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0.2 Abstract

The AdS/CFT conjecture, as stated by Maldacena, postulates an equivalence
between a string theory and a field theory. More precisely, it links type IIB string
theory on the AdSs x S° background with N’ = 4 super Yang-Mills (SYM) field
theory in 3 4+ 1-dimensional Minkowski space. This thesis aims at performing a
specific calculation on both sides of the correspondence, and verifying that we
obtain the same result whether we work in the string theory or the field theory.
In particular, we will be working with a specific deformation of the N' = 4 SYM
theory, for which Lunin and Maldacena managed to find the corresponding
deformation in the AdSs x S® background of the matching string theory. By
doing this, we will be testing the correspondence for a less supersymmetric field
theory, and thus extending the area of duality. More precisely, we will calculate
the spectrum of free strings in our deformed background, and find operators
dual to supergravity and excited string modes in the field theory.
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0.5 Introduction

The main calculation in this thesis will be split into two sections, based on the
two sides of the AdS/CFT correspondence [9]. The first concerns the N = 4
SYM field theory side. We will be working with a S-deformation of this the-
ory. The significance of this is that the deformation leaves us with a N' =1
supersymmetric field theory (which is a theory with less supersymmetry). We
provide a test of this extension of the correspondence to less supersymmetry.
Once we have performed the deformation on the field theory side, we will move
to the string theory side, and work with the corresponding deformation of the
AdSs x S5 background. Furthermore, we will take a pp-wave limit of this de-
formed Lunin-Maldacena background, which broadly corresponds to a boost
followed by a scaling. We perform this limit to probe the “stringy” aspects of
the AdS/CFT correspondence. Our aim will be to find the string spectrum in
this deformed background, and then try to develop the form of the operators in
the deformed SYM dual to the lowest string mode. We will also say something
about the operators dual to the excited string modes. In this way, we hope
to test an interesting extension to the AdS/CFT correspondence, and add yet
another calculation which validates its duality.

The AdS/CFT correspondence is nontrivial to test as it is a strong/weak cou-
pling duality with respect to the 't Hooft coupling. In order to perform a predic-
tive calculation on both sides of the correspondence for comparative purposes,
one needs to consider quantities which are not corrected, or at worst receive
small corrections. This implies that any results obtained at weak coupling will
persist at strong coupling. Berenstein, Maldacena and Nastase [10] showed that
near BPS operators dual to excited string modes satisfy this criterion.

The particular S-deformation [11] we will be studying in this thesis is obtained
by making the superpotential replacement

Tr(®'B20* — 1676?) — Tr(e™'$2* — —1d1d¢2).

As mentioned, this deformed N = 4 super Yang-Mills field theory has N =1
supersymmetry, and is invariant under a U(1) x U(1) non-R symmetry. To see
how the dual string theory in AdSsx S® is deformed, we note that the AdSs x S°
geometry contains a two torus, whose isometries match the U(1) x U(1) field
theory symmetry. If g represents the metric of this two torus, the deformation
of the dual gravitational theory corresponds to

T:B+i\/§—>@:1+w,



where B is the NS-NS 2-form. This deformation not only allows us to study
the AdS/CFT duality in a less supersymmetric regime, it is also characterized
by a continuous adjustable deformation parameter v which could possibly lead
to new scaling limits. The background obtained via the deformation is termed
the Lunin-Maldacena (LM) background. This thesis will deal with a particular
pp-wave limit of this background, allowing us to probe stringy aspects of the
correspondence. More precisely, our pp-wave limit results in the geometry of a
homogeneous plane wave, which has been studied [21],[22].

Various aspects of the AdS/CFT duality will need to be elaborated on in order
to make the ultimate calculation performed in this thesis lucid. The body of
this thesis is divided into two broad parts. The first part deals with the back-
ground theory and preliminaries and is itself divided into three chapters. The
first of these deals with aspects of the gravitational side of the AdS/CFT du-
ality, while the second considers aspects of the field theory. The third chapter
involves the AdS/CFT conjecture itself, and attempts to provide some support-
ing arguments. The second part deals with the actual core calculation of the
thesis, where we match the string spectrum in the pp-wave limit of the LM
background to the anomalous dimensions of operators found on the gauge the-
ory side. The calculation is also split into parts corresponding to the two sides
of the correspondence.



Part 1

Preliminaries



Chapter 1

String theory in AdSs; x S°

1.1 String Theory Basics

1.1.1 Some Background

Like all pioneering theories, string theory has a history dotted with ingenius
insights and controversy. Born of the long-standing need to find an ultimate
unifying theory, and as yet unverified by direct experiment, it is an area of hot
debate. To fully appreciate its current state in the physics community, it is
useful to examine its roots [8].

As far back as 1921, the Kaluza-Klein theory showed that one can unify elec-
tromagnetism and gravity if one includes an extra tiny spatial dimension curled
into a circle. This idea was followed much later by the realization that the dual
theories which describe the particle spectrum also describe the quantum me-
chanics of strings, officially beginning the era of string theory. Supersymmetry
arose in quick succession, both by introducing fermions into string theory and
simply as an aspect of ordinary field theory. A few years later, string theory
arose as a possible theory of quantum gravity, when the spin 2 excitation was
found to have zero mass. Supergravity followed by introducing supersymme-
try into gravity, especially important since gravity appears in the excitation
spectrum of string theory. Furthermore, it was realized that adding worldsheet
supersymmetry to string theory yields a spectrum with an equal number of
bosons and fermions, and hence that string theory can be made spacetime su-
persymmetric. The resulting theory was named superstring theory.

Pre 1984, a number of anomalies in string theory seemed to undermine its
status as a possible unifying theory. But this year marked a true beginning for
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the theory when these anomalies were found to cancel in specific examples, and
it was widely accepted as a candidate ultimate theory. The last decade of the
twentieth century lead to further progress, when it was recognized that duality
transformations link the five seemingly unrelated types of superstring theory,
laying a foundation for a possible nonperturbative model of string theory. The
theory also managed to extract the microscopic origin of black hole thermody-
namics, and continues to make advances in such areas as black hole quantum
mechanics.

In very basic terms, string theory is founded on the idea that a string un-
der tension can give rise to all the elementary particles, which correspond to
various excitation modes of the string. Quantum mechanics dictates that even
point particles are smeared in space, but this is not the smearing we are talking
about when we move to a theory of strings. Indeed, elementary particles aren’t
pointlike from the point of view of string theory, but the important thing is
that the extended nature of strings allows them to be excited. Strings are tiny
one dimensional objects, with size the order of the Planck length (1073%cm).
The Planck length defines the scale at which general relativity and quantum
mechanics become incompatible - the fluctuations arising in quantum mechan-
ics due to the uncertainty principle destroy the smooth spacetime described by
general relativity at this scale. To develop a theory of quantum gravity, one
needs to be able to probe such exceptionally small distances. We require that
the string size is the order of the Planck length to enable us to use the string
as such a probe and ensure that string theory is a viable theory of quantum
gravity. However, this size requirement makes any tests of the theory currently
impossible. It is doubtful whether we will ever be able to build an accelerator
powerful enough to see strings directly, but despite this there are many indirect
but clever tests for the theory, and new results are emerging regularly. Indeed,
string theory at long distances should reproduce quantum field theory describ-
ing point particles, since a string looks like a point particle on length scales
we can probe. We are very familiar with field theories, and so studying what
excitations within string theory participate in the long distance limit should
lead to familiar and predictable results.

Another important property of strings is that they are fundamental, meaning
that there are no smaller objects which make up the string. This ensures that
the string tension remains constant, whether the string is stretched or not. In
addition, fundamental strings only exhibit transverse excitations, with longitu-
dinal excitations being prohibited (due to a lack of smaller constituents within
the string). Requiring these conditions of the string at the quantum level leads
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to some interesting consequences: the background in which the strings prop-
agate must have 10 spacetime dimensions, and the nature of the background
is determined by generalizing Einstein’s field equations in 3+1 dimensions to
higher dimensions, with supersymmetry included.

Two types of basic strings exist based on whether they are open-ended or
close into a loop, called open and closed strings respectively. String theories
are classified broadly by what type of strings and particles they describe. More
precisely, string theories can have either open and/or closed strings, and include
bosons (force particles) and/or fermions (matter particles). Since supersymme-
try relates bosons and fermions, a string theory which has supersymmetry must
include fermions. Theoretically, each particle has a supersymmetric partner,
but none have been detected experimentally. Any experimental evidence for
supersymmetry at high energy is consistent with string theory as the ultimate
description of our physical world. Now, a string theory which incorporates su-
persymmetry is called a superstring theory, while bosonic string theory deals
exclusively with bosons. The bosonic theory also deals with both open and
closed strings but is flawed in that it also gives rise to tachyons, particles with
imaginary mass. In the late eighties we believed that there were five superstring
theories, namely the type I, type ITA and IIB, and the heterotic SO(32) and
Eg x FEjg string theories (heterotic implies that right and left moving excitations
on the string are considered different). None of these theories involve tachyons,
and the type I theory is the only one which includes open and closed strings in
its description - each of the other theories deals with only closed strings. The
type IIA and IIB theories differ with regard to the chirality (or lack thereof) of
massless fermions: in ITA, they spin both ways and are nonchiral, whereas in
ITIB they spin in only one way and are chiral. The heterotic theories differ in
their group symmetry. The heterotic SO(32) theory has an SO(32) symmetry,
while the heterotic Eg x Ejg theory has an Eg X Eg group symmetry.

Initially, it was widely believed that only one of these five superstring theories
was in fact a Theory of Everything, and that the others were simply mathe-
matical possibilities which didn’t manifest themselves in nature. Later it was
recognized that these theories are related, and one may transform among them
via duality transformations - the theories are simply special cases of one par-
ticular underlying theory. In transforming among these theories, we manage
to link non-trivially concepts such as strong and weak coupling strengths, and
large and small distances. This link obscures our ability to distinguish between
these seemingly opposite concepts.

12



It is the T-duality which relates type ITA and IIB superstring theories and
it links large and small distance scales. This is achieved by noting that if one of
the nine space dimensions is formed into a circle, a string will not only be able to
move around the circle with a quantized momentum, but it will also be able to
wrap around the circle with a quantized winding number. In addition, one may
interchange the momentum and winding modes if one interchanges the circle’s
radius R with %, where [, is the string length. This interchange is possible since
the energies of the two systems (namely, the string moving around the circle
and the string wrapping around the circle) match under such an interchange.

Now, a large R leads to a small %, so that interchanging the modes leads to
an interchange in the size of distance scales. The T-duality tells us that if we
compactify the ITA and IIB theories on a circle, interchange momentum and
winding modes and thus the distance scales, we transform between the theories.

The same is true of the two heterotic string theories.

The S-duality establishes a link between strong and weak coupling strengths.
A coupling constant is a measure of the strength of an interaction, and small
coupling constants lead to good approximations in perturbation theory. Should
a coupling constant be large, it no longer becomes advantageous to use pertur-
bation theory as dropping higher order terms does not lead to a good approxi-
mation of the physics. The string theory coupling constant is dependent on the
dilaton (which is a particular oscillation mode of the string) and exchanging a
dilaton field with minus itself exchanges a large coupling constant with a small
one. This dilaton exchange leads to the S-duality, a symmetry which relates
type I superstring theory with the heterotic SO(32) theory. This is particulaly
useful since a theory with a strong coupling constant cannot be probed via a
perturbative series, but its dual theory can.

1.1.2 The Relativistic String

We will discuss the particulars of the classical relativistic string as a basic intro-
duction to string theory. This discussion will allow us to show how we can obtain
the action of a relativistic string by considering the proper area of the surface
traced out by the string in spacetime, as well as highlight some properites of
this action [1].

A string will trace out a surface called a worldsheet as it moves in space-
time. Any particular timeslice of this worldsheet represents the string itself
as parametrized by an observer at that particular time. A relativistic string,
open or closed, will have an action which must depend on the trajectory of
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the string, and is proportional to the Lorentz invariant “proper area” of its
worldsheet. Such an action is called the Nambu-Goto action. We will begin our
discussion by considering spatial surfaces, as these are easier to visualize, and
later adapt the arguments to worldsheets. We will focus on 2-dimensional sur-
faces embedded in 3-dimensional target space, which is simply the surrounding
space in which the surface resides.

A 2-dimensional surface is parametrized by two parameters, call them ¢! and
£2. One can draw a grid on the surface by marking it with lines of constant &!
and &2 respectively. In this way, the parameters act locally as coordinates on
the physical surface. We assume that our surface has a 3-dimensional target
space described by ', 2% and z3-coordinates. Thus, the parametrized surface
is represented by the set of functions

F(¢,€%) = (a'(¢',€%),2°(€", €%), 2%(§1, £%)).

One more type of space we need to consider is the parameter space, which is
determined by the range of the parameters. Specifying the physical surface in-
volves describing the one-to-one map Z'(£', £2) over all of parameter space.

Ultimately we are interested in calculating the area A of our physical surface.
We do so infinitesimally, first considering a tiny area in parameter space with
sides of length d¢! and d&?, and then looking for the image of this object in
target space. Such an image will correspond to an infinitesimal piece of the
physical surface in target space, its area being dA. The infinitesimal area el-
ement in target space is in general a parallelogram with sides denoted by dv;
and dvs, where

d’Ul 651 gl = f(d§17 0):

di, = - 62 52 = 7(0, d¢?).

Next, we wish to calculate the area dA of this infinitesimal parallelogram:

A = |d,||ddy]| sin 6]

= \/|d#, 2|d5,[2 — |d5, [2]d,|? cos? 0

= \/ d’l}1 d?)g . d’UQ) - (dﬁl : d62)2a
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where 6 is the angle between d#; and dv,. Using the definitions of dv/; and dv,
in terms of ¢! and &2 respectively, we can write

= df\l(@@ se:) (56 a¢) ~ (o6 380

and, furthermore,

oz\ (0% 0f o 01\’
A= /d“’fd(ae i) (e o)~ (e o)

This expression for the area of a parametrized surface is general, and the integral
runs over the parameter ranges. Now, the area of the physical surface, as well
as the infinitesimal area element, should be independent of the way in which
the surface is parametrized, i.e. the area should be reparametrization invariant.
We can rewrite this area in such a way as to make the reparametrization invari-
ance manifest. We begin by considering a surface in target space described by
T(€',£?) as usual, so that the length ds of a vector d¥ tangent to the surface
satisfies

ds® = d7 - d¥
Using
or .
_‘ d == —d ¢
az = aglf 3525 aei™e
we can write
0% 0F o
ds® = e = g;:(€)dEtde,
= e = oy(€)de'ds
where
o 0% ogt o¢t agt og?
gij(f)z—i‘—-:
gt og oF . 0F 0% . OF

982 " ogT 98 T og?
The very important quantity g;;(£) is the induced metric on the surface, because
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it uses the metric in the target space to determine distances on the surface. If
we set

g = det(g,5)

we see that
A= / delde? /g,
In order to test the reparametrization invariance of A, we make the reparametriza-
tion
£ € and €(€,€7)

and investigate what happens to g. Now, ds? is a geometrical property of dZ
and must be reparametrization invariant. So, we require

9i;(€)dE g = Gpe(€)dEPdEr,

_ - OEPOEL .
G

where g(é) is the metric for the parameters €. The result above is true for any
d&, so

_ OEP Q€T
gij(g) = gpq(f) azi 5—;

As a quick aside, note that

detde? = |det (g;) d€'dE? = | det M|dE dE?,

dELdE? = |det (gg) detde? = | det M|detde?,

where

og - o

ij = a—gj, M;; = e
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If we combine these two equations we see that

| det M|| det M| = 1.

This observation allows us to write
9:5(&) = gqupiqu = (MT)ipgquqj
= g = (det MT)g(det M) = G(det M)?
= /g = \/g|det }1|.

Thus, we see that A is truly reparametrization invariant by noting that

/ delde? fg = / d€'dé? det M|y/3| det M| = / dé' e\ [7.

Having considered the precise nature of spatial surfaces, we can now explore
spacetime surfaces. Being 2-dimensional, these worldsheets are parametrized
by two parameters, 7 and o, which are locally viewed as coordinates on the
worldsheet, and represent the parameter space. Broadly, 7 corresponds to time
on the string and o corresponds to position along the string. A surface is
represented by the mapping

XH(r1,0) = (Xr,0), X (1,0),..., X1,0)),

where X9, X' .., X% represent spacetime coordinates particular to the string
worldsheet, i.e. string coordinates. To find the area of the spacetime surface we
again consider an infinitesimal area element in parameter space (with sides dr
and do) and evaluate the corresponding area element on the worldsheet. This
has sides dv{’ and dvl where

7 7
dvi’ = aidT, dvh = aido,
0o

so that the area of the worldsheet is given by
axn0X,\* (8XndX,\ (09X X
A= / drdoy| (2292 “ v
TJJ(@T 80) (87’ 87’)(80 80)
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0X 09X ax\* (9x\?
= / drdo — — ] .
ar o or 0o
The action of the relativistic string, which gives us the dynamics of our theory,
is proportional to the area of the worldsheet, and all that is left in making this
relationship an equality is ensuring our action has the correct dimension. Now
ML?
T

[S] = and [A] =

so we need to multiply the area by some suitable constant with units of M/T.
The quantity Tp/c has the required units, where Ty is the string tension. We
can now write the string action as

_—h / dr / do/(X - X7)2 — (X)2(X7)2,

where o1 > 0 is some constant. This is the so-called Nambu-Goto action. Again,
we want to make sure this action is reparametrization invariant, so we need to
rewrite it to make the test more transparent. As before, we know that

0X* 0XY

age o7

—ds® = dX"dX, = NuwdX"dX" =,

where ¢' = 7, € = o and 7, is the Minkowski metric in target space. We
define the induced metric on the worldsheet as

OXH OX" _l (X)? X-X’]
ap

Tor =g pgr T XX (X

Thus, the manifestly reparametrization invariant form of the Nambu-Goto ac-
tion is

—T
= TO/dea\/— ,

where v = det(7,3). We can follow the same procedure as before to show that it
is reparametrization invariant. However, no new information can be extracted
from the details so they are not included.

The Nambu-Goto action involves an unsightly square root. We can get a
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quadratic action by making use of a worldsheet metric. The resulting equivalent
action, termed the Polyakov action [7], is given by

T
SIX, b = —3 / drdo/—hh™ 0, X"y X " -

In the above, the quantity hg(7,0) is an auxiliary rank two symmetric tensor
field and can be interpreted naturally as a metric on the string worldsheet. Note
that

h=det(hg), h? = (h")e.

The Polyakov action is reparametrization invariant, but it also exhibits an ad-
ditional local gauge symmetry called Weyl invariance (or conformal invariance).
This says that the action is invariant under the transformation

hab — eQP(T,U) ha,ba

where p(7, o) is an arbitrary function on the worldsheet. The two local reparametriza-
tion symmetries allow us to choose the conformal gauge, where

-1 0
— p9(7,0) — p9(1,0)
(hab) =e€ (nab) =e ( 0 1 )ab .

The conformal gauge says that hg and 74 agree up to a scaling function e?. In
this case, the metric Ay, is said to be conformally flat.

We can obtain the relativistic string equations of motion by varying the Nambu-
Goto action, which will also give rise to a discussion of the boundary conditions
of string endpoints. The Lagrangian density we extract from the Nambu-Goto
action is

1o

L(XH, XM) =
C

(X - X)2 = (X)2(X")2,

The equations of motion emerge when we set the variation of the action to zero,
namely

Lo [oL 8(6XY) oL AEXM]
55_/n dT/O dalaX“ or +8X’“ oo o
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where

n s (aX~> .0

or - or ’

d(6XH)

SX'H =
do

The Lagrangian density leads us to
oL T (X X)X, — (X)X,
OXH c \/(X-X’)Q—(X)Q(X’)Q’

aL T, (X-X)X,— (X)X,

oXm ¢ \/(X,XI)Z _ (X)Q(X/)z'

We introduce a useful notation for the above quantities:

L_oL ., _ oL
Pu= oz T = axw

We can rewrite the variation in the action in terms of this new notation, which
will help us to determine the boundary conditions. The result is
op, OP; )] '

Ty o1 0 0
— “ wpry L 2 wpoy _ syk [ 218
5 / dT/O do laT(ax Pp) + 5~ (6X"Py) = 6X <aT +

In our analysis, we will specify the initial and final states of the string, so that
variations in these quantities are zero, i.e.

dXH(1;,0) = 0X¥(1s,0) =0.

