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Abstract

Solutions of linear iterative equations and expressions for these solutions in terms of
the parameters of the source equation are obtained. Based on certain properties of it-
erative equations, finding the solutions is reduced to finding group-invariant solutions
of the second-order source equation. We have therefore found classes of solutions
to the source equations. Regarding the expressions of the solutions in terms of the
parameters of the source equation, an ansatz is made on the original parameters r
and s, by letting them be functions of a specific type such as monomials, functions of
exponential and logarithmic type. We have also obtained an expression for the source
parameters of the transformed equation under equivalence transformations and we
have looked for the conservation laws of the source equation. We conducted this
work with a special emphasis on second-, third- and fourth-order equations, although
some of our results are valid for equations of a general order.
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1. Introduction

Linear iterative equations are the iterations of a linear first-order equation. They are known as
equations that can always be reduced to the canonical form y(n) = 0 by point transformations.
It is well known that every second-order linear ordinary differential equation can be reduced to
the canonical form y′′ = 0 by an invertible point transformation. However, the corresponding
property does not hold for equations of order higher than two and any equation of such an order
can be transformed into the canonical form if and only if it is iterative [1]. On the basis of this and
a result of S. Lie [2], iterative equations are also the only linear equations that admit a symmetry
algebra of maximal dimension. Moreover, the general solution of iterative equations of a general
order can be obtained by a very simple superposition formula from those of the source equation
of the second-order.

1.1 Overview about iterative equations

Linear ordinary differential equations of a general order have been studied in the recent literature
and from the symmetry group approach by many authors [1, 3, 4, 13]. It is well-known that
for the order n = 2, the dimension of the symmetry algebra does not exceed 8 and all linear
differential equations are locally equivalent to the canonical form y′′ = 0. For n ≥ 3, Sophus Lie
proved that the dimension of the symmetry algebra does not exceed n + 4. One of Lie’s main
results is that the maximal dimension is reached for equations reducible to the canonical form
y(n) = 0.

In their work, Krause and Michel [1] proved that an equation is reducible to the canonical form
if its symmetry algebra has maximal dimension. Then, using the result due to Lie cited above,
they showed that for a linear equation of order n ≥ 3 the statements

(a) the equation is reducible to the form y(n) = 0 by a diffeomorphism of the (x, y)-plane

(b) the Lie algebra of its symmetry group has maximal dimension

(c) the equation is iterative

are equivalent. By definition, iterative equations are the iterations

Ψy ≡ r(x)y′ + s(x)y = 0 (1.1a)

Ψny ≡ Ψ(n−1) [Ψy] , n ∈ N, (1.1b)

where Ψ = r d
dx

+ s is a differential operator and r and s are given functions of x referred to as
the parameters of the source equation Ψy ≡ r(x)y′ + s(x)y = 0.

Let us consider a linear differential equation of a general order n in its standard form

y(n) +
n−1∑
i=0

bi y
(i) = 0, (1.2)

1
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where the bi are functions of the independent variable x. For n = 3, Lie [2] and Laguerre [14]
showed that the equation is reducible to the form y(n) = 0, which we shall refer to as the canonical
form, if and only if the coefficients in (1.2) satisfy

54b0 − 18b1b2 + 4b3
2 − 27b′1 + 18b2b

′
2 + 9b′′2 = 0. (1.3)

It is well-known that one can use the transformation

y 7→ y exp

(
1

n

∫ x

xo

bn−1(v)dv

)
(1.4)

to reduce the general form (1.2) into the reduced normal form

y(n) +
n−2∑
i=0

ai y
(i) = 0, (1.5)

and in the case of iterative equations, the operator that generates an iterative equation of a
general order n in its normal form (1.5) has been found [4]. We know that up to isomorphism the
symmetry algebra of a differential equation does not change under an invertible point transfor-
mation, meaning that (1.2) and (1.5) have isomorphic symmetry algebras. Therefore, for several
considerations we may without loss of generality let the iterative equation be on the form (1.5).

Some properties of iterative equations were obtained and the characterizations of these equations
in terms of their coefficients have been considered [4, 13]. All the coefficients ai can naturally
be expressed in terms of the parameters r and s of the source equation [4] but surprisingly it is
always possible to express the coefficients an−i for 2 < i ≤ n in terms of the coefficient an−2 and
its derivatives [13]. The list of iterative equations in which all the coefficients are given in terms
of an−2 and its derivatives for n running between 3 and 8 was obtained in [13]. The first three
of them are

y(3) + a1y
(1) +

1

2
a

(1)
1 y = 0 (1.6)

y(4) + a2y
(2) + a

(1)
2 y(1) + (

3

10
a

(2)
2 +

9

100
a2

2)y = 0 (1.7)

y(5) + a3y
(3) +

3

2
a′3y

(2) + (
9

10
a′′3 +

16

100
a2

3)y′ + (
1

5
a

(3)
3 +

16

100
a3a

′
3)y = 0 (1.8)

It should be noted that if we let

y(n) + A2
ny

(n+2) + · · ·+ An−1
n y(1) + Anny = 0 (1.9)

be the general form of linear iterative equations in normal form for the same source equation,
then by a result of [4] we have

A2
n =

(
n+ 1

3

)
A2

2. (1.10)
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Using the result from [13] one can generate the list of canonical forms of iterative equations in
normal reduced form for any order after a long and sometimes very complicated set of calculations.

Another exceptional property of iterative equation states that if we assume that u and v are the
independent solutions of the second-order source equation

y′′ + p(x)y = 0, (1.11)

where p turns out to be the Wronskian of u and v, then n linearly independent solutions of (1.5)
are given by [1]

yk = un−(k+1)vk 0 ≤ k ≤ n− 1. (1.12)

Therefore, once we know the general solution of the source equation (1.11) we can construct the
set of solutions to the corresponding nth-order iterative equation. The implication is that there
is no need to search for linearly independent solutions for the linear differential equation of order
n itself when we know those of its source equation. In other words, finding the general solution
of the nth-order equation (1.5) is equivalent to finding the two linearly independent solutions of
the second-order source equation (1.11).

1.2 Coefficients of the iterative equation in terms of the
coefficient A2

2

To rewrite the coefficients of the linear iterative equation in terms of the coefficient A2
2 of the

second-order source equation and its derivatives only, let

y(n) +
n−2∑
i=0

An−in y(i) = 0 (1.13)

be a linear iterative equation in normal form, where A2
2 are functions of x, and let

y′′ + A2
2(x)y = 0 (1.14)

be the corresponding second-order source equation.
If we assume that the first-order source equation in standard form is

r(x)y′ + s(x)y = 0 (1.15)

where r = r(x) and s = s(x) are the parameters of the source equations, it follows [4] that

A2
2(x) =

r′2 − 2rr′′

4r2
(1.16a)

provided that

s =− 1

2
(n− 1)r′. (1.16b)
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It is well-known that it is always possible to express the coefficients of the iterative equation (1.13)
in terms of A2

n [13]. On the other hand, it has been proved [4] that the relationship between A2
n

and A2
2 is given by

A2
n =

(
n+ 1

3

)
A2

2. (1.17)

It follows from these results that all the coefficients of iterative equations with the same source
equation can be written in terms of the coefficient A2

2 of the second-order source equation.
Below is the list of iterative equations of order n = 3, 4, 5 involving the coefficient A2

2, a say, of
the second-order source equation and its derivatives only.

y(3) + 4ay(1) + 2a′y = 0 (1.18)

y(4) + 10ay(2) + 10a′y(1) + (3a′′ + 9a2)y = 0 (1.19)

y(5) + 20ay(3) + 30a′y(2) +
(
18a′′ + 64a2

)
y(1) +

(
4a(3) + 64aa′

)
y = 0 (1.20)

y(6) + 35ay(4) + 70a′y(3) +
(
63a(2) + 259a2

)
y(2) +

(
28a(3) + 518aa′

)
y′

+
(
5a(4) + 130a′2 + 155aa(2) + 225a3

)
y = 0.

(1.21)

The list can be extended to a general order, although the general formula is not known.



2. Lie analysis and Group-invariant
solutions

2.1 Introduction

In this chapter, some background to Lie symmetry analysis and the mathematical methods to
generate the Lie symmetries of differential equations are provided. The method of symmetry
analysis is a useful tool for finding exact solutions to a differential equation via the invariance of
the equation under group transformations or via the similarity variables.

2.2 Definitions

Let us start the definitions with the concept of a group.

2.2.1 Definition. A group is a set G together with a group operation, usually called multipli-
cation, such that for any two elements g and h of G, the product g · h is again an element of G.
The group operation is required to satisfy the following axioms:

• Associativity. For any elements g, h, k of G:

g · (h · k) = (g · h) · k. (2.1)

• Identity Element. There exists a unique element e of G, called the identity element, which
has the property that

e · g = g = g · e (2.2)

for all g in G.

• Inverses. For each element g in G, there exists a unique inverse element, denoted g−1 in
G, with the property

g · g−1 = e = g−1 · g. (2.3)

2.2.2 Definition. An r parameter Lie group is a group G which also carries the structure of
an r-dimensional smooth manifold in such a way that both the group operator

m : G×G→ G, m(g, h) = g · h, g, h ∈ G, (2.4)

and the inversion

i : G→ G, i(g) = g−1, g ∈ G, (2.5)

are smooth maps between manifolds.
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2.2.3 Definition. A Lie subgroup H of a Lie group G is given by a submanifold φ : H̃ → G,
where H̃ itself is a Lie group, H = φ(H̃) is the image of φ, and φ is a Lie group homomorphism.

To understand symmetry we require the knowledge of group transformations.

2.2.4 Definition. Let M be a smooth manifold. A local group of transformations acting on
M is given by a (local) Lie group G, an open subset U , with

{e} ×M ⊂ U ⊂ G×M, (2.6)

which is the domain of definition of the group action, and a smooth map Ψ : U → M with the
following properties:

• If (h, x) ∈ U , (g,Ψ(h, x)) ∈ U , and also (g · h, x) ∈ U , then

Ψ(g,Ψ(h, x)) =Ψ(g · h, x). (2.7)

• For all x ∈M ,

Ψ(e, x) =x. (2.8)

• If (g, x) ∈ U , then (g−1,Ψ(g, x)) ∈ U and

Ψ(g−1,Ψ(g, x)) =x. (2.9)

2.2.5 Definition. Let G be a local group of transformations acting on a manifold M . A subset
S ⊂ M is called G-invariant, and G is called a symmetry group of S, if whenever x ∈ S, and
g ∈ G is such that g · x is defined, then g · x ∈ S.

2.2.6 Definition. A Lie algebra is a vector space L over a field F ( that we shall assume to
be of characteristic zero) with a bilinear bracket operation (the commutator)

[., .] : L× L→ L

which satisfies the axioms

• Bilinearity

[cv + c′v′, w] = c[v, w] + c′[v′, w], [v, cw + c′w′] = c[v, w] + c′[v, w′],

for c, c′ ∈ F ,

• Skew-Symmetry
[v, w] = −[w, v].

• Jacobi identity
[u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0,

for all u, v, v′, w, w′ ∈ L.

In this work F will assumed to be the field of real number.
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2.3 Lie analysis

The symmetry group of a system of differential equations is the largest group of point transfor-
mations acting on the space of dependent and independent variables that leaves the equation
invariant. Let

x? = X(x; ε) (2.10)

be a one parameter Lie group of transformations.

2.3.1 Definition. The infinitesimal generator of the one-parameter Lie group of transforma-
tions x? = X(x; ε) is the operator

X =X(x) = ξ(x)×∇ =
n∑
i=1

ξi(x)
∂

∂xi
, (2.11)

where ∇ is the gradient operator

∇ =

(
∂

∂x1

,
∂

∂x2

,
∂

∂x3

, . . . ,
∂

∂xn

)
. (2.12)

2.3.2 Definition. An infinitely differentiable function F is invariant function of the Lie group
of transformations (2.10) if and only if, for any group transformations,

F (x?) =F (x). (2.13)

2.3.3 Theorem. F (x) is invariant under the Lie group of transformations (2.10) if and only if,

XF (x) =0. (2.14)

Consider a system of nth-order differential equations

∆µ(x, y(n)) = 0, µ = 1, . . . , l, (2.15)

involving p independent variables x = (x1, . . . , xp), q dependent variables y = (y1, . . . , yq) and
the derivatives of y with respect to x up to order n. We search for a one-parameter Lie group of
point transformations Ψ ≡ (x?, y?) = (Ψ1,Ψ2) of this equations of the form

x? =x+ εξ(x, y) ≡ Ψ1(ε, x, y) (2.16)

y? =y + εφ(x, y) ≡ Ψ2(ε, x, y) (2.17)

where ε is the group parameter with a symmetry generator

v =

p∑
i=1

ξi(x, y)
∂

∂xi
+

q∑
α=1

Φα(x, y)
∂

∂yα
. (2.18)
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The integration of the initial value problem

v
∣∣∣
Ψ(ε,x,y)

=
d

dε
Ψ(ε, x, y) (2.19a)

Ψ(0, x, y) =(x, y) (2.19b)

determines the group transformations Ψ. In other words,

dxi
?

dε

∣∣∣∣∣
ε=0

=ξi(x, y), i = 1, . . . , p, (2.20a)

and

dyα?

dε

∣∣∣∣∣
ε=0

=φα(x, y), α = 1, . . . , q. (2.20b)

For an nth-order differential equations, we require the knowledge of the nth extension of v. The
following theorem gives the general prolongation formula pr(n)v of the infinitesimal generator v.

2.3.4 Theorem. Let

v =

p∑
i=1

ξi(x, y)
∂

∂xi
+

q∑
α=1

Φα(x, y)
∂

∂yα
(2.21)

be a vector field defined on an open subset M ⊂ X×U . The nth prolongation of v is the vector
field

pr(n)v = v +

q∑
α=1

∑
J

ΦJ
α(x, y)

∂

∂yαJ
(2.22)

defined on the corresponding jet space M (n) ⊂ X × U (n), the second summation being over all
(unordered) multi-indices J = (j1, j2, . . . , jk), with 1 ≤ jk ≤ p, 1 ≤ k ≤ n. The coefficient
functions ΦJ

α of pr(n)v are given by the following formula:

ΦJ
α(x, y) = DJ

(
Φα −

p∑
i=1

ξiyαi

)
+

p∑
i=1

ξiyαJ,i, (2.23)

where yαi = ∂yα/∂xi, and yαJ,i = ∂yαJ/∂x
i.

The infinitesimal criterion for invariance is given by the following theorem.

