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Abstract

This thesis describes the implementation and review of human detection approaches over

different spectral imaging. While significant progress on human detection has been made

in the past, human detection in static images remains a challenging research problem.

The performance of popular human detection systems remains inferior to the visual

capability of people and animals [1, 2, 3, 4, 5, 6].

Most human detection methods are often evaluated over visible-light images. However,

visible light-images can contain limited information in lowly-illuminated environments.

Other complexities occur due to the possibility of random colour patterns on the image

background regions and clothes of pedestrians. In most cases, the colour clutter con-

tributes negatively to image representation methods that solely rely on edge information.

With infrared imaging, the heat radiated from objects is often uniform and independent

of the colour texture, resulting in less cluttered images. This work evaluates the sig-

nificance of using imaging-infrared (IIR) footage instead of visible-light images for the

human detection problem. The basis of the supposition is that the choice of extracted

information has a large impact on the robustness of statistical learning systems. To

test this supposition, support vector machines (SVMs) and extreme learning machines

(ELMs) and convolutional neural network (CNN) classifiers were trained and tested

with three different datasets. The datasets consisted of the newly created infrared-based

pedestrian dataset named Significance of Near Infrared Dataset (SIGNI) [7], along with

the popular National Institute for Research in Computer Science and Automation (IN-

RIA) and National ICT Australia (NICTA) pedestrian colour datasets [8, 9].

The classifiers were first trained with colour images to determine the optimal parameters

that obtain high classification rates on unseen samples. Once satisfactory results were

obtained, the same parameters were used for training the classifiers with infrared sam-

ples. This ensured non-biased classification comparisons over the different spectral im-

ages. The widely acclaimed histograms of oriented gradients (HOG) features were used

as the human descriptor on the SVMs and ELMs and tested against the autonomously

learned feature-maps on a CNNs. Therefore, this work provides more findings on the

application of shallow learning and deep learning models in human detection and en-

tails further experimental research on image processing methods and the classification

of human beings in static images. The main rationale of this research is in addressing

the lack of findings on the use of sufficiently large IIR training datasets for extracting

better image features for human detection systems.

Initially, the hypothesis was tested by examining the classification rate of the classi-

fiers on six relatively-small datasets of the same size and thereafter tested on larger
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datasets. The SVMs obtained an average classification rate of 98.33% on the three in-

frared datasets, a performance gain of 0.6% than the average 97.73% that was obtained

with the visual datasets. More apparent results were observed with the ELMs classifier

as it achieved a gain of 8.4% with an average classification rate of 95.86% with infrared

samples. The CNNs achieved the best overall classification rate than the other two clas-

sifiers, an outstanding score of 99.5% was obtained with the infrared images showing an

average performance gain of 2.17% than with visual images.

Performance evaluation on larger datasets showed a similar outcome as all classifiers

obtained performance gains with infrared samples. The SVMs obtained a 2.95% increase

and the ELMs had a good 6.25% advantage. As on previous experiments, the CNNs

scored insignificant gains of 1.66% from the relatively high classification rates than the

other two classifiers.

Summing the average performance gain of each classifier on both small and larger

datasets and diving it by two yields the overall performance gain of each classifier.

The overall performance gain of the SVM classifier on all experiments was 1.78%, with

the ELMs showing the largest gain of 7.20% and the CNNs obtaining the performance

gain 1.92% respectively.

The best performing classifier (CNNs) was selected for assessing the human-detection

problem over the different spectral images. The assessment was conducted by running

a sliding window detector over image pyramids from natural-scene images with ground-

truth information. The overall classification rate on the infrared testing scenarios was

4% higher than the average classification rate over the colour testing scenarios. Studying

classification rates only when comparing classifiers can be misleading. Precision rates

only highlight the accuracies of classifiers solely on images they retrieved as positive thus

neglect the accuracy over the entire ground-truth data.

For instance, the classifiers that were trained with colour images (INRIA and NICTA)

had higher precision rates, yet failed to retrieve a remarkably large number of positive

ground-truth regions, achieving low recall rates of 0.043 and 0.077 respectively. This

equates to only 5.98% of positive ground-truth boxes that were retrieved, versus 63%

that was retrieved by the infrared classifier. The localisation experiments addressed an

imbalanced binary classification problem, where one of the classes (negative background

samples) had the overwhelming majority of the data samples. In such cases, precision

rates are not a good measure because they can be easily obtained by classifiers that

have a bias to the overwhelming class. Instead, the recall rate metric becomes a better

measure as it shows the model’s ability to find relevant samples from a testing scenario

that has considerably more irrelevant samples.
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The ground-truth results show that the precision and recall rates of the infrared model

were both fair, unlike the visual models, where the classifiers had higher precision rates

and substantially poor recall rates.

Therefore, throughout all experiments, better results were obtained with the use of

infrared images than the use of visual images by all classifiers and the CNNs performed

well than the two shallow learning classifiers.
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Chapter 1

Introduction

Object detection is one of the fundamental goals in image processing and computer

vision. The computer-vision research field focuses on methods of enabling autonomous

image understanding for computers and robotics. There has been overwhelming progress

within the field of object recognition. However, many computer-vision problems remain

unsolved due to the computational complexities involved with most computer vision

problems [1, 2]. Image understanding becomes challenging due to factors such as the

varying environmental settings, cluttered backgrounds, occluded objects, varying view

perspectives and the change in illumination in images. Even the best classification

algorithms struggle to detect objects that are captured from varying viewing angles and

blending background settings [10].

The main goal in this research field is to mimic human vision abilities by digitally finding

image features that help computers to understand images better. Computers represent

digital images by using n-dimensional matrices of numbers. As a result, it is extremely

difficult recognising objects by just observing these numbers. Over the years, intelligent

models that can produce symbolic information from digital images have been developed

using linear algebra, geometry, statistics and machine learning principles.

Image features are extracted from image pixels to produce generic descriptions of objects.

The features are then fed to machine learning models for the detection and classification

of objects in images. Some of the common feature extraction methods include Haar

Wavelets, scale-invariant feature transform (SIFT), speeded up robust features (SURF),

histogram of oriented gradients (HOG) and rotation-invariant fast features (RIFF) [1,

11, 12, 13]. Extracting image features enable machine learning models to be trained

much more effectively since the large pixel information is quantized to smaller vectors.

Machine learning models such as linear regression, artificial neural networks (ANN),

1
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support vector machines (SVM), kernel estimation, and decision trees are widely used

in the literature for image feature detection tasks [14, 15, 16].

Human detection is a vital tool for most intelligent video surveillance systems and driver

assistance systems on modern cars. Human detection is highly a complex problem due

to the variation of appearance within the same class of humans. The difficulty is caused

by the non-rigid nature of pedestrians. Unlike generic object detection for rigid objects,

which can be detected by simply matching spatial features (e.g face detection), pedes-

trians can be photographed in various poses, size, shapes and view-angles. Matching

algorithms have been proven unreliable for human detection due to the challenges men-

tioned earlier. Matching algorithms seek to detect people by matching image features

from reference images that contain people [3, 17].

Luckily promising methods that can achieve high detection rates have been presented

over the years [2, 5, 6, 18, 19]. Most of the work is based on the popular HOGs by Dalal

et al [1]. Some of the methods use discriminative body parts for detecting people [2, 6,

20, 21]. The deformable-parts based models classify the global problem by combining

the results of several local classifications. Zhao et al [22] used the bounding contours of

people to identify the shapes of the deformable body parts of people and pictorial shape

of the entire body. Similarly, a novel feature set that combines HOGs and local binary

patterns (LBP) was presented by Wang et al [4] to handle partial occlusion in human

detection. They used the locally distributed scores of the global window classification

to determine the regions of occlusion.

Human detection is challenging on colour images because of the variation of colour

in clothes and background. Unfortunately, the generic shape of pedestrians is not seg-

mentable by colour because the colour patterns vary on clothes and people have different

skin tones. In cases where there is low visible-light illumination, detecting people or ob-

jects becomes challenging whereas, imaging infrared (IIR) can overcome this restriction.

With infrared images, the uniform shape of pedestrians is more extractable and inde-

pendent of the colours on clothes and background regions because infrared cameras only

capture the heat-variation on surfaces. Infrared images are advantageous for human

detection systems that operate throughout the day, where the temperatures of human

subjects are likely to vary from the temperatures of background regions. Any object with

temperatures above absolute zero emits infrared radiation that can be used to produce

thermal images [23]. Colour cameras require illumination in dark environments, this

may alert the observed subject to be aware that they are being observed. Whereas with

infrared cameras, you can observe people or animals without illuminating the scenes to

avoid alarming subjects.



Chapter 1 Introduction 3

The main objective of this thesis is to evaluate the significance of using infrared images

over colour images. This entails the design and implementation of different methods for

detecting humans in static images. Several classifiers were implemented to analyse the

classification of humans in different spectral images. The first being the support vector

machines, the second being the extreme learning machines (ELMs) based classifier and

lastly, the convolutional neural networks (CNNs). Unlike the ELMs and SVMs, the

CNNs were trained with raw grayscale images since CNNs can learn filters autonomously.

Testing several classifiers can provide a comparison between the use of hand-engineered

features versus machine-learned features.

This work requires an infrared pedestrian dataset to train the classifiers and make the

necessary comparisons to the colour based datasets. Due to the difficulty of finding

infrared human datasets online, a great deal of time was spent in creating a new dataset

called the Significance of Near Infrared Dataset (SIGNI) manually [7]. Positive IIR

samples were cropped from large images with their labels and ground-truth annota-

tions. The term ground-truth refers to information that is constructed through prior

observations for analysing the accuracy of machine learning classifiers. Further details

on the preparation of the SIGNI dataset are discussed in Section 3.2. This work’s con-

tributions, problem statement and the theoretical framework are presented in the next

subsections.

1.1 Problem Statement

There is still no deterministic approach for detecting people autonomously in images.

Further experimental research on feature extraction and classification methods are vital.

To the best of our knowledge, there is insufficient work on the application of shallow

learning and deep neural networks on the human detection problem over sufficiently

large IIR training-datasets. This work addresses this gap by creating a new infrared

pedestrian dataset and by experimenting with different statistical learning methods on

the classification and detection of humans in static images.

1.2 Theoretical Framework

1.2.1 Research Purpose

The primary purpose of this study is to evaluate whether feature acquisition can be

improved through the use of infrared imaging. The work provides more findings on
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the application of shallow and deep learning models in the human detection problem

and provides contrasts between hand-engineered HOGs with SVMs and ELMs against

machine-learned features that are optimised autonomously by CNNs. One of the contri-

butions of this work is an infrared-based pedestrian dataset (SIGNI) that was created

and published [7]. The findings of this research will attempt to answer the following

research questions:

1.2.1.1 Research Questions

• Research Question (RQ1): Over the exact number of the training and testing sam-

ples, which spectral type (between the visual datasets and the IIR dataset) results

to better classification rates for shallow learning classifiers (SVMs and ELMs).

• Research Question (RQ2): When evaluating the findings of RQ1, how does the

performance of deep learning CNNs compare to the shallow learning classifiers.

Can the CNNs improve the detection rates?

The answers to the posed researched questions will help us prove or disprove the hy-

pothesis presented in the next subsection.

1.2.2 Hypothesis

Infrared images have less noise-clutter than colour images due to the uniform temper-

atures on objects with uniform materials. The amount of noticeable clutter on inner

foreground regions of objects and background regions is significantly reduced. The fol-

lowing hypotheses were formed from the basis that the reduced noise clutter has the

potential to improve acquired image features and improve the autonomous classification

and detection of people in images:

Hypothesis (H1): The use of infrared data can improve the accuracy of shallow learning

classifiers (SVMs and ELMs).

Hypothesis (H2) Furthermore, the dominating deep learning techniques could also

benefit from the same, which may result in better human detection performance over

the use of colour images and shallow learning.

Null Hypothesis (H0) There is no significant difference in accuracy when using infrared

data over colour image data on the human classification problem.
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1.2.3 Research Variables

The independent variables and dependent variables of this study are presented in Ta-

ble 1.1. The following independent variables will be the input to the experiments and

the outcomes will affect the dependent variables:

Table 1.1: A distinction of independent and dependent variables.

Independent variables: Image datasets
Image samples
Set of image features
The choice of classifiers
Classifier parameters

Dependent variables: Detection rate
Number of true positives and false-positives
Number of true negatives and false-negatives
Precision and Recall Rates

1.2.4 Justifying the supposition

Several image processing methods that could potentially enhance the quality of edges

were tested to reduce edge-noise clutter in images as part of the preliminary experi-

ments of this work. The initial attempt was in enhancing continuous edges in hopes

of discriminating them against edges that are not part of object contours, this attempt

was discarded because sections of contour edges often blend with the background. The

second attempt was smoothening images with the median filter or Gaussian smoothing

filter to reduce noise. But the results were relatively poorer because smoothing grayscale

images can degrade the quality of sharp edges.

Eventually, the use of infrared images yielded the desired noise reduction. The reason

behind this is, the heat radiated from objects of uniform materials becomes evenly dis-

tributed across the object regardless of the visible colour patterns on the material. As

a result, gradient images from infrared feeds are likely to have lesser noise from unnec-

essary edges within the inner shapes of objects and background regions. Consequently,

contour edges can be extracted more efficiently.

The shortfall of most feature extraction methods is the inability to differentiate edges

that show 2D object information (the x and y axis of the picture plane) from those that

show the 3D appearance (the z axis spanning towards the capturing camera). However,

this distinction is enhanced on IIR images causing richer outer shape information to

be extractable. High-frequency gradients often outline the contour-edges of objects

whereas the low-frequency edges mostly present the shading within the objects and 3D
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appearance cues. Feature acquisition algorithms may confuse the latter as boundary

edges and degrade the desired shape information that is crucial for computer vision

applications.

The hypothesis H1 states that “The use of infrared training data can improve the ac-

curacy of shallow learning classifiers (SVMs and ELMs) over the use of colour images”.

Hypothesis H2 states that “Deep learning techniques could also benefit from the same

and result in better classification rates than with shallow learning classifiers”.

Therefore, this work’s hypothesis was formed from the basis that the reduced noise

clutter has the potential to improve the perceived shape information of objects during the

feature acquisition stage and consequently improve the recognition rates of traditionally

used classifiers. The hypotheses can be addressed by evaluating the results from testing

several deep and shallow learning classifiers with different datasets of the same size and

varying data signals.

A comparison between the visual and infrared samples is shown in Figure 1.1 and their

corresponding gradient images are shown in Figures 1.2 and 1.3. In Figure 1.2, the

noise evidence from applying a 1D−Centric edge extraction filter is barely noticeable

to the human eye while the Sobel edge extraction filter does highlight this noise [See

Figure 1.3]. The Sobel filter thickens edges making them brighter and reveals how visual

samples contain redundant low-frequency edges than the infrared samples, which leads

to the assumption that machine learning models may recognise objects better in less

cluttered scenes.

Figure 1.1: The comparison of visual samples [1] (top) and infrared imaging samples
(bottom).
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Figure 1.2: Applying 1D-centric edge filter on the visual (top) and IIR (bottom)
samples.

Figure 1.3: Applying the Sobel edge filter on the visual (top) and IIR (bottom)
samples .

1.3 Motive

A strategy to integrate a human detection system to a wide-area surveillance system

for armour protection (WASSAP) that was developed at the Optronic Sensor Systems

department at the CSIR was the motivation for this work. The WASSAP system pro-

vides situational awareness inside armoured military vehicles through a panoramic view

in both IIR and colour footages [11, 24]. It does this by stitching matching pixels from

several cameras to create a larger image. The system is aimed at providing an automated

all-weather & 24-hour surveillance system for the South African National Defence Force

(SANDF). Each IIR camera is placed with its synchronised visible-light camera, mean-

ing each pair of visible and infrared camera point towards the same direction so that
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thermal footage can be merged with visible-light footage. This is achieved by a novel au-

tonomous camera photogrammetric calibration system [11] that uses BRISK and SIFT

features. Photogrammetric calibration enables the stitching of stereo IIR footage be-

cause the common coloured checkerboards do not emit heat radiation [24]. As a 3D

computational platform, the WASSAP is equipped with an image stabilisation mecha-

nism to enhance support for background subtraction and foreground tracking tasks [25].

This is ideal for fulfilling the main objective of this project, which is to implement a

system that can automatically detect nearby people and conduct the relevant research to

fulfil the necessary requirements of the aforementioned degree. The following objectives

were set to fulfil the work required for this thesis. The scope of this work does not cover

the incorporation of this research to the WASSAP system.

1.4 Objectives

The main objective is to study the influence of using infrared images for the human

detection problem on static images. To address the research questions, the following

tasks must be implemented:

Procedure to probe RQ1

1. Implement the standard HOG feature extractor.

2. Create a new infrared pedestrian dataset for supervised learning models and or-

ganise colour datasets to train classifiers.

3. Implement the two shallow learning classifiers: SVM and ELMs.

4. Optimise the parameters of the classifiers before they are tested.

5. Conduct experiments to validate and compare the performances of the candidate

classifiers with the selected datasets.