In 45 above, the term with the total 7 derivative will yield terms proportional
to 0X*(1;,0) and 6 X*(7s,0), which will clearly vanish. The variation then
becomes

_ [ um_/ff / u(9Ps 9P
58 / dro XM — [ dr [ dooxn (T 4 T )
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For all . X* the second term in the variation above has to vanish, so we extract
the equation of motion of the relativistic open or closed string:

0P , P

or do =0

The first term in §S can be written more explicitly as

/Tf dr(6X°(r, o1)Pg (1,01) — §X°(r, 0)P§(r,0)

3

+ 5X1(7', 01)Py(7,01) — 5X1(7', 0)P{(r,0)

+ 6X%(1,00)PI (T, 01) — 6X 7, 0)P](r,0)). (1.1)

This term concerns the string endpoints and will yield 2(d + 1) boundary con-
ditions, one corresponding to each term in (1.1). To simplify our analysis we
will consider only one general term in (1.1). We specify this term by fixing
4 and taking o, as the o-coordinate, where o, = 0,0,. We need to impose
boundary conditions on the endpoints which will make each of the terms in
(1.1) disappear so that 05 will vanish. As a result two possibilities arise for
boundary conditions which can be imposed at the endpoints. We can either
require that the endpoints of the string remain fixed throughout its motion, or
that the endpoints are free to do whatever is necessary for 65 to vanish. The
former case gives rise to the Dirichlet boundary condition, which is expressed
mathematically as

oOXH
W(T,U*) =0, u#0.

Since 7 and time are both timelike we exclude the case where y = 0. The
Dirichlet boundary condition states that the p-coordinate of the selected string
endpoint is fixed in time. An equivalent statement of this boundary condition
is 0X#(r,0,) = 0, which obviously ensures that each term in (1.1) vanishes.
The second possible boundary condition, called the free endpoint condition or
Neumann boundary condition, corresponds to

P (r,0.) =0
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and clearly leads to a vanishing of each term in (1.1). This condition doesn’t im-
pose any restriction on the string endpoints, hence the nomenclature. One may
pick either of the two conditions for each spatial direction and at each endpoint.

The Dirichlet boundary conditions give rise to a widely studied object called a
D-brane (where “D” stands for Dirichlet). These particular conditions, as men-
tioned, require that the endpoints of the strings remain fixed. It is the objects
to which these endpoints are attached that are termed D-branes. They can
be many-dimensional objects, such that a Dp-brane represents a p-dimensional
D-brane. The Dirichlet boundary conditions specify the D-brane. Open string
endpoints are allowed to move freely along the directions of the brane. As a
visual example of a D-brane, consider a flat D2-brane in 3-dimensional space,
specified by the condition 2® = 0 (so that the brane lies in the (z',z?)-plane).
The Dirichlet boundary condition is X® = 0, and the remaining X' and X?
coordinates satisfy free boundary conditions. It is also possible to define a Dp-
brane in p-dimensional space. Such a brane is termed a space-filling brane, and
implies that all the string spatial coordinates satisfy free endpoint conditions.

D-branes are actual physical objects within string theory, and don’t need to
be put in by hand. Nor are they necessarily hyperplanes. They are fascinating
objects with many interesting properties, but a detailed analysis would veer off
the main ideas of this thesis and will thus not be discussed here.

1.1.3 Light-cone Coordinates

Since we will be dealing with the light-cone gauge later on, it is instructive to
give a brief overview of light-cone coordinates [1]. The relativistic string can be
quantized with relative ease using these coordinates in light-cone quantization.

The two light-cone coordinates are defined as

Notably, they consist of two independent linear combinations of the time coordi-
nate 2° and a spatial coordinate, here chosen as z!. The remaining coordinates
(here we deal with 4-dimensional Minkowski space) are kept as x2 and z3. Thus,
we have traded our (z°,z') coordinates for (z*,z7), and the complete set of
light-cone coordinates can be written as
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(%27, 2% 2°).

Now, if we consider a beam of light moving in the positive 2! direction, we can
write

which corresponds to the xT axis. Similarly, for a beam of light moving in the
negative z! direction, we can write

' =—ct=—-2"= 2" =0,

which corresponds to the — axis. Thus, the nomenclature is obvious as the co-
ordinate axes of the light-cone coordinates correspond to world-lines of beams
of light emitted from the origin along the z!' axis. The light-cone axes are at
45° to the (z°, z') axes.

We take zt as the light-cone time and z~ as a spatial coordinate. Light-cone
time is not quite the same as ordinary time, because light-cone time will freeze
for certain light rays (as we mentioned, = remains constant for a light ray
in the positive x! direction, while 7 remains constant for a light ray in the
negative x' direction).

1.1.4 String Quantization in the Light-cone Gauge

Reparametrization invariance of a string’s worldsheet results in the appear-
ance of constraints within the theory, so that quantizing the string amounts
to quantizing a constrained system. Notably, two different methods arise nat-
urally when we consider string quantization: covariant quantization via the
Neveu-Schwarz-Ramond (NSR) approach, and light-cone quantization via the
Green-Schwarz (GS) approach. The former has to contend with non-physical
negative norm states because it keeps certain symmetries manifest, such as the
Lorentz invariance if it is in flat Minkowski space. The latter is practically the
direct opposite of the NSR approach: it makes sure that no unphysical states
are allowed thus sacrificing manifest invariance under certain symmetries.
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Now, the string worldsheet action is the so-called Polyakov action as discussed
previously, and it has a kinetic term of the form

gu,,n“baaX Fop X" .

The problem arises when you try to canonically quantize the string. The oscil-
lator commutation relations will look like

[a“, aTu] o guv,

where g has one negative eigenvalue and nine positive eigenvalues. Clearly, neg-
ative norm states will be created by the oscillator corresponding to the negative
eigenvalue. So, the timelike oscillations of the string give rise to the problem,
which is cured by the constraints arising from string worldsheet reparametriza-
tion invariance.

The beauty of the light-cone gauge is that it makes use of light-cone coordinates,
with two light-like and eight spacelike coordinates. Thus, the problematic time-
like coordinate doesn’t stand on its own - it mixes with one space coordinate.
The gauge gets rid of one of the light-like coordinates, and also allows you to
solve the constraints to eliminate the second light-like coordinate. This leads
to a theory with no constraints and eight quantized space coordinates.

We use the light-cone gauge approach in this thesis, but not directly - we have
to take the pp-wave limit of our background to make progress. The original
LM background (not in the limit) is complicated by the presence of RR-fields,
which are higher tensor fields than the 2-tensor B potential, and couple to D-
branes directly. They do not, however, couple to fundamental strings directly.
The pp-wave limit allows us to test the AdS/CFT correspondence despite the
difficulties within the LM background.

1.1.5 Type IIB Superstring Theory

The AdS/CFT duality involves type IIB string theory, which is a superstring
theory, so it is necessary to discuss this theory in some detail. We generalize our
previous string analysis to the superstring by generalizing the Polyakov action
[4].

We begin by noting that the the string worldsheet has a diffeomorphism and
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a Weyl symmetry, which leaves us with a large number of gauge choices. For
simplicity in evaluating the physical spectrum in type IIB strings we choose the
light-cone gauge

r=Xt=X"+X°

In this gauge we can eliminate X ~. The beauty of this gauge is that we have
managed to remove all unphysical modes (which include oscillations due to
negative-norm oscillators in the mode expansion of X° as well as longitudi-
nal string excitations which have no meaning). This gauge doesn’t give us
manifest Lorentz invariance, however, and only the transverse group of rota-
tions, which in this gauge is SO(8) with a covering group of Spin(8), will be
manifest. Three particular 8-dimensional representations of this covering group
which we will make use of in our analysis are the spinor representation 8s (with
indices a,b, c), the vector representation 8v (with indices 4, j,k) and the con-
jugate spinor representation 8c (with indices @, b, ¢). Right-handed spinors are
related to left-handed conjugate spinors by parity transformations which act to
change the sign of one of the vector components. We are working in the Green-
Schwartz formalism, which is actually equivalent to the Neveu-Schwarz-Ramond
superstring formalism. In the latter formalism, the 8c and 8s comes from the
Ramond (R) sector, whereas the 8v comes from the Neveu-Schwarz (NS) sector.

We now specify the worldsheet action of the type IIB string in the Green-
Schwartz formalism. The transverse spatial coordinates of the string are con-
tained within the bosonic fields X defined on the worldsheet. The fermionic
fields on the worldsheet (their existence guaranteed by supersymmetry) are rep-
resented by left-moving S and right-moving S®. Their indices tell us that they
transform as spinors 8s. Due to the equivalent spacetime transformation proper-
ties of these two spinors, we see that our theory on the worldsheet is non-chiral.
It is chiral in spacetime, however, since we only see the right-handed chirality
of spacetime fermions and not the parity transform. It is interesting to note the
choice which leads us instead to type IIA string theory. Indeed, we could have
chosen left-moving S (which transforms as a left-handed conjugate spinor as
suggested by its index) and 5@ again. The type ITIA theory which results has
opposite chirality properties, namely it is chiral on the worldsheet but nonchiral
in spacetime. Now, the type IIB string has action

1 i i - Qa a _ ,Qa Ja
S = —g/dodf(mx O_Xi — S99 5% — i3°, §9),

where 7 is time on the worldsheet, o is the coordinate along the string (0 < o <

25



27), and we have set o/ = % We note that the bosons X' will satisfy a periodic
boundary condition along o. Supersymmetry is a spacetime symmetry linking
the bosons and the fermions, so the fermions will satisfy the same boundary
condition, thus

X'(o+2m) = X'(0), S%o+27)=S5%0), etc.

Using these boundary conditions we can quantize this free field theory by writing
the mode expansions

i i L, i 1'—'7’0’ ]‘~'—'T—U
Xl:xl+§p%+§§0[—aze ) 4 —ane

50 =

a _ —in(T+o
Sae (r+a)

o=

ggefin(rfa) ]

S-Sl
08 58

Since we are using standard canonical quantization techniques, we need to en-
force that the oscillator modes satisfy the standard commutators and anticom-
mutators, given in this case by

[O‘ina C“"Zz] = méij5m+na [din’ &fz] = méij5m+’n?

(52,55} = 0%6un, {5288} = %6 i (1.2)
We can also discuss the bosonic and fermionic zero modes to determine a la-
belling of our ground state. Indeed, the zero modes z° of the bosonic fields X*

allow the ground state to be labelled by the momentum eigenvalue |p) since
they satisfy the Heisenberg commutation relations

[, p7] = i6".

The fermionic zero modes S¢ and S¢ have an algebra given by

{55, Sg} = 6ab7 {S’(()l’ Sg} = 5"

We expect that the ground state furnishes a representation of this zero mode
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algebra. We can focus on the left-moving S® in our analysis (since the treat-
ment of S is identical). We can obtain the usual anticommutators from the
anticommutators (1.2) by defining four fermionic oscillators

V2, = (S 1 408%™, m=1,2,3,4.

It is clear that we get the usual anticommutation relations

{bma bIL} = 5mna {bma bn} = 0; {b;rm bi;} =0.

By writing these new fermionic oscillators, we have in effect chosen a specific

embedding SO(8) D SU(4) x U(1). Thus, our oscillators {b,,} transform in the
fundamental representation of SU(4) and have a 1 unit of U(1) charge. Since
the SU(4) fundamental representation is labelled by 4, our new oscillators are
said to transform in 4(3). The complex conjugate oscillators {b},} transform in

the complex conjugate representation.

In this particular choice for the embedding, our vector, spinor and conjugate
spinor representation will decompose as

wea(3) ()

8v=6(0)+ 1(1) + 1(-1),
8c:4(—%) +71(%>.

The ground state should furnish a representation of the zero mode algebra of
fermionic zero modes. We wish to work out this representation. We do so by
making filled states from the totally “empty” Fock space vacuum |0), which
itself is annihilated by all annihilation operators b,,. We act on this vacuum
with creation operators to obtain the various filled states. The 16-dimensional
representation we obtain is given by

0)  1(1)
ww ()
bi,bh10)  6(0)
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b bibi0) 4 (-%)

m’n’p

bl bIbThEI0Y (1),

mYn“pYq

The right-hand column above gives the dimensions of the SU(4) representation
followed by the U(1) charge. We note that the 16-dimensional representation
of the left-moving ground states can be written as 8v + 8c, which is also true
for the right-moving ground states.

Now that we have specified our ground state, we can build a physical string
state |¢), which should satisfy the on-shell conditions

o' M? = —a/p'p, = AN, and = AN

where
N =) (na' ol + 5,59,
n=0

o0
N =" (né' &, +5,5%).

n=0
We build our physical string state by acting with creation operators on the
16 x 16-dimensional ground state which is labelled by spacetime momentum p.
The massless states have no oscillator excitations, and we find them by taking
the tensor product of left- and right-moving ground states:

(1) @ la) ® (15) @ 16)).

Now, giving what we said previously about the R and NS sectors, the Ramond
states turn out to be the spacetime fermions and the Neveu-Schwarz states the
spacetime bosons.

When we take the tensor product of left- and right-moving states, we get a
number of possibilities. If we consider the indices in the product, we see that
we can get states in the NS-R and R-NS sector, the NS-NS sector and the R-R
sector.
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In the NS-R and R-NS sector we get the spacetime fermions 1;; and ¢; re-
spectively. These correspond to the two gravitini of type IIB string theory.
Also, if we recall that 7 and j are 8v indices and hence belong to the NS sector,
then our states |i) ®|j) are obviously NS-NS states. These states give rise to the
metric g;; (via the reduction in terms of the symmetric traceless combination),
the 2-form B;; (via the reduction in terms of the antisymmetric combination)
and the dilaton ¢ (via the reduction in terms of the scalar combination). Lastly,
we see that we can reduce the R-R states |a) ® |b) to give a scalar x, a 2-form B;;
and a self dual 4-form D;jy;. All of these quantities form the massless spectrum
of type IIB string theory, and their interpretation is not too difficult to elucidate.

In the NS-NS sector, the metric g;; is simple to interpret - it is clearly the
metric of spacetime. The dilaton ¢ sets the strength of the string interactions.
The field B;; can be interpreted in the same way as the A, in electromagnetism.
In electromagnetism, the term in the action that we add to account for a point
particle’s coupling to the electromagnetic field is

/ A da,

due to its reparametrization invariance - this is a symmetry shared by the
action, and allows us to define any parametrization for the particle’s worldline
without changing the action. Similarly, in the case of the string action, the
reparametrization invariant term we can add to represent the B;; field coupling
to the fundamental string is given by

/ Bijda' A da?.

The fact that B;; is antisymmetric is crucial to obtain a reparametrization
invariant action. If we now consider the RR sector, we find that the fields in
this sector couple to D-branes. Indeed, it is the number of indices in our field
which tell us what type of higher dimensional object we can couple to. In the
case of Djjy, the term we add to the action is of the form

/Dijkld:ri A dx? A dz® A dat. (1.3)

The key point in obtaining a reparametrization invariant action is that D;j;y; is
totally antisymmetric. It is clear that the term in (1.3) couples to a D3-brane,
which has a 34+1-dimensional worldvolume. In addition to the electric couplings
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discussed above, we can also have magnetic couplings to the potential. We can
obtain a 3-form field strength Hj from the NS-NS B;; field by writing

H3 = dB2
Further, we can get a 7-form dual field strength by contracting H3 with the
10-dimensional € tensor, so that

H7 =" H?n

but we can also get it by using a 6-form potential

H7 = dAs
This 6-form potential will couple to something called a NS5 brane, which has
a b+1-dimensional worldvolume. Fundamental strings in 10 dimensions are
related to NS5 branes via electromagnetic duality. A similar argument shows

that D1-branes are related to D5-branes by electromagnetic duality and that
D3-branes are self dual.

1.2 The AdSs; x S° Background

This background is vital in the duality, as this is the gravitational background
in which the strings move on the string theory side of the correspondence. It
is thus instructive to discuss this background in more detail, especially the 5-
dimensional anti-de Sitter space AdS5. We will examine the nature of this space
and also that of its boundary.

We define the d-dimensional space AdSy by the hyperboloid

XA - X2+ X+ Xe 4+ .+ X5 =N\

embedded in a d 4+ 1-dimensional space with metric given by

ds* = —dX?, —dX§ +dX7 + ...+ dX7_,.

It appears as though the embedding space has two time coordinates. We can
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rewrite the metric of AdSy in terms of global coordinates p and ¢, where 0 <
pu<ooand 0 <t<2r (so that time is periodic). We do this by noting that

7 —u\2 b p—1)2
cosh2u—sinh2u=(€ +4e ) _(e 46 ) =1.

We can now set
(X_1,X0o) = Acosh puny = Z,

(Xl,XQ, ---aXd—l) = Asinh /j,fld_l = g,

where 7y, is a k-dimensional unit vector. We use the fact that

Ny = (sintcost), n3 = (sinfsin ¢,sinf cosp,cosh), etc.

to verify that the association above is valid, since
— X2 - X§+ X7+ X5+ .+ X,
= —A2 COSh2 /,l/ﬁ/Q . ﬁg + A2 sinh2 /J,TALd_l . ﬁd—l
= —A?*(cosh? pu — sinh? j1) = — A%
Now, using 7y - 15 = 1 we can further deduce that
dig - dig = (cost, —sint) - (cost, —sint)dt* = dt?,

g - dng = (sint, cost) - (cost, —sint)dt = 0,

which leads us to
dZ - d¥ = (A sinh piydp + A cosh pdig)?
= AZsinh? pfy - fodp® + A2 cosh? pdns - divg
+ 2A% cosh pusinh pfy - diodp.
= A? cosh? udt® + A? sinh? pdp?.
Similarly, using
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A

Ng—1-Ng—1 = 1,
Ng-1-dng 1 =0,

o ~ 2
dnd,1 . dnd,1 = de*Q’

where d2%_, is the metric of S?72, we can see that

dif - dif = A? cosh? pdp® + A?sinh? p(dQy_z)2.

These results yield the metric in global coordinates:

= —A? cosh® pdt? + A?dp? + A% sinh® u(dQq_s)>.
We can easily elucidate the topology of AdS, using the coordinate transforma-
tion

sinhpy=tanp, 0<p< g,

from which we can write

2 102
coshu:\/1+sinh2u:JCOS P22l —gecp,

cos?p  cos?p

du 1
dp cosh i cos? p

dup = sec pdp.

Using this change of coordinates the metric of AdS; becomes
dsidsd = A*[—sec? pdt?® + sec? pdp? + tan? pd)?_,]

= —R%dt* + dR* + R*d2 ,,

where

R=Asecp, R=Atanp.
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Notice that the first term (R?dt?) in the metric above corresponds to that of a
line, while the second term (dR?+ R?d2 ,) is the metric of a d — 1-dimensional
ball B4_1. Thus, AdS, has a topology given by B;_1 X R. We can also determine
the topology of the boundary of AdS,;. We do this by writing the metric as

2

dshas, = 7|t + dp’ +sin” pdSg ],

0s? p

from which we see that the metric blows up at p = Z. The boundary is thus

2
present at p = 7. If we perform a conformal transformation, which leaves the

topology unchanged, we obtain

déidsd = —dt* + dp® + sin® pdQ3_,

so that at the boundary, the metric looks like

ds® = —dt* + dQ5_,.
We have thus shown that the topology of the boundary is & x S¢2.

1.3 Lunin-Maldacena Backgrounds

It will be instructive to describe the LM background as the gravitational part of
the AdS/CFT correspondence tested in this thesis is just such a background [4].

Lunin-Maldacena backgrounds correspond to the gravitational backgrounds dual
to f-deformed N' = 4 super Yang-Mills theory. In addition to U(1)g R-
symmetry they exhibit a U(1) x U(1) isometry and have non-zero NS-NS B
fields. Lunin and Maldacena introduced solution generating transformations
(those which generate new solutions out of old ones) which yield such back-
grounds, hence the nomenclature.

It was previously mentioned that an important insight lead to the understanding
that the five different superstring theories are actually all special cases of one
underlying theory. The situation being studied dictates which local description
is most viable. In fact, it is quite possible that theories existing in a different
number of spacetime dimensions can each be a partial description of the same
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underlying theory. Indeed, some situations are presented most clearly in the
little understood 11-dimensional M-theory.

Now, as mentioned before, low energy superstring theories produce supergravity.
We get 11-dimensional supergravity by taking a low energy limit of M-theory.
Similarly, we get type ITA and IIB supergravity theories by taking the low energy
limit of the type ITA and IIB superstring theories respectively. If we compact-
ify 11-dimensional supergravity we are lead to the lower dimensional ITA and
IIB supergravities: in fact, conserved charges in IIA and IIB supergravity cor-
respond to momenta along the compactified dimensions of the 11-dimensional
theory. These momenta will change under a symmetry of the higher dimensional
theory. Due to its link to the 10-dimensional theory, the effect on the momenta
will translate into an effect on the conserved charges which label the solution,
leading to a new solution. Hence, they are solution generating transformations.

Lunin and Maldacena followed this procedure which allowed them to construct
the relevant background. They used the fact that solutions of 11-dimensional
supergravity compactified on a three torus (which has an SL(3, R) symmetry)
can be related to solutions of 10-dimensional type IIB supergravity compactified
on a two torus. The SL(3, R) symmetry then becomes the precise solution gen-
erating transformation for IIB supergravity. Now, the S in AdSs x S® contains
a two torus and the solution generating transformation can thus be applied,
yielding the LM solution. This solution is given explicitly in Chapter 4.

