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Abstract 
Pyranonaphthoquinones are a class of naturally occurring compounds that exhibit a wide 

range of biological properties ranging from antibiotic to anti-cancer activities. These 

compounds and their non-natural analogues are therefore of synthetic interest. This PhD 

describes the first total synthesis of cardinalin 3, previously isolated from the New Zealand 

toadstool Dermocybe cardinalis. We then proceeded to investigate possible novel 

stereoselective syntheses of 1,3-dimethylated pyranonaphthoquinones using arene 

tricarbonylchromium chemistry as well as the synthesis of other 1,3-disubstituted 

pyranonaphthoquinones using cross metathesis as a key step. 

The racemic total synthesis of cardinalin 3 was achieved in 15 steps using a bidirectional 

approach. Starting from commercially available 1,3-dimethoxybenzene, the biaryl axis was 

introduced using an Ullmann coupling reaction to afford 2,2′,6,6′-tetramethoxy-1,1′-

biphenyl. Further elaboration of the biphenyl to form the bis-naphthalene ring system 

diethyl [4,4′-diacetoxy-6,6′,8,8′-tetramethoxy-7,7′-binaphthalene]-2,2′-dicarboxylate was 

achieved with a Stobbe condensation and Friedel-Crafts acylative cyclisation. A Wacker 

oxidation was then employed to construct the pyran ring onto either side of the 

appropriately substituted naphthalene dimer to form (±)-5,5'-bis(benzyloxy)-7,7',9,9'-

tetramethoxy-1,1',3,3'-tetramethyl-1H,1'H-8,8'-bibenzo[g]isochromene. The remaining 

transformations included hydrogenation to (±)-7,7',9,9'-tetramethoxy-cis-1,3-cis-1',3'-

tetramethyl-3,3',4,4'-tetrahydro-1H,1'H-8,8'-bibenzo[g]isochromene-5,5'-diol, followed by 

oxidation to the quinone (±)-7,7',9,9'-tetramethoxy-cis-1,3-cis-1',3'-tetramethyl-

3,3',4,4',6,9-hexahydro-1H, 1'H-8,8'-bibenzo[g]-isochromene-5,5',10,10'-tetrone and a 

selective O-demethylation reaction to furnish cardinalin 3, in an overall yield of 2.2%. 

In a study on the usefulness of arene chromiumtricarbonyl chemistry to construct 1,3-

dimethylisochromane systems, an arene chromiumtricarbonyl system was made from (R)-

5,8-dimethoxyisochroman-4-ol. Unexpectedly, this complexation occurred without 

diastereoselectively forming both the syn and anti diastereomers which fortuitously could 

be separated. Despite several attempts we were unsuccessful in performing the required 

oxidation of the complexed isochromanol to (5,8-dimethoxyisochroman-4-

one)tricarbonylchromium (0). 

In another model study, cross metathesis of ethyl acrylate and silyl protected (2-allyl-3,6-

dimethoxyphenyl)methanol successfully produced the α,β-unsaturated ester (E)-ethyl 4-(2-

((tert-butyldimethylsilyloxy)methyl)-3,6-dimethoxyphenyl)but-2-enoate which 

subsequently underwent a spontaneous intramolecular Michael addition to produce ethyl 2-
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(5,8-dimethoxyisochroman-3-yl)acetate. A similar strategy was employed to produce ethyl 

2-(5,8-dimethoxy-1-methylisochroman-3-yl)acetate. 

In the last part of this PhD we attempted the stereoselective synthesis of a chiral indoline 

ring system wherein we utilise a Trost asymmetric allylic alkylation reaction. The specific 

indoline moiety synthesised, 1-methyl-2-(prop-1-en-2-yl)indoline, is found embedded in 

many biologically useful compounds including the nodulisporanes which display potent 

insecticidal properties. The synthesis began from commercially available N-methyl aniline 

which was suitably functionalised and subjected to a Horner-Wadsworth-Emmons reaction 

to furnish (E)-ethyl 4-(2-(tert-butoxycarbonyl)phenyl)-2-methylbut-2-enoate to begin the 

construction of the dihydro pyrrole ring system. The asymmetric allylic alkylation was 

carried out on (E)-methyl-2-methyl-4-(2-(methylamino)phenyl)but-2-enyl carbonate using 

a palladium catalyst in the presence of the chiral Trost ligand to afford 1-methyl-2-(prop-1-

en-2-yl)indoline. An enantiomeric excess of 32% was achieved suggesting that this 

reaction has potential scope for future investigation. 
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Chapter 1: An Introduction to Pyranonaphthoquinones 

1.1 Pyranonaphthoquinone Based Natural Products 

Pyranonaphthoquinone antibiotics are a vast and interesting class of naturally occurring 

compounds that have been isolated from various strains of bacteria, microbial fungi and 

plant species. They exhibit a wide range of anti-fungal, antibiotic as well as anti-cancer 

activity. This family of molecules, which are also referred to as benzoisochromane 

quinones, exist as the monomeric, dimeric and carbohydrate derivatives as illustrated in 

Figure 1.1 

 

 

Figure 1: Monomeric, dimeric and carbohydrate-derived pyranonaphthoquinones 
 

These pyranonaphthoquinones often contain substituents at the C1 and C3 positions of the 

pyran ring. These substituents may be quite diverse, ranging from simple methyl groups to 

more complex systems such as a γ-lactone ring fused to the dihydropyran moiety.2 

Furthermore, a carboxylic acid side chain may be obtained by ring opening of the γ-lactone 

ring. Central to this class however is the basic 2,3-dihydro-1H-naptho[2,3-c]pyran-5,10-

dione skeleton 1 (Figure 2). 

 

 
Figure 2 
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Of particular interest to us are the monomeric and dimeric forms of the 

pyranonaphthoquinones, and these two classes are briefly discussed in the following 

sections, paying particular attention to their structure, isolation and biological activity. 

 

1.1.1 Interesting monomeric pyranonaphthoquinones 

The simplest naturally occurring monomeric form of this class of compounds is 

psychorubin 2 (Figure 3), which contains a hydroxyl group at the C3 position of the pyran 

ring of the basic naphthopyrandione skeleton, making it a hemiacetal. It was isolated from 

the chloroform extracts of Psychorutria rubra, known as “Chiu Chieh Mu” in Chinese folk 

medicine.3 The extracts showed significant reproducible inhibitory activity against KB 

cells with an ED50 = 3.0 μg.ml-1. 

 

 
Figure 3 

 

Other well known examples of monomeric pyranonaphthoquinones with simple 

substituents are kalafungin, eleutherin, the ventiloquinones and the nanaomycins, some of 

which are depicted in Figure 4, Figure 5 and Figure 6. 

 

Kalafungin 3 (Figure 4) was first isolated in 1968 from the fermentation broth of 

Streptomyces tanashiensis strain Kala. It contains three stereogenic centres and is 

dextrorotary in chloroform ([α]D
25 +159).4 This weakly acidic orange compound was 

shown to exhibit in vitro anti-bacterial activity against Gram-positive and Gram-negative 

bacteria, as well as inhibition activity against a wide spectrum of human pathogenic fungi, 

protozoa and yeasts.5 

 

Eleutherin 4 was first isolated in 1955 from the tubers of Eleutherine bulbosa (Iridaceae),6 

and crystallised as yellow rods. The stereochemistry of the methyl group at C1 was shown 

to adopt the more stable pseudo-equatorial position as it is further removed from its 

adjacent carbonyl group.7 Eleutherin 4 exhibits activity against the bacterial strains 
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Pycoccus aureus and Streptococcus haemolyticus A. Extracts of Eleutherine americana 

containing eleutherin 4 and its C3 epimer isoeleutherin 5, were used to treat heart diseases 

such as angina pectoris.1 

 

O

OH O

O O
O

Kalafungin 3

O

OMe O

O

Eleutherin 4

O

OMe O

O

Isoeleutherin 5

O

OMe O

O

7-methoxyeleutherin 6

MeO

 
Figure 4 

 

The series of compounds known as the ventiloquinones 7-11 (Figure 5) are structurally 

related to the eleutherins. They also possess the naphthoquinone skeleton and 1,3-

dimethylpyran ring system, but vary according to the oxygenated substituents on the 

aromatic ring. The ventiloquinone family consists of 15 members and five of those are 

shown in Figure 5. Ventiloquinones A 7, B 8 and E 10 are from the acetone extracts of the 

root bark of the Ventilago species, V. maderaspatana and V. calyculata.8 Ventiloquinones 

L 11 and M 9 were isolated from V. goughii.9 The aromatic rings of ventiloquinones A, B 

and M, 7-9 are fused to a 1,3-dioxolane ring. Regarding the other aromatic substituents 

however, there still remains some ambiguity as to the positions of the methoxy and 

hydroxy substituents in ventiloquinone A 7 whereas in ventiloquinone B 8, both of these 

oxygen substituents are methylated. In ventiloquinone M 9 they are found as the free 

phenols. Ventiloquinone E 10 bears three methoxy substituents on its aromatic ring and 

ventiloquinone L 11 contains one phenol and one methoxy substituent in an ortho 

arrangement. The position of the methoxy in ventiloquinone L 11 was found to be identical 

to a variant of eleutherin, 7-methoxyeleutherin 6 (Figure 4).10 

 



Chapter 1: An Introduction to Pyranonaphthoquinones 
__________________________________ 

 

4 

 
Figure 5 

 

Another large family of antibiotic pyranonaphthoquinones are the nanaomycins 12-15. The 

first four members shown in Figure 6 were isolated from Streptomyces rosa.11, 12 

Nanaomycin D 15 is the enantiomer of kalafungin 3. Based on comparisons of the 1H 

NMR spectral data of nanaomycin A 12 with those of isoeleutherin 5, it was shown that the 

substituent at C1 adopts a pseudo-axial orientation while that at C3 is equatorial.13 

Nanaomycin A 12 and B 14 exhibited inhibitory activity against mycoplasma, fungi and 

Gram-positive bacteria. Furthermore, nanaomycin A 12 was also found to inhibit the 

platelet aggregation agent, adenosine diphosphate.11 Nanaomycin C 13 shows comparable 

activity against gram-positive bacteria but its activity against mycoplasmas and fungi is 

somewhat less pronounced.13 In terms of the structure-activity relationship for these 

compounds, it was found that the naphthoquinone and the lactone portions of the molecule 

were required for antibacterial activity. 

 

 
Figure 6 

 

The examples discussed thus far represent some of the simpler members which exhibit 

antibiotic activity. There are more complex members which include marticin 16, griseusin 

A 17 and medermycin 18 (Figure 7).2 These representative examples of antibiotics include 

the presence of highly oxygenated sugar derived heterocyclic rings attached to their basic 

pyranonaphthoquinone skeleton and are thus classed as carbohydrate derived 

pyranonaphthoquinones. 
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Figure 7 
 

The next class in this vast family of antibiotics of interest to us are the “dimeric” 

pyranonaphthoquinones. The dimeric forms of these compounds contain similar structural 

features for each half of the molecule as well as a biaryl point of attachment linking the 

two halves. Some well known examples will be briefly discussed below. 

 

1.1.2 Interesting dimeric pyranonaphthoquinones 

The actinorhodins 19-21 are a series of dimeric pyranonaphthoquinone pigments that were 

isolated from Streptomyces coelicolor 14 Three of the six naturally occurring compounds 

are shown in Figure 8. 

 

Figure 8 
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The first to be isolated, actinorhodin 19, displayed litmus like properties, appearing bright 

blue in alkali and red in acid. According to 1H NMR spectral studies, the two halves of 

actinorhodin 19 are identical and are linked in a symmetrical fashion by a C8-C8′ 

linkage.15 α-Actinorhodin 20 is unsymmetrical with a monolactone coupled to an 

unsaturated moiety, while ε-actinorhodin 21 comprises of a lactone monomer and an acid 

monomer coupled to each other. Activity against Staphylococcus aureus has been reported 

for actinorhodin 19 itself,14 however the activity of the other dimers is relatively 

unexplored. 

 

The microorganism Micromonospora purpureochromogenes, obtained from a mud sample 

in the Philippines, produces an antibiotic complex, the major component of which was 

isolated and identified as crisamycin A 22 (Figure 9).16 

 

 
Figure 9 

 

Similar to actinorhodin 19, it was found to display litmus like properties, imparting a 

yellow colour in acid solution and purple colour in alkaline solution. The position of the 

biaryl axis is also at the C8-C8′ position. Of somewhat more interest is that crisamycin A 

22 also displayed excellent activity against Gram-positive bacteria16 and also showed in 

vitro activity against B16 murine melanoma cells, herpes simplex virus and vesicular 

stomatitis virus.17 Shortly after the discovery of crisamycin A 22, an epoxide derivative of 

the molecule was isolated and named crisamycin C 23. Not surprisingly this compound 

also exhibited antimicrobial activity and in fact was found to be more potent than 

crisamycin A 22.18 

 

The novel pyranonaphthoquinones uroleuconaphins A1 and B1 24-25 (Figure 10) were 

obtained from the ethereal extracts of the aphid Uroleucon nigrotuberculatum (Olive).19 



Chapter 1: An Introduction to Pyranonaphthoquinones 
__________________________________ 

 

7 

 

 
Figure 10 

 

The two “monomeric halves” of the compound are connected by a dihydrofuran linkage. 

These compounds, responsible for the red pigment in the aphid, were found to exhibit 

cytotoxic activity against human promyelocytic leukaemia HL-60 cells with ED50 values of 

45 μM and 20 μM respectively. These values suggest that these pigments are important to 

the aphids in their defence against viral infections. 

 

The distinctive purple and orange fruit bodies of Dermocybe cardinalis are among the 

most spectacular toadstools found in the Nothofagus forests of New Zealand. A new class 

of compounds, the cardinalins, were isolated from the ethanolic extracts of specimens of 

these fruit bodies.20 Several members of this class of compounds are shown in Figure 11. 
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Figure 11 

 

The cardinalins belong to the family of pyranonaphthoquinones and are the first quinones 

of this type to be isolated from higher fungi.20 The deep red ethanolic extracts exhibited 

potent inhibition of the growth of P388 murine leukaemia cells (IC50 0.47 µg.cm-3) and due 

to this significant cytotoxic activity, the individual components of the complex mixture 

were examined. Initial analysis led to the isolation and characterisation of a colourless 

quinone - cardinalin 1 26, two yellow quinones - cardinalins 2 27 & 3 29 and three red-
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purple pigments - cardinalins 4 30, 5 31 and 6 32. Further analysis showed the presence of 

a series of colourless compounds which were identified as cardinalins 8-12 (cardinalins 9 

33 and 12 34 are shown in Figure 11), as well as four others, cardinalins 13-16 28, and 35-

37, which are believed to be artefacts of the purification procedure.21 The most complex of 

these dimeric pyranonaphthoquinones is cardinalin 1 26, bearing 9 stereogenic centres in 

addition to its axis of chirality. The simplest in this series is cardinalin 3 29, devoid of 

much of the stereochemistry which is seen in cardinalin 1 26. Cardinalin 3 29 is in fact the 

dimer of another naturally occurring pyranonaphthoquinone, ventiloquinone L 11 (Figure 

5). 

 

As shown in these examples, the pyranonaphthoquinone class of compounds consists of a 

vast variety of structurally diverse compounds, with new compounds constantly being 

discovered. Their usefulness as potential medicinal scaffolds has been proven through their 

wide range of biological activities. Among these uses, the most important to us is perhaps 

their ability to act as anti-cancer agents. In fact in the 1980’s quinones formed the second 

largest class of cytotoxins used as anticancer drugs in the United States.22 Their proposed 

mechanism of action for this remarkable ability will be further elaborated on in the 

subsequent sections. 

 

1.2 Mechanism of Biological Action 

The cytotoxic and growth inhibitory properties of quinones are thought to be due to their 

ability to covalently bind to various proteins and peptides, as well as DNA and RNA.22 

One mode of action responsible for this binding, proposed by Moore,23 is that they are able 

to act as bioreductive alkylating agents. A variety of other studies have shown that some 

quinones inhibit the catalytic activity of topoisomerase II.24-26 

 

1.2.1 Bioreductive alkylating agents 

Well known chemotherapeutic drugs, such as mitomycin C 38 (Figure 12), are first 

required to be biologically activated by means of an initial reduction to their active 

‘quinone methide’ forms. Other quinone drugs proposed to act this way are the 

anthracyclines, daunomycin 39 and adriamycin 40.27 It is known that this reduction takes 

place preferentially under anaerobic conditions.28, 29 Furthermore, it is also known that 
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tumour tissue has a significantly lower oxidation-reduction potential than most normal 

tissues.30 This may be due to the fact that cancer cells grow extremely rapidly compared to 

healthy cells, and as a result of this rapid rate of growth, solid tumours tend to have poor 

vascularity, leading to a hypoxic (oxygen-deficient) environment at the inner parts of the 

tumours. Since this is a more favourable environment for the reduction of these quinones, 

there is an accumulation of the cytotoxic quinone methide in the tumours as compared to 

healthy cells. 

 

 
Figure 12 

 

In a generalised reaction scheme (Scheme 1), in vivo bioreduction of the quinone 41 results 

in the hydroquinone 42. The cleavage of a benzylic substituent on the hydroquinone by the 

mesomerically assisted loss of a suitable leaving group results in the formation of a 

quinone methide 43. This active form of the drug can now form covalent adducts 44 with 

biological nucleophiles such as DNA, proteins or carbohydrates through a Michael 

addition to the reactive enone system. The formation of the covalent adduct renders the cell 

incapable of carrying out its normal functions, thus leading to apoptosis. Once this 

cytotoxic activity of the quinone has been carried out, the adduct can be oxidised, resulting 

in its biologically inactive form 45. 
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Scheme 1 

 

Mitomycin C 38 (Scheme 2) is reduced in vivo by a non-specific NADPH-dependant 

enzyme system.28 It was found to be stable under aerobic conditions, and rapidly reacted in 

an anaerobic environment.31 It is able to cross link DNA initially through the loss of a 

methoxy group forming 46 and then subsequent opening of the aziridine ring forming the 

toxic Michael acceptor 47. Addition of DNA in a similar mechanism to that depicted in 

Scheme 1 provides the first linkage in 48, which is followed by the displacement of a 

carbamate group providing the second DNA linkage of 49.32 

 

 
Scheme 2  
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It has been recently been reported that the naturally occurring pyranonaphthoquinones 

lactoquinomycin (medermycin) 18, kalafungin 3 and frenolicin B 50 (Figure 13) possess 

significant inhibitory properties against the serine-threonine kinase AKT, which has been 

found in a wide variety of human tumour types.33 Lactoquinomycin 18 was found to inhibit 

AKT1 with an IC50 of 149 nM. The mechanism proposed for this inhibition was a 

bioreductive activation of the quinone to the active methide, as exemplified in the above 

schemes, which then forms an adduct with the cysteine residues of AKT.34 

 

 

Figure 13 
 

The pyranonaphthoquinones daunomycin 39 and its oxygenated relative adriamycin 40 are 

proposed to also undergo bioreductive activation, with the leaving group in their case being 

the sugar moiety. There is some speculation however regarding their precise mode of 

action, and an alternative suggestion is an intercalation-based pathway involving DNA 

topoisomerase.24-26 

 

1.2.2 Topoisomerase II inhibition 

Topoisomerase II enzymes are important for many vital functions of DNA during cell 

growth. They alter DNA topology by catalysing the passing of an intact DNA double helix 

through a transient double stranded break made in a second helix and are critical for 

relieving torsional stress that occurs during replication and transcription. They are also 

vital for daughter strand separation during mitosis. On the other hand, these useful proteins 

are highly vulnerable to stresses, such as for example exposure to topoisomerase poisons, 

which then drastically alters their function and may convert them into DNA cleaving 

nucleases, often leading to cell death.35 A number of studies have shown that a variety of 

quinones (Figure 14 shows two such examples 51 and 52) interact with and inhibit the 

useful activity of topoisomerase II. The mechanism by which this occurs is believed to be 
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related to the fact that topoisomerase II is cysteine-rich. The electrophilic reaction of the 

quinone with critical sulfhydryl groups on topoisomerase II is thought to be responsible for 

its inhibition.26, 36 

 

 
Figure 14 

 

The properties of the pyranonaphthoquinone antibiotics have made them worthwhile 

synthetic targets and in the next few sections we will discuss some of the classic and novel 

approaches to these compounds. To begin this section a brief overview of the biosynthetic 

pathway is presented. 

 

1.3 Biosynthesis of Pyranonaphthoquinones 

The biosynthesis of pyranonaphthoquinone antibiotics has been comprehensively reviewed 

by O’Hagan.37 The metabolites of bacteria, fungi and plants, are essentially polyketides 

and while there is a vast diversity of polyketide structural classes, their underlying 

biosynthetic mechanism is universal.38 It involves a series of decarboxylative condensation 

reactions with residues of a single, simple carboxylic acid subunit (acetate or propionate) 

or a mixture of subunits (acetate, propionate, butyrate residues) and malonates using multi 

protein/enzyme complexes called polyketide synthases (PKSs). The intermediate produced 

is then further processed through a series of unique intramolecular cyclisation, elimination, 

redox and functional group transfer reactions to generate the highly functionalised natural 

products. 

 

The biosynthesis of actinorhodin 19 was elucidated by means of a study involving the use 

of synthetic oligonucleotides (Scheme 3).38 The biosynthesis involves gene clusters,39 

which control the starter unit, the nature and number of chain extender units and specify 

the reductive cycle and the pattern of cyclisation. The actinorhodin polyketide carbon 
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backbone 53 formed, is derived from an acetyl CoA starter unit as well as seven malonyl 

CoA extender units. It then undergoes a regiospecific intramolecular aldol condensation 

between C7 and C12, providing the intermediate 54. Next a bond between C5 and C14 is 

formed producing 55, to eventually lead to actinorhodin 19, controlled by the specific gene 

clusters. 

 

Scheme 3 
 

The structurally diverse pyranonaphthoquinones are similarly biosynthesised according to 

their gene clusters. For example, the carbohydrate derived quinones will require additional 

enzymes for the attachment of their sugar moieties. 

 

The next few chapters will touch on a few synthetic strategies that have been employed to 

generate these naturally occurring compounds. 

 

1.4 Selected Syntheses of Pyranonaphthoquinones 

The various strategies that have been employed over the years has been comprehensively 

reviewed2, 40 and this chapter will therefore only comprise of a few key examples. 

 

1.4.1 Biomimetic approaches 

The synthesis of eleutherin 4 and isoeleutherin 5 was achieved by Webb and Harris by 

adopting a biomimetic strategy.41 In this approach, Webb and Harris constructed the key 

intermediate β-poly-carbonyl chain (Scheme 4). Starting from the 2-pyrrolidinyl glutarate 

diester 57, tandem attacks of two equivalents of the dianion of acetyl acetone 56 provided 
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the heptaketide 58 which underwent spontaneous cyclisation furnishing the naphthyl 

diketone 59. Given the many potential cyclisation products possible, the cyclisation of the 

polyketide precursor showed a high degree of regiospecificity. Cyclisation to form the 

third ring was accomplished by treatment with a catalytic amount of trifluoroacetic acid to 

produce 60. Catalytic hydrogenation followed immediately by monomethylation in the 

absence of light furnished a 9:1 mixture of cis- and trans- 61. The mixture was then 

oxidised using Fremy’s salt, (KSO3)2NO to afford the quinones 4 and 5 in a yield of 56%. 

The mixture could be converted exclusively into the trans-5 by isomerisation in phosphoric 

acid. 

 

 
Scheme 4: Reagents and conditions: (i) LDA, THF, −78 °C, then 55, −35 °C; (ii) EtOH, CF3CO2H 

(cat), at reflux, quant. yield; (iii) 5% Pd/C, EtOH, H2, rt, then CH2N2, Et2O, 87%; (iv) (KSO3)2NO, 

56%. 

 

1.4.2 An enantiodivergent synthesis using a carbohydrate based Michael 

acceptor and phthalide annulation 

The first enantiospecific total syntheses of the optically active antibiotics nanaomycin A 12 

and nanaomycin D 15 as well as their enantiomers kalafungin 3 and 4-deoxykalafunginic 
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acid 62, were achieved by Tatsuta and co-workers using an enantiodivergent approach 

starting from optically active L-rhamnose 63 (Scheme 5).42 

 

 
Scheme 5 

 

Summarised in Scheme 6, the enone 64, from which the stereochemistry of the products 

are derived was synthesised from L-rhamnose, 63. The enone was then condensed with the 

lithium tert-butoxide generated anion of the phthalide 65 and methylated to produce the 

pyranonaphthalene 66. Subsequent reduction of the ketone 66 produced the alcohol 67 

exclusively. Acid hydrolysis of the hemiacetal produced the key compound 68, which was 

subjected to a Wittig olefination with carbonylmethylenetriphenylphosphorane, producing 

the ester 69 and the lactone 70. The ester 69 results from an intramolecular Michael 

cyclisation of the intermediate α,β-unsaturated ester and the reaction ceases at this point 

for the anti-product but for the syn-product the benzylic alcohol and the just-formed ethyl 

ester are in close enough proximity to react and lactonisation takes place, to give 70 from 

syn-69, effectively resolving the diastereomers produced during step iv (Scheme 6). 

Oxidation and demethylation of the lactone 70 produced nanaomycin D 15, which upon 

hydrogenolysis afforded nanaomycin A 12. Similarly the ester 69 was converted into the 

quinone 71, which was then epimerised at C1 and C4 to the preferred 1,3-trans 

configuration and lactonised to kalafungin 3. Finally hydrogenolysis of 3 provided 4-

deoxykalafunginic acid 62. 
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Scheme 6: Reagents and conditions: (i) a: tBuOLi, THF, −78 °C to rt, b: Me2SO4, K2CO3, Me2CO, 

40 °C, 80% over two steps; (ii) NaBH4, MeOH, rt, 90%; (iii) 0.5 M HCl, AcOH, 75 °C, quant. 

yield; (iv) PhMe, heated to reflux, 69: 53% and 70: 41% ; (v) a: aq. CAN, MeCN, rt, b: AlCl3, 

CH2Cl2, 0 °C to rt, 70: 84%, 15: 87%; (vi) C6H6, conc. H2SO4, 0 °C to rt, 92%; (vii) PtO2, H2, 

EtOH, 12: 98%, 62: 97%. 

 

Five years later the same group utilised a similar strategy to accomplish the synthesis of 

another naturally occurring compound, medermycin 18 (Scheme 7).43 In this case starting 

from D-rhamnal 72 as well as a carbohydrate derived phthalide 73 they completed the 
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synthesis of medermycin 18 in 20 steps. The usefulness of this stereoselective synthesis 

was that it allowed for confirmation of its structural identity, which proved to be identical 

to the isolated medermycin as well as to the compound lactoquinomycin, putting to rest the 

debate that these two natural products were initially believed to be enantiomers of each 

other (both natural products were not compared to each other!) 

 

 
Scheme 7 

 

1.4.3 Furofuran annulations oxidative rearrangement 

Another annulation strategy that has proven to be highly useful in the synthesis of 

pyranonaphthoquinones is the annulation of naphthoquinones with furans, followed by an 

oxidative rearrangement on treatment with ceric ammonium nitrate as shown in Scheme 8. 

The versatility of this procedure has been demonstrated extensively by Brimble and co-

workers in the synthesis of analogues of griseusin A 17,44 medermycin 18,45 (see Figure 7) 

and kalafungin 3.46 

 

 
Scheme 8 
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The synthesis of the analogues of griseusin A 83 and 84 is shown in Scheme 9 as an 

example of the application of this type of methodology.44 The naphthol 74 and the chiral 

aldehyde 75 were combined with the use of a Lewis acid, followed by oxidation and 

acetylation to afford the ketone 76 as a single diastereomer. The key naphthoquinone 77 

was then formed through an oxidative demethylation and immediately subjected to the 

furofuran annulation with 2-(trimethylsilyloxy)furan 78 to furnish a 1:1 mixture of 

furonaphthofurans 79 and 80. Deprotection of this mixture followed by oxidative 

rearrangement with ceric ammonium nitrate afforded the isomeric lactols 81 and 82. 

Finally acid-promoted spiroketalization produced an inseparable mixture of epimerised 

griseusin A analogues 83 and 84 in a 3:1 ratio. 
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Scheme 9: Reagents and conditions: (i) TiCl3(OiPr), CH2Cl2, 0 °C, 9 min, 44%; (ii) MnO2, 

CH2Cl2, 62%; (iii) Ac2O, CH2Cl2, Et3N, 41%; (iv) CAN, MeCN, H2O then 78, 42% (1:1); (v) CAN, 

MeCN, H2O, 5% HF, 48% (1:1); (vi) CSA, CH2Cl2, at reflux, 52% (3.2:1). 

 

For the envisaged annulation reaction, the 2-trimethylsilyloxyfuran 78 adds ortho to the 

activating group on the quinone ring 77 through a 1,4 addition forming 85 (Scheme 10). 

This is followed by aromatisation and a second 1,4 addition of the resulting phenoxy group 
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of 86 onto the neighbouring butenolide moiety, providing the desired heterocycles 79 and 

80. 

 

 
Scheme 10 

 

The usefulness of this methodology was further exemplified in the ‘bidirectional’ synthesis 

of the regioisomeric analogues 91 and 92 of crisamicin A, a dimeric 

pyranonaphthoquinone (Scheme 11).47 This strategy made use of a double furofuran 

annulation of bis-naphthoquinone 89, previously obtained from a Suzuki-Miyaura 

homocoupling of the triflate 88, obtained from 87. Uncatalysed treatment of the bis-

naphthoquinone 89 with an excess of 2-(trimethylsiloxy)furan produced the epimeric bis-

furonaphthofurans 90 in a 1:1 ratio. Ceric ammonium nitrate mediated oxidative 

rearrangement effected the conversion to the pyranonaphthoquinones 91 and 92 as 

regiomeric analogues of naturally occurring crisamycin A 22 (see Figure 9). 
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Scheme 11: Reagents and conditions: (i) AcOH, TFAA, rt, 5h, 32%; (ii) bis(pinacolato)diboron, 

PdCl2(dppf), dppf, KOAc, dioxane, at reflux, 1.75 h, then triflate 88, PdCl2(dppf), K3PO4, dioxane, 

heated at reflux, 2.5 h 58%; (iii) AgO, HNO3, dioxane, 10 min, 91%; (iv) MeCN, 0 °C, 1 h, 41% 

(1:1); (v) CAN, MeCN, H2O, 15 min, 28%, (1:1). 

 

1.4.4 Hauser-Kraus annulation 

Expanding on this ‘bidirectional’ approach, Brimble and co-workers made use of a Hauser-

Kraus annulation reaction to assemble a naphthoquinone monomer, which was subjected to 

a late stage homocoupling Suzuki-Miyaura reaction in order to achieve the enantioselective 

synthesis of the dimeric core of cardinalin 3 (Scheme 12).48 The synthesis was achieved 

using the phenol 93, obtained from commercially available meta-anisic acid, which was 

converted to the benzyl ether 94. Ring closure and formation of the cyanophthalide 

annulation precursor 95 was then achieved using trimethylsilyl cyanide in the presence of 

catalytic potassium cyanide and 18-crown-6. Reaction of the cyanophthalide 95 and the 

enone 96 in the key Hauser-Kraus annulation reaction, followed immediately by reductive 

methylation, resulted in the production of a functionalised naphthalene, which was 

subsequently converted to the triflate 97 by initial removal of the benzyl protecting group 

and replacement with the triflate group. The homocoupling of the triflate 97 was achieved 
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using palladium catalysis under microwave irradiation, the yield of which was found to be 

dependant of the addition of extra phosphine ligand. The newly formed biaryl 98 was then 

treated with TBAF to remove the silyl protecting groups and this was followed by a 

concomitant in situ cyclisation. The resulting lactol was immediately reduced to the more 

stable 1,3-dimethylpyran 99. The 1,3-cis stereochemistry of 99 was unequivocally 

confirmed using NOE correlation as well as X-ray crystallographic analysis. Finally ceric 

ammonium nitrate mediated oxidative demethylation provided the model dimer 100. 

 

 

Scheme 12: Reagents and conditions: (i) BnBr, K2CO3, DMF, rt, 12 h; (ii) TMS-CN, KCN, 18-c-

6, CH2Cl2, 0 °C, 2 h then AcOH, rt, 16 h, 90% from 93; (iii) (a) tBuOK, DMSO, rt, 15 min then 

NaOH, Me2SO4, TBAB, Na2S2O4, THF/H2O, rt, 16 h, 87%; (b) H2, Pd/C, MeOH, rt, 16 h, 97%; (c) 

PhN(Tf)2, DMAP, NEt3, CH2Cl2, rt, 1 h, 95%; (iv) PdCl2(dppf), dppf, bis(pinacolato)diboron, 

K2CO3, dioxane, microwave, 300 W, 150 °C, 1 h, 51%; (v) TBAF, THF then CH2Cl2, −78 °C, 

TFA, Et3Si, rt, 16 h, 70%; (vi) CAN, CH3CN/H2O, rt, 45 min, 63%. 
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1.4.5 Cyclisation reactions – Diels-Alder methodology 

One of the most general methods for the regiospecific syntheses of substituted quinones, 

used in the formation of the pyranonaphthoquinone unit,2 involves the Diels-Alder 

reaction, pioneered by Rapoport and co-workers (Scheme 13).49 

 

 
Scheme 13 

 

We now turn our attention to the first stereoselective synthesis of crisamicin A 22 by Yang 

et al. (Scheme 14) using Diels-Alder reaction methodology,50 as well as a palladium 

catalysed alkoxycarbonylative lactonisation and a palladium catalysed homocoupling 

reaction. 

 

 
Scheme 14 

 

The synthesis of the key precursor 104 was achieved from the commercially available 

carboxylic acid 105 (Scheme 15), which was transformed to the amide 106 via the 

corresponding acid chloride. The amide facilitated a directed ortho metalation allowing for 

the instalment of the formyl functionality 107. Subsequent Grignard addition to this 

aldehyde 107 formed the benzylic alcohol which could be lactonised under acid catalysed 

conditions to deliver the lactone 108. Reduction of the lactone to form the hemiacetal 109 
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paved the way for diastereoselective ring opening using vinyl magnesium chloride, 

affording the key diol 104. 

 

 
Scheme 15: Reagents and conditions: (i) SOCl2, at reflux, NHEt2, CH2Cl2, 93%; (ii) a: tBuLi, 

TMEDA, THF, −78 °C, b: DMF, −78 °C to rt, 92%; (iii) a: MeMgCl, THF, rt, b: PTSA, toluene, at 

reflux, 89%; (iv) a: LiAlH4, THF, 0 °C to rt; b: TEMPO, BAIB, CH2Cl2, rt, 79%; (v) THF, 40 °C, 

59%. 

 

For the carbonylative annulation of the diol 104, a palladium-thiourea catalyst system was 

identified to construct the pyran fused lactone ring system 110 (Scheme 16). A ceric 

ammonium nitrate oxidation of 110 produced the quinone 102 which was then subjected to 

a Diels-Alder cyclisation under Jones’ conditions with the diene 103 to furnish the phenol 

111. The regioselectivity of the cyclisation was remarkably high (>20:1) presumably due 

to the stereoelectronic difference between the two quinone carbonyls that was dictated by 

the pyran fused moiety.50 The phenol was then converted into the triflate 101 and subjected 

to a reductive protection forming 112. The triflate 112 was then converted into the boronic 

ester 113 using a palladium catalysed boronylation and treated directly with a novel 

palladium-thiourea pincher complex 114 to give the homocoupled biaryl 115. Deprotection 

of the hydroquinone moiety and subsequent air oxidation yielded the bis-quinone 116. 

Finally, boron trichloride mediated demethylation gave crisamicin A 22 in an overall yield 

of 10% over 19 steps. 
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Scheme 16: Reagents and conditions: (i) Pd(OAc)2/TMTU, CuCl2, CO, THF, NH4OAc, propylene 

oxide, 50 °C, 88%; (ii) CAN, MeCN, H2O, −10 °C, 89%; (iii) Jones’ reagent, 85%; (iv) Tf2O, Pyr, 

DMAP, 78%; (v) a: Na2S2O4, Bu4NBr, THF, H2O, b: MOMCl, DIPEA, DMAP, CH2Cl2; (vi) 

PdCl2(dppf), dppf, KOAc, dioxane, 85°C, 76%; (vii) Ag2CO3, DMSO, H2O, 87%; (viii) a: TMSBr, 

CH2Cl2, −78 °C to −40 °C, b: silica gel, air, rt, 93%; (ix) BCl3, CH2Cl2, −78 °C to −40 °C, 91%.  

 

In the total syntheses of frenolicin 50 and racemic kalafungin rac-3 (Scheme 17), Kraus et 

al. also make use of a highly regioselective Diels-Alder reaction.51 For the synthesis of 

frenolicin, the starting alcohol 117 was derived from the stereoselective reduction of the 
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corresponding ketone. Ortho directed metalation of 117 using two equivalents of n-BuLi, 

followed by reaction with acrolein afforded the diol 118 as a mixture of diastereomers in a 

yield of 56%. The desired diastereomer (R,S)-118 was isolated by flash chromatography. 

Cyclisation of 118 was then effected using palladium acetate and carbon monoxide to 

produce the lactone 119, which was oxidised with silver(II) oxide forming the quinone 

120. A Diels-Alder reaction was carried out on 120 with 1-[(trimethyl)silyloxy]-butadiene 

and the Diels-Alder adduct was immediately treated with an excess of Jones’ reagent to 

provide frenolicin B 50. 

 

 
Scheme 17: Reagents and conditions: (i) 2 equiv. n-BuLi, 0 °C to rt, acrolein, −78 °C; 56%; (ii) 

Pd(OAc)2, CO, 65%; (iii) AgO, HNO3, 95%; (iv) a: diene, CH2Cl2, −78 °C, b: Jones’ reagent, 80%. 

 

In the synthesis of racemic kalafungin rac-3, the same conditions were utilised, however in 

this case starting with the diol 121 (Scheme 18). 

 

 
Scheme 18 
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Various other pyranonaphthoquinones have been synthesised using this cycloaddition 

methodology whereby appropriately functionalised dienes and dienophiles are reacted to 

furnish the required oxygenation pattern.2, 40 

 

1.4.6 Approaches to the formation of the pyran ring  

In the above two examples, although not highlighted, the syntheses involved the formation 

of the pyran ring of the molecule using a palladium catalysed alkoxy carbonylation 

reaction. In this next section, syntheses of selected pyranonaphthoquinones and some 

analogues which also focus on the formation of the pyran ring system will be highlighted. 

 

1.4.6.1 Ring closure using potassium tert butoxide in dimethylformamide  

Having achieved the oxidative cyclisation of the naphthalene dimethyl ether 122 with ceric 

ammonium nitrate to the isomeric pyranoquinones 123 (Scheme 19),52 Giles and co-

workers discovered a novel cyclisation whilst attempting to isomerise the double bond into 

conjugation of the allylated naphthalene 124¸ obtaining instead the pyranonaphthalenes 

125.53 

 

 
Scheme 19: Reagents and conditions: (i) CAN, MeCN/H2O, 123a: 59%, 123b: 20%; (ii) tBuOK, 

DMF, 60 °C. 

 

The interesting feature in this novel cyclisation is that the existing methods for the 

formation of naphthopyrans produce either a mixture of stereo-isomers or favour the cis 

isomer,54, 55 whereas in this case the initial and major product of the reaction produces the 

trans isomer, with the cis isomer forming only on extended reaction time. Moreover, while 

125a and 125b were formed when the reaction was performed in an inert atmosphere, 
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when the reaction mixture was exposed to air, products with the C4 position oxygenated 

126 were also formed (Figure 15). 

 

 
Figure 15 

 

1.4.6.2 Michael additions 

In 1978 Kraus and Roth completed the synthesis of 9-deoxykalafungin 134 (Scheme 20).56 

The assembly of the carbon framework was achieved by the slow addition of the alkoxy 

furan 128 to readily available 2-acetyl-1,4-naphthoquinone 127 at −78 °C, thereby forming 

the Michael adduct 129 without tautomerism to the hydroquinone. Compound 129 was 

then methylated to afford protected 130, reduced to the secondary alcohol 131, and then 

treated with trifluoroacetic acid to give a mixture of unsaturated β,γ-butenolide 132 as well 

as the desired the cyclised product 133. Fortunately, the butenolide 132 was readily 

isomerised to the α,β-isomer and cyclised in situ to 133 by treatment with 

diazabicyclononene. Oxidative demethylation produced the target molecule 134 as a 

mixture of C1 epimers. 
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Scheme 20: Reagents and conditions: (i) toluene, −78 °C; (ii) (CH3)2SO4, K2CO3, Me2CO, at 

reflux, 62% over two steps; (iii) LiAlH4, Et2O, −10 °C, 95%; (iv) CF3CO2H, CH2Cl2, rt; (v) DBN, 

C6H6, 32% over the two steps; (vi) AgO, 95%. 

 

1.4.6.3 Acid catalysed condensation 

In their synthesis of several 1H-naphtho[2,3-c]pyran-5,10-diones 138 as analogues of 

pentalongin 144, De Kimpe and co-workers employed an acid catalysed condensation.57 In 

this procedure (Scheme 21), the synthesis begins with the acetal 135, which undergoes a 

bromine–lithium exchange and subsequent condensation with several aldehydes to afford 

the alcohols 136a-c. The alcohols were not purified and were immediately subjected to an 

oxidative demethylation forming the intermediate quinones 137a-c which were cyclised 

using acid catalysis with concomitant loss of water, thereby producing the desired 1-alkyl 

or 1-phenyl-pyranonaphthoquinones 138a-c. 
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Scheme 21: Reagents and conditions: (i) a: n-BuLi, THF, −78 °C, 10 min, b: RCHO, THF, 

−78 °C, 30 min, rt, 2 h, c: H3O+, (ii) CAN, CH3CN, H2O, rt, 30 min; (iii) TsOH (cat), C6H6, at 

reflux, 1 h, 138a: 42%, 138b: 34%, 138c: 7%. 

 

1.4.6.4 Ring closing metathesis 

In 2004 De Kimpe and co-workers, completed the synthesis of psychorubin 2 and 

pentalongin 144 (this time without the C1 substituent), using ring closing metathesis as a 

key step (Scheme 22).58 Starting from the allyl-naphthalene 139, isomerisation of the 

double bond to the internal position using potassium tert-butoxide smoothly furnished the 

E isomer 140 exclusively. The benzylic alcohol was then O-vinylated affording 141. With 

the required diene in hand, ring closing metathesis using the ruthenium Grubbs first 

generation catalyst afforded the benzoisochromene 142. Hydration of the double bond 

under acidic conditions produced the hemiacetal 143, paving the way for an oxidation 

using ceric ammonium nitrate affording the quinone psychorubin 2. Finally, dehydration of 

2 yielded pentalongin 144. 

 

Scheme 22: Reagents and conditions: (i) tBuOK, THF, rt, 3 h, 95%; (ii) vinyl acetate, Na2CO3, 

[IrCl(cod)]2, 100 °C, 12 h, 96%; (iii) Grubbs I, toluene, rt, 12 h, N2, then 100 °C, 12 h, 86%; (iv) p-
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TsOH, CH3CN, H2O, 100 °C, 3 h, 75%; (v) CAN, CH3CN, H2O, rt, 30 min, 91%; (vi) p-TsOH 

(cat), C6H6, 80 °C, 20 min, 72%. 

 

A similar strategy was used by van Otterlo et al. in their syntheses of benzo-fused 

heterocycles.59-61 By employing a one-pot tandem isomerisation and subsequent ring 

closing metathesis reaction of 146 with the aid of two ruthenium catalysts, they synthesised 

the isochromene skeleton 147 ( Scheme 23). 

 

 
Scheme 23: Reagents and conditions: (i) a: LiAlH4, THF, 40 °C, 12 h, 86%, b: Allyl bromide, 

NaH, THF, at reflux, 20 h, 77%; (ii) a: [RuClH(CO)(PPh3)3], toluene, 80 °C, b: Grubbs II (cat), 

toluene, 60 °C, 83% over two steps. 

 

1.4.6.5 Oxidative mercury mediated ring closure 

In their synthesis of isochroman-4-ol 153 as a model for naturally occurring 

pyranonaphthoquinones with C4 oxygen substituents, de Koning et al. made use of an 

oxidative mercury mediated ring closure method (Scheme 24).62 After synthesising the 

required ester 148, isomerisation using potassium tert-butoxide gave exclusively the trans 

isomer 149. The ester functionality was then reduced with lithium aluminium hydride and 

the resulting alcohol 150 was treated with mercury(II) acetate, followed by reduction of the 

intermediate acetoxymercuri-isochromane using sodium borohydride in an oxygenated 

solution of DMF to afford the mixture of diastereomers 151a and 151b in a 1:1 ratio. 

Oxidation of the mixture to the corresponding racemic ketone 152 was achieved using 

pyridinium chlorochromate, facilitating a stereoselective reduction using lithium 

aluminium hydride to re-introduce the alcohol as exclusively the cis diastereomer 151b. 

Treatment with silver(II) oxide finally afforded the desired quinone 153. 
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Scheme 24: Reagents and conditions: (i) tBuOK, DMF, rt 15 min, 99%; (ii) LiAlH4, Et2O, 12 h, 

98%; (iii) a: Hg(OAc)2, THF, 15 min, b: NaBH4, DMF, O2, 86%; (iv) PCC, CH2Cl2, 74%; (v) 

LiAlH4, Et2O, 80%; (vi) AgO, HNO3, dioxane, 89%. 

 

1.5 Aims of this Project 

Ongoing research in our laboratories has focused on developing efficient and novel 

methodology to synthesise pyranonaphthoquinones. This research has involved model 

studies on suitable precursors,62-64 and then utilising this newly gained expertise to 

synthesise naturally occurring pyranonaphthoquinones.65, 66 

 

In 2006 our research group successfully completed the synthesis of the naturally occurring 

pyranonaphthoquinone ventiloquinone L 11, which is in fact, as mentioned previously, also 

the monomer of another naturally occurring compound, cardinalin 3 29.65, 66 The synthesis 

was achieved in 13 steps, starting from dimethoxy benzaldehyde 154 and in an overall 

yield of 7.7% (Scheme 25). Construction of the naphthalene ring system 155 was 

accomplished by subjecting the aldehyde 154 to a Stobbe condensation with diethyl 

succinate. This was followed by the removal of the acetate protecting group and the 

introduction of an allyl side chain onto the resulting phenol, affording 156. A Claisen 

rearrangement reaction facilitated the rearrangement of the allyl group to the C2 position, 

and the resulting phenol was once again protected, this time as the benzyl ether 157. The 

ester functionality was then converted into an aldehyde 158 by reduction with lithium 

aluminium hydride and subsequent oxidation with pyridinium chlorochromate. Grignard 

addition to the aldehyde by employing methyl magnesium iodide produced the racemic 

159, setting the stage for a Wacker oxidation, which proceeded in excellent yield thereby 

constructing the required pyran ring pyranonaphthoquinone 160. Hydrogenation using 
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palladium on carbon performed the double task of reducing the double bond and removing 

the benzyl protecting group as planned, and in fact produced the desired cis isomer 161 as 

the major product albeit in a mediocre yield. The phenolic ring system was oxidised to the 

corresponding quinone and finally removal of the methyl protecting group afforded the 

naturally occurring target molecule, ventiloquinone L 11. Unfortunately all attempts to 

‘dimerise’ this molecule to produce the naturally occurring cardinalin 3 29 proved 

unsuccessful. 

 

 
Scheme 25: Reagents and conditions: (i) a: diethyl succinate, tBuOK, tBuOH, at reflux, 2h, b: 

NaOAc, Ac2O, 140 °C, 2 h, 77%; (ii) a: guanidine-HCl, EtOH, CH2Cl2, rt 1 h, 95%, b: allyl 

bromide, K2CO3, Me2CO, at reflux, 16 h, 99%; (iii) a: DMF, 170 °C, 12 h, 75%, b: BnCl, K2CO3, 

KI, Me2CO, boiled at reflux, 18 h, 100%; (iv) a: LiAlH4, THF, 0 °C to rt, 18 h, 95%, b: PCC-

Al2O3, CH2Cl2, rt, 8 h, 78%; (v) MeMgI, Et2O, THF, 0 °C to rt, 8 h, 95%; (vi) PdCl2(cat), CuCl2, 

H2O, DMF, rt, O2, 3 h, 92%; (vii) Pd/C (cat), H2, CH2Cl2 (500KPa), CH2Cl2, dioxane, rt 48 h, 45%, 

(3:1 cis:trans); (viii) a: salcomine , DMF, O2, rt, 18 h, 90%, b: BCl3, CH2Cl2, −78 °C, 70%. 
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Having discovered that coupling of the fully functionalised monomer units was not feasible 

for the synthesis of the dimeric cardinalin 3 29, our aim for this project was to attempt the 

formation of the biaryl axis at an earlier stage, and then build onto both sides of this 

dimeric scaffold in a symmetrical fashion in order to achieve the synthesis of cardinalin 3 

in a ‘bidirectional manner’. This type of methodology has been used successfully for a 

number of compounds which contain a C2 axis of symmetry.67, 68 For example, for the 

synthesis of the central amino acid of chloptosin 162, the bidirectional approach was 

employed starting from the biaryl diamine 163.69 As a second example synthesis of the bis-

anthraquinone, biphyscion 164 was achieved starting from the symmetrical functionalised 

resorcinol derivative 165 (Scheme 26). Therefore we envisage that the synthesis of our 

target molecule, cardinalin 3 29 could be realised through this ‘bidirectional approach’, by 

initially constructing the key biaryl resorcinol derivative 166.  

 

 
Scheme 26 

 

Since the diformylated resorcinol derivative 166 shown above is really the biaryl version 

of the dimethoxy benzaldehyde 154, which led to the successful synthesis of the 
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monomeric ventiloquinone L 11 (See Scheme 25), we envisage that similar methodology 

applied to 166 may lead to cardinalin 3 29. Therefore, this desired precursor 166 can be 

disconnected to tetramethoxy benzene 167, through a retro formylation. For the formation 

of 167, we can take advantage of various coupling reactions on commercially available 

1,3-dimethoxybenzene 168 to facilitate the C8-C8′ biaryl linkage (Scheme 27). 