6. Re-evaluate the classification performance over larger datasets.

7. Evaluate the significance of using the infrared dataset over colour datasets.

Procedure to probe RQ2

1. Select a practical convolutional neural network architecture for human classifica-

tion.

2. Optimise the parameters of the CNNs based on the datasets used.
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3. Conduct experiments to test and compare the performances of the CNNs over the

same datasets that were used for addressing RQ1.

4. Compare CNN’s classification results against the performance of the shallow learn-

ing classifiers (SVM and ELMs).

1.5 Contributions

The main contributions of this thesis are,

• An evaluation of the significance of using infrared images when extracting features

for human detection. The evaluations are done over three different classifiers:

SVMs, ELMs and the CNNs.

• Further experimental research on image processing methods and the classification

of humans in static images.

• An infrared-based human dataset with annotations and ground-truth information.

This dataset can be downloaded from Google Drive : https://goo.gl/ugbevV.

In summary, this research provides more findings on the application of shallow and

deep learning models in the human detection domain. The contrasts between the hand-

engineered features (HOGs) and the machine-learned features-maps is also provided.

1.6 Thesis Outline

The rest of the thesis is organised as follows:

Chapter 2: Literature Review

Related work was studied to achieve the objectives of this work and to address gaps

that are found in literature. The literature review chapter includes early attempts on

the human detection problem, common approaches that are followed in solving it and the

recent CNN based approaches that use region proposals and bounding-box regressors to

automatically localize objects in images. A clear distinction on how this work contributes

to the literature is presented in the summary section of the chapter.

Chapter 3: Infrared Dataset Creation

One of the contributions of this work is the creation of an infrared human dataset named

SIGNI for classification tasks. Chapter 3 discusses the rationale behind this dataset, the

https://goo.gl/ugbevV
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approach followed when creating the dataset and the specifications of the SIGNI dataset.

A subset of the positive and negative image samples from the datasets and the tools

that were developed for creating the dataset are also presented.

Chapter 4: Methodology

The methodology chapter continues the theoretical framework of this research. It de-

tails the principles followed when conducting this research: the instruments that are

used and how data was collected, preprocessed and analysed. The chapter also delves

into the feature acquisition methods used and how the performance of the classifiers was

evaluated. The software programmes used during the research are also presented. The

chapter continues covering the design and implementation of the classifiers. The prelim-

inary experiments that were conducted on each classifier to ensure that the source code

works as intended and that the classifiers could be trained effectively is also discussed.

Chapter 5: Hyperparameter Selection

Machine learning models require different constraints, weights and learning rates to gen-

eralize unseen samples. This chapter describes the process for selecting the hyperparam-

eters of the candidate classifiers for this work. Cross-validation was applied to the two

shallow learning models (SVM and ELM). The chapter also describes the classification

of grayscale images with CNNs.

Chapter 6: Analysis of Results

This chapter analyses the overall performance of the classifiers. Initially, the experiments

were conducted with highly skewed smaller datasets of the same size and later on carried

with less skewed larger datasets. The last section of this chapter discusses the localisation

experiments on human detection, where the goal is to localise the position of people in

relatively large images. The human detection testing scenarios consist of over a hundred

annotated large images.

Chapter 7: Conclusion

This chapter concludes the findings of this work, where the advantage of using infrared

imaging on the human detection problem is declared to have the potential to improve the

detection results. The benefits were apparent when training the CNNs, as they converged

quicker on the infrared datasets and produced smoother training loss functions. The

supposition was shown to hold for all classification test cases and all three classifiers. The

localisation experiments showed favourable results with the infrared testing scenarios.

The results from the classifiers were scrutinized further by analysing their precision and

recall rates. Future work that aims at reducing the amount of noise on colour images is
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also proposed to provide a level pegging challenge to the performance of classifiers that

were trained with infrared samples in this work.



Chapter 2

Literature Review

2.1 Introduction

This chapter presents a study of related work from the literature. The common approach

for finding people in static images is discussed in Section 2.2. The historical attempts

that led to the recent state of the art methods in human detection are covered to provide

context on how the rationale behind this work was formed [Section 2.3]. A background

study and the common drawbacks of HOG features and the use of sliding windows and

the gaps found in the literature are also discussed [Section 2.4]. The recent CNN based

approaches that use region proposals and bounding-box regressors to automatically lo-

calize objects in images are also discussed in this chapter [Section 2.10]. The chapter

concludes by revealing how this work intends to address the gaps found in the literature.

2.2 Common approach to the problem

There is immense background literature on object detection, existing computer vision

systems can recognise faces, vehicles and household objects with recognition rates that

are above 70% [1, 26, 27, 28]. The focus of this study is on human detection literature.

The vast majority of human detection solutions appear to follow a similar approach in

solving the human detection problem [1, 2, 3, 5, 6]. Given an image, information on the

presence of a visible human in the image is unknown to the system. The coordinates

and scale of the rectangular region containing the person are also unknown. Therefore,

the fundamental task for most human detection methods is to locate the coordinates

and scale of the region that contains a person. Prior to the recent convolutional neural

networks with region proposal networks (RPN), this was generally achieved by sliding

a descriptor window over a dense scale-pyramid of the image. At every position of the

12
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descriptor window, image features are extracted and classified as either true when the

classifier predicts the presence of a human or false contrarily.

Recent methods can scan through images much quicker by using weaker classifiers to

formulate a hypothesis of probable regions of interest [2, 6]. Once a hypothesis is formed,

a strong binary classifier is then applied to conclude the final detection result. A generic

flow-chart model on the steps required for most sliding window-based human detection

algorithms is shown in Figure 2.1. To cater for scale invariance, the sliding window

detector is often passed onto an image scale-pyramid, where the image resolution is

scaled down until the resolution of the image equals the size of the descriptor window.

Figure 2.1: Generic steps that are involved in most sliding-window based human
detection algorithms.

2.3 Early work

Early work tried addressing this problem by making direct comparisons of unobserved

images to reference image features, however, the results were poor [3, 17, 29]. Broggi et al

[17] used edge features to detect both the head and shoulders of people. They compared

the extracted edges of people to a template dataset. This approach was proven less
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robust because the explicit use of edge information alone becomes prone to background

noise clutter, making effective edge-noise reduction methods attractive for this work.

In 1997, Oren et al [18] were the first to present a non-background-subtraction method

for full-body human detection. They used Haar-wavelets features for representing the

basic topology of the human body and an SVM classifier for identifying features. The

SVM classifier was trained with 128x64 resolution images that either contained pedes-

trians at the centre of the image or just background information. Although the positive

samples were explicitly defined, the negative samples consisted of random natural scenes

that did not contain pedestrians. This leads to a common problem for most binary clas-

sifiers, to learn features of a negative class that cannot be explicitly defined as a single

distinguishable-object causing false-positive classifications to be common.

Oren et al [18] used boot-strapping to overcome the unknown-class problem, where

an SVM classifier was initially tested on a large set of negative images to identify and

append false positives to the negative training set. This approach improves classification

rates on specific conditions and does not help much on random unseen data that is not

part of the dataset.

Haar features became popular in the past for detecting faces and other rigid objects

successfully. They represent the change of intensity over neighbouring regions. When

equipped with integral images, Haar features are quicker and easier to evaluate because

they require basic algebraic operations. This makes them an ideal option for real-time

detection systems. Unfortunately, Haar features have been proven to be less reliable

on non-rigid objects like people compared to HOG based features discussed in the next

section [3].

2.4 Histograms of Oriented Gradients

In 2005, Dalal et al [1] compared various types of existing digital-image features that

were used for human detection and presented a breakthrough method that provided

reliable human detection capabilities. This novel feature extraction method was named

histograms of oriented gradients (HOG). At that time, HOG features were the most

robust features for human detection. The idea behind HOGs came from the basis that

the basic shape of objects can be characterised with the local distribution of intensity

gradients or edge directions without the precise knowledge of their positions.

The HOG feature extraction method first applies an edge extraction filter to an input

image to produce a gradient-magnitude image. This image is divided into 8×8 cells and

a histogram of magnitudes is created for each cell. The frequencies of magnitudes are
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populated into histograms to represent 64 pixels from each cell with significantly smaller

vectors of nine values. Dalal et al. [1] experimented with various sizes of histograms but

obtained the best results with 9 − bin histograms. The combined histogram entries of

the entire image form the representation of the object features. Since gradient strengths

vary over image regions due to the contrast variation, 4× 4 cell-blocks were normalized

to improve the accuracy of the system. During the normalisation process, blocks were

overlapped with step sizes equal to a single cell to improve the performance. Two

different types of block geometries were tested: the rectangular HOGs (R-HOGS) and

the circular HOGS (C-HOGS). Slight performance gains were obtained with the C-

HOGs.

The advantage of HOG features is on their ability to capture shape information regard-

less of slight photographic and geometric transformation of objects. The HOGs apply

coarse spatial samples, fine orientation sampling and the photographic normalisation,

this allows robust human detection when human-body segments change in appearance

and pose. The HOGs also withstand complexities from slight changes in pose and suc-

cessfully work as long as the overall body maintains an upright orientation.

Dalal et al selected a linear SVM classifier for shorter training times and simplicity

of use. The classifier was initially trained with the existing MIT pedestrian dataset

with 509 training and 200 testing samples [1]. This dataset contained perfectly upright

people with their left-to-right reflections making HOG features to perform exception-

ally well than existing datasets. To generate hard testing criteria, they produced a

significantly more challenging dataset named the INRIA Person Dataset [8] with 1805

images of cropped people. The training set consisted of 1239 positive samples (doubled

with horizontal reflections to 2478) and 12180 negative samples cropped from person-

free background images. The testing set had 566 images that were also doubled with

horizontal reflections to 1132 positive samples.

Dalal et al tested both RGB and grayscale images and reported about 1.5% performance

gains when using RGB images. For the RGB colour images, they calculated gradient

images for each channel and selected a channel with the highest norm on the gradient

vectors. The detection error trade-off (DET) curve was used for performance evaluation

at 10−4 miss-rate. The DET outlines small probability differences between highly com-

petitive classifiers. The results were compared to the existing features sets: Generalized

Haar Wavelets, PCA-SIFT and Shape Contexts. The DET curve Figure 2.2 shows the

performance comparisons of feature sets that Dalal et al presented, where HOG features

achieved lower miss-rates and outperformed the existing features sets when equipped

with the same SVM classifier.
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Figure 2.2: The performance of the original HOG based human detector over the
INRIA dataset, plotted as a DET curve [1].

2.5 Part Based Object Detection

In 2010, Felzenszwalb et al [28] presented a system that improves the standard HOG

classifier [1]. This novel approach used a set of visual grammars to model the appearance

of objects. Objects are visualised with hierarchical structures that are formed by de-

formable parts of the object. The system can recognise objects without relying on their

consistent overall pictorial structure, making it more robust to varying deformations of

objects. The visual grammar-models cater for instances when the object’s separable

parts are placed at varying positions relative to the root location of the object. A star

object structure was used to detect the body shape of humans, where a human’s head

was assigned as the root position, followed by the two blocks that separate the person’s

torso and the arms and two more blocks that capture the person’s upper legs and lower

legs [Figure 2.3]. Visual grammar models for people are difficult to train because some

of the rich information is treated as latent information. For example, most human detec-

tion datasets only include the labels and coordinates of the bounding boxes that contain

the entire object, but do not provide the labels and coordinates of deformable parts that

make up the object. As a result, Felzenszwalb et al [2] treated the non-labelled parts as

hidden information.

A multi-instance learning (MIL) SVM was used for evaluating the context of the entire

image based on the contents of multiple non-indexed subregions. The entire image is
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Figure 2.3: The star structure model used by Felzenszwalb et al [28] to detect people
by parts.

viewed as a set of indexed local sub-regions without relying on manually annotated

sub-regions of the image. Thus the context of the image is described using the results

of multiple searching detectors on the image. These detectors produced indexes to

the sub-regions of interests. This limits deep classifications to only good hypothesised

regions and less processing on regions that are less likely to contain the targeted objects

[Figure 2.4].

Figure 2.4: The use of multiple instance learning (MIL) for evaluating the context of
the entire image based on interesting sub-regions [28].

This cascade of classifiers analyses the global appearance of objects using the contribu-

tions from separable part detectors. Meaning, the classifiers use dynamic programming

to reuse the results of initial weak classifiers when computing the score of the richer

ones. A single non-deformable but descriptive part of the objects is pre-selected as the

root position, hence the head is selected as the root position for pedestrians. Root po-

sitions determine the extent to which deformable object parts are displaced from their

natural position. The relative position of objects from the root position determines the

significant contribution of each weak classifier to the final score.

Felzenszwalb et al [2] showed how 1 × 36 dimensional vector of the HOG feature block
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could be reduced without significantly affecting the detection rates. The principal com-

ponent analysis (PCA) of the training data was taken for reducing the dimension of the

appearance-vectors. It was discovered that most of the HOG feature-energy lies within

the projection of the top 13 eigenvectors. They obtained competitive detection results

when applying 13-dimensional feature vectors instead of the normal 36-dimensional vec-

tors.

The performance of the system was evaluated using the PASCAL VOC 2006, 2007 and

2008 challenges and protocols [30]. These were widely used benchmarking datasets that

offer ground-truth information and the datasets are widely known for having difficult

testing criteria. The goal is to detect all the bounding boxes that contain a person

where classifications are considered true if the detection window overlaps at least 50%

of the ground-truth bounding box and false otherwise. Multiple detections that overlap

existing detections are eliminated.

The traditional method for evaluating the overall performance of computer vision sys-

tems is to examine the precision-recall statistics of the system’s classification results.

The precision determines how accurate and useful the system is and the recall deter-

mines how complete are the classifications compared to the total number of positive

samples in the testing set. Felzenszwalb et al’s system obtained the best average pre-

cision (AP) score for 9 out of 20 categories in the 2006 and 2007 PASCAL challenges.

For human detection, they obtained the second-best score on the published results of

the PASCAL Challenge [2]. Furthermore, they tested various versions of their system

by testing different pictorial grammar structures and established that the use of classi-

fication by parts and effective bounding box prediction has a great potential to improve

the detection accuracy of generic objects.

It is clear that Felzenszwalb et al [2] made significant contributions to HOG based

human detection systems since the work by Dalal et al [1]. The ability to detect various

objects from different classes with partial occlusion and deformation was the highlight of

their work. This technique brings a step further in making machines that can recognise

objects despite latent pictorial information.

This approach heavily relies on edge information to characterise the shapes of objects by

parts, therefore the idea to enhance the quality of extracted edges through the use of IIR

images may also improve the accuracy of part based detectors. The methods discussed

thus far use two dimensional (2D) information to detect people. That is, only the visual

information is utilised without any depth information. There has been increasing interest

in studying ways of acknowledging depth-of-field information for more robust computer

vision applications. Some attempts use stereo cameras or a combination of depth-of-field

sensors with visual optics to improve the recognition accuracy of objects.
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2.6 Object Recognition using Depth of Field

The appearance of most objects in real scenes changes with respect to the view per-

spective. Hence generic object detection methods struggle discovering objects from 2D

images. Various methods have been established for considering the three-dimensional

appearance of objects in scenes [31, 32, 33]. Toru et al [6] used stereo cameras for ex-

tracting the foreground regions of objects in scenes. With the depth information, they

could evaluate the size of the required detection window without using scale-down image

pyramids and sliding windows. This saves time by restricting image regions that need

to be scanned and reduces chances for false-positive classifications.

Based on Wu et al’s [34] work on using stereo cameras for segmenting the faces of

people for fast detection, Toru et al [6] used the same approach to segment people

from the background scene. The focal length and position of two cameras are used to

estimate the distance of people from the cameras. This segmentation is done using stereo

subtraction and background subtraction, where the disparities of pixels from the two

cameras are matched to find foreground objects. Initially, background images are taken

as reference points for subtracting the background on images taken at later stages. The

background reference images are updated periodically to handle the changes in daytime

illumination. Considering that the cameras are placed at different positions and viewing

angles, disparities are also apparent for pixels of stationery foreground objects.

To handle cases when people overlap, Wu et al [34] projected the pixels of foreground

objects to a 3D space in order to separate different people in scenes automatically. The

points are further projected from the x, y, z scene to a 2D plane to provide an upright

vertical view of the scene. This plane is then divided into 5×5 blocks. A histogram was

computed for each block to threshold histograms that contain few pixels [Figure 2.5].

Mean Shift Clustering (MSC) was used to estimate the number of foreground objects

on the scene. The MSC clusters neighbouring pixels on the vertical view so that oc-

cluded and overlapping people are apparent and treated separately [Figure 2.5] . Only

the extracted regions were used for the final stage classification of Joint HOG features

based on [35]. Joint HOG features are known to consider the co-occurrence of sym-

metric shapes. The weak and strong classifiers were trained with the large NICTA [9]

person dataset. When tested against the reference system [35], Wu et al [34] obtained

remarkable performance gains due to the consideration of partial occlusion.