2.3.5 Theorem. Suppose

∆µ(x, y(n)) = 0, µ = 1, . . . , l, (2.24)

is a system of differential equations of maximal rank defined over M ⊂ X × U . If G is a local
group of transformations acting on M , and

pr(n)v[∆µ] = 0, µ = 1, . . . , l, whenever ∆µ(x, y(n)) = 0, (2.25)

for every infinitesimal generator v of G, then G is a symmetry group of the system.
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For an nth-order ordinary differential equation (ODE) we have up to nth derivatives and so need
an nth extension so that we can investigate how the derivatives transform too. Therefore, If we
assume that E = 0 is an nth-order ODE then the invariance criterion is given by

v[n]E = 0 whenever E = 0, (2.26)

where v[n] stands for pr(n)v, that is,

v[n] = ξ∂x + φ∂y + φx∂yx + φxx∂yxx + φxxx∂yxxx + · · ·+ φ[n]∂yn . (2.27)

Here,

φx = Dx(φ− ξyx) + ξyxx

= Dxφ−Dx(ξyx) + ξyxx

= φx + φyyx − ξxyx − ξyyx2, (2.28a)

φxx = Dxx(φ− ξyx) + ξyxxx

= φxx + (2φxy − ξxx)yx + (φyy − 2ξxy)yx
2 + (φy − 2ξx)yxx

− ξyyy3
x − 3ξyyxyxx,

(2.28b)

φxxx =Dxxx(φ− ξyx) + ξyxxxx

=φxxx + (3φxxy − ξxxx)yx + (3φxyy − 3ξxxy)yx
2

+ (3φxy − 3ξxx)yxx + (φyyy − 3ξyyx)y
3
x + (3φyy − 9ξxy)yxyxx

+ (φy − 3ξx)yxxx − ξyyyy4
x − 6ξyyy

2
xyxx − 3ξyy

2
xx − 4ξyyxyxxx,

(2.28c)

φxxxx = Dxxxx(φ− ξyx) + ξyxxxxx

= φxxxx + (4φxxxy − ξxxxx)yx + (6φxxyy − 4ξxxxy)yx
2

+ (4φxyyy − 6ξxxyy)y
3
x + (φyyyy − 4ξyyyx)y

4
x − ξyyyyy5

x

+ (6φxxy − 4ξxxx)yxx + (12φxyy − 18ξxxy)yxyxx+

[6φyyy − 24ξxyy]y
2
xyxx + [3φyy − 12ξxy]y

2
xx + [4φxy − 6ξxx]yxxx

+ [4φyy − 16ξxy]yxyxxx − 10ξyyxxyxxx − 10ξyyy
2
xyxxx

+ [φy − 4ξx]yxxxx − 5ξyyxyxxxx − 10ξyyyy
3
xyxx − 15ξyyyxy

2
xx.

(2.28d)

and [1]

φ[n] =− [(nξx − φy)] y(n) − [(n+ 1)ξy] y
′y(n)

−
(
n+ 1

2

)
ξyy
′′y(n−1) + n(φyy − nξxy)y′y(n−1) + n(φxy

− n− 1

2
ξxx)y

(n−1) +
n

2

(
φxxy −

n− 2

3
ξxxx

)
y(n−2) + . . . .

(2.28e)

Theorem 2.3.5 leads to a nonlinear partial differential equation in ξ and φ. We then equate all
the coefficients of all powers of derivatives of y to zero because ξ and φ depend only on x and
y. The system of determining equations obtained gives the expression of ξ and φ. Note that the
number of constants found determines the dimension of the Lie group.
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2.4 Group-invariant solutions

Although the full symmetry group of a differential equation transforms each solution to another
solution, for certain subgroups H of G, there are solutions which are transformed into themselves.
Such solutions considered as a set are thus locally H-invariant sets, and are termed group-invariant
solutions. They can be found for ordinary differential equations by solving an equation of lower
order in which the new variables are the differential invariants of H.

2.4.1 Definition. A regular submanifold N of a manifold M is a submanifold parametrized
by φ : Ñ → M with the property that for each x in N there exist arbitrarily small open
neighbourhoods U of x in M such that φ−1[U ∩N ] is a connected open subset of Ñ .

2.4.2 Proposition. Let G act regularly on M ⊂ X × U . Then z0 ∈ M lies in I(0) (I(0) ⊂ M
consists of all points z0 = (x0, u0) such that there is at least one locally G-invariant function
u = f(x) whose graph passes through z0) if and only if the orbit of G through z0 is transverse
to the vertical space Uz0 , in which case G is said to act transversally at z0.

2.4.3 Theorem. Let G act regularly and transversally on M ⊂ X × U . Let

vk =

p∑
i=1

ξik(x, u)
∂

∂xi
+

q∑
α=1

φkα(x, u)
∂

∂uα
, k = 1, . . . , r, (2.29)

be a basis for the infinitesimal generators. Then the nth invariant space I(n) ⊂M (n) is determined
by the equations

I(n) = {(x, u(n)) : DJQ
k
α(x, u(n)) = 0, k = 1, . . . , r, α = 1, . . . , q, #J ≤ n− 1}, (2.30)

where Qk
α = φkα −

∑
i ξ
i
ku

α
i are the characteristics of the vector fields vk.

2.4.4 Proposition. Let G be a group of transformations acting on M ⊂ X×U w R2. Suppose
y = η(x, u(n)) and w = ζ(x, u(n)) are nth-order differential invariants of G. Then the derivative

dw

dy
=
dw/dx

dy/dx
≡ Dxζ

Dxη
(2.31)

is an (n+1)-st order differential invariant for G.

2.4.5 Example. Consider the iterative equation of order three in its standard form

u(3) + 3u(2) + 3u(1) + u = 0. (2.32)

It can be verified that one of its symmetries is w = e−x∂u. The first prolongation of this vector
is given as follows

w[1] = w + φx∂ux (2.33)

= e−x∂u − e−x∂ux . (2.34)
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The first-order differential invariant can be found by solving the characteristic equation:

dx

0
=

du

e−x
= −dux

e−x
. (2.35)

Therefore the set of first-order differential invariant is given by

y = x , w = u+ ux (2.36)

and then, the set of third-order differential invariants is given by

y = x , w = u+ ux , wy = ux + uxx and wyy = uxx + uxxx. (2.37)

We can now rewrite equation (2.32) in the form

wyy + 2wy + w = 0 (2.38)

involving only the differential invariants. As expected the order is reduced by one.

One can readily see that the solution of equation (2.38) is given by

w = (c0 + c1y)e−y, (2.39)

where c0, c1 are constants. So the right hand side expression in relation (2.36) becomes a
first-order non homogeneous linear ordinary differential equation with constant coefficients:

ux + u = (c0x+ c1)e−x. (2.40)

Using standard methods of integration it is readily seen that this equation has solution

u =

(
1

2
c0x

2 + c1x+ c2

)
e−x, (2.41)

for some constant c2, and this solution is therefore a group-invariant solution of equation (2.32).

Symmetries generate point transformations that leave the differential equation invariant. As a
result, those point transformations can generate new solutions from existing solutions. In order
to find these point transformations for a given generator v = ξ(x, u)∂x +φ(x, u)∂u, we integrate
the equations

∂x?

∂ε
= ξ(x?, u?),

∂u?

∂ε
= φ(x?, u?), (2.42a)

subject to

x?|ε=0 = x, u?|ε=0 = u. (2.42b)
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2.4.6 Example. Using the previous example where v = e−x∂u we get

∂x?

∂ε
= 0,

∂u?

∂ε
= e−x

?

, (2.43)

which is equivalent to

x? = c1, (2.44)

u? = e−c1ε+ c2. (2.45)

Conditions (2.42) give the values of c1 and c2 which allow us to write the point transformations
as follow

x? = x (2.46a)

u? = u+ εe−x. (2.46b)

2.5 Conclusion

We have illustrated the algorithm for finding symmetries, group-invariant solutions of an ODE
and we have used one of the symmetries of an iterative equation of order 3 to obtain its exact
solutions. This same symmetry was used to generate point transformations that leave the equation
invariant.



3. Symmetry generator of third, fourth
and nth-order differential equations in
terms of the parameters r and s of the
source equation

3.1 Introduction

In this chapter, the application of the algorithm for finding a symmetry of a linear iterative
equation is considered. The aim of this chapter is to make a contribution to the results obtained
by Krause and Michel [1], i.e. the expression of v in terms of the solutions u and v of the second-
order source equation. Given that these solutions can be expressed in terms of the parameters r
and s of the first-order source equation, we wish to see how these generators can be expressed in
terms of the parameters r and s. Some properties of a linear iterative equation are used in order
to generate the vector field that spanned the lie algebra in terms of the mentioned parameters
for some special cases of r and A2

2.

3.2 Symmetry Analysis of the linear iterative equation

3.2.1 Order 3. Consider the linear iterative equation of order three in reduced normal form

y(3) + 4ay′ + 2a′y = 0. (3.1)

The third prolongation of v = ξ(x, y)∂x + φ(x, y)∂y is given by

v[3] = ξ∂x + φ∂y + φx∂yx + φxx∂yxx + φxxx∂yxxx (3.2)

where φx, φxx and φxxx are given by (2.28). An application of the infinitesimal criterion of
invariance gives

v[3]
[
y(3) + 4ay′ + 2a′y

]
= 0 whenever y(3) + 4ay′ + 2a′y = 0,

which reduces to

ξ (4axy
′ + 2axxy) + 2φax + 4φxa+ φxxx = 0. (3.3)

From equation (3.165) we get
y(3) = − (4ay′ + 2a′y) . (3.4)

Substituting φx and φxxx in (3.3) by their expression given by (2.28), and then using the expression
of yxxx in (3.4), equation (3.3) leads to the following single differential equation

ξ4axyx + ξ2axxy + 2axφ+ 4aφx + 4aφyyx − 4aξxyx − 4aξyyx
2 + φxxx + (3φxxy − ξxxx)yx

+ (3φxyy − 3ξxxy)yx
2 + (3φxy − 3ξxx)yxx + (φyyy − 3ξxyy)yx

3 + (3φyy − 7ξxy)yxyxx−
(φy − 3ξx)(4ayx + 2axy)− ξyyyyx4 − 6ξyyyx

2yxx − 3ξyyxx
2 − 4ξy(4ayx + 2axy)yx = 0.

13
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Equating the coefficients of all powers of derivatives of y to zero yields the system of determining
equations given as follows

1 : 2axφ+ 4aφx + φxxx + y [2ξaxx − 2ax(φy − 3ξx)] = 0 (3.5a)

yx : 4ξax + 4aφy − 4aξx − 8ξyaxy

+ (3φxxy − ξxxx)− 4a(φy − 3ξx) = 0
(3.5b)

yxx : 3φxy − 3ξxx = 0 (3.5c)

yx
2 : −4aξy + (3φxyy − 3ξxxy)− 16ξya = 0 (3.5d)

yx
5 : φyyy − 3ξxyy = 0 (3.5e)

yxyxx : 3φyy − 7ξxy = 0 (3.5f)

yx
4 : −ξyyy = 0 (3.5g)

yx
2yxx : −6ξyy = 0 (3.5h)

yxx
2 : −3ξy = 0 (3.5i)

Equations (3.5g), (3.5h) and (3.5i) show that

ξ = f(x), (3.6)

where f is an arbitrary function.

Using (3.6) in (3.5f) we get

φ = g(x)y + h(x), (3.7)

for some functions g and h. From equation (3.5c) we have

g(x) = f ′(x) + c0 (3.8)

for an arbitrary constant c0. Using (3.5a), (3.5b), (3.7) and (3.8) the over determined system
which allows to find ξ and φ is reduced to

ξ = f(x) (3.9a)

φ = (f ′(x) + c0)y + h(x) (3.9b)

f ′′′ + 4af ′ + 2a(1)f = 0 (3.9c)

f ′′′′ + 4af ′′ + 6a(1)f ′ + 2a(2)f = 0 (3.9d)

h(3) + 4ah(1) + 2a′h = 0. (3.9e)

3.2.2 Remark. It should be noted that equation (3.9d) is the derivative of (3.9c).

Therefore, the infinitesimals are given by

ξ = f(x) (3.10a)

φ = (f ′(x) + c0)y + h(x), (3.10b)

with f and g satisfying

f (3) + 4af (1) + 2a(1)f = 0 (3.10c)

h(3) + 4ah(1) + 2a′h = 0 (3.10d)

respectively. So, f and h satisfy the original equation.



Section 3.2. Symmetry Analysis of the linear iterative equation Page 15

3.2.3 Order 4. Linear iterative equation of order four is

y(4) + 10ay(2) + 10a′y(1) + (3a′′ + 9a2)y = 0. (3.11)

The fourth prolongation of the infinitesimal generator is

pr(4)v = ξ∂x + φ∂y + φx∂yx + φxx∂yxx + φxxx∂yxxx + φxxxx∂yxxxx , (3.12)

where φxxxx is given by (2.28). Applying the fourth prolonged operator (3.12) to (3.11) yields

φxxxx + 10aφxx + 10a′φx + (3a′′ + 9a2)φ+ ξ
[
10a′yxx + 10a′′yx + (3a(3) + 18aa′)y

]
= 0.

Substituting the expressions of φxxxx, φxx and φx by their expressions, taking into consideration
the substitution y(4) = −10ay(2) − 10a′y(1) − (3a′′ + 9a2)y, we obtain

φxxxx + (4φxxxy − ξxxxx)yx + (6φxxyy − 4ξxxxy)yx
2 + (4φxyyy − 6ξxxyy)y

3
x + (φyyyy − 4ξyyyx)y

4
x

− ξyyyyy5
x + (6φxxy − 4ξxxx)yxx + (12φxyy − 18ξxxy)yxyxx + (6φyyy − 24ξxyy)y

2
xyxx + (3φyy−

12ξxy)y
2
xx + (4φxy − 6ξxx)yxxx + (4φyy − 16ξxy)yxyxxx − 10ξyyxxyxxx − 10ξyyy

2
xyxxx + (φy−

4ξx)(−10ayxx − 10a′yx − (3a′′ + 9a2)y)− 5ξyyx(−10ayxx − 10a′yx − (3a′′ + 9a2)y)− 10ξyyy

y3
xyxx − 15ξyyyxy

2
xx + 10aφxx + (2φxy − ξxx)10ayx + 10a(φyy − 2ξxy)y

2
x + 10a(φy − 2ξx)yxx

− 10aξyyy
3
x − 30aξyyxyxx + 10a′φx + 10a′φyyx − 10a′ξxyx − 10a′ξyy

2
x + (3a′′ + 9a2)φ

+ 10a′ξyxx + 10a′′ξyx + (3a(3) + 18aa′)ξy = 0.

We are going to equate the coefficients of powers of derivatives of y to zero. It leads to the
system below:

1 : φxxxx + 10aφxx + 10a′φx + (3a′′ + 9a2)φ

+ y
[
(4ξx − φy)(3a′′ + 9a2) + (3a(3) + 18aa′)ξ

]
= 0

(3.13a)

yx : 4φxxxy − ξxxxx − 10a′(φy − 4ξx) + 5(3a′′ + 9a2)ξyy

+ 10a(2φxy − ξxx) + 10a′φy − 10a′ξx + 10a′′ξ = 0
(3.13b)

y2
x : 6φxxyy − 4ξxxxy + 50a′ξy + 10a(φyy − 2ξxy)− 10a′ξy = 0 (3.13c)

yxx : 6φxxy − 4ξxxx − 10a(φy − 4ξx) + 10a(φy − 2ξx) + 10a′ξ = 0 (3.13d)

yx
3 : 4φxyyy − 6ξxxyy − 10aξyy = 0 (3.13e)

yxyxx : 12φxyy − 18ξxxy + 50aξy − 310aξy = 0 (3.13f)

yxxx : 4φyx − 6ξxx = 0 (3.13g)

yx
4 : φyyyy − 4ξxyyy = 0 (3.13h)

yx
2yxx : 6φyyy − 24ξyyx = 0 (3.13i)

yxx
2 : 3φyy − 12ξxy = 0 (3.13j)

yxyxxx : 4φyy − 16ξxy = 0 (3.13k)

y5
x : −ξyyyy = 0 (3.13l)

y3
xyxx : −10ξyyy = 0 (3.13m)

yxyxx
2 : −15ξyy = 0 (3.13n)

yxxyxxx : −10ξy = 0 (3.13o)

yx
2yxxx : −10ξyy = 0. (3.13p)
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Equations (3.13l) up to (3.13p) are equivalent to

ξy = 0, (3.14)

that means

ξ = f(x) (3.15)

for some function f . Using the latter in equations (3.13f), (3.145), (3.146), (3.13j) and (3.13k),
we obtain

φyy = 0 (3.16)

which solution is

φ = g(x)y + h(x) (3.17)

for some functions g and h. Using equations (3.15) and (3.17) in equation (3.13g) we get

g(x) =
3

2
f ′(x) + α0, (3.18)

where α0 is an arbitrary constant. Substituting (3.15),(3.17) and (3.18) into (3.13a), (3.13b)
and (3.13d) we get

h(4) + 10ah(2) + 10a′h′ + (3a′′ + 9a2)h = 0 (3.19)

f (3) + 4af ′ + 2a′f = 0, (3.20)

f (4) + 4a′f (2) + 6a′f ′ + 2a(2)f = 0 (3.21)

f (5) + 10af (3) + 10a′f (2) + 8(a′′ + 3a2)f ′ + (2a(3) + 12aa′)f = 0. (3.22)

3.2.4 Remark. It can be verified that equation (3.21) is the derivative of (3.20), and (3.22) is
the second derivative of (3.20) plus 6a times (3.20).

