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ABSTRACT 
 
The Minerals and Petroleum Resources Act (MRPDA) No 28 of 2002 of South Africa states 
that the holder of a mining permit remains liable for environmental consequences until a 
closure certificate has been issued, but does not stipulate the environmental standards required 
to obtain such a certificate. Monitoring of surface mining environments requires a consistent, 
repeatable and efficient method of monitoring that can be applicable to heterogeneous 
landscapes on large properties. To this end, this study forms a component towards the 
development and local testing of an internationally accepted, monitoring toolkit to monitor 
mine rehabilitation. Landscape Function Analysis (LFA) is a technique to rapidly determine 
broad biogeochemical processes occurring at the soil surface in heterogeneous landscapes. 
However, LFA is time consuming. Hyperspectral remote sensing (HSRS) is an alternative 
technique for monitoring large landscapes and is sensitive to both plant response to stress and 
soil minerals. The aim of this study is to derive LFA indices from HSRS (i.e. surface 
reflectance) data acquired with a hand-held spectrometer in order to predict landscape 
condition on deep-level gold mining surface environments in the Highveld region. The first 
objective was to test the potential of Partial Least Squares Regression (PLSR) modelling to 
predict LFA indices from the spectral data.  The second objective was to test the potential for 
using Vegetation Indices (VI), calculated from hyperspectral data, to predict LFA indices. 
Twenty-three VIs, covering plant pigments (i.e. chlorophyll, carotenoids and anthocyanins), 
plant structural components (cellulose and lignin) and plant water content, were tested. 
 
The study was carried out in winter (dry season) as this is the season when disturbance is 
most visible, and both seasonal (deciduous) vegetation growth and annual species are absent. 
The study was carried out at two gold and uranium mining operations in the Highveld 
grassland biome: West Wits Operations near Carletonville (Gauteng Province) and Vaal River 
Operations near Klerksdorp (North West Province). At Vaal River, data was collected from 
high and low disturbance sites replicated three times, in each of four of the dominant 
vegetation types: wet grasslands, non-rocky grasslands, rocky grasslands and woody shrub 
sites representing increasing structural complexity. At West Wits Operations (n = 6 sampling 
plots), only non-rocky grasslands were sampled. Twenty five circular quadrats of 50 cm 
diameter were evenly distributed on five gradsects within each plot (Total quadrats = 750). 
Paired data acquired from each quadrat were reflectance data (44 cm field of view), LFA data 
(50 cm circular quadrat), and a photograph for later allocation of the remaining LFA data. 
Time constraints collecting LFA data reduced the total number of quadrats sampled in the 
field from 750 quadrats to 150 quadrats. Difficulties in accurately pairing the LFA and HSRS 
data further reduced the number of quadrats I used for statistical analyses to 105. 
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The results of ranking the three LFA indices showed that stability was above the threshold 
value for sustainability, while infiltration was below threshold and nutrient cycling was close 
to threshold for all vegetation types and disturbance levels combined. These results suggest 
that soils were crusted and promoting run-off, and that disturbance was mainly impacting the 
vegetation component, rather than the soil component of the landscape. A comparison of non-
rocky grasslands between the two mining regions showed that West Wits had higher LFA 
indices for infiltration and nutrient cycling (t-test, P ≤ 0.01, DF = 36.8 and 26.4 respectively) 
than Vaal River. All three LFA indices: stability, infiltration and nutrient cycling, differed 
between vegetation types (One-way ANOVA, P < 0.05, DF = 3, 101) with wet grasslands 
having consistently higher LFA indices than the other three vegetation types.  Disturbance 
levels, combining vegetation types and mining region, also differed (t-tests, P < 0.01, DF = 
81.8, 102.3 and 100.08 for stability, infiltration and nutrient cycling respectively), with high 
disturbance quadrats having lower LFA indices than low disturbance quadrats. When 
comparing LFA indices between disturbance levels within each vegetation type, low 
disturbance sites generally still had higher LFA indices than high disturbance sites (P < 0.05). 
These findings support the initial selection of distinct vegetation types and disturbance levels, 
with exceptions to this pattern believed to be a result of low replication (n = 5) for these 
vegetation types. 
 
The twenty-three VIs were not useful for predicting LFA indices from HSRS data under my 
experimental conditions. All the VIs had generally low indices as expected (in the case of 
chlorophyll and plant water-based VIs) for winter senesced Highveld grasses. All linear 
regressions between LFA indices and VIs had very weak coefficients of determination (r2 < 
26%). The lignin index (NDLI) had the strongest coefficient of determination for both the 
stability (r2 = 25%, P < 0.01) and the nutrient cycling indices (r2 = 25%, P < 0.01). The 
infiltration index had the strongest coefficient of determination with the standard normalised 
difference vegetation index (NDVI) (r2 = 16%, P < 0.01). VIs had generally very low indices 
due to the winter senesced state of the Highveld vegetation. PLSR modelling produced much 
stronger regression coefficients of determination than did the VIs. The best PLSR model was 
a 15-component model to predict nutrient cycling (r2 = 54%, P < 0.01). A 13-component 
model predicting stability had an r2 = 38 % (P < 0.01), while a 17-component model was 
derived for infiltration (r2 = 32%, P < 0.01). In all three cases, these models were able to 
account for more than 90% of the spectral variability within the first two components.  
However, more than 16 components were required to account for 90% of the variability in the 
LFA measurements. It may be possible to reduce the number of components required for the 
PLSR modelling of the latter with a more standardised approach to the LFA data collection, 
i.e. having one observer who acquires all the LFA data in the field, and increased replication.  
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1. Introduction 

 

1.1 General Background 

 

Deep level gold mines in South Africa, although underground based activities, 

produce numerous surface environmental impacts including land degradation and loss 

of productivity (Sutton et al., 2006; Sutton and Weiersbye, 2007).  These surface 

activities include transport, storage or dumping of waste rock and tailings, the 

building and usage of roads, railway and pipe lines, and the leasing of surface 

grasslands for grazing.  Land degradation can also be caused by contamination of 

surface waters, ground waters and soil through acid mine drainage (AMD) (Akcil and 

Koldas, 2006) or dust pollution (Weiersbye et al., 2006a).  AMD decreases the pH of 

soil and water and thereby releases heavy metals into the environment at 

concentrations exceeding natural background values (Akcil and Koldas, 2006).  

Weiersbye and Witkowski (2003, 2007) showed that there was reduced regeneration, 

with more abnormalities in seedlings, reduced rates of viability and germination 

percentages, for seeds collected from gold mine polluted soils than those from non-

polluted sites.  Furthermore, the embryos of such seeds had lower concentrations of N 

and P than those from trees on unpolluted sites, and higher concentrations of S, Mn, 

Fe, Co, Ni, Cu and Zn.  

 

The motivation for this research stems from the requirements for mine closure in the 

Mineral and Petroleum Resources Development Act (MPRDA) No 28 of 2002.  More 

specifically section 43 (1) of the MPRDA states that the holder of a “mining permit 

remains responsible for any environmental liability, pollution or ecological 

degradation, and the management thereof, until the Minister has issued a closure 

certificate to the holder concerned.”  The Act does not stipulate the standards required 

for the issuing of a closure certificate, although the Constitution of South Africa, Act 

108 of 1996; the Conservation of Agricultural Resources Act (CARA) No 43 of 1983, 

the Environment Conservation Act (ECA) No 73 of 1989, the National Environmental 

Management Act (NEMA) No 107 of 1998 and consequent legislation (Biodiversity 

Act 10 of 2004) and the National Water Act (NWA) No 36 of 1998, all stipulate 

various standards with respect to environmental and human health, which are also 

applicable to mining lands during operations and post closure.  An objective and 
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repeatable means of assessing progress towards rehabilitation and closure criteria is 

therefore essential in order for mines to obtain closure certificates in South Africa.  To 

this end, my research will contribute to the development and local testing of an 

internationally accepted monitoring toolkit with which to routinely assess progress on 

mine rehabilitation objectives.  This involves developing models to derive indices of 

Landscape Function Analysis (LFA); i.e. stability, infiltration and nutrient cycling 

(Tongway and Hindley, 2004) from spectral reflectance of representative landscape 

surfaces on Highveld gold mines.  Developing models to efficiently and accurately 

predict landscape condition on deep-level gold mining surface environments will 

eventually allow the mapping (not part of this research report) with remotely sensed, 

aerial imaging spectroscopy data of the entire surface of these environments.  Thus 

maps of remotely sensed LFA indices can potentially be used for management 

purposes of these surface mining environments (Ong et al., 2004; 2008). 

 

This introductory chapter (Chapter 1) discusses the rationale for my research together 

with the literature pertinent to the techniques employed and states the aims and 

objectives for my research.  Chapter 2 describes my study areas and the methods and 

materials employed.  Chapter 3 presents my results and chapter 4 my discussion of 

these results.  The final, concluding chapter summarizes my findings and defines the 

way forward. 

 

1.2 The Rationale for this Research 

 

Landscape Function Analysis (LFA) is a technique to rapidly determine broad 

biogeochemical processes occurring in heterogeneous landscapes (Tongway and 

Hindley, 2004).  The basic assumption in LFA is that landscape structure, both biotic 

and abiotic, controls resource allocation in both space and time.  Therefore 

environments that lose resources (“leaky”) become more degraded and show this 

degradation as an increase in patchiness and a reduction in resource cycling.  

Resource loss may occur through removal from the landscape (soil erosion, run-off or 

leaching) or reduced inputs (decreased infiltration or reduced litter deposition or 

nutrient cycling) or reduced storage capacity (reduced vegetation or topsoil).  Central 

to LFA is the measurement of biogeochemical processes at the soil-vegetation 

interface through the use of Soil Surface Indicators (SSI).  There are eleven SSIs and 
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these are resolved into three Soil Surface Condition Indices (SSCI) (Figure 1).  These 

three SSCIs are surrogates for measuring disturbance or degradation.  The three SSCIs 

are stability, infiltration and nutrient cycling (Tongway and Hindley, 2004).  Stability 

is defined as the ability of a soil to withstand and recover from erosive forces.  

Infiltration is a measure of the partitioning of precipitation into soil water and runoff.  

Nutrient cycling indicates how efficiently organic matter is cycled back into the soil.  

Together these indices provide information about the resilience of a landscape. 

 

But LFA has constraints as a management technique.  It is a subjective method in the 

sense that it relies to some extent on the practitioners’ skills and experience.  It is less 

time-consuming than many empirical techniques but still involves many man-hours to 

collect field data.  And LFA requires replication both spatially and temporally while 

requiring sites to be accessible.  For management of surface mining environments, a 

monitoring toolkit is required that is consistent across heterogeneous landscapes on 

large properties.  This monitoring needs to be time and energy efficient and 

repeatable.   

 

Disturbance and pollution resulting from deep-level gold and uranium mining 

activities impact negatively on the surface environment in terms of hydrology and 

salinity (Akcil and Koldas, 2006), and consequently on soils and vegetation 

(Witkowski and Weiersbye, 1998; Weiersbye and Witkowski, 2003; 2007).  On the 

South African deep-level gold mines, these impacts may be detected through changes 

in species composition and biomass (Weiersbye et al., 2006b), soil surface condition 

or plant stress (Weiersbye and Witkowski, 2007).  Plant stress affects the quality and 

concentration of foliar pigments, which are in turn detectable using spectrometry 

techniques (Carter, 1993) – absorbance, transmission, and reflectance, which is the 

basis of hyperspectral remote sensing (HSRS).  Bare soil (iron oxides) (Huete and 

Escadafal, 1991; Ben-Dor et al., 2006) and mineral contaminants (`salts’) (Basnyat et 

al., 2000; Sutton et al., 2006; Weiersbye et al. 2006a) are also detectable using HSRS.  

Therefore landscape condition can be determined from HSRS-detectable changes in 

biomass, plant physiological state and soil surface indicators. 

 

Remote sensing has a number of advantages over other forms of data collection.  

First, the time taken to collect the data is minimal.  For example Pickup et al. (1998) 
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described physically measuring a grazing gradient taking seven man-days even 

though the landscape was not complex.  In contrast, HSRS data can be rapidly 

collected from a single flight or from satellite sources.  Second, remote sensing can 

collect data over large mining regions that are difficult to inspect on the ground, with 

a high spatial and spectral resolution (Sutton et al., 2006; Weiersbye et al., 2006a).  

Finally, remote sensing is generally not subject to human forms of bias during data 

collection (Ong et al., 2004) although it may be subject to bias during interpretation 

(Price, 1994; 1998).  Generating suitable models for deriving indices of LFA 

(stability, infiltration, nutrient-cycling) from HSRS data will allow mapping of 

environmental health over large areas at low cost, and assist in prioritising areas for 

more detailed, ground-based, study and in planning future land-use.  My study focuses 

on the development of these models from ground-sensed spectral data. 

 

1.3 Measuring Degradation and the Functional Status of the Environment 

 

Both the nature and extent of environmental degradation is difficult to quantify 

(Pickup et al., 1998) and there is some disagreement about what factors are important 

in measuring the condition of rangelands (Jordaan et al., 1997).  Land degradation 

often results in a lack of vegetation cover over time, but a lack of vegetation cover per 

se may not be a result of degradation but a response to variability in rainfall (Pickup et 

al., 1998).  Pickup et al. (1998) therefore chose to measure degradation as a function 

of the systems loss of resilience.  Resilience was defined as the ability of a landscape 

to recover to its original pattern of vegetation growth after change has occurred.  Loss 

of resilience was deemed to be a function of soil erosion, a reduction in infiltration 

and moisture-holding capacity, loss of seed banks and an increase in undesirable 

species which limit the ability of desirable species to establish and grow (Pickup et 

al., 1998).  Snyman and du Preez (2005) showed that degradation of semi-arid 

grasslands in South Africa was accompanied by increased soil compaction and soil 

temperature, a decrease in soil-water content and infiltration, a decrease in the rate of 

litter and root turnover, and reduced organic carbon and nitrogen. 
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Two approaches to quantifying environmental degradation have developed: nominal 

approaches which do not directly measure soil properties but are based on categorical 

variables; and empirical approaches which directly measure continuous variables such 

as soil carbon and nitrogen, landscape heterogeneity, erosion, infiltration and water 

holding capacities of soils (Holm et al., 2002).  In this study, Landscape Function 

Analysis (LFA), a categorical system based on indices derived from landscape 

organisation and soil surface characteristics (Tongway and Hindley, 2004), was used 

as a surrogate to measure degradation. 

 

1.4 Landscape Function Analysis (LFA) 

 

LFA (Tongway and Hindley, 2004) is a categorical technique developed from 

traditional empirical techniques for measuring change in rangelands.  It has been 

refined for monitoring rehabilitation and reclamation processes in mining 

environments.  LFA is a monitoring procedure that uses field assessed, soil surface 

indicators to characterise the biogeochemical functioning of landscapes at the 

hillslope and patch scale (Tongway and Hindley, 2004).  It is based on measuring 

whether a landscape is losing function through “leaking” resources or is retaining or 

gaining function by controlling the loss and capture of resources from the landscape.  

Measurements over time at the same sites can show whether a landscape is storing or 

losing resources and therefore (from a mining land perspective) whether management 

approaches are on successful rehabilitation / restoration trajectories or not. 

 

The underlying assumption in LFA is that landscapes develop non-random 

heterogeneity (which could be termed ‘functional’ heterogeneity) and that this 

heterogeneity provides important information on the surface and near-surface 

processes that allocate and re-allocate vital resources in space and time (Tongway, 

2004).  LFA is based on three key questions: 

1. What are the landscape components?  (Inventory) 

2. How do they fit together?  (Pattern) 

3. How do they “work” together?  (Process and function) 

The assumption is that the pattern of a landscape structures the processes, which 

define the functions occurring in a landscape.  As a result, every natural landscape 

type should have a characteristic spatial organization, termed patchiness, that 
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minimizes the loss of resources and maximizes their recycling within that landscape 

unit (Tongway, 2004). 

 

Ludwig and Tongway (1995) hypothesised that patchiness in arid to semi-arid 

landscapes develops to optimize the capture and storage of limited resources such as 

water and nutrients.  This hypothesis was developed out of Noy-Meir’s (1973) theory 

that many arid lands are source-sink or runoff-run-on systems.  Ludwig et al. (1999) 

modelled a semi-arid savanna in Australia and found that areas of intact patches had 

significantly higher soil nitrogen, organic carbon, infiltration rates, and plant 

productivity when compared to disturbed patches or inter-patches.  At the landscape 

level, Sparrow et al. (2003) found that on disturbed areas, vegetation biomass was 

halved compared to non-disturbed areas.  This suggested that resources were being 

lost from more disturbed areas or being made unavailable to plants.  In arid and semi-

arid ecosystems, patches are a direct result of the limitation of resource availibilty 

(Noy-Meir, 1973, Tongway et al., 2003) but as disturbance processes such as injury 

from defoliation or trampling continue, the ability of vegetation to maintain patch 

structure and function is reduced.  This reduces the ability of these patches to capture 

or retain mobile resources such as organic matter and water.  These resources then 

leak from the landscape.  This causes patches to decrease in size and bare inter-patch 

spaces to increase in size (Friedel et al., 2003; Tongway et al., 2003).  By defining the 

patchiness of a landscape and then measuring biogeochemical processes occurring in 

and around these patches, it can be shown whether a landscape is degrading, retaining 

or improving its resource allocation.   

 

Tongway and Hindley (2004) developed the soil surface condition indices (SSCI) 

derived from the soil surface indicators (SSI) to characterise these biogeochemical 

processes around patches.  The LFA practitioner measures the SSIs in the field using 

visually assessed or tactile measurements of biogeochemical processes operating on 

or within the soil surface (Tongway and Hindley, 2004).  Soil stability is defined as 

the ability of a soil to withstand erosive forces and recover (Tongway and Hindley, 

2004).  It is calculated (as a percentage) from the SSI measures of rain splash 

protection or soil cover, perennial vegetation basal cover, litter cover, cryptogam 

cover, presence of deposited materials, erosion type and severity, a soil slake test, 

surface resistance, and crust brokenness (Figure 1). 
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The index of water infiltration and/or runoff is a measure of the partitioning of rainfall 

into soil water or water runoff and possibly removing other resources as it runs off 

(Tongway and Hindley, 2004).  This is calculated from the SSI measures for perennial 

vegetation cover, surface roughness, soil slake test, litter cover and properties, surface 

resistance to disturbance, and soil texture (Figure 1).  The index of nutrient cycling 

status is defined as how efficiently organic matter is integrated back into the soil 

(Tongway and Hindley, 2004).  The calculation includes the SSI measures of 

perennial vegetation basal cover, litter cover properties, cryptogam cover, and surface 

roughness characteristics (Figure 1). 

 
Figure 1 The allocation of the eleven soil surface indices (SSI) into the three 

 soil condition indices (SSCI): stability, infiltration and nutrient cycling
 (Tongway and Hindley, 2004).  

 

 

These eleven SSI’s have been developed to score across the full range of an indicator 

from zero effect to maximal effect, and are based on a wide body of literature.  

Balliette et al. (1986) found that infiltration rates under sagebrush canopies in 

northern New Mexico rangelands were 35% higher than inter-patch areas.  They 

believed these higher infiltration rates resulted from high litter yield, increased basal 

cover and higher soil organic carbon under canopies.  They found that sediment 

Indicator

1. Soil Cover

2. Perennial grass basal and tree
and shrub foliage cover 

3a. Litter cover

4. Cryptogam cover

5. Crust broken-ness

6. Erosion type & severity

7. Deposited materials

8. Surface roughness

9. Surface resistance to disturb.

10. Slake test

11. Soil texture

STABILITY

INFILTRATION

NUTRIENT  
CYCLING

3b. Litter cover, origin and
degree of decomposition

Indicator

1. Soil Cover

2. Perennial grass basal and tree
and shrub foliage cover 

3a. Litter cover

4. Cryptogam cover

5. Crust broken-ness

6. Erosion type & severity

7. Deposited materials

8. Surface roughness

9. Surface resistance to disturb.

10. Slake test

11. Soil texture

STABILITY

INFILTRATION

NUTRIENT  
CYCLING

3b. Litter cover, origin and
degree of decomposition



 8 

production was related to soil texture, canopy cover, and total vegetation production.  

Zhang et al. (2003) found that detachment rates of soil were higher in disturbed soils 

than undisturbed soils when subject to surface water flow.  They found that slope 

angle also played a role in detachment rates but this depended on flow rate.  Removal 

of vegetation leads to increased runoff and potential soil evaporation rates resulting in 

decreased soil water content while runoff yield, peak flow and sediment load 

increased with the severity of grazing (Sharma, 1998). 

 

Biology plays an important role in both the stabilization and the degradation of soil 

aggregates.  At macroscales, roots and hyphae bond soil particles together, while at 

microscales, mucilages from roots, hyphae, bacteria, and soil fauna such as 

earthworms stabilize soil microaggregates and the linings of biopores (Oades, 1993).  

Soil aggregates are not only degraded by the presence and/or absence of soil microbes 

but also tillage of the soil and large animal and vehicle traffic (Oades, 1993).  

Edgerton et al. (1995) showed that there was a linear relationship between increasing 

soil aggregate stability and soil microbial biomass.   

 

Soil physical crusts have significant impacts on infiltration and nutrient cycling.  

Valentin and Bresson (1992) classified three main types of non-biological crust based 

on whether they were structurally based, erosion-based or deposition-based.  

Structural crusts are based on a rearrangement of soil particles.  Casenave and 

Valentin (1992) showed that infiltration capacity depends upon surface characteristics 

such as surface crusts, vegetation cover, faunal activity, surface roughness, vesicular 

porosity, and soil texture.  Biological crusts or cryptogamic crusts may decrease 

infiltration but increase stored soil moisture and nutrients.   Belnap and Gillete (1998) 

in North America, and Eldridge and Leys (2003) in Australia showed that 

cryptogamic soil crusts had important stabilising influences when subjected to wind 

erosion compared to sites where these bio-crusts had been disturbed.  Evans and 

Belnap (1999) showed that these disturbed sites had reduced soil nitrogen compared 

to sites with intact cryptogam crusts.  As in the soil texture triangle, the clay content 

of soils controls the expansive properties of soils and therefore sands have minimal 

changes in structural organisation, while clays can potentially change the most, with 

loams somewhere between the two (Oades, 1993).  van Gestel  et al., (1991) found 

that the properties of microaggregation and cation exchange capacity had significant 
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impacts on the retention of nutrients during periods of wetting and drying.  Dutartre et 

al. (1993) found that crusting due to rainfall in tropical sandy soils was related to low 

clay and organic matter content.  They further showed that as organic carbon content 

of soils increased, microaggregates were more stable to wetting and drying processes. 

Holm et al. (2002), working in Australia, found that the soil surface condition indices 

as proposed by Tongway and Hindley (2004) were positively related to empirical 

indicators of soil fertility but less closely correlated to proportional areas of vegetated 

patches.  They believed the relationship between SSCI’s and empirical measures of 

soil condition might be community specific.  McIntyre and Tongway (2005) found 

that as patches were increasingly closely grazed, stability, infiltration and nutrient 

cycling indices declined but stability was markedly resistant to change unlike the 

other two indices. 

 

Rezaei et al. (2006), working in Iran, found that vegetation type had significant 

influences on the infiltration and nutrient cycling indices.  They showed that the 

stability index was significantly correlated with foliage cover.  Furthermore, these 

researchers found that nutrient cycling, stability and landscape organization indices 

provided the best predictors of rangeland total yield production but not of herbaceous 

plant production.  They showed that the nutrient cycling index best explained the 

variation in soil productivity and consequently can be used as a surrogate for soil 

capability and monitoring.  But, Rezaei et al. (2006) argued that a high infiltration 

index did not mean that the soil could store the infiltrated water and so this index was 

not necessarily well correlated with soil productivity.  Similarly a high stability index 

does not mean high soil productivity but high resistance to erosion.  But if high 

stability occurs with high nutrient cycling and landscape organization indices, this 

generally reflects extensive vegetation cover and high soil productivity (Rezaei et al., 

2006).  The above discussion suggests that the LFA methodology and in particular the 

SSIs and SSCIs provide a suitable surrogate measure of environmental degradation.  

However, it should be noted that SSI’s and SSCI’s are surrogates for, and not direct 

measurements of stability, infiltration and nutrient cycling (McIntyre and Tongway, 

2005). 
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1.5 Remote Sensing 

 

Remote sensing in the broadest sense is the use of electromagnetic radiation to gather 

information about an object without making physical contact with the object (Rees, 

2001).  Hyperspectral remote sensing (HSRS), or reflectance imaging spectroscopy, 

involves sampling many different wavelengths across the electromagnetic spectrum 

with passive sensors which require an external source of light, such as the sun, to 

generate reflectance.  The radiance or reflectance values collected by a sensor are 

stored as a pixel.  The target which produces the radiance or reflectance captured by a 

sensor is termed a rexel (Rees, 2001).  The pixel only stores the intensity of the 

reflectance for different wavelengths and no other information.  The value of this 

intensity has no units as it is the ratio of the reflectance obtained from some reference 

standard and the reflectance obtained from the object of interest or rexel.  An image 

may be composed of a single pixel or a number of pixels.  In my study the spectral 

image is a single pixel acquired from a circular quadrat corresponding in size to the 

circular field of view (FOV) of the HSRS sensor. 

 

Passive sensors can only determine the amount of radiation received from the target.  

They provide no more information about the target other than the radiation emitted or 

reflected from that surface (Rees, 2001).  As a result the reflectance measured by the 

sensor needs to be interpreted in some way.  One way to interpret HS information 

involves the selection of specific bands based on biochemical or physiochemical 

properties in vegetation or soils, and their transformation by the use of a specific 

algorithm.  A band is a single wavelength or range of wavelengths.  A Vegetation 

Index (VI) is one of the simplest transformations and most commonly involves the red 

(600 to 700 nm) and Near-InfraRed bands (NIR; generally from 800 to 1000 nm) 

(Rees, 2001).  HSRS has been used for many environmental metrics, including 

detection or inference of pasture biomass (Boutton and Tieszen, 1983; Kogan et al., 

2004), C4/C3 grassland distributions (Davidson and Csillag, 2001), lianas in forest 

canopies (Kalacska et al., 2007), plant stress (Carter, 1993), monitoring infiltration 

rates in semi-arid soils (Ben-Dor et al., 2004), predicting LFA indices (Ong et.al., 

2004, 2008), soil rubification processes on sand dunes (Ben-Dor et al., 2006) and 

urban planning (Feingersh et al., 2007), to mention a few. 
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1.6 Hyperspectral Vegetation Indices 

 

The most basic VI is the Ratio Vegetation Index (RVI) (Jordan, 1969) which is simply 

the ratio between a near infrared band and a red band: 

 

 RVI = Rnir / Rred 

 

where:  Rnir is the radiation in the near infrared band and 

Rred is the radiation in the red band. 

 

This index was first proposed by Jordan (1969) to measure Leaf Area Index (LAI) in a 

perennially green canopy forest in Puerto Rico.  He used the wavelength of 800 nm 

for NIR and 675 nm for his red band.  Jordan (1969) further showed that the red light 

reaching the canopy is slightly higher than NIR but the ratio of NIR to red light above 

the canopy was constant.  Red light received by a canopy is absorbed by chlorophyll 

and this greatly reduces the red light received underneath a canopy or reflected back 

into the atmosphere.  NIR on the other hand is relatively unaffected beneath a canopy.  

Put differently, a non-linear inverse relationship exists between red radiance and 

green biomass, while a non-linear direct relationship exists between NIR and green 

biomass (Tucker, 1979).  Jordan (1969) showed that the more leaves present in the 

canopy, the greater the ratio between NIR and red light on the canopy floor.  One 

constraint with the RVI ratio is that if the red reflectance or radiance is zero, the index 

diverges to infinity.  An index which is much more widely used and solves the 

problem of the calculated index possibly diverging to infinity is the Normalised 

Difference Vegetation Index (NDVI) (Table 1).  One advantage of this index is that 

all possible values will lie between +1 and –1 (Rees, 2001).  The NDVI was first 

described by Rouse et al. (1973, loc. cit. Tucker, 1979).  Tucker (1979) evaluated 

various red, green and NIR wavelengths and found the red wavelengths were 

significantly better at discriminating the amount of photosynthetically active 

vegetation than the green wavelengths.  He also found no significant difference 

between various NIR wavelengths across the 750 to 900 nm band. 
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The NDVI is affected by a number of factors including vegetation characteristics, soil 

reflectance (Huete, 1988), senescent vegetation and/or leaf litter (van Leeuwen and 

Huete, 1996; Tucker, 1978; Tucker et al., 1981).  van Leeuwen and Huete (1996) 

showed that leaf litter had significant variability in spectral reflectance but that this 

was similar to soil reflectance patterns.  Huete (1988) examined the effects of soil on 

the NDVI and found that darker soil substrates under partial canopies resulted in 

higher NDVI values.  Red and yellow soils also have major influences on spectral 

vegetation indices.  In response to the effects of soil background on VIs, the Soil 

Adjusted Vegetation Index (SAVI) was developed (Huete, 1988) (Table 1).  The 

SAVI resulted in better vegetation discrimination and less soil noise levels but 

reduced the amplitude in the VI compared to the NDVI.  The SAVI was developed by 

adding a soil adjustment factor (L) to the NDVI calculation.  Huete (1988) found that 

as vegetation density varied so did the optimal adjustment factor.  In general the value 

of L for a specific soil is difficult to determine but a value of 0.5 reduced soil noise 

considerably across the range of vegetation densities (Huete, 1988).  The NDVI and 

the SAVI both use the absorption spectra of chlorophyll at the 680 nm absorption 

centre of chlorophyll (Ting, 1982) but other indices have used different chlorophyll 

absorption centres.  Gitelson et al. (1996) used the “green” absorption centre around 

520 to 630 nm to develop a green or GNDVI (Table 1) where ρnir = 750 nm and ρgreen 

= 550 nm.  They suggested that this index was five times more sensitive than the 

standard NDVI. 