The reviewed systems so far only work on upright people. Hence their corresponding

descriptor windows were always vertical boxes. Due to the limitations of HOG features,

rotational invariance is still yet to be fully realised on human detection. Section 2.7

discusses one of rotational invariance attempts for human detection [5, 13].
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Figure 2.5: Range segmentation used for handling overlapping people in images [6].
The 3D points of the foreground regions are shown in (a). Then (b) is the projection
of (a) onto a 2D plan. The result of applying Mean Shift Clustering for segmenting

overlapping people is shown in (c).

2.7 Rotational Invariance HOGs

The common drawback for HOG based human detection systems is the lack of outright

support the rotational invariant detection. The standard HOG based detector is trained

using a vertical rectangle bounding box of 128× 64. The positive samples only contain

HOG features of upright people. This makes it impossible to cater for different camera

tilt and poses of people. People are likely to be photographed from slightly skewed

angles due to several factors: the slope of the ground, camera lenses and position.

Wang Li et al [5] proposed rotational invariance support for HOG based human detection

systems, through mapping pixels from cartesian coordinates to polar coordinates. Their

algorithm first transforms the rotation of the object into circular sectors and thereafter

mitigates the effects caused by the rotation using a reverse mapping method. This is

based on a hypothesised human angle that is obtained with a double-scale estimation

method. Therefore, the degree of a person’s tilt is first evaluated before applying the

pre-processing step that corrects this tilt to a vertical pose. After this process, polar

HOG features are then extracted to train an SVM classifier.

The polar-coordinates-mapping starts with a w×w square region of interest [Figure 2.6].

From this ROI, a circular region with a diameter equal to the width of the square is

extracted. This circular region is then divided into sectors of radius r = w and 30◦

angles. This totals into 12 sectors that cover the entire 360◦ circular region. Each sector

is then decided into 3 sub-sectors of equal radiuses of r/3. For every point (x, y) in the

cartesian plane, a cyclic translation is applied to map it to its polar coordinate position

(ρ, θ), where the point (xc, yc) is the location of the polar origin in the cartesian plane,

ρ =
√

(x− xc)2 + (y − yc)2 and θ = arctan(y − yc/x− xc). The cyclic translation maps

the cartesian circular detection region into a rectangle that eliminates the rotation of a

person by representing it with a horizontal position. A problem arises due to smaller

inner sub-sectors, as the pixels from the circular region cannot be enough to fill the new
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rectangular space. The author mitigated this problem by using bilinear interpolation to

generate values for the missing pixels based on their neighbouring pixels.

Figure 2.6: The results of mapping x, y cartesian coordintes to a polar coordinates
(ρ, θ) plane [5].

To increase the accuracy of the algorithm, Li Chengdong et al [5] proposed a double-

scale direction estimation algorithm to reinforce the statistical data from the oriented-

gradients obtained from ROIs. They discovered that one of local maxima points on the

histogram of all oriented-gradients represents the direction of the person from head to

foot. This occurs if and only if the person is central to the round detection window. To

find the correct candidate direction, they iterated across all local maxima points and

stored them in an array of candidate directions. These were used for producing a Gaus-

sian weight distribution for the ROI windows to suppress the background information,

a trait that is similar to using infrared imaging for suppressing background edge infor-

mation. Nevertheless, this approach from Li Chengdong et al [5] motivated the main

objective of this thesis since they improved the accuracy and quality of the extracted

HOG features.

The candidate directions were also used to correct the rotation of people [Figure 2.7].

So given one of the candidate direction angles, a Gaussian weight distribution is given

by this function:

e−

(
xcos(ϑ)−ycos(ϑ)

d

)2
+

(
(ycos(ϑ)−xcos(ϑ)

2d

)2

4σ2 , (2.1)

where x, y are the coordinates of the cartesian plane, d is the axis length of the square

window, ϑ is the candidate direction angle used and σ is the rate of decay of the weights.

The figure from Li Chengdong et al’s [5] publication, shows the weight distribution of a

candidate direction of 45◦ and its resultant ρ− θ map [Figure 2.7]. Polar-HOG features

are extracted using the weights of this map and the feature extraction process is similar

to the methods used on standard HOG features. At this stage, the images are ready for

training SVMs for classification. The underlying success of this method is in its ability

to cancel the rotation of any person as long as their groin is placed near the origin of

the circular extracted region.
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Due to the time scale of this research, applying rotational invariant HOG features will

not be consider. But the reported results on the significance of using IIR images on

upright HOG features will strongly apply to polar HOG features since they also depend

on edge information from gradient images.

Figure 2.7: The Gaussian weight distribution provides more weighting to foreground
regions that are likely to contain people and less weight to the background regions of

the image [5].

2.8 Other descriptor features similar to HOGs

Since humans have identical structural body shapes, Yang et al [36] presented a novel

feature set that was inspired by the HOG features to compute Histograms of Silhouette

Direction Code (HSD) for human detection. The features differed from [1] because they

collected directional code histograms instead of oriented edge gradients. The directional

codes seem to further quantify the features into smaller value sets than the actual angles

used in HOGs. This could be one of the reasons why they achieved better results with

HSD features than HOG features. Furthermore, they proposed a background subtraction

method that combines colour and intensity differences to extract the features of moving

people more accurately. Similarly, Mitsui et al [35] combined joint HOG features to

improve the detection accuracy. Ada-Boosting was used to combine multiple HOG

features with spatiotemporal features of moving pedestrians. These are some of the

methods that could benefit from the reduction of edge-noise clutter in images.

2.9 Detection and Localisation

Finding the exact location that contains a person in large images is challenging. After

training a classifier that can predict the presence of people in images, most researchers

often rely on sliding windows to find people on large images. As seen with standard

SVMs on HOGs detectors, sliding windows are extremely time-consuming, especially

on single-threaded processing units. The problem of finding a region of interest (ROI)

through shifting a sliding classifier is bounded by
⊙

(m × n × m×n
Sw×Sh × L) complexity,

where n and m are the width and height of the image, Sw and Sh are the width and
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height of the sliding window and L is the number of times the original image is scaled

down to cater for the scale invariances of people.

While background subtraction methods can segment moving targets from a sequence of

images much faster than sliding windows, but they only work well with video footage

that is captured from a stationary platform [37]. Given a sequence of images, back-

ground subtraction methods analyse a group of neighbouring pixels that changed from

the previous images. While this can be efficient for detecting moving people, useful

autonomous applications should detect both stationary and moving targets. For human

detection, further operations are required to recognise background-subtracted objects

because moving objects can be anything in natural scenes. This is how the problem of

detecting people in static images arises. Therefore, this research is still applicable even

if background subtraction can be employed to quickly find moving objects.

Sheik et al. [38] presented an effective background subtraction method for free moving

cameras. The authors leveraged the fact that all trajectories corresponding to static ar-

eas in the scene lie in a three-dimensional subspace to discriminate between background

and foreground regions in the scene.

Recently, Toro Obokuta et al. [6] proposed a fast human detection method that uses

stereo triangulation for searching foreground objects at run-time. Depth of field infor-

mation was computed from stereo cameras, to facilitate the discrimination of foreground

objects from the background setting. Therefore, the number of image regions to scan is

reduced and the size of the detection window is obtainable without resizing the image

into a dense scale-pyramid. This approach gradually reduces the processing time and

the possibility of false-positive classifications. In addition to the benefits brought by

the depth information, they were able to apply a computationally demanding human

detection algorithm that classifies segmented local features. Implementing the aforemen-

tioned background subtraction and stereo triangulation methods is beyond the scope of

this work, the methods were discussed in the interest of related work.

2.10 Convolutional Neural Networks

The CNNs have been highly successful in image recognition tasks during the past few

years [26]. Krizhevsky [26] showed the power of CNNs with a 1000 multi-class recognition

project, where CNNs were trained to classify a large number of different objects ranging

from household objects, vehicles, different animals etc.
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Although SVMs are commonly used for human detection research, Fukui et al [39]

successfully applied CNNs for pedestrian detection in 2015. The authors improved the

accuracy and generalisation of standard CNNs by implementing a Random Dropout

method during the training process, and an Ensemble Inference Network (EIN) for the

classification process. Fukui obtained a performance gain of 10.5% than conventional

CNNs. Fukui used the Caltech pedestrian dataset [40] to train the system and augmented

the number of positive samples from the original 4000 samples to 101 000 through

shifting, rotation, mirroring and scaling.

The dominance of CNNs can be attributed to the fact that the convolutional layers

reduce the traditional overfitting requirements of most classifiers and allow objects to

be recognised regardless of slight tilt and transformation. With a further bounding

box regression step, the CNNs can predict both the bounding boxes of the detected

objects and their classes. Region-based CNNs like the regions with convolutional neural

networks (R-CNNs), the single-shot detector (SSD) and you only look once (YOLO)

models can automatically predict the bounding boxes of the detected objects [41]. This

eliminates the need for sliding windows and other alternative localisation methods.

Due to above evidence of effective object-recognition by CNNs, a CNNs classifier will

be trained with raw grayscale images instead of HOG features to obtain relative per-

formance evaluation against two shallow learning classifiers (SVMs and ELMs) in the

current work. The two shallow learning classifiers will be trained with the standard

HOG features from [1]. The datasets used in this work are not suitable to train a CNN

with region-proposal layers, hence a standard CNN classifier was used instead, how-

ever, a pre-trained region-based CNN detector will be showcased to show contrast from

sliding-window detectors.

Marcus [42] argues that deep learning models should be supplemented with other tech-

niques to reach artificial general intelligence. Hence, the current research studies whether

better feature acquisition (with reduced noise) aids the characterisation of non-rigid

shapes in images by classifiers.

The CNNs also struggle to find relatively small objects in images and people wearing

clothes that blend with the background [39, 42]. Moreover, even with transfer learning,

large datasets are required to successfully train CNNs. CNN architectures may have

millions of parameters, the performance of CNNs is dependent on the method in which

initial parameters are tuned, therefore the amount of work required to train them is

computationally expensive.
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2.11 Background on Classifiers

This section presents a concise explanation of the different classifiers used in this re-

search. The theories behind the classifiers used in this research are vital for understand-

ing how classifiers can be trained to discriminate structures that symbolise objects in

images. Initially, a background on support vector machines (SVMs) is provided in Sec-

tion 2.11.1, this is followed by the background of extreme learning machines (ELMs) in

Section 2.11.4 and convolutional neural networks (CNNs) in Section 2.11.5. Considering

that neural networks (NNs) form the fundamental behaviour of ELMs and CNNs, a

summarised discussion of feedforward neural networks is also provided. Section 2.11.6

discusses how the performance of binary classifiers can be characterised.

2.11.1 The Support Vector Machines

The SVMs are supervised learning models that are widely used for binary classifications

and regression analysis. The original SVM was introduced by Vladimir Vapnik and

Alexey Chervonenkis in 1963 [14]. The original SVMs used linear separation planes

for binary classification. Modern versions now support non linear decision functions

for classification. These were first introduced in the early 1990s by Vladimir Vapnik,

Bernhard Boser and Isabelle M. Guyon [43].

Linear SVMs map labelled input examples in linear vector form as points onto a higher

dimensional space Z. Mapping points into higher dimensional spaces is an attempt

to make them separable by their class labels. Therefore, a support vector machine

constructs a hyperplane that expands the margin between distinctively labelled points.

The hyperplane is simply a linear decision function that projects a maximum margin

between the two data classes using the so-called support vectors [Figure 2.8]. This

means support vectors are data points closest to the hyperplane (the decision surface).

Consequently, these are the most difficult points to classify as they form the margin

between the hyperplane and the nearest data points on both positive and negative

samples sides.

In Figure 2.9, the red squares are the positive samples and the blue circles are negative.

The H0 and H1 vectors are the marginal hyperplanes formed by the support vectors.

The vector H0 between the marginal hyperplanes is called the optimal hyperplane. The

length of the margin between the two classes and the optimal hyperplane is determined

by the number of input training vectors (the support vectors). These support vectors

are trained with the training samples to optimise the maximum distance from the hy-

perplane to the nearest data points in both classification groups, resulting in an optimal
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Figure 2.8: An illustration of the support vector machine model [44].

hyperplane. The larger the margin, the lower the generalisation error becomes. A

formal definition of linear SVMs is described below, where the hyperplanes and their

corresponding optimisation algorithm are defined.

Figure 2.9: The margins between the hyperplanes H1, H0 and H2 .

Given a labelled training set T equal to 〈(y1, x1), (y2, x2), ...(yn, xn)〉 that consists of

pairs (yi, xi), where yi is the class label (that is either 1 or -1) of the corresponding ith

input example xi, an SVM classifier can be trained by finding a hyperplane H0 with a

maximum margin that separates all examples xj with yj = 1 from all examples xk with

yk = −1 , where j 6= k.

The dataset T is proven to be linearly separable if there exists a vector w̃ and a scaler

b such that the following inequalities are true for all samples in the training set:
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~wT~xi + b ≥ +1 when y = +1, (2.2)

~wT~xi + b ≤ −1 when y = −1. (2.3)

The two inequalities can be combined to yi(~w
T ~xi + b) ≥ 1 for all 1 ≤ i ≤ n. The vectors

H1 and H2 represent the boundary margins formed by the support vectors [Figure 2.9].

Between the two boundaries, lies the unique vector H0 which maximises the margin

between H1 and H2 to divide the different training samples. This vector is called the

optimal hyperplane, it determines the direction of ~w/||~w|| and is defined as:

~wT ~xi + b = 0 for 1 ≤ i ≤ n. (2.4)

The distance between the optimal hyperplane and the nearest example xi from each

group (negative and positive samples) has to be maximised. Therefore, the problem at

hand is to maximise the margin such that d1 + d2 is maximal [Figure 2.9]. This is the

sum of the distance between the optimal hyperplane and the positive sample’s margin

d1 and the distance from the optimal hyperplane to the negative sample’s margin d2.

Recall that by using the projection of any vector from the point P (x0, y0) to the line

ax+ by + c, the distance from point to the line can be computed as:

|ax0 + bx0 + c|
|a2 + b2|

a,b,c are constants, (2.5)

Therefore the distant from the positive support vectors xi to the optimal hyperplane is

=
|~w~x+ b|
||~w||

, (2.6)

=
|1|
||~w||

since ~w~x+ b ≥ 1. (2.7)

This follows that the distance from the negative support vector hyperplane to the optimal

hyperplane is also |1|
||~w|| . Thus the combined distance between the negative support-

vector-hyperplane and the positive support-vector-hyperplane is |2|
||~w|| = 2√

w2
= 2√

~w·~w
.

Therefore in order to maximise the distance, we must minimise ~w · ~w such that no input
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points lie between the marginal hyperplanes. This becomes a constrained optimisation

problem for a quadratic function where the goal is to:

minimise (~w)2 subject to the inequality constraint yi(~w
T ~xi + b) ≥ 1 for all 1 ≤ i ≤ n.

Thus if we let f(x) = (~w)2 and g(x) = yi(~w
T ~xi + b) − 1, then the problem can be

solved using Lagrange Multipliers. To do so, both f(x) and g(x) should have continuous

first derivatives and a Lagrange multiplier variable λ is denoted to define the following

Lagrange function:

L (x, λ) = f(x)−
n∑
i

λig(x), (2.8)

= (~w)2 −
n∑
i

λi[yi(~w
T ~xi + b)− 1], (2.9)

≈ 1

2
(~w)2 −

n∑
i

λi[yi(~w
T ~xi + b)− 1]. (2.10)

where λ = 〈λ1, λ1, , ..., λn〉 is a vector of non negative Lagrange Multipliers and corre-

sponds to the i’th constraint. The half in 1
2(~w)2 simplifies the differentiation of L (x, λ)

with respect to ~w. It is proven that the solution to this optimisation problem is to

find the saddle point of the Lagrangian for the 2n+ 1 dimensional space of λ, ~w and b,

where the minimum is evaluated with respect to ~w and b. The saddle point is where the

derivatives of L (x, λ) are equal to zero:

∂L

∂w
= ~w −

n∑
i

λiyi ~xi = 0, (2.11)

∂L

∂b
=

n∑
i

λiyi = 0. (2.12)

This implies that, the minimum is where ~w =
∑n

i λiyi ~xi. We have shown that the vector

of weights ~w is a linear combination of λ, ~x and the labels yi. To solve for the values of

λ we substitute the determined equation for w into the equation (3.9) to eliminate the

dependency of ~w. And also substitute b for
∑n

i λiyi. Thus equation (3.9) becomes:

L =
1

2
(

n∑
i

λiyi ~xi)
2 −

n∑
i

λi[yi((

n∑
j

λjyj ~xj)
T ~xi + (

n∑
i

λiyi))− 1]. (2.13)
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From this we can derive the Dual Lagrangian Problem which allows us to find the

solution of equation (3.13) by just computing the inner products of xi and xj . This

method is also useful for computing non-linearly separable classification classes. The

Dual Problem becomes:

LD =
n∑
i

λi −
1

2

n∑
i

n∑
j

λiλjyiyj(xixj), for i 6= j. (2.14)

From this, we can solve for λ to find the weights ~w by differentiating the Dual Lagrangian

Problem with respect to λ and setting it to zero for the saddle points [Equation 2.15].

