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Abstract

This dissertation analyses the market-consistent valuation of liabilities for
defined-benefit pensions in payment. Models from the actuarial and finan-
cial economics literature for valuation of inflation options embedded in typical
liabilities in the South African market are considered. The feasibility of the
assumptions underpinning these models is then appraised and it is concluded
that, while existing models may produce reasonable market valuations for pen-
sion liabilities, these models are unable to capture important aspects of the
dynamics of the interest rate and inflation markets. The market for pension
liabilities is incomplete due to background risks such as mortality, credit, reg-
ulatory and tax risks. Stochastic mortality models are considered and it is
described how an incomplete-market valuation of liabilities using risk-adjusted
pricing principles may be produced by extending an investment model to in-
clude mortality.
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CHAPTER 1

Objective and overview of research

1. Research objective

The object of this dissertation is to determine market-consistent valua-
tion of inflation-linked pensions in payment in the context of the South African
market. The development of the inflation-linked bond and swap market pro-
vides pension funds with a risk-free means to match substantially such pension
liabilities, while the law of one price dictates that the market value of the lia-
bilities is the market value of these hedge assets. In practice pension liabilities
present issues relating to the completeness of the market and, even in an ide-
alised complete market, the complexity of the pension promise in South Africa
often necessitates a valuation based on a dynamic hedging strategy. This re-
search examines both financial-economics theory developed for inflation and
interest-rate derivatives pricing and actuarial theory for the market valuation
of insurance liabilities. We draw on relevant international experience, particu-
larly that of the advanced UK market.

2. Introduction and overview

March 2000 saw the birth of a new asset class in the South African in-
vestment industry when National Treasury issued the first RSA inflation-linked
bond. Following the experience of established markets, such as the UK, long-
term institutional investors have gained appreciation for the asset–liability
matching benefits of inflation-linked bonds. Derivatives, such as inflation-
linked swaps, have emerged in response to the specific requirements of investors
such as pension funds.

This is a timely development. The introduction into a market such as
South Africa of inflation-linked bonds and derivatives with (virtually) risk-
free inflation-linked returns provides pension funds with the opportunity to
more precisely match assets to pensions liabilities. A debate is raging within
the actuarial profession regarding the optimal investment strategy and valu-
ation methodology for defined benefit (DB) pension funds. This debate has
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2. INTRODUCTION AND OVERVIEW 2

been sparked and fuelled by ideas from financial economics. These ideas have
had a profound impact on the risk management of banks and their corporate
clients and hold out similar prospects for long-term institutions such as pen-
sion funds. The emergence of a risk-free inflation-linked asset class allows the
actuarial profession to adopt these ideas in the valuation of inflation-linked
pension liabilities.

At the heart of the debate is the most effective means of managing the
investment risks of a pension fund. Risk mitigation through diversification of
investments and smoothing of investment returns over time, what might be
called the ‘insurance approach’, had until recent years been fairly successful
in cost-effective provision of pension benefits. Equity markets have in recent
years yielded returns below valuation assumptions. This has however cast
doubt over the insurance approach and the assumptions needed in practice to
apply it. The insurance approach underpins most actuarial valuation work.

The alternative ‘financial approach’, as exemplified by investment banks,
manages risk through hedging transactions where risk is neutralised by trans-
ferring it to a natural counterpart. Risk transfer increasingly takes place via
the capital markets in order to lower costs and provide increased liquidity.

This distinction between the actuarial and financial approaches to risk
management carries through into valuation. Actuarial valuation often seeks
to explain asset prices and risk premiums “in an absolute manner, in terms of
the so-called fundamentals” (Jensen & Nielsen (1995)). A funding valuation
for pension assets and liabilities is a prominent example. By contrast financial
economics seeks to explain asset prices and risk premiums in a relative manner
“in terms of other, given and observable prices” (Embrechts (1996)).

Over time, the markets for pension risks have become more complete
and efficient through financial innovations such as derivatives and securitisa-
tion. There is now a greater universe of reliable market prices for these risks
and actuarial valuations may become more consistent with financial economics
pricing. This trend was heralded by Buhlmann (1987) in his famous ASTIN ed-
itorial urging the actuarial profession to become “actuaries of the third kind”,
proficient in financial economics.
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In the discussion of Smith (1996), the author asserts that “greater inte-
gration (between short-term derivative pricing models and long-term actuarial
models) would be of considerable benefit to those offering and receiving guar-
antees”. However, he goes on to caution that the valuation results of long-term
actuarial forecasts are very sensitive to subjective assumptions and motivates
the use of arbitrage arguments as a sound basis for development of market-
consistent prices.

The market valuation of pension liabilities has attracted increased atten-
tion in response to accounting developments and the shift to liability-driven
investment strategies. Chapter 2 surveys the actuarial literature addressing
market valuations for pensions and other long-dated guarantees of insurance
nature and the financial economic literature relating to inflation- and interest-
rate derivatives pricing.

Chapter 3 examines the notion of a market value in more detail. The key
attributes of a market valuation of a pension liability are identified and the
market conditions required to develop such a valuation are introduced. The
nature of SA DB pensions in payment, where increases often have an explicit
link to the CPI, is considered.

Chapter 4 considers the market valuation of linear pension liabilities,
which we define as liabilities perfectly indexed with inflation and not sub-
ject to credit, longevity and other background risks. The valuation of these
liabilities requires methods for interest-rate and inflation curve building and
extrapolation which account for seasonality and the inflation indexation lag.
Forward starting liabilities, where indexation commences at a future date, in-
troduce further complications.

A model for interest rates and inflation may allow more precise hedging of
linear liabilities and is essential for the dynamic hedging of liabilities where the
inflation link is nonlinear (such as increases based on the inflation rate floored
at 0%) as is frequently the case. Chapter 5 discusses the models proposed in
the financial economics and actuarial literature. The conditions underpinning
the perfect market of Black & Scholes (1973) are appraised.

Chapter 6 addresses the impact on the valuation of the background risks
implicit in pension liabilities, primarily longevity and credit risk. Stochastic
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mortality models and the relationship between longevity and investment risk
are examined. It is considered how the market-price information from insur-
ance and reinsurance prices and mortality securitisation and derivatives will
inform the market price of risk factors and the significance of the mortality
projection is noted. The dissteration concludes with a discussion of the chal-
lenges of extending a model for interest-rates and inflation to include longevity.



CHAPTER 2

Literature Survey

This chapter surveys literature relevant to the research objective, the
market valuation of inflation-linked pensions in payment. There has been
considerable debate in the actuarial literature regarding what constitutes a
market valuation for pension liabilities. Much of the literature addresses the
nature and purposes of the valuation rather than the methods that can be used
to produce market values.

The financial economics literature on inflation-linked derivatives is sur-
veyed, as inflation-linked pensions in payment may be viewed as inflation-linked
derivatives subject to additional background risks such as mortality.

1. Actuarial literature

1.1. Market valuation of pension liabilities
1.1.1. Exley, Mehta & Smith (1997) is considered a landmark as it was

the first to address comprehensively a theory of market valuation of pension
liabilities. Since then Gordon (1999), Chapman, Gordon & Speed (2001) and
Wise (2004) have elaborated on investment aspects of the theory.

1.1.2. Head et al. (2000) considered the different forms of pension fund
valuation that might be termed market valuations, including valuations based
on financial-economics principles.

1.2. Actuarial models for inflation-linked pension liabilities
1.2.1. Cairns (2004a) and Thomson & Gott (2007) have produced equi-

librium models that are market consistent. Palin & Speed (2003) and Chap-
man et al. (2001) produce equilibrium models using the deflator technique
advocated by Jarvis, Southall & Varnell (2001). The equilibrium model of
Thomson (2005) uses mean-variance optimisation to produce market values
for inflation-linked pension liabilities in incomplete markets.

1.2.2. A real and nominal interest-rate model is required to price pension
liabilities that contain inflation derivatives, such as annual inflation-linked in-
creases floored at 0%. Considerable research has been directed at interest-rate
modelling in recent years. The primary application has been to short-term
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1. ACTUARIAL LITERATURE 6

interest-rate derivatives and the models have been criticised for having unre-
alistic long-term dynamics. Real and nominal yield models for long-term lia-
bilities have been developed by Van Bezooyen, Exley & Smith (1997), Smith
(1999) and Huang & Cairns (2004).

1.2.3. The dissertation undertakes a critical appraisal of the Black &
Scholes (1973) methodology to consider whether it can be used to value the
inflation-derivative features of pension liabilities.

1.3. Dynamic hedging of pension liabilities
1.3.1. Embrechts (1996), Cairns (2001), Moller (2002), Wang (2002) and

Thomson (2005) survey the financial economics theories developed to value
insurance liabilties in incomplete markets. Cairns notes the parallel between
the theory and actuarial development of risk minimising reserves (e.g. Wilkie
(1984)) to define market values.

1.3.2. Van Bezooyen et al. (1997) and Smith (1999) argue against reserve-
based approaches in favour of arbitrage-free dynamic pricing in a perfect mar-
ket. Exley (2006) uses a similar approach to address the issue of forward-
indexed liabilities. Huang & Cairns (2004) build a dynamic hedging model in
discrete time based on mean-variance optimisation and a VAR(1) representa-
tion of a more complex asset-liability model (ALM) such as the Wilkie model.
These papers all address specifically Limited Price Indexation U.K. pension
liabilities, where the pension is a non-linear function of the CPI.

1.3.3. Cairns (2001) produces a market valuation model for the price of
a new security (such as an actuarial liability) when introduced into a perfect
asset market. He shows the price he derives is a good approximation to the
equilibrium price.

1.4. Background risks to pension liabilities
1.4.1. Background risks for pensions in payment, such as longevity, credit

and regulatory risks, cannot be perfectly hedged. Pension liabilities form an
incomplete market since there is no unique market value consistent with the
market prices for the risks inherent in the liabilities.

1.4.2. Longevity risk is generally regarded as the most significant back-
ground risk for pensions in payment. Cairns, Blake & Dowd (2006) provide a
comprehensive survey of mortality models and techniques for valuing liabilities
subject to mortality risk.

1.4.3. Utility theory can be used to identify a unique market price under
certain conditions for a given utility function. Cardinale et al. (2006) use
a simple model to explore how the market value of pension liabilities changes
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with background risks of different forms when representative agents have Cobb-
Douglas utility functions.

1.4.4. Market values can be also derived without explicitly drawing on
utility theory. Lin & Cox (2005) use the Wang transform to estimate the
market price of mortality risk from the US life annuity market. The market
price of mortality risk can then be included within a risk-adjusted valuation of
pension liabilities. Alternatively, the risk-neutral efficiency measure of Smith
(2001a) can be used to define a unique incomplete-market value for a liability
using a maximum-efficiency criterion.

1.5. Actuarial asset–liability models
1.5.1. Thomson (2002) notes that an asset–liability model can be used

to value risks that cannot be hedged provided it can be extended to include
them. Thomson (2005) uses this approach to establish a fair value for pension
liabilities in an incomplete market that is in equilibrium.

1.5.2. Traditional actuarial ALMs, such as Wilkie (1986) and Wilkie (1995),
do not give market valuations as these models are not intended to be market
consistent. Thomson (1996) published an ALM available for the South African
market using the same ARIMA framework used for the first Wilkie model.

1.5.3. Smith (1996) considers the full spectrum of models, from the deter-
ministic chaotic model of Clark (1992) to the random-walk model of Kemp
(1997), that constitute the state of the art of actuarial ALM at the time. The
author also introduces a jump equilibrium model with a mixture of indepen-
dent gamma increments and Poisson jumps.

1.5.4. Lee & Wilkie (2000) in their comparison of ALMs also include Yak-
oubov, Teeger & Duval (1999) and the market consistent ALMs of Smith (1996)
and Cairns (2004a) in their list of public ALMs that include both U.K. nominal
and inflation-linked bonds among the asset classes modelled.

1.5.5. Whitten & Thomas (1999) build threshold autoregressive (TAR)
features into a model similar to the Wilkie AR model. Such TAR models
allow for switching between different regimes of autoreversion and can account
for many of the features of the inflation process not captured by a simple AR
model (such as the Wilkie AR model). De Gooijer & Vidiella-i-Angeura (2003)
demonstrate promising fits of self-exciting threshold autoregressive models to
several inflation series.

1.5.6. A number of proprietary ALMs such as Smith (2003) exist but the
details published are limited to marketing material.
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2. Financial economics literature

2.1. Valuation of pension liabilities
2.1.1. The irrelevance of asset allocation for DB pensions was first consid-

ered by the prominent financial economists Treynor (1977) and Black (1980).
This allows a financial economic valuation to focus on the liabilities and second-
order asset effects (such as pension tax benefits).

2.1.2. Albrecht (1991) considers the assumptions underlying the financial
economics valuation methodology and questions whether it can be used to
value liabilities with insurance characteristics. Reitano (1997) and Babbel,
Gold & Merrill (2002) counter many of these concerns in their comparison
of the actuarial and financial approaches for life annuity and other insurance
liabilities.

2.2. Inflation-derivatives models
2.2.1. The inflation derivatives market was the precursor for the develop-

ment of models for real rates and inflation in mathematical finance. Jarrow
& Yildirim (2003) published the first model using the currency analogy for
inflation and the HJM multicurrency framework of Amin & Jarrow (1991).

2.2.2. Belgrade & Benhamou (2004b), Belgrade, Benhamou & Khlif (2004)
and Mercurio (2005a) subsequently published inflation-market models which
are more easily calibrated to traded inflation derivatives. Mercurio & Moreni
(2006) extended the latter model to account for volatility smile in the inflation
caps and floors market. Lioui & Poncet (2005) derive an equilibrium model
for the prices of inflation derivatives.



CHAPTER 3

Market valuations and pension liabilities

“A cynic is a man who knows the price of everything but the value of nothing.”

Oscar Wilde

We define the market value of liabilities used in this research as the price at
which the liability would trade in an active market. This market valuation
differs from actuarial valuations conventionally used for setting the pace of
funding, but may be used for this purpose. A market valuation also has merit
for accounting and commercial transaction purposes as its subjectivity is con-
strained by market prices of relevant instruments.

The market value defined in this research is motivated as the relevant value to
use for trading liabilities in a nascent market for pensions in payment linked to
the Consumer Price Index (CPI) and mortality. The circumstances in which
such pension rights may come to be traded are discussed. The financial eco-
nomics theory for the price of these rights is outlined.

9
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1. Market values and actuarial practice

1.0.1. In recent years there has been increased interest in valuations of
pension liabilities that are consistent with the market values of related assets
and liabilities. Discretion regarding DB pension benefits has been eroded by
regulation and reinforcement of member expectations. There is a growing
acceptance that corporate pension liabilities should be treated in a consistent
manner with the corporate’s debt.

1.0.2. This research will define the market value of a pension liability as
the estimated value at which the liability would trade in an active market. The
definition of market value used in this research is similar to Reitano (1997) and
Cairns (2001) in their research on the fair value of insurance liabilities.

1.0.3. Head et al. (2000) consider four main purposes for actuarial valu-
ations of pension liabilities. Funding valuations are used to set the sponsor
contribution rate for prefunding of liabilities. Regulatory valuations are usu-
ally used to assess pension fund solvency. Accounting valuations are used to
publish pension liabilities and expenses in the accounts of the sponsor. Val-
uations are also required commercial transactions, generally where there is a
bulk or individual transfer of a pension liability for cash (or equivalent assets)
or there is an adjustment to benefits.

1.0.4. The market value as defined above will not necessarily correspond
to an actuarial valuation of pension liabilities produced for these purposes.
Fair-value accounting valuations are similar in principle to a market value,
but may ignore the credit risk of the liability. The international accounting
standard for pensions, IAS19, and the UK accounting standard, FRS17, use a
general AA corporate-bond discount rate to value liabilities, while this research
will motivate the use of the swap curve with suitable adjustments. These
adjustments relate to the basis between the government bond market and the
swap market and the credit risk to the fund from the sponsor in respect of
unfunded liabilities in respect of pensions in payment.

1.0.5. Commercial transactions resulting in bulk transfers of pension liabil-
ities may take place close to market value, although the transfer will in general
not be limited to pensions in payment and there may be other considerations
relating to the broader transaction. Smith (1996) notes that an anomaly of-
ten becomes apparent between other actuarial values of the pension liability
and the market value that crystallises following a commercial transaction or
imposition of a fair-value accounting standard.

1.0.6. The seminal paper of Exley et al. (1997) advocated the use of market
values for all pension valuations. The authors used the Modigliani & Miller
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(1958) corporate finance theory to argue that the fund assets are irrelevant,
to first order, for the market value of liabilities. Second-order effects, such as
credit and tax, will usually have only a limited effect on the valuation.

1.0.7. This research considers the valuation of DB pensions in payment.
Section 4.1 argues that SA pensions in payment are sufficiently well defined in
real terms to be treated as a stream of payments linked to the CPI and subject
to background risks (such as mortality and credit risk) for which at least a
partial hedge exists. This is not necessarily the case for pension liabilities
in respect of DB actives still accruing benefits or deferreds due to receive a
pension from a future retirement date. These liabilities are complicated by
the difference between earnings and CPI inflation, decrements (withdrawal,
ill-health early retirement, etc) and options at retirement (retirement age and
options to commute benefits for cash). Reference to the pension liabilities in
this research is taken to mean the liabilities in respect of pensions in payment
unless otherwise specified.

2. Market values and financial economics theory

2.0.1. This section introduces the basic concepts in financial economics
theory relating to market values. Financial economics theory usually assumes
perfect markets, which are frictionless in that positions of unlimited size can
be bought or sold instantaneously without incurring transaction costs, crossing
bid-offer spreads or market impact. Perfect markets for pension liabilities,
which are a fiction but nonetheless a useful concept for developing theory, are
appraised in chapter 5.

2.0.2. Arbitrage is defined as the possibility of riskless profit. The law of
one price (LOOP) states that if a tradable liability (or asset) can be decom-
posed into a set of tradable cashflows for which there is a market price then
the market price of the liability is the market price of such cashflows. Any
other market price ascribed to the liability allows an arbitrage by selling the
more expensive portfolio and buying the cheaper.

2.0.3. Arbitrage-free pricing principles invoke the LOOP to price liabilities
with reference to the market price of a replicating portfolio of tradable assets
or liabilities. Under certain conditions perfect replication is possible and the
resulting market price is preference independent (beyond the basic preference
for exploiting an arbitrage, i.e. reducing the cost of defeasing the pension lia-
bility without risk). The price is independent of individual investor preferences
because arbitrage will enforce a market price that is independent of the utility
functions of market agents.
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2.0.4. A complete market is defined as a market where any asset or liability
is replicable. In chapter 4 it is considered whether linear pension liabilities
free of background risks constitute a complete market for market valuation
purposes. Since a pension liability is then replicable, the LOOP can be applied
to determine the market value of the liability.

2.0.5. The fundamental theorem of finance states that the absence of ar-
bitrage in a complete market implies the existence of a unique risk-neutral
measure. This risk-neutral probability measure is equivalent to the original
(often termed real-world) probability measure (Harrison & Pliska 1981). Two
measures are equivalent if and only if they have the same null set of events.
The fundamental theorem can also be formulated in terms of the existence of
a unique deflator process used in some of the actuarial literature.

2.0.6. Later chapters address the elements of pension liabilities that cannot
be perfectly replicated and so render the market incomplete. This leads to the
existence of many alternative risk-neutral measures and their corresponding
deflator processes.

2.0.7. A further condition that could be required of this arbitrage-free
incomplete-market price is that it is consistent with an efficient market. The
original definition of a (weak form) efficient market is a market where prices
“fully reflect” all historical price information (Fama 1970). Historical price in-
formation cannot be the basis for trading strategies that earn excessive profits
in relation to the risk of the trade.

2.0.8. The no-arbitrage condition precludes riskless profits. The market-
efficiency condition is more general than the no-arbitrage condition, since it
precludes excessive profits in relation to the risk of the trade. Cochrane (2001),
quoting from Grossman & Stiglitz (1980), points out that efficient markets are
a paradox in that efficient markets need traders and investment managers to
exploit inefficiences to keep them efficient. Market values derived from efficient-
market models may nevertheless be considered to produce more robust and
realistic market values than alternative models which do not use a market-
efficiency criterion.

2.0.9. The economic condition of a market being in equilibrium requires
that the total supply of the asset or liability must equal total demand at the
market price in an efficient market (Duffie 2001). Equilibrium is a stronger
market condition than efficiency. Equilibrium may be evident in a liquid mar-
ket for a commoditised financial instrument (e.g. government bonds). This
may not be the case in highly regulated, illiquid insurance markets.
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2.0.10. The utility function of an assumed representative agent may be
used to assess whether the risk-versus-return performance of trades is consis-
tent with an efficient market. An alternative measure of market efficiency may
be based on the difference between the real-world and risk-neutral distributions
(Smith 2001a).

2.0.11. In an incomplete market, utility theory can be used to specify the
deflator process from the marginal utility of a representative agent and an
assumed real-world probability distribution of cashflows and hence specify a
market price (Jarvis et al. 2001).

2.0.12. Utility theory can account for why risk-averse insureds accept an
insurance premium greater than the (assumed real-world) expected value of
claims. However, a unique incomplete market value can be identified using
alternative approaches not based explicitly on utility theory. We consider such
approaches in relation to incomplete markets for the longevity and investment
risk of annuitants in chapter 6.

2.0.13. The market price of risk for each source of risk in the incomplete
market can be used to price the instrument using a risk-adjusted pricing mea-
sure. This is a natural extension to risk-neutral pricing theory in complete
markets.

2.0.14. The value of the instrument may be based on the cost of the self-
financing dynamic hedging strategy that is optimal in some sense, such as the
mean–variance hedging strategy of Duffie & Richardson (1991). There has
been extensive debate in the literature about whether this cost is the market
value at which the instrument would trade if a market existed (Cairns 2001).

2.0.15. Some financial economics theories for incomplete markets coincide
with actuarial pricing principles. Standard premium-loading principles for in-
surance instruments are consistent with prices implied by specific utility func-
tions. The Esscher transform frequently arises as the preferred risk-neutral
measure for insurance instruments priced within the standard financial eco-
nomics framework (Embrechts 1996). The Esscher market price P is based on
an exponential tilt of the real-world payoff X,

P = E
[
XeδX

]
/E

[
eδX

]

Wang (2002) proposed an alternative transform which is consistent with risk-
neutral pricing in the idealised Black–Scholes world.

2.0.16. In both the financial and actuarial approaches to pricing there is no
substitute for the accurate modelling of the liability cashflows. The financial
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approach may not rely on some aspects of the cashflow process (such as the real-
world drift of the Black–Scholes model) and other parameters (such as implied
volatilities) may be directly calibrated to market but the resulting market
value will be relevant only if the cashflows have been modelled accurately.
Consequently, much of this dissertation focusses on models for investment and
background risks underlying pensions in payment.

3. Financial and insurance instruments

3.1. Tradability of pension rights
3.1.1. Wilkie in the discussion of Head et al. (2000) argues that pension

rights are “not like the assets usually dealt with in financial economics” since
a third party does not wish to own a pension that depends on a member’s
salary, starts when the member retires and ends when the member dies. This
may be true for the liabilities in respect of active and deferred members, but
pensions in payment are frequently insured with life annuities and in some
cases (e.g. small funds, bulk annuities), the pension liability is transferred to
the insurer. The credit risk faced by the pensioner is transferred from the fund
to the insurer.

3.1.2. If pension increases are well–defined by law, pension fund rules or
reasonable expectations and there is no prospect of benefit improvements, then
the transfer of pension rights to a third party with a sound credit rating will be
satisfactory to the members, their trustees and the regulators. Bulk transfers
of pension liabilities make issues such as moral hazard and antiselection less
problematic for the parties concerned.

3.2. Insurance securitisation
3.2.1. The securitisation of life annuity business, where blocks of liabilities

are financed by debt securities, creates securities with payoffs similar to pension
liabilities. The market value of pension liabilities may be based on the market
value of life insurance securities with similar characteristics. The securitisation
market may grow to the point where PWC conceive investors in securitised
life portfolios “could become the arbiters of the fair valuation”1. Insurance
accounts for only a fraction of the assets and liabilities securitised to date.
Cowley & Cummins (2005) divide life-insurance securitisations into five groups:

(1) Blocks of insurance policies. Securitisation is used to release embed-
ded value and capital or disinvest from a business. These deals have

1 ‘Innovative financing - life insurance securitisation’, PWC Insurance Services, 2006.
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been directed at linked and protection life business, although equity-
release and reverse mortgage business for retirees has also been secu-
ritised.

(2) Financing new business strain and conservative statutory reserves.
These deals finance persistency and mortality risk for term-assurance
products.

(3) Conventional asset securitisations by insurers. Mortgage-backed loans
by insurers are one such example.

(4) Transfer of adverse mortality and longevity risk to the capital mar-
kets. The payments on life catastrophe and longevity bonds can be
considered as mortality derivatives.

(5) Life settlements and viaticals. These are life insurance policies sold
by the insured to the secondary market for an amount greater than
the surrender value but less than the face value.

The implications of life securitisation for the hedging and pricing of pension
liabilities are discussed in the final chapter on mortality background risk.

3.3. Price and value
3.3.1. Investors account for and transact holdings at market price rather

than perceived fundamental value. This research equates the market value for
the pension liabilities with the estimated price in a hypothetical active market.
It is suggested that this definition of market value is relevant for accounting or
commercial transactions because the market price must be anticipated in the
nascent market for pension liabilities. Failure to do so will result in losses or
gains when the liabilities are transferred or realised as payments to pensioners.

3.3.2. Reitano (1997) draws an analogy between the incomplete markets
for insurance liabilities and private debt placements of new debt issues. In the
latter, the financial markets price the primary debt placement with reference
to the price of instruments with similar credit and interest rate risk that trade
actively in the secondary market. In time, an active secondary market develops
for the new debt and the true market price manifests. This valuation process
is to an extent self-fulfilling because valuations of untraded assets influence
perceptions of reasonable market prices.

3.3.3. The market value envisaged by this research would correspond to the
average of the bid and offer prices for an actively traded asset. This value is
not biased towards the buyer or the seller and is used as the mid-market price
for transactions in replicating assets or liabilities when a frictionless market is
assumed.



4. LIABILITY DISCOUNT RATE FOR MARKET VALUATION 16

3.3.4. We note that this implicitly assumes the market is in equilibrium, as
does any valuation that is equated with a market price. The spread between
bid and offer price for a financial asset will reflect the liquidity of the market.
The bid–offer spread for illiquid life securitisation paper will be relatively wide
while the asset class of life insurance securitisations is still immature, so this
market will only provide weak information about the market value of pension
liabilities.

3.3.5. Bid and offer prices for life securitisations will also apply in limited
volumes. The market impact of transactions in larger volumes over a short
period makes it likely that larger transactions will be executed outside this
bid–offer spread. This is explored in more detail in the next chapter where it
is argued that market impact is relevant only if the intention is to transfer the
pension liabilities to a third party.

3.3.6. It is noted that the individual and bulk annuity market also conveys
information regarding the market price of the risks pertaining to the pension
liabilities. However, these are offer levels that need to be adjusted for mar-
gins for profit and capital support in order to infer mid prices. This topic is
addressed in the final chapter.

3.3.7. A pension liability valuation based on market prices brings the dis-
cipline of the market to bear on the valuation. Subjectivity is constrained
through the requirement that the model recovers market prices where possible.
However, considerable actuarial judgment is still required in the construction
of the valuation model.

