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Abstract

We study the nonlinear models arising in heat transfer in extended surfaces

(fins) and in solid slab (hot body). Here thermal conductivity, internal gen-

eration and heat transfer coefficient are temperature dependent. As such the

models are rendered nonlinear. We employ Lie point symmetry techniques to

analyze these models. Firstly we employ Lie point symmetry methods and

determine the exact solutions for heat transfer in fins of spherical geometry.

These solutions are compared with the solutions of heat transfer in fins of rect-

angular and radial geometries. Secondly, we consider models describing heat

transfer in a hot body, for example, a plane wall. We then employ the pre-

liminary group classification methods to determine the cases of the arbitrary

function for which the principal Lie algebra is extended by one. Furthermore

we analyze the exact solutions.
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Chapter 1

Introduction

1.1 Literature review

Heat transfer is a discipline of thermal engineering that is concerned with the

use, conversion and exchange of thermal energy and heat between physical

systems. It occurs when a hot object is placed in cold surroundings. The

object loses the internal energy, while the surroundings gain internal energy.

This change in internal energy is accompanied by a change in temperature or

a change in phase. According to the first law of thermodynamics, heat trans-

fer changes the internal energy of the systems involved. The three important

modes of heat transfer include heat conduction, thermal radiation and heat

convection. The modes often occur simultaneously though they have different

characteristics. The discipline of heat transfer seeks to do what thermody-

namics is inherently unable to do, namely, to quantify the rate at which heat

transfer occurs in terms of the degree of thermal non-equilibrium. This is done

through the rate equations for the three modes.

Whenever there exists a temperature difference in a medium or between medi-

a, heat transfer must occur. When temperature gradient exists in stationary

1
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medium, which may be solid or a fluid, we use the term conduction to refer to

heat transfer that will occur across the medium. In fluids, conduction is due

to the collusion of the molecules during their random motion. In contrast, in

solids, conduction is due to the vibrations of molecules in a lattice and energy

transport by free electrons. It is observed that the rate of heat conduction

through a wall with constant thickness is proportional to the temperature d-

ifference between the surfaces and the normal to the heat flow direction and

is inversely proportional to the thickness of the wall. It is possible to quantify

heat transfer processes in terms of appropriate rate equations and for heat

conduction, the rate equation is known as Fourier’s law.

The second mode of heat transfer, convection, comprises of two mechanism-

s: energy transfer due to random molecular motion (diffusion) and energy

transferred by the bulk, or macroscopic, motion of fluid. Convection may be

classified according to the nature of the flow. We speak of forced convection

and free (or natural) convection. Forced convection occurs if the fluid is forced

to flow over the surface by external means such as a fan, pump or the wind.

Convection is called natural or free convection if the fluid is set in motion by

temperature differences between the wall surface and the surrounding fluid.

Radiation which is the last mode of heat transfer is the energy emitted by

matter in the form of electromagnetic waves as a result of the changes in the

electron configurations of the atoms or molecules. Unlike conduction and con-

vection, the transfer of energy by radiation does not require the presence of an

intervening medium.



1.1. LITERATURE REVIEW 3

Rational and motivation

In this study, we focus on heat transfer through fins of various geometries and

heat conduction with the internal heat generations. Firstly, we investigate the

heat transfer through fins by employing the symmetry techniques to analyze

the problem in order to determine the cases of thermal conductivity and heat

transfer coefficient terms. Using symmetry analysis and reduction, exact so-

lutions will be constructed. Secondly, we determine the effect of internal heat

generation on temperature distribution. We consider a plane wall with unifor-

m heat generation with asymmetrical boundary conditions.

A fin is a surface that extends from a hot object to increase the rate of

heat transfer to the surrounding fluid. They are commonly applied for heat

management in electrical appliances such as computer power supplies and sub-

station transformers. Fins are much longer than they are thick, which makes

it accurate to assume that the temperature varies only in the lengthwise di-

rection. That is, at any point x along the length of the fin the temperature is

essentially uniform across the cross section of the fin, which results in a one-

dimensional heat transfer problem. They are also used in situations in which

cooling is attained via free (or natural) convection for which the heat transfer

coefficients h are small, in heat exchanging devices such as radiators in cars

and heat exchangers in power plants. The first mathematical treatment of fins

started years ago with the appearance of pioneer work by Harper and Brown

[1]. They investigated the heat transfer in air-cooled engines equipped with

rectangular or ”wedge-like” fins. Many problems describing heat transfer in

fins have been well documented [2,3] and attention has been paid to model-

s describing longitudinal trapezoid fins [3], rotating radial fins of rectangular

profiles and other profiles [4], radial fins of rectangular profile [4], radial rectan-
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gular fins [5] and longitudinal fins of rectangular profile [6]. Many fin problem

models assume a constant thermal conductivity and heat transfer coefficient.

In fact it is stated in [4] that exact solutions exist only when these parameters

are constant. In [6], the authors have shown that solutions may be obtained

even when the heat transfer coefficient and thermal conductivity are depen-

dent on temperature.

We also consider a situation in which the thermal behavior of a body is

affected by heat generated or absorbed internally. Some examples include

heating associated with a flow of electrical current and electrical resistance,

exothermic chemical reactions, absorption of radiation in microwave ovens and

emission of radiation flame. A common thermal energy generation process in-

volves the conversion from electrical to thermal energy in a current-carrying

medium (Ohmic or resistance heating). The implications of energy generation

involves a volumetric source of thermal energy due to conversion from anoth-

er form of energy in a conducting medium. The source may be uniformly

distributed or it may be non-uniformly distributed, as in the absorption of ra-

diation passing through a semi-transparent medium. Internal heat generation

affects the temperature distribution in the medium and causes the heat rate to

vary with location, thereby preventing inclusion of the medium in the thermal

circuit. In this research conduction with internal heat generation will be con-

sidered for different geometries, including the rectangular, the solid cylinder

and the sphere.

In most heat conduction problems for heat transfer in fins, it is assumed that

(a) heat transfer is at steady state as such one dimensional ordinary differen-

tial equations are solved (b) no heat generation and thermal properties such

as heat transfer coefficient and thermal conductivity are given by constants.
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It is assumed these thermal properties depend on temperature.

1.2 Steady heat transfer models

We consider the one dimensional energy balance model

1

rα
d

dr

[
rαk(θ)

dθ

dr

]
± βG(θ) = 0. (1.1)

Here θ is the dimensionless temperature, r is the dimensionless space variable, k

is the dimensionless thermal conductivity, G is the dimensionless heat transfer

coefficient, α describes the geometry of the body and β is a constant. The fin

is represented by −β with β > 0 and hot body by +β, ∀ β > 0. We shall

discuss the relevant boundary conditions for each of these phenomena in the

following chapters.

1.3 Aims and objectives of the dissertation

The main objective of this dissertation is to contribute to the fundamental

understanding of heat transfer through extended surfaces and other hot bod-

ies such as plane wall. We employ the Lie point symmetry techniques and

preliminary group classification methods in our study.

1.4 Outline of the dissertation

The outline of this dissertation is as follows

• In chapter 2, the definitions and basic operations of the proposed meth-

ods of solutions are presented. The application of symmetry techniques

will be discussed.
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• In chapter 3, we focus on heat transfer through different fin models

• In chapter 4, we discuss and employ preliminary group classification to

understand the heat transfer through a hot body.

