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C H A P T E R       2 

LITERATURE REVIEW  

 

2.1    Basic Aspects of Longitudinal Studies 

 

Repeated measures models are designed to take into account the stochastic 

dependence in longitudinal data. Two types of stochastic dependence exist between 

the responses: the homogeneity of the responses on the same unit and the 

heterogeneity across units; and the distance (in time or space) among responses on the 

same unit (Lindsey, 1993, p. 6). The correct specification of the stochastic 

interdependence model is important because the model of dependence among 

responses can have a great influence on the ability of the complete model to describe 

the observations (Lindsey, 1993). 

 

The response variable in a repeated measures design can be in the form of count data, 

such as the number of eggs laid; binary, such as absence and presence of eggs; 

categorical responses, such as the type of damage to a leaf, which can be aggregated 

into counts; or in the form of continuous data, such as the growth in height of a plant. 

These responses may have come from a study where the subjects have undergone 

some treatment or treatments, or accompanying covariates may have been measured 

(Lindsey, 1993). In some studies, measurements may have been taken through space 

rather than time. Only continuous responses taken through time will be considered in 

this study. 
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Randomisation is required to allocate subjects to treatment groups so that bias is 

avoided. Lindsey (1993, p. 9) notes that randomisation allows for statements of 

causality, since which treatment a subject receives is not influenced by the response 

that the subject gives. It also minimises the effects of inter-response variability by 

distributing it randomly over treatments, thereby ensuring homogeneity of variability. 

In order to attribute causality, the relationship between the cause and the effect needs 

to be strong, and the relationship should be consistent in different populations and 

under different circumstances. In addition, the cause needs to lead to a single effect 

(specificity) and the cause must precede the effect in time (temporality). To conclude 

that a cause and effect relationship exists there needs to be experimental evidence and 

theoretical (e.g. biological) plausibility (Twisk, 2003, p.2). 

 

2.2    Repeated Measures Models 

 

There are a number of different types of linear models that can be used to analyse 

repeated measures. Some of these models will be described, with the main emphasis 

falling on linear mixed effects models. 

 

2.2.1 Fixed effects models 

 

A number of relatively different types of models for longitudinal data fall into this 

category, including the simpler models discussed in the Chapter one. More 

sophisticated methods will now be discussed. 
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Potthoff and Roy (1964) were the first to propose an extension to the standard 

multivariate ANOVA (MANOVA) model for growth curve analysis. Davis (2002) 

gives detail on this type of analysis. Suppose there are s treatment groups, and let Nh 

denote the number of individuals in group h, h = 1,…,s, so that N = ∑
=

s

h
hN

1

. Let yhij 

denote the responses of the i th subject in group h at the j th measurement occasion, 

where i = 1,…,Nh and j = 1,…,t. It is assumed that repeated measurements have been 

obtained from each individual at t equally spaced time points. In growth curve 

analysis it is assumed that the time trend in each group can be described by a (ν-1)-

degree polynomial, with ν ≤ t. The formulation of the growth curve model is then 

hijhhhhhij ejjjy +++++= −
−

1
1,

2
210 ... ν

νββββ  

where ehij is the error for the i th individual in group h at the j th time point. This 

formulation of the time trend is assumed to be the same for each group, but the 

different parameter values may differ over the groups, leading to a total of sν 

parameters (Davis, 2002).  

 

Let yhi = (yhi1,…, yhit)’ and ehi = (ehi1,…,ehit)’ denote the vectors of responses and 

errors respectively of the i th individual in group h, and let Y = 
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1111  denote the N×t matrix of responses and E the 

corresponding N×t matrices of errors. The growth curve model would then be written 

as Y = XBT + E where X is an N×s across-individual design matrix indicating an 
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individual’s group, B = 
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is a v×t within-individual design matrix. The rows of Y, 

yhi’ , are assumed to be independent and distributed as multivariate normal with 

covariance matrix ω (Davis, 2002). 

 

The PR data set can be used to illustrate the above formulation. The response matrix, 

Y, would contain 27 rows and four columns, each row representing an individual’s 

observations at ages 8, 10, 12 and 14. The corresponding design matrix, X, would 

contain 27 rows and two columns, with values 1 and 0, where a 1 in the first column 

indicates a girl and a 1 in the second column indicates a boy. The parameter matrix, B, 

would contain two rows and ν columns, the first row containing the parameter values 

for girls and the second row containing the parameter values for boys. The design 

matrix, T, would contain ν rows and four columns, with the columns representing 

ages 8, 10, 12 and 14, and the rows corresponding to the parameter estimates. These 

matrices are shown in Fig. 2.1. 
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Hypothesis tests of the form ABC = D can be tested. For example, for the PR data set, 

to test if there is a difference between girls and boys assuming parallelism between 

the growth curves of girls and boys, the hypothesis ABC = 0 could be tested, where A 

= (1, -1) and C = (1, 1, 1, 1)’. If one does not want to assume parallelism, then the test 

becomes ABC = 04’, where A = (1, -1) and C = I 4. Davis (2002) gives a detailed 

discussion on the application of growth curve analysis with respect to the PR data set. 
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Fig 2.1: Growth curve analysis matrices for the PR data set. 
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The above formulation for growth curve analysis is not used very often in practice as 

software for this technique is not readily available. More flexible methods, such as 

linear mixed effects models, which encompass the types of comparisons available 

from growth curve analysis, have since been developed (Davis, 2002). 

 

Response profile analysis is a method whereby the mean is estimated at each time 

point, stratified according to time, and the sequence of means over time is referred to 

as the mean response profile for a particular level of the group factor (Crowder & 

Hand, 1990; Fitzmaurice et al. 2004). Taking the PR data set as an example, the 

model tested could be of the form: µ = β0 + β1gender + β2age + β3gender×age, where 

µ is the mean response. Fitzmaurice et al. (2004, p. 105) note that there are three main 

hypotheses that can be tested. In the context of the PR data set, the first null 

hypothesis to be tested would be “the mean response profiles are parallel” which 

would concern the gender×age interaction effect. If the response profiles are parallel, 

then the next hypothesis to test would be “the response profiles are flat” and this 

would concern the age effect. Also on the condition that the response profiles are 

parallel, the third hypothesis would be “the response profiles coincide” and this would 

relate to the gender effect. The first hypothesis, testing if the slopes of the response 

profiles are parallel, is generally the main interest. If the response profiles are parallel, 

then testing if the slope is flat is equivalent to testing if the growth rate is equal to 

zero, and testing if the lines coincide would mean testing if there is a gender effect. 

 

Fitzmaurice et al. (2004, p.132) note further that the response profile method is 

straightforward when the design is balanced and the timing of the repeated measures 

is common for all subjects, and when all the covariates are discrete. It can be adapted 



 18 

to accommodate unbalanced data, where there may be missing values. Since this 

method can accommodate arbitrary patterns in the mean response and in the 

covariance of the responses, it has some robustness against misspecification of the 

models for the mean and covariance (Fitzmaurice et al., 2004). Problems with this 

method include that the model cannot handle mistimed measurements (i.e. where the 

measurements taken from individuals do not occur at the same time); the response 

profiles produce an overall test of effects and therefore may have low power when 

testing for group differences; and lastly, the number of covariance parameters that 

need to be estimated grows rapidly as the number of measurement occasions increases 

(Fitzmaurice et al., 2004). 

 

2.2.2 Random effects models 

 

Vittinghoff et al. (2005, p. 274) note that in random effects modelling, one or more 

variables are declared as random factors. If a model also contains fixed factors, then 

the model is referred to as a mixed model. Random factors have a distribution 

assumed for the different levels, such as identifiers of different individuals. The 

values for the levels of a fixed factor are fixed, known values which are chosen at the 

beginning of the experiment, and the effects of each level on the response are 

estimated as model coefficients. 

 

When a factor is declared to be a random factor, then inferences can be made on a 

statistical basis on the population from which the levels of the random factor have 

been chosen. Correlation can also be incorporated into the model, as observations that 

share the same level of the random effect are modelled as correlated. More 
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assumptions need to be made when using random effects, which can lead to more 

accurate estimates (provided the correct assumptions are made), and different 

estimation methods can be used (Crowder & Hand, 1990; Davis, 2002; Fitzmaurice et 

al., 2004). 

 

Random effects modelling is one of the oldest methods used to analyze longitudinal 

data (Fitzmaurice et al., 2004). In a repeated measures ANOVA, a random effect for 

the individuals in the study can be included in the model. By including random effects 

in a model, positive correlation is induced between repeated measurements through 

the covariance matrix of the random effects (Fitzmaurice et al., 2004). In terms of the 

mean structure, random effects can be thought of as randomly varying intercepts 

which account for all unmeasured factors which make some individuals “high 

responders” and others “low responders” (Fitzmaurice et al., 2004). 

 

The repeated measures ANOVA model can be written as: 

ijiijij eby ++= βx '  

where bi is a random individual-specific effect and eij is a within-individual 

measurement of error (Crowder & Hand, 1990; Fitzmaurice et al., 2004). 