4. Liability discount rate for market valuation

4.0.1. Head et al. (2000) consider the slightly broader concept of a market-
consistent pension valuation that is “consistent with a feasible range of market
prices, if a true market were actually to exist”. This acknowledges that pension
liabilities are subject to longevity and credit risks for which the market is still
incomplete. Financial economics theory admits a range of market values free
from arbitrage in an incomplete market, even before transaction costs and
bid–offer spreads for hedging instruments are factored in.

4.0.2. While Exley, Mehta & Smith (1997) demonstrated asset irrelevance
to first order for liability valuation, credit risk is a second-order effect that
depends on the assets held by the fund. Chapter 6 analyses the sponsor credit
spread in respect of the unfunded pension liabilities that sponsor and trustees
acting as fiduciaries for pensioners may agree is fair.
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4.0.3. Chapter 6 motivates the use of the nominal and inflation swap
curves, adjusted for the average government bond-swap spread, for discounting
pension liabilities free of credit risk. Chapters 4 and 5 address the inflation
projection and chapter 6 addresses the mortality projection.

RSA bond R194 R153 R157 R186

26 Apr 2006 -0.17% -0.23% -0.14% -0.16%

26 May 2006 -0.21% -0.29% -0.17% -0.16%

26 Jun 2006 -0.32% -0.64% -0.48% -0.42%

Figure 1: SA nominal bond swap spreads (con-
tinuously compounded rates)

4.0.4. The inflation and nom-
inal swap curves are used to
generate the shape of the dis-
count curve because it is swaps
that complete the market for
interest and inflation rate risks.
In many markets swaps are
more transparent and liquid
than government bonds and are less susceptible to disruptions in supply. The
government bond-swap spread may be unstable over time. This is illustrated
by Figure 1 which shows SA spreads increased in the months leading up to
26 June 2006. The effect of a relative supply squeeze on R153 2010 and R157
2015 bonds is also apparent as the swap spreads on these issues increased in
comparison with the other issues. In markets with active bond futures con-
tracts there may be irregularities in the bond curve at the maturity points of
the cheapest-to-deliver bonds. The dynamics of swap spreads are discussed in
the curve modelling section in the next chapter.

4.0.5. The government bond-swap spread to be applied to the swap curve
at maturity T to produce a risk-free curve discount factor at T is the spread to
the swap curve that equates the net present value (NPV) of a liability projected
for mortality and inflation to T and discounted off the government bond curve
with the NPV using the swap curve plus this spread. The sponsor credit spread
is applied to this risk-free rate, only in respect of unfunded liabilities, to give:

discount curve value for market value of liabilities at T

= swap curve at T

− government bond-swap spread at T

+ sponsor credit spread at T , in respect of unfunded liabilities

4.0.6. If the liability is subsequently traded, the fair-value credit spread
to apply to the risk-free discount curve is determined using the principles set
out in chapter 6 using the credit risk of the entity paying the pension and
any collateral. The entity assuming the liability (such as an insurer) may
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be regulated with capital requirements and possible recourse to an industry
protection fund but no collateral posted against the liabilities.

4.1. Pension liabilities
4.1.1. The liability to the fund in respect of DB pensions in payment is the

value of the pensions accrued at retirement and increased with past pension
increases plus allowance for future pension increases in accordance with the
fund’s pension increase policy. In the case of a spouse’s or dependents’ pension,
the liability is the value of this pension, including accrued pension increases
and allowance for future pension increases.

4.1.2. Pension increases are awarded in terms of the fund rules or, in the ab-
sence of specific rules, in terms of the practice established by the fund trustees
and the reasonable expectations of pensioners. These reasonable expectations
form from factors such as the trustees’ increase policy and investment returns
(Institute and Faculty of Actuaries 1998).

4.1.3. In some jurisdictions the minimum pension increase is stipulated by
pensions law. For example, UK pensions law specifies various forms of limited
price indexation for minimum pension increases for pension benefits accrued
over certain periods. These forms of limited price indexation are discussed in
chapter 5.

4.1.4. The annual SANLAM survey states that 71% of SA retirement funds
surveyed link increases in disability benefits to the CPI2. Kendal & Franklin
(1993) survey the pension increases recommended by valuators of SA pension
funds and find increases are usually benchmarked against the annual increase
in headline CPI. The majority of funds recommended a percentage of CPI, for
example 75% of CPI. Affordability is a consideration since the Pension Funds
Act of 1956 provides for a minmum pension increase of the lesser of the increase
in CPI and the investment performance of the assets backing the pensions. It is
generally not possible to reduce pensions in payment through negative pension
increases. Pension increases are therefore often linked in some way to inflation,
but with a 0% floor.

4.1.5. At present in South Africa the valuation of pension liabilities is
highly contentious. Legislation regarding the equitable disposal of pension
fund surplus requires that surplus be measured on a realistic basis. Labour
and employers are far from agreement on what constitutes a realistic basis. The
market valuation basis proposed in this research may be viewed as sufficiently
realistic and objective by both parties.

2 ‘Annual Survey of Retirement Benefits in South Africa’, SANLAM, 2007.



CHAPTER 4

Linear inflation liabilities

In this chapter the valuation of inflation-linked pension liabilities which are
linear functions of zero coupon inflation bond prices are addressed. Market
values of linear inflation liabilities can be produced directly off zero coupon
curves if the market is sufficiently complete for the law of one price to be fea-
sible.

It is demonstrated that the use of a zero coupon real yield curve or a combi-
nation of nominal- and inflation-bond zero coupon yield curves is equivalent
since both approaches produce the same market value. The advantages of us-
ing swap rates as an alternative basis for valuation are discussed. We address
the modelling of bond and swap curves, specifically for the SA inflation mar-
ket, including the need to allow for inflation seasonality and projection of the
long end of the curve.

Even the inflation-bond and swap market poses interest and inflation rates
incompleteness issues and these are discussed. The actuarial hedging approach
of immunisation and financial economic theories of hedging are then described
and compared.

19
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1. Notation

1.0.1. While cashflows indexed with inflation are paid at discrete intervals,
it is convenient to define the following continuously compounded rates

f(t, τ) is the instantaneous nominal forward-rate at time t for term τ ;

g(t, τ) is the instantaneous real forward-rate at time t for term τ ; and

Q(t) is the (spot) inflation index published for time t.

Then the time t price of the nominal zero-coupon bond with maturity time T

is
Pn(t, T ) = exp

[− ∫
T−t

0
f(t, τ)dτ

]
,

and the price at time t of a real zero-coupon bond with maturity time T is

P r(t, T ) = exp
[− ∫

T−t

0
g(t, τ)dτ

]
.

Hence the nominal price at time t, including inflation indexation, of the real
zero-coupon bond with maturity time T is Q(t)

Q(0)P
r(t, T ). Further, let R(t, T ) be

the spot nominal rate at time t for maturity time T , defined as

R(t, T ) = −(
ln Pn(t, T )

)
/(T−t).

Similarly, let S(t, T ) be the spot real rate at time t for maturity time T be
defined as

S(t, T ) = −(
lnP r(t, T )

)
/(T−t).

1.0.2. Inflation-linked asset or liability cashflows must necessarily be in-
dexed to lagged inflation to accommodate the delay between the inflation-
basket survey date (generally the first day of the month) and its publication.
The CPI is typically published monthly. Indexation of cashflows is based on:

• for dates other than the first of the month, interpolation across the
cashflow month using lagged indices at the start and end of the month
(inflation-bond style); or

• the inflation index published for a previous month (as is common for
pension increases).

1.0.3. The instantaneous forward breakeven inflation rate at time t is then

b(t, T ) = f(t, T )−g(t, T ) (1)

in continuously compounded units with the same indexation lag as implicit in
the real rate g. It is more convenient to define breakeven inflation with respect
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to a base inflation index, Q(0), and no indexation lag as

b(t, T ) = ln[ Q(t)
Q(0) ]/(T−t). (2)

Here t and T are defined for monthly points. Theoretically Q(t) should be
rounded to one decimal place as published but it will make little difference
to a typical pension valuation to use an unrounded Q(t). There is a trend to
publication of inflation with greater precision, e.g. Euro-harmonised inflation
is now published to two decimals, giving a further reason for not rounding
forward values of Q(t).

2. Breakeven inflation and real yield valuation

2.0.1. Figure 2 shows a typical pension increase profile. If increases are
granted in January, the index lag is 3 months for the January payment, in-
creasing by one month for each subsequent month’s payment. The index lag
for December payments is effectively 14 months.
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(3-month lag)

Dec pension 
payment is in 
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14-month lag

Figure 2: Illustration of variable indexation lag for monthly pension payments
with annual increases

2.0.2. A conventional actuarial market valuation of inflation-linked liabil-
ities would discount the liabilities at the real gross redemption yield of an
inflation-linked bond of comparable duration (Griffiths, Imam-Sadeque, Ong
& Smith 1997). If greater precision was required a valuation would use a real
yield-curve point corresponding to the term of each cashflow, but a monthly
pension indexed annually in arrears requires a different real yield-curve for
each payment month index lag. These curves would each differ from the real
yield-curve for the inflation-linked bond market, making the calibration of the
curves a challenge.
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2.0.3. It may be considered easier to price the liability by indexing up the
real cashflows with breakeven inflation and discount these projected nominal
cashflows with a nominal curve. The breakeven inflation identity (1) ensures
this method produces the same value as discounting at the real yield. That is,

P r(t, T ) = Q(T )
Q(t) Pn(t, T ).

2.0.4. Modelling breakeven inflation has several advantages:

(1) In addition to the nominal curve already used to value nominal lia-
bilities, only a single breakeven curve is required.

(2) Modelling forward inflation directly using a breakeven curve facili-
tates inclusion of inflation forecasts and seasonality. The curve can
be adapted to value related indices (such as the SA CPI excluding
interest rates, CPIx).

(3) In the more advanced inflation-swap markets the inflation tradable
with the greatest market depth and price transparency is the zero-
coupon inflation swap (Deacon, Derry & Mirfendereski (2004));

(4) Risks of real and nominal liabilities can be evaluated and managed
on a consistent basis through a common nominal curve.

(5) Dynamic modelling of non-linear and forward starting pensions can
include serial correlation between nominal and inflation curves.

(6) It may be easier to set a nominal margin to the nominal swap curve
to discount indexed liabilities than to set an equivalent real margin
to the real swap rate.

2.0.5. Much of the curve-modelling literature dates from when the inflation-
bond market was deeper than the inflation-swap market and is therefore di-
rected at modelling real yield-curves. This research is directed at economists
and central banks with the objective of estimating inflation expectations as
the difference between government nominal and inflation-linked bond curves
rather than to price inflation derivatives. Before considering the modelling of
yield curves in detail, the salient features of the SA inflation market are ex-
amined and market disequilibrium and the implications for market values are
discussed.
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3. Inflation markets
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Figure 3: SA bond market, 30/06/2006

3.1. Inflation-linked bonds
3.1.1. Figure 3 shows the

size of the SA real and
nominal debt markets us-
ing data from the Bond Ex-
change of SA at 30 June
2006. Inflation-bond notion-
als have been rebased to this
date. The total outstanding
notional of R685.5 billion falls
well short of the R1098bn to-
tal assets of the SA retire-
ment industry at 31 December 2004 given in the latest Financial Services Board
report1. Inflation-linked bonds constitute 9% of the market by notional but
a higher proportion when bond issues are weighted by duration. The swaps
market generates further hedging capacity as discussed in section 6.

3.1.2. The benchmark nominal SA bonds, in which issuance and liquidity
is concentrated, are the R194 2008, R153 2010, R157 2015, R186 2026 and,
subsequent to the above snapshot, the R209 2036 issued on 18 July 2006. Since
government is able to issue longer than other (agency, bank and corporate)
borrowers, these benchmark bonds account for a greater proportion of the
total market weighted by duration than by outstanding notional.

3.1.3. The SA inflation-linked bonds are the R198 2008, R189 2013, R197
2023 and R202 2033, which collectively generate the real cashflows shown in fig-
ure 4. These bonds trade on real yield and are indexed to the CPI in a manner
consistent with the major inflation-linked bond markets, but with a 4-month
lag2. SA inflation-linked bonds cannot be stripped. The SA inflation-linked
bond market is incomplete along the dimensions of maturity and indexation
lag.

3.2. Inflation swaps.
3.2.1. The SA inflation-swaps market is less advanced than the larger G7

markets. While the market for inflation-swaps between dealers and invest-
ment institutions has been active for the last five years, the limited interbank
inflation-swap market restricts price transparency. The UK, US and Euro

1 South Africa Financial Services Board Annual Report, 2006.
2 The Bond Exchange of South Africa pricing methodology for inflation-linked bonds sets
out the conventions.
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Figure 4: Real cashflows for 2008, 2013, 2023 and 2033 SA inflation-linked
bonds, indexed to 30 June 2006

inflation markets have an active zero-coupon inflation-swap market where a
compounded fixed rate is swapped for compounded inflation. This allows a
breakeven curve to be bootstrapped to within 3 basis points out to 30 years,
and frequently out to 50 years. The Euro market has monthly inflation futures
contracts out to a year3. The SA interbank market is not actively brokered
and daily broker closing levels for inflation swaps are not yet available, as they
are in more developed markets. Trades are infrequent and usually structured
as a swap of compounded JIBAR for a compounded real rate. JIBAR is the
Johannesburg Interbank Agreed Rate, an average of bid and offer deposit rates
compiled by the South African Futures Exchange.

3.2.2. It is possible to swap the cashflows of an SA inflation-linked bond to
JIBAR but the bonds do not trade in conjunction with such a swap (termed
an asset-swap). Inflation-linked bonds frequently trade as asset-swaps in the
UK, US and Euro markets. The asset-swap levels of inflation-linked bonds
determine the relationship between the cost of hedging inflation in the cash and
swap markets. An active asset-swap market for inflation-linked bonds requires
an efficient reverse repo market, to allow dealers to sell short inflation-linked
bonds. SA National Treasury has decided recently to include inflation-bonds
in its weekly reverse repo activities.

3.2.3. A pension fund can, in principle, hedge the inflation and nominal
rates risk of its liabilities by transacting swaps with the required indexation
lags (Waisberg et al. 2004). The swap will generally have credit support in

3 ‘CME Eurozone HICP Futures’, Chicago Mercantile Exchange, 2005.
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the form of government bonds posted as security so credit risk is mitigated.
SA pension funds will have the form, but not the economic substance, of the
swap restricted by Regulation 28 (Waisberg et al. 2004). There were also tax
implications from the Tax on Retirement Funds Act (act 38 of 1996) until it
was recently repealed. Tax undermines the otherwise linear nature of a pension
liability and will be discussed further in the next chapter.

3.2.4. Inflation swap dealers generate inflation supply through swaps and
loans with corporates, for example the National Roads Agency paid R500m
of 3-year inflation to a domestic bank in April 2002. This provides banks
with hedging opportunities beyond the constraints of the government inflation-
linked bond market.

4. Market disequilibrium

4.0.1. Thomson (2002) and Van Bezooyen, Mehta & Smith (1999) address
several reasons that have been advanced for not applying the law of one price
to value inflation-linked pension liabilities with reference to inflation bonds,
disregarding background risks, including:

• the inflation-linked bond market is not in equilibrium due to an im-
balance between supply and demand;

• the size of the market is too small in relation to the size of the liabilities
to allow the liabilities to be completely hedged.

4.0.2. Figure 5 shows the movement in real yields for the SA inflation-
linked bonds from issue to 30 June 2006. The early years were characterised by
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Figure 5: SA inflation-linked bond real yields
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extreme illiquidity. Price discovery was limited to auction dates and restricted
auction sizes generally forced the real yield down. Investors were reluctant to
bid for bonds in the secondary market for fear this signal would drive real yields
down further. In the past three or so years it has become much more of a two-
way market as many investors have accumulated their benchmark positions
and have become free to sell inflation-linked bonds when judged expensive.
There is also more liquidity available to buy and sell inflation through the
swaps market and through bank inflation-linked bond placements. We now
have stronger evidence that supply and demand are in balance and the market
is in equilibrium.

4.0.3. Even if the market is not in equilibrium, the existence of banks that
are prepared to transact swaps which mimic the inflation and interest rates
elements of a given pension liability allows the LOOP to be invoked to place
bounds on the market price. As discussed in chapter 3, the market value of
liabilities relates to a balance between marginal supply and demand rather
than total supply and demand. This mid-market value will not be appropriate
if the intention is to transfer the liabilities to a third party. The offer market
value of a pension liability should then be based on the price which balances
demand consistent with the size of the liability with supply consistent with
the market impact of the hedging transaction. The limited pool of assets in
relation to total pension liabilities has no further relevance for the value of
the liability. Small rates-hedging deals are dealt in SA every month at market
levels.

5. Curve modelling

5.1. Valuations
Section 4 of chapter 3 discussed the margin to LIBOR at which the li-

abilities are to be discounted. The liability discount curve should be set as
a spread to the swap curve since a swap achieves a far better hedge of the
interest-rates and inflation characteristics of the liability. The margin to the
swap curve reflects the degree of security with which the liability is funded.
In markets with visible interest and inflation swap rates, such as the UK, the
nominal and breakeven curves can be simply bootstrapped from LIBOR and
zero coupon inflation swap market rates and no curve modelling is required.
However, in SA the absence of tight public inflation swap screens or marks from
dealers or brokers forces the use of nominal bond and implied bond breakeven
curves. The corresponding inflation swap curve can then be derived and the
appropriate margin to JIBAR applied before discounting.
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5.2. Rationale
5.2.1. Market instruments embody information about the prices of zero-

coupon bonds but the number of instruments traded in the market is typically
sparse compared with the range of future cashflow dates. This is particularly
true for real instruments where there is the additional dimension of the index-
ation lag. Let mi denote the market settlement price of market instrument
i = 1, . . . , I with maturity Ti and cashflow cij at future time j > 0. This de-
scribes an interest-rate market at time t as a system of I equations in n, the
number of future cashflow dates, unknowns:

mi =
∑Ti

j cij Pn(t, j) ; i = 1, . . . , I. (3)

The above set of equations relates to the nominal market where mi is the dirty
price in the case of a nominal bond and zero in the case of a nominal swap
traded at the market level. An analogous system applies for the real market
with the added complication of inflation indexation for a given index lag.

5.2.2. Curve models hypothesise that zero-coupon bond prices in between
tradables are smooth functions of term to maturity. A lack of smoothness
creates irregular forward-rates that are inefficient as in a perfect market these
can be exploited to earn expected positive profits with low risk. Cashflows
of arbitrary maturity can then be priced off the curve in a manner consistent
with market rates.

5.2.3. The functional form imposed on the system will often model forward-
rates or zero rates rather than bond prices, but these representations are equiv-
alent. Since I < n, there are infinitely many curves which satisfy the system.
Therefore the curve is constrained to positive forward-rates and additional ob-
jectives are set such as smooth forward-rates and a parsimonious functional
form. These objectives may be prioritised at the expense of the fit to mar-
ket rates so that resulting rates do not satisfy the system but the discrepancy
between fitted and market rates is minimal.

5.3. Nominal curves
5.3.1. Much has been written on curve modelling, including research by

Anderson et al. (1996), James & Webber (2000), Cairns (2004b). Stander
(2005) addresses curve modelling in SA. There are two dominant approaches:

(1) Parametric curve methods fit a smooth curve to forward-rates using
least squares, maximum likelihood or Bayesian methods. Examples
include Nelson & Siegel (1987) and the extension by Svensson (1995).
Cairns (1998) demonstrates how shifts between local and global min-
ima for the objective function can result in extreme jumps between
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curve shapes despite no change in bond yields. He proposes a method-
ology similar to Svensson but fixing certain parameters to minimise
the risk of such jumps.

(2) Spline methods fit piecewise polynomials between knot points on the
zero-coupon curve. Examples using cubic splines and a combined
goodness-of-fit and roughness objective are Fisher, Nychka & Zervos
(1995) and the variable roughness modification to this method by
Waggoner (1997). The Bond Exchange Actuarial Society of South
Africa (BEASSA) yield-curves use quartic splines and knots at the
maturities of the BEASSA All Bond Index SA consituents on which
the yield-curve is based4. Splines may be more stable across segments
than parametric curves but may display exaggerated kinks within
segments if knots are too close together. Anderson & Sleath (2001)
suggest the subjectivity of knot placement is mitigated if roughness
is penalised through the objective function, as in the methods above.

5.3.2. Figure 6 shows the published and perfect-fit BEASSA nominal zero-
coupon bond yield curves on 26 June 2006. The published curve is smoothed
using a roughness penalty in the objective function, creating the price discrep-
ancy between the two curves for the benchmark SA bonds shown in Table 1.
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Figure 6: SA zero-coupon nominal bond-curves, 26 June 2006

4 An introduction to the Bond Exchange Actuarial Society of South Africa zero coupon
bond yield curves, 2003.
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Table 1: Pricing discrepancy between BEASSA perfect-fit and
published nominal zero-coupon bond curves at 26 June 2006
RSA bond 2008 2010 2015 2026
yield discrepancy 0.05% -0.07% 0.01% -0.01%

5.3.3. The longest bond to which the above curves were fitted was the
R186 2026. Section 10 addresses how the SA nominal curve was subsequently
extended with the issue on 18 July 2006 of the R209 2036.

5.3.4. The emphasis of the methods surveyed above is curve smoothness
and stability in order to provide a good description of the market or assist
monetary policy. The trade-off between fidelity to market rates and curve
smoothness quantified through the objective function often results in an im-
perfect fit. Cairns (1998) highlights the risk of a catastrophic jump that may
occur in a curve fitted with a minimisation algorithm. Such a jump is caused by
the global minimum shifting between two or more local minima corresponding
to distinctly different curve shapes. The jump is considered to be catastrophic
when the magnitude of the move in some segment of the curve is far greater
than the move implied by the change in market rates alone.

5.3.5. Derivatives pricing will prioritise the fit to market data and maximise
smoothness subject to recovering market prices of the benchmark underlying
bonds. The pricing curve used by an interest-rate derivatives desk will recover
the prices of the instruments used to hedge the book since the derivatives
desk trades its hedge instruments with the market-making desk at market
levels. Similary, the market valuation of inflation derivatives embedded in
pension liabilities should be based on a curve that recovers the market price of
benchmark bonds. Smoothness should be viewed as a desirable but secondary
objective.

5.4. Real curves
5.4.1. Real yield-curves are more challenging to model than nominal curves:

• There are few real instruments to calibrate the curve. Inflation-linked
bonds are less liquid and have generally have wider bid–offer spreads
than their comparator nominal bonds of the same maturity.

• In the absence of a liquid inflation futures market, there is no market
real short-rate to anchor the short end of the curve. The notion of an
instantaneous short-rate is defensible in nominal interest-rate space
where the overnight deposit swap (the Rand Overnight Deposit Swap
or RODS market in SA) and repo markets provide one-day rates for
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the swap and bond curves respectively. However monthly inflation
surveys rule out an analogue in real interest-rate space.

• There are no true real instruments as the necessity of a publication lag
causes any inflation-linked instrument to yield a hybrid between a true
(i.e. perfectly indexed) real rate and a nominal rate. The true real
yield will not show a smooth progression due to inflation seasonality
(see section 7) and the hybrid real yield will show additional variability
from the published inflation index over the index lag.

5.4.2. Anderson & Sleath (2001) note the restricted Svensson (1995) real-
and nominal-curves used previously at the Bank of England (BOE) were not
reliable out to two years due to the sparseness of the curve and the curve form
did not provide sufficient curvature to capture expectations of rate movements
in the short-term. This suggests a parametric curve may be less suitable than
the Waggoner (1997) spline method later adopted by the BOE or the Fisher,
Nychka & Zervos (1995) spline method used by the US Federal reserve.

5.4.3. The current BOE method described in Anderson & Sleath (2001)
draws on the approach of Evans (1998) to find the true real yield-curve allowing
for the indexation lag. The lag for the original-design UK index-linked gilt is 8
months, but the UK DMO has also issued index-linked gilts with a new-design
based on the standard 3-month lag used in other inflation-linked bond markets.
Deflators are defined that use the inflation risk premium to translate between
inflation-indexed and nominal cashflows to estimate the real yield curve for any
lag. This approach is, however, designed for short-term inference of inflation
expectations for monetary policy and is of limited use for pricing the annual
uplift and forward start convexity features of inflation-linked pensions. These
features are a cause of incompleteness and are discussed further in section 13
where it is argued that a dynamic model as described in chapter 5 is a more
effective way to value these and non-linear effects.

5.5. Breakeven inflation curves
5.5.1. In section 2 it was argued that the optimal approach for pricing

the inflation derivatives embedded in pensions is to project the inflation index
using breakeven inflation curves and discount these projected cashflows using
nominal curves. There are three sources of market prices for building breakeven
inflation curves:

(1) The inflation-swaps market. The breakeven curve is bootstrapped
from market inflation swap rates.
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(2) The inflation-linked bond market. The swap curve is spread off the
breakeven curve. The inflation swap curve will likely be linked directly
to the price information from smaller and more frequent bond trades,
the spread adjusted from time to time to reflect distinct swap market
supply and demand dynamics.

(3) Inflation-linked bond asset-swap levels. The swap curve is derived
from inflation-linked bond prices and the margins to the swap curve
at which inflation-linked bonds trade as asset-swap packages. If asset-
swap investors are dominant, the price at which inflation-linked bonds
trade as asset-swap packages will show good stability and price trans-
parency and this price information may be used as the primary pricing
source for the breakeven curve.

5.5.2. In SA, the nascent and opaque inflation swaps market rules out the
first and third approaches. The absence of a basis between swap and bond
breakevens, discussed in section 6, implies setting the swap curve equal to the
bond breakeven curve. To be used for derivatives pricing, the inflation swap
curve must incorporate seasonality and an inflation forecast or futures strip,
the topics of sections 7 and 8.

6. The bond-swap inflation basis

6.0.1. The inflation-linked bond and swap markets may imply significantly
different levels for the forward inflation index. This is termed the basis between
the inflation-linked bond and swap markets. The basis can be quantified for a
particular bond using its swap spread. The swap spread for an inflation-linked
bond is the spread to the swap curve required to discount the outstanding
bond cashflows to equal the current bond price. An inflation-linked bond swap
spread can be decomposed as

iss = nss + b

where iss is the inflation-linked bond swap spread, nss is the swap spread on
a nominal bond with equivalent indexed cashflows and b is the inflation-linked
bond-swap basis.

6.0.2. A long position in a government bond that is financed in the repo
market and receiving the fixed cashflows on an interest-rate swap are essentially
the same transaction, so the difference in the bond and swap rates should
reflect the difference between the bond’s average future repo rate and the
swap floating rate (termed LIBOR without loss of generality). This average
future repo rate will generally be close to the general collateral (GC) repo
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rate generally available on government bonds used as collateral for the repo
transaction. However, there is the potential for an occasional windfall if the
bond trades special on repo (when the repo rate is below the GC repo rate).

6.0.3. Other factors relating to the balance between supply and demand
for swaps and government bonds may be more significant than this GC LI-
BOR spread. Cortes (2003) and Mussche (2002) identify the slope and level
of the curve, equity-market-implied volatilities and the budget deficit among
such factors. Swap spreads also reflect systemic banking sector credit risk
as the LIBOR fixing leg is based on a poll of interbank deposit rates. This
should not be confused with the counterparty credit risk of the swap itself,
which is normally minimal since the mark-to-market value of the swap is fully
collateralised.