It is known that the λs become 0 for all the λs that correspond to non-support vectors

and non zero constants C to all the λs that correspond to the support vectors. Thus:

λi =

{
0 if ~xi is not a support vector

0 ≤ c ≤ C if ~xi is a support vector

}
for 0 ≤ λi ≤ C . (2.15)

The weights of ~w that ensure the maximum margin between the separating hyperplanes

can now be calculated using:

~w =
n∑
i

λiyi ~xi (2.16)

Finally, after training the support vector machine and deriving the Lagrange multipliers

to find the values for the ~w, an arbitrary input value xa can be classified by evaluating

the sign of the function:

SVM(xa) = sign(~wxTa + b), (2.17)

= (

n∑
i

(λiyix̃i · xT
a ) + b) (2.18)

In simple terms, the linear combination of w̃ an xa is used to predict the value of ya, a

trait similar to neural networks (NNs).
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2.11.2 Non linear SVM

At times, the input data examples can be difficult to separate with a linear hyperplane.

In such cases, the original data is mapped to a higher dimensional space in order to

separate the data examples. In Figure 2.10, the points on the 1-dimensional line cannot

be separable by using a straight line. Whereas, the same input points can be separable

when mapped to a 2-dimensional space i.e x :→ x2 [See the parabola at the bottom of

Figure 2.10]. For non-linear classifications, a kernel trick is applied to the SVM. Which

is similar to the original SVM classifier but the dot products on the dual Lagrange

problems are replaced with a non-linear kernel function K. So equation Equation 2.14

becomes:

LD =
n∑
i

λi −
1

2

n∑
i

n∑
j

λiλjyiyjK(xi, xj) for i 6= j. (2.19)

Where K is function that maps x to a higher dimensional space. Some of the commonly

used kernel functions are: polynomial (homogeneous), Gaussian radial basis function

(RBF) and a hyperbolic tangent function [Table 2.1].

Figure 2.10: A basic example on how non-separable input points in a lower dimen-
sional space can be mapped to a higher dimensional (in this case from 1D to 2D) space

to make them separable.

The SVMs have been noted to have common issues. The fist is the fact that they

are mostly suitable for binary classification tasks. However, there are various methods

for reducing a multi-classification problem to binary classification to perform multi-

classification tasks. Another issue arises from the dependency of higher-dimensional
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Table 2.1: Typical kernels functions of the SVM classifier.

function name Example

Polynomial k(~x, ~x) = (~x, ~x)d

Gaussian radial basis function k(~x, ~x) = exp(−γ||~xi · ~xj ||2)
for γ ≥ 0

Hyperbolic tangent function k(~x, ~x) = tanh(~xi · ~xj + 1)

feature spaces, which increases the generalization error of the SVMs. Fortunately, this

can be mitigated by using a sufficiently large training set. Of which, makes the SVMs

to still perform well.

The SVMs can achieve high classification rates when trained well. Yu-Dong Cai et al

[45] obtained detection rates that were over 90% when predicting Membrane Protein

types. Cuingnet et al. [46] achieved a high classification rate with SVMs when detect-

ing the differences of group levels in magnetic resonance imaging (MRI) brain scans.

Support vector machines are also highly preferred for text recognition, Datong Chen et

al presented a text-extraction algorithm that selects text from complex backgrounds in

images and applied SVMs to recognise the text at an identification rate of 98% [47].

Due to the possible high classification results, Dalal et al [1] also used SVMs when they

presented the original HOG-classifier.

2.11.3 Neural Networks

Neural networks are mathematical models that can approximate functions that depend

on large input data. Their ability to learn from known observations have attracted a

lot of attention from researchers [48, 49, 50]. The neural networks were inspired by

the biological networks of neurons in animal brains. The term network refers to the

interconnections of nodes between adjacent layers. The research behind neural networks

dates back to 1943, Warren S. McCulloch [51] was the first to describe the conceptual

model of neural networks. This lead to further research by Rosenblatt [52], who was first

to model the basic function of a perceptron. By then neural networks had limitations to

the problems they could solve, they were unable to solve simple logical operations such

as XOR until the introduction of backpropagation by Paul Werbos [48].

Similarly to biological neurons, nodes are the individual elements of the neural network.

They simply read input, processes it and generate an output [Figure 2.11]. The connec-

tions between nodes have adaptive weights that are optimised by learning algorithms.

A layer is a sub-ground network or a list of nodes that pass information to other nodes
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when activated. For feed-forward neural networks, information is passed in a single di-

rection from input layers, through hidden layers until it reaches the output nodes. The

input layer normally takes input-data in a vector form. The network’s weights are ran-

domly chosen during the network’s initial state. For each neuron, the linear combination

of input data and their weights are passed to an activation function [Figure 2.11]. A

node can have an arbitrary number of inputs. On fully connected neural networks, each

neuron has input from all nodes in the previous layer [Figure 2.12].

Figure 2.11: The perceptron, a basic form of a neural network [53].

For the perceptron to predict desired values, supervised training is applied. Which

means, the perceptron is given input data to which labels are known. The predictions

are then analysed to evaluate the error rate. The perceptron learns from the previous

classification mistakes by adjusting the input weights according to the error rate, this

process is called backpropagation. A perceptron is formally defined as follows, given a

set of N observations x = 〈x1, x2, ...., xn〉 of dimension L, a function of a neuron H(x)

is defined as:

H(x) =

L∑
i

g(wix + bi). (2.20)

where g(x) is the activation function and bi is the bias to the i’th hidden layer. The

activation function g(x) can be a sigmoid functions, radial basis, sine, cosine or tan

etc. The vector w = 〈w1, w2, ..., wn〉 contains the input weights of the neuron. The

sigmoid function g(wx + bi) = 1

1+expwT x
is often preferred as the activation function.

Traditionally, gradient descent algorithms are used to train single layer feed-forward

neural networks. Gradient descent algorithms minimise the classification error through

optimisation techniques. That is, if T = 〈t1, t2, ...., tn〉 is the set of known labels for N

observations, a perceptron is trained by finding the w such that



Chapter 2 Literature Review 33

| H(xi)− T | = argwmin |
L∑
i

g(wix + bi)− T | . (2.21)

the local minimum of the function | H(xi)− T | leads to the optimal weights w for the

prediction performance of the perceptron. Although a single perceptron can solve a series

of linearly separable problems. The power of neural networks comes from connecting a

sufficiently large number of perceptrons to work together. A network of perceptrons can

solve non-linear classifications and other intelligent tasks.

Figure 2.12: A simple neural network structure with 3 layers [54].

2.11.4 Extreme Learning Machines

The neural networks have dominated machine learning and data analysis applications for

some time. They have been criticised for requiring long periods of time to train. Huang

et al [49] presented a new variant of feed-forward neural networks called ELMs. The

ELMs can be trained faster than traditional neural networks. The weights between the

hidden nodes are randomly selected and never updated. The weights from the hidden

layer to the output layer are learned in a single step using activation functions. To

achieve this, the activation function must be differentiable on all intervals in the set of

real numbers R. Huang et al [49] presented a theorem that proves for any given training

set there exists an ELM that gives a minimum training error with hidden nodes that

are not more than the actual number of distinct training samples.
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Unlike traditional neural networks, Huang et al [49] proved that a neural network can be

trained in a single step without iteratively tuning the weights of hidden neurons. They

showed that the initial randomisation of hidden nodes is sufficient if you train the hidden

layers output weights using a non-linear mapping function. Thus the ELM’s principle

is, the training process of the output weights of the hidden layer should be independent

of the weights of the inner hidden layer. Furthermore, the norm of these output weights

should be as small as possible, to maintain the generalisation capabilities of the ELMs.

The biases are traditionally applied to the output hidden nodes, however, Huang et al

[55] proposed that the output layer should be void of biases as they lead to sub-optimal

solutions.

Although ELMs are faster to train, they require a large number of hidden nodes than

conventional neural network since the hidden nodes in ELMs are generated randomly

[55]. Forwarding data on large networks can be slow for runtime applications. Quite

a large number of ideas have been published to address this problem [55, 56, 57]. An

incremental ELM (I-ELM) adds nodes dynamically during the training process to make

the hidden layer network more compact than the original ELMs. The nodes are added

to the network until the desired generalisation is achieved. The selection is based on the

contributions of nodes to the training performance.

With adaptive ELM (A-ELM) [56], the amount of the hidden nodes can change during

the training stage. This avoids the common requirement to restart the training process

to change the number of nodes. The A-ELMs apply an elastic method to improve

incremental learning whenever there is a change to the network. Due to the added

operational overhead, Zhang et al [56] used Map Reduce to speed up matrix calculations.

A two-stage ELM (TS-EML) that automatically determines the ideal size of the network

was proposed by Yuan Lan et al [57]. A termination criterion for the final prediction

error is initially set. This is followed by a ”forward selection” process that randomly

generates multiple groups of hidden nodes. Each time, the group with the highest

net contribution is selected and added to the network. This process terminates when

the network reaches converges to a minimum prediction error. The second stage does a

backward elimination task of removing insignificant nodes using the leave-one-out (LOO)

cross-validation technique. This completes the brief background on ELMs. The next

section looks at another variant of neural networks called convolutional neural networks.
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2.11.5 Convolutional Neural Networks

Convolutional neural networks are mostly applied for analyzing visual imagery because

they perceive visual information similarly to the visual cortex of animals. The biolog-

ical visual cortex can process overlapped visual information from two eyes to better

understand the 3-dimensional world. The connections of convolutional layers are organ-

ised in overlapping layouts to respond to overlapping tiling on visual information [58],

a trait similar to sliding descriptor windows. Thanks to the overlaps, shifts and space

invariances are handled automatically [Figure 2.13].

The capability of CNNs in perceiving image data lead to a large number of computer

vision applications [26, 58, 59]. Facebook uses CNNs for face recognition [59]. Vehicle

manufacturers use CNNs for autonomous feedback systems in smart vehicles. Pedestrian

detection and traffic-sign recognition tasks have become effective on some of the latest

smart vehicles [39].

Figure 2.13: Convolutional Neural network diagram [53].

Convolutional neural networks were first applied by Yann Le Cunn [58] in 1995. Yann

demonstrated the ability of CNNs with a handwritten character recognition task using

the famous LeNet 5. The idea was to eliminate the need for fully connected layers in the

initial stages of neural networks because fully connected layers often result in overfitting.

The initial layers were replaced with layers that learn the desired filters for characterising

the descriptive shapes of objects.

Moreover, fully connected networks require large amounts of memory when dealing with

high-resolution images. The convolutional layers force the extraction of local features

by restricting the connections of nodes from the previous layers because different types

of filters are computed by the convolutional layers.

After each convolutional layer, a sub-sampling layer performs the local averaging of the

weights and the subsampling of the feature maps. This reduces the resolution of the

feature maps. This is done to reduce that classifier’s sensitivity to scale and distortion.

The combination of convolutional and subsampling layers are repeated densely until
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their output can optimise the generalisation of a fully connected neural network or

other similar classifiers.

The structure of the convolutional neural network is designed to first map images into

sequences of feature maps. At the beginning of the network, separate neurons process

different portions of the image. The first layers handle the simple outer shapes of the

objects separately. The layers after extracting local complex shapes. Eventually, the last

convolutional layers, select the overall pictorial shapes that can distinguish the objects.

2.11.6 Characterising Performance

In binary classification tasks, the receiver operator characteristic (ROC) or precision and

recall (PR) curves are often used for comparing the performances of different algorithms.

The trend shifted away from simply presenting classification accuracies for validating

performance as they can be misleading [60].

While the ROC curve and PR curve share some properties, the ROC curve can show

highly optimistic evaluations of classifiers when the number of samples between the two

classes is largely skewed. This situation is common with most binary classification tasks

where one of the classes is unknown. For instance, when a distinctively definable object

has to be distinguished from other generic objects, the second class becomes random

background images. Thus in oftentimes, the number of background images should be

larger than the number of images with the known class to train classifiers effectively.

The databases used in this current research also possess this trait, as a result, the PR

analysis was selected for evaluating performance than the ROC.

To plot the PR graph, the precision is computed using the formula in Equation 2.22 and

Equation 2.23 is determined at varying thresholds of the classifier’s decision functions.

Decision functions assign a threshold to select rules for declaring samples to be positive

or negatives.

ρ =
TruePositives

TruePositives+ FalsePositives
, (2.22)

whereas the recall is calculated by taking the number of true positives and diving it by the

total number of positive samples on the scene, stated by the ground-truth information.

Therefore, the recall is,

γ =
TruePositives

TotalNumberOfPositives
. (2.23)
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In Figure 2.14, the two curves were plotted from the results of the same classifier.

The ROC curve simply compares true positives with true negatives. Whereas with PR

curves, they compare false positives with true positives to capture the effects of using

larger negative sets, this measures the robustness of classifiers. The goal of classifiers

on PR graphs is to reach the top right corner, whereas the goal on ROC graphs is to

reach the top left corner. Meaning, a good classifier would get a PR curve that has the

properties precision ≈ 1 and recall ≈ 1.

Figure 2.14: Typical examples of ROC and PR curves.

2.12 Summary

The reviewed literature shows how the research on human detection systems require

further experimental research, analysis and the review. To the best of our knowledge,

none of the research in literature has evaluated the significance of using infrared-based

human-datasets instead of colour images for human detection systems. Instead, more

effort is placed in tuning statistical learning classifiers rather than improving the quality

of acquired features. There is still a necessity to find better feature descriptors that

are robust in finding patterns of non-rigid objects. This research addresses this gap

by investigating whether image features can be improved by reducing the clutter of

unnecessary edges in gradient images.

In hopes of finding new ways of improving human detection, this research intends to

contribute to the research field by (1) producing a new infrared dataset (with annota-

tions), (2) evaluating the significance of using infrared images when extracting image

features of people, (3) test the application of shallow-learning and deep learning models
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and (4) providing further experimental research on image processing methods and the

classification of people in static images.

Compared to other hand-engineered features, the HOG features were selected due to

extensive use and promising results in the literature. The SVM classifier was selected

as a baseline to compare the performance of previous work and the other two classifiers

(ELMs and CNNs) used in this work. The SVMs and ELMs are faster to train, the

objective was to test the significance of using infrared samples on both shallow learning

classifiers and deeper convolutional neural network. Testing three different classifiers

provides findings that are sufficient to a limited extent to address the supposition of

this work. The following chapter presents the infrared dataset that was created for this

research.



Chapter 3

Infrared Dataset Creation

The lack of sufficiently large, labelled and high-resolution infrared human datasets led

to the creation of the SIGNI dataset for this research [7]. Existing infrared datasets

from the literature had low-resolution images which were mostly captured from elevated

platforms and longer distances. For instance, the people from [61, 62] are relatively small

and are represented with a low vertical resolution because the images were photographed

from long distances and aerial positions. These were some of the motives for creating a

new dataset with clearer and higher-resolution images.

The specifications of the SIGNI dataset and the infrared camera used for capturing sam-

ples are discussed in Section 3.1. Section 3.2 presents the region-of-interest extraction

tool and the ground-truth recording tool used in this research. Figure 3.1 shows a sam-

ple of large images that were used for extracting the regions of interests. Some of the

positive image samples from the SIGNI are shown in Figure 3.2 followed by some of the

negative images in Figure 3.3.

3.1 SIGNI Dataset

The SIGNI dataset was created for evaluating the significance of using infrared images

when extracting image features of people and includes images that can be used to train

supervised classifiers. The dataset also includes human detection testing scenarios with

ground-truth annotations and can be downloaded from [7].

Creating large datasets can be time-consuming. To speed up the process of creating the

IIR dataset, a tool for extracting ROI sub-images from large images was implemented.

The application includes an option for recording ground-truth information and provides

a graphical user interface that equips users with click and drag functionalities to select

39



Chapter 3 Infrared Dataset Creation 40

image regions that contain the desired samples. Further details of this tool and a link

to download it are available in Section 3.2.

The SIGNI dataset contains 5462 distinct negative samples and 1916 distinct positive

samples. The number of positive samples was doubled to 3832 by adding horizontal

reflections of the images. The negative infrared samples were extracted from the back-

ground images of the Infrared ASL Dataset [62]. Unlike the positive images, the back-

ground images consist of generic objects and vary considerably. When such cases occur,

the number of generic images is often set to be higher than the number of definable-class

(positive set) images to improve the effectiveness of the classifiers in detecting foreground

objects. The datasets used in this work also have this trait, as discussed in Section 4.1.

As a result, more background-images were selected for training the classifiers.

The dataset samples were created as follows: image sequences were extracted from

recorded videos to manually label and obtain the bounding boxes that contain people.

The coordinates of image-subregions with recognisable human beings were annotated

and stored in an extensible markup language (XML) tree. Each subregion was labelled

positive if it contains a recognisable human and negative otherwise. This process pro-

duced a new infrared human dataset named the SIGNI Human Dataset.