In all, the infinitesimals are given by

ξ = f(x) (3.23)

φ =

(
3

2
f ′(x) + α0

)
y + h(x), (3.24)

where h satisfies equations (3.19), and f satisfies (3.20). So h satisfies the original equation but
f still satisfies the iterative equation of order three.

3.2.5 For an arbitrary order n. Denoting as usual by v = ξ(x, y)∂x+φ(x, y)∂y the infinitesimal
generator of the iterative equation of order n, [1] showed that its nth prolongation has the form

pr(n)v =v +
n∑
k=0

φ[k](x, y(n))∂y(k) , (3.25)



Section 3.2. Symmetry Analysis of the linear iterative equation Page 17

where

φ[n] =(φy − kξx)y(k) − (k + 1)ξyy
′y(k) −

(
k + 1

2

)
ξyy
′′y(k−1) + k(φyy − kξxy)y′y(k−1)

+ k(φxy −
k − 1

2
ξxx)y

(k−1) +
k

2

(
φxxy −

k − 2

3
ξxxx

)
y(k−2) + . . . .

(3.26)

Using the invariance criterion and separating by the powers of derivatives of y they proved that
the most general form of the symmetry generator is given by

v =f(x)∂x +

[(
n− 1

2
f ′(x) + c

)
y + h(x)

]
∂y, (3.27)

where (
n+ 1

3

)
f ′′′ + 4A2

nf
′ + 2A2

n
′
f = 0 (3.28a)

h(n) +
n−2∑
i=0

An−in y(i) = 0 (3.28b)

and c is an arbitrary constant. To obtain the same condition on h, [2] used the Leibniz’s rule of
differentiating a product to rewrite (3.26) fully. The showed that (3.26) is the same as

φ[j] =

([
n− 1

2
f ′ + α

]
y

)(j)

+ h(j) −
j∑
i=1

(
j

i

)
yj+1−iξi, j = 1, . . . n (3.29)

Using the above result and the invariance criterion they showed that h satisfies the original
equation.

However, using in (
n+ 1

3

)
f ′′′ + 4A2

nf
′ + 2A2

n
′
f = 0 (3.30)

the expression of A2
n given in (1.10), i.e.

A2
n =

(
n+ 1

3

)
A2

2, (3.31)

we get (
n+ 1

3

)
f ′′′ + 4

(
n+ 1

3

)
A2

2f
′ + 2

(
n+ 1

3

)
A2

2
′
f = 0, (3.32)

which can aslo be written as
f ′′′ + 4A2

2f
′ + 2A2

2
′
f = 0. (3.33)

Hence, f satisfies the third order linear iterative equation as in the cases of order 3 and 4.
Therefore, condition on f does not depend on the order of the linear iterative equation. In all,
the most general form of the symmetry generator is given by

v =f(x)∂x +

[(
n− 1

2
f ′(x) + c

)
y + h(x)

]
∂y, (3.34)
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where the new condition on f is

f ′′′ + 4A2
2f
′ + 2A2

2
′
f = 0 (3.35a)

and

h(n) +
n−2∑
i=0

An−in y(i) = 0. (3.35b)

Equations (3.35) are linear iterative equations with the same source equation y′′ + A2
2y = 0.

Based on the properties of iterative equations already outlined, finding the solutions of (3.35)
will be reduced to finding the solutions of the second-order source equation. It is well-known
that if we assume that u and v are solutions of the second-order source equation, then n linearly
independent solutions of (1.13) are given by [1]

yk =un−(k+1)vk 0 ≤ k ≤ n− 1. (3.36)

Let us verify this known fact for linear iterative equations of order n = 3, 4, 5, 6.

• For n = 3. Suppose indeed that u and v are the two linearly independent solutions of

y′′ + ay = 0, (3.37)

and let us check that yk = u2−kvk, 0 ≤ k ≤ 2, are linearly independent solutions of the
third-order linear iterative equation

y(3) + 4ay′ + 2a′y = 0. (3.38)

We have

y
(3)
k =(u2−k)(3)vk + 3(u2−k)

(2)
vk
′
+ 3(u2−k)

′
vk

(2)
+ u2−k(vk)(3) (3.39)

=[(2− k)u(3)u1−kvk + 3(2− k)(1− k)u′u(2)u−kvk

+ (2− k)(1− k)(−k)u′3u−k−1vk] + 3[k(2− k)u(2)u1−kv′vk−1

+ k(2− k)(1− k)u′2u−kv′vk−1] + 3[k(2− k)u′u1−kv(2)vk−1

+ k(2− k)(k − 1)u′u1−kv′2vk−2] + [ku2−kv(3)vk−1

+ 3k(k − 1)u2−kv′v(2)vk−2 + (k − 2)(k − 1)ku2−kv′3vk−3]

(3.40)

Using in (3.40) the substitutions f ′′ = −af , f ′′′ = −(af)′ for f = u, v gives

(yk)
(3) =− a′(2− k)u2−kvk − a(2− k)u′u1−kvk

− 3a(2− k)(1− k)u′u1−kvk − k(1− k)(2− k)u′3u−1−kvk

− 3ak(2− k)v′u2−kvk−1 + 3k(2− k)(1− k)u′2u−kv′vk−1

− 3ak(2− k)u′u1−kvk + 3k(k − 1)(2− k)u′u1−kv′2vk−2

− a′ku2−kvk − akv′u2−kvk−1 − 3ak(k − 1)u2−kv′vk−1

+ (k − 2)(k − 1)(k)u2−kv′3vk−3

(3.41)
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Substituting (3.41) into (3.38) and expressing also y′k and yk in the resulting equation in
terms of u and v gives

(yk)
(3) + 4a(yk)

′ + 2a′(yk) =k(k − 1)(k − 2)(−u′3u−1−kvk + 3u′2u−kv′vk−1

+ 3u′u1−kv′2 + v2−k + u2−kv′3vk−3)

=k(k − 1)(k − 2)u−1−kvk−3[(uv′ − u′v)3]

=

(
2∏
j=0

(k − j)

)
· u5−kvk−3

[(v
u

)′]3

= 0, for k = 0, 1, 2.

On the other hand, the Wronskian of the three functions yk is −2(vu′− v′u)3 6= 0, showing that
the functions yk, 0 ≤ k ≤ 2, are linearly independent.

Let Ωn be the linear operator corresponding to the linear iterative equation of order n with source

equation y′′ + ay = 0. Thus Ω3 =
d3

dx3
+ 4a

d

dx
+ 2a′. Let yk, for 0 ≤ k ≤ n − 1 be given

as above by yk = un−(k+1)vk. We now want to express Ω4,Ω5,Ω6 in a similar way, and then
generate a general expression for Ωn.

• For n = 4 The iterative equation of order 4 is given by

y(4) + 10ay(2) + 10a′y(1) + (3a′′ + 9a2)y = 0 (3.42)

Here, we have Ω4 =
d4

dx4
+ 10a

d2

dx2
+ 10a′

d

dx
+ (3a′′ + 9a2) and let yk, for 0 ≤ k ≤ 3 is

given by yk = u3−kvk. Hence,

(yk)
(4) =

(
u3−k)(4)

vk + 4
(
u3−k)(3)

(vk)(1) + 6
(
u3−k)(2)

(vk)(2)

+ 4
(
u3−k)(1)

(vk)(3) + u3−k(vk)(4)

=(3− k)[u(4)u2−k + 4(2− k)u′u1−ku(3) + 3(2− k)u(2)2
u1−k

+ 6(2− k)(1− k)u(2)u′2u−k − k(2− k)(1− k)u′4u−k−1]vk

+ 4(3− k)[u(3)u2−k + 3(2− k)u′u(2)u1−k + (2− k)(1− k)

× u′3u−k][kv′vk−1] + 6(3− k)[u(2)u2−k + (2− k)u′2u1−k]

× k[v(2)vk−1 + (k − 1)v′2vk−2] + 4(3− k)[u′u2−k]

× k[v(3)vk−1 + 3(k − 1)v′v(2)vk−2 + (k − 1)(k − 2)v′3vk−3]

+ u3−k k [v(4)vk−1 + 4(k − 1)v′v(3)vk−2 + 3(k − 1)v(2)2
vk−2

+ 6(k − 1)(k − 2)v(2)v′2vk−3 + (k − 1)(k − 2)(k − 3)v′4vk−4].

(3.43)

Similarly,

(yk)
(2) =(3− k)u(2)u2−kvk + (3− k)(2− k)u′2u1−kvk + k(3− k)u′u2−k

× v′vk−1 + ku3−kv(2)vk−1 + k(k − 1)u3−kv′2vk−2

+ k(3− k)u′u2−kv′vk−1

(3.44)
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and

(yk)
(1) = (3− k)u′u2−kvk + kv′vk−1u3−k. (3.45)

One can readily see that if a function f satisfies y′′ + a y = 0 then,

f ′′′ = −a′f − af ′ (3.46a)

f ′′′′ = −2a′f ′ + (a2 − a′′)f. (3.46b)

Using in (3.43), (3.44), (3.45) the substitutions (3.46) for f = u, v and plugging the
resulting expression in (3.42) lead to

Ω4(yk) = (3− k)[−2a′u′ + (a2 − a′′u)]u2−kvk + 4(3− k)(2− k)u′u1−k(−a′u− au′)vk+
3(3− k)(2− k)−au2u1−kvk + 6(3− k)(2− k)(1− k)[−au]u′2u−kvk − k(3− k)

(2− k)(1− k)u′4u−k−1vk + 4k(3− k)v′vk−1[(−a′u− au′)u2−k + 3(2− k)u′×
(−au)u1−k + (2− k)(1− k)u′3u−k] + 6k(3− k)[(−au)u2−k + (2− k)u′2u1−k]

× k[(−av)vk−1 + (k − 1)v′2vk−2] + 4k(3− k)u′u2−k[(−a′v − av′)vk−1−
3(k − 1)v′(avvk−2) + (k − 1)(k − 2)v′3vk−3] + ku3−k[((a2 − a′′)v − 2a′v′)vk−1+

4(k − 1)v′vk−2(−a′v − av′) + 3(k − 1)(a2v2)vk−2 − 6(k − 1)(k − 2)(av)v′2vk−3

+ (k − 1)(k − 2)(k − 3)v′4vk−4]− 10(3− k)(a2u)u2−kvk + 10a(3− k)(2− k)u′2

u1−kvk + 10ak(3− k)u′u2−kv′vk−1 − 10ku3−k(a2v)vk−1 + 10ak(k − 1)v′2vk−2u3−k

+ 10ak(3− k)u′u2−kv′vk−1 + 10a′(3− k)u′u2−kvk + 10a′ku3−kv′vk−1

+ (3a′′ + 9a2)u3−kvk.

=k(k − 1)(k − 2)(k − 3)[u3−kv′4vk−4 − 4u′u2−kv′3vk−3

+ 6u′2v′2u1−kvk−2 − 4u′3u−kv′vk−1 − u′4u−k−1vk] (3.47)

=

(
3∏
j=0

(k − j)

)
· u7−kvk−4

[(v
u

)′]4

=0, for k = 0, 1, 2, 3.

Therefore,

Ω4(yk) =

(
3∏
j=0

(k − j)

)
· u7−kvk−4

[(v
u

)′]4

, 0 ≤ k ≤ 3. (3.48)

Proceeding in the same way for n = 5 and n = 6, and for the corresponding values of yk shows
that



Section 3.2. Symmetry Analysis of the linear iterative equation Page 21

•

Ω5(yk) =

(
4∏
j=0

(k − j)

)
· u9−kvk−5

[(v
u

)′]5

, 0 ≤ k ≤ 4 (3.49)

and

•

Ω6(yk) =

(
5∏
j=0

(k − j)

)
· u11−kvk−6

[(v
u

)′]6

, for 0 ≤ k ≤ 5 (3.50)

which are equal to zero for 0 ≤ k ≤ 5. It clearly follows from the expressions of Ωn(yk) obtained
for n = 3, 4, 5, 6 that the general expression for an arbitrary n ≥ 3 is

Ωn(yk) =

(
n−1∏
j=0

(k − j)

)
· u2n−1−kvk−n

[(v
u

)′]n
= 0, for 0 ≤ k ≤ n− 1, n ≥ 3. (3.51)

A formal proof of the validity of (3.51) could be done by induction on n.

We deduce from (3.36) that the solutions of (3.35) are given by

f(x) = c1u
2 + c2uv + c3v

2 (3.52a)

h(x) =
n+3∑
k=4

cku
n−1−kvk, (3.52b)

where u and v are solutions of (1.14).

Therefore, the general infinitesimal symmetry generator v = ξ∂x + φ∂y of the linear iterative
equation of order n is given by

ξ(x) =c1u
2 + c2uv + c3v

2 (3.53a)

φ(x, y) =

[
n− 1

2
(2c1u

′u+ c2u
′v + c2uv

′ + 2c3vv
′) + c0

]
y+

n+3∑
k=4

cku
n−1−kvk

(3.53b)

where c0, . . . , cn+3 are arbitrary constants. There are n+ 4 arbitrary constants, meaning that the
Lie algebra has maximal dimension. Letting vk be the generators obtained by setting cj = δkj in
(3.53) allows us to find the n+ 4 vector fields [1] ( although this result is not an original one of
[1])

v0 = y∂y (3.54a)

v1 = u2∂x + (n− 1)uu′y∂y (3.54b)

v2 = uv∂x +
n− 1

2
(u′v + uv′)y∂y (3.54c)

v3 = v2∂x + (n− 1)vv′y∂y (3.54d)

vk = un−1−kvk∂y , k = 4, . . . n+ 3 (3.54e)
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that span the Lie algebra. This has been obtained in [1] by a slightly different method. Note
indeed that this is simply based on the substitution of (3.52) into (3.34), which was clearly
obtained in [1]. We can notice that finding symmetries and solutions of linear iterative equations
reduce to the case of the second-order source equation in normal form y′′ + A2

2y = 0. Despite
the low order of the source equation, its solutions u and v are generally not available and in this
section, we are interested in finding explicit solutions of the equation in terms of the parameter
r of the source equation, and for r as large (i.e. arbitrary) as possible. Recall that

A2
2 =

r′2 − 2rr′′

4r2
provided that s = −n− 1

2
r′. (3.55)

3.3 Solutions of the source equation for given values of r

We have noted that the solutions of the source equation y′′ + ay = 0 are not available for A2
2

arbitrary. So we are interested in the same problem from a different angle. For given values of
the parameter r of the source equation, find the solutions u and v in terms of r. In view of (3.54)
this amounts to solving

r′2 − 2rr′′

4r2
= A2

2, (3.56)

for r. So this problem is not easier than that of finding u and v directly, but here one is only
interested in equations determined by the source parameter r, and to finding u and v in terms of
r. Note also that in vertue of (3.54) it is not necessary to find an expression of the symmetries
in terms of r ( it only suffices to express u and v in terms of r).

3.3.1 Case r = constant.

Values of s, A2
2, u and v : Invoking equations (3.56) we have

s = 0, A2
2 = 0, (3.57)

so that the corresponding source equation is y′′ = 0. And then, the two linearly independent
solutions are

u = 1, v = x. (3.58)

These solutions can not be expressed in terms of the parameters r and s. However, we can write
the symmetries as functions of the variables x and y, in this somewhat trivial case.

