CHAPTER 2

LITERATURE REVIEW

2.1  Basic Aspects of Longitudinal Studies

Repeated measures models are designed to take astount the stochastic
dependence in longitudinal data. Two types of setib dependence exist between
the responses: the homogeneity of the responseshensame unit and the
heterogeneity across units; and the distancerfia tr space) among responses on the
same unit (Lindsey, 1993, p. 6). The correct spmatibn of the stochastic
interdependence model is important because the Imoidelependence among
responses can have a great influence on the abilitye complete model to describe

the observations (Lindsey, 1993).

The response variable in a repeated measures d=sigoe in the form of count data,
such as the number of eggs laid; binary, such asrae and presence of eggs;
categorical responses, such as the type of damagdetf, which can be aggregated
into counts; or in the form of continuous data,lsae the growth in height of a plant.
These responses may have come from a study whersuthjects have undergone
some treatment or treatments, or accompanying iatgarmay have been measured
(Lindsey, 1993). In some studies, measurementshaag been taken through space
rather than time. Only continuous responses takeyugh time will be considered in

this study.
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Randomisation is required to allocate subjectsréatinent groups so that bias is
avoided. Lindsey (1993, p. 9) notes that randomasatllows for statements of
causality, since which treatment a subject receise®t influenced by the response
that the subject gives. It also minimises the éffeaf inter-response variability by
distributing it randomly over treatments, therelgu@ing homogeneity of variability.

In order to attribute causality, the relationshgivieen the cause and the effect needs
to be strong, and the relationship should be cterdisn different populations and
under different circumstances. In addition, theseaneeds to lead to a single effect
(specificity) and the cause must precede the efifetiine (temporality). To conclude
that a cause and effect relationship exists theeel:ito be experimental evidence and

theoretical (e.g. biological) plausibility (TwisRQ03, p.2).

2.2  Repeated Measures Models

There are a number of different types of linear et®@dhat can be used to analyse

repeated measures. Some of these models will lugiloked, with the main emphasis

falling on linear mixed effects models.

2.2.1 Fixed effects models

A number of relatively different types of models fongitudinal data fall into this

category, including the simpler models discussedthe Chapter one. More

sophisticated methods will now be discussed.
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Potthoff and Roy (1964) were the first to propose extension to the standard
multivariate ANOVA (MANOVA) model for growth curvanalysis. Davis (2002)

gives detail on this type of analysis. Supposeetlages treatment groups, and Iisf,

denote the number of individuals in grolaph = 1,...s, so thatN = Z N, . Let yhi
h=1

denote the responses of tifesubject in grouph at thej™ measurement occasion,
wherei = 1,...Ny andj = 1,...1. It is assumed that repeated measurements hawe bee
obtained from each individual atequally spaced time points. In growth curve
analysis it is assumed that the time trend in gmolip can be described byal)-

degree polynomial, witkh <t. The formulation of the growth curve model is then

Yhi = Bro * B | + B’ +'"+:Bh,v—1jv_l + €
where ay; is the error for thé™ individual in grouph at thej™ time point. This
formulation of the time trend is assumed to be shene for each group, but the

different parameter values may differ over the gsuleading to a total o$v

parameters (Davis, 2002).

Let Yni = (Vhiz,---, Yhit) and ey = (enis,...,enit) denote the vectors of responses and

errors respectively of thei™ individual in group h, and let Y =

Y111 Yio yllj Y
Yio1 Vi 0 Y2 i Yiat
yl.N it y1:N12 yl!““ yllet denote theNxt matrix of responses artel the
Yoir Yoz 0 Yei o Yhie
ystl ystz o yst i ystt

correspondingNxt matrices of errors. The growth curve model wotleht be written

asY = XBT + E whereX is anNxs across-individual design matrix indicating an
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Yhi', are assumed to be independent and distributethudgvariate normal with

covariance matrixo (Davis, 2002).

The PR data set can be used to illustrate the aloormilation. The response matrix,
Y, would contain 27 rows and four columns, each representing an individual's
observations at ages 8, 10, 12 and 14. The comdsmp design matrixX, would
contain 27 rows and two columns, with values 1 @nathere a 1 in the first column
indicates a girl and a 1 in the second column edei€ a boy. The parameter matBy,
would contain two rows and columns, the first row containing the parametdues
for girls and the second row containing the paramealues for boys. The design
matrix, T, would containv rows and four columns, with the columns representi
ages 8, 10, 12 and 14, and the rows correspondititetparameter estimates. These

matrices are shown in Fig. 2.1.
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Fig 2.1: Growth curve analysis matrices for thedi set.

Hypothesis tests of the for&ABC =D can be tested. For example, for the PR data set,
to test if there is a difference between girls &ogs assuming parallelism between
the growth curves of girls and boys, the hypothA8I€ = 0 could be tested, whefe
=(1,-1)andC = (1, 1, 1, 1)'. If one does not want to assummlpelism, then the test
becomesABC = 04, where A = (1, -1) andC = I4. Davis (2002) gives a detailed

discussion on the application of growth curve asialwith respect to the PR data set.
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The above formulation for growth curve analysisnd$ used very often in practice as
software for this technique is not readily avaitab\iore flexible methods, such as
linear mixed effects models, which encompass tlpegyof comparisons available

from growth curve analysis, have since been deeel¢pavis, 2002).

Response profile analysis is a method whereby thanms estimated at each time
point, stratified according to time, and the se@eeof means over time is referred to
as the mean response profile for a particular lewehe group factor (Crowder &
Hand, 1990; Fitzmauricet al. 2004). Taking the PR data set as an example, the
model tested could be of the form= fy + f1gender+ prage + fzgenderxage where

w is the mean response. Fitzmaumteal (2004, p. 105) note that there are three main
hypotheses that can be tested. In the context ® RR data set, the first null
hypothesis to be tested would be “the mean respprefdes are parallel” which
would concern thgenderxagenteraction effect. If the response profiles aaeafiel,
then the next hypothesis to test would be “the amsp profiles are flat” and this
would concern theage effect. Also on the condition that the responsefiles are
parallel, the third hypothesis would be “the resgmnprofiles coincide” and this would
relate to thegendereffect. The first hypothesis, testing if the slepd the response
profiles are parallel, is generally the main instrdf the response profiles are parallel,
then testing if the slope is flat is equivalenttésting if the growth rate is equal to

zero, and testing if the lines coincide would messting if there is gendereffect.

Fitzmauriceet al (2004, p.132) note further that the responseilprahethod is

straightforward when the design is balanced andithimg of the repeated measures

is common for all subjects, and when all the catas are discrete. It can be adapted
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to accommodate unbalanced data, where there mayis®ng values. Since this
method can accommodate arbitrary patterns in thanmesponse and in the
covariance of the responses, it has some robusagEsast misspecification of the
models for the mean and covariance (Fitzmauetcal, 2004). Problems with this
method include that the model cannot handle mistimeasurements (i.e. where the
measurements taken from individuals do not occuhatsame time); the response
profiles produce an overall test of effects anddftee may have low power when
testing for group differences; and lastly, the nembf covariance parameters that
need to be estimated grows rapidly as the numberealsurement occasions increases

(Fitzmauriceet al, 2004).

2.2.2 Random effects models

Vittinghoff et al. (2005, p. 274) note that in random effects modg]lione or more
variables are declared as random factors. If a tralde contains fixed factors, then
the model is referred to as a mixed model. Randantofs have a distribution
assumed for the different levels, such as idemsifief different individuals. The
values for the levels of a fixed factor are fixkdpwn values which are chosen at the
beginning of the experiment, and the effects ofhebavel on the response are

estimated as model coefficients.

When a factor is declared to be a random factam ihferences can be made on a
statistical basis on the population from which tbeels of the random factor have
been chosen. Correlation can also be incorporatedhe model, as observations that

share the same level of the random effect are rdsmbehs correlated. More
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assumptions need to be made when using randomsfighich can lead to more
accurate estimates (provided the correct assungpteme made), and different
estimation methods can be used (Crowder & Hand);1Bfvis, 2002; Fitzmauricet

al., 2004).

Random effects modelling is one of the oldest méthased to analyze longitudinal
data (Fitzmauricet al, 2004). In a repeated measures ANOVA, a randdectefor
the individuals in the study can be included inrin@del. By including random effects
in a model, positive correlation is induced betweepeated measurements through
the covariance matrix of the random effects (Fitunez et al, 2004). In terms of the
mean structure, random effects can be thought afaadomly varying intercepts
which account for all unmeasured factors which makene individuals “high

responders” and others “low responders” (Fitzmawtcal, 2004).

The repeated measures ANOVA model can be written as
Yi :X‘ijl}+b| * €
where by is a random individual-specific effect angl is a within-individual

measurement of error (Crowder & Hand, 1990; Fitzncawet al, 2004).