 

The NDVI and other VIs discussed above are known as broadband indices as they 

were designed to use the bands available from various satellites.  These satellite bands 

cover a range of wavelengths but as spectral instruments become more sophisticated, 

narrow band indices have been developed which can use features expressed in much 

narrower ranges of wavelengths (ENVI 4.2).  The following indices are all narrow-

band indices using the transition from chlorophyll absorption and near-infrared 

scattering known as the red-edge which is from 690 – 740 nm (Curran et al., 1995).  

Gitelson and Merzylak (1994) found that in horse chestnut (Aesculus hippocastanum 

L.) and Norway maple (Acer platanoides L.) the standard NDVI saturates at relatively 

low chlorophyll concentration levels.  They developed the Red Edge Normalized 

Difference Vegetation Index (NDVI705) (Table 1) after showing that the wavelength at 

705 nm was much more sensitive to high chlorophyll concentrations.  Sims and 
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Gamon (2002) developed the modified red edge Simple Ratio Index (mSR705) and the 

modified red edge Normalised Difference Vegetation Index (mNDVI705) (Table 1) in 

response to high leaf surface specular reflectance.  They found that reflectance of 

chlorophyll and carotenoids were constant at the 445 nm wavelength until chlorophyll 

concentration was very low.  They therefore used this wavelength with the red edge 

705 nm and NIR 750 nm wavelengths in their two VIs to compensate for this high 

leaf surface reflectance (Sims and Gamon, 2002).  Vogelmann et al. (1993) also used 

the red edge studying leaves from sugar maple (Acer saccharum Marsh.) trees that 

had suffered intensive insect damage.  They developed a number of indices, of which 

two, the Vogelmann Red Edge Index 2 (VOG 2) and the Vogelmann Red Edge Index 

3 (VOG 3) were used in my study (Table 1).  

 

All the indices discussed above are based on chlorophyll absorption features, 

however, indices have also been developed which use both chlorophyll and other 

plant pigments such as carotenoids.  The Structure Insensitive Pigment Index (SIPI)   

(Table 1) was developed by Peñuelas et al. (1995) using the 680 nm wavelength for 

chlorophyll and the 445 nm wavelength for carotenoids.  Increases in SIPI are thought 

to indicate increased canopy stress (ENVI 4.2).  Merzlyak et al., (1999) developed the 

Plant Senescent Reflectance Index (PSRI) (Table 1).  This index uses reflectance 

around 500 nm which is sensitive to chlorophyll a, chlorophyll b and the carotenoids, 

and reflectance around 680 nm which is only sensitive to chlorophyll a (Merzlyak et 

al., 1999). 

 

One of the constraints with using chlorophyll to detect vegetation cover during 

periods of dormancy is that it is one of the first pigments to decompose during 

senescence.  Other pigments, such as the carotenoids, remain in senescing tissue for 

much longer periods.  Furthermore there is an overlap in light absorption between 

chlorophyll and other pigments.  The Plant Reflectance Index (PRI) (Table 1) was 

developed by Gamon et al., (1992).  The PRI focuses on the xanthophyll cycle where 

the conversion of violaxanthin to zeaxanthin occurs when absorbed photosynthetically 

active radiation (PAR) exceeds photosynthetic capacity (Gamon et al., 1992).  Gamon 

et al., (1997) later tested this index on 20 species covering annuals, deciduous 

perennials and evergreen perennials and found it effective for measuring 

photosynthetic function across these species.   
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Table 1 Vegetation indices (VIs), algorithms and wavelengths used in this study.  
 

VI Name VI Acronym Environmental features Algorithm Wavelength 
(nm) 

Reference 

Normalised Difference 
Vegetation Index 

NDVI Chlorophyll and canopy 
leaf area. 

(ρNIR - ρRED) /  (ρNIR + ρRED) 800 
680 

Tucker (1979) 

“Anglo” NDVI ANDVI Chlorophyll and canopy 
leaf area. 

(ρNIR - ρRED) /  (ρNIR + ρRED) 750 
676 

Revivo et al. 
(2005) 

Green Normalised 
Difference Vegetation 
Index 

GNDVI Chlorophyll (ρnir – ρgreen) /  (ρnir + ρgreen) 
 

550 
750 

Gitelson et al.  
(1996) 

Soil Adjusted 
Vegetation Index 

SAVI Chlorophyll adjusting for 
soil background 

1.5(Rnir – Rred) / (Rnir + Rred
 + 0.5) 670 

800 
Huete (1988) 

Red Edge Normalized 
Difference Vegetation 
Index 

NDVI705 Chlorophyll and canopy 
leaf area. 

(ρ750 – ρ705) / (ρ750 + ρ705) 750 
705 

Gitelson and 
Merzlyak, 
(1994) 

Modified Red Edge 
Simple Ratio Index 

mSR705 Chlorophyll and canopy 
leaf area. 

(ρ750 – ρ445) / (ρ705 – ρ455) 750 
705 
445 

Sims and 
Gamon (2002) 

Modified Red Edge 
Normalized Difference 
Vegetation Index 

mNDVI705 Chlorophyll and canopy 
leaf area. 

(ρ750 – ρ705) / (ρ750 + ρ705 – 2ρ445) 750 
705 
445 

Sims and 
Gamon (2002) 

Vogelmann Red Edge 
Index 2 

VOG 2 Chlorophyll, canopy leaf 
area and water content 

(ρ734 – ρ747) / (ρ715 + ρ726) 715 
726 
734 
747 

Vogelmann et 
al. (1993) 

Vogelmann Red Edge 
Index 3 

VOG 3 Chlorophyll, canopy leaf 
area and water content 

(ρ734 – ρ747) / (ρ715 + ρ720) 
 

715 
720 
734 
747 

Vogelmann et 
al. (1993) 
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Table 1 continued Vegetation indices (VI), their algorithms and wavelengths used in this research. 
 
 

VI Name VI Acronym Environmental 
features 

Algorithm Wavelength 
(nm) 

Reference 

Structure Insensitive 
Pigment Index 

SIPI Chlorophyll and 
carotenoids 

(ρ800 – ρ445) / (Ρ800 – ρ680) 445 
680 
800 

Peñuelas et al. 
(1995) 

Plant Senescence 
Reflectance Index 

PSRI Chlorophyll and 
carotenoids 

(ρ680 – ρ500) / Ρ750 500 
680 
750 

Merzlyak et al. 
(1999) 

Photochemical 
Reflectance Index 

PRI Carotenoids (ρ531 – ρ570) / (Ρ531 + ρ570) 531 
570 

Gamon et al. 
(1992) 

Carotenoid 
Reflectance Index 1 

CRI 1 Carotenoids (1 / ρ510) – (1 / ρ550) 510 
550 

Gitelson et al. 
(2002) 

Carotenoid 
Reflectance Index 2 

CRI 2 Carotenoids (1 / ρ510) – (1 / ρ700) 510 
700 

Gitelson et al. 
(2002) 

Anthocyanin 
Reflectance Index 1 

ARI 1 Anthocyanins (1 / ρ550) – (1 / ρ700) 550 
700 

Gitelson et al. 
(2001) 

Anthocyanin 
Reflectance Index 2 

ARI 2 Anthocyanins ρ800 ((1 / ρ550) – (1 / ρ700)) 550 
700 
800 

Gitelson et al. 
(2001) 

Cellulose Absorption 
Index 

CAI Cellulose 0.5 ((ρ2000 – ρ2200) / ρ2100) 
 

2000 
2100 
2200 

Daughtry et al. 
(2004) 

Normalized 
Difference lignin 
Index 

NDLI Lignin (log (1 / ρ1754) – log (1 / ρ1680)) / 
(log (1 / ρ1754) + log (1 / ρ1680)) 

1680 
1754 

Serrano et al. 
(2002) 
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Table 1 continued Vegetation indices (VI), their algorithms and wavelengths used in this research. 
 
 

VI Name VI Acronym Environmental 
features 

Algorithm Wavelength 
(nm) 

Reference 

Water Band Index WBI Plant water content ρ900 / ρ970 900 
970 

Peñualas et al. 
(1993) 

Normalized 
Difference Water 
Index  

NDWI Plant water content (ρ857 – ρ1241) / (ρ857 + ρ1241) 
 

857 
1241 

Gao (1996) 

Normalised 
Difference Infrared 
Index 

NDII Plant water content (ρ819 – ρ1649) / (ρ819 + ρ1649) 819 
1649 

Hardisky et al. 
(1983) 

Normalised 
Difference Infrared 
Index 5 

NDII 5 Plant water content (R800 – R1625) / (R800 + R1625) 800 
1625 

Numata et al. 
(2007) 

Normalised 
Difference Infrared 
Index 7 

NDII 7 Plant water content (R800 – R2220) / (R800 + R2220) 
 

800 
2220 

Numata et al. 
(2007) 
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A different set of carotenoid VIs that detect carotenoid levels in plants while 

compensating for chlorophyll reflectance effects have been developed by Gitelson et 

al. (2002).  These researchers developed two indices for measuring carotenoid 

concentrations in plants: the CRI1 and CRI2 (Table 1) using the inverse reflectances 

at 510 and 550 nm or 510 and 700 nm respectively (Gitelson et al., 2002).  The 

reciprocal reflectance at 510 nm was linearly related to the total pigment content of 

leaves from Norway maple (Acer platanoides L.), horse chestnut (Aesculus 

hippocastanum L.) and beech (Fagus sylvatica L.).  The inverse reflectance at 510 

and 700 nm was used to remove the influence of chlorophyll from the reflectance at 

510 nm in order to produce an estimation of the carotenoid content of these leaves 

(Gitelson et al., 2002).  High values for this index reflect higher levels of carotenoids 

relative to chlorophyll (ENVI 2.4).  Similarly, Gitelson et al., (2001) developed the 

anthocyanin reflectance indices ARI1 and ARI2 (Table 1) using leaves from the 

Norway maple (Acer platanoides L.), cotoneaster  (Cotoneaster alaunica Golonite), 

dogwood (Cornus alba L. (Swida alba (L.) Opiz)) and Pelagonium zonale L’Herit (ex 

Soland).  These authors identified a peak at 550 nm related to anthocyanin absorption 

in vivo whose magnitude was proportional to anthocyanin content.  This wavelength is 

also related to chlorophyll absorption.  Subtraction of the inverse reflectance at 700 

nm was used to remove the chlorophyll from the anthocyanin signal in the ARI1 

algorithm, and at 700 and 800 nm in the ARI2 algorithm (Gitelson et al., 2001). 

 

Other VIs have been developed that use the reflectance properties of plant tissues and 

plant materials that are unrelated to plant pigments (Fourty et al., 1996) (Table 1).  

These include cellulose, lignin and plant water content.  The Cellulose Absorption 

Index (CAI) (Daughtry, 2001, Daughtry et al., 2004) is a VI developed to assess crop 

residue by focusing on a cellulose-lignin absorption feature near 2100 nm.  This index 

was developed from the observation that cellulose, lignin and nitrogen affected 

absorption around 1730, 2100 and 2300 nm.  The CAI algorithm uses three 

reflectance bands, one from the centre of cellulose absorption at 2100 nm, and two 

from the shoulders of the absorption feature at 2000 and 2200 nm to estimate 

cellulose (Daughtry et al., 2004).  The CAI is affected by the Relative Water Content 

(RWC) of soils and plant residues, and may be difficult to separate from soil spectra 

at high RWC (Daughtry, 2001).  The Normalised Difference Lignin Index (NDLI) 

(Serrano et al., 2002) was developed to capitalise on the lignin absorption feature at 
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1754 nm.  According to Serrano et al., (2002) the NDLI may produce inaccurate 

results in senescent vegetation and this could be a constraint with winter data. 

 

Water in its various phases and in a free state can influence remote sensing 

measurements quite extensively by masking features through overlapping absorption 

wavelengths or depressing the spectral signature of a desired feature, such as in moist 

soils, however, it can also be used to quantify plant-water metrics.  Peñualas et al. 

(1993) developed the Water Based Index (WBI) which uses the ratio at 950 and     

900 nm wavelengths to measure the plant RWC.  One water absorption centre is 

between 950 and 970 nm, while 900 nm is used as a reference reflectance.  It was 

found that in Gerbera jamesonii, Capsicum annuum and Phaseolus vulgaris, this ratio 

increased as RWC decreased (Peñualas et al., 1993).  These authors further found that 

this ratio was stronger at canopy level than at leaf level, and when LAI was constant 

and plant cover was 100 % of soil, indicating its usefulness in more humid, tropical 

ecosystems (Peñualas et al., 1993). 

 

The Normalized Difference Water Index (NDWI) was developed by Gao (1996) and 

used by Jackson et al., (2004) to map daily vegetation water content of soybean and 

corn.  This index is based on weak absorption by liquid water in the plant body at 

1240 nm.  Gao (1996) found that dry vegetation produced slightly negative numbers 

for this index while green vegetation produced positive values.  It was further shown 

that the index gave progressively higher values for bare soil, grassland and crop at the 

peak of the growing season on the high plains of Colorado (Gao, 1996).  Hardisky et 

al. (1983) developed the Normalised Difference Infrared Index (NDII) which Numata 

et al., 2007) adapted to the closely related NDII 5 and 6.  It was shown that the NDII 

was closely correlated with plant water content and soil salinity in Spartina 

alterniflora Loisel. growing in a salt marsh.  In an Amazonian study of overgrazed 

and degraded rangelands, Numata et al. (2007) found that the NDVI resulted in the 

poorest correlation to winter senesced degraded grassland, while the NDII 5 and 7 

gave stronger correlations with biophysical measures of rangeland degradation. 

 

In summary, a number of VIs have been described (Table 1), although this is by no 

means a complete list.  VIs are based on two or more wavelengths of reflectance – one 

which absorbs light depending on the abundance of the feature responsible for the 
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light absorption, and a second wavelength which is nearly 100% reflected.  These two 

wavelengths are used to generate an index which acts as a proxy measure for the 

substance responsible for the light absorption.  This substance in turn is a proxy for 

some environmental factor such as biomass or plant constituents, and thus plant 

physiological status.  Most VIs are based on plant pigments, most commonly 

chlorophylls, but also carotenoids and anthocyanins, or plant structural materials, or 

plant water content. 

 

1.7 Environmental Degradation, Remote Sensing and Vegetation Indices 

 

Land degradation can be defined in many ways yet generally means a reduction in 

biological productivity of a landscape as indicated by changes in vegetation structure 

and composition, with increased spacing between vegetation, soil erosion, and a loss 

of resources (Wessels et al., 2004).  The measurement of environmental degradation 

through remote sensing has mainly involved characterizing changes in VIs over time 

(Wessels et al., 2004; Numata et al, 2007).  The assumption is that changes in 

biomass indicate changes in the environment, and if these changes indicate less 

biomass, than some form of environmental degradation is occurring.  But degradation 

may not show initially as a change in biomass.  For example, an initial response to 

disturbance may be a change in species composition (Yamano et al., 2003), or a 

reduction in biomass may be a response to climate variability rather than a sign of 

degradation (Pickup et al., 1998). 

 

The most commonly used vegetation index is the NDVI and various elaborations of 

this index have been applied in South Africa (Wessels et al., 2004), Syria (Geerken 

and Ilaiwi, 2004), Australia (Holm et al., 2003), the USA (Goodin and Henebry, 

1997), and Botswana (Ringrose and Matheson, 1987).  Ringrose and Matheson (1987) 

found that at vegetation aerial covers of less than 50 %, NDVI did not detect changes 

in vegetation cover.  They suggested that high soil reflectance results in high NIR 

measurements and confounds the NDVI ratios when vegetation aerial cover is less 

then 50%.  Tanser and Palmer (1999) used a Moving Standard Deviation Index 

(MSDI) applied to the red band (Landsat TM 3).  They then compared the MSDI to 

NDVI values across fence lines separating degraded and non-degraded areas in four 

areas in the Eastern Cape, South Africa.  In all but one area there were significantly 
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different results in both MSDI and NDVI.  For the exception, MSDI gave significant 

differences between degraded and non-degraded rangeland, whereas the NDVI 

showed no significant difference between the two rangeland conditions.   

 

Pickup et al. (1998) used the PD54 index to measure degradation in Australian 

rangelands.  The PD54 index essentially plots the radiance in the green bands against 

the visible red bands, where the upper limit indicates bare soil and the lower limit 

characterises areas with 100 % vegetation aerial cover (Pickup et al., 1998).  Implicit 

in this index is the observation that environmental degradation is characterised by an 

increase in bare soil.  Yamano et al. (2003) attempted to discriminate two grass 

species, one that tolerated salinity, and another that tolerated increased aridity, from 

other grass species.  Fourth derivative peaks around 670 and 720 nm were used to 

separate out this species from other grass species common in the study area.  Numata 

et al. (2007) used a number of vegetation indices as well as spectral mixture analysis 

(SMA) (Roberts et al., 1998) to measure degradation in a Brazilian rangeland.  The 

vegetation indices used included the NDVI (Tucker, 1979), SAVI (Huete, 1988), and 

two infrared indices (NDII5 and NDII7).  The NDVI and SAVI are chlorophyll based 

indices whereas the NDII5 and NDII7 are plant water content based indices.  All four 

vegetation indices were found to have positive correlations with pasture based 

measures of degradation, but with highest correlation for plant water content and 

lowest for biomass.  This lower correlation of chlorophyll based vegetation indices 

was interpreted as being associated with a high proportion of non-photosynthetic 

material (Numata et al., 2007).  In my study data was collected in winter as LFA 

SSI’s are not masked by deciduous or annual vegetation, and although chlorophyll 

may degrade, carotenoids are still present in senesced vegetation. 

 

1.8 Partial Least Squares Regression Modelling 

 

Partial Least Squares Regression (PLSR) modelling of full spectrum hyperspectral 

data to predict LFA indices was successfully applied to data from Goldsworthy 

decommissioned iron ore mine and the bauxite mines of Huntley and Boddington, all 

in arid to semi-arid regions of Australia (Ong et al., 2004, 2008).  Maps were 

produced of stability, infiltration and nutrient cycling from airborne HyMap 

hyperspectral data of the mine surfaces.  My study builds on the research of Ong et al. 
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(2004), and forms an independent test of the method on representative vegetation 

types of increasing complexity in two gold mining environments in South Africa. 

 

The Partial Least Squares method was developed by H.S. Wold in the sixties in the 

field of econometrics, and applied at a later stage to chemometrical problems (Geladi 

and Kowalski, 1986, Wold et al., 2001).  Geladi and Kowalski (1986) describe PLSR 

as more robust than classical multiple linear regression and principle component 

regression analyses in the sense that the model parameters do not change much when 

new calibration samples are added.  PLSR is particularly useful because it can be used 

to analyze highly collinear, noisy data with numerous X-axis variables (Wold et al., 

2001).  PLSR is a data compression tool which produces a sequence of models as 

components or “latent variables” are added to the modelling process (Frank and 

Friedman, 1993).  PLSR is unusual in that it models both the X and Y-variables 

through maximising the explained X/Y covariance (Martens, 2001), and further has 

the flexibility of being able to incorporate a number of response or Y-variables into 

the modelling process (Martens and Næs, 1989). 

 

PLSR is widely used for the reduction of large chemical spectrometry data sets, and 

has been applied to a growing number of environmental questions in the remote 

sensing field.  Townsend et al. (2003) applied PLSR to satellite data in order to map 

the relative amounts of canopy nitrogen in forests from satellite data, while Hansen 

and Schjoerring (2003) measured canopy biomass and nitrogen in wheat, and Coops 

et al. (2003) and Huang et al. (2004) predicted relative nitrogen contents in Eucalypt 

foliage.  Schmidtlein and Sassin (2004) used PLSR in mapping floristic gradients in 

grasslands, while Kooistra et al. (2004) and Wilson et al. (2004) examined the 

potential of PLSR in mapping plants growing on metal contaminated soil.  Recently 

the technique was used to predict soil salinity (Farifteh et al., 2007), organic carbon 

content in agricultural soils (Stevens et al.. 2008) and soil condition in tropical regions 

of sub-Saharan Africa (Awiti et al., 2008). 
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1.9 Aims and Objectives of Research 

 

The goal of my study is to contribute towards the development of a toolkit to monitor 

disturbance and rehabilitation processes on gold mining environments towards 

eventual closure of gold mines.  To this end the aim of this study is to derive LFA 

indices to predict rangeland condition on deep-level gold mining surface 

environments from hyperspectral data.  Two methods of achieving this aim were 

tested.  The first objective was to develop usable Partial Least Squares Regression 

(PLSR) models from full spectrum hyperspectral data to predict Landscape Function 

Analysis (LFA) indices (Figure 2).  The PLSR models and their predictions provide 

the potential to accurately map environmental degradation from airborne or satellite 

resources across the entire surface of gold mines for management and monitoring 

purposes.  The second objective was to test 23 spectral Vegetation Indices (VI) 

against the Landscape Function Analysis (LFA) indices as possible alternatives to 

PLSR for predicting LFA indices from hyperspectral data.  This has further value in 

providing possible insight into the environmentally meaningful interpretation of the 

coefficients and loadings produced during PLSR modelling.  The key questions and 

hypotheses related to these objectives are elaborated on in the methods section 

discussing the statistical tests used (Section 2.7) and results (Chapter 3). 

 

This report presents the results and discussion in a different order to the objectives 

presented above.  Of the two objectives, I regarded PLSR as more important than the 

VIs, in the context of this study, and therefore PLSR is defined as objective one.  

However, in presenting and discussing the results, the natural flow is from LFA 

through the VIs to PLSR, and the report follows this natural flow. 
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2. Methods and Materials 

 

2.1 Tasks Required to Achieve Objectives 

 

To achieve the aim and objectives, the following tasks needed to be performed 

(Figure 2): 

1. The collection of paired LFA and HS field data from 50 cm diameter circular 

quadrats of natural rangeland, covering four vegetation types with two broad 

disturbance categories (high and low) in two mining regions during winter; 

2. Calculating the three LFA indices (SSCIs: stability, infiltration and nutrient 

cycling) from the eleven field assessed SSIs; 

3. Calculating the 23 VIs using the VI algorithms and their respective 

wavelengths from the hyperspectral data; 

4. Correlation analysis between VIs to test the integrity of the VI values 

calculated from winter senesced vegetation in the absence of empirical values 

for these VI features; 

5. Simple linear regression with the LFA indices as the response and the VIs as 

the predictor variable; 

6. Removing the atmospheric water noise, change in sensor steps, Short Wave 

Infra-Red (SWIR) and Ultra-Violet (UV) noise from the full spectrum 

hyperspectral data prior to PLSR modelling; 

7. Pairing each quadrat’s LFA index with its respective full spectrum 

hyperspectral measurement, and splitting the paired data into calibration data  

(n = 79), and validation data (n = 26); 

8. Calibrating the PLSR models with the paired HS full spectrum data (n = 79) as 

the predictor matrix (X values), and the LFA indices as the response variable 

(Y); 

9. Validating the selected best-fit calibration models with new data (n = 26). 
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Figure 2 Flow diagram of the data acquisition and processing steps. 

Photographic  
LFA data 
collection 

Field LFA data 
collection 

Ground based HS 
data collection 

Task 2 
Calculate LFA SSCIs for 
stability, infiltration and 
nutrient cycling  

Task 3 
Calculating vegetation 
indices (VI) 

Task 5: 
SECOND 
OBJECTIVE 
Linear regression 
with VIs and 
LFA indices 

FIRST OBJECTIVE: Partial Least Squares Regression (PLSR) 
modelling with full spectrum HS data and LFA indices 

Task 8 - Calibration 
Linear regression of predicted 
75% LFA SSCIs against 
calibration set of field LFA 
SSCIs (n = 79) 

Task 1 
Site selection and 
paired data collection 

Task 7 
Random separation of 
paired quadrats (every 4th): 
75%  25% 

Task 9 - Validation 
Linear regression of 25% HS predicted stability, infiltration and nutrient cycling 
indices against LFA field derived SSCIs with new data (n = 26) 

Task 7 
Random separation of 
paired quadrats (every 4th):  
25%  75% 

Selection of best 
predictive models 
for stability, 
infiltration and 
nutrient cycling  

Task 4 
Correlation 
between VIs 

Task 6 
Removal of noise 
from spectra 



 25 

2.2 The Study Sites 

 

The study was conducted at AngloGold Ashanti’s Vaal River gold and uranium 

mining operations near Klerksdorp, North West Province, and West Wits mining 

operations near Carletonville, Gauteng Province.  The two mining regions are within 

the summer rainfall zone with seasonal extremes in temperature (Schultz, 1997).  The 

Vaal River mining region, at an altitude of 1300 to 1350 m, receives a mean annual 

precipitation (MAP) of 560 mm (Mucina and Rutherford, 2006) with a high inter-

annual variability of 25 to 30 %.  The Vaal River sites are situated on the North bank 

of the Vaal River on dolomites of the Malmani Subgroup (Chuniespoort Group, 

Transvaal Supergroup; Mucina and Rutherford, 2006).  Soils are predominantly 

shallow (50 – 150 mm) and rocky, and dominated by Mispah, Glenrosa and Hutton 

soil forms (Mucina and Rutherford, 2006).  Acocks (1988) characterised these sites 

into three vegetation types: the western variation of Bankenveld (61a), a southern 

variation of Cymbopogon-Themeda veld (48a), and a northern variation of Dry 

Cymbopogon-Themeda veld (50a).   

 

 
 
Figure 3 The Republic of South Africa showing the location of the two research 

sites. 
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Mucina and Rutherford (2006) called the vegetation Vaal Reefs Dolomite Sinkhole 

Woodland (Gh 12).  Important taxa include small trees such as Acacia erioloba 

E.Mey., Celtis Africana Burm.f. and Rhus lancea L.f., and graminoids such as 

Aristida congesta Roem & Schult, Digitaria eriantha Steudel, Eragrostis curvula 

(Schrad.) Nees and Themeda triandra Forsk. amongst others (Mucina and Ritherford, 

2006).  The mean daily temperature minima and maxima for Vaal River is 0ºC (July) 

and 25ºC (January) respectively.   Frost is common in winter at both mining regions 

with frost experienced 150 – 175 days of the year (Schultz, 1997), and evaporation 

rates being high with January A-pan evaporation around 250 – 300 mm and July 

around 100 – 140 mm (Schulze, 1997).   

 

The West Wits sites, with a MAP of 650 mm (Mucina and Rutherford, 2006), are 

situated on rocky quartzite and shale in the C6 + 7 subdivisions at 1 600 to 1 650 m 

with Bankenveld, xeric grassland (klipveld) and Acacia karroo savanna (Weiersbye et 

al., 2006b).  Acocks (1988) defined the West Wits sites as Bankenveld (61) possibly a 

transition between the western and central variations.  O’Connor and Bredenkamp 

(1997) defined these as the central plateau grasslands, being the A2 subdivision, 

which is dominated by Panicum coloratum and Eragrostis curvula.  Mucina and 

Rutherford (2006) described the vegetation around the West Wits sites as Gauteng 

Shale Mountain Bushveld (SVcb 10).  This is a short (3 – 6 m tall), semi-open thicket 

dominated by a variety of woody species and an understorey dominated by a number 

of grasses. 

 

However, the process of mining has substantially altered the vegetation at both mines 

with the loss of many phraetophyte (Weiersbye and Witkowski, 2003, 2007) and 

herbaceous species (Weiersbye et al., 2006).  Weiersbye et al. (2006b) documented a 

total of 462 taxa colonizing slimes dams and polluted soils alone at three gold mining 

regions (the two study regions together with a third region at Welkom), although a 

higher number of taxa could be present on the properties as a whole.  Cattle ranching, 

game (rangelands) and crop (maize and sunflower) agriculture are the predominant 

regional land uses surrounding the deep-level gold mining regions.  Within these gold 

mining landscapes, wastelands such as degraded and derelict land with little 

vegetation cover, and swampy lands inundated with seepage from tailings dams are 

common (Weiersbye et al., 2006b). 
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2.3 Site Selection 

 

Possible sites were initially identified from aerial photographs (Figure 4 and 5).  