 

Three standard assumptions are made when using ANOVA for repeated measures 

(Crowder & Hand, 1990; Twisk, 2003). Firstly, that the observations on different 

subjects at each of the repeated measurement times are independent, and secondly, 

that these observations are distributed as multivariate normal. Therefore the bi are 

assumed to be normally distributed with mean zero and var(bi) = 2
bσ  and the eij are 

assumed to be normally distributed with mean zero and var(eij) = 2
eσ . Thus repeated 
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measures ANOVA distinguishes between two different sources of variability: between 

subject variability ( 2
bσ ) and within subject variability ( 2

eσ ). It is also assumed that the 

b-profiles of the different individuals are uncorrelated and that the errors, eij, are 

uncorrelated for different time points and for different individuals. Lastly, it is 

assumed that all the correlations in the outcome variable between repeated 

measurements are equal and variances of the outcome variable are the same at each of 

the repeated measurements (which is known as sphericity). An example of a 

covariance matrix that satisfies the sphericity condition is the compound symmetric 

(CS) covariance matrix: 
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 (Hand & Crowder,1996, p. 41). 

 

Since the means for bi and eij are both equal to zero, the mean response can then be 

written as:  

βx ')( ijijijyE == µ  (Crowder & Hand,1990). 

 

Repeated measures ANOVA is only a part of a more flexible and general “regression 

paradigm” (Fitzmaurice et al., 2004, p. 16). Fitzmaurice et al. (2004, p. 14) note that 

regression models have a wide range of uses. Regression models include linear 

regression, linear logistic regression, and Poisson or log-linear regression models. 

Linearity means that all of these models for the mean, or a transformation of the 

mean, are linear in the regression parameters. The regression parameters in the model 
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express how the covariates are related to the mean of the response variable. The 

covariates can be quantitative or categorical (such as gender or treatment group). 

Models which only include categorical covariates are actually ANOVA models.  

 

2.2.3 Linear mixed effects models 

 

The general linear mixed effects model can be written as 

)

,...1for 

iii

iiiii Ni

ωN(0,~εΣ),N(0,~b

εbZβXy =++=
 

where yi, X i, Z i and bi are as defined in Chapter one, and the random errors, εi, have a 

covariance matrix of arbitrary structure, ωi. In order to make inferences on yi it is 

assumed that, conditional on the random effect bi, yi is normally distributed with 

mean vector X iβ + Z ibi and with covariance matrix ωi. If f(y i|bi) and f(bi) are the 

corresponding density functions, then the marginal density function of yi can be 

calculated by 

f(yi) = ∫ f(yi|bi)f(bi) dbi  

which can be shown to be the density function of a ni dimensional normal distribution 

with mean vector X iβ and with covariance matrix iiii ωZΣZV +′= . Since this linear 

mixed model is defined through f(yi|bi) and f(bi), it can be referred to as the 

hierarchical formulation or conditional modelling approach of the linear mixed model, 

and assumes that both Σ and ωi are positive (semi-) definite (Verbeke & Molenberghs, 

2000). 

 

Under the general linear model iiiN ωZΣZβXy ii +′,(~ ). In practice, inference is 

based on the marginal distribution for the response yi, where the hierarchical structure 
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of the original model is not taken into account (Verbeke & Molenberghs, 2000). This 

type of analysis usually only ensures that the estimated variance of the yi, 

iii ωZΣZ +′ , is positive (semi-) definite, but not the positive (semi-) definiteness of 

the separate components, Σ and ωi. 

 

Let τ denote the vector of all variance and covariance parameters (known as the 

variance components) found in V i so that V i = V i (τ) = iii ωZΣZ +′ , i.e. τ consists of 

the q(q+1)/2 different elements in Σ and of all parameters in ωi, and let θ = 

( )′′′ τβ , denote the vector of all parameters in the marginal model for yi. The classical 

approach to inference is based on estimators obtained from maximizing the marginal 

likelihood function 

∏
=

−−− −′−−×=
N

i
iiiiii

n
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2
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1

β)XyτVβXyτVθ π       

with respect to θ (Verbeke & Molenberghs, 2000). If τ is assumed to be known, then 

the maximum likelihood (ML) estimator of β, obtained from maximising the marginal 

likelihood function, conditional on τ, is then given by 
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where W i equals V i
-1(τ). 
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In practice, linear mixed models often contain many fixed effects and in such cases, it 

may be important to estimate the variance components, explicitly taking into account 

the loss of the degrees of freedom involved in estimating the fixed effects (Verbeke & 

Molenberghs, 2000). This can be done using restricted maximum likelihood (REML). 

The REML estimators for τ and for β can be found by maximizing the function 

known as the REML likelihood function 

ML

N

i
iiiREML LL 2

1

||)(
1

−

=
∑ ′= XWXθ  

with respect to all parameters simultaneously (τ and β), where N is the number of 

individuals (Verbeke & Molenberghs, 2000). 

 

Jennrich and Schluchter (1986) developed a general linear modelling approach, first 

proposed by Liang and Zeger (1986), which extended the linear mixed effects model 

of Laird and Ware (1982) by incorporating it into the framework of a general linear 

model with an arbitrary covariance structure. They proposed the model ieβXy ii +=  

where ei ~ N(0, V i). In the simplest case V i = σ2I i. Other structures could be chosen, 

such as autoregressive (AR), Toeplitz (TOEP) or CS. Random effects can be included 

in the model by letting ei = Z ibi + εi, where bi ~ N(0, Σ), Σ unstructured (UN), and εi ~ 

N(0, σ2I ). This is equivalent to the Laird and Ware (1982) model. The model of Liang 

and Zeger (1986) is further discussed in Section 2.3.1. 

 

2.2.4 Conditional linear mixed effects models 

 

Conditional linear mixed effects models have been developed in an attempt to get 

round the problem of specifying the relationship of the random effects with time 
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(Verbeke & Molenberghs, 2000). In general, the main interest is in the fixed effects 

and the parameters of the random effects are viewed as nuisance parameters. Using 

this approach, parameters are estimated in two steps. Firstly, the linear mixed effects 

model is conditioned on sufficient statistics for the random effects parameters related 

to time. Then by means of maximum likelihood or restricted maximum likelihood, the 

remaining parameters are estimated through the conditional distribution of the yi, 

given the sufficient statistics (Verbeke & Molenberghs, 2000). The formulation of the 

model using this approach would be: 

iiiiini by
i

εbZβX1 +++= *  

where ni, β, bi, Xi and Zi are as specified previously, excluding those time-dependent 

elements of the random effects, and  bi
* is a parameter for the time-dependent random 

effects. 

 

The same parameter estimates will be obtained if the nuisance parameters, bi
*, are 

included in the standard linear mixed effects model as fixed effects. This means that 

for each subject in an experiment a subject-specific intercept will be estimated. Where 

a large number of subjects have been included, this would not be computationally 

feasible (Verbeke & Molenberghs, 2000). 

 

The model on which a paired t-test is based is a very simple case of a conditional 

linear mixed effects model (Verbeke & Molenberghs, 2000). In this case the data are 

perfectly balanced with two observations per subject. The only time-varying covariate 

of interest is the binary indicator variable representing the measurement occasion. The 

conditional linear mixed effects approach is equivalent to analysing the difference 
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between the two observations taken from each subject (Verbeke & Molenberghs, 

2000). 

 

The advantage of using conditional linear mixed effects models is that inference is 

available for the parameters of interest without having to specify the time dependency 

of the random effects. Due to the simpler form of the model during the fitting step, the 

numerical complexity of the fitting algorithms is reduced. This method would not be 

appropriate if the user were interested in the relationship of the random effects with 

time, as this information would be masked using this procedure (Verbeke & 

Molenberghs, 2000). 

 

Conditional linear mixed effects will not be considered any further in this study 

because the research concerns the consequences of specifying time-dependent random 

effects. 

 

2.3     Hierarchical Versus Marginal Modelling Approaches 

 

There are two modelling approaches that incorporate correlation into a statistical 

model. The first is the marginal modelling approach which assumes a model which 

holds averaged over all the clusters (also referred to as population averaged). The 

coefficients can then be interpreted as the average change in the response for a unit 

change in the predictor over the entire population. The second is the hierarchical, or 

conditional, modelling approach which assumes a model specific to each cluster (also 

referred to as subject specific). Coefficients can then be interpreted as the change in 

the response in each cluster in the population for a unit change in the predictor, and 
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the marginal information can be obtained by averaging over all the clusters. It is 

important to note which type of modelling approach is being used so that the results 

can be properly interpreted and compared (Vittinghoff et al., 2005). 

 

A summary of the explanation by Verbeke and Molenberghs (2000) on hierarchical 

modelling approach follows. Hierarchical modelling implies a two-stage process. 

During the first stage of the analysis it is assumed that the following linear regression 

relationship holds: 

iiii εβZy +=  

where Z i (ni × q) is a matrix of known covariates, βi (q × 1) is a vector of unknown 

subject-specific regression coefficients, and εi is the vector of residuals of length ni. 

This regression equation models how the i th subject’s response evolves over time. 

