmol, 0.50 g) was treated according to method B with 

iPrMgCl.LiCl (4.356 mmol, 3.92 ml, 1.8 eq) and (iPr)2NH (0.242 mmol, 34 µl, 10 

mol%). DMF (6 mmol, 0.31 ml) was added and the solution stirred for 30 min. The 

aqueous work-up gave a brown oil which was purified with column chromatography on 

silica gel using 20% EtOAc: hexane as eluent to give N-phenylsulfonylpyrrole-2-

carbaldehyde (0.344 g, 60%) as an off-white solid; mp 77-78 ºC (Lit90., mp. 78-79 ºC); δH 

(300 MHz; CDCl3; Me4Si) 9.96 (1H, s, CHO), 7.94-7.91 (2H, m, Ar-H), 7.67-7.46 (4H, 

m, pyrrole-H and Ar-C), 7.18 (1H, dd, J 3.4 and 1.7, pyrrole-H) and 6.43 (1H, apparent t, 

J 3.4, pyrrole-H); δC (75 MHz; CDCl3) 179.2 (CHO), 138.6, 134.9, 133.9, 129.8, 127.8, 

125.2 and 112.9;  HREI m/z 235.03 (M+, 100). 

 

1-Benzyl-2-iodo-1H-benzo[d]imidazole 53 

                                                        

N

N
I

 

N-Benzylbenzimidazole (2.42 mmol, 0.503 g) was treated according to method B with  

iPrMgCl.LiCl (4.356 mmol, 3.92 ml, 1.8eq) and (iPr)2NH (0.242 mmol, 34 µl, 10 mol%). 

I2 (6 mmol, 1.50 g) was added and the solution stirred for 10 min. The aqueous work-up 

gave a brown solid which was purified with column chromatography on silica gel using 

20% EtOAc: hexane as eluent to give 1-benzyl-2-iodo-1H-benzo[d]imidazole (0.686 g, 

85%) as a white solid; mp 118-119 ºC (Lit.84 118-120 oC); δH (300 MHz; CDCl3; Me4Si)  



 

 

7.75 (1H, t, J 3.0, benzimidazole-H), 7.32-7.13 (8H, m, benzimidazole-H and Ar-H), 5.38 

(2H, s, -CH2-); LREI m/z 334.8 (M + H, 15), 333.8 (M+, 100), 207 (25). 

 

1-benzyl-1H-benzo[d]imidazole-2-carbaldehyde 54 

                                                           

N

N O

 

 N-Benzylbenzimidazole (2.42 mmol, 0.503 g) was treated according to method B with 

iPrMgCl.LiCl (4.356 mmol, 3.92 ml, 1.8 eq) and (iPr)2NH (0.242 mmol, 34 µl, 10 

mol%). DMF (6 mmol, 0.31 ml) was added and the solution stirred for 30 min. The 

aqueous work-up gave a brown oil which was purified with column chromatography on 

silica gel using 20% EtOAc in hexane as eluent to give 1-benzyl-1H-benzo[d]imidazole-2 

-carbaldehyde (0.406 g, 70%) as a white-yellow solid; mp 104-105 ºC (lit.86 105-107 oC);  

δH (300 MHz; CDCl3; Me4Si) 10.141 (1H, s, CHO), 7.95 (1H,t , J 3.0, benzimidazole-H), 

7.44-7.15 (8H, m, benzimidazole-H and Ar-H), 5.85 (2H, s, -CH2-); δC (75 MHz; CDCl3) 

184.9 (CHO), 145.9, 142.9, 136.6, 136.0, 128.9, 128.0, 127.1, 126.937, 124.2, 122.5, 

111.4 and 48.0; HREI m/z 236.09 (M+, 100). 

 

2-Iodo-N,N-dimethyl-1H-imidazole-1-sulfonamide  47 

                                                           N

N
S OO
N

I

 

N,N-Dimethylimidazole-1-sulfonamide (2.42 mmol, 0.420 g) was treated according to 

method B with iPrMgCl.LiCl (4.356 mmol, 3.92 ml, 1.8eq) and (iPr)2NH (0.242 mmol, 

34 µl, 10 mol%) and left stirring at room temperature for 18 hrs. I2 (6.0 mmol, 1.50 g) 

was added and the solution stirred for 10 min. The aqueous work-up gave a dark brown 

oil which was purified with column chromatography on silica gel using 20% EtOAc: 

Hexane as eluent to give 2-iodo-N,N-dimethyl-1H-imidazole-1-sulfonamide (0.568 g, 

78%) as brown oil. δH (300 MHz; CDCl3; Me4Si) 7.45 (1H, d, J 1.8, imidazole-H), 7.05 



 

 

(1H, d, J 1.8, imidazole-H), 2.98 (6H, s, -Me); δC (75 MHz; CDCl3) 131.2, 123.5, 83.2 

and 37.8; LREI m/z 301.9 (M + H, 5), 300.9 (M+, 100), 193.9 (29).(Found 300.9376: 

C5H8N3SO2I requires 300.9382). 

 

2-Formyl-N,N-dimethylpyrrole-1-sulfonamide 49 

                                                         

N
S OO
N

O

   

N,N-Dimethyl-1H-pyrrole-1-sulfonamide (2.42 mmol, 0.417 g) was treated according to 

method B with  iPrMgCl.LiCl (4.356 mmol, 3.92 ml, 1.8eq) and (iPr)2NH (0.242 mmol, 

34 µl, 10 mol%) and left stirring at room temperature for 18 hrs. DMF (6 mmol, 0.31 ml) 

was added and the solution stirred for 30 min. The aqueous work-up gave a brown oil 

which was purified with column chromatography on silica gel using 40% EtOAc in 

hexane as eluent to give 2-formyl-N,N-dimethylpyrrole-1-sulfonamide (0.151 g, 31%) as 

a brown oil. Vmax 1665 (CHO), 1421 (C=O), 1379, 1249 and 1153 (-SO2-); δH (300 MHz; 

CDCl3; Me4Si) 10.06 (1H, s, CHO), 7.40 (1H, apparent t, J 1.7, pyrrole-H), 7.27-7.23 

(1H, m, pyrrole-H), 6.39 (1H, apparent t, J 3.3, pyrrole-H) and 2.87 (6H, s, -Me); δC (75 

MHz; CDCl3) 179.9 (CHO), 133.9, 129.9, 122.5, 111.4 and 38.2; m/z HREI 202.0408 

(M+, 100) (Found 202.0408: C7H10O3N2S requires 202.0412). 