Symmetry generators : We use (3.54) and (3.58) to generate the vectors that spanned the lie
algebra:

v0 = y∂y (3.59a)

v1 = ∂x (3.59b)

v2 = x∂x +
n− 1

2
y∂y (3.59c)

v3 = x2∂x + (n− 1)x∂y (3.59d)

vk = xk∂y , k = 4, . . . n+ 3. (3.59e)
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3.3.2 Case r(x) = c1x+ c2, c1 6= 0.

Values of s, A2
2, u and v: For such value of r , we have

s = −n− 1

2
c1, (3.60)

and

A2
2(x) =

(c1x+ c2)′2 − 2 (c1x+ c2) (c1x+ c2)′′

4(c1x+ c2)2

2

(3.61)

Then now,

A2
2(x) =

(
c1

2c1x+ 2c2

)2

. (3.62)

Equation (1.14) becomes

y′′ +

(
c1

2c1x+ 2c2

)2

y =0 (3.63)

and this equation is of Euler’s type. Let c1x+ c2 = e2t, then

dx = etdt, (3.64a)

y′(x) =
c1

2
e−2ty′(t) (3.64b)

y′′(x) = −c
2
1

2
e−4ty′(t) +

c2
1

4
e−4ty′′(t). (3.64c)

Substituting back (3.64) in (3.87) we get

y′′ − 2y′ + y =0, (3.65)

and its characteristic equation is

Q2 − 2Q+ 1 =0. (3.66)

Thus, the solutions of (3.65) are

exp (t) , and t exp (t) . (3.67)

Substituting back t = 1
2

ln(c1x + c2) = ln
√
r in the above solutions, we get the two linearly

independent solutions of equation (3.87):

u =
√
r, v =

√
r ln r. (3.68)

Symmetry generators in terms of the parameters r and s: Similarly, invoking (3.54) , the n + 4
vectors that spanned the Lie algebra in this special case are given by

v0 = y∂y (3.69a)

v1 = r∂x − sy∂y (3.69b)

v2 = r ln r∂x − (1 + ln r)sy∂y (3.69c)

v3 = r ln2 r∂x −
(
ln2 r + 2 ln r

)
sy∂y (3.69d)

vk = r
n−1
2 lnk r∂y , k = 4, . . . n+ 3. (3.69e)
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3.3.3 Case r(x) = (c1x+ c2)2, c1 6= 0.

Corresponding values of s, A2
2, u and v: Here, we have

r = (c1x+ c2)2, s = −c1(n− 1)
√
r, A2

2 = 0, (3.70)

and equation (1.14) becomes
y′′ = 0. (3.71)

Let

u = 1 v = c1x+ c2 (3.72)

be the two linearly independent solutions. From equation (3.70), we have

c1x+ c2 =
√
r. (3.73)

Therefore, the two linearly independent solutions u and v (given in terms of r) are as follow

u = 1 v =
√
r. (3.74)

Symmetry generators in terms of the parameters r and s: According to (3.54), the expressions
of the symmetries in terms of the parameter r and s are then given by

v0 = y∂y (3.75a)

v1 = ∂x (3.75b)

v2 =
√
r∂x −

s

2
√
r
y∂y (3.75c)

v3 = r∂x − sy∂y (3.75d)

vk = r
k
2 ∂y , k = 4, . . . n+ 3. (3.75e)

3.3.4 Case r(x) = (c1x+ c2)m, c1 6= 0,m 6= 0, 1, 2.

Corresponding values of s, A2
2 and the linearly independent solutions: To find the value of A2

2

generated by

r(x) = (c1x+ 2c2)m, (3.76)

we just need to substitute its expression in the expression

A2
2(x) ≡ r′2 − 2rr′′

4r2
. (3.77)

The corresponding value of A2
2 is thus given by

A2
2(x) =

(
2m−m2

)( c1

2c1x+ 2c2

)2

, (3.78)
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and equation (1.14) becomes

y(x)′′ +
(
2m−m2

)( c1

2c1x+ 2c2

)2

y =0. (3.79)

Using the change of variable c1x+c2 = exp 2t√
2m−m2 we get dx = 2

2
√

2m−m2 exp 2t√
2m−m2dt. Then

dy

dx
=
dy

dt

dt

dx
=

 c1

√
2m−m2

2 exp
2t√

2m−m2

 dydt (3.80a)

and

d2y

dx2
=
dy′

dt

dt

dx
=

 c2
1 (2m−m2)

4 exp

(
4t√

2m−m2

)
 y′′ +

− c2
1

√
2m−m2

2 exp

(
4t√

2m−m2

)
 y′(t). (3.80b)

Using (3.80) into (3.79) leads to

d2y

dt2
− 2√

2m−m2

dy

dt
+ y =0 (3.81)

and the solutions of the corresponding characteristic equation are given by

λ1 =

√
2−m
m

, λ2 = −
√

m

2−m
, (3.82)

we assume that 2m −m2 > 0 in order to avoid complex numbers. Therefore, the solutions of
(3.79), in terms or the parameter r, are given as follow

u =r
1
2 , v = r

2−m
2m (3.83)

Symmetry generators in terms of the parameters r and s: We can now express the symmetries
in terms of the parameters r and s since we were able to express the two solutions in terms of
these parameters. Hence, the n+ 4 symmetries are as follow

v0 = y∂y (3.84a)

v1 = r∂x − sy∂y (3.84b)

v2 = r
1
m∂x −

2

m(n− 1)
r

1−m
m sy∂y (3.84c)

v3 = r
2−m
m ∂x −

(
2−m
m

)
r

2−2m
m sy∂y (3.84d)

vk = r
k
m

+n−1−2k
2 ∂y , k = 4, . . . n+ 3. (3.84e)
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3.3.5 Case r(x) = exp (mx),m 6= 0.

Corresponding value of A2
2 and the linearly independent solutions: If the parameter r is an

exponential function of the above form then

s = −(n− 1)m

2
r. (3.85)

Equation (1.16) enables us to find the expression of A2
2. Hence,

A2
2(x) =− m2

4
. (3.86)

Equation (1.14) becomes

y′′ −
(m

2

)2

y =0. (3.87)

and has

u =r
1
2 , v = r−

1
2 (3.88)

as solutions.

Symmetries generator in terms of the parameters r and s: The knowledge of u, v allows us to
find the symmetries as follows

v0 = y∂y (3.89a)

v1 = r∂x − sy∂y (3.89b)

v2 = ∂x (3.89c)

v3 =
1

r
∂x +

( s
r2

)
y∂y (3.89d)

vk = r
n−1−2k

2 ∂y , k = 4, . . . n+ 3. (3.89e)

3.3.6 Case r(x) = ln x. In this case, the expression for A2
2 is given by

A2
2 =

1 + 2 lnx

4x2 ln2 x
. (3.90)

Solving

y′′ +

(
1 + 2 lnx

4x2 ln2 x

)
y = 0 (3.91)

is not easy and we have tried to find the solutions using Mathematica (a popular computing
system) which gives us

u = G2,0
1,2

r
2

3

2
1

2
,
1

2

 , v =

√
r√
2
, (3.92)

where Gm,n
p,q is the Meijer G-function define by

Gm,n
p,q

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣ z) =
1

2πi

∫
L

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p

j=n+1 Γ(aj − s)
zs ds, (3.93)



Section 3.4. Solutions of the source equation for given values of A2
2 Page 27

3.4 Solutions of the source equation for given values of A2
2

As already noted, the solutions of a general linear iterative equation are easily obtained using the
simple formula (3.36) from the linearly independent solutions u and v of the second-order source
equation. In the previous section, we obtained expressions of u and v in terms of r, for various
large values of r. In this present section, to find u and v, instead of choosing a value for r, we
rather specify a value for A2

2. Our aim is to solve the source equation for A2
2 as large as possible.

Despite its simplicity, the general solutions of the second-order source equation y′′ + A2
2y = 0 is

not known, for A2
2 arbitrary, and to solve this equation for specific values of A2

2 we shall make
use of the following theorem proved in [15] about the method for solving y(k) − f(x)y = 0.
Only values of A2

2 that have not been obtained in the previous section by a choice of r will be
considered.

3.4.2 Theorem. Suppose f is continuous on [a, b], c ∈ [a, b], and k is a natural number. Define
the sequence of functions {fn(x)}∞n=0 by

fo(x) = a
(0)
0 + a

(0)
1 x+ · · ·+ a

(0)
k−1x

k−1 6= 0, (3.94)

fn(x) =

∫ x

c

∫ uk−1

c

. . .

∫ u1

c

fn−1(u)f(u)dudu1 . . . duk−1

+
k−1∑
j=0

a
(n)
j xj, n = 1, 2, . . . .

(3.95)

where a
(n)
0 , . . . , a

(n)
k−1, are constants, n = 0, 1, 2, . . . If the series

∑∞
n=0 fn(x) converges uniformly

on [a, b] to some function S(x) then
∑∞

n=0 f
(j)
n (x) converges uniformly to S(j)(x) for a ≤ x ≤ b,

j = 1, 2, . . . k and S(k)(x) = S(x)f(x) on [a,b].

The text of the above theorem in [15] shows that such a sequence of functions satisfy

f ′′n(x) = fn−1(x)f(x) (3.96)

for k = 2.

3.4.3 Case A2
2 = 0. To avoid redoing the same things let us find the values of r such that

A2
2 = 0. To find the values of the parameter r that generate A2

2 = 0 we just need to solve the
equation

A2
2(x) ≡ r′2 − 2rr′′

4r2
= 0. (3.97)

The solutions of (3.97) are given by

r(x) = (c1x+ 2c2)2, (3.98)

where c1 and c2 are arbitrary constants. Indeed, for such value of r the coefficient A2
2 = 0 . This

case has already been treated in sections 3.3.1 and 3.3.3 .
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3.4.4 Case A2
2 = C, for an arbitrary constant C 6= 0. Let

y′′ + Cy =0 (3.99)

be the second-order source equation (in normal form) generating a family of iterative equation.
First we note that since C is a constant, and since each equation in the corresponding family
of iterative equations (in normal form) has coefficients which are only polynomials in C and its
derivatives, it follows that each iterated equation has constant coefficients. The converse is also
clear from the relation

A2
n =

(
n+ 1

3

)
A2

2 =
n(n− 1)(n+ 1)

6
A2

2 =
n3 − n

6
A2

2. (3.100)

Consequently each iterated equation has constant coefficient if and only if A2
2 is a constant. In

[13] they proved that indeed, all coefficients in each iterated equation depends solely on A2
n (thus

on A2
2) and its derivatives. Now, let

∆n(y) = 0 (3.101)

be the iterative equation of order n generated by (3.99), and suppose that its labelling coefficient
A2
n is a constant, B say. To find the parameter r of the source equation that generates (3.101),

one needs to solve the equation

B =
n3 − n

6
C, i.e. B =

n3 − n
6

(
r′2 − 2rr′′

4r2

)
(3.102)

for r. This has solution

r(x) = c2 cos2

[
√

6

√
B

−n+ n3
(−2c1 + x)

]
, (3.103)

and the corresponding value of s(x) = −(1/2)(n− 1)r′(x) has expression

s(x) =

√
3

2
c2(−1 + n)

√
B

−n+ n3
sin

[
2
√

6

√
B

−n+ n3
(−2c1 + x)

]
; (3.104)

However, using the usual operator Φn and r alone, one can easily generate iterative equations of
any order n with A2

n = B. For instance the list of canonical normal forms of iterative equations
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of order 3 to 10 with constant coefficient is given by

y(2) + A2
2y = 0,

y(3) + 4A2
2y
′ = 0,

y(4) + 10A2
2y
′′ + 9

(
A2

2

)2
y = 0,

y(5) + 20A2
2y

(3) + 64
(
A2

2

)2
y′ = 0,

y(6) + 35A2
2y

(4) + 259
(
A2

2

)2
y′′ + 225

(
A2

2

)3
y = 0,

y(7) + 56A2
2y

(5) + 784
(
A2

2

)2
y(3)2304

(
A2

2

)3
y′ = 0,

y(8) + +84A2
2y

(6) + 1974
(
A2

2

)2
y(4) + 12916

(
A2

2

)3
y′′ + 11025

(
A2

2

)4
y = 0,

y(9) + 120A2
2y

(7) + 4368
(
A2

2

)2
y(5) + +52480

(
A2

2

)3
y(3)147456

(
A2

2

)4
y′ = 0,

y(10) + 165A2
2y

(8) + 8778
(
A2

2

)2
y(6) + 172810

(
A2

2

)3
y(4) + 1057221

(
A2

2

)4
y′′

+ 893025
(
A2

2

)5
y = 0.

(3.105)

Using the standard change of variable

y = w exp

(
− 1

n

∫ z

z0

Bn−1dv

)
, (3.106)

we can transform these equations into their standard forms, in which they will thus depend on
two (and not just one) arbitrary coefficient, Bn−1 and B = Bn−2. For instance, for n = 3, after
transformation and normalization of the coefficient of y′, the equation has the form

1

27
(9B1B2 − 2B2

3)w +B1w
′ +B2w

′′ + w(3) = 0. (3.107)

For expressing the solutions of (3.101) in terms of r, one may proceed as follows. If we let

u = cos[
√
Cx], and v = sin[

√
Cx] (3.108)

be the linear iterative solutions to y′′ + Cy = 0. For instance, in terms of r, we have

u = cos

x
√
r′2 − 2rr′′

4r2

 , v = sin

x
√
r′2 − 2rr′′

4r2

 , (3.109)

where r is given by (3.103). This give in fact u and v in terms of C = A2
2. We know that the

linear independent solutions to (3.101) are given by the ukvn−1−k, 0 ≤ k ≤ n − 1. Solutions
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(3.108) correspond to the case where C ≥ 0 and it has to be noted that the general solutions
are given by

y = A exp{αx}+B exp{ᾱx}, (3.110)

for some constants A and B, α is the root of x2 + C = 0 (C real ).

3.4.5 Case A2
2 = αxm, y′′ + αxmy = 0 .

m 6= −2: Solving y′′+αxmy = 0 is a straightforward application of the theorem 3.4.2 for k = 2
and f(x) = −αxm. Let fo(x) = 1 and c = 0. Then

f1(x) =

∫ x

0

∫ u1

0

f0(u)f(u)du du1 +
1∑
j=0

a
(1)
j xj (3.111)

=− α

m+ 1

∫ x

0

u1
m+1du1 (3.112)

=− α

(m+ 1)(m+ 2)
xm+2. (3.113)

The expressions of f2(x), f3(x), . . . fn(x) (using (3.96)) are given by

f2(x) =
α2

(m+ 1)(m+ 2)(2m+ 3)(2m+ 4)
x2m+4 (3.114)

f3(x) =
−α3

(m+ 1)(m+ 2)(2m+ 3)(2m+ 4)(3m+ 5)(3m+ 6)
x3m+6 (3.115)

... (3.116)

fn(x) =
(−α)n

(m+ 1)(m+ 2)(2m+ 3)(2m+ 4) . . . (nm+ 2n− 1)(nm+ 2n)
xnm+2n (3.117)

Similarly, letting go(x) = x we have

gn(x) =
(−α)n

(m+ 2)(m+ 3)(2m+ 4)(2m+ 5) . . . (nm+ 2n)(nm+ 2n+ 1)
xnm+2n (3.118)

By Theorem (3.4.2) ,

u(x) =
∞∑
i=0

fn(x) and v =
∞∑
i=0

gn(x) (3.119)

are solutions to y′′ + αxmy = 0. In terms of special functions, Mathematica gives

u = (m+ 2)
−

1

m+ 2
√
xΓ

(
m+ 1

m+ 2

)
J
−

1

m+ 2

(
2x

m
2

+1

m+ 2

√
α

)
α

1
2m+4 (3.120)

v = (m+ 2)
−

1

m+ 2
√
xΓ

(
1 +

1

m+ 2

)
J 1

m+ 2

(
2x

m
2

+1

m+ 2

√
α

)
α

1
2m+4 , m 6= −2,

(3.121)
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where Γ is the Gamma function, J is the Bessel function and x =

(
A2

2

α

) 1
m

.