To the best of our knowledge, an alternative infrared dataset used by [63] was unavailable

online. Combining samples from this dataset with the SIGNI dataset may improve the

generalisation accuracy of classifiers. Images from [63] have a low resolution of 24× 54,

whereas, samples from the SIGNI dataset have a 64 × 128 dimension. A selection of

positive and negative samples from the SIGNI dataset are shown in Figures 3.2 and 3.3

respectively.

3.1.1 The Camera Used

The IIR footage was captured with the Xeneth Gobi-640-GigE camera shown in Fig-

ure 3.4. This camera is a non-cooled thermal camera that is capable of transferring

high-resolution infrared images through a GigE interface at 50 Hz. With a spectral-

range of 8µm to 14µm, this camera is capable of sensing low-temperature bodies (like

people) accurately.

This camera is ruggerized and suitable for industrial applications. The camera is reliable

for non-contact temperature measurements and offers high thermal resolution quality of

0.05 Celsius for accurate thermal analysis. Infrared cameras create images from infrared

radiations and show contrasts between warm and cold materials [Figure 3.1].
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Figure 3.1: Sample large images from the SIGNI dataset. The images were captured
in different environments and contain enough variance in the appearance of people.
Human subjects were captured during winter and summer, in different poses and wore

different clothes.



Chapter 3 Infrared Dataset Creation 42

Figure 3.2: Some of the positive samples from the SIGNI dataset.
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Figure 3.3: Some of the negative samples from the SIGNI dataset.
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Figure 3.4: The compact thermal camera used for capturing IIR samples [64].

3.2 ROI Extraction and Grouthtruth

The ROI extraction application was implemented to speed up the process of collecting

training samples from a large number of collected images. The application works as

follows, a user first defines the type of samples to load which can either be class names,

class indexes, positive or negative samples. Thereafter, the application looks up all

images in the given directory and stores their relative path information into a basic XML

tags. Through a graphical user interface, the user can then iterate through each image

and use the mouse-drag functionality to select ROIs they intend to extract. Multiple

ROIs can be extracted from the same image. The image coordinates of the extracted

ROIs are stored in a simple XML file for the validation of ground-truth information once

a statistical learning classifier has been trained. Since the size of people varies in images,

the extracted ROI’s resolution is snapped to a ratio of 2 : 1 for the height and width to

keep the correct scale of people when the images are resized to the 128× 64 resolution

required by the standard HOG feature extractor.

Unlike the common use of text files for storing annotation data, XML files were selected

for this work because they provide an architectural structure that is easier to read and

understand. Computers process data much easier when it is stored in memory, thus

looking up information in XML files becomes simpler. Unlike with text files, where the

operating system’s level code for reading files has to be executed rapidly.

The XML tree structure allows annotation data to be extended or modified to other

annotation formats. And most importantly, different tags can be used to describe dis-

crete images. This organises data more effectively, a trait useful for the verification of

stored information through XML schemas. A typical example of the XML files used in

this work is shown in Figure A.2 and the graphical user interface of the ROI extraction

application is shown in Figure 3.5. This tool was created with Python 2.7 and OpenCV.

The tool’s source-code and documentation are available from the link in [65].
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Figure 3.5: Graphical user interface for the ROI extraction tool

3.3 Ethics Clearance

The positive samples from the SIGNI dataset were captured from a noncontrolled back-

ground setting, where people were photographed anonymously from random viewing

angles. Since infrared images lack colour information and the textures that are useful

for identifying people, the University of the Witwatersrand provided permission and the

ethical clearance to capture the image samples for the SIGNI dataset. The clearance

letter is shown in Figure A.6.

None of the names or affiliations of the individuals from the image samples is mentioned.

The identity of people was not recorded nor published as part of the dataset.
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3.4 Summary

This chapter presented the details of the infrared SIGNI dataset. The rationale for

creating this dataset was discussed, also with the tools that were used for creating the

dataset. Some of the large images that were used for extracting the training samples

are shown in Figure 3.1 and some of the positive image samples from the SIGNI are

shown in Figure 3.2 followed by some of the negative images in Figure 3.3. The research

methodology of this work is presented in the next chapter.



Chapter 4

Research Methodology

This chapter presents the methods that were followed when carrying out the research.

Section 4.1 reviews the collection and selection of the pedestrian datasets used in this

research, this is followed by a detailed discussion on the feature extraction methods used

for producing meaningful information from the raw image pixels in Section 4.2. The

design and implementation of the classifiers is presented in Section 4.3, this includes

references to the libraries used. The chapter concludes by examining how the research

questions can be addressed and how the hypotheses can be tested [Section 4.4]. The

standard process for classifying images is shown in [Figure 4.1].

Figure 4.1: Image classification process.

4.1 Data Collection

Sufficiently large image datasets are required to train supervised learning classifiers.

Since large images can contain regions of the desired positive samples within large areas

of background information, the classifiers have to be trained to distinguish between back-

ground information and foreground information. Therefore, images that contain people

47



Chapter 4 Research Methodology 48

and the randomly generated background images which some were cluttered scenes were

collected. Unlike positive foreground samples, negative samples can be easily extracted

from significantly small datasets automatically, to produce way more negative samples

than positive samples. As a result, the common imbalance between negative and posi-

tive samples should be handled with care. In this work, the number of negative samples

was restricted at a reasonable size that is less than three times the number of positive

samples to avoid biases.

To generate negative colour samples, image subregions of size 128× 64 were iteratively

cropped from the large background images of the INRIA training dataset to extract

approximately 15 000 negative subregions. The negative samples were cropped without

any overlap to keep them discrete. The background images were natural scenes that

contained anything except people. The images had landscapes, mountains, rivers, plants,

animals and vehicles etc.

A similar approach was followed when generating 5462 negative infrared images. Most

of the positive samples were captured from a noncontrolled background setting, where

people were captured anonymously from random viewing angles. For the colour images,

three publicly available datasets were collected online, the INRIA [1], MIT [66] and

NICTA [9] human datasets. With the IIR images, a new dataset was created as part

of this study [See Chapter 3]. The images were extracted from recorded video footages,

captured at two different settings with a high frequency of pedestrians. Further details

of datasets are shown in Table 4.1 and Table 4.2.

Table 4.1: Visual Datasets sample count.

Visual Datasets Positives Samples Negatives Samples

MIT Pedestrian Dataset 924 18000

INRIA Pedestrian Dataset 3610 18000

NICTIA Pedestrian Dataset 15000 18000

Table 4.2: IIR Dataset sample count.

IIR Dataset Positives Samples Negatives Samples

SIGNI Human Dataset 3832 5462

When considering the number of positive samples alone, the SIGNI dataset is approxi-

mately the same size as the INRIA dataset that has 1805 distinct positive samples [See

Section 3.1]. Comparing classifiers that are trained with the SIGNI dataset to classi-

fiers trained with the INRIA dataset becomes ideal. During the experiments, the SIGNI

dataset was tested against the INRIA [8] used by Dalal et al [1] for the original HOG hu-

man detector, and a smaller subset of the NICTA dataset that was reduced to the same
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size as the other dataset [9]. The MIT pedestrian dataset was only used for validating

the hyperparameters of the classifiers before training the final candidate-classifiers used

for this work.

If larger datasets are required, then data augmentation may be necessary to virtually

increase the number of positive samples on the smaller datasets to match the larger

NICTA dataset. This can be achieved by augmenting each sample with 8 more repre-

sentations through scaling, shear and slight translations to produce approximately 15000

images.

Data Selection:

On each dataset, eighty percent of the samples were randomly selected for training and

validating the classifiers and twenty percent were reserved for testing the classification

performance. About 100 unseen images were used for evaluating the ground-truth per-

formance of the sliding window detector. The number of images used for ground-truth

validation was kept small to regenerate experiments at reasonable times because apply-

ing a sliding window mechanism with scale-pyramids on large images of 640 × 480 can

consume a great amount of time.

4.1.1 Data preprocessing

In this research, image pre-processing is referred to as the operations done on images

prior to their use. On each extracted region of interest, horizontal and vertical edge

extraction filters were applied to produce the magnitudes of the gradient images. This

was followed by a HOG feature extraction step described in Section 4.2. Since data may

contain duplicates, noise clutter, inconsistencies and distortions, the mean of the training

set was computed and subtracted from all training and testing samples to centralise the

image-feature. Traditionally, centralising datasets avoids the over-fitting requirement

from most classifiers.

4.2 HOG feature extraction

The fundamental idea behind the histogram of oriented gradients is that the basic shape

of objects can be described using its contour edges and that the intensity information that

makes up these edges can be quantized to fewer values by distributing their frequencies

on histograms. For this work, a HOG feature extractor was manually built similarly to

the state of the art human detection system that was first presented by Dalal et al [1].



Chapter 4 Research Methodology 50

The HOG feature extractor module converts images to grids of HOG cells. This is done

as follows: for each pixel the gradient vectors are calculated by taking the difference

of the vertical and horizontal neighbouring pixels. With the example in Figure 4.2,

the gradient vector on the centre pixel will be calculated as ~v = 〈x2 − x1, y2 − y1〉 =

〈113−35, 75−45〉 = 〈78, 30〉. Letting Dx and Dy be single-vector filters and the original

image be I, the horizontal and vertical gradient images Ix and Iy respectively can be

computed as Ix = I ∗Dx and Iy = I ∗Dy, where Dx = 〈−1, 0, 1〉 and Dy = 〈1, 0,−1〉T .

Therefore, the magnitude of the gradients image is M = |〈Ix, Iy〉| =
√
I2x + I2y . Thus

in Figure 4.2, the centre pixel’s value from the magnitude of the gradients image is

M =
√

782 + 302 . The image illustrations for each of these variables is shown in

Figure 4.3.

Figure 4.2: The neighbouring pixel values used for computing the centre pixel’s gra-
dient vector and magnitude value.

Figure 4.3: The horizontal gradient Ix (1st), vertical gradient Iy (2nd), magnitude of
gradients M (3rd) and the cell division of the magnitude of gradients image (4th).

After computing the magnitudes of gradients for all pixels, depending on the applications,

there exist rectangular (R-HOG) bins or circular (C-HOG) bins such that the shape

information of objects can be characterised. Dalal et al [1] obtained similar performances

from both bin types. Consequently, the rectangular bins were used in this work for

simplicity and easier implementation. With R-HOGs, the image is normally divided

into 8 × 8 pixel cells where the corresponding nine-bin histograms are created for each
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cell. The histograms represent the frequency of the magnitudes of the gradient vectors

within the cells.

A split partial-contribution between neighbouring bins is considered based on each pixel’s

gradient-vector angle. This depends on the centering of the bins which are traditionally

centred at {10, 30, 50, ..170}. For instance, if a vector angle of some pixel is 45◦ then

1/4 of the magnitude is added to the bin centred at 30◦ and about 3/4 is added to the

bin centred at 50◦. An illustration of a histogram representing a single cell is shown in

Figure 4.4. Once all histograms are created, they are normalised based on a 4× 4 cell-

block that slides through the entire image. Except for the cells on the edges, inner cells

are normalised more than once since the window is slid per cell-block. Normalisation

is done by putting four histograms into arrays of length 36, this equates to the number

of values in four histograms. The purpose of the normalisation is to make histograms

invariant to the varying contrast in images [1], this step completes the feature extraction

process.

Traditional HOG based pedestrian classifiers are trained with a collection of 64 × 128

resolution images. This work followed the same approach, as image samples were con-

verted into the same resolution without affecting their scale proportions. The size of the

ROIs remained the same for both IIR and visual images, thus a HOG feature matrix for

a single ROI had a size of 16× 8× 9 since 8× 8 image cells and 9 bin histograms were

used. These matrices were then reshaped to 1× 1152 feature vectors. At this stage the

features are ready to be used to train a machine learning classifier.

Once the classifiers are trained, human detection can be performed on larger images of

any resolutions by applying a 64 × 128 sliding detection-window, where the detection

window is used as a descriptor on all image sub-regions where the sliding window halts.

Thus on each new sliding window position, the classifier predicts whether the sub-region

contains a person or not. To deal with the scale invariance of people, the resolution of

the detection window is kept constant and the input image is scaled down by a constant

factor on every completed convolution, the scaling repeats until the large image’s size is

less than or equal to the detection window.

Once the HOG feature extraction method was implemented, the next task was to im-

plement the required classifiers to conduct the necessary experiments.
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Figure 4.4: A typical example of a histogram of oriented gradients for a regular 8
pixel resolution cell.

4.3 Implementation of Classifiers

This section covers the design and implementation of the classifiers and brief code ref-

erences to the library used to implement them to allow this research to be reproducible.

4.3.1 SVM Classifier on HOG Features

The SVMs can perform non-linear classification by mapping data into a higher de-

gree polynomial space to improve the performance. For the current work, the SVM

classifier was programmed with Microsoft Visual C++ 2010 programming environment

and OpenCV’s version 2.4.8 library which inherits tools from the common LibSVM li-

brary. The standard HOG feature extractor was developed from first principles with the

OpenCV library and this was based on the work by Dalal et al [1]. Training the SVM

classifier for binary classification was done as follows:

Given a vector containing the labels of samples and their corresponding training samples

stored in OpenCV’s matrix datatypes cv:Mat, one can create an SVM instance of type

CvSVM that can be trained using the function CvSVM::train(TrainingData, Labels, ...,

params), where the params are options that specify the type of SVM to train, the SVM

kernel to use and also the criteria to limit the classifier’s maximum training iterations.

The OpenCV library supports most common SVM kernels. The linear, polynomial and

radial basis function (RBF) kernels were tested in this work. The sigmoid kernel function

and other user-defined custom functions can also be used as kernels. The following code

snippet shows how to typically set parameters for the SVMs structure.

In this case, the SVM type CvSVM::C SVC caters for n classifications (n ≥ 2) and

allows imperfect separations of labelled classes with the penalty multiplier c for out-

liers. Other SVM types include (but not limited to) CvSVM::ONE CLASS and the
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CvSVM::EPS SVR. The former does distribution estimation to build a boundary that

separates a single class from the rest of the feature space, where all training data is from

a single class. The latter is called Support Vector Regression (SVR), this model requires

the distance between feature vectors and the hyperplane to be less than some constant

p and similarly to C SV C, the penalty multiplier c for outliers is also used. With the

penalty multiplier, class weights can be assigned to affect the misclassification penalty

for certain classes by setting a value to the parameter parram.class weights.

1 CvSVMParams params ;

2 params . svm type = CvSVM: : C SVC ;

3 params . k e r n e l t y p e = CvSVM: : LINEAR;

4

5 params . t e r m c r i t . type = CV TERMCRIT ITER + CV TERMCRIT EPS;

6 params . t e r m c r i t . max i ter = 1000 ;

7 params . t e r m c r i t . e p s i l o n = 1e−6;

Once the SVMs are trained, the function CvSVM::predict(sample) can be applied to

test the performance of the SVM when classifying samples. This function can either

return the predicted labels or can be set with an additional boolean parameter to return

the signed distance of the testing sample from the hyperplane’s margin. Since SVMs

determine the best hyperplane that separates distinct classes on the condition that

the distances from the hyperplane to the first training samples from both classes are

maximised, this implies that the further the mapped sample is from the hyperplane the

more confident the SVM is on its classification decision. Hence, this distance can be

used to model the confidence score (probability) in the range of [0, 1]. To do this, the

following distance to a sigmoid function is considered:

1.0

(1.0 + e−decision)
. (4.1)

For analytical purposes, the library provides methods that provide information about the

trained support vectors. The function CvSVM::get support vector count() returns the

total number of support vectors used in the problem after training the SVM. And with

CvSVM::get support vector() one can obtain each support vector by simply supplying

its index to determine which training examples were used as support vectors. This

summarises the library references and implementation of the SVM classifier.
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4.3.2 ELMs Classifier on HOG Features

For the second classifier, the open-source Matlab code-repository from [67] was used to

implement the extreme learning machines. Unlike the convolutional neural networks,

there was no difficulty in getting this source code to compile as only standard Mat-

lab libraries are used. Nevertheless, the ELMs are much easier to implement since

they resemble the behaviour of basic neural networks. The MIT training data used

for validating the parameters of the SVMs was restructured to be compatible with this

library. The ELMs classifier was then tested to ensure it worked correctly. During the

initial tests of ELMs, a classification rate of 89.8% was obtainable without pruning the

hyper-parameters of this classifier, with the default parameters of the sigmoid activation

function.

The library contains two main scripts, the elm train.m and the elm predict.m. The

elm train function first preprocesses the data before the training process, then auto-

matically finds and sorts the samples based on their labels. Thus finding the unique

labels in the dataset to determine the number of output nodes needed for the final layer

of the ELM network.

Once the data has been prepared then training ELMs can be done as follows, the input

weights and the biases of the hidden neurons should be randomly generated. Each

training sample is then passed to the network by multiplying its values to the input

weights. The hidden output matrix can be calculated using the sigmoid function, sin()

or the hard limit transfer function. Other activation functions like the Triangular basis

and radial basis can also be used. The final step calculates the output weights and

determines the network’s training and testing accuracies.

The elm predict function loads the trained ELM and just applies the weights and the

biases of the neural network to the testing data. The activation function is then applied

to activate the nodes and the weights of the output layer are multiplied to classify the

data. At this stage, the ELMs may predict if image regions contain a person or not.