 

2-Iodo-5-methoxy-1phenylsulfonyl-1H-indole 51 

                                                   

N

O
I

S OO

 

5-Methoxy-1-phenylsulfonyl-1H-indole (2.42 mmol, 0.695 g) was treated according to 

method B with iPrMgCl.LiCl (4.356 mmol, 3.92 ml, 1.8eq) and (iPr)2NH (0.242 mmol, 

34 µl, 10 mol%) and left stirring at room temperature for 18 hrs. I2 (6 mmol, 1.5 g) was 

added and the solution stirred for 10 min. The aqueous work-up gave a dark brown oil 



 

 

which was purified with column chromatography on silica gel using 10% EtOAc in 

hexane as eluent to give 2-iodo-5-methoxy-1-phenylsulfonyl-1H-indole (0.849 g, 85%) 

as a brown solid; mp. 122-124˚C; δH (300 MHz; CDCl3; Me4Si)  8.18 (1H, d, J 8.2, Ar-

H), 7.87 (2H, d, J 7.9, Ar-H), 7.55-7.53 (1H, m, indole-H), 7.46-7.41 (2H, m, Ar-H), 

6.93-6.85 (3H, m, indole-H) and 3.83 (3H, s, -OMe); δC (75 MHz; CDCl3) 156.9, 138.5, 

134.4, 133.7, 133.1, 129.5, 127.5, 124.8, 116.8, 114.2, 102.4 and 56.0; LREI m/z 414.8 

(M + H, 12), 412.8 (M+, 79), 271.8 (100) and 228.8 (10) (Found 412.9585: C15H12NO3SI 

requires 412.9582). 

 

5-Methoxy-2-phenyl-1-phenylsulfonyl-1H-indole 55 

                                                           

N

O

S OO

 

5-Methoxy-1-phenylsulfonyl-1H-indole (2.42 mmol, 0.695 g) was treated according to 

method B with iPrMgCl.LiCl (4.356 mmol, 3.92 ml, 1.8eq) and (iPr)2NH (0.242 mmol, 

34 µl, 10 mol%) and left stirring at room temperature for 18 hrs. The reaction was treated 

with iodobenzene (0.49 ml, 4.356 mmol) and Pd(Ph3P)4 (231.16 mg, 0.2 mmol). After 

stirring at room temperature for 48 hours, the reaction was partitioned between EtOAc 

(50 ml) and sat. aq. NH4Cl (50 ml), the organic phase separated, the aqueous phase 

washed further with EtOAc (25 ml). The combined organic phase were dried over 

MgSO4 and the solvent removed under reduced pressure to give a brown oil which was 

further purified by column chromatography on silica gel, eluting with dichloromethane / 

hexane (1:4) to yield the title compound as a brown oil (0.527 g, 60%); δH (300 MHz; 

CDCl3; Me4Si) 8.19 (1H, d, J 9, Ar-H), 7.51-7.24 (10H, m, Ar-H and indole-H),  6.96 

(1H, dd, J 2.4 and 9, indole-H), 6.88 (1H, d, J 2.4, indole-H), 6.48 (1H, s, indole-H) and 

3.814 (3H, s, -OMe); δC (75 MHz; CDCl3) 157.1, 143.0, 137.2, 133.4, 132.8, 132.3, 

131.7, 130.2, 128.7, 128.5, 127.5, 126.7, 117.7, 113.9, 113.5, 103.2 and 55.6; HREI m/z 

363.09 (Found 363.0924: C21H17O3NS requires 363.0929). 



 

 

2-(4-Bromo-2,5-dimethoxyphenyl)-1-phenylsulfonyl-1H-indole  44 

                                                     

N
S OO
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O
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1-Phenylsulfonyl-1H-indole (2.42 mmol, 0.622 g) was treated according to method A 

with iPrMgCl (6.05 mmol, 2.5 eq.) and (iPr)2NH (28 µl, 0.2 mmol, 5 mol %). After 

standing at room temperature for 18 hours, the reaction was treated with 1,4-dibromo       

-2,5-dimethoxybenzene (4.356 mmol, 1.280g) and Pd(Ph3P)4 (231.16 mg, 0.2 mmol). 

After stirring at room temperature for 48 hours, the reaction was partitioned between 

EtOAc (50 ml) and sat. aq. NH4Cl (50 ml), the organic phase separated, the aqueous 

phase washed further with EtOAc. The combined organic phase were dried over MgSO4 

and the solvent removed under reduced pressure to give a brown oil which was further 

purified by column chromatography on silica gel, eluting with EtOAc / hexane (1:5) to 

yield the title compound as a brown solid (0.706 g, 62%) mp. 181-183˚C; δH (300 MHz; 

CDCl3; Me4Si) 8.24 (1H, d, J 8.4, Ar-H), 7.51 -7.25 (8H, m, Ar-H and indole-H), 7.13 

(1H, s, Ar-H), 6.78 (1H, s, Ar-H), 6.58 (1H, s, indole-H), 3.82 (3H, s, -OMe) and 3.68 

(3H, s, -OMe); δC (75 MHz; CDCl3) 153.1, 149.6, 139.0, 137.9, 137.0, 133.8, 130.4, 

129.0, 127.1, 125.2, 124.3, 121.5, 121.3, 116.7, 116.5, 116.1, 113.5, 113.3, 57.4 and 56.5 

; HREI m/z 471.01 (Found 471.0151: C22H18O4NBrS requires 471.0139). 