Case m = −2 i.e. A2
2 = α/x2: The corresponding equation is

y′′ +
α

x2
y =0, (3.122)

which is equivalent to
x2y′′ + αy = 0 (3.123)

Let x = et, then

dx = etdt, (3.124a)

y(x)′ = e−tY (t)′ (3.124b)

y′′(x) = Y (t)′′e−2t − Y (t)′e−2t. (3.124c)

Substituting back (3.124a) in (3.123) we get

Y ′′ − Y ′ + αY = 0, (3.124d)

and its characteristic equation is Q2 −Q+ α = 0.

• If α ≤ 1

4
then the solutions of (3.123) are given by

y1 = x
1−
√
1−4α
2 , y2 = x

1+
√
1−4α
2 (3.124e)

• If If α ≥ 1

4
then the solutions of (3.123) are given by

y1 =
√
x cos

(√
4α− 1

2
lnx

)
, y2 =

√
x sin

(√
4α− 1

2
lnx

)
(3.124f)

• If α =
1

4
, the solutions of (3.123) are given by

y1 =
√
x , y2 =

√
x lnx (3.124g)

with x =
√

α
A2

2
.

3.4.6 Case A2
2 = ebx, b 6= 0. Equation (1.14) becomes

y′′ + ebxy = 0. (3.125)

Setting X = ebx and Y (X) ≡ y(x), we get x =
1

b
ln(X). Let us express (3.125) in terms of the

new variables X and Y .
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•

dy

dx
=

dy

dX

dX

dx
= bX Y ′ (3.126)

and

•

d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dX

(
bX

dY

dX

)
dX

dx

=

(
b
dY

dX
+ bX

d2Y

dX2

)
bX

= b2XY ′ + b2X2Y ′′ (3.127)

The substitution of (3.126) and (3.127) in (1.14) leads to

b2X2Y ′′ + b2XY ′ +XY = 0 (3.128)

which is equivalent to
b2XY ′′ + b2Y ′ + Y = 0. (3.129)

Applying the Laplace Transform L[f(x)](s) =
∫∞

0
f(x)e−sxdx to (3.129) we get

b2L[XY ′′](s) + b2L[Y ′](s) + L[Y ](s) = L[0](s). (3.130)

Using the properties

L[Y ′](s) = sL[Y ](s)− Y (0) , L[XY ′′](s) = − d

ds
(L[Y ′′](s)) (3.131)

and
L[Y ′′](s) = s2L[Y ](s)− sY (0)− Y ′(0), (3.132)

equation (3.130) becomes

−b2 d

ds

[
s2L[Y ](s)− sY (0)− Y ′(0)

]
+ b2sL[Y ](s)− b2Y (0) + L[Y ](s) = 0. (3.133)

By expanding the above equation we get

−2b2sL[Y ](s)− b2s2 d

ds
L[Y ](s) + b2sL[Y ](s)− b2Y (0) + L[Y ](s) = 0, (3.134)

which is equivalent to the separable equation

− b2s2 [L[Y ](s)]′ + [−2b2s+ b2s+ 1]L[Y ](s) = 0. (3.135)
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We may rewrite (3.135) as follows

[L[Y ](s)]′

L[Y ](s)
= −1

s
+

1

b2s2
. (3.136)

The integration of (3.136) gives

lnL[Y ](s) = − ln s− 1

b2s
+ k, (3.137)

where k is an arbitrary constant. Applying the exponential function to both sides we get

L[Y ](s) =
c

s
e−

1
b2s . (3.138)

The inverse Laplace transform of (3.138) gives (taking into consideration X = ebx ) the solution

u = J0

(
2

b

√
ebx
)
, (3.139)

where J0 is the Bessel function of the first kind, thus v is the Bessel function of the second kind.
Therefore the two solutions in this case are given by

u = J0

(
2

b

√
ebx
)

, v = Y0

(
2

b

√
ebx
)
, (3.140)

with A2
2 = ebx.

3.4.7 Reduction by symmetries. We want to solve the equation

y′′ + a y = 0. (3.141)

Let v = ξ∂x +φ∂y be the infinitesimal generator of (3.141). Applying the invariant condition we
get

pr(2)v[y′′ + ay] = 0 (3.142)

(ξ∂x + φ∂y + φx∂yx + φxx∂xx)[y
′′ + ay] = 0 (3.143)

ξa′y + φa+ φxx = 0 (3.144)

We substitute φxx with its expression to get

ξa′y + φa+ φxx + (2φyx − ξxx)yx + (φy − 2ξx)yxx + (φyy − 2ξyx)yx
2

− ξyyy3
x − 3ξyyxyxx = 0

(3.145)

The substitution of y′′ with −ay in (3.145) gives

φa+ φxx + (2φyx − ξxx)yx + [ξa′ − a(φy − 2ξx)]y + (φyy − 2ξyx)yx
2

− ξyyy3
x + 3aξyyyx = 0

(3.146)
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The system of determining equations is

1 : φa+ φxx + (2aξx − aφy + a′ξ)y = 0 (3.147a)

yx : 2φyx − ξxx + 3aξyy = 0 (3.147b)

y2
x : φyy − 2ξyx = 0 (3.147c)

y3
x : ξyy = 0. (3.147d)

From (3.147d) we deduce that

ξ(x, y) = f(x)y + g(x), (3.148)

where f and g are arbitrary functions. Using (3.148) in (3.147c) we get

φyy = 2f ′(x). (3.149)

Then now,

φ = f ′(x)y2 + h(x)y + i(x), (3.150)

where h, i are arbitrary functions. Substituting (3.148) and (3.150) in (3.147a) and (3.147b) we
get the following equations

(f (3) + af ′ + a′f)y2 + (h(2) + 2ag′ + a′g)y + (i(2) + ai) =0 (3.151a)

(3f ′′ + 3af)y + 2h′ − g′′ =0 (3.151b)

Separating (3.151) by yn we get

y2 : f (3) + af ′ + a′f = 0 (3.152a)

y : h(2) + 2ag′ + a′g = 0 (3.152b)

1 : i(2) + ai = 0 (3.152c)

and

y : f (2) + af = 0 (3.153a)

1 : 2h′ − g(2) = 0. (3.153b)

The first equation of (3.152) is just the derivative of the first equation of (3.153). The second
equation of (3.152) and (3.153) lead to

g(3) + 4ag′ + 2a′g = 0 (3.154)

which is an iterative equation. Letting u and v be solutions of y′′+ay = 0, the reader can readily
check that the expressions of ξ and φ are given as follows

ξ(x, y) =(α6u+ α7v)y + α1u
2 + α2v

2 + α3uv (3.155a)

φ(x, y) =(α6u
′ + α7v

′)y2 +
(
α1uu

′ + α2vv
′ +

α3

2
(u′v + uv′) + c0

)
y + α4u+ α5v. (3.155b)
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Therefore, the eight vectors that spanned the lie algebra are given by

v0 = y∂y (3.156a)

v1 = u2∂x + uu′y∂y (3.156b)

v2 = v2∂x + vv′y∂y (3.156c)

v3 = uv∂x +
1

2
(u′v + uv′)y∂y (3.156d)

v4 = u∂y (3.156e)

v5 = v∂y (3.156f)

v6 = uy∂x + u′y2∂y (3.156g)

v7 = vy∂x + v′y2∂y. (3.156h)

Consider the symmetry v0 = y∂y: (3.141) is invariant under the group of transformations

x∗ = x y∗ = λy. (3.157)

The differential invariants can be found by solving the characteristic equation

dx

0
=
dy

y
. (3.158)

Hence, the two invariants are given by z = x and w = log y. The first and second derivatives of
y with respect to x are given by

y′ = wze
w y′′ = wzze

w + w2
ze
w. (3.159)

Using these expressions in (3.141) leads to

wzze
w + w2

ze
w + aew = 0, (3.160)

which can be written as

wzz + w2
z + a = 0. (3.161)

Setting W = wz in the above equation yields

Wz = −W 2 − a (3.162)

which is known as a Riccati equation. Let Wp be a particular solution of (3.162). By setting

T =
1

W −Wp

, we then have Tz =
W +Wp

W −Wp

. The substitution of W with its expression in terms

of T in (3.162) gives
Tz − 2WpT = 1 (3.163)

and has

T = k1 exp

(∫
2Wp

)
− 1

2Wp

(3.164)

as solution. We just need to inverse all the transformations to retrieve y .
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3.5 Point transformations

To find all the mappings we are going to solve (2.42) for x? and y? in each case. We said that
the n+ 4 symmetries of

y(n) +
n−2∑
i=0

ai y
(i) = 0 (3.165)

are given by

v0 = y∂y (3.166a)

v1 = u2∂x + (n− 1)uu′y∂y (3.166b)

v2 = uv∂x +
n− 1

2
(u′v + uv′)y∂y (3.166c)

v3 = v2∂x + (n− 1)vv′y∂y (3.166d)

vk = un−1−kvk∂y , k = 4, . . . n+ 3, (3.166e)

where u and v are the solutions of the second-order source equation. Vectors v1, v2, v3 can be
represented by

V123 =A(x)∂x +B(x)y∂y (3.167)

for some functions A and B of x, since u and v are functions of x. We found that v0 leads to
the point transformations

x? = x, (3.168a)

y? = eεy. (3.168b)

The group of transformation (3.168) transforms (3.165) into

eε
(
y(n) + A2

n(x)y(n−2) + · · ·+ Ann(x)y
)

= 0 (3.169)

which is the same as (3.165) since eε can not be zero. The symmetry vk generates the group of
transformations

x? = x, (3.170a)

y? = un−1−kvkε+ y (3.170b)

that transform (3.165) into(
y(n) + A2

n(x)y(n−2) + · · ·+ Ann(x)y
)

+ ε
[ (
un−1−kvk

)(n)
+ A2

n(x)
(
un−1−kvk

)(n−2)

+ · · ·+ Ann(x)
(
un−1−kvk

) ]
= 0.

(3.171)

Given that un−1−kvk are solutions of (3.165) we end up with an unchanged equation. Using the
vector v123 = f(x)∂x + g(x)y∂y we get

∂x?

∂ε
= f(x?),

∂y?

∂ε
= g(x?)y?. (3.172)
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Then

∂x?

∂ε
= f(x?)⇒ x? = f̃(x, ε) (3.173a)

and

∂y?

∂ε
= g(x?)y? ⇒ y? = g̃(x, ε)y (3.173b)

give the most general form of the group of symmetry transformations generated by V123:

x? =f̃(x, ε) (3.174a)

y? =g̃(x, ε)y. (3.174b)

3.5.1 Example. In this example we aim to find all the point transformations that map solutions
onto others solutions for r = c1x + c2. The n + 4 vectors that spanned the Lie algebra in this
special case are given by

v0 = y∂y (3.175a)

v1 = r∂x − sy∂y (3.175b)

v2 = r ln r∂x − (1 + ln r)sy∂y (3.175c)

v3 = r ln2 r∂x −
(
ln2 r + 2 ln r

)
sy∂y (3.175d)

vk = r
n−1
2 lnk r∂y , k = 4, . . . n+ 3. (3.175e)

• For v0 = y∂y, the infinitesimals are given by

ξ = 0, φ = y, (3.176)

then, we have

∂x?

∂ε
= 0,

∂y?

∂ε
= y? (3.177)

∂x?

∂ε
= 0 =⇒ x? = cst. (3.178)

Using condition (2.42), the value of this constant is equal to x, then,

x? =x (3.179)

Also,

∂y?

∂ε
= y? =⇒ ln y? = ε+ c2. (3.180)

Conditions (2.42) imply that c2 = ln y then,

y? = eεy. (3.181)

Therefore, the point transformations obtained from v0 are

x? = x, (3.182)

y? = eεy. (3.183)
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• For v1 = (c1x+ c2)∂x +
n− 1

2
c1y∂y.

ξ = c1x+ c2, φ =
n− 1

2
c1y, (3.184)

and

∂x?

∂ε
= c1x

? + c2,
∂y?

∂ε
=
n− 1

2
c1y

?. (3.185)

Taking into consideration conditions (2.42), we get

c1x
? + c2 = (c1x+ c2) exp (c1ε) , (3.186)

y? = y exp

(
n− 1

2
c1ε

)
. (3.187)

• For v2 = r ln r ∂x − (1 + ln r) sy ∂y. Here,

ξ = (c1x+ c2) ln(c1x+ c2), φ =
n− 1

2
c1 [1 + ln(c1x+ c2)] y, (3.188)

then,

∂x?

∂ε
= (c1x

? + c2) ln(c1x
? + c2),

∂y?

∂ε
=
n− 1

2
c1 [1 + ln(c1x

? + c2)] y?. (3.189)

We have

∂x?

∂ε
= (c1x

? + c2) ln(c1x
? + c2), ⇒ ln [ln(c1x

? + c2)] = c1ε+ c. (3.190)

From (2.42) we have c = ln [ln(c1x+ c2)]. Substituting the expression of c in the right
hand side expression of (3.190) and applying the exponential function twice we get

c1x
? + c2 = (c1x+ c2)exp(c1ε). (3.191)

Using (3.191) in

∂y?

∂ε
=
n− 1

2
c1 [1 + ln(c1x

? + c2)] y? (3.192)

yields

∂y?

∂ε
=
n− 1

2
c1 [1 + exp(c1ε) ln(c1x+ c2)] y?. (3.193)

Solving for y? and taking into consideration (2.42) we get

y? =
[
exp(c1ε)(c1x+ c2)(exp(c1ε)−1)

]n−1
2 y. (3.194)

Therefore, the point transformations obtained from v2 are

c1x
? + c2 =(c1x+ c2)exp(c1ε) (3.195)

y? =
[
exp(c1ε)(c1x+ c2)(exp(c1ε)−1)

]n−1
2 y. (3.196)
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• For v3 = r ln2 r∂x −
(
ln2 r + 2 ln r

)
sy∂y, we have

ξ = (c1x+ c2) ln2(c1x+ c2), φ = (n− 1)c1

[
1

2
ln2(c1x+ c2) + ln(c1x+ c2)

]
y,

(3.197)

then,

∂x?

∂ε
= (c1x

? + c2) ln2(c1x
? + c2),

∂y?

∂ε
= (n− 1)c1

[
1

2
ln2(c1x

? + c2) + ln(c1x
? + c2)

]
y?.

(3.198)

Thus,

∂x?

∂ε
= (c1x

? + c2) ln2(c1x
? + c2), ⇒ − 1

ln(c1x? + c2)
= c1ε+ c. (3.199)

From (2.42) we have c = − 1

ln(c1x+ c2)
. Substituting the expression of c in the right hand

side expression of (3.199) and applying the exponential function we obtain

c1x
? + c2 = (c1x+ c2)

1
1−c1ε ln(c1x+c2) . (3.200)

Using (3.200) in

∂y?

∂ε
= (n− 1)c1

[
1

2
ln2(c1x

? + c2) + ln(c1x
? + c2)

]
y? (3.201)

yields

∂y?

y?
= (n− 1)

[(
ln(c1x+ c2)

2

)(
c1 ln(c1x+ c2)

(1− c1ε ln(c1x+ c2))2

)
+

c1 ln(c1x+ c2)

1− c1ε ln(c1x+ c2)

]
∂ε.