Three standard assumptions are made when using AN repeated measures
(Crowder & Hand, 1990; Twisk, 2003). Firstly, thiwe observations on different
subjects at each of the repeated measurement direemdependent, and secondly,

that these observations are distributed as muiliteamormal. Therefore thlg are

assumed to be normally distributed with mean zewb \ar(h) = g7 and theg; are

assumed to be normally distributed with mean zewb\arg;) = o . Thus repeated
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measures ANOVA distinguishes between two diffesentrces of variability: between
subject variability ¢7) and within subject variabilityd?). It is also assumed that the

b-profiles of the different individuals are uncorteld and that the errors;, are
uncorrelated for different time points and for diint individuals. Lastly, it is
assumed that all the correlations in the outcomeabi® between repeated
measurements are equal and variances of the outcamable are the same at each of
the repeated measurements (which is known as spfieriAn example of a
covariance matrix that satisfies the sphericitydibon is the compound symmetric

(CS) covariance matrix:

Gital o ot o d
A R
2 2 2 2 2
o, o, o, +a. - o, (Hand & Crowder,1996, p. 41).
. . . . 2
. . Ub
2 2 2 2 2
o, o, (o o, +0;

Since the means fdx ande; are both equal to zero, the mean response carbthen
written as:

E(y;) = 14 =x;B (Crowder & Hand,1990).

Repeated measures ANOVA is only a part of a mandlile and general “regression
paradigm” (Fitzmauricest al, 2004, p. 16). Fitzmauriocet al (2004, p. 14) note that
regression models have a wide range of uses. Ragnesodels include linear
regression, linear logistic regression, and Poissotog-linear regression models.
Linearity means that all of these models for theameor a transformation of the

mean, are linear in the regression parametersrddression parameters in the model
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express how the covariates are related to the rméahe response variable. The
covariates can be quantitative or categorical (sashgender or treatment group).

Models which only include categorical covariates actually ANOVA models.

2.2.3 Linear mixed effects models

The general linear mixed effects model can be enitts

y, =X,B+Z,b, +¢ fori=1..N
b, ~N(0,X), & ~N(0O,m,)

wherey;, X, Zi andb; are as defined in Chapter one, and the randomsegrohave a
covariance matrix of arbitrary structur@;. In order to make inferences gnit is
assumed that, conditional on the random effecty; is normally distributed with
mean vectoX;p + Zjb; and with covariance matriw;. If f(yi|b;)) and fp;) are the
corresponding density functions, then the margohsity function ofy; can be
calculated by
f(y)) =T f(yilbi)f(bi) db;
which can be shown to be the density function nf@mensional normal distribution

with mean vectoX;p and with covariance matri¥;, =Z,XZ; + o, . Since this linear

mixed model is defined through ffy) and fp;), it can be referred to as the
hierarchical formulation or conditional modellingmoach of the linear mixed model,
and assumes that bdhandw; are positive (semi-) definite (Verbeke & Molenbesgh

2000).

Under the general linear modgl ~ N(X,B,Z,XZ; + ;). In practice, inference is

based on the marginal distribution for the respgnsehere the hierarchical structure
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of the original model is not taken into account i(yéke & Molenberghs, 2000). This
type of analysis usually only ensures that thenedtd variance of they,
Z.X7' +®,, is positive (semi-) definite, but not the positilsemi-) definiteness of

the separate componentsando;.

Let T denote the vector of all variance and covarianaemeters (known as the

variance components) found Vh so thatV; = V; () = Z,XZ; + ®,, i.e.T consists of

the g(g+1)/2 different elements itE and of all parameters im;, and let® =

(ﬁ',r') denote the vector of all parameters in the margimadel fory;. The classical

approach to inference is based on estimators @atdnom maximizing the marginal

likelihood function
Ly (0) = |'J {2 ™2 |V, (x) [ 2 xexpEL(y, - XB)'V, (D), — X, B}

with respect t® (Verbeke & Molenberghs, 2000). #fis assumed to be known, then
the maximum likelihood (ML) estimator @f obtained from maximising the marginal

likelihood function, conditional om, is then given by

ﬁ = (ZX;WiXi )_1ZX;WiYi

i=1 i=1

and its variance-covariance matrix then equals
~ N N N
var@) = (O X{W, X)X W, varly )W, X, ) (X XWX, )™
i=1 i=1 i=1
N
= (X XWX,)™
i=1

whereW; equalsv;(r).
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In practice, linear mixed models often contain méxgd effects and in such cases, it
may be important to estimate the variance compaenenxplicitly taking into account
the loss of the degrees of freedom involved imeating the fixed effects (Verbeke &
Molenberghs, 2000). This can be done using resttintaximum likelihood (REML).
The REML estimators fot and forp can be found by maximizing the function

known as the REML likelihood function

N

N
Lrew (0) = ZX;WiXi |

i=1

I-ML

with respect to all parameters simultaneouslyaiid g), whereN is the number of

individuals (Verbeke & Molenberghs, 2000).

Jennrich and Schluchter (1986) developed a gefieesr modelling approach, first
proposed by Liang and Zeger (1986), which extentledinear mixed effects model
of Laird and Ware (1982) by incorporating it inteetframework of a general linear
model with an arbitrary covariance structure. Theyposed the modef, = X,p +e,
whereg ~ N(0, V). In the simplest casé; = ¢°l;. Other structures could be chosen,
such as autoregressive (AR), Toeplitz (TOEP) or R&dom effects can be included
in the model by letting = Zb; + &, whereb; ~N(0, X), X unstructured (UN), angl ~
N(0, 6%1). This is equivalent to the Laird and Ware (198®)del. The model of Liang

and Zeger (1986) is further discussed in SectiBril2.

2.2.4 Conditional linear mixed effects models

Conditional linear mixed effects models have beewetbped in an attempt to get

round the problem of specifying the relationshiptioé random effects with time
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(Verbeke & Molenberghs, 2000). In general, the matarest is in the fixed effects
and the parameters of the random effects are vieseauisance parameters. Using
this approach, parameters are estimated in twe.skstly, the linear mixed effects
model is conditioned on sufficient statistics foe random effects parameters related
to time. Then by means of maximum likelihood ottnieted maximum likelihood, the
remaining parameters are estimated through theitcmmal distribution of they;,
given the sufficient statistics (Verbeke & Molengles, 2000). The formulation of the

model using this approach would be:
y, =1, b| +XB+Z,b; +g
wheren;, B, bi, Xij andZ; are as specified previously, excluding those tdapendent

elements of the random effects, ahd is a parameter for the time-dependent random

effects.

The same parameter estimates will be obtainedeifnihisance parametets,, are
included in the standard linear mixed effects madefixed effects. This means that
for each subject in an experiment a subject-speiifercept will be estimated. Where
a large number of subjects have been included,vibisid not be computationally

feasible (Verbeke & Molenberghs, 2000).

The model on which a paired t-test is based isrg sgnple case of a conditional
linear mixed effects model (Verbeke & MolenbergP800). In this case the data are
perfectly balanced with two observations per subjEee only time-varying covariate
of interest is the binary indicator variable regrsng the measurement occasion. The

conditional linear mixed effects approach is eqi@wato analysing the difference
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between the two observations taken from each sulfjéerbeke & Molenberghs,

2000).

The advantage of using conditional linear mixesck@s models is that inference is
available for the parameters of interest withowtitig to specify the time dependency
of the random effects. Due to the simpler formha&f model during the fitting step, the
numerical complexity of the fitting algorithms ieduced. This method would not be
appropriate if the user were interested in thetiaeiahip of the random effects with
time, as this information would be masked usings tprocedure (Verbeke &

Molenberghs, 2000).

Conditional linear mixed effects will not be considd any further in this study
because the research concerns the consequengecihyiag time-dependent random

effects.

2.3 Hierarchical Versus Marginal Modelling Approaches

There are two modelling approaches that incorpocaieelation into a statistical
model. The first is the marginal modelling approadhich assumes a model which
holds averaged over all the clusters (also refetoeds population averaged). The
coefficients can then be interpreted as the avechgage in the response for a unit
change in the predictor over the entire populatiime second is the hierarchical, or
conditional, modelling approach which assumes aahspecific to each cluster (also
referred to as subject specific). Coefficients t@@n be interpreted as the change in

the response in each cluster in the populatiorafanit change in the predictor, and
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the marginal information can be obtained by avemggiver all the clusters. It is
important to note which type of modelling approagioeing used so that the results

can be properly interpreted and compared (Vittirfigeobal, 2005).

A summary of the explanation by Verbeke and Molegbg (2000) on hierarchical
modelling approach follows. Hierarchical modelliimgplies a two-stage process.
During the first stage of the analysis it is assdrti&t the following linear regression
relationship holds:

Yi =ZB; *
whereZ; (nj X q) is a matrix of known covariatep,; (qQ x 1) is a vector of unknown
subject-specific regression coefficients, andgs the vector of residuals of length

This regression equation models howifhsubject’s response evolves over time.