 

 

Scheme 27 
 

Another aspect of interest to us was the stereoselective addition of the methyl substituents 

to the C1 and C3 positions of the pyran ring, required for cardinalin 3 29. We envisaged 

that this could be achieved through the use of arene chromium tricarbonyl chemistry 

(Scheme 28). If a chromium tricarbonyl moiety can be attached selectively to one face of 

the arene ring of 169, effectively blocking this face forming 170, it could thereby sterically 

direct subsequent reactions to the opposite face affording 171, provided the benzylic 

alcohol 170 could initially be oxidised to give its related ketone. We have successfully 

developed the methodology for the enantiomeric synthesis of the isochromanol ent-169,70 

which is a suitable subunit of the pyranonaphthoquinone molecule for our model study. 

 

 
Scheme 28 

 
 

The synthesis of isochromanol 169 was achieved from the isochromene 172 (Scheme 29), 

by means of a hydroboration-oxidation reaction. 
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Scheme 29 

 

The synthesis of the isochromene 172 was achieved through the ring closing metathesis of 

the intermediate 175 derived from the isomerisation of 174, which was in turn synthesised 

from the benzylic alcohol 173 (Scheme 30). 

 

 
Scheme 30: Reagents and conditions: (i) allyl bromide, NaH, THF, 24 h, 91%; (ii) Ru isom. cat., 

90 °C, 3h; (iii) Grubbs II (cat), toluene, 70 °C, 24 h, 85%. 

 

Since ring closing metathesis had proven to be useful in deriving these compounds, we 

were also interested in investigating whether cross metathesis may be useful (Scheme 31). 

We envisaged that cross metathesis of 176 and 177 may prove useful to introduce an α,β-

unsaturated ester moiety 178 in the ortho position to the benzylic alcohol 176. Following 

this, we could then construct the pyran ring system 180 using an intramolecular Michael 

addition. 
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Scheme 31 

 

Thus the aims of this project were firstly, to synthesis the naturally occurring 

pyranonaphthoquinone cardinalin 3 29, employing a bidirectional approach. Next we were 

interested in making use of arene chromium tricarbonyl chemistry for the stereoselective 

addition of substituents to the C1 and C3 positions of the pyran ring, using the 

isochromanol molecule 168 as a suitable model system. Finally, we intended investigating 

the use of cross metathesis as a new method for generating suitable precursors to C3 

substituted pyranonaphthoquinones e.g. 179 from the benzylic alcohol 172 (Scheme 32).  
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Scheme 32 
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Chapter 2: The Synthesis of Cardinalin 3 and Novel Syntheses 

of Isochromanes 

2.1 The Synthesis of Cardinalin 3: A Bidirectional Approach 

Our interest in the synthesis of the naturally occurring pyranonaphthoquinone cardinalin 3 

29 stemmed from the idea where we envisioned that a ‘bidirectional approach’ may in fact 

prove to be very effective. In line with this, we sought to create the C8-C8′ linkage 

between the two pyranonaphthoquinone monomers early in the synthesis, thereby 

generating a simple, but useful biaryl, such as for instance 167 (Scheme 33). We envisaged 

that this key step could be accomplished by transition metal mediated reactions, utilising 

the Suzuki coupling reaction or the Ullmann coupling reaction.71, 72 

 

 
Scheme 33 

 

2.1.1 Formation of the biaryl axis 

The use of transition metal mediated reactions for the formation of biaryl axes is an area 

which has received a significant amount of attention over the last two decades. However 

this methodology actually dates back to nearly a century ago where Fritz Ullmann 

employed copper to facilitate the coupling of two aryl halides in a reaction which now 

bears his name.73 The generally accepted mode of coupling in this type of reaction is 

believed to be the interaction of an aryl copper species with an aryl halide, although, given 

the many oxidation and coordination states of copper, the actual mechanism of biaryl 

formation is controversial. One proposed mechanism involves a copper(I) intermediate,74 

which undergoes oxidative addition to form a copper(III) complex, and subsequently 

undergoes reductive elimination to release the biaryl product (Scheme 34). 
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Scheme 34 

 

We envisaged that the dimeric scaffold 167 (See Scheme 33) would be an appropriate 

starting point for the bidirectional synthesis of cardinalin 3, and its synthesis could be 

accomplished using an Ullmann coupling reaction. We would therefore require the 

corresponding halogenated 1,3-dimethoxy benzene and the analogous copper substituted 

1,3-dimethoxy benzene as the coupling partners for the reaction. Since the ease of 

displacement of the halogen from the aromatic ring is generally in the order: I>Br>Cl>F,75 

we envisaged that the most effective substrate for the halide portion would be 2-iodo-1,3-

dimethoxy benzene 183 (Scheme 35). This molecule was easily attained by way of ortho 

directed lithiation of commercially available 1,3-dimethoxy benzene 168 at 0 °C, followed 

by treatment with iodine. Pleasingly, the progress of the reaction was easy to follow as the 

lithiated dimethoxy benzene 182 reacted rapidly with the iodine solution as it was added, 

resulting in a rapid disappearance of the brown colour associated with the iodine. The first 

persistence of the brown colour indicated that the lithiated 1,3-dimethoxy benzene had 

been completely consumed. Fortuitously, the 1,3 dispositions of the ortho directing 

methoxy groups rendered the C2 position by far the most reactive, resulting in selective 

iodination at this position. 

 

 
Scheme 35 

 

The formation of the halide aryl 183 was confirmed spectroscopically, using 1H and 13C 

NMR spectra – the presence of an internal mirror plane resulting in an uncomplicated 
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spectrum. Therefore the 1H NMR spectrum contained just two signals, namely a triplet at 

7.26 ppm and doublet at 6.50 ppm, integrating for 1 and 2 protons respectively and 

coupling to each other with a coupling constant of 8.3 Hz, indicative of J3 coupling for this 

system. Furthermore, the lack of a proton signal for the C2 position, which would have 

shown meta coupling further attested to the formation of the correct product. The 13C NMR 

spectrum contained only five signals, namely a large upfield signal at 56.1 ppm attesting to 

the presence of the methoxy groups, a slightly more downfield quaternary signal at 

112.6 ppm for the C2 carbon, and the remaining three signals at 158.4 ppm, 128.7 ppm and 

104.5 ppm, as would be expected given the symmetry of the molecule. The mass spectrum 

of the molecule showed a molecular ion in good agreement with the expected mass of the 

molecule. The data obtained compared well with that reported in the literature for 

compound 183.76 

 

With our desired halide 183 in hand, it was now possible to attempt the Ullmann coupling 

reaction with its copper partner 184, which would be generated in situ (Scheme 36). 
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Scheme 36 

 

In the generation of the required copper intermediate 184, we once again capitalised on the 

1,3-relationship of the methoxy groups to lithiate at the C2 position. We then employed a 

transmetalation reaction using copper(I) iodide to furnish the cuprate, 184 in situ, which 

was reacted with the iodated aryl 183. After three days of heating at reflux, the mixture in 

pyridine, the desired tetra-substituted biphenyl 167 was obtained in an excellent yield of 

93%. 

NMR spectroscopic characterisation of the molecule compared well with literature.77 

However, this information was not conclusive to the assignment of the structure of the 
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dimer 167 as both the 1H and the 13C NMR spectra were almost identical to that of its 

precursor 183, with just slight shifts in the δ values, owing to the similar substitution 

pattern of both the molecules. The biphenyl 167 has two C2 axes of symmetry, resulting in 

a reduction of the number of signals in both the spectra, similar to compound 183. 

Conclusive proof for the formation of 167 was thus obtained from the mass spectrum of 

the product, which showed a molecular ion at 274.1198 amu, confirming a molecular 

formula of C16H18O4. The precursor 183 had a molecular ion 263.9647 amu matching its 

formula of C8H9IO2, thereby putting aside any doubt regarding the structure of the obtained 

product. Our precursor for our bidirectional synthesis was thus achieved in these two steps 

from two equivalents of the commercially available 1,3-dimethoxy benzene in 87% over 

the two steps. 

 

As an alternative procedure, we investigated another well known transition metal biaryl 

axis forming reaction - the palladium catalysed Suzuki reaction. This reaction has been 

found to be useful for coupling many different aryl substrates and typically involves 

coupling an aryl boronic acid (or a borate ester) to an aryl halide (typically an iodide or 

bromide). The mechanism of the reaction is shown in the formal catalytic cycle, depicting 

the cross coupling between an aryl halide and an aryl boronic acid (Scheme 37).71 The 

cycle begins with the oxidative addition of a Pd(0) complex to the aryl halide, forming a 

Pd(II) complex. Next the transmetalation of an aryl boronic acid to the Pd(II) complex 

takes place. The palladium maintains its +2 oxidation state by forming a bond to the 

organic component of the boronic acid with a concomitant loss of the halide acquired in 

the oxidative addition step. Rearrangement of the two organic moieties occurs, placing 

them cis to each other. Finally, reductive elimination, whereby a bond is formed between 

the two aryl groups takes place and the palladium is reduced back to Pd(0) and then re-

enters the catalytic cycle. 
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Scheme 37 

 

In order to perform the Suzuki coupling reaction for our desired system, it was only 

necessary for us to form the boronic acid 186 (Scheme 38) as we already had the aryl 

halide 183 in hand. The desired dimethoxy phenyl boronic acid 186 was readily 

synthesised from dimethoxy benzene 168, through, once again a directed ortho- lithiation 

followed by reaction with trimethyl borate. The newly formed borate ester 185 was then 

hydrolysed with dilute hydrochloric acid to deliver the desired boronic acid 186 in a yield 

of 71%. 

 

 

Scheme 38 
 

Confirmation of the successful synthesis of the boronic acid 186 was obtained from the 1H 

NMR spectrum, which, although similar to the iodated aryl 183 as well as the biphenyl 

167, had in addition to the three expected signals another singlet at 7.22 ppm, integrating 

for two protons - indicative of the two new hydroxyl groups on the boron. The 13C NMR 

spectrum was also very similar to that obtained for 183 and 167, with the exception of the 

C2 signal, now shifted much further upfield (55.8 ppm vs. 112.6 ppm). This is no doubt 

due to reduced deshielding by the electropositive boron in comparison to the high 

deshielding effect of the electronegative iodine.  
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For the Suzuki coupling reaction, we made use of a biphasic system with 

tetrakis(triphenylphosphine)palladium(0), as our source of palladium(0) and aqueous 

sodium carbonate as a base in DME as a solvent (Scheme 39). 

 

 
Scheme 39 

 

Great care needed to be taken in order to exclude air from the reaction vessel in order to 

prevent the oxidation of the palladium catalyst. The reaction was completed much sooner 

than that of the Ullmann coupling reaction (1 day compared to 3 days), however the yield 

of the palladium catalysed reaction was much lower (54%). Isolation and purification of 

the product was also more challenging as the product had to be carefully separated from 

various uncharacterisable side products by column chromatography. In the Ullmann 

coupling reaction, the dimer was simply recrystallised from the crude reaction mixture 

with a dichloromethane:ethanol mixture. It is possible that the lower yield may be due to 

the fact that the Suzuki reaction when compared to the Ullmann reaction is more sensitive 

to steric hindrance,78 and we were synthesising a tetra-substituted biaryl axis. Another 

option available to us for the formation of the biaryl axis was a procedure employed by 

Falck and co-workers. They were able to achieve the homocoupling of the boronic acid 

186 with the use of a CrCl2 catalysed reaction.79 However, given that their yield was only 

75%, the Ullmann coupling reaction was still the preferred option as we had obtained a 

93% yield. 

 

With our dimeric building block 167 in hand, we were now at the stage to commence our 

planned bidirectional synthesis. The first step of this planned route was to introduce an 

aldehyde functionality onto each aromatic ring, ortho to a methoxy group. 
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2.1.2 Formation of the di-carbaldehyde 

The classic formylation reaction published in 1927 by Vilsmeier and Haack makes use of a 

substituted amide (e.g. dimethylformamide) and phosphorus oxychloride in order to 

formylate aromatic compounds.80 The so-called Vilsmeier salt 187 resulting from the 

reaction of these two reagents is highly electrophilic and undergoes a substitution reaction 

with an aromatic substrate to form an iminium salt 188 (Scheme 40). This salt is then 

easily hydrolysed in the presence of a base, producing an aldehyde 189. 

 

 
Scheme 40 

 

This reaction was our first choice for the synthesis of our desired diformylated biphenyl 

166. However, disappointingly, this reaction proved to be troublesome on our system, 

(Scheme 41) producing a mixture of the mono-formylated biphenyl 190 in a yield of 21% 

and diformylated product 166 in a 5% yield. Even after allowing the reaction to proceed 

for several days the yield of the desired 166 did not improve. 

 

 
Scheme 41 

 

An alternative formylation, developed by Martinez et al. utilises trifluoromethanesulphonic 

anhydride instead of phosphorus oxychloride (Scheme 42). This combination produces a 

more reactive iminium salt 191, which is therefore a more effective formylation reagent.81 

 

 
Scheme 42 
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Unfortunately, when we attempted to use this methodology no products were isolated from 

the reaction. It is possible that this more reactive formylation reagent was simply too 

reactive for our electron rich aromatic system. Therefore we once again turned our 

attention to the literature and discovered a procedure first reported by Gross et al. which 

described the formylation of sterically hindered aromatic compounds using dichloromethyl 

methyl ether in the presence of titanium(IV) chloride.82 In fact this procedure had been 

utilised for the formylation of electron rich phenols and was found to be high yielding with 

good regioselectivity, and therefore seemed to be a better match for our systems.83 

Substrate 167 was therefore dissolved in freshly distilled dichloromethane, and reacted 

with titanium tetrachloride (Scheme 43). The reaction mixture immediately changed to a 

bright orange colour. Once cooled down to −78 °C and reacted with the dichloromethyl 

methyl ether, the colour changed to brown. Naturally, given our intention to perform a 

double formylation, the recommended amount of each reagent was doubled. After allowing 

the reaction to proceed for one hour followed by work up and purification, we pleasingly 

obtained our desired diformylated biphenyl 166 in an excellent yield of 95%. 

 

OMe

MeO
MeO

OMe

167

OMe

MeO
MeO

OMe

166
O

H
O

H

TiCl4,
CHCl2OCH3

 
Scheme 43 

 

The fact that a successful formylation had occurred was immediately confirmed upon 

scrutinising the 1H NMR spectrum. The presence of a new downfield singlet at 10.17 ppm 

signalling the presence of two aldehyde protons was very distinctive. There was of course 

only one signal for both new aldehyde groups as the molecule maintained its symmetry 

about the biaryl axis, with a single formylation having occurred at the desired ortho 

position on each ring. In fact, regarding the NMR spectral interpretations from this point 

forward: as we will be continuing in this bidirectional manner, it is far more convenient to 

discuss the spectroscopic evidence pertaining to the relevant products with respect to only 

one half of the dimeric system, as though it were an entity. Naturally, at the point where 

the introduction of stereochemistry results in non-equivalent diastereomeric moieties, this 

will be specifically pointed out in the text. Returning to the analysis of our product 166: 

The multiplicities of the aromatic protons’ signals were in line with our expectations, 
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having changed from a triplet and doublet to two doublets, while maintaining a coupling 

constant of 8 Hz, indicative of their ortho relationship. At this stage of the synthesis, the 

methoxy peaks, now in different environments, separated to two singlets one at 3.76 ppm 

and the other at 3.52 ppm. The 13C NMR spectrum had a new downfield peak at 188.8 ppm 

signalling the presence of a new carbonyl carbon of the aldehyde. The increase in the 

number of signals in the carbon spectrum can be accounted for by the fact that one of the 

C2 axes of symmetry has now been removed due to the introduction of the aldehyde 

functionality, placing all the carbons in unique environments. A noteworthy addition to the 

IR spectrum was a sharp band at 1677 cm-1, further confirming the presence of our new 

carbonyl group. The mass spectrum of the molecule was also in good agreement with 

expected mass of 330.1103 amu. 

 

The mechanism postulated for the ortho directing regioselectivity of this formylation 

reaction is explained in terms of the coordination of the titanium with the oxygen atoms 

(Scheme 44).83 The coordination favours the regioselectivity by bringing the 

dichloromethyl methyl ether in close proximity to the methoxy group resulting in the 

substitution occurring in the desired ortho position. It also increases the electrophilicity of 

the dichloromethyl methyl ether and thus enhances the reaction rate. 

 

 

Scheme 44 
 

We were fortunate at this stage of the synthesis to obtain a crystal structure of our product 

(Figure 16), enabling us to unambiguously confirm our structure. Structural features worth 

mentioning are the orientation of the two rings, aligned perpendicular to each other. Due to 

the fact that the biaryl axis is tetra-substituted, with four bulky methoxy groups, this 

orientation minimises steric interactions. The methoxy functionalities para to the aldehyde 

functionalities are in the same plane as the rings they are attached to. The ortho methoxy 

groups are orientated such that they are pointing out of the plane of the ring. Owing to the 



Chapter 2: The Synthesis of Cardinalin 3 and Novel Syntheses of Isochromanes 
__________________________________ 

 

49 

restricted rotation about the biaryl bond, 166 now possesses axial chirality because of the 

introduction of the formyl groups. 

 

 
 

Figure 16 
 

At this stage of our synthesis, we now had in hand the dimeric version of 154, namely 166, 

which was the starting material for our synthesis of ventiloquinone L (Figure 17).  

 

 
Figure 17 

 

2.1.3 Construction of the bis-naphthalene skeleton 

The next crucial phase in our synthesis would be the construction of our naphthalene ring 

system. We envisaged that this could be achieved using a Stobbe condensation, followed 

by a Friedel Crafts acylative cyclisation reaction (Scheme 45). 
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Scheme 45 
 

The Stobbe condensation reaction involves the nucleophilic attack of the enolate derived 

from a succinate ester to aldehydes or ketones, resulting in the formation of the 

corresponding alkylidenesuccinic acids.84 The reaction mechanism of our particular system 

is depicted below (Scheme 46). 
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Scheme 46 
 

For our desired purposes, we made use of diethyl succinate, and employed potassium tert-

butoxide as our base to generate the enolate. The reaction was carried out in boiling tert-

butyl alcohol for 2 hours. The specificity and success of the reaction is as a result of the 
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succinate ester attack placing the carbethoxyl group in a suitable position to allow for the 

formation of the lactone intermediate 197. The reaction proceeds via the enolate 197, 

facilitating ring opening of the lactone and subsequent formation of the cis-alkylidene acid 

192. 

 

The acid 192 was isolated and reacted without further purification with sodium acetate in 

acetic anhydride at 140 °C, effectively forming the mixed anhydride 198 and inducing an 

intramolecular Friedel-Crafts acylative cyclisation leading to the formation of 193  

 

Scheme 47 
 

Using this procedure, our desired bis-naphthalene 193 was obtained in yield of 60% over 

the two steps. The significantly different 1H NMR spectrum in comparison with that for the 

starting material 166 was a pleasing sign. Confirmation of the desired product was 

indicated firstly by the absence of the distinctive singlet at 10.17 ppm, previously 

indicative of the aldehyde proton. A change in the aromatic signals from two doublets to 

three singlets provided further evidence of the formation of 193. There was also the 

characteristic quartet at 4.43 ppm and a triplet at 1.42 ppm in the 1H NMR spectrum, 

integrating for two and three protons respectively, representing the ethyl side chain. A new 

singlet at 2.51 ppm indicated the presence of the acetate group. The 13C NMR spectrum 

was significantly different in that there were now two carbonyl peaks, one at 169.4 ppm 

and the other at 166.2 ppm, indicative of the acetate and ethyl ester carbonyls respectively. 

The number of carbon signals in the aromatic region increased from 6 to 10 signals. The 

upfield region of the 13C NMR spectrum, now also contained, in addition to the two 



Chapter 2: The Synthesis of Cardinalin 3 and Novel Syntheses of Isochromanes 
__________________________________ 

 

52 

methoxy signals, three new signals. These signals corresponded to the methyl group of the 

acetate, found at 21.0 ppm and the two carbons of the ethyl chain of the ester functionality 

at 61.1 ppm and 14.4 ppm. The IR spectrum contained a C=O absorption peak at 1770 cm-

1and an additional peak at 1716 cm-1. The molecular weight of 634.2038 amu obtained 

from mass spectral analysis was in good agreement with our expected molecular weight of 

634.2050 amu. We had no doubt therefore that we had successfully constructed our bis-

naphthalene scaffold 193.  

 

2.1.4 Formation of the pyran ring system 

At this stage it was necessary to introduce and modify existing functionalities on our 

naphthalene 193 in order to set the stage for the formation of the final ring, the 1,3 

dimethyl pyran ring system. The required isochromene system 199 can be disconnected to 

the secondary alcohol 200 via an envisaged Wacker oxidation reaction (Scheme 48), and 

200 should be attainable from our bis-naphthalene 193 by the introduction of an allyl chain 

ortho to the ester functionality followed by the conversion of the ester group into a 

secondary alcohol, via the corresponding aldehyde. 
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Scheme 48 

 

2.1.4.1 Introduction of the allyl moiety 

Since our envisaged route to the substituted naphthalene 200 involved an allylation 

followed by a Claisen rearrangement, the first step required the selective removal of the 

acetate functionality to expose the free naphthol at position C4, thereby forming 201 
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(Scheme 49). Fortunately this can be achieved without affecting the ester groups using the 

mild base, guanidine85 as was established in our group’s synthesis of ventiloquinone L.66 

 

Scheme 49 
 

The naphthalene 193 was therefore reacted with a solution of the guanidine hydrochloride 

and potassium tert-butoxide in ethanol to produce the naphthol 201 in a 78% yield after 

column chromatography. The product was insoluble in CDCl3 and the 1H NMR spectrum 

was thus obtained in deuterated DMSO. The most distinctive change of the product 

spectrum was a new broad singlet at 10.51 ppm, indicative of the new free hydroxyl group. 

Moreover, the characteristic singlet previously occurring at 2.51 ppm in the 1H NMR 

spectrum of the starting material was absent indicating that the acetate group was no longer 

present. In the 13C NMR spectrum, the carbonyl peak at 169.4 ppm was no longer present 

and the CH3 peak at 21.0 ppm was also not evident, further attesting to the fact that we had 

selectively removed the acetate group. The IR spectrum also contained a distinctive broad 

band at 3413 cm-1 signalling the presence of an OH group. Only one C=O stretching 

absorption was observed in the carbonyl region of the spectrum, at 1640 cm-1. The mass 

spectrum of the ion of the sodium salt matched the expected mass of 573.174 amu. 

 

The next step in the synthesis was a routine allylation of the free naphthol of 201, 

employing allyl bromide and potassium carbonate in boiling acetone to produce 202 

(Scheme 50). 
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As expected, the introduction of the allyl group resulted in a decrease in the polarity of the 

product 202. The 1H NMR spectrum of 202 contained four distinct new signals and the 

broad signal at 10.51 ppm previously attributed to the naphtholic hydrogen was no longer 

present. A multiplet at 6.23 ppm could be assigned to the allylic CH group. The signals for 

the vinylic CH2 protons appeared slightly further upfield as two double doublets, one at 

5.57 ppm and the other at 5.38 ppm, with coupling constants indicating geminal coupling 

to each other (J = 1.3 Hz) and coupling to the adjacent CH as well. Finally, the protons on 

the methylene attached to the oxygen atom produced broad doublet at 4.84 ppm, resulting 

from coupling to the neighbouring CH group. In the 13C NMR spectrum, there were three 

new signals confirming the presence of the allyl moiety. The allylic CH was located at 

133.2 ppm and the vinylic CH2 was further upfield at 118.8 ppm. The methylene carbon 

attached to the oxygen produced a signal somewhat further upfield at 69.3 ppm. As 

expected, the IR spectrum no longer contained the distinctive broad OH absorption band. 

 

The relocation of the allyl side chain to the desired position was accomplished with the use 

of a Claisen rearrangement reaction. In order to effect this rearrangement, we initially 

employed the more conventional conditions, of heating the reaction mixture at 180 °C in 

dimethylformamide for 16 hours. However, using this methodology the yields were found 

to be irregular, ranging from values as low as 20% to the highest value of 68%. Therefore, 

as an alternative procedure, we decided to attempt this reaction using microwave radiation 

as an energy source (Scheme 51).86 The results from this new procedure were extremely 

pleasing as subjecting our O-allylated naphthalene 202 to variable power microwave 

irradiation maintaining a constant temperature of 170 °C in dimethylformamide afforded 

our rearranged C-allylated naphthalene 203 in 98% yield in just 25 minutes! 

 

Scheme 51  
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The accompanying changes in the 1H NMR spectrum of 203 included the disappearance of 

an aromatic proton signal, and the appearance of a new singlet at 5.84 ppm, indicating the 

presence of the free naphtholic hydrogen on the naphthalene ring. The 13C NMR spectrum 

remained largely unaltered except for a change in the chemical shift of the allyl CH2 group, 

moving upfield from 69.3 ppm to 31.8 ppm as a result of it no longer being bonded directly 

to oxygen. Not surprisingly, a broad OH stretching absorption at 3420 cm-1 was observed 

in the IR spectrum, attesting to the presence of the alcohol. The mass spectrum value 

remained unchanged from that of its precursor, in line with our expectations. 

 

The next phase towards the synthesis of the pyran precursor 200 would be to begin 

modifying the ester functionality. However, the free hydroxyl group on the naphthol would 

first need to be protected. To this end, we envisaged that a benzyl ether would serve the 

purpose adequately as it would not only be unreactive in the subsequently planned steps, 

but its removal would coincide with the planned reduction of a future double bond, thereby 

eliminating the need for a dedicated protecting group cleavage step. Since we only had the 

somewhat less reactive benzyl chloride on hand, and not benzyl bromide, the introduction 

of the benzyl group was carried out under Finkelstein conditions, with benzyl chloride, 

potassium iodide and potassium carbonate in boiling acetone thereby affording the 

protected naphthol 204 in an excellent yield of 90% (Scheme 52). 

 

Scheme 52 
 

The presence of a new multiplet in the aromatic region of the 1H NMR spectrum provided 

the first evidence that the attachment of the benzyl group had been successful. 

Furthermore, a new singlet was observed in the region of 5.10 ppm, overlapping with the 

allylic CH2 group, indicative of the benzylic CH2 group. The 13C NMR spectrum was 

distinctly different with the addition of five new signals, four in the aromatic region and a 
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new signal at 76.1 ppm, signalling the presence of the O-benzyl methylene carbon. The 

distinctive OH stretch in the IR spectrum was no longer present and the mass spectrum 

confirmed a significant increase in mass, corresponding well with the expected mass for 

the benzylated product 204. 

 

2.1.4.2 Conversion to the secondary alcohol 

With the allyl functionality correctly installed, and the free OH group suitably protected, 

we were now in a position to modify the ester functionality to afford the desired secondary 

alcohol, a requirement for the forthcoming Wacker oxidation ring closure step. We 

envisaged that the required methyl group at the benzylic C1 position could be introduced 

using a Grignard reaction, (Scheme 53) producing the desired alcohol 200, if the ester 204 

was first converted into the corresponding aldehyde 205. 
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Our first intention was to convert the ester directly to the aldehyde using DIBAL, however 

unfortunately this method proved unsuccessful resulting in the recovery of mainly starting 

material and some uncharacterisable material (Scheme 54). 
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Scheme 54 
 

Therefore, we opted to carry out this conversion over two steps by firstly complete 

reduction of the ester to the primary alcohol 206 (Scheme 55), followed by a selective 

oxidation to aldehyde 205. 

 

Scheme 55 
 

As a first attempt at the reduction, we employed lithium aluminium hydride in THF. 

However, the highest yield we obtained for this reaction was a disappointingly low 42%. 

Following this, several other reduction procedures were attempted on the ester and the 

results are summarised in Table 1. Clearly, these procedures turned out to be even less 

effective than using LiAlH4. 

 

Table 1: Reaction conditions of attempted reduction reactions 
Conditions Yield 

LiBH4-Methanol87 No reaction 

NaBH4-Methanol88 No reaction 

Na-Ethanol89 No reaction 

LiBH4-toluene90 No reaction 

L-Selectride-THF91 25% 

 

Having had little success with alternative reducing agents we then turned our attention 

back to optimising the LiAlH4 reduction. To this end we investigated the influence of 

solvent, reaction time and temperature. Unfortunately however, we were unable to 
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optimise the reaction any further, and therefore had to settle for the moderate yield of the 

benzyl alcohol 206 in order to push forward with the synthesis. The conditions thus 

employed for a reproducible albeit low yield were the addition of the LiAlH4 to a solution 

of the ester in freshly distilled THF, cooled down to 0 °C by means of an ice bath, and then 

allowing the reaction to slowly warm up to room temperature overnight. If the reaction was 

maintained at 0 °C, even lower yields were obtained. This step in the synthesis appeared to 

be trivial but ultimately proved to be the lowest yielding step in the synthesis. 

 

In the 1H NMR spectrum, the absence of the characteristic quartet and triplet 

corresponding to the ethyl side chain was immediately evident. The appearance of a new 

singlet at 4.84 ppm, indicative of a benzylic CH2 provided further confirmation of the 

correct product, as did a broad singlet at 1.84 ppm signalling the presence of the proton of 

the newly formed alcohol functionality. In the 13C NMR spectrum the peaks at 61.7 ppm 

and 14.3 ppm, previously arising from the ethyl side chain were no longer present. The 

downfield carbonyl signal, previously found at 168.0 ppm in the starting compound, was 

now shifted significantly upfield to 64.1 ppm in line with what we would expect for the 

benzylic methylene carbon also attached to an oxygen. In the IR spectrum, a broad OH 

stretching band at 3417 cm-1 was noticeably present. The mass spectrum was in line with 

our expectations showing a molecular ion at 727.327 amu, which corresponded well with 

the calculated value of 727.3271 amu for our molecular formula of C46H47O8. 

 

Therefore with the benzylic alcohol 206 in hand, we could now complete the synthesis of 

the desired aldehyde 205 with a selective oxidation using pyridinium chlorochromate 

(Scheme 56). 

 

Scheme 56 

 

In our hands, the most effective procedure for this oxidation required first adsorbing 

pyridinium chlorochromate onto neutral alumina, and then adding this to a solution of the 
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alcohol 206 in dry dichloromethane. This procedure proved to be quite convenient as on 

completion, the reaction mixture was simply filtered through celite effectively removing 

the oxidant. Purification of the crude material was nevertheless still necessary but was 

easily achieved using column chromatography, affording the aldehyde 205 in an excellent 

yield of 90%. 

 

Convincing evidence for the formation of the aldehyde was the presence of a new singlet 

in the downfield region of the 1H NMR spectrum at 10.24 ppm, characteristic of an 

aldehyde proton. The disappearance of two notable signals, namely the singlet depicting 

the methylene group as well as the broad singlet indicative of an alcohol proton, was 

observed. In the 13C NMR spectrum, a distinctive deshielded signal was observed at 

192.4 ppm, clearly that of the aldehyde carbon. The IR spectrum no longer contained the 

broad OH band, but did now display a C=O stretching band at 1691 cm-1. Mass spectral 

analysis showed an M+ ion of 723.295, corresponding well to the calculated value of 

723.2958 amu. 

 

The final conversion necessary to prepare the precursor for the forthcoming Wacker 

oxidation was the introduction of a methyl group to the aldehyde 205. This reaction would 

simultaneously deliver the methyl functionality desired at the benzylic position of the final 

product as well as produce the required secondary alcohol, forming 200 (Scheme 57). 

 

Scheme 57 

 

To accomplish this addition we employed a Grignard reaction, using methyl magnesium 

iodide, prepared in situ. We found that the use of two solvents for this reaction was 

necessary due to the Grignard reagent’s solubility in THF. Therefore, for the initial 

formation of the methyl magnesium iodide we employed dry diethyl ether over dried 

magnesium metal turnings. It should be mentioned that the formation of the Grignard 

proved to be quite exothermic and therefore we found it necessary to attenuate the reaction 
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rate by cooling the solution. Once the Grignard reagent had formed, a solution of the 

aldehyde 205 in dry THF was then added drop-wise to the cloudy reaction mixture, 

resulting in an immediate colour change to milky yellow, which became progressively 

darker as the reaction proceeded. Interestingly, for the first time thin layer chromatography 

revealed that two new products had formed, having Rf values of 0.33 and 0.27 in a solvent 

system of 40% ethyl acetate in hexane. This was in line with our expectations as the 

creation of a two stereogenic carbons now meant that we had formed a mixture of 

diastereomers, taking into account the fact that hindered rotation about the biaryl axis 

creates rotameric isomers. Our desired secondary alcohol 200 was easily purified by 

column chromatography and obtained in a pleasing yield of 79% as a mixture of 

diastereomers. 

 

Spectroscopic analysis of the mixture confirmed that the addition of the methyl group to 

the aldehyde had been successful, forming the secondary alcohol 200. In the 1H NMR 

spectrum the disappearance of the aldehyde proton’s singlet at 10.24 ppm was evident. 

New features in the spectrum included a quartet at 5.25 ppm, formed as a result of the 

benzylic CH coupling to the added methyl group, itself producing a doublet at 1.60 ppm. 

Confirmation that these groups were indeed adjacent to each other was derived by their 

corresponding integration values, multiplicity and coupling constants. A broad singlet at 

1.88 ppm indicated the presence of the proton of the OH group. Since we had a mixture of 

diastereomers, some additional peaks were observed. Noticeably, one of the methoxy 

groups on each of the diastereomers resulted in two singlets, one at 3.63 ppm and the other 

at 3.62 ppm. In the 13C NMR spectrum, the absence of the downfield signal in the region of 

190 ppm and the presence of a new upfield signal at 24.5 ppm corresponded to the 

reduction of the aldehyde and the presence of a new CH3 group. The IR spectrum regained 

its broad OH stretching band at 3415 cm-1, indicating the alcohol functional group. 

 

2.1.4.3 The Wacker Oxidation procedure 

Having set the stage for the formation of the pyran ring, we now had a number of options 

on hand for this ring closure. Some of these include methods previously used in our 

laboratories, namely: a potassium tert-butoxide mediated ring closure,65 an oxidative 

mercury mediated ring closure,62 and a Wacker oxidation procedure,63 (Scheme 58). We 

opted to steer clear of the first method as it leads to the production of the trans isomer 207 
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exclusively or over extended periods tends to produce a mixture of cis and trans 1,3-

dimethyl pyran rings 207 and 208 due to epimerization because of the strongly basic 

conditions,53 and we require exclusively the cis stereochemical relationship between the 

two methyl groups. The second procedure, being the oxymercuration reaction, was also 

found to generate a mixture of cis and trans isomers in equal proportions, and so we 

decided to avoid this procedure as well - not to mention the fact that we would generate 

undesirable mercury waste. Finally, considering the third option, we envisaged that a 

palladium catalysed Wacker oxidation procedure would generate a slightly different 

product, namely the unsaturated 1,3-dimethyl isochromene system 199. The presence of 

the alkene may then provide us with the opportunity to effect a simple sterically controlled 

reduction, leading hopefully to the desired cis dimethyl pyran 209. 

 

Scheme 58 
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In the generally accepted mechanism of the Wacker oxidation reaction, the overall ring 

closure is facilitated by the action of the palladium catalyst, which activates the alkene for 

reactivity with a nucleophile.92 The catalyst does this by coordinating to the double bond 

drawing electron density away from the π orbitals of the alkene (depicted in 210 of  

Scheme 59). Attack by a suitable nucleophile, in this case water, takes place at the more 

substituted end and this is believed to be governed by the need of the palladium to be in the 

less hindered position 211.92 The palladium(II) species then decomposes by a β-hydride 

elimination releasing the substituted enol 212, which of course immediately tautomerises 

to the corresponding ketone 213. With the benzylic alcohol favourably positioned to form a 

six membered ring, the ketone 213 is expected to readily ketalise. A concomitant 

dehydration produces the isochromene 199. Recycling of the palladium catalyst is achieved 

by reductive elimination of a proton and a leaving group, generating palladium(0). The 

catalyst now requires an external source of oxidation back to palladium(II) in order to re-

enter the catalytic cycle. Copper(II) chloride is used to oxidize the palladium(0) to 

palladium(II) and is itself regenerated to copper(II) in the presence of oxygen. 
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Scheme 59 

 

Our Wacker oxidation reaction, carried out using 10 mol% PdCl2 catalyst as well as one 

equivalent of CuCl2, smoothly delivered our isochromene 199 as a mixture of 

diastereomers in an overall yield of 78%. Typically, in a Wacker oxidation process it is the 

ketalisation step that is relatively slow and often requires the azeotropic removal of water 

to shift the equilibrium in favour of the product. However, in our specific case, given that 

only the isochromene 199 was isolated from the reaction, with no indication of the 

intermediate ketone, it is more likely that even in the presence of water the reaction follows 

a slightly different path, with the intramolecular attack of the benzylic alcohol onto the 

electron deficient alkene 210 occurring rapidly leading to 214 (Scheme 60). Then a β-

elimination, followed by rearrangement of the alkene 215 leads to the desired isochromene 

199. The palladium catalyst, regenerated by copper(II) chloride and oxygen can then re-

enter the catalytic cycle. 
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Scheme 60 

 

Confirmation of the desired product 199 was evident in the 1H NMR spectrum with the 

disappearance of the characteristic peak pattern representing the allyl chain which had 

become a familiar feature over the last few compounds. Now, the C4 proton, located on the 

isochromene produced a singlet at 6.05 ppm. The signals for the methyl groups located at 

positions C1 and C3 were quite distinct, each integrating for three protons. The signal at 

2.00 ppm could be assigned to the C3 methyl substituent in light of the fact that it is a 

singlet, and similarly the doublet at 1.70 ppm could be assigned to the C1 methyl group, 

coupling to its adjacent benzylic proton. Once again, since we had a mixture of 

diastereomers, one of the methoxy groups on each of the diastereomers resulted in two 

well resolved singlets at 3.56 ppm and 3.54 ppm. The presence of additional signals was 

even more noticeable in the 13C NMR spectrum. Supplementary proof for the formation of 

the isochromene 199 was received from the IR spectrum as the familiar OH stretching 

band was absent. 

 

2.1.4.4 Hydrogenation as a means to the cis substituted naphthopyran system  

Having successfully synthesised the isochromene 199, the final step to form the pyran ring 

required the reduction of the double bond. We envisaged that by using hydrogen and 

palladium on carbon we could achieve these two goals in one step, as these reaction 
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conditions would also bring about the removal of the benzyl ether protecting group 

(Scheme 61). As mentioned previously, we also anticipated that the existing stereogenic 

carbon C1 would have an influence on the stereochemistry of the reduction, hopefully 

influencing the approach of the reductant, directing it to the less hindered face of the 

molecule thereby forming the cis 1,3 dimethyl substituted pyran ring. 

 

Scheme 61 
 

After some experimentation, we found that the optimum reaction conditions required a 

mixture of solvents (namely 3:1, CH2Cl2: dioxane), carried out at room temperature and 

1 atm of H2 over Pd on carbon for 18 hours. Under these conditions we accomplished both 

the reduction of the alkene as well as the removal of the benzyl protecting group and the 

product 209 was obtained after routine purification as a white solid in quantitative yield. In 

the 1H NMR spectrum, a most pleasing feature was the signal at around 3.8 ppm for H3, 

overlapping with the methoxy peak. Since it has been shown previously that for trans-1,3-

dimethyl aromatic-fused pyrans, the signal for H3 appears between δ 4.0-4.2, while for the 

corresponding cis-compound the signal for H3 appears between δ 3.5-3.9,52, 93 we were 

confident that we had in fact formed the desired cis isomer as the major component. There 

appeared to be a small amount of the opposite isomer, however at this stage it was not 

possible to ascertain the ratio of the isomers due to the overlapping of peaks. The OH peak 

was found as a broad singlet at 8.54 ppm. In the 13C NMR spectrum, the methyl groups at 

C1 and C3 were found at 21.7 ppm and 21.9 ppm respectively. While the stereochemical 

relationship between the methyl groups was cis, the product was nevertheless still a 

mixture of diastereomers, and therefore some of the signals were duplicated. The 13C NMR 

spectrum also contained fewer aromatic signals. 
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2.1.5 Quinone oxidation and completion of the synthesis of cardinalin 3 

With our pyran ring formed and the benzyl protecting group removed, all that remained to 

complete our synthesis was the oxidation of the naphthol and selective O-demethylation of 

the methyl ether at position C9. To achieve this, we envisaged that the oxidation of the 

phenol to the quinone would most appropriately be achieved with the use of a salcomine 

catalyst, N, N′-bis-(salicylidene)ethylenediaminocobalt(II) (Scheme 62). 

 

 

Scheme 62 
 

Salcomine complexes, related to the natural oxygen carrier haemoglobin, are known 

oxygen carriers that bind reversibly to molecular oxygen. The mechanism of oxidation 

proposed by Kothari et al. involves a four step procedure in which the solvent plays a key 

role.94 Dimethylformamide has the ability to function as a ligand, coordinating with the 

cobalt catalyst, thereby solubilising it. In the reaction scheme shown below (Scheme 63), 

the salcomine:oxygen adduct abstracts a hydrogen from a hindered phenol e.g. 217 

(representing 209). The rearranged aryloxy radical 218 then interacts with the hydrogen 

peroxide ligand of the catalyst giving rise to a hydroperoxide intermediate 219, which 

rearranges to the benzoquinone compound 220 (representing 216). 
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Scheme 63 

 

The oxidation of our phenol 209 proceeded in the presence of salcomine and 1 atm of 

oxygen, affording the quinone 216 in a 51% yield as a dark orange powder. This 

transformation was immediately confirmed upon scrutinising the 1H NMR spectrum. As 

the first indication, the broad singlet previously obtained for the naphthol was no longer 

present. The aromatic region, which previously contained signals for two aromatic protons, 

now only signalled the presence of one proton, as we would expect for our desired product 

216. The 13C NMR spectrum provided perhaps the most convincing evidence of the 

quinone formation, with the appearance of new peaks downfield at 183.7 ppm and 

182.7 ppm. The OH band in the IR spectrum was absent and there were distinctive 

carbonyl stretching bands at 1659 cm-1 and 1573 cm-1. 

 

The final transformation remaining in our synthetic route was the selective deprotection of 

the C9 methyl ether group. This was easily achieved with the use of the Lewis acid, boron 

trichloride (Scheme 64). 
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Scheme 64 
 

Based on literature precedence,66 we envisaged that we would be able to selectively cleave 

the methyl of the methoxy group at the C9 position using BCl3. This selectivity is achieved 

due to the coordination of the boron to the adjacent carbonyl oxygen on the quinone 

moiety. Treatment of our quinone 216 with BCl3 resulted in an immediate colour change of 

the solution from yellow to bright red. The reaction was complete in a few minutes, as 

determined by TLC, which revealed a new bright yellow compound at a slightly higher Rf 

value. This increase in the retention factor is somewhat surprising given the change to a 

more polar phenol group on the aromatic system. However this can possibly be explained 

by the likelihood of a significant hydrogen bonding interaction between the naphthol and 

the adjacent quinone carbonyl, reducing the possible hydrogen bonding interactions 

between the phenolic hydrogen and the silica gel. Purification of the crude product and 

subsequent spectroscopic analysis showed conclusively that we has successfully 

synthesised racemic cardinalin 3 29. The 1H and 13C NMR spectra matched that reported in 

the literature for the natural product,20 although the presence of additional peaks once again 

was observed due to the fact that we had a mixture of diastereomers. In the 1H NMR 

spectrum, the signal for the previously mentioned hydrogen bonded phenolic hydrogen 

appeared in the downfield region of 12.3 ppm, with signals for the S atropisomer closer to 

12.35 ppm and the other diastereomer at 12.31 ppm. Similarly, for the aromatic protons 

attached to C6, two signals were found very close to each other at 7.331 ppm and 

7.329 ppm. The diagnostic signals for H3 of the 1,3-cis dimethyl benzopyrans could be 

seen 3.67 ppm and 3.47 ppm while expansion of the NMR spectrum revealed signals for 

1,3-trans dimethyl benzopyrans between 3.96 ppm and 4.04 ppm. However, the ratio of 

this peak relative to that of the cis isomer amounted to less than 5% of the mixture. 

Presumably epimerisation had taken place in the presence of BCl3. The IR spectrum also 

closely resembled that reported in literature, with an OH stretching band at 3450 cm-1 and 

carbonyl stretching bands at 1636 cm-1 and 1603 cm-1. Although the literature reported a 

melting point in the range 213-220 °C, we noticed darkening of the crystals above 145 °C 



Chapter 2: The Synthesis of Cardinalin 3 and Novel Syntheses of Isochromanes 
__________________________________ 

 

69 

and melting only took place between 236 and 241 °C. It is possible that these deviations in 

the melting point characteristics are due to the fact that we have a mixture of 

diastereomers, which would of course not only act as ‘contaminants’ for each other, but 

would of course themselves have different melting points, accounting for the observed 

physical change at 145 °C. 

 

This represents the first synthesis of cardinalin 3, albeit in a racemic manner. Our 

concluding remarks and approaches to the enantiopure compound will be described in 

Section 2.3. 
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2.2 Studies towards Novel Methodology for the Synthesis of 1,3 Substituted 

Isochromanes 

In our pursuit of novel and efficient methods for the synthesis of pyranonaphthoquinones, 

we decided to explore two additional routes. The first of these options involved the use of 

arene tricarbonylchromium chemistry, envisaged to be an interesting method for the 

enantioselective synthesis of 1,3 substituted isochromanes. The second method we 

investigated involved the use of cross metathesis as a means of introducing a suitable 

Michael acceptor for the ring closure to afford the pyran ring containing substituents other 

than a methyl at the C3 position. The results of these two methods will be discussed in the 

following two sections. 

2.2.1 Arene tricarbonylchromium chemistry as a means to a stereoselective 

pyranonaphthoquinone synthesis 

The complexation of the chromium tricarbonyl group, Cr(CO)3 onto an arene ring, 

activates the complexed arene in many ways in order to facilitate transformations that 

would not be possible with the free arene.95 The additional attraction of these arene 

tricarbonylchromium complexes is their relative stability to air and water once they are 

isolated as a solid, promoting their ease of handling. They are also diamagnetic, a feature 

which allows for NMR spectroscopic studies. Decomplexation of the chromium tripod can 

easily be achieved by exposure of the solution of the complex to light and air, or by the 

addition of oxidants such as iodine. 

 

The key properties of arene tricarbonylchromium complexes which are useful in organic 

synthesis are: 

(a) enhancement of the acidity of the benzylic protons  

(b) steric hindrance provided by the Cr(CO)3 group to the approaching reactants 

(c) easier nucleophilic substitution on the arene ring 

(d) enhancement of the acidity of the aromatic protons 

 

The first two properties were used to good effect by Jaouen et al. in new syntheses of 

estrogen hormones ( 

Scheme 65).96 The chromium tripod was complexed onto the suitably protected estradiol 

to form a mixture of diastereomers which could be separated by column chromatography 

facilitating the isolation of pure 221, which was then subjected to a benzylic deprotonation 
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in the presence of a suitable electrophile, producing the exo substituted product 222 

exclusively in a 56% yield. 

 

 
Scheme 65 

 

We believed that we could also capitalise on these same properties of the chromium tripod 

complex to facilitate a stereoselective synthesis of substituted pyranonaphthoquinones. Our 

efforts towards this study are presented in the following section. 

 

2.2.1.1 Chromium complexation onto the chiral alcohol 

As a model system for studying the usefulness of arene chromiumtricarbonyl chemistry in 

the synthesis of 1,3-substituted pyranonaphthoquinones, we made use of the isochromanol 

169 which we could easily synthesise ( 

Figure 18). 

 

 
Figure 18 

 

One of the key features of this model compound which we can use to our advantage is the 

stereochemistry of the existing benzylic alcohol. A chirally pure benzylic alcohol 169 

should provide us with a handle to direct the chromium complexation (Figure 19). This 

stereocontrol is achieved by virtue of the fact that the chromium moiety will initially 

coordinate with the oxygen of this alcohol, directing it to the same face as it complexes to 

the arene.97 Thereafter, enhancement of the acidity of the benzylic protons will allow us to 
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add electrophiles stereospecifically to the exo face of the chromium complexed 

isochromanol 170, since these electrophiles will approach from the opposite face to the 

chromium tricarbonyl for steric reasons. 

 

 
Figure 19 

 

Furthermore, in our model system whilst the C1 position is easily accessible due to the 

enhanced acidity of the benzylic protons, in order to access the C3 position we will require 

a functional group interconversion. Fortunately, the presence of the benzylic OH group 

provides us with just the handle we need as it can be oxidized to the corresponding ketone 

223, thereby rendering the α-protons acidic (at the C3 position). A suitable base can then 

be employed to abstract the protons from both the C1 and the C3 positions in order to 

effect the stereoselective addition of electrophiles to both these positions (Scheme 66), 

once again directed to the opposite face as the chromium complex. 

 

 
Scheme 66 

 

Of course, if we wish to capitalise on the OH group of the isochromanol to direct the 

complexation of the chromium tripod, we need to start with the chiral isochromanol 169, 

and as it turns out, we have already successfully completed this synthesis in previous 

work.70 In this MSc project, we made use of an enzyme mediated chiral resolution 

procedure, which necessitated the synthesis of the racemic acetate 227 (Scheme 67). 
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Scheme 67 
 

Since this work had been discussed before, we will only briefly run through the synthesis 

here. The synthesis of the required racemic acetate 227 was achieved in nine steps starting 

from commercially available 2,5 dihydroxybenzoic acid 224, which was subjected to a 

selective allylation procedure. In this process, the carboxylic acid and the 5-OH were 

selectively allylated in the presence of allyl bromide to produce 225 in a 92% yield. 