1.5 Concluding remarks

In this chapter, we have provided the model representing heat transfer pro-

cesses. Depending on the sign of the term involving G(θ), this model may

represent either heat transfer in a fin or in a hot body. A detailed introduction

to the heat transfer theory is also provided.



Chapter 2

Lie point symmetries of

differential equations

2.1 A brief historical background

In this chapter we give a brief introduction to the Lie group theory and it-

s applications. This will include the algorithm to determine the Lie point

symmetries of ordinary differential equations. Symmetry methods for solving

differential equations, unify many ad hoc methods (such as the substitution

y = vx for solving first-order homogenous equations) for constructing explicit

exact solutions for differential equations and provide powerful new ways to

find solutions. It reduces the systems of differential by equations finding e-

quivalent systems of differential equations of simpler forms. Towards the end

of the nineteenth century Sophus Lie [31] introduced the notion of the Lie

group in order to study solutions of ordinary differential equations. He in-

vented the theory of Lie groups while studying the symmetries of differential

equations. This theory has applications in many areas of mathematics such

as algebraic topology, differential geometry, invariant theory, bifurcation the-

7
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ory, special functions, numerical analysis, control theory, classical mechanics,

quantum mechanics, relativity, etc. The applications of Lie groups to differen-

tial systems were mainly established by Lie and Emmy Noether [32], and then

advocated by Elie Cartan [34].

A symmetry group of a system of differential equations is a group which trans-

forms solutions of the system to other solutions. Lie’s fundamental discovery

was that the complicated nonlinear conditions of invariance of the system under

the group transformations could, in the case of a continuous group, be replaced

by linear conditions reflecting a form of infinitesimal invariance of the system

under the generator of the group. One can safely say that Lie group analysis is

the only universal and effective method for solving nonlinear equations analyt-

ically. The applications of Lie group theory to differential equations remained

dormant until Ovsiannikov [33]revived it in the late 1950s. Thereafter, the

Lie group theory has been applied in many problems (described by linear or

nonlinear equations) modeling some physical or abstract phenomena.

2.2 Calculation of Lie point symmetries

In this section we provide a brief theory of Lie point symmetry techniques.

Here we restrict discussion to Lie point symmetries admitted by ordinary dif-

ferential equations (ODEs). In short, a symmetry of a differential equation is

an invertible transformation of the dependent and independent variables that

does not change the form of the original differential equation. Detailed theory

and applications of Lie symmetry groups may be found in the texts such as

those of [17, 18, 19, 20,21].
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2.2.1 One-parameter group of transformations

A symmetry group of a single or system of equations is a group of trans-

formation which maps any solution to another solutions of the equation or

system of equations. We define and illustrate the notion of transformation

groups depending on a real parameter, where every one-parameter group of

this type is completely determined by the infinitesimal transformation or the

corresponding tangent vector. In this section we introduce the definition of a

group and a one− parameter group of transformations. We are interested

in applying the one-parameter group of transformations to ODEs, with the

aim of constructing invariant solutions.

Definition 2.1. A group G is a set of elements with a law of composition ϕ

between elements satisfying the following:

(i) Closure property. For any elements a and b of G, ϕ(a, b) is an element

of G.

(ii) Associative property. If a, b, c ∈ G and also ϕ(a, b) and ϕ(b, c) are in G,

then

ϕ(a, ϕ(b, c)) = ϕ(ϕ(a, b), c) .

(iii) Identity element. For all a in G, ϕ(e, a) = a = ϕ(a, e).

(iv) Inverse element. For each a in G, ϕ(a, a−1) = e= ϕ(a−1, a).

Remark. A group is Abelian if ϕ(a, b) = ϕ(b, a) holds for all elements a and b

in G.

Example 2.1. Some examples of groups

(i) A set of all integers with ϕ(a, b) = a+ b. Here e= 0 and a−1 = −a.
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(ii) A set of all positive reals with ϕ(a, b) = a · b. Here e=1 and a−1 = 1
a
.

Definition 2.2. A set G of transformations

Ta : r̄i = f i(r, θ, a), θ̄α = g(r, θ, a), i = 1, ..., n;α = 1, ...,m, (2.1)

with a being a real parameter which continuously ranges in values from a

neighborhood D′ ⊂ D ⊂ R of a = 0 and f i, gα are differentiable functions,

is a continuous one− parameter (local) Lie group of transformations in

Rn+m and θ provided the following properties are satisfied, namely:

(i) For Ta, Tb in G where a, b in D′ ⊂ D then Tb Ta = Tc ∈ G, c = ϕ(a, b) in

D (Closure)

(ii) T0 ∈ G if and only if a = 0 such that T0 Ta = Ta T0 = Ta (Identity)

(iii) For Ta ∈ G, a ∈ D′ ⊂ D, T−1
a = Ta−1 ∈ G, a−1 ∈ D such that

Ta Ta−1 = Ta−1 Ta = T0 (Inverse)

(iv) ϵ is a continuous parameter, that is, a ∈ D′, where D is an interval in R.

(v) ϕ(a, b) is an analytical function of a and b.

The group property (i) can be written as

¯̄r ≡ f(r̄, θ̄, b) = f(r, θ, ϕ(a, b)), ¯̄θ ≡ g(r̄, θ̄, b) = g(r, θ, ϕ(a, b)). (2.2)

Example 2.2. The transformation

Ta : r̄ = (1 + a)r, θ̄ = (1 + a)θ, a ∈ R+,

forms a one-parameter group.

The composition of the above transformations is

¯̄r = (1 + b)r̄ = (1 + b)(1 + a)r = (1 + a+ b+ ab)r.
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Similarly

¯̄θ = (1 + a+ b+ ab)θ.

Therefore

¯̄r = (1 + c)r, ¯̄θ = (1 + c)θ

where c = a+ b+ ab.

Definition 2.3. A group parameter a is canonical if the group composition

law is additive, that is, ϕ(a, b) = a+ b.

Theorem 2.1 For any ϕ(a, b), there exists the canonical parameter ã de-

fined by

ã =

∫ a

0

ds

w(s)
, where w(s) =

∂ϕ(s, b)

∂b

∣∣∣∣
b=0

. (2.3)

We now give the definition of a symmetry group for ODE by considering the

second order ordinary differential equation given by

θ′′ = F (r, θ, θ′). (2.4)

The transformation of the form (2.1) form a symmetry group of equation

F (r, θ, θ′, ...θ(n)) = 0 if the equation is form invariant (has the same form),

that is F (r̄, θ̄, θ̄′, ...θ̄(n)) = 0

2.2.2 Extended infinitesimal transformations (Prolon-

gations)

According to Lie’s theory, the construction of the symmetry group G is equiv-

alent to the determination of the corresponding infinitesimal transformations

r̄ ≈ r + aξ(r, θ), θ̄ ≈ θ + aη(r, θ) (2.5)
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obtained from (2.1) by expanding the functions f and g in a Taylor series

about a = 0 and also taking into account the initial conditions

f |a=0= r, g |a=0= θ.