6.0.4. The inflation-linked bond-swap basis will reflect the balance between
supply and demand for inflation in the cash and swap markets. Nascent mar-
kets may be unbalanced, with government bonds the sole source of supply.
In time, investors buying inflation-linked bonds on asset-swap and issuers
of swapped inflation debt emerge, helping to balance the market. SA infla-
tion swaps are at present priced to within the swap bid–offer margin of bond
breakevens so there is no significant inflation-linked bond-swap basis. This
implies that inflation-linked bond-swap spreads will be similar to swap spreads
for nominal bonds with the same (indexed) cashflow profile. Figure 7 plots
swap spreads for SA inflation and nominal bonds on 26 June 2006 against
duration. The difference between inflation and nominal swap spreads is attrib-
utable to the different cashflow profiles, which duration standardises for only
in a crude way. SA inflation-linked bonds can typically be financed at the GC
repo rate which has been close to JIBAR, so there is no immediate cost to
hedging short inflation swap positions with bonds. However, there is no SA
inflation-linked bond asset-swap market and no resulting sellers of inflation to
balance demand for inflation swaps. Dealers may begin to price an inflation-
linked bond-swap basis into swaps as there is a limit to the amount of basis
risk they can warehouse.

6.0.5. It should be noted that even an active inflation-linked bond asset-
swap market will not in itself force swap breakevens in line with bond breakevens.
Inflation-linked bonds are not fungible with nominal bonds so an asset-swap
investor will not necessarily require the same swap spread on real and nominal
bonds. It may be that inflation-linked bonds are expected to trade special on
repo less frequently than nominal bonds, implying a less negative real swap
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spread. Conversely, since a sovereign can debase nominal but not inflation-
linked debt, the inflation-linked bond asset-swap spread may be more negative
than for nominal bonds. In both the US and UK markets inflation-linked bond
asset-swap spreads have at times traded over 5 basis points away from nominal
bond asset-swap spreads for similar durations5.
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Figure 7: SA nominal and inflation-linked bond-swap spreads (continuously
compounded rates) assuming no inflation-linked bond-swap basis, 26 June 2006

7. Inflation seasonality

7.1. Sources of seasonality
7.1.1. Inflation, like many economic time series, has a regular seasonality

pattern. In South Africa this CPI index seasonality pattern stems from:

• irregular survey dates for certain basket items (e.g. education costs
are surveyed annually in March); and

• seasonal price variations of certain basket items (e.g. food).

7.1.2. In many countries the statistical agency responsible for producing
the index for consumer prices release publishes figures both with and without
seasonal adjustment. From March 2005 Statistics South Africa stopped pro-
ducing a seasonally adjusted CPI due to irregular behaviour of the series but
continues to research whether it can “produce a reliable series for groups, such
as food, which do exhibit seasonality”6. This suggests a bottom–up approach

5 Barclays Capital Research, Global Inflation-Linked Monthly, June 2006.
6 Statistics South Africa March 2005 Inflation Release, P0141.1.
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where seasonality is separately modeled for each CPI basket group and then
combined, although this is not addressed in the literature.

7.2. Seasonality modelling
7.2.1. There are two distinct approaches to modelling seasonality:

(1) stochastic seasonality included with a stochastic inflation and interest-
rates model; and

(2) deterministic seasonality adjustments to forward inflation (which may
be stochastic).

7.2.2. The impact of seasonality on the present value of an inflation-linked
liability, relative to interest-rate risk factors, depends on:

• the term of the liability, longer liabilities being less sensitive;
• the spread of cashflows, an annuity-style liability being less sensitive

than a bullet liability; and
• whether indexation applies from the current date or some future date,

since forward-indexed liabilities are exposed to seasonality on both the
start and end of indexation.

Liabilities in respect of inflation-linked DB pensions in payment are therefore
fairly insensitive to the seasonality assumption. Furthermore, in view of the
parameter risk of the seasonality factors estimated below, it may be spurious
to model seasonality with a high degree sophistication. Chriqui & Tzucker
dismiss stochastic seasonality as “complicated and redundant” in general7.

7.2.3. Deterministic models for CPI seasonality use econometric and har-
monic analysis theory to decompose the series into an underlying trend and
monthly seasonality factors. Two alternative approaches commonly proposed
(Belgrade & Benhamou 2004a) are:

(1) parametric methods, such as the linear regression; and
(2) nonparametric methods, such as the X-11 and X-12 methodologies

developed by the US Census Bureau8 based on moving average filters.

7.2.4. The X-11 methodology is not suitable for South African seasonality
since the second stage uses a moving average to reduce noise in the seasonality
factors under the assumption of a smooth seasonality profile over the year. This
is inappropriate for the periodic survey dates effect. The 13-period moving
average of the preliminary stage of standard X-11 may not precisely isolate
the underlying trend of the volatile SA CPI series.

7 ‘Advanced Inflation Derivatives’, Presentation, Barclays Capital Global Annual Inflation
Conference, Miami(2006)
8 ‘X-12-ARIMA Reference Manual, Version 0.2’, US Census Bureau, Washington, DC, 2002
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7.2.5. Figure 8 shows the X-11 trend, the linear regression trend described
below and year-on-year CPIx (the SA CPI excluding interest rates). CPIx
is a better basis than CPI for stripping out seasonality since it excludes the
confounding effect of interest rates.
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Figure 8: Underlying SA CPIx trend excluding seasonality produced using
X-11 preliminary stage and linear regression on the month-on-month trend

7.2.6. A linear regression seasonality model may be defined as:

ln
( Qt

Q0

)
= mt + st′ + εt (4)

where t is time in years at discrete monthly intervals, t = 1
12 , 2

12 , . . . ;

t′ = int
(
12 ∗ [

t
12 − int( t

12)
]
+ 1

)
is the month of time t; t′ = 1, . . . , 12;

mt is the underlying linear cumulative inflation trend to time t; t > 0;

st′ is the month t′ seasonality factor, such that
∑12

i=1 si = 0; and

εt is a sequence of i.i.d. normal error terms.

7.2.7. Equation 4 has a multiplicative seasonality factor (additive in the log
of the index). This is suitable for the SA CPI due to the periodic survey dates
for some basket items. Table 2 shows estimates of month-on-month seasonality
factors, st, for SA inflation based on June 2000 to June 2006 for SA. A 6-
month piecewise linear mt function was used to account for the volatility of
the inflation series.
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

s t 0.58% –0.19% 0.43% 0.04% –0.22% –0.33% 0.30% –0.23% –0.04% –0.04% –0.11% –0.19%

Table 2: Estimated SA CPI seasonality factors, June 2000 to June 2006

7.2.8. Plots of the month to month seasonality pattern for each year from
2001 to 2005 (i.e. the deviation ln(Qt/Qt−1) − (mt−mt−1) from the linear
regression trend) are shown in figure 9. Noise masks the seasonality pattern.
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Figure 9: Empirical seasonality profiles (deviation against trend in 4)

7.2.9. The parametric approach using regression has the advantage that
confidence intervals can be produced for seasonality factor estimates. The es-
timates and 90% confidence intervals are shown in figure 10. These confidence
intervals only show the parameter risk. There is additional risk that the choice
of seasonality model may be incorrect. Only the March and May factors are
(just) significant at the 90% level. Seasonality model risk is high, but seasonal-
ity may be considered significant enough to warrant inclusion in the valuation.
Based on the December seasonality factor to January base of 0.994 in table
2, valuing a pension with January inflation increases as December increases
is expected to result in about 5 real yield basis points undervaluation for the
60-year-old male specimen annuity of Appendix A.

7.3. Materiality
7.3.1. While seasonality may have a material effect on pension valuation,

the variability within each year of the CPI from the seasonality process risk
identified above is spread across the future real cashflows in a typical liability
profile. Figure 11 shows the risk from variation in seasonality for two different
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Figure 10: Estimated monthly seasonality factors and confidence intervals
for SA CPI using linear regression

liabilities under the hypothesis of the linear regression model fitted above. The
two liabilities compared are a 15-year zero-coupon inflation liability with full
indexation starting in 12 months and no mortality risk and the 60-year-old
male specimen real annuity of Appendix A with full indexation commencing
at the valuation date. The risk is defined as the difference in PV (discounting
at SA real rates for 26 June 2006) between the liability indexed to January
and matching inflation assets with the same cashflow years but indexed to July.
Standard deviations of the present value are 0.14% for the real annuity and
0.78% for the forward starting zero-coupon inflation liability.

7.3.2. Seasonality risk only affects the distribution between the months of
the annual inflation increase, so if seasonality deviations are independent they
are likely to offset. Note that this assumption is unlikely to be true in practice
as there may be a systematic change in seasonality pattern (for example due
to change in survey methodology). Forward stating liabilities are exposed to
seasonality at both the indexation start and end dates. Seasonality risk for the
typical pension liability profile hedged with assets indexed to inflation up to a
year from the liability indexation dates will be limited and may be assumed to
be independent of other risks.
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Figure 11: Hedging risk from seasonal variation in inflation for zero-coupon
inflation liability with forward-starting indexation versus specimen real annuity
of Appendix A under the hypotheses of the regression model 4 and seasonality
factors of Table 2

8. Inflation forecasts

8.1. Flow seasonality
The market-implied forward inflation index at each future inflation in-

dexation date will incorporate index seasonality patterns and possibly also
flow seasonality, defined as price distortions from an imbalance of supply
and demand for inflation on certain future dates (Belgrade, Benhamou &
Koehler 2005). In the Euro Harmonised Index of Consumer Prices (HICP)
inflation market where substantial short dated inflation exposures (or ”reset
risks”) have accumulated, flow seasonality can be extracted from inflation fu-
tures and the spreads between inflation swaps maturing on different monthly
date points. In South Africa the longer-dated nature of the market reduces
the significance of flow seasonality. The limited number of SA inflation-linked
bonds concentrates supply in certain indexation months but there is insufficient
market information to calibrate seasonality factors.

8.2. Predictability of inflation
8.2.1. Ang, Bekaert & Wei (2005) found that inflation forecasts from sur-

veys of economists were better out-of-sample predictors of US CPI than the
models based on the nominal curve and economic or ARIMA models of the
inflation time series. Elder et al. (2005) find strong evidence that the BOE
RPIx (now CPI) fan-chart forecast is more accurate than the alternative of a
regression on previous inflation and various economic indicators. In SA, Aron
& Muellbauer (2006) find the South African Reserve Bank (SARB) one-year
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absolute CPIx forecast errors to published inflation since targeting have aver-
aged 1.3%. This is lower than the 2.3% standard deviation of the CPIx series
itself.

8.2.2. So, it appears incorporation of forecast information into the inflation
swap curve for the 12 months beyond the last published inflation figure can
reduce swap pricing risk in the absence of a market for inflation-linked bonds or
futures maturing in the next year. The breakeven curve is then anchored at the
longest inflation forecast and extended to recover inflation-linked bond prices.
Forecasts normally include the seasonality effect, implicitly if not explicitly, so
the seasonality model is only applied beyond the forecast. The inflation swap
curve results from applying the required inflation swap spread, if any, to the
bond breakeven curve.

8.2.3. Forecasts introduce subjectivity and it is fair to question whether
they are an improvement over the alternative of anchoring the breakeven curve
at the latest published inflation figure. It is often the case that inflation-basket
price changes are likely following recent movements in currency, oil prices,
crop estimates, etc. Competitive pressures delay these price changes and their
impact on the CPI but the eventual effect can be forecast with a degree of
certainty that justifies using the forecast. The challenge of incorporating an
inflation forecast in the curve is that there will be times, such as just after an
inflation release, when updated forecasts are required but not available since it
takes time to prepare a fresh forecast. However, the value of pension liabilities
is generally calculated using curves generated from close of business market
levels rather than at data-sensitive times.

8.3. Materiality
The inflation forecast will not have a material effect on the valuation of

a pension annuity where a small proportion of future cashflows is due in the
next year. For the 60-year-old male male specimen annuity of Appendix A,
the change in present value from increasing one-year forward inflation by 1%
is equivalent to the change in present value from a decrease of 0.6 basis points
in the valuation rate for the fully indexed liability. The effect of the forecast
on the curve shape beyond one-year may be more significant for the valuation,
especially if a parametric curve is employed.

9. Inflation risk premium

9.1. Fisher’s relationship
9.1.1. Long before the first inflation-linked bond, Fisher (1930) theorised

that the yield on a nominal bond, n, can be decomposed into expected inflation,
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i, to compensate loss of purchasing power, an inflation risk premium, p, to
reflect inflation uncertainty, and the real yield, r:

(1 + n) = (1 + r)(1 + i)(1 + p). (5)

This can be extended to include premia in respect of, for example, liquidity
and credit differentials. For small r and i, (5) can be approximated as

n = r + i + p. (6)

9.1.2. While Fisher’s relationship may seem a promising basis for building
a breakeven inflation curve, the inflation risk premium is too nebulous to be
useful. Section 8.2 cited evidence that inflation can be forecast with reasonable
accuracy over a short horizon. This suggests that the inflation risk premium
should be insignificant over the short term where forecasts are available, and
not well defined beyond this. Surveys of long-term expectations that relate
to consumers and employers are of more relevance to monetary policy than to
derivatives pricing, while surveys of market forecasters are likely to produce
expectations close to breakeven inflation for inflation bonds.

9.1.3. The inflation target is the only objective measure beyond the max-
imum term of forecasts, usually two years. The SA inflation target range is
less helpful as it must be reduced to a point estimate using the mid-point or
some other assumption. The inflation risk premium calculated in this way is
very unstable and does not consistently show the characteristics expected in-
tuitively, such as increasing monotonically with term and positive correlation
with inflation volatility. Evidence from academic studies suggests the inflation
risk premium varies with time, see for example the UK study of Evans (2003).

9.1.4. Consequently i and p may be combined into a breakeven inflation
term, that we denote b. This is the discrete-time version of equation (1):

n = r + b. (7)

The quantity b can be interpreted as a form of risk-adjusted inflation expecta-
tion and is usually modelled directly.

10. Curve extension

10.1. Necessity of extending valuation curves
10.1.1. Pension liabilities may extend well beyond the longest nominal and

inflation-linked bonds in the market. In South Africa the longest nominal SA
bond in the market at 26 June 2006 was the R186 maturing in December 2026,
although swaps were available to 30 year term and government issued its R209
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March 2036 bond on 18 July 2006. The longest inflation-linked bond is the
R202 December 2033.

10.2. Yield-curve theory
10.2.1. Theories proposed to date for the shape of the yield-curve can at

best explain only certain aspects of its behaviour (Hull 2003):

• Expectations theory holds that curve forward-rates equal the mar-
ket’s expectation of future spot rates. However, the price of a bond
or swap is a weighted sum of zero-prices, which are a convex func-
tion of forward-rates. Hence, Jensen’s inequality implies a positive
convexity adjustment must be added to market forward-rates to esti-
mate expected future spot rates. Expectations theory may therefore
be considered to be consistent with inverted curves if forward rates
are expected to be constant. This conflicts with the upward slope
normally exhibited by real and nominal curves.

• Liquidity preference theory accounts for the upward curve slope by the
presence of a risk premium. If the price volatility of bonds or swaps
increases by term to maturity, this risk premium increases with matu-
rity and an upward sloping curve results. However, in some markets
the dominant investors in long-maturity bonds invest to match long-
maturity liabilities and there may be less cause for a risk premium.

• According to the market segmentation theory, rates in each maturity
band of the curve reflect the balance between investors and issuers in
this band. The behaviour in each part of the curve could be somewhat
distinct and a variety of curve shapes may result. In SA, the demand
for short-maturity bonds by banks to meet liquid assets requirements
may reduce the yields on these short-maturity bonds.

10.2.2. A combination of these theories can explain the inversion of long
real and nominal rates seen in liability-driven markets such as the UK and SA,
but such theories cannot necessarily be used to extrapolate the behaviour of
the curve beyond the longest debt instruments. This is because it is unlikely
market participants will have formed expectations about interest rates this
far into the future and there will be a high degree of uncertainty about very
long-term liabilities.

10.3. Convexity
10.3.1. Research by Brown & Schaefer (2000) and Ilmanen & Byrne (2003)

has shown that convexity has a significant effect on the shape of the US Dollar,
Euro and Sterling curves, but the scale of the convexity adjustment is very
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sensitive to assumptions about the behaviour of the long end of the curve
where there is limited implied volatility information from the options market.
The convexity adjustment for the breakeven curve has the additional dimension
of complexity of depending on the interaction between real and nominal rates.
Gurkaynak et al. (2006) attribute the second hump in the long end of their
parametric US Treasury curve to convexity.
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Figure 12: Stylised spot (solid) and
forward (dashed) curves showing vari-
ous extrapolation methods

10.3.2. Figure 12 shows three ap-
proaches to curve extension. The first
method in panel (a) assumes the spot
curve remains constant after the 30-year
maturity of the longest traded instru-
ment. This rather naive method pro-
duces a discontinuity in forward-rates.

10.3.3. An alternative approach is
to extend the curve with a constant
forward-rate as shown in panel (b). This
ensures a continuous forward-rate. If the
curve is built with splines, an analogous
method is to assume the forward-rate is
constant at the longest curve forward-
rate, the approach used in the projection
of the BEASSA zero-coupon yield curve.

10.3.4. Panel (c) shows a stylised ex-
ample of the extrapolation of a paramet-
ric forward-rate curve of Svensson (1995)
form.

10.3.5. Since there is limited market
data to define the long end, the longest
forward-rate projected using these meth-
ods may be unstable. This is particularly
true for parametric curves, although giv-
ing smoothness a higher priority in the
objective function will mitigate instabil-
ity. The prices of coupon strips can be used to give better definition to the
long end, but Sack (2000) observes that extrapolation of the US STRIPS (Sep-
arate Trading of Registered Interest and Principal of Securities) curve does not
produce a stable long forward-rate. In less liquid strips markets than the US
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there may not be sufficient liquidity to give reliable prices, e.g. the UK DMO
(2000) do not include strips in their debt management curve.

10.3.6. The instability of the long forward-rates resulting from these curve
extrapolation-approaches causes convexity gains or losses from revaluation of
very long-dated liabilities. Since convexity increases dramatically with term to
maturity, these losses can be high in relation to the present value of liabilities.

10.3.7. For method (a) the volatility of zero rates beyond the curve will be
set equal to the volatility of the longest zero-coupon rate on the curve. For
method (b) the volatility of long forward-rates will equal that of the longest
point on the curve. The volatility of long forward-rates in method (c) is in-
determinate. Only by coincidence will these methods probably accord with a
declining term structure of market-implied forward volatility.

10.3.8. The forward curve extension should ideally account for the convex-
ity effect. This will decrease forward-rates in the extended curve and increase
the present value of liabilities with higher convexity than hedge assets available
in the market. The correct convexity adjustment will balance convexity losses
on rehedging duration with the unwinding of this valuation margin. However,
the convexity impact cannot be purged easily from the extended forward curve
as the convexity adjustment depends on the process for future forward-rates,
as discussed in the next chapter. Even if the process is correctly specified and
calibrated to market implied-volatilities, the volatility of the future evolution
of the curve will likely deviate from implied volatility and convexity gains or
losses will result. Here we can draw an analogy with delta hedging a short
option position (Smith 2001b).

10.4. The Dybvig Ingersoll Ross Theorem (DIR)
10.4.1. In a perfect market, Dybvig et al. (1996) showed that the convexity

of the limiting-term spot rate, limT→∞R(t, T ), will produce arbitrage oppor-
tunities unless this limiting rate (which we term the “long rate”) is constrained
to be nondecreasing with time t.

10.4.2. McCulloch (2000) noted that without the perfect market assump-
tion, transaction costs will render the long spot rate undefined.

10.4.3. Empirical evidence has at times appeared to conflict with the DIR
theory. McCulloch & Kochin (1998) estimate long real and nominal forward-
rates for the US Treasury market using their spline-based method and conclude
that “No evidence is found that the estimated forward-rate beyond 30 years is
nondecreasing over time, or even has lessened variance.” Cairns (2004b) shows
that the long forward-rate for the UK market estimated using the Cairns (1998)
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restricted exponential curve has periodically decreased, although he notes that
parametric estimates of long forward-rates may not be statistically significant.

10.4.4. Smith (2001b) argues that the long-rate should be fixed when pric-
ing long dated liabilities, in accordance with the DIR result and to ensure a
stable curve that minimises spurious convexity-hedging profits and losses.

10.4.5. Smith & Wilson (2000) describe a method for generating a spot
curve with fixed long forward-rate and mean reversion parameters that max-
imises forward-curve smoothness and flatness (in the sense of the curve lying
close to the long forward rate). The curve has a perfect fit to zero-coupon
bond prices.

10.5. New bond issues
10.5.1. Swaps trade with constant maturity, while the term to maturity of

bonds declines each day. A perfect-fit bond yield curve can only be extended
when a new, longest maturity, bond is issued. Swap market liquidity will
depend on bond-market liquidity and, in the absence of new debt issues, the
swap curve will also gradually shorten.

10.5.2. Ideally the shape of the valuation curve will anticipate perfectly the
effect of extension from new bond issues (Smith 2001b). If the new bond price
in relation to existing bonds and swaps is that implied by the existing curve,
there will be no hedge losses from revaluation at the new perfect-fit curve.

10.5.3. Valuation metrics the market uses to price a new bond issue include:

(1) nominal curve (nominal bond) or real curve (inflation-linked bond);
(2) asset-swap curve; and
(3) breakeven inflation curve.

10.5.4. Different types of investor will use different valuation metrics, e.g.
a bond fund manager benchmarked against the market bond index may over-
weight a bond if it is cheap on the curve while an asset-swap investor will
judge the new bond on the basis of its swap spread. Issuers will have their
own metrics to weigh financing cost against any mismatch between balance
sheet assets and liabilities. The valuation metric dominant in the long end of
the curve may change with time, but using the predominant metric to extend
the curve will limit hedge losses after new long maturity debt issues. There is
a strong theoretical case to fix the limiting long forward-rate and incorporate
convexity considerations into the curve extension, but the acid test of the curve
extension methodology is whether it correctly anticipates the price of new is-
sues. We briefly examine the SA 30-year nominal and UK 50-year index-linked
gilt bond issues in the last year.
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10.5.5. The 18 July 2006 launch of the R209 2036 bond extended the SA
nominal curve by 10 years. Bank research, e.g. RMB9, suggested fair value be
calculated off the bond yield curve extended using constant forwards to give
a yield 15 basis points below the 2026 bond. Projecting the breakeven curve
and applying this to the 2033 inflation bond real yield gave a similar level, but
projecting the asset-swap spread would give a nominal yield around 7 basis
points lower than this. The bond was issued at a nominal yield 16 basis points
below the 2026 yield, in line with the nominal curve projection. This was very
close to the 14.5 basis points fair value that would be implied by the smoothed
published BEASSA bond zero-coupon yield curve projected to 30 years.

10.5.6. The 22 September 2005 issue by syndication of the UK gilt 2055 ex-
tended the real curve by nearly 20 years. Bank research, such as that of RBS10

and UBS11, identified swap market interest as potentially decisive since there
was a significant bond-swap difference between inflation bond breakevens and
inflation swap rates at the time. This resulted from strong interest in receiving
long inflation swaps, counterbalanced by interest in asset-swap investors in buy-
ing long-dated index-linked gilts on asset-swap at attractive levels compared
with nominal gilts. The bond was issued at a real rate below and breakeven
inflation rate above that implied by the real and nominal curves and broadly
in line with the projected asset-swap spread.

10.5.7. The above experiences confirmed the importance of identifying the
dominant valuation metric when projecting the curve. Investor perceptions
may be framed by any valuations implied by an industry-accepted curve, such
as in SA. Researchers identified risk from projection off the longest bond, since
there may be a realignment in value between this bond and the new issue
as investors substitute holdings. Finally, despite the real yield at issue being
lower than the curve extension suggested, convexity was not rewarded in the
pricing of the UK 50y bond to the extent of the fair value convexity adjustment
identified by researchers. This was no surprise as convexity does not appear
to be fully priced into the long end of the nominal curve in this and similar
developed markets.

10.6. Materiality
10.6.1. Figure 13 shows SA nominal, real and inflation curves for 26 June

2006. The nominal curve shown is the BEASSA perfect-fit curve. The breakeven

9 ‘Interest Rate Weekly - Estimation of Issue Price for the new SA long bond (2036), RMB
Bond Analytics Research, 14 July 2006
10 ‘UK 50-Year Index-Linked Gilt Launch Preview’, RBS Markets Rates Strategy, 2005
11 ‘UBS Gilt Strategy Perspectives’, UBS Research, 13 September 2005
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curve uses the 4-month lag for SA inflation-linked bonds, the most recent one-
year SARB CPI forecast in the short end and piecewise linear forwards between
bond maturity points. Seasonality has been superimposed using the factors in
Table 2, giving a jagged appearance to the curve, which becomes less promi-
nent relative to the rate as maturities increase. The real curve is the 4-month
lag curve derived from the nominal and breakeven curves.

10.6.2. A piecewise linear forward curve is in effect a perfect-fit boot-
strapped curve that assumes linearly interpolated forward rates. This curve is
a benchmark against which smoother perfect-fit curves can be judged. While
the forward breakeven curve decreases sharply between the 2023 and 2033
inflation-linked bond maturity points, it is unlikely any other perfect-fit curve
will be appreciably more smooth than this as the annual forward-rates to 2023
are smooth for this piecewise linear forward curve. The sharp decrease is
the result of the 2033 inflation-linked bond being very cheap on the real and
breakeven curves, although the extent of this discrepancy has been decreasing.
Pension annuity liabilities will not be very sensitive to the precise curve shape
of a perfect fit curve because undervaluation of one cashflow from a high curve
point will most likely be counteracted by overvaluation of some other cashflow
from a lower curve point required to recover dependent bond prices.
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Figure 13: SA nominal, breakeven and implied 4-month lag real bond curves,
26 June 2006

10.6.3. The nominal and real curves have been extended using a constant
forward-rate at the longest fitted curve point. This extension of the nominal
curve was subsequently vindicated by the 2036 nominal bond issue in July
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2006. Using these curves, 2.5% of the present value of the fully indexed spec-
imen pension annuity of appendix A is in respect of cashflows with maturity
greater than 30 years. The curve-extension assumptions are therefore of mi-
nor significance. Increasing the forward breakeven rate after 30 years by 1%
from 2.65% to 3.65% (or equivalently decreasing the nominal curve forward
rate by 1%) is equivalent to a 0.9 basis points decrease in the valuation rate.
The assumptions would be more significant for a longer-term liability, such as
a joint-and-survivor pension deferred for many years until retirement. Curve
extension for such long liabilities should be convexity-neutral and use a fixed
long rate, e.g. the method of Smith & Wilson (2000).