However, the phenol at C2 was not allylated as this position is both sterically hindered and 

significantly less reactive due to hydrogen bonding of the phenolic hydrogen to the 

adjacent carbonyl group. Claisen rearrangement of this carefully prepared product under 
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thermal conditions produced 226 in 86% yield. Methylation of the phenolic groups using 

dimethyl sulphate produced 148 in 82% yield. With the hydroquinone protected, the ester 

functionality was reduced to the primary alcohol using lithium aluminium hydride in THF, 

affording 173 in 93% yield. We once again required an allylation to take place, this time 

reacting the benzylic alcohol 173 with allyl bromide and sodium hydride to produce 174 in 

a 91% yield. Both allyl substituents were then subjected to a one-pot, two-step ruthenium 

mediated isomerisation, followed by a ring closing metathesis reaction to form the 

isochromene 172 in an 85% yield over the two steps. The conveniently located alkene on 

172 facilitated a hydroboration-oxidation reaction to produce the isochromanol 169 in 84% 

yield. Finally the alcohol was acetylated with acetic anhydride to produce the desired 

racemic acetate 227 in 70% yield. 

 

The chiral resolution of the racemic acetate 227 was achieved utilising an enzyme 

mediated chiral resolution procedure, employing the commercially available lipase enzyme 

- Novozyme 525. Under the appropriate conditions, this enzyme is capable of 

enantioselectively acetylating or de-acetylating suitable substrates. This served our 

purposes well, as we were able to carry out the selective de-acetylation of one enantiomer 

of a racemic mixture of the acetylated isochromanol 227. Then, with the different 

compounds in hand (i.e. acetylated R-227 and de-acetylated S-169) we were then able to 

separate the enantiomers using conventional column chromatography. This procedure 

turned out to be very effective, affording the S-isochromanol S-169 in an excellent 

enantiomeric excess of 98% as determined by chiral HPLC. Nevertheless, pleased as we 

were with this result, there remained a down side in that because the enzyme reacts 

selectively with one enantiomer, even under ideal conditions we would of course never be 

able to obtain our desired enantiomer in a yield that would be greater than 50%. 

 

In this PhD study we therefore attempted to remedy this problem by improving our 

procedure, using a more complicated dynamic kinetic resolution technique. However, in 

this procedure we opted to utilise the reverse enzymatic reaction for our resolution 

purposes – i.e. acetylation of the isochromanol, which is possible using once again 

Novozyme 525, this time in the presence of a suitable acetylating agent. We now have a 

procedure to acetylate one enantiomer of racemic isochromanol 169 to form the acetate S-

227, while leaving the other enantiomer unreacted as the free alcohol (Scheme 68). The 
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reason for this reversal in tactics is because we also wished to employ the use of another 

catalyst which should racemise the unreacted chiral alcohol, R-169 in situ, thereby 

effectively continuously providing more S-substrate for the enzyme to acetylate. Such a 

racemisation catalyst has indeed been previously employed to racemise alcohols for this 

purpose (though not on this substrate) and is known as Shvo’s catalyst.98-100 This 

interesting method of continuously racemising an unwanted enantiomer in situ is known as 

dynamic kinetic resolution, and in theory, should allow one to obtain 100% conversion of a 

racemic mixture to a single desired enantiomer. 

 

 
Scheme 68 

 

Unfortunately however, when this procedure was attempted on our substrate we found that 

we were still recovering a significant amount of our benzylic alcohol, indicating that the 

racemising catalyst was in fact not working effectively and we were not able to optimise 

the process. It may simply be that the catalyst is ineffective on our substrate. Wishing to 

push forward with the synthesis to investigate the chromium chemistry, we therefore had to 

be satisfied with the less complicated lower yielding, though highly stereoselective, direct 

enzymatic conversion, in other words the kinetic resolution procedure. 

 

Returning to the arene chromiumtricarbonyl chemistry with the chiral isochromanol 169 in 

hand, we were in a good position to attempt the complexation reaction. This attachment of 

the chromium tripod can be achieved by reacting the arene with [Cr(CO)3L3], where L is 

most commonly CO, but can also be other donor ligands like acetonitrile, ammonia and 

pyridine - all of which have an influence over the rate and the reaction temperature of the 

coordination reaction.101 For the formation of our arene tricarbonylchromium tripod 170 

we made use of chromium hexacarbonyl Cr(CO)6 since we had it on hand (Scheme 69). 
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Scheme 69 

 

The process of co-ordinating the chromium tripod onto the arene system was somewhat 

lengthy and we found that we needed to boil the arene and chromium hexacarbonyl in a 

mixture of n-dibutyl ether, THF and heptane for 72 hours at reflux to react most of the 

starting material. The choice of solvents is crucial when using the Cr(CO)6 ligand, and it 

has been found that this mixture gives optimum results with respect to the 

diastereoselectivity of the reaction, arising from coordination of the approaching chromium 

to the benzylic alcohol (as previously discussed).97 The reaction is also extremely sensitive 

to the presence of oxygen and great care needed to be taken to ensure that the solvent was 

thoroughly degassed and the reaction was carried out under an Ar(g) atmosphere. Although 

the use of the Cr(CO)6 compared to the other chromium reagents (e.g. η6-

naphthaleneCr(CO)3) has the attraction of being cost effective, the down side is that there 

are associated technical problems. One of these is the sublimation of the chromium 

hexacarbonyl on the condenser during the reaction. Fortunately, this can be overcome with 

the use of either a specially designed heated condenser, or the more convenient method 

which involves the use of solvents like THF and dibutyl ether, which at the reflux 

temperature constantly wash down the sublimed Cr(CO)6.101 Another important role played 

by the THF in the solvent mixture is as a weak donor ligand. It assists in the dissociation of 

one or more of the CO ligands during complexation and it also prevents the 

oligomerisation of the coordinatively unsaturated Cr(CO)3 species.102 Further degassing of 

the reaction mixture also facilitates the removal of CO gas. 

 

Great care had to be taken in order to exclude oxygen from the reaction mixture as this 

would oxidise the chromium source and prevent the complexation. The reaction was also 

conducted in the absence of light as this could also result in decomplexation of the 

chromium tripod. Further adding to these difficulties in terms of oxygen and light 

sensitivity is that the reaction proceeded slowly and needed 72 hours at reflux temperatures 

(~120 ºC) under an Ar(g) atmosphere. Over this time however, the reaction changed from a 
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colourless solution to bright yellow. A clear sign of an unsuccessful reaction was the 

unwelcomed green colour, which forms as a result of failed co-ordination and oxidation of 

the chromium to Cr2O3 instead, driven by oxygen leaching into the system. On completion 

of our reaction, the mixture was checked by TLC in order to confirm that we had in fact 

converted all of our starting material into the desired product. We were surprised on 

analysis of the TLC plate to discover that most of the starting material had been consumed, 

but there were now two new compounds present! However, on the TLC these compounds 

were both bright yellow in colour, indicating that they were both chromium complexes. 

Although rather close to each other on TLC, these compounds were easily separated by the 

use of flash chromatography (Scheme 70). To our dismay, and against literature 

precedent,97 while we had expected the benzylic hydroxyl of the highly enantiomerically 

enriched isochromanol S-169 to direct the chromium complexation to the same face as 

itself, this had not occurred, and we had in fact formed a mixture of diastereomers! The 

anti- and syn-complexed 170 had formed in a ratio of 2.6:1. 

 

 
Scheme 70 

 

As it turns out, this phenomenon of the oxygen substituent not directing the approaching 

chromium has been observed before. Schmalz et al. discovered this switching of the 

Cr(CO)3 to the opposite face of the arene ring resulting in a decrease of the syn/anti ratio 

while working on a similar system 228 (Scheme 71).103 Based on their studies, this loss of 

selectivity was found to become more pronounced as the number of methoxy substituents 

on the arene ring is increased. Consistent with this observation, our substrate 169 which 

has two methoxy substituents on the arene ring also exhibits poor diastereoselectivity 

during the complexation process. 
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Scheme 71 

 

Nevertheless, the spectroscopic evidence unambiguously confirmed that we had indeed 

synthesised the chromium complexes, albeit without any selectivity thereby forming the 

compounds syn- and anti-170. Since the only change on our molecule 169 was the 

complexation of the Cr(CO)3 moiety, we first turned our attention to the 13C NMR 

spectrum, looking for evidence of the C≡O signals. Indeed we were pleased to discover 

this desired key feature in the spectrum, a signal in the far downfield region at 232.9 ppm 

typical of the C≡O groups on the chromium tripod. In addition to this, the remaining 

signals for the aromatic carbons were now all shifted upfield relative to the signals for the 

uncomplexed alcohol 169 (by approximately 25 ppm each). Similarly, in the 1H NMR 

spectrum the signals for the aromatic protons were shifted slightly upfield in comparison to 

that of the uncomplexed starting material 169. The signals for the two aromatic protons of 

the uncomplexed 169 for example were found overlapping at 6.72 ppm, whereas in the 

spectrum for the chromium complexed alcohol 170, the signals were found as doublets at 

5.16 ppm and 4.99 ppm. This observation is in keeping with the fact that the chromium 

tripod acts as an electron sink withdrawing electron density from the aromatic ring. This 

disruption in the usual aromaticity is observed by the slight upfield shift in the position of 

the aromatic protons’ signals. Furthermore, the signals in the 1H NMR spectrum of 170 

were broader than that observed for the uncomplexed alcohol 169 – another characteristic 

feature of chromium complexes. In the IR spectrum a distinctive sharp C≡O stretching 

band at 1841 cm-1 could be attributed to the presence of the CO groups. Unfortunately, 

upon attempting to determine the melting point of 170, we discovered that at 140 ºC the 

bright yellow solid became green then black, indicating decomplexation and 

decomposition. Fortunately, due to the fact that we were able to separate the diastereomers 

using chromatography, we were able to crystallise and obtain suitable crystals of each 

diastereomer. These results showed conclusively that the products of our reaction were 

certainly the chromiumtricarbonyl complexed isochromanols, syn-170 and anti-170 

(Figure 20). 
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Figure 20 

 

2.2.1.2 Oxidation of the complexed benzylic alcohol 

With our diastereomers 170 in hand, the next step of our reaction sequence required the 

oxidation of the alcohol functionality to the ketone. Fortunately, since we were able to 

separate the chromium complexed diastereomers, we would be able to perform this 

reaction on the anti- and syn-170 complexes separately, leading to the separate 

isochromanone enantiomers 223, thereby giving us access to what we hoped would be both 

R,S and S,R-230 (Scheme 72). 

 



Chapter 2: The Synthesis of Cardinalin 3 and Novel Syntheses of Isochromanes 
__________________________________ 

 

80 

 
Scheme 72 

 

We envisaged however that the oxidation of the benzylic alcohol 170 to the ketone 223 

may be problematic since oxidative conditions are also employed as a method to remove 

the chromium tripod. The reagents for this transformation would therefore need to be 

carefully selected in order to achieve this conversion without a concomitant 

decomplexation of the chromium tricarbonyl. Mild oxidants, such as magnesium dioxide 

have been reported to oxidise similar systems in the presence of the chromium tricarbonyl 

group, however the yields reported were disappointing at only 20%.104 Another more 

efficient procedure has been reported by Levine et al.105 which is a modification of a 

Swern oxidation utilising a mixture of acetic anhydride and DMSO. We decided to attempt 

this more favourable option and to this end our complexed alcohol 170 was dissolved in a 

mixture of acetic anhydride and DMSO and allowed to react at ambient temperature 

(Scheme 73). 

 

 
Scheme 73 

 

Since our substrate 170 was similar in structure to the systems investigated by Levine et al. 

we were encouraged by the observed colour change of our reaction mixture from yellow to 

orange, the same as that reported by Levine.105 However on completion of the reaction we 
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were disappointed to discover that we had in fact only formed trace amounts of our desired 

product and possibly another chromium complex which we unable to characterise. Worse 

still, we were subsequently unable to reproduce these disappointing results. Nevertheless 

we were able to obtain enough of the ketone for spectroscopic analysis. The formation of 

the desired ketone was confirmed by the 1H NMR spectrum which no longer contained the 

signal for the alcohol proton at 2.77 ppm. The doublet for the proton attached to position 

C4 at 4.81 ppm was also conspicuously absent. All the remaining signals were accounted 

for in the product. Unfortunately we were unable to obtain a 13C NMR spectrum due to the 

limited amount of material in hand. The IR spectrum however showed a new C=O 

stretching absorption at 1691 cm-1, a feature not present in the alcohol precursor 170 which 

had instead a broad OH stretching band at 3251 cm-1. 

 

The use of acetic anhydride and DMSO as an oxidising agent behaves in much the same 

way as an “activated dimethyl sulfoxide” similar to that employed in the Swern 

oxidation.92 A possible side product of the reaction is an addition of a methyl thiomethoxy 

group to the alcohol to form 234 (Scheme 74).106 This reaction can occur via two 

pathways. In path a, the acyloxysulfonium salt 231 generated from the acetic anhydride 

and DMSO, undergoes a Pummerer rearrangement92 to form the acetoxy methylmethyl 

sulphide 232 and acetic acid. In this pathway the acetate anion is no longer available for 

the formation of the ylide and this then leads to the formation of 234. In path b there is an 

independent competitive rearrangement of the salt 231 forming the intermediate 233 which 

leads to the ether 234.106 

 

 

Scheme 74 
 

Although we were unable to fully characterise the side product of our reaction, due once 

again to insufficient quantities, this could be a possible explanation for the failure of our 

reaction under the conditions employed. 
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Having encountered some difficulties with the modified Swern oxidation we then turned 

our attention to other oxidation procedures. In fact, we tried various methods which were 

reported in the literature and these conditions are listed in Table 2. Unfortunately, most of 

these reaction conditions proved completely unreactive and we simply recovered our 

starting material 170. Worse still, in some instances the decomplexed yet otherwise 

unreacted alcohol 169 was obtained. Finally due to time constraints, we were aggrieved to 

resign ourselves to the fact that we would be unable to pursue this troublesome oxidation 

any further. 

 

Table 2: Reaction conditions of attempted oxidation reactions 
Conditions Result 

MnO2
104 no reaction 

Ag2O, MgSO4
107 no reaction 

KMnO4, MnO2
108 decomplexed alcohol 

PCC, Al2O3
109 decomplexed alcohol 

IBX110 decomplexed alcohol 

 

Nevertheless it has to be said that having overcome the hurdles of the tricky complexation 

of the chromium tripod onto our isochromanol 169, we still believe given more time this 

work has much scope and many as yet unexplored options. These options will be discussed 

in the next chapter in our vision towards future work in this area. 

 

In the meanwhile, not having anticipated these various problems associated with the use of 

arene chromiumtricarbonyl chemistry we had already optimistically begun steps towards 

the synthesis of a suitable chromium complex precursor of our actual target dimeric 

molecule (Scheme 75). Of course, all the chromium work being undertaken on the simpler 

model compounds ultimately was leading to the development of methodology for the 

stereoselective introduction of the C1 and C3 methyl groups, for a stereoselective 

bidirectional synthesis of cardinalin 3. To this end, the precursor we had in mind for 

chromium complexation was the benzoisochromene 236. This compound was obtained by 

the initial allylation of the benzylic alcohol of 206 to form the diene 235 in an unoptimised 

yield of 68%. In order to construct the pyran ring system, 235 was subjected to a one-pot, 

two-step isomerisation and ring closing metathesis reaction to form the benzoisochromene 
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ring system 236 in an unoptimised yield of 51%. At this point, having incurred a roadblock 

with regard to the chromium chemistry on the model system 169, we decided to halt the 

synthesis on the dimeric precursor 236 until such time as we were confident that we could 

in fact use the chemistry of the complexed chromium tripod to our advantage in the 

stereoselective synthesis of the cardinalin 3. 

 

 
Scheme 75 

 

The 1H NMR spectrum of the 235 clearly showed the addition of a new allyl substituent 

with its signals slightly overlapping with those of the existing allyl chain at the C3 

position. The protons of the CH groups on both alkenes were found as two multiplets in the 

range 6.21 ppm to 5.88 ppm. The protons of the CH2 group of one alkene produced a 

multiplet ranging from 5.40 ppm to 5.16 ppm, while the protons of the CH2 group of the 

other alkene produced a multiplet in the region of 5.15 ppm to 4.93 ppm, overlapping with 

the signal for the protons attached to the benzylic group at C2. The protons of the 

methylene group on the allyl chain attached to C3 produced a doublet at 3.79 ppm, whilst 

the methylene group on the O-allyl chain produced a doublet at 4.07 ppm. The signal 

indicating the proton of the benzylic OH was no longer present. The 13C NMR spectrum of 

the molecule 235 similarly indicated three additional signals compared to the spectrum of 

the free alcohol 206 confirming the addition of the allyl substituent. 

 

After converting 235 to 236, the 1H NMR spectrum of the molecule was somewhat 

simplified, a welcome sign of the success of the reaction. Replacing the complicated 

multiplets of the protons of the allyl side chains was a doublet at 6.63 ppm representing the 

alkene proton at the C3 position of the pyran ring coupling to its neighbouring alkene 
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proton at C4, also appearing as a doublet at 6.16 ppm. The signal for the benzylic 

methylene protons at the C1 position of the system was found as a doublet at 5.02 ppm. 

The 13C NMR spectrum correspondingly became slightly simpler, having lost four signals. 

 

At this point we decided to move on to our next study where we would investigate the use 

of cross metathesis to form C3 substituted isochromanes. 

2.2.2 A novel cross metathesis route to access substituted isochromanes 

The valuable discovery by Karl Ziegler that certain transition metal catalysts promote the 

polymerisation of olefins under mild conditions has had a tremendous impact on synthetic 

chemistry.111 It was soon discovered that not only do these catalysts promote addition 

polymerisation of alkenes, but can also induce a mutual alkylidene exchange. These 

transformations, which involve the cleavage and formation of relocated double bonds 

became referred to as “alkene metathesis”. The term “metathesis” is a composite of the two 

Greek words meta (change) and tithemi (place). Some of the most useful metathesis 

reactions are illustrated in Scheme 76. In the case of tethered terminal alkenes, metathesis 

can result in the closing or opening of ring structures (Eqn 1), whereas individual alkenes 

are able to exchange partners forming novel unsaturated compounds (Eqn 2). 

 

 
Scheme 76 

 

The first generation of metathesis catalysts were unattractive for applications in organic 

synthesis as they were poorly compatible with polar functional groups, due to for instance 

their alkylating characteristics. Fortunately, significant progress in organometallic 

chemistry research has changed this situation, with the generation of new highly effective 

catalysts which are not only more tolerant of various functional groups but are also more 

stable. The ruthenium carbene complexes 237 and 238 are among the most popular and 
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versatile catalysts used today, developed by Grubbs and co-workers (Figure 21),112 a feat 

which earned Grubbs, Schrock and Chauvin a chemistry Nobel Prize in 2005. 

 

 
Figure 21 

 

The generally accepted mechanism for the metathesis reaction referred to as the “Chauvin 

mechanism” consists of a sequence of formal [2+2] cycloaddition/cycloreversion reactions 

involving alkenes, metal carbenes and metallocyclobutane intermediates.113 Since the 

individual steps are reversible, it is necessary for the equilibrium mixture of the alkenes to 

be pushed in the forward direction for a productive reaction. This shift in the equilibrium 

toward the products can be achieved in ring closing metathesis as one product is now cut 

into two, driving the reaction forward entropically. Additionally for terminal or short chain 

alkenes one of the products may be volatile for example ethene, which evaporates, further 

promoting the forward reaction (Scheme 77).113 
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Scheme 77 
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In our endeavours towards novel methods for the synthesis of pyranonaphthoquinones, we 

have successfully made use of ring closing metathesis (RCM) for the formation of the 

isochromene nucleus 172 as discussed in Section 1.5. This method could also be applied to 

the dimeric system of 206 shown in Scheme 75. Encouraged by these results we were 

prompted to further investigate the usefulness of this reaction in the synthesis of the 

isochromane skeleton 180 by employing, in this case, a cross metathesis on the scaffold of 

173, thereby providing access to the C3 substituted isochromanes (Scheme 78). 

 

 
Scheme 78 

 

Some well-known examples of C3 substituted pyranonaphthoquinones include kalafungin 

3 and nanaomycin A 12 (Figure 22). Both the fused γ-lactone ring and the carboxylic acid 

side chain of these molecules can be derived from an ethyl ester chain at the C3 position. 

 

 
Figure 22 

 

The required cross metathesis partners for this study would in fact be the protected 

derivative of the previously synthesised benzylic alcohol 173, (containing an appropriate 

protecting group on the OH functionality), and commercially available ethyl acrylate. For 

the protection of the alcohol, we envisaged that a suitable silyl ether would be most 
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appropriate as it would be compatible with future planned reactions and could be easy to 

remove under mild conditions when required (Scheme 79). 

 

 
Scheme 79 

 

To this end, the benzyl alcohol 173 was treated with tert-butyldimethylsilyl chloride in the 

presence of sodium hydride. Interestingly, the reaction would not proceed at room 

temperature, perhaps due to difficulties encountered by the bulky silyl group in 

approaching the sterically crowded benzylic alkoxide, flanked by the methoxy group on 

one side and the allyl chain on the other. Fortunately however, with the increased energy 

provided under reflux conditions, the protected alcohol 239 was obtained in an excellent 

yield of 86% as a clear oil. Verification of the desired product was immediately evident in 

the 1H NMR spectrum. There were now two distinct up field singlets, one at 0.92 ppm and 

the other at 0.09 ppm, integrating for 9 and 6 protons respectively. The signal for the 

proton of the alcohol functionality was no longer present. The 13C NMR spectrum also 

contained 3 new upfield carbon signals. One of these belonged to the three equivalent 

methyl groups of the tertiary butyl group at 26.0 ppm; the other was attributed to the 

quaternary carbon located at 18.5 ppm. Finally the signal at −5.3 ppm could be assigned to 

the equivalent methyl groups attached directly to the silicon. The mass spectrum of the 

molecule was in agreement with the expected mass of 239. 

 

With the required alkene quickly in hand, we were in a position to investigate our cross 

metathesis reaction (Scheme 80). 
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Scheme 80 

 

Although there are several metathesis catalysts available, the catalyst that we employed for 

our reaction was the Grubbs second generation catalyst 238, as it was on hand and we 

knew it was active as it was successfully being employed in other research projects. 

Therefore the alkene 239 and ethyl acrylate, were dissolved in dry, degassed toluene and 

blanketed with Ar(g). The ruthenium catalyst was then added to this oxygen free 

environment. After 18 h, TLC analysis of the reaction mixture revealed that the starting 

material 239 had been completely consumed and a new compound at a lower Rf had 

formed. The reaction mixture, after purification by column chromatography afforded the 

new alkene 240 in a moderate yield of 62%. Although the yield was slightly disappointing, 

we were delighted to discover that this was the only product of the reaction and 

surprisingly none of the homo-coupled product was isolated. 

 

The spectroscopic analysis of the product 240 was in line with our expectations and 

confirmed the successful cross metathesis of the two alkenes. In the 1H NMR spectrum, the 

signals previously observed for the alkene protons were now distinctly different. On the 

α,β-unsaturated system, the signal for the proton on the β-carbon was shifted downfield to 

7.12 ppm, and the signal for the proton on the α-carbon was shifted upfield to 5.66 ppm. 

The most pleasing result of the reaction was that the coupling constant for the alkene 

protons indicated that we had formed the trans isomer exclusively, with a large J value of 

15.6 Hz. The characteristic mid-range and upfield quartet and triplet pattern integrating for 

two and three protons respectively, provided a clear indication that the ethyl ester 

functionality was now present. In the 13C NMR spectrum, there was a new carbonyl peak 

at 166.9 ppm indicative of an ester carbonyl, as well as two new peaks at 60.0 ppm and 

14.2 ppm indicating the new secondary and primary carbons of the ethyl chain 

respectively. The IR spectrum contained the expected carbonyl stretching frequency at 

1719 cm-1. The mass spectrum once again matched the expected value for the parent ion 

(394.21714 amu).  
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Having successfully formed the cross metathesis product 240, all that remained was the 

ring closure by internal Michael addition to afford the pyran ring system 180, which would 

of course bear the useful ester functionality at the C3 position. Firstly however, the 

benzylic alcohol would need to be unmasked by removing the silyl protecting group. In 

fact, we anticipated that by employing tetrabutylammonium fluoride as the deprotection 

reagent, the ring closure would be spontaneous, resulting in concomitant formation of our 

desired molecule 180 (Scheme 81). To this end, the silyl ether 240 was treated with TBAF 

in THF, and using TLC, the reaction was deemed to be complete within an hour, with only 

one new product observed at a much lower Rf. After extraction, purification, and analysis 

by NMR, we were indeed pleased to obtain the deprotected and cyclised isochromane 180 

in 55% yield. 
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Scheme 81 
 

In the 1H NMR spectrum, the first clear indication that the deprotection had indeed 

occurred was the absence of the two distinct singlets belonging to the TBS group in the 

upfield region of the spectrum at 0.88 ppm and 0.06 ppm. Furthermore, the absence of the 

alkene α-proton signal at 5.66 ppm provided the first suggestion that the intermediate 179 

had indeed gone on to cyclise to the isochromane 180. In fact, the only signals present in 

the downfield region of the spectrum were those belonging to the two aromatic protons. 

The C1 benzylic CH2 group, now bearing non-equivalent protons produced doublets at 

4.62 ppm and 4.19 ppm, whereas in the precursor 240, these were observed as a singlet. 

The signal for the C3 proton now appeared as a multiplet in the range 4.11 ppm to 

3.99 ppm, coupling to the methylene groups on either side. The remaining protons of the 

benzylic CH2 group (at C4) also produced separate signals for each proton, being adjacent 

to a stereogenic centre, each producing a doublet of doublets, one at 2.83 ppm and the 

other 2.45 ppm. The signal for the CH2 group alpha to the carbonyl appeared as a two 

double doublets at 2.65 ppm. In the 13C NMR spectrum the most significant change was 

the upfield shift of the two signals previously associated with the alkene carbons, now 
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present at 70.7 ppm and 41.2 ppm. The three upfield signals associated with the TBS 

protecting group were no longer present. 

 

Although the spontaneous ring closure directly afforded the desired isochromane 180 from 

the silyl ether 240, it unfortunately left two questions unanswered. Firstly, the yield was 

moderate overall – was this a problem with the actual deprotection step or the cyclisation 

step. Secondly, the construction of the Michael acceptor 179 actually puts us in a 

wonderful position to investigate possible enantioselective cyclisation procedures – but for 

this we would need to prevent the concomitant cyclisation of the benzylic alcohol onto the 

α,β-unsaturated system. Therefore, we opted for an acidic deprotection of the silylated 

alcohol 239, which we hoped would suppress the concomitant cyclisation, affording 179. 

To this end, the silyl ether 240 was treated with hydrofluoric acid and as before, the 

reaction was complete within an hour. Initially we were disappointed as TLC analysis 

indicated the formation of a product with the same Rf as that observed previously for the 

already formed isochromane 180. However, to our pleasant surprise, once purified and 

characterised, this product was indeed found not to be the same as the isochromane 180. 

Scrutiny of the NMR spectra indicated that we had in fact isolated the benzylic alcohol 179 

in a yield of 72% (Scheme 82). 

 

 
Scheme 82 

 

In the 1H NMR spectrum, while the two signals indicating the tert-butyldimethylsilyl 

protecting group were conspicuously absent, the signals for the alkene protons were 

definitely still present at 7.07 ppm and 5.59 ppm! The benzylic CH2OTBS signal that was 

previously observed as a singlet at 4.72 ppm was now a doublet at 4.39 ppm. A new singlet 

at 5.84 ppm attested to the presence of the proton of the benzyl alcohol. The 13C NMR 

spectrum of 179 was very similar to its precursor 240 save for the conspicuously absent 

signals associated with the TBS group. This product, unlike its precursors or 180, was a 

white solid with a melting point of 100-103 ºC. 
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Having had this much success using the cross metathesis methodology to synthesise the 

isochromane 180, we now wished to extend it further by synthesising the C1 methyl 

substituted isochromane 241. We envisaged that by starting with the precursor 243, we 

could similarly arrive at 241, probably as a mixture of cis and trans diastereomers (Scheme 

83). 

 

 
Scheme 83 

 

Since the precursor 243, contains the additional methyl group, we needed to consider how 

this could be most effectively introduced. We envisaged that this could in fact be achieved 

using a very similar route, with just two additional steps. In this approach, the benzylic 

alcohol 173 could first be oxidised to the aldehyde 244 and then, introduction of the 

required methyl by way of a Grignard reaction would also simultaneously reform the 

required alcohol 245 (Scheme 84). 

 

 
Scheme 84 

 

Having had success with the oxidation of the benzylic alcohol in our cardinalin synthesis 

using pyridinium chlorochromate, we employed the same procedure in this case for the 

synthesis of the aldehyde 244. To this end, the oxidant was adsorbed onto neutral alumina 

and added to a solution of the alcohol 173 in dry dichloromethane. Reliably, on completion 

of the reaction the aldehyde 244 was obtained in an excellent yield of 96%. Confirmation 

for the success of the reaction was immediately evident from the characteristic singlet at 

10.57 ppm in the 1H NMR spectrum, indicative of the aldehyde proton. As anticipated 

there were no longer signals present for the benzylic CH2 protons or the OH proton. In the 
13C NMR spectrum a downfield signal at 192.4 ppm further attested to the newly 
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introduced carbonyl functionality. The IR spectrum showed a strong C=O absorption band 

at 1683 cm-1 and no OH stretch was observed. The mass spectral analysis of the molecule 

244 showed a molecular ion at 206.09311 amu which matched the molecular formula of 

our molecule (C12H14O3). 

 

We now prepared ourselves for the Grignard reaction. To this end, methyl magnesium 

iodide was first generated from magnesium metal and methyl iodide in dry diethyl ether 

and then reacted immediately with the aldehyde 244 dry THF. The reaction was monitored 

by TLC and once the aldehyde had been completely consumed the excess of the Grignard 

reagent was quenched by the slow addition of water. After chromatography, this 

straightforward procedure delivered our racemic secondary alcohol 245 in an excellent 

yield of 98%. On scrutinising the 1H NMR spectrum, the absence of the downfield 

aldehyde signal was the first good sign. Instead, a new benzylic proton signal was observed 

between 5.09 ppm and 4.90 ppm, overlapping with the signals for the CH2 alkene protons. 

There was also a new signal for the benzylic alcohol proton at 4.03 ppm. It is interesting to 

note that instead of the typical broad singlet we were accustomed to, this signal appeared 

as a doublet, coupling to its benzylic proton neighbour. A new upfield doublet at 1.52 ppm 

integrating for 3 protons confirmed the presence of the newly introduced methyl group. In 

the 13C NMR spectrum, the previously observed signal for the aldehyde carbon in the 

downfield region was conspicuously absent. Instead, this carbon was now indicated by a 

new somewhat upfield signal at 67.3 ppm. There was also a new signal at 23.7 ppm, 

indicating the methyl group. In the IR spectrum, a broad band at 3547 cm-1 unambiguously 

confirmed the presence of the hydroxyl group. 

 

Having finally synthesised the desired precursor 245, we could now continue in a similar 

fashion to that employed for the benzyl alcohol 173. To achieve this, we would thus need 

to once again protect the free alcohol 245 as its silyl ether (Scheme 85). Treatment of the 

alcohol 245 with tert-butyldimethylsilyl chloride and sodium hydride smoothly furnished 

the silylated secondary alcohol 243 as a clear oil in 93% yield.  
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Scheme 85 

 

The first sign of a successful silylation was the large change in the Rf of the product, 

indicating a decrease in polarity. More definitive proof was obtained from the 1H NMR 

spectrum of compound 243. At 0.85 ppm there was a distinct singlet integrating for 9 

protons, belonging to the tertiary butyl peak. Interestingly, the two methyl groups attached 

to the silicon atom were non-equivalent and produced separate singlets at 0.01 ppm and 

−0.13 ppm, most likely brought about by their close proximity to the chiral benzylic 

carbon. In the 13C NMR spectrum we observed a similar phenomenon, as the methyl 

carbons attached to the silicon produced separate signals at −4.9 ppm and −5.1 ppm. The 

signal at 25.9 ppm could be assigned to the three equivalent methyl groups of the tertiary 

butyl group and that at 18.2 ppm to the quaternary carbon. The broad OH stretching band 

of the starting material was no longer present in the IR spectrum of the product 243. 

 

We were now once again in a position to try a cross metathesis reaction (Scheme 86). To 

this end, the new alkene 243 and ethyl acrylate were dissolved in toluene and reacted with 

the Grubbs II catalyst. 

 

 
Scheme 86 

 

Pleasingly, the reaction proceeded smoothly and we obtained the α,β-unsaturated ester 242 

as the sole product in a yield of 83%. The 1H NMR spectrum of 242 contained distinctive 

peaks clearly indicating this transformation. At 7.13 ppm the presence of a doublet of 

triplets was indicative of the β-alkene proton coupling to its neighbouring α-alkene proton 

as well as the benzylic CH2. The signal for the other alkene proton at the α-position was 
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overlapping with the benzylic CH proton signal in the range 5.69 ppm to 5.59 ppm. The 

signal for the CH2 group of the ethyl ester was found overlapping with one of the protons 

of the benzylic CH2 group, in the range 4.21 ppm to 4.09 ppm. Its neighbour, the CH3 

group of the ethyl side chain produced a triplet at 1.25 ppm. Once again a coupling 

constant of 15.7 Hz for the alkene protons indicated that we had formed the trans isomer 

exclusively and there was no sign of the cis isomer in the 1H NMR spectrum. The 13C 

NMR spectrum contained a new carbonyl signal at 167.1 ppm indicative of the newly 

introduced ester functionality. New signals for the ethyl group of the ester were found at 

60.0 ppm and 14.3 ppm for the CH2 and CH3 components respectively. In the IR spectrum 

a sharp C=O stretching band at 1715 cm-1 was observed. 

 

All that remained was the deprotection of the alcohol to effect the ring closure in order to 

obtain the isochromane nucleus 241, with a methyl substituent at the C1 position. To this 

end the newly formed alkene 242 was reacted with tetrabutyl ammonium fluoride in THF 

(Scheme 87). 

 

 
Scheme 87 

 

Once again we were pleased to discover that under these conditions, the molecule 

deprotected and underwent a spontaneous Michael addition to afford the 1,3-substituted 

isochromane 241. In the 1H NMR spectrum, the presence of the additional methyl 

substituent complicated matters as we now had a mixture of diastereomers. For some 

signals this was clearly evident as for instance, there were two distinct quartets for the C1 

benzylic proton of each diastereomer. Similarly, the protons at C3 appeared as doublet of 

triplets at 4.39 ppm and 3.49 ppm, each corresponding to the different diastereomers. The 

cluster of signals located in the 2.29 ppm to 2.92 ppm range, although complicated by the 

mixture of isomers were characteristic of the neighbouring CH2 groups alpha to their 

respective carbonyls and the CH2 groups at the C4 position. There were no longer signals 

present for the silyl protecting group. The 13C NMR spectrum similarly, showed additional 

signals in line with the nature of the product mixture. The upfield carbons of the silyl ether 
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group were absent. The downfield region of the spectrum only contained signals for the 

aromatic protons as there were no longer any signals representing alkene carbons. The 

mass spectral analysis was in keeping with expectations, matching the calculated value for 

the parent ion of 241. 

 

For the same reasons as described previously, the deprotection of the silyl ether 242 was 

also attempted under acidic conditions using hydrofluoric acid (Scheme 88). 

 

 
Scheme 88 

 

To this end, the silyl ether 242 was treated with an excess of HF, thereby forming the 

alcohol 246 which was isolated as a white solid in 86% yield. Spectroscopic evidence for 

the formation of the product was obtained from the 1H NMR spectrum which although 

very similar to its starting precursor, lacked the highly shielded signals corresponding to 

the tert-butyldimethylsilyl ether group. The alkene protons were still present at 7.08 ppm 

and between 6.87 ppm and 6.66 ppm, overlapping with the aromatic protons. There was a 

new signal at 5.63 ppm representing the proton of the OH functionality. As observed for 

the primary alcohol 179, the signal for the alcohol proton of 246 was split into a doublet, 

coupling to its neighbouring benzylic proton. The 13C NMR spectrum was in line with our 

expectations, displaying similar features to that present in the starting material 242, except 

of course for the absence of the highly deshielded signals representing the carbons attached 

to the silyl ether group. The most notable change in the IR spectrum of the molecule 246 

was a broad band at 3256 cm-1, indicative of the now free OH group. 

 

2.3 Concluding Remarks Pertaining to the Synthesis of Cardinalin 3 

Using a bidirectional approach, we have successfully synthesised cardinalin 3 29 in 15 

steps starting from commercially available 1,3-dimethoxy benzene 168 in an overall yield 

of 2.2% (Scheme 89). 
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In this synthesis, although we had formed the naturally occurring cis isomer as the major 

product, the synthesis was nevertheless racemic and not diastereoselective producing 

various matched and mismatched combinations of R and S configurations in the two halves 

of the molecule. As a vision for the future we would therefore be interested in the 

stereoselective synthesis of this naturally occurring molecule. To this end we put in motion 

an investigation pertaining to the feasibility of using arene chromium tricarbonyl chemistry 

on the model isochromanol nucleus 169. Unfortunately, this route posed some severe and 

unexpected obstacles. Right up front, we ran into difficulties with the complexation of the 

chromium tripod in that we expected a facio-selective complexation, directed by the 

presence of a carefully created chiral benzyl alcohol functionality. Unfortunately, this 

reaction produced an almost equal ratio of syn- and anti-diastereomers 170, as no facio-

selectivity was observed and we suspect that the presence of the methoxy groups of the 

aromatic ring were responsible for this discouraging result, as this has indeed been 

observed before (Scheme 90).103 
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Scheme 90 

 

Nevertheless, we were fortunate in that the syn- and anti-diastereomers 170 were 

separable, allowing us push ahead with our synthesis. In fact, this unexpected result may 

even turn out to be serendipitous in the future, providing access to more than one 

enantiomerically synthesised product. Moving forward, we once again stumbled into 

trouble when our efforts to oxidise the benzylic alcohol 170 to the corresponding ketone 

223 were thwarted. In fact, this stopped further progress in the synthesis as without the 

carbonyl functionality, we were unable to generate the required enolate to facilitate the 

addition of the methyl groups to the isochromanone nucleus 223 (see Scheme 72). 

However with the complexed alcohol 170 in hand it is still possible that the stereoselective 

addition to the C1 position can take place. This would require a suitable protection of the 

alcohol functionality to form 247 and thereby produce 248 (Scheme 91). 

 

 
Scheme 91 

 

Another viable option would be to attempt the complexation directly onto the ketone 249 

(Scheme 92). Although this would no doubt produce an inseparable mixture of the 

enantiomers 223, the subsequent addition of electrophiles should generate the enantiomers 

171, which on removal of the chromium tripod should produce separable diastereomers. 
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Scheme 92 

 

As we mentioned, whilst working on the model chromium complex system we had already 

begun the synthesis of a suitable chromium-complex precursor for the stereoselective 

synthesis of cardinalin 3. Once the chromium chemistry on the simpler system 169 is 

achieved it would then be necessary to further modify the dimeric system of 236 forming 

250 in order attempt similar methodology (Scheme 93). 

 

 
Scheme 93 

 

In order to effect the complexation of the chromium onto this dimer 250 we would need to 

consider the usefulness of introducing the alcohol functionality at the C4 position. In the 

model study using 169, the equivalent alcohol functionality did not in fact direct the 

incoming chromium group, resulting in poor diastereoselectivity of the resultant chromium 

complex, and we attributed this unusual phenomenon to the presence of the methoxy 

groups – as had been reported in the literature. Now, the actual precursor 250 also has two 

methoxy groups as well as an additional oxygen at the C5 position. Given what we now 

know about the selectivity problems in the presence of these additional groups, perhaps 

introducing the C1 and C3 methyl groups stereoselectively by way of chromium chemistry 

is indeed not a feasible option. Furthermore, for the actual compound 250, there is the 

additional complication of two possible aromatic rings to which the chromium tripod could 

complex. 

 

A far more productive model study was our investigation into the use of cross metathesis 

as a means to access substituted pyranonaphthoquinones (Scheme 94). 
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Scheme 94 

 

These reactions pave the way for a variety of C1 and C3 substituted variants of the 

isochromane depending on the choice of the starting alkene partners. 

 

Interesting to note as well is the fact that the deprotection step was also conducted using 

hydrofluoric acid which prevented the concomitant Michael addition. We were thus able to 

isolate the alcohols 179 and 246 in yields of 79% and 86% respectively. This bodes well 

for future research as it provides room for stereoselective intramolecular Michael addition 

reactions, mediated perhaps with chiral Lewis acid reagents (Scheme 95). 

 

 
Scheme 95 

 

Looking even further to the future, the usefulness of this metathesis approach is that we 

now have access to isochromanes containing a fused lactone ring 252, which are found in 

many of the naturally occurring pyranonaphthoquinone examples that were previously 

discussed in the introductory section of this thesis. Of course, to achieve this, we would 
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need to also perform an oxidation at the benzylic position to form 251, which would then 

lactonise to 252 (Scheme 96). 

 

 
Scheme 96 

 

This completes the pyranonaphthoquinone section of this PhD thesis. The next section will 

concentrate on our efforts towards the synthesis of dihydroindoles. 
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Chapter 3: An Introduction to Indolines 

3.1 The Indoline Subunit 

In 2007 the Wits organic group successfully completed the stereoselective synthesis of the 

2-isopropenyl-2,3-dihydrobenzofuran nucleus 255 (Scheme 97).114 The key step for the 

synthesis of this compound was a palladium mediated cyclisation reaction of the carbonate 

253 in the presence of the commercially available chiral Trost ligand 254, thereby 

producing the benzofuran 255 in 98% yield and 93% enantiomeric excess. 

 

 
Scheme 97 

 

In light of this successful work we decided to extend the scope of this methodology by 

exploring the use of the same palladium catalysed reaction for the synthesis of the nitrogen 

variant of this compound, namely the dihydroindole skeleton 256, otherwise known as an 

indoline (Figure 23). Indeed, although this compound has been synthesised previously,115 it 

has never been accomplished enantioselectively. 

 

 
Figure 23  
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The indole ring system is the most ubiquitous heterocycle in nature.116 Indole and its 

saturated relative, the indoline moiety such as 256, are embedded in a wide range of 

natural products as well as designed synthetic analogues with varying biological activities. 

Some selected examples are shown below. 

 

Strychnine 257 (Figure 24) was one of the first alkaloids to be isolated in its pure state in 

1818 by Pelletier and Caventou. Perhaps this compound is most infamous as a poison, as it 

acts as an antagonist at the inhibitory glycine receptor in the spinal cord and the brain, 

causing muscular convulsions and asphyxia which eventually leads to death.117 Strangely, 

strychnine was also among the most valuable and widely prescribed drugs where it was 

used for many applications, not the least of which was as a central nervous system 

stimulant.118 It was first synthesised by Woodward in 1954, an outstanding achievement at 

that time given the complexity of this molecule.119 

 

 
Figure 24 

 

The indoline containing compound indapamine 258 shown in Figure 25 is a known diuretic 

agent.120 Diuretics are drugs which elevate urination by blocking the reabsorbtion of Na+ 

and Cl− ions thereby increasing the excretion of water from the body. This class of drugs is 

commonly used to treat hypertension (high blood pressure). However unfortunately, most 

diuretics also tend to increase one’s risk of developing osteoporosis, a disease of the bone 

leading to an increased risk of fractures. Indapamine 258 in comparison to other diuretics, 

was found to reduce urinary Ca2+ ion excretion thereby increasing bone formation and in 

so doing decrease the risk of fractures.120 
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Figure 25 

 

The nodulisporanes 259 and 260 are a novel class of indoline diterpene alkaloids (Figure 

26).121 They display potent insecticidal properties particularly against tick and flea 

infections in cats and dogs, while exhibiting little or no mammalian toxicity. This is 

attributed to their mode of action, which is the modulation of the invertebrate specific 

glutamate gated chloride ion channels.122 

 

 
Figure 26 

 

Both of these acids 259 and 260 contain the 2-isopropenyl indoline subunit. We envisage 

that by employing an asymmetric allylic alkylation reaction, not only will we form the 

indoline moiety, but we will also be able to control the stereochemistry at the C2 position. 

Other variants of this moiety, that is with different substituents on the C2 position, as well 

as a variety of protecting groups on the nitrogen have appeared widely in literature and in 

the next section of this introduction, we will highlight some of the methods used in their 

synthesis. 
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3.2 The Use of Hydroamination as a Route towards Nitrogen Heterocycles 

The direct addition of NH across alkene and alkyne bonds, known as hydroamination 

offers an attractive route for the formation of carbon-nitrogen bonds (Scheme 98). The 

activation of the alkene is normally accomplished using transition metal catalysts, which 

render the olefin more susceptible to attack by the amine nucleophile. This methodology 

has been used to synthesise a variety of important classes of nitrogen containing 

heterocycles.123 

 

 
Scheme 98 

 

3.2.1 Cyclisations involving the use of palladium: the Wacker approach 

In 1978 Hegedus et al. employed palladium chloride for the conversion of o-allyl anilines 

into indoles 264 (Scheme 99).124 The synthesis of the o-allyl aniline 263 was achieved by 

the reaction of the aromatic halide 261 and the π-allyl nickel halide 262 in a radical chain 

process. Although this reaction was found to be sluggish requiring 2 to 4 days to reach 

completion, it was tolerant to a wide variety of functional groups on both the allyl and 

aromatic moieties. 

 

 
Scheme 99: Reagents and conditions: (i) DMF, 50 ºC; (ii) PdCl2(CH3CN)2, Et3N. 

 

The cyclisation reaction was performed under both stoichiometric and catalytic conditions. 

In the stoichiometric reaction (Scheme 100), the o-allyl aniline 263 reacts with 

PdCl2(CH3CN)2 to produce compound 265, in which both the amine and the olefin are 

coordinated in a chelating fashion. With the amino group coordinated, it cannot attack the 

olefin. The addition of triethylamine, which is a better ligand than the weakly basic 

aromatic amine, generates the π-alkene palladium complex 266, facilitating attack of the 
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amine leading to 267. This compound then undergoes loss of HCl and a β-hydride 

elimination of “Pd-H” to produce the indoline 268 which spontaneously rearranges to 264. 

 

 
Scheme 100: Reagents and conditions: (i) PdCl2(CH3CN)2, THF; (ii) NEt3; (iii) −HCl, −”Pd-H”. 

 

This procedure unfortunately does not recycle the Pd(II) reagent, as it is reduced to 

palladium metal and hence it is used stoichiometrically. In order to use this precious metal 

catalytically, a method would have to be found which would re-oxidise the Pd(0) in situ. 

Fortunately, benzoquinone was found to be a suitable oxidising agent for this purpose. 

Moreover, the resulting hydroquinone was easily separated from the indole products.124 

 

O’Connor et al. achieved the synthesis of substituted indoline 256 by reaction of o-iodo 

aniline 269 with isoprene 271 in the presence of a phosphine-Pd(OAc)2 catalyst (Scheme 

101).115 The aryl halide 269 initially undergoes an oxidative addition with the resulting 

Pd(0) species to form 270. 

 

 
Scheme 101: Reagents and conditions: (i) Pd(OAc)2, PPh3, NEt3, 72%. 
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This synthesis was presumed possible because of the proximity of the amino group to the 

π-allylic moiety in the intermediate complex 272. This was confirmed by the reaction of 

aniline 273 with iodo-benzene 274 and isoprene 271, which produced (E)-1-phenyl-3-

methyl-1,3-butadiene 275 and no amine products (Scheme 102). 

 

 
Scheme 102: Reagents and conditions: (i) Pd(OAc)2, PPh3, NEt3. 

 

The N-tosyl 2-isopropenyl indoline 277 was synthesised in a 62% yield from 276 using a 

catalyst system consisting of 5 mole% Pd(OAc)2 in an oxygen atmosphere using DMSO as 

a solvent (Scheme 103).125 Under these conditions there is no need for a re-oxidant as 

oxygen itself will reoxidise the Pd(0) to Pd(II). 

 

 
Scheme 103: Reagents and conditions: (i) Pd(OAc)2, DMSO, O2, 62%. 

 

The formation of the tosylated indoline 277 has also been achieved in 56% yield by Stahl 

and co-workers. In their reaction they made use of a Pd(II) complex bearing an N-

heterocyclic carbene ligand 278 (Scheme 104).126 

 

 
Scheme 104: Reagents and conditions: (i) toluene, 1 atm O2, NaOAc, 56%. 
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One of the steps in these “Wacker-type” palladium catalysed cyclisation reactions involves 

the elimination of the palladium complex through a β-hydride elimination, as shown in 

Scheme 100. In order to avoid this step, Michael et al. made use of a tridentate ligand 280, 

which blocks open coordination sites on the Pd catalyst (Scheme 105).127 The 

hydroamination of 279 thus produces the compound 281 instead of the usual 282. The 

reaction tolerates a variety of substituents on the nitrogen. 

 

 
Scheme 105: Reagents and conditions: (i) 5 mol% of cat 280, 10 mol% of AgBF4, 10 mol% of 

Cu(OTf)2, MgSO4, 32%. 

 

The first enantioselective cyclisation using Pd(II) catalysis was reported by Yang and co-

workers in 2006 (Scheme 106). A tandem cyclisation on 284 produced the product (+)-285 

in a good enantiomeric excess of 86% and a yield of 76% using (−)-sparteine as a chiral 

ligand. A variety of other structurally diverse indolines were also obtained.128 

 

 
Scheme 106: Reagents and conditions: (i) 5 mol% Pd(TFA)2, 20 mol% (−)-sparteine, 2 equiv. 

DIPEA, 3 Å MS, toluene, 1 atm O2, 80 °C, 78%, 86% ee. 