4.3.3 CNNs Classifier on HOG Features and Gray-Scale Images

Convolutional neural networks often require large amounts of data to learn from, hence

efficient and parallel computing is often required. Unlike the ELMs classifier, libraries

that implement CNNs are often not trivial due to the efficient matrix or tensor com-

putation requirements. Graphical Processing Units are often ideal to train CNNs at

reasonable times. The initial layers of CNNs also involve notable iterations of convolv-

ing image-filters and subsampling, which can be computationally expensive. Due to such
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reasons, it is often recommended to use some of the efficient libraries such as CAFFE,

MatConvNet, TensorFlow or PyTorch to implement CNNs.

When selecting a CNNs library, the priority was to consider one that allows researchers

to focus on the study instead of dealing with the challenges involved with the low-level

implementation of CNNs. The TensorFlow or PyTorch libraries were not available yet

when this research commences in 2015.

Therefore, the open-source MatConvNet library [68] became the toolbox of choice for

this research due to the simplicity of use and flexibility to modify CNN architectures.

With the support of NVIDIA’s GPGPU processing, it is easy to interchangeably train

the CNNs with CPU and CUDA. Since efficiency is important with CNNs this became

another highlight when choosing this library. Furthermore, CNNs can be trained with

either grayscale or colour images and non-square images are also supported as input.

The documentation of this library includes several examples that show how networks

can be modified or trained.

Due to the small size of datasets used in this research, and the restriction not to use

transfer learning to discriminate the effects of reducing noise on human detection, the

CNN architecture used is based on the LeNet-5 architecture from [58]. This example

shows how CNN can be trained to recognise handwritten digits between 0 and 9.

To build a simple CNN that learns from each arbitrary image img of resolution (w×h),

the first task is to create several random filter banks. One can do so by running f =

randn(3,3,D,K, ¡single¿), which creates K random filters of size 3× 3 and dimension D.

The second task is to convolve each image with the filters by using the function y =

vl nnconv(img, f, []). This yields an array y with K channels, each channeli represents

the output of filtering the i-th image imgi with the i-th filter fi. The convolutional blocks

have options for: (a) padding the input images before applying filters, (b) selecting the

step size of the filter strides over the input image and (c) down-sampling features after

the pooling process. The filters are applied in a sliding window manner. Input image

channels can be grouped and applied with different filter subsets.

Depending on the architectural choices of the researcher or the intended application,

the third task is often spatial pooling or applying the ReLu operation discussed in the

paragraph below. Spatial Pooling (also called downsampling) reduces the dimensionality

of each feature map while retaining most of the important information [See Figure 4.5].

In MatConvNet, spatial pooling can be applied using the vl nnpool() function which

applies max or sum pooling. The max-pooling computes the maximum response of each

feature channel under the filtered areas and sum-pooling computes the average value of

the responses instead. The network is organised such that a spatial pooling layer follows
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each convolving layer. Any number of network layers can be added in this pattern to

make the network deeper. The FC layer from Equation 4.2, denotes a fully connected

neural network, SVMs or any capable classifier.

Figure 4.5: Max pooling a simple image with a 2× 2 patch [69].

A non-linear operation called Rectified Linear Units (ReLu) is traditionally applied after

each convolution operation to replace all negative values in the feature map by zero [See

Equation 4.2]. The ReLu function can be applied before or after the pooling of features

to introduce non-linearity to the CNNs, this allows CNNs to solve non-linear and real-

world problems. Other non-linear functions such as the tan and sigmoid functions are

also supported in MatConvNet but the ReLu is known to perform better.

[Input]→ [Conv]→ [ReLu]→ [Pool]→ ...→ [Conv]→ [ReLu]→ [Pool]→ [FC].

(4.2)

The original authors of the CNNs, Lecun et al [70] showed that CNNs can perform better

with diverse deeper architectures. For instance, the original LeNet-1 architecture could

classify ten different digits from the MNIST dataset with an error rate of 1.7%, however,

the slightly deeper LeNet-5 architecture could reduce the error rate further to 0.9%.

The CNNs can also perform well even with different architectures. MatConvNet’s

MNIST example uses an architecture similar to the LeNet-1 to classify ten different

handwritten digits [68]. In the example, the ReLu operation is applied near the end
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of the network, just before the fully connected layers instead of applying it after each

convolutional layer as done by [71].

The initial layers of the CNNs extract the high-level features from images to study the

simple shapes of objects. The complex shapes of objects are discovered at the deeper

layers into the network. At the end of the network, the classifier learns specific shapes

that can be used to distinguish objects from different classes.

The neurons from the first layers of the network exploit the spatial correlations of fea-

tures, due to their local connectivity to adjacent neurons. Whereas, the neurons at the

end are connected to produce the global shape information of objects. Therefore, the

first layers of the network are more susceptible to the local noise clutter found on most

gradient images.

The FC layer at the end of the model in Equation 4.2, denotes a machine learning

classifier. This can be a fully-connected neural network, SVMs or any capable classifier.

The loss function processes the output of the fully connected layers to predict the labels

of the classes. A softmax function takes a vector of arbitrary values and squeezes it to

values that are between zero and one to ensure that the fully connected layer produces

probabilities that sum to 1. Thus providing the ability to evaluate the confidence scores

of the classified data. With the softmax function, it becomes possible to also distinguish

each predicted class from K mutually exclusive classes, for K ∈ Z ≥ 1. This can be

implemented using the procedure vl nnsoftmax from the MatConvNet library.

4.4 Metrics Used

Having experimented with various types of parameters for each classifier, where the

classifiers were trained and validated with varying subgroups of the MIT dataset [66].

On each training scenario, the results from each classifier were compared against previous

results to determine the optimal hyper-parameters that produced the best results on each

classifier.

Thereafter, the performance of the SVMs was tested against the performances of ELMs

and CNNs to output Classification Results. The results were saved to an external file

with the corresponding technical specifications used. The three classifiers were tested

over the same testing criteria. The ground-truth information from the proposed infrared

dataset was used to obtain accurate performance results of each classifier. So the an-

swers to the proposed research questions were obtained by evaluating these classification

results. Therefore, hypothesis H1 and hypothesis H2 can be tested and proven true

if the following cases hold respectively:
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• The SVMs and ELMs obtain better classification results over the infrared imaging

testing criteria than colour images (RQ1).

• The deep learning CNNs obtain better classification results than the shallow learn-

ing classifiers SVMs and ELMs (RQ2).

Further performance analysis (PA) was conducted by evaluating the precision and recall

rates of the classifiers, where the precision measures how useful the search results are

and the recall measure how complete the detections are. The precision is computed

by taking the number of true positives and dividing it by the total number of positive

detections. That is,

ρ =
TruePositives

TruePositives+ FalsePositives
, (4.3)

whereas the recall is calculated by taking the number of true positives and diving it by the

total number of positive samples on the scene, stated by the ground-truth information.

Therefore, the recall is,

γ =
TruePositives

TotalNumberOfPositives
. (4.4)

4.5 Summary

In this chapter, the method of conducting this research was presented. The details of

the three visual datasets and the infrared SIGNI dataset used were presented. The

data preprocessing step to prevent classifiers from overfitting was also discussed. The

feature extraction methods used was reported in detail, where the HOG features and

the machine-learned CNN feature maps were introduced as the method for producing

meaningful information from raw image data.

The design and implementation of the classifiers were reported. This included brief ref-

erences to the library environments that were used to allow this work to be reproducible

by readers. The chapter also delved into how data will be analysed, how the performance

of the classifiers will be evaluated and how the research questions can be addressed. The

approach for testing the hypotheses was also discussed.

The next chapter presents the work done for selecting the hyperparameters of each

classifier.
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Hyperparameter Selection

5.1 Introduction

This chapter describes the process for selecting the hyperparameters of the three candi-

date classifiers that were used for addressing this work’s supposition. Machine learning

models require different constraints, weights and learning rates to generalize on unseen

samples. One of the popular methods for estimating optimal parameters in literature

is cross-validation [72]. This was applied for the two shallow learning classifiers, SVMs

and ELMs. The experimental setup of this work is discussed in Sections 5.2, 5.3 and

5.4.

The objective of the experiments is to evaluate the effects of using an infrared-based

dataset when training several human detection systems. To do so, the classifiers were

initially trained with colour based human datasets to select the optimal parameters for

each classifier. The parameters were pruned further with larger datasets at a later stage.

Once the optimal results were obtained, instances of the best-performing candidate

classifiers were trained with the infrared dataset and compared to the results obtained

with the colour datasets.

The classifiers were only trained with targeted data where interesting objects appear

at the centre of the training images. These images are already cropped for training

supervised-learning models. Only the performance analysis (PA) stage examined the

classifiers’ ability to localise and detect people, where large natural-scene images were

used.

A cross-validation (with k = 5) was conducted on the SVM classifier that was trained

with the MIT dataset (denoted as SVMMIT ), as well as the SVM INRIA and SVMSIGNI .

The training datasets are reasonably small so the classifiers could be trained and tested

59
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in reasonable time. The cross-validation was left-out on the large NICTA dataset as

it takes a long time to load several subsets of this dataset. The best parameters for

the SVMs and ELMs were selected by iteratively classifying different random sets of

the training data and selecting parameters that score the best validation results. In the

case of the CNNs, about 20% of the dataset was reserved for validating its performance

each time this classifier was trained [Table 5.1]. The general procedure for applying

cross-validation is as follows:

Algorithm 1: The general procedure to apply cross-validation.

Data: Partition the training dataset into k folds randomly.

Result: The model’s results on selected parameters

1 for each fold Fi 1 ≤ i ≥ k do

2 Reserve Fi as the validation data;

3 Select the remaining k-1 folds as training data;

4 Fit the model on the training data and evaluate it on Fi;

5 Retain the evaluation results and observe the parameters used;

6 Discard the model;

7 if Observed parameters are optimal then

8 Select the parameters and exit;

9 else

10 Try different parameters ;

11 Go back to the beginning and repeat line 1;

Table 5.1: Training, validation and testing partitions for finding the hyper-parameters
of the CNNs.

Training Validation Test

MIT 60% 20% 20%

INRIA 60% 20% 20%

SIGNI 60% 20% 20%

Merging overlapping boxes is only presentable to the human eye and is mostly useful

for presentations. However, this research focuses on the analyses of precision and re-

call. Therefore overlapping detection boxes are not merged but evaluated separately to

measure recognition rate scores. Another concern is that merging overlapping detection

boxes through algorithms such as Non-Maxima-Suppression or Mean-Shift algorithms

may result in the loss of vital information when either deleting low scoring detections

or taking an average of clustered overlapping detections.

This chapter presents the processes and outcomes of training the classifiers and the

methods used for selecting the parameters of the final classifiers. These classifiers are



Chapter 5 Hyperparameter Selection 61

referred to as candidate classifiers because they are the final representatives that will

be used to evaluate the significance of using IIR samples. The chapter is divided and

organised into three sections that present the selection of hyperparameters for each

classifier.

The experiments on support vector machines are discussed in Section 5.2, extreme learn-

ing machines in Section 5.3 and lastly, the convolutional neural networks in Section 5.4.

The testing criteria for each experiment is stated in detail.

5.2 SVM Classification on HOG features

5.2.1 Introduction

The SVMs were the first classifier to be trained. The process of classifying images with

SVMs can be visualised with the flow diagram in Figure 5.1. Suppose an image is fed

to a sufficiently trained SVM classifier in vector form [Consider the diagram Figure 5.1

from the left], the SVM will first map this image-vector to a higher dimensional feature

space. This feature space was determined during the training process of the SVM, such

that the data can be separable with the kernel function in use.

The SVM evaluates the location of a given image relative to the reference images used as

support vectors in the same feature space. The evaluated location is used to determine

the side of the optimal hyperplane which the image that is being classified belongs. Im-

ages that are mapped closer to the positive support vectors are classified as positive. The

inverse is also true for images that are mapped onto the negative side of the hyperplane.

The farther the distance from the support vectors, the higher the SVM’s classification

confidence. Given a trained SVM classifier with a margin formed by the optimal weights

~w, the linear combination between a mapped image in the feature-space and the weights

can be used to predict the class of this newly inserted image. This is done by evaluating

the sign produced by the formula in Equation 2.15.

Initial experiments were done on the MIT pedestrian dataset. The importance of using

HOG features over raw grayscale pixels was evaluated by temporarily testing the SVMs

with grayscale images. The SVMs managed to classify 71% of the grayscale samples

correctly.

Reintroducing HOG features improved the classification rate to 97.0% with the RBF

kernel selected for the SVMs and the L1 normalisation step for HOG feature extraction

[See Table 5.2, for the pre-experimental results of other kernel-functions tested].
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Figure 5.1: A diagram visualising the process of classifying images with the SVMs.

Statistical training-data can be re-engineered to improve the accuracy of the classifiers,

where false-positives and false-negatives are extensively searched whenever the classi-

fiers are validated such that the hard-sample images are duplicated and re-added to the

training set. The repetition of hard-samples has been shown to improve the generalisa-

tion accuracy of most classifiers, however, this approach would not be suitable for this

work since the goal is to discriminate the performance obtained when using different

spectral-type images and datasets of the same size.

Table 5.2: SVM validation results with different kernels on the MIT Pedestrian
dataset.

MIT Pedestrian Dataset [924 pos, 924 neg]

Variable Quantity

SVM Type: Linear Recognition Rate 94.3%

SVM Type: Poly (deg=2) Recognition Rate 74.2%

SVM Type: RBF sigma=31 Recognition Rate 97.0%

5.2.2 Selecting the Candidate Classifier

This section, describes the steps that were involved when selecting the parameters that

make up the best SVMs candidate. This candidate will be used for comparing the

performance of this classifier to the other two classifiers.
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5.2.2.1 Subtracting the Mean of HOG Features

Subtracting the mean of known samples from every sample of the dataset often improves

the classification accuracy [1, 2]. When doing so, the common shape of objects in the

dataset becomes more apparent on the visualisation of the mean image. For instance, the

common shape of people becomes more apparent in the mean image than the varying

background elements on most pedestrian datasets. Because the background images

consist of random images with inconsistent patterns and such images cannot be visualised

as a single class object.

In hopes of improving the performance, the mean of HOG features was produced from

the training set and subtracted from the features of every training sample. This was

done with a pixel-wise summation of all images, such that the pixel value at position

(x, y) on the first image image1 is summed up with all pixels at the same position (x, y)

from all the remaining images imagej (for j 6= 1). The resulting sum-image was then

divided with the total number of samples in the training set to obtain the grayscale

mean-image similar to the one in Figure 5.2. Unfortunately, subtracting the mean of

HOG features from the training set’s features did not improve the performance of the

SVMMIT . This was the case for both L1 and L2 normalisation methods.

Figure 5.2: The mean image (left) and its HOG visualisation right (right).

5.2.2.2 The effects of normalising HOG features

It became worthwhile to test the impact of normalising HOG features by comparing

the performance of the SVMs when normalisation was discarded. Removing the nor-

malisation step improved the training results on the MIT dataset. With the linear

kernel scoring a 100% validation rate on the 370 validation samples (evenly split for

both classes). This was unexpected because normalisation often improves the quality of
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HOG features and is reported to introduce invariances to the change of pixel intensity

in images [1]. It is not clear why the normalisation-step yields poorer results than in

[1]. Dalal et al [1] used SVM-Light for implementing the SVMs, whereas, the LibSVM

library was used in this work. The performance degradation could be a floating-point ac-

curacy bug in the library. The reliance of estimated real numbers by numerical software

often leads to nonreproducible results across different libraries. Numerical bugs can also

be caused by sensitivity to rounding-off precision, overflow/underflow of floating-points

when estimating real-numbers or by random-number generators [73]. The parameters

and the maximum number of iterations that were applied when training the SVMs were

different from [1].

Considering the two commonly known normalisation methods, the L2 normalisation

often gave slight performance improvements of about 1.3% on average than the L1-

norm. While the results from both the Linear and RBF kernels were indifferent after

the L1 and L2 normalisations, the polynomial kernel benefited from applying the L1

normalisation than the L2 [See Table 5.3, Table 5.4, Table 5.5 ].

Table 5.3: SVM validation results without block normalisation on HOG features.

MIT Pedestrian Dataset [924 pos, 924 neg]

Variable Quantity

SVM Type: Linear Recognition Rate 100%

SVM Type: Poly (deg=2) Recognition Rate 83.7%

SVM Type: RBF (sigma=31) Recognition Rate 99.5%

Table 5.4: SVM validation results with L1 block normalisation on HOG features.

MIT Pedestrian Dataset [924 pos, 924 neg]

Variable Quantity

SVM Type: Linear Recognition Rate 96.7%

SVM Type: Poly (deg=2) Recognition Rate 86.4%

SVM Type: RBF (sigma=31) Recognition Rate 96.2%

Table 5.5: SVM validation results with L2 block normalisation on HOG features.