Thus, we have

ξ(r, θ) =
∂f

∂a
|a=0, η(r, θ) =

∂g

∂a
|a=0 . (2.6)

The vector (ξ, η) with components (2.6) is the tangent vector at the point

(r, θ) to the curve described by the transformed point (r̄, θ̄) and is termed

tangent vector field of the group G.

One dependent and one independent variable

In this study of invariance properties of the kth order ODE with the inde-

pendent variable r and dependent variable θ that is θ = θ(r), one seeks the

admitted one-parameter Lie group of transformation of the form

r̄ = r + ϵξ(r, θ) +O(ϵ2),

θ̄ = θ + ϵη(r, θ) +O(ϵ2),

θ̄1 = θ1 + ϵζ(r, θ, θ1) +O(ϵ2),

which corresponds to the (kth extended) infinitesimal generator

Xk = ξ(r, θ)
∂

∂r
+ η(r, θ)

∂

∂θ
+ ζ1(r, θ, θ1)

∂

∂θ1
+ ...+ ζk(r, θ, θ1, ..., θk)

∂

∂θk
,

k= 1, 2, 3...

Note that

θ1=θ
′, θ2 = θ′′, θ3 = θ′′′ etc, where prime indicates derivative with respect to

r.
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Definition 2.4. The total derivative is defined by

Dr =
∂

∂r
+ θ1

∂

∂θ
+ θ2

∂

∂θ1
+ ...+ θn+1

∂

∂θn
+ ...

Explicit formulas for the extended infinitesimals ζk result from theorem 2.8.

Theorem 2.2

ζk(r, θ, θ1, ..., θk) = Dr(ζk − 1)− θkDr(ξ(r, θ)), k = 1, 2, ...

where

ζ0 = η(r, θ)

Consider now a second-order ODE

E(r, θ, θ′, θ′′) = 0 (2.7)

where r is an independent variable and θ is the dependent variable. Let

X = ξ(r, θ)
∂

∂r
+ η(r, θ)

∂

∂θ
, (2.8)

be the infinitesimal generator of the one-parameter group G of transformations

(2.1). The second prolongation of the group G is denoted by G[2] and the

symbol of G[2] is given by

X [2] = X + ζ1(r, θ, θ
′)
∂

∂θ′
+ ζ2(r, θ, θ

′, θ′′)
∂

∂θ′′
, (2.9)

where

ζr = Dr(η)− θ′Dr(ξ) = ηr + (ηθ − ξr)θ
′ − ξθθ

′2,

ζrr = Dr(ζ1)− θ′′Dr(ξ) = ηrr + (2ηrθ − ξrr)θ
′ + (ηθθ − 2ξrθ)θ

′2 − ξθθθ
′3

+(ηθ − 2ξr − 3ξθθ
′)θ′′.

Example 2.3 As an example, we consider a nonlinear ODE

1

r3
d

dr

[
r3θm

dθ

dr

]
−M2 = 0. (2.10)
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The invariance criterion for symmetry determination is given by

X [2](θ′′ +
3

r
θ′ +mθ−1(θ′)2 −M2θ−m) |θ′′=− 3

r
θ′−mθ−1(θ′)2+M2θ−m= 0, (2.11)

where

X [2] = ξ(r, θ)
∂

∂r
+ η(r, θ)

∂

∂θ
+ ζ(r, θ, θ′)

∂

∂θ′
+ ζ(r, θ, θ′, θ′′)

∂

∂θ′′
(2.12)

is the second prolongation of the symmetry generator (2.8). The resulting

determining equations are given by

mξθ − θξθθ = 0, (2.13)

−mrη + θ(mrηθ + θ(6ξθ + rηθθ − 2rξrθ)) = 0, (2.14)

mM2rη + θ(M2rηθ + 3θmηr − 2M2rξr + rθmηrr) = 0, (2.15)

−3θ1+mξ − r(3M2rθξθ + θm(−2mrηr − 3θξr − 2rθηrθ + rθξrr)) = 0. (2.16)

Solving Eqs. (2.13) - (2.16) yield the following Lie point symmetries

X1 =
θ−m

r2
∂

∂θ
,

X2 =
4

M2r

∂

∂r
+ θ−m ∂

∂θ
,

X3 = (1 +m)(r3 + r)
∂

∂r
+ 2θ(r2 − 1)

∂

∂θ
,

X4 = (1 +m)(r3 − r)
∂

∂r
+ 2θ(r2 + 1)

∂

∂θ
,

X5 = 8(1 +m)r
∂

∂r
+ (−8θ + 3(1 +m)M2r2θ−m)

∂

∂θ
,

X6 = 4(1 +m)r
∂

∂r
+ (−8θ + 3(1 +m)M2r2θ−m)

∂

∂θ
,

X7 = (−4(1 +m)M2r2 + 32θ1+m)
∂

∂r
+ (−(1 +m)M4r3θ−3 +M2r4θ)

∂

∂θ
,

X8 = ((1 +m)2M2r3 + 8(1 +m)rθ1+m)
∂

∂r
+ (6(1 +m)M2r2θ − 16θ2+m)

∂

∂θ
.

Clearly equation (2.10) admits eight dimensional Lie algebra. Note that if an

equation admits maximal eight symmetries it is equivalent to y′′ = 0 and is

linearizable [22].
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2.3 Concluding remarks

In this chapter, we have outlined the Lie symmetry techniques. In particular,

a discussion on the calculations of Lie point symmetries is provided. A connec-

tion between the one-parameter group of transformations and Lie algebras is

highlighted. An example on calculations of Lie point symmetries is also given.



Chapter 3

Comparison of exact solutions

for heat transfer in fins of

different geometries

K.J. Moleofane and R.J. Moitsheki, Comparison of exact solutions for heat

transfer in extended surfaces of different geometries, Abstract and Applied

Analysis, Volume 2014, Article ID 417098, 2014, 7 pages.

3.1 Introduction

Heat transfer rate from a hot body to the surrounding may be increased by

surfaces which extend into that surrounding. These extended surfaces are

referred to as fins. Extended surfaces are found in many engineering appliances.

Thus, mathematical modeling of the heat transfer through this surfaces and

the solution of these models are of continued interest. The heat transfer in fins

is governed by boundary value problems (BVPs) which are rendered highly

nonlinear by the dependency of thermal properties on temperature. In this

16
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study, both the heat transfer coefficient and thermal conductivity are given as

a power law function of temperature.

The interest in solutions of fin problems continues unabated. Many sym-

metry analysts [26, 27, 28, 29, 30] analyzed the fin equation when heat transfer

coefficient is given as function of space variable. Such a function was classi-

fied by direct methods (see e.g. [26]) and the extended analysis was done in

[28]. Only general solution were provided in this case. It was well accepted

that exact solutions of steady fin problems exist only when thermal conduc-

tivity and heat transfer are given as constants [6]. However Moitsheki et al.

[11] have shown that solutions may exist even when those thermal properties

are temperature dependent. In recent years Moitsheki et al. [11, 12, 13, 14]

constructed exact solutions for the convective heat transfer in fins of different

profiles. Furthermore, Ndlovu and Moitsheki [15] provided the approximate

analytical solutions to steady state heat transfer in fins of different profiles

which could not be solved exactly. In their studies an excellent comparison

between exact and approximate solutions were established. One may also refer

to the work by Moradi [16].