In the second stage a multivariate regression miodehe subject-specific regression
coefficients B;, is assumed to be of the form:

Bi =Kip + by
whereK; is a matrix of known covariate,(p % 1) is a vector of unknown regression
coefficients, andb; is a vector of independent elements of lerigthherefore

Yi =ZB;i tg
=Z (KB +b;) +g
=ZKB+Zb, +g
=XB+Zb; +g

whereX; is the fixed effects regressor matrix.

During the first stage of this process Rilestimates for the observegl for each

subject are obtained separately. This can be irgtg as the calculation stage. In the
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second stage the estimatés are used to provide inferences for This can be

interpreted as the analysis stage.

There are some drawbacks to using this two-stageeps. Information is lost in

summarising thg; by the estimated vector of subject-specific regjoas coefficients,

ﬁi . Random variability is brought into the modellipgpcess by replacing with ﬁi

in the model. Additionally there is the problemttiiae covariance matrix oﬁi is

highly dependent on the number of measurement$abl@ifor each subject and also

when the measurements were taken.

Marginal models are mostly used to make infereratssut population means, and
therefore marginal models for longitudinal data elothe mean response and the
within-subject association among repeated respoodtsined separately (Davis,
2002; Fitzmauriceet al, 2004). In order to use the marginal modellingrapch, it
needs to be assumed that the marginal expectdigr) = ;) can be related to the

covariates through a known link functiog)(
g(ui) = X;jB .

Secondly, it is assumed that the conditional vaeaof eacty;, given the covariates,

depends on the mean in the following way:
Var(yij )= W(,uij )

where v(y;) is a known variance function of the mean ands a scale parameter

(Davis, 2002; Fitzmauricet al, 2004).

Lee and Nelder (2004) argue that the conditionadlelimg approach is preferable to

the marginal modelling approach since both marginérences and conditional
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inferences can be obtained from models obtainesligir the conditional modelling
approach, i.e. botE(y;) = X;p andE(y; | b;)) = Xip + Zb; can be obtained. Since the
expected value for the mean of the random effextoonstrained to equal zero, this
means that the fixed effects estimates of a canwitimodel have the same meaning
as those of the marginal model. The authors shaittthe individuals in a study
have significant random treatment effects (e.gdoam time effects), these will be
confounded with the fixed treatment effects in argmal model, whereas for a
conditional model these two different treatmentet§ will have separate estimates.
The marginal estimates for the fixed effects arentlonly useful if there is no
interaction effect between the subject and thertreat, and this can only be checked
by means of a conditional model. In addition, tlwhars conclude that conditional
models allow for the estimation of two differenfogs of error: random error and

subject-specific error, which is not possible tlgiouhe marginal modelling approach.

2.3.1 Generalised estimating equations (GEE)

Generalised estimating equations (GEE) is an atem approach to linear mixed
effects models for modelling repeated measuress @pproach extends generalised
linear models to longitudinal data. The biggesfedénce between the GEE and the
linear mixed effects approach is that the meanomesp when using GEE, does not
depend on the random effects, as it does in theegbaf linear mixed effects models.
Therefore the GEE approach is a marginal modeHipgroach. Marginal models do
not require that a distribution is specified foe thbservations, only that a regression
model is specified for the mean response, and th@mary purpose is to make

inferences about population means. This means tatregression parameters
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estimates obtained will have population-averagéerimetations (Fitzmauricet al,

2004).

Liang and Zeger (1986) were the first to propose ¢ltension of the generalised
linear models to form GEE. They proposed using arking correlation matrix”,

R(a), defined so that:

1 1

Vi= A2R(a)AZ /@
will equal cov§) if R(a), wherea is a vector which fully characterisBfa) andA; =
diag{gvar(y,)), is the true correlation matrix of thgs. The GEE are then defined

as:

whered; = %:;i)ands =vyi —E(y;) (Liang & Zeger, 1986).

The covariance structure is treated as a nuisamdbei GEE methodology, which
rather focuses on the regressioryain X. In this way the estimates obtained for the
regression coefficientf are consistent and asymptotically normal, even wien
covariance structure is misspecified. But a workeogelation structure still needs to

be specified (Hedeker & Gibbons, 2006).

The simplest of these structures is that of inddpane where it is assumda) = 1.
This is the same as assuming that the longitudibakrvations are independent, but
this is generally inappropriate and can lead tgdagfficiency loss for time-varying

covariates. The exchangeable structure is anothmgles form that can be specified,
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and assumes th&(a) = p, so that the correlations between the longituditzh are

all the same. This is equivalent to assuming a @&rance structure for the linear
mixed effects model. More advanced structures, sashan AR lag 1 (AR(1))
structure, where it is assumeda) = p!!, or a TOEP structure, where it is assumed
R(e) = pjjjy whenj —j < mandR(a) = O otherwise, or UN, wheie(a) will have n(n

— 1)/2 correlations to estimate, can be specifeedi@ll (Hedeker & Gibbons, 2006).

A criticism of GEE methods is that they may not @@ correspond to a completely
specified sampling model for the data, meaning thatassumptions being made by
using the GEE method may not always be apparefareince using this method is

entirely dependent on asymptotics (Weiss, 2005).

2.3.2 Robust inference

Going hand-in-hand with GEE methodology is estioratusing robust standard
errors. Robust standard errors make use of a tempor working assumption as to
the correlation structure in order to form theresties, and these are then adjusted for
the correlation in the data. Once the model caeffils have been estimated using the
temporary correlation structure, within-subjectidaals are used to compute robust
standard errors for the coefficient estimates. &ihese standard errors are based on
the data, by use of the residuals, and not ongbemaed working correlation structure,
they give more robust inferences for large sizethmes as long as the other
specifications of the model (distribution, link afokm of predictors) are correct,
regardless of whether the working correlation dtriecis correct or not. It can be

advantageous to avoid the calculation of a largaber of correlations, and in cases
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where both using an UN correlation structure andgusobust standard errors can be

used, the two methods produce similar resultsif\gttoff et al, 2005).

The covariance matrix is estimated by means of‘¢hedwich estimator”, which is
used to increase the efficiency of the covarianampeter estimates (Verbeke &
Molenberghs, 2000; Crowder, 2001). This estimataylatained by replacing the term

: : . onr! ~ :
var(y;) in the variance estimator @f with —, wherer; = y, - X,p andv is the
vV

residual degrees of freedom (Verbeke & MolenbergB800). Although the
parameters of the covariance structure are trea®dnuisance parameters, a
covariance structure still needs to be specifidte &stimated standard errors will be
poor in comparison to those obtained if the cormmtariance structure had been
specified, therefore it is advantageous to model dbvariance structure correctly
(Crowder, 2001). Specifying the correct covariastreicture will also lead to more
efficient estimates of the standard errors, andhm case of missing data, valid
estimates will only be obtained via the sandwidimeetor if the “missing-ness” of the

data follows very strict assumptions (Verbeke araéviberghs, 2000).

Since the interest of this study is specificallyated to the assumption of the
covariance model and its consequence for the estinaand inference about the fixed
effects, robust standard errors will not be congiddurther in this study, although it
is a reasonable approach for any investigator artgrested in the mean response.
The model of interest in this study is the lineaxed effects model, so the GEE
approach will also not be considered any furtharf B similar study on the

performance of the GEE model under difference damae assumptions could be

considered.
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2.3.3 Mixed models as a compromise between Bayesian andeduentist

approaches

The view of mixed models as a combination of fredis¢ and Bayesian approaches is
based on the hierarchical formulation of the mo@étrbeke, 1997, Demidenko,

2004). If the Bayesian approach were used on its then values for the parameters
would need to be specified, whereas for the mixedets approach these parameters

are estimated from the data (Demidenko, 2004).

The mixed model approach lends itself to a Bayesmerpretation because the
random effects are assumed to be random varialiestesponse variableg, can be
written conditional on the random effecks, and the prior density function bf can

be written ag (yi| b;) andf (b;) respectively. In the Bayesian framework
A=[f(y, Ib)f(b)db,

is referred to as the normalising constant (Denkder2004). By means of Bayes

Theorem, the posterior density function can betemigs:

=10 0 F

Through the theory of Bayesian linear models, it && shown that this posterior

density is distributed multivariate normal. Tlbg can then be estimated by the

posterior mean as:

b, (6) =ED, Y, =y,)
= .[b' f(b, |y,)db;
=XZ{W, (0)(y; -~ XB)

and with estimated covariance
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i=1

varp,) = zz;{wi —Wixi(i x;wixi)j_ X'W, }ziz

wherex is the covariance matrix of the random effests, (p',t') andr is the vector

of the parameters of the covariance matfix= W, (Verbeke, 1997). This would
underestimate the variability irtAJi —-b, as the variation isb; is ignored, so

var(E)i -b,) = ):—var(Bi)wouId be used to assess this variation (Laird & &Var

1982; Verbeke, 1997).