11. Hedge risk for linear liabilities

11.1. Risk measures
11.1.1. In this section the hedge instruments for a linear pension liabil-

ity are identified, under simple assumptions about the evolution of breakeven
and nominal rates over time. Let V denote the value of the portfolio of
liabilities and assets held by the fund. The liabilities are projected with
breakeven inflation and mortality, without allowance for background risks. Let
y = [y1, . . . , ym] denote the curve used to value the assets and liabilities, where
the yi is the spot, forward or market rate to maturity i. Here m is the longest
maturity of the liability cashflows. Over time step ∆t, the change in nominal
value of the portfolio as a result of time and changes in nominal rates, ∆V ,
has the Taylor expansion:

∆V =
∂V

∂t
∆t +

m∑

i=1

∂V

∂yi
∆yi + 1

2

m∑

i=1

m∑

j=1

∂2V

∂yi∂yj
∆yi ∆yj + . . . (8)

There are no stochastic differential terms as we assume the evolution of the
curve is deterministic. We ignore higher order terms in ∆y as they are likely to
be small for small ∆t. We also ignore cross terms in ∆y and ∆t but note that
the risk measures below will change in time unless the portfolio is well hedged.
The change in nominal value of the portfolio can then be approximated using
nominal risk measures Θn, ∆n and Γn (the “Greeks”) as

∆V ≈ Θn∆t +
m∑

i=1

∆n
i ∆yi + 1

2

m∑

i=1

m∑

j=1

Γn
ij ∆yi ∆yj

where Θn =
∂V

∂t
, ∆n

i =
∂V

∂yi
and Γn

ij =
∂2V

∂yi∂yj
. (9)
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11.1.2. The portfolio assets may be physical, derivative or both. Our ap-
proach is to value the portfolio at a margin to the swap curve, as discussed
above in section 5.1. For consistent hedge risk measurement of pension liabili-
ties and bond holdings in the portfolio, bonds should be valued using the bond
curve which is defined in terms of the swap curve and an additional variable
for the bond-swap basis.

11.1.3. Inflation-linked liabilities are also exposed to the risk of changes in
the forward inflation indices Q = [Q1, . . . , Qk] used to index up the portfolio
cashflows up from a common base index Q0. Here k is the number of forward
CPI dates used to index the portfolio assets and liabilities. If these additional
risks are, for now, assumed orthogonal to nominal rate risks:

∆V ≈ Θn∆t +
m∑

i=1

∆n
i ∆yi + 1

2

m∑

i=1

m∑

j=1

Γn
ij ∆yi ∆yj + ΘQ∆t +

k∑

i=1

∆Q
i ∆Qi

where Θn =
∂V

∂t
and ∆Q

i =
∂V

∂Qi
. (10)

Since risk is linear with respect to the forward inflation indices, there is no
ΓQ convexity term. However, if risk is measured with respect to a breakeven
inflation spot rate curve, b with bi = ln(Qi/Q0)

i , then breakeven convexity would
require a gamma term.

11.2. Theta
Theta is the change in nominal value of the portfolio for no change in rates.

Theta is deterministic, so is not strictly a risk measure. The condition of no
change in rates is ambiguous without specifying rates as forward or spot rates
(Flavell 2002). As portfolio assets and liabilities can be financed and cashflows
reinvested at the forward curve rates over ∆t, the assumption that forward-
rates between each fixed future maturity date are unchanged is consistent with
no arbitrage, since no profit or loss is expected to emerge (we ignore the profit
or loss on decay of convexity profit or loss discussed in section 10.3.8). This is
true even if leveraged positions are held, such as swaps or bonds financed on
repo. If the portfolio is perfectly hedged theta will be zero regardless of which
of the two calculations is used.

11.3. Delta and duration
11.3.1. If there is no delta risk with respect to nominal rates and inflation

at any cashflow date, the portfolio is hedged with respect to nominal rate risk.
This is the strategy of ‘dedication’ in actuarial practice and ‘defeasance’ in
financial theory.



11. HEDGE RISK FOR LINEAR LIABILITIES 49

11.3.2. Flavell (2002) shows how delta risk at each curve grid-point can be
calculated with respect to spot, forward or market rates:

• Spot rate delta at grid-point i results from moving the spot curve
at this point up by a small rate move (or ‘bump’). That is, the
sensitivity to the spot rate for grid-point i corresponding to maturity
Ti, S(0, Ti), is calculated by increasing this spot rate to S(0, Ti) +
0.01% and revaluing the liability.

• Delta with respect to the forward-rate between i−1 and i is found
by bumping up the forward curve between these points. For forward-
rates after curve grid-point i to remain constant spot rates after i

must be adjusted. Consider the forward-rate between the maturities
Ti−1 and Ti corresponding to the grid-points (i−1) and i respectively.
If this forward-rate is denoted by F (Ti−1, Ti) then:

F (Ti−1, Ti) =
[ (

1 + S(0, Ti)
)Ti

(
1 + S(0, Ti−1)

)Ti−1

]1/(Ti−Ti−1)

− 1

A bump in the forward-rate curve is therefore consistent with a dif-
ferent movement in the spot curve than a spot curve bump. However,
the sum of all sensitivities with respect to forward-rate bumps and
spot rate bumps across all grid-points will be approximately equal.

• The delta risk with respect to a market rate for an instument with
maturity i used to build a valuation curve gives the hedge position
holding for that instrument as a useful by-product. This delta is found
by adjusting the instrument price up by an amount corresponding to
a 0.01% increase in the market rate and rebuilding the curve to re-
calibrate to the adjusted price. The change in market rate will imply
a certain change in spot and forward-rates, dictated by the form of
the (perfect fit) curve used. Curve methodologies which give high
priority to smoothness will tend to dissipate the curve bump as far as
possible to retain smooth forwards. A sparsely calibrated paramet-
ric curve with a complex form may respond to up and down bumps
with unpredictable, and possibly asymmetric, forward-rate changes
in distant segments of the curve. Consider a curve built from swap
rates. Denote the swap rate for maturity Ti by S(0, Ti). Flavell (2002)
shows that the swap rate can be expressed in terms of the spot rates,
ignoring daycount adjustments, as:

S(0, Ti) =
1− Pn(0, Ti)∑i

k=1 Pn(0, Tk)
.
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Since
Pn(0, Ti) = exp(−TiS(0, Ti)),

a bump in the swap rate S(0, Ti) is not equivalent to a bump to the
spot rate S(0, Ti). Again, the sum of sensitivities to all spot and
market rates for all grid-points will be approximately equal.

11.3.3. These three methods will give very similar delta sensitivities if the
bump is small enough for convexity effects to be negligible. To reduce the
convexity or gamma effect, a bump of less than than one basis point may
be used and the sensitivities calculated by bumping rates up and down and
averaging the effects. The number of grid-points may be reduced by mapping
cashflows to buckets using an algorithm to preserve present value and risk
characteristics or the portfolio may be expressed in terms of equivalent holdings
of key hedge instruments (e.g. 2, 5, 10, 15, 20 and 30-year swaps). This is
helpful for dynamic risk management of complex derivative portfolios where
risk may change dramatically across maturities, but less critical for a regular
series of cashflows (such as a pension liability with indexation accruing from
valuation date) as the risk profile of the hedge portfolio will be more regular.

11.3.4. Delta risk may be summed across grid-points to give a total delta,
∆n, often expressed for a one basis point move in rates and termed the ‘pvbp’or
‘dv01’. If the curve is expressed in continuously compounded rates, an asset
A with delta ∆n(A) and value V A has duration

−∆n(A)
V A

. (11)

Duration is unitless and positive signed. For liability L, where the delta is
already positive,

∆n(L)
V L

. (12)

Duration as defined above is not meaningful for a swap without decomposing
the swap asset and liability legs into equivalent notional flows and adding these
to the other assets and liabilities. The duration of a portfolio can be found via
its additive deltas or as the discounted mean term of future cashflows. Note
that the above measures all implicitly assume equal rate moves with perfect
positive correlation (i.e. a parallel curve shift) since they sum across the partial
durations for each curve point.

11.4. Gamma and convexity
Gamma will be material for long-dated liabilities, such as pensions, but

there are n(n+1)
2 distinct partial gammas with respect to a curve with n ma-

turity points (Hull 2003). Again, the assumption of a parallel curve shift
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allows the partial gamma measures to be summed to give the total gamma,
Γn. Gamma is positive for an asset or liability, due to the convex shape of the
discount function, allowing the unitless convexity measure for an asset to be
defined for a continuously compounded rate curve as

Γn(A)
V A

. (13)

The convexity measure for the liability is

Γn(L)
V L

. (14)

11.5. Immunisation
11.5.1. The actuarial theory of immunisation was developed by Redington

(1952) for the hedging of life insurance liabilities exposed to nominal rate
risk. Redington showed that a portfolio of assets and liabilities is ‘immunised’
against losses under the paradigm of sufficiently small parallel curve shifts, if
the following conditions hold:

(1) present value of the assets equals present value of the liabilities;
(2) duration of the assets equals duration of the liabilities; and
(3) convexity of the assets is greater than the convexity of the liabilities.

This result follows directly from equation (8) with the assumption of zero
portfolio theta over the period of the curve shift, since higher-order terms will
be negligible for sufficiently small parallel yield-curve shifts ε (= ∆yi ∀ i). The
theory originally assumed a flat yield-curve, but this was later generalised by
Fisher & Weil (1971), see Maitland (2001). The theory may be extended to
inflation-linked liabilities if the breakeven inflation rate used to project the
liabilities is suitably well behaved, e.g. if assets and liabilities have the same
inflation delta and parallel shifts in the breakeven curve are of magnitude less
than ε.

11.5.2. Maitland (2001) cautions that the assumptions underpinning the
theory are too strong in practice. Immunisation theory assumes a sufficiently
small parallel yield-curve shift but figure 14 shows that a larger shift may result
in a hedge loss. This, in itself, does not invalidate the theory since the assets
could be structured to satisfy enough higher-order risk measure conditions of
the form

∂mA

∂∆ym
>

∂mL

∂∆ym
; m ≥ 2.

This ensures these higher-order terms in equation (8) do not cause losses for
curve shifts of larger magnitude. It is assumed that sufficiently convex assets
are available to the fund. Interest- and inflation-rate derivatives can provide
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this convexity, however there will be a cost imposed by this increased convexity
if the yields are lower on assets with high convexity. This cost is evident in the
SA bond market where the yield-curve is inverted for long-term maturities.

parallel shift in curve

pr
es

en
t v

al
ue

− ε 0 + ε

PV of assets

PV of liabilities

+ 3 ε

Figure 14: Example of immunisation failing for a +3ε parallel curve shift

11.5.3. Alternatively, the hedge can be rebalanced after shifts of size ε, so
the assumption of a perfect market can safeguard the assumption of sufficiently
small curve shifts.

11.5.4. If the curve is steeply inverted and the cost of convexity is high,
it is not obvious that the benefits of convexity outweigh the costs. Moreover,
if there is no curve volatility there may be negative theta in equation (8) as
convexity decays with time without a commensurate gamma benefit. The
market may also reappraise the price of convexity – for instance if an inverted
curve normalises.

11.5.5. This points to the real weakness of immunisation theory, that it is
“theoretically deficient, being riddled with arbitrage” (Smith in the discussion
of Feldman et al. (1998)). To illustrate how immunisation is incompatible
with the absence of arbitrage we consider the simple model for the real-world
evolution of the forward-rate, f(t, T ):

df(t, T ) = σdWt + α(t, T )dt (15)

This model is a single factor model of the form considered by Heath, Jarrow
& Morton (1992) (HJM).

α(t, T ) = σ2(T−t) + σγt

where γt is the market price of risk, which is only a function of t.
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Since γt is independent of T , it is not possible for α(t, T ) to be always constant.
Therefore exclusively parallel curve shifts cannot exist in the arbitrage-free,
risk-neutral world.
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Figure 15: Correlation of SA nominal bond curve 8-year rate with other
maturity rates for June 2004 to June 2006

11.5.6. There is also substantial empirical evidence against parallel curve
shifts. Figure 15 shows imperfect correlation between monthly absolute changes
in the 8y and other maturity rates for BEASSA published bond curve zero and
(annual) forward-rates between 26 June 2004 and 26 June 2006.

11.5.7. Flavell (2002) describes measures of curve risk which account for
imperfect correlation between rate moves by constructing hedges against pre-
defined curve movements, such as changes in curve slope. Golub & Tilman
(2000) describe how ‘key rate durations’ can be defined for each instrument in
a portfolio which capture the sensitivity of the instrument to a limited number
of key maturity points on the yield-curve.

11.6. Principal Components Analysis
11.6.1. Principal Components Analysis (PCA) can be used to define the

characteristic curve shifts used by yield-curve risk-management methods. Fig-
ure 15 can be extended to all annual curve points to produce the correlation
matrix of rate movements. Intermediate points can be interpolated to form
a correlation surface to depict this correlation matrix, as shown in Figure 17.
Let R denote this empirical correlation matrix. The singular value decomposi-
tion of a correlation matrix will always exist (McNeil, Frey & Embrechts 2006)
and can be denoted by R = EDET where E is the orthonormal matrix with
the eigenvectors (the ‘factors’) of R as columns and D is the diagonal matrix
of eigenvalues corresponding to these eigenvectors, ranked in decreasing order
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Figure 16: SA nominal bond forward rate correlation matrix for monthly
absolute changes in rates from June 2004 to June 2006

of magnitude. PCA reduces the dimension of the curve movements from the
number of curve points to the minimum number of components required to
give an adequate representation of curve movements (Rebonato 1998).

11.6.2. Table 3 shows the results of the PCA applied to the correlation
matrix of Figure 16. The first factor accounts for 83.6% of the total variance
of forward curve movements. The second and third factors explain a further
7.3% and 5.8% of the total variance, so 96.6% of total variance is captured by
the first three components.

factor number, i 1 2 3 4 5 6 7
eigenvalue, λi    16.71 1.46 1.16 0.47 0.16 0.020 0.015

variability explained, λi/Σλi 83.6% 7.3% 5.8% 2.3% 0.8% 0.1% 0.1%

cumulative variability explained 83.6% 90.8% 96.6% 98.9% 99.8% 99.9% 99.94%

Table 3: First seven eigenvalues for the PCA of the correlation matrix of SA
nominal bond forward-rates depicted in Figure 16

11.6.3. Figure 17 shows plots of the factor loadings on each curve point for
the first three component factors of the PCA in Table 3. PCA of forward-rates
is useful for calibrating many interest rate models Rebonato (2002) but PCA
may also be applied to changes in spot (i.e. zero-coupon) rates. Table 4 and
Figure 18 show the results of this alternative analysis, which are very similar
to those of Maitland(2001, 2002) for the covariance matrix of par rate moves in
the JSE-Actuaries curve for monthly data between 1 February 1986 and 1 May
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Figure 17: Factor loadings for first three principal components for the PCA
using SA nominal bond forward-rates in Table 3

2000. We see that the first, second and third spot rate factors account for 99.6%
of total variance and the loading profiles correspond to the parallel shift, slope
and shape moves characteristic of many interest rate markets (Rebonato 2002).

factor number, i 1 2 3 4 5 6 7
eigenvalue, λi    18.27 1.45 0.20 0.05 0.02 0.005 0.0004

variability explained, λi/Σλi 91.4% 7.3% 1.0% 0.2% 0.1% 0.03% 0.002%

cumulative variability explained 91.4% 98.6% 99.6% 99.9% 100.0% 100.0% 100.0%

Table 4: Factor loadings for first three principal components of the correlation
matrix of spot rates for SA nominal bonds, June 2004 to June 2006 monthly
rate moves

11.6.4. Forward-rates in the long end of the curve are less stable than spot
rates (which are an average of forward-rates up to the spot rate maturity).
Therefore it is not surprising that a PCA of spot rates explains more of the
curve variation, even with the smoothing of forward-rates imposed by the BE-
ASSA methodology and the sparse SA bond curve. The second and third
eigenvectors of the forward-rate PCA have eigenvalues of similar magnitude,
so one can reconcile the components of the two analyses.

11.6.5. Table 5 and Figure 19 show a PCA of SA bond breakeven inflation
rate changes. The analysis uses spot rates since breakeven curve shapes may
be less stable than nominal curves for the reasons discussed in section 5.4. The
SA real curve has also shown significant realignment over the period of the data
and the PCA is dominated by one outlier shift. Parallel shifts dominate, as
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Figure 18: Factor loadings for first three principal components for SA nominal
bond rate PCA using spot rates of Table 4

they do for nominal rates, but the first component has less explanatory power.

factor number, i 1 2 3 4 5 6 7
eigenvalue, λi    14.35 4.26 0.78 0.32 0.23 0.022 0.010

variability explained, λi/Σλi 71.7% 21.3% 3.9% 1.6% 1.2% 0.1% 0.1%

cum. variability explained 71.7% 93.1% 97.0% 98.6% 99.7% 99.9% 99.91%

Table 5: Factor loadings for first three principal components of the correlation
matrix of spot rate changes for the SA bond breakeven curve, June 2004 to
June 2006 monthly rate moves
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Figure 19: Factor loadings for first three principal components for the PCA
using SA breakeven spot rates of Table 5
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11.6.6. Risk management with respect to moves in nominal and breakeven
rates can use PCA to identify the representative curve shift against which the
portfolio is to be hedged. Since the factors are orthogonal by construction, the
total portfolio delta for a bump of size ε (e.g. 1bp) is

∆V =
m∑

i=1

m∑

j=1

∂V

∂yi
λiPi(j)ε

where Pi(j) denotes the loading of the i-th factor on the j-th curve point.
11.6.7. PCA can be also performed on the covariance matrix of rate moves.

Then, if it captures the majority of the variation, the profile of the first factor’s
loadings will reflect the historical term structure of volatility of the rates for
the time period between rate moves in the data. However, this scales the
curve shifts at each point to its historical standard deviation rather than the
small ε bump size required for estimating portfolio delta risk with respect to
yield-curve moves.

11.6.8. Maitland (2001) analysed the hedge portfolio that immunised an
SA interest rate liability against PCA-derived yield-curve shifts. The hedge
portfolio was optimised to maximise expected immunisation profits. It was
shown in section 11.5.5 that a model designed in this way is not arbitrage-free,
so the market value of the hedge cannot be used as a market value for the
liability if the market is assumed to be complete.

11.6.9. Tilley & Mueller (1991) also consider immunisation free of the as-
sumption of a parallel shift in rates. They use orthogonal polynomials rather
than principal components to simulate curve shifts, again without constrain-
ing the curve dynamics to be free of arbitrage. The first three orthogonal
polynomials correspond to parallel shift, slope and shape moves.

11.6.10. PCA-based risk methods for interest rate risk management are
dependent on past curve data for calibration. The correlation matrix may be
distorted by outliers, the period of the time series may not be representative
of the curve dynamics or the dynamics may change in future. PCA on a the
correlation matrix of absolute rate moves ignores the correlation between the
level of rates and changes in curve shape. For example, there is evidence of
‘bull steepening’ where increases in rates are associated with a steepening of
the curve slope (Golub & Tilman 2000). In the next section it is shown that
optimal hedging strategies require a dynamic interest and inflation rate model
that is free of arbitrage, calibrated to market rates and incorporates the key
statistical features of the processes.
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12. CPI revisions

12.0.1. There are two forms of revisions to the CPI index by the statistical
agency responsible for calculation. The first type of revision, e.g. for Eurozone
inflation, is a regular update from the ‘flash’ to the ‘final’ CPI estimate to
reflect more accurate price-level information obtained since the time of the
survey. Inflation linked assets and liabilities will reference the final index and
and the index lag will be sufficient to accommodate final index publication.

12.0.2. The second type of revision is restatement of past indices due to a
material calculation error. Several inflation markets have experienced revisions
to the CPI following calculation errors. The US Bureau of Labor Statistics
revised January 2000 to August 2000 CPI-U data by up to 0.2 index points, or
0.12% in year-on-year terms12. In May 2003 Statistics South Africa revised the
CPI published from February 2001 to March 2002. The cumulative effect of
the revision was a 2.3% reduction in headline CPI. In the same year a revision
took place in the Netherlands with an effect on Eurozone inflation.

12.0.3. It is generally not practical for the national debt manager to neu-
tralise the past effect of index restatement since this would entail adjusting the
price level of all affected inflation-linked bond transactions. Future transac-
tions and cashflows will be based on the corrected, published CPI index. Un-
less asset and liability indexation and cashflows are coincident, revisions may
create mismatches between inflation-linked assets and inflation-linked pension
liabilities. The market has taken steps to eliminate mismatches in indexation
between inflation-linked bonds and derivatives through the International Swaps
Derivatives Association (ISDA) definitions used in inflation derivatives docu-
mentation13. The ISDA definitions align the indexation of inflation derivatives
with inflation-linked bonds.

12.0.4. Revisions are discontinuities in the inflation process and may result
in hedging losses. This has not been explicitly addressed in the literature. In-
flation revisions are similar to jumps in asset prices, which have been addressed
in some models, but the irregular and legal effects of revisions suggests that
they are closer in nature to operational risks.

12 US Department of Labor, Bureau of Labor Statistics, ‘Revisions in January to August
2000 CPI data’, www.bls.gov/cpi/cpirev01.htm
13 ISDA Inflation Derivatives Definitions, 2006. See http://www.isda.org/publications
/pdf/2006inflationderdefs.pdf
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13. Market completeness

13.0.1. Even linear liabilities assumed free of background risks are an in-
complete market as a result of:

• an indexation lag not aligned with the traded instruments
• inflation seasonality
• liabilities extending beyond the term of the markets

13.0.2. However, this incompleteness is not a significant factor for the mar-
ket price of inflation-linked pensions in payment. For such liabilities, it has
been shown that seasonality and the method used to model and extend the
yield curve do not have a material effect on the price of a typical pension pro-
file. Inflation swaps dealers in effect complete the market for these liabilities
by offering hedges which precisely match the interest and inflation rate risk of
these liabilities.



CHAPTER 5

Non-Linear inflation liabilities

In this chapter the market valuation of pension liabilities is extended
to include pensions imperfectly indexed with inflation. The various forms of
limited inflation indexation of pensions are classified and analysed as inflation-
derivatives embedded within the pension liabilities.

An overview of the theory of derivatives pricing is provided and the as-
sumptions underpinning the Black–Scholes model are considered. The Black–
Scholes formula and the currency analogy for the Consumer Price Index are
used to derive closed-form valuation formulae for the various forms of inflation
indexation proposed in the actuarial literature.

The Black–Scholes-world assumptions are dissected in order to critically
appraise whether these pricing methods can be applied to value pension liabil-
ities as inflation derivatives. The assumptions are tested against data for the
South African inflation market and evidence of mean reversion and fat tails for
the inflation process is considered. The published inflation derivatives pricing
models are then analysed in the light of these findings.

It is motivated why the Black–Scholes valuation approach using volatili-
ties adjusted to account for unrealistic assumptions is a useful basis for market
valuations. However, the non linear nature of most inflation-linked pension
liabilities necessitates a stochastic model for interest rates and inflation to
capture subtle convexity and path-dependent effects.

60
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1. Forms of pension indexation

1.1. Introduction
1.1.1. Chapter 3 discussed the nature of pension indexation to inflation. In

many countries the level of the indexed pension is usually not directly propor-
tional to the level of the inflation index. This limited price indexation (LPI)
gives rise to a non-linear market valuation since it is not linear in real and
nominal zero-coupon bond prices.

1.1.2. Pension increases can be limited in relation to the Consumer Price
Index (CPI) in a number of ways. The limit may apply to the increase in the
index or to the level of the index. Building on the taxonomy of Wilkie (1984)
and Van Bezooyen et al. (1997), five types of CPI indexation encountered in
practice can be identified:

type-1. Unlimited indexation. The pension increase is the percentage increase
or decrease in the CPI since the previous indexation date, usually 12
months prior. This produces linear pension liabilities.

type-2. Inflation index caps and floors. The pension increases in line with
the inflation index, but the pension is subject to a minimum floor
level of average annual increase in the index and maximum cap level of
average annual increase in the index. The legislated minimum increase
for deferred pensions in the UK is of this form.

type-3. Inflation rate caps and floors with claw back. The pension increases
with type-1 or type-2 indexation, but the pension is also floored at its
current level. This increase is in the trust deeds of some UK occupa-
tional pension funds (Van Bezooyen et al. 1997).

type-4. Inflation rate caps and floors. The pension is adjusted by the inflation
rate since the last increase, but the rate of pension increase is subject
to a minimum floor level and a maximum cap level. An example is 0%
floor and 2.5% cap LPI for UK pensions in payment accrued post 6
April 2005.

type-5. Fractional indexation. The pension increase is a fixed fraction of the
inflation rate since the last adjustment.

Table 6 and Figure 20 use the case of a floor at 0% p.a. to illustrate the
difference between the floor types for a contrived CPI time series.

1.2. Relationship between the different forms of indexation
1.2.1. The relationship between the level of the pension benefit under each

type of indexation floor struck at the same level is:

type-1 < type-2 < type-3 < type-4.
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t CPIt increase pension increase pension increase pension increase pension increase
0 100.00 100.00 100.00 100.00 100.00
1 101.00 1.0% 101.00 1.0% 101.00 1.0% 101.00 1.0% 100.75 0.75%
2 103.53 2.5% 103.53 2.5% 103.53 2.5% 103.53 2.5% 102.64 1.88%
3 99.90 -3.5% 100.00 -3.4% 103.53 0.0% 103.53 0.0% 99.94 -2.63%
4 98.90 -1.0% 100.00 0.0% 103.53 0.0% 103.53 0.0% 99.20 -0.75%
5 104.84 6.0% 104.84 4.8% 104.84 1.3% 109.74 6.0% 103.66 4.5%

Type-5, 75% increaseType-2, 0% floorType-1 Type-3, 0% floor Type-4, 0% floor

Table 6: Calculation of pension increases for different forms of indexation
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Figure 20: Indexed pension payments for the different forms of indexation

1.2.2. These types of limited CPI indexation may occur in combination.
In SA it is common to have a type-4 floor at 0% and no cap, combined with a
type-5 fractional increase (of say 75% of CPI).

2. Inflation derivatives and pension indexation

2.0.1. Advanced inflation markets trade derivatives with features similar
to some forms of pension liabilities.

• Zero-coupon inflation caps (floors) are options on the CPI. The buyer
of a floor struck at k pays a premium upfront and receives a payoff
per unit of notional at time T of

max[CPIT /CPI0 − (1+k), 0].

• Year-on-year inflation caps (floors) are options on the annual inflation
rate. The buyer of a T -year floorlet struck at k% pays a premium
upfront and receives a payoff per unit of notional at time T of

max[CPIT /CPIT−1 − (1+k), 0].



3. THE BLACK–SCHOLES WORLD 63

The notional is fixed in nominal terms for each caplet or floorlet. One-
year zero-coupon and year-on-year inflation options are equivalent.

• LPI swaps exchange a compounded fixed rate swap leg for a type-4
LPI swap leg. On maturity at time T , for a swap with unit notional
the payer of the fixed leg dealt at rate f pays (1+f)T and receives
the growth in the type-4 LPI index from time 0 to time T . UK LPI
swaps collared between 0% and 5% are reasonably liquid, trading
several times a week in multiples of the £25 million standard notional
size.

2.0.2. A type-2 collared LPI liability is equivalent to a combination of
type-1 LPI liability, a long position in a zero-coupon inflation floor and a short
position in zero-coupon inflation cap. A type-4 collared LPI liability is the
compounding of type-1 inflation increase with a one-year zero coupon collar.
A type-3 LPI liability is a lookback option on the inflation index (Van Bezooyen
et al. 1997).

2.0.3. Inflation-linked bonds in many markets (e.g. SA, USA and Euro
zone) have a deflation floor on the principal. A zero-coupon inflation floor
struck at the bond’s base index is embedded in the bond. Accrued inflation
will cause the strike to move further from the money. For example, if the SA
inflation-linked bond issued on 2 May 2002 with a base index of 109.03871
and maturing on 31 March 2008 is purchased for settlement on 31 March 2006
when the reference inflation index is 129.5, then the floor has an effective annual
inflation rate strike of -8.98% (being (109.03871/129.5)1/2−1 and ignoring any
subsequent published inflation figures).