 

In the second stage a multivariate regression model for the subject-specific regression 

coefficients, βi, is assumed to be of the form: 

βi = K iβ + bi 

where K i is a matrix of known covariates, β (p × 1) is a vector of unknown regression 

coefficients, and bi is a vector of independent elements of length q. Therefore 

iiii

iiiii

iiii

iiii

εbZβX

εbZβKZ

εbβKZ

εβZy
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where X i is the fixed effects regressor matrix. 

 

During the first stage of this process all βi estimates for the observed yi for each 

subject are obtained separately. This can be interpreted as the calculation stage. In the 
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second stage the estimates iβ̂  are used to provide inferences for β. This can be 

interpreted as the analysis stage. 

 

There are some drawbacks to using this two-stage process. Information is lost in 

summarising the yi by the estimated vector of subject-specific regression coefficients, 

iβ̂ . Random variability is brought into the modelling process by replacing βi with iβ̂  

in the model. Additionally there is the problem that the covariance matrix of iβ̂  is 

highly dependent on the number of measurements available for each subject and also 

when the measurements were taken. 

 

Marginal models are mostly used to make inferences about population means, and 

therefore marginal models for longitudinal data model the mean response and the 

within-subject association among repeated responses obtained separately (Davis, 

2002; Fitzmaurice et al., 2004). In order to use the marginal modelling approach, it 

needs to be assumed that the marginal expectation (E(yij) = µij) can be related to the 

covariates through a known link function (g): 

g(µij) = βx '
ij . 

Secondly, it is assumed that the conditional variance of each yij, given the covariates, 

depends on the mean in the following way: 

)()(var ijij vy µφ= , 

where v(µij) is a known variance function of the mean and φ  is a scale parameter 

(Davis, 2002; Fitzmaurice et al., 2004).  

 

Lee and Nelder (2004) argue that the conditional modelling approach is preferable to 

the marginal modelling approach since both marginal inferences and conditional 
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inferences can be obtained from models obtained through the conditional modelling 

approach, i.e. both E(yi) = X iβ and E(yi | bi) = X iβ + Zibi can be obtained. Since the 

expected value for the mean of the random effects is constrained to equal zero, this 

means that the fixed effects estimates of a conditional model have the same meaning 

as those of the marginal model. The authors show that if the individuals in a study 

have significant random treatment effects (e.g. random time effects), these will be 

confounded with the fixed treatment effects in a marginal model, whereas for a 

conditional model these two different treatment effects will have separate estimates. 

The marginal estimates for the fixed effects are then only useful if there is no 

interaction effect between the subject and the treatment, and this can only be checked 

by means of a conditional model. In addition, the authors conclude that conditional 

models allow for the estimation of two different types of error: random error and 

subject-specific error, which is not possible through the marginal modelling approach. 

 

2.3.1 Generalised estimating equations (GEE) 

 

Generalised estimating equations (GEE) is an alternative approach to linear mixed 

effects models for modelling repeated measures. This approach extends generalised 

linear models to longitudinal data. The biggest difference between the GEE and the 

linear mixed effects approach is that the mean response, when using GEE, does not 

depend on the random effects, as it does in the context of linear mixed effects models. 

Therefore the GEE approach is a marginal modelling approach. Marginal models do 

not require that a distribution is specified for the observations, only that a regression 

model is specified for the mean response, and their primary purpose is to make 

inferences about population means. This means that the regression parameters 
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estimates obtained will have population-averaged interpretations (Fitzmaurice et al., 

2004). 

 

Liang and Zeger (1986) were the first to propose the extension of the generalised 

linear models to form GEE. They proposed using a “working correlation matrix”, 

R(α), defined so that: 

V i = φ/)( 2

1

2

1

ii AαRA  

will equal cov(yi) if R(α), where α is a vector which fully characterises R(α) and A i = 

diag{ ))var( iyφ , is the true correlation matrix of the yi’s. The GEE are then defined 

as: 

∑
=

=′N

i
iii

1

0sVd  

where di = 
β

y

∂
∂ )( iE

and si = yi – E(yi) (Liang & Zeger, 1986). 

 

The covariance structure is treated as a nuisance in the GEE methodology, which 

rather focuses on the regression of y on X. In this way the estimates obtained for the 

regression coefficients β are consistent and asymptotically normal, even when the 

covariance structure is misspecified. But a working correlation structure still needs to 

be specified (Hedeker & Gibbons, 2006). 

 

The simplest of these structures is that of independence where it is assumed R(α) = I . 

This is the same as assuming that the longitudinal observations are independent, but 

this is generally inappropriate and can lead to large efficiency loss for time-varying 

covariates. The exchangeable structure is another simple form that can be specified, 
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and assumes that R(α) = ρ, so that the correlations between the longitudinal data are 

all the same. This is equivalent to assuming a CS covariance structure for the linear 

mixed effects model. More advanced structures, such as an AR lag 1 (AR(1)) 

structure, where it is assumed R(α) = ρ|j-j’| , or a TOEP structure, where it is assumed 

R(α) = ρ|j-j’|  when j – j’ ≤ m and R(α) = 0 otherwise, or UN, where R(α) will have n(n 

– 1)/2 correlations to estimate, can be specified as well (Hedeker & Gibbons, 2006).  

 

A criticism of GEE methods is that they may not always correspond to a completely 

specified sampling model for the data, meaning that the assumptions being made by 

using the GEE method may not always be apparent. Inference using this method is 

entirely dependent on asymptotics (Weiss, 2005).  

 

2.3.2 Robust inference 

 

Going hand-in-hand with GEE methodology is estimation using robust standard 

errors. Robust standard errors make use of a temporary or working assumption as to 

the correlation structure in order to form the estimates, and these are then adjusted for 

the correlation in the data. Once the model coefficients have been estimated using the 

temporary correlation structure, within-subject residuals are used to compute robust 

standard errors for the coefficient estimates. Since these standard errors are based on 

the data, by use of the residuals, and not on the assumed working correlation structure, 

they give more robust inferences for large sized samples as long as the other 

specifications of the model (distribution, link and form of predictors) are correct, 

regardless of whether the working correlation structure is correct or not. It can be 

advantageous to avoid the calculation of a large number of correlations, and in cases 
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where both using an UN correlation structure and using robust standard errors can be 

used, the two methods produce similar results (Vittinghoff et al., 2005). 

 

The covariance matrix is estimated by means of the “sandwich estimator”, which is 

used to increase the efficiency of the covariance parameter estimates (Verbeke & 

Molenberghs, 2000; Crowder, 2001). This estimator is obtained by replacing the term 

var(yi) in the variance estimator of β with 
ν

ii rr ′
, where r i = βXy ˆ

ii −  and ν is the 

residual degrees of freedom (Verbeke & Molenberghs, 2000). Although the 

parameters of the covariance structure are treated as nuisance parameters, a 

covariance structure still needs to be specified. The estimated standard errors will be 

poor in comparison to those obtained if the correct covariance structure had been 

specified, therefore it is advantageous to model the covariance structure correctly 

(Crowder, 2001). Specifying the correct covariance structure will also lead to more 

efficient estimates of the standard errors, and in the case of missing data, valid 

estimates will only be obtained via the sandwich estimator if the “missing-ness” of the 

data follows very strict assumptions (Verbeke and Molenberghs, 2000).  

 

Since the interest of this study is specifically related to the assumption of the 

covariance model and its consequence for the estimates and inference about the fixed 

effects, robust standard errors will not be considered further in this study, although it 

is a reasonable approach for any investigator only interested in the mean response. 

The model of interest in this study is the linear mixed effects model, so the GEE 

approach will also not be considered any further, but a similar study on the 

performance of the GEE model under difference covariance assumptions could be 

considered. 
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2.3.3 Mixed models as a compromise between Bayesian and frequentist 

approaches 

 

The view of mixed models as a combination of frequentist and Bayesian approaches is 

based on the hierarchical formulation of the model (Verbeke, 1997, Demidenko, 

2004). If the Bayesian approach were used on its own then values for the parameters 

would need to be specified, whereas for the mixed models approach these parameters 

are estimated from the data (Demidenko, 2004). 

 

The mixed model approach lends itself to a Bayesian interpretation because the 

random effects are assumed to be random variables. The response variables, yi, can be 

written conditional on the random effects, bi, and the prior density function of bi can 

be written as f (yi| bi) and f (bi) respectively. In the Bayesian framework 

∫= iiii dffA bbby )()|(  

is referred to as the normalising constant (Demidenko, 2004). By means of Bayes 

Theorem, the posterior density function can be written as: 

∫
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Through the theory of Bayesian linear models, it can be shown that this posterior 

density is distributed multivariate normal. The bi can then be estimated by the 

posterior mean as: 
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where Σ is the covariance matrix of the random effects, θ = ( )′′′ τβ , and τ is the vector 

of the parameters of the covariance matrix V i = 1−
iW  (Verbeke, 1997). This would 

underestimate the variability in ii bb −ˆ  as the variation is bi is ignored, so 

var( ii bb −ˆ ) = )ˆvar( ibΣ − would be used to assess this variation (Laird & Ware, 

1982; Verbeke, 1997).  