 

3.2.2 Cyclisation using phenylselanyl chloride 

One year after the Hegedus group reported the use of palladium chemistry for the 

formation of nitrogen heterocycles, Clive et al. demonstrated a similar ring closure reaction 
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using phenylselanyl chloride in the presence of silica gel.129 Phenylselanyl chloride is 

known to effect ring closure to give products carrying the phenylseleno group and it has 

been used in the formation of functionalised benzopyrans and benzofurans in good yield 

under mild conditions.130 Clive and co-workers in pursuit of nitrogen analogues for the 

synthesis of useful alkaloids initially applied this methodology to o-allyl aniline, but found 

it did not produce a clean reaction. They discovered that in the case of simple anilines, the 

presence of the free amine results in direct attack on the nitrogen or alternatively the 

aniline undergoes an electrophilic para substitution of the aromatic ring when reacted with 

aryl selanyl halides. When however, the amine was protected as the carbamate such as 286 

it successfully underwent the desired transformation to produce the functionalised indoline 

287 (Scheme 107). 

 

 
Scheme 107: Reagents and conditions: (i) PhSeCl, SiO2, CH2Cl2, −78 ºC, 84%. 

 

The reactions were found to be high yielding, and to complement the previously reported 

palladium assisted cyclisation reaction as these products were produced at a different 

oxidation level (dihydroindoles vs. indoles). 

 

Cooper et al. also made use of this electrophilically-initiated cyclisation reaction for the 

ring closure of the prenyl alanine derivative 288 (Scheme 108).131 Interestingly, when 

phenylselanyl chloride was used, the tetrahydroquinoline 289 was also formed in equal 

ratio to the indoline 290 and proved difficult to separate from the desired product. When 

changing the selanyl reagent to the bromide derivative, the indoline 290 was formed 

exclusively. It could then be converted into 291 via the selenoxide. 
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Scheme 108: Reagents and conditions: (i) PhSeCl, K2CO3, SiO2, CH2Cl2, −78 ºC, 91%; (ii) 

PhSeBr, K2CO3, SiO2, CHCl3, −78 ºC; (ii) H2O2, CH2Cl2, 4 h, rt. 

 

A library of indole and indoline templates were synthesised by Nicolaou and co workers by 

making use of a solid phase organic synthesis approach (Scheme 109).132 Using a 

polystyrene based selanyl bromide resin, the group were able to synthesise a range of resin 

bound indoline scaffolds (293 and 297). Removal of the selenium under oxidative 

conditions produced the corresponding isopropenyl compounds 294, or under reductive 

conditions produced the 2-methyl indolines 298. 

 

 

Scheme 109: Reagents and conditions: (i) SeBr resin, CH2Cl2, SnCl4, −20 ºC, NEt3; (ii) H2O2, 

THF, 1 h; (iii) COCl2, CH2Cl2, 0 ºC, 1 h; RNH2, NEt3, CH2Cl2, 25 ºC, 12 h, (iv) n-Bu3SnH, AIBN, 

toluene, 90 ºC, 2 h. 
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3.2.3 A metal free approach to cyclisation reactions 

The hypervalent iodine reagent phenyliodine(III)bistrifluoroacetate (PIFA) was used to 

form the hydroxylated indoline 304 from an o-allylated aniline 299 (Scheme 110).133 The 

transformation can be rationalised by the formation of the N-acylnitrenium ion 301, which 

is generated by the action of PIFA on the allylated aniline 299 through the formation of 

300. The ion 301 is then trapped intramolecularly by the olefin moiety through a 5-exo-trig 

cyclisation. The primary carbocation species, stabilised as the aziridinium ion 302 is 

subsequently opened by the nucleophilic attack of a free trifluoroacetate group from the 

iodine reagent. The resulting ester 303 is not isolated but directly hydrolysed during the 

basic workup of the reaction to afford the final indoline derivative 304. 
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R  
Scheme 110: Reagents and conditions: (i) PIFA, trifluoroethanol, rt, 3 h, 304a: 71%, 304b: 41%. 

 

As mentioned at the beginning of this chapter, for our purpose, that is the enantioselective 

cyclisation to afford the indoline moiety 256, we planned on using a similar approach to 

that employed for the successful stereoselective synthesis of benzofuran moieties. This 

approach known as asymmetric allylic alkylation will be further elaborated on in the 

following section. 
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3.3 Asymmetric Allylic Alkylation 

Seeing the advantages of the activation of the α-position of carbonyl groups to form new 

carbon-carbon bonds, Trost et al. believed that the olefin functional group could be used to 

the same end by taking advantage of its α (allylic) position.134 Asymmetric allylic 

alkylation substitution reactions were developed as a direct method to add nucleophiles to 

alkenes containing a suitable leaving group. The process involves activation of the allylic 

position by the complexation of palladium onto the olefin forming an alkenylpalladium 

complex 305. The subsequent ionisation of a leaving group forms 306. Decomplexation of 

the palladium then leads to the production of 307 (Scheme 111).135 

 

 
Scheme 111 

 

Unlike the previously discussed Wacker type reactions, which make use of Pd(II) as the 

source of the catalyst, these allylic alkylations use Pd(0). Asymmetric allylic alkylations 

(AAA) are unique metal catalysed reactions as they have the ability to transform achiral, 
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prochiral and racemic material to enantiopure products. There are a number of potential 

sources for enantiodiscrimination in transition metal catalysed allylic alkylations. These 

include the complexation of the metal on the olefin and enantiofacial discrimination of the 

π allyl complex as well as the attack of the nucleophile at enantiotopic termini. The only 

step that is not enantiodiscriminating is the decomplexation of the metal complex. Of 

particular interest to us was the enantiotopic complexation of the metal onto the olefin, to 

allow for suitable ionisation of the leaving group and then attack of the nucleophile to the 

resulting π-Pd intermediate. The ligand we would be utilising for our envisaged cyclisation 

was the Trost ligand 254 as it was used successfully in our labs to synthesise chiral 2-

isopropenyl-2,3-dihydrobenzofuran derivatives. The ligand can be spatially represented by 

the chiral scaffold shown in Figure 27. The walls and the flaps of the schematic 

representation are spatially equivalent to the phenyl groups of the triarylphoshine moieties 

of the ligand and using this diagram, Trost et al. were able to rationalise the stereochemical 

outcome of their reactions.136 

 

 
Figure 27 

 

Using this same model and rationale de Koning and co-workers were also able to explain 

the results of their benzofuran cyclisation reaction (Scheme 112). The initial complexation 

of the allylic phenol 253 onto the chiral ligand forms complex 308. This arrangement is 

favoured as the ionisation of the carbamate leaving group is able to occur from under the 

right flap of the ligand. Once this has occurred, the complex 308 is no longer in the most 

favourable steric arrangement with regard to the shape of the ligand. Attack of the 

nucleophilic OH group in this ‘mismatched’ scenario will lead to the formation of the S 

enantiomer of 255. However if the π-allyl Pd complex is allowed to undergo a π-σ-π 

rearrangement to the thermodynamically more favoured complex 309, attack of the OH 

group at this point leads to the formation of ‘matched’ R enantiomer 255. It is possible for 

this rearrangement to occur if the attack by the phenol does not occur too quickly. This 
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slowing down of the reaction is facilitated by the addition of acetic acid, which decreases 

the nucleophilicity of the OH group,136 thus allowing the required time for the 

rearrangement of 308 to 309. In line with this underlying principle, the use of the R,R Trost 

ligand in the cyclisation of 253 produced (R)-255 in 93% enantiomeric access.114 
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Scheme 112 

 

A key feature for the successful stereochemical outcome of the reaction is obviously the 

use of the single geometric isomer of the alkene 253 which will have an impact on the 

formation of the π-allyl palladium complex. As shown in the above scheme, complexation 

of the E isomer (E)-253 results in the ‘matched’ complex 309 which leads to the formation 

of (R)-255. If however, the opposite isomer (Z)-253 was used instead, a different ‘matched’ 

complex 310 would be formed (Scheme 113). In this case the initial complex 310 would be 

the most favourable for the ionisation of the carbamate leaving group and due to the shape 

of the isomer it would not require a rearrangement to facilitate the ensuing reaction. The 

result of this arrangement should result in the formation of the opposite enantiomer (S)-

255. Thus a mixture of E and Z isomers will lead to the formation of different ‘matched’ 

complexes 309 and 310, which will in turn result in the opposite enantiomers forming, 

thereby diminishing the enantioselectivity of the reaction. 
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Scheme 113 

 

3.4 Aims of this Project 

Our aim for this PhD was to undertake the synthesis of 2-isopropenyl-indoline 256 in a 

stereoselective manner, utilising the asymmetric allylic alkylation reaction. To accomplish 

this, a suitable allylic precursor such as 311, would be required for the cyclisation reaction 

(Scheme 114). 

 

 
Scheme 114 

 

In order to replicate the enantioselectivity demonstrated in the benzofuran work, a key 

requirement of the precursor 311 would be the exclusivity of the double bond arrangement 

as explained above. The carbonate was chosen as a suitable leaving group, as opposed to 

an acetate leaving group which showed diminished yields in the benzofuran work.114  

 

In our envisaged plan for the synthesis of the allylic precursor, the olefin 311 could be 

disconnected to the ester 312 through a reduction to a primary alcohol and reaction with 

methyl chloroformate (Scheme 115). The ester 312 can in turn be disconnected to the 

aldehyde 313 through a Horner-Wadsworth-Emmons reaction, which should theoretically 

furnish exclusively the E-isomer, a requirement essential for the enantioselectivity of the 

final step. The aldehyde 313 can be obtained from the oxidation of the suitably protected 2-
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allyl aniline 314 and this molecule can be accessed in a variety of ways as seen in the 

earlier section of this introduction. Our choice would be the formation of N-allylaniline 

315 which is commercially available and also inexpensively synthesised by reaction of 

aniline 273 with allyl bromide. 
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Scheme 115 
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Chapter 4: Towards the Stereoselective Synthesis of Indolines  

4.1 Attempted Synthesis of 2-isopropenylindoline 

With a feasible synthetic strategy in mind, we set about the enantioselective syntheses of 

(S)- and (R)-2-isopropenyl indoline 256. The first step in this endeavour was to obtain 

sufficient quantities of the required precursor, N-allyl aniline 315. This was achieved 

through a routine allylation of readily available aniline 273 (Scheme 116), which was 

simply dissolved in dimethylformamide and reacted with allyl bromide. As expected, in 

order to minimise the formation of the di-allylated compound 316, two equivalents of 

aniline were employed in this reaction.137 Our desired product 315 was obtained in a 

satisfactory yield of 58% (based on the amount of allyl bromide) with 19% of di-allylated 

derivative 316 also being obtained . The desired product 315 was easily separated from the 

di-allylated aniline 316 using column chromatography. 

 

 
Scheme 116 

 

Confirmation for the successful allylation was obtained from the 1H NMR spectra of the 

eluted oils. The singly allylated aniline 315 contained three distinct environments of 

aromatic protons in the range of 6.60 ppm to 7.16 ppm. Firstly a triplet at 7.16 ppm 

integrating for two hydrogens indicated the equivalent protons in the meta position of the 

ring. A triplet at 6.69 ppm integrating for one hydrogen could clearly be attributed to the 

aromatic proton in the para position. Finally a doublet at 6.60 ppm integrating for two 

protons signalled the presence of the two equivalent protons in the ortho position of the 

ring. The presence of the allyl chain was of course quite distinct in the 1H NMR spectrum. 

At 5.63 ppm there was a multiplet signalling the CH proton of the double bond. The signal 

for the protons of the alkene CH2 could be found at 5.20 ppm as a doublet of doublets and 

the protons of the methylene CH2 were found at 3.74 ppm as a doublet overlapping with 

the signal arising from the NH proton. In contrast to this, the 1H NMR spectrum for the di-

allylated analogue 316 did not contain a signal for an NH proton. In this spectrum a similar 
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pattern of signals was observed for the allyl side chains given the symmetry of the 

molecule, but of course the integration of the signals accounted for twice as many protons 

in comparison to the mono-allyl compound 315. The aromatic protons’ signals were all 

quite similar to 315 and warrant no further mention. The 13C NMR spectrum of both 

compounds 315 and 316 were quite similar, showing all the expected signals for the 

aromatic and alkene carbons in the downfield region, as well as one signal for the 

methylene carbon high upfield, at 46.5 ppm for the mono-allylated aniline 315 and at 

52.7 ppm for the di-allylated aniline 316. 

 

The next step of the synthesis was to rearrange the allyl chain from the nitrogen to the 

ortho position of the aromatic ring (Scheme 117). 

 

 
Scheme 117 

 

The Claisen rearrangement or [3,3]-sigmatropic shift of vinyl and aryl allyl ethers has been 

extensively studied.138 This reaction was in fact used to good effect in the other projects of 

this PhD.139 The amino-Claisen rearrangement, the nitrogen analogue of the Claisen 

rearrangement on the other hand has received much less attention in synthetic chemistry 

due to several limitations including slow reaction rates, the need for high temperatures 

(200-350 ºC) and the subsequently low yields.124, 137, 140 The approaches to overcoming 

these barriers have focused mainly on charge acceleration of the rearrangement process by 

reaction of the N-allylaniline derivative with electrophilic reagents to generate a quaternary 

intermediate (Scheme 118).140 

 

 
Scheme 118 
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Initially the electrophilic sources used were protic acids, however the sigmatropic shift was 

accompanied by the formation of indole and indoline products, thus reducing the overall 

effectiveness of the reaction.141 A promising alternative to protic acids was the use of 

Lewis acids and to this end zinc chloride and boron trifluoride-diethyl ether were found to 

be effective in facilitating the transformation of the type 317 to 319. Hurd et al. made use 

of zinc chloride in xylene boiled at its reflux temperatuefor the amino-Claisen 

rearrangement of N-allylaniline 315 to produce o-allylaniline 263 in 42% yield.142 

Anderson and Lai demonstrated the use of BF3.OEt2 on various other allylated aromatic 

amines in moderate yields.137 

 

For our synthesis of o-allylaniline 263, we therefore attempted the amino-Claisen 

rearrangement experimenting with the use of both of these reagents. To this end, N-

allylaniline 315 was dissolved in xylene along with each of the aforementioned Lewis 

acids. The reaction was heated at 140 ºC for 8 hours and after routine column 

chromatography of the crude product we isolated our rearranged 2-allylaniline 263 from 

each of the reactions, as confirmed by NMR spectroscopy. Confirmation for the 

rearrangement was obtained from the 1H NMR spectrum which clearly showed the 

presence of the NH2 protons as a broad singlet somewhat further downfield in comparison 

to the precursor, at 3.61 ppm integrating for 2 protons. The 13C NMR spectrum contained 

six non equivalent signals for aromatic carbons due to the loss of symmetry in the 

molecule 263. 

 

Disappointingly however, the reaction utilising ZnCl2 produced the desired product 263 in 

a yield of only 38%, and the yield for the reaction utilising the BF3.OEt2 was even lower. 

In an attempt to increase the reaction yield we switched to AlCl3 and employed the 

conditions of Beholz and Stille.140 We also attempted to use microwave radiation as a heat 

source as well as sealed tube conditions,143,144 but all to no avail. However, a definite trend 

in the literature seemed to imply that the aza-Claisen reaction proceeded in a higher yield 

with an additional alkyl group present on the nitrogen atom. We therefore decided to 

modify our current route and explore this notion, opting for the simplest alkyl derivative - 

an additional methyl group on the nitrogen. 
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4.2 Synthesis of the 2-Allyl-N-methylaniline 

For the synthesis of methyl derivative of the 2-allylaniline we were fortunate in that the 

required N-methyl aniline 320 is commercially available. For the allylation, we modified a 

procedure originally used by Tweedie et al. (Scheme 119).145 To this end, allyl bromide 

and sodium carbonate were added to a 0.5 M solution of N-methylaniline 320 in a mixture 

of ethanol and water and allowed to react for 14 hours. The product 321 was obtained in a 

satisfactory yield of 66%. 

 

 
Scheme 119 

 

Spectroscopic analysis of the oil confirmed the successful addition of the allyl side chain. 

The 1H NMR spectrum was similar to that obtained for the unsubstituted allylated aniline 

315 with respect to the five aromatic protons and the five protons of the allyl substituent. 

However, there was an additional singlet at 2.92 ppm integrating for three protons, arising 

due to the protons on the methyl attached to the nitrogen atom in 321. The 13C NMR 

spectrum accordingly contained a new upfield signal at 37.9 ppm for the carbon of the N-

methyl group, in addition to the expected signals. 

 

We were now in a position to attempt the tricky aza-Claisen on this new substrate 321 

(Scheme 120). Using similar a similar approach to that utilised for the unsubstituted 

derivative 315, the N-allyl-N-methyl aniline 321 was dissolved in xylene and heated to the 

reflux temperature in the presence of aluminium trichloride.140 We were pleased to 

discover that rearrangement took place in a more acceptable yield of 61%. 

 

 
Scheme 120 
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The 1H and 13C NMR spectra of 322 were in line with our expectations and matched that 

reported in the literature.140 In the 1H NMR spectrum there were now only four aromatic 

protons present, their signals appearing in the range of 7.18 ppm to 6.69 ppm. A broad 

signal at 3.72 ppm integrating for one proton confirmed the presence of the NH 

functionality. The protons of the allyl moiety were all accounted for at their expected 

chemical shift values. The signal for the benzylic methylene protons showed an upfield 

shift from 3.90 ppm to 3.28 ppm, which is not unexpected given the fact that this group is 

no longer attached to the more electronegative nitrogen atom. The 13C NMR spectrum of 

322 showed an increase in the number of aromatic carbon signals due to the fact that the 

molecule was no longer symmetrical. The shift of the signal for the methylene carbon from 

55.2 ppm to 30.7 ppm, once again indicated a successful rearrangement. 

 

4.2.1 Protection of the amine and oxidation of the olefin 

At this point of the synthesis we envisaged that it would be necessary to protect the NH 

group of the aniline 322 in order to prevent undesired reactions in the subsequent steps. For 

this purpose we chose the tert-butyl carbamate group (Boc), which would not only be 

compatible with our future planned steps but would also render the amine non-basic by 

converting it to the carbamate. To this end, the 2-allyl-N-methylaniline 322 was dissolved 

in dry THF and reacted with the Boc anhydride and a catalytic amount of 

dimethylaminopyridine (Scheme 121), affording the carbamate 323 as a light yellow oil in 

72% yield after purification. 

 

 
Scheme 121 

 

The formation of compound 323 was immediately evident from analysis of its 1H NMR 

spectrum. At 1.52 ppm and 1.33 ppm there were two new singlets integrating for 3 and 6 

protons respectively indicating presence of the tertiary butyl group on the carbamate. It is 

interesting to note the tert-butyl group produces two singlets, as one would expect the three 

methyl groups to be equivalent. No doubt this is due to restricted rotation about the 
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carbamate group, causing two possible conformations of this group, which places the tert-

butyl group in two different chemical environments; in fact this effectively produces two 

different compounds. Interestingly the signal for the N-methyl substituent is not similarly 

resolved and only produces one singlet at 3.13 ppm, although some distortion in the signal 

shape is observable. Unfortunately, we were not able to run higher temperature 1H NMR 

experiments at this time, which would of course provide enough activation energy to allow 

the two compounds to interconvert freely, leading to a simplified spectrum. The signals for 

the aromatic protons were grouped together as a multiplet around the 7.0 ppm range. The 

well recognised patterns of signals representing the allyl chain were present at their 

respective chemical shift values. A multiplet at 5.98 ppm to 5.95 ppm integrating for one 

hydrogen representing the proton of the alkene CH group, a multiplet at 5.10 ppm to 

5.05 ppm representing the alkene CH2 protons and finally a doublet at 3.32 ppm indicating 

the protons of the methylene group. In fact it should be mentioned that these multiplets 

may indeed have been well resolved signals if we could record the 1H NMR spectrum at a 

higher temperature. In the 13C NMR spectrum the three methyl groups now appeared as 

one signal at 28.2 ppm. The quaternary carbon of the tert butyl group was found at 

79.6 ppm. There was also a new signal at 155.0 ppm, indicating the carbonyl functionality. 

The broadened signals of the 13C NMR spectrum further attested to the presence of the two 

geometric isomers about the carbamate group. The IR spectrum of the compound 323 

showed a C=O stretching frequency at 1696 cm-1. 

With the Boc protecting group in place, we could now carry out the required conversion of 

the alkene 323 to the aldehyde 325. The oxidation of the alkene was carried out using an 

ozonolysis reaction, as we had easy access to an ozone generator as well as previous 

experience with this type of reaction (Scheme 122). 

 

 
Scheme 122 

 

To this end the alkene 323 was treated with ozone whilst maintaining the reaction 

temperature at −78 ºC in order to prevent over oxidation of aromatic ring system. For this 
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same reason, the addition of ozone was carefully controlled by bubbling it into the reaction 

mixture for short periods of time. After each short burst, the residual ozone was quickly 

displaced by bubbling oxygen into the reaction mixture and then the progress of the 

reaction was monitored by TLC analysis. Once all the starting material had reacted, 

triphenylphosphine was added and the solution was warmed up to 0 °C in order to reduce 

the resulting ozonide 324 to the aldehyde 325. On work up and purification of the crude 

reaction mixture, the newly formed aldehyde 325 was obtained as a yellow oil in a 

disappointingly low yield of 30%. 

 

The 1H NMR spectrum of the newly formed aldehyde 325 was greatly simplified in 

comparison to the precursor 323. The first distinctive change was a new downfield singlet 

at 9.96 ppm characteristic of the aldehyde proton. The aromatic proton signals were still 

grouped together as a multiplet in the range 7.33 ppm to 7.26 ppm. Present at 3.63 ppm 

was a singlet indicative of the benzylic CH2 protons. The singlet for the protons of the 

methyl group attached to the nitrogen atom could be found at 3.14 ppm and two singlets 

representing the protons of the tert-butyl functionality in two different environments were 

observed, one at 1.50 ppm and the other at 1.32 ppm. The 13C NMR spectrum contained 

two highly deshielded signals, one at 199.8 ppm and the other at 198.8 ppm, representing 

the carbons of the carbonyl functionalities present in the molecule 325. There was also one 

less signal in the downfield region of the spectrum corresponding to the loss of one of the 

alkene carbons. In addition to the two carbonyl peaks, there were now six other signals 

representing the carbons on the aromatic ring. This compound proved to be rather unstable 

if not stored in a refrigerator and would decompose overnight forming a dark brown oil. 

The mass spectrum of the compound (low resolution) showed a fragment at 131 amu, but 

no signal representing the parent ion. The value could possibly be explained by the loss of 

the Boc group and subsequent attack of the nitrogen onto the aldehyde followed by the loss 

of water to produce 326 (Scheme 123). 
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Scheme 123 

 

Although we were pleased with the success of the reaction, the yield was unsatisfactory for 

a linear synthesis and therefore we considered an alternative procedure for the formation of 

the aldehyde. Using osmium tetroxide, the alkene 323 could be converted into the 

corresponding 1,2-diol 327, and then oxidative cleavage of this diol with sodium periodate 

should afford the corresponding aldehyde 325 (Scheme 124). 

 

 
Scheme 124 

 

To this end, osmium tetroxide was added to a solution of the alkene 323 in a mixture of 

water and THF resulting in an immediate colour change of the solution from clear to black. 

The sodium periodate was then added portion wise. The product obtained in this reaction 

matched that obtained in the ozonolysis reaction with respect to spectroscopic analysis and 

stability. The yield of this reaction was still rather low but slightly improved at 55%. 

 

4.2.2 Exclusive formation of the (E)-alkene 

With our aldehyde 311 in hand we could now begin constructing the required functionality 

that would be necessary to facilitate the Pd-π allyl cyclisation reaction. We envisaged 

introducing this functionality by making use of a Horner-Wadsworth-Emmons reaction, a 

modified version of the Wittig reaction which generally forms E alkenes selectively. The 

reason for this is because the reaction involves the use of stabilised ylides e.g. 328 

(Scheme 125). On attack of an ylide on an aldehyde, the kinetically controlled formation of 

the oxaphosphetane will occur to produce a syn compound 329. The syn compound leads 
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to the formation of a Z alkene 330. If however the ylide is stabilised, the reaction leading to 

the formation of the oxaphosphetane is reversible, and the stereochemical outcome in this 

step is now thermodynamically controlled and it is now possible for the formation of more 

stable anti oxaphosphetane 331, which leads to the formation of the E alkene 332.92 The 

synthesis of the E isomer exclusively is essential for the stereoselective π-allyl Pd 

cyclisation reaction to follow as a mixture of E and Z alkenes would lead to the formation 

of different enantiomers in the presence of a single chiral ligand. 

 

 
Scheme 125 

 

The required diethyl phosphorylpropionate 328 although commercially available, could be 

easily synthesised by boiling triethylphosphite with a two-fold excess of ethyl 2-

bromopropionate in the absence of a solvent for 72 hours (Scheme 126). The large excess 

of the propionate was required in order to ensure that all of the triethylphosphite reacted as 

its boiling point was very similar to that of the desired product, and therefore unreacted 

triethylphosphite caused problems in the purification step. The ethyl 2-bromopropanoate 

on the other hand has a significantly lower boiling point, and an excess of this material 

could be easily separated from the desired phosphorylpropionate 328. 

 

 
Scheme 126 
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For the purposes of the Horner-Wadsworth-Emmons reaction, the carbamate 325 was 

dissolved in dry acetonitrile and cooled to 0 ºC. The phosphorylated enolate was then 

generated in the dropping funnel by adding DBU to a solution of 328 in acetonitrile. 

Furthermore, in this process of generating the anion, care was taken to ensure that the 

phosphonate was in an excess and would therefore react with all the added DBU. Having 

formed the phosphorylated enolate in the dropping funnel, it was then added to the flask 

containing the carbamate 325 very slowly over a period of one hour. This elaborate 

procedure was found to be necessary as in previous work on a very similar compound,114 it 

was found that any residual DBU is able to isomerise the alkene of the desired product 333 

to be in conjugation with the phenyl ring, no doubt initiated by the DBU abstracting a 

benzylic proton on the product 333. Interestingly, the anion itself seemingly is not basic 

enough to do so. The progress of the reaction could be monitored by TLC and once all the 

starting material had reacted, the reaction was quenched with water and the organic 

product extracted and purified, affording the desired α,β-unsaturated compound 333 in 

80% yield (Scheme 127). 

 

 
Scheme 127 

 

In the now vastly different 1H NMR spectrum, an immediately obvious sign of a successful 

reaction was the absence of the signal for the aldehyde proton. In the downfield region a 

triplet at 6.84 ppm integrating for one hydrogen was a new feature, and could be attributed 

to alkene proton of 333 coupling to the neighbouring benzylic CH2 protons. The 

characteristic pattern of a quartet at 4.18 ppm integrating for two protons and triplet at 

1.27 ppm integrating for three protons indicated the presence of the ethyl side chain on the 

ester moiety. A new upfield singlet at 1.93 ppm could be assigned to the allylic CH3 group. 

The accompanying 13C NMR spectrum contained five new signals confirming the addition 

of the ethyl propionate moiety. The downfield region which contained the signals for the 

aromatic carbons as well as the carbonyl carbon, now also displayed signals for the two 
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carbons on the alkene functionality at 154.8 ppm and 139.4 ppm. The upfield region 

contained signals for the carbons of the ethyl side chain at 60.3 ppm and 14.1 ppm 

(methylene and methyl respectively) as well as the allylic methyl at 12.4 ppm. The IR 

spectrum was in line with expectations as was the mass spectral analysis of the product 333 

which showed a parent molecular ion at 333.1935 amu corresponding to the molecular 

formula of C19H27NO4 which required a value of 333.1940 amu. An important feature in 

this reaction was that we required the exclusive construction of the E double bond. In the 
1H NMR spectrum, it was clear that we had indeed formed a majority of one product, but 

we needed to confirm the geometry before continuing. To this end, an NOE spectrum of 

the molecule was obtained. In this spectrum irradiation of the benzylic CH2 at 3.43 ppm 

showed a positive response from the new allylic CH3 group at 1.93 ppm. If we had the Z-

isomer, the allylic CH3 would be too far away from the irradiated benzylic CH2 to produce 

a response, thereby clarifying that the geometry around the double bond was indeed E 

(Figure 28). 

  



Chapter 4: Towards the Stereoselective Synthesis of Indolines 
__________________________________ 

 

127 

 

 

 

 

 

 

Figure 28 
 

However, we did observe some small signals in the 1H NMR spectrum and magnification 

revealed a small triplet at 5.95 ppm. A triplet at this chemical shift could not be possible if 

we had any of the isomerised product contaminating our desired product 333, however, the 

formation of any of the Z-isomer would certainly account for such a signal and therefore 

we attributed this triplet to the alkene proton of a small amount of (Z)-333 contaminating 

our product (Figure 29). Integration of this signal relative to that of the E-isomer indicated 

that our E-alkene product was contaminated with about 5% of the Z-product. This of 

course may erode our enantiomeric excess at the end of the synthesis, but we could not 

eliminate all traces of the Z-isomer and therefore eagerly pushed forward in our synthesis. 

 

Irradiation
of CH2

Response
from CH3
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Figure 29 

 

4.2.3 Preparation of the precursor required for Pd-mediated cyclisation 

At this stage we were set for the attachment of a suitable leaving group on the allyl moiety. 

The best choice for a leaving group, as demonstrated in earlier work was a carbonate 

group.146 In order to achieve this it would be necessary to reduce the ester 333 to the 

primary alcohol 334 (Scheme 128). To this end, the ester 333 was treated with LiAlH4 in 

THF at 0 ºC and following the work up and purification we obtained the desired alcohol 

334 in a 70% yield. 

 

 
Scheme 128 

 

The conversion was clearly evident from the changes observed in the 1H NMR spectrum of 

the product 334. The signal for the alkene proton had shifted upfield from 6.84 ppm to 

5.54 ppm, due to the fact that reduction of the carbonyl no longer resulted in delocalisation 
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of the alkene electrons which previously resulted in deshielding of this proton. 

Furthermore, the quartet and triplet representing the protons of the ethyl side chain were no 

longer present in the spectrum of the product 334. The signal for the protons of the CH2 

group α to the alcohol functionality was a singlet located at 4.03 ppm and the benzylic CH2 

protons produced a doublet at 3.32 ppm. The methyl group attached to the nitrogen atom 

produced a singlet at 3.12 ppm, slightly downfield of the allylic methyl signal, 1.76 ppm 

(overlapping with the OH signal). The aromatic protons as well as the protons from the tert 

-butyl group were unchanged. The accompanying 13C NMR spectrum now only contained 

one signal in the downfield region at 155.2 ppm, representing the carbonyl carbon. There 

were also two less signals present in the upfield region, due to the removal of the ethyl 

group. In the IR spectrum a clear OH stretching band was observed at 3412 cm-1. The mass 

spectral analysis delivered a molecular ion matching the calculated value for the parent ion 

of the molecule (291.18274 amu). 

 

The carbonate functionality could now be easily constructed by treatment of 334 with 

methyl chloroformate and pyridine (Scheme 129). This reaction proceeded uneventfully 

producing the carbonate 335 as a light yellow oil in 88% yield after workup and 

purification. 

 

 
Scheme 129 

 

In the 1H NMR spectrum of the product 335, a new signal at 3.78 ppm integrating for three 

protons attested to the presence of the methyl group of the carbonate. A slight downfield 

shift in the singlet for the methylene α to the oxygen was also observed and otherwise the 

spectrum remained largely unchanged. The 13C NMR spectrum displayed a new downfield 

signal at 142.3 ppm, corresponding to the carbonyl group of the carbonate. Another new 

upfield signal could be found at 54.7 ppm indicating the methyl carbon of the carbonate 

group. The broad band indicating the OH functionality was no longer present in the IR 
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spectrum of the molecule and instead there were now two carbonyl absorption peaks 

present, one at 1747 cm-1 corresponding to the carbonate, and one at 1696 cm-1 

corresponding to the carbamate. 

 

All that remained in preparation for the cyclisation was the removal of the Boc protecting 

group. To this end, the carbonate 335 was exposed to trifluoroacetic acid in the absence of 

any solvent (Scheme 130). On routine workup and purification of the reaction, the amine 

336 was obtained in an 87% yield. 

 

 
Scheme 130 

 

The most distinctive change in the 1H NMR spectrum of the product 336 was of course the 

absence of the two singlets representing the nine protons of the tert-butyl group. The 

signals for the aromatic protons of the molecule were now also more clearly laid out and 

existed as a triplet at 7.17 ppm, a doublet at 7.02 ppm and a multiplet at 6.74 ppm to 

6.59 ppm. This clarification of the signals could be attributed to the fact that the molecule 

was no longer present as a mixture of conformations, previously resulting from restricted 

rotation within the carbamate functionality and subsequently the formation of different 

geometric isomers of the compound. The singlet at 1.27 ppm integrating for one proton 

was assigned to the NH hydrogen. The 13C NMR spectrum of the product was largely 

unchanged compared to the starting material, save for the absence of the signals previously 

attributed to the Boc protecting group. The high resolution mass spectrum corresponded to 

the new molecular formula of the product, C14H19NO3, displaying a parent ion of 

249.13591 amu. 

4.3 The Synthesis of 1-Methyl-2-isopropenyl Indoline 

With our precursor 336 in hand, we were now in a position to investigate the π-allyl Pd 

cyclisation. The reaction was initially carried out in the absence of the chiral ligand to 

ascertain that the cyclisation would in fact occur (Scheme 131). To this end Pd(PPh3)4 was 
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used as the source of Pd(0). Although we had Pd(PPh3)4 on hand we intended to generate it 

in situ using Pd(dba)2, as this would mimic the procedure we had in mind for generating 

the chiral Trost ligand-palladium complex. 

 

NNH

O O

O

Pd(dba)2, PPh3,
CH2Cl2

336 337  
Scheme 131 

 

For the formation of the Pd(PPh3)4 the pre-catalyst Pd(dba)2 was dissolved in CH2Cl2 and 

the resulting deep wine red solution was thoroughly deoxygenated by bubbling Ar(g) into 

it. Once the solution was degassed and blanketed with Ar(g), triphenylphosphine was 

added against a flow of Ar(g), and immediately the colour of the solution began to change 

to yellow as the original dibenzylidene acetone ligand was displaced by the phosphine 

ligand, forming our desired Pd(PPh3)4 catalytic system, which is oxygen sensitive. The use 

of any solvent which may itself co-ordinate to the Pd(0) was specifically avoided. The 

reason for this is that although it would have no detrimental affect while we investigated 

this reaction achirally, when the chiral reaction is performed a coordinating solvent would 

compete with our chiral Trost ligand, producing a mixture of a chiral and non-chiral 

catalytic system, which would erode our enantiomeric excess. A slight excess of the 

phosphine ligand was added to ensure that all the dibenzylidene acetone was indeed 

displaced. The carbonate 336 was then added to the solution and left to react for 12 hours. 

After evaporation of the solvent and purification, we were pleased to discover that the 

cyclisation did indeed occur as expected, producing our racemic 2-isopropenyl indoline 

337 in a moderate 55% yield. 

The 1H NMR spectrum was pleasingly quite different to the starting material. The aromatic 

protons were clearly present as four separate signals. The triplets at 7.08 ppm and 

6.65 ppm represented the protons at the C6 and C7 position of the aromatic ring. The 

doublets at 7.04 ppm and 6.45 ppm accounted for the aromatic protons at positions C8 and 

C5. The protons of the alkene CH2 group were split into two multiplets, one at 5.03 ppm to 

5.01 ppm and the other at 4.95 ppm to 4.93 ppm. The multiplicity can be accounted for by 
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the fact that the alkene protons can couple to each other as well as display long range 

coupling to the ring proton at C2. The signal for the proton at the C2 position of the 

indoline ring could be found as a multiplet at 3.84 ppm to 3.77 ppm. The benzylic CH2 

group being adjacent to a stereogenic carbon, was split into two signals, one doublet of 

doublets at 3.04 ppm and another at 2.84 ppm, resulting from coupling to each other and to 

the proton at the C2 position. As for the remaining signals, a singlet at 2.62 ppm 

integrating for three protons could be assigned to the methyl attached to the nitrogen atom 

and similarly, another singlet at 1.74 ppm could be assigned to the protons of the methyl of 

the isopropenyl group. The most noteworthy change in the 13C NMR spectrum of 337 was 

the fact that there was no longer a far down field signal representing the carbonyl 

functionality as well as the loss of a signal in the upfield region of the spectrum which 

would have accounted for the methyl group of the now absent carbonate group. All the 

remaining signals in the 13C NMR spectrum were accounted for and could be assigned 

using a CH correlated spectrum. The mass spectral analysis showed a molecular ion at 

173.11986 amu which confirmed the molecular formula C12H15N, corresponding to our 

product 337. 

 

Having carried out a successful non-stereoselective π-allyl Pd mediated cyclisation 

reaction, we now turned our attention to the enantioselective synthesis of the indoline 337. 

Similarly to the previous experiment, we envisaged that the catalytic system could be 

generated in situ using Pd(dba)2 as our pre-catalyst, followed by the addition of our 

phosphine ligand which would in this case be the chiral R,R-Trost ligand 254 (Scheme 

132). To this end, the Pd(dba)2 was dissolved into the dichloromethane, once again 

forming a deep wine red coloured solution which was thoroughly deoxygenated by 

bubbling Ar(g) into the solution. The chiral ligand was then added, and the colour of the 

solution began to change to yellow as the dibenzylidene acetone ligand was displaced by 

the chiral phosphine-based Trost ligand, forming our desired catalytic system. A slight 

excess of the chiral ligand was added to ensure that all the dibenzylidene acetone was 

indeed displaced, as any remaining Pd(dba)2 would also catalyse the reaction, though non-

stereospecifically, which would be detrimental to our enantiomeric excess. The carbonate 

was then added to the solution and left to react for 12 hours. After evaporation of the 

solvent and purification, we were pleased to obtain the desired 2-isopropenyl indoline 337 

once again in the moderate yield of 45%. 
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Scheme 132 

 

In order to determine our enantiomeric excess we made use of chiral HPLC. For the 

purposes of this exercise we first set about optimising the conditions using the racemic 

material in order to ensure that we could in fact separate the enantiomers on our Chiralcel 

OJ column. Fortunately, after some experimentation we found that by using a mobile phase 

consisting of a 20% solution of isopropyl alcohol in hexane we could obtain a baseline 

resolved separation of the two enantiomers. With this methodology in hand, we set about 

determining the enantiomeric excess of our first chiral cyclisation and to our bitter 

disappointment, two large peaks eluted! Clearly, our reaction had hardly been 

enantioselective as we obtained an equal ratio for the two enantiomers.  

 

Trost reported that in his reactions they needed to slow down the cyclisation step to 

optimise their enantiomeric excesses.136 As discussed earlier, the initial formation of the 

chiral π-allyl-Pd-L2
* system is not the most thermodynamically favoured arrangement, and 

requires some time to rearrange to the thermodynamically preferred face once the 

carbonate has been eliminated. Therefore, we decided to repeat the reaction, this time 

however in the presence of acetic acid which was intended to render the aniline 

substantially less nucleophilic, thereby slowing down its attack on the π-allyl-Pd-L2
* 

complex. Unfortunately, this change in procedure only mildly increased our reaction’s 

enantioselectivity, affording the product in 32% ee. However, the reaction was also so 

detrimentally attenuated that even with boiling overnight, only trace amounts of the 

product were formed and most of the starting material was recovered! Clearly, another 

approach is required to decrease the nucleophilicity of the aniline, perhaps not by forming 
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an ammonium ion as this retards the reaction too significantly, but perhaps by forming a 

sulphonamide instead, and this will be discussed in the next section. 

 

4.4 Concluding Remarks Regarding the Synthesis of the Indoline Subunit 

The synthesis of the N-methyl indoline 337 was accomplished in nine steps from 

commercially available N-methyl aniline 320 in an overall yield of 3.1% (Scheme 133). 

While we were pleased at having completed the planned synthetic route towards the 

methylated indoline subunit 337, the key step of the reaction sequence, the asymmetric 

allylic alkylation of carbonate 336, did not proceed as per our expectations, delivering the 

product in a moderate yield without any enantioselectivity, or in a poor yield with only 

poor enantioselectivity when we attempted to decrease the nucleophilicity of the amine. 

 

 
Scheme 133 
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The cyclisation of 336 to 337 using the R,R′-π-allyl-Pd catalytic system did not show any 

enantioselectivity. The most plausible explanation for this is the fact that the reaction may 

have been proceeding too quickly. Unfortunately, when we attempted to slow down the 

rate of the reaction by the addition of acetic acid this only succeeded in raising the 

enantiomeric excess slightly. That the reaction requires attenuation to optimise the 

enantiomeric excess is without doubt, however, exactly how this is to be achieved without 

completely stopping the reaction is an area that requires further investigation. Perhaps, 

instead of forming the ammonium ion by adding acetic acid, one could investigate other 

methods to reduce the nucleophilicity of the amine, perhaps by converting it into a 

sulphonamide 338 for example (Scheme 134). Moreover, converting the amine to the 

sulphonamide 338 early on in the synthesis may obviate the need to methylate it. 

 

 
Scheme 134 

 

As a protection strategy, the allyl aniline 263 can be converted into the azide 340 (Scheme 

135). Then the reaction sequence can proceed as planned until the Horner-Wadsworth-

Emmons reaction has taken place. At this stage the reduction of the ester functionality of 

342 should also result in the conversion of the azide to the amine 343. The amine can then 

be converted into the sulphonamide 344. In the absence of a base we hope the amine would 

react immediately with the sulphonyl chloride while leaving the alcohol functionality 

unreacted. The carbonate group can then be added to prepare the precursor 338 for the 

cyclisation reaction. Some preliminary work has been done in this regard, proving this to 

be a feasible strategy. 
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Scheme 135 

 

In order for this route to be feasible, the formation of the o-allylaniline 263 will of course 

need to be optimised. In this regard an alternative method for the introduction of the allyl 

chain to the ortho position may need to be investigated. 

Once this work is more established it would be interesting to ascertain the use of cross 

metathesis for the introduction of alternative unsaturated chains on the aromatic chain such 

as 345 and perhaps reduce the number of steps towards the asymmetric allylic alkylation 

reaction forming compounds such as 346 (Scheme 136). 

 

 
Scheme 136 
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Chapter 5: Experimental Procedures 

5.1 General Procedures 

5.1.1 Purification of solvents and reagents 

The solvents used for chromatography were distilled prior to use by means of conventional 

distillation procedures. Solvents used for reactions were dried over the appropriate drying 

agent and then distilled under nitrogen gas. Tetrahydrofuran and diethyl ether were 

distilled over sodium using benzophenone as an indicator. Toluene and n-butyl ether were 

distilled from sodium metal. Dichloromethane and acetonitrile were distilled from calcium 

hydride. When necessary, solvents were stored over activated molecular sieves (4 Å) under 

an Ar(g) atmosphere. Reagents were obtained from commercial sources and used without 

further purification or purified by standard methods as recommended by Perrin et al.147 

 

5.1.2 Chromatography 

The Rf values quoted are for analytical thin layer chromatography (TLC) on aluminium-

backed Macherey-Nagel Alugram Sil G/UV254 plates pre-coated 0.25 mm silica gel 60. 

Detection was carried out by viewing the adsorbed compounds under UV light. 

Purification of compounds by column chromatography was carried using Macherey-Nagel 

silica gel 60 (particle size 0.063 mm to 0.200 mm) as the adsorbent. When performing 

flash chromatography, silica gel of particle size 0.035 mm to 0.070 mm was used. Mixtures 

of ethyl acetate and hexane were used as the mobile phase. 

 

5.1.3 High pressure liquid chromatography 

High pressure liquid chromatography (HPLC) was performed on a TSP HPLC using a 

Chiralcel OJ 10µ 250 × 4.6 mm chiral column. Mobile phases consisting of isopropyl 

alcohol and hexane mixtures were used. Detection of the eluted compounds was achieved 

by using a TSP variable wavelength UV detector at 215 nM. Calculations were based on 

the area under the peak. 
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5.1.4 Spectroscopic and physical data 
1H NMR spectra were recorded on a Bruker AVANCE 300 (300.13 MHz) or a Bruker 400 

(400.13 MHz) spectrophotometer. 13C NMR (1H decoupled) spectra were recorded on a 

Bruker AVANCE 300 (75.47 MHz) or Bruker DRX 400 (100.63 MHz) spectrometer. 

Spectra were recorded in deuterated chloroform (CDCl3) unless otherwise stated and 

chemical shifts are reported in parts per million downfield from tetramethylsilane for 1H 

NMR spectra and relative to the central signal of deuterated chloroform, taken as δ 77.00 

for 13C NMR spectra. Coupling constants are given in Hertz. 

 

Infra-red spectra were recorded using a Bruker IFS-25 Fourier Transform spectrometer or 

on a Bruker Vector-22 Fourier Transform spectrometer. Measurements were made using 

either a solution in chloroform between sodium chloride plates or by loading the sample 

directly onto a diamond cell. The signals are reported on the wavenumber scale (ν/cm-1). 

 

All melting points were obtained on a Reichert hot-stage microscope, and are uncorrected. 

 

High resolution mass spectra were recorded on a Kratos MS 9/50, VG 70E MS or a VG 70 

SEQ mass spectrometer.  

 

Intensity data were collected on a Bruker APEX II CCD area detector diffractometer with 

graphite monochromated Mo Kα radiation (50 kV, 30 mA) using the APEX 2148 data 

collection software. The collection method involved ω-scans of width 0.5° and 512×512 

bit data frames. Data reduction was carried out using the program SAINT+ and face 

indexed absorption corrections were made using XPREP.149 

The crystal structure was solved by direct methods using SHELXTL.150 Non-hydrogen 

atoms were first refined isotropically followed by anisotropic refinement by full matrix 

least-squares calculations based on F2 using SHELXTL. Hydrogen atoms were first located 

in the difference map then positioned geometrically and allowed to ride on their respective 

parent atoms. Diagrams and publication material were generated using SHELXTL, 

PLATON151 and ORTEP-3.152 

5.1.5 Other general procedures 

All reactions, unless otherwise stated, were carried out under an Ar(g) atmosphere and the 

reaction vessels were dried in an oven. The term “in vacuo” refers to the removal of 
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solvent by rotary evaporation. For purified products this is followed by removal of the 

residual solvent using a high vacuum pump (ca.0.1 mm Hg) at ambient temperature until 

constant mass was achieved.  
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5.2 Experimental Work Pertaining to the Synthesis of Cardinalin 3 

5.2.1 Synthesis of 2-iodo-1,3-dimethoxybenzene 183 

 

 
 

A solution of 1,3-dimethoxybenzene 168 (4.74 ml, 5.00 g, 36.2 mmol) in dry THF (50 ml) 

was placed in a flame dried 250 ml round bottom flask fitted with a dropping funnel. The 

solution was cooled down to 0 °C by means of an ice bath and the dropping funnel was 

charged with n-BuLi (1.40 M in hexane, 28.4 ml, 39.8 mmol, 1.1 equiv.). Once the 

solution was cooled, the n-BuLi was added dropwise. The reaction mixture was then 

stirred at 0 °C for 1 h. The dropping funnel was next charged with a solution of I2 (10.1 g, 

39.8 mmol, 1.1 equiv.) in THF (70 ml). The halogen solution was then added dropwise to 

the milky white reaction mixture. The end point of the reaction was observed at the 

appearance of the light brown halogen colour. The reaction mixture was stirred for an 

additional 1 h at rt. H2O was then added to the solution and the product extracted with 

CH2Cl2 (3 × 50 ml). The solvent was removed using a rotary evaporator and the crude 

product was recrystallised from CH2Cl2:EtOH to give large white crystals of 

iodo-1,3-dimethoxybenzene 183 (8.84 g, 93%). 

 

Rf = 0.70 (30% EtOAc/hexane). Mp. =  105-106 °C (CH2Cl2:EtOH), (lit76 

104 °C). 1H NMR (300 MHz, CDCl3): δH = 7.26 (1H, t, J = 8.3 Hz, H5); 

6.50 (2H, d, J = 8.3 Hz, H4 and H6); 3.89 (6H, s, 2 × OMe). 13C NMR 

(75 MHz, CDCl3): δC = 158.4 (C1 and C3), 128.7 (C5), 112.6 (C2), 104.5 (C4 and C6), 

56.1 (2 × OMe). IR (CHCl3): νmax(cm-1) = 1587 and 1470 (Ar C=C), 1255 (Ar C-O). 

HRMS: Found M+ 263.9654. C8H9IO2 requires M 263.9647 amu, (EI) 264 (M+, 100%), 

249 (6), 221 (18), 206 (7), 122 (8), 107 (11), 92 (9), 77 (10), 51 (8).70 
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5.2.2 Synthesis of 2,2′,6,6′-tetramethoxy-1,1′-biphenyl 167 

 

 

Into a flame dried 250 ml round bottom flask fitted with a dropping funnel was placed dry 

THF (50 ml), followed by 1,3-dimethoxybenzene 168 (3.47 ml, 3.66 g, 26.5 mmol, 

1.1 equiv.). The solution was cooled down to 0 °C. Once cooled, n-BuLi (1.60 M in 

hexane, 16.6 ml, 26.5 mmol, 1.1 equiv.) was slowly added using the dropping funnel. The 

solution was stirred at 0 °C for 1 h. CuI (5.05 g, 26.5 mmol, 1.1 equiv.), dried overnight in 

an oven at 110 °C, was added in portions and the mixture was stirred at rt for another 2 h. 

The dropping funnel was then charged with a solution of 2-iodo-1,3-dimethoxybenzene 

183 (6.36 g, 24.0 mmol) in dry pyridine (50 ml). Once the solution of the halide was 

added, the dropping funnel was replaced with a condenser, and the mixture was heated 

under reflux for 72 h. The product mixture was then poured onto ice and made acidic with 

concentrated aqueous HCl (ca. 25 ml). The product was then extracted with CH2Cl2 

(3 × 80 ml). The organic extracts were combined, dried over anhydrous MgSO4, and the 

solvent was removed in vacuo. The crude product was recrystallised from CH2Cl2:EtOH to 

give 2,2′,6,6′-tetramethoxy-1,1′-biphenyl 167 (6.12 g, 93%). 

