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ABSTRACT

According to the accident databese compiled by CSIR Division of Mining
4]

Technology {Miningtek), a significant percentage of fataliies have resuited from

fmesburst incidents throughoul Ihe South African gold mining industry. In order Lo
address this problem, an extenaive research programme has bean undartaken.

Two difarent premndmonlng technlques have bean developed; namely, face-
aralle! precondliioning. Bolh have

parpandicular preco
pravented face bursung in the areas to which Lhey have been applied, even

=111

thalugh several large solsmic events nave o¢tu

areas. |n addilion, minimal ovarall damage was ahsarved in the pracondilioned
panels following these evants, compared to similarly xposed unprecondliionad
ceanditloni =0 provided sarme proteclion from dislant avents 0

(he faco area, through the capacity of the pracondilioned ground Lo absork

Bhargy.

Allhough tha maln purpose of preconditioning was to prevenl facabursls, an
Improvament in hangingwall stabllity and a significant ncrease in lhe face
advance rata, consistent with improved fragmentation, have been noted in

ﬂgﬁdﬂiﬁeﬁr&a%mﬂ%Mm the average face advance rate

increased significantly comparad with unprecondlionad periods. Owing to this

increase in lace advance rate, t the mining coat per area mined decraased in

preconditioned panals. The affact of precanditioning on improving the drilling rate
of production holes was also significanl. The precandilioning sxpeariments also
Indicatad that it was possible to implarnent this melhod in 2 deep-level langwall
mining emvironment without signiiicant disruption (o the mining ¢ycle. Guidelines

Wﬂ—pfﬂﬁﬁﬂ{h—ﬂBﬂlﬁg—leﬁhﬁmuﬁs—hmM compiled.

in order to determing the aptimum blast paramaters lor achigving the mosl

affactive precanditioning, an extonsive oplimisalion study was carried out far the
face-perpendicular pracanditioning tachnigue. While optimurm values for
parametars sUch as hote length, dizmeter and spacing were determinad, it was
ultimately concluded 1hat the diffsrences in rasulls obtainad by varying 1he



preconditioning paramsters were less significant inan the Ciear p
differences sbserved when comparing preconditioned argas with non-

pracondilionad aresas.

In nedar to assura sucsessiul implernentation of the tachniques in the mining

training and safely depariments of Ine mine.
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mining has occurred at shallower depths over the last 100 years and today much
of the mining occurs at great depth. The mining of reefs at depths in excess of
2000 m induces extremely high stresses on the rockmass in the vicinity of any
excavation. In stopes, in particular, such high stresses induced by mining

displacement of pre-existing discontinuities either violently or non-violently. The
violent release of accumulated strain energy can be described as a seismic event

i rst, depending on the magnitude, the distance

between the source and the excavation and existing ground conditions around

cavation. If a seismic event results in a rockburst, it can cause extensive

Ve u — SN

fatalities.

Although a number of solutions have been suggested by various investigators in

_ the past and some of them have been successfully implemented, the rockburst

problem still poses a serious and ongoing hazard to the gold mining industry in
A

The vioient release
mining faces into the mine openings

is called a faceburst.

Data from a rock-related fatal accident database that was compiled by CSIR /
Miningtek shows that a total of 216 rock-related fatalities resulted from 134
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faceburst incidents throughout the South African gold mining industry during the

mad 100N _ 1007 lana T

~arian hi sy e
perioa 19vu - 1997 (See 1abie 1.2.1). This i

o y
percent of the total of 793 rockburst fatalities recorded during this period. The

\/

£ L. 1 £ 4

rockburst fataiities are 44 percem of a totai of 1808 rock-reiated fatalities over the

same period. The author believes that facebursts comprise a much greater

percentage of total rockbursts than this data would lead us to believe because

Carbon Leader (CL) and Composite reefs in which more than two-thirds of all

faceburst fatalities occurred.

1.2 Rockburst control research programme

Since 1987, an extensive research project has been carried out by a group of

researchers within the Chamber of Mines Research Organisation (COMRO)
which, in 1993, became the Division of Mining Technology (known as Miningtek)
of the Council for Scientific and Industrial Research (CSIR). The philosophy
adopted by researchers working on this project accepts that rockbursts can

Py P P ‘lb PN PN P SO
iowiedge techinoiogy, but

neither be predicted nor prevented with current Kn
may be controlled. Thus, the main objective of the research programme was to

develop rockburst control methods io enabie mines io operate in areas which are

at most risk from seismicity and the resulting rockbursts. In other words, the
intention was to control the time and size of seismic events that could result in
rockbursts, as well as to minimise the potential damage resulting from such

events.

Preconditioning, also called “destress blasting”, is a rockburst control technique
that involves setting off designed blasting ahead of the stope face. In this way,
preconditioning is intended to transfer the stresses further away from the stope

face through remobilising the existing fractures in the rockmass.