The unknown parametefs and T would be estimated by means of maximum or

restricted maximum likelihood estimation of the giaal distribution:
fy) =]y, IBb,)f(b,)db,

Therefore the normalising constant plays the rolhe likelihood in the mixed model

(Demidenko, 2004).
2.4 Model Structure

A substantial amount of literature exists on thalgsis of repeated measures. Some
of these texts include Crowder and Hand (1990)b¥ke & Molenberghs (2000),
Demidenko (2004), Fitzmauricet al. (2004), and Weiss (2005). The rest of this
chapter discusses some of the issues that neesl ¢orisidered when addressing any
repeated measures problem, and also more spedifisiderations related to the

estimation of the linear mixed effects model asccitvariance matrix.
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Before a repeated measures model can be fittedongitudinal data, certain

considerations need to be taken into account, divatu the choice of covariance
structure, the role of time in the model and whetbeinclude predictor variables as
fixed or random. The choices for these model caraitbns will be discussed in this
section, together with the potential consequenéerisspecifying these components

of the model.

There are a number of reasons for modelling theacance matrix of a regression
model. Firstly, good estimates of the covariancérimaesult in more efficient, and
more precise, fixed effects estimates and more ratzwonfidence intervals and
hypothesis tests (Fitzmaurie¢ al,, 2004; Weiss, 2005). An appropriate choice fer th
covariance structure leads to correct standardseand valid inferences about the
regression parameters. The positive correlatiomdoun repeated measures reduces
the variability of the estimate of change over timighin individuals; therefore this
positive correlation can be looked at as an adganta longitudinal study designs.
Secondly, if predictions of future values, or imgttidn of missing values, are required
from the model, then good covariance estimatesnasgled (Weiss, 2005). In fact,
when there are missing data, the correct modeltihghe covariance matrix is a
requirement to obtain valid estimates of the regjossparameters. Lastly, modelling
the covariance matrix is part of modelling the sceebehind the data. For example, if
the CD4 counts of HIV positive patients are modadklie fall about a subject-specific
straight line with a negative slope, this implidgatt the eventual end is “fore-
ordained” (Weiss, 2005). If the data is modelledtlsat the CD4 counts follow an

AR(1) model, this implies that the data followsamdom walk pattern, which could
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potentially go up or down. Therefore, failing ton@etly model the covariance matrix

can lead to misleading scientific inferences (Famniceet al, 2004; Weiss 2005).

Verbeke & Molenberghs (2000, p.121) state that &propriate covariance model is
essential to obtain valid inferences for the patansein the mean structure”. If the
specifications of the covariance matrix are todrigtsve then inferences may be
invalid if the specifications don’t hold. If the mel is overparameterised, then this
could lead to inefficient estimation and poor assent of standard errors. Therefore,
to make reliable predictions, efficient estimatésaie appropriate covariance matrix

are required.

2.4.1 Covariance structures

Covariance structures need to be chosen for bethhahdom errors and the random
effects. Selection of the covariance structurehaf €rror components needs to be
conditional on the selected structure for the cewee of the random effects, as
together these will describe all the model variantéhe random effects are chosen
correctly, one should be able to assume that théora effects account for most of
the variability in the data and therefore simpkstmonious models for both the error
and random effects covariance structures can bsech(/erbeke & Molenberghs,

2000). Fitting overly complicated covariance staues can lead to non-convergence
(Verbeke & Molenberghs, 2000). SAS® (ver. 9.1) PRRXED has many available

covariance structures to choose from, which carafygied to both the error and

random effects covariance structures.
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The simplest covariance structure is referred toSBS (ver. 9.1) as the variance
components (VC) covariance structure. This striectassumes that there is no
correlation between observations and that thereoistant variances?, across all

measurement occasions. Only one parameter neddsdastimated for this covariance
structure. In this case where no random effectsrmtaded in the model, this would

be the assumed covariance structure for an OLS Imode

When the correlations between all observations fiteensame subject can be assumed
to be the same, the covariance structure is refetoe as exchangeable or CS
(Vittinghoff et al, 2005). This type of covariance structure is fu@avhen there are
no variables distinguishing one member of a level tandom effect from another, so
can be used in the absence of any other data wteydiut can be restrictive and
unrealistic at times (Davis, 2002; Vittingho#t al, 2005). The form of this
covariance structure was described in Section 2 Pvilo parameters need to be

estimated for this structure.

When measurements are taken through time, obsemgatken more closely together
in time are likely to be more highly correlated,damm this case it may be more
appropriate to use an AR structure, which exhitiis feature (Crowder & Hand,
1990). The most commonly used AR structure is arfl\Rvhich assumes that the
variance across all occasions is the same andothelation between two points one
unit apart would bg, two units apart would bef, three units apart would b8, etc.,
and therefore the correlation value tends to zertha observations get further and
further apart (Fitzmauricet al, 2004; Vittinghoffet al, 2005). Therefore it would

not be appropriate to use this structure when #iaeg for an individual are stable
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over time, e.g. systolic blood pressure taken franpatient undergoing a single

treatment regime over a long period of time (Vdtoff et al, 2005). The form of

1 p p* P
: : : 1 2 : :
this covariance structure i®° p2 p P where p is the correlation
p° p 1 p
P’ pt p 1

coefficient, with |p | < 1 for stationarity, and’ is the variance across all occasions.
Two parameters need to be estimated for this canesi structure.

Another covariance structure related to time isTEEP structure. This structure can
be viewed as a moving-average structure of the sader as the dimensions of the
covariance matrix. The TOEP structure assumesahgptpair of responses that are
separated by the same length of time have the samelation and that the variance
across all occasions is the same (Fitzmauwetcal, 2004). The form of this structure

is

Q
Q, .9
S
Q

Q
Q
S

wheres? is the variance across all occasions antbr i =

N

RS
Q
Q
9

Q
Q
Q
Q

1...(number of matrix dimensions — 1) is the variafaeobservations units apart.
For this structuret parameters need to be estimated, where the number of
measurement occasions. It should be noted that stnigture assumes that the
correlation among responses at adjacent measureoteasions is constant, and
therefore this structure is only appropriate whbe tneasurement occasions are

separated by equal units of time (Fitzmaugtal, 2004).

In addition to these covariance structures, SAS. (%€l) allows one to specify

heterogeneous variants of these covariance stasctim particular, SAS allows you
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to specify the heterogeneous CS structure (CSHhnddlocates a different variance
parameter for each diagonal element, and usegjtle@esroots of these parameters in
the off-diagonal entries. Therefore the form ofstlwovariance structure can be

displayed as follows:

Of 00, 0,00 00,0
0,00 O, 0,0, 0,0,0
O,0.0 00,0 05  O30,0
0,00 0,0,0 0,0, O,

where g?is thei™ variance component, for=

1...t andp is the correlation parameter. For this structurel parameters need to be

estimated.

Another heterogeneous structure is the AR strugt@RH), which is similar to the
CSH structure, but the correlation parameter behasgefor the AR(1) structure. The

form for this covariance structure is

2 2 3
g, 0,0, 0,0, 0,0,p
2 2
0,0 o 0,0 0,0 .
2 1'02 2 2 23’0 294" | \where the parameters are as before. This
0,0,0 030,p Oy 050,P

3 2 2
0,0,0° 0,0, 0,050 0,

model also requires that 1 parameters are estimated.

When the covariance structure is UN, so that theagance between any two
observations from the same subject could be estonat have a different value, then
t(t+1)/2 variance parameters will need to be estiméE@dmauriceet al, 2004). The
loss of degrees of freedom due to the large numbestimated variance components
would cause a decrease in the precision of thenattd parameters of interest or even
a failure in fitting the model (Vittinghoffet al, 2005). Choosing the correct

correlation structure can be very difficult in piae (Vittinghoffet al, 2005).
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2.4.2 The effect of time

How time is included in the fixed effects part ainadel is an important consideration
when modelling longitudinal data. To summarisediseussion by Singer and Willett
(2003): the first consideration with regards todishould be the metric of time used.
The metric chosen should reflect the cadence shexpected to be the most useful of
the outcome of interest. For example, when theamaécof interest is the wear of a
tyre, the metric used for time should rather berthenber of kilometres travelled than
the age of the car, as this is more likely to hananfluence on the wear of the tyre.
Whether the individuals were measured with equalre@qual time spacing, whether
the individuals were measured at different times &hether individuals had the same
number of measurement occasions should also bededl|in the model. These
considerations can affect parameter definition, @hambnstruction, estimation and

model testing.