Thereafter a ground inspection by D. Furniss and I. Weiersbye was conducted and 

actual sites selected to cover the four broad vegetation types at Vaal River.  One of 

these vegetation types was replicated at West Wits.  The vegetation types at Vaal 

River were selected to encompass the entire catena (with the exception of the riparian 

woodland zone, Phragmites reed beds and perennial wetlands) in order of increasing 

vegetation structure and physiognomic complexity.  These vegetation types from 

simple to complex physiognomy were (i) wet grassland, (ii) dry, non-rocky 

grasslands, (iii) dry, rocky grasslands, and (iv) perennial evergreen shrubs and trees 

dominated by R. lancea L.f. in a grassland matrix (Table 2).  These R.lancea plots are 

a remnant of the Vaal Reefs Dolomite Sinkhole Woodland (Mucina and Rutherford, 

2006).  At West Wits only one vegetation type, non-rocky, dry grassland was selected.  

At Vaal River all four vegetation types were selected.  The biodiversity of the sites 

has a different order to the physiognomic complexity (Weiersbye, pers. comm.), with 

wet grasslands having the lowest diversity and dominated by Cynodon dactylon (L.) 

Pers. and Schoenoplectus corymbosus (Roth. Ex Roem. & Schult.) J. Raynal.  Non-

rocky grassland has a higher biodiversity than wet grassland and is dominated by E. 

curvula and Hyparrhenia hirta (L.) Stapf.  The woody shrub plots follow non-rocky 

grasslands in biodiversity, and the rocky grasslands have the highest biodiversity.    

 

The entire gold mining region on the Highveld is characterised by various forms of 

disturbance ranging from general mining activities, acid mine drainage (AMD) and 

livestock grazing.  Sites within the research area were subjectively selected at two 

disturbance extremes: low and high, both situated on shallow slopes (< 10°).  A low 

disturbance site was visually determined by having a thick, generally closed canopy 

vegetation cover, with no evidence of major resource loss and erosion, whereas a high 

disturbance site was selected by having a very patchy vegetation cover with visible 

areas of bare ground and evidence of soil erosion and resource loss (e.g. loose surface 

particles, pedicels and alluvial fans).  The causes of disturbance were not 

characterised as the purpose is not to determine particular disturbance impacts on HS 

measurements, but rather to determine if HS measurements can discriminate the 

general range of disturbance impacts on vegetation and soil in mining environments.  
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The result from site selection was four vegetation types, with non-rocky grassland 

replicated between the two gold mining regions, each at two different disturbance 

levels (Table 2).  Plots at Vaal River were selected along two transects, from top to 

bottom of the catena, excluding riparian zones, and attempting to get a good 

distribution of all vegetation types and disturbance regimes across the mine property 

(Figure 4).  Plots at West Wits were selected from a natural grassland along a shorter 

transect on a catena between a gold tailings storage dam and a natural stream, again 

excluding the riparian zone (Figure 5). 

 

All field work was carried out during three field trips.  The first fieldtrip occurred on 

the 9 August 2007 to select suitable sites.  The second field trip involved the 

collection of LFA and HS data: three days from the 13 – 15 August 2007 were spent 

at Vaal River gold mining region (n = 24 plots) and one day, the 16 August 2007, at 

West Wits gold mining region (n = 6).  A follow-up trip was made to West Wits on 

the 29 August 2007 and to Vaal River from the 30 August to 1 September 2007 to 

finalize the Global Positioning System (GPS) coordinates for the corners of each plot 

and the LFA data. 

 
2.4 Layout of Plots 

 

Each plot was laid out and sampled in the same manner (Figures 6, 7, 8, 9 and 10).  

All the grassland sites were measured as 10 m × 10 m square plots with the corners 

marked with stainless steel pegs and these points geolocated using a Trimble GPS 

with an accuracy of approximately one metre.  The 10 m x 10 m plot size was selected 

as airborne HSRS on these mines were acquired at spatial resolution (pixel size) of     

3 m.  This meant a plot on the ground would be covered by a 4 x 4 pixel in the 

airborne data.  The woody shrub R. lancea plots were measured as a 20 m × 20 m 

square with the corners similarly treated to the grassland plots.  The woody shrub 

plots were increased in size because of the dimensions of the R. lancea tree canopy 

(approximately 2 to 6 m), and to capture any gradient effects between under-canopy 

and outside-canopy in LFA and HS data.  Although the woody plots were bigger than 

the grassland plots, they were sampled in exactly the same way as grassland plots with 

the exception of the spacing of circular quadrats within the plots.  Within each plot, 
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five transects were laid out running parallel to the slope gradient (gradsects) and each 

other (Figure 7 and 8).   

 
Table 2 Selected vegetation types, plot size, disturbance level, and plot 

numbers sampled for each vegetation type in the two mining regions.  
Five circular quadrats per plot were sampled, a total of 150 quadrats.   
* indicates plots removed from the statistical analysis as explained in 
section 2.5.  Plot numbers 3, 11, 12, 13, 15 and 18 at Vaal River were 
identified but not sampled due to time constraints.  

 
 
Gold Mining 
Region 
 

 
Vegetation type 

 
Size (m) 

 
Disturbance 

 
Plot Number 
(total = 30) 

Vaal River Grassland, wet 
 

10 x 10 Low 
(n = 3) 

VR 9 
VR 19 
VR 27 * 

High 
(n = 3) 

VR 17 * 

VR 20 * 

VR 28 
Grassland, dry non-rocky 10 x 10 Low 

(n = 3) 
VR 1 
VR 8 
VR 21 * 

High 
(n = 3) 

VR 16 
VR 29 * 

VR 26 * 

Grassland, dry rocky 10 x 10 Low 
(n = 3) 

VR 2 
VR 23 
VR 24 

High 
(n = 3) 

VR 5 
VR 14 
VR 25 

Woody shrub cluster 20 x 20 Low 
(n = 3) 

VR 7 
VR 10 
VR 22 

High 
(n = 3) 

VR 4 
VR 6 * 

VR 30 * 

West Wits Grassland, dry non-rocky 10 x 10 Low 
(n = 3) 

WW 4 
WW 5 
WW 6 * 

High 
(n = 3) 

WW 1 
WW 2 
WW 3 



 
Figure 4 A mosaic of aerial photographs (2006) showing the distribution of plots along two transect lines at Vaal River mining region.  Numbers 

correspond to the plot number (minus the VR) as described in Table 2. 
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Figure 5 Aerial photograph (2006) showing the distribution of plots at West Wits mining region.  Numbers correspond to the plot number (minus
  the WW) as described in Table 2. 
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These transects were two metres apart and the first and last (fifth) transect were one 

meter in from the boundary of the plot.  Along each transect, five circular quadrats 

(Figure 6 and 7) were laid two metres apart, beginning one metre in from the top 

boundary of the plot and ending one metre in from the bottom boundary of the plot.  

This meant the transect length from first quadrat to last (fifth) quadrat was 8 m long.  

These quadrats were constructed from 4 mm spring steel shaped into a circle with a 

diameter of 50 centimetres.  The 50 cm diameter size for the quadrats was chosen as 

this was slightly larger than the Field-of-View (FOV) for the field spectrometer at 

handheld height (approximately 1 m). 

 

The spacing differed between the 100 m2 grassland plots and the 400 m2 woody plots, 

but the pattern was identical.  In the 100 m2 plots the steel quadrats were two metres 

apart, whereas in the 400 m2 plots the quadrats were four metres apart.  In both cases, 

the first transect began at the top right-hand corner of the plot.  The end result was 

five transects within a plot, each with five quadrats, making a total of 25 circular 

quadrats spread evenly across the plot.  The total for the 30 plots across both gold 

mining regions was 750 quadrats.  Each plot was numbered (Table 2) and each 

transect within the plot was numbered from 1 – 5.  The quadrats in each plot were also 

numbered from *.1 to *.5 such that the number of any quadrat could be located 

relative to it’s transect and position on transect (i.e., quadrat 1.3 was transect 1, 

quadrat 3 within a specified plot).  Once a plot and its quadrats were laid out, a 

photograph of each quadrat was taken, followed by spectral readings for all 25 

quadrats, and finally LFA data from five quadrats within a plot as described in the 

next section. 

 



 33 

 

(a)    (b)  
 
Figure 6 Examples of quadrats.  (a) VR 2 at Vaal River, a rocky grassland with 

low disturbance.  (b) WW2 at West Wits, a non-rocky grassland with 
high disturbance. 

 

 
Figure 7 Diagram showing the layout of plots and quadrats.  Quadrats coloured 

grey (n = 5) were used for statistical analysis (Section 2.4). 
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and 

4 m spacing 
between 
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Wooded 
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(a)  

 

(b)  

 
Figure 8 (a) A high disturbance wet grassland plot (10 m x 10 m), VR 17, 

showing the layout of quadrats in five transects.  Each quadrat is 
marked with a flag.  (b) A low disturbance, wet grassland plot, VR 19. 
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(a)   (b)   
 

(c)   (d)   
 
Figure 9 Examples of non-rocky grassland plots at both disturbance levels from each of the two mining regions. 
 

(a) Non-rocky grassland, Low disturbance, Vaal River VR 8.   (b) Non-rocky grassland, High disturbance, Vaal River VR 16   
(c) Non-rocky grassland, Low disturbance, West Wits WW 4   (d) Non-rocky grassland, High disturbance, West Wits WW 1 
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(a)   (b)  
 

(c)   (d)  
 
Figure 10 Examples of rocky grassland and woody shrub plots at both disturbance levels from Vaal River mining region. 
 

(a) Rocky grassland, Low disturbance, Vaal River VR 24   (b) Rocky grassland, High disturbance, Vaal River VR 14 
(c) Woody shrub, Low disturbance, Vaal River VR 22   (d) Woody shrub, High disturbance, Vaal River VR 7 



 37 

2.5 Acquisition of LFA Data 

 

The purpose of using LFA techniques, and in particular the SSIs and the SSCIs, is to 

acquire surrogate measures of land surface condition.  However, as the aim of this 

study is not to undertake an LFA assessment of the mine, but to determine the 

relationship between LFA and HS measurements at the same spatial resolution (where 

a single HS pixel is equivalent to a single LFA observation), three deviations from the 

standard assumptions of the LFA technique were made. 

 

The first was that spectral data was sampled across a single 50 cm diameter quadrat 

whose size was based on the FOV of the field spectrometer (Figure 6).  The result was 

that a quadrat contained small patches and inter-patches within a single pixel, i.e., the 

resultant HS data is a mixed pixel, within which bare soil, rock, biogenic crust, debris 

and vegetation (i.e. patch and inter-patches) vary in direct proportion to each other.  In 

LFA, a patch is a landscape unit defined by a boundary in which the deposition of 

material occurs (Tongway and Hindley, 2004).  Inter-patches are defined as areas in 

which removal, in some form or other, of material is occurring.  In homogenous 

vegetation types with continuous swards or large inter-patch areas the patch or inter-

patch size is much larger than the quadrat (rexel) or HS pixel.  But in many plots in 

this study in a semi-arid environment, patch and inter-patch size was defined by a tuft 

of grass or the space between tufts respectively.  This results in many quadrats 

containing both patches and inter-patches, in varying proportions depending on the 

vegetation type and disturbance.  The eleven SSIs are measured as patch indicators, 

and since most quadrats tended to be mixtures of patches, this could increase the high 

variance in the final three calculated SSCIs.  However, the study required 

discrimination between four vegetation types of varying condition, and not between 

individual patches and inter-patches within each vegetation type. 

 

The second deviation from the standard LFA approach occurred due to the limitation 

of the HS sensor to define LFA sampling units (i.e. 3 x 3 m pixel size in airborne and 

a 44 cm diameter FOV for the ground-based HS sensor when held at a height of 1 m).  

When LFA is used for monitoring purposes as is standard, the importance of an SSCI 

value is determined as a weighted mean based on respective patch and inter-patch 

proportions along a gradsect.  However, in this study such weighted means could not 
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be calculated, first, because the length of patches and inter-patches along a transect 

was not measured, as it was considered irrelevant to the study objectives, and second, 

because the sampling unit was based on HS sensor FOV limitations, and not patch and 

inter-patch sizes.  In a plot which was essentially a continuous sward, this deviation is 

of little significance, but especially in some high disturbance plots or plots with high 

heterogeneity this deviation may have been of higher significance and introduced bias 

into the final LFA SSCI values. 

 

The third deviation from the standard LFA technique arose as a result of time 

constraints.  The HSRS equipment and team were only available for four days of 

fieldwork.  This put constraints on the gathering of SSI data which is far more labour 

intensive and therefore time consuming than the gathering of HS data.  Furthermore, 

the objective is to have paired readings for each unit of HS and LFA data.  To meet 

this objective the LFA process was therefore adapted so that it could be paired with 

the HS reading for each quadrat.  The amendment took the form of collecting a high 

resolution photograph of each quadrat for later allocation of the eleven SSI’s.  But 

some SSI’s cannot or are difficult to allocate accurately from photographs and were 

therefore measured directly in the field (Table 3).  But again, with time being limited, 

these were not measured for every quadrat in a plot.  Rather five quadrats – viz. the 

four corner quadrats (quadrats 1.1, 1.5, 5.1 and 5.5) for each plot together with a 

central quadrat (most commonly 3.3) were photographed and sampled on the ground 

as per table 3 for these indices.  This pattern was chosen as it was thought it covered 

any pattern that might exist in a plot (Figure 7). 

 

Photographs were taken of the plot in its setting (Figure 8. 9 and 10) so that 

background details and local situation around the plot was characterised and 

documented.  Then each quadrat was photographed in sequence.  The photograph was 

taken such that the circular quadrat almost filled the field of view (Figure 6).  Each 

photograph was taken as close to the zenith as possible taking into account that 

photographs were taken through the midday period.  Later the photograph for each 

quadrat was examined and the remaining six SSIs allocated (Table 3). 
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Table 3 LFA SSI’s measured from photographs or directly in the field. 

 
 
SSI      Source of measurements 

 
Soil cover       Photograph 

Basal cover       Photograph 

Litter cover, origin and degree of decomposition  Field 

Cryptogam cover      Field 

Crust brokenness      Photograph 

Erosion type and severity     Photograph 

Deposited materials      Photograph 

Surface roughness      Photograph 

Surface resistance to disturbance    Field 

Slake test       Field 

Soil texture       Field 

 

Finally these eleven SSI’s were used to calculate the three SSCI’s using three 

algorithms developed by Tongway and Hindley (2004).  When acquiring the data for 

9 plots, errors were made in the field measurements – i.e. some photographs were 

omitted or the quadrats within the plots were found to have been measured 

inconsistently, or as in the case with the last plot (VR30) HS measurements could not 

be recorded because the sun had dropped too close to the horizon.  This meant that 

accurate pairing of HS and LFA data could not be accomplished for these 9 plots and 

therefore they were omitted from the statistical analysis (reducing the available 

number of plots to 21 plots).  The 5 quadrats from each plot sampled for LFA values 

were used resulting in a total of 105 quadrats available for statistical analysis      

(Table 2). 
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2.6 Hyperspectral Data Collection 

 

Hyperspectral data was collected using an Analytical Spectral Device (ASD) 

spectrometer, the FieldSpec-Pro (Analytical Spectral Devices Inc., Boulder, Colorado, 

USA) with a range of 350 nm to 2500 nm and a sampling interval of 1.4 nm from 350 

– 1000 nm and 2 nm from 1000 – 2500 nm.  The spectral resolution (full width half 

maximum) was 3 nm at 700 nm, and 10 nm at 1400 nm to 2100 nm.  HS data was 

collected between 9 am and 3 pm only, and when the quanta of radiant energy was 

suitable.  The decision not to measure was made when “noise” amplitude became too 

high in the Short Wave Infra-Red (SWIR) region of the electromagnetic spectrum 

around 2.5 μm.  Furthermore, the LFA photographs were taken immediately before 

the spectral readings to ensure that ambient light conditions and vegetation shadows 

were the same for both data sets.  The LFA field measurements were made within a 

few hours of the spectral readings.  Measurements were made using a bare fibre optic 

sensor with the spectrometer mounted in a backpack on the operators back.  

Rundquist et al. (2004) showed that spectra acquired using a handheld sensor can vary 

up to 25% compared to a mounted sensor and therefore we used a central tripod 

mounted with the sensor and a plumb line to position the sensor at the quadrat 

azimuth.  The FOV for the sensor was approximately 25°, held at 1 m above ground 

level, which acquired a ground level footprint of approximately 44 cm in diameter. 

 

Before and during the acquisition of spectral readings in a plot, the spectrometer was 

calibrated to the incoming solar radiation using a calibrated Spectralon® 100% 

reference panel.  This calibration process was repeated according to the operators 

judgement, or whenever “noise” amplitude in the measurements increased, or 

intensity levels between successive readings differed.  The 25 quadrats within the plot 

were then measured (Figure 6, 7) with a standard protocol used on every plot, 

beginning at the top right hand corner of the plot and moving down than up successive 

transects.  The operator held the sensor at the azimuth above the quadrat and the steel 

hoop was removed prior to sampling the quadrat so that the metal did not contaminate 

the readings.  After HS sampling the hoop was replaced so that the LFA team could 

sample the same place.  Each quadrat was sampled 80 times in one sequence and then 

the average of the 80 readings was saved as the reading for that quadrat.  The 

measured reflectances are a ratio between the reference standard and the target.  No 
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atmospheric post-processing of the spectra was required as all spectral measurements 

were calibrated at ground level with the reference panel.  For the calculation of VIs, 

the wavelengths and algorithms as described in Table 1 were used to calculate the 

respective VI.  For PLSR modelling, the spectra were prepared as described in   

section 2.7.  Analysis of the spectra for mineralogical information was beyond the 

scope of my study. 

 

2.7 Statistical Analysis 

 

All statistics were performed using Microsoft Excel 2003 and R open source software 

(R Development Core Team, 2007).  In all statistical testing, significant differences 

were regarded as probability values less than 1 % (**) or 5 % (*) and all t-tests used 

corrected degrees of freedom.  A number of key questions and hypotheses were 

posed: 

• My first key question was to determine if the selected quadrats, when combined, 

were generally above or below the threshold for self-sustainability?  This was 

tested by ranking the LFA SSCIs from lowest to highest and the distribution 

compared to the calculated theoretical threshold allowing one to draw conclusions 

about the level of degradation and the self-sustainability of the biogeochemical 

processes at the soil surface (Tongway and Hindley, 2004).  The threshold is 

calculated as the central value in the range reflecting the inflection point between 

the two curves generated by the ranking of the obtained LFA index values.  This 

threshold is not an absolute value as it is dependent on the quality of range end-

points in reflecting the extremes available in the environment under study;   

• I hypothesised that there was no difference in stability, infiltration or nutrient 

cycling between quadrats in the two mining regions, and tested this with a Welch 

Two Sample t-test by comparing the non-rocky grassland quadrats from each 

mining region, with disturbance levels combined;  

• Similarly, I hypothesised that there would be no difference in LFA indices 

between disturbance levels, when combining vegetation and mines for each 

disturbance level, and tested this with a Welch Two Sample t-test; 
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• To test my hypothesis of no difference between vegetation types, a one-way 

ANOVA was applied to the LFA indices for the four vegetation types, after 

combining disturbance levels and mining regions within each vegetation type; 

• My final hypothesis, for the LFA data, was that stability, infiltration and nutrient 

cycling indices would have no difference between low disturbance sites compared 

to high disturbance sites within each vegetation type.  For this analysis I regarded 

non-rocky grasslands from Vaal River and West Wits regions as separate entities.   

This hypothesis was tested with a number of Welch Two Sample t-tests. 

  

The VI values were subjected to the same basic hypotheses and statistical approach 

described above for the LFA indices, without ranking the results, as threshold values 

for a VI are irrelevant. 

• A further key question was to test the accuracy of the VIs in measuring the plant 

characteristic they were designed for (i.e. chlorophyll or plant water content), in 

the absence of empirical data about these plant characteristics, when using spectral 

reflectance of winter senesced vegetation.  To this end, correlation analysis was 

performed between the VIs to test for relationships between the VIs.  The 

underlying assumption being that VIs measuring a similar plant characteristic but 

using widely separated wavelengths should give highly correlated results. 

• To test the hypothesis that VIs can predict LFA indices, simple linear regression 

(Galpin, 2007) was applied between the LFA indices as response variables, and 

the VIs as the predictor variables.  In all analyses, outliers were identified as 

extreme values inconsistent with the general trend in the data, and tests repeated 

with outliers removed but this did not improve statistical results, so all results in 

this report are shown with no quadrats removed from any analysis. 

 



 43 

2.8 Partial Least Squares Regression Modelling 

 

PLSR is a data compression method using matrix algebra techniques for extracting 

“latent variables” or components from two data sets through maximising the 

explained X/Y covariance (Frank and Friedman, 1993; Martens, 2001).  PLSR 

modelling was performed with R open source software (R Development Core Team, 

2007) and the pls package (Mevik and Wehrens, 2007, Wehrens and Mevik, 2007).  

The LFA indices and spectral data were paired.  Thereafter, the pairs were randomly 

separated into two datasets by allocating each fourth spectrum into validation data (n 

= 26), with the remaining data (n = 79) used to calibrate suitable PLSR models.  The 

validation data was used as new data to test the predictive accuracy of the models 

selected from the calibration phase.  The LFA data was used as calculated with no 

transformations or scaling.  The spectral data first had the wavelengths affected by 

sensor steps or atmospheric water interference removed (Ong et al., 2004, 2008; 

Figure 11) and were then centred by the pls algorithm (Mevik and Wehrens, 2007), 

but not scaled as all the spectral measurements have the same units (Geladi and 

Kowalski, 1986).  The Root Mean Square Error of Prediction (RMSEP) was 

calculated using Leave-One-Out (LOO) Cross-Validation (CV) (Mevik and Wehrens, 

2007, Mevik and Cederkvist, 2004).  The RMSEP was used to select the best fitting 

models while avoiding over-fitting.  Over-fitting is when a model with many 

parameters gives a strong fit to the data, often by modelling both the features and the 

“noise” in the data.  However, such models with many parameters, some of which are 

modelling data “noise”, have poor predictive abilities with new data.  Such best fitting 

models are identified by having the lowest or lowest local RMSEP.  Interpretation of 

the main environmental features influencing the models was performed by examining 

the plots of the loading factors for components constituting the model parameters 

(Mevik and Wehrens, 2007). 
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Figure 11 The full spectrum for each quadrat (n = 105) showing the position of the selected bands for different categories of Vegetation 

Index (VI).  The spectra themselves show the prepared spectra for PLSR modelling with removal of the initial UV / visible region 
(350 – 399 nm), the step between sensors (990 – 1010 nm), atmospheric water noise (1350 – 1450, 1800 – 1950 nm) and sensor/ 
source noise in the SWIR (2400 – 2500 nm). 
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3. Results 

 

3.1 LFA Results 

 

3.1.1 Relationship of the LFA Values to the Threshold Value 

 

Key question: Are the LFA values for quadrats above or below the threshold value for 

self-sustainability. 

To answer this question, the LFA values for stability, infiltration and nutrient cycling, 

were ranked, then plotted from low to high values (Figure 12).  The threshold value 

for each index is calculated by finding the central value in the range and is indicated 

by an arrow in Figure 12.  The threshold value is an estimator of where there may be a 

change from self-sustainability in biogeophysical processes around the soil surface to 

non-sustainability (losing resources) within a quadrat (Tongway and Hindley, 2004).   

 

The values obtained for stability are markedly higher then those for the other two 

indices where infiltration is slightly higher than nutrient cycling.  Eighty percent of 

quadrats lay above the stability threshold value of 52.92% (Table 4; Figure 12).  Of 

the 20% below threshold, 29% of high disturbance quadrats and 13% of low 

disturbance quadrats were below threshold.  The high end of the stability range 

(70.83%) was dominated by low disturbance quadrats while the low end (35%) was 

dominated by high disturbance quadrats. 

 

The ranked infiltration values produced a lower distribution of values compared to 

stability (Figure 12).  The range was from 50.14 to 15.31% with a threshold for 

infiltration of 32.74% (Table 4).  Contrary to the pattern for stability, only 38% of 

quadrats fell above the threshold value of 32.74% for infiltration.  Of the 62% of 

quadrats below threshold, 71% of high disturbance quadrats and 55% of low 

disturbance quadrats fell below threshold. 
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Figure 12 Ranked distributions of LFA SSCI values: stability, infiltration and 

nutrient cycling for all Vaal River and West Wits quadrats (n = 105).  
The arrows indicate the threshold value for that index. 

 
 
 
Table 4 Results from ranking LFA SSCIs for stability, infiltration and 

nutrient cycling for all quadrats from Vaal River and West Wits
 mining regions combined (n = 105). 

 

 

 
Stability 

(%) 
 

Infiltration 
(%) 

 

Nutrient 
cycling (%) 

 
 
Range 70.8 – 35.0 50.1 – 15.3 39.5 – 15.1 
Threshold value 
 

52.9 
 

32.7 
 

27.3 
 

 
% above threshold 80 38 53 
% high disturbance above threshold 71 29 33 
% low disturbance above threshold 
 

87 
 

45 
 

68 
 

 
% below threshold 20 62 47 
% high disturbance below threshold 29 71 67 
% low disturbance below threshold 
 

13 
 

55 
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Nutrient cycling produced the lowest distribution of LFA values, being generally 

slightly lower than infiltration values (Figure 12).  The threshold value for nutrient 

cycling (27.30%) was much closer to a central value in its distribution than that for 

either stability or infiltration.  Forty-seven percent of quadrats fell below the nutrient 

cycling threshold.  This 47% below threshold for nutrient cycling values represented 

67% of high disturbance quadrats and 32% of low disturbance quadrats. 

 

3.1.2 Comparison of LFA Results Between Quadrats from Different Mining 

Regions 

 

• My hypothesis was that there was no difference in stability, infiltration or nutrient 

cycling between quadrats from the two mining regions. 

T-tests comparing non-rocky grasslands between mines (Table 5, Figure 13) showed 

no difference for the stability index.  Infiltration differed (P < 0.01, DF = 36.79) with 

West Wits having higher values (30.88 ± 0.99%) than Vaal River (27.17 ± 0.90%).  

Nutrient cycling differed (P < 0.01, DF = 26.4) with West Wits having higher mean 

values (27.24 ± 0.63%) than Vaal River (24.26 ± 0.94%).  I therefore accept the 

hypothesis of no difference for the stability index and rejected the hypothesis for the 

infiltration and nutrient cycling indices. 

 

3.1.3 Comparison of LFA Results Between Vegetation Types 

 

• My hypothesis was that there was no difference in stability, infiltration or nutrient 

cycling between vegetation types. 

A one-way ANOVA (Table 6) showed that the stability index differed between the 

four vegetation types (P < 0.01, DF = 3, 101).  The infiltration (P < 0.05, DF = 3,101) 

and nutrient cycling indices (P < 0.05, DF = 3,101) also differed between vegetation 

types.  I therefore reject the hypothesis of no difference between LFA values for the 

four vegetation types, and accept the alternative hypothesis that all three LFA indices, 

stability, infiltration and nutrient cycling, differed between the four vegetation types 

when combining disturbance levels. 
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Wet grassland produced the highest values for all three indices (stability = 63.97 ± 

0.79%, infiltration = 34.53 ± 1.25% and nutrient cycling = 31.53 ± 1.08%) (Figure 14) 

and had the narrowest range for the three LFA indices (Appendix 1).  Analysis of the 

raw SSI values (not shown) showed that wet grasslands had high rain splash 

protection, high litter cover and low presence of physical crusts with low values for 

deposition and erosion, compared to the other vegetation types.   

 

For the other three vegetation types, there was a switch in the ranking order of the 

means when comparing stability with infiltration and nutrient cycling (Figure 14).  

Non-rocky grassland had the higher stability (62.58 ± 0.82%) followed by rocky 

grassland (58.57 ± 1.52%), with woody shrub having the lowest stability index (53.27 

± 1.66 %) (Figure 14).  The high stability for non-rocky grasslands results from high 

SSI values for rain splash protection and cryptogams (not shown).  Infiltration and 

nutrient cycling had the reverse trend with woody shrub higher (33.83 ± 1.75% and 

28.02 ± 1.48% respectively), followed by rocky grassland (31.43 ± 1.56% and 27.33 ± 

1.19% respectively).   

 
Non-rocky grassland had the lowest infiltration and nutrient cycling (29.49 ± 0.75% 

and 26.12 ± 0.57% respectively).  This reversal of trend was principally due to higher 

litter and soil roughness values for woody shrub quadrats and low soil roughness and 

litter for non-rocky grasslands (not shown).  The variable and sometimes small sample 

sizes (n ≥ 5) may have contributed to these observations. 