3. The Black–Scholes world

3.1. Notation
In this section we consider the basic Black–Scholes model for derivatives

on the inflation index. Qt follows exponential Brownian motion with real-world
probability measure P on the σ-algebra F of subsets of state space R+,

dQt = Qt

(
σt dWt + µt dt

)
where Ws is a Brownian motion under P

⇔ ln Qt = lnQ0 +
∫ t

0
σs dWs +

∫ t

0
µs ds (16)

3.2. Conditions for claim replication
3.2.1. Black & Scholes (1973) and Merton (1973) showed how certain claims

on an underlying, such as European options, can be hedged under certain con-
ditions using a dynamic portfolio of tradable assets. This replicating portfolio
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is self-financing and has the same payoff as the claim. For there to be no ar-
bitrage, the LOOP dictates that the (unique) price of the claim is the price of
the replicating portfolio. The Black–Scholes-world assumptions are:

(1) perfect markets, where positions of unlimited size can be bought or
sold instantaneously without incurring transaction costs, crossing bid–
offer spreads or market impact;

(2) the stochastic price process for the underlying is exponential Brownian
motion, resulting in normal returns and lognormal prices;

(3) interest rates are deterministic and so unrelated to the price process
for the underlying; and

(4) the process for the underlying has deterministic volatility.

3.2.2. The assumptions are patently unrealistic, but are nonetheless the
basis for pricing in inflation and other options markets. The assumptions have
been gradually weakened in the literature and experience has shown the Black–
Scholes model, duly modified, to be robust to departures from the assumptions.

4. Derivatives pricing theory

4.1. Black–Scholes partial differential equation
4.1.1. Consider a derivative Vt which has a payoff only at T which is a

sufficiently regular function p of Qt. In the Black–Scholes world the price of V

satisfies the following partial differential equation (PDE)

1
2σ2Q2 ∂2V

∂Q2
+ (f − g)Q

∂V

∂Q
+

∂V

∂t
= fV

where f and g are the deterministic instantaneous nominal and real rates.
4.1.2. This PDE can be expressed in terms of the Greeks defined in section

11 of chapter 4 as

1
2σ2Q2Γ + (f − g)Q∆ + Θ = fV. (17)

The boundary condition VT = p (QT ) produces the process for Vt from this
PDE, allowing the derivation of an analytic derivative price (Wilmott 1999).
The PDE may be adapted for path-dependent options (such as type-3 LPI).

4.2. Martingale Pricing Theory
4.2.1. Harrison & Kreps (1979) showed that the price of a derivative in

the Black–Scholes world is its expectation using the probability measure Q
for which the discounted price process of the underlying tradable is a martin-
gale. In this idealised world, the Girsanov Theorem implies that the change
of measure is equivalent to a change in drift of the driving Brownian motion
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(see Musiela & Rutkowski (1997)). For the discounted price of the underlying
to be a martingale it must be driftless and therefore the derivative payoff is
independent of the real-world drift µt. The term market price of risk of the
underlying under Q is zero and so Q is called the risk-neutral measure.

4.2.2. The term risk-neutral can be misleading as martingale pricing theory
does not draw on any assumptions about the the utility functions of market
participants other than to assume they prefer more wealth to less so that the
markets they invest in become arbitrage free. The resulting derivative price is
preference independent. The risk-neutral world is a parallel economic universe
which only exists to facilitate the valuation of derivatives.

4.3. Deflators
The separation of process and measure is a key principle differentiating the

financial approach from the traditional actuarial approach of the best-estimate
valuation as the real-world expected value. Modern actuarial theory (see, for
example, Jarvis et al. (2001)) often uses deflator processes to produce market-
consistent valuations as the real-world expected value of the payoff adjusted
by the deflator.

5. Black–Scholes currency model for inflation

5.1. Background
Van Bezooyen, Exley & Smith (1997) used a simple Black–Scholes cur-

rency model of Garman & Kohlhagen (1983) to price type-2 and type-4 liabili-
ties. They showed that the model performed well in an empirical investigation.
The authors found that the theoretical price of an LPI liability (with a collar
between 0% and 5%) was within 5% of the cost of the replicating portfolio us-
ing monthly rebalancing of the portfolio at mid-market rates for nominal and
inflation-linked bonds. This hedge performance improved to a 3% replication
error when the model was generalised to allow for interest rate variation. The
investigation used UK market data for the period 1986 to 1995. The volatil-
ity assumption used to price the derivative was the actual volatility over the
period, since there was no LPI derivative market-implied volatility at the time.

5.2. Type-2 LPI
5.2.1. We first consider the case where the indexation is coincident with

the payoff date (i.e. there is no inflation indexation lag). The payoff at time T

for a 100k% type-2 cap that incepted at time 0 when the base index Q0 =1 is

max
[
0, QT − (1 + k)T

]
.
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If Qt follows exponential Brownian motion and the assumptions of section 3.2
hold, Van Bezooyen, Exley & Smith (1997) show the value at time t of this
type-2 cap with maturity T is,

c2(t, T, k) = QtP
r(t, T )Φ(d1)− (1+k)T Pn(t, T )Φ(d2), (18)

where Φ denotes the standard normal cumulative distribution function,

d1 =
ln

(
QtP

r(t, T )
)− ln

(
(1+k)T Pn(t, T )

)
+ 1

2σ2(T−t)
σ
√

T−t
,

d2 = d1 − σ
√

T−t

and σ = 1√
T−t

( ∫ t
0 σs

2ds
)1/2 is the root-mean-square volatility of lnQt.

Type-2 floors at 100k%, denoted f2(t, T, k), can be valued via put-call parity:

QtP
r(t, T ) + f2(t, T, k) = c2(t, T, k) + (1 + k)T Pn(t, T )

⇒ f2(t, T, k) = (1+k)T Pn(t, T )Φ(−d2)−QtP
r(t, T )Φ(−d1). (19)

5.2.2. The notional amounts of the fixed and inflation-linked zero bonds
required to hedge the options are the coefficients of Pn(t, T ) and P r(t, T ) in
(18) and (19). For example, at time t the hedge for a short position in an
LPI type-2 cap with unit notional and maturity T is a long position in zero-
coupon inflation-linked bond with notional QtΦ(d1) and a short position in a
zero-coupon nominal bond with notional (1 + k)T Φ(d2).

5.2.3. The delta and gamma Greeks for type-2 LPI options with respect to
the nominal and inflation-linked zero-coupon bond prices are readily obtained
by differentiating equations 18 and 19 to give:

For caps: ∆P r = Φ(d1) ∆P n = −(1 + k)T Φ(d2)

ΓP r = Φ′
(d1)

P r(t,T )σ
√

T−t
ΓP n = − Φ′

(d2)

P n(t,T )σ
√

T−t

For floors: ∆P r = −Φ(−d1) ∆P n = (1 + k)T Φ(−d2)

ΓP r = Φ′
(−d1)

P r(t,T )σ
√

T−t
ΓP n = − Φ′

(−d2)

P n(t,T )σ
√

T−t

5.2.4. Type-2 caps and floors are path independent as the payoffs depend
only on the CPI at the payoff date and not on the path of the CPI over the
intervening period. Cap and floor values can therefore be calculated indepen-
dently. This is not true for type-3, -4 or -5 derivatives as these payoffs depend
on the CPI adjusted by any caps or floors which have bitten to date. The value
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at time t of the type-2 collared LPI cashflow due at time T , LPI2(T ), is then

V2(t, T, k, l) = EQ [Pn(t, T )LPI2(T ) |Qt]

= QtP
r(t, T ) − c2(t, T, k) + f2(t, T, l) (20)

5.2.5. The inflation cap and floor level applies from the date the benefit
commenced. Therefore cashflows with the same payment dates but different
commencement dates cannot be aggregated for valuation purposes.

5.2.6. To generalise to any indexation lag, consider the two effects intro-
duced by an indexation lag:

(1) Figure 21 illustrates the period between t, the valuation date, and
t′, the latest date in the life of the derivative for which the CPI has
been published. The option valuation formula needs to be adjusted
to account for this period where there is no inflation uncertainty, or
the cumulative volatility factored into the price will be too high.

CPI published CPI unknown

t' t0 T

Figure 21: Published and unknown inflation at the valuation date t

(2) The CPI must be projected to the indexation date corresponding to
the payout at time T , as depicted in Figure 22. Section 2 of chapter
4 discusses how the indexation lag for monthly pension payments
indexed annually may be up to 14 months.

lagged payout date

0 t T

          index lag

Figure 22: Lag between the date of the payout and indexation date.

5.2.7. The type-2 LPI valuation formulae (18) and (19) are readily adjusted
for these effects:

(1) To ensure the volatility of the inflation index over the period with no
inflation uncertainty is zero, scale down the volatility assumption by
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the square root of the ratio of the inflation uncertainty period to the

discounting period, i.e. use volatility σ′= σ
√

T−t′
T−t in place of σ.

(2) To allow for the indexation lag of the payout, value the real zero
P r(t, T ) using a breakeven curve or real yield curve with the same
indexation lag.

5.3. Type-3 LPI
5.3.1. The time T payoff for a type-3 LPI liability floored at 0% is defined

recursively as
LPI3(T ) = max

(
QT , LPI3(T−1)

)
.

Repeated application of this recurrence relation gives:

LPI3(T ) = Q0 + max
{s=0,1,...,T}

(Qs −Q0). (21)

This shows that a type-3 payoff is equivalent a T -year discrete time lookback
option on the maximum of the CPI index ratio with a fixed strike at 1.

5.3.2. The path dependency of type-3 floors complicates the valuation. The
distribution of the maximal path of a Brownian motion has been studied and
analytic formulae exist for the case where the floor is set continuously at the
maximum (see Goldman, Sosin & Gatto (1979)). Broadie, Glasserman & Kou
(1999) have shown how lookback option values can be adjusted when the strike
is set at discrete intervals. This is the case when the type-3 floors are applied
annually (as is typically the case). Where a type-3 floor occurs in combination
with any type of cap, the path dependency becomes complex and valuation
requires Monte Carlo simulation.

5.4. Type-4 LPI
5.4.1. The time T payoff for a type-4 benefit capped at 100k% is

LPI4(T ) = LPI4(T−1)min
[
1+k, QT

QT−1

]

= LPI4(T−1)
(

QT
QT−1

+ min
[
(1+k)− QT

QT−1
, 0

]

︸ ︷︷ ︸
type-2 cap payoff

)
. (22)

5.4.2. Type-4 caps and floors are therefore path dependent. A one year
type-4 cap or floor is equivalent to a 1 year type-2 cap or floor since there is no
compounding. Then from equation (20) the value at time T−1 of this type-4
cap is

c4(T−1, T, k) = EQ
[
Pn(T−1, T ) LPI4(T−1)max

[
QT

QT−1
− (1+k), 0

] ∣∣ QT−1

]

= LPI4(T−1) c2(T−1, T, k).
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Similarly, the value at time T−1 of the corresponding type-4 floor is

f4(T−1, T, k) = EQ
[
Pn(T−1, T ) LPI4(T−1)max

[
(1+k)− QT

QT−1
, 0

] ∣∣QT−1

]

= LPI4(T−1) f2(T−1, T, k).

The value at time T−1 of a type-1 payment at time T , collared by a type-4
cap at 100k% and a type-4 floor at 100l% is

EQ
[
Pn(T−1, T )LPI4(T )

∣∣QT−1

]

= LPI4(T−1)
{

P r(T−1, T )− c2(T−1, T, k) + f2(T−1, T, l)
}
. (23)

Therefore, the value at time t of the payment at time T and subject to type-4
caps and floors is

EQ
[
Pn(t, T )LPI4(T ) |LPI4(t)

]

= EQ
[
EQ

[
Pn(t, T )LPI4(T )

∣∣ LPI4(T−1), LPI4(t)
]∣∣∣LPI4(t)

]

using the Tower Law

= EQ
[
Pn(t, T−1)LPI4(T−1)

{
P r(T−1, T )− c2(T−1, T, k) + f2(T−1, T, l)

}∣∣∣LPI4(t)
]

from (23)

= EQ
[
Pn(t, T−1)LPI4(T−1)

{
P r(T−1, T )

[
1− Φ(d1,k)− Φ(−d1,l)

]

+Pn(T−1, T )
[
(1+k)Φ(d2,k) + (1+l)Φ(−d2,l)

] }∣∣∣ LPI4(t)
]

where d1,k =
ln

(
QtP

r(t, T )
)− ln

(
(1+k)T Pn(t, T )

)
+ 1

2σ2(T−t)
σ
√

T−t
,

d2,k = d1 − σ
√

T−t and d1,l and d2,l are defined in a similar manner.

5.4.3. Inflation is a Markov process in the basic Black–Scholes world, so
applying the recurrence relation gives

LPI(t) = LPI(t−1)
{(

Qt

Qt−1

)
+max

[
(1+l)− Qt

Qt−1
, 0

]
−max

[
Qt

Qt−1
− (1+k), 0

]}
.

5.4.4. We then reconcile to the value given in Van Bezooyen et al. (1997)
for the present value at time t of a type-4 LPI payment collared between cap
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k and floor l until payment time T , V4(t, T, k, l)

= EQ [ LPI4(T ) | LPI(t) ]

= LPI(t)
T−1∏
u=t

(
P r(u, u+1)

{
1− Φ(d1,k)−Φ(−d1,l)

}

+ Pn(u, u+1)
{
(1 + k)Φ(d2,k)+(1 + l)Φ(−d2,l)

})
.

(24)

5.4.5. Type-4 liabilities cannot be expressed more compactly in terms of
real and nominal zero-coupon rates. The risk with respect to these zero-coupon
rates is therefore not readily derived as it was for type-2 LPI in section 5.2.2.
Greeks with respect to the forward real rates, g(t, 1)=lnP r(t, t+1), and forward
nominal rates, f(t, 1) = lnPn(t, t+1), can be derived analytically from (24).
The curve bumping procedure section of 11.3 of chapter 4 above can be used
to derive the delta hedge in terms of real and nominal zero-coupon yields.

5.5. Type-5 LPI
5.5.1. Let π denote the fraction of CPI by which the benefit is increased

each year. The time T payoff can be expressed using the recurrence relation:

LPI5(T ) = LPI5(T−1)
(
1 + π

( QT
QT−1

− 1
))

. (25)

The value at time t of a type-5 payment at time T , V5(t, T, π)

=EQ
[
Pn(t, T )LPI5(T )

∣∣ LPI5(t)
]

=EQ
[
EQ

[
Pn(t, T )LPI5(T )

∣∣LPI5(T−1), LPI5(t)
]∣∣∣LPI5(t)

]
using the Tower Law

=EQ
[
Pn(t, T−1)LPI5(T−1)

{
Pn(T−1, T )

[
1 + π

( QT
QT−1

− 1
)]}∣∣∣ LPI5(t)

]
by (25)

=EQ
[
Pn(t, T−1)LPI5(T−1)

{
(1−π)Pn(T−1, T ) + πP r(T−1, T )

}∣∣∣ LPI5(t)
]
.

Repeated application of (25) then gives:

V5(t, T, π) = LPI5(t)
T−1∏
u=t

(
(1−π)Pn(u, u+1) + πP r(u, u+1)

)
. (26)

5.5.2. If a type-5 LPI liability is collared between a 100k% cap and 100l%
floor, the present value at t is

V5(t, T, π, k, l) = LPI(t)
T−1∏
u=t

(
πP r(u, u+1)

{
1− Φ(d1,k)−Φ(−d1,l)

}
(27)

+ (1− π)Pn(u, u+1)
{
(1 + k)Φ(d2,k)+(1 + l)Φ(−d2,l)

})
.

5.5.3. Type-5 LPI, like type-3 and type-4, is path-dependent. The Greeks
with respect to shift in the real and nominal forward rates between payment
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increases can be derived analytically.

The delta with respect to the real zero-coupon bond price is,

∆P r(u,u+1) =
∂V5(t, T, π)
∂P r(u, u+1)

=
πV5(t, T, π)

(1−π)Pn(u, u+1) + πP r(u, u+1)
. (28)

The delta with respect to the nominal zero-coupon bond price is,

∆P n(u,u+1) =
∂V5(t, T, π)

∂Pn(u, u+1)
=

(1− π)V5(t, T, π)
(1−π)Pn(u, u+1) + πP r(u, u+1)

. (29)

5.6. Effectiveness of the Black–Scholes currency model
5.6.1. The currency option analogy for inflation allows analytic formulae

to be produced for the value of many inflation liabilities. The assumptions
underpinning the model are unrealistic, but the model can be used as a heuristic
base case for further model development.

5.6.2. Van Bezooyen et al. (1997) note that the premise of no interest rate
variability may be defensible for short-dated options where the underlying is
not closely related to interest rates (such as equities) but is not realistic for
long-dated options on inflation. We return to this discussion in section 9.

6. Condition 1: Perfect Markets

6.1. Interdependence between conditions
In the next four sections we consider the Black–Scholes-world conditions of

section 3.2. We consider the assumptions in isolation, like the ‘ceteris paribus’
assumption frequently used in economics. The interaction between conditions
may be significant. For example, the perfect markets assumption degrades
significantly when the market exhibits periods of high volatility, which violates
the deterministic volatility assumption.

6.2. Liquidity of inflation-linked bond and derivative markets
Inflation-linked bond and derivative markets are considerably less liquid

than their nominal counterparts (Deacon et al. 2004). A high proportion of
investors hold inflation-linked assets for hedging, such as matching inflation-
linked pension liabilities, and therefore transact less frequently. The average
monthly turnover of ZAR 3.95bn for SA inflation-linked bonds is less than ten
percent of the turnover of their nominal comparator bonds as a percentage of
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bonds in issue1. This average monthly turnover is 0.4% of total SA pension
liabilities but is still significant in relation to the liabilities in respect of pensions
in payment for many funds. Pension funds will usually be in a position to delay
transactions until there is adequate liquidity, such as the monthly SA inflation-
linked bond auctions. The inflation swap market further increases the liquidity
available to investors.

6.3. Transaction costs
6.3.1. Various costs are associated with inflation-linked bonds and swaps:

• bid-offer spreads;
• agent’s commission, trading exchange charges; and
• taxes such as stamp duty.

6.3.2. SA inflation-linked bonds are not subject to stamp duty, in South
Africa termed Marketable Securities Tax. Bid-offer spreads for bonds are of
the order of 2bp or less on standard sizes (R5m face value). They may be
lower if an order is left with a dealer, but at the risk of market movements.
Exchange charges are significant only for very small trades.

6.4. Short positions
The perfect-markets condition assumes it is possible to take a short posi-

tion of unlimited size. A reverse repo transaction is required to cover a short
bond position. The SA inflation-linked bond reverse repo market is very lim-
ited and National Treasury at present places a limit on the volume of inflation-
linked bonds made available as part of its reverse repo market operations. In
more advanced markets a reliable reverse repo market has developed. Short
squeezes in inflation-linked bond, when it becomes difficult to borrow bonds
to maintain a short position, occur infrequently. There are no such constraints
to maintaining a short position by paying inflation in an inflation swap.

6.5. Discrete hedging
6.5.1. In practice, derivatives can be hedged only in discrete time and it is

inevitable a hedge error will result. This section probes the significance of this
hedge error.

6.5.2. Consider the indexed price of a T -year inflation-linked zero-coupon
bond when real rates g are constant and the inflation process is given by (16)

1 Bond Exchange of SA Monthly. Data from the Bond Data Report for the three months to
June 2006, excluding repo trades.
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with constant drift and volatility. Denote this indexed inflation-linked zero-
coupon bond price by P r and the log of this price by X. Then:

dX = d ln P r = P r
(
(µ+g)dt + σdWt

)
, where Wt is a P-Brownian motion.

The change in the log of the indexed inflation-linked zero-coupon bond price
over a discrete but small time interval ∆t is denoted by ∆X, where:

∆X = (µ+g− 1
2σ2)∆t + εσ

√
∆t where ε ∼ N(0, 1) (30)

6.5.3. Following Wilmott (1994), we investigate the optimal hedge and the
hedging error when rehedging at discrete intervals. Let Πt denote the value
of the portfolio consisting of an inflation derivative with value Vt and, as the
hedge instrument, real zero bonds with values P r. In the simple Black–Scholes
world there is no nominal or real interest rate volatility, so the sole source
of variability for V and P r is the inflation index. Let β denote the optimal
inflation-linked zero-coupon bond hedge ratio. The portfolio hedged at time t

is worth

Πt = Vt − βP r(t, T ) = Vt − β exp(Xt).

A Taylor series expansion of Π with respect to X and t gives:

∆Π ≈ ∆t
(

∂V
∂t ∆t− βP r ∂X

∂t

)
+ ∆XP r

(
∂V
∂P r − β

)
+ 1

2(P r∆X)2 ∂2V
∂(P r)2

This expansion is to first-order in ∆t and second-order in ∆X to ensure that,
on substitution for ∆X using (30), the result is to order ∆t:

∆Π ≈
√

∆t ε σP r
(

∂V
∂P r − β

)

+∆t
{

∂V
∂t + P r

(
∂V
∂P r − β

)(
µ+g+ 1

2σ2(ε2−1)
)

+ 1
2σ2ε2(P r)2 ∂2V

∂(P r)2

}
(31)

Using the Black–Scholes hedge ratio, β = ∆P r = ∂V
∂P r , gives hedge error over

∆t:
∆Π ≈ ∆t

{
∂V
∂t + 1

2σ2ε2(P r)2 ∂2V
∂(P r)2

}
(32)

6.5.4. By comparison, in the idealised world of continuous rehedging the
Black–Scholes partial differential equation (4.1) implies that a delta hedged
portfolio experiences the following changes due to theta and gamma only in
an infinitesimal time step:

dΠ = ∂V
∂t dt + 1

2σ2S2 ∂2V
∂S2 dt (33)
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For small ∆t, the difference between (32) and (33) is the discrete time hedge
error:

∆t1
2σ2(P r)2 ∂2V

∂(P r)2

(
ε2 − 1

)
(34)

The discrete rehedging error is therefore proportional to the gamma of the
derivative, ΓP r = ∂2V

∂(P r)2
.

6.5.5. Since ε2 ∼ χ2
1, the hedge error over ∆t is a Gamma random vari-

able with shape parameter 1
2 , scale parameter ∆t1

2σ2(P r)2ΓP r and a shifted
location. The expected value of the hedge error is always zero, but its stan-
dard deviation depends on P r(t, T ). The cumulative hedging error is a sum of
Gamma variables with different scale parameters. These scale parameters are
highly path-dependent.

6.5.6. Figure 23 shows ∆P r , the inflation-linked zero-coupon bond hedge
ratio, for a 3-year type-2 inflation cap, struck at the money forward, when the
hedging takes place daily and monthly. The increase in gamma, and consequent
hedge error, is apparent as maturity approaches. As discussed in section 8.2 of
chapter 4, the risk attributable to inflation indexation for the liabilities becomes
more predictable with a time horizon of a year. Smith (1999) shows how
the information structure can be incorporated in a model for pricing inflation
derivatives. However, when there is under a month to the indexed payoff,
inflation volatility actually increases relative to time outstanding since the
index moves in discrete monthly steps.
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Figure 23: Monthly and daily hedge ratios for a 3-year type-2 inflation cap

6.5.7. Consider the hedging error for a derivative with present value V (t, T )
at t and payoff at T that is hedged at N time intervals of length T/∆t. Let
σN denote the standard deviation of the cumulative hedge error. (Kamal
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& Derman 1999) give the following approximation for σN for large N (i.e.
frequent rebalancing):

σN ≈ σ
√

π
P rN

∂V (t,T )
∂σ

∣∣∣
t=0

. (35)

The cumulative hedging error therefore depends on the vega, ∂V
∂σ , at inception

of the option. Kamal & Derman note their approximation will tend to under-
state the true σN for options that are deeply out-of-the-money (as is often the
case for inflation options embedded in pension benefits).

6.5.8. If the perfect markets assumption is violated, riskless replication is
not possible and derivative prices are not preference-independent. The optimal
hedge will depend on the utility function of the hedger. Let P be the real-world
measure (in the sense of the being a representative agent’s measure). If β is
chosen to minimise the variance of the hedge error under P, Wilmott (1994)
shows that:

β = ∂V
∂P r + ∆t

(
µ− (f − g) + σ2

)
P r ∂2V

∂(P r)2
. (36)

In contrast to the Black–Scholes continuous hedge ratio, ∂V
∂P r , the minimum-

variance hedge ratio depends on the real-world drift µ of the inflation process.
If µ is high relative to breakeven inflation, f−g, the minimum-variance hedge
anticipates the movement in the CPI to a greater degree, adjusting the hedge
ratio accordingly. A higher gamma with respect to P r(t, T ) increases the
required degree of anticipation.

6.5.9. In figure 24, the minimum-variance delta (36) is compared with the
continuous-hedge delta, ∆P r , for a long position in a 5-year type-2 capped
liability. The discrete hedging period is between t=0 and t=∆t=1/12. Over
this first hedging period the real-world drift is µ = 9%, the market forward-
rate f−g = 6.68% and volatility σ =3%. The probability distribution of the
hedging error in Figure 24 is depicted by marking the percentiles from 10%
to 90% in bands of 10%. Since the hedging error is unbounded, 1% and 99%
percentiles are used for the outer two bands. The graph therefore marks a
98% confidence interval for the hedging error. For the Black–Scholes hedge
ratio this interval is [0.088%, 0.183%] and for the discrete minimum-variance
hedge ratio this interval is [0.143%,0.07%], which is slightly narrower. The
graph can be viewed as analogous to the marginal distribution (for the first
slice of time) of a CPI fanchart of the hedging error. The significance of hedge
errors further dimishes when the benefit is collared rather than just capped or
floored. Figure 25 shows the hedge error for ∆t =1/12 and ∆t =1/100 for the
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Figure 24: Distribution of hedge error over ∆t =1/12 for Black–Scholes con-
tinuous hedge and minimum-variance discrete hedge

short cap of Figure 24, a long floor with the same (but opposite sign) delta
and the combined collar.

6.5.10. Although the optimal discrete hedge ratio will depend on the sub-
jective drift estimate and utility function of the hedger, Wilmott argues that
market prices are nevertheless preference-free because the market uses models
based on the assumption of an idealised perfect market, despite hedging in dis-
crete intervals. Then the hedge porfolio is expected to earn the (compounded)
risk-free return over ∆t:

E [∆Π] = (r∆t + 1
2r2∆t2 + . . .) (37)

Substituting Πt = Vt − βP r(t, T ) and (31) into (37) gives a discrete hedging
partial differential equation analogous to the Black–Scholes partial differential
equation in equation (17):

1
2σ2(P r)2ΓP r +(f−g)P r∆P r + 1

2δt
(
µ−f−g

)(
f−g−µ−σ2

)
(P r)2ΓP r +ΘP r = fV.

6.5.11. For type-2 LPI caps and floors, where there is no path dependency,
this PDE can be solved to give the same formulae as the continuous hedg-
ing Black–Scholes formulae in (18) and (19), but with an adjusted volatility
parameter:

σ∗ = σ
(
1 + δt

2σ2 (µ−f−g)(f−g−µ−σ2)
)
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Figure 25: Distribution of hedge errors over ∆t=1/12 and ∆t=1/100 for 5-year
type-2 cap, equivalent-delta floor and collar.