It turns out that the LM background is set up by a collection of sources, in-
cluding D3-branes, which act as a source of the five form flux present in the
description. The field theory dual to closed strings in such a background should
be obtainable via a low energy limit of the open strings attached to these D3-
branes. Such a field theory must be conformal due to the fact that AdSs space
has an SO(2,4) isometry, and in addition has A/ = 1 supersymmetry. Our
discussion in section 2.4 will deal with such theories. We also expect the field
theory to be non-commutative due to the presence of a B field. As discussed in
section 2.5, the usual field theory product is replaced by

i gt

F(X) % g(X) = 375675 £(X + £)g(X + C)]emcco (1.4)

when the B fluxes are parallel to the 3-brane, and a%‘ correspond to momenta.
In this case, however, the B fluxes are transverse to the 3-branes, and so we
replace momenta in (1.4) above by U(1) x U(1) charges (Q', @?). The product
is then conjectured to be
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fxg=e™QrR-Q) £y

where fg is the usual product.
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Chapter 2

Field Theory Basics

2.1 Nonabelian Gauge Theory

We begin our discussion of nonabelian gauge theory by reviewing global transfor-
mations, and then consider the implications arising from a local transformation
[2]. C.N. Yang and R. Mills investigated the theory, giving rise to Yang-Mills
gauge theory. We label our N-component complex scalar field by ¢(z), where

o1(x)
pa(z)

L on(z) |
With U an element of SU(N), the scalar field and its adjoint transform as
p(z) = Up(z),

pl(z) = ¢' (@)U,

U is independent of spacetime, making the above a global transformation. We
are particularly interested in what happens to the Lagrangian

L= 0000 — V(elp)

under the transformation. Since U is unitary (UTU = 1) we can easily show
that 'y and 0pfd¢ are unchanged by the transformation:
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ol = (PTUN(Up) = o' (UTD)p = ¢,

T — d(pTUNO(U) = 0! (UTU)dp = dp'dep.

It is thus clear that the Lagrangian is invariant under SU(N) for any U.

Next, we can consider what happens when the transformation U is allowed
to depend on spacetime, making it a local or gauge transformation. If we set
U = U(z), ¢'p remains invariant under the transformation

e > Ulz)p, o —¢'U(z), (2.1)

since

el = o UN(2)U(z)p = ¢l

However, 0’0y is no longer unaffected by the transformation, since 9, = %

will act on U(zx) in addition to ¢(x). In fact the transformation (2.1) results in
0 = 0,(U(@)9) = Uy + 0,00 = Uldue + (U0 (22)

The first term in (2.2) is precisely how we would like 0, to transform to make
the Lagrangian invariant, so we need to find some way to remove the term
(U19,U)ep. In fact, we would like a derivative of ¢ to transform like ¢, or like
Oy when U does not depend on z, which would ensure our Lagrangian was
invariant. A Lagrangian invariant under a gauge transformation is said to be
gauge invariant. We can define a covariant derivative D,, which acts on ¢ as
follows:

Dyp(z) = Oup(x) — iAu(z)p(z),

where A,(z) is a gauge potential, and require that this derivative transforms
like ¢, namely

Dyp(x) = U(z)Dyyp()
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= [D"¢(2)]"Dup(x) — [D"p(2)] Dup(z).

Thus, we can use D,¢(z) to build an invariant kinetic energy term for the scalar
field ¢.

Now, requiring that D,¢(z) — U(z)D,¢(x) leads us to a transformation law
for the nonabelian gauge potential A,. This transformation law, termed the
nonabelian gauge transformation, is

A, - UA U —i(0,U) U =UA, U +iU,U".
The A, are N x N matrices which are hermitean. We see this by examining

the term —i(9,U)UT. If we call T the generators of SU(N), we can write

U= eiﬂ“(a:)T“

7

so that
—i(0,U)U" = 0,0°T*UU" = 9,0°T".

This term is clearly in the Lie algebra. A, is thus Lie algebra valued, and hence
hermitean.

Furthermore, if we write U = €T ~ 1 +if - T, we obtain, infinitesimally,

Ay — A, +i0°[T°, A, + 0,6°T". (2.3)

By tracing (2.3), we note that 7'r(A,,) is invariant under the transformation, so
we take A, to be traceless. This allows us to decompose the matrix field A,
into component fields A7, and write

A, = AT
The number of these component fields matches the number of generators in the
group (N? — 1 for SU(N)).
The Lie algebra of the SU(NN) generators is
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[Ta’ Tb] — ,ifabcTc’

where f%¢ are the structure constants. This leads to

a a abcpnb Ac a
A% — A% — fUegPAC 4 0,0%,

so that A}, transforms as the adjoint representation of the group if ¢ is indepen-
dent of z.

As a final comment on the nature of A,, we will justify its nomenclature. In
the case of the abelian group U(1), with element U(x) = € A, turns out
to be the standard abelian gauge potential from electromagnetism. Thus, in
the particular case discussed in this section, A, is termed the nonabelian gauge
potential.

According to our arguments above, the gauge invariant Lagrangian is

L = (D*p) (Dup) — V(')

By introducing the covariant derivative, we have introduced an additional field
A, (z) into the theory, and we need to include its dynamics into the Lagrangian.
We do so by requiring that the quantity we introduce is gauge and Lorentz
invariant and contains quadratic terms for A,. Thus, we need to find a field
strength which depends on A, such that these conditions are met. This is done
succinctly using differential forms. First, we define for simplicity

A, = Al = —iAl,

where M refers to mathematician notation, and P to physicist notation. This
notation allows us to write the covariant derivative as

D, =0,+A,.

We also introduce the matrix 1-form A = A,dz*, which is a form and a matrix
in the defining representation of the Lie algebra. We can write
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1
A = Ay Aydatda” = J[A,, Aldatda” # 0

for a nonabelian gauge potential. The transformation of the gauge potential
becomes

A UAUT + UdUT.

It turns out that the object we are looking for to describe the dymanics of A,
is a 2-form F' = %Fwdm“dm”, and we want to build it out of the 1-form A. Two
possibilities arise for building a 2-form out of A: we could either have the 2-form
dA or the 2-form A%, and we expect that F will be a linear combination of the
two. Now, U is a 0-form, so we can write

dUt = 0,U'da*.

With the action of d, the gauge potential transformation law becomes

dA — UdAU' + dUAUT — UAdU' + dUdU?,

while A2 transforms like
A? 5 UA2UT + UAdUY + UdUTU AU + UdUTUdUT

=UA?U" + UAdU' — dUAUT — dUdU". (2.4)

In the second line in (2.4) we used d(UU') = d(1) = UdU' = —dUU". So, if
we now add dA and A?, we see that the combination transforms as

dA + A? — U(dA + A?)U'.

The quantity dA + A% obviously transforms homogeneously, and we can thus
define the field strength 2-form

F=dA+ A% (2.5)
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Now that we have the quantity we were looking for, we can return to our more
explicit notation, and write (2.5) as

1
F = (9uA, + A,A e da” = 2(9uA, = 0,4, + [Au Aot da”.

If we further define

Fdz"dx”,

DN | —

we can write

Fu=0,A,—0,A,+ A, Al
Recall that we used 4, = Aﬁ/[ = —iAf , and similarly we can write F),, = F;% =
—iF),,. Thus, in physicist notation

Fu = 0,4, — 0,A, —i[A,, A,).

If we further extend our results to include both group and Lorentz indices, using

A, = A°T®, F,, = F%T"

we get

a __ a a abc Ab pc
F, = 9,A% — 9,A% + foeAb AC.

It turns out that the quantity we need to include in the Lagrangian to account
for the dynamics of the field A, (z) is proportional to T'rF),, F**. More precisely,
the Yang-Mills (or nonabelian) Lagrangian is

1 v
E = —2—92TTFNUFM .

Furthermore, since we normalize T* by Tr(T*T") = 6, the Lagrangian is
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1 a auv
6:_4—92FMUF“ .

This Lagrangian contains a quadratic term (0, A% — OVAZ)Q, which corresponds
to the propagation of the Yang-Mills boson (or the nonabelian gauge boson),
which is a massless vector boson carrying an internal index a. In addition
the Lagrangian has a cubic term f*cA* A (9, A% — 9,A%) and a quartic term
(febeAb Ac)?, which describe the self-interaction of the nonabelian gauge boson.
This self-interaction arises because the Yang-Mills bosons couple to all fields
which transform nontrivially under the gauge group, but as we have shown the
Yang-Mills bosons have a nontrivial transformation, and so couple to them-
selves. Recall that in Maxwell theory a field’s charge reveals how the field
transforms under the U(1) gauge group, so that the analogue of the charge of
a nonabelian gauge field is the representation of the field. Furthermore, in this
simpler theory, the photon which is itself uncharged will couple to charged fields.
The presence of this self-interaction in pure Yang-Mills theory makes it a highly
nontrivial theory. The self-interactions and their relative strengths are deter-
mined by symmetry, since group theory completely fixes the structure constants.

Yang-Mills theory has an elegant formulation; this elegant formulation makes it
a non-linear theory which is, in turn, hard. As a quantum field theory, we have
no reliable approximation techniques to study its low energy dynamics.

2.2 Supersymmetry Basics

Supersymmetry (SUSY) is intriguing because it is a basic transformation link-
ing bosons and fermions while all other experimentally verifiable symmetries
link the same kind of particles to themselves. It is also tempting to think that
we might be able to solve the cosmological constant problem by getting the
boson and fermion contributions to cancel each other since the fermions have a
negative contribution to the vacuum energy. Supersymmetry would guide us in
doing this. For all the good it would do, it is unfortunately still experimentally
unverified, and no supersymmetric partners in the current theories with super-
symmetry have been detected.

Supersymmetry requires the same number of bosonic and fermionic degrees

of freedom. The simplest fermionic field one could use to build a field theory
with this symmetry is the two-component Weyl spinor v, which introduces a
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complex degree of freedom, so that we have to add in a complex scalar field
©. Instead of proceeding by trial and error to build a supersymmetric theory,
we will follow the superspace and superfield formalism. Firstly, however, we
will discuss the supersymmetry algebra [3], and then move to a more detailed
explanation of superspace [2]. Note that we now use m and n as spacetime
indices, where p and v were used previously.

We begin our analysis by considering the S-matrix and noting its symmetries.
A symmetry of the S-matrix corresponds to a transformation which serves to
move between the single and multiparticle asymptotic states affected by the
matrix. There are three broad groups to which the symmetries of the S-matrix
belong. The S-matrix has:

(i) Poincaré invariance, which involves translations, rotations and boosts and
has generators P,, and M,,,;

(ii) Internal global symmetries (which are space-independent), where the con-
served quantities are electic charge and isospin. The generators, which are
unchanged by Lorentz transformations making them Lorentz scalars, satisfy a
Lie algebra

[By, By] = iC}, Bi,

where the structure constants are represented by CJ;

(iii) Discrete symmetries, namely charge conjugation (C), parity transforma-
tion (P) and time translation (T).

Some decades ago, the Coleman and Mandula theorem proved rigorously that
there are no further symmetries of the S-matrix. However, weakening a con-
dition in the theorem allows the possiblity of supersymmetry to arise. The
condition imposed in the assumptions of the theorem was that only commuta-
tors were present in the S-matrix symmetry algebra. Weakening this assumption
to allow the generators to satisfy anticommutation relations in addition to the
standard commutation relations gives rise to this additional symmetry. A num-
ber of years after the Coleman and Mandula theorem, it was further shown
that no other symmetries are possible by adding anticommutators into the mix.
In more precise terms, supersymmetry results via the introduction of anticom-
muting symmetry generators which transform in the spinor representation (that
is, (3,0) and (0,31) representations) of the Lorentz group. Since internal sym-
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metries are Lorentz scalars, it is clear that supersymmetry is not an internal
symmetry. It is an extension of the Poincaré spacetime symmetries to include
the anticommuting spinor generators, and can be further extended to more or
less than four spacetime dimensions.

We will denote our supersymmetry generators using Weyl spinor notation, so
that they are given by Q%, where A =1,...,N. N tells us the number of gen-
erators and «, which can be dotted or undotted, represents the spinor nature
of the generators. The logical next step is to write down the supersymmetry
algebra of these generators. We will focus on the 4-dimensional SUSY algebra.
This algebra is given by

{Q4: Qpp} = 2005 Pnd, (2.6)
{Qs, Q5 } = €apa*“B,,
{Qaa, QBC} = _eaBaZkAcBl;
(@2, Pu] = [QF, Pu] = 0,
Q2 Minn] = 0,
QS Mo = %, 505,
[ éaBl] = SlA can
[Qaa, Bl = —Siy “Qac
|By, By] = iC;, ' B,
[P, Bi] = [Mynn, Bi] = 0,

where @ is the adjoint of @, together with the usual Poincaré algebra. This
particular form of the algebra follows almost uniquely by requiring consistency
with Lorentz transformation properties of the generators. For example, consider
the anticommutator between the supercharges. If we were to start from scratch
and try to elucidate the form of this anticommutator, we would note that the
left-hand side transforms as (%, %), and look for an object made up of the other
possible generators (that is, P, M, and B;) which transforms in the same
way, to make up the right-hand side. The most general such object turns out

to be

UZIBPmC’g,
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where C% are complex Lorentz scalar coefficients. Thus, we are lead to a pos-
sibility for the algebra, given by

{Q2:Qpp} = 03 PnCi. (2.7)

We can make progress if we complex conjugate the above expression. Using the
fact that

(U;nB)T = O.znd’

Q)" = Q4
we can conclude that C'4 is a hermitean matrix. In addition, Cj turns out to
be positive definite, since {Q, Q} is positive definite. Since the coefficients are
c-numbers we can pick a basis for the generators such that C4 is proportional to
4, since 64 is itself a positive definite hermitean matrix. Adding a factor of two
to our algebra in (2.7) doesn’t change its transformation properties, and thus

we are lead by the series of arguments above to the anticommutation relation
given in (2.6).

We follow our statement of the SUSY algebra by a basic theorem involving

any physical state in a supersymmetric theory. If we contract the algebra with
"% we obtain

4P" = 5"*{Q,, Q).

If we consider only the time component of this equation we get

=3 {Qa, Qa} = Y {Qu. QL} = D (QaQl, + QLQ0).

If |.S) is any physical state in a supersymmetric theory, then the above leads us
to

(SIH|S) = ZZ\ (S'QalS)I? > 0.

This leads us to conclude that any physical state in a supersymmetric field the-
ory must have nonnegative energy.
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We can also examine more closely the relationship between the SUSY gen-
erators and the other generators, most notably the translation generators P,,.
Again, constrained by the need for the left hand side (corresponding to the
commutator) to transform correctly under the Lorentz group (and noting that
there are no (3,1) and (1,1) symmetry generators), we can write

29
[Q2, Py) = Z$0,4,Q°7, (2.8)
[Q%4, P] = (Z8) QEals,

where Z# are complex Lorentz scalar coefficients. To extract the nature of these
coefficients, we insert our commutator (2.8) above into the Jacobi identity

[(Qas P, Pul + [P, P, Qal + [[Pn, Q4], P] = 0,

and use

mnB _ “[.m =nyB _ ,.n =mypB
ot = 4[0047‘7 Oos 0]

This leads to

~4i(Z2")508,,Q8 =0= ZZ" = 0.

mno

This helps, but we need more information to find the form of Z3 itself. We
get this information by considering the general anticommutator of two SUSY
generators, using the fact that it must transform as (0,0) & (1,0) under the
Lorentz group. The relation is

{Qéa Q?} = EaﬂXAB + eﬂ»yU;nn’menYAB.

Again, we rely on the Jacobi identity to get extra information, but this time we
contract it with €*%:

{Q2: QF Y, Pl + {[Pm, Qa), @5} — {IQF, Pua], @2} = 0.

This identity, along with
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[XAB, Pm] =0,
m_=¥6 _ b 57
OniOm = 25a(5ﬂ,

—maf __ &y B . m, m,. __ . 7m5'y
o =€ '€ 0'(5,-7, Oaﬂ = €5ﬂ€7a0' s

leads to

—4(Z4B — Z2BYP,, =0,

and hence that Z3 is symmetric. Using this in addition to ZZ* = 0 that we got
before, we can conclude that ZZ' = 0. Thus, Z5 = 0, and we can now write

[Qéa Pm] = [QQA: Pm] =0.
In addition, our analysis leads us to a form for the anticommutator of two SUSY

generators. The Jacobi identity leads us to conclude that

(M Y8, Pl =0= Y48 =0,

so that

{Qéa Q?} = eaﬂXAB'

We can further note that the complex objects X4Z commute with all the SUSY
generators Q4 and their adjoints Q44, making them central charges. They also
generate an Abelian invariant subalgebra of the compact Lie algebra generated
by Bj, so that

XAB — CLlABBl,

where a!4Z are complex and obey the relation S{',a*“B = —a*4¢S;.B. Here,

we used the commutators
[an Bl] = SlABQg’
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(Qans Bl = —Sis" Qap-

The simplest case we can deal with is supersymmetry with only one genera-
tor, corresponding to /' = 1 SUSY. Since this thesis deals with this type of
non-maximal supersymmetry, we will state its properties. The N = 1 super-
symmetry algebra is a special case of the general algebra (2.6). For example,
the anticommutator between the supercharges is

{Qon Q/}} = 20(anpm-

The cental charges X4? disappear when N = 1, so we obtain

{Qa, Qs} = {Qa,Qs} = 0.

We also note that the coefficients S; are real for this particular type of SUSY,
and the Jacobi identity for @ and two B’s tells us that the constants C¥, vanish,
so the internal symmetry algebra is Abelian. Now, we know that

[Qa; Bi] = SiQa,
Qs Bi] = —SiQq,
and if we rescale B; we obtain
[Qa: Bl] = Qom
[Qa, B] = —Qs.-

We denote by R the single independent combination of the B, whose commu-
tator with @, and Q)4 does not vanish. This R is a U(1) generator and satisfies

[QOHR] = Qa;
[Qo'mR] = _Qo'm

and we call the internal global U(1) symmetry of N' =1 SUSY provided by this
generator R symmetry. By noting that, in general, the relations are
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[Qaa R] = )"RQOU [Qda R] = _)"RQO'U

we see that the SUSY generators have an R-charge of Ag =+1 and -1 respec-
tively.

Basically, what we have shown is that a single hermitean U(1) generator R does
not commute with the supercharges due to associativity of the super-Poincaré
algebra. We label the corresponding symmetry the U(1)z symmetry. Due to
the nature of R, not all component fields in a multiplet transform in the same
way under this U(1)g symmetry.

To complete our analysis of N' = 1 SUSY, we will list the remaining com-
mutators of the generators in this particular realm:

[Qas Prn] = [Qa, Pr] = 0,
[Qus Mynn] = 0, Qs
[Q%, M) = 5?;”5@’B,

[Prns Pa] = 0,
[Mran, Py] = i(Mtnp P — Nnp P).

[ana Mpq] = _i(nmpan - nqunp - nanmq + nonmp)a
[P, R] = [Mynn, R] = 0.

Next, we need to find the Casimir operators, which will allow us to write down
the irreducible representations of supersymmetry on asymptotic single particle
states. We will do this for N/ =1 SUSY. We begin by considering the Casimirs
of the Poincaré algebra. These are P2 = P,,P™ and W? = W,,W™, where P?
is the mass operator with eigenvalues m? and W,, is the Pauli-Ljubanski vector

1
Win = 5 €nnpg P" M,

such that the eigenvalues of W? for massive states are —m?s(s + 1), with s =
0, %, 1, ... For massless states W,, = AP,, where X is the helicity. Helicity is the
projection of spin in the direction of motion (i.e. A = p-S5). It takes on discrete
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values, and is positive for right-handed particles, and negative for left-handed
particles. To find the Casimirs of ' = 1 SUSY we need to find the objects
which commute with @ and Q. P commutes with both but M does not, hence
P? is a Casimir of ' = 1 SUSY while W2 is not. However, we can define a

quantity which contains W,,, namely C?, where

1 .
Bm = Wm - _Qda-g;,ﬂQﬂa

4
Cmn = BmPn - Bana
c?t=c,,C™.

Using this definition, we can easily evaluate
[Wm’ Qa] = _io-rannonﬁPn7

[Qﬂ'a-rﬁr;yQ’ya Qa] = _2PmQa + 4i0—5maPnQﬂa

which lead to

[C’mni Qa] = [Bm, Qa]P'rL - [Bna Qa]Pm = 0

Hence, C? is a Casimir of N' = 1 SUSY. Now that we have established what the
Casimirs are, we can construct all possible irreducible representations of N =1
SUSY on asymptotic states. We will split our analysis into cases of massive and
massless states.