 

3.1.4 Comparison of LFA Results Between Disturbance Levels 

 

• My hypothesis was that there would be no difference between LFA indices from 

high or low disturbance levels. 

Stability, infiltration and nutrient cycling indices differed between high and low 

disturbance quadrats when combining mining regions and vegetation types (Table 7), 

therefore in all three LFA indices, I reject the hypothesis of no difference.  In all three 

cases: stability, infiltration and nutrient cycling, low disturbance quadrats were higher 

(61.82 ± 0.82 %, 33.24 ± 0.92 % and 29.30 ± 0.70 % respectively) with a broader 

range of LFA values (Appendix 1) than high disturbance quadrats (57.25 ± 1.19 %, 

29.32 ± 0.86 % and 25.34 ± 0.72 % respectively) (Figure 15).   
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Table 5 Welch Two Sample t-tests comparing LFA values for non-rocky 
grasslands between Vaal River (n = 15) and West Wits (n = 25) mining 
regions combining disturbance levels.  * is significant at the 5 % level, 
and ** is significant at the 1 % level. 

 

LFA 
 

t-value 
 

Corrected 
Degrees 

of 
Freedom 

 
Probability 

 
 
Stability  -1.51 26.63 0.14 

Infiltration -2.78 36.79 0.009 ** 

Nutrient Cycling 
 

-2.62 
 

26.43 
 

0.01 ** 

 
 
 
Table 6 One-way ANOVA table of LFA Indices for the four vegetation types 

(n = 105) when pooling mining regions and disturbance levels.  * is 
significant at the 5 % level, and ** is significant at the 1 % level. 

 

 
LFA index 

 

 
Degrees of 
Freedom 

 
F value 

 
Probability 

 
 
Stability 3, 101 11.68 < 0.0001 ** 

Infiltration 3, 101 2.92 0.03 * 

Nutrient Cycling 
 

3, 101 
 

3.86 
 

0.011 * 
 

 
 
Table 7 Welch Two Sample t-tests comparing LFA values between disturbance 

levels for all vegetation types and mining regions combined.  Low 
disturbance n = 60, high disturbance n = 45.  * is significant at the 5 % 
level, and ** is significant at the 1 % level. 

 

 
LFA 
 

t-value 
 

Corrected 
Degrees of 
Freedom 
 

Probability 
 

 
Stability 3.17 81.78 0.003 ** 

Infiltration 3.10 102.32 0.003 ** 

Nutrient Cycling 
 

3.94 
 

100.08 
 

0.0002 ** 
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Figure 13 Comparison of LFA indices (means and standard errors) for non-rocky 

grassland between Vaal River and West Wits mining regions 
combining disturbance levels.  
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Figure 14 Comparison of LFA indices (means and standard errors) between the 

four vegetation types combining mining regions and disturbance levels.  
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Figure 15 Comparison of LFA indices (means and standard errors) between high 

and low disturbance quadrats, combining mining regions and 
vegetation types.  
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3.1.5 Differences in Stability Between Disturbance Levels for the Different 

Vegetation Types 

 

• My hypothesis was that there was no difference for stability indices between low 

and high disturbance quadrats from the same vegetation type. 

Low disturbance quadrats had higher stability indices than high disturbance quadrats 

across all vegetation types, with the exception of wet grasslands and non-rocky 

grasslands at Vaal River (Table 8a, Figure 16a).  These differences were significant 

for non-rocky grassland from West Wits (P < 0.01, DF = 22.97), and for Vaal River 

rocky grassland (P < 0.01, DF = 16.92) and woody shrub quadrats (P < 0.01, DF = 

11.24).  Therefore the hypothesis of no difference in stability indices between 

disturbance levels is accepted for wet grasslands and non-rocky grasslands at Vaal 

river, but rejected for non-rocky grasslands at West Wits and rocky grasslands and 

woody shrub quadrats at Vaal River.  Low disturbance non-rocky grassland quadrats 

from West Wits had the highest stability values (66.73 ± 0.94%).  The exception, Vaal 

River non-rocky grassland reversed the trend with higher stability indices (62.50 ± 

1.37%) for high disturbance compared to low disturbance (60.19 ± 2.02%) but this 

was not significant.  The data range for low disturbance had higher values than that 

for high disturbance (Appendix 1) suggesting that this exception may be an artefact of 

a small sample size (n = 5) from one plot. 

 

3.1.6 Differences in Infiltration Between Disturbance Levels for the Different

 Vegetation Types 

 

• My hypothesis was that there was no difference for infiltration indices between 

low and high disturbance quadrats from the same vegetation type.   

Infiltration indices had a similar pattern compared to the stability indices (Table 8b, 

Figure 16b), with the exception of wet grasslands at Vaal River.  Both wet grasslands 

(P < 0.01, DF = 11.2) and non-rocky grasslands (P < 0.05, DF = 7.07) at Vaal River 

had higher infiltration indices for high disturbance than low disturbance quadrats.  In 

contrast, West Wits non-rocky grassland (non-significant) and Vaal River rocky 

grasslands (P < 0.01, DF = 25.18) and woody shrub (P < 0.01, DF = 17.26) quadrats 

had the reverse pattern, with low disturbance having higher infiltration indices and 
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high disturbance having low infiltration values (Figure 16b).  Therefore I reject the 

hypothesis of no difference between disturbance levels for wet grassland, non-rocky 

grassland, rocky grassland and woody shrub quadrats from Vaal River, but accept the 

hypothesis for non-rocky grasslands from West Wits.  Similar to the results for 

stability indices, the vegetation types with higher infiltration indices in high 

disturbance quadrats (wet grassland and non-rocky grassland from Vaal River) had 

narrow data ranges (Appendix 1) with few replicates (n = 5) from a single plot.  This 

low degree of replication from single plots may have contributed to the direction and 

significant differences between disturbance levels in these two vegetation types. 

 

3.1.7 Differences in Nutrient Cycling Between Disturbance Levels for the 

Different Vegetation Types 

 

• My hypothesis was that there was no difference between nutrient cycling indices 

from high and low disturbance quadrats from the same vegetation type. 

The pattern for nutrient cycling indices was similar to the infiltration indices but with 

slight changes where the differences occurred (Table 8c, Figure 16c).  Low 

disturbance plots in non-rocky grassland from West Wits (P < 0.01, DF = 18.12), and 

rocky grassland (P < 0.01, DF = 27.99) and woody shrub (P < 0.05, DF = 9.27) from 

Vaal River plots had higher nutrient cycling than high disturbance plots.  I therefore 

reject the hypothesis of no difference between disturbance levels for the nutrient 

cycling index in non-rocky grasslands from West Wits, and rocky grasslands and 

woody shrub quadrats from Vaal River.  However, I accept the hypothesis of no 

difference between disturbance levels for nutrient cycling in wet grasslands and non-

rocky grasslands from Vaal River.  Nutrient cycling indices for wet grassland and 

non-rocky grassland from Vaal River tended to be higher (non-significant) in high 

disturbance quadrats than in low disturbance quadrats.  These two exceptions are 

possibly an artefact of small sample size (n = 5) from a single high disturbance plot in 

each vegetation type.  The highest mean nutrient cycling index (31.73 ± 1.27 %) was 

from high disturbance wet grassland (Figure 16c), although low disturbance rocky 

grassland produced some higher individual quadrat values (Appendix 1) for the 

nutrient cycling index.  Conversely high disturbance woody shrub had the lowest 

mean nutrient cycling indices (22.33 ± 2.06 %) (Figure 16c). 
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Table 8 Welch Two Sample t-tests comparing (a) stability, (b) infiltration and  
(c) nutrient cycling from high and low disturbance vegetation types.   
* is significant at the 5 % level, and ** is significant at the 1 % level. 

 
(a) 
 

 
 
 

Vegetation 
 

 
High Disturbance 

n 
 

 
Low Disturbance 

n 
 

 
 
 

t- value 
 

 
Corrected 
Degrees of 
Freedom 

 

 
 
 

Probability 
 

Wet grassland 
Vaal River 5 10 2.16 10.30 0.06 
Non-rocky grassland 
both mines 20 20 1.51 26.63 0.14 
Non-rocky grassland 
Vaal River 5 10 -0.95 12.99 0.36 
Non-rocky grassland 
West Wits 15 10 3.42 22.97 0.002 ** 

Rocky grassland 
Vaal River 15 15 4.54 16.92 0.0002 ** 

Woody shrub 
Vaal River 5 

 
15 
 

3.27 
 

11.24 
 

 
0.007 ** 

 
 
(b) 
 

 
 
 

Vegetation 
 

 
High Disturbance 

n 
 

 
Low Disturbance 

n 
 

 
 
 

t- value 
 

 
Corrected 
Degrees of 
Freedom 

 

 
 
 

Probability 
 

Wet grassland 
Vaal River 5 10 -3.15 11.20 0.009** 

Non-rocky grassland 
both mines 20 20 -0.20 37.99 0.84 
Non-rocky grassland 
Vaal River 5 10 -2.88 7.07 0.02* 

Non-rocky grassland 
West Wits 15 10 2.06 22.99 0.051 
Rocky grassland 
Vaal River 15 15 3.08 25.18 0.004** 

Woody shrub 
Vaal River 
 

5 
 

15 
 

5.31 
 

17.26 
 

0.00005** 
 

 
(c) 
  

 
 
 

Vegetation 
 

 
High Disturbance 

n 
 

 
Low Disturbance 

n 
 

 
 
 

t- value 
 

 
Corrected 
Degrees of 
Freedom 

 

 
 
 

Probability 
 

Wet Grassland 
Vaal River 5 10 -0.15 12.45 0.89 
Non-rocky grassland  
both mines 20 20 2.62 26.43 0.014* 

Non-rocky grassland  
Vaal River 5 10 -1.31 7.06 0.23 
Non-rocky grassland  
West Wits 15 10 4.89 18.12 0.0001** 

Rocky grassland 
Vaal River 15 15 3.55 27.99 0.001** 

Woody shrub 
Vaal River 
 

 
5 
 

15 
 

2.91 
 

9.27 
 

0.016* 
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Figure 16 Comparing indices of (a) stability, (b) infiltration and (c) nutrient 

cycling (mean  and standard error) for high and low disturbance 
quadrats in different vegetation types.  VR = Vaal River, WW = West 
Wits, WG = Wet Grassland, NRG = Non-Rocky Grassland, RG = 
Rocky Grassland, and WS = Woody Shrub. 
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3.2 Results for the Vegetation Indices 

 

3.2.1 Ranges Obtained for VIs 

 

The ranges for the various chlorophyll based vegetation indices for my winter (dry 

season) survey were within the ranges given in the ENVI 4.2 chapter dealing with 

vegetation indices for green vegetation (Table 9).  However, they tended towards the 

lower end of the scale.  The VOG2 and VOG3 indices produced slightly negative 

values (-0.05 to -0.005) for my winter senesced vegetation, contrasting with those 

given in ENVI 2.4 which are from 0 to 20 for green vegetation (commonly between 4 

and 8).  Of the mixed chlorophyll and carotenoid indices, the SIPI results for this 

study were within the lower end of the range described in ENVI 4.2.  The PSRI for 

our winter senesced vegetation had values above the range shown for green vegetation 

in ENVI 4.2. 

 

Carotenoid indices produced some extreme values (Table 9).  The PRI was within the 

range postulated by ENVI 4.2.  CRI1 had a single quadrat, VR7_5-5 from a low 

disturbance woody shrub plot which was an extremely high value.  Examination of a 

photograph of this quadrat showed mixed shade and sunlight on a thick litter layer 

with minimal soil showing.  The shadowing may have dampened the amplitude of the 

spectral reading.  This quadrat was an outlier for many VIs, with exceptions to this 

being the SAVI, PSRI, PRI, NDLI and some plant-water indices: NDII, NDII5 and 

NDII7 indices.  This quadrat produced one of two very low overall reflectance spectra 

(Figure 11).  The other quadrat which produced a very low overall spectrum was 

VR10_4-3, another woody shrub quadrat of low disturbance.  This quadrat produced 

extreme values for the PRI, PSRI and SAVI indices. 
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Table 9 Vegetation Indices, their range, means and standard errors obtained for
  this study compared to common ranges obtained for green  

vegetation (ENVI 4.2). 
 

VI 
 

Range 
(ENVI 4.2) 

 

 
Common range 

for green 
vegetation 
(ENVI 4.2) 

 

Range 
obtained in 

this research 
 

Mean 
 

SE 
 

 
Chlorophyll based VIs: 
NDVI -1 to 1 0.2 to 0.8 0.05 – 0.38 0.13 0.004 
NDVI750 -1 to 1 Not available 0.047 – 0.308 0.09 0.003 
GNDVI -1 to 1 Not available 0.219 – 0.528 0.32 0.005 
SAVI -1 to 1 Not available 0.026 – 0.153 0.08 0.002 
NDVI705 -1 to 1 0.2 to 0.9 0.024 – 0.175 0.06 0.002 
mSR705 0 to 30 2 to 8 1.08 – 1.56 1.18 0.007 
mNDVI705 -1 to 1 0.2 to 0.7 0.039 – 0.219 0.08 0.003 
VOG 2 0 to 20 4 to 8 -0.046 – -0.005 -0.015 0.0005 
VOG 3 0 to 20 4 to 8 -0.047 – -0.005 -0.015 0.0005 
 
Mixed chlorophyll and carotenoid based VIs: 
SIPI 0 to 2 0.8 to 1.8 0.329 – 0.594 0.408 0.004 
PSRI -1 to 1 -0.1 to 0.2 0.274 – 0.54 0.428 0.005 
 
Carotenoid based VIs: 
PRI -1 to 1 -0.2 to 0.2 -0.17 – -0.048 -0.106 0.002 
CRI 1 0 to 15 1 to 12 1.38 – 35.103 3.03 0.32 
CRI 2 0 to 15 1 to 11 3.626 – 101.67 8.654 0.93 
 
Anthocyanin based VIs: 
ARI 1 0 to 0.2 0.001 to 0.1 2.246 – 66.565 5.622 0.62 
ARI 2 0 to 0.2 0.001 to 0.1 0.508 – 2.101 0.896 0.02 
 
Plant structural VIs: 
CAI -3 to 4 -2 to 4 -0.059 – 0.194 0.06 0.003 
NDLI 0 to 1 0.005 to 0.05 -0.005 – 0.024 0.008 0.0006 
 
Plant-water based VIs: 
WBI Not available 0.8 to 1.2 0.886 – 0.964 0.928 0.001 
NDWI -1 to 1 -0.1 to 0.4 -0.282 – -0.056 -0.181 0.003 
NDII -1 to 1 0.02 to 0.6 -0.331 – -0.08 -0.244 0.005 
NDII 5 -1 to 1 Not available -0.335 – -0.079 -0.247 0.005 
NDII 7 
 

-1 to 1 
 

Not available 
 

-0.305 – 0.094 
 

-0.134 
 

0.008 
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The anthocyanin indices (Table 9), ARI1 and ARI2 had ranges for my winter 

senesced vegetation that are well above the ranges for green vegetation outlined in 

ENVI 4.2.  Both the cellulose (CAI) and lignin (NDLI) indices are within the range 

postulated by ENVI 4.2 (Table 9) but the NDLI had some quadrats producing 

negative values whereas the ENVI 4.2 range is given as positive.  Of the plant-water 

based indices (Table 9), the WBI was within the range from ENVI 4.2 but towards the 

lower end of this range.  The NDWI and the NDII and its derivatives were all negative 

and below the ranges described in ENVI 4.2 for green vegetation. 

 

3.2.2 Comparison of the VIs Between Mining Regions 

 

• My hypothesis was that there was no difference between VIs for non-rocky 

grasslands from the two mining regions. 

The chlorophyll indices gave mixed results with differences for the NDVI (P < 0.05, 

DF = 36.33), “Anglo” NDVI (P < 0.01, DF = 36.84), GNDVI (P < 0.05, DF = 33.72), 

SAVI (P < 0.01, DF = 37.04) and Red Edge NDVI (P < 0.01, DF = 32.95), but not for 

the other chlorophyll based indices.  However, for all chlorophyll based VIs, with the 

exception of the VOG2 and VOG3, West Wits mining region had higher mean values 

than did Vaal River mining region (Table 10). 

 

Amongst the mixed chlorophyll and carotenoid indices, the SIPI had differences 

between mines (P < 0.01, DF = 31.83) but the PSRI did not.  The SIPI followed the 

trend described for the chlorophyll indices, with West Wits mining region having a 

higher mean value (0.413 ± 0.005) than Vaal River mining region (0.390 ± 0.006).  

None of the carotenoid or anthocyanin based indices had differences between mining 

regions.  However, differences occurred between mining regions for both plant 

structure based indices, the CAI (P < 0.01, DF = 30.63) and the NDLI (P < 0.01, DF = 

27.83), with West Wits (0.063 ± 0.003 and 0.012 ± 0.001 respectively) having higher 

mean indices than Vaal River mining region (0.042 ± 0.004 and 0.004 ± 0.001 

respectively) (Table 10). 

 

The plant water content VIs showed differences for the NDWI (P < 0.05, DF = 32.9), 

NDII (P < 0.01, DF = 34.21), NDII5 (P < 0.01, DF = 34.83) and NDII7 (P < 0.01,   

DF = 0.01) but not the WBI (Table 10).  For all five plant water content VIs, indices 
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for West Wits had higher means than those for Vaal River mining region (Table 10).  

Values for all plant water content VIs except the WBI were negative.  Therefore I 

reject the hypothesis of no difference between mining regions for the NDVI, “Anglo” 

NDVI, GNDVI, SAVI, Red Edge NDVI, SIPI, CAI, NDLI, NDWI, NDII, NDII5 and 

NDII7. 

 

3.2.3 Comparison of the VIs Between Vegetation Types 

 

• My hypothesis was that there was no difference in VIs between the four 

vegetation types when combining mining region and disturbance levels. 

The results were mixed (Table 11) with only the SAVI, mSR705 and mNDVI705 

differing (P < 0.05, DF = 3, 101) between vegetation types for the chlorophyll indices.  

Within the two mixed chlorophyll and carotenoid indices, the PSRI had highly 

significant differences (P < 0.01, DF = 3, 101) between vegetation types.  Similarly, 

amongst the carotenoid and anthocyanin indices, only the PRI (P < 0.01, DF = 3, 101) 

and the ARI2 (P < 0.05, DF = 3, 101) differed between vegetation types.  Of the plant 

structural indices, the cellulose index (CAI) (P < 0.05, DF = 3, 101) and the lignin 

index (NDLI) differed (P < 0.01, DF = 3, 101) between vegetation types.  One plant-

water based index differed between vegetation types, i.e. NDII7 (P < 0.05, DF = 3, 

101).  The hypothesis of no difference is rejected for the SAVI, mSR705, mNDVI705, 

PSRI, PRI, ARI2, CAI, NDLI and NDII7. 
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Table 10 Welch Two Sample t-tests comparing vegetation indices between 
mining regions for non-rocky grasslands, when combining disturbance 
levels.  Data are means ± standard errors and significant differences are 
indicated in bold.  * is significant at the 5 % level, and ** is significant 
at the 1 % level. 

 

 
VI 

 
T-value 

 
DF 

 
Probability 

 

 
Vaal River 

(n = 15) 
 

West Wits 
(n = 25) 

 
 

Chlorophyll based VIs: 
NDVI -2.3725 36.33 0.02 * 0.116 ± 0.004 0.130 ± 0.004 
NDVI750 -2.8249 36.84 0.008 ** 0.084 ± 0.003 0.097 ± 0.003 
GNDVI -2.0368 33.72 0.05 * 0.299 ± 0.009 0.327 ± 0.009 
SAVI -4.0347 37.04 0.0003 ** 0.071 ± 0.002 0.085 ± 0.003 
NDVI705 -2.6921 32.95 0.01 ** 0.047 ± 0.002 0.054 ± 0.002 
mSR705 -1.667 27.55 0.11 1.156 ± 0.007 1.170 ± 0.005 
mNDVI705 -1.6677 26.89 0.11 0.072 ± 0.002 0.078 ± 0.002 
VOG2 1.9386 29.00 0.06 -0.013 ± 0.0006 -0.015 ± 0.0005 
VOG3 1.9495 29.11 0.06 -0.013 ± 0.0006 -0.015 ± 0.0005 

 
Mixed chlorophyll and carotenoid based VIs: 
SIPI -2.9699 31.83 0.006 * 0.390 ± 0.006 0.413 ± 0.005 
PSRI -0.6567 19.27 0.52 0.428 ± 0.013 0.437 ± 0.006 

 
Carotenoid based VIs: 
PRI 0.1977 21.06 0.85 -0.102 ± 0.007 -0.104 ± 0.003 
CRI1 0.139 23.87 0.89 2.657 ± 0.246 2.618 ± 0.146 
CRI2 -0.1122 26.68 0.91 7.492 ± 0.661 7.582 ± 0.451 

 
Anthocyanin based VIs: 
ARI1 -0.2483 28.83 0.81 4.835 ± 0.417 4.964 ± 0.313 
ARI2 -1.9748 36.22 0.06 0.805 ± 0.041 0.924 ± 0.044 

 
Plant structural based VIs: 
CAI -3.8722 30.63 0.0005 ** 0.042 ± 0.004 0.063 ± 0.003 
NDLI -5.1631 27.83 < 0.0001 ** 0.004 ± 0.001 0.012 ± 0.001 

 
Plant-water based VIs: 
WBI -0.9887 37.15 0.33 0.929 ± 0.002 0.932 ± 0.002 
NDWI -2.3177 32.90 0.03 * -0.182 ± 0.006 -0.164 ± 0.005 
NDII -5.2091 34.21 < 0.0001 ** -0.272 ± 0.008 -0.211 ± 0.008 
NDII5 -5.321 34.83 < 0.0001 ** -0.275 ± 0.008 -0.213 ± 0.008 
NDII7 -7.4813 32.85 < 0.0001 ** -0.212 ± 0.013 -0.078 ± 0.012 
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Table 11 One-way ANOVA of vegetation indices (VI) between the four 
vegetation types for both disturbance levels combined.  Wet Grassland, 
n = 15; non-rocky grassland, n = 40; rocky grassland, n = 30; woody 
shrub, n = 20.  Degrees of freedom = 3, 101. Significant differences are 
indicated in bold.  * is significant at the 5 % level, and ** is significant 
at the 1 % level. 

 
 

VI 
 

F-value 
 

Probability 
 

 
Chlorophyll based VIs: 
NDVI800 1.65 0.18 
NDVI750 1.66 0.18 
GNDVI 2.48 0.07 
SAVI 3.56 0.02 * 

NDVI705 2.65 0.05 
mSR705 3.58 0.02 * 

mNDVI705 3.46 0.02 * 

VOG2 1.53 0.21 
VOG3 1.56 0.21 
 
Mixed chlorophyll and carotenoid based VIs: 
SIPI 0.46 0.71 
PSRI 9.03 < 0.0001 ** 

 
Carotenoid based VIs: 
PRI 9.59 < 0.0001 ** 

CRI1 1.98 0.12 
CRI2 2.29 0.08 
 
Anthocyanin based VIs: 
ARI1 2.45 0.07 
ARI2 3.22 0.03 * 

 
Plant structural based VIs: 
CAI 2.78 0.04 * 

NDLI 8.11 < 0.0001 ** 

 
Plant-water based VIs: 
WBI 1.75 0.16 
NDWI 2.08 0.11 
NDII 0.96 0.42 
NDII5 1.08 0.36 
NDII7 
 

3.51 
 

0.02 * 
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3.2.4 Comparison of the VIs Between Disturbance Levels 

 

• My hypothesis was that there would be no difference for VIs between disturbance 

levels when combining mining regions and vegetation types. 

All nine chlorophyll based indices differed between disturbance levels for all 

vegetation types and mining regions combined (Table 12).  Amongst the mixed 

chlorophyll and carotenoid indices, the SIPI differed between disturbance levels (P < 

0.01, DF = 102.9).  For the carotenoid indices, the CRI2 had significant differences (P 

< 0.05, DF = 62.89) between disturbance levels.  Both anthocyanin indices, ARI1 and 

ARI2, produced differences between low and high disturbance quadrats (P < 0.05, DF 

= 62.64, P < 0.01, DF = 102.85 respectively).  The plant structure based indices 

measuring cellulose (CAI) and lignin (NDLI) had no differences between high and 

low disturbance and nor did any plant-water based indices.  I therefore reject the 

hypothesis of no difference between disturbance levels for all chlorophyll based 

indices.  Furthermore, I reject the hypothesis of no difference for the mixed 

chlorophyll and carotenoid based SIPI, the carotenoid only CRI2, and both 

anthocyanin based indices, the ARI1 and ARI2.  

 

3.2.5 VI Response to Disturbance in Wet Grasslands at Vaal River 

 

• My hypothesis was that there was no difference for VIs between high and low 

disturbance in wet grasslands. 

Amongst all the VIs, only the lignin index (NDLI) (Table 13, P < 0.05, DF = 11.19) 

differed in wet grasslands, where high disturbance (0.011 ± 0.0007) had lower values 

than low disturbance quadrats (0.015 ± 0.002).  All other indices produced non-

significant differences for disturbance levels in wet grasslands.  I therefore reject the 

hypothesis of no difference between high and low disturbance in wet grasslands for 

the lignin (NDLI) index.  However, I accept the hypothesis of no difference between 

disturbance levels in wet grasslands for all other VIs. 
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Table 12 Welch Two Sample t-tests for VIs between high and low disturbance 
combining mining regions and all four vegetation types.  Data are 
means ± standard errors and significant differences are indicated in 
bold.  * is significant at the 5 % level, and ** is significant at the 1 % 
level.  

 

VI 
 

t-
value 

 

Corrected 
Degrees of 
Freedom 

 
Probability 

 

 
Low 

Disturbance 
(n = 60) 

 

 
High 

Disturbance  
(n = 45) 

 
 
Chlorophyll based VIs: 
NDVI800 3.84 98.49 0.0002 ** 0.144 ± 0.006 0.116 ± 0.004 
NDVI750 3.62 91.76 0.0005 ** 0.108 ± 0.005 0.087 ± 0.003 
GNDVI 3.82 99.90 0.0002 ** 0.337 ± 0.006 0.302 ± 0.007 
SAVI 2.35 102.15 0.02 * 0.085 ± 0.003 0.076 ± 0.002 
NDVI705 3.52 91.12 0.0007 ** 0.062 ± 0.003 0.049 ± 0.002 
mSR705 3.22 87.48 0.002 ** 1.198 ± 0.011 1.159 ± 0.006 
mNDVI705 3.28 91.45 0.001 ** 0.089 ± 0.004 0.073 ± 0.002 
VOG2 -3.92 97.27 0.0002 ** -0.016 ± 0.0007 -0.013 ± 0.0005 
VOG3 -3.91 96.67 0.0002 ** -0.016 ± 0.0008 -0.013 ± 0.0005 
 
Mixed chlorophyll and carotenoid based VIs: 
SIPI 3.95 102.91 0.0001 ** 0.419 ± 0.005 0.393 ± 0.004 
PSRI -0.10 102.97 0.91 0.428 ± 0.007 0.429 ± 0.006 
 
Carotenoid based VIs: 
PRI -0.27 91.49 0.79 -0.107 ± 0.003 -0.105 ± 0.004 
CRI1 1.89 63.56 0.06 3.48 ± 0.55 2.43 ± 0.10 
CRI2 2.08 62.89 0.04 * 10.10 ± 1.60 6.72 ± 0.29 
 
Anthocyanin based VIs: 
ARI1 2.17 62.64 0.03 * 6.62 ± 1.06 4.29 ± 0.19 
ARI2 3.44 102.85 0.0008 ** 0.96 ± 0.03 0.81 ± 0.03 
 
Plant structural based VIs: 
CAI -0.89 95.46 0.37 0.057 ± 0.004 0.063 ± 0.005 
NDLI 1.65 102.69 0.10 0.009 ± 0.0009 0.007 ± 0.0008 
 
Plant-water based VIs: 
WBI -1.77 102.30 0.08 0.927 ± 0.002 0.930 ± 0.001 
NDWI 0.84 102.33 0.40 -0.179 ± 0.005 -0.184 ± 0.005 
NDII 1.20 96.46 0.23 -0.238 ± 0.007 -0.251 ± 0.008 
NDII5 1.06 97.12 0.29 -0.242 ± 0.007 -0.253 ± 0.008 
NDII7 
 

0.89 
 

97.81 
 

0.37 
 

-0.128 ± 0.011 
 

-0.143 ± 0.012 
 



 63 

Table 13 Welch Two Sample t-tests for vegetation indices (VI) between high 
and low disturbance in wet grassland quadrats at Vaal River.  Data are 
means ± standard errors and significant differences are indicated in 
bold.  * is significant at the 5 % level, and ** is significant at the 1 % 
level. 