6.5.12. Since σ∗ < σ, discrete hedging leads to lower inflation option prices
than continuous hedging, despite hedging error risk being introduced. To an
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extent this can be explained by the hedge being anticipatory, but the assump-
tion made in the derivation of σ∗ that the risky portfolio earns the risk-free
rate may be dubious. Also, market implied volatilities will already reflect dis-
crete hedging. The volatility parameter adjustment to account for discrete
hedging is minimal if the estimated real-world drift µ and breakeven inflation
n − r are close. This difference is likely to be small for long dated pension
liabilities. For very short maturities the hedger’s inflation forecast may differ
substantially from market forward inflation, for example if there is significant
flow seasonality in market rates as discussed in section 8.1 of chapter 4.

6.6. Transaction costs
6.6.1. Leland (1985) showed that if:

(1) the derivative is delta rehedged every δt;
(2) transaction costs a proportion κ of the real zero price; and
(3) the Black–Scholes conditions are otherwise satisfied,

then long option positions should be valued using the adjusted volatility:

σ∗ = σ
(
1− κ

σ

√(
8

πδt

) )1/2
.

6.6.2. The volatility for short positions should be scaled up in a similar way.
Transaction costs are therefore proportional to vega for individual options, but
a portfolio of derivatives will often have offsetting hedging transactions and the
portfolio gamma may change sign so the loading for costs is not additive. The
costs of trading real and nominal bonds and swaps is also proportional to the
market rate rather than price.

6.7. Materiality

N= Hedge error Kamal Derman
δt Τ/δt std dev. approximation
1 10 24.80% 28.84%

1/12 120 7.28% 8.33%

1/100 1000 2.59% 2.88%

Table 7: 10-year atm type-2 inflation cap
cumulative hedge error for various δt

6.7.1. Table 7 shows σN , the Ka-
mal & Derman (1999) standard de-
viation of the approximate present
value of cumulative hedging errors
over the life of a 10-year type-2 in-
flation cap, given by equation (35).
The true hedge error, estimated from
10 000 trials of a Monte Carlo simu-
lation, is shown alongside this. The
cap has a strike at-the-money, where the standard deviation of the hedging
error is maximised (since vega is maximised for at-the-money options). The
real-world process, again viewed as the probability measure of the represen-
tative agent, is simulated with a volatility of 3%. The Kamal & Derman
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approximation slightly overstates the true value. The cumulative hedge error,
which is equally likely to be profit or loss, is reasonably low and drops rapidly
beyond the range shown in the table, to 0.25% when N=2500 and the portfolio
is rehedged every day.

6.7.2. The hedge risk for a portfolio of inflation derivatives will depend on
the portfolio gamma and vega, which a dealer will seek to mitigate through
offsetting positions. There will also be some positions which have natural
offset at inception, e.g. long caps and short floors in the collar of type-4 LPI,
although this offset may decline as liability matures. Offsetting positions will
also decrease hedging transaction costs.

6.7.3. The transaction costs incurred when hedging options will depend on
the structure of the costs, frequency of rehedging and the market presence of
the hedger. There will be a natural trade-off between trade costs (including
market impact) and the frequency with which the portfolio is rehedged. The
primary determinant of transaction costs will be the degree to which the hedger
is a market-maker or a price-taker for the underlying.

6.7.4. Market-makers may be more tolerant of hedge errors, which will
offset between diverse business lines. Market makers can also use the synergy
between the cash and derivative inflation markets to decrease their transaction
costs. There will be further synergies between related inflation and interest
rates books (for example a Euro-zone inflation dealer may find it more cost-
effective to hedge HICP inflation with French inflation until the position can
be neutralised in the HICP market.) These factors make it difficult to gauge
the materiality of transaction costs, but for dealers these costs are likely to be
a secondary factor.

6.8. Discrete hedging and traditional actuarial valuations
6.8.1. The above discussion on discrete hedging strategy sheds further light

on the distinction between the traditional actuarial approach and the financial
approach to valuing inflation liabilties. The traditional actuarial approach is
to discount the expected payoff under the real-world measure to give a best
estimate for the inflation-linked derivative pension,

V a
t = EP

[
Pn(t, T )LPI(T ) | Ft

]

6.8.2. The financial approach values the liability as the cost of its self-
financing replicating portfolio in a perfect market. Consider the limiting case
where δt = T−t, so that there is no portfolio rebalancing before maturity. The
hedge portfolio, denoted by H, has value H(t) at time t. Suppose H is chosen
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to minimise the variance of the hedge error at maturity:

min
H

[
varP

[
Pn(t, T )

(
LPI(T )− H(T )

) |Ft

]]
.

⇒ H(T ) = EP
[
Pn(t, T )LPI(T ) |Ft

]
.

6.8.3. The financial approach values the benefit as V f
t = H(t), the current

value of the hedge portfolio. Furthermore if P corresponds to the risk-neutral
measure Q and interest rates are deterministic as in the Black–Scholes world
of this section, then H(t) = H(T )Pn(t, T ). The traditional actuarial approach
can therefore be viewed as the limiting case of the financial approach when
there is no opportunity for portfolio rehedging before maturity.

6.8.4. Note that the actuarial approach may alternatively define V a
t as the

present value of the LPI derived using the expected LPI rate under P, LPI%(t)
in year t. That is,

V a
t = exp

{
T−1∑
u=t

EP
[
LPI%(u) | Ft

]
}

Pn(t, T )

In this case, Jensen’s inequality implies that the actuarial approach will pro-
duce a lower value than the financial approach. This follows from:

exp

{
T−1∑
u=t

EP
[
LPI%(u) | Ft

]
}

Pn(t, T )

≤ EP

[
exp

(
ln Pn(t, T )

T−1∑
u=t

LPI%(u)
) ∣∣∣Ft

]
= H(T ).

7. Condition 2: Inflation driven by Brownian motion

7.1. Generalisation
The basic Black–Scholes assumption is that the stochastic price process

for the underlying is exponential Brownian motion, resulting in normal returns
and lognormal prices. This assumption can be extended to any Itô process:

dQt = Qt

(
σ(t,Qt) dWt + µ(t,Qt) dt

)
; (38)

where Wt is a Brownian motion under P and σ and µ are adapted to the
filtration of Qt. This is the most general form for which, by Itô’s Lemma, any
process which is a twice continuously differentiable function of Qt is still an Itô
process driven by Brownian motion and Girsanov’s Theorem can be applied
(subject to its regularity conditions). The Martingale representation theorem
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can then be invoked, subject to its regularity conditions, to prove the existence
of a self-financing replicating trading strategy for derivatives on this tradable.

7.2. Tests for normality
7.2.1. It is natural to model the spot inflation rate as a normal variable,

implying a lognormal inflation index. This corresponds to σ(t,Qt) = σt and
µ(t,Qt) = µt in (38). Figure 26 shows a histogram of the absolute month-on-
month change in the SA headline inflation rate, for the period since inflation
targeting was introduced, after stripping out the underlying drift and sea-
sonality of the process using the method for deriving the seasonality factors.
The histogram is broadly consistent with a normal distribution for increments.
There is a single outlier of +0.7% in January 2002, after sudden currency weak-
ness where it is possible the detrending method failed to capture the sudden
change in underlying trend.
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Figure 26: Histogram of month-on-month SA headline CPI, June 2000 to June 2006,
standardised by the seasonality factors in table 2 of of chapter 4, section 7.

7.2.2. Rounding of the inflation index implies a discrete distribution for
absolute changes. All tradable instruments have discrete price movements (or
‘ticks’) that are approximated with continuous price models. The rounding
of the inflation index is particularly significant compared with its volatility,
but this will be mitigated by the trend to the publication of the CPI to two
decimals, as noted section 1.0.3 of chapter 4.

7.2.3. Another objection to modelling with Brownian motion is that the
inflation index is a discrete-valued process in discrete (monthly) time periods.
This need not be an issue since whether we model in continuous time and
evaluate at discrete time points or model directly in discrete time, this feature
of the inflation process is accounted for.
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7.2.4. A more informative graphical test of a normal fit for ∆ ln(Qt) is a
quantile or probability plot against a normal model as shown in Figure 27.
These plots are generated by ordering the k data points in ascending order
yi ≤ y2,≤ . . . ≤ yk. Let F̂ denote the cumulative distribution function of
the fitted normal distribution. Then the Q-Q plot is a plot of the points{
yi, F̂

−1
(

i
k+1

)}
in data space. The P-P plot is a plot of the points

{
i

k+1 , F̂ (yi)
}

in probability space. Both plots show a good fit with a normal model.
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Figure 27: Q-Q and P-P plot for the absolute change in the SA headline inflation
rates, June 2000 to June 2006.

7.2.5. There are also a number of statistical tests for the hypothesis of a
normal model, such as the Kolmogorov–Smirnov test, Jarque–Bera test etc.
These tests do not reject the hypothesis of a normal model for the monthly
change in detrended SA headline inflation (from July 2000 to June 2006) at
the 95% significance level.

7.2.6. For inflation-index increments to be driven by Brownian motion, the
increments must also be independent. The next section investigates mean re-
version of the spot inflation rate. As a prelude to weakening the Black–Scholes
assumption of deterministic interest rates, we also investigate mean reversion
of breakeven inflation and nominal interest rates.

8. Inflation targeting and mean reversion

8.1. Inflation targeting in South Africa
8.1.1. South Africa introduced inflation targeting in February 2000. The

target was initially set at 3 to 6% for CPIX, the consumer price index for the
metropolitan and other urban areas excluding interest on home loans. CPIX
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differs from the headline CPI, for all items and for the metropolitan areas
only, used to index South African inflation-linked bonds, but the interest rates
element excluded accounts for only 10.3% of the survey basket so there is a
close correpondence between CPIX and CPI. These indices have been 89%
correlated since inflation targeting was introduced, see Figure 28.
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Figure 28: SA CPI and CPIX since introduction of inflation targeting

8.1.2. The SA government, through National Treasury, sets the target.
The South African Reserve Bank (SARB), as independent central bank, is
responsible for achieving the target through monetary policy. The CPIX target
range for 2003 and 2004 was set lower at 3 to 5% but this target was missed
due to the extreme currency weakness of late 20012. The 3 to 6% target was
then reinstated and has remained at this level to date.

8.1.3. The adoption of an inflation target may alter the dynamics of infla-
tion and interest rates. The target range will be set after the normal fluctu-
ation of inflation with the business cycle is taken into account. An external
shock, such as the currency weakness in 2001, may cause inflation to deviate
far from the target, but a successful monetary policy response will channel
inflation back into the target range in the medium to long-term. The infla-
tion process can therefore be expected to show mean reversion with a broad
cycle consistent in phase with the business cycle. Furthermore, short-interest
rates, being the primary tool of monetary policy, also fluctuate within a range
and exhibit mean reversion. Longer-term rates will too show mean reversion

2 ‘The objectives and importance of inflation targeting’, T.T. Mboweni, South African Re-
serve Bank press release, 2002.
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to the extent that parallel curve shifts are dominant, but the lower volatil-
ity of longer-dated forward-rates and decorrelation between forward-rates will
undermine and dampen the cycle.

8.2. Correlation structure of SA interest rates and inflation
8.2.1. Table 8 shows continuously compounded real, nominal and breakeven

rates using the medium-term benchmark R189 2013 inflation bond and its
R157 2015 nominal comparator. The CPI reference for each 26 June date is
taken as the prior 1 March for simplicity - the true reference CPI based on
a 4-month lagged interpolation between February and March would give very
similar results. The period is taken from the start of inflation targeting. The
annual change in the nominal, breakeven and headline CPI rate is shown un-
der columns ∆Lt, ∆Yt and ∆Ct and plotted in Figure 29. Mean reversion
for nominal and breakeven rates and spot inflation is apparent and there is a
negative correlation between nominal rates and spot inflation as expected.

headline R189 2013 R157 2015 breakeven
reference CPI y/y real yield nominal yield inflation

date CPI Ct Rt Lt Yt = Lt-Rt ∆Lt ∆Yt ∆Ct

26-Jun-00 01-Mar-00 3.33% 6.38% 13.76% 7.38%
26-Jun-01 01-Mar-01 7.12% 5.51% 10.68% 5.17% -3.08% -2.21% 3.78%
26-Jun-02 01-Mar-02 6.02% 4.14% 11.57% 7.43% 0.89% 2.26% -1.10%
26-Jun-03 01-Mar-03 9.75% 4.01% 8.80% 4.79% -2.77% -2.64% 3.73%
25-Jun-04 01-Mar-04 0.41% 3.82% 10.04% 6.22% 1.23% 1.42% -9.34%
27-Jun-05 01-Mar-05 2.96% 3.09% 7.82% 4.74% -2.22% -1.48% 2.55%
26-Jun-06 01-Mar-06 3.33% 2.70% 8.08% 5.38% 0.26% 0.65% 0.37%

Continuously compounded rates.  Source: Statistics SA, Bond Exchange of SA

Table 8: Annual absolute change for nominal, breakeven and CPI inflation
rates

8.2.2. Table 9 shows first-order serial-correlations between ∆Lt, ∆Yt and
∆Ct. The time-series absolute annual rate change data, ∆Lt, ∆Yt and ∆Ct, in
Table 8 are assumed to be stationary. For example, ∆Lt is the correlation be-
tween series

{
∆Lt

}
t=1,...,5

and
{
∆Lt

}
t=2,...,6

. The correlation structure accords
with economic intuition for mean reversion but the limited size of the sample,
with just 6 yearly increases, raises the question of statistical significance. The
small size of the sample also creates a material bias in the correlations be-
tween the overlapping time series marked with an asterisk. This bias in the
covariance is analogous to the bias of the biased sample variance used as an
estimator of the population variance.
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Figure 29: Annual absolute change for nominal, breakeven and CPI inflation
rates

∆Lt ∆Yt ∆Ct ∆Lt-1 ∆Yt-1 ∆Ct-1 ∆Lt-2 ∆Yt-2 ∆Ct-2

∆Lt 1 0.97 -0.83 -0.98* -0.96 0.71 0.96* 0.95 -0.70
∆Yt 1 -0.74 -1.00 -0.97* 0.80 0.95 0.95* -0.82
∆Ct 1 0.79 0.71 -0.58* -0.70 -0.71 0.26*

* indicates biased estimate

Table 9: Serial-correlations for the absolute change for nominal, breakeven
and CPI inflation in rates, ∆Lt, ∆Yt and ∆Ct, shown in Table 8

8.3. Correlation significance tests
8.3.1. Table 10 shows the (two-side) p-value significance levels for the cor-

relations in table 9 using two methods. The first assumes the ∆Lt, ∆Yt and
∆Ct time series are independent and identically distributed normal random
variables, generates 50 000 realisations from this joint distibution and cal-
culates the correlation coefficients for each realisation as for Table 9. The
significance level of each correlation then corresponds to its percentile in the
sampled distribution. The second method follows the same procedure but with
50 000 realisations bootstrapped from the sample in Table 9 with replacement.
These bootstrapped significance levels are similar to those for the Ljung-Box
statistic often advocated for testing serial-correlation (McNeil et al. 2006). The
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serial-correlation in ∆Lt and ∆Yt is highly significant while the lower signifi-
cance for ∆Ct can be largely ascribed to the outlying value for 2004 of −9.34%.

Resampled significance (i.i.d. normal assumption)

∆Lt ∆Yt ∆Ct ∆Lt-1 ∆Yt-1 ∆Ct-1 ∆Lt-2 ∆Yt-2 ∆Ct-2

∆Lt 100.0% 2.2% 0.1% 0.5% 91.0% 99.1% 97.6% 15.0%

∆Yt 4.6% 0.0% 0.2% 94.7% 97.6% 98.7% 9.0%
∆Ct 89.3% 91.2% 18.2% 15.0% 14.4% 75.5%

Resampled significance (using sample with replacement)

∆Lt ∆Yt ∆Ct ∆Lt-1 ∆Yt-1 ∆Ct-1 ∆Lt-2 ∆Yt-2 ∆Ct-2

∆Lt 99.7% 2.0% 1.4% 1.6% 92.9% 97.3% 95.6% 12.3%

∆Yt 4.1% 0.0% 1.0% 95.6% 95.6% 97.6% 8.5%
∆Ct 90.7% 92.6% 14.4% 12.3% 13.3% 73.9%

Table 10: Significance p-values for correlations in Table 9

8.3.2. A theory of mean reversion based on inflation targetting has been
formulated before testing this theory. This theory-directed approach is safer
than the pure data-directed approach where the data is used to generate the-
ories (Huber 1997). Data-snooping, the weakening of statistical significance
from producing and testing a theory using the same data or running multiple
tests on the same data, is inevitable when analysing time-series data such as
the dataset in Table 9.

8.3.3. At the further risk of confounding the statistical results due to infla-
tion seasonality, the monthly inflation data are examined for stronger evidence
of mean reversion. The correlogram for monthly lags is plotted out to 60
months for ∆Ct from March 2000 to March 2006 in Figure 30 with 95% con-
fidence intervals. Here mean reversion is more evident.

8.4. Correction of serial-correlation bias
8.4.1. The biased serial-correlations marked with an asterisk in Table 10

stem from the use of the sample mean in the sample correlation coefficient
estimate. Campbell, Lo & MacKinlay (1997) give a bias correction derived by
Fuller (1976) for the k-th order serial-correlation coefficient from a sample of
size T as

ρ̃(k) = ρ̂(k) +
T−k

(T−1)2
(
1− ρ̂(k)2

)
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Figure 30: Correlogram for ∆Ct, by lag in months, showing 95% confidence
intervals. Intervals for lags less than 13 months are biased from overlapping
annual rates and so are not shown.

where ρ̂ is the sample correlation coefficient. The bias in ρ̃ is then of O(1/T 2).
So, for example, in the sample of Table 8 we find ρ̃(∆Ct, ∆Ct−1) = −0.58+ 1

5(1−
0.582) = −0.45. As a check, for a hypothetical ρ̂ = 0 estimate this adjustment
is very close to the bias estimated by the resampling done above assuming
independent and identically distributed normal increments. Table 11 shows
Fuller bias-corrected serial-correlations for the biased estimates identified in
Table 10.

Resampled bias-corrected correlations (i.i.d. normal assumption)
∆Lt ∆Yt ∆Ct ∆Lt-1 ∆Yt-1 ∆Ct-1 ∆Lt-2 ∆Yt-2 ∆Ct-2

∆Lt -0.97 0.97
∆Yt -0.96 0.97
∆Ct -0.45 0.41

Table 11: Serial-correlations in Table 10 corrected for bias

8.5. Persistence of mean reversion
8.5.1. Until the 1970s the Phillips curve showed an inverse relationship

between unemployment and earnings inflation (Phillips 1960). Since the cri-
tique by Lucas & Sargent (1978) of this trade-off, the prevailing economic view
has been that price stability is favourable for economic growth. Money-supply
targeting has been a dominant focus of monetary policy since then (Lipsey,
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Steiner & Purvis 1987). New Zealand moved to inflation targeting in 1990 and
by July 2004 21 countries had inflation targets (IMF 2005). The European
Central Bank (ECB) has an inflation target while retaining a reference value
for broad money supply as one of its pillars of monetary policy.

8.5.2. Price stability has been an economic goal of increasing importance
in the past three decades, but there is no certainty the macroeconomic con-
sensus will not change in future. Some commentators argue for a shift to
broader targets for the stability of asset prices3. The South African Reserve
Bank emphasises it will not respond mechanically to inflation shocks, but will
exercise discretion “to avoid costly losses to output and jobs”4. For many
central banks this discretion is formalised in an escape clause. Furthermore,
government fiscal policy may become unsympathetic to inflation targeting.

8.5.3. To date central banks have generally been successful inflation tar-
geters and no country has ever abandoned inflation targeting5. However it may
take a long time, even relative to the term of long-term pension liabilities, for
recovery from deflation or hyperinflation following extremely severe inflation
shocks. It is therefore important to test a model for the effect of a break down
in mean reversion.

8.6. Actuarial ALMs and mean reversion
8.6.1. Actuarial ALMs model relationships between the variables driving

the values of assets and liabilities. They can be used to generate the assumed
real-world (P-measure) behaviour of the prices of assets such as cash and real
and nominal bonds. The primary aim of these models is realistic long-term
behaviour of the market variables and output is not necessarily consistent with
market forward-rates and traded non-linear instruments.

8.6.2. Of the ALMs surveyed in the literature review, the ARIMA frame-
work models of Wilkie (1986), Wilkie (1995), Yakoubov et al. (1999) and Whit-
ten & Thomas (1999) for the U.K. market and Thomson (1994) for the SA
market exhibit serial-correlation for inflation and interest rate variables.

8.6.3. The Wilkie (1986) model has the following AR(1) process for annual
UK price inflation:

I(t) = ln(Qt/Qt−1) = QMU + QA
[
I(t−1)−QMU

]
+ Zt QSD. (39)

3 The Economist, Economics Focus, 24 February 2005.
4 SARB Occasional paper 19, Inflation targeting in South Africa”, 2004.
5 Ibid.
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where {Zt} is a sequence of independent and identically distributed standard
normal random variables. Wilkie (1995) estimates strong positive autocorre-
lation of QA=0.58 for the model based on the period 1923-1994.

8.6.4. Thomson (1994) uses a similar approach for SA price inflation, but
with a higher order AR(4) model. The first order autocorrelation parameter is
0.899 based on the period 1960 to 1993. However Maitland (1996) in his review
of the model states that the oil shock of the 1970s “invalidates the assumption
of weak stationarity and results in an AR(1) parameter which is too high”. A
similar argument could be levelled at the Wilkie model, although this model
was based on data from a longer period.

8.6.5. The highly positive AR(1) parameter and resulting mean aversion
of the Thomson model inflation process cannot be reconciled with the statisti-
cally significant mean reversion of section 8.3 based on the 6-year period since
inception of inflation targeting. Similar results might be obtained for the U.K.
where inflation targeting has been successful since it began in 1992. The Hu-
ber (1997) review of Wilkie’s model rejects the hypothesis of a constant QA

parameter at the 5% level. Beletski (2006) states that there is evidence against
a constant mean reversion level in Euro inflation over the long-term.

8.6.6. These observations highlight the challenges long-term models face
with lack of stationarity when fitting parameters to long historical periods
with diverse economic circumstances. While mean reversion seems more de-
fensible in the current environment of inflation targeting, any pricing model
should address the possibility of positive or zero autocorrelation consistent
with failure of inflation targeting. The results of De Gooijer & Vidiella-i-
Angeura (2003) suggest that a self-exciting threshold autoregressive (SETAR)
model that allows for switching between AR models is one way to reconcile the
mean reversion of an inflation targeting regime with the persistence expected
if targeting fails. Chan, Ng & Tong (2006) reach similar conclusions for UK
price-inflation history spanning several centuries.

8.7. Mean reversion in other inflation models
8.7.1. Cairns (2004a) uses mean-reverting Ornstein-Uhlenbeck (O-U) pro-

cesses as random drivers for his inflation and interest rates model set up within
the Flesaker & Hughston (1996) framework. The financial economic models of
Hull & White (1993) for interest rate derivatives and Jarrow & Yildirim (2003)
for inflation derivatives also use O-U processes for mean reversion.

8.7.2. The O-U process has an SDE of the form

drt = α(µ− rt)dt + σdWt ;
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where Wt is a Brownian motion and the parameters µ, σ and α can be depen-
dent on time. An OU process with α > 0 reverts to a long-term mean level of
µ at a rate α such that the expected time until the distance between rt and µ

is halved is ln(2)/α. The OU process is discretised as

∆rt = rt − rt−1 = α(µ− rt−1) + σZt ;

where {Zt} is a sequence of independent and identically distributed standard
normal random variables. Hence the OU process is an AR(1) process with
AR(1) parameter α.

8.7.3. The correlation structure between the increments ∆rt of an AR(1)
process is

ρ
(
∆rt, ∆rt+h

)
= αh ; h = 0, 1, . . . (40)

8.7.4. Cairns (2004a) uses several OU processes to model long-term nom-
inal interest rates consistent with the variable patterns of mean reversion ob-
served in markets over very long periods. The model is derived as an equilib-
rium model, but it may be possible to use a sufficient number of risk drivers
that ensure the model recovers prices that are close enough to market levels
to rule out arbitrage. The model includes real interest rates and inflation, al-
though these are not mean-reverting.

9. Condition 3: Deterministic interest rates

9.0.1. The third assumption of the basic Black–Scholes world is determinis-
tic real and nominal interest rates. While this may be a reasonable assumption
for valuing short-dated options on an underlying which is independent of inter-
est rates, this assumption is indefensible for inflation options. Furthermore, the
link between nominal interest rates and inflation through inflation targeting is
complex and may be unstable over time.

9.0.2. In continous time, the drift of the spot inflation index Qt depends
on the instantaneous forward breakeven inflation rate b(t, t) of equation (2),
through:

QT = Qt exp
[∫

T−t

0
b(t, τ)dτ

]
.

It is therefore unrealistic to expect breakeven inflation and the corresponding
real rate to be static while spot inflation is volatile.

9.0.3. Models for pricing inflation derivatives can be extended to stochastic
nominal and breakeven inflation rates, with correlation between the processes,
provided these rates are also Itô processes. Van Bezooyen, Exley & Smith
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(1997) (BES) derived the prototype model of HJM form for nominal and real
rates and the spot inflation index. They consider short-rate models for real and
nominal rates, such as the Ho–Lee and Hull–White extended Vasicek models
as special cases of this model if there is no inflation index variability, and show
they are compatible with the Black–Scholes currency model for inflation using
volatilities scaled with time in a manner consistent with the model dynamics.

9.0.4. BES consider a Ho–Lee-type model with the following stochastic
differential equations for the nominal short-rate rf and real short-rate rg:

drf (t) = αfdt + σb dW b(t) + σg(t) dW g(t)

drg(t) = αgdt + σg dW g(t)

Here d〈W b,W g〉 = 0. This model implies that short breakeven inflation and
real rates are independent and the short breakeven inflation rate volatility is
σb. BES show that this model leads to the value of a type-2 LPI liability
equivalent to (18), but with volatility scaled to the power 3

2 rather than the
square–root of time:

σ
√

(T−t) = σb(T−t)
3/2 . (41)

9.0.5. Exley (2006) extends the BES version of the Hull–White extended
Vasicek model further, giving valuation formulae for type-4 collared LPI li-
abilities and the inflation caps or floors used to calibrate the volatilities for
the model. Exley notes that the zero-volatility inflation index assumption is
equivalent to assuming that the actual inflation rate over the annual period
between LPI increases is the same as forward breakeven inflation for the pe-
riod. This assumption reduces the three-factor HJM model inflation model
to two factors for real and nominal rates and simplifies calibration. However,
this assumption is unrealistic for the same reason as currency models recognise
random variation of the exchange rate is not fully accounted for by random
variation in interest rate differentials. That is, under the risk-neutral measure,

dQt/Qt =
(
f(t, t)− g(t, t)

)
dt + σdWQ

t ; σ > 0, f and g stochastic.

9.0.6. Rogers (1997) argues that complete-markets models do not require
an additional stochastic driver, WQ

t , for the exchange rate. This apparent
contradiction is resolved by noting that realistic models for breakeven inflation
require at least two factors, and with the short breakeven inflation rate over
infinitesimal time dt to some degree orthogonal to changes in longer dated
breakeven inflation rates.