2.2.1 Massive States in N =1 SUSY

We will confine our analysis to the rest frame of massive states, where P,, =
(m,0). This is the simplest example we can use to give us the general form of
our states. We can immediately write down the corresponding algebra:

(@ Qs =2 =2m 3 ). (29)

Now, in the case of a rest frame we see that we can write our Casimir C? in
terms of the spin operator S;, for 1 = 1,2, 3:

C?* =2m*J;J" = 2m* J?, (2.10)

a0



where

dm

We can write the algebra of J; by realizing that both S; and 6? p satisfy the
algebra of SU(2):

[Ji, J]] = ieiijk.

The eigenvalues of J? are j(j + 1), where j = Z or %Z. In order to verify that
(2.10) is indeed a Casimir, we need to show that J? is a Casimir. It turns out
that

[Qu, Ji] o P, [Qa, Ji] o P,

but P = 0 is the rest frame, so J; commutes with @ and Q. If we study the
N =1 SUSY algebra in the rest frame (2.9) more closely, we see that Q4 and
Q. actually correspond to two pairs of (unnormalized) creation/annihilation
operators. They fill out the N' = 1 massive SUSY irreducible representation
(irrep) of fixed m and j. Thus, we can use these generators to define a new
state given a definite state |m,j). This new state is

|Q> = QlQQ‘m>j>7

which satisfies Q1]Q2) = @Q2|Q2) = 0, so that |Q2) is a “vacuum state” (a state
annihilated by the “annihilation operators” o« Q,). The values of j3 range
from —j, ..., j, so the degeneracy of this state is 2j + 1. In addition, |Q2) is an
eigenstate of spin, since

Ji|Q) = 5i|Q).

Hence we can write

Q) = |m, s, s3),

which means that we can use mass and spin to label all the states in the SUSY ir-
reducible representation. Instead of using () and @ as the creation/annihilation
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operators directly, we normalize them, and use the result as our conventional
creation/annihilation operators:

1 _
T
19 = — , 019 = ——=Qji5.
b \/%Ql’2 b2 \/%Ql’2

Using this notation we can write down the full massive A/ = 1 SUSY irrep,
which contains 4(2j + 1) states:

Furthermore, we can use

s )=a ()

to show that [Q2) = |m, j, j3) has possible spins given by s3 = js, js — 3, js + 3, Js-

2.2.2 Massless States in N =1 SUSY

In this case, we will see that there is only one pair of creation/annihilation op-
erators, which means that there will only be 2 x 2 states (the spin degeneracy
of the massless particle is 2) in each massive N' = 1 SUSY irreducible represen-
tation, half the number of states available in the massive case. We will work in
the light-like reference frame, such that P,, = (E,0,0, E). The SUSY algebra
in this case is

{Qi,Qi} =4E, {@5Qs} =0. (2.11)

If we define our vacuum state |€2) in this case as we did in the massive case, we
notice that (2.11) has an interesting consequence:

(Q]Q2Q5(€) = (Q3]0)1(Q3]Q)) = 0.

Evidently, the (unnormalized) creation operator 5 creates zero-norm states,
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so it equals the zero operator. Hence, the only non-trivial (unnormalized) cre-
ation/annihilation operator pair is Q; and Q. Again, we normalize these op-
erators and write

1 + 1

a = ﬁ@la a = W@i-
1

The operator a' transforms as (0, 5) under the Lorentz group, so that it acts
by increasing the helicity of a state by % Since |©2) has a definite helicity and
is non-degenerate, we can write the two possible states in each massless N’ =1
SUSY irrep as

Q) helicity A

1
a'|Q)  helicity X+ 3"

However, we still have four states with helicities A\, A+ 3, —A — 1 and —), since
the above is generally not a CPT state, so that we end up having to pair two
massless SUSY irreps.

We can use the results in the A/ = 1 SUSY cases above to extrapolate to
cases with more supersymmetry.

2.2.3 Massless States with No Central Charges in N > 1
SUSY

In this general case, which we will study very briefly, we deal with A/ SUSY
generators, and hence N creation operators aL. There are 2V states in the
irrep, and they look like

Ly

ﬁaAl...

The degeneracy of the states is given by ({1‘/ ) X 2 (again the 2 corresponds to

aly |Q).

the spin degeneracy), and the possible helicities are A, A + %, vy A %[

2.2.4 Massive States With No Central Charges in N > 1
SUSY

There are 2\ creation operators (a2)! in this case, giving rise to 22V (25 + 1)
states in the SUSY irrep. It is rather instructive to consider a particular exam-
ple to illustrate the properties of this case. We will thus focus on the case where
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N = 2, and study the massive irreducible representation, labelled €, obtained
by taking [2) to be a spin 0 state. There are a total of 16 states in this irrep,
five of spin 0, eight of spin % and three of spin 1. There are five spin 0 irreps,
four spin % irreps, and one spin 1 irrep. A detailed breakdown of the possible
states is given:

1 spin 0 state: |Q2)

4 spin  states: (aZ)'|Q)

N |—

3 spin 1 and 3 spin 0 states: (a3!)(a22)7[€2)

a1

states: (ag!)T(az2)"(als)|€2)

a1 a2

N

4 spin

1 spin 0 state: (af1)¥(ad2)¥(al2)t(ags)t(S2).

a1 asz as

2.2.5 N >1 SUSY With Non-Zero Central Charges

The last two cases we considered both had no central charges. This section will
deal with A/ > 1 SUSY with central charges present. In this case we can write

{Qéa Q,g} = eaﬂXABv {QdAv QﬂB} = _ed,B'leBv

as we obtained before. The central charge X4? is antisymmetric, and we
will adopt the convention X42 = —X,5. When central charges are nonzero,
we need to rediagonalize the basis in order to interpret Qs4 and Q4 as cre-
ation/annihilation operators. Any basis can be chosen when describing the cen-
tral charges as they commute with all the generators. We begin by performing
a standard similarity transformation: we can write

XAB — UéXCD(UT)g’

where X°P looks like

(Z1i0'2) 0 0
0 (ZQiOQ) 0
0 0 (Z%/'L'UQ)
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for NV even, and

(Ziio?) 0 0 0
0 (Zio?) 0 0
0 0 (Z%/w ) 0
0 0 0 0

for N odd. The eigenvalues Z;, Z,, ...,Z%/ are real and can be chosen to be
nonnegative. We will apply the rest of this analysis to the massive states in the
rest frame. In our newly defined basis, we can write

L A 0 L
{Qa" Qapne} = ngag'dg(SM
{ ZL7 Q%M — Ea/jﬁabéLMZM,

{Qaar, Qpon} = —€45€at0m 20,

where a,b = 1,2 and L,M = 1,2,..., 5 (note that the repeated M index is
not summed). The following 2./\/ pairs of operators turn out to be the cre-
ation/annihilation operators:

al = [QlL + €apQi205"77),

3\

1 _ o
(ah)" = —=[Qaw + 60-,/;00’37@?],

\/_

[QIL €apQy205°7"),

%\

(b))t = \/—[QalL - eaﬂooﬂ"QQL]. (2.12)

The creation operators (a%)" and (b%)' create states of definite spin since Q4 and
Q. transform equivalently under spatial rotations. Using the relations (2.12)
and

0

=0y0, . _ _ 0
€ad0 €55 = —0 .4,
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LS00y, 0
€350 €ay = O,

we can calculate the anticommutators for these operators, which turn out to be
{ac, (a5)'} = (2m + Zu)og;657,

{0, (05"} = (2m — Zm) o ;60 (2.13)

2.2.6 BPS-saturated States

In this section, we will consider the possibilities which arise when we study the
anticommutators in (2.13). Firstly, we note that {a,a'} and {b,b'} are positive
definite quantities, and the Z,; are nonnegative, which leads us to conclude that
Zy < 2m for all Zj; in a supersymmetry irreducible representation. Further-
more, we can consider what happens when 7Z,; < 2m and Z,; = 2m separately.
When Z,, < 2m, we find that the massive irrep multiplicities match those for
the case of no central charges. The case when we saturate the bound for some
or all Zy;, namely when Z;; = 2m, is rather interesting, particularly if all the
Zyr saturate the bound. In this case, all the (b%)" operators project onto zero
norm states, since

{be; (b5")"} = 0.

As we saw before, this results in a loss of half of the creation operators, so that
the massive SUSY irrep has only 2V (2j 4 1) states, and not the full 2%V (2j 4 1).
Such massive multiplets, with reduced multiplicity, are called short multiplets,
and the states are called BPS-saturated states. The BPS monopoles in super-
symmetric gauge theories are an example.

2.2.7 Superspace and Superfields

Having discussed the SUSY algebra and its various properties and consequences
in some detail, the next step involves building actual supersymmetric field the-
ories. In basic terms, this involves studying how the SUSY algebra will affect
fields, and precisely how they will transform under this symmetry [2]. We again
turn to the basic statement for N’ = 1 supercharges

{Qaa Qﬂ} = 2U(TBPm-

This relation says that acting with @ and then @ generates a translation P,,,
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but P, = iazim and hence generates translations in ™. Now, @), is Grassmann,
so this argument might suggest that (), could generate translations in some
abstract Grassmann coordinate §*. In the same way, the adjoint Q5 would

generate translations in #%. Using this, one can define superspace as a space
with bosonic and fermionic coordinates given by {z™,6%,0°}. Translations in
this space would be directly representative of the supersymmetry algebra. We
might expect that

0 _ 0
QaNﬁa QﬂNﬁa

since these supercharges should correspond to some sort of translations. This
doesn’t satisfy the SUSY algebra, and with some more effort we find the follow-
ing quantities which do:

2 - m o
Qa = % — ZO'ade am,

0
L= 0B M,
Qs = EYE + 10 aﬂﬂam.

The above relations actually represent a translation in the fermionic direction
accompanied by a slight translation in the bosonic direction respectively.

Having defined a superspace, the next logical step is to define a field which lives
in this space. Such a field is termed a superfield and is given by ®(z™, 6%, 6°).
These fields transform as follows under an infinitesimal SUSY transformation:

® = @ = (1+i(“Qq +iCaQY)P,

where ¢ and ¢ are Grassmann parameters. We can define a special type of
superfield by imposing a specific condition on it. This condition requires us to
introduce two new quantities which anticommute with ), and @ 4 namely

_ 0
R 0B m
D= l@éB + 10 oﬂbﬁm] .
The condition we impose on ® is
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D;® =0,

and the significance of this arises when we note that the transform &' of ®
will obey the same condition, i.e. DBCD’ = 0. A superfield which satisfies this
condition is called a chiral superfield. What implications does such a condition
have for ®7 It turns out that if we define

y™ = (2™ +i0%0T0%),

then a chiral superfield is a superfield ®(y, §) which depends only on y and 6,
since

m 0 5 on . e
Dgy™ = — [ﬁ +19ﬂ%33n] y" = —[-ib% —HOﬂaﬂB] = 0.

We can further study the chiral superfield by expanding it in powers of # (where 0
has two components (#', 6?)) keeping y fixed. Due to the anticommuting nature
of 8, the highest power of # that can be present in the expansion is two, namely
00. As a result, our power series in Grassmann variables will not extend forever,
but will terminate:

B(y,0) = o(y) + V200 (y) + 00F (y).

The objects ¢(y), ¥(y) and F(y), which will be elaborated on later, can be
regarded as the standard series coefficients for now. Since the definition of y in-
volves z, we can go one step further by Taylor expanding the existing expansion
about z, which gives

®(y,0) = p(z) + V20 (x) + 00F (x) + i00™ 00 (z)

- %%méea"e‘amango(m) + /200000, (z). (2.14)

We see that 1 corresponds to a Weyl fermion field, while ¢ and F' are two com-
plex scalar fields. # has an R charge of —1. Since ® has a definite R charge,
another benefit of superfields is that they efficiently allow one to determine the
R charges of component fields.
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We can impose symmetry arguments and dimensional analysis to find how the
objects in (2.14) transform under the supersymmetry transformation. We find
that if our superfield changes by

50 = i(CQ + (Q)®

under an infinitesimal SUSY transformation, then the change in the component
fields F', ¢ and ¢ is

6F ~ am¢a0;na 7d,

6 ~ CF + O™,
dep ~ (.

We have omitted the overall constants, as they contain little useful information.
What is important, however, is that §F looks like a total divergence, which
means that [d*zF is an invariant of supersymmetry. We can make a more
general statement for the expansion of any superfield @, if we denote the coef-
ficient of A6 in the expansion by [®]r. Our result tells us that §([®]r) is a total
divergence under a supersymmetry transformation, making [ d*z[®|r invariant
under supersymmetry.

We have defined our superspace and the fields which live in it, and now we
would like to find the supersymmetry action. To do this, we make another ob-
servation: if ® is a chiral superfield, then so is ®2, ®3, etc. Thus, according to
our discussion, the following quantity is invariant under supersymmetry:

/d4 [ m®? + gq>3+ . (2.15)

F

We can find expressions for [®?]r, [®%]F, etc. by squaring/cubing/... our ex-
pansion (2.14) and looking for the coefficients of 6. We get

[@%]r = (2F¢ — 4),

[@°]p = 3(F@® — o), ete.
These expressions suggest that we have a mass term for the Weyl fermion 1), and
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also for the coupling of this fermion to the scalar field ¢, but a true action should
contain the dymanics of these fields. Currently, the quantity (2.15) doesn’t have
any kinetic energy terms, which we expect to come from the form 14501,
However, 14 does not appear in ®, so we have to be more inventive to intro-
duce kinetic energy terms to our action. Since this is a conjugate field of ¥, we
need to involve ®f. The simplest possibility to consider is ®'®, which is actu-
ally a vector superfield. A vector superfield is any superfield V(z,6,8) which
satisfies V = VT. If we now consider the expansion for a general vector super-
field V in powers of # and #, we discover (using the properties of Grassmann
variables) that the highest power is #000. As we did before, we denote the
coefficient of 90 in the expansion of V by [V]p. We are lead, by dimensional
analysis, to conclude that under an infinitesimal supersymmetry transformation
§V =1i(¢CQ + CQ)V, the change in [V]p is a total divergence. Since ®'® is an
acceptable vector superfield, we have in fact shown that the action [ d*z[®T®]p
is invariant under supersymmetry.

If we look at our expansion (2.14) for ®, we see that [d*z[®'®]p contains
the kinetic energy terms we have been looking for:

/ d'zp' o,
/ d*zdpt ey,
[ dwdom o,

/ d'zFiF.

We now have enough information to write the supersymmetric action, given a
superfield ®:

S = /d‘*x{[dﬁ@]p + ([ (®@)]r + hc)},

where f(®) is any polynomial in ® and we can show that [f(®)]r = F[df (¢)/dp]+terms
not involving F'. If we choose

1 1
®) = ~m®* + - gP°
f(®) 5™ +3g ,

we can write an explicit example of the action, which is
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S = / d*z{0o' ¢ + ipo™ B + FTF

1
— (mFo — omy+ gF©* — gotp + h.e)}.

This particular choice for the superpotential f corresponds to the Wess-Zumino
model.

We can expand our analysis of the field F' by noting that it does not propagate
like a dynamical field, but is instead an auxiliary field and can be integrated
out in the path integral [ DFTDFe'. We see this by collecting all the terms in
S that depend on F'. We get

F'F — F(my + gp*) — Fl(me' + gp'?) = |[F — (my + g90)'|> — |me + go*[*.

If we now integrate over F' and FT, we get
_ 1
S = /d4x [a(pT6QO + 5" O — |mp + go?|* + (imww — g + h.c.)] )

At the end of section 2.4 we talk about a superpotential, so it will be instructive
to expand slightly on the nature of this object [4]. At low energy, the terms
with the fewest derivatives will dominate the action. The superpotential, which
is the leading term, can be written as an integral over one half of superspace.
A contribution to the superpotential could be

/ d*zd*0,V (D), (2.16)

if we restrict our attention to left chiral superfields. Note that ® depends on 6y,
and ®* on fi. The superpotential is said to be holomorphic because it depends
on ® but not on its conjugate ®*. It is crucial for the superpotential to be
holomorphic: should V' depend on ®*, integrating it over the left half of super-
space will lead to terms which cannot be present in the action (i.e. we will have
terms with fr dependence, but our action should not depend on Grassmann
coordinates at all). If V depends only on ® it is analytic, which means that
it is completely determined by its magnitude (overall scale) and its singularities.
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The superpotential allows us to generate potential terms in the Lagrangian.
The Kahler potential, given by

/ d*2d20, 0 K (®, D),

is the most important correction to the superpotential. It generates the usual
field theory kinetic terms and is clearly not holomorphic.

2.3 N =4 Super Yang-Mills Theory

Using the framework of the Yang-Mills theory, and applying supersymmetry,
leads to the N' = 4 super Yang-Mills theory [6]. In Euclidean space, its La-
grangian is given by

) 1 1 1
Lym|Dyy You, ¥, @] = ZTT}"“”}"W—FETTD“(I)”DM(IDR—Z ¢*Tr[®™, @"|[®,,, D,]

. . 1
+ Tr¥iotP D" Wg, — §igTr\Ilaa0f,fea/B[(I>m, U]
1. Ta _m _6f3 T

- ingr‘Ildaabe ﬂ[q)m,\llg],
where Greek letters refer to the spacetime SO(4) = SU(2) x SU(2) symmetry,
so that u, v are spacetime vector indices ranging over four values, and o, 3, &, 3
are spinor indices which take values 1,2. Latin indices belong to the internal
SO(6) = SU(4) symmetry so that internal vector indices m,n take six values
and spinor R-symmetry indices a, b take values 1,2, 3,4. There are four spinors

U, six scalars @, a gauge field A and a covariant derivative D. More precisely,

D, =0, —1igA,,

where g is a dimensionless coupling constant, and

Fuv = Op Ay — 0, Ay — ig[/l;u A,

This supersymmetric field theory is rich and broad and a full analysis would
exceed the needs of this thesis.
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2.4 Marginal Deformations of N’ =4 SYM The-
ory

A driving force behind the AdS/CFT duality is its potential to unravel QCD.
This particular field theory has no conformal symmetry or supersymmetry, so
we cannot apply the duality directly to QCD yet. We can make some strides
in our understanding, though, by studying theories which are somewhat close
to QCD. There are Yang-Mills theories that, unlike QCD, are conformally in-
variant and are supersymmetric. Since N/ = 4 super Yang-Mills present in the
duality is maximally supersymmetric, to get closer to QCD we could try to alter
this theory by some deformation to yield a less supersymmetric theory. To still
obtain a simple example, we could further require that the less supersymmetric
theory is still conformally invariant. Marginal deformations do just that [4]. It is
interesting to obtain the corresponding gravity duals of marginal deformations
of Yang-Mills theory. This thesis does precisely this and confirms the AdS/CFT
duality in this less supersymmetric regime with a spectrum calculation.

To expand on the concept of a marginal deformation, we first comment on
conformal field theories, which have exact scale invariance. Such field theories
are special, as this condition is non-trivial to maintain in a quantum field theory
which comes with a “cutoff’. Such cutoffs are dimensionful quantities neces-
sary in quantum field theory to overcome the difficulties introduced by its many
divergences. Should we have any dependence on such dimensionful quantities
within the theory, it would no longer be conformally invariant.

We use non-renormalization theorems to show that a theory has exact conformal
invariance, broadly by assigning charges within the problem which ultimately
leads us to a number of exact results. These quantities that we can compute
exactly are called effective actions. They can be used to compute low energy
correlation functions in quantum field theory. We can build operators O; out of
fields {¢;} in the field theory, and in the path integral formalism the correlators
are given by

<01020n> = /D(ﬁ,OlOgOneZS

We use a momentum cutoff x to define our field

o) = [, (a®)e ™ +a’ (p)e™)dp
p2<'€2
using the standard mode expansions. Note that we can separate this field into
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low- and high-momentum pieces, respectively ¢; and ¢, such that
¢(z) = du(z) + dn(),
@) = [, (alp)e ™+ a* (p)e™)dp,

p2<p?

¢h($) = /,uZ<p2<,g2 ((J,(p)e—ip-z + a*(p)eip-x)dp-

We can eliminate the high-momentum piece from our fields if we consider only
correlators of operators O; made up solely of ¢;, so that

(0,0,...0,) = / D6, DY nO1Os...0ne™
:/Dqsi,lOlOQ...O”eiSeff.

We can see that the effective action Scsr governs the low energy dynamics of
the theory. Indeed, it is a special type of effective action, the so-called infrared
effective action, which can sometimes be determined exactly. These are low
energy effective actions obtained by taking the limit ;4 — 0, which amounts
to retaining only the leading terms in the low energy fields. Indeed, a low
energy effective action is confined to describing the degrees of freedom of a
theory, below some given energy scale . Although the degrees of freedom at
low energy and the original degrees of freedom generally differ, we simplify our
analysis by only considering the cases where these degrees of freedom match.
The process of moving to a low energy description and “integrating out the high
energy degrees of freedom” is characterized by a change in the coefficients of
terms in the Lagrangian, the so-called couplings. The change in couplings g; as
a result of a flow to lower energy is captured in the 8 functions, where
0y

M@ = Bi(gk, ).