 

The unknown parameters β and τ would be estimated by means of maximum or 

restricted maximum likelihood estimation of the marginal distribution: 

∫= iiiii dfff bbbβyy )(),|()(  

Therefore the normalising constant plays the role of the likelihood in the mixed model 

(Demidenko, 2004). 

 

2.4 Model Structure 

 

A substantial amount of literature exists on the analysis of repeated measures. Some 

of these texts include Crowder and Hand (1990), Verbeke & Molenberghs (2000), 

Demidenko (2004), Fitzmaurice et al. (2004), and Weiss (2005). The rest of this 

chapter discusses some of the issues that need to be considered when addressing any 

repeated measures problem, and also more specific considerations related to the 

estimation of the linear mixed effects model and its covariance matrix. 
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Before a repeated measures model can be fitted to longitudinal data, certain 

considerations need to be taken into account, including the choice of covariance 

structure, the role of time in the model and whether to include predictor variables as 

fixed or random. The choices for these model considerations will be discussed in this 

section, together with the potential consequences of misspecifying these components 

of the model. 

 

There are a number of reasons for modelling the covariance matrix of a regression 

model. Firstly, good estimates of the covariance matrix result in more efficient, and 

more precise, fixed effects estimates and more accurate confidence intervals and 

hypothesis tests (Fitzmaurice et al., 2004; Weiss, 2005). An appropriate choice for the 

covariance structure leads to correct standard errors and valid inferences about the 

regression parameters. The positive correlation found in repeated measures reduces 

the variability of the estimate of change over time within individuals; therefore this 

positive correlation can be looked at as an advantage to longitudinal study designs. 

Secondly, if predictions of future values, or imputation of missing values, are required 

from the model, then good covariance estimates are needed (Weiss, 2005). In fact, 

when there are missing data, the correct modelling of the covariance matrix is a 

requirement to obtain valid estimates of the regression parameters. Lastly, modelling 

the covariance matrix is part of modelling the science behind the data. For example, if 

the CD4 counts of HIV positive patients are modelled to fall about a subject-specific 

straight line with a negative slope, this implies that the eventual end is “fore-

ordained” (Weiss, 2005). If the data is modelled so that the CD4 counts follow an 

AR(1) model, this implies that the data follows a random walk pattern, which could 
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potentially go up or down. Therefore, failing to correctly model the covariance matrix 

can lead to misleading scientific inferences (Fitzmaurice et al., 2004; Weiss 2005). 

 

Verbeke & Molenberghs (2000, p.121) state that “An appropriate covariance model is 

essential to obtain valid inferences for the parameters in the mean structure”. If the 

specifications of the covariance matrix are too restrictive then inferences may be 

invalid if the specifications don’t hold. If the model is overparameterised, then this 

could lead to inefficient estimation and poor assessment of standard errors. Therefore, 

to make reliable predictions, efficient estimates of an appropriate covariance matrix 

are required. 

 

2.4.1 Covariance structures 

 

Covariance structures need to be chosen for both the random errors and the random 

effects. Selection of the covariance structure of the error components needs to be 

conditional on the selected structure for the covariance of the random effects, as 

together these will describe all the model variance. If the random effects are chosen 

correctly, one should be able to assume that the random effects account for most of 

the variability in the data and therefore simple, parsimonious models for both the error 

and random effects covariance structures can be chosen (Verbeke & Molenberghs, 

2000). Fitting overly complicated covariance structures can lead to non-convergence 

(Verbeke & Molenberghs, 2000). SAS® (ver. 9.1) PROC MIXED has many available 

covariance structures to choose from, which can be applied to both the error and 

random effects covariance structures.  
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The simplest covariance structure is referred to by SAS (ver. 9.1) as the variance 

components (VC) covariance structure. This structure assumes that there is no 

correlation between observations and that there is constant variance, σ2, across all 

measurement occasions. Only one parameter needs to be estimated for this covariance 

structure. In this case where no random effects are included in the model, this would 

be the assumed covariance structure for an OLS model. 

 

When the correlations between all observations from the same subject can be assumed 

to be the same, the covariance structure is referred to as exchangeable or CS 

(Vittinghoff et al., 2005). This type of covariance structure is suitable when there are 

no variables distinguishing one member of a level of a random effect from another, so 

can be used in the absence of any other data structure, but can be restrictive and 

unrealistic at times (Davis, 2002; Vittinghoff et al., 2005). The form of this 

covariance structure was described in Section 2.2.2. Two parameters need to be 

estimated for this structure. 

 

When measurements are taken through time, observations taken more closely together 

in time are likely to be more highly correlated, and in this case it may be more 

appropriate to use an AR structure, which exhibits this feature (Crowder & Hand, 

1990). The most commonly used AR structure is an AR(1), which assumes that the 

variance across all occasions is the same and the correlation between two points one 

unit apart would be ρ, two units apart would be ρ2, three units apart would be ρ3, etc., 

and therefore the correlation value tends to zero as the observations get further and 

further apart (Fitzmaurice et al., 2004; Vittinghoff et al., 2005). Therefore it would 

not be appropriate to use this structure when the values for an individual are stable 
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over time, e.g. systolic blood pressure taken from a patient undergoing a single 

treatment regime over a long period of time (Vittinghoff et al., 2005). The form of 

this covariance structure is 
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o  where ρ is the correlation 

coefficient, with | ρ | < 1 for stationarity, and σ2 is the variance across all occasions.  

Two parameters need to be estimated for this covariance structure. 

Another covariance structure related to time is the TOEP structure. This structure can 

be viewed as a moving-average structure of the same order as the dimensions of the 

covariance matrix. The TOEP structure assumes that any pair of responses that are 

separated by the same length of time have the same correlation and that the variance 

across all occasions is the same (Fitzmaurice et al., 2004). The form of this structure 

is 
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 where σ2 is the variance across all occasions and σi for i = 

1…(number of matrix dimensions – 1) is the variance for observations i units apart. 

For this structure t parameters need to be estimated, where t is the number of 

measurement occasions. It should be noted that this structure assumes that the 

correlation among responses at adjacent measurement occasions is constant, and 

therefore this structure is only appropriate when the measurement occasions are 

separated by equal units of time (Fitzmaurice et al., 2004). 

  

In addition to these covariance structures, SAS (ver. 9.1) allows one to specify 

heterogeneous variants of these covariance structures. In particular, SAS allows you 
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to specify the heterogeneous CS structure (CSH), which allocates a different variance 

parameter for each diagonal element, and uses the square roots of these parameters in 

the off-diagonal entries. Therefore the form of this covariance structure can be 

displayed as follows: 
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 where 2
iσ is the i th variance component, for i = 

1…t and ρ is the correlation parameter. For this structure t + 1 parameters need to be 

estimated.  

 

Another heterogeneous structure is the AR structure (ARH), which is similar to the 

CSH structure, but the correlation parameter behaves as for the AR(1) structure. The 

form for this covariance structure is  
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 where the parameters are as before. This 

model also requires that t + 1 parameters are estimated. 

 

When the covariance structure is UN, so that the covariance between any two 

observations from the same subject could be estimated to have a different value, then 

t(t+1)/2 variance parameters will need to be estimated (Fitzmaurice et al., 2004). The 

loss of degrees of freedom due to the large number of estimated variance components 

would cause a decrease in the precision of the estimated parameters of interest or even 

a failure in fitting the model (Vittinghoff et al., 2005). Choosing the correct 

correlation structure can be very difficult in practice (Vittinghoff et al., 2005).  
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2.4.2 The effect of time 

 

How time is included in the fixed effects part of a model is an important consideration 

when modelling longitudinal data. To summarise the discussion by Singer and Willett 

(2003): the first consideration with regards to time should be the metric of time used. 

The metric chosen should reflect the cadence that is expected to be the most useful of 

the outcome of interest. For example, when the outcome of interest is the wear of a 

tyre, the metric used for time should rather be the number of kilometres travelled than 

the age of the car, as this is more likely to have an influence on the wear of the tyre. 

Whether the individuals were measured with equal or unequal time spacing, whether 

the individuals were measured at different times and whether individuals had the same 

number of measurement occasions should also be included in the model. These 

considerations can affect parameter definition, model construction, estimation and 

model testing. 

 

When time is not included as a predictor in the model, the model assumes a “no 

change” trajectory, i.e. that there in no change over time in the response. If a “linear 

change” model is assumed, time is included as a first-order polynomial, where each 

individual will then have a unique intercept and slope. When time is added as a 

second-order polynomial, it assumes a quadratic change over time. In this case, the 

coefficient of the first-order time term represents the instantaneous rate of change at 

any one specific moment. The coefficient of the second-order time term is the 

curvature parameter, which describes the changing rate of change. Higher order 

polynomials can be added, increasing the complexity of the trajectory. The greater the 

complexity of the polynomial, the more measurement occasions are required to fit the 
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model. The degree of the polynomial is limited by the number of observations taken 

per subject. 