In this study, we consider heat conduction problem in fins of different ge-

ometries and in particular the spherical fin which has never been studied be-

fore. We compare the exact solutions of heat transfer in rectangular, radial

and spherical fins. We further compare the fin efficiencies and effectiveness of

these fins, and determine the effects of thermal parameters in a spherical fin.

This chapter is arranged as follows; in section 2, we present the description of

the models considered. In section 3 we briefly discuss the Lie point symmetry

methods. Following linearization, the exact solutions are provided in section

4. In section 5, we analyze the problem when linearization fails. Conclusions

are provided in section 6.



3.2. MATHEMATICAL DESCRIPTION OF A FIN PROBLEM 18

3.2 Mathematical description of a fin problem

We consider a fin of an arbitrary geometry with the length (or radius) R and

a cross-sectional area Ac. The perimeter of the fin is given by P. The fin is

attached to a fixed prime surface of temperature Tb and extends to an ambient

fluid of temperature Ta, as shown in Figures (3.1), (3.2), (3.3). The energy

balance equation is given by

Ac

Rα

d

dR

[
RαK(T )

dT

dR

]
= PH(T )(T − Ta) (3.1)

and the relevant boundary conditions are

T (R0) = Tb,
dT

dR

∣∣∣∣
R=R1

= 0 (3.2)

where T is temperature, K(T ) is the thermal conductivity and H(T ) is the

heat transfer coefficient and α is a constant representing different geometries

for different values.

The first boundary conditions in (3.2) represents a constant temperature at

the base of the fin and the second boundary condition implies that the fin is

insulated at the tip.

Introducing the nondimensional variables and numbers,

θ =
T − Ta
Tb − Ta

, r =
R−R1

R0 −R1

, H = hb

(
T − Ta
Tb − Ta

)n

, K = ka

(
T − Ta
Tb − Ta

)m

,

M2 =
PhbL

2

kaAc

,

then Eq. (3.1) and the boundary conditions (3.2) become

1

rα
d

dr

[
rαθm

dθ

dr

]
−M2θn+1 = 0 0 ≤ r ≤ 1 (3.3)

θ(1) = 1, θ′(0) = 0. (3.4)
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Figure 3.1: Graphical representation of a spherical fin.
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Figure 3.2: Graphical representation of a radial fin.
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Figure 3.3: Graphical representation of a rectangular fin.
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Here θ is the dimensionless temperature, r is the dimensionless space variable,

and M is the thermogeometric fin parameter.

Two main cases may be analyzed, namely m = n and m ̸= n. One may

construct exact solution when m = n since the problem is linearizable. When

m ̸= n, symmetry method is employed.

3.3 Linearization and exact solutions

It has been proven in [13] that equations such as Eq.(3.3) is linearizable provid-

ed m = n. Thus assuming m = n and letting y = θn+1, Eq.(3.3) is transformed

to linear, variable coefficient second order ordinary differential equation given

by

d2y

dr2
+
α

r

dy

dr
− (n+ 1)M2y = 0. (3.5)

Subject to y(1) = 1 and dy
dr
(0) = 0.

Several subcases arise namely α = 0, 1, 2 and arbitrary, given n < 1 and n > 1.

Subcase (i) α = 0, n < −1 and n > −1.

This case has been solved in [11]. In this case the solutions are given by

θ =

{
cosh

(√
n+ 1Mr

)
cosh

(√
n+ 1M

) } 1
n+1

− 1 < n <∞ (3.6)

and

θ =

{
sinh

(√
n+ 1Mr

)
sinh

(√
n+ 1M

) } 1
n+1

− 1 < n < 0. (3.7)

The solution for n < −1 are given in terms of sine and cosine functions.

Subcase (ii) α = 1, n < −1 and n > −1.

This case has been solved in [12]. In this case the exact solutions are given
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θ =

{
I0
(√

n+ 1Mr
)

I0
(√

n+ 1M
) } 1

n+1

− 1 < n <∞. (3.8)

where I0 is a modified Bessel function of the first kind of order zero [35].

The solutions for n < −1 are given in terms of Bessel functions.

Subcase (iii) α = 2, n < −1 and n > −1.

In this case we obtain the exact solutions

θ =

{
1

r

[
sinh

(
M

√
n+ 1 r

)
sinh

(
M

√
n+ 1

) ]} 1
n+1

n > −1, (3.9)

and

θ =

{
1

r

[
sin

(
M

√
n+ 1 r

)
sin

(
M

√
n+ 1

) ]} 1
n+1

n < −1, (3.10)

The solutions (3.6), (3.8) and (3.9) are depicted in Fig. 3.4. In Fig. 3.5,

the dimensionless temperature, θ(r), given by Eq.(3.9) is plotted along the

dimensionless spatial direction for varying values of M and for n = 2, while in

Fig. 3.6, θ(r), given by (3.9) is plotted against r for varying values of n and

for M = 2.

Subcase (iv) α = arbitrary, n < −1 and n > −1.

Given an arbitrary α, we obtain the general solutions

θ =
{
r

1
2
−α

2

[
c1Jα

2
− 1

2

(
M

√
n+ 1 r

)
+ c2Yα

2
− 1

2

(
M

√
n+ 1 r

)]} 1
n+1

n < −1,

(3.11)

and
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Figure 3.4: Fin temperature θ(r) given by (3.6), (3.8) and (3.9) plotted against

r for M = 2 and n = 0.

θ =
{
r

1
2
−α

2

[
c1Jα

2
− 1

2

(
iM

√
n+ 1 r

)
+ c2Yα

2
− 1

2

(
iM

√
n+ 1 r

)]} 1
n+1

n > −1,

(3.12)

Note that one may obtain exact solutions which satisfy the boundary con-

ditions only when α = 1 but this will coincide with (3.8).

One may also construct exact solution when m ̸= n = −1. In this case the

solutions satisfying the boundary condition is given by

θ = (m+ 1)

[
M2r2

2(α + 1)
+

1

m+ 1
− M2

2(α + 1)

]
. (3.13)

The solution (3.13) is depicted in Fig. 3.7.
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Figure 3.5: Fin temperature θ(r) given by (3.9) plotted against r for varying

values of M and n = 2.

Figure 3.6: Fin temperature θ(r) given by (3.9) plotted against r for varying

values of n and M = 2.
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Figure 3.7: Fin temperature θ(r) given by (3.13) plotted against r for M = 2

and n = 4.

Table 3.1: Comparison of the temperature profiles in fins with rectangular,

radial and spherical profiles. Here M = 4 and n = 1

r α = 0 (rectangular) α = 1 (radial) α = 2 (spherical)

0 0.125136 0.185069 0.238556

0.1 0.134790 0.192403 0.244902

0.2 0.160849 0.213754 0.363795

0.3 0.199607 0.248095 0.295078

0.4 0.250490 0.295331 0.339080

0.5 0.315255 0.356686 0.396937

0.6 0.397056 0.434579 0.470685

0.7 0.500174 0.532528 0.563297

0.8 0.630101 0.655185 0.678749

0.9 0.793788 0.808503 0.822159

1 1 1 1
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3.4 Symmetry reductions

In this section we consider the case m ̸= n, with α = 2 and α being arbitrary.

In this case Eq. (3.3) is not linearizable and as such we employ the Lie point

symmetry analysis.