MIT Pedestrian Dataset [924 pos, 924 neg]

Variable Quantity

SVM Type: Linear Recognition Rate 96.7%

SVM Type: Poly (deg=2) Recognition Rate 61.4%

SVM Type: RBF (sigma=31) Recognition Rate 96.2%

The effects of the normalisation can only be concluded after applying it on a different

dataset. Similar to the MIT dataset, removing normalisation on the INRIA dataset

improved the validation rate of all three SVM kernels. The same was applied to the
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infrared SIGNI dataset, where the L1 and L2 normalisation method produced a training

accuracy of about 96% on the 1400 samples from the IIR dataset, yet removing the

normalisation increased the validation rate to 99.3% on the same data. Due to the

performance degradation on SVMMIT , SVM INRIA and SVMSIGNI classifiers, the

normalisation step was discarded during the extraction of HOG features.

5.2.2.3 Different Kernel Types

Different types of kernels were experimented with to select the best performing kernel.

The SVM’s linear kernel often performed better than the polynomial kernel and the

RBF outperformed both kernels. The polynomial kernel of degree = 2 only produced

competitive results when removing the normalisation step during the extraction of HOG

features. In this case, a validation rate of 84.7% was obtained from the MIT dataset.

Any degree higher than 2 caused the SVMs not to train at all and classify everything

as one of the classes.

Due to consistently high validation rates, the RBF kernel was selected as the kernel of

choice for the SVM classifier. In the OpenCV library, the values of σ correspond to the

γ values in the gaussian radial basis function shown in Table 2.1. To select the optimal

value of sigma, cross-validation over several random training sets was conducted. During

the cross-validation, the number of samples from both classes were kept equal. The best

validation rates were obtained when 25 ≤ σ ≤ 32 and the validation rate converged

when σ ≥ 25. In Figure 5.3, the cross-validation results for varying values of sigma are

shown. The approximate out-of-sample misclassification rate was 0.0005422, thus the

generalisation error rate was less than 0.1%.

5.2.2.4 Candidate SVM Classifier

This completes the brief summary of the experimental processes that lead to the selection

of the optimal SVMs used in this research. Thus, the candidate SVM classifier used for

performance evaluation has the following parameters, a Radial Basis Function kernel,

with sigma=31. The next section covers the experimental work done for training the

optimal ELMs classifier.
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Figure 5.3: The cross validation results for selecting the optimal sigma values.

5.3 ELM Classification on HOG features

5.3.1 Introduction

Moving on to the parameter validation experiments on the second classifier, the extreme

learning machines. The ELM models are based on artificial neural networks. Similarities

between neural networks and SVMs have been debated in the past, but these are different

models. With the SVMs, the optimal separating hyperplane that optimises the distance

between the two classes of samples is computed. Whereas, neural networks are trained

on by finding the network of weights that best predict the classes of samples.

The ELMs were first trained with the smaller MIT Pedestrian dataset as done with

SVMs from the previous section. To train ELMs for image classification, the images

were first converted to a single column vector. Thereafter, every pixel value was fed to

every node on the first layer of the hidden nodes to form a fully connected layer. The

pixel values were then multiplied by the random weights of the hidden layer and the bias

inputs were added to the result. This linear combination between pixel values and the

random weights is supplied to an activation function. The different types of activation
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functions that can be used are discussed in the following paragraphs. The depth of the

hidden layer should be sufficiently large to classify the image vectors and restricted to

prevent over-fitting conditions. The final step is to compute the output matrix of the

hidden layer and optimise the output weights. The ELMs are successfully trained once

the training error is reduced to a sufficient minimum. Once trained, unknown images

can be forwarded to the model to predict their classes through inference.

The challenge with this classifier is in finding the best performing activation function,

the sufficient number of network neurons to use and the right bias to the hidden layers of

the network. The available activation functions that could be tested were: the sigmoid

function, sin, and hardlimit function. Since neural networks obtain their predictive

power from connecting a large number of cooperating neurons, the number of neurons

used are expected to have an impact on the ELM’s validation accuracy. The use of

biases is optional, though they can help shift the activation function horizontally on

the Cartesian plane. This often improves the learning and classifying ability of neural

networks on certain data. The following sections discuss the experiments done on the

ELMs classifier to find the optimal hyperparameters.

5.3.2 Selecting the Classifier Candidate

Finding the optimal parameters for the ELMs is necessary to compare this classifier to

the other two classifiers in this research. The ELMs set new random weights each time

they are trained, therefore the initial weights of the network are may influence to the

speed in which the ELMs fit data.

5.3.2.1 The depth of the network

Section 2.11 discussed how neural networks can approximate mathematical functions.

Neural networks differ from other machine learning approaches by using multiple layers

to solve non-linear operations altogether. Getting back to the debate on the similarity of

support vector machines with neural networks, SVMs optimise the output of the linear

combinations of data points with a single kernel function. Researchers [74] argue that

this process is similar to what neural networks do when they minimise the validation

error produced by the activation functions of neurons altogether. The similarity lies in

the fact that the neurons also process the linear combinations of the weights and input

data. Therefore, SVMs are in essence neural networks that have a constant number

of layers [74]. It is well known that functions with fewer oscillations tend to poorly

approximate functions with many oscillations. This also applies to neural networks,

because networks with more depth tend to be more likely to classify complex data like
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images effectively than those with less depth. Noting that this tends to work when

neural network models are trained with enough data samples.

As expected, the number of neurons correlated with the performance of the ELMs net-

work. The performance of the network is likely to improve as the depth is increased. For

instance, Figure 5.4 shows the training accuracy of the ELMs as the number of neurons

increases to an extent that is limited by the size of the training data. The classifier used

for generating Figure 5.4 was trained with 924 positive samples from the MIT pedestrian

dataset and 3300 negative samples that were generated from INRIA’s negative images.

5.3.3 Activation Functions

The sigmoid activation function converged faster than the hardlimit and sin() func-

tions. The sin() function required more neurons to converge, requiring 3400 neurons

for the error function to converge to an acceptable error rate that is below 3%. The

performance order of the activation functions remained the same when training with the

larger INRIA and NICTA dataset. The only difference is that the size of the network

has to be increased as the number of training samples increases.

The number of neurons was set to 4500 and the ELMs were evaluated on standardised

validation sets. Up to 15 000 neurons could be used on a computer with an 8 gigabyte

of memory. With standard HOG features, the sigmoid function had the best training

accuracy, followed by the hard limit and the sin graph [See Table 5.6 and Table 5.7 ].

Table 5.6: ELMs validation results on normal HOG features from the MIT dataset.

MIT Pedestrian Dataset [924 pos, 3500 neg]

Variable Quantity

ELM Activation Function: sigmoid Recognition Rate 99.9%

ELM Activation Function: sin Recognition Rate 98.9%

ELM Activation Function: hard limit Recognition Rate 99.8%

Table 5.7: ELMs validation results on standard HOG features from INRIA dataset.

INRIA Dataset [3300 pos, 5000 neg]

Variable Quantity

ELM Activation Function: sigmoid Recognition Rate 99.2%

ELM Activation Function: sin Recognition Rate 96.1%

ELM Activation Function: hard limit Recognition Rate 99.7%
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Figure 5.4: Training accuracies of different activation functions of the ELMsMIT

classifier as the number of neurons increased.

5.3.3.1 The effects of normalising HOG features

To compare the finest details between classifiers, the performance of ELMs was also

evaluated on the different block normalisation methods of HOG features. This was done

to minimise biases that may be favourable to one of the classifiers. A cross-validation over

5 different subsets of the MIT dataset could not separate the two normalisation methods

in terms of training accuracies. So we tried centralising the data by subtracting the mean

from each image example as done with the SVMs. Centralising the entire training set

did not affect the validation results, perhaps the block normalisation process had already

subjected each sample to a zeroth−mean by scaling the values to the range 0 to 1. Unlike

the SVMs, the normalisation of features was not effective with the ELM classifier.

5.3.3.2 The Biases of the Hidden Nodes

The neural network’s ability to learn and generalise can be conditioned to partially apply

favouritism to certain classes of data with the use of network biases. When setting a

bias, the aim is to shift the activation functions so that the network converges to a
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better local minimum. By default, random values between 0 and 1 were assigned to

the hidden layer biases. Constant biases to the entire network were set to the first few

layers of the hidden layers or the last layer of the hidden layers in hopes of obtaining

better validation rates. Slight performance improvements were apparent when setting

the entire bias vector to values of 1, with the sin() and hardlimit activation functions

showing more gains.

The performance did not change much after trying other values such as 0.25, 0.5 and

0.75. The same applied when using different biases on different portions of the hidden

layers. This demonstrates the ability of ELMs to learn data regardless of the weights

used for hidden layers. To determine the exact biases to use, activation functions have

to be plotted so that one can observe the effects of shifting the functions. Biases can

shift decision functions to be more favourable when classifying specific data, slight per-

formance gains were achievable with this method. The size and quality of training data

have a larger effect than setting biases. Nevertheless, the required network biases vary

per dataset used.

5.3.4 Candidate ELM Classifier

Unlike the SVMs, the candidate ELMs cannot be assigned with only fixed optimal

parameters. Some of the parameters like the number of neurons to use vary with each

training dataset because the network depth that can obtain good training accuracies is

initially unknown. As a result, such parameters must be learned through trial and error

while other parameters like the activation function to use can be fixed.

Due to better performance, the sigmoid function was selected as the activation function

of choice for the candidate ELMs. This candidate classifier had promising validation

accuracies that were up to 97.6%.

This concludes the preparations of the extreme learning machines classifier. The steps

involved in selecting the parameters for the third classifier are discussed in the next

section.
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5.4 CNNs classification on grayscale images

5.4.1 Introduction

The CNNs have been dominating the performance benchmarks of image recognition

challenges lately [26]. The CNNs can autonomously learn the filters required for recog-

nising objects, making it worthwhile to test whether CNNs can perform better when

trained with HOG features or grayscale images.

The implementation of CNNs can be quite complex, hence the MatConvNet library

was used for implementing the CNNs in this work. The CNNs could not train well

initially, despite efforts of trying various parameters and CNN architectures. It turned

out that the training problems occurred due to MATCONVNET’s inability to train

from rectangular images. The images were reshaped into squares and their resolution

was reduced to (64× 64) to mitigate this. The reduction of resolution helped support a

larger number of convolutional filters to be used and essentially allowed the CNNs to be

trained and tested at reasonable times. The selected resolution was more than sufficient

because CNNs are capable of classifying multiple objects at low resolutions of 32× 32.

5.4.1.1 Architecture

Several architectures of convolutional neural networks were considered for finding the

ideal architecture for this research, some were small classifiers that identified a few classes

and others were large to classify a thousand objects. A similar problem of classifying

ten handwritten digits from the MNIST dataset was addressed with the popular LeNet

Architecture by [75]. The current work evaluates a binary classification problem, the

design of the architecture used in this research was also based on LeNet-5. But the

size and the number of filters used, pooling methods and filter strides were modified to

support the larger 64× 64 images used.

The initial architectures that were employed are similar to the one populated in Fig-

ure 5.5, where the number of filter-banks used on each layer, filter dimensions, strides

and the feature-map dimensions are shown. Notice that the library does not distinguish

fully connected layers and convolutional blocks at the end of the network, instead fully

connected layers are automatically handled internally when the dimension of the output

map is W = H = 1 [68].

The MatConvNet library provides two types of network structures, the SimpleNN

wrapper provides building blocks for implementing simple CNN structures with layers

that pass information in a linear direction. The second wrapper DagNN has building
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Figure 5.5: The CNN architecture used for human detection.

blocks for organising CNNs into more complex acyclic graphs. The SimpleNN structure

has been shown to classify multiple objects from larger image-datasets like the ImageNet

and CIFAR [26]. Therefore, the CNN architecture in Figure 5.5 is sufficient for a binary

classification problem.

Even though convolutional neural networks are trainable with colour images, all colour

datasets were converted to grayscale images to match the number of channels with the

infrared images. Additionally, this limits the required computer-memory, adds support

for more convolving filters at the convolutional-layers and lessens the time required for

training the CNNs.

The split-ratio between the training, validation and testing sets remain at 60 : 20 : 20

throughout this research. The CNNs were first trained with 3000 positive and 3000

negative samples from the NICTA dataset. Without any revision of parameters, the

CNNs obtained a validation rate of 91.67% on 600 positive and 600 negative images.

This was done without centralizing the data by subtracting the mean of training samples

from each sample.

5.4.2 Choosing Parameters

When selecting parameters for CNNs, the process of selecting the number of layers

to use, convolutional layers, the right size of filters to use, the amount of stride and

padding is often not trivial initially. There is no single approach to follow because such

parameters are largely dependent on the type of data used. Data can vary in dimension,

dynamic range and complexity. The type of image processing methods that are required

for extracting information in images also varies per application. The recommended
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approach is to first study the datasets and find the right combination of parameters

that can abstract image information at a reasonable scale.

The initial parameters that were used for training the CNNs were as follows, the filter

sizes were set to 3×3. A stride of a single-pixel was selected for the convolutional layers

and a stride of 2-pixels was selected for the pooling layers. The stride controls the step

sizes of filters when convolving around the feature map. In this work, the filters were

shifted by a single pixel each time to consider all the information from feature maps.

Zero-Padding adds rows and columns of zeros on the edges of features maps and is often

used for retaining the information at the edges. The information at the edges is retained

by keeping the spatial output dimensions equal to the input dimensions. Most people in

the datasets used are often positioned at the centre of the images, perhaps, this could

be the reason padding did not improve the performance.

The number of random filters is traditionally increased during each consecutive layer as

the spatial pooling layer down-samples feature maps [Figure 5.5]. The smaller resolution

of feature maps allows more filters to be used. This is apparent in Figure 5.5, where

the feature map dimensions were reduced from (64 × 64) to (30 × 30) after applying

spatial-pooling in layer 2. Note that the size of the filters was reduced whenever the

dimension of feature maps was less than or equal to the dimension of filters, this assures

filters can fit within feature maps.

5.4.2.1 Feature Map Down Sampling

Conventionally, the max-pooling approach is applied such that the information concern-

ing the exact location of features is made less significant than the location of features

relative to each other. This helps with capturing the shape information of objects. The

different downsampling methods showed slight performance outcomes, taking the “max”

instead of the “average” at the pooling layers increased the validation rate to 94.83%

with the network converging around twenty epochs.

The convolutional and pooling layers were applied iteratively, where the dimension of

feature maps was reduced to 4× 4 and the number of filters was increased to 400 filters

after each iteration. A ReLu operation was applied for introducing non-linearity to

the classifier. It is customary to apply a non-linear activation function right after the

convolutional layers. Unlike the tan(h) and sigmoid functions, the network trained

faster with the ReLu. After the ReLu layer, the feature maps were fully connected to

obtain a high-level view of features. Eventually, a loss layer was applied to define how

the network was penalised for making wrong predictions. The error obtained is then

used to re-train the network.
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5.4.2.2 Centralization of Data

The centralization of data samples had an unexpected outcome, the CNNs converged

faster and became more prone to overfitting. The centralization caused a jittered loss

curve during the training process, whereas the removal of centralization produced a

steady convergence towards the objective error. Slight performance gains were also

apparent and the training process took longer as expected. So far, the best results

were obtained after 40 epochs. An epoch represents a single forward pass and a single

backward pass of all training samples to the network.

Oftentimes, the network’s performance decreased exponentially after the 40th epoch

on the validation data. After 40 epochs, the training accuracies kept on increasing,

indicating an overfitting classifier. More performance gains can still be achieved by

enlarging the depth of the network and considering various patterns of padding at the

initial stages of the network to preserve the low-level information during the early stages

of feature extraction. Padding would also allow deeper network structures.

5.4.2.3 Depth of the Network

The depth of the network can be adjusted by selecting the number of filters to use for

each convolutional layer. The introduction of graphical processing units enabled deeper

networks to be tested and allowed additional data samples to be used.

Since denser CNNs require longer epochs to train, the number of epochs was increased

whenever the network’s architecture was made denser. The decision towards terminating

the training process was dependent on the convergence of the minimum error and the

avoidance of overfitting.

On the architecture in Figure 5.5, the number of filters on all convolutional layers was

a multiple of the number of filters at the initial layer. The number of filters was set as

follows: if K is the number of filters on the first convolutional layer, the second layers

had K × 2, the third K × 4, then K × 10 at the second last layer. K × 2 was set for

the last convolutional layer since this research addresses a binary classification problem.

Increasing K to 100 lead to slight performance gains and increased the validation rate to

96.67%. Setting K to 128, increased the performance by just 0.16% and no performance

gains were observed when K ≥ 192 on smaller datasets.

The CNNs scored 98.38% when increasing the number of samples to 5000 for each class.

Using a larger dataset of 15000 samples increased the validation rate to 98.92%. For the

candidate classifier, K = 192 was selected for the initial filers.
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5.4.2.4 Regularization methods: Overfitting Avoidance

The most intuitive regularization method for neural networks is the avoidance of over-

fitting. The easiest way to perform this is halting the training process before the con-

vergence of the classification error. This approach should be done with caution to avoid

limiting the network from learning. Hence a balance between training accuracy and the

amount of over-fitting should be maintained.