 

4-Methyl-N-[phenyl(1H-pyrrol-2yl)methylene]benzenesulfonamide 15  

                                                       

H
N

N
S

O

O
R

R = H; 6
R = Me; 15

 

Using variation methods to Mandy and Patil42, N-toluenesulfonylpyrrole 8 (1.004g, 

0.0046 mol) was dissolved in dry THF (20 ml), the flask was cooled to –20 °C in N2/ 



 

 

acetone bath. n-BuLi (1.6 M, 3.25 ml, 0.0052 mol, 1.2 eq) was added and the solution 

stirred at –20ºC for 20 minutes. Benzonitrile (0.6 ml, 0.0055 mol) was added and the final 

solution was allowed to warm to room temperature and stirred for 17 hours. The reaction 

was quenched with saturated NH4Cl solution, and extracted with EtOAc (2 × 20 ml). The 

combined organic layers were washed with brine, dried over MgSO4 and the solvent 

removed under reduced pressure to give a brown oil, which was further purified by 

column chromatography, eluting with hexane / EtOAc (80 : 20) to give the title 

compound (0.894 g, 60%); mp 110-113˚C; νmax (NaCl / cm-1) 3358 (m, N-H), 3058 (m), 

1595 (w, C=N), 1545 (s) and 1197 (s, -SO2); δH (300 MHz; CDCl3; Me4Si) 10.16 (1H, 

broad s, -NH),  7.75 (2H, d, J 7.846, Ar-H), 7.52-7.36 (5H, m, Ar-H), 7.26-7.21 (4H, m, 

Ar-H), 6.48 (1H, m, pyrrole-H), 6.30 (1H, m, pyrrole-H) and 2.43 (3H, s, -Me);  δC (75 

MHz; CDCl3) 142.0, 137.9, 131.1, 129.6, 126.6, 126.1, 111.2 and 20.6; HREI m/z 324 

(M+, 37), 259  (70), 169 (100), 157 (24), 91 (42) and 77 (31) (Found 324.09237. 

C18H16O2N2S requires 324.09325). 

 

N-[Phenyl(1H-Pyrrol-2yl)methylene]benzenesulfonamide  6 

Repeating the above procedure with N-phenylsulfonylpyrrole 5 gave the title compound 6 

(0.423 g, 30%) ; mp 145-148˚C; νmax (NaCl / cm-1) 3428 (m, N-H), 3055 (m), 1544 (s) 

and 1156 (s); δH (300 MHz; CDCl3; Me4Si) 10.16 (1H, broad s, -NH), 7.99-7.82 (2H, m, 

pyrrole-H), 7.70-7.38 (8H, m, Ar-H), 7.25 (2H, m, Ar-H), 6.51 (1H, m, pyrrole-H), 6.33 

(1H, m, pyrrole-H); δC (75 MHz; CDCl3) 141.8, 132, 130.7, 129.6, 129.3, 128.6,  128.0, 

127.7 and 112.3; HREI m/z 31.01003 (M+, 46), 249.1169 (10), 169.0698 (100) and 

77.03945 (38) (Found 310.01003, C17H14N2O2S requires 310.0776).         

                                           

 

 

 

 



 

 

 (E)-4-Methyl-N-[phenyl(5-phenyl-1H-pyrrol-2-yl)methylene]benzenesulfonamide 

29  
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2-Phenyl-N-tolueneulfonylpyrrole 26 (420 mg, 1.4 mmol) was dissolved in dry THF 

(5ml), the flask was cooled to –20 °C, in N2/ acetone bath, n-BuLi (1.1 ml, 1.69 mmol) 

was added and the solution stirred at –20 °C for 30 minutes. Benzonitrile (1.69 mmol, 

0.19 ml) was added and the final solution was allowed to warm to room temperature and 

stirred for 2 hours. The reaction was quenched with saturated NH4Cl solution, and 

extracted with EtOAc (2 × 20 ml). The combined organic layers were washed with brine, 

dried over MgSO4 and the solvent removed under reduced pressure to give a brown oil, 

which was further purified by column chromatography, eluting with hexane / EtOAc (80 : 

20) to give (200 mg, 36%) of the title compound. Mp. 114˚C δH (300 MHz; CDCl3; 

Me4Si) 10.80 (1H ,broad s, NH), 7.71 (4H,dd, J 17.31 and 7.32,p-Tol-H), 7.35-7.52 (8H, 

m, Ar-H), 7.21-7.26 (2H, m, Ar-H), 6.61 (1H, apparent t, J 3.3, pyrrole-H)  6.54 (1H, m, 

pyrrole-H), 2.41 (3H,s,me); δC (75 MHz; CDCl3) 143.4, 142.8, 139.3, 131.0, 130.6, 

129.9, 128.0, 127.5, 125.9, 110.5, 21.9; HREI m/z 400.13245 (M+,80), 245.11597 (100), 

218.98562 (62) and 115.02906 (58) (Found 400.13245: C24H20N2O2S requires 400.1245). 

 

N,N-Dimethyl-N’ -[phenyl(1H-pyrrol-2yl)methylene]sulfamide  64 
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N,N-Dimethyl-1H-pyrrole-1-sulfonamide 48 (2.9 mmol, 0.501 g) was lithiated as 

mentioned above for the preparation of 15, using n-BuLi (3.45 mmol, 2.2 ml) at –20 °C 

and stirred for 30 minutes before the addition of benzonitrile (3.45 mmol, 0.35 ml). The 



 

 

final solution was allowed to warm to room temperature and left stirring for 2 hours. The 

usual aqueous work-up gave a dark oil which was purified by column chromatography 

using 20% EtOAc: hexane as eluent to give the title compound (0.202 g, 25%) as a brown 

solid; mp. 106-108 °C; δH (300 MHz; CDCl3; Me4Si) 7.60-7.41 (5H, m, Ar-H), 7.20 (1H, 

m, pyrrole-H), 6.50 (1H, m, pyrrole-H), 6.31 (1H, m, pyrrole-H) and 2.90 (6H, s, -Me); 

δC (75 MHz; CDCl3) 130.8, 129.1, 128.6, 128.3, 127.4, 111.7 and 38.9; HREI m/z 

278.18047 (M + H+, 8), 277.177 (M+, 40), 169.121 (100) and 77.053 (21) (Found 

277.17715: C13H15N3O2S requires 277.0885). 