3.4.1 Case ∀ α ̸= 0.

In this case Eq. (3.3) admits one dimensional Lie algebra spanned by the base

vector

X =
m

2(m+ 1)

(
−2θ

∂

∂θ
+ (n−m)r

∂

∂r

)
.

Note that an obvious extra symmetry when α = 0 is a translation in r. We

employ the method of differential invariants to reduce the order of Eq. (3.3)

by one. The first prolongation of the generator X is given by

X [1] =
m

2(m+ 1)

(
−2θ

∂

∂θ
+ (n−m)r

∂

∂r

)
−
[
2m+m(n−m)

2(m+ 1)

]
θ′
∂

∂θ′

and the corresponding characteristic equation is given by

dr

m(n−m)r
= − dθ

2mθ
= − dθ′

[2m+m(n−m)]θ′
. (3.14)

Solving the above characteristics gives the invariants

I1 = θr
2

n−m , I2 = θ′r
2+n−m
n−m . (3.15)

Now we let I1 = t, I2 = u and writing u = u(t). From the definition of t, and

by using chain rule

Dr(u) = Dr(t)Dt(u) (3.16)

we obtain

2 + n−m

n−m
θ′ + rθ′′ =

[
2θ

(n−m)r
+ θ′

]
u′. (3.17)
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Substituting u = u(t) into equation (3.3) we have

u′
(

2t2

n−m
+ tu

)
+ αtu+mu2 −M2tn−m+2 = 0. (3.18)

We notice that the above equation may not be solved exactly.

Subcase α =
3m+ n+ 4

m+ n+ 2
.

This choice of α is not physical since there is no relationship between the

geometry of the fin and the exponents of the thermal conductivity and heat

transfer coefficient. However, this case is mathematically interesting since

Eq. (3.3) admits two Lie point symmetries which implies [22] that the ODE

in question is integrable or reducible to the one with cubic degree in first

derivative. The admitted Lie algebra is spanned by the base vectors

X1 =
1

m− n

(
2θ

∂

∂θ
+ (m− n)r

∂

∂r

)
,

X2 = exp

(
n+ 1

m+ n+ 2

)
r2

[
2(m+ n+ 2)θ

∂

∂θ
+ (n+ 2)(2m+ n+ 2)r

∂

∂r

]
.

We omit further analysis since the initial assumption is not physically realistic.
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Subcase α = 2 n = −1.

In this subcase Eq. (3.3) is integrable and admits an eight dimensional Lie

algebra spanned by the base vectors

X1 = −r
2θ−m

3
(M2r

∂

∂θ
+ 3θm

∂

∂r
),

X2 = −2rθ−m

3
(M2r

∂

∂θ
+ 3θm

∂

∂r
),

X3 =
m

2(m+ 1)

{[
(m+ 1)M2r2 − 2θm+1

]
∂

∂θ
+ 2(m+ 1)rθm

∂

∂r

}
,

X4 =
r2θ−m

18(m+ 1)

{(
mM4r +M2r3 − 6M2rθm+1

)
∂

∂θ
+

[
3M2(m+ 1)θm − 18θ2m+1

]
∂

∂r

}
,

X5 =
θ−m

12(m+ 1)2

{
[12θ2(m+1) − 8(m+ 1)M2r2θm+1 +M4(m+ 1)2r4]

}
∂

∂θ
+

[2(m+ 1)2M2r3θm − 12(m+ 1)rθ2m+1]
∂

∂r

}
,

X6 =
m[(m+ 1)M2r2 − 6θm+1]

6(m+ 1)θm
∂

∂θ
,

X7 = −θ
−m

r

∂

∂θ
,

X8 = −θ−m ∂

∂θ
.

Equation (3.3) is equivalent to the simple motion equation y′′ = 0 [22]. We

adopt the method of canonical coordinate to demonstrate this claim. We in-

troduce the method of finding the solutions using X7 and X8 from the above

dimensional Lie algebra vectors. The two symmetries lead to the canonical

variables

t = r, u = −rθ
1+m

1 +m
(3.19)

and the corresponding canonical forms of X7 and X8 are

X1 = ∂u, X2 = t∂u. (3.20)

Writing u = u(t) transforms equation (3.3) to

u′′(t) + tM2 = 0. (3.21)
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Integrating the latter equation and writing it into its original variables we

obtain

θ(r) =

{[
1

6
M2r2 − c1

r
− c2

]
(1 +m)

} 1
1+m

. (3.22)

Imposing the boundary conditions, we obtain

θ = r
2

m+1 , ∀m < 1.

Subcase α = 2 m = n.

In this subcase the admitted eight dimensional symmetries include:

X1 = θ
∂

∂θ
,

X2 = (1 + n)r
∂

∂r
− θ

∂

∂θ
,

X3 =
e−

√
M2(1+n)rθ−n

r

∂

∂θ
,

X4 =
e
√

M2(1+n)rθ−n√
M2(1 + n)r

∂

∂θ
,

X5 = (1 + n)M2 ∂

∂r
+ (M3

√
1 + n− M2

r
)θ
∂

∂θ
,

X6 = −(1 + n)M2 ∂

∂r
+ (M3

√
1 + n+

M2

r
)θ
∂

∂θ
,

X7 = (1 + n)
∂

∂r
− (1 +

√
M2(1 + n)r)θ

∂

∂θ
,

X8 = (1 + n)
∂

∂r
− (1−

√
M2(1 + n)r)θ

∂

∂θ
.

3.5 Fin efficiency and heat flux

The fin efficiency is defined as the ratio of the actual heat transfer from the

fin surface to the surrounding fluid while the whole fin is kept at the same

temperature. On the other hand, heat flux is the total amount of heat flowing

per unit area per unit time. The fin efficiency and the heat flux in dimensionless
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Figure 3.8: Fin efficiency plotted against M for varying values of n.

variables are given by

η =

∫ 1

0

θn+1dr (3.23)

and

q =
1

Bi

k(θ)

h(θ)

dθ

dr
(3.24)

respectively. Here the dimensionless parameter Bi = hbL
ka

is the Biot number.

Given solution (3.9), we obtain

η =
ln(M

√
n+ 1)− ln(−M

√
n+ 1) + Ei(1,M

√
n+ 1)− Ei(1,−M

√
n+ 1)

2 sinh(M
√
n+ 1)

(3.25)

where Ei(a, z) is the Exponential Integral [24]. Fin efficiency (3.25) is depicted

in Fig. 3.5.

Given solution (3.9) the heat flux becomes

q =
1

Bi

rM
√
n+ 1 cosh(M

√
n+ 1r)− sinh(M

√
n+ 1r)

(n+ 1)r sinh(M
√
n+ 1r)

(3.26)

Heat flux (3.26) is depicted in Fig. 3.6 and Fig. 3.7.
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Figure 3.9: Heat flux plotted against r for varying values of n.

Figure 3.10: Heat flux for varying values of M .
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3.6 Discussions

In Fig. 3.4, the new solution is given by the dotted graph and it can be seen

that the values of the temperature for spherical fins is the highest across the

spatial r direction. In the table, the θ values for α = 2 are the highest as well.

Now we focus only on spherical fins and observe in Fig. 3.8 that temperature

decreases with increase in the values of M . Recall that the thermo-geometric

fin parameter is directly proportional to the aspect ratio of the fin. Thus longer

fins (M larger) releases heat much more efficiently than shorter ones. In Fig.