N
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Table 1.2.1 Statietics of rock-related accidents and rasulting
fatalitias in South African gold mimgs from 1830 to 1857 (both incl.)

Accident Type | Rest Type Incidence Falality
Mumber | par 10° m° [ Number [ par 10° m
Basal 193 7.26 214 8.05
Carbon Leader | 150 20,24 245 31.19
Composite 145 8.0 20 10.78
[ Main 56 10.30 66 12.14
Rock-related | Vagl Reef 192 BB3 225 1011
e DT T 374 10.52
Other reefs* 152 3 B8 328 | 837
[ Off-raef* 180 p 236 n
Tatal i vy 1224 g70 | 1808 1204
Basel 25 0.04 48 1.81
Carbon Leader 109 | 1388 202 2572 |
Composita 12 B.47 17 89,17
tain 16 2,84 T 349
Rockburst | Vaal Reel | 45 2.02 85 382 |
VCR 167 | B.24 242 1270
Olher reefs’ 42 | 107 &4 163
Off-reaf* 56 - 116 -
T Vg 462 3.2 793 5.54
Bagzal 4 0.15 10 Q.38
Carbon Leader Z7 3.44 52 .62
“Composite 7 | a7f ] 593 —
Main T 4 074 4 074 |
Faceburst aal Reel 13 DE8 T D21
VCR 1 =3 278 82 4.30
Oiher recfs T2 Q31 21 {54
- Of-reef 14 - T -
Tolal FAvg™ | 134 .58 216 162 |

" Diihar reafs category also containg unspacified reels.
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Preconditloning techniques have bee

-
=

around the worid since tha 15505 an
very effective in controlling and ninimising the efflects of rockbursts. The main
:daa bahind these lechriguss is to detonale a praconditioning blast ahead of &

mining Faca 1o re-distribute the: stress paak further inla 1ha solid region ahead of
the stope face by eliminating Ihe slrain energy “lock-ups” in the asperities of pre-

%Gl =i llg.

In arder Lo quantify the success of precondltioning in highly strassed rock, 8
beller knowledge of the effects of a blasl in conflned rock is required. AR
understanding of the ganesis and saquence of blast-induced fracturing and the
effect of blasting on pre-existing fracturing is cruckal for the design of offective
pracanditioning methods, and for the assassment of the suceess of

precanditiaring blasts:

| Armioieme
GECISHDR O th h S

The dasign ol precondilioning biasts IMYGIVES Mmaking

mass, typs, hele spacing and diamsler, and the posilion of the ¢harga in Lh
rockimass, as well as the initiation of the charged holes. The quantification of 1ha
actual effecls of precondilioning on rockmass requlres a knowledge of the affect
of explosives on rock. Dynamic computer cotes can provide insights inla the

but very faw physical

sffoct of explosives on reck under con ifined con
measuraments have baen made of the affects of axplosives under such

condilicns.

4.3 Objectives of this study

The ultimate objecilve of this work wa3s to develop and impigmant preconditioning
jachniques to control facabursts for Iha achlgvernent of safer minlng in

seismically hazardous argas. In order 1o achieve this main objective, the lollowing

goals wore also set

« an investigation of the aciual efect of tha explosives in the conflned and

highly stressed rock;

« anunderstanding of the faceburet and preconditioning mechanlsims;
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s proving the concept by actual precendilioning expesimants at differeni

+ a quanlficalion of the effects of the pracondilioning blast on Ihe local

rockmass:

v verfication of the effects of precondifloning blasts by numerical
simulatlons;

e, hole spacing and diametsr, position of the charge In the ook and the
initiation sequence of the charges;

» the trangfer of lhe knowledge and experlenca gained of preconditioning o
the mining industry for impannentation;

= the development of guidalines for the implameanlation of precandilioning

technigues and determining the requirgrnants for the successiul

[mplemantaticn of preconditioning i the irkgustry.

1.4 Outfine of the contant of the thesis

This theais consisls of 8 chapters. Follewing this Inlraductory chapter, 2 summary
of an extensive literalure review is given in Chapter 2.

The aulhor's initial involvemenlt n the Rockburst Control Research Programme

affects of controlled test blasts were |nvestigated. The findings from these

aatar T hlAiuaog ar thic vacoarch weds hard 10 ko ghaee
T i B LA L Whin figld Wy OF SIUUE

Sothvilies ahe LIVED inG

after one year, as na funding was made avallabla for continuing the vesearch

aclivitles al this site.

The malority of ImnMsdga and experlence gained on pracondilioning was from

2
5
.
2
2
5

Biyvagruitzictt and Mporeng GO0 Mines. The resulls ohtain

monitoring of actual precondiioning blasls in these sitas are gl

and 5. Whils the author had vary limited involvement In the invesligations an the

tace-parafiel preconditioning discussed in Chapler 4, he headed the research
activitisg involving face-perpandicular precanditioning at Mponeng Gold Mins.
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