9.0.7. Figure 31 is a histogram of the daily absolute changes (in basis
points) for the SA R189 2013 inflation-linked bond breakeven rate over the



9. CONDITION 3: DETERMINISTIC INTEREST RATES 92

two years to 30 June 2006. There is evidence of kurtosis in excess of a normal
distribution, unlike the histogram for changes in the inflation index in Figure
26 (which was based on a much smaller sample of monthly changes).
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Figure 31: Histogram of daily absolute changes in SA 2013 bond breakeven

9.0.8. The systematic departure from normality is more evident in the
normal Q-Q and P-P plots in Figure 32. Data points lying below and to
the right of the model in the positive quadrant and above and to the left
in the negative quadrant of the Q-Q plot suggest fatter tails than a normal
distribution. This phenomenon of leptokurtosis is a feature of many financial
markets. A cluster of zero daily moves is seen clearly in the P-P plot. The
Jarque–Bera test emphatically rejects the hypothesis of a normal model for
breakeven inflation rate changes at the 95% level, but not for changes in the
CPI.
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Figure 32: Q-Q and P-P plot of daily absolute changes in the SA 2013 bond
breakeven rates shown in Figure 31
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9.0.9. The general condition that nominal and breakeven rates are Itô pro-
cesses admits a variety of terminal distributions for these rates. A model
frequently used for nominal rates is the CEV model, so named for its constant
elasticity of variance:

df(t, T ) = µ(f, t, T )dt + f(t, T )βσ(t, T )dWt . (42)

This class includes normal (β=0) and lognormal (β=1) and the Cox Ingersoll
Ross (β=1/2) processes as special cases.

9.0.10. Figure 33 plots the 3-month normal SA 2013 inflation-linked bond
breakeven volatility in basis points per day against the breakeven rate level.
This normal volatility is calculated using the absolute change in rate. The
breakeven inflation rate plotted corresponds to the date in the middle of the
3-month volatility calculation period. The slope of the volatility as a function
of breakeven level is an indicator of the CEV β coefficient. The chart and a
regression of these variables shows no clear relationship, so a normal model may
be the best model for breakeven inflation. This accords with the conclusions
of Barclays Capital6 following analysis of other inflation-linked bond markets.
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Figure 33: 3-month SA 2013 bond breakeven normal volatility versus breakeven
inflation rate, two-year period to 30 June 2006.

6 Inflation Derivatives - A User Guide, Barclays Capital Research, January 2005
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10. Condition 4: Deterministic volatility

10.0.1. In the Black–Scholes world the process for the underlying has deter-
ministic volatility. This can be extended to an Itô process where the volatility
is a function of the underlying. If interest rates are assumed to be stochastic,
then these additional processes are also assumed to have volatilities and cor-
relations that are deterministic or functions of the Brownian motions driving
the processes.

10.0.2. Martingale pricing theory breaks down for processes with stochastic
volatility or correlation because there is not a unique risk-neutral measure and
the market is incomplete. Replication of derivative payoffs is not riskless and
a method of selecting the pricing measure, such as utility theory, is required.

10.0.3. The fat tails for breakeven inflation in Figure 32 are evidence of
stochastic volatility. In markets for nominal rates options, the implied volatility
smile will reflect this dynamic and models can be calibrated accordingly. This
has also become feasible for the UK and Euro inflation derivatives markets
since dealers publish screens with prices of infaltion caps and floors for a range
of strikes. Where inflation options markets are not sufficiently developed to
imply a volatility smile for calibration, such as in SA, it may be necessary to
draw on historical data to estimate the effect of stochastic breakeven inflation
volatility.

10.0.4. Figure 34 shows SA 2015 nominal and 2013 breakeven normal
volatilities in bp per day, for the two years to 30 June 2006. This shows
that breakeven and nominal rates volatilities are closely related and vary with
time, as they do in other inflation markets. This is not surprising as breakeven
inflation rates are the difference between nominal and real rates.

11. Financial market models for inflation derivatives

11.0.1. The first financial models for inflation derivatives were extensions
to existing nominal rates and foreign exchange models. This makes it easier
for dealers to accelerate product development of inflation products and allows
for integrated risk management. These models focussed on the spot CPI, anal-
ogous to the exchange rate in a foreign exchange model. As the inflation swap
and options market developed, forward CPI models evolved to incorporate spe-
cific aspects of the inflation process (such as correlation) that are essential to
pricing and calibration.
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Figure 34: 3-month SA 2015 nominal and 2013 breakeven rates normal
volatilities, two-year period to 30 June 2006.

11.1. Spot inflation index models
11.1.1. Jarrow & Yildirim (2003) (JY) published the first inflation and

interest rates model in the finance literature, although Van Bezooyen et al.
(1997) had previously produced a similar model. The JY model is a single
factor model in the spirit of the Amin & Jarrow dual currency HJM model.
The model describes the evolution of the spot inflation index and forward
nominal and real rates with drifts adapted to the process and deterministic
volatilities. The real-world dynamics of the model are:

df(t, T ) = αf (t, T )dt + σf (t, T )dW f (t) ,

dg(t, T ) = αg(t, T )dt + σg(t, T )dW g(t) , (43)

dQ(t)/Q(t) = µQ(t, T )dt + σQ(t)dWQ(t) .

The three Brownian motions driving the processes are correlated.
11.1.2. Jarrow & Yildirim propose implementing the model with a constant

inflation index volatility,
σ(t)=σ,

and time-homogeneous volatilities for nominal and real forward-rates of the
form:

σf (t, T )= σne−an(T−t),

σg(t, T )= σre
−ar(T−t).
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11.1.3. This Hull White extended Vasicek implementation implies short
nominal and real rates are mean reverting OU processes under Q with mean
reversion rates an and ar. The risk-neutral processes are then:

dn(t) =
(
µn(t)− ann(t)

)
dt + σndW̃ f (t)

dr(t) =
(
µr(t)− ρ(r,Q)σrσQ − arr(t)

)
dt + σrdW̃ g(t)

dQ(t)/Q(t) =
(
n(t)− r(t)

)
dt + σQdW̃Q(t)

where: n(t) ≡ f(t, t), r(t) ≡ g(t, t)

µn(t) =
∂f(0, T )

∂T

∣∣∣
T=t

+ anf(0, t) +
σn

2

2an

(
1− e−2ant

)

µr(t) =
∂g(0, T )

∂T

∣∣∣
T=t

+ arg(0, t) +
σr

2

2ar

(
1− e−2art

)
(44)

11.1.4. The drift for inflation under Q is therefore mean-reverting as it is
the difference between the mean-reverting nominal and real short-rates. Jar-
row & Yildirim developed the model for the bond market. Correlations and
volatilities are calibrated to historical bond yield and inflation series and may
be volatile. The model could be applied to the swap market, but inflation
swaps trade on the breakeven inflation rate and calibration would not be as
natural as for bonds that trade on real yields.

11.1.5. The Gaussian processes of the JY model make it possible to derive
simple analytic values for a variety of inflation derivatives. Jarrow & Yildirim
give closed-form values for zero-coupon inflation options (and hence type-2
LPI). Mercurio (2005a) gives formulae for year-on-year inflation swaps and
options, Henrard (2005) for real rate European options and Malvaez (2005)
discusses numerical procedures for valuation of Bermudan real rate swaptions.

11.1.6. A shortcoming of the JY model is that nominal rates can become
negative. Mercurio (2005a) suggests adapting a lognormal LIBOR market
model to include real rates. Nominal rates and real rates are then lognormal
and guaranteed to be positive. The drift under Q for inflation is the difference
between nominal and real rates, as in equation (44), but is not mean-reverting.
The restriction of the real rate to positive levels and the skew of the lognor-
mal process may distort the value of long-dated inflation liabilities more than
negative nominal rates.

11.2. Forward inflation index models
11.2.1. Belgrade & Benhamou (2004b) (BBK) model the forward inflation

index at each maturity Ti directly, rather than as functions of spot inflation
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and real and nominal forward-rates,

dQ(t, Ti)/Q(t, Ti) = σ(t, Ti)dW̃
i
Ti

(t) .

where each Q(t, Ti) is a martingale under its own Ti-year measure, QTi . A
nominal rate model is integrated with this inflation model, its single Brown-
ian driver having the same correlation with the {W i}. This model is suited
to developed inflation derivatives markets where the model can be calibrated
directly to zero-coupon and year-on-year inflation swaps. Furthermore, for a
time-homogeneous volatility specification the model can bound the zero coupon
and forward year-on-year volatilities and correlations that determine the zero-
coupon and year-on-year swap rates.

11.2.2. The BBK model uses the market model approach of modelling each
rate maturity and draws an analogy between forward-rate and swaption volatil-
ities in nominal space and year-on-year and zero-coupon index volatilities in
breakeven space. The modelling of each discrete maturity gives the model a
high dimension, although in practice the dimension is reduced to only a few
factors and a limited number of parameters for the volatility and correlation
functions. Zero-coupon and year-on-year inflation options are readily priced in
the BBK model. Belgrade et al. (2004) give the prices of real-yield swaptions.
It is straightforward to include inflation seasonality in model valuations.

11.2.3. The mean reversion characteristics of the inflation process in the
risk-neutral world will depend on the volatility and correlation structure for
the year-on-year and zero-coupon inflation rates. BBK show how the model
can be calibrated consistently with a Hull–White mean-reverting process for
inflation.

11.2.4. Even in the active Euro inflation market year-on-year swaps do not
trade with anything like the frequency of zero-coupon inflation swaps. Vol-
ume is concentrated in maturities under 10 years, since year-on-year swap flow
relates to structured notes purchased by individuals and smaller institutions
and such notes are rarely issued with maturities longer than 10 years. It is
questionable whether year-on-year swap rates can be used as a reliable cali-
bration source, especially for long-dated inflation models such as those used
to price pension liabilities. The main use of the model is by dealers pricing
year-on-year inflation swaps in a market-consistent manner.

11.2.5. Mercurio (2005a) developed a model for the forward inflation index
in a similar vein to the BBK model. Mercurio (2005b) compares the prices of
0% floors on the year-on-year inflation rate for the JY model, his LIBOR
and real rate market model of section 11.1.6 and this forward CPI market
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model calibrated to the same set of zero-coupon inflation swap rates and at-
the-money nominal cap volatilities. Unsurprisingly, the different dynamics of
the models lead to significantly different floor prices and these deterministic
volatility models cannot reproduce the market-implied volatility smile.

11.2.6. Mercurio & Moreni (2006) describe a stochastic volatility extension
to the forward CPI market model in the form first proposed by Heston (1993).
Under the assumptions of constant nominal volatility and a common mean-
reverting volatility for all forward inflation processes with a constant mean
reversion rate and level, they derive an approximation for the prices of options
on year-on-year inflation that exhibit a volatility smile. The assumption of a
common volatility process for all forward inflation indices is very restrictive
as it implies the increase in volatility of zero-coupon inflation swap prices due
to increased duration is precisely offset by the decrease in the term structure
of volatility of the inflation swap rate. The authors acknowledge that the
assumption of a common volatility process “seems too restrictive if we aim at
calibrating many maturities simultaneously”.

11.3. Risk-neutral and real-world inflation dynamics
11.3.1. Martingale pricing theory dictates that the price of an inflation

derivative is the value of its expected payoff under the measureQ corresponding
to the risk-neutral world. The drift under Q of all instruments with prices
dependent on the inflation model variables is the instantaneous risk-free rate
and so the real-world drift has no bearing on the value of inflation derivatives.
The analysis of the real-world dynamics of the inflation process in section 8 is
therefore relevant only as far as it illuminates the volatility of the process. This
volatility is measure-invariant for the Black-Scholes world models considered
earlier.

11.3.2. The term structure of market-implied volatilities for nominal rates
will imply the rate of mean reversion in the risk neutral process of a time-
homogeneous model calibrated to the nominal options market. For example, a
volatility term structure in the Hull–White extended Vasicek form, σ(t, T ) =
σe−a(T−t), for nominal forward-rates implies that rates follow an OU short-rate
risk-neutral process with mean reversion rate a.

11.3.3. The HJM completeness and no-arbitrage conditions restrict the
real-world drift for a given volatility term stucture. This connects the real-
world mean reversion with the risk-neutral world, even although the real-world
dynamics are not required for risk-neutral derivatives pricing. Where there is
no unique risk-neutral measure it may be considered desirable to limit the im-
plied market inefficiency of the model. Smith (2001a) discusses how inefficiency
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increases with the difference between the real-world and risk-neutral densities
for the asset price process. This suggests real and risk-neutral measure mean
reversion dynamics should be aligned to some extent.



CHAPTER 6

Background risks

This chapter addresses the impact on the market valuation of pensions
of risks that cannot be hedged using market instruments. The relevant back-
ground risks for pensions in payment are longevity, credit risk from the sponsor
in respect of unfunded liabilities, regulatory risks and tax risks.

The market valuation of pensions subject to background risk is, in essence,
the problem of pricing in an incomplete market. A number of valuation meth-
ods have been proposed for incomplete markets liabilities. These all require
that the background risks are modelled with a level of accuracy commensurate
with their significance and their relationship with the tradable risks.

The primary background risk for pensions in payment is longevity risk.
Market developments, such as mortality derivatives, may in time allow longevity
risk to be transfered to the optimal counterpart and reveal the market cost of
transfering the risk. Stochastic models for longevity risk that have been pro-
posed in the literature are analysed. It is considered how a market valuation
might be assigned to the liabilities using a risk-adjusted valuation approach.

The chapter concludes with a summary of the key considerations behind
the market valuation of pension risks. There are a number of interesting par-
allels between inflation and longevity that aid overall understanding of these
risks, although the idiosynchratic nature of pensions mortality risk makes it
difficult to incorporate in a general valuation model. The key challenge for
a risk-adjusted valuation is the estimation of the market price of background
risks. Fortunately, these valuation variables are becoming more transparent as
the capital and insurance markets develop and converge.

100



2. VALUATION OF BACKGROUND RISKS 101

1. Background risks for a DB pension fund

1.0.1. A pension fund that uses market instruments to hedge its projected
liabilities will still be faced with inevitable residual risk which cannot be hedged
or diversified away. There may be a price for which another entity will take over
the liabilities, but this does not necessary allow us to infer a market valuation
for the liabilities (see chapter 3).

1.0.2. These residual risks have been termed “background risks” in the
economics literature (Cardinale et al. 2006). The actuarial literature recognises
that longevity risk is key risk for pension funds. However, since the market for
longevity is risk is nascent and incomplete, it will be considered as a background
risk. For a DB pension fund, background risks then include:

(1) longevity risk;
(2) credit risk from the sponsor;
(3) regulatory and tax effects;
(4) decrements such as early retirement, withdrawal, etc; and
(5) basis risk between salary and CPI inflation for liabilities in respect of

active members of a final salary pension fund.

We restrict our attention to the first three risks, as the ambit of this research
is the market valuation of pensions in payment.

2. Valuation of background risks

2.0.1. Cardinale et al. (2006) survey the economic theory of background
risks. The interaction between background risks and tradable risks, such as
covariation and whether background risks are multiplicative or additive, can
affect the degree of tolerance for these risks.

2.0.2. Pension liabilities subject to background risks are an incomplete
market in financial economics terms. Earlier it was noted noted that there
are elements of the investment risk which are also not amenable to perfect
replication. There is no unique risk-neutral measure for incomplete market
liabilities. However, it is possible to assign a market value to the liabilities
using one of the incomplete-markets valuation approaches discussed in the
literature survey.

2.0.3. Regardless of the valuation approach, the background risk processes
should be modelled as accurately as their significance dictates in order to gen-
erate a sound and robust measure of market value. The interaction between
background risks and market risks should also be modelled with care since the
valuation may be sensitive to the form of this interaction.
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3. Longevity risk

The longevity risk of pensions in payment is the risk that mortality ex-
perience is lighter than anticipated in the mortality projection. The trend of
mortality improvements in recent times highlights the significance of this risk.
In the UK, the recent CMI (2004) working paper showed that the CMI central
mortality projections for life-office annuity business in the past 35 years only
accounted for only about 50% of the actual mortality improvement.

3.1. Longevity hedging with insurance and reinsurance
3.1.1. Milevsky & Promislow (2001) model longevity risk assuming an in-

surer is able to hedge the risk by writing life insurance policies. However, life
protection products provide a limited longevity hedge since the causes of death
for insureds differ from those of annuitants and pensioners due to differences
in age at death(Richards & Jones 2004). In SA this difference may be exac-
erbated by the impact of AIDS. In the US 10% of the life insurance market
is on lives aged 70 or older (Ortiz, Stone & Zissu 2006), but the capacity for
longevity hedging in respect of these lives falls short of the longevity risk of
private and state pension liabilities for this age group.

3.1.2. Olivieri (2002) discusses how various proportional and excess-of-loss
life reinsurance arrangements can be used to reinsure longevity risk and the
related investment risks of annuities. A dynamic reinsurance hedging pro-
gramme can then, in theory, be used to complete the pension and life annuity
market. In practice reinsurers may be reluctant to assume undiversifiable mor-
tality risks and a limited volume of annuity reinsurance capacity is available.
In the UK less than 5% of longevity market is reinsured compared with more
than 50% of the life assurance market and some reinsurers view longevity risk
as ‘too toxic’ to underwrite (Wadsworth 2005).

3.2. Mortality derivatives
3.2.1. Derivatives on mortality or survival rates or indices may be struc-

tured to assist the risk management of insurers. The mortality derivatives
market has been slow to develop as a result of the complexity of the risk and
lack of natural two-way interest. Various contracts have been proposed in the
literature:

• ‘Survivor swaps’ exchange a mortality swap leg linked to a survival
index for a fixed leg linked to the mortality projection that equates
the expected present value of the legs at each future reset date. Sur-
vivor swaps are analogous to zero-coupon inflation swaps, where the
survival index takes the place of an inflation index. Indeed, combining



3. LONGEVITY RISK 103

the survival index with an inflation-linked notional will be preferable
for real annuity insurers and many pension funds. Dowd et al. (2006)
report that over-the-counter (OTC) survivor swaps have been trans-
acted between reinsurers. Lin & Cox (2007) discuss how a combina-
tion of swaps can be used to hedge diversifiable and (to an extent)
systemic risk between life insurance and annuity portfolios.

• ‘Mortality options’ have a payoff based on a mortality rate or index
at maturity. Guaranteed annuity options (GAO) granting policyhold-
ers the right to enter into life annuities at predetermined rates were
common in the UK in the 1980s. These options subsequently caused
large losses for insurers who failed to hedge the longevity and interest
rate risk.

• ‘Annuity futures’ could be envisaged, with the underlying based on an
insurer poll of annuity rates analogous to the dealer poll used to set a
market swap rate for interest rate derivatives. Blake et al. (2006) state
that the Association of French Pension Funds is considering such a
future. They describe the practical difficulties posed by the contract,
including the heterogeneity of life annuity policies, lack of incentives
for insurers to quote rates and the slow reaction of annuity rates to
changes in longevity.

3.2.2. Mortality derivatives may be embedded within physical investments
to produce mortality-linked bonds with risk and return characteristics attrac-
tive to both issuers and investors. Insurance securitisations, outlined in chapter
3, provide an ever-expanding source of market price information for mortality
risk. Securitisations to date have concentrated on elements of life insurance
assets and liabilities that convey limited information on the mortality risk of
pensioners.

3.2.3. The Swiss Re ‘Vita’ five year mortality-linked bond issues were fully
subscribed1. The reinsurer in effect purchased options on a predetermined in-
dex of population mortality for five countries to hedge part of its mortality
risk. The bonds have been described as catastrophe bonds since the strike is
set at a level that would normally only be breached by deaths caused by a dis-
tinct event, such as a disease epidemic, terrorist attack or natural catastrophe.
Therefore the bond would only provide a limited longevity hedge for pension
annuity risk in these countries.

1 “Swiss Re successfully closes its second life catastrophe bond”, Swiss Re, 2005.
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3.2.4. Some securitisations, such as the Norwich Union securitisation of
equity-release mortgages in the UK2 have been promoted as longevity risk
hedges. However, the link between mortality and other risks is complex and
Richards & Jones (2004) contend that these securitisations “might be felt to
be unsuitable for say, backing annuity liabilities, as this would be doubling
up of longevity risk on both the asset and liability sides”. The Tarrytown
securitisation of US senior life settlements (with life expectancy of insureds
under 12 years) is a fairly clean transfer of longevity risk (Ortiz et al. 2006)
for old lives, but these lives are generally impaired. The bonds would need to
be sold short to be used as a longevity hedge and the market is as yet too thin
to do this.

3.2.5. The European Investment Bank (EIB) longevity bond arranged by
BNP Paribas did not achieve sufficient investor interest for the issue to pro-
ceed. The bond was of the form of a 25-year nominal annuity with payments
linked to the survival index for a 65-year-old (in 2003) male life based on Eng-
land and Wales population mortality statistics. The bond can be viewed as the
combination of a nominal annuity bond and a survivor swap. The reinsurer
underwriting the longevity risk for the EIB, Partner Re, emphasised that it had
limited capacity for further deals. Cairns, Blake, Dawson & Dowd (2005) con-
sider why the bond issue was unsuccessful. While the bond would help hedge
longevity risk for UK pension funds and life insurers, these institutions may
find it more cost-effective to hedge the risk directly with a reinsurer (subject
to the capacity constraints addressed in section 3.1).

3.2.6. It is an open question whether there are natural counterparts for
longevity risk. Furthermore, the heterogeneity of longevity risk frustrates at-
tempts to construct derivatives to transfer the risk effectively. Blake et al.
(2006) discuss why basis risk between the longevity experience of a portfolio
(such as DB pensioners) and a mortality derivative may be unavoidable. The
alternative bases for defining a survivor index are:

(1) national population experience;
(2) industry experience (e.g. SA CSI, UK CMI studies); or
(3) portfolio experience.

3.2.7. A population mortality index does not expose either counterpart to
asymmetric information, but there may be a high degree of basis risk if the
reference population experience is a poor proxy for the portfolio. Industry
experience for relevant insurance contracts (e.g. life-office annuities) may be
more representative, but this takes longer to analyse and there may be the

2 “Life Company Funding: A Hybrid Future?”, Life and Pensions, December 2005.
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perception of moral hazard if significant industry participants can trade on
their advance knowledge of the results (Blake et al. 2006). The payoff of the
mortality derivative may be linked to the experience of the specific portfolio
in order to eliminate basis risk, but this is at the cost of the standardisation
needed to concentrate potential liquidity in the contract. The market will
be limited to OTC deals and antiselection may limit longevity risk takers to
counterparts with underwriting expertise (such as reinsurers).

3.2.8. Publication delays to the mortality index increase basis risk and
moral hazard, but delays are inevitable given the time required to collect and
graduate mortality experience. The relative effect of the mortality indexation
lag is reduced for the long-term deals needed to hedge pension liabilities. The
Swiss Re and EIB mortality-linked securities base payments on population
mortality experience, for which there is a publication delay of a year or more
after the end of the exposure period. A bank dealing mortality derivatives
has created a longevity index based on US population experience to facilitate
prospective mortality derivative trades3.

3.2.9. In summary, while mortality derivatives and reinsurance may allow
a pension fund to hedge part of its mortality risk through diversification, exact
hedging of longevity risk is not possible without an insurer buy-out of the lia-
bility. This weakens the case for using pricing techniques designed for complete
markets to value pension liabilities without consideration of the market price
of longevity risk.

3.3. Classes of longevity risk models
3.3.1. The impetus for the stochastic mortality models developed in recent

years is from regulation (e.g. the Financial Services Agency Integrated Pruden-
tial Sourcebook in the UK) and actuarial professional guidance (e.g. Actuarial
Society of SA guidance for internal mortality models of SA life insurers). To
model the mortality process it is useful to consider the following fundamental
sources of mortality risk:

• stochastic variation in the number of deaths each year;
• mortality rate projection risk; and
• mortality model and parameter risk.

3.3.2. The stochastic variation in deaths is diversifiable and the risk can
be managed through the law of large numbers. To simplify analysis it is usual
to assume that deaths are independent events. The number of deaths over
a period τ for a pool of n homogeneous lives experiencing (initial) mortality

3 “CS Longevity Index Commentary, 1 March 2006”, Credit Suisse.
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rate q is then a Binomial(n, qτ) random variable. If n is large this can be
approximated as a Poisson process with mean λ=nqτ .

3.3.3. The assumption of independence is not likely to be true since some
deaths will be attributable to a single event (such as a disease epidemic), but
it is nonetheless reasonable in practice. The mortality experience over a short
period for pensioners is dependent in a different way to that of active members
who may work together and be exposed to a common catastrophic risk (such
as the New York September 2001 terrorist attack).

3.3.4. The assumption of homogeneous lives is reasonable only if the pool
is broken down into subgroups by risk factors such as as age, sex, amount of
pension, etc. Many pension funds have a small number of retired lives and
relatively high stochastic variation in the number of deaths. Heterogeneity of
risk factors will further exacerbate this stochastic variation. CMI (2006) ob-
serves that, for smaller pools (fewer than 5000 lives), stochastic variation due
to heterogeneity in annuity size can outweigh mortality projection risk. Rever-
sionary benefits and differences in pension indexation (e.g. higher indexation
for retired managers) will exacerbate heterogeneity.

3.3.5. It is usual to model experience over successive periods of τ =1 year.
If more precision regarding the timing of deaths is required, e.g. when pension
benefits are paid monthly, deaths may be assumed to be uniform over the year.
There will be seasonal fluctuation in mortality experience (e.g. more deaths in
winter when pensioners are more susceptible to flu, etc) but this will be minor
compared with the stochastic variation in the numbers of deaths.

3.3.6. The second and third risk sources are systemic and cannot be di-
versified away. The mortality rate projection is the best estimate of future
mortality experience for the pool of lives considered and can be viewed as a
parameter of the stochastic mortality model. We define parameter risk as the
uncertainty relating to this and other parameters in the model. Model risk is
the risk that the model has been incorrectly specified.

3.3.7. Cairns, Blake & Dowd (2006) provide a comprehensive survey of the
published stochastic mortality models. They class models as follows:

(1) models that project the force of mortality for each age (or cohort or
both) and future time based on past experience;

(2) models of random variation in discrete time around a deterministic
mortality projection; and

(3) mortality models based explicitly on the risk-neutral pricing paradigm
for interest rates and credit.
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3.4. Published stochastic mortality models
3.4.1. The Lee–Carter model.
The Lee & Carter (1992) model assumes a force of mortality for lives of

age x at future time t of

log µ(x, t) = a(x) + b(x)k(t) + ε(x, t)

where ε(x, t) is an error term. The parameters a(x), the general mortality level
and b(x) and k(t), the age-specific variation, are constrained to give a unique
solution. This model is used by the Bureau of Census in the US, where it ex-
plains almost all the US population mortality variation with time (Haberman
& Verrall 2006). The model is less effective for UK data as it cannot capture
the cohort effect, where the population born in the decades around 1935 has
experienced consistently higher mortality improvements than other generations
(Willets 2006). Stochastic mortality projections are based on modelling k(t)
as a time series.

3.4.2. P-spline models.
CMI (2006) discusses the development of two public stochastic mortality

models using the Lee–Carter method and the Penalised splines (‘P-splines’)
method of Currie et al. (2004). The idea behind P-splines is similar to the
spline curves used to graduate mortality curves. Basis splines are fitted in two
dimensions (e.g. by age and data period or by age and cohort) over historic
data and the projection period using regression or maximum likelihood and a
penalty function. The penalty function weighs goodness of fit (to the histori-
cal data) against smoothness (over the data and projection range). The model
does not define a stochastic process and so cannot generate sample paths of fu-
ture mortality experience, unlike the Lee–Carter method. Confidence intervals
for projected mortality rates for P-splines will include parameter uncertainty.
The parameter uncertainty for the Lee–Carter method can only be estimated
indirectly, for example by using the parametric bootstrap method of resam-
pling from an assumed distibution for the parameters and refitting the model.
In this sense the methods are complementary.