Using quantum field theory, one can compute these 8 functions in perturbation
theory, and in a conformally invariant theory which is unaffected by changes in
scale, we expect all these [ functions to disappear. This is not difficult to see:
in a scale invariant theory, we expect our couplings to be independent of scale,
so that flowing from high to low energy should not affect g;, making %—if =0. A
marginal deformation of a theory corresponds to adding a term whose coefficient
has a vanishing S function to its Lagrangian. We could use the Feynman rules
derived from the action S or the Feynman rules derived from the action
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S+/d4x)‘omarginal-

Clearly, these two sets of Feynman rules differ. If 5, = 0 (where 8, is the
function corresponding to the coefficient \) with the first set of Feynman rules,
we say O is marginal. If 8, = 0 also with the second set of Feynman rules we say
O is exactly marginal or integrable. Along with marginal deformations, we can
also have relevant and irrelevant deformations, which correspond to situations
where flows to lower energy lead to a coupling which grows or becomes smaller
respectively.

This project is centered around the B-deformed N = 4 super Yang-Mills the-
ory. The deformation makes the theory non-maximally supersymmetric - it has
N =1 supersymmetry, and it has the superpotential

f=e™Tr(® ®°®%) + e "™ Tr (0 d*P?).

The fact that the theory does not have maximal supersymmetry makes it par-
ticularly interesting. It allows us to test the AdS/CFT correspondence in this
realm also, and not just in the standard N' =4 SYM case.

2.5 Non-commutative Field Theories and NS-
NS B-Fields

Now that we have explained what we mean by a [ deformation of a field theory,
we note that these § deformations match nicely with the deformations we use to
move from standard to non-commutative field theories. These non-commutative
field theories can also be obtained by considering low energy string theory with
a background NS-NS B field. This section aims to show that the presence of
this magnetic field results in a change of the way in which we define a product
between two functions in field theory [4]. The new product is that of functions
on a non-commutative space. These results will aid us in our search of the grav-
itational background dual to the S-deformed N = 4 super Yang-Mills theory.

We will consider open strings interacting with a constant NS-NS B field. In
order to make our analysis precise, we need to specify the dynamics of our open
strings by means of an action. The strings are under the influence of a mag-
netic field, namely a constant NS-NS B;; field, and move in a flat spacetime
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with metric g;;. We label the string’s worldsheet by o and assume that it has
Eucildean signature. We also put an extra condition on the nature of our B
field: we require that B;; is a matrix with an even rank r, with » < (p + 1).
The sigma model is thus given by

1 . . . .
- / (90 X0 X7 — 2micd Bije®d, X9, X)
by
1 BN o
= [ gyduXioexI — L / B, X19,X7.
drad! /zg] 2 Jox T

The expression in the second line above requires some clarification: 0¥ repre-
sents the boundary of the worldsheet, and 0; is a tangential derivative along
this boundary. To specify the motion of our strings fully, we need to specify
how their endpoints move (since they are open strings and have endpoints).
More precisely, we need to specify the boundary conditions for the open string
endpoints attached to a Dp-brane (which we do here for ¢ along the Dp-branes):

9ij0n X’ + 2mia/ B0, X7 |5 = 0.

The boundary conditions are clearly dependent on B, and are either Neumann
(if B = 0) or Dirichlet boundary conditions (B has rank r = p and B — o0).
The above are boundary conditions for a general . In this case, we will consider
> a disc, so that it can be conformally mapped to the upper half plane. If we
write

0

0 = 0
aa 8 %:

and take Imz > 0, the boundary conditions for this case become

Gij (8 — g)X] + 27Ta'BZ~j(8 + 8)Xj|zzg =0.

Furthermore, with the quantities

G — 1 v 1 1 Y
\g+2ma'B) g+27ra’ng—27To/B ’

Gy = gij — (2ma’)*(Bg™' B)yj,
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y 1 Y 1 1 Y
09 =2nd | ———— | = —(27a)? B )
g+2na'B) , g+2ra’'B g —2md/B

we can write the propagator as

(X'(2)X7(2)) = —c/[g" log |2 — 2| — g" log |z — Z/|

i~

., 1 .. 22—z .,
GY1 —ZPP4+ —fY1log =—= + DY].
+ oglz — 7| +27ra' ng—z'+ |

Let’s make a few comments with regard to this propagator. The DY are B-
dependent constants with no z or 2’ dependence, and can be set to any desired
value. The fourth term, like the first three in the propagator, is single-valued
but only if the branch cut due to the logarithm is in the lower half plane. The
coefficient 6% has a rather nice intuitive interpretation, which will become clear
in a bit.

When we consider the interaction of two strings, we see that we are confined to
treating the boundary of the worldsheet 3 as the boundary represents the end-
point history and open strings interact with eachother via the joining or splitting
at the ends. In turn, we concentrate on the propagator at the boundary 0%,
where z and 2’ (denoted 7 and 7' respectively):

(X)X (")) = —a/GY log(T — 7') + %Gije(T —7'),

where €(7) is 1 for 7 > 0 and -1 for 7 < 0. We can say something about the
nature of % if we interpret 7 as time. Indeed, conformal field theory allows us to
use the short distance behaviour of operator products to compute commutators
of operators, if we equate time ordering and operator ordering. In this case,
with 7 as time

[(Xi(r), X9 (1)) = T(X (1) X (77) = X' (r) X (r+)) = i

where T is the time-ordering operator. According to the relation above, we
see that the coordinates do not commute. Thus, the X* are coordinates on a
non-commutative space and are governed by the noncommutativity parameter
f. We mentioned at the beginning of this section that we want to consider the
open string theory at low energy, and we do so now by taking o/ — 0. This
limit leads us to the propagator
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(X' (r) X)) = S09e(r 7).

This propagator allows us to write the following for normal ordered operators:

ceiXH(T) L G XH0) . = 509pigje(r) . oipX(7)+igX(0) .

This can be extended to more general functions

a

ie(r)gii 20— __9 _
2T aXTm axi0) f(X (7)) g(X(0)),

D f(X(7)) - g(X(0)) i=te

and we can also write

limr o+ f(X(7)) 2 g(X(0)) :=: f(X(0)) % g(X(0)) : .

In the above, the product * of functions on a non-commutative space is given

by

iaij

F(X) * g(X) = 373555 F(X + €)g(X + O)lemcor

which is the product which replaces the normal product between functions due
to the magnetic field.

2.6 The Holographic Principle

A vastly explored problem in physics involves the unification of quantum me-
chanics and general relativity into a theory of quantum gravity. The holographic
principle provides one approach in an attempt to resolve this problem of unifi-
cation [4]. In broad terms, the holographic principle states that in a quantum
theory of gravity, the number of degrees of freedom available in the system scales
like the surface area of the system, and not its volume. This is reminiscent of
the way a hologram works: 2-dimensional information yields a 3-dimensional
result. The physics of black holes provides evidence for the principle. Indeed,
the entropy of a black hole is found to be proportional to its horizon area, and
not its volume. However, the principle requires that this type of scaling be a
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general property of gravity, and not just of black holes. It is thus important to
note that horizons are not restricted to the scenario of black holes. For example,
a uniformly accelerated observer in Minkowski space will see the Rindler space-
time, which has a horizon. The holographic principle will associate an entropy
with this horizon.
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Chapter 3
AdS/CFT Correspondence

The AdS/CFT correspondence is a statement of the equivalence between a max-
imally supersymmetric SU(N) Yang-Mills theory in 4-dimensional Minkowski
spacetime and a type IIB closed superstring theory in 10-dimensional AdSs x S°
space. The N = 4 Yang-Mills theory is “maximally supersymmetric” because
it has the most supersymmetry possible for a field theory. It also lacks dimen-
sionful parameters, making it a conformal field theory (CFT). The S° part of
the 10-dimensional AdSs x S° background refers to a 5-sphere, and AdSs rep-
resents a non-compact anti-de Sitter space. Even more than a correspondence,
this relationship between a gauge theory and a string theory can be viewed as
a duality, where two different systems are used to describe the same physics.
AdS/CFT also provides a concrete realization of the holographic principle, since
it claims an equivalence between a theory of quantum gravity (type IIB string
theory) and a non-gravitational theory living on its boundary (the boundary of
AdSs x S° space is 3 + 1-dimensional Minkowski space) [1], [4].

Theoretical physics has been trying to describe strongly interacting particles,
and string theory was in fact first investigated as a theory of strongly inter-
acting hadrons since the energy dependence of angular momentum of hadronic
excitations (J oc E?) emerged by studying a rotating open string. Furthermore,
quark confinement can be easily “visualized” in the string picture by consider-
ing a meson (quark-antiquark pair) as the ends of an open string, which itself
comprises a tube of colour flux lines. The quarks can never be pulled apart
because the tension in the string joining the quarks is constant - no matter the
distance between them the tension remains. QCD, an SU(3) Yang-Mills theory
of quarks and gluons, eventually replaced string theory as a more consistent
description of strongly interacting particles. We are still hoping for a string
theory description of QCD (which has no supersymmetry) to emerge. Despite
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the fact that SU(N) gauge theory and QCD are quite different, the existence of
a duality between a maximally supersymmetric gauge theory and string theory
brings us one step closer to achieving a similar QCD description.

As yet unproved, the AdS/CFT correspondence has been widely and success-
fully tested. Two major arguments arise for the existence of the correspondence,
based on symmetry and on a low energy limit. The first argument is based on
counting symmetries on both sides of the correspondence, and matching the
algebras that their generators satisfy. Fifteen generators give rise to the set of
conformal symmetries (which are field transformations) present on the field the-
ory side. Ten of these generators fall under spacetime translations and Lorentz
transformations, four generate the special conformal transformations and one
generates the scale transformation. These generators form the 4-dimensional
conformal Lie algebra. We need to find the matching symmetries on the string
theory side of the correspondence. We locate them by considering the AdSs
part of the string background. It turns out that fifteen operators generate the
isometries of this space, and these generators obey the same algebra as that of
the conformal symmetry generators on the field theory side. In addition, the
isometries of S° are matched in the field theory by the R symmetries which
rotate among elements of the scalar fields and fermions. So, we see that the
isometries of the AdSs x S® space on the string theory side are matched to
symmetries on the field theory side.

There is another rather elegant argument for the existence of the AdS/CFT
correspondence which involves the low energy limit. It is based on considering
a configuration of N D3-branes and noting that two descriptions of such a sys-
tem arise. In the low energy limit, each description gives rise to two decoupled
subsystems. One subsystem matches in both cases (specifically, this subsystem
is supergravity in flat spacetime), and we expect the other two subsystems to
match as well. Let’s consider the arguments in more detail.

Superstring theory is not only confined to the study of strings, but includes
membranes of higher internal dimensions. These Dirichlet branes (or D-branes)
can be described in different ways. One such description involves viewing these
branes as hyperplanes embedded in a spacetime, so that strings are allowed
to end on them. It encompasses even closed string theories - strings closed in
the bulk of spacetime will “unfurl” when in contact with a brane and become
open strings whose endpoints are confined to the brane. More precisely, we can
view these Dirichlet p-branes (Dp-branes) as p + 1-dimensional hyperplanes in
9 + 1-dimensional spacetime. For the string endpoints, there are 9 — p string
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coordinates transverse to the brane, and as a result of the endpoints being con-
fined to move along the brane these coordinates have to satisfy fixed Dirichlet
boundary conditions. The remaining p + 1 longitudinal coordinates will satisfy
the free Neumann boundary conditions, since the endpoints are free to move
anywhere along the brane. A Dp-brane with the abovementioned dynamics
turns out to be a BPS saturated object preserving half of the bulk supersym-
metries. In addition, it carries an elementary unit of charge with respect to
the p + 1 form gauge potential from the Ramond-Ramond sector of type IIB
superstring theory.

Now, there are two different ways to describe a stack of N Dp-branes. The first
involves considering the branes in terms of the U (V) supersymmetric gauge the-
ory on the world volume of the stack. Alternatively, we can study the p-brane
background of the type I1B closed superstring theory, with its classical Ramond-
Ramond charge. In the first case we have used the fact that the massless spec-
trum of a maximally supersymmetric U(1) gauge theory in p + 1 dimensions
matches that of the massless spectrum of open strings living on a Dp-brane,
making a worldvolume gauge theory realization on the Dp-branes obvious. If
we now consider N parallel Dp-branes (stacked on top of eachother with zero
separation, as we will consider the case where all scalar expectation values van-
ish), we see that N? different open string species are possible (their endpoints
can lie on any of the N Dp-branes). But the adjoint representation of U(N) has
dimension N2, leading us to the maximally supersymmetric U(N) gauge theory.

In the second case, should N be very large, the stack of branes will consti-
tute a heavy object in a closed string theory with gravity causing the space to
curve. In this case, it could well be described by a metric and some background
fields (like the Ramond-Ramond p + 1 form potential). Considering the low
energy limit of both of these descriptions will ultimately lead to the AdS/CFT
conjecture.

When we speak of a low energy limit, we mean energies that are smaller than
the string energy scale i, namely F < ——. Basically, it involves considering
the string coupling constant g fixed and keeping all energies bounded, letting
o' — 0. In this limit the massless U(N) Yang-Mills fields will dominate on the
N D3-branes under consideration, as the massive states of the open strings on
the branes decouple. Also, the 10-dimensional Newton constant (which is o'-
dependent) associated with the closed string fields propagating over the entire
spacetime, will disappear in the limit. In addition, the interactions between
the U(NV) fields and spacetime fields on the branes vanish. In this description
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we are thus left with two decoupled subsystems: decoupled closed strings on
the 10-dimensional Minkowski spacetime, and the supersymmetric U(/N) Yang-
Mills theory, from which one field decouples leaving a fully interacting SU(N)
Yang-Mills gauge theory.

We can now consider the N coincident D3-branes in a different way, namely
in the IIB closed string theory. More precisely, we study 3-branes whose metric

1S
LA\~
d$2 = (]_ + —4>
r

where r is a radial coordinate for six spatial dimensions. The D3-branes have
Ramond-Ramond charge and energy, and are thus described by a nontrivial
solution of the field equations for the massless fields of the theory, which in-
cludes a horizon at the end of an infinite throat. More precisely, the D3-branes
stretch along #!, 22 and z® but appear as a point along the 6 transverse spatial
dimensions, where the branes are surrounded by five-dimensional spheres whose
volume tends to a constant as we approach the horizon in the transverse space.
Now, an observer at infinity will see excitations of extremely small energy when
observing finite energy excitations near the horizon of the D3-branes, because
the excitations are red-shifted. So if an observer perceives excitations of very
low energy, they could either be finite energy near-horizon excitations, or ones
of low energy far away from the brane. These two possibilities of excitations
are decoupled: the near-horizon excitations can never reach infinity while the
far away excitations are almost never captured by the branes. In fact the three-
branes are tiny compared to the long wavelength of the low energy supergravity
modes, and hence are not detected by them, which means the two sets of modes
don’t interact. Once again, this description has split into two subsystems: the
near-horizon region and the far away region represented by IIB supergravity on
flat space.

1
L4 2
(—dt?* + da? + dx3 + dz3) + (1 + F) (dr® 4 r*d3),

N|=

As mentioned before, in the low energy limit we expect the two subsystems
of both descriptions to match. One subsystem in each case was IIB supergrav-
ity in flat spacetime. We expect the other subsystems in each description to
match as well. These are the SU(N) Yang-Mills theory and the near-horizon
region of the IIB background for a system of N D3-branes, which turns out
to be AdSs x S5 More precisely, the near horizon geometry of the 3-branes
corresponds to taking the limit when » < L, which leads to

2

L
ds® = = (—dt® + i + d2”) + L*d2Z,
z
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where z = L72 > L. This is the metric of AdSs x S°. So, our low energy
limit has lead us to long wavelength supergravity modes propagating in flat
10-dimensional Minkowski space, as well as all the modes of IIB string theory
in the AdSs x S° geometry. Thus, we conjecture that IIB string theory in the
AdSs x S° background is equivalent to N/ = 4 super Yang-Mills theory with
gauge group SU(N) which is precisely the AdS/CFT conjecture.

It is somewhat surprising that such a conjecture should exist. On the one hand,
the N' = 4 super-Yang Mills theory lives in 3 + 1-dimensional Minkowski space,
but the IIB string theory it is supposed to be equivalent to has a 10-dimensional
AdSs x S° background. This seems irreconcilable until one considers that the
boundary of AdSs x S° is 3 + 1-dimensional Minkowski space, leading us to
a connection with the holographic principle. In addition, we can consider the
parameters of the theories on each side of the correspondence and study how
they are related. There is a puzzle which emerges immediately. Both the gauge
theory and string theory have a coupling constant controlling the size of quan-
tum corrections. The string theory, however, has an additional parameter due
to the extended nature of strings. This is the string tension, and controls these
“stringy” corrections. The number of parameters in each theory doesn’t seem
to match. Due to a rather ingenius insight by 't Hooft however, this difficulty
was overcome by realizing that there are two parameters one can use to write
the Feynman diagram expansion in the field theory, namely % and A = ¢2,,N,
appropriately called the 't Hooft coupling.

Thus, we now see that both theories have two parameters: the SU(N) Yang
Mills theory has the dimensionless parameters N and gy, (the coupling con-
stant), while the IIB string theory is governed by the string coupling g and the
radius of S° in units of string length R/l,. The theories are equivalent when

2

95 = 9var» 7 = \VGul.

8
At first glance, it might seem possible to test the correspondence directly by
working on various quantities on both sides at weak coupling and comparing
the results. Indeed the first parameter relation above equates weak coupling on
both sides of the correspondence. The second relation, however, leads to a prob-
lem. Since g%,, controls the size of quantum corrections in the field theory, we
can only compute things in the field theory when ¢Z,, is small. Alternatively,
in order to make calculations simpler on the string theory side, we require R
to be large (and hence the curvature of both the AdSs and the S® small) so
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that we do not have large string tension corrections. Intuitively, if R is big in
string units the string is much smaller than the space it moves in - it will see a
smooth small-curvature space and can be treated as a particle, not an extended
object. The presence of stringy corrections governed by [; would lead to large
modifications of our result, so that we can only compute things in the string
theory if [, is small, hence Il{—; is large. The second relation above tells us that
small g2, leads to small R, so that a calculation which is possible in field theory
is intractable in string theory, and vice versa. We know that in order to make
some sort of predictive calculation of the correspondence, we need small g2,
and large R at finite /V, but our relation prohibits this possibility. Even at large
N, where it might seem like we can have small gy, and large A, it turns out
that A plays the role of the effective coupling constant, so again we are restricted.

In order to proceed, we need to consider quantities not directly governed by
the second relation, namely quantities in the field theory which are protected
(or nearly protected) from corrections in g%,,. Since such quantities are \-
independent, they can be calculated at zero coupling on the field theory side
and the result compared with a corresponding string theory calculation. Even if
we compute such quantities at weak coupling we would be sure to get a match-
ing result at strong coupling, making our conjecture testable in this realm. The
beauty of the AdS/CFT duality is that it allows us to evaluate intractable
large-\ effects in the field theory by rather considering the 10-dimensional su-
pergravity theory in which calculations are viable.

Due to its nontrivial nature the AdS/CFT conjecture has not yet been proved,
but numerous tests can be devised to provide strong supporting evidence. One
such test would be a matching of the conserved charges in the theories on either
side of the correspondence. Noether’s theorem requires a symmetry to identify
each conserved charge. The field theory exhibits invariance under an SU(4) R
symmetry and an SO(2,4) conformal symmetry, and states in the theory are
labelled by the SO(2) x SO(4) and the R symmetry group quantum numbers,
where SO(2) x SO(4) is the maximal subgroup of the conformal group. We
can use the isometries of the background to classify supergravity states, but the
field theory symmetries and the isometries of AdSs x S° match exactly since
SU(4) and SO(6) are locally equivalent. This gives us a clear map between the
field theory and supergravity states.

The main part of this thesis is centered on the SO(2) symmetry, whose quantum

number on the field theory side is the conformal dimension A of the operator.
Now, we know that N'=4 SYM is conformally invariant, which leads to a very
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specific form for the two point correlator of an operator

(O(2)O®)) ﬁ

The AdS/CFT conjecture proposes a full link between the dynamics of the
participating theories, and in this case it equates the spectrum of conformal
dimensions to the spectrum of string energies. This is precisely the link tested
in this thesis.
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Part 11

Deformed PP-Waves from the
Lunin-Maldacena Background

7



Chapter 4

Analysis on the Gravity Side of
the Correspondence

4.1 PP-wave Limit of the Lunin-Maldacena Ge-
ometry

The first part of our analysis [5] involves taking the pp-wave limit of the Lunin-
Maldacena background, whose metric is given by [11]

ds® = R*(—dt® cosh® p + dp® + sinh® pdQ3 + > dy;

3
+ G Y pdg; + 9 s G (Y dei)’), (4.1)

i—1
where

[y =cosq, fig =sinacosf, pz=sinasinf,

and
B 1
L+ 92133 + pdps + p3p3)

The B field of the relevant string sigma model which corresponds to this back-
ground is

By, D1 A Dy = GygR*Dpr A Do,
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where

3 2.2 3 2.2
Doy = dipy — dip + “;“de, Dw2=dw2—dw+%d¢.