 

Crossover experiment 

 

In a flame dried flask, 2-phenyl-N-tolueneulfonylpyrrole 26 (210 mg;0.7 mmol)  and N-

phenylsulfonyl pyrrole 5 (144.9 mg; 0.7 mmol) were dissolved in dry THF (5 ml). The 

flask was cooled to –20 °C, in N2/ acetone bath, n-BuLi (1.1 ml, 1.69 mmol) was added 

and the solution stirred at –20 °C for 30 minutes. Benzonitrile (1.69 mmol, 0.19 ml) was 

added and the final solution was allowed to warm to room temperature and stirred for 2 

hours. The reaction was quenched with saturated NH4Cl solution, and extracted with 

EtOAc (2 × 20 ml). The combined organic layers washed with brine, dried over MgSO4 

and the solvent removed under reduced pressure to give a brown oil which was purified 

by chromatography using 10% EtOAc in hexane as eluent. Two fractions were collected 

and characterized by high resolution MS which showed the presence of (E)-4-methyl-N-

[phenyl(5-Phenyl-1H-pyrrol-2-yl)methylene]benzenesulfonamide and  N-[phenyl(1H-

pyrrol-2yl)methylene]benzenesulfonamide as the products of the addition reaction. 

   

Metal Complexes 

 

Ligand 1 = deprotonated  4-methyl-N-[phenyl(1H-pyrrol-

2yl)methylene]benzenesulfonamide   

 

 

 



 

 

 

CuL(P(Ph)3)2  31 

 

Ligand 1 (0.100 g, 0.301 mmol) and CuBr(P(Ph)3)3 (0.263 g, 0.301 mmol) were 

dissolved in chloroform (20 ml)and stirred for 2 minutes. DBU (45 µl, 0.301 mmol) was 

added to the solution by syringe and the resulting solution, which turned from light 

brown to dark brown, was left stirring at room temperature for 30 minutes. The reaction 

was quenched with sat. NHCO3, washed with DCM, the organic layer dried over MgSO4. 

The solvent was removed to give a dark brown oil which was dissolved in DCM: hexane 

(1: 1, 10 ml) to precipitate yellow crystals (160 mg, 58%)  suitable for X-Ray diffraction. 

(See Appendix 3 for structure); mp.(dec.) 193-195ºC;  νmax  3053 (w), 1522 (s), 1481 (s, 

C=N), 1463 (s), 1433 (s), 1413(s), 1361 (s), 1297 (s), 1267 (vs), 1195 (w, -SO2-), 1143 

(vs); δH (300 MHz; CDCl3; Me4Si) 7.39-7.16 (31H, m, P(Ph)3 and pyrrole-H), 7.04 (3H, t, 

J 7.8, Ar-H), 6.87 (2H, d, 7.5, Ar-H), 6.50-6.40 (4H, m, Ar-H), 6.23 (1H, apparent d, J 

3.4, pyrrole-H), 5.29 (1H, m, pyrrole-H) and 2.17 (3H, s, -Me); Anal. Calcd. for 

C54H45CuN2O2P2S: C, 71.15; H, 4.98; N, 3.07; S, 3.52.  Found: C, 69.56; H, 5.14; N, 

3.03; S 3.70. FAB m/z 587.4 (M minus L)+ (15), 325.2 (15), 262.2 (25); ESI 587.25 (100) 

 

CuL2  30 

 

Ligand 1(0.200 g, 0.617 mmol) and Cu(OAc)2 (56.11 mg, 0.3085 mmol) were dissolved 

in methanol (10 ml) and stirred for 2 minutes, DBU (90 µl, 0.617 mmol) was added to the 

solution which was then refluxed for 2 hours. The solution was then allowed to cool to 

room temperature whereafter precipitation occurred. The precipitates were filtered, 

washed with methanol (5ml) and allowed to dry to afford dark green crystals (75 mg, 

34%). mp.(dec.) >250 °C; νmax  1596 (w), 1541 (vs), 1490 (s, -C=N), 1470 (w), 1443 (w), 

1405 (s), 1369 (vs), 1317 (s), 1283 (vs), 1219 (s), 1201 (vs, -SO2-), 1182 (s), 1151 (vs), 

1108 (s) 1044 (vs), 1005 (s); m/z ESI 732.13 (M + Na+, 10), 710.08 (M + H+, 12), 347.12 

(L + Na+, 100) and  325.03 (L + H+). 

 

 



 

 

 

NiL2  19 

 

Ligand 1 (0.400 g, 1.24 mmol) and Ni(acetylacetonate)2 (0.159 g , 0.62 mmol) were 

dissolved in ethanol (10 ml), DBU (1.24 mmol, 180 µl) was added and the final solution 

was refluxed for 24 hours. The solution was allowed to cool to room temperature. The 

solvent was reduced to half its original volume and the solution was left in the fridge 

overnight whereafter precipitation occurred. The precipitates were filtered, washed with 

diethyl ether (10 ml), recrystallised from DCM: hexane mixture to give light green 

crystals (128 mg, 29%). mp.(dec) 149-151ºC;  νmax 1645 (s), 1580 (s), 1523 (m), 1487 

(m, C=N), 1465 (m), 1443 (m), 1417 (s), 1366 (w), 1281 (s), 1196 (s, -SO2-), 1148 (s), 

1086 (s), 1034 (s); FAB m/z 727.2 (M + Na+, 20), 705.2 (M + H+), 381.1 (5), 325.1 (55). 

 

CoL2DBU 32 

 

Ligand 1 (0.200 g, 0.617 mmol) and CoCl2.6H2O (73.76 mg, 0.31 mmol) were dissolved 

in methanol (10 ml), DBU (90 µl, 0.617 mmol) was added to the solution which was 

refluxed for 24 hours and cooled to room temperature. The solvent was reduced to half 

and the solution was left in the fridge for 24 hours whereafter precipitation occurred. The 

precipitates were filtered off, washed with methanol (5 ml), then petroleum ether (10 ml) 

and left to dry in air to give a brown solid (160mg, 60%). The solid was recrystallised 

from DCM: EtOH mixture to afford dark crystals suitable for X-Ray diffraction (See 

appendix 4 for structure). mp.(dec) > 250ºC; νmax 1599 (s), 1526 (s), 1489 (s, C=N), 1465 

(s), 1429 (s), 1380 (s), 1312 (vs), 1273 (vs), 1214 (vs), 1194 (s, -S02), 1155 (vs), 1082 (s), 

1042 (vs), 1003 (s); FAB m/z 858.2 (M + H+, 5), 705.2 (8), 534.2 (36), 153.1 (100). 