 

Rf = 0.47 (30% EtOAc/hexane). Mp. = 175-177 °C (CH2Cl2:EtOH), (lit153 

175-176 °C). 1H NMR (300 MHz, CDCl3): δH = 7.28 (2H, t, J = 8.3 Hz, H5 

and H5′); 6.65 (4H, d, J = 8.3 Hz, H4, H4′, H6 and H6′); 3.71 (12H, s, 

4 × OMe). 13C NMR (75 MHz, CDCl3): δC = 158.4 (C1, C1′, C3 and C3′), 128.7 (C5 and 

C5′), 112.5 (C2 and C24′), 104.4 (C4, C4′, C6 and C6′), 56.1 (4 × OMe). IR (CHCl3): 

νmax(cm-1) = 1587, 1451 (ArC=C), 1246 (Ar C-O). HRMS: Found M+ 274.1198. C16H18O4 

requires M 274.1205 amu (EI) 274 (M+, 100%), 243 (7), 228 (11), 155 (5), 151 (20), 114 

(6), 91 (6).70 
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5.2.3 Synthesis of 2,6-dimethoxyphenylboronic acid 186 

 

 
 

Into a flame dried 250 ml round bottom flask fitted with a dropping funnel was placed dry 

THF (100 ml), followed by 1,3-dimethoxybenzene 168 (4.74 ml, 5.00 g, 36.2 mmol). The 

solution was cooled down to 0 °C. Once cooled n-BuLi (1.40 M in hexane, 31.1 ml, 

43.4 mmol, 1.2 equiv.) was slowly added via the dropping funnel. The solution was stirred 

at 0 °C for 1 h. The B(OMe)3 (16.2 ml, 15.0 g, 144 mmol, 4 equiv.) was then added slowly 

using a syringe. The reaction was stirred for 18 h over which time it was allowed to warm 

up to rt. After this time the mixture was poured into a large beaker equipped with a stirrer 

bar. H2O (100 ml) and Et2O (50 ml) were added to the mixture which was then stirred 

vigorously. The initial pH was checked and found to be basic. Additions of a 1 M solution 

of aqueous HCl was then carried out while stirring, and the pH checked after each addition. 

This was continued until the mixture had become acidic. The organic layer was then 

extracted using Et2O (3 × 100 ml). The organic extracts were combined, washed with 

brine, dried over anhydrous MgSO4 and filtered. The solution was then concentrated (ca. 

20 ml) by removing the solvent in vacuo. Hexane (ca. 100 ml) was then added to this, 

resulting in the precipitation of the boronic acid. The solution was cooled in an ice bath 

and the crystals were then collected by filtration, and washed with cold hexane to afford 

2-ethyl-6-methoxyphenylboronic acid 186 (4.65 g, 71%).70 
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Rf = 0.27 (30% EtOAc/hexane). Mp. = 92-96 °C (lit154 100-115 °C). 1H 

NMR (300 MHz, CDCl3): δH = 7.39 (1H, t, J = 8.4 Hz, H5); 7.22 (2H, s, 

Ar-B(OH)2); 6.64 (2H, d, J = 8.4 Hz, H4 and H6); 3.91 (6H, s, 2 × OCH3). 
13C NMR (75 MHz, CDCl3): δC = 165.4 (2 × ArCO), 132.9 (C5), 104.4 (C4 and C6), 56.0 

(2 × OCH3), 55.8 (ArCB(OH)2). IR (CHCl3): νmax(cm-1) = 3474 (br s, OH), 1650, 1586 

(ArC=C). HRMS: Found M+ 182.0761. C8H11BO4 requires M 182.0750 amu. (EI) 182 

(M+, 100%), 181 (26), 164 (24), 138 (11), 109 (10), 78 (10), 76 (34).70 

 

5.2.4 Synthesis of 2,2′,6,6′-tetramethoxy-1,1′-biphenyl 167 

 

 
 

Into a two neck round bottom flask fitted with a dropping funnel and a condenser (oven 

dried and under Ar(g)) was placed Pd(PPh3)4 (0.87 g, 0.76 mmol, 10 mol%) and 2,6-

dimethoxyphenylboronic acid 186 (2.07 g, 11.4 mmol, 1.5 equiv.). The reaction vessel was 

degassed and purged with Ar(g). The dropping funnel was then charged with DME 

(21.0 ml) and 2-iodo-1,3-dimethoxybenzene 183 (2.00 g, 7.57 mmol). Ar(g) was then 

bubbled into the dropping funnel by means of a Pasteur pipette and the solution was 

quickly added to the reaction flask. The dropping funnel was recharged with an aqueous 

Na2CO3 solution (1.80 M, 4.01 g, 21.0 ml, 5 equiv.). This solution was similarly degassed 

for 5 min and then discharged into the reaction vessel. The two phase mixture was heated 

to reflux and the yellow reaction mixture was left to react for 18 h. During this time the 

solution became homogenous as the catalyst fully dissolved and a colour change from 

yellow to pale brown occurred. The reaction mixture was cooled and decanted into a 

separating funnel. The flask was washed out with EtOAc (ca 100 ml) and H2O (ca 100 ml). 

After thorough mixing, the organic phase was separated and the aqueous phase was 

extracted with EtOAc (3 × 80 ml). The combined organic fractions were then washed with 

brine and dried over anhydrous MgSO4. After evaporation of the solvent in vacuo the 

crude material was purified by column chromatography (5%→10%→20% EtOAc/hexane) 
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to afford the desired 2,2′,6,6′-tetramethoxy-1,1′-biphenyl 167 (1.41 g, 54%), in an 

unoptimised yield.70 The product was characterised as described above. 

 

5.2.5 Attempted synthesis of 2,2’,6,6’-tetramethoxy[1,1′-biphenyl]-3,3′-

dicarbaldehyde 166 using the Vilsmeier-Haack formylation 

 

 
 

Into a two neck round bottom flask (dried, under Ar), fitted with a dropping funnel, was 

placed DMF (5.25 ml, 67.8 mmol, 10 equiv.) and the flask cooled by means of an ice bath. 

POCl3 (6.32 ml, 67.8 mmol, 10 equiv.) was added using a syringe and the reaction was left 

to proceed for 10 min at 0 °C. CHCl3 (20 ml) was then added to the newly formed reagent 

by means of the dropping funnel, and this solution was allowed to cool to 0 °C for 10 min. 

The dropping funnel was then charged with the tetramethoxybiphenyl 167 (1.86 g, 

6.78 mmol) in dry CHCl3 (30 ml) and this was added dropwise over a period of 5 min. The 

reaction was left to proceed and analysed by TLC. As the reaction showed no significant 

progress after several days ice cold H2O was carefully added (40 ml) and the reaction 

mixture was transferred to a beaker. CH2Cl2 was added (50 ml) followed by H2O (50 ml) 

and the two phase mixture was stirred vigorously. A 2 M NaOH solution was slowly added 

until the pH of the solution remained slightly basic. The organic phase was then separated 

and the aqueous phase extracted with CH2Cl2 (3 × 100 ml). The combined organic 

fractions were washed with brine (100 ml) and dried over anhydrous MgSO4. Purification 

by column chromatography (40% EtOAc/hexane) afforded the monoformylated biphenyl 

190 in 21% yield and the diformylated biphenyl 166 in 5% yield. 

 

Rf = 0.53 (30% EtOAc/hexane). 1H NMR (300 MHz, CDCl3): 

δH = 10.27 (1H, s, CHO); 7.90 (1H, d, J = 8.7 Hz, H6); 7.35 (1H, d, 

J = 8.3 Hz, H5'); 6.83 (1H, d, J = 8.8 Hz, H5); 6.67 (2H, d, 

J = 8.3 Hz, H4' and H6'); 3.78 (3H, s, OMe); 3.73 (6H, s, 2 × OMe); 

3.53 (3H, s, OMe). 13C NMR (75 MHz, CDCl3): δC = 189.2 (CHO), 
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163.8 (C1 or C3), 163.1 (C1 or C3), 158.2 (C1′ and C3'), 129.5 (C2 and C2'), 122.9 (C6), 

117.6 (C5), 110.9 (C4), 107.1 (C5′), 104.3 (C4′ and C6′), 62.5 (OMe), 56.1 (OMe), 55.9 

(2 × OMe).70 

 

Rf= 0.36 (30% EtOAc/hexane). Mp. = 147-149 °C. 1H NMR (300 MHz, 

CDCl3): δH = 10.17 (2H, s, 2 × CHO); 7.91 (2H, d, J = 8.8 Hz, H4 and 

H4′); 6.83 (2H, d, J = 8.8 Hz, H5 and H5'); 3.76 (6H, s, 2 × OMe); 3.52 

(3H, s, 2 × OMe). 13C NMR (75 MHz, CDCl3): δC = 188.8 (2 × CHO), 

163.5 (C2 and C2'), 162.7 (C6 and C6'), 130.6 (C5 and C5'), 123.1 (C3 and C3'), 116.4 (C1 

and C1'), 107.1 (C4 and C4'), 63.0 (2 × OMe), 56.1 (2 × OMe). IR (CHCl3): νmax(cm-

1) = 1677 (Ar C=O), 1586, 1463 (ArC=C), 1248 (ArC-O). HRMS: Found M+, 330.1093, 

C18H18O6 requires M 330.1103 amu. (EI) 330 (M+, 79%), 299 (100), 283 (16), 255 (28), 

239 (66), 219 (17), 179 (28), 155 (10), 142 (9), 115 (10), 91 (5), 69 (19), 51 (5).70 

 

5.2.6 Synthesis of 2,2’,6,6’-tetramethoxy[1,1′-biphenyl]-3,3′-dicarbaldehyde 

166 using the Rieche formylation 

 

 
 

Into a two neck round bottom flask under Ar(g), fitted with a rubber septum, was added 

2,2′,6,6′-tetramethoxy-1,1′-biphenyl 167 (0.70 g, 2.6 mmol) in dry CH2Cl2 (50 ml). To this 

solution was added TiCl4 (1.12 ml, 1.93 g, 10.2 mmol, 4 equiv.) through the septum using 

a syringe. The solution immediately changed to an orange colour. The reaction mixture 

was then cooled down to −78 °C and MeOCHCl2 (0.64 ml, 0.82 g, 7.1 mmol, 2.8 equiv.) 

was then added. The solution changed to a dark brown colour. Stirring at this temperature 

continued for 30 min. The resulting solution was then warmed up to 0 °C over 1 h and 

stirred at this temperature for an additional 15 min. The product mixture was then poured 

into a separating funnel containing crushed ice (ca 10 g) and aqueous conc. HCl (ca 8 ml) 

and shaken vigorously. The organic layer was then separated, washed with H2O (ca 50 ml) 
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and brine (ca. 50 ml). It was then dried over anhydrous MgSO4, filtered and the solvent 

removed in vacuo. The crude material was purified by silica gel column chromatography 

(40% EtOAc/hexane) to give 2,2’,6,6’-tetramethoxy[1,1′-biphenyl]-3,3′-dicarbaldehyde 

166 as a white solid (0.80 g, 95%).70 The diformylated product was isolated exclusively 

and characterised as described above. 

 

5.2.7 Synthesis of diethyl [4,4′-diacetoxy-6,6′,8,8′-tetramethoxy-7,7′-

binaphthalene]-2,2′-dicarboxylate 193 

 

 

 

In a two neck round bottom flask, fitted with a condenser, under Ar(g), 2,2’,6,6’-

tetramethoxy[1,1′-biphenyl]-3,3′-dicarbaldehyde 166 (1.53 g, 4.63 mmol) and diethyl 

succinate (2.31 ml, 2.42 g, 13.9 mmol, 3 equiv.) were dissolved in dry t-BuOH (20 ml). To 

this mixture was slowly added t-BuOK (1.56 g, 13.9 mmol, 3 equiv.). The resulting 

solution was heated under reflux for 2 h and then allowed to cool down to rt, poured into a 

separating funnel containing ice and adjusted to pH 3 with aqueous conc. HCl. The product 

was then extracted with EtOAc (3 × 50 ml). The combined organic extracts were then dried 

over anhydrous MgSO4, filtered, and the solvent removed in vacuo. The resultant oil was 

not purified or characterised, but used immediately in the next step. 

In a two neck round bottom flask, fitted with a condenser, under Ar(g), the Stobbe 

condensation product 192 from above was dissolved in Ac2O (80 ml). To this was added 
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anhydrous NaOAc (1.89 g, 23.2 mmol, 5 equiv.). The mixture was heated at 140 °C for 2 h 

and then allowed to cool. The Ac2O was removed in vacuo, H2O (ca 100 ml) was added, 

and the product extracted with CH2Cl2 (3 × 100 ml). The combined organic extracts were 

dried over anhydrous MgSO4, filtered and the solvent removed in vacuo. The crude 

material was purified by silica gel column chromatography (30% EtOAc/hexane) to yield 

diethyl [4,4′-diacetoxy-6,6′,8,8′-tetramethoxy-7,7′-binaphthalene]-2,2′-dicarboxylate 193 

as a bright yellow solid (1.78 g, 60% over two steps). 

 

Rf = 0.17 (30% EtOAc/hexane). Mp. = 243-265 °C. 1H 

NMR (300 MHz, CDCl3): δH = 8.77 (2H, s, H8 and H8'); 

7.87 (2H, s, H6 and H6'); 7.01 (2H, s, H4 and H4'); 4.43 (4H, 

q, J = 7.1 Hz, 2 × CH2CH3); 3.84 (6H, s, 2 × OMe); 3.64 

(6H, s, 2 × OMe); 2.51 (6H, s, 2 × OAc) and 1.42 (6H, t, 

J = 7.1 Hz, 2 × CH2CH3). 13C NMR (75 MHz, CDCl3): δC = 169.4 (2 × OAc), 166.2 

(2 × CO2Et), 159.2 (2 × ArCO), 156.5 (2 × ArCO), 145.7 (2 × ArC, C7), 130.9 (2 × ArC), 

125.2 (2 × ArC), 124.7 (2 × ArC), 123.9 (C8 and C8'), 118.9 (C6 and C6'), 117.8 

(2 × ArC), 94.9 (C4 and C4'), 61.9 (2 × OMe), 61.1 (2 × CH2CH3), 55.8 (2 × OMe), 21.0 

(2 × OAc), 14.4 (2 × CH2CH3). IR (CHCl3): νmax(cm-1) =1770, 1716, (C=O), 1627, 1498, 

1459 (ArC=C), 1253 (ArC-O), 1197 (alkyl CH). HRMS: Found M+, 634.2038, C34H34O12 

requires M 634.2050 amu. (EI) 634 (M+, 2%), 512 (32), 470 (27), 428 (73), 382 (5), 54 

(26), 43 (18).70 
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5.2.8 Synthesis of diethyl (5,5'-dihydroxy-1,1',3,3'-tetramethoxy-2,2'-

binaphthalene-7,7'-dicarboxylate) 201 

 

 

 

To a solution of guanidine HCl (0.93 g, 9.8 mmol, 2.2 equiv.) in dry EtOH (70 ml), stirring 

at rt under Ar(g) was added t-BuOK (1.1 g, 9.8 mmol, 2.2 equiv.) and the resulting 

suspension stirred for 30 min. To this mixture was added the diacetate ester 193 (2.8 g, 

4.4 mmol) dissolved in CH2Cl2 (70 ml) and stirring was continued for 1.5 h. The reaction 

mixture was then poured into a beaker containing H2O (100 ml) and was adjusted to pH 4 

with conc. HCl. The solution was then extracted with EtOAc (3 × 100 ml). The organic 

extracts were combined and dried over anhydrous MgSO4, filtered and the solvent 

removed in vacuo. The crude product was purified by silica gel column chromatography to 

yield 201 as a yellow solid (1.89 g, 78%). 

 

Rf = 0.33 (50% EtOAc/hexane). Mp. = 266-280 °C. 1H 

NMR (300 MHz, DMSO): δH = 10.51 (2H, s, 2 × OH); 8.15 

(2H, br s, H8 and H8'); 7.45 (2H, d, J = 1.3 Hz, H6 and H6'); 

7.42 (2H, s, H4 and H4'); 4.35 (4H, q, J = 7.0 Hz, 

2 × CH2CH3); 3.81 (6H, s, 2 × OMe); 3.57 (6H, s, 2 × OMe) and 1.35 (6H, t, J = 7.0 Hz, 

2 × CH2CH3). 13C NMR (75 MHz, DMSO): δC = 166.0 (2 × CO2Et), 157.5 (2 × ArC), 

155.2 (2 × ArC), 152.7 (2 × ArC), 128.4 (2 × ArC), 125.1 (2 × ArC), 123.4 (2 × ArC), 

117.6 (2 × ArC), 115.5 (2 × ArC), 107.4 (2 × ArC), 96.2 (C4 and C4'), 61.1 (2 × OMe), 

60.5 (2 × CH2CH3), 55.7 (2 × OMe), 14.2 (2 × CH2CH3). IR (CHCl3): νmax(cm-1) = 3413 

(O-H), 1640 (Ar C=O). HRMS: Found [M + Na]+ 573.174,. C30H30O10Na requires M 

573.1736 amu. (EI) 551 (M+ + 1, 32%), 550 (M+ 100), 505 (13), 504 (18), 275 (30) and 

(28).  
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5.2.9 Synthesis of (±)-diethyl 5,5'-bis(allyloxy)-1,1',3,3'-tetramethoxy-2,2'-

binaphthalene-7,7'-dicarboxylate 202 

 

 

Allyl bromide (0.96 ml, 1.3 g, 11 mmol, 3 equiv.) and K2CO3 (1.53 g, 11.1 mmol, 3 equiv.) 

were added to a solution of the di-naphthol 201 (2.03 g, 3.69 mmol) in Me2CO (100 ml) in 

a round bottom flask fitted with a condenser. The mixture was stirred at reflux for 18 h. 

After this time it was allowed to cool to rt and filtered through celite. The Me2CO was then 

removed in vacuo and the light brown oil was purified using silica gel column 

chromatography (30% EtOAc/hexane) to yield the allylated product 202 as a light yellow 

solid (1.95 g, 84%). 

 

Rf = 0.30 (20% EtOAc/hexane). Mp. = 74-78 °C. 1H NMR 

(300 MHz, CDCl3): δH = 8.51 (2H, brd s, H8 and H8'); 7.54 

(2H, s, H4 and H4'); 7.48 (2H, s, H6 and H6'); 6.23 (2H, m, 

2 × CH2CH=CH2); 5.57 (2H, dd, J=17.3 Hz and 1.5 Hz, 

trans-CH2CH=CH2); 5.38 (2H, dd, J = 10.5 Hz and 1.3 Hz, 2 × cis-CH2CH=CH2); 4.84 

(4H, br d, J = 5.2 Hz, 2 × CH2CH=CH2); 4.50-4.37 (4H, m, 2 × CH2CH3); 3.88 (6H, s, 

2 × OMe); 3.64 (6H, s, 2 × OMe) and 1.43 (6H, t, J = 7.1 Hz, 2 × CH2CH3). 13C NMR 

(75 MHz, CDCl3): δC = 167.1 (2 × CO2Et), 158.4 (2 × ArC), 156.1 (2 × ArC), 153.5 

(2 × ArC), 133.2 (2 × CH2CH=CH2), 129.7 (2 × ArC), 125.3 (2 × ArC), 124.0 (2 × ArC), 

118.8 (2 × CH2CH=CH2), 117.8 (2 × ArC), 117.6 (C8 and C8'), 105.2 (C4 and C4'), 96.2 

(C6 and C6'), 69.3 (2 × CH2CH=CH2), 61.7 (2 × OMe), 60.9 (2 × CH2CH3), 55.9 

(2 × OMe), 14.4 (2 × CH2CH3). IR (CHCl3): νmax(cm-1) = 1713 (ArC=O), 1622 (alkene 

C=C), 1495, 1461 (ArC=C), 1254 (ArCO). HRMS: Found [M + Na]+ 653,236, 

C36H38O10Na requires M 653.2363 amu. (EI) 631 (M+ + 1, 22%), 630 (M+, 54), 590 (40), 

589 (100), 561 (20), 548 (41), 315 (22) and 295 (26).  
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5.2.10 Synthesis of (±)-diethyl 6,6'-diallyl-5,5'-bis(hydroxy)-1,1',3,3'-

tetramethoxy-2,2'-binaphthalene-7,7'-dicarboxylate 203 

 

 

The allylated phenol 202 (1.92 g, 3.04 mmol) was dissolved in DMF (3 ml) and the 

solution transferred to a microwave vessel. The reaction mixture was then subjected to 

microwave radiation at a temperature of 170 °C and pressure of 250 psi with 200 W of 

power for a period of 25 min with stirring. The light yellow solution which changed to a 

dark brown colour was transferred to a separating funnel and washed with H2O (100 ml) 

and the organic product extracted with CH2Cl2 (2 × 20 ml). The extracts were dried over 

anhydrous MgSO4, filtered through celite and the solvent removed in vacuo. The dark 

brown viscous oil was purified by column chromatography (40% EtOAc/hexane) to yield 

203 as a yellow foam (1.89 g, 98%). 

 

Rf = 0.63 (50% EtOAc/hexane). Mp. = 93-98 °C. 1H NMR 

(300 MHz, CDCl3): δH = 8.36 (2H, s, H8 and H8'); 7.41 (2H, 

s, H4 and H4'); 6.25-6.07 (2H, m, 2 × CH2CH=CH2); 5.84 

(2H, s, 2 × OH); 5.25 (4H, m, 2 × CH2CH=CH2); 4.45-4.34 

(4H, m, 2 × CH2CH3); 3.96 (4H, br d, J = 5.2 Hz, 2 × CH2CH=CH2); 3.86 (6H, s, 

2 × OMe); 3.62 (6H, s, 2 × OMe) and 1.41 (6H, t, J = 7.1 Hz, 2 × CH2CH3). 13C NMR 

(75 MHz, CDCl3): δC = 168.2 (2 × CO2Et), 158.4 (2 × ArC), 155.7 (2 × ArC), 150.1 

(2 × ArC), 136.4 (2 × CH2CH=CH2), 128.1 (2 × ArC), 126.4 (2 × ArC), 122.6 (2 × ArC), 

119.2 (C8 and C8'), 118.3 (2 × ArC), 117.4 (2 × ArC), 116.2 (2 × CH2CH=CH2), 95.6 (C4 

and C4'), 61.6 (2 × CH2CH3), 60.9 (2 × OMe), 55.8 (2 × OMe), 31.8 (2 × CH2CH=CH2), 

14.3 (2 × CH2CH3). IR (CHCl3): νmax(cm-1) = 3420 (OH), 1713 (ArC=O), 1461 (ArC=C), 

1238 (ArC-O). HRMS: Found [M + Na]+ 653.235, C36H38O10Na requires M 

653.2363 amu. (EI) 631 (M+ + 1, 32%), 630 (M+, 100), 585(8), 584 (10), 315 (17), 255 

(30), 87 (62) and 55 (75).  
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5.2.11 Synthesis of (±)-diethyl 6,6'-diallyl-5,5'-bis(benzyloxy)-1,1',3,3'-

tetramethoxy-2,2'-binaphthalene-7,7'-dicarboxylate 204 

 

BnCl, K2CO3,
KI, acetone
reflux, 18 hEtO

OEt

OMe
OMe

MeO
MeO

OH

OH

O

O

203

EtO
OEt

OMe
OMe

MeO
MeO

O

O

O

O

204

Ph

Ph
 

In a two neck round bottom flask fitted with a condenser was placed a solution of the 

phenol 203 (1.10 g, 1.75 mmol) in Me2CO (70 ml). To this yellow solution was added 

BnCl (0.40 ml, 0.46 g, 3.7 mmol, 2.1 equiv.), K2CO3 (0.51 g, 3.7 mmol, 2.1 equiv.) and KI 

(0.61 g, 3.7 mmol, 2.1 equiv.). The mixture was stirred under reflux for 18 h. After cooling 

to rt, the mixture was filtered through celite and the filtrate concentrated on a rotary 

evaporator. The resultant oil was purified by silica gel column chromatography (10% 

EtOAc/hexane) to produce the product 204 as a yellow foam (1.28 g, 90%). 

 

Rf = 0.63 (30% EtOAc/hexane). Mp. = 55-57 °C. 1H NMR 

(300 MHz, CDCl3): δH = 8.52 (2H, s, H8 and H8'); 7.60-7.58 

(4H, m, 4 × ArH); 7.47-7.38 (8H, m, 6 ×ArH and H4 and 

H4'); 6.18-6.03 (2H, m, 2 × CH2CH=CH2); 5.12-4.91 (8H, m, 

2 × CH2CH=CH2 and 2 × CH2Ph); 4.39 (4H, q, J = 6.3 Hz, 

2 × CH2CH3); 4.07 (4H, br d, J = 5.6 Hz, 2 × CH2CH=CH2); 

3.72 (6H, s, 2 × OMe); 3.62 (6H, s, 2 × OMe) and 1.41 (6H, t, J = 7.1 Hz, 2 × CH2CH3). 

13C NMR (75 MHz, CDCl3): δC = 168.0 (2 × CO2Et), 158.8 (2 × ArC), 156.2 (2 × ArC), 

152.7 (2 × ArC), 137.9 (2 × CH2CH=CH2), 137.6 (2 × ArC), 131.7 (2 × ArC), 129.4 

(2 × ArC), 128.7 (4 × ArCH), 128.1 (2 × ArCH), 127.6 (4 × ArCH), 127.0 (2 × ArC), 123.0 

(2 × ArC), 122.9 (2 × ArC), 117.0 (C8 and C8'), 115.0 (2 × CH2CH=CH2), 96.2 (C4 and 

C4'), 76.1 (2 × CH2Ph), 61.7 (2 × CH2CH3), 60.9 (2 × OMe), 55.7 (2 × OMe), 31.0 

(2 × CH2CH=CH2) and 14.3 (2 × CH2CH3). IR (CHCl3): νmax(cm−1) = 2981 (terminal 

alkene CH), 1736 (ArC=O), 1456 (ArC=C), 753, 700 (monosub. benzene). HRMS: Found 

1

2
3 4

5

6

2

8 7

OMe

MeO

O

O

O



Chapter 5: Experimental Procedures 
__________________________________ 

 

152 

[M + H]+ 811.347, C50H51O10 requires M 811.3481 amu. (EI) 8180 (M+, 3%), 721 (2), 720 

(5), 719 (13), 555 (4), 92 (5), 91 (100) and 65 (6). 

 

5.2.12 Synthesis of (±)-[6,6'-diallyl-5,5'-bis(benzyloxy)-1,1',3,3'-tetramethoxy-

2,2'-binaphthalene-7,7'-diyl]dimethanol 206 

 

 

The ester 204 (0.70 g, 0.86 mmol) dissolved in dry THF (150 ml) was placed into a flame-

dried two neck round bottom flask under Ar(g). The solution was cooled to 0 °C by means 

of an ice bath and once cooled LiAlH4 (0.13 g, 3.5 mmol, 4 equiv.) was added portionwise 

resulting in effervescence of the solution. The reaction mixture was analysed by TLC at 1 h 

intervals for the first few hours and still showed starting material present. It was left to 

proceed at rt. After 18 h the TLC revealed that the reaction was still not complete however 

at this stage it was worked up by recooling to the mixture to 0 °C and adding H2O 

dropwise (approx. 10 ml) until the evolution of gas had stopped. The emulsion formed was 

broken by adding a 10% solution of aqueous HCl (approx. 5 ml). The mixture was 

transferred to a separating funnel and the product was extracted using EtOAc (2 × 25 ml) 

and CH2Cl2 (2 × 25 ml). The organic extracts were combined, dried over anhydrous 

MgSO4, filtered through celite and the solvent finally removed in vacuo. The crude oil was 

purified by silica gel column chromatography (50% EtOAc/hexane) to give the benzylic 

alcohol 206 (0.26 g, 42%). 

 

Rf = 0.40 (50% EtOAc/hexane). Mp. = 86-91 °C. 1H NMR 

(300 MHz, CDCl3): δH = 7.96 (2H, s, H8 and H8'); 7.60-7.56 

(4H, m, 2 × ArH); 7.47-7.30 (6H, m, 6 × ArH); 7.26 (2H, s, H4 

and H4'); 6.20-6.08 (2H, m, 2 × CH2CH=CH2); 5.14-4.99 (4H, 

m, 2 × CH2CH=CH2); 5.10 (4H, s, 2 × CH2Ph); 4.84 (4H, s, 2 × CH2OH); 3.86-3.69 (4H, 

br m, 2 × CH2CH=CH2); 3.70 (6H, s, 2 × OMe); 3.61 (6H, s, 2 × OMe) and 1.84 (2H, s, 
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2 × OH). 13C NMR (75 MHz, CDCl3): δC = 157.2 (2 × ArC), 155.4 (2 × ArC), 152.6 

(2 × ArC), 137.8 (2 × ArC), 137.7 (2 × CH2CH=CH2), 135.7 (2 × ArC), 129.4 (2 × ArC), 

128.6 (4 × ArCH), 128.0 (2 × ArCH), 127.5 (4 × ArCH), 124.0 (2 × ArC), 118.7 

(2 × CH2CH=CH2), 117.0 (2 × ArC), 115.5 (C8 and C8'), 96.3 (C4 and C4'), 76.0 

(2 × CH2Ph), 64.1 (2 × CH2OH), 61.4 (2 × OMe) and 55.6 (2 × OMe) and 30.4 

(2 × CH2CH=CH2). IR (CHCl3): νmax(cm-1) = 3417 (OH), 1600, 1496, 1455 (ArC=C), 

1094 (primary alcohol C-O), 737, 699. HRMS: Found [M + H]+ 727.327, C46H47O8 

requires M 727.3271 amu. (EI) 726 (M+, 2%), 637 (2), 636 (7), 635 (15), 92 (10), 91 (100) 

and 65 (12). 

 

5.2.13 Synthesis of (±)-6,6'-diallyl-5,5'-bis(benzyloxy)-1,1',3,3'-tetramethoxy-

2,2'-binaphthalene-7,7'-dicarbaldehyde 205 

 

 

 

PCC (0.81 g, 3.7 mmol, 4 equiv.) was dissolved in MeCN (20 ml) and dried onto neutral 

Al2O3 (8 g) using a rotary evaporator. This bright orange solid was then added to a solution 

of the benzylic alcohol 206 (0.68 g, 0.94 mmol) dissolved in CH2Cl2 (50 ml). The now 

dark reaction mixture was allowed to stir at rt for 18 h. This was followed by filtration of 

the mixture through celite and concentration of the filtrate on a rotary evaporator. The 

crude oil was purified by silica gel column chromatography (20% EtOAc/hexane) to yield 

the aldehyde 205 (0.61 g, 90%). 

 

Rf = 0.50 (30% EtOAc/hexane). Mp. = 67-71 °C. 1H NMR 

(300 MHz, CDCl3): δH = 10.24 (2H, s, 2 × CHO); 8.47 (2H, s, 

H8 and H8'); 7.60-7.57 (4H, m, 4 × ArH); 7.48-7.39 (6H, m, 

6 × ArH); 7.28 (2H, s, H4 and H4'); 6.24-6.11 (2H, m, 

2 × CH2CH=CH2); 5.15-4.98 (4H, m, 2 × CH2CH=CH2); 5.11 (4H, s, 2 × CH2Ph); 4.12 
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(4H, br d, J = 5.5 Hz, 2 × CH2CH=CH2); 3.73 (6H, s, 2 × OMe) and 3.66 (6H, s, 

2 × OMe). 13C NMR (75 MHz, CDCl3): δC = 192.4 (2 × CHO), 159.8 (2 × ArC), 156.8 

(2 × ArC), 152.9 (2 × ArC), 137.6 (2 × C), 137.4 (2 × C), 133.1 (2 × C), 131.0 (2 × C), 

129.2 (4 × ArCH), 128.7 (2 × ArCH), 128.2 (2 × ArCH), 127.6 (4 × ArCH), 123.3 (2 × C), 

117.0 (2 × C), 115.7 (C8 and C8'), 96.6 (C4 and C4'), 76.3 (2 × CH2Ph), 61.9 (2 × OMe), 

55.8 (2 × OMe) and 29.7 (2 × CH2CH=CH2); one carbon signal not observed. IR (CHCl3): 

νmax(cm−1) = 1691 (C=O), 1614, 1455 (ArC=C), 1257 (ArC-O), 751, 699 

(monosub.benzene). HRMS: Found [M + H]+ 723,295. C46H43O8 requires M 

723.2958 amu. (EI) 722 (M+, 2%), 633 (4), 632 (10), 631 (22), 92 (7), 91 (100)and 65 (12). 

 

5.2.14 Synthesis of (±)-1,1'-[6,6'-diallyl-5,5'-bis(benzyloxy)-1,1',3,3'-

tetramethoxy-2,2'-binaphthalene-7,7'-diyl]diethanol 200 

 

 

Into a flame-dried two neck round bottom flask fitted with a condenser, under Ar(g) was 

placed oven dried Mg turnings (0.034 g, 1.4 mmol, 3.2 equiv.) and dry Et2O (10 ml). To 

this suspension was added MeI (0.082 ml, 0.19 g, 1.3 mmol, 3 equiv.). The reaction 

mixture immediately became cloudy. It was slowly stirred to allow the formation of the 

Grignard reagent. Once most the Mg metal had reacted, the aldehyde 205 (0.32 g, 

0.44 mmol) dissolved in dry THF (10 ml) was added dropwise to the cloudy reaction 

mixture. The now yellow solution was allowed to stir at rt under Ar(g) for a further 18 h. 

At this point it had become milky orange in colour. H2O (~5 ml) was carefully added to the 

reaction to quench the excess of Grignard reagent. The mixture was then transferred to a 

separating funnel and the organic product extracted with EtOAc (3 × 50 ml) and CH2Cl2 

(3 × 50 ml). The organic extracts were combined, dried over anhydrous MgSO4 and 

filtered through celite. The solvent was removed in vacuo and the yellow oil residue was 

purified by silica gel column chromatography (30% EtOAc/hexane) to give the secondary 

alcohol 200 (0.26 g, 79%). 
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Rf = 0.33 and 0.27 (two diastereomers) (40% EtOAc/hexane). 

Mp. = 85-90 °C. 1H NMR (300 MHz, CDCl3): δH = 8.14 (2H, 

s, H8 and H8'); 7.60-7.24 (10H, m, 2 × Ph); 7.25 (2H, s, H4 and 

H4'); 6.22-6.09 (2H, m, 2 × CH2CH=CH2); 5.25 (2H, q, 

J = 6.1 Hz, 2 × CH3(CH)OH); 5.12-4.97 (8H, m, 2 × CH2CH=CH2 and 2 × CH2Ph, 

overlapping signals); 3.92-3.79 (2H, m, 2 × CH2CH=CH2); 3.71 (6H, s, 2 × OMe); 3.63 

and 3.62 (6H, s, 2 × OMe); 1.88 (1H, s, 2 × OH) and 1.60 (6H, d, J = 6.2 Hz, 

2 × CH3(CH)OH). 13C NMR (75 MHz, CDCl3): δC = 157.1 (2 × ArC), 155.4 (2 × ArC), 

152.3 (2 × ArC), 140.6 (2 × ArC), 137.9 (2 × C), 137.8 (2 × C), 137.8 (2 × C), 128.9 

(2 × C), 128.6 (4 × ArCH), 128.0 (2 × ArCH), 127.5 (4 × ArCH), 127.1 (2 × C), 124.2 

(2 × C), 117.0 (2 × C), 115.5 (C8 and C8'), 96.1 (C4 and C4'), 75.9 (2 × CH2Ph), 66.7 

(2 × CH3(CH)OH), 61.4 (2 × OMe), 55.6 (2 × OMe), 30.2 (2 × CH2CH=CH2) and 24.5 

(2 × CH3(CH)OH). IR (CHCl3): νmax(cm-1) = 3415 (OH), 1627, 1596, 1496, 1455 

(ArC=C), 1096 (secondary alcohol C-O), 738, 699 (monosub. benzene). HRMS: Found 

[M + Na]+ 777.340. C48H50O8Na requires M 777.3403 amu. (EI) 754 (M+, 1%), 665 (2), 

664 (6), 663 (11), 92 (8), 91 (100) and 65 (10).  

 

5.2.15 Synthesis of (±)-5,5'-bis(benzyloxy)-7,7',9,9'-tetramethoxy-1,1',3,3'-

tetramethyl-1H,1'H-8,8'-bibenzo[g]isochromene 199 

 

 

To a solution of the secondary alcohol 200 (0.06 g, 0.08 mmol) in DMF (5 ml), stirred at rt 

under O2(g) (balloon) in a two neck round bottom flask, was added CuCl2.2H2O (0.014 g, 

0.080 mmol, 1 equiv.) and PdCl2 (1.4 mg, 8.1 × 10-3 mmol, 10 mol%) in H2O (5 ml). The 

resultant suspension slowly changed from light yellow to dark orange in colour and was 

left to stir at rt for 18 h. Work-up of the reaction was accomplished by adding a 10% 

solution of aqueous HCl (10 ml) and the mixture was transferred to separating funnel. The 
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organic product was extracted with EtOAc (3 × 30 ml) and CH2Cl2 (1 × 30 ml). The 

organic extracts were combined, dried over anhydrous MgSO4, filtered through celite and 

the solvent removed in vacuo. The crude yellow residue was purified by silica gel column 

chromatography (30% EtOAc/hexane) to yield the benzoisochromene 199 (0.048 g, 78%). 

 

Rf = 0.67 (30% EtOAc/hexane). Mp. = 87-90 °C. 1H NMR 

(300 MHz, CDCl3): δH = 7.60-7.57 and 7.46-7.35 (12H, m, 

overlapping signals H6 and H 6'and 2 × Ph); 7.21 (2H, s, H10 

and H10'); 6.05 (2H, s, H4 and H4'); 5.36-5.28 (2H, m, H1 and 

H1'); 5.11 (2H, d, J = 11.8 Hz, 2 × one of CH2Ph); 5.06 (2H, d, J = 11.8 Hz, 2 × one of 

CH2Ph); 3.71 (6H, s, 2 × OMe); 3.56 and 3.54 (6H, 2 × s, 2 × OMe); 2.00 (6H, s, 3-Me and 

3'-Me); 1.70 (6H, d, J = 6.5 Hz, 1-Me and 1'-Me). 13C NMR (75 MHz, CDCl3): δC = 157.1 

(2 × C), 155.4 and 154.6 (2 × C), 154.4 (2 × C), 145.7 (2 × C), 137.9 (2 × C), 130.0 

(2 × C), 129.5 (2 × C), 128.6 (2 × ArCH), 128.0 (2 × ArCH), 127.9 (2 × ArCH), 127.8 

(2 × ArCH), 123.4 (2 × C), 121.6 and 121.5 (2 × C), 116.1 and 116.0 (2 × C), 113.2 and 

113.1 (C10 and C10'), 96.1 (C6 and C6'), 95.9 and 95.8 (C4 and C4'), 75.7 (C5 and C5'), 

74.3 and 74.2 (C1 and C1'), 61.3 and 61.2 (2 × OMe), 55.7 (2 × OMe), 20.5 (1-Me and 1'-

Me), 20.0 (3-Me and 3'-Me). Some assignments were confirmed using CH correlation 

spectra. IR (CHCl3): νmax(cm-1) = 1599, 1496 and 1455 (Ar C=C), 1128 (Ar C-O). HRMS: 

Found [M + Na]+ 773.309. C48H46O8Na requires M 773.3090 amu. (EI) 750 (M+, 2%), 661 

(5), 660 (13), 659 (22), 571 (3), 570 (9), 569 (10), 285 (7), 289 (18), 92 (14), 91 (100) and 

65 (19). 
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5.2.16 Synthesis of (±)-7,7',9,9'-tetramethoxy-cis-1,3-cis-1',3'-tetramethyl-

3,3',4,4'-tetrahydro-1H,1'H-8,8'-bibenzo[g]isochromene-5,5'-diol 209 

(mixture of diastereomers) 

 

 

To a solution of the benzoisochromene 199 (0.16 g, 0.021 mmol) in a 3:1 CH2Cl2/dioxane 

mixture (40 ml), stirred at rt under H2(g) (balloon) was added 10% w/w Pd/C (0.016 g) and 

stirring was continued for 18 h. The reaction mixture was then filtered through celite, the 

filtrate concentrated on a rotary evaporator and the resultant yellow oil purified by column 

chromatography (40% EtOAc/hexane) to give the unprotected benzoisochromane 209 

(0.12 g, 100%) as a flaky off white solid. 

 

Rf = 0.30 (50% EtOAc/hexane). Mp. = 212-222 °C. 1H NMR 

(300 MHz, CDCl3 + 4 drops DMSO-d6): δH = 8.54 (2H, br s, 

2 × OH); 7.46 (2H, s, H10 and H10'); 7.39 and 7.37 (2H, 2 × br 

s, H6 and H6'); 5.00-4.93 (2H, m, H1 and H1'); 3.89-3.83 (2H, 

m, H3 and H3'); 3.81, 3.80 and 3.80 (6H, 3 × s, 2 × OMe); 3.57, 3.54 and 3.53 (6H, 4 × s, 

2 × OMe); 3.04 (2H, dd, J = 16.5 Hz and 2.5 Hz, H4α and H4α'); 2.61 (2H, dd, J = 16.5 Hz 

and 11.3 Hz, H4β and H4β'); 1.62 (6H, d, J = 6.3 Hz, 1-Me and 1'-Me); 1.42 (6H, d, 

J = 6.1 Hz, 3-Me and 3'-Me). 13C NMR (75 MHz, CDCl3 + 4 drops DMSO-d6): δC = 155.7 

(2 × C), 154.3, 154.2 and 153.1 (2 × C), 147.9 and 147.8 (C5 and C5′), 135.5 and 135.4 

(2 × C), 124.4, (2 × C), 122.8 and 122.7 (2 × C), 116.6 and 116.7 (2 × C and C10 and 

C10′), 109.0, 108.9 and 108.8 (2 × C), 95.5 (C6 and C6′), 73.3 and 73.3 (C1 and C1′), 70.2 

(C3 and C3′), 60.6 and 60.7 (2 × C), 60.5 (2 × OMe), 55.5 (2 × OMe), 31.5 (C4 and C4′), 

21.9 (3-Me and 3′-Me), 21.7 (1-Me and 1′-Me). IR (CHCl3): νmax(cm-1) = 3424 (O-H), 

1601, 1495 and 1457 (Ar C=C). HRMS: Found [M + Na]+ 597.247. C34H38O8Na requires 
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M 597.2465 amu (EI) 576 (M+ + 2, 12%), 574 (M+ + 1, 37), 574 (M+, 100), 560 (7), 559 

(32), 558 (93), 531 (4), 530 (11), 529 (17), 272 (37) and 258 (52). 

 

5.2.17 Synthesis of (±)-7,7',9,9'-tetramethoxy- cis-1,3-cis-1',3'-tetramethyl-

3,3',4,4',6,9-hexahydro-1H, 1'H-8,8'-bibenzo[g]isochromene-5,5',10,10'-

tetrone 216 

 

 

To a solution of the benzoisochromane 209 (0.10 g, 0.17 mmol) in DMF (10 ml), stirred at 

rt under an O2(g) atmosphere (balloon) was added the salcomine complex N,N′-

bis(salicylidene)ethylenediaminocobalt(II) hydrate (0.062 g, 0.19 mmol, 1.1 equiv.). 

Stirring was continued at rt for 18 h. The reaction mixture was then poured into a beaker 

containing ice H2O (100 ml) and was adjusted to pH 3 by the dropwise addition of conc. 

HCl. This mixture was transferred to a separating funnel and the organic product extracted 

with CH2Cl2 (3 × 50 ml). The organic extracts were combined, dried over anhydrous 

MgSO4, filtered through celite and the product purified by silica gel column 

chromatography (40% EtOAc/hexane) to yield the quinone 216 (0.54 g, 51%). 

 

Rf = 0.73 (50% EtOAc/hexane). Mp. = 174-177 °C, darkens 

above 132 °C. 1H NMR (300 MHz, CDCl3): δH = 7.53 (2H, s, 

H6 and H6'); 4.9-4.82 (2H, m, H1 and H1'); 3.87 (6H, s, 

2 × OMe); 3.64, 3.63, 3.62 and 3.61, (8H, 4 × s and overlapping 

m, 2 × OMe and H3 and H3'); 2.78 (2H, br d, J = 18.4 Hz, H4α and H4α'); 2.22 (2H, ddd, 

J = 18.5 Hz, 10.3 Hz and 3.2 Hz, H4β and H4β'); 1.54 (6H, d, J = 6.8 Hz, 1-Me and 1'-Me); 

1.38 (6H, d, J = 6.0 Hz, 3-Me and 3'-Me). 13C NMR (75 MHz, CDCl3): δC = 183.7 

(2 × C=O), 182.7 (2 × C=O), 161.7, 161.6, 161.5 and 161.4, (C7 and C7')a, 159.7, 159.6, 

159.5 and 159.4 (C9 and C9')a, 148.7 and 148.6 (C10a and C10a'), 140.0, 139.9 and 139.8, 

(C4a and C4a'), 135.3 and 135.2 (C5a and C5a'), 123.5, 123.4 and 123.3 (C8 and C8'), 
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119.1, 118.9, 118.8 and 118.7 (C9a and C9a'), 104.7 (C6 and C6'), 70.2 (C1 and C1'), 68.7 

(C3 and C3'), 61.9, 61.8 and 61.7 (2 ×OMe), 56.3(×2) (2 × OMe), 30.0 (C4 and C4'), 21.2 

(1-Me and 1'-Me), 20.9, 20.8 and 20.7 (3-Me and 3'-Me), assignments with the same 

superscript may be interchanged. IR (CHCl3): νmax(cm-1) = 1659 and 1573 (C=O). HRMS: 

Found [M + Na]+, 625.205. C34H34O10Na requires M 625.2050 amu (EI) 604 (M+ + 2, 

12%), 603 (M+ + 1, 33), 602 (M+ 100), 544 (13), 543 (34), 497 (7), 469 (9), 286 (18), 279 

(25), 264 (27) and 257 (37). 

 

5.2.18 Synthesis of (±)-9,9'-dihydroxy-7,7'-dimethoxy- cis-1,3-cis-1',3'-

tetramethyl-3,3',4,4',6,9-hexahydro-1H,1'H-8,8'-

bibenzo[g]isochromene-5,5',10,10'-tetrone 3 (cardinalin 3) 29 

 

 

In a flame-dried two neck round bottom flask under Ar(g), a solution of the dimethoxy 

quinone 206 (40 mg, 0.066 mmol) in dry CH2Cl2 (10 ml) was cooled to 0 °C and to this 

was added the BCl3 solution (0.27 ml, 1.00 M in CH2Cl2, 4 equiv.). The reaction mixture 

immediately changed from a light yellow colour to a dark red colour. Analysis of the 

reaction mixture by TLC after 15 min showed a new yellow spot at a slightly higher Rf and 

the absence of the starting material. The reaction still at 0 °C was quenched with H2O, 

transferred to a separating funnel and the organic product extracted with CH2Cl2 

(3 × 20 ml). The solvent was dried over anhydrous MgSO4, filtered and the solvent 

removed in vacuo. The crude material was dried over silica and purified by silica gel 

column chromatography (30% EtOAc/hexane) to yield racemic cardinalin 3 29 as a yellow 

powder (24 mg, 64%).  
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Rf = 0.83 (50% EtOAc/hexane). Mp. = 225-250 °C; (lit20 213-

220 °C, S atropisomer). The product was obtained as a mixture 

of diastereomers. Assignments with the same chemical shift as 

the natural product were assigned according to the axial 

chirality as the natural product (S). 1H NMR (400 MHz, CDCl3): δH = 12.352 and 12.349 

[2H, s, (S)-2 ×OH]; 12.31 and 12.30 [2H, s, 2 × OH]; 7.331 [2H, s, (S)-H6 and H6′]; 7.329 

[2H, s, H6 and H6′]; 4.95-4.80 (2H, m, H1 and H1′); 3.91 [6H, s, (S)-2 × OMe]; 3.90 (6H, 

s, 2 × OMe); 3.67-3.47 (2H, m, H3 and H3′); 2.76 (2H, dt, J = 18.7 Hz and 2.4 Hz, H4α 

and H4α′); 2.26 (2H, ddd, J = 18.6 Hz, 10.0 Hz and 3.9 Hz, H4β and H4β′); 1.58 [6H, d, 

J = 6.5 Hz, (S)-1-Me and 1′Me); 1.57 (6H, d, J = 6.5 Hz, 1-Me and 1′-Me); 1.37 (6H, d, 

J = 6.1 Hz, 3-Me and 3′-Me). 13C NMR (100 MHz, CDCl3): δC = 187.9 (2 × C=O), 183.2 

(2 × C=O), 163.2 (C7 and C7′), 161.0, 161.0 and 160.9 (C9 and C9′), 146.7 and 146.7 

(C10a and C10a′), 143.1 and 143.0 (C4a and C4a′), 133.2 (C5a and C5a′), 114.5 (C8 and 

C8′), 110.2 (C9a and C9a′), 102.7 (C6 and C6′), 69.8 (C1 and C1′), 68.7 (C3 and C3′), 

56.6 and 56,5 (2 × OMe), 30.6 and 30.6 (C4 and C4′), 21.3 (1-Me and 1′-Me) and 21.2 (3-

Me and 3′-Me). IR (CHCl3): νmax(cm-1) = 3450 (O-H), 1636 and 1603 (C=O). HRMS: 

Found [M+ + Na], 597.174. C32H30O10 requires M 597.1736 amu. (EI) 576 (M+ + 2, 5%), 

575 (M+ + 1, 27), 574 (M+, 100), 530 (12), 515 (35), 271 (35), 244 (37), 243 (91) and 98 

(87). 
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5.3 Experimental Work Pertaining to the Synthesis of Chromium 

tricarbonyl Complexes 

5.3.1 Attempted dynamic kinetic resolution of 5,8-dimethoxyisochroman-4-ol 

169 

 

 
 

To a stirred solution of the racemic 5,8-dimethoxyisochroman-4-ol 169 (0.050 g, 

0.23 mmol) and the acetylating agent 4-chlorophenyl acetate (0.12 g, 0.72 mmol, 3 equiv.) 

in toluene (2 ml) was added the lipase enzyme Novozyme 525 (6.0 mg). To this was added 

the ruthenium racemisation catalyst (5.2 mg, 4.7×10-6 mol, 0.02 equiv.). The reaction 

mixture was allowed to stir at rt for 36 h. TLC analysis still showed the presence of the 

unreacted alcohol. The reaction mixture was then extracted with EtOAc (3 × 80 ml) to 

isolate the organic products. The organic layers were combined and dried over anhydrous 

MgSO4, filtered through celite and the solvent removed in vacuo. The crude material was 

purified by silica gel column chromatography (30% EtOAc/hexane) to give the (S)-5,8-

dimethoxy-3,4-dihydro-1H-isochromen-4-yl acetate 227 (18 mg, 31% ) and the unreacted 

(R)-5,8-dimethoxy-isochroman-4-ol 169 (18 mg, 36%). 