When time is not included as a predictor in the ehothe model assumes a “no
change” trajectory, i.e. that there in no changerdime in the response. If a “linear
change” model is assumed, time is included ass&dnder polynomial, where each
individual will then have a unique intercept andpd. When time is added as a
second-order polynomial, it assumes a quadratiogdaver time. In this case, the
coefficient of the first-order time term represetits instantaneous rate of change at
any one specific moment. The coefficient of theoseleorder time term is the
curvature parameter, which describes the changatg of change. Higher order
polynomials can be added, increasing the complefithe trajectory. The greater the

complexity of the polynomial, the more measurenwaaasions are required to fit the
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model. The degree of the polynomial is limited hg humber of observations taken

per subject.

If there is more than one polynomial of time thegisis suitable, such as when either a
2" or 4" degree polynomial may be appropriate, an exployapproach should be
adopted to choose the correct polynomial, wherevithgal-specific ordinary least
squares (OLS) models are fitted to each individudhta (Singer & Willett, 2003).
The highest order polynomial required to adequatiynmarise an individual's
change should be chosen. Goodness-of-fit statisi#ss also be used to choose
between models containing different polynomialsimme. The multiple testing aspect
of the data, and the effect of data inspectionhtoose the model, must be kept in

mind.

2.4.3 Random effects

The random effects in a linear mixed effects maatel generally restricted to only
random intercepts and random coefficients for tirag#ing covariates (Verbeke,
1997). Only those covariates that have been induddhe fixed effects part of the
model (i.e. inX;) or covariates that form linear combinations @& tdolumns ofX; will

be considered as random effects covariates, asagsumed that the random effdgts

have a mean of zero (Verbeke, 1997). It has beewrslthat, as for linear regression,
polynomials of the time effect should not be in@ddunless all the hierarchical
inferior terms have also been included (Verbek®7)9By including random effects
into the model, it implies that the covariance matof y; is of the form

V, =Z.XZ' +o,. Therefore the choice of the random effects catesi directly
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impacts on the proposed covariance structure of résponses. If the diagonal
elements ofw; are all equal, then the covariance matrix of thgponses will only

depend on time through the terfyXZ:. It is then possible to perform an informal

check on the appropriateness of the random effgctsomparing the fitted variances

to the residuals; after grouping them into time intervals (Verbek897).

2.4.4 Fixed effect or random effect?

The decision whether to treat a factor as fixedramdom can have important
consequences for the manner in which the factorested in the model, and hence
important consequences for the conclusions that lrdrawn from the model.

Duchateau and Janssen (1997) describe this by nofamssimple example in the

context of an ANOVA. In their example, eight batshef a particular antibiotic are

chosen and the efficiency of these drugs is medsafter a two-year period. If it can
be considered that the batches were chosen atmafrdm a population of available

batches, then batch can be included in the modalrasdom effect. This model can
be represented by the following equation:

Yj H+b +¢
wherey; is the response for thi8 observation in thé" batchu is the overall mean (a
fixed parameter),;bs the random effect associated with batcdnde; is the random

error of thej™ observation in thé"™ batch. It is then assumed thatamd ¢; are

independently and identically normally distributeith zero mean and varianag’

and o? respectively. Therefore it follows thaty; ] = ¢ andVarly,]1 = g; +0°.
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If it is assumed that the eight batches chosetharenly batches available, then batch

can be included as a fixed effect. The model \ugirt be

Yy SH+[ e
wherey;, 4 ande; are as for the previous model, ghds the fixed effect parameter
for thei™ batch. It then follows thaf][ y;1 =4+ B andVarly; ] = o?®. This is quite

different from the previous model. Each batch n@sg fts own mean value and the

only source of variability is from the random egor

There is a problem with the fixed effects params#gion of the model. The model
can be written in matrix notation as:

y=Xp+e
where g = (i, B,,....; ). The resulting design matrix, will then be such that the

first column could be obtained by summing all tileeo columns. Therefor¥ is not

of full rank, and this is due to the overparamestdron of the model (Duchateau &
Janssen, 1997). This problem can be dealt withrdatihg one group as a base group
and therefore reducing the number of regressiofficeats by one, or by restricting

the parameter values to sum to zero.

2.4.5 The effect of model misspecification

Misspecification can occur in various aspects eflthear mixed effects model. Some

of these misspecification problems will be discdsisethis section.

As discussed in Section 2.4.2, time is an importamsideration in modelling

longitudinal data. Misspecifying the metric of tinehether individuals are measured
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at the same time, whether individuals have the sam@mber of measurement
occasions, or the spacing of measurements couldlt r@s incorrect parameter
definition, incorrect model construction, incorregstimation and incorrect model
testing (Singer & Willett, 2003). How time is inded in the model can also be
misspecified. If a polynomial of time is chosen whiis too simple, the true
complexity of an individual's trajectory over tilmeay not be fully explained by the
model. If a polynomial of time is chosen whicha® ttomplex, then there may not be

enough measurement occasions to fit the model ési&gVillett, 2003).

Most papers addressing misspecification of lineateth effects models refer to the
distribution of the random effects or the randomoestructure. Verbeke and Lesaffre
(1997) showed that the maximum likelihood estimsator fixed effects and variance
components in linear mixed models are consistemt asymptotically normally
distributed when obtained under the assumption aimally distributed random
effects, even when the distribution of the randdfacts is not normal. Zewotir and
Galpin (2004) studied the formal and informal assents of the normality
assumptions in linear mixed models and showedptwdiability plots of the residuals
and tests based on these plots were not senstiveri-normality of the random
effects, but only to the non-normality of the erterms. They further showed that the
shape of the probability plots could indicate sfied¢ransformations of the data that

could improve the normality of the data.

Jacgmin-Gadda, Sibillot, Proust, Molina and Thigb@®07) showed that inference

for the fixed effects under the assumption of iredefent normally distributed errors

with constant variance is robust for errors whiok @ot normally distributed or which
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are heteroscedastic, but that estimates of thel fedéects are biased if the error
variance depends on a covariate with interactioth wime and if the errors are

correlated. In the first case, they noted thatoalgh the inference for the estimated
slopes may be biased, the inference for the differebetween slopes is robust, and
therefore the test for treatment effect is roblighe errors terms are correlated, then
using a model that includes both a random interegt a random slope is more

robust that using a model with only a random irgptc

Lange and Laird (1989) studied the effect of misdmation of the number of
random effects in a linear growth curve models.nBigspecification of the random
effects, they refer to misspecification of the nmaxxm polynomial in time to include
in the random effects. They showed that the vadaoicthe estimators depended
strongly on the assumed number of random effectsammodel, but that the random
intercept and slope model gave conservative estgraitthe variance, even when the
true number of random effects in the model was ntbea two. Taylor and Law
(1998) showed by means of a simulation study thaspecification of the model
covariance structure, where they considered foudetsowith closed form solutions
for the model parameters, leads to reduced covepagfeabilities for estimates of
individuals’ future observations. The models theywsidered include a linear mixed
effects model with an added integrated Ornsteirebldck stochastic process, a
linear mixed effects model with an added Browniamti®h process, a random
intercept and slope model, and a quadratic randéeute model. They assumed that
the error term had independent errors. They shahatdof these four models, if the
quadratic random effects model was mistakenly $ieciit obtained the best

coverage probabilities, but was the least efficient
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Both Richardson and Welsh (1995) and Copt and Ye&teeser (2006) have studied
linear mixed effects models in the presence ofienstland have found that if
contaminated errors were inserted in the data aithull mean, the estimates for the
fixed effects in linear mixed effects are compasii robust, whereas the estimates
for the variance parameters were biased. If thennwfathe contaminated error
distribution was different from zero, then the fixeffects estimates were biased as
well. These authors propose more robust methodspamd to ML and REML
methods for estimating the parameters. Jacqgmin-&atdl (2007) state that their
analyses on linear mixed effects models show theesaattern in bias of parameter

estimates when outliers are included.

Ugrinowitsch et al (2004) compared the performance of the repeatedsures
ordinary least squares (OLS) method, the genethlzast squares method assuming
a compound symmetric covariance structure and a(l)A€bvariance structure, and
the random coefficients growth curve model. Theynfd that if a compound
symmetrical covariance structure was incorrectguated for either the GLS or OLS
method, then high probabilities of Type 1 error Wooccur, whereas the random
coefficients growth curve model performed well unday covariance structure.
Demidenko (2004) discuss the case when randomtefee ignored, and instead
OLS estimators are used. He showed that the OLiSastr of the variance was

positively biased when the random effects were rigtio

In summary, these studies conclude that the essnéir the fixed effects are

unbiased to model misspecification or to outlidsst that the model covariance

structure is not. And therefore inferences aboetftked effects may not be accurate
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if there is model misspecification, such as if tovariance structure for either the

random effects or random errors is misspecified.

The purpose of this study was to investigate thmustness of linear mixed effects
models when the covariance structure is misspecifidhese covariance structures
would then be the best option for a researcherxtomie if the researcher were

uncertain about the correct covariance structure.