 

VI 
 

t-
value 

 

Corrected 
Degrees of 
Freedom 

 
Probability 

 

Low 
Disturbance 

(n = 10) 
 

 
High 

Disturbance 
(n = 5) 

 
 
Chlorophyll based VIs: 
NDVI800 0.99 12.41 0.34 0.160 ± 0.020 0.133 ± 0.017 
NDVI750 1.07 12.3 0.30 0.121 ± 0.017 0.096 ± 0.015 
GNDVI 0.67 12.78 0.51 0.303 ± 0.016 0.290 ± 0.012 
SAVI 0.29 12.99 0.78 0.092 ± 0.011 0.088 ± 0.007 
NDVI705 1.27 12.22 0.23 0.075 ± 0.011 0.056 ± 0.010 
mSR705 1.20 12.13 0.25 1.246 ± 0.039 1.185 ± 0.034 
mNDVI705 1.16 11.86 0.27 0.107 ± 0.015 0.084 ± 0.014 
VOG2 -1.93 12.86 0.08 -0.019 ± 0.002 -0.014 ± 0.002 
VOG3 -1.92 12.87 0.08 -0.019 ± 0.002 -0.014 ± 0.002 
 
Mixed chlorophyll and carotenoid based VIs: 
SIPI 1.25 12.92 0.23 0.424 ± 0.015 0.400 ± 0.011 
PSRI -0.97 11.94 0.35 0.377 ± 0.013 0.395 ± 0.012 
 
Carotenoid based VIs: 
PRI -0.97 12.93 0.35 -0.087 ± 0.002 -0.084 ± 0.002 
CRI1 2.02 11.93 0.07 2.83 ± 0.30 2.01 ± 0.27 
CRI2 1.58 10.93 0.14 7.50 ± 0.74 5.83 ± 0.75 
 
Anthocyanin based VIs: 
ARI1 1.29 10.22 0.23 4.67 ± 0.44 3.83 ± 0.49 
ARI2 0.29 12.99 0.77 0.76 ± 0.05 0.75 ± 0.03 
 
Plant structural based VIs: 
CAI -0.41 12.95 0.69 0.078 ± 0.010 0.083 ± 0.006 
NDLI 2.25 11.19 0.05 * 0.015 ± 0.002 0.011 ± 0.0007 
 
Plant-water based VIs: 
WBI 0.64 12.24 0.53 0.926 ± 0.004 0.923 ± 0.002 
NDWI 0.001 12.03 0.99 -0.190 ± 0.011 -0.190 ± 0.005 
NDII 0.67 11.21 0.52 -0.236 ± 0.021 -0.251 ± 0.008 
NDII5 0.83 11.17 0.42 -0.238 ± 0.021 -0.256 ± 0.008 
NDII7 
 

1.32 
 

12.77 
 

0.21 
 

-0.066 ± 0.031 
 

-0.114 ± 0.018 
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3.2.6 VI Response to Disturbance in Non-Rocky Grassland at Vaal River 

 

• My hypothesis was that there was no difference for VIs between high and low 

disturbance in non-rocky grasslands from Vaal River. 

Of the chlorophyll based indices (Table 14), only the GNDVI differed (P < 0.01,     

DF = 9.71) between disturbance levels in non-rocky grasslands at Vaal River.  Both 

mixed chlorophyll and carotenoid indices (SIPI and PSRI) differed (P < 0.01,          

DF = 8.09 and 11.63 respectively) between high and low disturbance.  Similarly, the 

pure carotenoid and anthocyanin indices (PRI, CRI1, CRI2, ARI1 and ARI2) differed 

(P < 0.01, DF = 12.06; P < 0.05, DF = 10.4; P < 0.05, DF = 9.87, P < 0.05, DF = 9.7; 

P < 0.01, DF = 12.58 respectively).  Neither the cellulose index (CAI) nor the lignin 

index (NDLI) had any differences between disturbance levels.  The plant-water based 

indices, the NDII, NDII5 and NDII7 produced significant differences (P < 0.01; DF = 

9.11, DF = 8.64, DF = 9.75 respectively) between high and low disturbance in non-

rocky grasslands from Vaal River, but the WBI and NDWI showed no differences.  I 

therefore reject the hypothesis of no difference between disturbance levels for the 

GNDVI, SIPI, PSRI, PRI, CRI1, CRI2, ARI1, ARI2, NDII, NDII5 and NDII7 indices. 

 

3.2.7 VI Response to Disturbance in Non-Rocky Grassland at West Wits 

 

• My hypothesis was that there was no difference for VIs between high and low 

disturbance in non-rocky grasslands from West Wits. 

Of the chlorophyll based indices, the GNDVI at West Wits, like at Vaal River, was 

different between disturbance levels (P < 0.01, DF = 15.89).  However, unlike Vaal 

River, the standard NDVI (P < 0.05, DF = 21.84) and the red edge VOG2 and VOG3 

(P < 0.05, DF = 22.98) differed between disturbance levels in non-rocky grasslands at 

West Wits (Table 15).  Both the mixed chlorophyll and carotenoid indices (SIPI and 

PSRI) differed between disturbance levels (P < 0.01, DF = 22.07; P < 0.05,              

DF = 11.92 respectively) in non-rocky grasslands from West Wits.  The carotenoid 

index, the CRI2 was different (P < 0.05, DF = 15.46).  Both anthocyanin indices 

(ARI1 and ARI2) differed (P < 0.01; DF = 15.45 and 14.66 respectively) between 

high and low disturbance.   
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Table 14 Welch Two Sample t-tests for vegetation indices (VI) from high and 
low disturbance in non-rocky grassland quadrats at Vaal River. Data 
are means ± standard errors and significant differences are indicated in 
bold.  * is significant at the 5 % level, and ** is significant at the 1 % 
level. 

 

VI 
 

t-
value 

 

Corrected 
Degrees of 
Freedom 

 
Probability 

 

Low 
Disturbance 

(n = 10) 
 

 
High 

Disturbance 
(n = 5) 

 
 
Chlorophyll based VIs: 
NDVI800 0.60 12.69 0.56 0.118 ± 0.006 0.114 0.003 
NDVI750 1.53 12.29 0.15 0.087 ± 0.004 0.079 0.002 
GNDVI 10.34 9.71 < 0.0001 ** 0.324 ± 0.005 0.251 0.005 
SAVI 1.84 12.53 0.09 0.074 ± 0.003 0.067 0,002 
NDVI705 0.64 12.31 0.53 0.048 ± 0.003 0.046 0.001 
mSR705 -1.31 12.02 0.22 1.151 ± 0.010 1.166 0.005 
mNDVI705 -1.33 11.97 0.21 0.070 ± 0.004 0.076 0.002 
VOG2  0.46 12.81 0.65 -0.013 ± 0.0009 -0.014 0.0005 
VOG3 0.45 12.80 0.66 -0.013 ± 0.0009 -0.014 0.0005 
 
Mixed chlorophyll and carotenoid based VIs: 
SIPI 7.34 8.09 < 0.0001 ** 0.404 ± 0.003 0.361 0.005 
PSRI 6.30 11.63 < 0.0001 ** 0.455 ± 0.012 0.374 0.005 
 
Carotenoid based VIs: 
PRI -4.56 12.06 0.0006 ** -0.114 ± 0.007 -0.079 0.003 
CRI1 2.41 10.40 0.04 * 2.94 ± 0.34 2.10 0.10 
CRI2 2.55 9.87 0.03 * 8.27 ± 0.90 5.93 0.20 
 
Anthocyanin based VIs: 
ARI1 2.61 9.70 0.03 * 5.34 ± 0.57 3.83 0.11 
ARI2 10.12 12.58 < 0.0001 ** 0.906 ± 0.023 0.604 0.019 
 
Plant structural based VIs: 
CAI 2.25 7.22 0.06 0.048 ± 0.004 0.029 0.007 
NDLI 1.89 12.93 0.08 0.0049 ± 0.0018 0.0009 0.0011 
 
Plant-water based VIs: 
WBI 1.80 11.78 0.10 0.931 ± 0.002 0.926 0.002 
NDWI 2.09 10.23 0.06 -0.175 ± 0.007 -0.196 0.007 
NDII 3.57 9.11 0.006 ** -0.257 ± 0.008 -0.303 0.010 
NDII5 3.74 8.64 0.005 ** -0.260 ± 0.008 -0.307 0.010 
NDII7 
 

3.58 
 

9.75 
 

0.005 ** 

 
-0.188 ± 0.013 

 
-0.260 0.015 
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Table 15 Welch Two Sample t-tests for vegetation indices (VI) from high and 
low disturbance in non-rocky grassland quadrats at West Wits.  Data 
are means ± standard errors and significant differences are indicated in 
bold.  * is significant at the 5 % level, and ** is significant at the 1 % 
level. 

 

VI 
 

t-
value 

 

 
Corrected 
Degrees of 
Freedom 

 
Probability 

 

 
Low 

Disturbance 
(n = 10) 

 

 
High 

Disturbance 
(n = 15) 

 
 
Chlorophyll based VIs: 
NDVI800 2.62 21.84 0.02 * 0.141 ± 0.004 0.123 ± 0.006 
NDVI750 1.73 22.06 0.10 0.103 ± 0.003 0.093 ± 0.005 
GNDVI 3.56 15.89 0.003 ** 0.361 ± 0.013 0.304 ± 0.008 
SAVI 2.02 17.40 0.06 0.091 ± 0.004 0.081 ± 0.003 
NDVI705 1.54 22.35 0.14 0.057 ± 0.002 0.052 ± 0.003 
mSR705 0.94 20.68 0.36 1.175 ± 0.004 1.167 ± 0.008 
mNDVI705 0.99 20.78 0.34 0.080 ± 0.002 0.077 ± 0.003 
VOG2 -2.40 22.98 0.02 * -0.016 ± 0.0005 -0.014 ± 0.0006 
VOG3 -2.39 22.98 0.03 * -0.016 ± 0.0005 -0.014 ± 0.0006 
 
Mixed chlorophyll and carotenoid based VIs: 
SIPI 2.74 22.07 0.01 * 0.428 ± 0.006 0.403 ± 0.006 
PSRI 2.50 11.92 0.03 * 0.454 ± 0.01 0.426 ± 0.004 
 
Carotenoid based VIs: 
PRI -0.79 11.26 0.45 -0.107 ± 0.007 -0.101 ± 0.003 
CRI1 1.43 15.99 0.17 2.88 ± 0.26 2.44 ± 0.16 
CRI2 2.52 15.46 0.02 * 8.90 ± 0.75 6.70 ± 0.45 
 
Anthocyanin based VIs: 
ARI1 3.08 15.45 0.007 ** 6.02 ± 0.49 4.26 ± 0.30 
ARI2 3.83 14.66 0.002 ** 1.09 ± 0.07 0.81 ± 0.04 
 
Plant structural based VIs: 
CAI 2.38 17.78 0.03 * 0.072 ± 0.005 0.057 ± 0.004 
NDLI 0.97 13.85 0.35 0.013 ± 0.002 0.011 ± 0.001 
 
Plant-water based VIs: 
WBI -5.83 22.22 < 0.0001 ** 0.924 ± 0.001 0.937 ± 0.002 
NDWI -2.19 19.15 0.04 * -0.177 ± 0.007 -0.156 ± 0.007 
NDII -1.93 20.68 0.07 -0.229 ± 0.011 -0.200 ± 0.010 
NDII5 -2.10 21.13 0.05 * -0.232 ± 0.011 -0.200 ± 0.010 
NDII7 
 

-1.14 
 

21.61 
 

0.27 
 

-0.094 ± 0.017 
 

-0.067 ± 0.016 
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Of the plant-water based indices, the WBI, NDWI and NDII5 were different (P < 

0.01, DF = 22.22; P < 0.05, DF = 19.15; P < 0.05, DF = 21.13) between high and low 

disturbance in non-rocky grasslands at West Wits (Table 15).  I therefore reject the 

hypothesis of no difference between disturbance levels in non-rocky grasslands at 

West Wits for the NDVI, GNDVI, VOG2, VOG3, SIPI, PSRI, CRI2, ARI1, ARI2, 

CAI, WBI, NDWI and NDII5. 

 

3.2.8 VI Response to Disturbance in Rocky Grassland at Vaal River 

 

• My hypothesis was that there was no difference in VIs between high and low 

disturbance quadrats in rocky grasslands from Vaal River.   

All chlorophyll based indices were different between disturbance levels in rocky 

grasslands from Vaal River (Table 16) with the exception of the VOG2 and VOG3 

indices.  Of the mixed chlorophyll and carotenoid indices, the SIPI differed between 

disturbance levels (P < 0.05, DF = 27.52).  Only the ARI2 was different (P = 0.05, DF 

= 22.74) amongst the carotenoid and anthocyanin indices.  Of the plant-water based 

indices, the NDWI (P < 0.05, DF = 27.99), NDII (P < 0.01, DF = 27.82), NDII5 (P < 

0.01, DF = 27.28) and NDII7 (P < 0.01, DF = 19.59) differed between high and low 

disturbance in rocky grasslands at Vaal River.  I there reject the hypothesis of no 

difference between disturbance levels for the NDVI800, NDVI750, GNDVI, SAVI,     

NDVI705, mSR705, mNDVI705, VOG2, VOG3, SIPI, ARI2, NDWI, NDII, NDII5 

and NDII7 (Table 16). 

 

3.2.9 VI Response to Disturbance in Woody Shrub Grasslands at Vaal River 

 

• My hypothesis was that there was no difference for VIs between high and low 

disturbance in woody shrub quadrats at Vaal River. 

All chlorophyll based indices except the GNDVI differed between high and low 

disturbance in woody shrub plots at Vaal River (Table 17).  Of the mixed chlorophyll 

and carotenoid indices, the SIPI differed between disturbance levels in woody shrub 

plots (P < 0.05, DF = 17.87) as did the cellulose index (CAI: P < 0.05, DF = 17.35) 

amongst the plant structure indices.  Amongst the results for the plant-water based 

indices, only the NDII (P < 0.05, DF = 17.35) had differences between high and low  
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Table 16 Welch Two Sample t-tests for vegetation indices (VI) from high and 
low disturbance in rocky grassland quadrats at Vaal River. Data are 
means ± standard errors and significant differences are indicated in 
bold.  * is significant at the 5 % level, and ** is significant at the 1 % 
level. 

 

VI 
 

t-
value 

 

Corrected 
Degrees of 
Freedom 

 
Probability 

 

 
Low 

Disturbance 
(n = 15) 

 

 
High 

Disturbance 
(n = 15) 

 
 
Chlorophyll based VIs: 
NDVI800 2.32 26.09 0.03 * 0.142 ± 0.009 0.114 ± 0.007 
NDVI750 2.71 23.44 0.01 ** 0.109 ± 0.007 0.085 ± 0.005 
GNDVI 2.43 22.45 0.02 * 0.358 ± 0.008 0.320 ± 0.014 
SAVI 2.38 26.08 0.02 * 0.095 ± 0.006 0.077 ± 0.005 
NDVI705 2.37 23.96 0.03 * 0.061 ± 0.004 0.048 ± 0.003 
mSR705 2.28 22.52 0.03 * 1.188 ± 0.013 1.152 ± 0.008 
mNDVI705 2.27 23.17 0.03 * 0.085 ± 0.006 0.071 ± 0.003 
VOG2 -2.03 27.37 0.05 * -0.015 ± 0.001 -0.013 ± 0.001 
VOG3 -2.04 27.34 0.05 * -0.015 ± 0.001 -0.013 ± 0.001 
 
Mixed chlorophyll and carotenoid based VIs: 
SIPI 2.17 27.52 0.04 * 0.424 ± 0.008 0.398 ± 0.009 
PSRI -0.19 27.04 0.85 0.451 ± 0.009 0.454 ± 0.011 
 
Carotenoid based VIs: 
PRI 0.20 24.74 0.84 -0.120 ± 0.004 -0.122 ± 0.007 
CRI1 0.42 21.05 0.68 2.81 ± 0.13 2.70 ± 0.24 
CRI2 0.99 21.15 0.34 8.06 ± 0.34 7.33 ± 0.65 
 
Anthocyanin based VIs: 
ARI1 1.30 21.95 0.21 5.25 ± 0.23 4.63 ± 0.41 
ARI2 2.03 22.74 0.05 1.05 ± 0.04 0.90 ± 0.63 
 
Plant structural based VIs: 
CAI -0.19 24.90 0.85 0.055 ± 0.008 0.057 ± 0.005 
NDLI 1.43 27.03 0.16 0.007 ± 0.001 0.004 ± 0.001 
 
Plant-water based VIs: 
WBI 1.55 27.92 0.13 0.930 ± 0.002 0.925 ± 0.002 
NDWI 2.58 27.99 0.02 * -0.172 ± 0.006 -0.195 ± 0.006 
NDII 2.73 27.82 0.01 ** -0.228 ± 0.011 -0.269 ± 0.010 
NDII5 2.75 27.28 0.01 ** -0.231 ± 0.012 -0.273 ± 0.010 
NDII7 
 

2.92 
 

19.59 
 

0.008 ** 

 
-0.138 ± 0.016 

 
-0.191 ± 0.007 
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Table 17 Welch Two Sample t-tests for vegetation indices (VI) from high and 
low disturbance in woody shrub quadrats at Vaal River.  Data are 
means ± standard errors and significant differences are indicated in 
bold.  * is significant at the 5 % level, and ** is significant at the 1 % 
level. 

 

VI 
 

t-
value 

 

 
Corrected 
Degrees of 
Freedom 

 
Probability 

 

 
Low 

Disturbance 
(n = 15) 

 

 
High 

Disturbance 
(n = 5) 

 
 
Chlorophyll based VIs: 
NDVI800 3.33 15.59 0.004 ** 0.157 ± 0.017 0.085 ± 0.013 
NDVI750 2.76 17.97 0.01 ** 0.117 ± 0.014 0.073 ± 0.007 
GNDVI 1.01 9.39 0.34 0.331 ± 0.018 0.302 ± 0.023 
SAVI 2.30 12.81 0.04 * 0.075 ± 0.006 0.057 ± 0.018 
NDVI705 3.14 17.98 0.006 ** 0.066 ± 0.008 0.038 ± 0.004 
mSR705 3.19 17.97 0.005 ** 1.223 ± 0.028 1.123 ± 0.014 
mNDVI705 3.39 17.71 0.003 ** 0.098 ± 0.010 0.058 ± 0.006 
VOG2 -3.76 17.04 0.002 ** -0.018 ± 0.002 -0.008 ± 0.001 
VOG3 -3.73 17.24 0.002 ** -0.018 ± 0.002 -0.008 ± 0.001 
 
Mixed chlorophyll based VIs: 
SIPI 2.72 17.87 0.01 ** 0.417 ± 0.015 0.369 ± 0.009 
PSRI -1.77 9.72 0.11 0.403 ± 0.017 0.451 ± 0.021 
 
Carotenoid based VIs: 
PRI 0.95 5.79 0.38 -0.101 ± 0.007 -0.116 ± 0.015 
CRI1 1.40 14.28 0.18 5.36 ± 2.14 2.35 ± 0.22 
CRI2 1.47 14.39 0.16 15.90 ± 6.25 6.66 ± 0.74 
 
Anthocyanin based VIs: 
ARI1 1.50 14.48 0.16 10.54 ± 4.12 4.31 ± 0.55 
ARI2 1.07 14.83 0.30 0.945 ± 0.098 0.808 ± 0.083 
 
Plant structural based VIs: 
CAI -2.88 5.58 0.03 * 0.042 ± 0.010 0.111 ± 0.022 
NDLI 0.51 9.77 0.62 0.007 ± 0.002 0.006 ± 0.002 
 
Plant-water based VIs: 
WBI -2.01 10.73 0.07 0.922 ± 0.005 0.936 ± 0.005 
NDWI 1.90 15.43 0.08 -0.1814 ± 0.016 -0.220 ± 0.013 
NDII 2.22 17.35 0.04 * -0.2441 ± 0.020 -0.296 ± 0.013 
NDII5 1.88 17.62 0.08 -0.2497 ± 0.020 -0.295 ± 0.013 
NDII7 
 

-0.12 
 

10.24 
 

0.91 
 

-0.1414 ± 0.029 
 

-0.136 ± 0.034 
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Table 18 Summary of results (Tables 13 – 17) when comparing VIs for high and 
low disturbance within the vegetation types.  The table shows where 
significant differences occurred at the 5% level (*) or 1 % level (**). 

 

VI 
 

 
Wet 

Grassland 
Vaal River 

 

Non-rocky 
Grassland 
Vaal River 

 

Non-rocky 
Grassland 
West Wits 

 

Rocky 
Grassland 

 

Woody 
Shrub 

 
 
Chlorophyll based VIs: 
NDVI800   * * ** 
NDVI750    ** ** 
GNDVI  ** ** *  
SAVI    * * 
NDVI705    * ** 
mSR705    * ** 
mNDVI705    * ** 
VOG2   * * ** 
VOG3   * * ** 
 
Mixed chlorophyll and carotenoid based VIs: 
SIPI  ** * * ** 
PSRI  ** *   
 
Carotenoid based VIs: 
PRI  **    
CRI1  *    
CRI2  * *   
 
Anthocyanin based VIs: 
ARI1  * **   
ARI2  ** **   
 
Plant structural based VIs: 
CAI   *  * 
NDLI *     
 
Plant-water based VIs: 
WBI   **   
NDWI   * *  
NDII  **  ** * 
NDII5  ** * **  
NDII7 
  

** 
  

** 
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disturbance in woody shrub plots at Vaal River (Table 17).  I therefore reject the hypothesis 

of no difference between VIs from high and low disturbance wood shrub quadrats for the 

NDVI800, NDVI750, SAVI, NDVI705, mSR705, mNDVI705, VOG2, VOG3, SIPI, CAI 

and NDII. 

 

Table 18 summarises the results of the t-tests comparing VI indices for different disturbance 

levels in each vegetation type as described in sections 3.2.5 to 3.2.9 and Tables 13 to 17. 

 

3.3 Correlations Between VIs  

 

A key question was to test the accuracy of the VIs in measuring the plant characteristic they 

were designed to measure (i.e. chlorophyll or plant water content) when using spectral 

reflectance of winter senesced vegetation in the absence of empirical data about these plant 

characteristics. 

 

To this end correlation analysis was applied between the VIs.  The chlorophyll based 

vegetation indices generally produced very strong correlations (r > 0.90) between them 

(Table 19) and form a single group with the exception of the GNDVI (r = 0.62) and SAVI    

(r = 0.55).  Of the two mixed chlorophyll and carotenoid based indices, the SIPI and PSRI 

had no correlation with each other (r = 0.03) (Table 19).  The SIPI had stronger correlations 

with the chlorophyll based VIs (r > 0.65) and with the anthocyanin ARI2 (r = 0.81).  The 

SIPI had a weaker correlation with the other anthocyanin index, the ARI1 and with the two 

carotenoid based indices (CRI1 and 2) (r > 0.50).  The PSRI had a strong but negative 

correlation with the PRI (r = -0.85), but with no other VIs except the chlorophyll based red 

edge mSR705 and mNDVI705 where a fair, but negative correlation occurred (r = -0.618 and 

-0.622 respectively). 
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Table 19 Correlation coefficients (r) between Vegetation Indices (VIs).  Correlation coefficients in bold have r ≥ 0.80. 
 

 
Index 

 
NDVI800 

 
NDVI750 

 
GNDVI 

 
SAVI 

 
NDVI750 

 
mSR705 

 
mNDVI705 

 
VOG2 

 
VOG3 

 
SIPI 

 
PSRI 

 
Chlorophyll VIs:           
NDVI800 1 0.98 0.62 0.56 0.98 0.94 0.94 -0.97 -0.97 0.85 -0.45 
NDVI750 0.98 1 0.64 0.52 0.99 0.95 0.95 -0.94 -0.95 0.84 -0.43 
GNDVI 0.62 0.64 1 0.47 0.59 0.45 0.45 -0.58 -0.58 0.86 0.40 
SAVI 0.55 0.52 0.47 1 0.52 0.42 0.45 -0.45 -0.45 0.66 -0.05 
NDVI705 0.98 0.99 0.59 0.52 1 0.97 0.97 -0.96 -0.96 0.82 -0.48 
mSR705 0.94 0.95 0.45 0.42 0.97 1 1 -0.94 -0.94 0.67 -0.62 
mNDVI705 0.94 0.95 0.45 0.45 0.97 1 1 -0.94 -0.94 0.68 -0.62 
VOG2 -0.97 -0.94 -0.58 -0.45 -0.96 -0.94 -0.94 1 1 -0.80 0.47 
VOG3 -0.97 -0.95 -0.58 -0.45 -0.96 -0.94 -0.94 1 1 -0.80 0.47 

Mixed chlorophyll and carotenoid VIs:          
SIPI 0.85 0.84 0.86 0.66 0.82 0.67 0.68 -0.80 -0.80 1 0.03 
PSRI -0.45 -0.43 0.40 -0.05 -0.48 -0.62 -0.62 0.46 0.47 0.03 1 
Carotenoid VIs:           
PRI 0.14 0.06 -0.61 -0.03 0.12 0.24 0.26 -0.17 -0.17 -0.25 -0.85 
CRI1 0.66 0.68 0.52 -0.14 0.65 0.61 0.58 -0.69 -0.69 0.57 -0.19 
CRI2 0.66 0.67 0.51 -0.16 0.68 0.62 0.59 -0.69 -0.70 0.54 -0.21 

Anthocyanin VIs:           
ARI1 0.65 0.66 0.50 -0.17 0.63 0.62 0.59 -0.69 -0.70 0.53 -0.22 
ARI2 0.57 0.58 0.98 0.36 0.51 0.37 0.36 -0.53 -0.53 0.81 0.44 

Plant structural VIs:           
CAI -0.38 -0.38 -0.23 0.08 -0.37 -0.40 -0.40 0.43 0.43 -0.22 0.19 
NDLI 0.42 0.39 -0.02 0.48 0.42 0.40 0.41 -0.40 -0.40 0.35 -0.47 

Plant-water VIs:           
WBI -0.54 -0.45 -0.41 -0.23 -0.45 -0.44 -0.44 0.53 0.53 -0.45 0.12 
NDWI -0.15 -0.14 -0.09 0.05 -0.14 -0.18 -0.16 0.14 0.14 -0.03 0.09 
NDII 0.11 0.15 0.13 0.20 0.16 0.10 0.11 -0.12 -0.12 0.23 0.02 
NDII5 0.07 0.11 0.09 0.18 0.12 0.06 0.08 -0.08 -0.08 0.19 0.02 
NDII7 
 

0.27 
 

0.33 
 

0.06 
 

0.24 
 

0.34 
 

0.31 
 

0.31 
 

-0.28 
 

-0.28 
 

0.29 
 

-0.28 
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Table 19 continued Correlation coefficients (r) between Vegetation Indices (VIs).  Correlation coefficients in bold have r ≥ 0.80. 
 