 

Rf = 0.34 (50% EtOAc/hexane). Mp. = 96-98 °C. 1H NMR (300 MHz, 

CDCl3): δH = 6.72 (2H, m, H7 and H8, overlapping signals); 4.85 (1H, d, 

J = 16.0 Hz, H1a); 4.79 (1H, m, H4); 4.51 (1H, d, J = 16.0 Hz, H1b); 4.08 

(1H, dd, J = 12.0 Hz and 2.8 Hz, H3a), 3.85 (3H, s, OCH3), 3.78 (1H, dd, 

J = 12.0 Hz and 3.1 Hz, H3b), 3.76 (3H, s, OCH3), 2.88 (1H, s, OH). 13C NMR (75 MHz, 

CDCl3): δC = 151.5 (ArC-O), 149.2 (ArC-O), 125.1 (ArC), 124.7 (ArC), 109.1 (ArCH), 

108.3 (ArCH), 70.3 (C3), 64.3 (C1), 60.3 (C4), 55.7 (OCH3), 55.5 (OCH3). IR (CHCl3): 

νmax(cm-1) = 3447 (w, br, OH), 1606 (s, C=C). HRMS: Found M+ 210.0904, C11H14O4 
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requires M 210.0892 amu. (EI) 210 (M+, 94%), 180 (100), 165 (49), 151 (7), 134 (9), 120 

(10), 107 (7), 91 (12), 77 (13), 65 (7), 51 (8). 

 

 Rf  = 0.80 (50% EtOAc/hexane). Mp. = 119-121 °C. 1H NMR (300 MHz, 

CDCl3): δH = 6.79 and 6.72 (each 1H, d, J = 8.9 Hz, H7 and H8); 5.93 

(1H, m, H4); 4.83 (1H, d, J = 16.1 Hz, H1a); 4.48 (1H, d, J = 16.1 Hz, 

H1b); 4.23 (1H, dd, J = 12.9 Hz and 0.9 Hz, H3a); 3.78 (3H, s, OCH3); 

3.77 (3H, s, OCH3); 3.73 (1H, dd, J = 12.9 Hz and 2.2 Hz, H3b); 2.09 (3H, s, COCH3). 13C 

NMR (75 MHz, CDCl3): δC = 170.6 (C=O), 151.9 (ArCO), 149.0 (ArCO), 126.2 (ArC), 

120.0 (ArC), 110.2 (ArCH), 108.5 (ArCH), 68.7 (C3), 63.9 (C1), 62.5 (C4), 55.8 (OCH3), 

55.6 (OCH3), 21.2 (OCCH3). IR (CHCl3): νmax(cm-1) = 1729 (s, C=O), 1646 (s, C=C), 

1263 (s, CO). HRMS: Found M+ 252.0999 amu, C13H16O5 requires M 252.0998 amu. (EI) 

252 (M+, 29%), 192 (100), 177 (23), 149 (9), 134 (7), 105 (10), 91 (10), 77 (7). 

 

5.3.2 Synthesis of [(S)-5,8-dimethoxyisochroman-4-

ol]tricarbonylchromium(0) 170 

 

 
 

The synthesis of the (S)-5,8-dimethoxyisochroman-4-ol S-169 used in this reaction has 

been discussed in Section 2.2.1.1 of this thesis. The alcohol 169 (0.50 g, 2.4 mmol) and 

chromium hexacarbonyl (0.79 g, 3.6 mmol, 1.5 equiv.) were placed in a three neck round 

bottom flask fitted with a condenser. To this was added n-Bu2O (10 ml) and n-heptane 

(10 ml). The solution was thoroughly deoxygenated by the repeated evacuation and 

purging with Ar(g). Freshly distilled THF (1 ml) was then added and the mixture 

deoxygenated once again. The reaction flask was then covered in foil, to protect the flask 

from exposure to light. The mixture was then stirred at reflux (120 °C) for 72 h. After this 

time the reaction was allowed to cool down and the now yellow-green solution was filtered 

through a cotton wool plug and the yellow solution that was eluted was adsorbed onto 
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silica gel and purified by flash chromatography (40% EtOAc/hexane) to elute the two 

diastereomers syn- and anti-170 as yellow solids (0.14 g, 16% syn and 0.36 g, 41% anti). 

 

Rf = 0.27 (syn) and 0.13(anti) in 50% EtOAc/hexane. Mp.: 

decomposes at 140 °C. 1H NMR (300 MHz, CDCl3): δH = 5.16 (1H, d, 

J = 7.0 Hz, ArCH); 4.99 (1H, d, J = 7.1 Hz, ArCH); 4.92 (1H, d, 

J = 15.6 Hz, H1a); 4.81 (1H, d, J = 6.7 Hz, H4); 4.65 (1H, d, 

J = 15.9 Hz, H1b); 4.14 (1H, d, J = 12.3 Hz, H3a); 3.95 (1H, d, 

J = 12.4 Hz, H3b); 3.72 (3H, s, OMe); 3.65 (3H, s, OMe); 2.77 (1H, d, J = 6.8 Hz, OH). 
13C NMR (75 MHz, CDCl3): δC = 232.9 (3 × CO), 135.5(ArCO), 131.6 (ArCO), 99.0 

(ArC), 97.5 (ArC), 73.5 (ArCH), 72.3 (ArCH), 69.5 (CO), 63.3 (CO), 61.2 (CO), 56.6 

(2 × OMe). 

 

5.3.3 Synthesis of (5,8-dimethoxyisochroman-4-one)tricarbonylchromium (0) 

223 

 

 
 

The alcohol 170 (0.020 g, 5.8 ×10-5 mol) was dissolved in a 3:1 mixture of degassed 

DMSO (0.9 ml) and Ac2O (0.6 ml). The yellow solution was stirred overnight at rt in a 

round bottom flask covered with foil. Disappearance of starting material was monitored by 

TLC. After 18 h the reaction mixture had become dark orange in colour. The reaction 

mixture was diluted with EtOAc and a 20% aqueous solution of NaOH was added to the 

dilute solution. The organic product was extracted with EtOAc (3 × 20 ml). The organic 

extracts were combined, washed with brine, dried over anhydrous MgSO4, filtered and the 

solvent removed in vacuo. The crude product was dried over silica and purified by column 

chromatography to yield trace amounts of the product 223 as a dark orange solid. 
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Rf = 0.13 (50% EtOAc/hexane). Mp.: decomposes at 150 °C. 1H 

NMR (300 MHz, CDCl3): δH = 5.57 (1H, d, J = 7.3 Hz, ArCH); 4.97 

(1H, d, J = 15.3 Hz, H1a); 4.89 (1H, d, J = 11.6 Hz, ArCH); 4.78 (1H, 

d, J = 15.0 Hz, H1b); 4.40 (1H, d, J = 17.0 Hz, H3a); 4.16 (1H, d, 

J = 16.8 Hz, H3b); 3.75 (3H, s, OMe); 3.67 (3H, s, OMe). 

 

5.3.4 Synthesis of (±)-[6,6'-diallyl-7,7′-bis(allyloxy)methyl-5,5'-

bis(benzyloxy)-1,1',3,3'-tetramethoxy-2,2'-binaphthalene 235 

 

 

In a round bottom flask, fitted with a condenser, the benzylic alcohol 206 (0.12 g, 

0.17 mmol) and allyl bromide (0.034 ml, 0.048 g, 0.4 mmol, 2.4 equiv.) were dissolved in 

dry THF (50 ml). Sodium hydride (50-55% in oil, 0.044 g, 0.99 mmol, ca. 6 equiv.) was 

added and the solution was boiled for 18 h under a nitrogen atmosphere. Workup was done 

by adding H2O (10 ml) and then extracting the material with Et2O (4 × 10 ml). The organic 

layers were combined, dried with anhydrous MgSO4, filtered through celite and the solvent 

removed in vacuo. The residue was purified by silica gel column chromatography by using 

hexane as the initial eluent to remove the oil from the sodium hydride and then 20% 

EtOAc/hexane to afford the di-allylated ether 235 (0.086 g, 68%). 

 

Rf = 0.50 (20% EtOAc/hexane). 1H NMR (300 MHz, 

CDCl3): δH = 7.93 (2H, s,H8 and H8′); 7.59 (4H, d, 

J = 7.1 Hz, 4 × ArCH); 7.48–7.30 (6H, m, 6 × ArCH); 

7.26 (2H, s, H4 and H4′); 6.21–5.88 (4H, m, 

4 × CH2CH=CH2); 5.40–5.16 (4H, m, 2 × CH2CH=CH2); 5.15–4.93 (8H, m, 

2 × CH2CH=CH2, 2 × ArCH2O, overlapping signals); 4.69 (4H, s, 2 × OCH2Ph); 4.07 (4H 

d, J = 5.6 Hz, 2 × CH2CH=CH2); 3.79 (4H, d, J = 2.8 Hz, 2 × CH2CH=CH2); 3.70 (6H, s, 

2 × OMe); 3.61 (6H, s, 2 × OMe). 13C NMR (75 MHz, CDCl3): δC = 157.1 (2 × ArC), 
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155.4 (2 × ArC), 152.6 (2 × ArC), 137.9 (2 × ArC), 137.3 (2 × CH2CH=CH2), 134.9 

(2 × ArC), 132.8 (2 × CH2CH=CH2), 129.5 (2 × ArC), 128.7 (4 × ArCH), 127.9 

(2 × ArCH), 127.5 (4 × ArCH), 123.8 (2 × ArC), 119.8 (2 × CH2CH=CH2), 117.0 

(2 × ArC), 116.9 (2 × CH2CH=CH2), 115.2 (C8 and C8'), 96.2 (C4 and C4'), 75.8 

(2 × CH2Ph), 71.0 (2 × CH2O), 61.3 (2 × CH2CH=CH2), 55.6 (2 × OMe), 55.6 (2 × OMe), 

30.5 (2 × CH2CH=CH2).  

 

5.3.5 Synthesis of (±)-5,5'-bis(benzyloxy)-7,7',9,9'-tetramethoxy-1H,1'H-8,8'-

bibenzo[g]isochromene 236 

 

Isom. cat.,
Grubbs II,

toluene, 18 h

O
O

O
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O
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A round bottom flask, equipped with a condenser, was set up under Ar(g). Neat diallyl 

ether 235 (0.080 g, 9.9 × 10−5 mol) was placed in the flask and the isomerisation catalyst, 

[RuClH(CO)(PPh3)3] (5.0 mg, 5 mol%, 5.0 × 10−6 mol) was added. The mixture was 

heated for 3 h at 90 °C. In this time the mixture went from light yellow to dark brown. Dry 

toluene (2 ml) and the second generation Grubbs catalyst (4.2 mg, 0.5 mol%, 

5.0 × 10−6 mol) were then added to the flask and the solution cooled slightly to 70 °C and 

left at this temperature for 18 h. The material was dried onto silica while removing the 

solvent in vacuo. The material was then purified by silica gel column chromatography 

(10% EtOAc/hexane) to afford the isochromene 236 (0.035 g, 51%). 

 

Rf = 0.37 (20% EtOAc/hexane). 1H NMR (300 MHz, CDCl3): 

δH = 7.56–7.45 (6H, m, ArCH); 7.32 (6H, dt, J = 7.0 Hz, ArCH); 

7.16 (2H, d, J = 2.6 Hz, ArCH); 6.63 (2H, d, J = 5.8 Hz, H3 and 

H3′); 6.16 (2H, d, J = 5.8 Hz, H4 and H4′); 5.11 (4H, s, 

2 × OCH2Ph); 5.02 (4H, d, J = 2.7 Hz, H1 and H1′); 3.64 (6H, s, 2 × OMe); 3.48 (6H, s, 

2 × OMe). 13C NMR (75 MHz, CDCl3): δC = 157.1 (2 ×ArC), 155.3 (2 ×ArC), 147.0 (2 
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×ArC), 146.6 (2 ×ArC), 137.7 (2 ×ArC), 129.9 (2 × C), 128.6 (4 × ArCH), 128.1 

(2 × ArCH), 128.0 (4 × ArCH), 126.1 (2 × C), 123.9 (2 × C), 120.4 (2 × C), 116.6 (2 × C), 

113.9 (2 × C), 100.4 (C10 and C10'), 96.3 (C6 and C6'), 76.1 (2 ×OCH2Ph), 68.5 (C1 and 

C1'), 61.3 (2 × OMe), 55.7 (2 × OMe). 

  



Chapter 5: Experimental Procedures 
__________________________________ 

 

167 

5.4 Experimental Work Pertaining to the Synthesis of Isochromanes using 

Cross Metathesis 

5.4.1 Synthesis of (2-allyl-3,6-dimethoxybenzyloxy)(tert-butyl)dimethylsilane 

239 

 

 
 

In a 100 ml two neck round bottom flask under Ar(g) and fitted with a condenser, the 

benzyl alcohol 173 (1.0 g, 4.8 mmol) and TBDMSCl (0.87 g, 5.8 mmol, 1.2 equiv.) were 

dissolved in dry THF (100 ml). NaH (0.63 g, 14 mmol, 3 equiv.) was then added and the 

solution was boiled for 14 h. The work up was done by adding H2O to quench the excess 

of NaH and the organic product was extracted with EtOAc (3 × 100 ml). The organic 

fractions were combined, washed with brine and dried over anhydrous MgSO4. It was then 

filtered and the solvent was removed in vacuo. The residue was purified by column 

chromatography by using hexane as the initial eluent to remove the oil residue from the 

NaH suspension and then 10% EtOAc/hexane to yield the product 239 as a clear oil 

(1.33 g, 86%). 

 

Rƒ = 0.73 (20% EtOAc/hexane). 1H NMR (300 MHz, CDCl3): 

δH = 6.76 (2H, d, J = 8.9 Hz, H3 and H4, overlapping signals); 6.00 

(1H, ddt, J = 17.7 Hz, 9.19 Hz and 6.0 Hz, CH2CH=CH2); 4.98 (1H, t, 

J = 1.6 Hz, CH2CH=CH2); 4.93 (1H, dq, J = 6.6 Hz, 1.9 Hz and 1.8 Hz, 

CH2CH=CH2); 4.77 (2H, s, CH2OSi); 3.79 (3H, s, OCH3); 3.78 (3H, s, 

OCH3); 3.59 (2H, ddd, J = 6.0 Hz and 1.7 Hz, CH2CH=CH2); 0.92 (9H, s, C(CH3)3); 0.09 

(6H, s, Si(CH3)2). 13C NMR (75 MHz, CDCl3) δC = 152.0 (ArCO), 152.0 (ArCO), 137.3 

(CH2CH=CH2), 129.9 (ArC), 128.9 (ArC), 114.3 (CH2CH=CH2), 110.8 (ArCH), 109.5 

(ArCH), 56.2 (OCH3), 56.2 (OCH3), 56.1 (ArCH2OSi), 30.2 (CH2CH=CH2), 26.0 

(C(CH3)3), 18.5 (C(CH3)3), −5.3 (Si(CH3)2). IR: νmax(cm-1) = 2953, 1599 (C=C). HRMS: 
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Found M+ 322.19649, C18H30O3Si requires M 322.19642 amu. (EI) 317 (4%), 323 (100), 

329 (2) 

 

5.4.2 Synthesis of (E)-ethyl 4-(2-((tert-butyldimethylsilyloxy)methyl)-3,6-

dimethoxyphenyl)but-2-enoate 240 

 

 
 

The alkene 239 (1.63 g, 5.07 mmol) and ethyl acrylate (1.27 g; 1.38 ml; 12.7 mmol; 

2.5 equiv.) were dissolved in dry toluene (50 ml) in a two neck round bottom flask fitted 

with a condenser. The Grubbs II catalyst (0.065 g; 7.6 × 10-5 mol; 1.5 mol%) was then 

added to this solution and the mixture was allowed to stir for 18 h at 90 °C. After this time 

the reaction was cooled down and the reaction mixture directly dried onto silica and 

purified by column chromatography with 10% EtOAc/hexane as the eluent to yield the 

product 240 as a clear oil (1.24 g, 62%). 

 

Rƒ = 0.37 (10% EtOAc/hexane). 1H NMR (300 MHz, CDCl3): 

δH = 7.12 (1H, dt, J = 15.60 Hz and 6.12, Hz, H8); 6.76 (2H, 

dd, J = 8.99 Hz, H3 and H4); 5.66 (1H, d, J = 15.63 Hz, H9); 

4.72 (2H, s, ArCH2OSi); 4.13 (2H, q, J = 7.13 Hz, CH2CH3); 

3.77 (3H, s, OCH3); 3.76 (3H, s, OCH3); 3.69 (2H, dd, 

J = 6.11 Hz and 1.32 Hz, H7); 1.24 (3H, t, J = 7.12 Hz, CH2CH3); 0.88 (9H, s, C(CH3)3); 

0.06 (6H, s, Si(CH3)2). 13C NMR (75 MHz, CDCl3): δC = 166.9 (C=O), 151.9 (ArCO), 

151.6 (ArCO), 148.0 (C8), 128.8 (ArC), 127.7 (ArC), 121.1 (C9), 110.5 (ArCH), 109.8 

(ArCH), 60.0 (CH2CH3), 56.2 (OCH3), 56.1 (OCH3), 55.9 (ArCH2OSi), 28.9 (C7), 26.0 

(C(CH3)3), 18.4 (C(CH3)3), 14.2 (CH2CH3), −5.3 (Si(CH3)2). IR: νmax(cm-1) = 2932, 1483, 

1719 (C=O). HRMS: Found M+ 394.21714, C21H34O5Si requires M 394.21755 amu.
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5.4.3 Synthesis of ethyl 2-(5,8-dimethoxyisochroman-3-yl)acetate 180 

 

OMe

OMe

OTBS

O

OMe

OMe
O

OOO
TBAF,
THF

240 180  
 

The ester 240 (0.095 g, 0.24 mmol) was dissolved in freshly distilled THF (30 ml) 

containing acetic acid (0.015 ml, 0.027 mmol, 1.1 equiv.) in a dry two neck round bottom 

flask under Ar(g). The reaction mixture was cooled to 0 °C by means of an ice bath and 

once cooled, the TBAF solution (1 M in THF, 0.72 ml, 0.72 mmol, 3 equiv.) was added in 

one portion. The reaction mixture was allowed to warm up to rt. Completion of the 

reaction was monitored by TLC (approx. 1 h). The reaction mixture was then transferred to 

a separating funnel and diluted with EtOAc and H2O. After thorough mixing, the organic 

phase was separated and the aqueous phase further extracted with EtOAc (3 × 50 ml). The 

organic fractions were combined, dried over anhydrous MgSO4, filtered and the solvent 

removed in vacuo. The crude material was purified by column chromatography (50% 

EtOAc/hexane) to yield the product 180 as a clear oil (0.051 g, 55% yield). 

 

Rƒ = 0.27 (10% EtOAc/hexane). 1H NMR (300 MHz, CDCl3): 

δH = 6.66 (1H, d, J = 8.91 Hz, ArCH); 6.61 (1H, d, 

J = 8.91 Hz, ArCH); 4.91 (1H, d, J = 15.95 Hz, H1a); 4.62 

(1H, d, J = 15.95 Hz, H1b); 4.19 (2H, dq, J = 7.16 Hz and 

2.00 Hz, CH2CH3); 4.11-3.99 (1H, m, H3); 3.78 (3H, s, OCH3); 3.75 (3H, s, OCH3); 2.83 

(1H, dd, J = 16.86 Hz and 1.79 Hz, H4a); 2.65 (2H, 2 × dd, J = 15.46 Hz and 6.51 Hz, 

H8); 2.45 (1H, dd, J = 16.82 Hz and 10.87 Hz, H4b); 1.28 (3H, t, J = 7.15 Hz, CH2CH3). 
13C NMR (75 MHz, CDCl3): δC = 171.1 (C=O), 150.9 (ArCO), 149.4 (ArCO), 124.4 

(ArC), 123.1 (ArC), 107.5 (ArCH), 107.0 (ArCH), 70.7 (C3), 64.7 (C1), 60.6 (CH2CH3), 

55.6 (OCH3), 55.4 (OCH3), 41.2 (C8), 28.2 (C4), 14.2 (CH2CH3). IR: νmax(cm-1) = 2937, 

1732 (C=O). HRMS: Found M+ 280.12993, C15H20O5 requires M 280.13107 amu. (EI) 227 

(10%), 274 (1). 
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5.4.4 Synthesis of (E)-ethyl 4-(2-(hydroxymethyl)-3,6-dimethoxyphenyl)but-

2-enoate 179 

 

 
 

The protected alcohol 240 (0.050 g, 0.13 mmol) was placed in two neck round bottom 

flask containing MeCN (10 ml). HF (48%, 9.1 μl, 0.25 mmol, 2 equiv.) was to this solution 

at rt and the reaction monitored by TLC. Once the reaction was complete, saturated 

NaHCO3 was added to the reaction mixture and the organic products were extracted with 

EtOAc (3 × 20 ml). The organic products were combined, dried over anhydrous MgSO4, 

filtered and the solvent removed in vacuo. The crude material was purified by column 

chromatography (50% EtOAc/hexane) to yield the benzylic alcohol 179 (0.025 g, 72%). 

 

Rƒ = 0.10 (50% EtOAc/hexane). Mp.: 100-103 °C. 1H NMR 

(300 MHz, CDCl3): δH = 7.07 (1H, dt, J = 15.64 Hz and 

5.91 Hz, H8); 6.78 (1H, d, J = 8.99 Hz, ArCH); 6.74 (1H, d, 

J = 8.98 Hz, ArCH); 5.84 (1H, m, OH); 5.59 (1H, dd, 

J = 15.62 Hz and 1.59 Hz, H9); 4.39 (2H, d, J = 5.68 Hz, ArCH2O); 4.11 (2H, q, 

J = 7.12 Hz, CH2CH3); 3.80 (3H, s, OCH3); 3.75 (3H, s, OCH3); 3.73-3.70 (2H, m, H7); 

1.23 (3H, t, J = 7.13 Hz, CH2CH3). 13C NMR (75 MHz, CDCl3): δC = 166.6 (C=O), 152.3 

(ArCO), 151.7 (ArCO), 147.4 (C8), 128.8 (ArC), 126.2 (ArC), 121.4 (C9), 110.5 (ArCH), 

109.4 (ArCH), 60.1 (CH2CH3), 57.4 (ArCH2O), 56.0 (OCH3), 55.8 (OCH3), 28.6 (C7), 

14.2 (CH2CH3). IR: νmax(cm-1) = 3255 (OH), 1714 (C=O). 
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5.4.5 Synthesis of 2-allyl-3,6-dimethoxybenzyldehyde 244 

 

 
 

PCC (4.35 g, 20.0 mmol, 2.1 equiv.) dissolved in MeCN (30 ml) was dried onto neutral 

Al2O3 (50 g) with a rotary evaporator. This solid was then added to a solution of the 

alcohol 173 (2.0 g, 9.6 mmol) in dry CH2Cl2 (150 ml). The reaction mixture became 

progressively darker and was allowed to stir for 18 h under Ar(g). 

Once the reaction was complete (as monitored by TLC), the reaction mixture was filtered 

through celite and concentrated on a rotary evaporator. The crude material was purified by 

column chromatography (20% to 30% EtOAc/hexane) to yield the product 244 as a clear 

oil (1.89 g, 96%). 

 

Rƒ = 0.43 (20% EtOAc/hexane). 1H NMR (300 MHz, CDCl3): δH = 10.57 

(1H, s, CHO); 7.05 (1H, d, J = 9.04 Hz, ArCH, H3 or H4); 6.82 (1H, d, 

J = 9.04 Hz, ArCH, H3 or H4); 5.96 (1H, ddt, J = 16.24 Hz, 10.09 Hz 

and 6.14 Hz, CH2CH=CH2); 5.02-4.92 (2H, m, CH2CH=CH2); 3.85 (3H, 

s, OCH3); 3.80 (3H, s, OCH3); 3.78 (2H, dt, J = 6.13 Hz and 1.58 Hz, CH2CH=CH2). 13C 

NMR (75 MHz, CDCl3): δC = 192.4 (CHO), 156.9 (ArCO), 151.8 (ArCO), 136.7 

(CH2CH=CH2), 131.5 (ArC), 124.1 (ArC), 117.2 (ArCH), 114.8 (CH2CH=CH2), 109.8 

(ArCH), 56.6 (OCH3), 56.1 (OCH3), 29.4 (CH2CH=CH2). IR: νmax(cm-1) = 2941, 1684 

(C=O). HRMS: Found M+ 206.09311, C12H14O3 requires M 206.09429 amu. (EI) 191 

(100%), 193 (12), 198 (4), 201 (2), 206 (40). 
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5.4.6 Synthesis of 1-(2-allyl-3,6-dimethoxyphenyl)ethanol 245 

 

 
 

Mg metal (0.23 g, 9.6 mmol, 1.6 equiv.) was placed in a dry two neck round bottom flask 

fitted with a dropping funnel and a condenser, all under Ar(g). Dry Et2O (20 ml) was then 

placed in the flask, followed by MeI (1.3 g, 0.56 ml, 9.0 mmol, 1.5 equiv.). The mixture 

quickly became cloudy with an increase in the temperature. Once all the Mg metal had 

reacted, the dropping funnel was charged with a solution of the aldehyde 244 (1.0 g, 

6.0 mmol) in THF (25 ml), and this solution was added dropwise to the cloudy Grignard 

suspension. 

The solution was allowed to stir for 18 h at rt. Once complete the reaction mixture was 

cooled on an ice bath and H2O was added to quench the excess of the Grignard reagent. 

The mixture was then transferred to a separating funnel and the organic product was 

extracted with EtOAc (3 × 50 ml) and CH2Cl2 (2 × 30 ml). The organic extracts were 

combined, dried over anhydrous MgSO4, filtered and the solvent removed in vacuo. The 

crude product was purified by column chromatography (20% to 30% EtOAc/hexane) to 

yield the pure product 245 as a clear oil (1.07 g, 98%). 

 

Rƒ = 0.33 (30% EtOAc/hexane). 1H NMR (300 MHz, CDCl3): δH = 6.75 

(1H each, d, J = 8.9 Hz, H3 and H4, overlapping signals); 5.92 (1H, ddt, 

J = 17.06 Hz, 10.17 Hz and 5.83 Hz, CH2CH=CH2); 5.09-4.90 (3H, m, 

CH2CH=CH2 and ArCH(CH3), overlapping signals); 4.03 (1H, d, 

J = 11.22 Hz, OH); 3.85 (3H, s, OCH3); 3.77 (3H s, OCH3); 3.45 (2H, m, CH2CH=CH2); 

1.52 (3H, d, J = 6.69 Hz, ArCH(CH3)). 13C NMR (75 MHz, CDCl3): δC = 151.9 (ArCO), 

151.8 (ArCO), 136.5 (CH2CH=CH2), 132.7 (ArC), 126.2 (ArC), 114.9 (CH2CH=CH2), 

109.5 (ArCH), 109.4 (ArCH), 67.3 (ArCH(CH3)), 56.2 (OCH3), 55.5 (OCH3), 29.8 

(CH2CH=CH2), 23.6 (ArCH(CH3)). IR: νmax(cm-1) = 3547 (OH).  
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5.4.7 Synthesis of (1-(2-allyl-3,6-dimethoxyphenyl)ethoxy)(tert-butyl)-

dimethylsilane 243 

 

 
 

The alcohol 245 (1.79 g, 8.05 mmol) and TBDMSCl (1.46 g, 9.67 mmol, 1.2 equiv.) were 

placed in a dry two neck round bottom flask containing freshly distilled THF (100 ml). 

NaH (55% suspension in oil, 1.05 g, 24.2 mmol, 3 equiv.) was then added to this clear 

solution and the now cloudy mixture was boiled at reflux for 14 h under an Ar(g) 

atmosphere. 

The reaction was quenched by the addition of H2O and the organic product was extracted 

with EtOAc (3 × 100 ml). The organic fractions were combined, dried over anhydrous 

MgSO4, filtered and the solvent removed in vacuo. The residue was then purified by 

column chromatography by using hexane as the initial eluent to remove the oil from the 

NaH and then 5% EtOAc/hexane to produce the protected alcohol 243 in 93% yield 

(2.53 g). 

 

Rƒ = 0.70 (20% EtOAc/hexane). 1H NMR (300 MHz, CDCl3): 

δH = 6.70 (1H each, d, J = 8.93 Hz, H3 and H4, overlapping signals); 

5.98 (1H, ddd, J = 22.34 Hz, 10.91 Hz and 5.81 Hz, CH2CH=CH2); 5.60 

(1H, q, J = 6.6 Hz, ArCH(CH3)); 4.96-4.86 (2H, m, CH2CH=CH2); 4.04 

(1H, dd, J = 15.13 Hz and 6.20 Hz, CH2CH=CH2); 3.76 (3H, s, OCH3), 

3.76 (3H, s, OCH3); 3.57 (1H, dd, J = 15.21 Hz and 5.31 Hz, CH2CH=CH2); 1.43 (3H, d, 

J = 6.6 Hz, ArCH(CH3)); 0.85 (9H, s, C(CH3)3); 0.01 (3H, s, Si(CH3)2); −0.13 (3H, s, 

Si(CH3)2). 13C NMR (75 MHz, CDCl3): δC = 152.8 (ArCO), 150.5 (ArCO), 138.5 

(CH2CH=CH2), 133.6 (ArC), 129.0 (ArC), 114.0 (CH2CH=CH2), 109.5 (ArCH, C3 or C4), 

109.1 (ArCH, C3 or C4), 64.4 (ArCH(CH3)), 56.2 (OCH3), 55.9 (OCH3), 30.6 

(CH2CH=CH2), 25.9 (C(CH3)3), 24.5 (ArCH(CH3)), 18.2 (C(CH3)3), −4.9 (Si(CH3)2), −5.1 

(Si(CH3)2). IR: νmax(cm-1) = 2953, 1474 (C=C).  
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5.4.8 Synthesis of (E)-ethyl 4-(2-(1-(tert-butyldimethylsilyloxy)ethyl)-3,6-

dimethoxyphenyl)but-2-enoate 242 

 

 
 

The alkene 243 (0.1 g, 0.3 mmol) and ethyl acrylate (0.074 g, 0.081 ml, 0.74 mmol, 

2.5 equiv.) were dissolved in dry toluene (20 ml) in a two neck round bottom flask fitted 

with a condenser. The Grubbs II catalyst (3.78 mg, 4.46 × 10-6 mol; 1.5 mol%) was then 

added to this solution and the mixture was allowed to stir for 18 h at 90 °C. After this time 

the reaction was cooled down and the reaction mixture directly dried onto silica and 

purified by silica gel chromatography with 10% EtOAc/hexane as the eluent to yield the 

product 242 as a clear oil (0.101 g, 83%). 

 

Rƒ = 0.37 (10% EtOAc/hexane). Mp.: 64-66 °C, 1H NMR 

(300 MHz, CDCl3): δH = 7.13 (1H, td, J = 15.65 Hz and 

5.93 Hz, H8); 6.71 (2H, s, H3 and H4); 5.96-5.59 (2H, m, H9 

and ArCH(CH3), overlapping signals); 4.21-4.09 (3H, m, H7a 

and CH2CH3, overlapping signals); 3.78 (1H, dd, J = 11.57 Hz 

and 6.53 Hz, H7b); 3.76 (3H, s, OCH3); 3.73 (3H, s, OCH3); 1.39 (3H, d, J = 6.68 Hz, 

ArCH(CH3)); 1.25 (3H, t, J = 7.13 Hz, CH2CH3); 0.85 (9H, s, C(CH3)3); 0.03 (3H, s, 

Si(CH3)2); −0.10 (3H, s, Si(CH3)2). 13C NMR (75 MHz, CDCl3): δC = 167.1 (C=O), 152.7 

(ArCO), 150.1 (ArCO), 149.7 (C8), 133.7 (ArC), 126.7 (ArC), 120.7 (C9), 109.4 (ArCH), 

109.2 (ArCH), 64.2 (ArCH(CH3)), 59.9 (CH2CH3), 56.2 (OCH3), 55.7 (OCH3), 29.4 (C7), 

25.9 (C(CH3)3), 24.7 (ArCH(CH3)), 18.2 (C(CH3)3), 14.3 (CH2CH3), −4.9 (Si(CH3)2), −5.1 

(Si(CH3)2). IR: νmax(cm-1) = 2860, 1715 (C=O). 
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5.4.9 Synthesis of cis and trans ethyl 2-(5,8-dimethoxy-1-methylisochroman-

3-yl) acetate 241 

 

 
 

The ester 242 (0.091 g, 0.22 mmol) was dissolved in freshly distilled THF (30 ml) 

containing HOAc (0.014 ml, 2.5 ×10-5 mol, 1.1 equiv.) in a dry two neck round bottom 

flask under Ar(g). The reaction mixture was cooled to 0 °C by means of an ice bath and 

once cooled, the TBAF solution (1 M in THF, 0.67 ml, 0.67 mmol, 3 equiv.) was added in 

one portion. The reaction mixture was allowed to warm up to rt. Completion of the 

reaction was monitored by TLC (approx. 1 h). The reaction mixture was then transferred to 

a separating funnel and diluted with EtOAc and H2O. After thorough mixing, the organic 

phase was separated and the aqueous phase further extracted with EtOAc (3 × 50 ml). The 

combined organic fractions were combined, dried over anhydrous MgSO4, filtered and the 

solvent removed in vacuo. The crude material was purified by column chromatography 

(50% EtOAc/hexane) to yield the product 241 as a clear oil (0.038 g, 58% yield). 

 

Rƒ = 0.20 (10% EtOAc/hexane). The molecule was isolated as 

an inseparable mixture of diastereomers (in a ratio of 1:0.9, 

trans: cis) and there were additional signals in the NMR 

spectrum. 1H NMR (300 MHz, CDCl3): δH = 6.74-6.57 (4H, m, 

2 × ArCH, H6 and H7); 5.11-4.96 (2H, 2 × q, J = 6.5 Hz, 2 × H1); 4.39 (1H, dt, J = 8.3 Hz, 

H3); 4.19 (4H, q, J = 6.31 Hz and 6.28 Hz, 2 × CH2CH3); 3.94 (1H, dt, J = 5.5 Hz, H3); 

3.80-3.70 (12H, m, 2 × (2 × OCH3)); 2.92-2.29 (8H, m, 2 ×H4 and 2 × H8); 1.51 (6H, d, 

J = 6.8 Hz, 2 × ArCH(CH3)); 1.28 (6H, dd, J = 12.87 Hz and 6.99 Hz, 2 × CH2CH3). 13C 

NMR (75 MHz, CDCl3): δC = 171.3 (C=O), 150.8 and 150.6 (ArCO), 150.2 and 149.4 

(ArCO), 129.2 and 129.0 (ArC), 124.5 and 122.7 (ArC), 108.1 and 107.7 (ArCH), 107.5 

and 107.4 (ArCH), 71.2 and 69.8 (C3), 68.5 and 63.4 (C1), 60.5 and 60.4 (CH2CH3), 55.7 

and 55.6 (OCH3), 55.4 and 55.4 (OCH3), 41.4 and 41.2 (C8), 29.2 and 28.2 (C4), 21.6 and 

19.2 (ArCH(CH3)), 14.2 (CH2CH3). IR: νmax(cm-1) = 2976, 1733 (C=O). HRMS: Found 
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M+ 294.00938, C16H22O5 requires M 294.14672 amu. (EI), 279 (88%), 286 (100), 291 (66), 

298 (80). 

 

5.4.10 Synthesis of (E)-ethyl 4-(2-(1-hydroxyethyl)-3,6-dimethoxyphenyl)but-

2-enoate 246 

 

 
 

The protected alcohol 242 (0.050 g, 0.12 mmol) was placed in two neck round bottom 

flask containing MeCN (10 ml). HF (48%, 8.8 μl, 0.24 mmol, 2 equiv.) was added to this 

solution at rt and the reaction monitored by TLC. Once the reaction was complete, 

saturated NaHCO3 was added to the reaction mixture and the organic products were 

extracted with EtOAc (3 × 20 ml). The organic products were combined, dried over 

anhydrous MgSO4, filtered and the solvent removed in vacuo. The crude material was 

purified by column chromatography (50% EtOAc/hexane) to yield the benzylic alcohol 

246 (0.031 g, 86%). 

 

Rƒ = 0.13 (50% EtOAc/hexane). Mp.: 104-107 °C, 1H NMR 

(300 MHz, CDCl3): δH = 7.08 (1H, dt, J = 15.63 Hz and 

5.95 Hz, H8); 6.87-6.66 (3H, m, H3, H4 and H9, overlapping 

signals); 5.63 (1H, d, J = 15.66 Hz, OH); 5.49-5.35 (1H, m, 

Ar(CH)CH3); 4.12 (2H, q, J = 7.12 Hz, CH2CH3); 3.85 (3H, s, OCH3); 3.76 (2H, dd, 

J = 5.96 Hz and 1.37 Hz, H7); 3.73 (3H, s, OCH3); 1.38 (3H, d, J = 6.95 Hz, Ar(CH)CH3); 

1.23 (3H, t, J = 7.13 Hz, CH2CH3). 13C NMR (75 MHz, CDCl3): δC = 166.6 (C=O), 152.0 

(ArCO), 151.8 (ArCO), 147.2 (C8), 130.9 (ArC), 125.1 (ArC), 121.4 (C9), 110.0 (ArCH), 

109.4 (ArCH), 60.0 (Ar(CH)CH3), 56.0 (OCH3), 55.6 (OCH3), 43.8 (CH2CH3), 28.7 (C7), 

23.5 (ArCH(CH3)), 14.1 (CH2CH3). IR: νmax(cm-1) = 3256 (OH), 1714 (C=O). 
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5.5 Experimental Work Pertaining to the Synthesis of Indolines 

5.5.1 Synthesis of N-allyl aniline 315 

 

 
 

Aniline 273 (7.70 g, 7.53 ml, 83.0 mmol, 2 equiv.) was dissolved in DMF (15 ml) in a two 

neck round bottom flask fitted with a dropping funnel. The solution was cooled to 0 ºC by 

means of an ice bath. Allyl bromide (5.0 g, 3.6 ml, 41 mmol) was placed in the dropping 

funnel and this was added dropwise to the above solution. The mixture was then stirred at 

40 ºC for 18 h. Once the reaction was complete, the crude reaction mixture was poured into 

cold H2O and the solution made alkaline with a 2 M NaOH solution. The organic product 

was then extracted with EtOAc (3 × 100 ml). The combined organic layers were washed 

with H2O and dried over anhydrous Na2SO4, filtered and the solvent removed in vacuo. 

The brown residue collected was purified by column chromatography (hexane) to yield the 

products 315 and 316 as yellow oils (4.31 g, 79% of monoallylated aniline 315, 1.34 g, 

19% of diallylated aniline 316). 

 
1H NMR (300 MHz, CDCl3): δH = 7.18 (2H, t, J = 7.1 Hz, H2 and H6), 

6.67 (3H, t, J = 9.4 Hz, H3, H4 and H5), 5.98–5.71 (2H, m, 

2 × CH2CH=CH2), 5.29–5.04 (4H, m, 2 × CH2CH=CH2), 3.90 (4H, d, 

J = 3.0 Hz, 2 × CH2CH=CH2). 13C NMR (75 MHz, CDCl3): δC = 148.7 

(ArCN), 134.0 (C2 and C6), 129.0 (C3 and C5), 116.3 (C4), 115.9 (2 × CH2CH=CH2), 

112.3 (2 × CH2CH=CH2), 52.68 (2 × CH2CH=CH2). 
1H NMR (300 MHz, CDCl3): δH = 7.16 (2H, t, J = 7.7 Hz, H3 and H5 ), 

6.69 (1H, t, J = 7.3 Hz, H4), 6.60 (2H d, J = 8.4 Hz, H2 and H6), 5.93 (1H, 

m, CH2CH=CH2), 5.20 (1H dd, J = 35.8 Hz and 13.7 Hz, CH2CH=CH2), 

3.74 (1H, d, J = 5.2 Hz, CH2CH=CH2 and NH, overlapping signals). 13C 

NMR (75 MHz, CDCl3): δC = 148.0 (ArCN), 135.4 (CH2CH=CH2), 129.1 (C2 and C4), 

117.4 (C4), 116.1 (CH2CH=CH2), 112.9 (C3 and C5), 46.5 (CH2CH=CH2). 
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5.5.2 Synthesis of 2-allyl aniline 263 

 

 
 

According to the procedure by Beholz et al.140 in a two neck round bottom flask fitted with 

a condenser, N-allyl aniline 315 (5.9 g, 44 mmol) and ZnCl2 (7.3 g, 1.2 equiv. 53 mmol) 

were added to dry xylene (89 ml, 0.5 M relative to aniline). The reaction was heated to 

140 ºC and allowed to react for 8 h. The reaction was then cooled down to 0 ºC and 

quenched by the addition of a 15% solution of aqueous NaOH. The organic products were 

extracted with EtOAc (3 × 100 ml). The organic fractions were combined, dried over 

anhydrous Na2SO4, filtered and the solvent removed in vacuo. The product was then 

purified by silica gel column chromatography (5% EtOAc/hexane) to yield the product 263 

(2.22 g, 38%). The procedure was repeated with other Lewis acids: BF3.OEt2 and AlCl3. 

 
1H NMR (300 MHz, CDCl3): δH = 7.11–6.97 (2H, m, H6 and H3), 6.73 

(1H, t, J = 7.4 Hz, H4), 6.65 (1H, t, J = 6.5 Hz, H5), 5.93 (1H, ddt, 

J = 16.6 Hz, 10.4 Hz and 6.2 Hz, CH2CH=CH2), 5.16–4.98 (2H, m, 

CH2CH=CH2), 3.61 (2H, br s, NH2), 3.27 (2H, d, J = 6.2 Hz, CH2CH=CH2). 13C NMR 

(75 MHz, CDCl3): δC = δ144.7 (ArCN), 135.8 (CH2CH=CH2), 130.0 (ArCH), 127.4 

(ArCH), 123.9 (C2), 118.7 (ArCH), 116.0 (CH2CH=CH2), 115.7 (ArCH), 36.3 

(CH2CH=CH2). 

 

5.5.3 Synthesis of N-allyl-N-aniline 321 

 

 
 

Allyl bromide (2.5 g, 1.8 ml, 0.020 ml, 1.1 equiv.) and Na2CO3 (1.2 g, 0.011 mol, 

0.6 equiv.) were added to a 0.5 M solution of N-methyl aniline 320 (2.0 g, 2.0 ml, 
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0.019 mol) in a 4:1 mixture of ethanol to H2O (30 ml: 7.5 ml). This mixture was allowed to 

stir for 14 h at rt. The ethanol was then removed in vacuo and the organic product was 

extracted with EtOAc (3 × 50 ml). The organic extracts were combined, dried over 

anhydrous Na2SO4, filtered and the solvent removed in vacuo. The crude oil was purified 

by column chromatography (5% EtOAc/hexane) to yield the product 321 as a yellow oil 

(1.85 g, 66%). 

 

Rf = 0.77 (20% EtOAc/hexane). 1H NMR (300 MHz): δH = 7.24-7.18 (2H, 

m, H2 and H6); 6.70 (3H, dd, J = 7.3 Hz and 8.4 Hz, H3, H4 and H5); 5.83 

(1H, tdd, J = 5.1 Hz, 10.2 Hz and 17.0 Hz, CH2CH=CH2); 5.19-5.12 (2H, m, 

CH2CH=CH2); 3.91-3.89 (2H, m, CH2CH=CH2); 2.92 (3H, s, NCH3). 13C 

NMR (75 MHz): δC = 149.5 (ArCN), 133.8 (CH2CH=CH2), 129.1 (C3 and C5), 116.4 

(C4), 116.1 (CH2CH=CH2), 112.4 (C2 and C6), 55.2 (CH2CH=CH2), 37.9 (NCH3). IR: 

νmax(cm-1) = 2893, 1642, 1503 (ArCH). HRMS: Found M+ 147.1041, C10H13N requires M 

147.1048 amu. (EI) 142 (2%), 144 (4), 146 (36), 147 (100). 

 

5.5.4 Synthesis of 2-Allyl-N-methylbenzenamine 322 

 

 
 

N-allyl-N-methylaniline 321 (13.6 g, 0.0920 mol) and AlCl3 (16.7 g, 0.123 mol, 1.2 equiv.) 

were added to dry xylene (204 ml) to make up a 0.5 M solution in a two neck round bottom 

flask fitted with a condenser. The reaction was then heated to 140 °C and allowed to react 

for 8 h. The reaction was quenched at 0 °C by the addition of a 15% solution of aqueous 

NaOH solution. The organic product was extracted with EtOAc (3 × 100 ml) and the 

organic extracts were combined, dried over anhydrous Na2SO4, filtered and the solvent 

removed in vacuo. The crude product was then purified by column chromatography (5% 

EtOAc/hexane) to yield 322 as a yellow oil (8.93 g, 61%). 
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1H NMR (300 MHz): δH = 7.18 (1H, dt, J = 7.8 Hz and 1.5 Hz, H2); 7.05-

7.03 (1H, m, H4); 6.70 (1H, dt, J = 1.0 Hz, 7.4 Hz, H3); 6.69 (1H, d, 

J = 8.1 Hz, H5); 5.94 (1H, ddt, J = 16.62 Hz, 6.2 Hz and 10.4 Hz, 

CH2CH=CH2); 5.13-5.05 (2H, m, CH2CH=CH2); 3.72 (1H, br s, NH); 

3.28 (2H, d, J = 6.1 Hz, CH2CH=CH2); 2.84 (3H, s, NCH3).13C NMR (75 MHz): 

δC = 147.3 (ArCN), 136.0 (CH2CH=CH2), 129.6 (C4), 127.7 (C2), 123.5 (C6), 117.1 (C5), 

116.1 (CH2CH=CH2), 109.9 (C3), 36.4 (NCH3), 30.7 (CH2CH=CH2). IR: νmax(cm-

1) = 2812, 1604, 1509 (ArCH). HRMS: Found M+ 147.1043. C10H13N requires M 

147.1408 amu. (EI) 142 (2%), 143 (10), 144 (38), 145 (22), 146 (36), 147 (100). 

 

5.5.5 Synthesis of tert-butyl 2-allylphenyl(methyl)carbamate 323 

 

 
 

Into a two neck round bottom flask under Ar(g) was placed 2-allyl-N-methylbenzenamine 

322 (0.50 g, 3.4 mmol) in dry THF (100 ml) followed by Boc2O (0.82 g, 0.86 ml, 

1.1 equiv.) and a catalytic amount of DMAP. The reaction mixture was allowed to stir at rt 

for 18 h. The reaction was worked up by the addition of H2O and the organic material 

extracted with EtOAc (3 × 50 ml). The organic extracts were combined, dried over 

anhydrous Na2SO4, filtered and the solvent removed in vacuo. The product was purified by 

column chromatography (5% EtOAc/hexane) to yield 323 as a light yellow oil (0.61 g, 

72%).  

 

Rf = 0.67 (20% EtOAc/hexane). 1H NMR (300 MHz): δH = 7.26-7-07 

(4H, m, ArH); 5.98-5.85 (1H, m, CH2CH=CH2); 5.10-5.05 (2H, m, 

CH2CH=CH2); 3.32 (2H, d, J = 5.9 Hz, CH2CH=CH2); 3.13 (3H, s, 

NCH3); 1.52 and 1.33 (each 9H, s, CO2C(CH3)3 in a respective ratio of 1:2 

owing to rotational isomers). 13C NMR (75 MHz): δC = 155.1 (C=O), 142.2 (C1), 137.3 

(C6), 136.5 (CH2CH=CH2), 129.9 (C5), 127.6 (C3), 127.2 (C4), 127.0 (C2), 116.1 

(CH2CH=CH2), 79.6 (OC(CH3)3), 37.3 (NCH3), 35.3 (CH2CH=CH2), 28.2 (OC(CH3)3). 
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IR: νmax(cm-1) = 2976, 1492 (ArCH), 1697 (C=O). HRMS: Found M+ 247.15670. 

C15H21NO2 requires M 247.15723 amu. (EI) 244(2%), 247 (100). 

 

 5.5.6 Synthesis of tert-butyl methyl(2-(2-oxoethyl)phenyl)carbamate 325 

 

 
 

Procedure A: Into a two neck round bottom flask fitted with a glass rod connected by 

silicone tubing to the ozone generator, the tert-butyl 2-allylphenyl(methyl)carbamate 323 

(0.32 g, 1.3 mmol) was dissolved in dry CH2Cl2 (50 ml) and the solution cooled to − 78 °C 

by means of an Me2CO-dry ice bath. O3 was bubbled through the solution and the 

conversion of the starting material to product was monitored by means of TLC at 5 min 

intervals. Once most of the starting material was used up, the solution had become a dark 

orange colour. O2 was then bubbled through the solution to displace the O3. The solution 

was then stirred at 0 °C and triphenylphosphine (0.68 g, 2.6 mmol, 2 equiv.) was added in 

one portion. The solution was allowed to stir at this temperature for 3 h. H2O was then 

added and the organic product extracted with CH2Cl2 (3 × 50 ml). The organic extracts 

were combined, dried over anhydrous Na2SO4, filtered and the solvent removed in vacuo. 