(3.202)

Integrating the above equation, we get

ln y? = (n− 1)

(
ln(c1x+ c2)

2 [1− c1ε ln(c1x+ c2)]
+ ln

[
1

1− c1ε ln(c1x+ c2)

])
+ cst. (3.203)

Solving for y? (taking into consideration (2.42)), we have

y? =

(c1x+ c2)
c1ε ln(c1x+c2)

2[1−c1ε ln(c1x+c2)]

1− c1ε ln(c1x+ c2)

n−1

y. (3.204)

The point transformations obtained from v3 are

c1x
? + c2 =(c1x+ c2)

1
1−c1ε ln(c1x+c2) (3.205)

y? =

(c1x+ c2)
c1ε ln(c1x+c2)

2[1−c1ε ln(c1x+c2)]

1− c1ε ln(c1x+ c2)

n−1

y. (3.206)
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• For vk = r
n−1
2 lnk r ∂y , k = 4, . . . n+ 3, the point transformations are given by

x? = x (3.207)

y? =y + (c1x+ c2)
n−1
2 lnk(c1x+ c2)ε. (3.208)

List of point transformations obtained for some given values of r.

(a) Case r = constant.

(x?, y?) = (x, eεy) , (x?, y?) = (x+ ε, y) , (x?, y?) =
(
eεx, e

n−1
2
εy
)
, (3.209a)

(x?, y?) =

(
x

1− εx
,

(
1

1− xε

)n−1

y

)
,
(
x?, y? = y + xkε

)
. (3.209b)

(b) Case r = (c1x+ c2)2.

(x?, y?) = (x, eεy) , (x?, y?) = (x+ ε, y) , (3.210a)

(c1x
? + c2, y

?) =

(
ec1ε(c1x+ c2), exp

n− 1

2
c1εy

)
, (3.210b)

(c1x
? + c2, y

?) =

(
c1x+ c2

1− c1ε(c1x+ c2)
,

(
1

1− c1(c1x+ c2)ε

)n−1

y

)
, (3.210c)

(x?, y?) =
(
x, y + (c1x+ c2)kε

)
(3.210d)

(c) Case r = (c1x+ c2)m

(x?, y?) = (x, eεy) , (3.211a)
(c1x

? + c2)m−1 =
(c1x+ c2)m−1

1− c1(m− 1)(c1x+ c2)m−1ε
,

y? =

(
1

1− c1(m− 1)(c1x+ c2)m−1ε

)m(n−1)
2(m−1)

y,

(c1x
? + c2, y

?) =

(
(c1x+ c2) exp (c1ε) , y exp

(
n− 1

2
c1ε

))
, (3.2)

(c1x
? + c2)1−m =

(c1x+ c2)1−m

1− c1(1−m)(c1x+ c2)1−mε
,

y? =

(
1

1− c1(1−m)(c1x+ c2)1−mε

) (2−m)(n−1)
2(1−m)

y,

(x?, y?) =
(
x, y + (c1x+ c2)

1
2

[2k+m(n−1−2k)]ε
)
. (3.3)
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Case r = emx

(x?, y?) = (x, eεy) ,
(
emx

?

, y?
)

=

(
emx

1−mεemx
,

(
1

1−mεemx

)n−1
2
ε

y

)
, (3.212a)

(
e−mx

?

, y?
)

=

(
e−mx

1 +mεe−mx
,

(
1

1 +mεe−mx

)n−1
2
ε

y

)
, (3.212b)

(x?, y?) =

(
x, y + exp

(
n− 1− 2k

2
mx

)
ε

)
. (3.212c)

3.6 Conclusion

We determined all the Lie point symmetries of the second-, third- and fourth-order linear iterative
equation in normal form and we have made contribution to the work in the papers [1, 13] by
reducing the condition on the infinitesimal f ( see (3.35a)) and by expressing the infinitesimal
generator in terms of the parameters r and s of the first-order source equation for a linear iterative
equation of order n, n ≥ 3. By letting Ωn be the linear operator corresponding to the linear
iterative equation of order n with source equation y′′ + ay = 0, we showed that Ωn, n ≥ 3,
satisfy equation (3.51). A list of linear iterative equations of order up to 10, in both normal and
standard forms that have constant coefficient was given, and the point transformations needed
to retrieve other solutions were provided.



4. Parameters of the transformed
equation under equivalence
transformations

4.1 Introduction

The group of equivalence transformations G of a family A of differential equations of a specified
form and labelled by a set of arbitrary functions is the largest group of invertible point transfor-
mations that map each element of A to another element of A. On the other hand, we know that
two equations are said to be equivalent if they can be mapped to each other by an invertible point
transformation. In this chapter, we shall be interested in finding the parameters of the source
equation for the transformed equation under an equivalence transformation of a given iterative
equation.

4.2 Equivalence transformations

Let us consider the linear equation

y(n) + A1
n(x)y(n−1) + A2

n(x)y(n−2) + · · ·+ Ann(x)y = 0, (4.1)

where x is the independent variable and y the dependent variable. If we suppose that{
x = α(z, w)

y = β(z, w)
(4.2)

is an equivalence transformation mapping (4.1) to an equivalent equation then the latter must
have the same form as (4.1). The substitution of x and y in terms of new variables z and w in
(4.1) must yields an equation of the form

w(n) +B1
n(z)w(n−1) +B2

n(z)w(n−2) + · · ·+Bn
n(z)w = 0, (4.3)

where z is the independent variable and w is the dependent variable. However, it is well-known
[6, 12, 13] that the group of equivalence transformations of the general linear equation in standard
form (4.1) is given by transformations of the form{

x = f(z)

y = g(z)w,
(4.4)

where f and g are arbitrary functions.

42
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4.2.1 Example. Let
y′′ + ay = 0 (4.5)

be a linear equation of order two and since (4.5) is a special case of (4.1) its equivalent trans-
formations can be sought into the specific form (4.4). From (4.4) we know that dx = f ′dz
therefore, the first and second derivatives of y in terms of the news variables are given by

y′ =
g

f ′
w′ +

g′

f ′
w (4.6)

y′′ =
g

f ′2
w′′ +

(
2f ′g′ − f ′′g

f ′3

)
w′ +

(
f ′g′′ − f ′′g′

f ′3

)
w (4.7)

Substituting y = wg and using (4.7) into (4.5) leads to

g

f ′2
w′′ +

(
2f ′g′ − f ′′g

f ′3

)
w′ +

(
f ′g′′ − f ′′g′

f ′3
+ ag

)
w = 0, (4.8)

which can be also written as

w′′ +

(
2f ′g′ − f ′′g

f ′g

)
w′ +

(
f ′g′′ − f ′′g′

f ′g
+ (a ◦ f)f ′2

)
w = 0, (4.9)

where ◦ denotes the composition of functions. Transformation (4.4) defines a group of equivalence
transformations of (4.5) if and only if

2f ′g′ − f ′′g
f ′g

= 0 i.e g = k
√
f ′, (4.10)

where k is a given constant. Hence the transformation{
x = f(z)

y = k
√
f ′(z)w(z),

defines a group of equivalence transformations of (4.5).

Moreover, we note that by assuming the equation (4.1) to be in its normal form, (4.4) reduces
to

x =f(z), y = λ [f ′(z)]
n−1
2 w, (4.11)

where λ is an arbitrary constant while f is an arbitrary function.

Also note that a symmetry group transforms the differential equation into the same equation.
So, the transformed equation of (4.1) will then be of the form

w(n) + A1
n(z)w(n−1) + A2

n(z)w(n−2) + · · ·+ Ann(z)w = 0 (4.12)

under a symmetry group. We can say that a symmetry transformation is a special case of an
equivalence transformation because it preserves not only the form but also the equation itself, as
it leaves the equation locally unchanged.
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In the previous example (4.2.1), we have a symmetry transformation for f(z) = z + c, where c
is an arbitrary constant. As we already mentioned, the symmetry algebra of two given equivalent
equations are isomorphic, and thus if one of them has maximal dimension, the other one will
also be of maximal dimension, but having maximal dimension is equivalent to being iterative.
Therefore under an equivalence transformation an iterative equation remains iterative. In the
next section, we shall be interested in finding the parameters of the source equation for the
transformed equation under an equivalence transformation of a given iterative equation.

4.3 Parameters of the transformed equations

Consider the linear iterative equation in the standard form

Ψny ≡ K0
n y

(n) +K1
n y

(n−1) +K2
n y

(n−2) + · · ·+Kn−1
n y′ +Kn

n y = 0 (4.13)

and let
y(n) + A2

n y
(n−2) + · · ·+ Ajn y

(n−j) + · · ·+ Ann y = 0 (4.14)

be the normal reduced form of (4.13). Suppose that equation (4.13), which may be written again
as

∆n(y) ≡ Ψny = 0 (4.15)

has first-order source equation

r(x)y′ + s(x)y ≡ Ψ(y). (4.16)

Let

Ωn(w) ≡ Φnw = 0 (4.17)

be an equivalent equation with source equation

R(z)w′ + S(z)w = Φ(w) (4.18)

obtained from ∆n(y) = 0 by the transformations (4.4). We may assume that

Φn(w) ≡ Z0
nw

(n) + Z1
nw

(n−1) + Z2
nw

(n−2) + · · ·+ Zn−1
n w′ + Zn

n w = 0 (4.19)

and let
w(n) +B2

nw
(n−2) + · · ·+Bn−1

n w′ +Bn
n w = 0 (4.20)

be its normal reduced form. We want to find out the parameters R and S of the first-order source
equation of the transformed equation R(z)w′ + S(z)w = Φ(w) in terms of the parameters r, s
defined in (4.16). The idea consists of iterating with the operator Ψ n times and transforming
the resulting equation with (4.4) and call it D(z, w, n). On the other hand, use the operator Φ
to iterate directly n times. We now find a relationship between Ajn and Bj

n in terms of f and g
(parameters of the equivalent transformation).
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4.3.1 n = 2.

Ψ(2)y ≡ r2y′′ + (rr′ + 2rs)y′ + (rs′ + s2)y (4.21)

From (4.4) we have

dx =f ′(z)dz (4.22a)

dy =wg′(z)dz + g(z)w′dz (4.22b)

and the ratio of (4.22a) to (4.22b) gives

y′ =
dy

dx
=
g′

f ′
w +

g

f ′
w. (4.23)

So

y′′ =
dy′

dx

=
1

f ′(z)

d

dx

(
g′w′ + g′w

f ′

)
=

1

f ′(z)

d

dx

[
(g′′w + g′w′ + g′w′ + gw′′)f ′ − f ′′(g′w + gw′)

f ′2

]
=

1

f ′3(z)
[f ′gw′′ + (2f ′g′ − f ′′g)w′ + (f ′g′′ − f ′′g′)w] (4.24)

According to (4.23) and (4.24), one can rewrite (4.21) as follows

r2

f ′3
[f ′gw′′ + (2f ′g′ − f ′′g)w′ + (f ′g′′ − f ′′g′)w]

+ (rr′ + 2rs)

(
g

f ′
w′ +

g′

f ′
w

)
+ (rs′ + s2)gw ≡ Ψ(2)y

(4.25)

Gathering all the coefficients of w, w′ and w′′ respectively, this gives

D(z, w, 2) =
(r ◦ f)2g

f ′2
w′′ +

[(rof)2(2f ′g′ − f ′′g)

f ′3

+
(rof)(r′ ◦ f)f ′g + 2(r ◦ f)(s ◦ f)g

f ′

]
w′ +

[(rof)2(f ′g′′ − f ′′g′)
f ′3

+

2(rof)(s ◦ f)g′ + (r ◦ f)(r′ ◦ f)f ′g′

f ′
+ g(r ◦ f)(s′ ◦ f)f ′ + (s ◦ f)2g

]
w

(4.26a)

which is equivalent to

D(z, w, 2) =K0
2

g

f ′2
w′′ +

[
K0

2

(2f ′g′ − f ′′g)

f ′3
+K1

2

g

f ′

]
w′

+

[
K0

2

(f ′g′′ − f ′′g′)
f ′3

+K1
2

g′

f ′
+K2

2g

]
w.

(4.26b)
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Setting n = 2 in (4.19), the transformed equation becomes

Z0
2w
′′ + Z1

2w
′ + Z2

2w = 0 (4.27)

and the substitution of Z0
2w
′′ with −Z1

2w
′ − Z2

2w in (4.26b) leads to[
−K0

2Z
1
2

g

f ′2
+K0

2Z
0
2

((2f ′g′ − f ′′g)

f ′3
)

+K1
2Z

0
2

g

f ′

]
w′

+

[
−K0

2Z
2
2

g

f ′2
+K0

2Z
0
2

(f ′g′′ − f ′′g′)
f ′3

+K1
2Z

0
2

g′

f ′
+K2

2Z
0
2g

]
w = 0.

(4.28)

The functions Kn
m, Zp

o , f and g do not depend on w and w′ therefore we can equate the
coefficients of the latter to zero to yield

K0
2Z

1
2 = Z0

2K
1
2f
′ +

2f ′g′ − f ′′g
f ′g

K0
2Z

0
2 (4.29a)

K0
2Z

2
2 = f ′2K2

2Z
0
2 +

f ′g′

g
Z0

2K
1
2 +

f ′g′′ − f ′′g′

f ′g
K0

2Z
0
2 . (4.29b)

Setting

Kj
n =

Kj
n

K0
n

, Zjn =
Zj
n

Z0
n

, (4.30)

we deduce from equation (4.29) that

Z1
2 = f ′K1

2 +
2f ′g′ − f ′′g

f ′g
(4.31a)

Z2
2 = f ′2K2

2 +
f ′g′

g
K1

2 +
f ′g′′ − f ′′g′

f ′g
. (4.31b)

4.3.2 n = 3. According to the definition of iterative equation,

Ψ(3)y =Ψ[Ψ(2)y] (4.32)

=r
d

dx

[
r2y′′ + (rr′ + 2rs)y′ + (rs′ + s2)y

]
+ s

[
r2y′′ + (rr′ + 2rs)y′ + (rs′ + s2)

] (4.33)

=r[2rr′y′′ + r2y(3) + (r′2 + rr′′ + 2r′s+ 2rs′)y′

+ (rr′ + 2rs)y′′ + (r′s′ + rs′′ + 2ss′)y + (rs′ + s2)y′]

+ sr2y′′ + (rr′s+ 2rs2)y′ + (rss′ + s3)y

(4.34)

=⇒ Ψ(3)y =r3y(3) + (3r2r′ + 2r2s)y′′ + (3rr′s+ 3r2s′ + rr′2 + r2r′′)y′

+ (3rss′ + r2s′′ + rr′s′)y.
(4.35)

For the expression of y(3) in terms of z and w, we first note that

y(3) =
d

dx
(y′′). (4.36)
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Using (4.24) in (4.36) we have

y(3) =
1

f ′(z)

[
− 3f ′′

f ′4
(
f ′gw′′ + 2f ′g′w′ − f ′′w′g + f ′g′′w − f ′′g′w

)
+

1

f ′3
(
f ′′gw′′ + f ′g′w′′ + f ′gw′′′ + 2f ′′g′w′ + 2f ′g′′w′ + 2f ′g′w′′

− f ′′′gw′ − f ′′gw′′ − f ′′g′w′ + f ′′g′′w + f ′g′′′w + f ′g′′w′

− f ′′′g′w − f ′′g′′w − f ′′g′w′
)]
.