 

If there is more than one polynomial of time that seems suitable, such as when either a 

2nd or 4th degree polynomial may be appropriate, an exploratory approach should be 

adopted to choose the correct polynomial, where individual-specific ordinary least 

squares (OLS) models are fitted to each individual’s data (Singer & Willett, 2003). 

The highest order polynomial required to adequately summarise an individual’s 

change should be chosen. Goodness-of-fit statistics can also be used to choose 

between models containing different polynomials in time. The multiple testing aspect 

of the data, and the effect of data inspection to choose the model, must be kept in 

mind. 

 

2.4.3 Random effects 

 

The random effects in a linear mixed effects model are generally restricted to only 

random intercepts and random coefficients for time-varying covariates (Verbeke, 

1997). Only those covariates that have been included in the fixed effects part of the 

model (i.e. in X i) or covariates that form linear combinations of the columns of X i will 

be considered as random effects covariates, as it is assumed that the random effects bi 

have a mean of zero (Verbeke, 1997). It has been shown that, as for linear regression, 

polynomials of the time effect should not be included unless all the hierarchical 

inferior terms have also been included (Verbeke, 1997). By including random effects 

into the model, it implies that the covariance matrix of yi is of the form 

iiii ωZΣZV +′= . Therefore the choice of the random effects covariates directly 
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impacts on the proposed covariance structure of the responses. If the diagonal 

elements of ωi are all equal, then the covariance matrix of the responses will only 

depend on time through the term ii ZΣZ ′ . It is then possible to perform an informal 

check on the appropriateness of the random effects by comparing the fitted variances 

to the residuals r ij after grouping them into time intervals (Verbeke, 1997). 

 

2.4.4 Fixed effect or random effect? 

 

The decision whether to treat a factor as fixed or random can have important 

consequences for the manner in which the factor is treated in the model, and hence 

important consequences for the conclusions that can be drawn from the model. 

Duchateau and Janssen (1997) describe this by means of a simple example in the 

context of an ANOVA. In their example, eight batches of a particular antibiotic are 

chosen and the efficiency of these drugs is measured after a two-year period. If it can 

be considered that the batches were chosen at random from a population of available 

batches, then batch can be included in the model as a random effect. This model can 

be represented by the following equation: 

ijiijy εµ ++= b  

where yij is the response for the j th observation in the i th batch, µ is the overall mean (a 

fixed parameter), bi is the random effect associated with batch i, and εij is the random 

error of the j th observation in the i th batch. It is then assumed that bi and εij are 

independently and identically normally distributed with zero mean and variance 2bσ  

and 2σ  respectively. Therefore it follows that 22][and][ σσµ +== bijij yVaryE . 
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If it is assumed that the eight batches chosen are the only batches available, then batch 

can be included as a fixed effect. The model will then be  

ijiijy εβµ ++=  

where yij, µ and εij are as for the previous model, and βi is the fixed effect parameter 

for the i th batch. It then follows that 2][and][ σβµ =+= ijiij yVaryE . This is quite 

different from the previous model. Each batch now has its own mean value and the 

only source of variability is from the random errors. 

 

There is a problem with the fixed effects parameterisation of the model. The model 

can be written in matrix notation as: 

εXβy +=  

where ),...,,( 81 ′= ββµβ . The resulting design matrix, X, will then be such that the 

first column could be obtained by summing all the other columns. Therefore X is not 

of full rank, and this is due to the overparameterisation of the model (Duchateau & 

Janssen, 1997). This problem can be dealt with by treating one group as a base group 

and therefore reducing the number of regression coefficients by one, or by restricting 

the parameter values to sum to zero. 

 

2.4.5 The effect of model misspecification 

 

Misspecification can occur in various aspects of the linear mixed effects model. Some 

of these misspecification problems will be discussed in this section. 

 

As discussed in Section 2.4.2, time is an important consideration in modelling 

longitudinal data. Misspecifying the metric of time, whether individuals are measured 
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at the same time, whether individuals have the same number of measurement 

occasions, or the spacing of measurements could result in incorrect parameter 

definition, incorrect model construction, incorrect estimation and incorrect model 

testing (Singer & Willett, 2003). How time is included in the model can also be 

misspecified. If a polynomial of time is chosen which is too simple, the true 

complexity of an individual’s trajectory over time may not be fully explained by the 

model. If a polynomial of time is chosen which is too complex, then there may not be 

enough measurement occasions to fit the model (Singer & Willett, 2003). 

 

Most papers addressing misspecification of linear mixed effects models refer to the 

distribution of the random effects or the random error structure. Verbeke and Lesaffre 

(1997) showed that the maximum likelihood estimators for fixed effects and variance 

components in linear mixed models are consistent and asymptotically normally 

distributed when obtained under the assumption of normally distributed random 

effects, even when the distribution of the random effects is not normal. Zewotir and 

Galpin (2004) studied the formal and informal assessments of the normality 

assumptions in linear mixed models and showed that probability plots of the residuals 

and tests based on these plots were not sensitive to non-normality of the random 

effects, but only to the non-normality of the error terms. They further showed that the 

shape of the probability plots could indicate specific transformations of the data that 

could improve the normality of the data.  

 

Jacqmin-Gadda, Sibillot, Proust, Molina and Thiebaut (2007) showed that inference 

for the fixed effects under the assumption of independent normally distributed errors 

with constant variance is robust for errors which are not normally distributed or which 
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are heteroscedastic, but that estimates of the fixed effects are biased if the error 

variance depends on a covariate with interaction with time and if the errors are 

correlated. In the first case, they noted that although the inference for the estimated 

slopes may be biased, the inference for the difference between slopes is robust, and 

therefore the test for treatment effect is robust. If the errors terms are correlated, then 

using a model that includes both a random intercept and a random slope is more 

robust that using a model with only a random intercept.  

 

Lange and Laird (1989) studied the effect of misspecification of the number of 

random effects in a linear growth curve models. By misspecification of the random 

effects, they refer to misspecification of the maximum polynomial in time to include 

in the random effects. They showed that the variance of the estimators depended 

strongly on the assumed number of random effects in the model, but that the random 

intercept and slope model gave conservative estimates of the variance, even when the 

true number of random effects in the model was more than two. Taylor and Law 

(1998) showed by means of a simulation study that misspecification of the model 

covariance structure, where they considered four models with closed form solutions 

for the model parameters, leads to reduced coverage probabilities for estimates of 

individuals’ future observations. The models they considered include a linear mixed 

effects model with an added integrated Ornstein-Uhlenbeck stochastic process, a 

linear mixed effects model with an added Brownian Motion process, a random 

intercept and slope model, and a quadratic random effects model. They assumed that 

the error term had independent errors. They showed that of these four models, if the 

quadratic random effects model was mistakenly specified, it obtained the best 

coverage probabilities, but was the least efficient. 
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Both Richardson and Welsh (1995) and Copt and Victoria-Feser (2006) have studied 

linear mixed effects models in the presence of outliers and have found that if 

contaminated errors were inserted in the data with a null mean, the estimates for the 

fixed effects in linear mixed effects are comparatively robust, whereas the estimates 

for the variance parameters were biased. If the mean of the contaminated error 

distribution was different from zero, then the fixed effects estimates were biased as 

well. These authors propose more robust methods compared to ML and REML 

methods for estimating the parameters. Jacqmin-Gadda et al. (2007) state that their 

analyses on linear mixed effects models show the same pattern in bias of parameter 

estimates when outliers are included. 

 

Ugrinowitsch et al. (2004) compared the performance of the repeated measures 

ordinary least squares (OLS) method, the generalized least squares method assuming 

a compound symmetric covariance structure and an AR(1) covariance structure, and 

the random coefficients growth curve model. They found that if a compound 

symmetrical covariance structure was incorrectly assumed for either the GLS or OLS 

method, then high probabilities of Type 1 error would occur, whereas the random 

coefficients growth curve model performed well under any covariance structure. 

Demidenko (2004) discuss the case when random effects are ignored, and instead 

OLS estimators are used. He showed that the OLS estimator of the variance was 

positively biased when the random effects were ignored. 

 

In summary, these studies conclude that the estimates for the fixed effects are 

unbiased to model misspecification or to outliers, but that the model covariance 

structure is not. And therefore inferences about the fixed effects may not be accurate 
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if there is model misspecification, such as if the covariance structure for either the 

random effects or random errors is misspecified. 

 

The purpose of this study was to investigate the robustness of linear mixed effects 

models when the covariance structure is misspecified. These covariance structures 

would then be the best option for a researcher to examine if the researcher were 

uncertain about the correct covariance structure.  

 

2.5 Parameter Estimation 

 

There have been a number of methods proposed in the literature to obtain the 

parameter estimates of a repeated measures model. Laird and Ware (1982) described a 

non-Bayes Expectation-Maximisation (EM) algorithm approach to obtaining the ML 

estimates of the linear mixed effects model. They expanded this method to one that 

used a combination of ML estimation and an empirical Bayes approach to obtaining 

REML estimates for the variance parameters.  