2.5 Parameter Estimation

There have been a number of methods proposed iritdrature to obtain the
parameter estimates of a repeated measures madel.dnd Ware (1982) described a
non-Bayes Expectation-Maximisation (EM) algorithppeoach to obtaining the ML
estimates of the linear mixed effects model. Theyaeded this method to one that
used a combination of ML estimation and an emgdifBayes approach to obtaining

REML estimates for the variance parameters.

Jennrich and Schluchter (1986) developed NewtoriBap (NR) and Fisher scoring
algorithms to estimate the parameters of the gémieear model for longitudinal

data. They also described a hybrid EM scoring @lgor to obtain the REML

estimates. Lindstrom and Bates (1988) further dgpe the NR algorithm to be an
efficient and effective means of estimating theapagters of the mixed effects model.
They proposed improvements to the algorithm of dehrand Schluchter (1986) to
improve the speed of convergence and to ensureotreiance matrix for the random

effects is positive definite at each iteration, aledived all the necessary derivatives
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and second derivatives required to implement tgerahm. They also compared the
implementation of the NR algorithm to that of th®l Blgorithm of Laird and Ware
(1982), and found that the algorithms of these ma&thods had similar computing
times, but that the EM algorithm generally neededemterations before convergence
compared to the NR algorithm. In terms of conveogerindstrom and Bates (1988)
concluded that the EM algorithm was guaranteedotoverge to a local maximum,
even if many iterations are required, but that i algorithm, if implemented as
suggested by these authors, would converge vesistently, and have the advantage
of producing the Hessian matrix for the parametectar, and has an objective

convergence criterion available, unlike for the BNorithm.

Wolfinger (1993) describes a unified framework likelihood-based approaches for
parameter estimation, using both ML and REML estawnaWolfinger, Tobias and
Sall (1994) also develop NR algorithms for the reation of the ML and REML
estimates, including estimation of arbitrary cosade structures for both the errors
and the random effects, and provide the derivatbrthe derivatives and second

derivatives required for the implementation of tmsthod.

Verbyla (1990) derived the REML equations of thexeni effects model by
partitioning the full likelihood into two indepenaeparts, one relating to the fixed
effects contrasts and the other to the residudrasts. Maximisation of the first set of
contrasts leads to estimates of the fixed effestsraaximisation of the second set of
contrasts leads to the REML estimates of variarm@ameters (Verbyla & Cullis,
1990; Cullis, Smith & Thompson, 2004). Pourahma®000) showed that the

loglikelihood of the general linear model has threpresentations which correspond
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to the submodels for the means, variances and labores. Pourahmadi (2000)
derived closed form solutions for the fixed effeatsl for the correlation parameters,
and developed a NR algorithm for the variance patanmestimates. This method was

developed to ensure the positive definitenessettvariance matrix.

In the past, the EM algorithm was a popular metbbdbtaining the ML or REML
estimates for the linear mixed effects model, algio Laird and Ware (1982) have
shown that the algorithm is slow to converge fdimegtes of the covariance when the
maximum likelihood is close to the boundary spaté¢he parameters (Verbeke &
Molenberghs, 2000). Modern software for linear mdixeffects estimation, such as
proc mixed of SAS (ver. 9.1), use NR based proasi(verbeke & Molenberghs,
2000). In general, REML estimates are obtainederathan ML estimates, as ML
estimators for the covariance parameters tend todsed downwards, as they do not
take into consideration the loss of degrees ofdiveefrom the estimation of the fixed

effects (Lindstrom & Bates, 1988; Verbeke & Molendies, 2000).

SAS (ver 9.1) PROC MIXED, by default, uses a ridggbilised NR algorithm to
minimise -2xloglikelihood for the ML approach, arixrestricted loglikelihood for
the REML approach. This procedure does not optirtiiselikelihoods directly, but
rather optimises the profile likelihoods, which bawne less parameter, and therefore
are optimised more efficiently. These algorithme based on work by Wolfinger,
Tobias and Sall (1994) who developed algorithms domputing the Gaussian
likelihood and restricted likelihood for the geneiiaear mixed model through NR.
The authors make use of Cholesky decompositionstieep operator, and tiv-

transformation in these algorithms, and also dsdhs use of profile likelihood to
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obtain the variance parameter estimates. The mmimariance quadratic unbiased
estimator (MIVQUE) method is implemented in thegadure in order to obtain the
starting values. (Littell, Milliken, Stroup & Woliiger, 1996). A detailed explanation
of this procedure can be found in Wolfinggral (1994). Swallow and Searle (1978)

explain how to obtain the MIVQUE estimates for aage components.

2.5.1 Problems with parameter estimation

In practice, estimates for the linear mixed model@btained from the less restrictive
marginal model, rather than from the hierarchicaldel (Verbeke & Molenberghs,
2000). Since the marginal model does not imply hiearchical model, this could
result in estimates of the parameters of the hereal model not converging due to
negative variance component estimates (Verbeke &Mmrghs, 2000). Therefore it
Is important to run exploratory data analyses piodiitting the linear mixed model in
order to ensure that valid estimates are obtainmd tifie model (Verbeke &

Molenberghs, 2000, p. 54).

Problems, which are not uncommon, can occur dutiilegestimation of parameter
estimates. As discussed earlier, the NR algorithvhjch is most commonly
implemented, is not guaranteed of converging (Ltiois & Bates 1988). If non-
convergence occurs, one of the easiest ways ofngothis problem is to specify
better starting values, or even to change the ngalepptimisation procedure
(Verbeke & Molenberghs, 2000). Demidenko (2004)gasgs using methods such as
minimum norm quadratic unbiased estimation (MINQUBethod of moments or

variance least squares to obtain good startingegaior the covariance matrix. In this
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study, for the purpose of comparison, the optinosatnethod was not changed for
any of the models. If a non-convergence messagepiwted, it is very important to

check the parameter estimates to ensure that tleeyeasonable and within bounds
(Weiss, 2005). For example, the standard deviai@xpected to be smaller than one
guarter of the range of the data, and therefore mhie of thumb can be checked
against the estimates of the variance parametemssf/N2005). Weiss (2005) also
notes that if estimates are obtained without stahdarors, this is usually an

indication that the algorithm has not converged.

Non-convergence can sometimes result when the a&smof the variance
components tend too closely to zero. By rescalirggtime variable, for example to
decades instead of years or months, it can be lpes® solve this problem by

artificially enlarging the variance components (Mgke & Molenberghs, 2000).

If it is reported that the “Hessian matrix is noospive definite”, this means that a
saddle point has been reached (Weiss, 2005). utldHe expected that the Hessian
matrix becomes positive definite in the neighboodh@f the maximum if the NR
algorithm is implemented, but if the iterations &se from the maximum, then the
Hessian matrix may not become positive definited &R algorithm may fail
(Demidenko, 2004). The more parameters in the madtel more likely it is that
problems will be encountered during the maximisatrocedure (Weiss, 2005).
Weiss (2005) recommends that if this occurs, theameters should be removed from
the model until the problem is solved, and then ehatiagnostics should be used to

assess how well this model performs. If parametémates are obtained that go out
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of their bounds, Crowder and Hand (1990) recommparhmetrising the various

guantities in such a way that any constraints atisfeed automatically.

2.6 Assessing the Fit of a Model

Information criteria can be used to assess theffriepeated measures models, and
outlier and influence diagnostics and residual yses can be used to assess model
misfit or appropriateness, but the OLS forms otéthanalyses cannot always be used.
These criteria and adjustments required for repeateasures models will be

discussed in this section. The choice of model bglldependent on the criteria chosen

for assessing model adequacy.

2.6.1 Information criteria

For selection between different models, the selactriteria Akaike’s information
criterion (AIC) and Schwarz’s Bayesian informationterion (BIC) can be used
(Verbeke & Molenberghs, 2000; Davis, 2002; Fitzn@eiet al, 2004). The AIC is
defined as:

AIC

-2(maximised log-likelihood) + 2(humber chameters)

21+ 2¢

and the BIC is defined as:

BIC

-2(maximised log-likelihood) + Id¢ (number of parameters)

21 + logN%c
whereN is the number of subjects ands the number of parameters (Fitzmaurte

al., 2004). In order to select between models, theseselection criteria need to be
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minimised. Duong (1984) states that models thatvatlein two units of the lowest

AIC can be considered as competitive for the bestieh Burnham and Anderson
(2002) and Jones (1993) are just two of a largebauraf texts which concur with this
criterion. Models can then be selected accordinghtmse that have the fewest
parameters, and this will be achieved by compativegBIC of these models, as it

penalises the number of parameters more stricityr{fauriceet al, 2004).