 

ZnL2DBU 33 

 

Ligand 1 (0.200 g, 0.617 mmol) and ZnCl2 (42.16 mg, 0.31 mmol) were dissolved in 

methanol (10 ml). DBU (90 µl, 0.617 mmol) was added to the solution which was 

refluxed for 24 hours, then cooled to room temperature. The solvent was reduced to half 



 

 

and the solution was left in the fridge for 24 hours whereafter precipitation occurred. The 

precipitates were filtered off, washed with methanol (5 ml), then petroleum ether (10 ml) 

and left to dry in air to give a brown solid (160mg, 60%). mp.(dec) 228-230º ;  νmax 1646 

(w), 1599 (s), 1524 (s), 1490 (s, C=N), 1468 (s), 1432 (vs), 1379 (vs), 1310 (vs), 1276 

(s), 1215 (vs), 1199 (s, -SO2-), 1153 (vs), 1082 (s), 1042 (vs), 1003 (s); ESI m/z 733.48 

(6), 711.17 (10), 603.22 (20), 347.10 (100); FAB 863.2 (M + H+, 5), 711.2 (5), 539.2 

(30), 387.1 (5), 325.1 (7), 153.2 (100). 

 

AgLP(Ph)3 35 

 

Ligand 1 (0.227 g, 0.855 mmol), silver nitrate (0.145 g, 0.855 mmol) and P(Ph)3 (0.244 g, 

0.885 mmol) were dissolved in ethanol (10 ml) and stirred for 2 minutes. DBU (0.855 

mmol, 125 µl) was added to the solution, which was refluxed in the dark under Ar for 4 

hours. The solution was allowed to cool to room temperature whereafter precipitation 

occurred. The precipitates were filtered, washed with EtOH (2 ml), diethyl ether (10 ml) 

and allowed to dry in air to give a dark green solid (340 mg, 61%) which was 

recrystallised in DMF-DCM mixture to give light green crystals suitable for X-Ray 

diffraction (See Appendix 5 for structure). mp.(dec.) 218-220 °C; νmax 1738 (s), 1592 (w), 

1435 (m), 1366 (s), 1229 (s), 1216 (s); δH (300 MHz; CDCl3; Me4Si) 7.64-7.14 (23H, m, 

PPh3 and Ar-H), 6.84 (2H, d, J 7.8, Ar-H), 6.41-6.37 (2H, m, pyrrole-H) and 2.26 (3H, s,-

Me); δC (75 MHz; CDCl3) 168.4 , 145.6 , 142.1, 141.2, 140.3, 135.8, 134.6, 134.4, 131.9, 

131.4, 131.1, 129.5, 129.4, 129.4, 128.9, 128.5, 127.5, 126.9, 116.9 and 21.8; Anal. Calcd 

for C36H30AgN2O2PS: C, 62.34; H, 4.36; N, 4.04; S, 4.62. Found: C, 59.93; H, 4.46; N, 

4.05; S, 4.74.; m/z FAB 631.4 (100), 369.2 (70), 325.2 (40). 

 

AgCl[P(Ph)3]3  36 

 

AgCl (1.49 g, 10 mmol) was suspended in DCM (140 ml) then P(Ph)3 (10.97 g, 40 mmol) 

dissolved in DCM (40 ml) was added drop-wise into the solution. The final solution was 

stirred at room temperature for 2 hours, filtered, hexane added to the filtrate until the 

solution turned milky. The Ag complex precipitates out upon standing and was filtered, 



 

 

washed with hexane and dried in air to give white crystals (7.52 g , 81%). m.p 185 oC 

(Lit. 185-187 oC)80   

 

AgL[P(Ph)3]2 17 

 

Ligand 1 (0.277 g, 0.855 mmol) and AgCl[P(Ph)3]3 (0.795 g, 0.855 mmol) were 

dissolved in chloroform (20 ml), DBU (0.855 mmol, 0.125 µl) was added to the solution. 

The final solution was stirred at room temperature for 30 minutes, washed with sat. 

NaHCO3 (10 ml) extracted with DCM (10 ml × 2), the combined organic layers were 

dried over Na2SO4, and the solvent removed to leave a dark brown oil. The oil was 

dissolved in DCM: hexane (1:4) where unreacted AgCl[P(Ph)3]3 was precipitated out as 

white solid (300 mg). The filtrate was again dissolved in DCM: Hexane mixture, at which 

point yellow precipitates (340 mg, 42%) were obtained. The solid was recrystallised from 

EtOH: DCM where crystals suitable for X-Ray diffraction were obtained (see appendix 6 

for structure); mp. (dec) 226-230 °C; νmax 1739 (s,br), 1597 (w), 1521 (s), 1480 (w, 

C=N), 1465 (s), 1433 (w), 1408 (s), 1371 (vs), 1323 (m), 1291 (s), 1265 (s), 1197 (s, -

SO2-), 1155 (s), 1141 (s), 1081 (s), 1048 (m)1031 ( s);  δH (300 MHz; CDCl3; Me4Si) 

7.43-7.25 (33 H, m, PPh3 and Ar-H), 7.13-6.91 (4H, m, Ar-H), 6.86 (2H, d, J 7.8, Ar-H), 

6.64 (2H, d, J 7.8, Ar-H), 6.40 (1H, apparent d, J 3.9, pyrrole-H), 6.29- 6.28 (1H, m, 

pyrrole-H) and 2.20 (3H, s, -Me); FAB m/z 631.4 (M minus L)+ (69), 369.2 (80), 262.2 

(100); (Anal. calcd. for C51H45AgN2O2P2S: C, 67.86; H, 4.75; N, 2.93; S, 3.35: Found C, 

65.67; H, 4.82; N, 2.58, S, 2.95. 