 
Index 

 
PRI 

 
CRI1 

 
CRI2 

 
ARI1 

 
ARI2 

 
CAI 

 
NDLI 

 
WBI 

 
NDWI 

 
NDII 

 
NDII5 

 
NDII7 

 
Chlorophyll VIs:            
NDVI800 0.14 0.66 0.66 0.65 0.57 -0.38 0.42 -0.54 -0.15 0.12 0.07 0.27 
NDVI750 0.06 0.68 0.67 0.66 0.58 -0.38 0.39 -0.45 -0.14 0.15 0.11 0.33 
GNDVI -0.61 0.52 0.51 0.50 0.98 -0.23 -0.02 -0.41 -0.09 0.13 0.09 0.06 
SAVI -0.03 -0.14 -0.16 -0.17 0.36 0.08 0.48 -0.23 0.05 0.20 0.18 0.24 
NDVI705 0.12 0.65 0.64 0.63 0.51 -0.37 0.42 -0.45 -0.14 0.16 0.12 0.34 
mSR705 0.24 0.61 0.62 0.62 0.37 -0.40 0.40 -0.44 -0.18 0.10 0.06 0.31 
mNDVI705 0.26 0.58 0.59 0.59 0.36 -0.40 0.41 -0.44 -0.16 0.11 0.08 0.31 
VOG2 -0.17 -0.69 -0.69 -0.70 -0.53 0.43 -0.40 0.53 0.14 -0.12 -0.08 -0.28 
VOG3 -0.17 -0.69 -0.70 -0.70 -0.53 0.43 -0.40 0.53 0.14 -0.12 -0.08 -0.28 

Mixed chlorophyll and carotenoid VIs:          
SIPI -0.25 0.57 0.54 0.53 0.81 -0.22 0.35 -0.45 -0.03 0.23 0.19 0.29 
PSRI -0.85 -0.19 -0.21 -0.22 0.44 0.19 -0.47 0.12 0.09 0.02 0.02 -0.28 

Carotenoid VIs:            
PRI 1 -0.09 -0.05 -0.03 -0.61 0.09 0.55 -0.04 -0.06 -0.09 -0.08 0.25 
CRI1 -0.09 1 0.99 0.99 0.60 -0.47 0.01 -0.43 -0.25 -0.04 -0.08 0.07 
CRI2 -0.05 0.99 1 1.00 0.59 -0.47 0.02 -0.45 -0.26 -0.06 -0.09 0.07 

Anthocyanin VIs:            
ARI1 -0.03 0.99 1.00 1 0.58 -0.46 0.02 -0.46 -0.27 -0.07 -0.10 0.07 
ARI2 -0.61 0.60 0.60 0.58 1 -0.23 -0.08 -0.43 -0.12 0.07 0.03 -0.01 

Plant structural VIs:            
CAI 0.09 -0.45 -0.47 -0.46 -0.23 1 0.28 0.09 -0.21 -0.21 -0.18 0.17 
NDLI 0.55 0.01 0.02 0.02 -0.08 0.28 1 0.001 0.12 0.34 0.34 0.75 
Plant-water VIs:            
WBI -0.04 -0.43 -0.45 -0.46 -0.43 0.09 0.001 1 0.61 0.56 0.60 0.39 
NDWI -0.06 -0.25 -0.26 -0.27 -0.12 -0.21 0.12 0.61 1 0.89 0.89 0.49 
NDII -0.09 -0.04 -0.06 -0.07 0.07 -0.21 0.34 0.56 0.89 1 1.00 0.75 
NDII5 -0.08 -0.08 -0.09 -0.10 0.03 -0.18 0.34 0.60 0.89 1.00 1 0.77 
NDII7 0.25 0.07 0.07 0.07 -0.01 0.17 0.75 0.39 0.49 0.75 0.77 1 
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Of the pure carotenoid indices (Table 19), the PRI was poorly correlated with the 

CRI1 and CRI2 but the CRI1 and 2 are strongly correlated.  The PRI had a negative 

correlation with the GNDVI (r = -0.611) and the ARI2 (r = -0.612).  No other index 

produced strong correlations with the PRI.  The CRI1 and CRI2 produced a strong 

correlation with the ARI1 (r = 0.99) but was weakly correlated with any chlorophyll 

or mixed chlorophyll and carotenoid based index.  The ARI2 was weakly correlated 

with the ARI1 (r = 0.581) but produced strong correlations with the GNDVI (r = 

0.98) and the SIPI (r = 0.81) but not with any other pigment based index. 

 

The two plant structural indices measuring cellulose (CAI) and lignin (NDLI) had a 

weak correlation (r = 0.28) with each other.  Furthermore the CAI had only weak 

correlations with any other VI (Table 19).  The NDLI showed no strong correlation 

with any VI except the plant-water based VI, the NDII7 (r = 0.75). 

 

Correlations between the plant-water based indices grouped the NDWI, NDII and 

NDII5 together (r > 0.80, Table 19).  The WBI is weakly correlated with this group   

(r < 0.62)  and with some chlorophyll based indices (r < 0.55) but has no strong 

correlations with any index.  The NDII had a strong correlation (r = 1.00) with the 

NDII5 which is as expected as the bands for these two indices are very close together 

and spectra tend to have high collinearity (Martens and Næs, 1989).  The NDII and 

NDII7 use unrelated wavelengths from the SWIR spectra but still had a strong 

correlation (r = 0.75).  The plant-water based indices had weak correlation 

coefficients with all non-plant-water based VIs with one notable exception - the NDLI 

(lignin) and the NDII7 (plant-water) had a correlation coefficient of 0.75. 
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3.4 Simple Linear Regression Between LFA Indices and VIs 

 

• My hypothesis is that VIs can predict the LFA indices of stability, infiltration and 

nutrient cycling under my experimental conditions of dry season, winter senesced, 

Highveld vegetation. 

Regressions of the VIs as the predictor variable against the LFA stability index gave 

weak coefficients of determination for all VIs (Table 20).  The strongest coefficient of 

determination was for the lignin index (NDLI) (r2 = 0.24, P < 0.01) (Figure 17a).  

This was followed by the PRI (r2 = 0.15, P < 0.01), a carotenoid based index (Figure 

17b), and the SAVI which is a chlorophyll based index adjusting for soil background.  

All these regressions are extremely weak.  Testing transformations and polynomial 

models did not improve any results. 

 

The LFA infiltration index as the response variable produced weak regressions like 

those for the stability index, but the VIs with the strongest coefficients of 

determination differed (Table 21).  The standard NDVI (NDVI800) had the strongest 

coefficient of determination (r2 = 0.16, P < 0.01) (Figure 17c).  This was closely 

followed by the red edge mSR705 and mNDVI705 (r2 = 0.14, P < 0.01) (Figure 17d).  

All three indices are chlorophyll based vegetation indices. 

 

Regressions between the VIs and nutrient cycling followed a similar pattern to those 

for the stability index.  The NDLI, sensitive to lignin, had the strongest, albeit still 

weak, coefficient of determination (r2 = 0.25, P < 0.01) (Figure 17e, Table 22) and the 

Photochemical Reflectance Index (PRI), a carotenoid based index, the second 

strongest (r2 = 0.20, P < 0.01) (Figure 17f, Table 22).  From the above results, I reject 

the hypothesis that HSRS VIs can predict LFA indices of stability, infiltration and 

nutrient cycling under the conditions of dry season, winter senesced vegetation. 
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Table 20 Regressions with the LFA stability index as the response variable and 
the vegetation index (VI) as the explanatory variable (n = 105, degrees 
of freedom = 103, * is significant at the 5 % level, and ** is significant 
at the 1 % level).  Values in bold show the three strongest regressions. 

 
 

VI 
 

r2 

 
F-value 

 
Probability 

 
 
Chlorophyll based VIs: 
NDVI800 0.02 2.90 0.09 
NDVI750 0.006 1.67 0.20 
GNDVI -0.004 0.56 0.46 
SAVI 0.10 12.41 0.0006 ** 

NDVI705 0.01 1.95 0.17 
mSR705 0.002 1.22 0.27 
mNDVI705 0.006 1.62 0.21 
VOG2 0.01 2.38 0.13 
VOG3 0.01 2.32 0.13 
 
Mixed chlorophyll and carotenoid based VIs: 
SIPI 0.009 1.95 0.17 
PSRI 0.05 6.78 0.01 * 

 
Carotenoid based VIs: 
PRI 0.15 19.21 < 0.0001 ** 

CRI1 0.01 2.23 0.14 
CRI2 0.01 2.31 0.13 
 
Anthocyanin based VIs: 
ARI1 0.01 2.33 0.13 
ARI2 0.003 1.28 0.26 
 
Plant structural based VIs: 
CAI -0.001 0.89 0.35 
NDLI 0.24 33.45 < 0.0001 ** 

 
Plant-water based VIs: 
WBI -0.006 0.36 0.55 
NDWI 0.01 2.25 0.14 
NDII 0.02 2.77 0.10 
NDII5 0.02 2.98 0.09 
NDII7 
 

0.06 
 

8.02 
 

0.006 ** 
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Table 21 Regressions with the LFA infiltration index as the response variable 
and the vegetation index (VI) as the explanatory variable (n = 105, 
degrees of freedom = 103, * is significant at the 5 % level, and ** is 
significant at the 1 % level.).  Values in bold highlight the three 
strongest regressions amongst the VIs. 

  
 

VI 
 

r2 
 

F-value 
 

Probability 
 

 
Chlorophyll based VIs: 
NDVI800 0.16 20.85 < 0.0001 ** 

NDVI750 0.13 16.15 0.0001 ** 

GNDVI 0.01 2.17 0.14 
SAVI 0.09 11.67 0.0009 ** 

NDVI705 0.12 15.09 0.0002 ** 

mSR705 0.14 17.42 < 0.0001 ** 

mNDVI705 0.14 18.42 < 0.0001 ** 

VOG2 0.13 17.03 < 0.0001 ** 

VOG3 0.13 16.9 < 0.0001 ** 

 
Mixed chlorophyll and carotenoid based VIs: 
SIPI 0.07 8.31 0.005 ** 

PSRI 0.10 12.4 0.0006 ** 

 
Carotenoid based VIs: 
PRI 0.09 11.28 0.001 ** 

CRI1 0.02 3.52 0.06 
CRI2 0.04 4.99 0.03 * 

 
Anthocyanin based VIs: 
ARI1 0.04 5.82 0.02 * 

ARI2 0.01 2.01 0.16 
 
Plant structural based VIs: 
CAI -0.004 0.56 0.46 
NDLI 0.09 11.32 0.001 ** 

 
Plant-water based VIs: 
WBI 0.10 13.03 0.0005 ** 

NDWI 0.03 4.13 0.05 * 

NDII 0.002 1.24 0.27 
NDII5 0.007 1.68 0.20 
NDII7 
 

-0.0006 
 

0.93 
 

0.34 
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Table 22 Regressions with the LFA nutrient cycling index as the response 
variable and the vegetation index (VI) as the explanatory variable (n = 
105, degrees of freedom = 103, * is significant at the 5 % level, and ** 
is significant at the 1 % level.).  Values in bold highlight the four 
strongest regressions amongst the VIs. 

 

VI 
 

r2 

 
F-value 

 

 
Probability 

 
 
Chlorophyll based VIs: 
NDVI800 0.15 19.24 < 0.0001 ** 

NDVI750 0.11 13.21 0.0004 ** 

GNDVI -0.006 0.38 0.54 
SAVI 0.13 16.74 < 0.0001 ** 

NDVI705 0.11 14.05 0.0003 ** 

mSR705 0.13 16.30 0.0001 ** 

mNDVI705 0.13 16.94 < 0.0001 ** 

VOG2 0.12 15.67 0.0001 ** 

VOG3 0.12 15.57 0.0001 ** 

 
Mixed chlorophyll and carotenoid VIs: 
SIPI 0.06 7.67 0.007 ** 

PSRI 0.14 18.49 < 0.0001 ** 

 
Carotenoid based VIs: 
PRI 0.20 27.04 < 0.0001 ** 

CRI1 -0.001 0.89 0.35 
CRI2 0.007 1.70 0.20 
 
Anthocyanin based VIs: 
ARI1 0.01 2.20 0.14 
ARI2 -0.007 0.24 0.63 
 
Plant structural based VIs: 
CAI 0.02 3.63 0.06 
NDLI 0.25 36.07 < 0.0001 ** 

 
Plant-water based VIs: 
WBI 0.11 13.43 0.0004 ** 

NDWI 0.03 4.46 0.04 * 

NDII 0.003 1.35 0.25 
NDII5 0.005 1.55 0.22 
NDII7 
 

0.02 
 

3.52 
 

0.06 
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(a) (b)  

(c) (d)  

(e) (f)  
 
Figure 17 Regressions of VIs on LFA indices as the response and vegetation 

indices as the predictor variable.  (a) Stability with the NDLI (lignin).  
(b) Stability with the PRI (carotenoids).  (c) Infiltration with the standard 
NDVI (chlorophyll).  (d) Infiltration with the modified red edge NDVI 
(chlorophyll).  (e) Nutrient cycling with the NDLI (lignin).  (f) Nutrient 
cycling with the PRI (carotenoids).  

r2 = 24 % 
 

r2 = 15 % 

r2 = 16 % r2 = 14 % 

r2 = 25 % r2 = 20 % 
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3.5 Partial Least Squares Regression Modelling 

 

3.5.1 Models of Stability 

 

Calibrating the stability models produced the lowest Root Mean Square Error of 

Prediction (RMSEP) of 6.241 for a 4-component model (Table 23).  This model 

explains 98.7% of the variance in the spectral data, but only 43.8% of the variance in 

the stability data.  Other possible models are a 2-component model (RMSEP = 6.466), 

7-component model (RMSEP = 6.458), 13-component model (RMSEP = 7.991) and a 

23-component model (RMSEP = 10.02) (Figure 18).  Most commonly one wants a 

model having the lowest RMSEP (prediction error), with the lowest number of 

components to avoid over-fitting (Mevik and Wehrens, 2007). 

 

The first component explains 70% of the variation in the spectral data, but only 11% 

of the variation in the stability data (Table 23).  The second component explains a 

further 28% of the spectral variance, and 20% of the variance in the stability data.  In 

other words, the first two components of the stability model explain 98% of the 

spectral variation, but only 32% of variation in LFA stability data.  Adding 

components increases the variation in the stability data explained by the model, but 

introduces more spectral noise into the model (Figure 19).  The 2-component model 

has a relatively smooth line plotting the regression coefficient.  Noise is clearly 

apparent in the plot of the regression coefficient for the 7-component model.  By 13 

components, the plot in the SWIR region has almost disappeared in noise. 

 

Linear regression of predictions against measured values using calibration data 

showed that adding components increases the coefficient of determination (Figure 20, 

Table 24).  The coefficient of determination for a 4-component model was 44% and a 

23-component model was 99%.  But when applying the models to the validation data, 

the coefficients of determination were much lower for all models (Figure 20, Table 

25).  The 23-component model dropped to 34% and that of the 4-component model to 

17%.  The RMSEP for the validation data varied between 5.9 and 7.5 (Table 23).  The 

4-component model was on the high side but within this range, and the 13-component 

model was towards the low side.  The 13-component model had a calibration 

coefficient of determination of 79% (Table 24) and validation coefficient of 
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determination with new data of 38% (Table 25; Figure 20).  This was the highest 

validation for any of the stability models when applied to new data. 

 

The above results imply that from a statistical modelling perspective, and avoiding 

over-fitting, the best model is a 4-component model, but from a predictive perspective 

with new data, the best model is a 13-component model of stability. 

 

During diagnosis of the stability model, a number of outliers were detected (Table 26, 

Figure 21) by inspection of score plots (Mevik and Wehrens, 2007).  The two very flat 

spectra (VR7 5-5 and VR 10 4-3) were both detected.  A number of spectra showed a 

mirror image in portions of their spectra to the mean spectra, or large differences from 

the mean spectra in certain portions of their spectrum.  Removing outliers and 

recalibrating the models suggested a 2-component, 5-component or 17-component 

model would be applicable.  But testing these models with the validation data did not 

give improved coefficients of determination for prediction compared to the original 

values shown in Table 25 (5-component r2 for validation = 25 %, 17-component r2 = 

29 %, data not shown). 

 

Interpretation of the loadings was restricted to the first four components (Figure 22, 

Table 27), as these accounted for 98.7% (Table 23) of the modelled spectral 

variability.  Component 1, accounting for 70 % of spectral variability, has a shallow 

inflection point in the loadings plot around 600 – 800 nm which is mirrored in 

component 2 from 600 – 700 nm, and more localised in component 3 (620, 680 – 720, 

770 nm), and component 4 (600, 720 and 760 nm).  Component 3 reflects an 

environmental feature around 450 nm.  The first three components all reflect features 

around 920, 950 and 940 nm respectively, whereas component 4 suggests three 

absorption features around 900, 940 and 960 nm.  Components 3 and 4 suggest two 

features in the 1120 – 1160 nm wavelengths.  All four components identify features in 

the 1200 – 1260 nm and 1720 – 1760 nm wavelength range.  A number of absorption 

features in the 2000 – 2300 nm range are identifiable in the four different component 

loadings but only the 2000 and 2300 nm features are present in more than one loading 

(Table 27).  
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Table 23 RMSEP values for first 25 components of the LFA stability model 
using LOO cross-validation, and cumulative percentage variances 
explained per component for spectral data (X) and LFA values (Y).  
Values in bold indicate local minima for RMSEP. 

 

 
 

Number of 
Components 

 

RMSEP 
calibration 

CV 
(n = 79) 

 

RMSEP 
calibration 

Adj CV 
(n = 79) 

 

 
RMSEP 

validation 
(n = 26) 

 

 
 

Spectral 
Variance 

X (%) 
 

 
 

Stability 
Variance 

Y (%) 
 

      
Intercept 7.435 7.435 7.469   

1 7.288 7.299 7.013 69.7 11.41 
2 6.466 6.464 7.37 97.5 31.73 
3 6.515 6.505 7.234 98.07 40.61 
4 6.241 6.238 7.145 98.72 43.83 
5 6.685 6.685 7.193 99.75 44.73 
6 6.756 6.744 7.178 99.8 51.79 
7 6.458 6.447 6.643 99.84 56.09 
8 6.922 6.910 6.604 99.89 57.95 
9 6.976 6.964 6.349 99.93 59.64 
10 7.630 7.610 6.004 99.94 64.71 
11 8.113 8.087 6.252 99.96 69.12 
12 8.532 8.498 5.92 99.97 73.88 
13 7.991 7.960 5.99 99.97 78.72 
14 8.141 8.106 6.239 99.97 82.86 
15 8.580 8.537 6.15 99.98 86.62 
16 8.140 8.100 5.942 99.98 88.88 
17 8.279 8.239 5.627 99.98 90.38 
18 8.672 8.631 6.114 99.99 92.41 
19 9.036 8.988 5.992 99.99 94.09 
20 9.203 9.149 6.086 99.99 95.88 
21 10.22 10.16 6.358 99.99 96.82 
22 10.05 9.988 6.272 99.99 98.04 
23 10.02 9.958 6.265 99.99 98.66 
24 10.35 10.28 6.372 100 99.2 
25 
 

10.36 
 

10.29 
 

6.35 
 

99.99 
 

99.48 
 

 



 83 

(a)  (b)  
 
Figure 18  RMSEP for stability models from calibration data (n = 79).  CV is 

cross-validation.  (a) 79 components and (b) 23 component using LOO 
cross-validation. 

 

(a)  (b)  

(c)  (d)  
 
Figure 19 Regression coefficients for (a) 2-component, (b) 4-component,          

(c) 7-component and (d) 13-component models of stability. 
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Table 24 Coefficients of determination for predictions from the calibration of 
stability models (n = 79).  * is significant at the 5 % level, and ** is 
significant at the 1 % level. 

 
 

Number of 
Model 

Components 
 

Residual 
Standard 

Error 
 

Degrees 
of 

Freedom 
 

Multiple 
r2 
 

F-value 
 

Probability 
 

 
4 3.69 77 0.44 60.07 < 0.0001 ** 

7 3.69 77 0.56 98.35 < 0.0001 ** 

13 3.04 77 0.79 284.9 < 0.0001 ** 

23 
 

0.86 
 

77 
 

0.99 
 

5659 
 

< 0.0001 ** 

 
 
 
 
 
Table 25 Coefficients of determination for predictions from the validation of 

stability models (n = 26).  Values in bold indicate the model with the 
highest r2.  * is significant at the 5 % level, and ** is significant at the 
1 % level. 

 
 

Number of 
Model 

Components 
 

Residual 
Standard 

Error 
 

Degrees 
of 

Freedom 
 

Multiple 
r2 

 
F-value 

 
Probability 

 
 
4 4.57 24 0.18 5.04 0.03 * 

7 5.01 24 0.29 9.78 0.005 ** 

13 4.06 24 0.38 14.59 0.0008 ** 

23 
 

4.79 
 

24 
 

0.37 
 

12.20 
 

0.002 ** 
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(a)  (b)  
 

(c)  (d)  
 

(e)  (f)  
 
Figure 20 Calibration (n = 79) and validation (n = 26) predictions for three 

stability models: (a, b) 4-component, (c, d) 13-component and  
(e, f) 23-component models. 

r2 = 37 % 

r2 = 38 % r2 = 79 % 

r2 = 99 % 

r2 = 44 % r2 = 18 % 
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Table 26 Outliers identified in the development of the stability model. 
 

 
Plot 

 
Vegetation type 

 
Disturbance 

 
Quadrat number 

 
Data set 

 
 
VR 2 Rocky grassland Low 1-5 Validation 
VR 5 Rocky grassland High 3-3 Calibration 
VR 25 Rocky grassland High 1-5 Calibration 
VR 9 Wet grassland Low 2-2 Calibration 
VR 19 Wet grassland Low 1-5 Calibration 
VR 4 Woody shrub High 5-1 Validation 
VR 4 Woody shrub High 4-2 Calibration 
VR 7 Woody shrub Low 1-5 Calibration 
VR 7 Woody shrub Low 5-5 Calibration 
VR 10 Woody shrub Low 4-3 Calibration 
WW 4 
 

Non-rocky grassland 
 

Low 
 

1-5 
 

Calibration 
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Figure 21 The spectra for the plots identified as outliers while modelling stability.  

Outliers were visually identified from score plots when outside the 
general data cloud in the plot.  The mean spectrum for all spectra is 
also shown.   



 87 

 

 
Figure 22 Loading values for the first four components of the stability model. 
 
Table 27 Approximate wavelengths (nm) for possible absorption features 
  identified from the loadings for the first four components of the 
  stability model. 
 

 
Component 1 

 

 
Component 2 

 

 
Component 3 

 

 
Component 4 

 
    

± 600 - 800 600 – 700 450 600 
920 950 620 720 
1200 1200 680 – 720 760 
1260 1500 770 810 
1600 1600 940 900 
1720 1730 1150 940 
2000 1760 1160 960 
2060 2100 1220 1120 
2140 2270 1260 1140 
2260 2300 1590 1260 
2300  1720 1580 

  1750 1600 
  2200 1630 
  2290 1740 
  2300 2000 
   2080 
   2280 
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3.5.2 Models of Infiltration 

 

The infiltration model with the lowest calibration RMSEP is an 8-component model 

(RMSEP = 6.023), although any of the models between 4 and 8 components have 

very similar RMSEPs (Figure 23, Table 28).  The other possible models with notable 

RMSEP values are a 17- or 19-component model (RMSEP = 7.619 and 7.672 

respectively), and a 25-component model (RMSEP = 7.861).  Like stability, the 

infiltration model explains most of the variation in the spectral data (88%) in the first 

component but only 4% of the variation in the infiltration data (Table 28).  The 8-

component infiltration model accounts for 99.9% of the spectral variation but only 

51% of the infiltration variation, whereas the 17-component model explains 99.9 and 

91% respectively.  When regressing predicted against measured infiltration values for 

these models, a similar pattern to the stability models occurs (Figure 24).  Adding 

components to the models using calibration data increases the resulting coefficients of 

determination, but this does not hold for the validation data.  Coefficients of 

determination increase much more slowly with validation data, and then begin falling 

again as components are added to the model.  Like the stability models, adding 

components increases the amount of spectral noise built into the modelling process 

(Data not shown, Appendix 4).  The best model for predictive purposes using new 

validation data is the 17-component model (r2 = 32%).   

 

Outliers identified during the modelling process were similar to those identified for 

models of stability, with the exception of VR 5_5-1, a rocky grassland of high 

disturbance, which was not recognised as an outlier in the stability modelling 

(Appendix 5).  Removing the outliers did not markedly improve the validation results 

of the recalibrated results, with the 17-component infiltration modelling improving the 

validation coefficient of determination from 32% to 34% (results not shown).  The 

loadings for the first four components show a different pattern to the stability model.  

However, identifying the points of absorption resulted in wavelengths similar to those 

described in Table 27.  Therefore, these loadings are not discussed further but the 

loadings plot is illustrated in Appendix 5. 

 

 

 



 89 

Table 28 RMSEP values for first 30 components of the LFA infiltration model 
using LOO cross-validation, and cumulative percentage variances 
explained per component for spectral data (X) and LFA values (Y). 
Values in bold indicate local minima for RMSEP 

 

Number of 
Components 

 

 
RMSEP 

calibration 
CV 

(n = 79) 
 

RMSEP 
calibration 

adjCV 
(n = 79) 

 

 
 

RMSEP 
validation 
(n = 26) 

 

Spectral 
variance 

X (%) 
 

Infiltration 
variance 

Y (%) 
 

      
(Intercept) 6.669 6.669 7.627   

1 6.630 6.635 7.893 88.47 3.69 
2 6.412 6.409 7.522 97.27 17.18 
3 6.064 6.061 7.281 98.66 28.14 
4 6.043 6.040 7.179 99.48 31.07 
5 6.051 6.045 7.534 99.62 39.25 
6 6.026 6.025 7.564 99.82 41.45 
7 6.050 6.044 7.37 99.87 46.88 
8 6.023 6.015 7.669 99.9 50.59 
9 6.159 6.151 7.689 99.92 53.49 
10 6.475 6.462 6.903 99.94 57.74 
11 6.696 6.683 6.796 99.96 60.49 
12 7.401 7.379 7.111 99.97 65.65 
13 7.912 7.871 6.483 99.97 79.06 
14 8.016 7.975 6.329 99.97 83.05 
15 8.049 8.011 6.271 99.98 85.01 
16 7.982 7.944 6.642 99.98 87.89 
17 7.619 7.576 6.581 99.98 91.41 
18 8.067 8.022 6.604 99.99 92.88 
19 7.672 7.633 6.615 99.99 94.64 
20 7.755 7.711 6.589 99.99 96.25 
21 8.204 8.155 6.938 100 97.7 
22 8.009 7.961 7.128 99.99 98.45 
23 7.992 7.943 7.278 99.99 99.04 
24 7.906 7.856 7.326 99.99 99.43 
25 7.861 7.811 7.375 99.99 99.64 
26 7.880 7.830 7.395 99.99 99.75 
27 7.939 7.889 7.363 99.99 99.86 
28 7.981 7.930 7.366 99.99 99.91 
29 8.010 7.959 7.381 99.99 99.95 
30 
 

8.032 
 

7.982 
 

7.379 
 

99.99 
 

99.97 
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(a) (b)  
 
Figure 23 RMSEP for infiltration models from calibration data (n = 79), CV is 

cross-validation (a) 79 components and (b) 25 component, using LOO 
cross-validation. 

 
Table 29 Coefficients of determination for predictions from the calibration of 

infiltration models (n = 79).  * is significant at the 5 % level, and ** is 
significant at the 1 % level. 

 
 

Number of 
Model 

Components 
 

Residual 
Standard 

Error 
 

Degrees 
of 

Freedom 
 

Multiple 
r2 

 
F-value 

 
Probability 

 
 
4 3.09 77 0.31 34.71 < 0.0001 ** 

8 3.33 77 0.51 78.83 < 0.0001 ** 

17 1.87 77 0.91 819.2 < 0.0001 ** 

25 
 

0.40 
 

77 
 

0.99 
 

21400 
 

< 0.0001 ** 

 
 
Table 30 Coefficients of determination for predictions from the validation of 

infiltration models (n = 26).  Values in bold indicate the model with the 
highest r2.  * is significant at the 5 % level, and ** is significant at the 
1 % level. 

 
 

Number of 
Model 

Components 
 

Residual 
Standard 

Error 
 

Degrees 
of 

Freedom 
 

Multiple 
r2 

 
F-value 

 
Probability 

 
 
4 3.59 24 0.15 4.39 0.05 * 

8 5.00 24 0.13 3.72 0.07 
17 5.77 24 0.32 11.04 0.003 ** 

25 
 

6.09 
 

24 
 

0.18 
 

5.22 
 

0.03 * 
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(a)  (b)  

(c)  (d)  

(e)  (f)  
 
Figure 24 Calibration (n = 79) and validation (n = 26) predictions for three 

infiltration models: (a, b) 4-component model, (c, d) 8-component 
model and (e, f) 17-component model. 

r2 = 31 % r2 = 15 % 

r2 = 32 % r2 = 91 % 

r2 = 51 % 
r2 = 13 % 
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3.5.3 Models of Nutrient Cycling 

 

Analysis of the RMSEP calculated for the calibration of the nutrient cycling models 

suggested four potential models (Table 31).  The model with the lowest RMSEP 

(4.476) is the 5-component model.  This is the lowest RMSEP obtained for the 

calibration of any stability or infiltration model.  Other possible models for nutrient 

cycling include 9-component, 15-component and 22-component models (Table 31, 

Figure 25).  Similar to infiltration and stability models, the nutrient cycling model 

with the lowest RMSEP (5-component) only explains 51% of the variation in the 

nutrient cycling data while explaining nearly 100% of the spectral variation.  The 15-

component model explains 88% of the variation in the nutrient cycling data. 

 

When testing these four model options against a new data set (validation), the 15-

component model has the highest coefficient of determination (r2 = 54%) for nutrient 

cycling predictions (Figure 26, Table 33).  This is considerably higher than the best 

models for either stability (38%) or infiltration (32%).   

 

The outliers diagnosed in the calibration phase are similar to those for stability and 

infiltration models and are tabulated in Appendix 5.  Removing these outliers and 

recalibrating the models gives a different set of optimal models, but these give poorer 

validation coefficients of determination (best r2 = 45%, data not shown). 