Here we have used the angles v, ¢, and (5; they serve to make our computations
look tidier, and are defined by

PrL=Y =2, Go=%+Q1+ys, P3=19— 1.

Since we ultimately want to obtain the spectrum of free strings in this back-
ground, we need to consider only the metric and the B field, as this is sufficient
when writing down the relevant string sigma model. As a result we will not
work with the RR-fluxes Cy and C}, despite the fact that they are also non-
zero in this background. We consider the pp-wave limit of the metric, and then
focus on the B field. We will begin by describing how we obtained the LM
metric defined above, and how the pp-wave limit is taken, and then move on to
a detailed analysis of how we performed the limit.

4.2 The Lunin-Maldacena Background

We start our analysis by stating the equation for an S® of radius 1:

(z')? + (@) + (2*)* + (2*)* + (2°)° + (2%)* = 1.

This equation can be rewritten by noting that

(@) + (") = (m)*,
(@) + (2°)* = (1),
(@%)" + (2°)" = (ns)",

(1)? + (p2)® + (ps)? = 1.

From our equation for S° we can write down the metric, using the fact that
the coordinates (z!,z*) are described by radius p; and angle ¢, (z%,z°) are
described by radius po and angle ¢, and (23, 2°) are described by radius u3 and

angle ¢3. This metric becomes
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ds* = (dz")? + (dz?)* + (d2®)? + (dz*)? + (dz®)? + (dz®)?

= (dm)? + (12)*(de1)* + (dpa)® + (42)* (dda)® + (dpa)® + (113)*(dps)*.

Since the pu;’s square to 1 and the angles ¢; take values from 0 to 27 and are
independent, we may parametrize the y;’s as

41 =cCcosq, [o =sinacosf, ps =sinasinb,

and use this to write, for 0 < a < 7,0<60 < 7,

(dp1)* + (dpg)? + (dus)? = do? + sin® adf?.

Putting all of this together, we obtain the following for our metric:

ds® = da® +sin® adf? + (cos a)*(de ) + (sin o cos 0)* (dpy)? + (sin asin 0)? (deps)>.

Using the AdS/CFT correspondence we may identify the scalar components of
the chiral superfields ®', ®* and ®? with the spacetime coordinates (z', 22, z®, %,

x5, %), using the map

Pl =zl + iz, ®? =22 4+ ix°, D =2 + iaf.

This identification between scalar fields and spacetime coordinates is arbitrary
- the only thing that is fixed is the need to have one real scalar Higgs field
in the adjoint of the gauge group for each spacelike direction in the string
theory transverse to the brane. In addition, invariance under the following
transformation leads to U(1) symmetries in our metric:

dF — iRt

We need to find the parameters of the U(1) x U(1) symmetry which will be
used in the deformation of the field theory, and the ¢’s are not the correct
parameters. As mentioned at the beginning of this section, it turns out that to
get the correct parameters we transform
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Gr=0% =2, Q=0+ Q1+, G3=10— 1.

This change of variables leads to
ds®> = do® + sin”® adf? + (cos a)*(dyp — dipy)? + (sin asin 0)%(dep — dipy )?

+ (sin accos 0)? (dip + dipy + depa)?.

The next step is the crucial one as it involves the deformation. To do this
deformation, we need to find the volume of the torus, i.e. 7. This torus has
coordinates 1,092, and we compute the volume at fixed 1,  and 6. This means
that any part of the metric which contains di), da or df is irrelevant to our
calculation of 7, and we only need to consider

ds® = (cos @)?(dyps)? + (sin a cos 0)*(dep; + dp2)? + (sin asin 8)%(dipy)?.

Using the fact that

ds? = gudztdz”,

we can read off
T 2
g<,01<.01 =8sm @ = MQ + ,U,3,
Gprpy = COS” @ +sin’ accos” 0 = i + p3,
Gp1o = Sin” avcos® O = .
We can now evaluate

det g;; = g = sin® a(cos” a + sin” accos® @sin” 0) = 3 s + pips + pips,

and use this to calculate the volume density of the two torus

V9= \/sin2 a(cos? a + sin? o cos? 0 sin® 0)
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= 3 + 1315+ 183185,

So, we will scale the volume of the torus by

1
1+ 12sin? a(cos? a + sin? o cos? 0 sin? f)

1
1+ 2Bk + 3k + p2pd)
1

C1+9%

We need to scale the terms (which belong to the torus)

—cos? a + 2sin? asin? A cos? #

(cos® a + sin? asin? § cos? 6) | dipy + 5 — 5
cos? o + sin” o sin” 6 cos? 6

+sin? a[dy; + cos? Odpy + cos(26)dip]?

by G, and not the terms (which do not belong to the torus)

-9 .9 2
. 9 cos? asin? avsin? 0 cos? 0
do? + sin® adb? + 5 — 5 5 dz/JQ.
Ccos? o + sin” o sin” @ cos? 6

We will rather scale the following terms by G

—cos? o + 2sin? asin? A cos? #

(cos® o + sin® asin® @ cos? 6) |dipy + 5 —5 5 >
cos? o + sin” e sin” 6 cos? 6

9 cos? avsin? arsin? A cos? 6

dip? + sin® a[dp; + cos® Odipy + cos(26)di]?

cos2 o + sin® asin? @ cos2 6
3
_ 25,2
= Z i dos,
i=1

and add

9 cos? asin? avsin? 6 cos? 6

a1 - G) = B (S agy - 6)

cos? o + sin? avsin® 0 cos? 6

2,.2,.2 2

T Mo fh Yg
— 12 3(Zd¢z)2 5
g r 1+%g
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= 7 a3 G (Y dei)”.
i
Thus, due to our arguments above, the relevant part of the metric becomes

3
ds? = 3" dp? + G 3" p2de? + VG (Y den)?,
7 =1 7

and the full metric is given by

ds> = R?(—dt® cosh® p + dp® + sinh® pdQ3 + > dy?

3
+ G pdg; + 0 p G (Y dei)’).

=1

as shown at the beginning of this section.

4.3 PP-Wave Analysis

We would like to be able to test Lunin and Maldacena’s conjecture that the
B-deformed N' = 4 SYM is dual to string theory on the Lunin-Maldacena back-
ground, and a possibility which arises is to check that the spectrum of anoma-
lous dimensions of operators in the dual field theory matches the mass spectrum
of strings in the Lunin-Maldacena background. A problem arises because the
quantization of a free string on the LM background has not been developed, so
we have to settle on studying a pp-wave limit of the LM background: we know
how to quantize the string in that case. Although not directly the comparison
we were looking to make, it is quite strong evidence of the proposed duality.

In this section we will begin by describing how to take the pp-wave limit, and
then we will show the details of such an analysis applied to the metric and the
B field.

If we let u and v be lightlike coordinates and z* transverse spacelike coordi-
nates, then the pp-wave limit involves rescaling

u—u, vV— Q2U, = Qxi, G — Q_ng,,

and taking 2 — 0. There is a particularly physical and useful way to think of
the pp-wave limit. Notice that it corresponds to making a boost
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% i

u—Q ', v— Qu, 2t — 1t

and following this by a change in length units

u— Qu, v—Qu, z'— Q.

There are two reasons why thinking of the limit in this way is instructive:
(i) Since [S] = kg.m?.s7 !, the scaling takes

S — 028,

which means that this is not a symmetry of the action. It is, however, a sym-
metry of the equations of motion, and is called a solution generating transfor-
mation.

(ii) The sugra action doesn’t change under boosts, which are global transforma-
tions mapping solutions into each other only if the asymptotic space is invariant
under boosts; if not, these are gauge transformations and the state is left in-
variant.

In what we have defined above, 7 is the deformation parameter. Omne can
choose any null geodesic to perform the pp-wave limit; we will do it using the
null geodesic 7 = v, with ay = cos™* (%) and ¢p = 7. Furthermore, in order

to perform the limit we set

0 7r+\/§x1 x? r
4 3R: 0 R’ P Ra

$/3 3314 T~ T
QDlzfa P2 = —7 t::r*—i-ﬁ, ¢:ﬁ A
:1:3 — 2 <./L',3 + 1:11.14) , .7;4 . 3 5 14’

3+ 2 2 2(3++2)



and then take R — co. We obtain the following pp-wave metric and B field:

4
ds®> = —ddztdz™ — |r? + 3 372 ((z")?* + (2*)?)| (dz™)* + dr® + r2dQ3

43

+ (dz")? + (dz?)* + (dz®)® + (dz*)* + W(a:ldx?’ + 2%dz*)dz™t,  (4.2)
Y

2
B = l3da:3 A dz* + 7 (z%dz® A dat + z'da™ A dat).

V3 VeEn

We will describe the calculations that lead to these results in some detail, to
make the analysis transparent, beginning with the metric:

We want to work in the vicinity of the null geodesic, so we expand

Note that 2! and z? only parametrize the vicinity of the null geodesic, and we
divide these by R because we want them to be lengths. So, we will use the

approximations

""VoRr) T\ 2R 4 R? |’

. 9+ﬁ£,LL}+§£_wa
STV R )T A 5R 4 R? |’

- 2) w o V20 0]

RT3 R~ oR?

i z? 1 5 2 (2?)?
in - =~ —= - = - :

“TR)TVB R 2R

We will also choose to expand p about zero

and approximate
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) r
cosh(p) ~ 1+ R sinh(p) ~ 7
Finally we set
$'3 .7,‘/4
Y1 = R P2 = R

We will take the pp-wave limit by holding r,u, v, z!, 22, 2", 2'*, Q3 and v fixed
and taking R — 0o, so that we are indeed in the vicinity of the null geodesic
and that G = O(1) with R~ corrections. We can determine the light-cone

coordinates by looking at the O(R?) piece of the metric

R*(—dt* + dy*) = —4dx"dx .
They are
1 R?
+ _ = t— T =_—(t—-
= (t-), v =)
so that we can write
x~ x~
t:$++ﬁ, ¢—ﬁ—x+
Our approximations lead to
1T V2z? (222
H1 = % _1 + R - 2R2 |’
1| \/§ Lox?\ 1 3 (z1)? 3ztz?  (2%)?
pe = —=|1— 3T +—=15 1|5 —Al5 +
V3 2 V2| R 2 2 2 /2 2
N f _a\ 1 (3@ el @)
Hs="/3 2" T2 R \2 2 2 V2 | 2




T3 T o
3 P62 + 6(a2)?
3+ (3+77) R? ’

3 3 8x \/54 Az dep
2 2 = 2 13 _2 2 2 _ - 1
;u’ g =dy" - \[332 de”dy + ( V2t =530 ) R

2 2
+ 5755 (d2’ ) + —(da' ) +—d$'3dx

3R? 3R2 3R2
3 38z 3 1\ dadyp
2 /3
2
GZMzd¢ gl 3+7[ Sapad d¢+( Va2t - \[2 ) .
2 3 14 13 3,04
2
8 6(z')* +6(2?)? | ,
d
BNEEEDE R? v
1 2(zY)?  2(2?)?
2 2 2 2 _ 9
Mo s ;d@) = lg T Tm T e dy”,

G (3 dei)* = : l}_Wl)Z 2( )]dzﬁ dy? 9" 6(z) +6(«)’

R?sin? adf? = (dz')?,

R%do? = (dx?)?,

R*dp* = dr?,

R%dt? cosh? p = R2dt® + r’dt?,
R?sinh? pdQ3 = r’d$3.
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Our last step is to take R — oo; we obtain
4?2

ds?> = —4dgtdz™ — |7+ —1
S x T dx [r +3(3+72)

(3(x")* + 3(332)2)] (dz*)? + dr? + r2dQ3

T (d)? + (d22)? + ——s (de™)? + dada’ + (da)?
72

3+

6 3 4x! 2 /3
e d 13 2 2 _\/j 1 d 14 d +‘
+73+72 (\/;—3 x -l-(\fx +3 2x x x

We can further simplify the metric using the following

1 2
(dxl4)2 +d$13d$,4 + (dxl3)2 — (dxl3 + §d$,4> + Z(dxl4)2 = dig + 2(dml4)2,

43, > 3 4 (3 2 (3
2120 g 9,2 _\/j1 /4:_\/j1 B34 (2 1, m 522 4
3\/;33 x—i-(\/_ac +3 57 dz 2 2a:dx +3 2a:dx +V2z2dx

4 /3 1
:g\/;xl (d$l3+§d$14) +\/§./L'2d$,4

4 /3
= g\/;xld.’ig + \/§$2d$l4,

so that

4’)/2

ds® = —ddztdr™ — |1 + o<
S X ax l?“ 3(3+72)

(3(c")? + 3<x2>2>] (da*)?

2
3+ 2

6 413 1. 2 7,14 +

As a final step, we set

2 3
3 -, 4 14
Tr = —X y Tr = —2X y
V3 ++27° V' 2(3 ++2)

so that we produce the metric quoted previously, namely

(dazg + 2((13;'4)2)

+ dr? + r2dQ§ + (dz')? + (dz?)? +
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42
3+ 72

ds® = —4dxTdz™ — |r* + ("2 + (2*)?)| (da™)? + dr® + r*dQ;
43
NeEaE

We can perform a rudimentary check to verify that this is indeed the correct
pp-wave limit of the metric. We do so by ensuring that we can reproduce the
correct pp-wave limit of AdSs x S® when we set v = 0. Applying this condition
to the above result (4.3) leads us to the metric

+ (dz")? + (dz?)? + (dz®)* + (da*)* + (z'dx® + 2%dz*)dzt.  (4.3)

ds* = —4dztdz™ — r’(dz™)? + dr® + r?dQ; + (dz')* + (dz*)?
+ (dz*)? + (dz*)? + 4(2'd2® + 22dx*)dz ™. (4.4)
To guarantee a successful check, we need to show that the metric (4.4) is equiv-

alent to the expected metric (i.e. that of the pp-wave limit of AdSs x S®), which
is

ds? = —4dztdr™ — (r* + (z')* + (2*)? + (2°)* + (21)?)(dxT)? + dr?

+ r2dQ2 + (dz')? + (d2?)? + (do®)? + (dz*)% (4.5)

To show that this is the case we change

V3
NCET

I (z'2® + 2%2*)

and also perform the following change of variables in (4.3)

L= cos \/§m+ z! — sin ﬂ x°
(R WV B2

3 = cos \/ngr 22 + sin \/§$+ xt
(R W 3+2)

2 — cos \/§x+ % —sin ﬂ xt
(R W 2) "

89



ERNVEEE VBE7)

We find that the metric (4.3) becomes

8
ds* = —4dztdz™ + ) (da’)? + D (dy')?

_ ((x5)2+(x6)2+(x7)2+(x8)2+ (y1)2+(y?2++£y3)+(y4)2) (da)?
4y* V3t V3z
 ggaleos (i) o s “(ﬁ> ”

e )

which is equivalent to (4.5) when we set v = 0.

Next, we will show the details of the calculation to obtain the pp-wave limit of
the B field. We are interested in

By, D1 ANDipy = GygR*Dyp; A Ds. (4.6)

We require

D1 A Dy, = O(R7?)
to ensure that the pp-wave limit of the above quantity (4.6) doesn’t blow up.
Since we cannot be sure that this is necessarily the case, we will compute Dy,

and Dy, explicitly. We begin by stating that

dQ* = pide] + podd + psdes,

which can be written as
d0? = dp? + d? (i3 + pi3) + dps (15 + p7) + 2dprdipopss + 2dipdips (3 — p1})

+ 2dipdipy (1 — p2)
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2 2 N% N% - /ig ? /le 2 2
= (,u + U ) <d§01 + dys + d ) - dys + dy
20 13 + 13 13 + 13 p3+p3 e

(N% - N%)Q 2 2#%(#% - Mg) 2/ 9 2 2 2
Wd — dedw + di (1 + p7) + 2dvpd s (15 — 7).

We simplify this further by noting that the coefficient for dy3 (outside the
squared bracket) can be written

B _ g
g+ p3 pEtps

s+ pi —

so that we have

2 2 2 N% M%_Mg ? g 2
dQ* = (p +,u)<d(p1+ dps + d) + dyp
20 13 + 13 13 + 13 p3+p3

(13 —u§)2> p l o o Ma(u3— p3)
+ |1- dy* + 2 | ps — puy — —5——=| dipdps.
( p5 + 113 SR

Furthermore, we can rewrite the coefficient of dy.dy as

o o M35 —p3) _ 3usui—g

Ko — [ - ’
R E ps + 13
which allows us to write
2 2 2 N% M% - Mg ?
Q) = Uy + 1 <d<p1 + 76&02—{— d?ﬁ)
(b + 115) 1 + 13+ 113
2
3 (13 — p3)” Opigpis 2
+ ——— |dpy —dyp + ——=dy| +(1— — dy”.
13 + 113 l g p3+u3 g(p3 4 p3)

From this we can read off

3 2.,,2
Dw2=dw2—dw+%dw

and also note from the dy, dependence that

2

5 p5 — 13
ngl + ngz + d’l/) = DQD1 +
13+ 113 15 + 13 Iz
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3 2,,2
= Doy = dpy — dip + 2 gy,
g

We conclude that

312 142 1
Dy = dopy — dip + “;“de=dso1——(\ﬁx —fx)

39R
dz' 1
_R+3R(\/:r_\/_$)
3313 2 dz" 2
Dy, =d d dy = dpy — —=2 dy = —2 d
P = dipy — w-f-g?/) 23R\/_xw R+3R\[$x

which leads us to the B field

3
By,p, Dp1Dipy = Gyg (d$'3 A dz' + 2v/22%da"® A dat + (2\/;3:1 — \/5332) dzt A dx'4>

N (dacg A dx'* + 2v22%d75 A dxt + 2\/; Yzt A d:v'4>

3472
= L da® Adat + 277(3326&“3 Adzt + ztdzt Adxt)  (4.7)
Vi Ve

as shown before. In addition, we obtain the following field strengths

2y —2v

Hys, = — Hyy, = ——.
23+ ma 14+ m

Clearly the field strength is null as is required in the pp-wave limit.

4.4 String Sigma Model in the PP-wave Limit
of the LM Geometry

As mentioned, we wish to obtain the string spectrum in the sigma model corre-
sponding to the pp-wave limit of the LM geometry. We do this by showing that
the background obtained in the previous section corresponds to a homogeneous
pp-wave [21], and then using an existing result [22] to extract the spectrum.
We will be working in lightcone gauge.
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For simplicity we drop the fermions from our analysis, and are left with the
following string worldsheet action:

1

S =-
4o/

/ o]/ 00X 0, X" + € BYS0, X 0, X" + o \/ii() ),

where R is the scalar curvature on the worldsheet, n% is the worldsheet metric
and n = | det n,|. We choose \/mn® diagonal with /7 = —1 and \/mm** = 1.
We shift the 2~ coordinate

V3
23+ 72

T —z + (z'2® + 2%2*),

so that our metric becomes
8
ds? = —ddxtdx™ — )% +
;( A 7

8
. 2V/3
+> (da')? + ———
; V342
According to [21] this metric is that of a homogeneous pp-wave, which allows

us to use the results of [22] when investigating the sigma model for this back-
ground. We continue this section by reviewing these results.

(z'dz® — 2*dz' + 2?dx* — 2*d2?)dx™.

We use the gauge zt = 7 and evaluate the Lagrangian density from the ac-

tion above, allowing o’s value to vary from 0 to 7 and setting o/ = % Let’s

consider the first term in the action, which can be evaluated to give

_1 ab I V__ax___l - i\2 4y° 1\2 22
VI 00X = 25 (S (4 @)

=1

x +x -t —
V3+72

a’/‘ p—
or or or or
where the signs of the first and last terms above are completely arbitrary. Using
equation (4.7) for the pp-wave limit of B, namely

2
lda:‘q‘ Adz* + 7

V3 3+ 72
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we can evaluate the second term in the action. We do so by noting that the
field strength is unaffected if we add or subtract a constant to B, which allows
us to use

2
B = 77(332@;3 Adat + ztdet A dat).
3+ 72
From this, we obtain
1, 2y ox? ox?
__aBNS'aa 1Y, ¥ = 2 ol .
9 P Gl BT V3+7? (x do ' 9o

We can thus write down the Lagrangian density, which turns out to be

or~ 1[&, 4?2 2 o3 ozt
r—_o% 1 i\2 1,2 212 2 !
L:ZE;(SE) +3+72((x) +(x))]+m (x 0o o 80)

+

V3 02 oLt 01t 017 R
V342 o or ot or T or ot or _51.2:;6“3:836'

Note that using light cone gauge ensures that only the transverse coordinates re-
main, and we don’t have to deal with timelike modes or any residual constraints.