3.9, temperature increases with an increase in the values of n. Finally, in Fig.

3.10 depicts the heat transfer where m ̸= n = 1.

3.7 Concluding remarks

In this chapter we focused on the comparison of temperature distribution (or

heat transfer) in fins of different geometries. Lie point symmetry analysis

resulted in a number of admitted symmetries for different cases of the param-

eters appearing in the governing equation. We have applied the method of

differential invariants to reduce the order of the equation by one, and on the

other case we have used method of canonical variables to construct some exact

solutions.The spherical fin is not as effective in transferring heat as the radial

or rectangular fins.



Chapter 4

Preliminary group classification

of nonlinear model describing

heat transfer in a hot body

Some results in this chapter have been submitted to ISI journal for possible

publication.

4.1 Introduction

In this chapter we investigate the heat conduction in a hot body (wall or solid

slab). We assume the geometry of the body to be either rectangular , radial

or spherical. However, more emphasis is in a rectangular body such as a wall.

We further assume that the temperature distribution is symmetrical along the

center as shown in Fig. 4.1. Furthermore we assume that the thermal behavior

of the wall (hot body) is affected by internally generated or absorbed thermal

energy (sink or source). Here the heat source is placed at the center of the

plane.

34
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4.2 Mathematical description of heat transfer

models

We consider a situation in which the thermal behavior of a body is affected

by heat generated or absorbed internally. Some examples include heating as-

sociated with a flow of electrical current and electrical resistance, exothermic

chemical reactions, absorption of radiation in microwave ovens and emission

of radiation flame. We denote the temperature dependent internal heat gen-

eration term by Q̇′′′
v (T ) = 0 and α describes the geometry of the body, for

example α = 0 implies the rectangular geometry, α = 1 the solid cylinder and

α = 2 represents the sphere. Applying the energy conservation principle and

the Fourier’s law we obtain the balanced heat conduction with internal heat

generation model given by [23]

1

Rα

d

dR

[
RαK(T )

dT

dR

]
+ Q̇′′′

v (T ) = 0. (4.1)

The prescribed boundary conditions are given by

R = 0 :
dT

dR
= 0, and R = Rs : T = Ts. (4.2)

Introducing the dimensionless variables

r =
R

Rs

, θ =
T

Ts
, k(θ) =

K(T )

ka
, ω(θ) =

Q̇′′′
v (T )

Ng

, Ng =
R2

1Q̇
′′′
L

kaTs
, (4.3)

we obtain the dimensionless model

1

rα
d

dr

[
rαk(θ)

dθ

dr

]
+Ngω(θ) = 0, 0 ≤ r ≤ 1, (4.4)

and the boundary conditions become

r = 0 :
dθ

dr
= 0, and r = 1 : θ = 1. (4.5)
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4.3 Equivalence transformations

We determine the equivalence transformations [10] of Eq.(4.4). We recall that

an equivalence transformation

r̄ = r̄(r, θ), θ̄ = θ̄(r, θ)

is a non-degradable change of the variables r and θ such that the form of Eq.

(4.4) remains invariant generally with different arbitrary function appearing

in the equation. To determine the equivalence transformation, one seeks the

equivalence algebra generated by the vector field

X = ξ(r, θ)
∂

∂r
+ η(r, θ)

∂

∂θ
+ µ(r, θ,W )

∂

∂W
. (4.6)

The second prolongation is given by

X̃ [2] = X + ζr
∂

∂θ′
+ ζrr

∂

∂θ′′
+ ωr

∂

∂Wr

. (4.7)

where ζr and ζrr are given by the usual prolongation and ωr is

ωr = D̃r(µ)−WrD̃r(ξ)−WuD̃r(η) (4.8)

with D̃r being the total derivative operator defined by

D̃r =
∂

∂r
+Wr

∂

∂W
+ ... (4.9)

The invariance surface conditions is given by

X̃ [2]

(
1

rα
d

dr
[rαθm

dθ

dr
] +NgW (θ)

)
|(4.4)= 0, X̃ [2](Wr = 0) |Wr=0= 0. (4.10)

Using the second condition in (4.10) results in

µr −Wθηr = 0

which implies that

µr = 0, ηr = 0
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The first condition yields the following equation

[− a

r2
θmθ′ξ+mθm−1θ′′η+

a

r
mθm−1θ′η+(m2−m)θm−2(θ′)2η+Ngµ+

a

r
θmζr+θ

mζrr] |(4.4)= 0

(4.11)

which gives the following determining equations

mξθ − θξθθ = 0,(4.12)

−mθm−2η +
2a

r
θmξθ +mθm−1ηθ + θmηθθ − 2θmξrθ = 0,(4.13)

−aξ + arξr + 2mr2θ−1ηr + 2r2ηrθ − r2 + 3r2θ−mNgW (θ)ξθ = 0,(4.14)

−mNgW (θ)θ−1η +Ngµ+
a

r
θmηr + θmηrr −NgW (θ)ηθ + 2NgW (θ)ξr = 0.(4.15)

Solving equation (4.12) we obtain

ξ(r, θ) =
C(r)

1 +m
θ1+m +D(r).

Substituting the value of ξ in equations (4.13) and (4.14) yield

ξ = rc1 + rac2,

η = θc3 + θ−mc4.

Now substitution of ξ and η into equation (4.15) gives

µ =

(
(1 +m)c3 − 2(c1 + ara−1c2)

)
W.

Therefore the admitted operators are

X̃1 = r
∂

∂r
− 2W

∂

∂W
,

X̃2 = r
∂

∂r
− 2aW

∂

∂W
,

X̃3 = θ
∂

∂θ
+ (1 +m)W

∂

∂W
,

X̃4 = θ−m ∂

∂θ
.
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The one-parameter group of equivalence transformations corresponding to each

operator is

X̃1 = r̄ = reα1 , W̄ =We−2α1 , θ̄ = θ,

X̃2 = r̄ = reα2 , W̄ =We−2aα1 , θ̄ = θ,

X̃3 = r̄ = r, W̄ = We(1+m)α3 , θ̄ = θeα3 ,

X̃4 = r̄ = r, W̄ = W.

and the composition of transformations gives

r̄ = (1 + eα1+α2)r,

Since W is dependent on θ, we consider the projections above on the space of

(θ,W ) to be

Z1 = pr(X̃1),

Z2 = pr(X̃2),

Z3 = pr(X̃3),

Z4 = pr(X̃4).

Therefore

Z1 = −2W
∂

∂W
,

Z2 = −2aW
∂

∂W
,

Z3 = θ
∂

∂θ
+ (1 +m)W

∂

∂W
,

Z4 = θ−m ∂

∂θ
.

Note that Zi : i = 1, 2, 3, 4 span the Lie algebra denoted by L4.

The following propositions contains the essence of the method of preliminary

group classification.
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Proposition 4.1

(see, examples, [25]).Let Lr be an r-dimensional subalgebra of the algebra L4.