 

The loadings for the first four components are shown in Appendix 5.  The spectral 

features are situated at similar wavelengths to those identified for the stability model 

(Table 27).  However, the shape or scale of each loading in the nutrient cycling 

models is different to those in the stability and infiltration models.  
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Table 31 RMSEP values for first 30 components of the LFA nutrient cycling 
model using LOO cross-validation, and cumulative percentage 
variance explained per component for spectral data (X) and LFA 
nutrient cycling values (Y).  Values in bold indicate local minima for 
RMSEP 

 

Number of 
Components 

 

 
RMSEP 

calibration 
CV 

(n = 79) 
 

RMSEP 
calibration 

adjCV 
(n = 79) 

 

 
 

RMSEP 
Validation 

(n = 26) 
 

Spectral 
Variance 

X (%) 
 

Nutrient cycling 
Variance 

Y (%) 
 

      
(Intercept) 5.797 5.797 4.778   

1 5.605 5.619 5.068 79.976 7.913 
2 5.067 5.065 4.41 97.38 31.31 
3 4.674 4.672 4.485 98.65 45.69 
4 4.530 4.527 4.427 99.44 48.83 
5 4.476 4.474 4.407 99.75 50.99 
6 4.689 4.685 4.545 99.84 53.46 
7 4.796 4.790 4.35 99.87 57.64 
8 4.827 4.819 4.527 99.9 60.44 
9 4.701 4.691 4.223 99.91 64.08 
10 5.182 5.180 3.833 99.94 67.08 
11 5.943 5.911 4.59 99.94 76.3 
12 6.199 6.180 4.228 99.96 78.9 
13 5.980 5.954 3.797 99.97 82.7 
14 5.677 5.654 3.63 99.98 84.87 
15 5.620 5.596 3.525 99.98 87.75 
16 5.642 5.615 3.641 99.98 90.62 
17 5.906 5.877 3.477 99.99 92.11 
18 6.067 6.037 3.568 99.99 93.63 
19 6.088 6.055 3.563 99.99 95.89 
20 6.199 6.164 3.609 99.99 97.04 
21 6.692 6.654 3.644 99.99 97.78 
22 6.513 6.474 3.69 100 98.7 
23 6.610 6.570 3.788 99.99 99.18 
24 6.564 6.522 3.792 99.99 99.62 
25 6.534 6.494 3.815 99.99 99.75 
26 6.531 6.490 3.822 99.99 99.82 
27 6.521 6.480 3.783 100 99.9 
28 6.526 6.485 3.791 99.99 99.94 
29 6.524 6.483 3.802 99.99 99.96 
30 
 

6.527 
 

6.485 
 

3.796 
 

99.99 
 

99.98 
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(a)    (b)  
 
Figure 25 RMSEP for nutrient cycling models from calibration data (n = 79).  

CV is cross-validation (a) 79 components and (b) 25 component using 
LOO cross-validation. 

 
Table 32 Coefficients of determination for predictions from the calibration of 

nutrient cycling models (n = 79).  * is significant at the 5 % level, and 
** is significant at the 1 % level. 

 
 

Number of 
Model 

Components 
 

Residual 
Standard 

Error 
 

Degrees 
of 

Freedom 
 

Multiple 
r2 

 
F-value 

 
Probability 

 
 
5 2.90 77 0.51 80.12 < 0.0001 ** 

9 2.78 77 0.64 137.3 < 0.0001 ** 

15 1.90 77 0.88 551.6 < 0.0001 ** 

22 
 

0.66 
 

77 
 

0.99 
 

5814 
 

< 0.0001 ** 

 
 
Table 33 Coefficients of determination for predictions from the validation of 

nutrient cycling models (n = 26).  Values in bold indicate the model 
with the highest r2.  * is significant at the 5 % level, and ** is 
significant at the 1 % level. 

 
 

Number of 
Model 

Components 
 

Residual 
Standard 

Error 
 

Degrees 
of 

Freedom 
 

Multiple 
r2 
 

F-value 
 

Probability 
 

 
5 3.54 24 0.25 8.197 0.009 ** 

9 3.77 24 0.36 13.79 0.001 ** 

15 3.46 24 0.54 27.78 < 0.0001 ** 

22 
 

3.45 
 

24 
 

0.44 
 

18.82 
 

0.0002 ** 
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(a)  (b)  
 

(c)  (d)  

(e)  (f)  
 
Figure 26 Calibration (n = 79) and validation (n = 26) predictions for three 

nutrient cycling models: (a, b) 5-component model, (c, d) 9-component 
model and (e, f) 15-component model. 

  
 

r2 = 51 % r2 = 25 % 

r2 = 64 % r2 = 36 % 

r2 = 88 % r2 = 54 % 
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4 Discussion 

 

4.1 Landscape Function Analysis 

 

McIntyre and Tongway (2005) examined grazing pressures on four grassland patches 

representing different grazing pressures, and found that the stability index remained 

high and constant, and only declined in the patches experiencing the heaviest grazing.   

This corresponds with my study where stability, including high disturbance sites, was 

generally high with 80% of quadrats above threshold (Tongway and Hindley, 2004).   

Infiltration indices are low relative to their threshold value, which suggests that the 

majority of quadrats tend to shed excess rain water, rather than infiltrate the soil 

(Tongway and Hindley, 2004).  This, together with the high general stability of 

quadrats, implies that there is strong physical crust development in the soil surface.  

Physical soil crusts promote run-off and reduce infiltration (Mücher et al., 1988; 

Valentin and Bresson, 1992; Parsons et al., 2003).  No measurements were made to 

determine the causes of this crusting.  However, observations while collecting field 

data, suggest that in some quadrats it may be a function of mechanical scrapping and 

compaction by machinery, but this does not necessarily apply to all sites.   

 

Nutrient cycling has an almost even distribution above (53%) and below (47%) its 

threshold value (Table 4, Figure 12).  This suggests that a little more than half the 

quadrats are self-sustaining in terms of nutrient turnover (Tongway and Hindley, 

2004).  The higher number of quadrats above threshold for stability, with a low 

number above for infiltration, and an even distribution for nutrient cycling, implies 

that most impacts are being expressed in the biological vegetation component, rather 

than in the soil component of the environment (Sparrow et al., 2003; D. Tongway, 

pers. comm.).  In other words, the soils in these sites are stable, and impacts on these 

environments are being expressed in the goods and services, supplied or performed by 

plants, such as litter fall and capture or promotion of infiltration (Ludwig et al., 2005; 

Tongway and Ludwig, 2007).  The ranking also illustrates the high heterogeneity 

within plots, with individual quadrats within a plot having both high and low LFA 

values. 
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The higher LFA infiltration and nutrient cycling indices for West Wits operations may 

be a result of the higher MAP at West Wits, compared to Vaal River, although this 

was not tested.  Lauenroth and Sala (1992) showed that annual net primary production 

(ANPP) in North American Steppe grasslands was directly related to annual and 

seasonal rainfall, although there was often a lag affect between rainfall and vegetative 

response.  Increased vegetation cover would increase infiltration by acting as a barrier 

to surface flow, and increased soil moisture would result in higher soil biological 

activity (Belnap et al., 2005) and nutrient capture (Parsons et al., 2003).  However, 

observations in the field suggest that the nature of disturbance between the two mines 

was different.  The area under study at West Wits was mainly exposed to grazing 

pressure with little evidence of machine induced disturbance, whereas at Vaal River, 

both machine induced and grazing impacts were observed, and this difference may 

have influenced the LFA indices. 

 

The four vegetation types at Vaal River form a continuum in physiognomic 

complexity from simple wet grassland, through non-rocky grassland, rocky grassland 

to woody shrub, which is the most complex (Barbour et al., 1987).  As expected, wet 

grassland had higher values for all LFA indices (Figure 14).  This is due to a number 

of factors, such as its position at the bottom of landscapes, and therefore a sink for 

materials and resources from higher up the landscape gradient (Moss and Walker, 

1978).  Wet grasslands were also generally dominated by robust sedges (S. 

corymbosus), which were observed to be minimally grazed in comparison to the 

grasses. 

 

For the other three vegetation types, there was a reversal in the patterns between the 

three LFA indices.  Stability was highest in non-rocky grassland from West Wits, 

while woody shrub sites were lowest for stability.  The infiltration index reversed this 

trend, while nutrient cycling lay some where inbetween.  These reversals in trend for 

the different LFA indices may be a function of differences in biodiversity (Ludwig et 

al., 2004), or differences in physiognomic complexity between the vegetation types 

(Barbour et al., 1987), but this remains untested.  Ludwig et al. (2004) showed that in 

Australian conditions, low LFA indicators matched low biodiversity, and high LFA 

indicator values corresponded with high biodiversity.  In my study sites, the 

biodiversity gradient went from wet grassland with lowest biodiversity, non-rocky 
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grasslands, woody shrub, to rocky grasslands with highest biodiversity (I. Weiersbye, 

pers. comm.).  Rocky grasslands had slightly higher nutrient cycling indices, whereas 

woody shrub sites had slightly higher infiltration indices.  So it remains unclear 

whether these LFA results are influenced by physiognomic effects, biodiversity 

effects or an interaction between the two.  What is noticeable is that non-rocky 

grasslands, particularly at West Wits, have less difference between LFA indices of 

high and low disturbance than do either rocky grasslands or woody shrub plots.  This 

might be a result of different levels of disturbance in the high disturbance sites of 

these vegetation types.  Alternatively, it might indicate a decrease in resilience in 

response to high disturbance levels in these vegetation types with high biodiversity 

and/or high physiognomic complexity (Holling, 1973; Gunderson, 2000; Folke et al., 

2004).  Unfortunately, the data is not extensive enough to clarify this issue.  

 

The categories of high and low disturbance were adequately defined, as low 

disturbance sites had significantly higher LFA indices than high disturbance sites 

(Bastin et al., 2002; Tongway et al., 2003; Tongway and Hindley, 2004; McIntyre and 

Tongway, 2005).  The low levels of depositional material (as reflected in the high 

stability values) suggests that erosion may have been an important factor in the past in 

the plots sampled, but is not currently highly active in general (Weltz et al., 1998). 

This is supported by field observations which suggested that some of the sites, 

especially those showing signs of mechanical scraping in the past are in a process of 

natural regeneration (D. Tongway, pers. comm.).  This observation needs be tested 

with a time series of LFA data for which this study could act as the baseline 

(Tongway and Hindley, 2004).  

 

The non rocky grassland and wet grasslands at Vaal River provided exceptions to the 

general trends in the LFA results.  This is most likely due to having only one site with 

five quadrats for the high disturbance category in each vegetation type.  The Vaal 

River high disturbance non-rocky grassland plot (VR 16) is part of a very short, 

ephemeral, natural drainage line, and deposition of fine silt particles (Moss and 

Walker, 1978) may have contributed to the high LFA values for this site.  High 

disturbance wet grassland sites with visual evidence of disturbance are difficult to 

find.  The site in this analysis (VR 28) is located below a waste water storage dam, on 

the edge of a S. corymbosus sward.  It is dominanted by C. dactylon with stands of S 
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corymbosus intruding around the peripheries of the site.  A well used cattle path runs 

through the site.  The location below the waste water storage dam means there is 

likely to be higher soil moisture through seepage from the waste water facility.  These 

two factors probably contribute to the distortion of the LFA indices for this site. 

 

Although the results detected differences between high and low disturbance, the 

structured layout of the plots caused a number of sampling problems.  The patch-

inter-patch structure is being missed in some plots or the woody component is falling 

between sampling quadrats (D. Tongway, pers. comm.).  In some cases repeating the 

measurements but using the original LFA technique will allow comparison of the 

results between the two systems, and an evaluation of the two approaches.  Ong et al. 

(2008) adapted their sampling between 2002 and 2006 to incorporate landscape 

organisation measurements.  This allows the calculation of weighted means for each 

transect and plot, and facilitates better understanding of the landscape elements and 

their influence in the landscape (Tongway and Hindley, 2004).  However, they still 

retained the circular quadrats based on the FOV of the HSRS sensor.  Their adaptation 

allowed selection of representative patches and inter-patches (Ong et al., 2008), thus 

reducing the problems caused by mixed pixels, as illustrated in Figure 27.  This 

photograph clearly shows that the inter-patch area has quite different LFA values in 

relation to the patch.  Under the current amendments, the practitioner has to decide 

whether to give a patch or inter-patch measurement to the quadrat. 

 

Photographs are not suitable for deriving LFA measurements, as they provide 

accurate information only for the rainsplash SSI, which is essentially a measure of 

aerial canopy cover.  All other SSIs require proper field assessment where one can 

examine the site from different angles and under canopies.  Using photographs the 

researcher is often forced into “guesstimating” things that can only be partially seen. 
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Figure 27 A non-rocky grassland quadrat of high disturbance (VR29 1.2) 

illustrating the disparity between LFA values for the patch and 
interpatch.  

 

 

4.2 Vegetation Indices  

 

Most published studies have applied VIs to reflectance data sampled from green 

vegetation during the growing season, and therefore containing high levels of 

chlorophyll (e.g. Curran et al., 1991; Vogelmann et al., 1993; Yoder and Waring, 

1994; Gitelson et al., 1996, Datt, 1999).  This study was carried out in winter 

senesced, grassland vegetation which showed very little green colour, was mainly 

brown in colour, and dry.  Tanser and Palmer (1999) applied the NDVI to February, 

wet season, summer Landsat TM data.  They selected four fence lines separating 

communal degraded areas from “good condition” rangelands in the Great Fish River 

Basin area of South Africa.  Their averages for the NDVI ranged from 0.24 to 0.47.  

This is double the mean (0.13 ± 0.004) obtained for the NDVI in this study.  Although 

the upper limit of the range in this study (0.38) falls within their range, the difference 

between their mean values and this study is probably due to the difference in season, 

and therefore chlorophyll content of vegetation.  However, in agreement with my 

findings, Tanser and Palmer (1999) calculated higher NDVI values for “good 

condition” rangelands compared to degraded rangelands.  Wessels et al., (2004) used 
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a ten day maximum NDVI composite from AVHRR satellite data obtained over 

Limpopo Province in northern South Africa during the growing season (October to 

April).  Like my study, they also calculated lower NDVI values for degraded areas 

compared to non-degraded areas. 

 

Numata et al. (2003) found that NDVI values measured during the dry season in 

Brazilian pastures, formed after the removal of natural forest, declined as a pasture 

aged over a ten year chronosequence.  They attributed this decline in NDVI to 

changes in vegetation composition and canopy structure, which showed an increase in 

non-photosynthetic, above-ground vegetation over time.  Their NDVI values ranged 

between 0.15 and 0.30 (Numata et al., 2003) which are within the upper limit of those 

found in my study.  Although their study occurred over the dry season, their sites are 

located in tropical pasturage developed from forest removal.  My sites are located in 

semi-arid grassland, and the winter dry season conditions are likely to be far more arid 

than those of Numata et al., (2003).  This difference in aridity might account for the 

slightly lower NDVI values in my study compared to their values. 

 

van Leeuwen and Huete (1996) characterised most grasslands, savannas and 

shrublands into four vegetative growth stages or transitions: 1) a senescent period,    

2) a transition from the dry to the wet season during which litter is decaying from 

yellow to grey and dark structures, 3) a growing stage depending on the distribution of 

precipitation, and 4) a dry-down into the senescent stage due to a lack of precipitation 

or extremely high or low temperatures.  Throughout these vegetative stages, the soil, 

leaf and litter spectral properties, and leaf and litter distribution, vary due to 

biochemical, biophysical, and morphological changes as a response to the 

environment (van Leeuwen and Huete, 1996).  Even during the growing stage, there 

may be a mixture of green vegetation, standing litter, and leaf litter on the soil surface 

in various stage of decomposition.  Boutton and Tieszen (1983), using the RVI (not 

applied in this study) found that variability in the estimation of biomass in grasslands 

in Masai Mara Game Reserve in Kenya increased markedly when the proportion of 

live biomass fell below 30 % of total biomass. 
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Frank and Aase (1994) found that senesced grass did not adversely affect the VIs 

during early greening of rangeland.  However, they used clipped senesced grass, laid 

flat in experimental plots.  This would produce a different reflectance signal to that 

produced by natural grassland, where a large proportion of senesced vegetation is 

standing with the lamina in an erectophile position.  Huete and Jackson (1987) 

showed that in arid grasslands consisting of green vegetation with senescent and 

weathered litter, VIs were unreliable measures of green vegetation.  Yellow senescent 

vegetation on bare soil increased NDVI values, while senescent and weathered litter 

reduced NDVI values (Huete and Jackson, 1987).  Furthermore, they argued that the 

scattering influences of vertically orientated senesced elements of the grass canopy 

significantly influenced the green phytomass reflectance (Huete and Jackson, 1987). 

 

Tucker (1978) studied the spectral reflectance of blue grama (Bouteloua gracilis 

(H.B.K.) Lag.) approximately four weeks after the end of growing season.  He found a 

direct relationship between reflectance at the 680 nm wavelength and total wet 

biomass or total dry biomass.  This is the reverse for that of green vegetation when 

chlorophyll absorption causes an inverse relationship (Tucker, 1979).  Furthermore, 

Tucker (1978) found that the direct relationship, between the two biomass variables, 

in the NIR 740 – 800 nm wavelengths was relatively unchanged between green 

vegetation and four-week, post-growth, senescent or dormant vegetation.  The 680 

and 800 nm wavelengths are those used in the NDVI. Therefore a switch from a direct 

to inverse relationship around 680 nm between dry senesced grass and green grass 

would have major implications for VIs using these wavelengths. 

 

Ringrose and Matheson (1987) applied the NDVI in a Savanna woodland 

environment in Botswana.  They found that as vegetation cover increased to about 

50% the NDVI remained stable, and only began increasing at vegetation covers 

greater than 50%.  They argued that soil reflectance masked vegetation below 50 % 

vegetation cover.  The SAVI was developed to take into account soil influences on the 

NDVI.  However, the SAVI, like the NDVI showed large variability when influenced 

by leaf angle, litter and soil colour (van Leeuwen and Huete, 1996).  van Leeuwen 

and Huete (1996) showed that litter can cause the SAVI response to be lower or 

higher than that of a green canopy.  Furthermore, standing litter had complex 

interactions with VIs as a result of the variability in litter spectral and transmission 
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properties.  They also showed that a range of litter reflectance signatures overlapped 

with a range of soil reflectance signatures, which made it difficult to separate soil 

from litter reflectance signatures.  Van Leeuwen and Huete (1996) argued that VI 

performance could be significantly improved with ecosystem-specific information.  In 

my study correlations amongst the chlorophyll based VIs were very high with the 

exception of the SAVI and the GNDVI. In the case of the SAVI, this may have been 

partially a result of soil influences on the index when applied in a semi-arid 

environment where the majority of plots had varying degrees of soil surface exposed. 

 

The differences in MAP between Vaal River and West Wits mining regions may have 

contributed to the differences between these two areas for the NDVI and other 

chlorophyll based indices.  West Wits has a higher MAP, and had consistently high 

mean values for these indices compared to Vaal River.  Farrar et al., (1994) found that 

the pattern of annually integrated NDVI values more closely resembles that of 

rainfall, rather than soil moisture, in a semi-arid region of Botswana.  They regarded 

the low resolution of soil moisture sampling sites as influencing this pattern.   

However, when comparing monthly NDVI and soil moisture, they got much better 

correlations (r > 0.60) with most soil types (Farrar et al., 1994).  They argued that soil 

type had a major influence over the NDVI as a measure of photosynthetic efficiency 

in semi-arid ecosystems.  Factors other than soil moisture availability, such as 

textually determined soil moisture tension, porosity, nutrients, profile characteristics 

and soil chemistry, all play a role in influencing photosynthetic efficiency and 

therefore the NDVI (Farrar et al., 1994).  Nicholson and Farrar (1994) claimed that 

the relationship between NDVI and rainfall is only linearly related between 200 – 

1200 mm of annual rainfall.  Both West Wits and Vaal River fall roughly in the 

middle of this annual rainfall range, and therefore, one could expect some relationship 

between rainfall and chlorophyll based VI values. 

 

The fact that most VIs fall at the extremes, generally at the low end of their expected 

ranges, raises the question of whether the VIs are accurately measuring the features 

they are designed to measure.  This is not questioning the integrity of the VI, but 

rather the conditions in which the VI is being applied – winter senesced vegetation 

with low chlorophyll and low leaf water content.  Further evidence for this question is 

raised by the different responses of VIs that are designed to measure the same 
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environmental feature.  For instance correlations amongst the chlorophyll based 

indices, with the exception of the GNDVI and SAVI are very strong.  Yet when some 

of these VIs give a significant result, such as the standard NDVI, VOG 2 and VOG 3 

in non-rocky grassland at West Wits, other chlorophyll based VIs, which are highly 

correlated with these three VIs, show no difference. 

 

Another line of evidence is the relationship of the GNDVI, a chlorophyll based index, 

to the other chlorophyll based indices.  The GNDVI is designed around the 550 nm 

sensitivity of chlorophyll-a, whereas the other eight chlorophyll based indices are 

designed around the 680 nm absorption centre of chlorophyll-a, and its associated 700 

nm red-edge.  We know from the winter senesced state of the vegetation, that 

chlorophyll is low in these environments.  However, if a chlorophyll signal were 

being detected by the VIs, one would expect all nine indices to be highly correlated. 

But the GNDVI is weakly correlated with the other chlorophyll indices. 

 

One of the characteristics of spectra is that collinearity between nearby spectra is a 

common feature (Martens and Næs, 1989).  Any collinearity should weaken as 

spectral regions move further away from each other.  On the other hand, if two VIs far 

apart are measuring the same feature, such as chlorophyll, then they should have a 

high correlation.  The GNDVI is approximately 150 nm away from the spectral region 

for the other eight chlorophyll based indices.  This lower correlation between the 

GNDVI and the other eight chlorophyll based indices, suggests that these indices are 

receiving a very weak chlorophyll signal, and the values calculated using these 

wavelengths are highly influenced by the normal collinearity of spectra.  Furthermore 

it is well documented that senesced vegetation and soil have a very similar spectrum 

(van Leeuwen and Huete, 1996), and that in the visible and NIR region, this spectrum 

shows a rather featureless, progressively increasing reflectance as one moves to 

longer wavelengths.  This describes most of the VIS-NIR spectra recorded in this 

study, and brings into question all the values for the chlorophyll VIs. 

 

Further evidence to support this line of argument is provided by an examination of the 

plot of the visible/NIR spectra from wet grassland quadrats (Figure 28a).  The arrow 

shows a sudden increase in reflectance from approximately 680 nm. 
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(b)      
 

(c)     
 
Figure 28 (a) The visible and NIR portion of the spectrum from wet grassland 

quadrats.  The arrow points to the red-edge area of the spectrum for 
quadrat VR19_1-1 shown in photograph (b) with a continuous cover of 
sedge, S. corymbosus. (c) The Visible and NIR portion of the spectrum 
from an agricultural crop showing a well developed red edge at high 
vegetation fraction or cover and a corresponding weak red-edge at low 
vegetation fraction.  (Graph courtesy of R. Stark, 2001).    
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This corresponds with the slight development of a weak red edge (Curran et al., 1991; 

1995; Datt, 1999; Vogelmann, 2008) in quadrat VR19_1.1, which has a continuous 

cover of mostly senesced sedge (S. corymbosus) with a few leaves showing some 

green photosynthetic tissue (Figure 28b).  Conspicuous is the absence of any red-edge 

development in a number of these quadrats, and the weakly developed red edge in a 

few others.  Figure 28c illustrates how the red-edge develops as vegetation cover 

increases in a green agricultural crop and how strongly developed the red-edge 

becomes at high vegetation covers (vegetation fraction > 75 %) (Stark, 2001).  The 

graph of wet grassland quadrats (Figure 28a) corresponds with green vegetation 

fractions of 45% or less.  All the above evidence brings the values calculated by the 

chlorophyll indices into serious doubt in terms of their value as a measure of plant 

chlorophyll or plant characteristics under the conditions of these spectral 

measurements.  

 

All carotenoid and anthocyanin based VIs, like the chlorophyll indices, are using 

bands in the 450 to 700 nm.  The lack of correlation between indices measuring the 

same feature (PRI vs CRI1: r = -0.09), or the very high correlations between indices 

for different pigments (carotenoid CRI1 vs anthocyanin ARI1), strongly suggest 

collinearity of the spectra, and not a response to plant pigments.  Carotenoids are 

known to play a role in photo-inhibition, stabilisation of the light harvesting 

chlorophyll-protein complex, and photoprotection of the PS II reaction system 

(Biswal, 1995). Merzlyak et al. (1999) obtained values between -0.1 and 0.6 for the 

PSRI from leaves of maple (Acer platanoides L.) and coleus (Coleus blumei Benth.).  

My study had values for the PSRI ranging from 0.27 – 0.54 which is within the range 

described by Merzlyak et al. (1999).  During leaf senescence in coleus, degradation of 

chlorophyll and carotenoids occurred simultaneously until traces of carotenoid 

remained in senesecent leaves.  However, in maple leaves, more carotenoid is present 

in senesced leaves.  Merzlyak (1999) described three responses of the PSRI: (1) Dark 

green leaves had slightly negative PSRI values; (2) Low PSRI values (ca. -0.1) which 

then increased, corresponding with the early stages of senescence; and (3) a rapid 

increase in PSRI values as senescence progressed.  However, this final stage was not 

observed in coleus leaves during senescence (Merzlyak et al., 1999). Sanger (1971) 

studied leaf pigments in three broad-leafed tree species and found that during autumn, 

carotenoids and chlorophyll began declining at about the same time.  Furthermore, in 
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aspen (Populus tremuloides Michx.) and hazel (Corylus americana Walter), leaves 

abscise with virtually no pigments.  However, pin-oak (Quercus ellipsoidalis E.J. 

Hill) leaves remain on the tree through winter and retain a fair amount of carotenoids 

and a small percentage (0.1%) of chlorophyll-a as pheophytin-a (Sanger, 1971; 

Biswall, 1995). 

 

Gamon et al. (1997) examined the spectral properties and response to the PRI in 

twenty green plants grouped into three categories: annual, deciduous perennial, and 

evergreen perennial.  Unlike the PSRI, which uses the carotenoids to follow senescent 

processes in plants (Merzlyak et al., 1999), the PRI was designed to measure the 

efficiency of photosynthesis through the carotenoids (Gamon et al., 1997).  Amongst 

Gamon et al. (1997) annual category, they included Zea mays L, an agricultural 

monocotyledon.  All sampling was from mid to late summer.  They found that the 

annual group (including Z. mays) had high CO2 uptake, high photosynthetic radiation 

efficiency and high, albeit negative PRI values (range: 0.00 to -0.10), compared to 

perennial evergreens (Gamon et al., 1997).  The values obtained in my study ranged 

from -0.048 – -0.17.  Gamon et al. (1997) furthermore found that nutrient stress 

resulted in lower PRI values.  In another study, Sims and Gamon (2002) tested nearly 

400 green leaves from 53 plant species, including three grass species: Avena fatua L., 

Lolium multiflorum Lam. and Pleuraphis rigida Thurber.  They found a significant 

relationship between the PRI and leaf carotenoid to chlorophyll ratio in both healthy 

and stressed leaves.  They also tested the SIPI and PSRI and found no relationship 

with carotenoid to chlorophyll ratios (Sims and Gamon, 2002). 

 

In my study, the two anthocyanin indices (ARI1 and ARI2) had a moderate 

correlation (r = 0.58) with each other.  Sanger (1971) showed that anthocyanin 

appeared in both oak and hazel leaves during autumn, but by the time most leaves 

abscise, anthocyanin levels were almost zero.  Sims and Gamon (2002) found no 

relationship between the red/green ratio and anthocyanin content, where red was the 

sum of 600 – 699 nm and green was the sum of 500 – 599 nm wavelengths.  Ong et 

al. (2008) found that the ARI1, ARI2 and red/green ratio were correlated with leaf 

temperature.  Gitelson et al., (2001), for the ARI1 had a range of 0 – 0.24, whereas I 

had values ranging from 2.2 – 66.6, which are extremely high in comparison. 
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The CAI and NDLI, both plant structural indices measuring cellulose and lignin, are 

using widely spaced wavelengths from the SWIR portion of the spectrum.  Therefore, 

collinearity should not be an issue, and the correlation between the two, which is very 

weak, supports this.  In fact the CAI has very poor correlations with all other VIs, 

which is as expected as there is no link between cellulose and plant pigments, or 

plant-water content.  Daughtry et al. (2004) found that the CAI was linearly related to 

crop residue, but that green vegetation at more than 30% cover tended to lower the 

CAI values.  As there was very little green vegetation in our study, this is not 

expected to have influenced the CAI measurements.  The range I obtained of -0.059 – 

0.194 falls within the range that Daughtry et al. (2004) obtained for CAI values of -3 

to 4.  Daughtry (2001) tested the CAI on three crop residues: corn (Z. mays), wheat 

(Triticum aestivum L.) and soybean (Glycine max (L.) Merr.).  They found that the 

CAI gave positive values for crop residue except where the crop residue was 

saturated.  My study supports their results, as almost all values were positive for the 

winter senesced vegetation in our sites.  However, in Daughtry’s (2001) study, all 

CAI values calculated from soils were less than -1, even when the soil was saturated 

with water.  As the proportion of exposed soil to ground cover was not assessed in my 

study, it is difficult to determine the effect of soil on my CAI values, but very few 

values were negative, and then only slightly negative.  Roberts et al., (1993), using 

spectral mixture analysis (SMA), found that soil and non-photosynthetic vegetation 

were too similar to separate.  They used end members from ground-truthed and 

AVIRIS image data collected over Jasper Ridge Biological Preserve, California.  