 

PdL2  34 

 

Ligand 1 (0.2 g, 0.617 mmol) was dissolved in MeOH (10 ml). NaOAc (24 mg, 0.31 

mmol) was added to the solution which was stirred for 5 minutes. In a separate flask, 

PdCl2 (54.72 mg, 0.31 mmol) and LiBr (107.68 mg, 1.24 mmol) were dissolved in MeOH 

(2 ml) and stirred for 2 minutes before being transferred to the other flask. The final 

solution was stirred at 30ºC for 24 hours. Yellow precipitates, which started forming in 

the first hour, were collected by filtration, washed with methanol then petroleum ether to 



 

 

give a yellow solid (140 mg); mp.(dec) >250 °C; νmax 1595 (w), 1577 (w), 1547 (s), 1490 

(w, C=N), 1444 (w), 1399 (s), 1365 (s), 1323 (s), 1293 (s), 1219 (w), 1196 (m, -SO2), 

1152 (s), 1084 (s), 1043 (s), 1010 (m); ESI m/z 775.1 (M + Na+, 34), 347.11 (L + Na+, 

100), 325.08 (L + H+, 5). 

 

PtL(COD)  38 

 

Ligand 1 (259.8 mg, 0.804 mmol) and PtCl2(COD) (150 mg, 0.402 mmol) were dissolved 

Toluene (20 ml), DBU (117.6 µl, 0.804 mmol) was added and the resulting solution was 

refluxed under Ar for 12 hours. The solution was filtered, the solvent removed by 

evaporation and the resulting yellow oil was purified by column chromatography using 

20% EtOAc in hexane as eluent. A bright yellow solid (156 mg) was obtained and 

recrystallised from DCM: EtOH mixture to give crystals suitable for X-Ray diffraction 

(see appendix 7 for structure); mp. (dec) 204-206 °C; νmax 1597 (w), 1529 (s), 1491 (m, 

C=N). 1468 (m), 1406 (m), 1373 (s), 1322 (s), 1292 (s), 1250 (w), 1218 (w), 1197 (w, -

SO2), 1155 (s), 1080 (m), 1048 (s), 1016 (m); FAB m/z 625.4 (M+, 62), 518.3 (5), 470.3 

(25), 364.2 (12), 325.2 (25).   

 

 

 

 

 

 



 

 

 

 

 

Chapter 4 
References 

 

 

 

 

 

 

 

 



 

 

Chapter 4:                      References 
 

1.  Mathew, C. K. and van Holde, K. E. Biochemistry, The Benjamin/Cummings 

Publishing Company, New York,1990, chapters 10 and 24. 

2. Shriver, D. L. and Atkins, P. W. Inorganic Chemistry 3rd Ed, Oxford University 

press, Inc., New York,1999, Chapters 5, 17 and 19. 

3. Rosenberg, B.; van Camp, L. and Krigas, T. Nature(London), 1965, 205, 698. 

4. Cramer, R. E.; Dahlstrom, P. L.; Seu, M. J. T.; Norton, T. and Kashiwagi, M. 

Inorg. Chem., 1980, 19, 148. 

5. Cramer, R. E. and Dahlstrom, P. L. J. Clin. Hematol. Oncol., 1977, 7, 330. 

6. Kelman, A. D.; Peresie, H. J. and Stone, P. J. J. Clin. Hematol. Oncol., 1977, 7, 

440. 

7. Jin, V. X. and Ranford, J. D. Inorg. Chim. Acta, 2000, 304, 38. 

8. Zhang, J.; Liu, Q.; Duan, C.; Shao, Y.; Ding, J.; Miao, Z.; You, X. and Guo, Z.  J. 

Chem. Soc., Dalton Trans., 2002, 591. 

9. Tiekink, E. R. T. Gold Bulletin, 2003, 36, 117. 

10. Eisler, R. Inflamm. Res. 2003, 52, 487. 

11. Singh, H. B. and Wasi, N. Inorg. Chim. Acta, 1987, 135, 133. 

12. Cohan, Z. H.; Shaikh, A. U. and Naseer, M. M. Appl. Organometal. Chem., 2006, 

20, 729. 

13. Waern, J. B.; Dillon, C. T. and Harding, M. M. J. Med. Chem., 2005, 48, 2093. 

14. Papathanasiou, P.; Salem, G.; Waring, P. and Willis, A.C. J. Chem. Soc., Dalton 

Trans., 1997, 3435. 

15. Brechbiel, M. W.; Camphausen, K.; Sproull, M.; Tantama, S.; Sankineni, S.; 

Scott, T.; Menard, C. and Coleman, C. N. Bioorg. Med. Chem., 2003, 11, 4287. 

16. Macias, B.; Garcia, I.; Villa, M. V.; Borras, J.; Gonzalez-Alvarez, M. and 

Castineiras, A. Inorg. Chim. Acta, 2003, 353, 139. 

17. Nomkoko, E. T.; Jackson, G. E. and Nakani, B. S. J. Chem. Soc., Dalton Trans., 

2004, 1432. 

18. Ferrer-Seuta, G.; Ruiz-Ramirez, L. and Radi, R. Chem. Res. Toxicol., 1997, 10, 

1338. 



 

 

19.  Liang, X.; Parkinson, J. A.; Weishaupl, M.; Gould, R. O.; Paisey, S. J.; Park, H.; 

Hunter, T. M.; Blindauer, C. A.; Parsons, S. and Sadler, P. J. J. Am. Chem. Soc., 

2002, 124, 9105. 

20. Zhang, J.; Liu, Q.; Duan, C.; Shao, Y.; Ding, J.; Miao, Z.; You, X. and Guo, Z.  J. 

Chem. Soc., Dalton Trans., 2002, 591. 

21. van Beusichem, M. and Farrell, N. Inorg. Chem., 1992, 31, 635. 

22. Zakharova, I. A.; Tomilets, V. A. and Dontsov, V. I. Inorg. Chim. Acta, 1980, 46, 

L3-L6.   

23. Barnaham et al. Inorg. Chem., 1995, 34, 2826. 

24. Quiroga, A. G. and Ranninger, C. N. Coord. Chem. Rev., 2004, 248, 119. 

25.  Dry, M. E. in Catalysis Science and Technology, Anderson, J. R. and Boudart, 

M. (Eds), Springer-Verlag, New York, 1981, 1, 159. 

26. Tiekink, E. R. T. Critical Reviews in Oncology/Hematology, 2002, 42, 225. 

27. Kilpin, K .J.; Henderson, W. and Nicholson, B. K. Polyhedron, 2007, 26, 434. 

28. Che, C.; Sun, R.W.; Yu, W.; Ko, C.; Zhu, N. and Hongzhe, S. Chem. Commun., 

2003, 1718. 