Since all the difficulty we might have encountered due to the gauge invari-
ance has been eliminated by moving to light cone gauge, we can quantize the
string theory as usual. Hence, we use canonical quantization in what follows,
and begin by computing the canonical momenta:

— 6£ _ a1 3 3 2 _ 6£ 2 3 4
_8:1',/_1_‘,1“(7_70-) 3+72‘/E7 p(T’O-)_aj:Q_:L‘(T’O-) 3+72‘/E7

oL [ 3 oL 3
3 _ _ .3 14 _ _ A 2
pi(r,0) = preiaks (r,0)+ 32 7215 , p(r,0)= prviaks (r,0)+ 32 ’)/Qx ,

oL
k _ .k
p(1,0) = ik =3i"(r,0) k=5,6,7,8.

p'(r,0)

Next we impose the equal time commutation relations

[p*(7,0), 2 (1, 0")] = —i6*6(0 — o).
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Using a standard Lagrange transform we can write down the Hamiltonian

oxk Ok 2

= 1/7r da[i (p Pt + ) Z +i($k)2+ 4y i(xky
2 Jo = do Odo 3+72 = 3+

4 o3 oz* 23
- \/Z’%’yz (”’2 o0 " o ) TR EP e e =y =)l (48)
6 7

The coordinates z°, 2%, 27, 2® come from the AdSs5 part of the space and so we
expect that they are unaffected by the deformation, since this part of the space
does not participate in the deformation. This is obvious in the Hamiltonian we
have obtained, as the masses corresponding to the modes of these coordinates
have no v dependance. As a result, our analysis only deals with z*, 22, 23, 2*.
The quantization we perform here is virtually identical to the quantization of
the single free scalar field, in which we write the most general classical solution
in terms of plane waves, each of which has a specific energy. To ensure that we
quantize each of these modes, we enforce the oscillator commutation relations
on the coefficients of these plane waves. Basically, this amounts to requiring
that the standard equal time commutation relations hold. In our case, the clas-
sical solutions are no longer plane waves, but will still yield the exact quantum
field and spectrum, since we are dealing with a Lagrangian which is quadratic
in the fields.

The Heisenberg equations of motion that we obtain from the Hamiltonian (4.8)
are given by

op’

at = Z[H7p ]’

where we use t instead of 7 to make its meaning explicit. In full, we get
8_pl _ 0! 3 o 42 o1 2y Ozt 3
ot 002 3+~2 3—|—’y2 V3 + 2 80 3+72p’
8_])2 _ 0% 3 e 472 2y Ox? 3
ot 002  3+n~2 3—|—7 \/3—1—7 80 3+72p’
o _ P2 3 5 2y 02® 3
ot 0o 342 V3 + 72 0o 3+72p’
opt _ a3 o 2y 0! 3
ot 002 3+2 \/3—{-7 do 3+72p’
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k 2 .k
%:%ﬂ — ok, k=56,T,8.
ag

from which we can easily write down the following equations of motion

0zt 9%xt 5 3 o0x N 2y Oxt N 42
ot? do? 34420t  /3+7200 3+ 7?

0?z? 9% 5 3 Oxt 2y  0x N 492 0
_ _ _ 2=
ot?  do? 3+92 0t 3++9200 3+172 ’

1
z =0,

0%z 9223 N 3 8.’E 2y 0z
ot?  0o? 3+ 92 \/3-1—7 oo

82x4_82x4+2 3 0z 2y 0 _0
o2 o2 3+ 0t V3+200

OPak  9%zk

k __ —
55~ gor T =0 k=5678

The last four equations, being trivial to solve, will not be considered for now.
Instead we will focus on the first four equations, which are given by

0%zt 0%zt ' 07
— R 4 kit = =0,
o 902 ! 55+’
where
3
0 0 —24/3 7 0
3
3
2\/3 = 0 0 0
3
0 2\/3 v 0 0
and
[ 0 0 0 —L
3472
- 0 0 ——?;b 0
Z] — ’Y
=2 0 L 0 0
3+72
- 0 0 0
B 3472
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472

1 2= 37 v 3 4
We introduce the mode expansions
. w . .
(o)=Y ai(t)e*™
n=—o0o

where, due to the fact that the sting field is real, we have

So, instead of the equations of motion we are left with the mode equations

2,
0%zl

ot?

o -
o+ Ana, + ISR 4 b, + ki, = 0.

The mode expansions are transparent: they ensure that the o coordinate runs
from 0 to 7 and that the string fields are periodic in 0. We would like to extract
a spectrum from our analysis, thus using the perscription of [22] we make the
ansatz

] n) ,(n) ™
x,(t) = a§- )Az(j)e it

where ag-n) represents an annihilation operator, A;;
diagonalizing the equation of motion and wj(-") is the spectrum we are after.
After plugging this ansatz into the equations for the modes we are left with

™) is a unitary transformation

—(wi™)269 + An?6% + i fu\™ + 2inkh¥ + k6 ™ AWt = g,
k k k Ak

A nontrivial solution arises when

det(—(w™)269 4 4n26Y + i fwl + 2inh" + k;67) = 0,
from which we are able to extract the quartic equation
w* — (4 + 8n*)w? + 16n* = 0.
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This equation is solved by

w=1+vV1+4n?,

which agrees exactly with [23]. It is worth noting that this spectrum is inde-
pendent of the deformation parameter v, which is unexpected - evidently, any
change in the background of the type suggested by LM will yield the same
spectrum in the pp-wave limit. It seems that the relative v dependences of the
metric and B field somehow compensate for eachother.

98



Chapter 5

Analysis on the Field Theory
Side of the Correspondence

In this section we deal with the dual field theory analysis linked via the AdS/CFT
correspondence with strings in the deformed LM background [5]. We show the
field theory deformation which corresponds to the geometrical deformation dis-
cussed previously. In the field theory, this deformation involves the superpoten-
tial, which is made up of traces of chiral superfields d:

Tr($13267 — $16967) o Tr(e™B13287 — e~ md1d6?).
In our analysis we will only be considering Higgs fields, which are the bosonic
lowest component of ® denoted by ®. In the previous section we found the string
modes, and our goal in this section will be to find the Higgs field operators dual
to these modes. The deformation does not affect the kinetic terms and D terms

for the Higgs fields, but it does have an effect on the F' terms, which become

V =Tr([@% @ [" +[[%, @'], " + |[@", 2%],|*) (5.1)

where, for arbitrary A and B the y-commutators are defined by

[A, B], = €™ AB — e "™ BA.

The above F' terms can be obtained by first considering the superfield expansion

' = Bi(y) + V20%Pa(y) + 0°0,F'(y) (y™ = z™ + i6o™F)
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= ©'(x) + 0°0,F (z) + i00™00,,P" () — ieagagdgdam o (2).

where we have only kept the bosonic fields in the second line, since these are
the only fields we are interested in. Using this expansion we find

Ve = [ @OTHe 8§60 - 8'878?)

=M Tr(F'9*®° + ' F?0° + &' O°F°)
— ¢ MTr(F'9*®* + ¢'O*F? + &' FP9?),

which can also be written

Ve = Tr(F'[@%,8°), + F2[9%, 8", + F[2!,37),).

The anti-chiral piece of the superpotential yields a hermitean conjugate term.
We don’t need to concern ourselves with the fields F*, or their complex conju-
gates. They can be eliminated using their equations of motion, which is obvious
as they appear quadratically in the action. More precisely, we can find these
equations of motion if we look at the kinetic terms of the action before coupling
to the vector superfield (keeping only bosonic terms):

4 dn&it &i 4 _l—z‘ mi_l m & i i (i) * lm—i z)
/dx/decbcb_/dx( (B0,0m 0 — L0, 0" B+ F(F) + S 0m 80,0

We use this and Vg + V3 to elucidate the equations of motion, and after elimi-
nation of the auxiliary fields we obtain the F' terms in (5.1), so named because
they came from an auxiliary field called F'.

We will be dealing with correlators of traces which involve only ®!, ®?2, and
®3 or &', 2, and ®3. According to [24], one does not need to include D term
contributions, self energy corrections or gluon exchange at order g%,, in Yang-
Mills perturbation theory when computing such correlators in the undeformed
theory. First, we will argue that this follows through for the deformed theory at
leading order in N, and then use this insight to build our operators. We follow
this by showing how to build the operators dual to the vacuum of the sigma
model in the deformed theory. The arguments for building the operators dual
to excited string states prove to be more subtle, so we study operators dual to
excited states in the undeformed theory, and lastly provide an analysis in the
deformed theory.
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5.1 Only F-terms Contribute

There is another type of auxiliary field , the D field, which can be obtained by
coupling to the vector superfield. It leads to new contributions to the potential
which are called D terms, and are of the form

~ [[@F, 1] + [%, 2] + [@%, &°]]".

It is quite clear that these terms are unchanged under the LM deformation due
to the absence of 7 in the above. Coupling to the vector superfield is not the
only source of interaction possible, as the gluon can couple to the Higgs fields
also. This coupling comes from the terms

D,®'D*®' + D,®*D'®* + D, 9> D"®?,

where D), is the gauge covariant derivative.

We are interested in correlators of the form

(00),

where

O = firig. i, Tr(®1®=..0"), 4y, ... i € {1,2,3}

and the coefficient f; ;, ; is unspecified. In the undeformed theory [24] has
argued that the D terms, gluon exchange and self energy corrections are all
flavour blind at one loop, so if we work to one loop order and replace O —
Tr((®)*), the corrections to our correlator are identical to the corrections to

(00) = (Tr((@)")Tr((2")")).

Since Tr(®') is half BPS, it will receive no radiative corrections at O(g%,,)
[26]. Thus, we see that only F' terms contribute in the undeformed case. In the
deformed theory, the D term and gluon exchange (coupling of the Higgs fields to
the gluons) contributions are unaffected by the deformation. In fact, these two
sources of interaction are the same in the deformed and undeformed theories.
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The same is not true for the F' term contributions to the self energy and this
warrants a more thorough discussion of these terms. More precisely, we would
like to argue (to leading order in N) that the one loop self energy contributions
are also the same in the deformed and undeformed theories, because this would
mean that the contributions from the D terms plus one loop self energy inser-
tion plus gluon exchange cancel. This is the case because non-renormalization
theorems for the correlator

(Tr((@")*Tr((®)")*)

imply that these quantities cancel in the undeformed theory. Our discussion
makes use of the free field theory propagators

a

6jk5ad 6bc:

<(I)zzb(x)(b]ccd(y)> = |$ _ y|2

where j,k =1,2,3; a,b,c,d =1,..., N are colour labels, and @ = 5.

It is possible to split the F' terms into two parts, one being affected by the
deformation (which we will call Vj.f) and one unaffected (or Vj,,), so that it
will be the same as in the undeformed theory. Thus we see that we can write

Vi = Vinw + V;iefa

where

Ving = 2T (@' *9?*P" + ©*0'$'P?),
Vier = —2Tr(e > ®* Q' $*P" 4 ™79 $*P' §7).

In the above we are only focusing on the ®' and ®? dependent terms, as the
argument follows through for the other terms. Notice the v dependence in V.
The Feynman diagrams corresponding to self energy contributions coming from
these two vertices are shown in Figure 1, with the Vj,, contribution in (A)
and the Vg contribution in (B). It is clear that (B) is a non-planar diagram,
and so can be dropped at large N. So, to leading order in N, we see that the
only part of Vr which survives is V;,,, and thus, the only contribution to the self
energy coming from the F' terms is invariant under the deformation. Using these
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arguments we see that one does not need to consider D term contributions, self
energy corrections or gluon exchange at order g%,, and at leading order in N
when evaluating the correlators in question.

(A)

@

(B)

@

Figure 1 This plot shows the Feynman diagrams corresponding to self energy
contributions coming from the F' terms. (A) shows the contribution from Vj,,
and is O(g3,,N?). (B) shows the contribution from Vg and is O(g%,,N).

5.2 Operators Dual to the Vacuum

The vacuum state is not the state with no strings, as one might naively expect.
It is the state with one unexcited string: it is the string’s excitation which is
the important factor in our analysis, not the number of strings, i.e. we deal
with the first quantized and not the second quantized approach. Furthermore,
this particular mode of the string, i.e. the lowest mode, is important because
it does not receive any string tension corrections due to the fact that it is a
supergravity mode. This fact is particularly useful when we consider building
the operator dual to the vacuum of the string sigma model, which is what we
will do in this section. Now, the string tension and the Yang-Mills coupling
constant in the dual field theory are related by
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g%/MN = R4T27 T=_

so the fact that there are no string tension corrections to the vacuum gives us
a condition that our perspective dual operator needs to satisfy: namely, if we
use perturbation theory to compute corrections to the two point function of the
operator dual to the vacuum, these corrections should disappear.

Since the vacuum dual operator is BPS, the U(1)x charge of the operator should
be equal to its conformal dimension. In addition, because we boosted along v
in taking the pp-wave limit so that there is no momentum in the ¢; and ¢,
directions, we expect that the operator is uncharged under the U(1) x U(1)
symmetry of the field theory. Previously we mentioned that our operators will
be built out of Higgs fields, and the arguments above allow us to write down
the following charges and dimension for the three fields:

Ul) UQ1) Ulr=J A
ol 0 —1 1 1
o2 1 1 1 1
P -1 0 1 1

We start this analysis by showing how to build the operator dual to the vacuum
for small values of J, namely J = 3 and J = 6. The results obtained highlight
an obvious rule which can be used to build the operator for all J.

For J = 3, we might consider the field
1
M= §(¢1¢>2<I>3 + O?P3P! + D3P D? + PP’ + PP PP + PPD2PT),
which has dimension A = 3 and is neutral under U(1) x U(1). From this field
we deduce that the operator
Tr(M) = Tr(®'®?®?®) + Tr(d' d>d?)
has dimension A = 3, U(1)g charge J = 3 and is neutral under U(1) x U(1).

This operator is a possibility because it is a symmetric traceless combination of
Higgs fields, and hence protected in the undeformed theory. However, it can’t
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be dual to the vacuum of the deformed theory because the F' terms correct the
two point function of this operator at O(g%,,). So we need to do a bit more
work to find the operator.

For J = 3 we notice that there are two independent loops we could use to
build the operator dual to the vacuum, namely

O, = Tr(®'®28%), O, = Tr(®'®*d?).

We wish to write down some combination of these two operators to give us
an operator dual to the vacuum. We are ultimately interested in calculating
correlators involving such operators, and so we need to make use of the two
point function of the Higgs fields as defined before:

_ ) 1 . a
(DJ (I)k = ik a c = ik a c
< a,b(x) cd(0)> 5 5 d5b 47T2|$|2 5 5 déb ‘x‘Qa
where a,b,c,d = 1,..., N are colour indices, 7,k = 1,2,3 and a = _471r2' To

determine what linear combination of O; and O, we need, we compute the
planar contribution to (O;(x1)Vr(y)O,(x2)). We obtain

a5

(@(%)VF(Z/)OJ'(»TQ)) =M N4, (5.2)

Y ‘331 - y|4|:v2 - ?J|4|$1 - $2|2
where

6 —6e= 2
MT = _662m"y 6

The two point function of a BPS operator is not corrected, and so we expect
the quantity (O;(z1)Vr(y)O;(x2)) to be zero. Indeed we find that the matrix
M has a single zero eigenvalue and note that the operator dual to the vacuum
is obtained via a linear combination which corresponds to this zero eigenvalue,
using the relevant null vector. In addition, this linear combination is unique
due to the fact that we only have a single zero eigenvalue. The operator we
obtain is

O, = Tr(®'®>®%) + e 2" Tr (B H3D?),

and as expected it has dimension A = 3, U(1)r charge J = 3 and is unchanged
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under a U(1) x U(1) symmetry. Also, O, is invariant under the Z3 symmetry
of the deformed theory, which involves cyclic permutations of the three Higgs
fields. As a further check, notice that setting v = 0 recovers the expected oper-
ator for the deformed case.

For J = 6, we can write down a basis for the operators involving 2®!’s, 22’s

and 2®3’s. There are 16 independent loops we could use to build our operator:

O) = Tr(9'0'P°d*P*®%), O, = Tr(®'9'P*®3*®?), O3 = Tr(d' P P*P*P3d?),
Oy = Tr(®' ' P*d?92®%), 05 = Tr(®'9'P*929°d?), O = Tr(P' ' P*P*P29?),
O7 = Tr(®'0*0'P*P>®%), Oy = Tr(d'P*d'P39°P?), Oy = Tr(P'P*¢' P*P39?),
O = Tr(®'?®?®' ®*P3), O = Tr(®'P*®?®*d' @), 01, = Tr(P' P*P30' d?03),
O13 = Tr(®'0? @01 d*d?), Oy = Tr(9'P*®*®*®'®%), 015 = Tr (P O° D' D> P*d?),

O = Tr(®' ®*d*¢' 93 d?).

We found these operators by requiring that they have A = J = 6, and no
U(1) x U(1) charge. We wish to identify the linear combination of the above
operators which is BPS, i.e. the linear combination giving rise to a two point
function which is not corrected at O(g%M) and at leading order in N. Again,
the obvious linear combination of the basis operators, namely
0= TT(CD1<I>1<I>2<I>2<I>3(I>3) + Tr(<I>1<I>1<I>2<I>3<I>2<I>3)
+ Tr(<I>1<D1<D2cl>3<I>3<I>2) + Tr(<I>1(I>1(I>3(I>2(I>2(I>3)
+ Tr(®'®'@30%@30?) + Tr(d' @' P03 d?9?)
+ Tr(®'9?*®' 9?P3®°) + Tr(d' 0?93 d?d?)
+ Tr(2'9?0'9°0°®?) + Tr (2 003! 0°P°)
+ Tr(9®'9*®* P01 0%) + Tr (' P*®° ¢! 9 ®?)
+ Tr(®'®*030' d30?) + Tr(d' P> P> d*d' d?)
+ Tr(®' @30 d30?d?) 4 Tr(P' 2* 020! d3?),

does not receive O(g%,,) corrections at leading order in N, in the undeformed
theory.

Thus, we again make use of the quantity (O;(z1)Vr(y)O;(z2)), and evaluate
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the matrix M. By extracting the null vectors of M we will have succeeded in
writing down our desired BPS operators. We obtain, at leading order in N

3 b 0 0 0O O O O b 0 O 0 0 07
b 5 b b 0 0 0 b 0 0 0 0 O b 0 0
0O 4 0 b O0Ob 0 b 0 0 0 O 0 0 O
0O 0 4 b 0O 0O 0 0 0 b 0 O 0 b 0
0O 0 b 5 b 0 b 0 0 0 0 0 b 0 O
0O 00 0% 3 0 0 b 0 0 0 O 0 o* 0
b* 0 b 0 0 O 5 b 0 b 0 0 b 0 0 O
MT — 0O 6 0 0 b Ob 6 b 0 0 b O 0 0 b
0O 0 0 0 b 0 b 5 b 0 0 b 0 0 0]
0O 00O 0O0DbDP 0 b 4 b 0 0 0 b 0
b* 0 0 b 0O O O O b 5 0 b b 0 0
0O 0o 0O0O0OO0O O 2 0 0 O0 6 2 20 00
0O 00O 0 O0OUDbD 0 b 0 b b 6 0 b b
0O 0 0 b O O O 0 O b b 0 6 b b
0O 0 05b 0 Obb O O 0D 0 0 b b 5 0
L0 0 0 0 0 0 0 2 0 0 0 0 2b 20 0 6 ]
where b = —e~ 2™ and b* = —e?™. M has a single zero eigenvalue so we

are once again able to find a unique operator which does not get corrected at
O(g%,,) (this operator is quoted later, after some discussion). We can repeat this
analysis for J = 9 and again we obtain a matrix with a single zero eigenvalue,
which allows us to write down a unique operator made up of a distinct linear
combination of the 188 basis loops. The results for J =9 are too long to write
here explicitly, and doing so would not add to the discussion, but using the
results for the operators obtained for J = 3, 6,9 we can write down a rule which
will allow us to extract the operator for any J. We know that the operator will
be a symmetric traceless tensor when v = 0, contracted with an equal number
of ®’s, ®?’s and ®¥’s. In order to elucidate this general operator, we first
classify the type of exchanges available to us. The following will be called even
exchanges

P'P? = O*P', or PP — P3D%, or P3P - BB

and

2! — P2, or P3P? — P2, or PP — P3P!

odd exchanges. We identify the even exchanges with a factor & = ¢, and the
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odd exchanges with a factor a* = e?™. We can use these rules to generate the
coefficient of each operator in the linear combination. For example, for J = 6
we use the operator O; = Tr(P'P P?P?P3P?) as a template, and determine
what combination of exchanges will lead to each of the other operators O;
where ¢+ = 1,...,16. For each exchange we perform on the way to our final
operator, we append a multiplicative factor of a or o*, depending on the nature
of the exchange. As an example, let us determine what coefficient the term
Tr(®'®'®*d3®3®?) should have in the linear combination. We obtain this
term by performing two even exchanges on Tr(®'®!2P2P3P3)

Tr(®'®'d2P2P3D3) — Tr (' ' D2P3D2d%) — Tr(0' D! P2P3?),

so the overall coefficient is o = (¢72™)2. If we repeat this procedure for each
of the 16 operators, we obtain
O, = Tr(®' o' P*P*®*d?) + oT'r (' P P* P32 d3)

+ 2Tr(9'd' 9’303 9?) + °Tr (0 0' D> P°D°D?)