Denote by Zi, i = 1, ..., r a basis of Lr and by Wi the elements of the algebra

L4 such that Zi is the projections of Wi on (θ, k, g). If equations

k = f(θ), W = ψ(θ) (4.16)

are invariant with respect to the algebra Lr then the equation

d

dr

(
f(θ)

dθ

dr

)
−M2ψ(θ) = 0 (4.17)

admits the operator

Zi = projection of Wi on (r, θ) (4.18)

Proposition 4.2

(see, examples, [25]). Let (4.17) and the equation

d

dr

(
¯f(θ)
dθ

dr

)
−M2 ¯ψ(θ) = 0 (4.19)

be constructed according to Proposition 4.1 via subalgebras Lr and L̄r, respec-

tively. If Lr and L̄r, are similar subalgebras in L4 then (4.17) and (4.19) are

equivalent with respect to the equivalence group G4 generated by Lr. These

propositions imply that the problem of preliminary group classification of (4.4)

is reduced to the algebraic problem of constructing nonsimilar subalgebras of L4

or optimal system of subalgebras [20]. We explore method in [25] to construct

the one-dimensional optimal systems.

4.4 Principal Lie algebra

In this section we determine the Lie point symmetries, given an arbitrary

function ω(θ). The Lie point symmetries (or vector fields) admitted when the
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Table 4.1: Commutators of L4

Z1 Z2 Z3 Z4

Z1 0 0 0 0

Z2 0 0 0 0

Z3 0 0 0 -(1 +m)Z4

Z4 0 0 (1 +m)Z4 0

function appearing in the equation are arbitrary span the principal Lie algebra

(LP ). Following the well known procedure (see example 2.9), it turns out that

equation (4.4) admits no Lie point symmetries, that is, the principal Lie algebra

is null.

4.5 Adjoint group for algebra L4

We now wish to construct the adjoint group of the algebra L4. Let us denote

the elements of adjoint group L4 by the letter A. The generators of the adjoint

group L4 are

A =
∑

[Zα, Zβ]
∂

∂Zβ

, α = 1, 2, ..., 4 (4.20)

Using Table (4.1) we obtain the following generators

A1 = 0,

A2 = 0,

A3 = −(1 +m)Z4
∂

∂Z4

,

A4 = (1 +m)Z4
∂

∂Z3

.

The infinitesimal operator of A1 and A2 generates the following one-parameter
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group of linear transformations

Z ′
1 = Z1, Z ′

2 = Z2, Z ′
3 = −(1 +m)a4Z4, Z ′

4 = (1 +m)a3Z4,

which are represented by the matrices

M1(a1)=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

M2(a2) =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

M3(a3) =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 (1 +m)a3Z4

Following the same procedure we obtain

M4(a4) =

1 0 0 0

0 1 0 0

0 0 1 (1 +m)a4Z4

0 0 0 1

The product of the matrices give us
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M = M1(a1)...M4(a4)=

1 0 0 0

0 1 0 0

0 0 1 (1 +m)a3Z4

0 0 0 (1 +m)a4Z4

where a3, a4 ϵR+.

Let e = (e1, e2, e3, e4), ē = (ē1, ē2, ē3, ē4) and ē =Me ,

Then the components of ē are:

ē1 = e1, (4.21)

ē2 = e2, (4.22)

ē3 = e3, (4.23)

ē4 = (1 +m)[a3e
3 + a4e

4]. (4.24)

These transformations give rise to the adjoint group elements of the algebra

L4.

4.6 Construction of the one-dimensional opti-

mal system of subalgebra of L4

In this section we construct the optimal system of one-dimensional subalgebra

of L4.

CASE 1: e1 ̸= 0, e2 ̸= 0, e3 ̸= 0 In this case we get

e4 = 0 (4.25)

and by putting a3 = 1 in equations (4.21)-(4.24)

a4 =
−e4

e3
(4.26)
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and we obtain,

ē = (e1, e2, e3, 0) (4.27)

These vectors give rise to the following nonequivalent generators

Z1 + Z2 + Z3 (4.28)

Similarly the analysis of the other cases yields the following nonequivalent gen-

erators:

CASE 2: e1 ̸= 0, e2 ̸= 0, e3 = 0

Z1 + Z2, Z1 + Z2 + (1 +m)Z4. (4.29)

CASE 3: e1 ̸= 0, e2 = 0, e3 = 0

Z1 + Z3. (4.30)

CASE 4: e1 = 0, e2 ̸= 0, e3 ̸= 0

Z2 + Z4 (4.31)

CASE 5: e1 = 0, e2 = 0, e3 = 0

(1 +m)Z4 (4.32)

CASE 6: e1 ̸= 0, e2 = 0, e3 ̸= 0 ,e4 = 0

Z1, Z1 + (2 +m)Z3. (4.33)

CASE 7: e1 ̸= 0, e2 ̸= 0, e3 = 0

Z1 + Z2, Z1 + Z2 + (1 +m)Z4 (4.34)
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CASE 8: e1 ̸= 0, e2 = 0, e3 = 0

Z1 + Z2 + (1 +m)Z4 (4.35)

Altogether from (4.26) - (4.33) we have the following optimal system of one-

dimensional subalgebras of L4:

Z(1) = Z1 + Z2 + Z3,

Z(2) = Z1 + Z2,

Z(3) = Z1 + Z2 + (1 +m)Z4,

Z(4) = Z1 + Z3,

Z(5) = Z2 + Z4,

Z(6) = (1 +m)Z4,

Z(7) = Z1,

Z(8) = Z1 + (2 +m)Z3,

Z(9) = Z3,

Z(10) = Z4.

4.7 Equations admitting an extension of the

principal Lie algebra

In this section we are going to employ Propositions 1 and 2 to the optimal

system obtained in the previous section to obtain all nonequivalent equations

(4.1) admitting an ex+tension by one of the principal Lie algebra Lp.

To illustrate the method we choose the following examples from our optimal

system:
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Table 4.2: Forms of W (θ) for which Lp is extended by one element.

Z W Equation Additional operator

Z(1) θm+2a−1 1
ra

d
dr
[raθmdθ

dr
] +Ngθ

m−1+2a = 0 X1 = 2r ∂
∂r

+ θ ∂
∂θ

Z(4) θm−1 1
ra

d
dr
[raθmdθ

dr
] +Ngθ

m−1 = 0 X1 = 2r ∂
∂r

Z(6) γ 1
ra

d
dr
[raθmdθ

dr
] +Ngγ = 0 X1 = (1 +m)θ−m ∂

∂θ

Z(9) θ1+m 1
ra

d
dr
[raθmdθ

dr
] +Ngθ

1+m = 0 X1 = θ ∂
∂θ

Z(10) γ 1
ra

d
dr
[raθmdθ

dr
] +Ngγ = 0 X1 = θ−m ∂

∂θ

(a) Consider: Z(1):

Z(1) = Z1 + Z2 + Z3

= θ
∂

∂θ
+ (m− 1− 2a)W

∂

∂W
.

Invariants are found from the subsidiary equations:

dθ

θ
=

dW

(m− 1− 2a)W
.

We obtain

W = θm−2a−1 (4.36)

Note that the operators Z(2), Z(3), Z(5), Z(7), and Z(8) do not lead to any form

of the arbitrary function for which the principal Lie algebra is extended. The

necessary condition for existence of invariant solution is not satisfied.