29. Goss, C. H. A.; Henderson, W.; Wilkins, A. L. and Evans, C. J. Organomet. 

Chem., 2003, 697, 194. 

30. Mirabelli, C. K.; Hill, D. T.; Faucette, L. F.; McCabe, F. L.; Girard, G. R.; Bryan, 

D. B.; Sutton, B. M.; Bartus, J. O.; Crooke, S. T. and Johnson, R. K. J. Med. 

Chem., 1987, 30, 2181. 

31. Zhu, H.; Zhang, X.; Liu, X.; Wang, X.; Liu, G.; Usman, A. and Fun, H. Inorg. 

Chem. Commun., 2003,  6, 1113. 

32. Thati, B.; Noble, A.; Creaven, B. S.; Walsh, M.; McCann, M.; Kavanagh, K.; 

Devereux, M. and Egan, D. A. Cancer Lett., 2007, 248, 321. 

33. Ali, M. A.; Mirza, A. H.; Butcher, R. J.; Tarafder, M. T. H. and Ali, M. A. Inorg. 

Chim. Acta, 2001, 320, 1. 

34. Ye, N.; Park, G.; Przyborowska, A. M.; Sloan, P. E.; Clifford, T.; Bauer, C. B.; 

Broker, G. A.; Rodgers, R. D.; Ma, R.; Torti, S. V.; Brechbiel, M. W. and Planalp, 

R. P. J. Chem. Soc., Dalton Trans., 2004, 1304. 

35. van der Veer, J. L. and Reedjik, J. Chem. Brit., 1985, 20, 775. 



 

 

36. Patrick, G. L. An Introduction to Medicinal Chemistry 2nd Ed., Oxford University 

Press, Inc., New York, 2001. 

37. Campbell, M. K. and Farrell, S. O. Biochemistry 4th Ed., Thomson Learning, Inc., 

New York, 2003, Chapter 9 and 11. 

38. Franks, L. M. and Teich, N. M. Introduction to the Cellular and Molecular 

Biology of Cancer 3rd Ed., Oxford University Press, London,1997, Chapter 1. 

39. Hiatt, H. H.; Watson, J. D. and Winsten, J. A. Origins of Human Cancer (Book B, 

Mechanisms of Carcinogenesis), Cold Spring Harbor Laboratory, New York, 

1997, pp 605-629. 

40. Bishop, J. M.; Rowley, J. D. and Greaves, M. Genes and Cancer, Alan R. Liss, 

Inc., New York, 1984 pp 3-18. 

41. Karen Mandy, Ph.D, University of the Witwatersrand, 2003 and Shivaputra Patil, 

NRF postdoc, 2002. 

42. Abel, A. D.; Nabbs, B. K. and Battersby, A. R. J. Am. Chem. Soc., 1998, 120, 

1741. 

43. Setsune, J.; Tanabe, A.; Watanabe, J. and Maeda, S. Org. Biomol. Chem., 2006, 4, 

2247. 

44. Scherer, M.; Sessler, J. L.; Gabauer, A. and Lynch, V. J. Org. Chem., 1997, 62, 

7877. 

45. Muchowski, J. M.; Greenhouse, R. and Ramirez, C. J. Org. Chem., 1985, 50, 

2961. 

46. Itahara, T.; Kawasaki, K. and Ouseto, F. Bull. Chem. Soc. Japan., 1984, 57, 3488. 

47. Gaare, K.; Repstad, T.; Benneche, T. and Undheim, K. Acta Chem. Scand.,1993, 

47, 57. 

48. Ottoni, O.; Cruz, R. and Alves, R. Tetrahedron, 1998, 54, 13915. 

49. Anderson, H. J.; Loader, C. E.; Xu, X. R.; Le, N. and Gogan, N. J. Can. J. Lett., 

1985,  63, 896. 

50. Artico, M.; Santo, R. D.; Costi, R.; Massa, S. and Scintu, F. Bioorg. Med. Chem. 

Lett., 1997, 14, 1931. 

51. Zelikin, A.; Shastr, V. R. and Langer, R. J. Org. Chem.,1999, 64, 3379. 



 

 

52. Makushima, M.; Hamel, P.; Frenette, R. and Rokach, J. J. Org. Chem., 1983,  48, 

3214. 

53. Cadamuro, S.; Degani, I.; Dughera, S.; Fochi, R.; Gatti, A. and Piscopo, J. J. 

Chem. Soc., Perkin Trans. I, 1993, 2, 273. 

54. Amici, M.D.; Micheli, C.D.; Platini, F.; Della Bella, D. and Caramazza, I. Eur. J. 

Med. Chem. Chim. Ther., 1988, 23, 511. 

55. Dinsmore, A.; Billing, D. G.; Mandy, K.; Michael, J. P.; Mogano, D. and Patil S. 

Org. Lett. 2004, 6, 293. 

56. Chinchilla, R.; Najera, C. and Yus, M. Chem. Rev. 2004, 104, 2667. 

57. Lautens, M. and Fillion, R. J. Org. Chem., 1997, 62, 4418. 

58. Liu, J.; Chan, H. and Wong, H. N. C. J. Org. Chem., 2000, 65, 3274. 

59. Liu, J.; Yang, Q.; Mak, T. C. W. and Wong, H. N. C. J. Org. Chem., 2000, 65, 

3587. 

60. Hasan, I.; Marinelli, E. R.; Lin, L. C.; Fowler, F. W. and Levy, A. B. J. Org. 

Chem.,  1981, 46, 157. 

61. Chadwick, D. J. and Ngochindo, R. I. J. Chem. Soc., Perkin Trans. I, 1984, 481. 

62. Carpenter, A. J.; Chadwick, D. J. and Ngochindo, R. I. J. Chem. Res., 1983, (S), 

196; (M), 1913. 