(4.37)

Therefore,

y(3) =

(
g

f ′3

)
w(3) +

(
−3f ′′g

f ′4
+

3g′

f ′3

)
w(2) +

(
− 6f ′′g′

f ′4
+

3f ′′2g

f ′5
+

3g′′

f ′3

− f ′′′g

f ′4

)
w′ +

(
−3f ′′g′′

f ′4
+

3f ′′2g′

f ′5
+
g′′′

f ′3
− f ′′′g′

f ′4

)
w

(4.38)

We substitute (4.24) and (4.38) in (4.35) to have

Ψ(3)y ≡ K0
3

[( g

f ′3

)
w(3) +

(
−3f ′′g

f ′4
+

3g′

f ′3

)
w(2) +

(
− 6f ′′g′

f ′4

+
3f ′′2g

f ′5
+

3g′′

f ′3
− f ′′′g

f ′4

)
w′ +

(
−3f ′′g′′

f ′4
+

3f ′′2g′

f ′5
+
g′′′

f ′3
− f ′′′g′

f ′4

)
w
]

+K1
3

[ g
f ′2

w′′ +
2f ′g′ − f ′′g

f ′3
w′ +

f ′g′′ − f ′′g′

f ′3
w
]

+K2
3

[ g′
f ′
w +

g

f ′
w′
]

+K3
3gw

(4.39)

Hence,

D(z, w, 3) =

[
K0

3g

f ′3

]
w(3) +

[
K0

3

(
−3f ′′g

f ′4
+

3g′

f ′3

)
+K1

3

g

f ′2

]
w(2)+[

K0
3

(−6f ′′g′

f ′4
+

3f ′′2g

f ′5
+

3g′′

f ′3
− f ′′′g

f ′4

)
+K1

3

(
2f ′g′ − f ′′g

f ′3

)
+K2

3

g

f ′

]
w′ +

[
K0

3

(
−3f ′′g′′

f ′4
+

3f ′′2g′

f ′5
+
g′′′

f ′3
− f ′′′g′

f ′4

)
+K1

3

(
f ′g′′ − f ′′g′

f ′3

)
+K2

3

g′

f ′
+K3

3g
]
w.

(4.40)

We know from (4.19) that

Z0
3w

(3) = −(Z1
3w

(2) + Z2
3w

(1) + Z3
3w) (4.41)
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for n = 3. Substituting (4.41) in (4.40) and rearranging it, leads to[
−K0

3Z
1
3

(
g

f ′3

)
+K0

3Z
0
3

(
−3f ′′g

f ′4
+

3g′

f ′3

)
+K1

3Z
0
3

g

f ′2

]
w(2)

+
[
−K0

3Z
2
3

(
g

f ′3

)
+K0

3Z
0
3

(
− 6f ′′g′

f ′4
+

3f ′′2g

f ′5
+

3g′′

f ′3

− f ′′′g

f ′4

)
+K1

3Z
0
3(

2f ′g′ − f ′′g
f ′3

) + Z0
3K

2
3

g

f ′

]
w(1) +

[
−K0

3Z
3
3

(
g

f ′3

)
+K0

3Z
0
3

(
−3f ′′g′′

f ′4
+

3f ′′2g′

f ′5
+
g′′′

f ′3
− f ′′′g′

f ′4

)
+K1

3Z
0
3

(
f ′g′′ − f ′′g′

f ′3

)
+ Z0

3K
2
3

g′

f ′
+ Z0

3K
3
3g
]
w = 0.

(4.42)

Letting all the coefficients w,w′, w′′ equal to zero leads to the relationship that we are looking
for:

−K0
3Z

1
3

(
g

f ′3

)
+K0

3Z
0
3

(
−3f ′′g

f ′4
+

3g′

f ′3

)
+K1

3Z
0
3

g

f ′2
= 0 (4.43a)

−K0
3Z

2
3

(
g

f ′3

)
+K0

3Z
0
3

(
− 6f ′′g′

f ′4
+

3f ′′2g

f ′5
+

3g′′

f ′3

− f ′′′g

f ′4

)
+K1

3Z
0
3(

2f ′g′ − f ′′g
f ′3

) + Z0
3K

2
3

g

f ′
= 0

(4.43b)

−K0
3Z

3
3

(
g

f ′3

)
+K0

3Z
0
3

(
−3f ′′g′′

f ′4
+

3f ′′2g′

f ′5
+
g′′′

f ′3
− f ′′′g′

f ′4

)
+K1

3Z
0
3

(
f ′g′′ − f ′′g′

f ′3

)
+ Z0

3K
2
3

g′

f ′
+ Z0

3K
3
3g = 0.

(4.43c)

Using the notations introduced in (4.30), relations (4.43) gives

Z1
3 = −3f ′′

f ′
+

3g′

g
+ K1

3f
′ (4.44a)

Z2
3 = −6f ′′g′

f ′g
+

3f ′′2

f ′2
+

3g′′

g
− f ′′′

f ′
+ K1

3(
2f ′g′ − f ′′g

g
) + K2

3f
′2 (4.44b)

Z3
3 = −3f ′′g′′

f ′g
+

3f ′′2g′

f ′2g
+
g′′′

g
− f ′′′g′

f ′g
+ K1

3

(
f ′g′′ − f ′′g′

g

)
+ K2

3

f ′2g′

g
+ K3

3f
′3.

(4.44c)
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4.3.3 n = 4. The expression of Ψ4y and Φ4w are given by

K0
4y

(4) +K1
4y

(3) +K2
4y

(2) +K3
4y

(1) +K4
4y = 0, (4.45)

Z0
4w

(4) + Z1
4w

(3) + Z2
4w

(2) + Z3
4w

(1) + Z4
4w = 0, (4.46)

respectively. From equation (4.38), the expression of y(4) in terms of z and w are obtained as
follows

y(4) =
dy(3)

dx
=
dy(3)

dz

dz

dx
. (4.47)

Invoking (4.38), the above equation becomes

y(4) =
d

dz

[( g

f ′3

)
w(3) +

(
−3f ′′g

f ′4
+

3g′

f ′3

)
w(2) +

(
− 6f ′′g′

f ′4
+

3f ′′2g

f ′5

+
3g′′

f ′3
− f ′′′g

f ′4

)
w′ +

(
−3f ′′g′′

f ′4
+

3f ′′2g′

f ′5
+
g′′′

f ′3
− f ′′′g′

f ′4

)
w
]dz
dx
.

(4.48)
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We have,

y(4) =
1

f ′

(f ′3g′ − 3f ′′f ′2g

f ′6
w(3) +

g

f ′3
w(4) +

[3f ′3g′′ − 3f ′′f ′23g′

f ′6

− (3f ′′′g + 3f ′′g′)f ′4 − 4f ′′f ′33f ′′g

f ′8

]
w(2) +

(3g′

f ′3
− 3f ′′g

f ′4
)
w(3)+[

− (6f ′′′g′ + 6f ′′g′′)f ′4 − 24f ′′f ′3f ′′g′

f ′8

+
(6f ′′′f ′′g + 3f ′′2g′)f ′5 − 5f ′′f ′4.3f ′′2g

f ′10
+

3f ′3g(3) − 3f ′′f ′2.3g′′

f ′6

− (f (4)g + f (3)g′)f ′4 − 4f ′′f ′3f (3)g

f ′8

]
w′ +

(
− 6f ′′g′

f ′4
+

3f ′′2g

f ′5

+
3g′′

f ′3
− f ′′′g

f ′4

)
w(2) +

[
− (3f (3)g′′ + 3f ′′g(3))f ′4 − 4f ′′f ′3.3f ′′g′′

f ′8

+
6f (3)f ′′f ′5g′ − 5f ′′f ′4.3f ′′2g′

f ′10
+
g(4)f ′3 − 3f ′′f ′2g(3)

f ′6

− (f (4)g′ + f (3)g(2))f ′4 − 4f ′′f ′3f (3)g′

f ′8

]
w +

(
− 3f ′′g′′

f ′4
+

3f ′′2g′

f ′5

+
g(3)

f ′3
− f (3)g′

f ′4

)
w′
)

(4.49a)

=
g

f ′4
w(4) +

(
4g′

f ′4
− 6f ′′g

f ′5

)
w(3) +

(6g′′

f ′4
− 18f ′′g′

f ′5
− 4f (3)g

f ′5

+
15f ′′2g

f ′6

)
w(2) +

(
− (8f (3)g′

f ′5
− 18f ′′g′′

f ′5
+

30f ′′2g′

f ′6

+
10f (3)f ′′g

f ′6
− 15f ′′3g

f ′7
+

4g(3)

f ′4
− f (4)g

f ′5

)
w(1) +

(g(4)

f ′4
− 6f ′′g(3)

f ′5

− f (4)g′

f ′5
− 4f (3)g(2)

f ′5
+

10f (2)f (3)g′

f ′6
+

12f ′′2g′′

f ′6
− 15f ′′3g′

f ′7

)
w

(4.49b)

Substituting y(4), y(3), y(2), y(1) and y by their expression given respectively in (4.45), and taking
into account the substitution Z0

4w
(4) = −(Z1

4w
(3) + Z2

4w
(2) + Z3

4w
(1) + Z4

4w), we have,

−K0
4α41(Z1

4w
(3) + Z2

4w
(2) + Z3

4w
(1) + Z4

4w)

+ (K0
4Z

0
4α42 + Z0

4K
1
4α31)w(3)

+ (Z0
4K

0
4α43 + Z0

4K
1
4α32 + Z0

4K
2
4α21)w(2)

+ (Z0
4K

0
4α44 + Z0

4K
1
4α33 + Z0

4K
2
4α22 + Z0

4K
3
4α11)w(1)

+ (Z0
4K

0
4α45 + Z0

4K
1
4α34 + Z0

4K
2
4α23 + Z0

4K
3
4α12 + Z0

4K
4
4g)w = 0,

(4.50)
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where

α11 =
g′

f ′
, α12 =

g

f ′
, α21 =

g

f ′2
, α22 =

2f ′g′ − f ′′g
f ′3

, α23 =
f ′g′′ − f ′′g′

f ′3
,

α31 =
g

f ′3
, α32 = −3f ′′g

f ′4
+

3g′

f ′3
, α33 = −6f ′′g′

f ′4
+

3f ′′2g

f ′5
+

3g′′

f ′3
− f ′′′g

f ′4

α34 = −3f ′′g′′

f ′4
+

3f ′′2g′

f ′5
+
g′′′

f ′3
− f ′′′g′

f ′4
, α41 =

g

f ′4
, α42 =

4g′

f ′4
− 6f ′′g

f ′5
,

α43 =
6g′′

f ′4
− 18f ′′g′

f ′5
− 4f (3)g

f ′5
+

15f ′′2g

f ′6

α44 = −(8f (3)g′

f ′5
− 18f ′′g′′

f ′5
+

30f ′′2g′

f ′6
+

10f (3)f ′′g

f ′6
− 15f ′′3g

f ′7
+

4g(3)

f ′4
− f (4)g

f ′5

α45 =
g(4)

f ′4
− 6f ′′g(3)

f ′5
− f (4)g′

f ′5
− 4f (3)g(2)

f ′5
+

10f (2)f (3)g′

f ′6
+

12f ′′2g′′

f ′6
− 15f ′′3g′

f ′7
.

(4.51)

Equation (4.50) can be written as

(−K0
4Z

1
4 + Z0

4K
0
4α42 + Z0

4K
1
4α31)w(3)

+ (−Z2
4K

0
4α41 + Z0

4K
0
4α43 + Z0

4K
1
4α32 + Z0

4K
2
4α21)w(2)

+ (−K0
4Z

3
4K

0
4α41 + Z0

4K
0
4α44 + Z0

4K
1
4α33 + Z0

4K
2
4α22 + Z0

4K
3
4α11)w(1)

+ (−K0
4Z

4
4α41 + Z0

4K
0
4α45 + Z0

4K
1
4α34 + Z0

4K
2
4α23

+ Z0
4K

3
4α12 + Z0

4K
4
4g)w = 0.

(4.52)



Section 4.3. Parameters of the transformed equations Page 52

Again, we can equate the coefficients of w and its derivatives to zero to get

Z1
4 =f ′K1

4 +
4g′

g
− 6f ′′

f ′
, (4.53a)

Z2
4 =f ′2K2

4 + (
3f ′g′

g
− 3f ′′)K1

4 +
6g′′

g
− 18f ′′g′

f ′g
− 4f (3)

f ′
+

15f ′′2

f ′2
, (4.53b)

Z3
4 =f ′3K3

4 + (
2f ′2g′

g
− f ′′f ′)K2

4 + (−6f ′′g′

g
+

3f ′′2

f ′
+

3f ′g′′

g

− f (3))K1
4 −

8f (3)g′

f ′g
− 18f ′′g′′

f ′g
+

30f ′′2g′

f ′2g
+

10f (3)f ′′

f ′2
− 15f ′′3

f ′3

+
4g(3)

g
− f (4)

f ′
,

(4.53c)

Z4
4 =f ′4K4

4 +
f ′3g′

g
K3

4 + (
f ′2g′′

g
− f ′′f ′g′

g
)K2

4 + (−3f ′′g′′

g
+

3f ′′2g′

f ′g

+
f ′2g(3)

g
− f (3)g′

g
)K1

4 +
g(4)

g
− 6f (2)g(3)

f ′g
− f (4)g′

f ′g
− 4f (3)g(2)

f ′g

+
10f (3)f ′′g′

f ′2g
+

12f ′′2g′′

f ′2g
− 15f ′′3g′

f ′3g
.

(4.53d)

(4.53e)

In (4.13) we have y = y(x), Ki
n = Ki

n(x), i = 0, . . . , n and similarly in (4.19) w = w(z), and
Zi
n = Zi

n(x) , for j = 0, . . . , n. Now we have established a general relationship between the Ajn
and Bj

n, i.e

Ajn = Kj
n|K1

n=0 and Bj
n = Zjn|Z1

n=0. (4.54)

4.3.4 Example. For n = 2, the transformation (4.11) implies that g = λ
√
f ′. Therefore,

expression (4.31) becomes

Z1
2 = f ′K1

2 +
λf ′′f ′

1
2 − λf ′′f ′

1
2

λf ′
3
2

(4.55a)

Z2
2 = f ′2K2

2 +
λ
2
f ′′f ′

1
2

λf ′
1
2

K1
2 +

λ
2
f (3)f ′

1
2 − λ

4
f ′′2f ′−

1
2 − λ

2
f ′′2f ′−

1
2

λf ′
3
2

. (4.55b)

Letting K1
2 = 0 and using the notation (4.54) we obtain Z1

2 = 0, as expected, and

B2
2 =

1

f ′2

[
A2

2 f
′4 − 3

4
f ′′2 +

1

2
f ′f (3)

]
. (4.56)

We now move on to find an expression for R in terms of r. To do so we may assume that the
equation is in its reduced form, which also assumes the equality S = −(n− 1)R′/2.
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For simplicity, but without loss of generality, we may assume that the equations are in their re-
duced normal form (4.14) and (4.20). As already mentioned, suppose that the parameter of the
source equation generating (4.14) is r = r(x). Given that equivalent equations have isomorphic
symmetry algebras, equation (4.20) is also iterative and we wish to find the corresponding pa-
rameter R = R(z) of its source equation. We also need to recall that by considering the equation
to be in its normal form, the point transformations (4.4) reduces to (4.11), i.e.

x =f(z), y = λ [f ′(z)]
n−1
2 w. (4.57)

A direct calculation (we let g = [f ′(z)]
n−1
2 w and Bi

n = Zin|Z1
n=0 in the above calculation) shows

that in terms of the parameters λ and f of the equivalence transformation and the coefficients
Ain of the original equation, we have

B2
2 =

1

f ′2

[
A2

2 f
′4 − 3

4
f ′′2 +

1

2
f ′f (3)

]
, for n = 2 (4.58)

B2
3 =

1

f ′2
[
A2

3 f
′4 − 3f ′′2 + 2f ′f (3)

]
, for n = 3 (4.59)

B2
4 =

1

2f ′2
[
2A2

4 f
′4 − 15f ′′2 + 10f ′f (3)

]
, for n = 4. (4.60)

On the other hand we know that by assuming r and R to be the parameters of the source
equations for (4.14) and (4.20) respectively, we have for n ≥ 2

A2
n(x) =

(
n+ 1

3

)
A(r) (4.61a)

B2
n(z) =

(
n+ 1

3

)
A(R), (4.61b)

where

A (r(x)) =
r′2 − 2rr′′

4r2
. (4.61c)

Consequently substituting the above expressions for A2
n and B2

n in terms of r and R respectively
in (4.59) would yield the determining equation for R when n = 3. Namely, we have

R′2 − 2RR′′

R2
=

1

f ′2

[
r′(f)2 − 2r(f)r′′(f)

r(f)2
f ′4 − 3f ′′2 + 2f ′f (3)

]
, (4.62)

where f = f(z). Similarly, for n = 4, the determining equation for R takes the form

10

4

R′2 − 2RR′′

R2
=

1

2f ′2

[
10

4
· 2r

′(f)2 − 2r(f)r′′(f)

r(f)2
f ′4 − 15f ′′2 + 10f ′f (3)

]
(4.63)

which is equivalent to

R′2 − 2RR′′

R2
=

1

f ′2

[
r′(f)2 − 2r(f)r′′(f)

r(f)2
f ′4 − 3f ′′2 + 2f ′f (3)

]
. (4.64)
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As it should be expected, equations (4.62) and (4.64) are the same and correspond to that derived
from (4.58), which is due to the fact that in reality the expression for R does not depend on the
order of the equation. In order word, we only need to know this expression for the second-order
source equation.