2.6.2 Outlier and influence diagnostics

Zewotir and Galpin (2005) derived influence diagmossfor linear mixed models,
where the ordinary linear regression influence nlisgics have been extended to
linear mixed models. The statistics which have begtended included Cook’s
distance (Cook, 1977), the likelihood distance (C&dNeisberg, 1982), the variance
(information) ratio (Belsley, Kuh & Welsch, 1980jhe Cook-Weisberg statistic
(Cook & Weisberg, 1980) and the Andrews-Pregibatisic (Andrews & Pregibon,
1978). Zewotir and Galpin (2005) show that a oe@ $orm of the diagnostics, which
is computationally inexpensive as opposed to thleitieration, adequately provide
informoration on the influence of the data on vasicaspects of model fit. These
statistics were tested using clustered, but nogitadinal, data. The sensitivity of
these statistics have been studied by Zewotir aal@is (2006) and they found that
these statistics are capable of detecting inflagpidints inX, Z andy, but masking
effects could occur under certain circumstancasexample when there are multiple
outliers in the same observation. Demidenko andebt(2005) have also proposed

extensions to the leverage, infinitesimal influgncase deletion diagnostics, Cook’s
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distance, and local influence used for regressiodets to accommodate linear mixed

effects models, which are in the form of explicidgfined functions.

In SAS (ver. 9.1), experimental code has been dedufor outlier and influence
diagnostics. The basis on which these diagnoste®latained is through computing
parameter estimates based on all data points, iegtive cases in question from the
data, refitting the model, and computing statisbesed on the change between full-
data and reduced-data estimation. Refitting theehtmdthe reduced data set involves
going through the iterative maximisation procedurerder to obtain the parameter
estimates if covariance parameters are not knovne. domputing time when this
option is included does increase to about one maimot the data sets used in this
study, but this is an acceptable amount if timéhese circumstances. For very large
data sets the computing time may pose problems.didgnostics that are included
are: the restricted likelihood distance, which nuees the overall influence of an
observation (Cook & Weisberg, 1982); Cook’s disegnavhich measures the
influence of an observation on all predicted val(@sok, 1977); the covariance ratio
and trace, which measures the influence of an vasen on the precision of the
estimates (Belslegt al, 1980); the PRESS residuals (Allen, 1974) andOREITs,
which measure the influence of an observation snoivn predicted value; and
MDFFITS, which measures the influence of an obdemwaon the parameter
estimates (Belslegt al, 1980). These influence and outlier diagnostssavailable

in SAS (ver. 9.1), are described by SchabenbeR&§$¥4().
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2.6.3 Analysis of residuals

The residuals can be used to assess the fit ofdelmBirstly, the type of residuals to
be used needs to be chosen. For example, the rabrgsidualsy; —Xiﬁ can be
used, and these reflect how a specific individualsan profile deviates from that of
the population. If the conditional residuaksi,—xiﬁ—ziﬁi, are used this reflects
how much the observed values deviate from an iddalis own predicted values.
Even the random effec& can be considered as residuals as these vallest tedw

an individual’s profile deviates from that of thepulation (Verbeke & Molenberghs,

2000).

Haslett & Haslett (2007) give a comprehensive nevid the three different types of
residuals available, describing where they are ,used they relate to each other, and
their role in model fit analysis. They note thatideials should be interpretable in the
context of the data, and that conditional residaads estimates of the pure error or
measurement error, and are the most useful outheftliree different types of
residuals. The marginal residuals in conjunctiothwhe conditional residuals give

the best description of the error in the model.

The following section summarises the methods atiuesg analyses that are described
in Fitzmauriceet al (2004), which are based on the marginal residbaésy of the
standard methods of residual analysis used foessgrn methods can be extended to

longitudinal models.

For a longitudinal model a vector of residuals bardefined for each individual:
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=y, - Xp
which has a mean vector of zeroes. These resida@shen be used to check for
systematic departures from the model, the presafceutliers, as well as the
adequacy of the chosen covariance structure. Aectyrspecified model will have
residuals which, if plotted against the fitted \eduwill be randomly scattered around
the zero line and display no systematic pattermil&ily, plots of the residuals against
selected covariates can indicate missing quadriions or the need for a

transformation.

Due to the properties of longitudinal data, the ponents of the residual vector will

be correlated and may not have constant varianice.cbvariance of the marginal
residuals can be approximated by the estimatedinargovariance matrixf/i, and

this has important implications for the analysigha residual plots. Firstly, due to the
covariance of the residuals not necessarily beorgt@ant, standard methods used to
test for homogeneity of residual variance or autdation among residuals should
be avoided. Secondly, the residuals may be coectlaith the covariates, unlike in
the univariate case, and therefore systematic tiendlots of residuals versus a

covariate may be due to this correlation.

To circumvent these problems, the marginal resglian be transformed. The
transformed residuals should then have zero céiweland unit variance, and this can
be achieved through the Cholesky decomposition ogetalso known as Cholesky

factorisation).
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Since the approximate covariance matrix of the matgesiduals should equa}i,
using the Cholesky decomposition method, a lowemgular matrixl.,, can be

created such that:

andL " can then be used to transform the residuals:

=L :Li_l(yi _Xiﬁ)

which will then have zero correlation and unit aage.

These transformed marginal residuals have usefatgretations in the longitudinal
setting due to the temporal ordering of the obgema for each subject. The first

element of

*

r = Li_l(yi _Xiﬁ)

is the standardised residual for the first repeatedsurement, and the elements that
follow represent standardised deviations from tbedd¢ional mean of the response

given all previous observations. Therefore kfieransformed residual is an estimate

of

Yic = EYic | Yirs- Yiea) .
\/V3r(Yik | Yizse-s Vi)

Using the transformed residuals the usual residizgnostics for standard regression

*

methods can be applied. For example, the transtbmesiduals,r; ,

can be plotted
against the transformed predicted valqéi*§, where

= L8 =L, 7XB.
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This plot should show a random scatter around zéto s@nstant variance. Similarly
the transformed residuals can be plotted agaiesinttividual transformed covariates.
Plotting the transformed residuals against tramséal time can be used to assess the
model assumptions about the patterns of changeesnmesponse over time. Using

the transformed residuals makes it easier to ifjeskewness and potential outliers.

The transformed response vector and covariate negne obtained as follows:
Yi* = Li_lyi; X, =L,7X;.

The generalised least squares (GLS) estimafe fobm the regression of on X; can

now be re-estimated using OLS regressiorypon X, , and the standard residual

diagnostics of this model can then be used to chemiel adequacy.

Houseman, Ryan and Coull (2004) give a detailedvaion of these “Cholesky
residuals”, and demonstrate the use of these rsidua simulation studies. The
authors note that the transformed residuals arealadys appropriate, in particular

when the normality of the random effects is in qioes

These scaled marginal residuals can be obtained &8 PROC MIXED by
specifying the option VCIRY in the model stateméeFhe transformed residuals are

only available for the marginal residuals. The umtfarmed marginal and conditional
residuals, i.e.r, =y, —Xiﬁ and r; =Yy, —Xi[AS—ZitA)i can also be specified (SAS
PROC MIXED, 2003). The residuals available in SASr.(\1), as well as the

Cholesky residuals, are discussed by Schabenb@@@4).
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2.6.4 The process of choosing the best model

In order to select the best fitting covariancedtrte for a linear mixed effects model,
for both the random errors and the random effeébts literature recommends using
likelihood ratio tests to select between nestedetsocand information criteria, such
as the AIC or BIC to select between non-nested tsofléerbeke & Molenberghs,

2000; Demidenko, 2004; Hedeker & Gibbons, 2006).

Verbeke and Molenberghs (2000) recommend fittingpeerparameterised model for
E(yi) as a first step. This will result in consistertiraators of the covariance structure
in future steps. Using this mean structure, the @ieghod can be used to estimpte
This can be shown to be a consistent estimatop.fdhe OLS residuals can then be
used to study the dependence among the repeatesimegaTlhese plots can be used
to select the random effects to be included in timdel. They further note that
including high-dimensional random effects with arconstrained covariance matrix
X can lead to complicated covariance structuresmaag result in divergence of the
maximisation procedure. If most of the variabildtgn be assumed to be contained
within the random effects, the parsimonious stmeducan be chosen for error

covariance structurey;.