The crude product was purified by column chromatography (5% EtOAc/hexane) to yield 

the aldehyde 325 (0.097 g, 30%). 

 

Procedure B: Into a two neck round bottom flask was placed tert-butyl 2 

allylphenyl(methyl)carbamate 323 (1.0 g, 4.0 mmol) in a mixture of H2O (5 ml) and THF 

(15 ml). To this solution was added a 1% aqueous solution of OsO4 (1 ml) over a period of 

15 min. It was then allowed to stir for a further 30 min. During this time the yellow 

solution became black in colour. NaIO4 (2.7 g, 3.1 equiv., 13 mmol) was then added 

portion wise over 15 min and the mixture was then allowed to stir at rt for a further 2 h. 

H2O was then added to the reaction mixture and the organic product was extracted with 

EtOAc (3 × 50 ml). The organic extracts were combined, dried over anhydrous Na2SO4, 
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filtered and the solvent was removed in vacuo. The crude product was purified by flash 

chromatography (5% EtOAc/hexane) to yield the aldehyde 325 (0.55 g, 55%). 

 
1H NMR (300 MHz): δH = 9.69 (1H, s, CHO); 7.33-7.26 (4H, m, ArH); 

3.63 (2H, s, CH2CHO); 3.14 (3H, s, NCH3); 1.50 and 1.32 (each 9H, s, 

CO2C(CH3)3 in a respective ratio of 1:2 owing to rotational isomers). 13C 

NMR (75 MHz): δC = 199.8 (CHO), 198.9 (C=O), 154.8 (C5), 143.1 

(C4), 131.0 (ArCN), 130.4 (C6), 128.7 (C2), 127.6 (C3), 80.5 (OC(CH3)3), 46.2 (NCH3), 

37.5 (ArCH2CHO), 28.2 (OC(CH3)3). IR: νmax(cm-1) = 2977, 1496 (ArCH), 1695 (C=O). 

LRMS: Found M+ 131.06 (possibly due to loss of the Boc group addition of N to aldehyde 

and H2O), C14H19NO3 requires M 249.13649 amu. 

 

5.5.7 Synthesis of (E)-ethyl 4-(2-(tert-butoxycarbonyl)phenyl)-2-methylbut-2-

enoate 333 

 

 
 

Into a dry two neck round bottom flask fitted with a dropping funnel under Ar(g) was 

placed dry MeCN (50 ml) followed by tert-butyl methyl(2-(2-oxoethyl)phenyl)carbamate 

325 (0.1 g, 0.4 mmol) and LiCl (0.041 g, 0.96 mmol, 2.4 equiv.). The dropping funnel was 

charged with a mixture of DBU (0.055 g, 0.054 ml, 0.36 mmol, 0.9 equiv.) and ethyl 2-

(diethoxyphosphoryl) propionate 328 (0.096 g, 0.086 ml, 1.0 equiv.) both dissolved in dry 

MeCN (20 ml). The solution in the round bottom flask was cooled to 0 °C by means of an 

ice bath and the solution in the dropping funnel was then added dropwise to this cooled 

solution over an hour. The reaction mixture was maintained at approximately 5 °C and 

monitored by TLC. Once the starting material was reduced to trace amounts, the reaction 

was transferred to a dropping funnel, diluted with EtOAc and H2O was added. After 

mixing the phases, the organic phase was separated and the aqueous phase extracted with 
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EtOAc (3 × 20 ml). The organic fractions were combined, dried over anhydrous Na2SO4, 

filtered and the solvent removed in vacuo. The crude material was purified by column 

chromatography (10% EtOAc/hexane) to yield the product 333 (0.096 g, 80%). 

 
1H NMR (300 MHz): δH = 7.18 (4H, m, ArH); 6.84 (1H, t, J = 6.9 Hz, 

H8); 4.18 (2H, q, J = 7.1 Hz, CH2CH3); 3.42 (2H, m, H7); 3.13 (3H, s, 

NCH3); 1.93 (3H, s, CH3C=C); 1.51 and 1.33 (each 9H, s, CO2C(CH3)3 

in a respective ratio of 1:2 owing to rotational isomers); 1.27 (3H, t, 

J = 7.1 Hz, CH2CH3) overlapping signals. 13C NMR (75 MHz): 

δC = 174.2 (C=O), 167.7 (NC=O), 154.8 (C9), 142.1 (ArCN), 139.4 (C8), 136.4 (C6), 

129.6 (C5), 128.5 (C3 ), 127.4 (C4), 126.4 (C2), 79.7 (OC(CH3)3), 60.3 (CH2CH3), 37.1 

(NCH3), 30.2 (C7), 28.1 (OC(CH3)3), 14.1 (CH2CH3), 12.4 (C10). IR: νmax(cm-1) = 2977, 

1494 (ArCH), 1696 and 1649 (C=O). HRMS: Found M+ 333. 19349. C19H27NO4 requires 

M 333.19401 amu. (EI) 330 (4%), 332 (16), 333 (100). 

 

5.5.8 Synthesis of (E)-tert-butyl 2-(4-hydroxy-3-methylbut-2-

enyl)phenyl(methyl)carbamate 334 

 

 
 

Into a flame-dried two neck round bottom flask under Ar(g) was placed (E)-ethyl 4-(2-

(tert-butoxycarbonyl)phenyl)-2-methylbut-2-enoate 333 (0.10 g, 0.30 mmol) followed by 

dry THF (20 ml). The solution was cooled to 0 °C by means of an ice bath. LiAlH4 

(0.013 g, 0.33 mol, 1.1 equiv.) was added to the solution portionwise, resulting in 

effervescence of the solution. The solution changed to a bright green colour. It was left to 

stir overnight and the bright colour soon disappeared. After 18 h the solution was again 

cooled down to 0 °C and ice cold H2O was added to quench the reaction. It was diluted 

with EtOAc (on mixing the emulsion formed may be broken with the addition of a small 
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amount of aqueous HCl). The phases were separated and the aqueous phases further 

extracted with EtOAc (3 × 50 ml). The combined organic phases were dried over 

anhydrous Na2SO4, filtered and the solvent removed in vacuo. The crude product was 

purified by column chromatography (20% EtOAc/hexane) to yield 334 as a light yellow oil 

(0.06 g, 70%). 

 

1H NMR (300 MHz): δH = 7.15 (4H, m, ArH); 5.54 (1H, t, J = 6.6 Hz, 

H8); 4.03 (2H, s, CH2OH); 3.32 (2H, d, J = 7.0 Hz, H7); 3.12 (3H, s, 

NCH3); 1.76 (4H, s, CH3C=C and OH, overlapping signals); 1.52 and 1.34 

(each 9H, s, CO2C(CH3)3 in a respective ratio of 1:2 owing to rotational 

isomers). 13C NMR (75 MHz): δC = 155.2 (NC=O), 142.1 (C9), 138.1 

(C8), 136.1 (ArCN), 129.6 (C6), 127.6 (C5), 127.3 (C3), 126.9 (C4), 123.8 (C2), 79.8 

(OC(CH3)3), 68.7 (CH2OH), 37.1 (NCH3), 29.5 (C7), 28.3 (OC(CH3)3), 13.8 (C10). IR: 

νmax(cm-1) = 3412 (OH), 2977, 1678, 1494 (ArCH), 1698 (C=O). HRMS: Found M+ 

291.18274. C17H25NO3 requires M 291.18344 amu. (EI) 289 (16%), 291 (100). 

 

5.5.9 Synthesis of (E)-4-(2-(tert-butoxycarbonyl)phenyl)-2-methylbut-2-enyl 

methyl carbonate 335 

 

 
 

Into a two neck round bottom flask under Ar(g) was placed the (E)-tert-butyl 2-(4-

hydroxy-3-methylbut-2-enyl)phenyl(methyl)carbamate 334 (0.19 g, 0.65 mmol) followed 

by dry CH2Cl2 (30 ml). The flask was placed into an ice bath and cooled to approximately 

0 °C. Pyridine (0.21 g, 0.21 ml, 2.6 mmol, 4 equiv.) was added in one portion followed by 

the addition of the methyl chloroformate (0.12 g, 0.10 ml, 2 equiv.). The reaction was left 

to proceed at 0 °C for 30 min and then left to proceed at rt for a further 18 h. H2O was 

carefully added and the mixture decanted into a separating funnel. The mixture was diluted 
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with CH2Cl2 and H2O. After thoroughly mixing, the phases were separated and the 

aqueous phase further extracted with CH2Cl2 (2 × 20 ml). The organic phases were 

combined, dried over anhydrous Na2SO4 and filtered. The solvent was removed in vacuo 

and the crude material purified by column chromatography (20% EtOAc/hexane) to give 

the product 335 as a light yellow oil (0.20 g, 88%). 

 
1H NMR (300 MHz): δH = 7.14 (4H, m, ArH); 5.64 (1H, t, 

J = 6.9 Hz, H8); 4.57 (2H, s, CH2OCO); 3.78 (3H, s, OCH3); 3.30 

(2H, m, H7); 3.13 (3H, s, NCH3); 1.77 (3H, s, CH3C=C); 1.51  and 

1.33 (each 9H, s, CO2C(CH3)3 in a respective ratio of 1:2 owing to 

rotational isomers). 13C NMR (75 MHz): δC = 155.7 (NC=O), 142.3 

(C=O), 142.2 (C9), 137.6 (C8), 131.0 (ArCN), 129.4 (C6), 127.8 

(C5), 127.5 (C3), 127.4 (C4), 127.1 (C2), 79.7 (OC(CH3)3), 73.3 (CH2OCO), 54.7 (OCH3), 

37.2 (NCH3), 29.2 (C7), 28.3 (OC(CH3)3), 14.0 (C10). IR: νmax(cm-1) = 2975, 1492, 1441 

(ArCH), 1747, 1696 (C=O). 

 

5.5.10 Synthesis of (E)-methyl-2-methyl-4-(2-(methylamino)phenyl)but-2-enyl 

carbonate 336 

 

 
 

Neat (E)-4-(2-(tert-butoxycarbonyl)phenyl)-2-methylbut-2-enyl methyl carbonate 335 

(0.30 g, 0.86 mmol) was placed in a round bottom flask followed by the addition of TFA 

(0.098 g, 0.066 ml, 0.86 mmol, 1 equiv.). The mixture was allowed to stir for 18 h at rt. 

CH2Cl2 was then added, followed by a saturated solution of NaHCO3, to remove any 

unreacted acid. The organic product was separated and the aqueous phase further extracted 

with CH2Cl2 (2 × 20 ml). The organic extracts were combined, dried over anhydrous 

Na2SO4, filtered and the solvent removed in vacuo. The crude material was purified by 
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column chromatography (20% EtOAc/hexane) to yield the compound 336 as a light yellow 

oil (0.18 g, 87%). 

 

1H NMR (300 MHz): δH = 7.17 (1H, t, J = 7.7 Hz, H3); 7.02 (1H, d, 

J = 7.2 Hz, H5); 6.74-6.59 (2H, m, H4 and H2) 5.62 (1H, t, 

J = 6.7 Hz, H8); 4.57 (2H, s, CH2OCO); 3.79 (3H, s, OCH3); 3.24 

(2H, d, J = 6.7 Hz, H7); 2.86 (3H, s, NCH3); 1.80 (3H, s, CH3C=C), 

1.27 (1H, s, NH). 13C NMR (75 MHz): δC = 155.7 (C=O), 147.0 

(C9), 131.6 (C8), 128.9 (C5), 127.6 (C3), 127.4 (ArCN), 124.1 (C6), 117.1 (C4), 109.8 

(C2), 73.3 (CH2OCO), 54.8 (OCH3), 30.8 (NCH3), 30.1 (C7), 14.0 (C10). IR: νmax(cm-

1) = 2955 (NH), 1745 (C=O), 1695, 1511, 1440 (ArCH). HRMS: Found M+ 249.13591. 

C14H19NO3 requires M 249.13649 amu. (EI) 244 (4%), 248 (6), 249 (100). 

 

5.5.11 Synthesis of 1-methyl-2-(prop-1-en-2-yl)indoline 337 

 

 
 

For the racemic reaction: A solution of Pd(dba)2 (2.8 mg, 2 mol%, 4.8 × 10-6 mol) in dry 

degassed CH2Cl2 (5 ml) in a two neck round bottom flask was thoroughly degassed by 

bubbling Ar(g) through the solution with a Pasteur pipette. PPh3 (6.4 mg, 10 mol%, 

2.4 × 10-5 mol) was then added to this red solution and the mixture further degassed and 

left to stir under Ar(g) until the solution changed in colour to yellow, indicating the 

formation of Pd(PPh3)4 in situ. The carbonate 336 (60 mg, 0.24 mmol) was then introduced 

into the reaction flask against a flow of Ar(g). The reaction was left to stir at rt for 12 h. 

Once complete, the crude reaction mixture was adsorbed onto silica gel and purified by 

means of column chromatography (10% EtOAc/hexane) to yield the cyclised product 337 

(0.023 g, 55%). 
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For the chiral reaction: Pd(dba)2 (9.3 mg, 2 mol%, 1.6 × 10-5 mol) and dry CH2Cl2 (5 ml) 

were introduced into a dry two neck round bottom flask under Ar (g). Argon was then 

further bubbled through the dark red solution by means of a Pasteur pipette for 5 min. The 

chiral Trost ligand (33.5 mg, 6 mol%, 4.90 × 10-5 mol) was then introduced into the flask 

against a flow of Ar(g), and the reaction mixture stirred under Ar(g) for 10 min, during 

which time the solution changed from dark red to a light yellow colour indicating the 

ligand exchange. The carbonate 336 (0.20 g, 0.81 mmol) was then introduced to the flask 

and the reaction was left to stir for 12 h at 25 °C under an Ar(g) atmosphere. Once the 

reaction was complete the crude reaction mixture was dried onto silica gel and the product 

was purified by column chromatography (10% EtOAc/hexane) to yield the product 337 as 

a light yellow oil (0.066 g, 48%). The reaction showed no enantioselectivity. 

 

Using acetic acid: Pd(dba)2 (2.3 mg, 2 mol%, 4.0 × 10-6 mol) and dry CH2Cl2 (5 ml) were 

introduced into a dry two neck round bottom flask equipped with a condenser. Ar(g) was 

then bubbled through the dark red solution by means of a Pasteur pipette for 5 min. The 

chiral Trost ligand (8.3 mg, 6 mol%, 1.2 × 10-5 mol) was then introduced into the flask 

against a flow of Ar(g), and the reaction mixture stirred under Ar(g) for 10 min, during 

which time the solution changed from dark red to a light yellow colour indicating the 

ligand exchange. The carbonate 336 (50 mg, 0.20 mmol) followed by HOAc (12.0 mg, 

11.6 μl, 0.20 mmol, 1.01 equiv.) was then introduced to the flask and the reaction was left 

to stir for 12 h at reflux under an Ar(g) atmosphere. Once the reaction was complete the 

crude reaction mixture was dried onto silica gel and the product was purified by column 

chromatography (10% EtOAc/hexane) to yield trace amounts of the product 337 showing 

32% ee as determined by chiral HPLC (Chiralcel OJ 10µ 250 × 4.6 mm, 20% IPA/hexane). 
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1H NMR (400 MHz): δH = 7.08 (1H, t, J = 7.7 Hz, H6), 7.04 (1H, d, 

J = 7.2 Hz, H8), 6.65 (1H, t, J = 7.2 Hz, H7), 6.45 (1H, d, J = 7.8 Hz, 

H5), 5.03–5.01 (1H, m, H10a), 4.95–4.93 (1H, m, H10b), 3.84–3.77 (1H, 

m, H2), 3.04 (1H, dd, J = 15.6 Hz and 8.9 Hz, H3a), 2.84 (1H, dd, 

J = 15.6 Hz and 10.9 Hz, H3b), 2.62 (3H, s, NCH3), 1.74 (3H, s, 

CH3CH=CH2). 13C NMR (100 MHz): δC = 153.4 (C9), 144.8 (C11), 128.7 (C4), 127.5 

(C6), 124.0 (C8), 117.6 (C7), 113.4 (C10), 106.9 (C5), 73.5 (C2), 34.5 (C3), 33.7 (NCH3), 

17.5 (C12). IR: νmax(cm-1) = 2948, 1606, 1484 (ArCH). HRMS: Found M+ 173.11986. 

C12H15N requires M 173.12045 amu. (EI) 186 (20%), 169 (28), 170 (36) 173 (100). 

 

5.5.12 Synthesis of 1-allyl-2-azidobenzene 340 

 

 
 

To a solution of 2-allylaniline 263 (2.25 g, 16.9 mmol) in 2 M HCl (100 ml) cooled to 

−5 ºC, was added dropwise a solution of NaNO2 (1.3 g, 1.1 equiv., 18 mmol) in H2O 

(5 ml), while the temperature of the reaction was kept between −5 ºC and 0 ºC. After 

30 min of stirring, a solution of NaN3 (1.3 g, 1.2 equiv., 20 mmol) in H2O (5 ml) was 

added and stirring was continued for 1 h. After this time the reaction was saturated with 

KOH and then extracted with CH2Cl2 (3 × 50 ml). The extracts were washed with H2O, 

then dried with anhydrous Na2SO4, filtered and the solvent removed in vacuo. The residue 

was purified by column chromatography to produce 340 as a light yellow oil. (1.75 g, 

65%) 

 
1H NMR (300 MHz, CDCl3): δH = 7.32–7.00 (4H, m, ArCH), 6.05–5.82 

(1H, m, CH2CH=CH2), 5.04 (2H, dd, J = 13.4 and 9.5 Hz, CH2CH=CH2), 

3.34 (2H, d, J = 6.3 Hz, CH2CH=CH2). 13C NMR (75 MHz, CDCl3): 

δC = 138.0 (ArCN), 136.3 (CH2CH=CH2), 131.5 (ArC), 130.5 (ArCH), 

127.6 (ArCH), 124.8 (ArCH), 118.1 (ArCH), 115.9 (CH2CH=CH2), 35.1 (CH2CH=CH2).
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5.5.13 Synthesis of 2-(2-azidophenyl)acetaldehyde 341 

 

 
 

In a two neck round bottom flask fitted with a glass rod connected by silicon tubing to the 

O3 generator, the azide 340 (1.8 g, 11 mmol) was dissolved in dry CH2Cl2 (50 ml). The 

solution was cooled down to − 78 ºC by means of a Me2CO-dry ice bath. O3 gas was 

bubbled through the solution and the conversion of the starting material was monitored by 

TLC. Once the starting material was used up the solution became blue in colour. O2 gas 

was then used to displace the O3. The solution was then stirred at 0 ºC and Me2S (6.8 g, 

8.1 ml, 10 equiv., 0.11 mol) was added to it. The reaction was left to stir at rt for 18 h. 

After this time H2O was added and the organic phase was extracted with CH2Cl2 

(3 × 50 ml). The organic fractions were combined, dried over anhydrous Na2SO4, filtered 

and the solvent removed in vacuo. The crude material was columned through silica gel to 

yield 341 as a yellow oil. (0.99 g, 56%) 

 
1H NMR (300 MHz, CDCl3): δH = 9.69 (1H, s, CHO), 7.39–7.10 (4H, 

m, 4 × ArCH), 3.66 (2H, d, J = 1.2 Hz, ArCH2CHO). 

 

 

5.5.14 Synthesis of ethyl 4-(2-azidophenyl)-2-methylbut-2-enoate 342 

 

 
 

Into a 2 neck round bottom flask under Ar (g) was placed dry MeCN (10 ml), LiCl 

(0.053 g, 1.2 mmol, 2.4 equiv.), phosphoryl propionate 341 (0.14 g, 0.12 ml, 5.7 mmol, 

1.1 equiv.) and the aldehyde 327 (0.10 g, , 0.62 mmol, 1.2 equiv.). The solution was cooled 

to around 5 ºC. A solution of DBU (0.079 g, 0.077 ml, 0.51 mmol) in dry MeCN (5 ml) 
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was then very slowly added to the reaction mixture by means of a syringe pump, (added 

dropwise over 20 h). The aldehyde solution changed from yellow to orange. The reaction 

was maintained at 5 ºC and monitored by TLC. Once the starting material was reduced to 

trace amounts, the reaction was transferred to a dropping funnel and diluted with EtOAc 

(20 ml) and H2O (40 ml). After mixing the phases, the organic phase was extracted with 

more EtOAc (3 × 20 ml). The combined organic fractions were then dried over anhydrous 

Na2SO4, filtered and the solvent removed in vacuo. The crude material was purified by 

column chromatography (5% EtOAc/hexane) to yield the product 342 as a yellow oil 

(0.07 g, 57%). 

 
1H NMR (300 MHz, CDCl3): δH = 7.31–7.20 (2H, m, ArCH), 7.17–

7.03 (2H, m, ArCH), 5.99 (1H, td, J = 7.4 and 1.4 Hz, H8), 4.25 (2H, q, 

J = 7.1 Hz, CH2CH3), 3.82–3.73 (2H, m, H7), 1.92 (3H, d, J = 1.4 Hz, 

CH3C=C), 1.33 (3H, t, J = 6.95 Hz, CH2CH3). 13C NMR (75 MHz, 

CDCl3): δC = 167.9 (C=O), 139.6 (ArCH), 138.0 (ArC), 131.7 (ArC), 

130.6 (ArCH), 128.0 (C9), 127.7 (ArCH), 124.9 (ArCH), 118.1 (C8), 

60.3 (C7), 31.2 (CH2CH3), 20.6 (C10), 14.3 (CH2CH3). 
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Appendices 

A1 X-ray crystallographic data 
Intensity data were collected on a Bruker APEX II CCD area detector diffractometer with graphite 

monochromated Mo Kα radiation (50kV, 30mA) using the APEX 2155 data collection software. The 

collection method involved ω-scans of width 0.5° and 512×512 bit data frames. Data reduction was 

carried out using the program SAINT+ and face indexed absorption corrections were made using 

XPREP.156 

The crystal structure was solved by direct methods using SHELXTL.157 Non-hydrogen atoms were 

first refined isotropically followed by anisotropic refinement by full matrix least-squares 

calculations based on F2 using SHELXTL. Hydrogen atoms were first located in the difference map 

then positioned geometrically and allowed to ride on their respective parent atoms. Diagrams and 

publication material were generated using SHELXTL, PLATON151 and ORTEP-3.152 
 

A1.1 X-Ray crystallographic data for 2,2’,6,6’-Tetramethoxy[1,1′-biphenyl]-

3,3′-dicarbaldehyde 166 

                                                                                   

Table A1.1.1 Crystal Data and Structure Refinement for 166 
Empirical formula    C18H18O6 
Formula weight     330.32 
Temperature     173(2) K 
Wavelength     0.71073 Å 
Crystal system     Monoclinic 
Space group     P2(1)/c 
Unit cell dimensions   a = 8.0686(13) Å  α= 90°. 
     b = 15.634(3) Å  β= 102.238(8)°. 
     c = 13.592(2) Å  γ = 90°. 
Volume     1675.5(5) Å3 
Z     4 
Density (calculated)   1.309 Mg/m3 
Absorption coefficient   0.099 mm-1 
F(000)     696 
Crystal size    0.43 x 0.18 x 0.18 mm3 
Theta range for data collection  2.01 to 27.99°. 
Index ranges    -10<=h<=10, -16<=k<=20, -17<=l<=17 
Reflections collected   10745 
Independent reflections   4048 [R(int) = 0.0588] 
Completeness to theta = 27.99°  100.0%  
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Absorption correction   None 
Max. and min. transmission  0.9825 and 0.9588 
Refinement method   Full-matrix least-squares on F2 
Data / restraints / parameters  4048 / 0 / 221 
Goodness-of-fit on F2   0.974 
Final R indices [I>2sigma(I)]  R1 = 0.0440, wR2 = 0.1133 
R indices (all data)   R1 = 0.0795, wR2 = 0.1272 
Largest diff. peak and hole   0.211 and -0.224 e.Å-3 
 

Table A1.1.2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters 

(Å2x 103) for 166. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 
  x  y  z  U(eq) 
C(1)  1215(2)  2687(1)  4161(1)  29(1) 
C(1')  1820(2)  3591(1)  4189(1)  29(1) 
C(2)  2355(2)  2010(1)  4352(1)  31(1) 
C(2')  2463(2)  3937(1)  3403(1)  31(1) 
C(3)  1806(2)  1155(1)  4313(1)  36(1) 
C(3')  3107(2)  4777(1)  3458(1)  37(1) 
C(4')  3055(2)  5261(1)  4314(2)  45(1) 
C(4)  72(2)  1001(1)  4122(1)  40(1) 
C(5)  -1103(2)  1652(1)  3947(1)  37(1) 
C(5')  2391(2)  4943(1)  5092(1)  43(1) 
C(6')  1778(2)  4104(1)  5034(1)  34(1) 
C(6)  -532(2)  2496(1)  3937(1)  31(1) 
C(7')  952(2)  3363(1)  1856(1)  48(1) 
C(7)  4820(2)  2258(1)  5607(1)  54(1) 
C(8')  3826(2)  5135(1)  2635(2)  51(1) 
C(8)  3030(3)  451(1)  4421(2)  52(1) 
C(9')  1200(2)  4161(1)  6702(1)  58(1) 
C(9)  -3317(2)  3036(1)  3254(2)  51(1) 
O(1)  4069(1)  2186(1)  4551(1)  39(1) 
O(1')  2540(1)  3445(1)  2571(1)  39(1) 
O(2')  4459(2)  5841(1)  2648(1)  69(1) 
O(2)  2645(2)  -305(1)  4383(1)  77(1) 
O(3')  1129(1)  3716(1)  5764(1)  44(1) 
O(3)  -1574(1)  3183(1)  3710(1)  38(1) 
 

Table A1.1.3 Bond lengths [Å] and bond angles [°] for 166 
C(1)-C(2)   1.389(2) 
C(1)-C(6)   1.410(2) 
C(1)-C(1')   1.492(2) 
C(1')-C(2')   1.392(2) 
C(1')-C(6')   1.408(2) 
C(2)-O(1)   1.3795(18) 
C(2)-C(3)   1.406(2) 
C(2')-O(1')   1.3804(19) 
C(2')-C(3')   1.409(2) 
C(3)-C(4)   1.389(2) 
C(3)-C(8)   1.465(2) 
C(3')-C(4')   1.397(3) 
C(3')-C(8')   1.475(3) 
C(4')-C(5')   1.374(3) 
C(4')-H(4')   0.9500 
C(4)-C(5)   1.376(2) 
C(4)-H(4)   0.9500 
C(5)-C(6)   1.399(2) 
C(5)-H(5)   0.9500 
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C(5')-C(6')   1.399(2) 
C(5')-H(5')   0.9500 
C(6')-O(3')   1.3595(19) 
C(6)-O(3)   1.3588(18) 
C(7')-O(1')   1.440(2) 
C(7')-H(7'1)   0.9800 
C(7')-H(7'2)   0.9800 
C(7')-H(7'3)   0.9800 
C(7)-O(1)   1.439(2) 
C(7)-H(7A)   0.9800 
C(7)-H(7B)   0.9800 
C(7)-H(7C)   0.9800 
C(8')-O(2')   1.215(2) 
C(8')-H(8')   0.9500 
C(8)-O(2)   1.220(2) 
C(8)-H(8)   0.9500 
C(9')-O(3')   1.442(2) 
C(9')-H(9'1)   0.9800 
C(9')-H(9'2)   0.9800 
C(9')-H(9'3)   0.9800 
C(9)-O(3)   1.4304(19) 
C(9)-H(9A)   0.9800 
C(9)-H(9B)   0.9800 
C(9)-H(9C)   0.9800 
C(2)-C(1)-C(6)   118.10(13) 
C(2)-C(1)-C(1')   121.08(13) 
C(6)-C(1)-C(1')   120.83(13) 
C(2')-C(1')-C(6')   118.81(14) 
C(2')-C(1')-C(1)   121.46(13) 
C(6')-C(1')-C(1)   119.71(13) 
O(1)-C(2)-C(1)   118.77(13) 
O(1)-C(2)-C(3)   119.43(13) 
C(1)-C(2)-C(3)   121.77(14) 
O(1')-C(2')-C(1')   120.07(13) 
O(1')-C(2')-C(3')   118.88(14) 
C(1')-C(2')-C(3')   121.00(15) 
C(4)-C(3)-C(2)   117.92(14) 
C(4)-C(3)-C(8)   121.32(15) 
C(2)-C(3)-C(8)   120.68(15) 
C(4')-C(3')-C(2')   118.24(16) 
C(4')-C(3')-C(8')   120.88(16) 
C(2')-C(3')-C(8')   120.88(17) 
C(5')-C(4')-C(3')   122.09(15) 
C(5')-C(4')-H(4')   119.0 
C(3')-C(4')-H(4')   119.0 
C(5)-C(4)-C(3)   122.26(14) 
C(5)-C(4)-H(4)   118.9 
C(3)-C(4)-H(4)   118.9 
C(4)-C(5)-C(6)   118.90(15) 
C(4)-C(5)-H(5)   120.6 
C(6)-C(5)-H(5)   120.6 
C(4')-C(5')-C(6')   119.07(16) 
C(4')-C(5')-H(5')   120.5 
C(6')-C(5')-H(5')   120.5 
O(3')-C(6')-C(5')   124.31(15) 
O(3')-C(6')-C(1')   114.92(13) 
C(5')-C(6')-C(1')   120.76(15) 
O(3)-C(6)-C(5)   123.99(13) 
O(3)-C(6)-C(1)   115.08(12) 
C(5)-C(6)-C(1)   120.92(14) 
O(1')-C(7')-H(7'1)  109.5 
O(1')-C(7')-H(7'2)  109.5 
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H(7'1)-C(7')-H(7'2)  109.5 
O(1')-C(7')-H(7'3)  109.5 
H(7'1)-C(7')-H(7'3)  109.5 
H(7'2)-C(7')-H(7'3)  109.5 
O(1)-C(7)-H(7A)   109.5 
O(1)-C(7)-H(7B)   109.5 
H(7A)-C(7)-H(7B)  109.5 
O(1)-C(7)-H(7C)   109.5 
H(7A)-C(7)-H(7C)  109.5 
H(7B)-C(7)-H(7C)  109.5 
O(2')-C(8')-C(3')   124.4(2) 
O(2')-C(8')-H(8')   117.8 
C(3')-C(8')-H(8')   117.8 
O(2)-C(8)-C(3)   124.27(18) 
O(2)-C(8)-H(8)   117.9 
C(3)-C(8)-H(8)   117.9 
O(3')-C(9')-H(9'1)  109.5 
O(3')-C(9')-H(9'2)  109.5 
H(9'1)-C(9')-H(9'2)  109.5 
O(3')-C(9')-H(9'3)  109.5 
H(9'1)-C(9')-H(9'3)  109.5 
H(9'2)-C(9')-H(9'3)  109.5 
O(3)-C(9)-H(9A)   109.5 
O(3)-C(9)-H(9B)   109.5 
H(9A)-C(9)-H(9B)  109.5 
O(3)-C(9)-H(9C)   109.5 
H(9A)-C(9)-H(9C)  109.5 
H(9B)-C(9)-H(9C)  109.5 
C(2)-O(1)-C(7)   113.87(13) 
C(2')-O(1')-C(7')   114.44(12) 
C(6')-O(3')-C(9')   118.78(14) 
C(6)-O(3)-C(9)   118.36(12) 
Symmetry transformations used to generate equivalent atoms 
 

Table A1.1.4 Anisotropic displacement parameters (Å2x 103) for 166. The anisotropic 

displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 

 U11  U22  U33  U23  U13  U12 
C(1) 31(1)   30(1)  24(1)   1(1)  3(1)   -3(1) 
C(1') 24(1)   27(1)  34(1)   -2(1)  2(1)   0(1) 
C(2) 31(1)   33(1)  27(1)   2(1)  2(1)   -2(1) 
C(2') 24(1)   29(1)  37(1)   3(1)  3(1)   4(1) 
C(3) 44(1)   31(1)  31(1)   4(1)  2(1)   -1(1) 
C(3') 25(1)   32(1)  51(1)   9(1)  2(1)   2(1) 
C(4') 33(1)   27(1)  68(1)   0(1)  -5(1)   -3(1) 
C(4) 49(1)   31(1)  37(1)   2(1)  4(1)   -9(1) 
C(5) 35(1)   39(1)  35(1)   -1(1)  3(1)   -10(1) 
C(5') 36(1)   36(1)  50(1)   -15(1)  -3(1)   1(1) 
C(6') 26(1)   37(1)  36(1)   -3(1)  1(1)   0(1) 
C(6) 31(1)   33(1)  27(1)   -1(1)  4(1)   -2(1) 
C(7') 53(1)   53(1)  36(1)   -2(1)  6(1)   -3(1) 
C(7) 43(1)   59(1)  49(1)   -2(1)  -11(1)   -6(1) 
C(8') 34(1)   48(1)  68(1)   26(1)  3(1)   -1(1) 
C(8) 54(1)   36(1)  60(1)   6(1)  0(1)   3(1) 
C(9') 44(1)   91(2)  38(1)   -22(1)  6(1)   0(1) 
C(9) 30(1)   53(1)  63(1)   -7(1)  -3(1)   0(1) 
O(1) 31(1)   41(1)  42(1)   4(1)  0(1)   0(1) 
O(1') 38(1)   42(1)  37(1)   1(1)  11(1)   5(1) 
O(2') 47(1)   56(1)  96(1)   39(1)  0(1)   -11(1) 
O(2) 73(1)   33(1)  118(1)   9(1)  2(1)   4(1) 
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O(3') 46(1)   52(1)  33(1)   -9(1)  10(1)   -4(1) 
O(3) 26(1)   37(1)  49(1)   -5(1)  2(1)   -1(1) 
 

Table A1.1.5 Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) 

for 166 
  x   y   z   U(eq) 
H(4')  3492  5827  4361  54 
H(4)  -317  427  4113  48 
H(5)  -2281  1530  3834  44 
H(5')  2350  5289  5661  51 
H(7'1)  85  3145  2199  72 
H(7'2)  1087  2964  1322  72 
H(7'3)  605  3923  1561  72 
H(7A)  4312  2742  5893  80 
H(7B)  6044  2351  5694  80 
H(7C)  4617  1730  5952  80 
H(8')  3793  4789  2056  61 
H(8)  4199  592  4526  62 
H(9'1)  2386  4254  7036  87 
H(9'2)  638  3816  7139  87 
H(9'3)  622  4713  6569  87 
H(9A)  -3393  2631  2696  76 
H(9B)  -3853  3577  3000  76 
H(9C)  -3900  2797  3756  76 
 

Table A1.1.6 Torsion angles [°] for 166 
C(2)-C(1)-C(1')-C(2')   76.56(19) 
C(6)-C(1)-C(1')-C(2')   -103.17(17) 
C(2)-C(1)-C(1')-C(6')   -102.07(17) 
C(6)-C(1)-C(1')-C(6')   78.21(19) 
C(6)-C(1)-C(2)-O(1)   178.61(13) 
C(1')-C(1)-C(2)-O(1)   -1.1(2) 
C(6)-C(1)-C(2)-C(3)   0.8(2) 
C(1')-C(1)-C(2)-C(3)   -178.94(14) 
C(6')-C(1')-C(2')-O(1')   179.13(12) 
C(1)-C(1')-C(2')-O(1')   0.5(2) 
C(6')-C(1')-C(2')-C(3')   1.8(2) 
C(1)-C(1')-C(2')-C(3')   -176.88(13) 
O(1)-C(2)-C(3)-C(4)   179.24(14) 
C(1)-C(2)-C(3)-C(4)   -3.0(2) 
O(1)-C(2)-C(3)-C(8)   -3.7(2) 
C(1)-C(2)-C(3)-C(8)   174.05(15) 
O(1')-C(2')-C(3')-C(4')   -178.57(13) 
C(1')-C(2')-C(3')-C(4')   -1.2(2) 
O(1')-C(2')-C(3')-C(8')   1.1(2) 
C(1')-C(2')-C(3')-C(8')   178.46(14) 
C(2')-C(3')-C(4')-C(5')   -0.4(2) 
C(8')-C(3')-C(4')-C(5')   179.99(15) 
C(2)-C(3)-C(4)-C(5)   1.8(2) 
C(8)-C(3)-C(4)-C(5)   -175.21(16) 
C(3)-C(4)-C(5)-C(6)   1.5(2) 
C(3')-C(4')-C(5')-C(6')   1.3(3) 
C(4')-C(5')-C(6')-O(3')   178.54(14) 
C(4')-C(5')-C(6')-C(1')   -0.6(2) 
C(2')-C(1')-C(6')-O(3')   179.89(12) 
C(1)-C(1')-C(6')-O(3')   -1.4(2) 
C(2')-C(1')-C(6')-C(5')   -0.8(2) 
C(1)-C(1')-C(6')-C(5')   177.82(14) 
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C(4)-C(5)-C(6)-O(3)   175.72(14) 
C(4)-C(5)-C(6)-C(1)   -3.8(2) 
C(2)-C(1)-C(6)-O(3)   -176.91(13) 
C(1')-C(1)-C(6)-O(3)   2.8(2) 
C(2)-C(1)-C(6)-C(5)   2.6(2) 
C(1')-C(1)-C(6)-C(5)   -177.65(14) 
C(4')-C(3')-C(8')-O(2')   2.4(3) 
C(2')-C(3')-C(8')-O(2')   -177.18(16) 
C(4)-C(3)-C(8)-O(2)   -2.2(3) 
C(2)-C(3)-C(8)-O(2)   -179.13(19) 
C(1)-C(2)-O(1)-C(7)   93.87(17) 
C(3)-C(2)-O(1)-C(7)   -88.27(18) 
C(1')-C(2')-O(1')-C(7')   79.22(17) 
C(3')-C(2')-O(1')-C(7')   -103.36(16) 
C(5')-C(6')-O(3')-C(9')   -5.7(2) 
C(1')-C(6')-O(3')-C(9')   173.54(14) 
C(5)-C(6)-O(3)-C(9)   -13.6(2) 
C(1)-C(6)-O(3)-C(9)   165.94(14) 
Symmetry transformations used to generate equivalent atoms: 
 

A1.2 X-Ray crystallographic data for [(S)-5,8-dimethoxyisochroman-4-

ol]tricarbonylchromium (0): syn-170 

                                                                 

Table A1.2.1 Crystal data and structure refinement for syn-170 
Empirical formula    C14H14CrO7 
Formula weight     346.25 
Temperature     173(2) K 
Wavelength     0.71073 Å 
Crystal system     Orthorhombic 
Space group     P2(1)2(1)2(1) 
Unit cell dimensions   a = 6.70100(10) Å α= 90°. 
     b = 12.7628(3) Å  β= 90°. 
     c = 16.3036(4) Å  γ = 90°. 
Volume     1394.34(5) Å3 
Z     4 
Density (calculated)   1.649 Mg/m3 
Absorption coefficient   0.854 mm-1 
F(000)     712 
Crystal size    0.48 x 0.10 x 0.09 mm3 
Theta range for data collection  2.03 to 28.00°. 
Index ranges    -8<=h<=8, -15<=k<=16, -16<=l<=21 
Reflections collected   13196 
Independent reflections   3362 [R(int) = 0.0504] 
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Completeness to theta = 28.00°  100.0 %  
Absorption correction   Integration 
Max. and min. transmission  0.9271 and 0.6846 
Refinement method   Full-matrix least-squares on F2 
Data / restraints / parameters  3362 / 0 / 202 
Goodness-of-fit on F2   0.985 
Final R indices [I>2sigma(I)]  R1 = 0.0288, wR2 = 0.0641 
R indices (all data)   R1 = 0.0342, wR2 = 0.0657 
Absolute structure parameter  -0.003(16) 
Largest diff. peak and hole   0.313 and -0.241 e.Å-3 
 

Table A1.2.2 Atomic coordinates ( x 104) and equivalent isotropic displacement parameters 

(Å2x 103) for syn-170. U(eq) is defined as one third of the trace of the orthogonalized Uij 

tensor. 
  X  y  z  U(eq) 
C(1)  5112(3)  6492(2) - 150(1)  20(1) 
C(2)  6383(3)  5530(2)  -39(1)  18(1) 
C(3)  6466(3)  5263(2)  870(1)  14(1) 
C(4)  6757(3)  4220(2)  1148(1)  17(1) 
C(5)  6718(3)  3985(2)  1986(1)  17(1) 
C(6)  6373(3)  4796(2)  2568(1)  17(1) 
C(7)  6020(3)  5818(2)  2297(1)  17(1) 
C(8)  6085(3)  6057(2)  1448(1)  15(1) 
C(9)  5621(3)  7165(2)  1176(1)  19(1) 
C(10)  8189(4)  2571(2)  781(1)  27(1) 
C(11)  6458(4)  6599(2)  3614(1)  33(1) 
C(12)  10878(3) 4831(2)  1056(1)  21(1) 
C(13)  10626(3) 4818(2)  2625(1)  25(1) 
C(14)  10114(3) 6528(2)  1902(1)  20(1) 
O(1)  5925(2)  7332(1)  325(1)  20(1) 
O(2)  8303(2)  5663(1)  -399(1)  22(1) 
O(3)  7066(2)  3483(1)  554(1)  22(1) 
O(4)  5642(2)  6650(1)  2799(1)  23(1) 
O(5)  12079(2) 4532(1)  609(1)  35(1) 
O(6)  11693(2) 4574(2)  3149(1)  43(1) 
O(7)  10807(3) 7355(1)  1999(1)  33(1) 
Cr(1)  8958(1)  5251(1)  1796(1)  15(1) 
 

Table A1.2.3 Bond lengths [Å] and angles [°] for syn-170 
C(1)-O(1)    1.431(2) 
C(1)-C(2)    1.505(3) 
C(1)-H(1A)    0.9900 
C(1)-H(1B)    0.9900 
C(2)-O(2)    1.424(2) 
C(2)-C(3)    1.522(2) 
C(2)-H(2)    1.0000 
C(3)-C(8)    1.406(3) 
C(3)-C(4)    1.420(3) 
C(3)-Cr(1)    2.2509(18) 
C(4)-O(3)    1.365(2) 
C(4)-C(5)    1.398(3) 
C(4)-Cr(1)    2.241(2) 
C(5)-C(6)    1.424(3) 
C(5)-Cr(1)    2.228(2) 
C(5)-H(5)    0.9500 
C(6)-C(7)    1.396(3) 
C(6)-Cr(1)    2.2184(19) 
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C(6)-H(6)    0.9500 
C(7)-O(4)    1.364(2) 
C(7)-C(8)    1.419(2) 
C(7)-Cr(1)    2.251(2) 
C(8)-C(9)    1.514(3) 
C(8)-Cr(1)    2.255(2) 
C(9)-O(1)    1.419(2) 
C(9)-H(9A)    0.9900 
C(9)-H(9B)    0.9900 
C(10)-O(3)    1.435(3) 
C(10)-H(10A)    0.9800 
C(10)-H(10B)    0.9800 
C(10)-H(10C)    0.9800 
C(11)-O(4)    1.439(2) 
C(11)-H(11A)    0.9800 
C(11)-H(11B)    0.9800 
C(11)-H(11C)    0.9800 
C(12)-O(5)    1.151(2) 
C(12)-Cr(1)    1.843(2) 
C(13)-O(6)    1.158(3) 
C(13)-Cr(1)    1.838(2) 
C(14)-O(7)    1.164(2) 
C(14)-Cr(1)    1.813(2) 
O(2)-H(2A)    0.8400 
O(1)-C(1)-C(2)   109.32(17) 
O(1)-C(1)-H(1A)   109.8 
C(2)-C(1)-H(1A)   109.8 
O(1)-C(1)-H(1B)   109.8 
C(2)-C(1)-H(1B)   109.8 
H(1A)-C(1)-H(1B)  108.3 
O(2)-C(2)-C(1)   111.36(17) 
O(2)-C(2)-C(3)   113.26(16) 
C(1)-C(2)-C(3)   108.71(16) 
O(2)-C(2)-H(2)   107.8 
C(1)-C(2)-H(2)   107.8 
C(3)-C(2)-H(2)   107.8 
C(8)-C(3)-C(4)   119.11(16) 
C(8)-C(3)-C(2)   118.97(18) 
C(4)-C(3)-C(2)   121.73(17) 
C(8)-C(3)-Cr(1)   71.98(11) 
C(4)-C(3)-Cr(1)   71.19(10) 
C(2)-C(3)-Cr(1)   132.95(13) 
O(3)-C(4)-C(5)   123.18(19) 
O(3)-C(4)-C(3)   116.10(16) 
C(5)-C(4)-C(3)   120.72(18) 
O(3)-C(4)-Cr(1)   129.67(15) 
C(5)-C(4)-Cr(1)   71.26(12) 
C(3)-C(4)-Cr(1)   71.96(11) 
C(4)-C(5)-C(6)   119.81(19) 
C(4)-C(5)-Cr(1)   72.27(12) 
C(6)-C(5)-Cr(1)   70.97(11) 
C(4)-C(5)-H(5)   120.1 
C(6)-C(5)-H(5)   129.0 
C(7)-C(6)-C(5)   119.77(17) 
C(7)-C(6)-Cr(1)   73.08(13) 
C(5)-C(6)-Cr(1)   71.68(11) 
C(7)-C(6)-H(6)   120.1 
C(5)-C(6)-H(6)   120.1 
Cr(1)-C(6)-H(6)   127.1 
O(4)-C(7)-C(6)   124.68(17) 
O(4)-C(7)-C(8)   115.05(17) 
C(6)-C(7)-C(8)   120.26(18) 
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O(4)-C(7)-Cr(1)   129.05(15) 
C(6)-C(7)-Cr(1)   70.53(13) 
C(8)-C(7)-Cr(1)   71.81(13) 
C(3)-C(8)-C(7)   120.28(18) 
C(3)-C(8)-C(9)   120.94(17) 
C(7)-C(8)-C(9)   118.69(17) 
C(3)-C(8)-Cr(1)   71.50(13) 
C(9)-C(8)-Cr(1)   132.42(15) 
O(1)-C(9)-C(8)   113.41(16) 
O(1)-C(9)-H(9A)   108.9 
C(8)-C(9)-H(9A)   108.9 
O(1)-C(9)-H(9B)   108.9 
C(8)-C(9)-H(9B)   108.9 
H(9A)-C(9)-H(9B)  107.7 
O(3)-C(10)-H(10A)  109.5 
O(3)-C(10)-H(10B)  109.5 
H(10A)-C(10)-H(10B)  109.5 
O(3)-C(10)-H(10C)  109.5 
H(10A)-C(10)-H(10C)  109.5 
H(10B)-C(10)-H(10C)  109.5 
O(4)-C(11)-H(11A)  109.5 
O(4)-C(11)-H(11B)  109.5 
H(11A)-C(11)-H(11B)  109.5 
O(4)-C(11)-H(11C)  109.5 
H(11A)-C(11)-H(11C)  109.5 
H(11B)-C(11)-H(11C)  109.5 
O(5)-C(12)-Cr(1)   177.4(2) 
O(6)-C(13)-Cr(1)   178.1(2) 
O(7)-C(14)-Cr(1)   177.11(19) 
C(9)-O(1)-C(1)   111.22(15) 
C(2)-O(2)-H(2A)   109.5 
C(4)-O(3)-C(10)   117.10(16) 
C(7)-O(4)-C(11)   116.63(16) 
C(14)-Cr(1)-C(13)  86.57(10) 
C(14)-Cr(1)-C(12)  91.50(9) 
C(13)-Cr(1)-C(12)  88.25(9) 
C(14)-Cr(1)-C(6)   120.97(9) 
C(13)-Cr(1)-C(6)   88.80(8) 
C(12)-Cr(1)-C(6)   147.14(9) 
C(14)-Cr(1)-C(5)   157.97(8) 
C(13)-Cr(1)-C(5)   95.12(9) 
C(12)-Cr(1)-C(5)   110.49(8) 
C(6)-Cr(1)-C(5)   37.35(7) 
C(14)-Cr(1)-C(4)   148.67(8) 
C(13)-Cr(1)-C(4)   124.74(9) 
C(12)-Cr(1)-C(4)   88.86(8) 
C(6)-Cr(1)-C(4)   66.39(7) 
C(5)-Cr(1)-C(4)   36.47(7) 
C(14)-Cr(1)-C(7)   92.88(8) 
C(13)-Cr(1)-C(7)   111.17(8) 
C(12)-Cr(1)-C(7)   160.30(8) 
C(6)-Cr(1)-C(7)   36.39(7) 
C(5)-Cr(1)-C(7)   65.99(7) 
C(4)-Cr(1)-C(7)   77.52(7) 
C(14)-Cr(1)-C(3)   112.03(8) 
C(13)-Cr(1)-C(3)   161.04(9) 
C(12)-Cr(1)-C(3)   94.64(8) 
C(6)-Cr(1)-C(3)   78.61(7) 
C(5)-Cr(1)-C(3)   66.30(7) 
C(4)-Cr(1)-C(3)   36.85(7) 
C(7)-Cr(1)-C(3)   65.94(7) 
C(14)-Cr(1)-C(8)   88.79(8) 
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C(13)-Cr(1)-C(8)   147.22(8) 
C(12)-Cr(1)-C(8)   124.32(8) 
C(6)-Cr(1)-C(8)   66.12(7) 
C(5)-Cr(1)-C(8)   77.91(7) 
C(4)-Cr(1)-C(8)   65.62(7) 
C(7)-Cr(1)-C(8)   36.70(6) 
C(3)-Cr(1)-C(8)   36.37(7) 
Symmetry transformations used to generate equivalent atoms:  
 