4.8 Extra Lie point symmetries

Consider the form W = θm+1 generated by Z(9). In this case equation (4.4)

becomes

1

rα

[
rαθm

dθ

dr

]
+Ngθ

m+1 = 0. (4.37)
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We focus on three cases, namely α = 0, 1, 2. Notice that equation (4.37) is lin-

earizable since the term involving the internal heat generation is a differential

consequence of the thermal conductivity (see also [13]).

Subcase α = 0

Given α = 0, then equation (4.33) using mathematica admits eight Lie point

symmetries given by

X1 =
∂

∂r
,

X2 = θ
∂

∂θ
,

X3 =
(
er
√

−(1+m)Ngθ−m
) ∂

∂θ
,

X4 =
(
e−r

√
−(1+m)Ngθ−m

) ∂

∂θ
,

X5 =
− cos[2

√
1 +mr

√
Ng]

Ng

∂

∂r
+
θ sin[2

√
1 +mr

√
Ng]√

1 +mNg

∂

∂θ
,

X6 =
− sin[2

√
1 +mr

√
Ng]

Ng

∂

∂r
−
θ cos[2

√
1 +mr

√
Ng]√

1 +mNg

∂

∂θ
,

X7 =
er
√

−(1+m)Ngθ1+m

1 +m

∂

∂r
+
er
√

−(1+m)Ngθ2+m
√
−(1 +m)Ng

(1 +m)2
∂

∂θ
,

X8 =
e−r

√
−(1+m)Ngθ1+m

1 +m

∂

∂r
−
e−r

√
−(1+m)Ngθ2+m

√
−(1 +m)Ng

(1 +m)2
∂

∂θ
.

Subcase α = 1

In this case the Lie algebra is spanned by the generators

X1 =
∂

∂θ
,X2 = 2F [r]

∂

∂r
+

(
−θF [r]
(1 +m)r

+
θF ′[r]

1 +m

)
∂

∂θ
.
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Subcase α = 2, m = n.

In this case equation (4.37) admits the following Lie point symmetries

X1 =
∂

∂r
− θ

(1 +m)r

∂

∂θ
,

X2 = θ
∂

∂θ
,

X3 =

(
er
√

−(1+m)Ngθ−m
)

(1 +m)2
∂

∂θ
,

X4 =

(
er
√

−(1+m)Ngθ−m
)

r
√
−(1 +m)Ng

∂

∂θ
,

X5 =
sin[2

√
1 +mr

√
Ng]√

(1 +m)Ng

∂

∂r
+

(
θ cos[2

√
1 +mr

√
Ng]

1 +m
−
θ sin[2

√
1 +mr

√
Ng]

(1 +m)
3
2 r
√
Ng

)
∂

∂θ
,

X6 =
− cos[2

√
1 +mr

√
Ng]√

(1 +m)Ng

∂

∂r
+

(
θ sin[2

√
1 +mr

√
Ng]

1 +m
+
θ cos[2

√
1 +mr

√
Ng]

(1 +m)
3
2 r
√
Ng

)
∂

∂θ
,

X7 =
e−r

√
−(1+m)Ngrθ1+m

1 +m

∂

∂r
− e−r

√
−(1+m)Ngθ2+m

(1 +m)2

(
1 + r

√
−(1 +m)Ng

)
∂

∂θ
,

X8 =
er
√

−(1+m)Ngrθ1+m

(1 +m)
√
−(1 +m)Ng

∂

∂r
+

(
er
√

−(1+m)Ngrθ2+m

(1 +m)2
− er

√
−(1+m)Ngθ1+m

(2 +m)2
√
−(1 +m)Ng

)
∂

∂θ
.

4.9 Linearization and exact solutions

In this case equation (4.37) is linearized by the point transformation y = θm+1

to

d2y

dr2
+
α

r

dy

dr
+ (m+ 1)Ngy = 0. (4.38)

The boundary conditions (4.5) becomes

y′(0) = 0, y(1) = 1.

We determine the exact solutions of equation (4.37) using three different cases

of α, namely α = 0, 1, 2.



4.9. LINEARIZATION AND EXACT SOLUTIONS 48

Figure 4.1: Temperature profile for varying value of n.

Subcase α = 0

When α = 0 the exact solutions in terms of original term satisfying the bound-

ary conditions (4.5) is

θ =

{
cos(

√
(m+ 1)Ngr)

cos(
√

(m+ 1)Ng)

} 1
m+1

− 1 < m <∞ (4.39)

and

θ =

{
sin(

√
(m+ 1)Ngr)

sin(
√

(m+ 1)Ng)

} 1
m+1

− 1 < m < 0 (4.40)

Now the exact solution when m < −1 we have

θ =

{
cosh(

√
(m+ 1)Ngr)

cosh(
√
(m+ 1)Ng)

} 1
m+1

(4.41)

The solutions (4.39) and (4.40) are depicted in Fig. 4.1 and Fig. 4.2 respec-

tively.
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Figure 4.2: Temperature profile for varying values of Ng.

Subcase α = 1

The exact solution obtained in terms of the original boundary conditions is

θ(r) =

{
J0(

√
(1 +m)Ngr

J0(
√

(1 +m)Ng

} 1
1+m

. (4.42)

Subcase α = 2

In this case we get

θ(r) =

{
sin(

√
(1 +m)Ngr

sin(
√
(1 +m)Ng

} 1
1+m

. (4.43)

4.10 Discussion and concluding remarks

We observe in Fig. 4.1 that temperature increases with the increased values

of n. Furthermore in Fig. 4.2, temperature increases with increasing values of

Ng. We also observe that there is a threshold value of Ng for which the temper-

ature generated internally reaches a maximum. The analysis of this threshold
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values is not yet carried out. On the other hand, a deeper understanding of

the application of principal Lie algebra and equivalence transformations and

the construction of optimal systems of subalgebras using the methods of pre-

liminary group classification has been gained. We have considered a model

describing heat transfer in a hot body. Symmetric boundary conditions are

imposed. Note that both thermal conductivity and heat generation coefficient

are temperature dependent. We have singled out a case where the internal

heat generation is a differential consequence of the thermal conductivity. This

has resulted in some exciting exact solutions which have been analyzed.



Chapter 5

Conclusions

In this dissertation we focused on reductions of steady nonlinear one-dimensional

heat transfer models. We focused on heat transfer in fins and in a hot body. In

chapter one, we gave a brief background on heat transfer in fins with different

geometries. Chapter 2, a historical background on Lie point symmetries and

a full discussion on the calculations of Lie point symmetries with examples

were provided. We compared exact solutions for heat transfer in fins with

different geometries (rectangular, radial and spherical) in chapter 3. We al-

so compared the fin efficiencies given these geometries. We learned that the

temperature values for these three fin geometries increases as r increases. It

was also observed that heat transfer is much slower in spherical fins than ra-

dial and rectangular fins, which was confirmed in Fig. 3.1 and Table 3.1. We

have depicted that the increase in the values of n yielded a decrease in fin

performance. In chapter 4 an understanding of the application of principal

Lie algebra, equivalence transformations and the construction of optimal sys-

tem using the preliminary group classification has been gained. We considered

models arising in heat transfer in a hot body such as heat transfer in a plane

wall. We assumed the internal heat generation and thermal conductivity are

51
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temperature dependent. Some geometries are open, for instance, we do not

know why there is a jump in graph when Ng is increased.
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