 

Jennrich and Schluchter (1986) developed Newton-Raphson (NR) and Fisher scoring 

algorithms to estimate the parameters of the general linear model for longitudinal 

data. They also described a hybrid EM scoring algorithm to obtain the REML 

estimates. Lindstrom and Bates (1988) further developed the NR algorithm to be an 

efficient and effective means of estimating the parameters of the mixed effects model. 

They proposed improvements to the algorithm of Jennrich and Schluchter (1986) to 

improve the speed of convergence and to ensure the covariance matrix for the random 

effects is positive definite at each iteration, and derived all the necessary derivatives 
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and second derivatives required to implement the algorithm. They also compared the 

implementation of the NR algorithm to that of the EM algorithm of Laird and Ware 

(1982), and found that the algorithms of these two methods had similar computing 

times, but that the EM algorithm generally needed more iterations before convergence 

compared to the NR algorithm. In terms of convergence, Lindstrom and Bates (1988) 

concluded that the EM algorithm was guaranteed to converge to a local maximum, 

even if many iterations are required, but that the NR algorithm, if implemented as 

suggested by these authors, would converge very consistently, and have the advantage 

of producing the Hessian matrix for the parameter vector, and has an objective 

convergence criterion available, unlike for the EM algorithm.  

 

Wolfinger (1993) describes a unified framework for likelihood-based approaches for 

parameter estimation, using both ML and REML estimates. Wolfinger, Tobias and 

Sall (1994) also develop NR algorithms for the estimation of the ML and REML 

estimates, including estimation of arbitrary covariance structures for both the errors 

and the random effects, and provide the derivation of the derivatives and second 

derivatives required for the implementation of this method.  

 

Verbyla (1990) derived the REML equations of the mixed effects model by 

partitioning the full likelihood into two independent parts, one relating to the fixed 

effects contrasts and the other to the residual contrasts. Maximisation of the first set of 

contrasts leads to estimates of the fixed effects and maximisation of the second set of 

contrasts leads to the REML estimates of variance parameters (Verbyla & Cullis, 

1990; Cullis, Smith & Thompson, 2004). Pourahmadi (2000) showed that the 

loglikelihood of the general linear model has three representations which correspond 
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to the submodels for the means, variances and correlations. Pourahmadi (2000) 

derived closed form solutions for the fixed effects and for the correlation parameters, 

and developed a NR algorithm for the variance parameter estimates. This method was 

developed to ensure the positive definiteness of the covariance matrix. 

 

In the past, the EM algorithm was a popular method of obtaining the ML or REML 

estimates for the linear mixed effects model, although Laird and Ware (1982) have 

shown that the algorithm is slow to converge for estimates of the covariance when the 

maximum likelihood is close to the boundary space of the parameters (Verbeke & 

Molenberghs, 2000). Modern software for linear mixed effects estimation, such as 

proc mixed of SAS (ver. 9.1), use NR based procedures (Verbeke & Molenberghs, 

2000). In general, REML estimates are obtained rather than ML estimates, as ML 

estimators for the covariance parameters tend to be biased downwards, as they do not 

take into consideration the loss of degrees of freedom from the estimation of the fixed 

effects (Lindstrom & Bates, 1988; Verbeke & Molenberghs, 2000). 

 

SAS (ver 9.1) PROC MIXED, by default, uses a ridge-stabilised NR algorithm to 

minimise -2×loglikelihood for the ML approach, and -2×restricted loglikelihood for 

the REML approach. This procedure does not optimise the likelihoods directly, but 

rather optimises the profile likelihoods, which have one less parameter, and therefore 

are optimised more efficiently. These algorithms are based on work by Wolfinger, 

Tobias and Sall (1994) who developed algorithms for computing the Gaussian 

likelihood and restricted likelihood for the general linear mixed model through NR. 

The authors make use of Cholesky decomposition, the sweep operator, and the W-

transformation in these algorithms, and also discuss the use of profile likelihood to 
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obtain the variance parameter estimates. The minimum variance quadratic unbiased 

estimator (MIVQUE) method is implemented in the procedure in order to obtain the 

starting values. (Littell, Milliken, Stroup & Wolfinger, 1996). A detailed explanation 

of this procedure can be found in Wolfinger et al. (1994). Swallow and Searle (1978) 

explain how to obtain the MIVQUE estimates for variance components. 

 

2.5.1 Problems with parameter estimation 

 

In practice, estimates for the linear mixed model are obtained from the less restrictive 

marginal model, rather than from the hierarchical model (Verbeke & Molenberghs, 

2000). Since the marginal model does not imply the hierarchical model, this could 

result in estimates of the parameters of the hierarchical model not converging due to 

negative variance component estimates (Verbeke & Molenberghs, 2000). Therefore it 

is important to run exploratory data analyses prior to fitting the linear mixed model in 

order to ensure that valid estimates are obtained for the model (Verbeke & 

Molenberghs, 2000, p. 54). 

 

Problems, which are not uncommon, can occur during the estimation of parameter 

estimates. As discussed earlier, the NR algorithm, which is most commonly 

implemented, is not guaranteed of converging (Lindstrom & Bates 1988). If non-

convergence occurs, one of the easiest ways of solving this problem is to specify 

better starting values, or even to change the numerical optimisation procedure 

(Verbeke & Molenberghs, 2000). Demidenko (2004) suggests using methods such as 

minimum norm quadratic unbiased estimation (MINQUE), method of moments or 

variance least squares to obtain good starting values for the covariance matrix. In this 
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study, for the purpose of comparison, the optimisation method was not changed for 

any of the models. If a non-convergence message is reported, it is very important to 

check the parameter estimates to ensure that they are reasonable and within bounds 

(Weiss, 2005). For example, the standard deviation is expected to be smaller than one 

quarter of the range of the data, and therefore this rule of thumb can be checked 

against the estimates of the variance parameters (Weiss, 2005). Weiss (2005) also 

notes that if estimates are obtained without standard errors, this is usually an 

indication that the algorithm has not converged.  

 

Non-convergence can sometimes result when the estimates of the variance 

components tend too closely to zero. By rescaling the time variable, for example to 

decades instead of years or months, it can be possible to solve this problem by 

artificially enlarging the variance components (Verbeke & Molenberghs, 2000). 

 

If it is reported that the “Hessian matrix is non-positive definite”, this means that a 

saddle point has been reached (Weiss, 2005). It should be expected that the Hessian 

matrix becomes positive definite in the neighbourhood of the maximum if the NR 

algorithm is implemented, but if the iterations are far from the maximum, then the 

Hessian matrix may not become positive definite, and NR algorithm may fail 

(Demidenko, 2004). The more parameters in the model, the more likely it is that 

problems will be encountered during the maximisation procedure (Weiss, 2005). 

Weiss (2005) recommends that if this occurs, that parameters should be removed from 

the model until the problem is solved, and then model diagnostics should be used to 

assess how well this model performs. If parameter estimates are obtained that go out 
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of their bounds, Crowder and Hand (1990) recommend parametrising the various 

quantities in such a way that any constraints are satisfied automatically.  

 

2.6 Assessing the Fit of a Model 

 

Information criteria can be used to assess the fit of repeated measures models, and 

outlier and influence diagnostics and residual analyses can be used to assess model 

misfit or appropriateness, but the OLS forms of these analyses cannot always be used. 

These criteria and adjustments required for repeated measures models will be 

discussed in this section. The choice of model will be dependent on the criteria chosen 

for assessing model adequacy. 

 

2.6.1 Information criteria 

 

For selection between different models, the selection criteria Akaike’s information 

criterion (AIC) and Schwarz’s Bayesian information criterion (BIC) can be used 

(Verbeke & Molenberghs, 2000; Davis, 2002; Fitzmaurice et al., 2004). The AIC is 

defined as: 

AIC =  -2(maximised log-likelihood) + 2(number of parameters) 

= -2l̂ + 2c 

and the BIC is defined as: 

BIC = -2(maximised log-likelihood) + logN (number of parameters) 

 = -2l̂  + logN×c 

where N is the number of subjects and c is the number of parameters (Fitzmaurice et 

al., 2004). In order to select between models, these two selection criteria need to be 
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minimised. Duong (1984) states that models that are within two units of the lowest 

AIC can be considered as competitive for the best model. Burnham and Anderson 

(2002) and Jones (1993) are just two of a large number of texts which concur with this 

criterion. Models can then be selected according to those that have the fewest 

parameters, and this will be achieved by comparing the BIC of these models, as it 

penalises the number of parameters more strictly (Fitzmaurice et al., 2004). 