Note that equation (4.62) has the form

R′2 − 2RR′′

R2
=H(z), (4.65)

where H is a given function. Therefore, if we let r or f be arbitrary functions, we may not be
able to solve (4.62) for R, because the solution of the differential equation (4.65) is not available
for B2

2 an arbitrary function. Classes of solution to equation (4.62) have been obtained in chapter
3.

4.3.5 Example. Let us illustrate our work in the case where A2
2 equals a constant. We then

have

r′2 − 2rr′′

4r2
= C (4.66)

and we know from the previous discussion that the expression for r corresponding to (4.66) is

r =c2 cos2
[√

C(c1 + x)
]
, (4.67)

where c1 and c2 are arbitrary constants. This r is the parameter of the source equation generating
a linear iterative equation with a non-zero constant coefficient. If in (4.58) we suppose that
f(z) = αz + β, where α 6= 0 and β are given constants, we get

R′2 − 2RR′′

4R2
=C α2. (4.68)

Therefore the value of R is given by

R =c2 cos2
[
α
√
C(c1 + x)

]
. (4.69)

4.4 Conclusion

We performed the point transformations one can use to retrieve other solutions of the linear
iterative equation from the existing solutions. We then used the transformation (4.57) to generate
the parameter of the transformed equation under equivalence transformation. We noticed that the
calculations for n = 2, 3, 4 lead to the relationship between the parameter of the original equation
and the one of the transformed equation under equivalence transformation. This relationship does
not depend on the order of the linear iterative equation.



5. Conservation Laws

5.1 Introduction

In this chapter we concentrate on finding conservation laws of the second-order source equation.
In Chapter 3, we gave the eight symmetries of the equation and given that symmetry group
of Euler-Lagrange equations give rise to a conservation law, we aim to use some symmetries
(Noether’s symmetries) of the corresponding Euler-Lagrange equations to find the conserved
quantities of (1.14). The method of mapping the second-order source equation to the canonical
form Y ′′ = 0 has been considered and some special cases have been studied.

5.2 Lagrangian, Noether symmetries and conserved quan-
tities.

The calculus of variations is a generalization of the problem of optimization of functions depending
on functionals. Given that a differentiable functional is stationary at its local extrema, we want to
introduce the Euler-Lagrange equation whose solutions are the functions for which the functional
is stationary.

5.2.1 Definition. For 1 ≤ α ≤ q, the α-th Euler operator is given by

Eα =
∑
J

(−D)J
∂

∂uαJ
, (5.1)

the sum extending over all multi-indices J = (j1, . . . , jk) with 1 ≤ jk ≤ p, k ≥ 0.

The Euler-Lagrange operator is useful tool in the calculus of variations.

5.2.2 Theorem. If u = f(x) is a smooth extremal of the variational problem L[u] =
∫

Ω
L(x, u(n))dx,

then it must be a solution of the Euleur- Lagrange equations

Eµ(L), µ = 1, . . . , q. (5.2)

5.2.3 Lagrangian of the second-order source equation. Consider our second-order source
equation

y′′ + A2
2(x)y = 0. (5.3)

In this special case, the Euler-Lagrange equation is given by

d

dx

(
∂L

∂y′

)
− ∂L

∂y
=0, (5.4)
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ie

y′′ =
1

∂2L

∂y′2

(
∂L

∂y
− y′ ∂

2L

∂y∂y′
− ∂2L

∂y′∂x

)
. (5.5)

If we assume that

L =
1

2
g(x)y′2 + h(x, y) (5.6)

then the equation (5.5) , taking into consideration y′′ = −A2
2y, becomes

1

g(x)
(hy − gxy′) =− A2

2y. (5.7)

Separating by (y′)n we get

y′ :
gx
g

= 0 (5.8a)

1 : hy = −gA2
2y. (5.8b)

Equation (5.8) implies that

g(x) = K, h(x, y) = −1

2
gA2

2y
2 + φ(x). (5.9)

Therefore, the Lagrangian takes the form

L =
1

2
Ky′2 − 1

2
K A2

2 y
2 + φ(x), (5.10)

where K is a constant and φ is an arbitrary function. By letting φ = 0, the Lagrangian of the
the second-order source equation is given by

L =
1

2
y′2 − 1

2
A2

2 y
2. (5.11)

5.2.4 Noether symmetries of the second-order source equation. Let v = ξ(x, y)∂x +
φ(x, y)∂y, the first prolongation of v is given by

X = ξ∂x + φ∂y + (φx + φyy
′ − ξxy′ − ξyy′2)∂y′ . (5.12)

We know that X leaves invariant the functional in the calculus of variations up to ’the gauge
term F (x, y)’ if ∫

L(x?, y?, y?′)dx? =

∫
L(x, y, y′)dx+ εF (x, y) (5.13)

i.e. if

X L+ L
dξ

dx
=
dF

dx
. (5.14)
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The substitution of L and X with their expression, given in (5.12) and (5.14), into (5.11) leads
to(
φx + φyy

′ − ξxy′ − ξyy′2
)
y′ + φ(−A2

2y)− 1

2
ξA2

2
′y2 +

1

2
ξxy
′2 − 1

2
A2

2ξxy
2 =Fx + y′Fy. (5.15)

Separating by the powers of derivatives of y we get

1 : −A2
2φy −

1

2
A2

2ξxy
2 − 1

2
ξA2

2
′y2 = Fx, (5.16a)

y′ : φx = Fy, (5.16b)

y′2 : φy − ξx +
1

2
ξx = 0, (5.16c)

y′3 : −ξy = 0. (5.16d)

From (5.16d), i.e. ξy = 0, we get

ξ =f(x), (5.17)

where f is an arbitrary function. Then now from (5.16c) we get

φy =
1

2
ξx (5.18)

=
1

2
f ′(x), (5.19)

which implies that

φ(x, y) =
1

2
f ′(x)y + g(x). (5.20)

Integrating (5.16b), ie Fy = φx, with respect to y ( taking into consideration (5.20)) we get

F (x, y) =
1

4
f ′′(x)y2 + g′(x)y + h(x). (5.21)

We now use (5.17), (5.20) and (5.21) in (5.16a) and the equations obtained by the separation
of the monomials in the the resulting equation are given as follow

1 : h′ = 0, (5.22a)

y : A2
2g = g(2), (5.22b)

y2 : −1

2
A2

2f
′ − 1

2
A2

2f
′ − 1

2
A2

2
′f =

1

4
f (3). (5.22c)

The above equations are equivalent to

h = c6, (5.23a)

g(2) + A2
2g = 0, (5.23b)

f (3) + 4A2
2f
′ + 2A2

2
′f = 0. (5.23c)
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Equations (5.23b) and (5.23c) are ordinary iterative equations with the same source equation
y′′ + A2

2y = 0. Therefore their solutions ( according to results (3.36)) are given by

g(x) =c4u+ c5v, (5.24)

f(x) =c1u
2 + c2uv + c3v

2, (5.25)

respectively, where u and v solutions of y′′ + A2
2 = 0. So by letting h = 0 we have

v =
(
c1u

2 + c2uv + c3v
2
)
∂x +

[(
c1uu

′ +
1

2
c2(u′v + uv′) + c3vv

′)y + c4u+ c5v
]
∂y (5.26)

and

F (x, y) =
[1

2
c1(u′2 + uu′′) +

1

4
c2(u′′v + 2u′v′ + uv′′) +

1

2
c3(v′2 + vv′′)

]
y2 + (c4u+ c5v

′)y.

(5.27)

Taking respectively c1, c2, c3, c4, c5 to one and the remaining constants to zero allows us to find
the basis as below

v1 =u2∂x + uu′y∂y; F1 =
1

2
(u′2 + uu′′)y2 (5.28a)

v2 =uv∂x +
1

2
(u′v + uv′)y∂y; F2 =

1

4
(u′′v + 2u′v′ + uv′′)y2 (5.28b)

v3 =v2∂x + vv′y∂y; F3 =
1

2
(v′2 + vv′′)y2 (5.28c)

v4 =u∂y; F4 = u′y (5.28d)

v5 =v∂y; F5 = v′y. (5.28e)

The above symmetries are the five Noether symmetries of the second-order source equation
y′′ + A2

2 y = 0.

5.2.5 Conserved quantities of the second-order source equation. To find the conserved
quantities using the Noether symmetries we invoke the following theorem

5.2.6 Theorem. If X is a Noether symmetry, F a corresponding function for a lagrangian L,
then

I =Lξ + (φ− y′ξ)∂L
∂y′
− F (5.29)

is a conserved quantity.

It follows from the previous results and the above theorem that the conserved quantities of the
second-order source equation y′′ + A2

2y = 0 are given by

I1 =uu′yy′ − 1

2
u2y′2 − 1

2
u′2y2, (5.30a)

I2 =
1

2
(u′v + uv′)yy′ − 1

2
uvy′2 − 1

2
u′v′y2, (5.30b)

I3 =vv′yy′ − 1

2
v2y′2 − 1

2
v′2y2, (5.30c)

I4 =uy′ − u′y, (5.30d)

I5 =vy′ − v′y. (5.30e)
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5.2.7 Equivalent Lagrangians. By definition [17, 18, 19], two Lagrangians L(x, y, y′) and
L(X, Y, Y ′) are said to be equivalent up to gauge F = F (x, y) if

L(x, y, y′) =L(X, Y, Y ′)
dX

dx
+
dF

dx
(5.31)

where X = X(x, y) and Y = Y (x, y) . We are going to use this definition to reduce (5.3), ie
y′′ + A2

2y = 0, to the canonical form

Y ′′ = 0. (5.32)

From (5.11) we know that the Lagragian of y′′+A2
2y = 0 is L = 1

2
y′2− 1

2
A2

2y
2, and the Lagrangian

of Y ′′ = 0 is L = 1
2
Y ′2. Let us find X = X(x, y) and Y = Y (x, y) such that L and L equivalent

up to F = F (x, y) by solving

1

2
y′2 − 1

2
A2

2y
2 =

1

2
Y ′2

dX

dx
+
dF

dx

=
1

2

(
dY

dx

dx

dX

)2
dX

dx
+
∂F

∂x

dx

dx
+
∂F

∂y

dy

dx

=
(Yx + y′Yy)

2

2 (Xx + y′Xy)
+ Fx + y′Fy. (5.33)

Rearranging the above equation we get

(Xx + y′Xy)(y
′2 − A2

2y
2) =(Yx + y′Yy)

2 + 2(Fx + y′Fy)(Xx + y′Xy). (5.34)

The separation by y′n leads to

1 : XxA
2
2y

2 + Y 2
x + 2Fxξx = 0, (5.35a)

y′ : −A2
2Xyy

2 − 2YxYy +XxFy − 2FxXy = 0, (5.35b)

y′2 : Xx − Y 2
y − 2XyFy = 0, (5.35c)

y′3 : Xy = 0. (5.35d)

From (5.35d), ie Xy = 0, we deduce that X is independent of y and then the above governing
equations are reduced to

XxA
2
2y

2 + Y 2
x + 2XxFx = 0, (5.36a)

Yx =
√
Xx, (5.36b)

YxYy + FyXx = 0. (5.36c)

Let Xx = b(x)2 for some function i of x. From (5.36b), i.e. Yx =
√
Xx, we get

Y =b(x)y + c1(x) (5.37a)

for some function c1 depending on x only. From (5.36c), i.e. Xx − Y 2
y − 2XyFy = 0, we get

F =− 1

2

b′

b
y2 − c′1

b
y + c2(x), (5.37b)



Section 5.3. Conclusion Page 60

where c2 is an arbitrary function of x. The substitution of F and Y with their expressions given
in (5.37) into (5.36a) yields[

b2A2
2 + b′2 − b2

(
b′

b

)′]
y2 +

[
2b′c′1 − 2b2

(
c′1
b

)′]
y + c′21 + 2b2c′2 =0. (5.38)

The separation of the monomials gives

A2
2 +

(
b′

b

)2

−
(
b′

b

)′
= 0, (5.39a)

b′c′1 − b2

(
c′1
b

)′
= 0, (5.39b)

c′21 + 2b2c′2 = 0. (5.39c)

The functions c1, c2 and b (thus X, Y and F ) are known once we solve (5.39a), i.e.

A2
2 +B2 = B′, (5.40)

where B =
b′

b
.

For example, if A2
2 equals to a constant c then we can let

B(x) =
√
c tan

(√
cx
)
, b(x) = sec

(√
cx
)
, c1 = 0, c2 = 0 (5.41)

to get

X =
1√
c

tan
(√

cx
)
, Y = sec

(√
cx
)
, F = −

√
c tan

(√
cx
)

sec
(√

cx
)
y. (5.42)

5.3 Conclusion

In this chapter we determined the general form of the Lagrangian of the second-order source
equation. Using the expression obtained for the Lagrangian, we found the five Noether symmetries
(with the corresponding ’gauge functions’) and the conserved quantities of the second-order
equation. We also tried the mapping of the second-order source equation onto its canonical
form. In the process of finding the mapping, we encounter equation (5.40) which is not solvable
in general.



6. Conclusion

In this dissertation, we have exploited known results about the symmetry and superposition
properties of linear iterative equations to obtain new solutions of these equations and to express
them in terms of the parameters of the source equation. This has yielded an expression of
its symmetries in terms of the parameters r and s of the first-order source equation for some
functions. We have obtained some properties of these equations and, in particular, we have
derived expressions for the parameters of the source equation under equivalence transformations,
and we have derived some conservation laws of the second-order source equation.

In Chapter 3, we have reviewed the results obtained by Krause and Michel [1], i.e. the expression
of the symmetry generator of the linear iterative equation in terms of the solutions of the second-
order source equation. We have obtained their results by a slightly different method which consists
of substituting (3.52) into (3.34). We made use of the expression (1.10) to reduce the condition
on the infinitesimal ξ. We have proved that the condition on the infinitesimal function ξ = f(x)
does not depend on the order of the linear iterative equation. Based on some properties of a
linear iterative equation, we obtained some solutions of the linear iterative equation of a general
order and their expressions in terms of the parameters r, s of the first-order source equation. We
also gave a list of linear iterative equations with constant coefficients expressed in terms of the
coefficient A2

2.

In Chapters 4 and 5, some results concerning the parameters of the transformed equation under
equivalence transformation were obtained for the linear iterative equation of order n, and finally
we have derived the Lagrangian and we gave the Noether symmetries of the second-order source
equation. We have used these symmetries together with the Lagrangian to get the conserved
quantities and to map the source equation to its canonical form. It is worthwhile to mention
that the reduction of the second-order source equation using the symmetry v0 = y∂y (see section
3.4.7) and the method of equivalent Lagrangians lead to the same equation (see (3.162) and
(5.40)).
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