The difference between the -2 REML loglikelihoodsteg more complex model and
the simpler model is distributed as chi-squared wiggrees of freedom equal to the
difference in the number of parameters betweentwltemodels. The covariates of
these two models need to be the same. This can dxk taossee if the change of

covariance structure, where one covariance strcisirnested within another, is
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suitable or not, but not to determine if the inadnsof random effects is necessary or
not. This is because the null hypotheses of inteaeston the boundary of the
parameter space, which implies that the likelihoatio statistic does not have the
classical asymptotic chi-square distribution. Tleisme method can be used in the case
of maximum likelihood estimation, but both modeted to have the same likelihood
method. When the models are not nested, then ti@& &kl BIC should be used
(Verbeke & Molenberghs, 2000; Demidenko, 2004; Hede& Gibbons, 2006).
Davis (2002) notes that, to use the likelihoodardgst to compare the fit of the
different models, the number of time points mussimall and the time points must be
equally spaced. If the number of time points igéaror vary from subject to subject,
then the choice of covariance model can have aauie effect on the results of the

analysis, and likelihood ratio tests cannot be used

Since the covariance parameters are not alwaysetkfas elements ofof; «), in
particular the diagonal elements of the covariamegrix need to elements of (&),
standard tests for the parameter values which asshi® may be misleading. When
the likelihood ratio is used to test variance paetars to see if they are equal to a
value on the parameter’'s boundary space, thentébtsmay not be valid. The null
distribution for the likelihood ratio test is noniger a chi-squared distribution with
degrees of freedom equal to the difference betvwieemumber of parameters in the
full and reduced models. The null distribution wile a mixture of chi-square
distributions (Demidenko, 2004, Fitzmauregal, 2004). Under these circumstances,
the p-value of the test may be adjusted. An apprate adjustment is to divide the p-

value by two, which has been shown to work welldeler & Gibbons, 2006).
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When the AIC and BIC are used to compare betweetietapthe BIC will almost
always give a greater penalty for extra parametensgd can under certain

circumstances heavily penalise for additional patans, therefore Fitzmauries al

(2004) recommend against using the BIC. To demadestlas, (-2A+ 2c) < (-Zf +
logNxc) when 2 < lo@)l. Therefore for any sample size about eight, the BIilCgive
a greater penalty for more parameters compareddoAIC (McQuarrie & Tsai,

1998).

A limitation to using the AIC is that it does nobwk well when multicollinearity is
present, and although it has been shown to beysnpastically unbiased estimator of
the Kullback-Leibler information, it can have sificant bias under sufficiently small
sample sizes. Therefore bias-corrected AIC (AICd)ictv estimates the Kullback-
Leibler information directly instead of its apprmation as estimated by the AIC
(McQuarrie & Tsai, 1998), and Healthy AIC (HAIC)naents have been proposed in
order to obtain more reliable criteria for selegtthe best fitting model (Demidenko,
2004). The AlCc is defined as

AlCc =-2 +NLCN1 (McQuarrie & Tsai, 1998).

To define the HAIC, lety be anN-dimensional vector of observations whose
distribution depends oa-dimensional vector of parametedsand has loglikelihood

1(0;y). The penalised loglikelihood will then be
c 1

l==ZInA>+1(0;y)——||0 |F

> (6y) St 16 1]

and the maximum of the loglikelihood function ovare variance is attained at

ler

A% = . TheHAIC is defined as
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HAIC =H - 2l + 2¢
whereH = c(In(||§ IF /c)-1) (Demidenko, 2004). Demidenko (2004) justifies tise

of the HAIC by demonstrating the multicollinearfityoblem of the AIC in the context

of a linear regression model. Let the regressiomlehbavec explanatory variables
and varianced”. If a variable is added that is highly correlateith the other

explanatory variables, this may not be well reftecin the AIC becausé? will not

change, due to multicollinearity. The OLS parameistimate will become unstable
due to X’X| = 0, which will lead to large values of}[[SHZ. This will result in a large

H value and therefore the instability in the modél e picked up by the HAIC. The
HAIC is not implemented in standard statisticaltsafe for linear mixed effects
models and will not be considered further in thisdg. The AICc is available as an
output for SAS PROC MIXED (ver. 9.1) and will becinded in the results of this
study, together with the AIC and BIC. The AICc symptotically equivalent to the
AIC for large samples (McQuarrie & Tsai, 1998). Ascussed earlier, the BIC
penalises more heavily for additional parameteueslas the sample size increases,
and this implies that as the sample size increakesAlCc will approach the AIC

value and deviate more from the BIC value.

2.6.5 Graphical methods for comparing models with different covariance

structures
Various methods of checking model fit or model asgtions are described in the

literature. Outlying observations as well as outlyiindividuals can be identified

using plots of the transformed residuals, as desdrin Section 2.6.3. A summary
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measure of the multivariate distance between tiserved and fitted responses can be

calculated for each individual, based on the thé&lEnobis distance:

which should then have a chi-square distributiotihwiegrees of freedom (df) equal to
the dimension ofi*(which is equal to the number of repeated measamaadividual

1) if the model is correctly specified. Individudlsat haved’s with significant p-

values would be possible outlying individuals (Rieuriceet al, 2004).

In order to check the adequacy of the variancemapsan, the transformed residuals
can be plotted against the transformed predictéaesaor against transformed time,

and if the variance has been correctly specifieyna@om scatter around the zero line

will be observed. The absolute values of the tmmséd residuals,r] |, can be

T
plotted against the transformed predicted valueagainst transformed time, and if
the assumed variance structure is correct, thesysie@matic trend should be observed
in the plot. To check for trend, a lowess (localgighted scatterplot smoothing)
curve can be fitted, centered at approximately 8s8he mean of the absolute values

of the residuals should be 0.798, if the residualdow the standard normal

distribution (Fitzmauricet al, 2004).

The empirical semi-variogram (also called the sarg@mi-variogram) is defined as
half the average squared difference between paimssaluals on the same individual
whose corresponding observations brenits apart. A plot of the empirical semi-

variogram provides an informal check on the oveaditquacy of the model in terms
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the covariance structure. For longitudinal dat& semi-variograny(h, )is given

as.
1
y(hijk )= E E(rij ~ I )?

wherehjy is the elapsed time between 1j|”i1eand K" repeated measurement on tfe

individual. This can also be written as:

y(hy ) =3 E(r; =1, )?
= % E(rij2 + rik2 - 2rij M )2

=g var(r,) + 3 var(r, ) —cov(r; r, )
as the mean of the residuals is equal to zero. Wheetransformed residualsj,*, are

used the semi-variogram simplifies to

y(hijk )= %Var(rij*) + %Var(ru:) - COV(rij* , ri;) = % @ +% @-0=1

(Fitzmauriceet al,, 2004).
Therefore a plot of the semi-variogram for the sfarmed residuals of a model with a
correctly specified covariance matrix against thmet elapsed between the
corresponding observations should display a ransicatter around the horizontal line
centred at one. The empirical semi-variogram iy gensitive to outliers (Fitzmaurice

et al, 2004).

Grady and Helms (1995) describe graphical techsiqoeid in examining model fit
of the variance-covariance structure. They suggestting the covariances or
correlations as a function of the time between mmess This will help in

investigating the assumed covariance structure.
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2.7 The Potthoff and Roy Data Set

The data set used by Potthoff and Roy has becomiasaic data set in repeated
measures models literature. Potthoff and Roy (196te the first to use the dental
data set, which has become known as the PotthdffRay data set (PR data set), to
investigate an approach to modelling longitudiratid As explained in Section 2.2.1,
their interest was in the implementation of an esten to the standard MANOVA
model. Their approach involved appending a posigmaf, to the expectation
equation of the standard MANOVA model, which is @&hm-individual design
matrix. A positive definite matrixG, whose form depends on the assumed structure
of the covariance matrix of the responses, is requio transform the responses so
that the usual MANOVA model can be used. Potthaff 8oy (1964) state that the
choice ofG is somewhat arbitrary, as the true structure efdbvariance matrix is
usually not known. In their study they found thhe tresults were not sensitive to

changes in the parameter valuesof

Pinheiro, Liu and Wu (2001) proposed a modificatmmnthe linear mixed effects
model that would be more robust against outliedseylTused the PR data set to
investigate a robust hierarchical linear mixed @femodel in which the random
effects and the within-individual errors were mudtiiatet-distributed, which allowed
for different numbers of observations per individuehey showed that by using a
gamma-normal hierarchical structure, the model theyposed allows the
identification and classification of outliers. Byeans of a simulation study based on

the PR data set, they were able to show that thettel based on a multivariate
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distribution outperformed the standard Gaussiaralinmixed effects model when

outliers were present in the data.

Jennrich and Schluchter (1986) used the PR dattb smimpare the random effects
model to general linear models under differentcitmes ofw;. Other literature which
use the PR data set include the book by Davis (280 used this data to illustrate
the repeated measures models discussed. As foriclerand Schluchter (1986),
Davis (2002) compared linear models with CS, TOHR, AR(1) and VC covariance
specifications, as well as the Laird and Ware (J9&&dom intercept and slope
model, and found that the CS and TOEP models fitteddata best. Verbeke &
Molenberghs (2000) also use this data set to detrad@svarious repeated measures
models. They analysed this data under the samelsadeDavis (2002), in addition
to the random effects model with; = VC andX = UN and the random intercept
model withe; = VC. They concluded that the random intercept ehedth w; = VC
(resulting in the same covariance matrix for thedelas the linear model with CS
error structure) best described the data. Pan amd) £2002) use this data set to
described different approaches to growth curve risodderefore, as the PR data set
is a landmark data set in the repeated measuresatlite, to allow for easy
comparison to results obtained in previous studsw] as this data set is easily
accessible, it presents itself as a logical chéicea data set on which to base the

simulation study.
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