 

2.6.2 Outlier and influence diagnostics 

 

Zewotir and Galpin (2005) derived influence diagnostics for linear mixed models, 

where the ordinary linear regression influence diagnostics have been extended to 

linear mixed models. The statistics which have been extended included Cook’s 

distance (Cook, 1977), the likelihood distance (Cook & Weisberg, 1982), the variance 

(information) ratio (Belsley, Kuh & Welsch, 1980), the Cook-Weisberg statistic 

(Cook & Weisberg, 1980) and the Andrews-Pregibon statistic (Andrews & Pregibon, 

1978). Zewotir and Galpin (2005) show that a one step form of the diagnostics, which 

is computationally inexpensive as opposed to the full iteration, adequately provide 

informoration on the influence of the data on various aspects of model fit. These 

statistics were tested using clustered, but not longitudinal, data. The sensitivity of 

these statistics have been studied by Zewotir and Galpin (2006) and they found that 

these statistics are capable of detecting influential points in X, Z and y, but masking 

effects could occur under certain circumstances, for example when there are multiple 

outliers in the same observation. Demidenko and Stukel (2005) have also proposed 

extensions to the leverage, infinitesimal influence, case deletion diagnostics, Cook’s 
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distance, and local influence used for regression models to accommodate linear mixed 

effects models, which are in the form of explicitly defined functions. 

 

In SAS (ver. 9.1), experimental code has been included for outlier and influence 

diagnostics. The basis on which these diagnostics are obtained is through computing 

parameter estimates based on all data points, removing the cases in question from the 

data, refitting the model, and computing statistics based on the change between full-

data and reduced-data estimation. Refitting the model to the reduced data set involves 

going through the iterative maximisation procedure in order to obtain the parameter 

estimates if covariance parameters are not known. The computing time when this 

option is included does increase to about one minute for the data sets used in this 

study, but this is an acceptable amount if time in these circumstances. For very large 

data sets the computing time may pose problems. The diagnostics that are included 

are: the restricted likelihood distance, which measures the overall influence of an 

observation (Cook & Weisberg, 1982); Cook’s distance, which measures the 

influence of an observation on all predicted values (Cook, 1977); the covariance ratio 

and trace, which measures the influence of an observation on the precision of the 

estimates (Belsley et al., 1980); the PRESS residuals (Allen, 1974) and the DFFITs, 

which measure the influence of an observation on its own predicted value; and 

MDFFITS, which measures the influence of an observation on the parameter 

estimates (Belsley et al., 1980). These influence and outlier diagnostics, as available 

in SAS (ver. 9.1), are described by Schabenberger (2004). 
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2.6.3 Analysis of residuals 

 

The residuals can be used to assess the fit of a model. Firstly, the type of residuals to 

be used needs to be chosen. For example, the marginal residuals βXy ˆ
ii −  can be 

used, and these reflect how a specific individual’s mean profile deviates from that of 

the population. If the conditional residuals, iiii bZβXy ˆˆ −− ,  are used this reflects 

how much the observed values deviate from an individual’s own predicted values. 

Even the random effects ib̂  can be considered as residuals as these values reflect how 

an individual’s profile deviates from that of the population (Verbeke & Molenberghs, 

2000). 

 

Haslett & Haslett (2007) give a comprehensive review of the three different types of 

residuals available, describing where they are used, how they relate to each other, and 

their role in model fit analysis. They note that residuals should be interpretable in the 

context of the data, and that conditional residuals are estimates of the pure error or 

measurement error, and are the most useful out of the three different types of 

residuals. The marginal residuals in conjunction with the conditional residuals give 

the best description of the error in the model. 

 

The following section summarises the methods of residual analyses that are described 

in Fitzmaurice et al. (2004), which are based on the marginal residuals. Many of the 

standard methods of residual analysis used for regression methods can be extended to 

longitudinal models.  

 

For a longitudinal model a vector of residuals can be defined for each individual: 
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βXyr ˆ
iii −=  

which has a mean vector of zeroes. These residuals can then be used to check for 

systematic departures from the model, the presence of outliers, as well as the 

adequacy of the chosen covariance structure. A correctly specified model will have 

residuals which, if plotted against the fitted values, will be randomly scattered around 

the zero line and display no systematic pattern. Similarly, plots of the residuals against 

selected covariates can indicate missing quadratic terms or the need for a 

transformation. 

 

Due to the properties of longitudinal data, the components of the residual vector will 

be correlated and may not have constant variance. The covariance of the marginal 

residuals can be approximated by the estimated marginal covariance matrix, iV̂ , and 

this has important implications for the analysis of the residual plots. Firstly, due to the 

covariance of the residuals not necessarily being constant, standard methods used to 

test for homogeneity of residual variance or autocorrelation among residuals should 

be avoided. Secondly, the residuals may be correlated with the covariates, unlike in 

the univariate case, and therefore systematic trend in plots of residuals versus a 

covariate may be due to this correlation. 

 

To circumvent these problems, the marginal residuals can be transformed. The 

transformed residuals should then have zero correlation and unit variance, and this can 

be achieved through the Cholesky decomposition method (also known as Cholesky 

factorisation). 
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Since the approximate covariance matrix of the marginal residuals should equal iV̂ , 

using the Cholesky decomposition method, a lower triangular matrix, iL , can be 

created such that: 

iii LLV ′=ˆ  

and 1−
iL can then be used to transform the residuals: 

)ˆ(11*
βXyLrLr iiiiii −== −−  

which will then have zero correlation and unit variance. 

 

These transformed marginal residuals have useful interpretations in the longitudinal 

setting due to the temporal ordering of the observations for each subject. The first 

element of  

)ˆ(1*
βXyLr iiii −= −  

is the standardised residual for the first repeated measurement, and the elements that 

follow represent standardised deviations from the conditional mean of the response 

given all previous observations. Therefore the kth transformed residual is an estimate 

of  

),...,|Var(

),...,|(

11

11

−

−−

ikiik

ikiikik

yyy

yyyEy
. 

 

Using the transformed residuals the usual residual diagnostics for standard regression 

methods can be applied. For example, the transformed residuals, *
ijr , can be plotted 

against the transformed predicted values, *ˆ ijµ , where 

βXLµL ˆˆˆ 11*
iiiiij

−− ==µ . 
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This plot should show a random scatter around zero with constant variance. Similarly 

the transformed residuals can be plotted against the individual transformed covariates. 

Plotting the transformed residuals against transformed time can be used to assess the 

model assumptions about the patterns of change in mean response over time. Using 

the transformed residuals makes it easier to identify skewness and potential outliers.  

 

The transformed response vector and covariate matrix can be obtained as follows: 

;1*
iii yLy −=   iii XLX 1* −= . 

The generalised least squares (GLS) estimate of β  from the regression of yi on X i can 

now be re-estimated using OLS regression of *
iy on *

iX , and the standard residual 

diagnostics of this model can then be used to check model adequacy. 

 

Houseman, Ryan and Coull (2004) give a detailed derivation of these “Cholesky 

residuals”, and demonstrate the use of these residuals via simulation studies. The 

authors note that the transformed residuals are not always appropriate, in particular 

when the normality of the random effects is in question.  

 

These scaled marginal residuals can be obtained from SAS PROC MIXED by 

specifying the option VCIRY in the model statement. The transformed residuals are 

only available for the marginal residuals. The untransformed marginal and conditional 

residuals, i.e. βXyr ˆ
iii −=  and  iiiiic bZβXyr ˆˆ −−=  can also be specified (SAS 

PROC MIXED, 2003). The residuals available in SAS (ver. 9.1), as well as the 

Cholesky residuals, are discussed by Schabenberger (2004). 
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2.6.4 The process of choosing the best model 

 

In order to select the best fitting covariance structure for a linear mixed effects model, 

for both the random errors and the random effects, the literature recommends using 

likelihood ratio tests to select between nested models, and information criteria, such 

as the AIC or BIC to select between non-nested models (Verbeke & Molenberghs, 

2000; Demidenko, 2004; Hedeker & Gibbons, 2006). 

 

Verbeke and Molenberghs (2000) recommend fitting an overparameterised model for 

E(yi) as a first step. This will result in consistent estimators of the covariance structure 

in future steps. Using this mean structure, the OLS method can be used to estimate β. 

This can be shown to be a consistent estimator for β. The OLS residuals can then be 

used to study the dependence among the repeated measures. These plots can be used 

to select the random effects to be included in the model. They further note that 

including high-dimensional random effects with an unconstrained covariance matrix 

Σ can lead to complicated covariance structures and may result in divergence of the 

maximisation procedure. If most of the variability can be assumed to be contained 

within the random effects, the parsimonious structures can be chosen for error 

covariance structure, ωi. 

 

The difference between the -2 REML loglikelihoods of the more complex model and 

the simpler model is distributed as chi-squared with degrees of freedom equal to the 

difference in the number of parameters between the two models. The covariates of 

these two models need to be the same. This can be used to see if the change of 

covariance structure, where one covariance structure is nested within another, is 
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suitable or not, but not to determine if the inclusion of random effects is necessary or 

not. This is because the null hypotheses of interest are on the boundary of the 

parameter space, which implies that the likelihood ratio statistic does not have the 

classical asymptotic chi-square distribution. This same method can be used in the case 

of maximum likelihood estimation, but both models need to have the same likelihood 

method. When the models are not nested, then the AIC or BIC should be used 

(Verbeke & Molenberghs, 2000; Demidenko, 2004; Hedeker & Gibbons, 2006). 