63. Polniaszek, R. P. and Belmont, S. E. J. Org. Chem., 1990, 55, 4688. 

64. Bonafoux, D.; Bordeau, M.; Biran, C. and Dunogues, J.  J. Organomet. Chem., 

1995, 493, 27. 

65. Bradley, D. C.; Hursthouse, M. B.; Ibrahim, A. A., Abdul Malik, K. M.; 

Motevalli, M.; Moseler, R.; Powell, H.; Runnacles, J. D. and Sullivan, A. C. 

Polyhedron, 1990, 9, 2959. 

66. Henderson, K.; Mulvey, R. E.; Clegg, W. and O’Neil, P. A. J. Organomet. Chem., 

1992, 439, 237. 

67. Olmstead, M. M.; Grigsby, W. J.; Chacon, D. R.; Hascall, T. and Power, P. P. 

Inorg. Chim. Acta, 1996, 251, 273. 

68. Coates, G. E. and Ridley, D. J. Chem. Soc. (A), 1967, 56. 

69. Hauser, C. R. and Walker, H. G. J. Am. Chem. Soc., 1947, 69, 295. 



 

 

70. Dozzi, G.; Del Piero, M.; Cesari, S. and Cucinella, S. J. Organomet. Chem., 1980, 

190, 229. 

71. Bonafoux, D.; Bordeau, M.; Biran, C. and Donogues, J. Synth. Commun., 1998, 

28, 93. 

72. Lessene, R.; Tripoli, R.; Cazeau, P.; Biran, C. and Bordeau, M. Tetrahedron Lett., 

1999, 40, 4037. 

73. Allan, J. F.; Henderson, K. W. and Kennedy, A. R. Chem. Commun., 1999, 1325. 

74. Evans, D. A. and Nelson, S. G. J. Am. Chem. Soc., 1997, 119, 6452. 

75. Eaton, P. E.; Lee, C.-H. and Xiong, Y. J. Am. Chem. Soc., 1989, 111, 8016. 

76. Kondo, Y.; Yoshida, A. and Sakamoto, T. J. Chem. Soc., Perkin Trans. I, 1996, 

442. 

77. Shilai, M.; Kondo, Y. and Sakamoto, T.  J. Chem. Soc., Perkin Trans. I, 2001, 

442. 

78. Bonafoux, D.; Bordeau, M.; Biran, C.; Cazeau, P. and Donogues, J. J. Org. 

Chem., 1996, 61, 5532. 

79. Ren, H.; Krasovski, A. and Knochel, P. Org. Lett., 2004, 6, 4215. 

80. Ren, H.; Krasovski, A. and Knochel, P. Chem. Commun., 2005, 543. 

81. Krasovski, A. and Knochel, P. Angew. Chem. Int. Ed., 2004, 43, 3333. 

82. Lin, W. W.; Baron, O. and Knochel, P. Org. Lett., 2006, 8, 5673. 

83. Krasovski, A.; Krasovskaya, V. and Knochel, P. Angew. Chem. Int. Ed., 2006, 45, 

2958. 

84. Enne, V.I.; Livermore, D.M.; Stephens, P.and Hall, L.M.C. Lancet, 2001, 357, 

1325. 

85. Sezen, B. and Sames, D. J. Am. Chem. Soc., 2003, 125, 5274. 

86. Deprez, N. R.; Kalyani, D.; Krause, A. and Sanford, M. S. J. Am. Chem. Soc., 

2006, 126, 4972. 

87. Kalyani, D. and Sanford, M. S. Org. Lett., 2005, 7, 4149. 

88. Skulski, L. and Kazmierczak, P. Synthesis, 1995, 1027. 

89. Skulski, L. and Kazmierczak, P. Bull. Chem. Soc. Jpn., 1997, 70, 219. 

90. Knight, L. W.; Huffman, J. W. and Isherwood, M. L. Synlett., 2003, 1993. 

91. Mohamadou, A.; Barbier, J.-P. and Hugel, R. P. Polyhedron, 1992, 11, 2697. 



 

 

92. Adams, H.; Elsegood, M. R. J.; Fenton, D. E.; Heath, S. L. and Ryan, S. J. J. 

Chem. Soc., Dalton Trans., 1999, 2031. 

93. Sanghani, D. V. and Smith, P. J. Inorg. Chim. Acta, 1982, 59, 203. 

94. Bhyrappa, P. and Krishnan, V. Inorg. Chem. 1991, 30, 239. 

95. Helms, J. B.; Huang, L.; Price, R.; Sullivan, B. P. and Sullivan, B. A. Inorg. 

Chem. 1995, 34, 5335. 

96. Lin, H.-S. and Paquette, L. A. Synth. Commun., 1994, 24, 2503. 

97. Tlabo Leboho, MSc, University of the Witwatersrand, 2007. 

98. Wang, B. B. and Smith, P. J. Tetrahedron Lett., 2003, 44, 8967. 

99. Ezquerra, J.; Lamas, C.; Pastor, A.; Garcia-Navio, J. L. and Vaquero, V. V. 

Tetrahedron, 1997, 53, 12755. 

100. Milgrom, L. R.; Dempsey, P. J. F. and Yahiogh, G. Tetrahedron, 1996, 52,                                         

9877. 

101. Tschitschibabin and Rjasanzew, J. Russ. Phys. Chem. Soc., 1915, 47, 

1571. 

102. Zonta, C.; Fabris, F. and De Lucchi, O. Org. Lett., 2005, 7, 1003. 

103. Liu, J. –H.; Chan, H.-W.; Feng, X.; Wang, Q.-G.; Mark, T. C. W. and 

Wong, H. N. C. J. Org. Chem. 1999, 64, 1630.  

 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Appendices 

 

 

 

 



 

 

 
 
Appendix 1; Crystal structure of sulfonylimine 15 
 
 

 
Appendix 2; Crystal structure of sulfonylimine 29 
 
 
 



 

 

 
Appendix 3; Crystal structure of copper (I) complex 31 
 

 
 
Appendix 4; Crystal structure of cobalt complex 32 



 

 

 

 
Appendix 5; Crystal structure of silver complex 35 

 
Appendix 6; Crystal structure of silver complex 17 
 
 



 

 

 
Appendix 7; Crystal structure of platinum complex 38 
 
 
 
 
 
 