3.4.3. Parametric mortality curve models.
Cairns, Blake & Dowd (2005) model a parametric mortality curve in dis-

crete time using a stochastic mortality curve of Perks form:

q̃(t, x) =
exp

(
A1(t+1) + A2(t+1)(x− t)

)

1 + exp
(
A1(t+1) + A2(t+1)(x− t)

) . (45)
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Here q̃(t, x) is the realised initial mortality rate and A1(t) and A2(t) are cor-
related random walks with drifts, which can be interpreted as the general and
age-specific expected rates of mortality improvement. The initial curve pa-
rameter values A1(0) and A2(0) are based on an initial mortality projection,
so this model is of the second class identified above. Other parametric forms
for the stochastic mortality curve have been proposed: Olivieri (2001) uses a
Heligman–Pollard law, Milevsky & Promislow (2001) and Ballotta & Haber-
man (2004) use a mean-reverting Brownian-Gompertz law.

3.4.4. The Olivier–Smith model.
Olivier & Smith (2007) model `(s, t, x) = E

[
`(t, x) | Fs

]
, the expected

number of survivors at time t for a cohort of initial age x, given an initial
survivor projection `(0, x) and the filtration Fs of deaths to time s ≤ t. This
set-up enables the model to incorporate both stochastic variation in the number
of deaths and stochastic variation in the mortality rate around the mortality
projection. The number of cohort deaths each year conditioned on the number
of cohort survivors at the start of the year is assumed to follow the binomial
distribution:

`(s, t, x) ∼ Bin
[
`(s, t−1, x) , p (t−1, t, x)

]
.

Here p (s, t, x), the probability of survival to time t of a life in the cohort with
initial age x conditional on Fs, has a Gamma deterioration factor G(s) with
mean 1 and variance v:

p (s, t, x) =
(

`(s−1, t)
`(s−1, t−1)

)β(s,t)G(s)

∀ t ≥ s where G(s) ∼ Gamma
[
1/v, 1/v

]
.

The constant β(s, t) is a bias correction factor to ensure that the expected
number of survivors is equal to the initial survivor projection `(0, x). The
number of survivors divided by the projection is therefore a martingale and
the bias correction factor is analogous to the risk-neutral drift adjustment in
an interest rate model.

3.4.5. Olivier & Jeffery (2004) justify a Gamma deterioration factor on
the grounds that it is positive and so ensures that p (s, t, x) ≤ 1 and the bias
correction factor is tractable. For UK CMI data, the standard deviation of
G(s) is

√
v ≈ 5% and a truncated normal deterioration factor would give similar

results as this gamma distribution is close to symmetric. Dowd et al. (2006)
use a transformed Beta variable for the deterioration factor for US population
mortality. They use a standard deviation for the deterioration factor of 2.2%.
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3.4.6. The Olivier–Smith model uses the same deterioration in a given cal-
endar year for all cohorts. Cairns (2006) generalises the model using a Gaussian
copula over different Gamma deterioration factors for each age cohort. This
gives a better fit to UK population mortality since 1960, since it allows age-
specific mortality improvement.

3.4.7. Interest rate and credit models for mortality.
Cairns, Blake & Dowd (2006) show how stochastic mortality models can

be built from a risk-neutral interest rate model framework. Short-rate models
describe the behaviour of the spot force of mortality, usually in continuous
time. Dahl (2004) considers conditions for which the force of mortality µx+t

gives rise to an affine structure for survival probabilities, i.e.

p (s, t, x) = exp
[
A(s, t, x)−B(s, t, x)µx+t

]
under Q

3.4.8. Miltersen & Persson (2005) and Cairns et al. (2006) discuss the con-
ditions for a forward mortality rate framework analogous to HJM to be free of
arbitrage. The system is complicated by the introduction of age as an addi-
tional dimension, but the conditions are similar to HJM if the Brownian drivers
apply to all age cohorts. Cairns (2006) notes that mortality-linked securi-
ties dependent on survival probabilities, such as survivor swaps and longevity
bonds, are more readily priced within a short-rate framework. By contrast,
guaranteed annuity options depend on forward mortality rates and may be
more tractable in a forward mortality rate model.

3.4.9. The positive interest framework of Flesaker & Hughston (1996) is a
useful basis for mortality models since it ensures that the force of mortality
remains positive at all times. Cairns et al. (2006) discuss how such a model
might be formulated and calibrated.

3.4.10. Milevsky & Promislow (2001) use the hazard-plus-interest credit
modelling theory of Duffie & Singleton (1997) to model the spot force of mor-
tality and the short interest rate, assuming these processes are independent.

3.4.11. Cairns et al. (2006) also develop an analog of the (annual) LIBOR
market model that they term the SCOR (survivor credit offer rate). The SCOR
depends on the age of the cohort and is equivalent to the annual mortality drag
for a retired life in the cohort (i.e. the investment return net of the risk-free
rate the life must earn to justify not annuitising).

3.5. Stochastic mortality model considerations
3.5.1. A stochastic mortality model must produce a strictly positive mor-

tality rate at all future times. Furthermore, Cairns et al. (2006) argue that a
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model should produce a spot mortality rate at each future time that is mono-
tonically increasing at advanced ages in order to be ‘biologically reasonable’.
This is a considerable challenge for models where multiple factors are employed
to allow different rates of mortality improvement with age. For example, the
copula over different age-cohort deterioration factors used in the Cairns ex-
tension to the Oliver–Smith model must be formulated to ensure that this
condition is met. Cairns (2006) also notes that very few biologically reason-
able short-rate mortality models have a simple analytical form for the survivor
bond price as a function of the current short mortality rate.

3.5.2. A more contentious point, also advocated by Cairns et al. (2006),
is that the stochastic variation about projection of mortality improvements
should not be strongly mean-reverting. They argue that unanticipated mor-
tality improvements should not reduce the potential for further future improve-
ments. This may be the case if better medical technology is responsible for
the improvements, although to the extent there is a fixed maximal human life
span there may be mean-reversion at very advanced ages.

3.5.3. A related concept is the vitality effect, so called by Olivier & Jef-
fery (2004) since high mortality in one year implies higher than anticipated
mortality in the next year because the suriviving lives have been weakened by
the initial cause of the high mortality. The opposite herd effect is when high
mortality in one year implies lower mortality in the next year when it is the
weaker lives that were initially lost. The Olivier–Smith model assumes that
the number of cohort deaths in each year is independent of previous years,
since these deaths are independent binomial-Gamma mixture variables. It is
not obvious how herd or vitality effects could be included through serial cor-
relation in the deterioration factors while retaining a tractable bias-correction
factor.

3.5.4. Mortality studies must follow the experience of a cohort of lives
to judge whether there are vitality or herd effects, against the alternative
hypothesis of independence. This may be difficult in industry studies unless
the data from all contributors is sufficiently detailed and standardised.

3.5.5. Cohort studies also eliminate the risk of confounding the mortality
experience with changes over time in the nature of the population studied. For
example, a study of SA life-office annuitants may not control for all the changes
in risk factors from an increasing number of individuals funding their own
retirement annuities. Here past experience may not be a good guide to future
and stochastic mortality models with more control over expected mortality
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improvements may be preferred over those which project past experience (such
as P-splines).

3.5.6. Willets (2006) discusses projections based on causes of death (COD).
This approach is useful for understanding short-term trends in mortality but
the nature of longevity improvement is complex and dynamic and it is unlikely
to be a COD stochastic mortality model will be helpful for long-term pension
liabilities. COD models may be of use for determining the extent of mortality
delta offset between annuitants and insureds over short periods.

3.5.7. The assumption of independent deaths within each year simplifies a
stochastic mortality model, giving it flexibility to address the long-term vari-
ation in longevity that is significant for pension liabilities. However, it may
be considered necessary to include low-frequency, high-severity random cat-
astrophic mortality risk in the model. Klein (2003) points out that a single
catastrophe could undo the effect of decades of improvements. The 1918 in-
fluenza pandemic would decrease the CS Composite Longevity Index (for the
entire US population) by 4.4 years, equivalent to 5.4 years of mortality im-
provement at the current rate4.

3.6. Relationship between longevity and interest rates
3.6.1. The relationship between longevity and the (real) liability discount

rate may have a significant effect on the risk of the liability cashflows and
hence the market value. Most actuarial models explicitly or implicitly assume
no correlation (Richards & Jones 2004). This facilitates the valuation and
mitigates the multiplicative effect of longevity as background risk, but perfect
matching is not possible and the market cannot be treated as complete.

3.6.2. There has been little research into the relationship between longevity
and interest rates. A report commissioned by the Association of British Insur-
ers5 suggests there is no clear relationship since there are a number of opposing
factors:

• Wealth effects. To the extent that better medical care outweighs dis-
eases of affluence (such as heart disease from obesity), there will be
a positive net wealth effect on longevity. To the extent that property
and equity wealth gains are realised and invested in bonds to match
the increase in pension liabilities, longevity and long-term interest
rates may be negatively correlated. This effect will only occur gradu-
ally with time. Miltersen & Persson (2005) point to the relationship

4 “CS Longevity Index Commentary, 1 March 2006”, Credit Suisse.
5 “Report for the ABI on key correlation assumptions in ICA for life offices”, Deloitte and
Touche LLP, 2005.



3. LONGEVITY RISK 112

between general economic development and longevity. In time, the
development of the SA economy may see long-term interest rates con-
verge to the lower levels of developed markets and longevity converge
to the higher levels of more developed markets. This scenario would
imply a negative correlation between longevity and yields.

• Demographic shifts. An increase in longevity combined with low fer-
tility rates will increase the proportion of retirees drawing state pen-
sions. This will increase the state borrowing requirement unless action
is taken to counteract this (e.g. by increasing the age at which the
state pension commences). The decrease in the proportion of the pop-
ulation in employment may preclude the use of increased taxation to
fund these liabilities. Since most state pension commitments are not
prefunded, this will result in a net increase in government debt and
higher long-term real and nominal interest rates. This effect may be
offset or outweighed by increased private pension investment in bonds
to match the increased liabilities of retirees. SA public-service pension
liabilities are prefunded through the PIC so there will not necessarily
be a net increase in government debt. If there is net ageing within
the relatively large private pension sector, interest rates may well de-
crease in response to an increase in longevity. In SA the effect of
AIDS may further complicate the relationship between longevity and
interest rates.

• Catastrophes. A catastrophic mortality event will decrease longevity
and may result in initial risk aversion and a flight to quality assets and
possibly a prolonged period of lower growth. Both consequences imply
a positive correlation between longevity and long-term interest rates,
although emerging markets such as SA have frequently experienced
higher long-term interest rates in periods of risk aversion.

3.6.3. On balance it is unclear how what relationship longevity will have
to long-term yields, making it difficult to calibrate a model for pricing pension
liabilities.

3.7. Valuation of pension liabilities with longevity risk
3.7.1. Earlier it was noted that the valuation of pension liabilities subject

to longevity risk is an incomplete markets valuation problem. Scholarly re-
search to date regarding the pricing of mortality-contingent instruments in an
incomplete market has relied on diversification of background risks (for exam-
ple Thomson (2005)) or applied a risk-adjusted pricing approach. The latter
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approach values the instrument under the risk-adjusted pricing measure Q so
that the drift adjustment to change measure from P to Q is the estimated
market price of risk. This market price of risk, λ, may be a vector and time-
dependent. It compensates the instrument’s holder for risk that cannot be
perfectly hedged in the incomplete market.

3.7.2. By contrast, the change of measure from P to Q in a complete market
with a single source of uncertainty corresponds to a drift adjustment of µ−r

σ

where µ is the drift under P of the instrument and r the risk-free short-rate.
The resulting drift for all tradables (standardised by the cash account or other
tradables) under Q is zero in this risk-neutral world.

3.7.3. Lin & Cox (2005) estimate the market price of longevity risk from the
cost of US life annuities. They use the risk-adjusted pricing transform of Wang
(2002) to infer the market price of longevity risk from market annuity rates
given assumptions about the insurer’s mortality table and expense loading.
The estimated market price of risk of 0.18 for 65-year-old males and 0.23 for
65-year-old females assumes the market price of risk is constant with time
and implicitly includes all sources of mortality risk and the correlation with
investment risk. It would be possible to find the market price of risk as a
function of time by bootstrapping from the prices of annuities commencing at
each age after 65, after stripping out assumed expense loadings.

3.7.4. The Wang transform distorts the real-world density of a payoff to
generate a risk-adjusted pricing density consistent with market prices. The
magnitude of this distortion is the market price of risk. Let λ denote this
market price of risk, F P denote the real-world cumulative distribution function
(cdf) and FQ denote the risk-adjusted cdf. The Wang transform from F P to
FQ is then:

FQ(x) = Φ
[
Φ−1(F P(x)

)
+ λ

]
, (46)

where Φ is the standard normal cdf.
3.7.5. The Wang transform was originally developed to price different excess-

of-loss reinsurance layers consistently. Cox, Lin & Wang (2005) report that the
tranform is consistent with the market pricing of the Swiss Re life catastrophe
bonds when using a market price of mortality catastrophe risk of 0.45.

3.7.6. Wang (2002) shows the tranform can be adapted to allow for un-
certainty in parameter estimation from sampling error by using the Student-t
distribution for the distortion cumulative distribution function in place of Φ

in (46). The degrees-of-freedom parameter for the Student-t distribution is
then based on the sample size. This is relevant for catastrophe risk estimated
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from a small sample of past events where the risk is assumed to be station-
ary over the short-term of the catastrophe bond. This adjusted transform is
not appropriate to capture parameter uncertainty due to mortality changing
over time in the case of a longevity bond. It is possible to generalise to a
multi-dimensional market price of risk and couple any distortion cumulative
distribution function with any parametric or empirical cumulative distribution
function for the payoff F to create a very general risk-pricing mechanism for
incomplete market risks.

3.7.7. Dowd et al. (2006) analyse the sensitivity of the mark-to-market
value of a survivor swap to the market price of risk derived by Lin & Cox.
They conclude that the value of the swap is far more sensitive to the mortality
projection than to the market price of risk within the range λ ∈ [ 0, 0.25 ]. A
similar conclusion holds for nominal pension liabilities, which are equivalent to
the surVivorship-linked leg of the survivor swap. For inflation-linked liabilities
there will be an even greater sensitivity to the mortality projection and while
the market price of risk will be different to nominal liabilities, it is also likely
to be less significant than the risk inherent in the mortality projection.

3.7.8. Cairns, Blake & Dowd (2005) use the proposed pricing for the EIB
survivor bond to estimate the market prices of risk for the two random factors
driving their stochastic mortality curve given by equation (45). They assume
that longevity risk is independent of investment risk, the mortality projection
used in the proposed pricing corresponds to the real-world payout measure
and that the resulting spread of 20 basis points over existing EIB debt is fully
accounted for by the longevity market price of risk. The effect of Bayesian
parameter uncertainty for the drifts of A1(t) and A2(t) is considered and found
to be minor in comparison with the expected drifts for the price of a nominal 25-
year annuity. Again, a real annuity would be more sensitive to this parameter
uncertainty as inflation accounts for half the uncertainty in the survivor index
25 years ahead.

3.7.9. Cairns, Blake & Dowd (2005) note the apparent anomaly between
the positive market price of longevity risk implied by the EIB surVivor bond
and the positive market price of mortality risk implied by the Swiss Re catas-
trophe bond. They reason that the fundamental difference between the nature
of the mortality risk of insureds and annuitants and the transaction costs of
arbitrage between the prices of these risks can account for this anomaly. It
may therefore be advisable to include explicitly catastrophe risk and its market
price of risk in the risk-adjusted pricing model used for both annuities and life
insurance. A cause-of-death model would also distinguish sufficiently between
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the mortality risk of insureds and annuitants to allow for the market prices
of risk to have different signs. This would be complex and probably spurious
given the uncertainty about the general level of mortality improvement over
the term of the pension liabilities.

4. Credit risk

4.0.1. Until now we have used the asset irrelevance logic of Exley, Mehta
& Smith (1997) to value the pension liabilities as derivatives on inflation and
survivor indices without considering the assets of the fund. However, this logic
does not extend to credit risk and other second-order effects.

4.0.2. DB pensions in payment are life annuities written by the fund. Since
the fund sponsor is responsible for ensuring the fund has sufficient assets to
meet these liabilities, these liabilities can be also viewed as life annuities written
by the sponsor and collateralised with the fund assets. The value of these
liabilities is therefore subject to sponsor covenant risk which, following Gordon
et al. (2005), may be defined as the willingness and ability to pay contributions
sufficiently in advance to ensure that the pensions can be paid as they fall due.

4.0.3. The market value of the pension fund’s assets at any time is then:

• the market value of the assets held by the scheme; plus
• the market value of the sponsor covenant.

In the absence of a complete market for pension liabilities, there will always
be a positive probability of a deficit at some future date, so the market value
of the liabilities must be considered in relation to these two fund assets. The
degree to which the sponsor covenant is material to the liabilities will depend
on the relationship between the fund assets and covenant. In the (hypothet-
ical) case of 100% self-investment of fund assets there is full reliance on the
covenant. The covenant is less significant when assets match liabilities and the
unfunded liabilities are uncorrelated or negatively correlated with the value of
the covenant.

4.0.4. The sponsor covenant will be less significant to the value of liabilities
in respect of pensions in payment if pensions in payment have a prior claim
on fund assets on windup. Also, pensions in payment are less exposed to
the uncertain future quality of the sponsor covenant compared with active
members accruing additional DB benefits or deferred members.

4.0.5. Leaving aside the subjective ‘willingness to pay’ element of the covenant,
the credit derivatives market can be used to hedge and hence price the ‘ability
to pay’ element. Single-name credit default swaps (CDS) are available on a
range of names, including government and municipal, and may be available on
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the sponsor or another legal entity a close correlation to the sponsor’s credit
risk.

4.0.6. The notional for the CDS protection is proportional to the future
deficit process until the pension liabilities are extinguished. The deficit pro-
cess is not easily modelled since the funding policy will change in line with
the size of the future deficit. The notional should therefore be based on the
expected funding level at each future date. This expected funding level and
other sponsor convenant risk parameters such as the asset–liability mismatch
and risk from correlation of assets with the credit risk of the sponsor will be
the result of negotiation between the sponsor and the pensioners (and their
trustees). However, it should be recognised that there will probably be a pos-
tive relationship between the credit spread and the absolute size of the deficit
and so a higher future credit spread will be warranted. This is analogous to the
observation that a positive correlation between longevity and real interest rate
risk will increase the market value of the liabilities unless offset by a negative
market price of mortality risk. The default recovery rate allowed for should
reflect the rights of pensioners as members of the fund and the rights of the
fund as a creditor of the sponsor (as specified by pension law).

4.0.7. The nominal curve used to discount the projected pension liabilities
should therefore be a based on the risk-free forward rate for each future year
plus the credit spread on the expected deficit (net of recovery on default) for
the year to allow for the credit risk of the liability. The market value of pension
liability calculated in this is way is consistent with the value of the liability if it
were to trade in the market or the fair value for a bulk transfer between pension
funds. The sponsor would be indifferent between paying this market value to
defease the pension liability or raising debt to finance the cost of hedging the
liabilities. The pensioners (and their trustees) would agree to this transfer of
the liability to a third party posing an identical credit risk.

5. Regulatory and tax effects

Cardinale et al. (2006) consider changes to pension regulation or taxation
to be background risks. The effect of these risks on the market value of the
pension liability is inherently unquantifiable. Examples are legal changes to the
indexation of pensions in payment and deferment, interaction with the state
pension, changes in dividend tax credits (as in the UK in 1997) or taxes on
fund assets (such as the SA Tax on Retirement Funds), imposition of a pension
benefit guarantee fund and levy, changes to pension solvency requirements, etc.
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6. Conclusion

6.0.1. This research has shown how the market value of pension liabilities
can be determined using models for key investment and mortality risk factors
and the principle of risk-adjusted pricing. The path-dependent nature of pen-
sion indexation and the complexity of feasible interest and inflation rate and
mortality models necessitates Monte Carlo simulation. The liabilities typically
extend beyond 30 years, but annual time steps will often suffice to capture the
essential features of pension indexation and decrements. The regular cashflow
profile of typical pension liabilities means the valuation is not unduly sensitive
to incomplete aspects of the market such as the indexation lag, seasonality and
curve extension to ultralong maturities.

6.0.2. The limited hedging capacity of the inflation and reinsurance mar-
kets has prompted questions about their relevance for valuation. The valuation
can be defended if it represents a mid price at which a marginal buyer and seller
would transact. Like any asset or liability, the hedge cost of a large pension
liability will incur a dealing spread to mid commensurate with the market im-
pact of the transaction. The fundamental aim of the valuation is to anticipate
the market price for the liability if an active market were to develop. This is a
similar principle to extending an interest rate curve to value liabilities beyond
the maturity of the longest bonds or swaps. The principle of no arbitrage and
the use of a reasonable and regular market price of risk (and hence market
efficiency) help to ensure the valuation is representative of the market if and
when a market materialises.

6.0.3. It may therefore be preferable to model mortality and investment
risk using separate models with dependent assumptions. Regardless of the
form of the model, the key challenge is to set the market price of mortality risk
consistently with the sparse prices across disparate markets such as the annuity
(re)insurance, mortality derivative and life securitisation markets. Each of
these markets has its own specific mortality risk factors and underwriting.
In the SA and the UK, the growing pension buy out market also conveys
information about the market price of the other background risks. The market
prices of risk extracted from these various sources will be sensitive to the
assumptions about profit and capital margins.

6.0.4. There will always be incomplete aspects to the market for a complex
financial instrument, such as pension liability. The distinction between insur-
ance and capital markets is becoming blurred. The market for pension risks is
rapidly becoming deeper, more competitive and more transparent. The risk-
adjusted valuation approach in turn becomes more relevant and robust. The
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synthesis of actuarial and financial economics valuation principles will continue
to extend the limits of what markets consider tradable risks.



APPENDIX A

Specimen real annuity

Nature of the liability

To evaluate how material the various valuation parameters are for inflation-
linked pensions, we consider a pension in payment to a 60-year male single life.
The pension is payable monthly and indexed annually at 100% of the annual
inflation increase with no floor (type-1 LPI) or with an annual 0% floor (type-4
LPI) or 75% of the annual inflation increase with a 0% floor (type-5 LPI).

Mortality

PA(90) rated down 6 years is used as the mortality basis. This is the best-
estimate basis of Rusconi (2006). Figure 35 shows the profile of real liabilities
discounted with this mortality basis.
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Figure 35: Real cashflows for specimen 60-year male real annuity at 26 June
2006, discounted with best-estimate mortality.

Interest and inflation rates

Liabilities are projected with breakeven inflation and discounted at the swap
curve less a 45 basis point valuation margin as discussed in section 4 of chapter
3. The valuation uses the inflation swap curve derived from SA inflation-linked
bonds as discussed in section 10 of chapter 4 and shown in Figure 36. The
valuation date was chosen because market data were available to the author
on this date, rather than because of any particular interest and inflation-curve
characteristics.
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BEASSA perfect-fit curves linear forward breakeven inflation
curve fitted in Chapter 4

zero-coupon zero-coupon zero-coupon
swap curve bond curve 4-month lag breakeven

term date quarterly rate semiannual rate term date forward CPI annual rate
0.00 26 Jun 06 7.227% 7.292% 0 26 Jun 06 131.083
0.00 27 Jun 06 7.233% 7.299% 1 26 Jun 07 139.840 6.680%
0.01 29 Jun 06 7.246% 7.311% 2 26 Jun 08 148.864 6.566%
0.02 03 Jul 06 7.269% 7.328% 3 26 Jun 09 158.234 6.476%
0.08 26 Jul 06 7.302% 7.256% 4 26 Jun 10 167.946 6.391%
0.17 28 Aug 06 7.349% 7.213% 5 26 Jun 11 177.995 6.309%
0.25 26 Sep 06 7.570% 7.313% 6 26 Jun 12 188.396 6.232%
0.50 27 Dec 06 7.911% 7.666% 7 26 Jun 13 199.105 6.153%
0.75 26 Mar 07 8.261% 8.028% 8 26 Jun 14 210.349 6.090%
1.00 26 Jun 07 8.527% 8.294% 9 26 Jun 15 222.246 6.042%
1.25 26 Sep 07 8.714% 8.499% 10 26 Jun 16 234.863 6.005%
1.50 27 Dec 07 8.855% 8.708% 11 26 Jun 17 248.189 5.975%
1.75 26 Mar 08 8.961% 8.809% 12 26 Jun 18 262.285 5.950%

2 26 Jun 08 9.049% 8.847% 13 26 Jun 19 277.203 5.930%
3 26 Jun 09 9.237% 8.834% 14 26 Jun 20 293.029 5.914%
4 28 Jun 10 9.305% 8.680% 15 26 Jun 21 309.750 5.900%
5 27 Jun 11 9.333% 8.621% 16 26 Jun 22 327.442 5.889%
6 26 Jun 12 9.327% 8.706% 17 26 Jun 23 346.170 5.879%
7 26 Jun 13 9.312% 8.790% 18 26 Jun 24 365.850 5.868%
8 26 Jun 14 9.267% 8.869% 19 26 Jun 25 385.576 5.843%
9 26 Jun 15 9.210% 8.904% 20 26 Jun 26 405.170 5.805%

10 27 Jun 16 9.195% 8.907% 21 26 Jun 27 424.519 5.755%
11 26 Jun 17 9.165% 8.902% 22 26 Jun 28 443.537 5.697%
12 26 Jun 18 9.120% 8.855% 23 26 Jun 29 462.018 5.630%
13 26 Jun 19 9.070% 8.803% 24 26 Jun 30 479.856 5.556%
14 26 Jun 20 9.013% 8.735% 25 26 Jun 31 496.929 5.475%
15 28 Jun 21 8.948% 8.657% 26 26 Jun 32 513.146 5.389%
16 27 Jun 22 8.876% 8.575% 27 26 Jun 33 528.313 5.298%
17 26 Jun 23 8.798% 8.493% 28 26 Jun 34 542.614 5.204%
18 26 Jun 24 8.717% 8.412% 29 26 Jun 35 557.167 5.116%
19 26 Jun 25 8.635% 8.336% 30 26 Jun 36 572.146 5.035%
20 26 Jun 26 8.553% 8.265%
21 28 Jun 27 8.472% 8.199% BESA closing rates, 26 Jun 2006
22 26 Jun 28 8.394% 8.140% Nominal bonds
23 26 Jun 29 8.320% 8.085% 10% 2008 8.730%
24 26 Jun 30 8.252% 8.034% 13% 2010 8.740%
25 26 Jun 31 8.189% 7.988% 13.5% 2015 8.840%
26 28 Jun 32 8.131% 7.944% 10.5% 2026 8.545%
27 27 Jun 33 8.079% 7.905% Inflation-linked bonds
28 26 Jun 34 8.031% 7.868% 3.8% 2008 2.720%
29 26 Jun 35 7.987% 7.834% 6.25% 2013 2.700%
30 26 Jun 36 7.946% 7.802% 5.50% 2023 2.670%

3.45% 2033 2.645%

Figure 36: Market rates for SA bond and swap market, 26 June 2006
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