Davis (2002) notes that, to use the likelihood ratio test to compare the fit of the 

different models, the number of time points must be small and the time points must be 

equally spaced. If the number of time points is large, or vary from subject to subject, 

then the choice of covariance model can have a substantial effect on the results of the 

analysis, and likelihood ratio tests cannot be used. 

 

Since the covariance parameters are not always defined as elements of (-∞, ∞), in 

particular the diagonal elements of the covariance matrix need to elements of (0, ∞), 

standard tests for the parameter values which assume this may be misleading. When 

the likelihood ratio is used to test variance parameters to see if they are equal to a 

value on the parameter’s boundary space, then this test may not be valid. The null 

distribution for the likelihood ratio test is no longer a chi-squared distribution with 

degrees of freedom equal to the difference between the number of parameters in the 

full and reduced models. The null distribution will be a mixture of chi-square 

distributions (Demidenko, 2004, Fitzmaurice et al., 2004). Under these circumstances, 

the p-value of the test may be adjusted. An approximate adjustment is to divide the p-

value by two, which has been shown to work well (Hedeker & Gibbons, 2006). 
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When the AIC and BIC are used to compare between models, the BIC will almost 

always give a greater penalty for extra parameters, and can under certain 

circumstances heavily penalise for additional parameters, therefore Fitzmaurice et al. 

(2004) recommend against using the BIC. To demonstrate this, (-2l̂ + 2c) < (-2l̂  + 

logN×c) when 2 < logN. Therefore for any sample size about eight, the BIC will give 

a greater penalty for more parameters compared to the AIC (McQuarrie & Tsai, 

1998). 

 

A limitation to using the AIC is that it does not work well when multicollinearity is 

present, and although it has been shown to be an asymptotically unbiased estimator of 

the Kullback-Leibler information, it can have significant bias under sufficiently small 

sample sizes. Therefore bias-corrected AIC (AICc), which estimates the Kullback-

Leibler information directly instead of its approximation as estimated by the AIC 

(McQuarrie & Tsai, 1998),  and Healthy AIC (HAIC) variants have been proposed in 

order to obtain more reliable criteria for selecting the best fitting model (Demidenko, 

2004). The AICc is defined as  

1

2
2AICc

−−
+−=

cN

cN
l  (McQuarrie & Tsai, 1998). 

To define the HAIC, let y be an N-dimensional vector of observations whose 

distribution depends on c-dimensional vector of parameters θ  and has loglikelihood 

l(θ ; y). The penalised loglikelihood will then be  

l = 2
2

2 ||||
2

1
);(ln

2
θyθ

λ
λ −+− l

c
 

and the maximum of the loglikelihood function over the variance is attained at 

2

|||| 2
2 θ=λ . The HAIC is defined as  
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HAIC = H - 2l̂ + 2c 

where H = )1)/||ˆ(ln(|| 2 −cc θ  (Demidenko, 2004). Demidenko (2004) justifies the use 

of the HAIC by demonstrating the multicollinearity problem of the AIC in the context 

of a linear regression model. Let the regression model have c explanatory variables 

and variance 2σ̂ . If a variable is added that is highly correlated with the other 

explanatory variables, this may not be well reflected in the AIC because 2σ̂  will not 

change, due to multicollinearity. The OLS parameter estimate will become unstable 

due to |X’X| ≈ 0, which will lead to large values of ||LSβ̂ ||2. This will result in a large 

H value and therefore the instability in the model will be picked up by the HAIC. The 

HAIC is not implemented in standard statistical software for linear mixed effects 

models and will not be considered further in this study. The AICc is available as an 

output for SAS PROC MIXED (ver. 9.1) and will be included in the results of this 

study, together with the AIC and BIC. The AICc is asymptotically equivalent to the 

AIC for large samples (McQuarrie & Tsai, 1998). As discussed earlier, the BIC 

penalises more heavily for additional parameter values as the sample size increases, 

and this implies that as the sample size increases, the AICc will approach the AIC 

value and deviate more from the BIC value. 

 

2.6.5 Graphical methods for comparing models with different covariance 

structures 

 

Various methods of checking model fit or model assumptions are described in the 

literature. Outlying observations as well as outlying individuals can be identified 

using plots of the transformed residuals, as described in Section 2.6.3. A summary 
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measure of the multivariate distance between the observed and fitted responses can be 

calculated for each individual, based on the the Mahalanobis distance: 

** '
iii rrd =  

which should then have a chi-square distribution with degrees of freedom (df) equal to 

the dimension of *
ir (which is equal to the number of repeated measures on individual 

i) if the model is correctly specified. Individuals that have di’s with significant p-

values would be possible outlying individuals (Fitzmaurice et al., 2004).  

 

In order to check the adequacy of the variance assumption, the transformed residuals 

can be plotted against the transformed predicted values or against transformed time, 

and if the variance has been correctly specified, a random scatter around the zero line 

will be observed. The absolute values of the transformed residuals, |*ijr |, can be 

plotted against the transformed predicted values or against transformed time, and if 

the assumed variance structure is correct, then no systematic trend should be observed 

in the plot. To check for trend, a lowess (locally weighted scatterplot smoothing) 

curve can be fitted, centered at approximately 0.8, as the mean of the absolute values 

of the residuals should be 0.798, if the residuals follow the standard normal 

distribution (Fitzmaurice et al., 2004). 

 

The empirical semi-variogram (also called the sample semi-variogram) is defined as 

half the average squared difference between pairs of residuals on the same individual 

whose corresponding observations are h units apart. A plot of the empirical semi-

variogram provides an informal check on the overall adequacy of the model in terms 
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the covariance structure. For longitudinal data, the semi-variogram, )( ijkhγ , is given 

as: 

2)(
2

1
)( ikijijk rrEh −=γ  

where hijk is the elapsed time between the j th and kth repeated measurement on the i th 

individual. This can also be written as: 
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as the mean of the residuals is equal to zero. When the transformed residuals, *ijr , are 

used the semi-variogram simplifies to 
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(Fitzmaurice et al., 2004). 

Therefore a plot of the semi-variogram for the transformed residuals of a model with a 

correctly specified covariance matrix against the time elapsed between the 

corresponding observations should display a random scatter around the horizontal line 

centred at one. The empirical semi-variogram is very sensitive to outliers (Fitzmaurice 

et al., 2004). 

 

Grady and Helms (1995) describe graphical techniques to aid in examining model fit 

of the variance-covariance structure. They suggest plotting the covariances or 

correlations as a function of the time between measures. This will help in 

investigating the assumed covariance structure. 
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2.7 The Potthoff and Roy Data Set 

 

The data set used by Potthoff and Roy has become a classic data set in repeated 

measures models literature. Potthoff and Roy (1964) were the first to use the dental 

data set, which has become known as the Potthoff and Roy data set (PR data set), to 

investigate an approach to modelling longitudinal data. As explained in Section 2.2.1, 

their interest was in the implementation of an extension to the standard MANOVA 

model. Their approach involved appending a postmatrix, P, to the expectation 

equation of the standard MANOVA model, which is a within-individual design 

matrix. A positive definite matrix, G, whose form depends on the assumed structure 

of the covariance matrix of the responses, is required to transform the responses so 

that the usual MANOVA model can be used. Potthoff and Roy (1964) state that the 

choice of G is somewhat arbitrary, as the true structure of the covariance matrix is 

usually not known. In their study they found that the results were not sensitive to 

changes in the parameter values of G. 

 

Pinheiro, Liu and Wu (2001) proposed a modification of the linear mixed effects 

model that would be more robust against outliers. They used the PR data set to 

investigate a robust hierarchical linear mixed effects model in which the random 

effects and the within-individual errors were multivariate t-distributed, which allowed 

for different numbers of observations per individual. They showed that by using a 

gamma-normal hierarchical structure, the model they proposed allows the 

identification and classification of outliers. By means of a simulation study based on 

the PR data set, they were able to show that their model based on a multivariate t-
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distribution outperformed the standard Gaussian linear mixed effects model when 

outliers were present in the data.  

 

Jennrich and Schluchter (1986) used the PR data set to compare the random effects 

model to general linear models under different structures of ωi. Other literature which 

use the PR data set include the book by Davis (2002) who used this data to illustrate 

the repeated measures models discussed. As for Jennrich and Schluchter (1986), 

Davis (2002) compared linear models with CS, TOEP, UN, AR(1) and VC covariance 

specifications, as well as the Laird and Ware (1982) random intercept and slope 

model, and found that the CS and TOEP models fitted the data best. Verbeke & 

Molenberghs (2000) also use this data set to demonstrate various repeated measures 

models. They analysed this data under the same models as Davis (2002), in addition 

to the random effects model with ωi = VC and Σ = UN and the random intercept 

model with ωi = VC. They concluded that the random intercept model with ωi = VC 

(resulting in the same covariance matrix for the model as the linear model with CS 

error structure) best described the data. Pan and Fang (2002) use this data set to 

described different approaches to growth curve models. Therefore, as the PR data set 

is a landmark data set in the repeated measures literature, to allow for easy 

comparison to results obtained in previous studies, and as this data set is easily 

accessible, it presents itself as a logical choice for a data set on which to base the 

simulation study. 

 

 

 