They were only able to separate soil and non-photosynthetic vegetation using 

cellulose and lignin residuals from the SWIR region of the spectrum (Roberts et al., 

1993). 

 

The lignin index (NDLI) had poor correlations with all VIs except the NDII7.  It is 

unknown why the NDLI and NDII7 should show a strong correlation, as there were 

very weak correlations between the lignin VI and the other plant-water indices.  The 

correlation between NDLI and NDII7 (0.75) is not related to collinearity as both 

wavelengths in each index come from unrelated portions of the spectrum.  Serrano et 

al. (2002) found that in senescent Californian, Mediterranean (chaparral) vegetation, 

the relationship between lignin and the NDLI was not significant.  The range for their 

NDLI values was between 0.005 and 0.030 which corresponds well with the range    
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(-0.005 – 0.024) obtained in this study.  Furthermore, Grossman et al. (1996) found 

inconsistent results using multiple regression and spectral bands known to be 

representative of nitrogen and lignin. 

 

The moderate correlation coefficients between the WBI and the other plant-water 

based indices raises the question of what the WBI is detecting in the environment.  

The high correlation coefficients between the NDWI, NDII, NDII5 and NDII7 suggest 

a commonality in response unrelated to collinearity, as apart from the NDII and 

NDII5, these indices are widely separated across the SWIR spectrum.  The NDII and 

NDII5 are separated by only a few wavelengths and so collinearity would naturally 

lead to a high correlation.  The NDWI, NDII and NDII7 are separated by distances in 

the order of 400 nm. 

 

Peñualas et al. (1993) had WBI values between 0.8 and 1.05 for gerbera plants 

(Gerbera jamesonii Bolus ex Hook. f.).  Values for the WBI in my study (0.89 to 

0.96) show good agreement with those of Peñualas et al. (1993).  These researchers 

found that, as relative water content decreased, the WBI increased.  The WBI detected 

significant changes in gerbera when the RWC dropped below 85% (Peñualas et al., 

1993).  The NDWI is based on weak absorption by water at 1240 nm and high 

reflectance at 860 nm (Gao, 1996).  The NDWI was tested with AVIRIS data at Jasper 

Ridge, California and the High Plains in northern Colorado.  The value for the NDWI 

for senescent vegetation is generally negative, whereas in general the value for green 

vegetation is positive.  Wet and dry soils had a range of -0.4 to 0.1 for the NDWI. My 

study produced a range of -0.28 – -0.96 which corresponds with that obtained by Gao 

(1996) for senescent vegetation.  Gao (1996) experienced difficulty in extracting 

accurate NDWI values over semi-arid regions, as soil contributions to the NDWI are 

mostly negative.  Green vegetation is mostly positive, and soil and vegetation in the 

same pixel therefore tended to cancel each other out.  It is unclear from Gao’s (1996) 

study how the mix of soil and senescent vegetation would have influenced the NDWI 

results in my study. 

 

Riggs and Running (1991) argued that in tree species, changes in reflectance in 

response to water stress were too small to be detectable using remote sensing at the 

landscape scale.  Values obtained for the NDII by Hardisky (1983) ranged from 0.6 – 
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0.9 for Spartina alterniflora Loisel. in a salt marsh with canopy moisture content 

varying from 450 – 1500 g.m-2 respectively.  Values obtained for the NDII in my 

study were all negative (-0.08 – -0.33).  This may have been a result of the senesced 

vegetation in my study having very low water content, but this remains unclear at this 

point.  Ong et al. (2008) found poor correlations between water potential and the 

WBI, NDWI and MSI.  Hunt and Rock (1989) working with the Moisture Stress 

Index (MSI) were able to calculate the minimum change in RWC detectable with this 

index.  The MSI (not used in my study) uses very similar wavelengths to the NDII and 

NDII5.  Their results for seven species showed that the MSI is negatively related (r2: 

0.72 – 0.80) to the equivalent water thickness (EWT).  However, the minimum 

detectable change in RWC is 52% (Hunt and Rock, 1989).  This suggests that the MSI 

can only detect water stress when a plant is close to senescent.  They argued that the 

MSI is detecting something related to coniferous forest damage, which the NDVI does 

not detect, but that this cannot be related to the MSI detecting plant water stress.  Hunt 

and Rock (1989) concluded that the physiological and ecological basis for various 

vegetation indices is poorly understood. 

 

4.3 Relationship Between LFA Indices and VIs 

 

The LFA and VI indices have weak regressions which could not be used accurately 

for the purpose of predicting LFA indices from VIs.  Neither transformations of the 

data nor the application of quadratic models improved the values obtained in these 

regressions.  Of the VIs, the lignin index gives the strongest regression values with 

two of the LFA indices, stability and nutrient cycling.  Lignin is the second most 

common biopolymer after cellulose in plants (Boudet, 1998, Himmelsbach and 

Barton, 1980).  Gebruers et al. (2008) studied a number of varieties of winter and 

spring wheat.  All varieties had klason lignin with levels varying between 1.40 and 

3.25% of dry matter.  As these are agricultural grasses, it is likely that natural grasses 

would have lower nitrogen, and therefore lignin content.  Lorena et al., (2005) 

examined nitrogen and lignin content in senesced leaves of three grasses: Poa 

ligularis Nees ex Steud., Stipa tenuis Phil. and Stipa speciosa Trin. and Rupr from 

Patagonian Monte in Argentina.  They showed that the lignin content in senesced 

leaves of the three grasses was significantly lower than that of three species of local 
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senesced shrub leaves.  The lignin content of these grasses ranged between a mean of 

53.60 + 2.44 and 70 + 4.85 g.kg-1. 

 

In terms of the stability index, organic matter is important for stabilising the mineral 

fraction of soils (Oades, 1993).  Lignin is highly resistant to decomposition processes 

(Melillo et al., 1982), so one would expect an increase in organic matter, and 

therefore possibly lignin, as soil stability increased.  Similarly, nutrient cycling is a 

function of plant growth and decomposition of plant material (Burke et al., 1998), so 

lignin would also feature strongly in decomposition residues from plant materials 

(Melillo et al., 1982).  But without some empirical evidence of lignin in the 

environment, it is difficult to substantiate the conclusion that the relationship between 

the lignin index and stability or nutrient cycling is through a relationship between soil 

stability, or decomposition processes, and lignin content in the environment.  

Furthermore, Serrano et al. (2002) obtained non-significant results with the NDLI and 

winter senesced vegetation. Grossman et al. (1996) found inconsistent results using 

multiple regression and spectral bands known to be representative of nitrogen and 

lignin. 

 

The infiltration index had the strongest, albeit very weak, regression coefficients with 

the NDVI.  In the light of the earlier discussion on the integrity of the chlorophyll VI 

results, it is speculative to draw any conclusions on this relationship.  Infiltration is 

positively related to plant cover (Balliette et al., 1986).  Plant cover is related to leaf 

area index (LAI), and a positive correlation exists between LAI and the NDVI (Baret 

and Guyot, 1991; Asner, 1998).  Numata et al. (2003) measured NDVI during the dry 

season in Brazilian pastures formed after removal of the natural forest.  Linear 

regression between NDVI measurements from three sites, with various soil 

geophysical parameters (P, K, Ca, ECEC and base saturation), had a large degree of 

variation between sites and geophysical parameters, with coefficients of determination 

ranging from 0.00 – 0.72 (Numata et al., 2003). 
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4.4 Partial Least Squares Regression Modelling 

 

In my study the best model for stability is a 13-component model, for infiltration a 17-

component model, and a 15-component model for nutrient cycling.  My study forms 

an independent test of the methods used by Ong et al. (2004, 2008) and the number of 

components compares favourably with their work.  They found that 13-component, 

13-component and 12-component models best described stability, infiltration and 

nutrient cycling indices respectively.  Other researchers have found optimal models 

with fewer components.  Coops et al. (2003), predicting leaf nitrogen in Eucalypts, 

found 2- and 3-component models best.  A study of winter wheat found the best 

performing models ranged from a 2-component model for LAI, up to 6-component 

models for green biomass and leaf nitrogen concentration (Hansen and Schjoerring, 

2003). 

 

In my study, the best models had coefficients of determination with validation data of 

r2 = 0.38, 0.32 and 0.54 for stability, infiltration and nutrient cycling respectively.  

However Ong et al. (2008) achieved r2 = 0.69, 0.40 and 0.62 respectively at 

Goldsworthy iron ore mine, and r2 = 0.88, 0.77 and 0.88 respectively at Huntly 

Bauxite mine.  Hansen and Schjoerring (2003) achieved results very similar to my 

study with their weakest model when predicting chlorophyll concentration (r2 = 0.30).  

Their models for five other biophysical/biochemical parameters achieved coefficients 

of determination between r2 = 0.60 for chlorophyll density, and r2 = 0.89 for green 

biomass.  Coops et al. (2003) applied PLSR to both reflectance and absorption spectra 

and found slightly stronger predictions for canopy nitrogen with absorption values (r2 

= 0.68) compared to reflectance (r2 = 0.64).  Finally, Kooistra et al. (2004) examined 

the influence of various metal pollutants on the spectral reflectance of grasslands in a 

river floodplain of Belgium and achieved prediction coefficients of determination 

between r2 = 0.50 and 0.73 when predicting soil metal concentrations. 

 

The differences between Ong et al. (2008) and my results may be due to a number of 

factors.  They amended their technique to take into account landscape organisation, 

which we were not able to derive due to the fixed layout of quadrats along transects 

(Ong et al. 2008).  They furthermore derived different models for each mining 

environment.  Kooistra et al. (2004) found that spectral properties and derived models 
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were site and species-dependant, as herbaceous patches showed large deviations from 

the relations established for grass.  I combined data from four different vegetation 

types from two mining regions to derive models.  This may have contributed to the 

lower prediction accuracy I obtained compared to other researchers discussed above.  

A final factor might be related to variation in the LFA data caused by the use of 

photographs, and consistency between LFA practitioners.  Townsend et al. (2003) 

derived models that explained 97.9% of the variation in leaf nitrogen, and only 40% 

of the variation in the spectra.  They argued that this might be the result of selecting 

only portions of the spectrum with a 15 nm range either side of already known 

nitrogen absorption centres.  They improved this with AVIRIS data, where their 

model was able to account for 79% of the variation in nitrogen leaf content, and 

72.4% of spectral variation (Townsend et al., 2003).  My models required very few 

components to explain the spectral data but many more components to explain the 

variation in the LFA data. 

  

A number of researchers applied various pre-processing techniques to spectra prior to 

PLSR modelling, whereas, apart from mean centering the data, I derived models 

directly from reflectance data.  Ong et al. (2008) applied a wavelet smoothing 

algorithm to remove spectral noise in the SWIR region.  Townsend et al. (2003) used 

first derivative spectral data and Huang et al. (2004) pre-processed their reflectance 

data with either first or second derivative analysis or continuum removal analysis.  

The continuum removal pre-treatment produced better overall results than did 

derivative analysis (Huang et al., 2004).  Coops et al. (2003) prepared their spectra by 

using reflectance, as I did, or converting reflectance to absorption values.  They also 

applied first derivatives to the absorbance of the spectra.  They obtained slightly 

stronger predictions of canopy nitrogen with absorption values (r2 = 0.68) compared 

to reflectance (r2 = 0.64).  The first derivative of the absorbance data produced the 

weakest coefficient of determination (r2 = 0.54).  Kooistra et al. (2003) tested the 

potential of a number of pre-processing.  They used standard normal variate or 

multiplicative scatter correction to scale the spectral data to zero mean and a variance 

of one.  The two scaling techniques differ in that standard normal variate uses the 

individual spectra, whereas multiplicative scatter correction uses the average for all 

spectra as the reference spectra (Kooistra et al., 2003).  They further tested 

multiplicative scatter correction with and without a wavelet selection and found using 
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both reduced the number of components and increased the prediction accuracy.  In 

retrospect, it may have been better to scale both the LFA and spectral data as these 

two data sets differ considerably in the magnitude between their units.  The LFA data 

uses percentage units whereas spectral data is a ratio value between zero and one with 

no units (Geladi and Kowalski, 1986). 

 

Coops et al. (2003) found that the wavelengths selected by multiple linear regression 

had good agreement with PLSR regions with high loading values.  The pattern of 

spectral absorption amongst the various components of my models reinforced a plant 

signal around the 600 to 750 nm region, and weakly around 450 nm.  But the 

resolution applied by the PLSR modelling does not distinguish which of the plant 

pigment spectral signatures are contributing to this plant signal.  Around 900- 960 nm, 

all four components of the models detected absorption centres which might 

correspond with a water absorption band at 970 nm (Peñualas et al., 1995) and amino 

acids or proteins at 910 nm (Townsend et al., 2003).  Amino acids also have 

corresponding absorption bands at 1200 nm and components 1 and 2 recorded an 

absorption centre around this wavelength.  In all four components absorption centres 

from 1720 to 1760 nm might correspond with the lignin based VI (NDLI) around 

1754 nm (Serrano et al., 2002).  Possible amino acid-protein absorption bands may 

have influenced the strong absorption around 2100 nm and 2300 nm (Townsend et al., 

2003).  At 2220 nm, a strong spike may be related to clay minerals (Awiti et al., 2008) 

in the soil profile.  Investigating the absorption centres identified above from the 

PLSR loading values were beyond the scope of this study. 
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5. Conclusions 

 

The aim of this study was to derive LFA indices to predict rangeland condition from 

ground-based HSRS data on two deep-level gold mining surface environments.  To 

this end, the first objective was to derive PLSR models to predict the three LFA 

indices from full spectrum HSRS.  The second objective was to test the potential of 

twenty-three spectral VIs to predict the three LFA indices of stability, infiltration and 

nutrient cycling.  It was concluded that VIs are generally not suitable for predicting 

LFA indices with winter senesced vegetation.  Whereas it was shown that PLSR has 

potential to accurately predict LFA indices under these conditions. 

 

The dominant pattern for all three LFA indices was that high disturbance sites have 

low LFA values and low disturbance sites have high LFA values as predicted.  

Exceptions to this general pattern were non-rocky grasslands from Vaal River for all 

three indices and wet grasslands from Vaal River for infiltration and nutrient cycling.  

These exceptions may be an artefact of a small sample size from a single high 

disturbance plot in both vegetation types.  Stability values indicated relatively high 

soil crusting.  This corresponded with relatively low infiltration indices, suggesting 

that most sites shed rain water rather than have it infiltrate the soil profile.  Wet 

grasslands had the highest mean values for all three indices.  Between the other three 

vegetation types there was a reversal in the pattern for stability where non-rocky 

grassland was highest, compared to infiltration and nutrient cycling where woody 

shrub sites were highest.  This was a result of high biomass and litter fall in woody 

shrub sites compared to the two types of dry grassland sites.  Overall, both mine study 

sites exhibited stable soil processes with erosion and deposition at low levels although 

evidence suggests erosion may have been higher in the past.  The high stability values 

together with the low infiltration and median nutrient cycling values imply that 

disturbance is currently impacting mainly on the vegetation component rather than the 

soil component per se.  Furthermore these sites are not degrading as the soil is 

generally stable but an increase in impacts on the vegetation component may drive 

these sites into a degrading state.  The characterisation of high and low disturbance 

sites seems to be accurate, as for all three indices, high disturbance sites tended to 

have low LFA values, and low disturbance sites high LFA values.  But, within these 
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high and low disturbance sites, LFA values for quadrats were well distributed across 

the range for all three indices, illustrating the high heterogeneity within plots. 

 

The range obtained for VIs in this study was towards the low side of ranges obtained 

in other studies.  However, like other studies, there were differences in VIs between 

high and low disturbance, but these were site and vegetation dependent.  It was shown 

that the chlorophyll VIs were detecting a very low chlorophyll signal and this 

undermined any interpretation of the values calculated for these indices.  The 

predominant cause of this was the winter senesced state of the vegetation.  This raised 

similar doubts for the other pigment related VIs as well as the plant-water based VIs.  

This suggests that seasonal timing and physiological response of plants to season is 

important in applying a VI, especially those VIs related to plant pigments.  

Furthermore, without some site-truthed data for cellulose or lignin to calibrate the VI 

values for the CAI or NDLI, drawing conclusions for these indices is speculative. 

 

Simple linear regressions between the VIs and LFA indices produced very weak 

coefficients of determination.  The lignin index (NDLI) had the strongest, but still 

weak regression coefficients, with both the stability index and the nutrient cycling 

index.   This weak relationship is supported by the fact that organic matter is closely 

correlated with soil stability and nutrient cycling.  Lignin, which is resistant to 

decomposition, is an important component of organic matter.  The infiltration index 

was most closely correlated with the standard NDVI.  This result is a little perplexing 

as the NDVI is a chlorophyll based index and the evidence strongly suggests that a 

chlorophyll signal is weak at best.  Under the results of this study, the VIs would not 

be a suitable surrogate measure to predict LFA indices under the conditions of winter 

senesced vegetation.  It would be interesting to repeat this analysis with summer data 

when plant pigments and moisture are more prevalent in the environment.  However, 

this would occlude most of the soil signal, and as LFA is measuring biogeophysical 

parameters at the soil surface, green vegetation might result in equally poor regression 

parameters. 

 

The strongest PLSR model for predicting stability was a 13-component model, while 

for infiltration it was a 17-component model, and for nutrient cycling a 15-component 

model.  Of these three models, predictions for the nutrient cycling index with 
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validation data produced the highest coefficient of determination (r2 = 54 %).  Other 

studies suggested that these predicted values could be improved.  Most of the 

unexplained variance in the models was related to the LFA data.  The loading values 

for the models suggested a plant signal around the VIS-NIR region of the spectrum 

and some possible amino-acid signals.  One of the amino-acid signals provides some 

support to the lignin VI, which had highest prediction statistics for the LFA indices of 

stability and nutrient cycling indices.  There may also be a strong response in the 

PLSR models to clay minerals around 2220 nm.  Therefore from the results of this 

study, it can be concluded that PLSR models have the potential to predict the LFA 

indices of stability, infiltration and nutrient cycling. 

 

5.1 The Way Forward 

 

As far as the PLSR modelling is concerned, the over-riding conclusion is the need for 

a using standard field observation and not photographs to reduce the high variability 

in the LFA data.  The data set should be increased to compare PLSR models between 

vegetation types and a model derived from all vegetation types.  A set of rules to 

identify and characterise an outlier measurement would be useful for determining 

what measurements to include or exclude from the modelling process.  These need to 

take into account the geochemistry in these pollution affected sites and the presence of 

pollution derived mineral salts such as sulphates and chlorides.  Mine tailings are rich 

in pyrite minerals, which oxidise to form AMD.  AMD dissolves metals contained in 

the tailings and spreads as pollution plumes through ground water (Tutu et al., 2008). 

Ground water, rich in metals, is drawn to the surface through capillary action.  At the 

surface, evaporation leaves behind a gypsum salt which forms white crusts and may 

be high in metal sulphates (Naicker et al. 2003).  These salts impact on soil and plant 

osmotic stress which indirectly impacts plant HSRS signals.  Salts may also be 

directly detected through HSRS.  Analysis of recent data suggests that PLSR was 

attempting to derive a single linear model, when the HS data contains at least two 

possibly unrelated environmental signals.  One of these signals is related to senesced 

vegetation, and the other related to soil in which a clay spectral feature is prominent.  

It may therefore be important to add a distinguishing character to the spectral data to 

aid calibration of PLSR model in differentiating between these signals. 
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The VIs were confounded by the presence of winter-senesced vegetation and it is 

recommended that these be tested with summer (growing season) data.  Some 

measurement of the environmental feature for which the individual VI is designed, 

would be useful to contextualise the calculated values.  For instance measurements of 

chlorophyll or plant-water content would greatly aid interpretation of the VI results.  

A hyperspectral index for environmental degradation in mining environments would 

need to be able to separate green photosynthetic vegetation from soil, and more 

particularly senesced vegetation from soil.  Separating soil from senesced vegetation 

has proven to be difficult because of the heterogenous nature of soil.  The composition 

and surface roughness of soil may vary widely over short distances, while salt and 

mineral crusts, and cryptogamic crusts, all influence the spectral properties of soils.  

In conclusion, PLSR modelling showed potential in deriving LFA indices from full 

spectrum hyperspectral data obtained from winter senesced grasslands on the 

Highveld, whereas VIs would not be suitable for predicting LFA indices from similar 

data under the same conditions. 
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Appendix 1 
 
Distributions for the Three LFA Indices: Stability, Infiltration and Nutrient Cycling. 
 

 
(a) Disturbance    (b) Mine 
 
 

 
 
(c) Vegetation type   (d) Disturbance, vegetation type and
       mine 
 
Four boxplots showing the distribution of stability values for different quadrat types.  
(a) Stability for the two disturbance levels.  (b) Stability for non-rocky grasslands in 
the two mining environments.  (c) Stability for different vegetation types.  (d) 
Stability for disturbance, vegetation and mines.  X-axis labels are h = high and l = low 
disturbance, nrg = non-rocky grassland, rg = rocky grassland, wg = wet grassland, ws 
= woody shrub, vr = Vaal River, ww = West Wits.  There were no quadrats for rg, wg 
or ws vegetation types at West Wits. 
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(a) Disturbance    (b) Mine 
 

 
 
(c) Vegetation type   (d) Disturbance, vegetation type and
       mine 
 
Four boxplots showing the distribution of infiltration for different quadrat types.   
(a) Infiltration values for the two disturbance levels.  (b) Infiltration values for non- 
rocky grasslands in the two mining environments.  (c) Infiltration for different 
vegetation types.  (d) Infiltration values for disturbance, vegetation and mine levels.  
X-axis labels are h = high and l = low disturbance, nrg = non-rocky grassland, rg = 
rocky grassland, wg = wet grassland, ws = woody shrub, vr = Vaal River, ww = West 
Wits.  There were no quadrats for rg, wg or ws vegetation types at West Wits. 
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(a) Disturbance    (b) Mine 
 

 
 
(c) Vegetation type   (d) Disturbance, vegetation type and
       mine 
 
Four boxplots showing the distribution of nutrient cycling indices different quadrat 
types.  (a) Nutrient cycling for the two disturbance levels.  (b) Nutrient cycling for 
non-rocky grasslands in the two mining environments.  (c) Nutrient cycling for 
different vegetation types.  (d) Nutrient cycling for disturbance, vegetation and mine 
levels.  X-axis labels are h = high and l = low disturbance, nrg = non-rocky grassland, 
rg = rocky grassland, wg = wet grassland, ws = woody shrub, vr = Vaal River, ww = 
West Wits.  There were no quadrats for rg, wg or ws vegetation types at West Wits. 
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Appendix 2 
 
Graphs of VI distributions for disturbance (h = high and l = low disturbance), 
vegetation type (nrg = non-rocky grassland, rg = rocky grassland,  
wg = wet grassland and ws = woody shrub) and mine (vr = Vaal River and  
ww = West Wits) 

 
NDVI800: Chlorophyll   NDVI750: Chlorophyll 

 
GNDVI: Chlorophyll - green absorption SAVI: Chlorophyll – soil adjusted  
Centre 

 
NDVI705: Chlorophyll   mSR705: Chlorophyll 
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mNDVI800: Chlorophyll   VOG2: Chlorophyll 

 
VOG3: Chlorophyll    SIPI: Chlorophyll and carotenoids 

 
PSRI: Chlorophyll and carotenoids  PRI: Carotenoids 
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CRI1: Carotenoids    CRI2: Carotenoids 

 
ARI1: Anthocyanins    ARI2: Anthocyanins 

 
CAI: Cellulose    NDLI: Lignin 
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WBI: Plant-water    NDWI: Plant-water 

 
NDII: Plant-water    NDII5: Plant-water 

 
NDII7: Plant-water 
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Appendix 3 VI Results for Disturbance Levels in Different Vegetation Types 
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Comparing vegetation index means and standard errors for high and low disturbance quadrats in different vegetation types at Vaal River and 
West Wits mining regions.  (a) The standard NDVI (NDVI800) measuring chlorophyll.  (b) The “Anglo” NDVI (NDVI750) measuring 
chlorophyll.  (c) The green NDVI (GNDVI) measuring chlorophyll.  (d) the Soil Adjusted Vegetation Index (SAVI) measuring chlorophyll 
adjusted for soil background.  VR = Vaal River, WW = West Wits, WG = wet grassland, NRG = non-rocky grassland, RG = rocky grassland 
and WS = woody shrub.                       Appendix 3 
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Comparing vegetation index means and standard errors for high and low disturbance quadrats in different vegetation types at Vaal River and 
West Wits mining regions.  (a) The red edge NDVI (NDVI705) measuring chlorophyll.  (b) The modified red edge Simple Ratio index 
(mSR705) measuring chlorophyll.  (c) The modified red edge Normalised Difference Vegetation index (mNDVI705) measuring chlorophyll.  (d) 
the Vogelmann Red Edge Index 2 (VOG2) measuring chlorophyll.  VR = Vaal River, WW = West Wits, WG = wet grassland, NRG = non-rocky 
grassland, RG = rocky grassland and WS = woody shrub. 
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Comparing vegetation index means and standard errors for high and low disturbance quadrats in different vegetation types at Vaal River and 
West Wits mining regions.  (a) The Vogelmann red edge index 3 (VOG3) measuring chlorophyll.  (b) The Structure Insensitive Pigment Index 
(SIPI) measuring chlorophyll and carotenoid.  (c) The Plant Senescent Reflectance Index (PSRI) measuring chlorophyll and carotenoids.  (d) 
The Photochemical Reflectance Index (PRI) measuring carotenoids.  VR = Vaal River, WW = West Wits, WG = wet grassland, NRG = non-
rocky grassland, RG = rocky grassland and WS = woody shrub. 
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Comparing vegetation index means and standard errors for high and low disturbance quadrats in different vegetation types at Vaal River and 
West Wits mining regions.  (a) The Carotenoid Reflectance Index 1 (CRI1) measuring carotenoids.  (b) The Carotenoid Reflectance Index 2 
(CRI2) measuring carotenoids.  (c) The Anthocyanin Reflectance Index 1 (ARI1) measuring anthocyanins.  (d) The Anthocyanin Reflectance 
Index 2 (ARI2) measuring anthocyanins.  VR = Vaal River, WW = West Wits, WG = wet grassland, NRG = non-rocky grassland, RG = rocky 
grassland and WS = woody shrub. 
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Comparing vegetation index means and standard errors for high and low disturbance quadrats in different vegetation types at Vaal River and 
West Wits mining regions.  (a) The Cellulose Absorption Index (CAI) measuring cellulose.  (b) The Normalised Difference Lignin Index 
(NDLI) measuring lignin.  (c) The Water Band Index (WBI) measuring plant water.  (d) The Normalised Difference Water Index (NDWI)  
measuring plant water.  VR = Vaal River, WW = West Wits, WG = wet grassland, NRG = non-rocky grassland, RG = rocky grassland and  
WS = woody shrub. 
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Comparing vegetation index means and standard errors for high and low disturbance quadrats in different vegetation types at Vaal River and  
West Wits mining regions.  (a) The Normalised Difference Infrared Index (NDII) measuring plant water.  (b) The Normalised Difference  
Infrared Index 5 (NDII5) measuring plant water.  (c) The Normalised Difference Infrared Index 7 (NDII7) measuring plant water.  VR = Vaal  
River, WW = West Wits, WG = wet grassland, NRG = non-rocky grassland, RG = rocky grassland and WS = woody shrub.
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Appendix 4 Graphs of the Visible NIR Portion of the Spectra 
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The visible and NIR portion of the spectrum for (a) non-rocky grasslands from Vaal River, (b) non-rocky grasslands from West Wits,  
(b) rocky grasslands from Vaal River and (d) woody shrub quadrats from Vaal River with a very weak red-edge signal indicating very  
little chlorophyll in these quadrat. 
 
Appendix 4
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Appendix 5 
 
PLSR Tables and Graphs 
 
Outliers identified during the development of infiltration models 
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VR 25 Rocky grassland High 1-5 Calibration 
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VR 7 Woody shrub Low 5-5 Calibration 
VR 10 Woody shrub Low 4-3 Calibration 
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The spectra for the plots identified as outliers while modelling infiltration.  The mean 
spectrum for all spectra is also shown. 
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Regression coefficients for 1-component, 4-component, 8-component and 17-
component models of infiltration. 

Loadings for the first four components of the infiltration model. 
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Outliers identified during the development of nutrient cycling models. 
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The spectra for the plots identified as outliers while modelling nutrient cycling.  The 
mean spectrum for all spectra is also shown. 
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Regression coefficients for 1-component, 5-component, 9-component and  
15-component models of nutrient cycling. 

 
Loadings for the first four components of the nutrient cycling model. 
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