+ &’ Tr(®'0'0* 9?9 P?) + o' Tr (' ' P°B°9*?)

+ aTr (2P D? PP D) + o*Tr (D' D? D' PP P2P3)

+ &Tr(®' @@ 03 P°®?) + *Tr (0 O° PP 03 P?)

+ aTr(P'P*O?P* P 03) + oTr (D' P*P° D' P2 ?)

+ 2Tr(P P2 P31 030?) + *Tr (P P23 D2 D1 d?)

+ *Tr(®' 9?9392 9?) + o*Tr (P P*P* D' 3 9?),

which matches the result obtained via the null vectors exactly. Again we repro-
duce the BPS operator of the underformed theory by setting v = 0 in the result
above. In addition, we have checked that the order in which the exchanges are
taken to yield a particular operator does not affect the coefficient obtained for
that particular operator, so our analysis is unambiguous. We will show this
check for a particular example, using Tr((®')2®3®?®3®2). We could arrive at
this combination of ®%’s starting from Tr(®'®'®?P293d3) by performing two
different sets of exchanges, namely

Tr(®'®'d*®°P*D%) — Tr(d'd' d*H° 0 )
— Tr(®'®' 00> 9*®?) — Tr(¢' ¢! 9?$*3?)
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or
Tr(®'®'®’@*®3®%) — Tr(d°d' d*P*d*d')

— Tr(®'*0*0°9°d') — Tr(d'P*0*039°d').

Notice that both paths involve performing three even permutations, so both

paths would assign a coefficient of (¢72™)% = o to Tr(®'®' P3P2P3?).

5.3 Operators Dual to Excited String Modes

in the Undeformed Theory

Since this section deals with the undeformed theory, we set v = 0, and reconsider
the way in which we take the pp-wave limit [10]. Let us assume that we take
the pp-wave limit by boosting along the ®? direction, and not the original

direction. We can define the BMN operators

Oy = Tr(2}(2?)"2*(9%)"™),

to which correspond the two point funcions

. = NT2g7+2
(Ot (1) Om) (#2)) = dmn 757

We can also write

NJ+3 &J+4

Oy (1) V) O (22)) = i
(O @)VrW)Ou) (22)) = Qu—mr— a =

where, at leading order in N we find

3 =2 0 0 0 0 0 —1]
-2 4 =2 0 0 0 0 0
0 -2 4 -2 0 0 0 0
Q=] 0 0 -2 4 =2 0 0 0
0 0 0 0 0 -2 4 =2
-1 0 0 0 O 0 -2 3 |

(5.3)



The anomalous dimensions of O(n) are determined by the eigenvalues of @,
which needs to be diagonalized in order to extract these eigenvalues. The eigen-
vectors of () determine the operators that are dual to excited string modes. We
are ultimately interested in the anomalous dimensions of the loops obtained in
the original pp-wave limit (with a boost along the 1 direction). Since the un-
deformed theory has an SO(6) rotational invariance, the anomalous dimensions
of the loops defined above should match. We will show that we can reproduce
these dimensions using loops relevant to the case that we boost along the v
direction.

If we consider O,y = Tr(®'(9?)"®%(®?)’~") we can imagine that the fields
®! define a lattice, and that the fields ®' and ®2 “hopping on this lattice”
represent the Yang-Mills interaction. In the pp-wave limit we are interested in,
there isn’t a field which is the obvious candidate for the lattice, but we can
define an analogous operator to that in (5.3)

Ow) = Ciyigig...i, T (@' " ... 0" Q3P+t @),

Next, we define the quantity

2
C* = Ciis...i; Civig..iy»

and note that
1
_02’
3

_ 2
Cl2...iJ012...iJ = 023...iJ023...iJ = O31...iJO31...iJ - AC I
2
Chtig...i, Crtig..iy = C22iy...i,C22i5..i, = C33i..5,C3345..5, = BC”,

Clig...iJCIi2...iJ - CQiz...iJCQiQ...iJ - C3i2...iJC3i2...iJ -

where 6A+3B = 1. We obtain the above relations by realizing that the operator
dual to the sigma model vacuum relevant for our pp-wave limit has an equal
number of ®!’s, ®?’s and ®*’s. Also, we used the fact that C is a symmetric
tensor. Let us expand on these facts. In the undeformed case, we know that
the protected operators are of the form

Cirigis..i, Tr (P B2 P . O¥),
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where Cj,,i,..i, 1S any symmetric traceless tensor. We are dealing with complex
fields, so any tensor built out of only ®*’s and not ®’s is traceless, so we are only
left with the condition that it needs to be symmetric. The super Yang-Mills
operator dual to the string theory vacuum state is

Ciyigig..i, T (@1 020" O).
We would like to add in two “impurities” ®' and ®*, so we introduce the
operators

O(n) = Cz'liZi?’___iJTT((I)lq)il DI B3 Pintt (I)ZJ)

We can prove that the operator

is protected and hence receives no perturbative corrections, by showing that

J
0= Z O(n) = Cirigig..iy, I T (" P2 D" O"+2),

n=0

with Cijiyi,..i,., @ completely symmetric traceless tensor. We do not need to
show it is traceless - this is obviously true. We will show the symmetric nature
explicitly for J = 3, where

O(0) = Ciyigis T (' D° 0" 2™,
O(1) = Ciyigi, Tr (D' 0" @° 072 0%),
O2) = Ciyigis Tr (' & 32 53P™),
O3y = Ciyiiy, Tr (' 0" 02 0 0%).

We thus find

O) + Oy + Oa) + Oy = Ciyigigisis T (0" D202 M%),

where
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5Ci1i2i3i4i5 = 5i115i230i3i4i5 + 5i115i330i2i4i5 + 5i115i430i2i3i5 + 5i116i530i2i3i4
+ 6i215i13Ci3i4i5 + 6i215i330i1i4i5 + 5i215’i430i1i3i5 + 5i216i530’i1i3i4
+ 0i310i,3C 5405 + 0i310i53C,i4i5 + 0i310i43C51inis + 0i510i53C 5 1inis
+ 0i,10i,3C 551515 + 0410353014515 + 0i410i53C 411015 + 0i410i53Ci1 40
+ 0i510i,3Csi5is + 0i510i53Ci,igis + 0i510i53C51igis + 0i510i,3C, inis-

It is easy to verify that this is a completely symmetric tensor. Although we
performed the analysis for three fields with two impurities, the same holds for
an arbitrary number of fields. In our attempt to build the operator which is
arbitrarily close to supersymmetric we consider

J
Y O,
n=0

in the limit that the ¢, are arbitrarily close to 1.

At this point we make a rather non-trivial assumption: that the operators
dual to the excited string states can be built out of the O,. This is indeed not
obvious. There are a very large number of basis operators for all of loop space,
but only J + 1 operators Oy, so why should we only use these when building
our general operator? For the J = 9 case with two impurities added, there
are over 1000 basis operators, but we choose to use only 10 of these, which is
an obviously massive simplification which gets even more pronounced as J gets
larger. Another reason is that of hindsight, where we use our newly acquired
knowledge of the operator dual to the vacuum to study the excited string case.
We expect that in general the conformal dimensions of operators will get ex-
tremely large corrections unless we get some special cancellations (we are taking
N — oo holding ¢%,, fixed but small). As luck would have it, this does happen
for the operators dual to supergravity modes - this precise linear combination
of operators lead to a cancellation of corrections. “Nearly protected” operators
are formed so that corrections almost cancel. Thus, the operators used to build
the vacuum state and the operator dual to the excited string mode coincide.
Furthermore, we can check this assumption for the v = 0 case, as it has been
studied extensively.
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The first quantity we are interested in calculating is (Oq)O)). Using our
results above we can evaluate this overlap:

a]+2

|x1__x2PJ+4’
aJ+2

|$1-—-$2|2J+4,

2 2
<O(l) (xl)o(k)(.fz» = (J — 2)A02 + 502 + 5l,J—kAC2 NJ+2 & 7& ]

(0@ (1) O (x2)) = [(J — 1)AC? + CYN7+?

where in the second equation above [ is not summed. At large J
&J+2

|$1—-$2PJ+4.

A 2
(O (1) Oy (z2)) = [(J — 2)AC? + 502 N7+2

Putting these results together we can write (for £ and [/ unrestricted)
pVJ+2&J+2
|z — @y |27

2 JH+2~J+2
= K(J— 2)AC? + %) L+ (A+ %) 021] AN

Ik |21 — 372|2J+4,

(Ow (xl)@(k)(@)) = M

where L is a matrix with a 1 in every single entry and I is the identity matrix.
We require the eigenvalues and eigenvectors of My;. J of the eigenvectors have
eigenvalue (A + $)C? and look like

1
1
|> 1 1
n) = ——— ,
vn2+n | —n
0
. 0 -

where the first n entries are 1’s and n = 1, 2, ..., J, while a single eigenvalue has
the form

1
1
1
J+1) = I
| ) J+1| .
1
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with eigenvalue (J + 1)((J — 2)AC? + %) + (A + 3)C?. We can use these
eigenvalues and eigenvectors to define new operators K, that have a diagonal
two point function, namely

Ky =

Their two point function looks like

B N']+2d']+2
K (@)K (22)) = dmn 7

Further, we wish to evaluate the anomalous dimensions for this set of operators
at O(g%,;)- We begin by computing

B NJ+3&J+4
(OG)(21)Vr(y) Oy (22)) = H;

M .
PR 2y = 2oy — yltw, — [t

where, at large N, we find

3 -2 0 0 0 0 0 -1
2 4 -2 0 0 0 0 0
0 -2 4 -2 0 0 0 0
H=2|0 0 -2 4 =2 0 0 0
0 0 0 0 0 —2 4 -2

-1 0 0 0 0 0 -2 3 |

We can now use this result to evaluate the corresponding overlap containing IC
operators. We obtain

NI+3 CNLJ+4

Ky (2) Ve () Ky (22)) = K 5
Ko (@)VeWIR G (@2)) = Koy e e, =y

where

Am
Kom = A—<n|H|m>

The eigenvalues of K will yield the anomalous dimensions, and its eigenvectors
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will give the corresponding operators dual to excited string modes. Now, , :?\—’" =

1 for all m and n except if m = J + 1 or if n = J 4+ 1. Using this, and the fact
that

(J+1H=0=H|J+1),

we see that we can write

Kpm = (n|H|m),

which tells us that K and H are related by a unitary transformation, and thus
have equivalent eigenvalue problems, so we can obtain our result by solving the
eigenvalue problem for H. As we mentioned before, we expect, due to the ro-
tational invariance of the background, that the spectrum of our pp-wave limit
agrees with the spectrum of the pp-wave limit taken in [10]. Since @ and H
are equal to eachother, we see that this is indeed the case, and the agreement
between the two computations is a positive sign that we have identified the
operators dual to excited string states.

It is instructive at this point to add a few remarks about our analysis. We
have focused on J + 1 operators, but there are many more operators with spe-
cific U(1)g charge J +2 and U(1) x U(1) charge (1,1). In particular, for J =6
we have only kept 7 out of a possible 70 operators, and for J = 9 we have
only kept 10 of a possible 1050 operators with the correct quantum numbers.
For J = 3,6 we have checked explicitly, using the full set of loops, that the
J + 1 BMN operators we have obtained by keeping only this subset of J + 1
operators do indeed provide operators with a definite anomalous dimension at
O(9%,,)- In addition, we checked that the anomalous dimensions obtained using
this restricted set of operators is the same as that obtained using the full set
of operators. Understanding this decoupling of a small set of nearly protected
states is an important existing problem in field theory [10],[27], and this section
lends some insight into the decoupling.

5.4 Operators Dual to Excited String Modes
in the Deformed Theory

This section serves to build operators dual to excited string modes, but here we
consider the deformed theory. We will study these operators for both large and
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small J, so that we may verify the v independence of the large J spectrum, and
illuminate a v dependance for finite J.

We will first consider the large J limit, and construct the “background” on
which the impurities move using an even number of ®!, ®? and ®* fields. We
begin by selecting one of the Higgs fields which will make up the background,
and then placing a second field to the left of this first one. We then allow this
second field to hop to the right, over the first, assigning phases for even and
odd exchanges as defined previously. This generates two terms. We follow this
by placing a third Higgs field to the left of each of these two terms, and again
allowing it to hop all the way to the right, so that we are left with a total
of 6 terms with their corresponding phases. We continue in this way until all
background Higgs fields have been selected. To illustrate this, let us consider
building the background out of one ®', one ®* and one ®* field. The steps
which we take are as follows:

(Pl N @2@1 + 62’”7@1@2
SN @3@2(1)1 + 62771"7(1)2(1)3(1)1 + (I)Q(I)I(I)Zi + 627ri7(I)3(I)1(I)2 + @1@3@2 + 6271'1'7@1@2@3.

We could have selected the background fields in a different order, changing
the overall phase of the above operator, but since this is arbitrary, there is no
ambiguity. Recall that we are trying to find a BPS state, which is achieved
by building the operators in the way described above. We see this because
each exchange term we add by hand will correspond to a matching exchange
performed by the potential, but with an opposite sign, giving us a BPS state.
However, tracing the above operator will not in general reduce to the BPS state
we identified in section 5.2, due to our neglect of the exchange swapping the
first and last Higgs field. In the leading order of a large J expansion we expect
that neglecting this exchange is justified.

Next we will describe how to build operators corresponding to excited string
states with two impurities, which we will take to be ®' and ®3. Let ®3 hop into
the nth position using the same rules for hopping described before, and denote
the operator obtained in this way by O). For each O} let ®! hop into the mth
position and call the resulting operator O] .. Now define

0Ly = 3 Tr(OF )0 np

where p = 0,1, ..., J, and the delta function sets m — n = pmodJ. Using these
results we can show that
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NJ+2 dJ-I—Z

<02i) (331)(9&-)(352)) = MY

L) |ml _ $2|2J—|-4

and

NJ+3C~LJ+4

o7 Vie(y)O7. = H] M.
Ol Ve ) = B e, — gz, = ol

with

H}} = 86k — 4611k — 40ip41.

When computing these correlators, we sum over all contractions except the ones
involving the fields that were at the endpoints of O] ,,, which should give the
correct answer in the large J limit. The H above is equivalent to that in section
5.3 except that it does not have the -1 elements in Hy ; and H,, but we expect
that this is not important in the large J limit, which turns out to be the case
numerically. Thus, in this limit, H” has the same spectrum as H in section 5.3.
Our proposal for the BMN operators is then to build them using the eigenvec-
tors of H?, so that the spectrum of anomalous dimensions coincides with the
spectrum of anomalous dimensions of the undeformed theory, just as the string

theory predicts.

Now, we have assumed that the anomalous dimensions of our operators are
determined by the eigenvalues of H?. We studied the eigenvalues and eigenvec-
tors of M;; in the undeformed case and argued the validity of this statement.
Should we wish to prove the statement in the deformed case, we would need to
provide a parallel study of M%, which is an open problem.

Lastly, we will consider the small J limit, in which we can work with all of
the possible loops O; which exhibit U(1)% charge J+2 and U(1) x U(1) charge
(1,1). We organize our operators so that they have the two point function

<Oz@]> XX (51-3-

at large N and O(g),;). We repeat our previous analysis, and compute corre-
lators of the form
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NJ+3 aJ-I—4

(Oi(x1) Vi () O;(x2)) = T;

7 |331 - $2|2J|~T1 - y|4|$2 - y|4'

Again, the matrix T will determine the operators which have a definite anoma-
lous dimension, and will yield the dimension itself to O(g%,,). We find that for
J = 3 and v = 0.1 the smallest eigenvalue of 7" is 0.07843... .For J = 6, the
smallest eigenvalue takes the value 0.04124... At infinite J, our string theory
prediction in section 4.4 tells us that the smallest eigenvalue should be zero.
This discrepancy in the smallest eigenvalue for finite and infinite J makes it
impossible to compare our finite J field theory results with the string theory
results. We also managed to devise an expansion for 7" in terms of 7, from which
it is possible to develop a perturbative expansion for the anomalous dimension,
by treating y as a small number and using the results of Appendix B. We find
that the O(7) term is zero. Although we did not extend our analysis to higher
orders in the perturbation series, this would be possible in principle.
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Chapter 6

Conclusion

Our aim in this work has been to provide further support for the AdS/CFT
conjecture in a less supersymmetric setting, which we have achieved via a study
of the Lunin-Maldacena background. We have shown that the geometry ob-
tained by taking a particular pp-wave limit of this deformed background results
in a homogeneous plane wave geometry, and further that the string spectrum
is y-independent and is thus unaffected by the deformation. The statement of
the conjecture then led us to consider the dual A/ = 1 supersymmetric gauge
theory. In this setting, we argued that at O(g%,,) and leading order in N, it is
only the F-terms that contribute to the anomalous dimension for the class of
operators under consideration. Using this insight we managed to find the oper-
ators in the deformed field theory dual to the vacuum of the string sigma model.
Further, in anticipation of a parallel calculation in the deformed theory, we first
identified the set of operators dual to excited string modes in the undeformed
theory, and noticed that much less than the total number of possible operators
(those with adequate quantum numbers) actually participate. This allowed us
some insight into the decoupling of a small set of nearly protected states. In
the deformed theory, we wrote down a large J proposal for the operators dual
to excited string states. Our confidence in the proposal is further cemented by
the fact that the anomalous dimensions of these operators are y-independent,
a result which matches that of the string spectrum. A further consideration at
finite J and O(g%,,) yields a y-dependence in the anomalous dimensions.
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Appendix A

SUSY Notation and Conventions

The convention adopted by [3] is that of the “West Coast” metric, namely

1 0 0 0
wn_ |0 =1 0 0
T"=lo o -1 0o |’

00 0 -1

which most notably affects the Pauli matrices 0° and 6°, which are 2 x 2 identity
matrices as a result.

In terms of the spinors, the irreducible representations of SL(2,C) ~ SO(1,3)
are (1,0) (which is the left-handed 2 component Weyl spinor), and (0, ) (which

is the right-handed 2 component Weyl spinor). Undotted indices correspond to
the (%, 0) representation, and dotted indices to (0, %), so that

0
(03) + ¥ =0

We can also write

Vo = (W), ¥ = (a)".

The two dimensional Levi-Civita symbols are used to raise and lower these
spinor indices. They are defined by
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so that we get

¢a = eaﬂlpﬂ: wa = eaﬂlpﬂ:

P = ey, s = egz0.

In addition, we define

where

1_01 2 __ 0 —1 3 _ 1 0
“‘(1 0)’ J_<z’ 0)’ 7= o -1

and I denotes the 2 x 2 identity matrix. The bar notation does not mean

complex conjugation, so that ¢™ has undotted-dotted indices (¢™.), and ¢™
ap

has dotted-undotted indices (5™%?). The Levi-Civita symbols relate ¢™ and
o™ as follows:

=maf _ ed"yE,Hdo.m

o 50 Tap = €54€7a0

Finally, we define the SL(2,C) generators as

mnB _ “[.m =nyf __ ,.n =mypB
a - 4[0-a"y0 Ua,-YO' ]’

—mnda __ —may n —ndy m
g = — |0 g »—0 g 4.
B 4[ 7B 7,3]
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Appendix B

Eigenvalue Problem

Section 5.3 deals with the operator H, and this appendix solves the eigenvalue

problem of this operator [5].
We write the eigenvalue problem as usual

Hli) = Ail7),

and denote the components of the eigenvectors by

Vo
(%1

Vj-1
vy

This gives us the expression

—4v,_1 + 8v, — dvp = v,

for1<n<J-—1and

3vg — 2v1 — vy = Ay, 3vy —2vy5_1 — vy = Avy.

We solve for the eigenvector components by making the ansatz
Uy = Aeilm + Be—ikn’
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which leads to

A =8—8cos(k)
from (B.1), and (B.2) leads us to the equation solved by the allowed values for
k:

Imag[(A — 3 + 27 4 7k (3etk) — 26 VDF _ 1 — \etk)] = 0.

As a final step, we can use (B.2) to find A in terms of B, and then use the
normalization of the eigenvector to find B.
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