Table A1.2.4 Anisotropic displacement parameters (Å2x 103)for syn-170. The anisotropic 

displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 

 U11  U22  U33  U23  U13  U12 
C(1) 26(1)   18(1)  16(1)   3(1)  -4(1)   -2(1) 
C(2) 21(1)   18(1)  15(1)   1(1)  -2(1)   0(1) 
C(3) 13(1)   15(1)  15(1)   2(1)  -2(1)   -1(1) 
C(4) 15(1)   15(1)  20(1)   -3(1)  -2(1)   -1(1) 
C(5) 17(1)   14(1)  20(1)   6(1)  0(1)   -2(1) 
C(6) 17(1)   19(1)  16(1)   4(1)  2(1)   0(1) 
C(7) 15(1)   21(1)  16(1)   -1(1)  0(1)   1(1) 
C(8) 12(1)   15(1)  17(1)   2(1)  0(1)   2(1) 
C(9) 23(1)   16(1)  18(1)   1(1)  1(1)   5(1) 
C(10) 37(1)   16(1)  30(1)   -2(1)  1(1)   6(1) 
C(11) 43(2)   36(1)  19(1)   -8(1)  -6(1)   14(1) 
C(12) 19(1)   18(1)  26(1)   -3(1)  -3(1)   -2(1) 
C(13) 21(1)   30(1)  26(1)   8(1)  0(1)   -2(1) 
C(14) 21(1)   22(1)  17(1)   1(1)  -2(1)   0(1) 
O(1) 28(1)   16(1)  18(1)   3(1)  0(1)   -2(1) 
O(2) 26(1)   22(1)  16(1)   -2(1)  5(1)   -2(1) 
O(3) 32(1)   14(1)  20(1)   -2(1)  -3(1)   1(1) 
O(4) 30(1)   24(1)  14(1)   -2(1)  -1(1)   10(1) 
O(5) 22(1)   42(1)  41(1)   -10(1)  11(1)   -1(1) 
O(6) 29(1)   60(1)  39(1)   22(1)  -12(1)   -3(1) 
O(7) 37(1)   25(1)  37(1)   -2(1)  -9(1)   -11(1) 
Cr(1) 14(1)   15(1)  15(1)   1(1)  -1(1)   -1(1) 
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Table A1.2.5 Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) 

for syn-170 
  x   y   z   U(eq) 
H(1A)  5079  6691  -737  24 
H(1B)  3729  6344  29  24 
H(2)  5708  4936  -327  21 
H(5)  6921  3285  2166  20 
H(6)  6383  4644  3138  21 
H(9A)  4214  7326  1312  23 
H(9B)  6475  7657  1488  23 
H(10A)  9459  2786  1028  41 
H(10B)  8450  2145  293  41 
H(10C)  7425  2158  1179  41 
H(11A)  5714  6083  3937  49 
H(11B)  6353  7289  3875  49 
H(2A)  8862  6189  -192  32 
 

Table A1.2.6 Torsion angles [°] for syn-170 
O(1)-C(1)-C(2)-O(2)   -67.9(2) 
O(1)-C(1)-C(2)-C(3)   57.6(2) 
O(2)-C(2)-C(3)-C(8)   101.7(2) 
C(1)-C(2)-C(3)-C(8)   -22.7(2) 
O(2)-C(2)-C(3)-C(4)   -83.5(2) 
C(1)-C(2)-C(3)-C(4)   152.17(18) 
O(2)-C(2)-C(3)-Cr(1)   9.8(3) 
C(1)-C(2)-C(3)-Cr(1)   -114.5(2) 
C(8)-C(3)-C(4)-O(3)   178.28(18) 
C(2)-C(3)-C(4)-O(3)   3.4(3) 
Cr(1)-C(3)-C(4)-O(3)   -126.02(18) 
C(8)-C(3)-C(4)-C(5)   -1.6(3) 
C(2)-C(3)-C(4)-C(5)   -176.44(18) 
Cr(1)-C(3)-C(4)-C(5)   54.09(17) 
C(8)-C(3)-C(4)-Cr(1)   -55.69(16) 
C(2)-C(3)-C(4)-Cr(1)   129.47(17) 
O(3)-C(4)-C(5)-C(6)   -179.58(19) 
C(3)-C(4)-C(5)-C(6)   0.3(3) 
Cr(1)-C(4)-C(5)-C(6)   54.71(16) 
O(3)-C(4)-C(5)-Cr(1)   125.7(2) 
C(3)-C(4)-C(5)-Cr(1)   -54.41(17) 
C(4)-C(5)-C(6)-C(7)   1.8(3) 
Cr(1)-C(5)-C(6)-C(7)   57.14(18) 
C(4)-C(5)-C(6)-Cr(1)   -55.33(17) 
C(5)-C(6)-C(7)-O(4)   178.94(19) 
Cr(1)-C(6)-C(7)-O(4)   -124.6(2) 
C(5)-C(6)-C(7)-C(8)   -2.6(3) 
Cr(1)-C(6)-C(7)-C(8)   53.9(2) 
C(5)-C(6)-C(7)-Cr(1)   -56.46(17) 
C(4)-C(3)-C(8)-C(7)   0.8(3) 
C(2)-C(3)-C(8)-C(7)   175.8(2) 
Cr(1)-C(3)-C(8)-C(7)   -54.5(2) 
C(4)-C(3)-C(8)-C(9)   -175.66(18) 
C(2)-C(3)-C(8)-C(9)   -0.7(3) 
Cr(1)-C(3)-C(8)-C(9)   129.0(2) 
C(4)-C(3)-C(8)-Cr(1)   55.30(16) 
C(2)-C(3)-C(8)-Cr(1)   -129.72(17) 
O(4)-C(7)-C(8)-C(3)   179.89(18) 
C(6)-C(7)-C(8)-C(3)   1.3(4) 
Cr(1)-C(7)-C(8)-C(3)   54.56(19) 
O(4)-C(7)-C(8)-C(9)   -3.5(3) 
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C(6)-C(7)-C(8)-C(9)   177.85(19) 
Cr(1)-C(7)-C(8)-C(9)   -128.88(19) 
O(4)-C(7)-C(8)-Cr(1)   125.33(19) 
C(6)-C(7)-C(8)-Cr(1)   -53.3(2) 
C(3)-C(8)-C(9)-O(1)   -9.3(3) 
C(7)-C(8)-C(9)-O(1)   174.2(2) 
Cr(1)-C(8)-C(9)-O(1)   83.6(2) 
C(8)-C(9)-O(1)-C(1)   44.7(2) 
C(2)-C(1)-O(1)-C(9)   -71.5(2) 
C(5)-C(4)-O(3)-C(10)   -26.7(3) 
C(3)-C(4)-O(3)-C(10)   153.44(19) 
Cr(1)-C(4)-O(3)-C(10)   65.8(2) 
C(6)-C(7)-O(4)-C(11)   27.3(3) 
C(8)-C(7)-O(4)-C(11)   -151.2(2) 
Cr(1)-C(7)-O(4)-C(11)   -65.0(2) 
O(7)-C(14)-Cr(1)-C(13)   -77(4) 
O(7)-C(14)-Cr(1)-C(12)   -165(4) 
O(7)-C(14)-Cr(1)-C(6)   9(4) 
O(7)-C(14)-Cr(1)-C(5)   18(4) 
O(7)-C(14)-Cr(1)-C(4)   104(4) 
O(7)-C(14)-Cr(1)-C(7)   34(4) 
O(7)-C(14)-Cr(1)-C(3)   99(4) 
O(7)-C(14)-Cr(1)-C(8)   70(4) 
O(6)-C(13)-Cr(1)-C(14)   6(6) 
O(6)-C(13)-Cr(1)-C(12)   98(6) 
O(6)-C(13)-Cr(1)-C(6)   -115(6) 
O(6)-C(13)-Cr(1)-C(5)   -152(6) 
O(6)-C(13)-Cr(1)-C(4)   -175(100) 
O(6)-C(13)-Cr(1)-C(7)   -86(6) 
O(6)-C(13)-Cr(1)-C(3)   -163(6) 
O(6)-C(13)-Cr(1)-C(8)   -76(6) 
O(5)-C(12)-Cr(1)-C(14)   138(4) 
O(5)-C(12)-Cr(1)-C(13)   51(4) 
O(5)-C(12)-Cr(1)-C(6)   -34(4) 
O(5)-C(12)-Cr(1)-C(5)   -44(4) 
O(5)-C(12)-Cr(1)-C(4)   -74(4) 
O(5)-C(12)-Cr(1)-C(7)   -120(4) 
O(5)-C(12)-Cr(1)-C(3)   -110(4) 
O(5)-C(12)-Cr(1)-C(8)   -133(4) 
C(7)-C(6)-Cr(1)-C(14)   44.31(14) 
C(5)-C(6)-Cr(1)-C(14)   174.66(12) 
C(7)-C(6)-Cr(1)-C(13)   129.59(14) 
C(5)-C(6)-Cr(1)-C(13)   -100.06(13) 
C(7)-C(6)-Cr(1)-C(12)   -145.49(15) 
C(5)-C(6)-Cr(1)-C(12)   -15.14(19) 
C(7)-C(6)-Cr(1)-C(5)   -130.35(16) 
C(7)-C(6)-Cr(1)-C(4)   -101.27(13) 
C(5)-C(6)-Cr(1)-C(4)   29.08(11) 
C(5)-C(6)-Cr(1)-C(7)   130.35(16) 
C(7)-C(6)-Cr(1)-C(3)   -64.67(12) 
C(5)-C(6)-Cr(1)-C(3)   65.68(12) 
C(7)-C(6)-Cr(1)-C(8)   -28.68(11) 
C(5)-C(6)-Cr(1)-C(8)   101.67(12) 
C(4)-C(5)-Cr(1)-C(14)   119.2(2) 
C(6)-C(5)-Cr(1)-C(14)   -12.3(3) 
C(4)-C(5)-Cr(1)-C(13)   -147.27(13) 
C(6)-C(5)-Cr(1)-C(13)   81.25(13) 
C(4)-C(5)-Cr(1)-C(12)   -57.22(14) 
C(6)-C(5)-Cr(1)-C(12)   171.30(11) 
C(4)-C(5)-Cr(1)-C(6)   131.48(17) 
C(6)-C(5)-Cr(1)-C(4)   -131.48(17) 
C(4)-C(5)-Cr(1)-C(7)   101.81(13) 



 

211 

C(6)-C(5)-Cr(1)-C(7)   -29.67(10) 
C(4)-C(5)-Cr(1)-C(3)   28.78(11) 
C(6)-C(5)-Cr(1)-C(3)   -102.69(12) 
C(4)-C(5)-Cr(1)-C(8)   65.15(12) 
C(6)-C(5)-Cr(1)-C(8)   -66.33(11) 
O(3)-C(4)-Cr(1)-C(14)   101.0(2) 
C(5)-C(4)-Cr(1)-C(14)   -140.97(16) 
C(3)-C(4)-Cr(1)-C(14)   -8.3(2) 
O(3)-C(4)-Cr(1)-C(13)   -77.1(2) 
C(5)-C(4)-Cr(1)-C(13)   40.94(16) 
C(3)-C(4)-Cr(1)-C(13)   173.62(12) 
O(3)-C(4)-Cr(1)-C(12)   10.03(19) 
C(5)-C(4)-Cr(1)-C(12)   128.02(13) 
C(3)-C(4)-Cr(1)-C(12)   -99.30(12) 
O(3)-C(4)-Cr(1)-C(6)   -147.7(2) 
C(5)-C(4)-Cr(1)-C(6)   -29.74(12) 
C(3)-C(4)-Cr(1)-C(6)   102.94(12) 
O(3)-C(4)-Cr(1)-C(5)   -118.0(2) 
C(3)-C(4)-Cr(1)-C(5)   132.67(17) 
O(3)-C(4)-Cr(1)-C(7)   175.69(19) 
C(5)-C(4)-Cr(1)-C(7)   -66.32(12) 
C(3)-C(4)-Cr(1)-C(7)   66.36(11) 
O(3)-C(4)-Cr(1)-C(3)   109.3(2) 
C(5)-C(4)-Cr(1)-C(3)   -132.67(17) 
O(3)-C(4)-Cr(1)-C(8)   138.9(2) 
C(5)-C(4)-Cr(1)-C(8)   -103.06(13) 
C(3)-C(4)-Cr(1)-C(8)   29.61(10) 
O(4)-C(7)-Cr(1)-C(14)   -23.79(17) 
C(6)-C(7)-Cr(1)-C(14)   -143.15(12) 
C(8)-C(7)-Cr(1)-C(14)   84.10(13) 
O(4)-C(7)-Cr(1)-C(13)   63.65(19) 
C(6)-C(7)-Cr(1)-C(13)   -55.71(15) 
C(8)-C(7)-Cr(1)-C(13)   171.54(13) 
O(4)-C(7)-Cr(1)-C(12)   -126.4(3) 
C(6)-C(7)-Cr(1)-C(12)   114.3(3) 
C(8)-C(7)-Cr(1)-C(12)   -18.5(3) 
O(4)-C(7)-Cr(1)-C(6)   119.4(2) 
C(8)-C(7)-Cr(1)-C(6)   -132.75(18) 
O(4)-C(7)-Cr(1)-C(5)   149.76(18) 
C(6)-C(7)-Cr(1)-C(5)   30.41(11) 
C(8)-C(7)-Cr(1)-C(5)   -102.35(13) 
O(4)-C(7)-Cr(1)-C(4)   -173.66(18) 
C(6)-C(7)-Cr(1)-C(4)   66.98(12) 
C(8)-C(7)-Cr(1)-C(4)   -65.77(12) 
O(4)-C(7)-Cr(1)-C(3)   -136.67(18) 
C(6)-C(7)-Cr(1)-C(3)   103.97(13) 
C(8)-C(7)-Cr(1)-C(3)   -28.78(12) 
O(4)-C(7)-Cr(1)-C(8)   -107.9(2) 
C(6)-C(7)-Cr(1)-C(8)   132.75(18) 
C(8)-C(3)-Cr(1)-C(14)   -54.01(13) 
C(4)-C(3)-Cr(1)-C(14)   175.36(12) 
C(2)-C(3)-Cr(1)-C(14)   59.1(2) 
C(8)-C(3)-Cr(1)-C(13)   114.3(3) 
C(4)-C(3)-Cr(1)-C(13)   -16.3(3) 
C(2)-C(3)-Cr(1)-C(13)   -132.6(3) 
C(8)-C(3)-Cr(1)-C(12)   -147.52(12) 
C(4)-C(3)-Cr(1)-C(12)   81.85(13) 
C(2)-C(3)-Cr(1)-C(12)   -34.4(2) 
C(8)-C(3)-Cr(1)-C(6)   64.99(12) 
C(4)-C(3)-Cr(1)-C(6)   -65.64(12) 
C(2)-C(3)-Cr(1)-C(6)   178.1(2) 
C(8)-C(3)-Cr(1)-C(5)   102.13(12) 
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C(4)-C(3)-Cr(1)-C(5)   -28.51(11) 
C(2)-C(3)-Cr(1)-C(5)   -144.7(2) 
C(8)-C(3)-Cr(1)-C(4)   130.63(17) 
C(2)-C(3)-Cr(1)-C(4)   -116.2(2) 
C(8)-C(3)-Cr(1)-C(7)   29.02(11) 
C(4)-C(3)-Cr(1)-C(7)   -101.61(12) 
C(2)-C(3)-Cr(1)-C(7)   142.2(2) 
C(4)-C(3)-Cr(1)-C(8)   -130.63(17) 
C(2)-C(3)-Cr(1)-C(8)   113.1(3) 
C(3)-C(8)-Cr(1)-C(14)   131.39(13) 
C(7)-C(8)-Cr(1)-C(14)   -96.45(13) 
C(9)-C(8)-Cr(1)-C(14)   15.88(18) 
C(3)-C(8)-Cr(1)-C(13)   -146.84(17) 
C(7)-C(8)-Cr(1)-C(13)   -14.7(2) 
C(9)-C(8)-Cr(1)-C(13)   97.6(2) 
C(3)-C(8)-Cr(1)-C(12)   40.40(15) 
C(7)-C(8)-Cr(1)-C(12)   172.56(13) 
C(9)-C(8)-Cr(1)-C(12)   -75.1(2) 
C(3)-C(8)-Cr(1)-C(6)   -103.71(13) 
C(7)-C(8)-Cr(1)-C(6)   28.45(12) 
C(9)-C(8)-Cr(1)-C(6)   140.78(19) 
C(3)-C(8)-Cr(1)-C(5)   -66.29(12) 
C(7)-C(8)-Cr(1)-C(5)   65.87(12) 
C(9)-C(8)-Cr(1)-C(5)   178.20(18) 
C(3)-C(8)-Cr(1)-C(4)   -29.98(11) 
C(7)-C(8)-Cr(1)-C(4)   102.18(13) 
C(9)-C(8)-Cr(1)-C(4)   -145.49(19) 
C(3)-C(8)-Cr(1)-C(7)   -132.16(18) 
C(9)-C(8)-Cr(1)-C(7)   112.3(2) 
C(7)-C(8)-Cr(1)-C(3)   132.16(18) 
C(9)-C(8)-Cr(1)-C(3)   -115.5(2) 
Symmetry transformations used to generate equivalent atoms 
 

A1.3 X-Ray crystallographic data for [(S)-5,8-dimethoxyisochroman-4-

ol]tricarbonylchromium (0): anti-170 

                                                 

Table A1.3.1 Crystal data and structure refinement for anti-170 
Empirical formula    C18H CrO8 
Formula weight     420.37 
Temperature     173(2) K 
Wavelength     0.71073 Å 
Crystal system     Orthorhombic 
Space group     P2(1)2(1)2(1) 
Unit cell dimensions   a = 10.1491(3) Å  α= 90°. 
     b = 13.7262(4) Å  β= 90°. 
     c = 14.2451(5) Å  γ = 90°. 
Volume     1984.46(11) Å3 
Z     4 
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Density (calculated)   1.407 Mg/m3 
Absorption coefficient   0.617 mm-1 
F(000)     880 
Crystal size    0.47 x 0.32 x 0.13 mm3 
Theta range for data collection  2.06 to 27.99°. 
Index ranges    -13<=h<=13, -18<=k<=18, -18<=l<=18 
Reflections collected   33866 
Independent reflections   4790 [R(int) = 0.0449] 
Completeness to theta = 27.99°  100.0 %  
Absorption correction   Integration 
Max. and min. transmission  0.9241 and 0.7602 
Refinement method   Full-matrix least-squares on F2 
Data / restraints / parameters  4790 / 0 / 249 
Goodness-of-fit on F2   1.082 
Final R indices [I>2sigma(I)]  R1 = 0.0264, wR2 = 0.0692 
R indices (all data)   R1 = 0.0285, wR2 = 0.0702 
Absolute structure parameter  -0.002(13) 
Largest diff. peak and hole   0.264 and -0.215 e.Å-3 
 

Table A1.3.2 Atomic coordinates ( x 104) and equivalent isotropic displacement parameters 

(Å2x 103) for anti-170. U(eq) is defined as one third of the trace of the orthogonalized Uij 

tensor. 
  x  y  z  U(eq) 
C(1)  3258(2)  3478(1)  9093(1)  34(1) 
C(2)  2835(2)  2986(1)  8198(1)  29(1) 
C(3)  3853(2)  2244(1)  7906(1)  26(1) 
C(4)  3559(2)  1532(1)  7209(1)  28(1) 
C(5)  4469(2)  803(1)  7001(1)  29(1) 
C(6)  5732(2)  806(1)  7435(1)  30(1) 
C(7)  6068(2)  1554(1)  8053(1)  29(1) 
C(8)  5114(2)  2267(1)  8310(1)  26(1) 
C(9)  5491(2)  3054(1)  8997(1)  33(1) 
C(10)  1909(2)  841(2)  6227(2)  58(1) 
C(11)  8215(2)  921(2)  8327(2)  53(1) 
C(12)  2510(2)  770(1)  8966(1)  34(1) 
C(13)  4220(2)  -557(1)  8584(1)  34(1) 
C(14)  4755(2)  833(2)  9767(1)  39(1) 
O(1)  4570(1)  3831(1)  9013(1)  34(1) 
O(2)  2703(1)  3721(1)  7492(1)  35(1) 
O(3)  2342(1)  1613(1)  6824(1)  37(1) 
O(4)  7253(1)  1665(1)  8478(1)  37(1) 
O(5)  1433(1)  772(1)  9225(1)  59(1) 
O(6)  4190(2)  -1393(1)  8613(1)  54(1) 
O(7)  5095(2)  880(2)  10538(1) 67(1) 
Cr(1)  4209(1)  793(1)  8549(1)  23(1) 
C(15)  2618(5)  3658(3)  4951(2)  106(1) 
C(16)  1226(5)  3607(3)  5089(2)  99(1) 
C(17)  -446(3)  3379(3)  6244(3)  92(1) 
C(18)  -732(4)  3327(4)  7219(3)  125(2) 
O(8)  896(2)  3512(1)  6038(1)  55(1) 
 

Table A1.3.3 Bond lengths [Å] and angles [°] for anti-170 
C(1)-O(1)     1.421(2) 
C(1)-C(2)     1.506(2) 
C(1)-H(1A)     0.9900 
C(1)-H(1B)     0.9900 
C(2)-O(2)     1.430(2) 
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C(2)-C(3)     1.510(2) 
C(2)-H(2A)     1.0000 
C(3)-C(8)     1.403(2) 
C(3)-C(4)     1.426(2) 
C(3)-Cr(1)     2.2217(15) 
C(4)-O(3)     1.356(2) 
C(4)-C(5)     1.394(2) 
C(4)-Cr(1)     2.2599(16) 
C(5)-C(6)     1.422(2) 
C(5)-Cr(1)     2.2214(15) 
C(5)-H(5)     0.9500 
C(6)-C(7)     1.395(2) 
C(6)-Cr(1)     2.2154(15) 
C(6)-H(6)     0.9500 
C(7)-O(4)     1.355(2) 
C(7)-C(8)     1.425(2) 
C(7)-Cr(1)     2.2694(16) 
C(8)-C(9)     1.506(2) 
C(8)-Cr(1)     2.2480(15) 
C(9)-O(1)     1.419(2) 
C(9)-H(9A)     0.9900 
C(9)-H(9B)     0.9900 
C(10)-O(3)     1.428(2) 
C(10)-H(10A)     0.9800 
C(10)-H(10B)     0.9800 
C(10)-H(10C)     0.9800 
C(11)-O(4)     1.430(2) 
C(11)-H(11A)     0.9800 
C(11)-H(11B)     0.9800 
C(11)-H(11C)     0.9800 
C(12)-O(5)     1.154(2) 
C(12)-Cr(1)     1.8242(17) 
C(13)-O(6)     1.149(2) 
C(13)-Cr(1)     1.8536(16) 
C(14)-O(7)     1.153(2) 
C(14)-Cr(1)     1.8217(18) 
O(2)-H(2)     0.8400 
C(15)-C(16)     1.429(6) 
C(15)-H(15A)     0.9800 
C(15)-H(15B)     0.9800 
C(15)-H(15C)     0.9800 
C(16)-O(8)     1.399(4) 
C(16)-H(16A)     0.9900 
C(16)-H(16B)     0.9900 
C(17)-O(8)     1.405(4) 
C(17)-C(18)     1.420(6) 
C(17)-H(17A)      0.9900 
C(18)-H(18A)     0.9800 
C(18)-H(18B)     0.9800 
C(18)-H(18C)     0.9800 
O(1)-C(1)-C(2)    110.64(14) 
O(1)-C(1)-H(1A)    109.5 
C(2)-C(1)-H(1A)    109.5 
O(1)-C(1)-H(1B)    109.5 
C(2)-C(1)-H(1B)    109.5 
H(1A)-C(1)-H(1B)   108.1 
O(2)-C(2)-C(1)    107.78(13) 
O(2)-C(2)-C(3)    110.30(14) 
C(1)-C(2)-C(3)    109.87(14) 
O(2)-C(2)-H(2A)    109.6 
C(1)-C(2)-H(2A)    109.6 
C(3)-C(2)-H(2A)    109.6 
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C(8)-C(3)-C(4)    119.49(14) 
C(8)-C(3)-C(2)    119.77(14) 
C(4)-C(3)-C(2)    120.72(14) 
C(8)-C(3)-Cr(1)    72.73(9) 
C(4)-C(3)-Cr(1)    72.92(9) 
C(2)-C(3)-Cr(1)    127.10(11) 
O(3)-C(4)-C(5)    125.26(15) 
O(3)-C(4)-C(3)    114.57(14) 
C(5)-C(4)-C(3)    120.11(15) 
O(3)-C(4)-Cr(1)    130.15(12) 
C(5)-C(4)-Cr(1)    70.38(9) 
C(3)-C(4)-Cr(1)    70.00(9) 
C(4)-C(5)-C(6)    120.18(15) 
C(4)-C(5)-Cr(1)    73.39(9) 
C(6)-C(5)-Cr(1)    71.07(8) 
C(4)-C(5)-H(5)    119.9 
C(6)-C(5)-H(5)    119.9 
Cr(1)-C(5)-H(5)    127.7 
C(7)-C(6)-C(5)    119.78(15) 
C(7)-C(6)-Cr(1)    74.00(9) 
C(5)-C(6)-Cr(1)    71.53(9) 
C(7)-C(6)-H(6)    120.1 
C(5)-C(6)-H(6)    120.1 
Cr(1)-C(6)-H(6)    126.2 
O(4)-C(7)-C(6)    125.65(15) 
O(4)-C(7)-C(8)    114.21(14) 
C(6)-C(7)-C(8)    120.11(15) 
O(4)-C(7)-Cr(1)    130.56(12) 
C(6)-C(7)-Cr(1)    69.78(9) 
C(8)-C(7)-Cr(1)    70.79(9) 
C(3)-C(8)-C(7)    119.91(14) 
C(3)-C(8)-C(9)    120.95(14) 
C(7)-C(8)-C(9)    119.13(15) 
C(3)-C(8)-Cr(1)    70.68(9) 
C(7)-C(8)-Cr(1)    72.43(9) 
C(9)-C(8)-Cr(1)    130.56(12) 
O(1)-C(9)-C(8)    112.44(14) 
O(1)-C(9)-H(9A)    109.1 
C(8)-C(9)-H(9A)    109.1 
O(1)-C(9)-H(9B)    109.1 
C(8)-C(9)-H(9B)    109.1 
H(9A)-C(9)-H(9B)   107.8 
O(3)-C(10)-H(10A)   109.5 
O(3)-C(10)-H(10B)   109.5 
H(10A)-C(10)-H(10B)   109.5 
O(3)-C(10)-H(10C)   109.5 
H(10A)-C(10)-H(10C)   109.5 
H(10B)-C(10)-H(10C)   109.5 
O(4)-C(11)-H(11A)   109.5 
O(4)-C(11)-H(11B)   109.5 
H(11A)-C(11)-H(11B)   109.5 
O(4)-C(11)-H(11C)   109.5 
H(11A)-C(11)-H(11C)   109.5 
H(11B)-C(11)-H(11C)   109.5 
O(5)-C(12)-Cr(1)    178.73(18) 
O(6)-C(13)-Cr(1)    178.08(18) 
O(7)-C(14)-Cr(1)    178.6(2) 
C(9)-O(1)-C(1)    111.22(12) 
C(2)-O(2)-H(2)    109.5 
C(4)-O(3)-C(10)    117.37(14) 
C(7)-O(4)-C(11)    117.25(15) 
C(14)-Cr(1)-C(12)   88.74(8) 
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C(14)-Cr(1)-C(13)   90.18(9) 
C(12)-Cr(1)-C(13)   88.80(8) 
C(14)-Cr(1)-C(6)    118.03(7) 
C(12)-Cr(1)-C(6)    153.23(7) 
C(13)-Cr(1)-C(6)    91.32(7) 
C(14)-Cr(1)-C(5)    155.38(7) 
C(12)-Cr(1)-C(5)    115.84(7) 
C(13)-Cr(1)-C(5)    91.83(7) 
C(6)-Cr(1)-C(5)    37.40(6) 
C(14)-Cr(1)-C(3)    114.50(8) 
C(12)-Cr(1)-C(3)    89.79(7) 
C(13)-Cr(1)-C(3)    155.24(7) 
C(6)-Cr(1)-C(3)    79.11(6) 
C(5)-Cr(1)-C(3)    66.71(6) 
C(14)-Cr(1)-C(8)    89.58(7) 
C(12)-Cr(1)-C(8)    116.83(7) 
C(13)-Cr(1)-C(8)    154.35(7) 
C(6)-Cr(1)-C(8)    66.39(6) 
C(5)-Cr(1)-C(8)    78.21(6) 
C(3)-Cr(1)-C(8)    36.59(6) 
C(14)-Cr(1)-C(4)    151.58(8) 
C(12)-Cr(1)-C(4)    90.39(7) 
C(13)-Cr(1)-C(4)    118.21(7) 
C(6)-Cr(1)-C(4)    66.11(6) 
C(5)-Cr(1)-C(4)    36.23(6) 
C(3)-Cr(1)-C(4)    37.08(6) 
C(8)-Cr(1)-C(4)    65.65(6) 
C(14)-Cr(1)-C(7)    91.71(7) 
C(12)-Cr(1)-C(7)    153.58(7) 
C(13)-Cr(1)-C(7)    117.61(7) 
C(6)-Cr(1)-C(7)    36.22(6) 
C(5)-Cr(1)-C(7)    65.73(6) 
C(3)-Cr(1)-C(7)    66.07(6) 
C(8)-Cr(1)-C(7)    36.78(6) 
C(4)-Cr(1)-C(7)    76.90(6) 
C(16)-C(15)-H(15A)   109.5 
C(16)-C(15)-H(15B)   109.5 
H(15A)-C(15)-H(15B)   109.5 
C(16)-C(15)-H(15C)   109.5 
H(15A)-C(15)-H(15C)   109.5 
H(15B)-C(15)-H(15C)   109.5 
O(8)-C(16)-C(15)   112.0(3) 
O(8)-C(16)-H(16A)   109.2 
C(15)-C(16)-H(16A)   109.2 
O(8)-C(16)-H(16B)   109.2 
C(15)-C(16)-H(16B)   109.2 
H(16A)-C(16)-H(16B)   107.9 
O(8)-C(17)-C(18)   114.2(3) 
O(8)-C(17)-H(17A)   108.7 
C(18)-C(17)-H(17A)   108.7 
O(8)-C(17)-H(17B)   108.7 
C(18)-C(17)-H(17B)   108.7 
H(17A)-C(17)-H(17B)   107.6 
C(17)-C(18)-H(18A)   109.5 
C(17)-C(18)-H(18B)   109.5 
H(18A)-C(18)-H(18B)   109.5 
C(17)-C(18)-H(18C)   109.5 
H(18A)-C(18)-H(18C)   109.5 
H(18B)-C(18)-H(18C)   109.5 
C(16)-O(8)-C(17)   116.5(3) 
Symmetry transformations used to generate equivalent atoms 
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Table A1.3.4 Anisotropic displacement parameters (Å2x 103)for anti-170. The anisotropic 

displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 

 U11  U22  U33  U23  U13  U12 
C(1) 38(1)   32(1)  33(1)   -4(1)  1(1)   9(1) 
C(2) 30(1)   25(1)  32(1)   1(1)  -2(1)   3(1) 
C(3) 30(1)   23(1)  24(1)   2(1)  0(1)   0(1) 
C(4) 34(1)   25(1)  24(1)   1(1)  -2(1)   0(1) 
C(5) 38(1)   25(1)  25(1)   0(1)  3(1)   0(1) 
C(6) 32(1)   26(1)  31(1)   2(1)  9(1)   1(1) 
C(7) 27(1)   28(1)  33(1)   5(1)  4(1)   -1(1) 
C(8) 28(1)   23(1)  28(1)   2(1)  2(1)   -2(1) 
C(9) 33(1)   26(1)  39(1)   -4(1)  -6(1)   -1(1) 
C(10) 53(1)   56(1)  65(1)   -23(1)  -27(1)   2(1) 
C(11) 32(1)   52(1)  76(2)   -10(1)  -6(1)   11(1) 
C(12) 34(1)   30(1)  39(1)   -2(1)  8(1)   -1(1) 
C(13) 33(1)   31(1)  39(1)   6(1)  6(1)   0(1) 
C(14) 39(1)   44(1)  33(1)   8(1)  -1(1)   -13(1) 
O(1) 41(1)   24(1)  37(1)   -5(1)  -5(1)   1(1) 
O(2) 41(1)   25(1)  38(1)   3(1)  -12(1)   2(1) 
O(3) 41(1)   32(1)  37(1)   -5(1)  -16(1)   4(1) 
O(4) 24(1)   35(1)  53(1)   -3(1)  0(1)   0(1) 
O(5) 38(1)   64(1)  77(1)   -10(1)  23(1)   -2(1) 
O(6) 63(1)   27(1)  72(1)   9(1)  14(1)   -1(1) 
O(7) 76(1)   90(1)  33(1)   13(1)  -14(1)   -31(1) 
Cr(1) 24(1)   22(1)  24(1)   2(1)  2(1)   -1(1) 
C(15) 159(4)   110(3)  49(2)   10(2)  25(2)   53(3) 
C(16) 138(4)   107(3)  51(2)   -14(2)  -42(2)   15(2) 
C(17) 58(2)   77(2)  142(4)   5(2)  -50(2)   -8(1) 
C(18) 54(2)   205(5)  115(3)   48(3)  -12(2)   -19(3) 
O(8) 66(1)   50(1)  50(1)   0(1)  -29(1)   8(1) 
 

Table A1.3.5 Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) 

for anti-170 
  x   y   z   U(eq) 
H(1A)  2657  4028  9231  41 
H(1B)  3205  3009  9619  41 
H(2A)  1967  2656  8296  35 
H(5)  4246  303  6568  35 
H(6)  6343  300  7304  35 
H(9A)  5556  2767  9634  39 
H(9B)  6370  3312  8828  39 
H(10A)  2475  811  5670  87 
H(10B)  997  962  6034  87 
H(10C)  1958  222  6567  87 
H(11A)  7876  297  8559  80 
H(11B)  9026  1087  8665  80 
H(11C)  8404  868  7654  80 
H(2)  2241  3507  7049  52 
H(15A)  2959  4258  5234  159 
H(15B)  2812  3657  4277  159 
H(15C)  3039  3093  5247  159 
H(16A)  812  4205  4835  119 
H(16B)  870  3044  4737  119 
H(17A)  -750  2770  5941  111 
H(17B)  -952  3924  5968  111 
H(18A)  -159  2842  7515  187 
H(18B)  -1656  3138  7306  187 
H(18C)  -581  3965  7507  187 
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Table A1.3.6 Torsion angles [°] for anti-170 
O(1)-C(1)-C(2)-O(2)   -69.16(17) 
O(1)-C(1)-C(2)-C(3)   51.05(17) 
O(2)-C(2)-C(3)-C(8)   103.12(16) 
C(1)-C(2)-C(3)-C(8)   -15.6(2) 
O(2)-C(2)-C(3)-C(4)   -75.45(18) 
C(1)-C(2)-C(3)-C(4)   165.87(15) 
O(2)-C(2)-C(3)-Cr(1)   -166.66(11) 
C(1)-C(2)-C(3)-Cr(1)   74.66(17) 
C(8)-C(3)-C(4)-O(3)   -176.02(14) 
C(2)-C(3)-C(4)-O(3)   2.6(2) 
Cr(1)-C(3)-C(4)-O(3)   126.03(14) 
C(8)-C(3)-C(4)-C(5)   6.6(2) 
C(2)-C(3)-C(4)-C(5)   -174.85(15) 
Cr(1)-C(3)-C(4)-C(5)   -51.38(14) 
C(8)-C(3)-C(4)-Cr(1)   57.95(13) 
C(2)-C(3)-C(4)-Cr(1)   -123.47(14) 
O(3)-C(4)-C(5)-C(6)   178.51(15) 
C(3)-C(4)-C(5)-C(6)   -4.4(2) 
Cr(1)-C(4)-C(5)-C(6)   -55.59(13) 
O(3)-C(4)-C(5)-Cr(1)   51.21(14) 
C(4)-C(5)-C(6)-C(7)   -1.6(2) 
Cr(1)-C(5)-C(6)-C(7)   -58.26(13) 
C(4)-C(5)-C(6)-Cr(1)   56.70(13) 
C(5)-C(6)-C(7)-O(4)   -176.90(15) 
Cr(1)-C(6)-C(7)-O(4)   126.05(16) 
C(5)-C(6)-C(7)-C(8)   5.3(2) 
Cr(1)-C(6)-C(7)-C(8)   -51.77(13) 
C(5)-C(6)-C(7)-Cr(1)   57.05(13) 
C(4)-C(3)-C(8)-C(7)   -2.8(2) 
C(2)-C(3)-C(8)-C(7)   178.56(14) 
Cr(1)-C(3)-C(8)-C(7)   55.20(13) 
C(4)-C(3)-C(8)-C(9)   175.57(15) 
C(2)-C(3)-C(8)-C(9)   -3.0(2) 
Cr(1)-C(3)-C(8)-C(9)   -126.39(15) 
C(4)-C(3)-C(8)-Cr(1)   -58.04(13) 
C(2)-C(3)-C(8)-Cr(1)   123.36(14) 
O(4)-C(7)-C(8)-C(3)   178.88(14) 
C(6)-C(7)-C(8)-C(3)   -3.1(2) 
Cr(1)-C(7)-C(8)-C(3)   -54.37(13) 
O(4)-C(7)-C(8)-C(9)   0.4(2) 
C(6)-C(7)-C(8)-C(9)   178.49(15) 
Cr(1)-C(7)-C(8)-C(9)   127.18(14) 
O(4)-C(7)-C(8)-Cr(1)   -126.75(14) 
C(6)-C(7)-C(8)-Cr(1)   51.31(13) 
C(3)-C(8)-C(9)-O(1)   -12.6(2) 
C(7)-C(8)-C(9)-O(1)   165.79(14) 
Cr(1)-C(8)-C(9)-O(1)   -102.96(16) 
C(8)-C(9)-O(1)-C(1)   48.74(19) 
C(2)-C(1)-O(1)-C(9)   -70.57(17) 
C(5)-C(4)-O(3)-C(10)   6.4(3) 
C(3)-C(4)-O(3)-C(10)   -170.84(18) 
Cr(1)-C(4)-O(3)-C(10)   -86.9(2) 
C(6)-C(7)-O(4)-C(11)   -4.1(3) 
C(8)-C(7)-O(4)-C(11)   173.85(17) 
Cr(1)-C(7)-O(4)-C(11)   89.0(2) 
O(7)-C(14)-Cr(1)-C(12)   -79(7) 
O(7)-C(14)-Cr(1)-C(13)   -168(7) 
O(7)-C(14)-Cr(1)-C(6)   101(7) 
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O(7)-C(14)-Cr(1)-C(5)   98(7) 
O(7)-C(14)-Cr(1)-C(3)   10(7) 
O(7)-C(14)-Cr(1)-C(8)   38(7) 
O(7)-C(14)-Cr(1)-C(4)   10(7) 
O(7)-C(14)-Cr(1)-C(7)   75(7) 
O(5)-C(12)-Cr(1)-C(14)   106(8) 
O(5)-C(12)-Cr(1)-C(13)   -164(8) 
O(5)-C(12)-Cr(1)-C(6)   -74(8) 
O(5)-C(12)-Cr(1)-C(5)   -73(8) 
O(5)-C(12)-Cr(1)-C(3)   -9(8) 
O(5)-C(12)-Cr(1)-C(8)   17(8) 
O(5)-C(12)-Cr(1)-C(4)   -46(8) 
O(5)-C(12)-Cr(1)-C(7)   14(8) 
O(6)-C(13)-Cr(1)-C(14)   93(6) 
O(6)-C(13)-Cr(1)-C(12)   4(6) 
O(6)-C(13)-Cr(1)-C(6)   -149(6) 
O(6)-C(13)-Cr(1)-C(5)   -112(6) 
O(6)-C(13)-Cr(1)-C(3)   -83(6) 
O(6)-C(13)-Cr(1)-C(8)   -178(100) 
O(6)-C(13)-Cr(1)-C(4)   -86(6) 
O(6)-C(13)-Cr(1)-C(7)   -175(100) 
C(7)-C(6)-Cr(1)-C(14)   -47.96(13) 
C(5)-C(6)-Cr(1)-C(14)   -177.80(10) 
C(7)-C(6)-Cr(1)-C(12)   131.19(16) 
C(5)-C(6)-Cr(1)-C(12)   1.4(2) 
C(7)-C(6)-Cr(1)-C(13)   -138.87(11) 
C(5)-C(6)-Cr(1)-C(13)   91.29(11) 
C(7)-C(6)-Cr(1)-C(5)   129.84(14) 
C(7)-C(6)-Cr(1)-C(3)   64.12(10) 
C(5)-C(6)-Cr(1)-C(3)   -65.72(10) 
C(7)-C(6)-Cr(1)-C(8)   28.05(9) 
C(5)-C(6)-Cr(1)-C(8)   -101.79(10) 
C(7)-C(6)-Cr(1)-C(4)   100.67(10) 
C(5)-C(6)-Cr(1)-C(4)   -29.17(9) 
C(5)-C(6)-Cr(1)-C(7)   -129.84(14) 
C(4)-C(5)-Cr(1)-C(14)   -126.40(19) 
C(6)-C(5)-Cr(1)-C(14)   4.7(2) 
C(4)-C(5)-Cr(1)-C(12)   49.61(12) 
C(6)-C(5)-Cr(1)-C(12)   -179.32(10) 
C(4)-C(5)-Cr(1)-C(13)   139.16(11) 
C(6)-C(5)-Cr(1)-C(13)   -89.77(11) 
C(4)-C(5)-Cr(1)-C(6)   -131.07(14) 
C(4)-C(5)-Cr(1)-C(3)   -28.10(9) 
C(6)-C(5)-Cr(1)-C(3)   102.97(10) 
C(4)-C(5)-Cr(1)-C(8)   -64.67(10) 
C(6)-C(5)-Cr(1)-C(8)   66.40(9) 
C(6)-C(5)-Cr(1)-C(4)   131.07(14) 
C(4)-C(5)-Cr(1)-C(7)   -101.22(11) 
C(6)-C(5)-Cr(1)-C(7)   29.85(9) 
C(8)-C(3)-Cr(1)-C(14)   51.14(11) 
C(4)-C(3)-Cr(1)-C(14)   -179.45(10) 
C(2)-C(3)-Cr(1)-C(14)   -63.49(16) 
C(8)-C(3)-Cr(1)-C(12)   139.66(10) 
C(4)-C(3)-Cr(1)-C(12)   -90.93(11) 
C(2)-C(3)-Cr(1)-C(12)   25.03(15) 
C(8)-C(3)-Cr(1)-C(13)   -133.67(17) 
C(4)-C(3)-Cr(1)-C(13)   -4.3(2) 
C(2)-C(3)-Cr(1)-C(13)   111.70(19) 
C(8)-C(3)-Cr(1)-C(6)   -64.85(10) 
C(4)-C(3)-Cr(1)-C(6)   64.56(10) 
C(2)-C(3)-Cr(1)-C(6)   -179.48(15) 
C(8)-C(3)-Cr(1)-C(5)   -101.91(10) 
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C(4)-C(3)-Cr(1)-C(5)   27.49(9) 
C(2)-C(3)-Cr(1)-C(5)   143.45(15) 
C(4)-C(3)-Cr(1)-C(8)   129.41(14) 
C(2)-C(3)-Cr(1)-C(8)   -114.63(17) 
C(8)-C(3)-Cr(1)-C(4)   -129.41(14) 
C(2)-C(3)-Cr(1)-C(4)   115.96(18) 
C(8)-C(3)-Cr(1)-C(7)   -29.28(9) 
C(4)-C(3)-Cr(1)-C(7)   100.13(11) 
C(2)-C(3)-Cr(1)-C(7)   -143.91(15) 
C(3)-C(8)-Cr(1)-C(14)   -134.87(11) 
C(7)-C(8)-Cr(1)-C(14)   93.42(11) 
C(9)-C(8)-Cr(1)-C(14)   -20.21(16) 
C(3)-C(8)-Cr(1)-C(12)   -46.51(11) 
C(7)-C(8)-Cr(1)-C(12)   -178.21(10) 
C(9)-C(8)-Cr(1)-C(12)   68.16(16) 
C(3)-C(8)-Cr(1)-C(13)   135.59(17) 
C(7)-C(8)-Cr(1)-C(13)   3.9(2) 
C(9)-C(8)-Cr(1)-C(13)   -109.8(2) 
C(3)-C(8)-Cr(1)-C(6)   104.05(10) 
C(7)-C(8)-Cr(1)-C(6)   -27.65(9) 
C(9)-C(8)-Cr(1)-C(6)   -141.29(16) 
C(3)-C(8)-Cr(1)-C(5)   66.65(9) 
C(7)-C(8)-Cr(1)-C(5)   -65.05(10) 
C(9)-C(8)-Cr(1)-C(5)   -178.68(16) 
C(7)-C(8)-Cr(1)-C(3)   -131.70(14) 
C(9)-C(8)-Cr(1)-C(3)   114.66(18) 
C(3)-C(8)-Cr(1)-C(4)   30.75(9) 
C(7)-C(8)-Cr(1)-C(4)   -100.95(11) 
C(9)-C(8)-Cr(1)-C(4)   145.42(16) 
C(3)-C(8)-Cr(1)-C(7)   131.70(14) 
C(9)-C(8)-Cr(1)-C(7)   -113.64(19) 
O(3)-C(4)-Cr(1)-C(14)   -104.72(19) 
C(5)-C(4)-Cr(1)-C(14)   135.21(16) 
C(3)-C(4)-Cr(1)-C(14)   1.1(2) 
O(3)-C(4)-Cr(1)-C(12)   -16.65(15) 
C(5)-C(4)-Cr(1)-C(12)   -136.72(11) 
C(3)-C(4)-Cr(1)-C(12)   89.13(11) 
O(3)-C(4)-Cr(1)-C(13)   72.20(16) 
C(5)-C(4)-Cr(1)-C(13)   -47.87(12) 
C(3)-C(4)-Cr(1)-C(13)   177.98(10) 
O(3)-C(4)-Cr(1)-C(6)   150.13(16) 
C(5)-C(4)-Cr(1)-C(6)   30.06(10) 
C(3)-C(4)-Cr(1)-C(6)   -104.09(10) 
O(3)-C(4)-Cr(1)-C(5)   120.07(18) 
C(3)-C(4)-Cr(1)-C(5)   -134.15(15) 
O(3)-C(4)-Cr(1)-C(3)   -105.78(18) 
C(5)-C(4)-Cr(1)-C(3)   134.15(15) 
O(3)-C(4)-Cr(1)-C(8)   -136.15(16) 
C(5)-C(4)-Cr(1)-C(8)   103.78(11) 
C(3)-C(4)-Cr(1)-C(8)   -30.37(9) 
O(3)-C(4)-Cr(1)-C(7)   -173.27(15) 
C(5)-C(4)-Cr(1)-C(7)   66.66(10) 
C(3)-C(4)-Cr(1)-C(7)   -67.49(10) 
O(4)-C(7)-Cr(1)-C(14)   18.87(16) 
C(6)-C(7)-Cr(1)-C(14)   139.02(12) 
C(8)-C(7)-Cr(1)-C(14)   -87.00(11) 
O(4)-C(7)-Cr(1)-C(12)   109.47(19) 
C(6)-C(7)-Cr(1)-C(12)   -130.38(16) 
C(8)-C(7)-Cr(1)-C(12)   3.6(2) 
O(4)-C(7)-Cr(1)-C(13)   -72.23(17) 
C(6)-C(7)-Cr(1)-C(13)   47.92(12) 
C(8)-C(7)-Cr(1)-C(13)   -178.10(10) 



 

221 

O(4)-C(7)-Cr(1)-C(6)   -120.15(19) 
C(8)-C(7)-Cr(1)-C(6)   133.98(14) 
O(4)-C(7)-Cr(1)-C(5)   -150.91(17) 
C(6)-C(7)-Cr(1)-C(5)   -30.77(9) 
C(8)-C(7)-Cr(1)-C(5)   103.21(10) 
O(4)-C(7)-Cr(1)-C(3)   135.01(16) 
C(6)-C(7)-Cr(1)-C(3)   -104.84(11) 
C(8)-C(7)-Cr(1)-C(3)   29.14(9) 
O(4)-C(7)-Cr(1)-C(8)   105.87(18) 
C(6)-C(7)-Cr(1)-C(8)   -133.98(14) 
O(4)-C(7)-Cr(1)-C(4)   172.56(16) 
C(6)-C(7)-Cr(1)-C(4)   -67.29(10) 
C(8)-C(7)-Cr(1)-C(4)   66.69(10) 
C(15)-C(16)-O(8)-C(17)   -175.1(3) 
C(18)-C(17)-O(8)-C(16)   -177.5(4) 
Symmetry transformations used to generate equivalent atoms:  
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Readily available 2,2,6,6-tetramethoxy-1,1-biphenyl was transformed in 14 synthetic steps 

into the natural product cardinalin 3 using a bidirectional approach. One of the key steps 

was the formation of the cis-1,3-dimethylnaphtho[2,3-c]pyran ring. (±)-1,1-[6,6-Diallyl-

5,5-bis(benzyloxy)-1,1,3,3-tetramethoxy-2,2-binaphthalene-7,7-diyl]diethanol was treated 

with O2 in the presence of CuCl2 and catalytic PdCl2 to afford 5,5-bis(benzyloxy)-7,7,9,9-

tetramethoxy-1,1,3,3-tetramethyl-1H,1H-8,8-bibenzo[g]isochromene. Hydrogenation of 

this compound afforded 7,7,9,9-tetramethoxy-cis-1,3-cis-1,3-tetramethyl-3,3,4,4-

tetrahydro-1H,1H-8,8-bibenzo[g]isochromene-5,5-diol in quantitative yield, which was 

converted in 3 steps to cardinalin 3. 