In this work, the training process was halted whenever the training error converged to a

reasonable minimum. The epoch that scored the highest testing accuracy was selected.

Allowing further ten epochs drastically reduced the classifier’s ability to generalise un-

seen data.

Another method for avoiding overfitting is limiting the quality of parameters used. In

the case of neural networks, the depth of the network can be limited to restrict the pre-

dicting power of the network. This was considered whenever overfitting occurred. Other

methods such as the weight decay, dropout, stochastic pooling, L1 and L2 regularisation

also exist but were not tested in the current work.

5.4.2.5 Learning rate and momentum

Convolutional neural networks have more hyper-parameters to consider than the generic

neural networks, but the rules for adjusting the learning rates and the momentum for

stochastic gradient descent remain the same. A high learning rate will decay the error-

loss function faster and the function may converge to a local minimum. This is often

apparent with a jittered convergence curve. The higher the learning rate the harder it

becomes for the network to settle to an optimal state.

The learning rate and the momentum of the network were reduced whenever poor train-

ing accuracies were observed. While experimenting with various CNN parameters, the

learning rates were kept within a range of 0.01 and 0.0001 to train and validate the

CNNs at reasonable times. For the final candidate classifier, a learning rate of 0.00001

was used. The threshold value that was used with our system is 0.1 × 10−8, this pro-

longed training process for several days. In spite of longer training times, this did not

guarantee better validation rates and the loss function would fail to converge at times.



Chapter 5 Hyperparameter Selection 76

5.4.3 Candidate CNN Classifier

Just like ELMs, the candidate CNNs cannot be assigned with fixed optimal parameters.

The design of the architecture and parameters such as the downsampling options, learn-

ing rate and momentum highly depend on the datasets used. The required depth of the

network is also unknown initially. Such parameters are learned through trial and error

whenever the CNNs are trained.

The final parameters for the candidate CNNs were as follows: the number of initial filters

used was K = 192. The learning rate and training momentum were set to 0.0001 and

0.5 respectively, the preferred spatial pooling method was “max pooling”, the minimum

number of epochs was set to 40 but often increased to a maximum of 192 epochs until

the training error converged to an acceptable minimum and the validation accuracy

was sufficient. From this point, the task that followed was to compare the performance

of this candidate CNNs against the two shallow learning classifiers that were trained

earlier. The following chapter will present the comparison and analysis of test results

between the classifiers.

5.5 Summary

The experimental setup of this work was presented, where the steps involved in finding

the candidate classifiers were discussed. The characteristics of processing images for

binary classification were discussed for each classifier. Various critical hyper-parameters

that are crucial for each classifier were also discussed.

The final performance evaluation of each candidate-classifier on unknown examples is

discussed in the next chapter, where the classifiers are tested over the same scenarios to

address the research questions and hypotheses [Section 1.2]. The next chapter presents

the overall findings of this work and addresses the supposition of this work [Chapter 6].



Chapter 6

Analysis of Results

The previous chapter performed the necessary experiments to prepare the candidate

classifiers for the final performance evaluation. This chapter evaluates the overall per-

formance of the classifiers and reports the findings of this work. Section 6.1 presents

a performance evaluation of the classifiers over highly skewed datasets with fewer posi-

tive samples. Evaluation on less skewed datasets with more positive-sample variance is

presented in Section 6.2 and results from the ground-truth assessment over the human

detection problem are presented in Section 6.3.

The outcomes of Section 6.1 highlight the ability of the classifiers to learn from fewer

positive samples and skewed data. The localisation experiments test the classifiers’

ability in solving the detection problem over difficult natural-scene testing scenarios.

The parameters of the candidate classifiers that were selected prior remain unchanged

for the rest of the experiments onwards.

6.1 Evaluation A: Highly Skewed Datasets

To address the research questions, the classification performance of the classifiers was

evaluated by comparing the average classification rates of the three colour datasets

against the average scores of the three infrared datasets. To do so, the positive samples in

each dataset were reduced to match the size of the dataset (MIT) with the least positive

samples. The generated INRIA negative samples were used for all visual datasets. The

number of visual negative samples was limited to the number of negative samples from

the infrared SiGNI dataset. Therefore, 924 positive samples and 5462 negative samples

were selected for each dataset. The split ratio of the training, validation and testing sets

is always set to 60 : 20 : 20 respectively.

77
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Table 6.1: Classification results of the SVMs over highly skewed datasets.

Datasets (924:5462) Classification Results

INRIA 96.4%

MIT 98.6%

NICTA 98.2%

Infrared SIGNI (A) 98.0%

Infrared SIGNI (B) 98.4%

Infrared SIGNI (C) 98.6%

Avg Classification Rate (Visual) 97.73%

Avg Classification Rate (Infrared) 98.33%

Table 6.2: Classification results of the ELMs over highly skewed datasets.

Datasets (924:5462) Classification Results

INRIA 82.7%

MIT 90.6%

NICTA 89.1%

Infrared SIGNI (A) 95.7%

Infrared SIGNI (B) 96.9%

Infrared SIGNI (C) 95.0%

Avg Classification Rate (Visual) 87.46%

Avg Classification Rate (Infrared) 95.86%

To match the three visual datasets, the positive samples from the infrared SIGNI dataset

were partitioned into three sub-datasets. Each of the partitions had 462 positive images

and their reflections to match the total of 924 samples from the three visual datasets.

Slight performance gains were observed from the use of infrared samples over the use

of visual samples. Starting with the SVM candidate classifier, the average classification

rate of the infrared samples was 0.6% higher than the visual samples [Table 6.1].

The performance of the candidate ELMs classifier over highly skewed datasets was rel-

atively low than SVMs for both spectral image data types [See Table 6.2]. The perfor-

mance gain of using infrared images was more apparent with the ELMs, as the classifier

obtained a gain of 8.4% with infrared images. However, the ELMs’ ability to learn and

classify visual images was poorer than the SVMs. The classification rate of the ELMs

over the infrared data was 95.86%, compared to the classification rate of about 98.33%

that was achieved by the SVMs, a 10% difference in favour of the SVMs over the classifi-

cation of visual data was observed. In terms of the significance of using infrared images

over visual images, the supposition (H1) holds for both SVMs and ELMs thus far.

The performance of the CNNs over visual images was on par with the SVMs [Table 6.3].

Just like the other two classifiers, the CNNs also showed better results with infrared
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Table 6.3: Classification results of the CNNs over highly skewed datasets.

Datasets (924:5462) Classification Results

INRIA 97.17%

MIT 98.59%

NICTA 96.39%

Infrared SIGNI (A) 99.61%

Infrared SIGNI (B) 99.84%

Infrared SIGNI (C) 99.21%

Avg Classification Rate (Visual) 97.38%

Avg Classification Rate (Infrared) 99.55%

images. The CNNs obtained the best overall classification rate (supporting hypothesis

H2), with the average classification rate over the three visual datasets at 97.38%, while

an outstanding score of 99.5% was obtained with the infrared images. This reflects the

dominance of CNNs in image classification tasks.

It is important to note that these results only represent the basic evaluation of the

classifiers, as the datasets used at this stage have relatively few positive samples. The

performance evaluation of the classifiers can be more precise with larger datasets. There-

fore, in the next subsection, the classifiers were tested with less skewed datasets that

have more positive samples to increase the diversity of samples and reduce the chances

of overfitting.

6.2 Evaluation B: Less Skewed Datasets

In this section, the hypotheses were evaluated over less skewed datasets with more sample

variance. To do so, samples from the SIGNI dataset were combined to a total of 3832

positive samples and 5462 negative samples and compared to the INRIA and NICTA

datasets of the exact size. The MIT dataset was discarded for this task considering that

it only contains 924 positive images. To balance the size of datasets, the 3610 positive

samples from the INRIA dataset were supplemented with 222 non-used samples from

the NICTA dataset to obtain 3832 positive samples.

When comparing the two visual datasets alone, the classifiers obtained better results

with the NICTA dataset. This may be attributed to the consistent positioning and

scale of people on the NICTA dataset. The advantages of using infrared samples were

apparent from the first training epoch of the CNNs, the training error was reduced to just

0.132%, compared to the 0.278% achieved by the visual datasets. A validation accuracy

of 0.019% was obtained just after 6 epochs with the infrared dataset, compared to the
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minimum of 50 epochs that were required by the visual datasets. The CNNs converged

faster when training with infrared samples, at just 10 epochs in some cases.

Table 6.4: Classification results of SVMs on larger datasets.

Datasets (3832:5462) Classification Results

INRIA 94.1%

NICTA 97.8%

Avg Classification Rate (Visual) 95.95%

Infrared SIGNI (Entire Dataset) 98.9%

Table 6.5: Classification results of ELMs on larger datasets.

Datasets (3832:5462) Classification Results

INRIA 87.9%

NICTA 92.4%

Avg Classification Rate (Visual) 90.15%
Infrared SIGNI (Entire Dataset) 96.4%

Table 6.6: Classification results of CNNs on larger datasets.

Datasets (3832:5462) Classification Results

INRIA 97.58%

NICTA 98.43%

Avg Classification Rate (Visual) 98.01%

Infrared SIGNI (Entire Dataset) 99.67%

To examine the results on larger datasets, the average classification results of the two

visual datasets were compared to the results obtained with the entire infrared dataset.

The hypotheses remained true for all classifiers, with the SVMs and ELMs benefiting

the most. The SVMs had a 2.95% advantage and the ELMs reaching over 6% advantage

thus supporting the hypothesis H1. The CNNs already had relatively high classification

rates with the visual datasets, resulting in a slight performance gain of 1.66% when using

the infrared samples which supports the hypothesis H2. Notice that the performance of

the ELMs improved with larger training datasets.

The performance results over the SIGNI dataset can be attributed to the high contrast

between the people and background in most samples. While human subjects can be

visible during day and night without any illumination to the environment with infrared

images, it is worthy to note their limitations. The classifiers would struggle predicting

the presence of people in situations where the background temperatures are similar to

the temperatures of people.
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Figure 6.1: The precision and recall graphs of the classifiers.

Figure 6.2: Sample images from the SIGNI dataset.

The precision and recall graphs of the classifiers over the SIGNI testing set are shown in

Figure 6.1. The graphs correspond to the performance results obtained with the larger

datasets. The goal of any typical classifier is to reach the top-right corner of the precision

and recall graph. Whereas, on the ROC graph the goal is to reach the top-left corner of

the axis.

The classifiers performed relatively well on the testing samples [Figure 6.1]. However,

measuring the performance of classifiers with discrete images from the same dataset

may lead to misleading results because samples from the same dataset may be similar

in nature [Figure 6.2]. For instance, the people may be scaled to the same size and

the images may be photographed from similar environments. Hence it was necessary to

further test the classifiers over the human detection problem with random infrared and

visual images from the internet. In the next section, the best performing classifier was

selected for evaluating the hypotheses over the human detection problem.
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Figure 6.3: Detection results of the joint SVM+CNN classifier.

6.3 Detection and Localisation Performances

This section analyses the localisation performance of the classifiers. The ground-truth

information consists of a collection of annotated regions from over 200 large images of

about 640×480 resolution on average. The ground-truth regions were manually labelled

and their coordinates were stored in XML files, to ensure effective evaluation of the

localisation performances.

Each classifier was passed over a sequence of large images in a sliding window manner.

During each image pass, the sliding window was convolved over a dense scale pyramid of

the image. A classified ROI is considered correct if it overlaps at least 50% of any ground-

truth region. The number of true-positives, false-positives, true-negatives and false-

negatives was measured for results and analysis purposes. The ground truth algorithm

was first tested over smaller ground-truth testing set to ensure that the implementation

worked correctly, where every output was monitored manually. This testing set contained

15 large images that were converted into multiple-scale pyramids. Errors found in the

algorithm were corrected until the algorithm was confirmed to work as intended. The
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Figure 6.4: Typical ROI’s with complex partial occlusion of people that are observed
by the sliding window classifier [1, 7].

localisation experiments were also monitored occasionally to ascertain that the output

was correct.

6.3.1 Localisation Experiments

The localisation experiments test the generalisation of the classifiers over tougher testing

conditions. With the classification experiments in Section 6.1 and Section 6.2, the

classifiers were given images that either contained a person or not. The images that

contained people, had subjects that filled at least 80% of the images and the subjects

were mostly positioned near the centre of the images. These conditions made it easier

for classifiers to distinguish between the background images and those that contained

people, which subsequently lead to good classification results.

Whereas the localisation experiments expose the classifiers to more complex inputs and

more variety of partially occluded people on the tested sub-images. When the detection

problem is converted into a classification problem, the complexities that occur are as

follows: the sliding window may extract images that contain partially occluded people

like in Figure 6.4. The images may only show the following sections of the human body:

torso only, head and shoulders only, a single leg or both legs, mid-waist only, an arm or

shoulders. This phenomenon leads to interesting results.

The large ground-truth images that were used varied in size and were not resized to

avoid irregular shape deformation to the photographed people. This caused the number

of images that were tested between the colour and infrared ground-truth datasets to also

differ. With this in mind, the total number of regions-of-interest tested was considered

during each evaluation of the classifier to obtain non-biased comparisons between the two
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spectral images. The resolution of the ROIs remained 128×64 and the vertical/horizontal

strides of the sliding window were 16 pixels.

The infrared ground-truth dataset contained 113 images and over 233 labelled ground-

truth regions, enough to produce 167 254 of testable ROIs. Because of the availability of

colour images from the internet and the INRIA dataset, the visual ground-truth dataset

contained 262 large images and over 617 labelled ground-truth regions, resulting in over

358 310 testable ROIs (twice the amount of the infrared testable ROIs).

6.3.2 Localisation Results

The best performing classifier (CNNs) during the classification experiments was selected

for conducting the challenging localisation experiments. For these experiments, the

same architecture used for implementing the CNN in the MatConvNet library was re-

implemented in Caffe and NVIDIA Digits platform for the localisation experiments. The

NVIDIA DIGITS platform provides a much more simplistic user-interface for designing,

training and visualizing deep neural networks. Caffe is an open-source deep learning

framework that has the implementation of CNNs for classification and detection tasks.

One of the reasons for migration was the speed at which the CNNs could be trained and

tested with Caffe’s C++ programming interface.

The results are reported with the total number of regions tested, the number of ground

truth visits, true positives, false positives, true negatives, false negatives, and the preci-

sion and recall rates of each testing scenario. The testing scenarios differ by the training

dataset that was used and the corresponding spectral type of images. The results are

shown in Table 6.7.

The overall classification rate on the infrared testing scenario was 4% higher than the

average classification rate over the colour testing scenarios. But looking at classification

rates alone can be misleading. For instance, the CNNs that were tested on the colour

testing scenarios had a higher precision rate than the one tested with the infrared testing

scenario. However, the precision rate only highlights the precision of the classifier solely

on the images it retrieved as positive. This does not show the precision over the total

amount of positive ground-truth data. The recall rate of the classifiers highlights this

as discussed later on.

For simplicity, let us refer to the two CNNs that were trained with colour images as

ClassifierINRIA and ClassifierNICTA and the one trained with infrared images as

ClassifierIIR. Studying the recall rates shows that both the ClassifierINRIA and

ClassifierNICTA performed poorer than the ClassifierIIR. The low values of 0.043 and
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0.077 indicate that the classifiers that were trained with colour images failed to retrieve

a remarkable large number of positive ground-truth regions. The ClassifierINRIA only

retrieved 8 054 while ClassifierNICTA only retrieved 14 364 from the total 187 447

of ground-truth regions that were visited by each classifier. Instead, the ClassifierIIR

was able to retrieve 48 214 of the total 76 479 ground-truth visits. This implies that the

two colour classifiers only retrieved an average of 5.98% of the ground truth ROIs as

positive samples, whereas the infrared classifier was able to retrieve 63.04% of the total

ground truth regions. This is a remarkable difference in favour of the infrared classifier.

The number of false positives by the ClassifierIIR was quite high and the number of

false negatives on the colour classifiers was also high. It appears that the ClassifierIIR

was more likely to classify data as positive than the other two classifiers and the colour

classifiers were more likely to predict data as negative. The high amount of false positives

by the infrared classifier may be attributed to the following reasons. The training images

had no instances where people had lower temperatures than the background settings

while some of the ground-truth testing scenes have such cases.

For the localisation experiments, samples from the infrared testing-scenario were supple-

mented with infrared images from the internet to lessen the gap between the number of

visual samples and infrared samples. Some of the infrared images from the internet were

poor in quality (low resolution, low sharpness or blurred). Most of the infrared-images

that were recorded for this work during a sunny day in May 2017, had human temper-

atures that blended with the background. Whereas, samples from the visual testing-

scenario had fewer imperfections (better resolution and the subjects were clearer).

The traditional method of assessing the performance of sliding-window detectors appears

to have some flaws, as discussed in the next subsection.

Table 6.7: Object localisation results of sliding classifiers:
ClassifierINRIA, ClassifierNICTA and ClassifierIIR .

Criteria INRIA NICTA SIGNI

Total regions tested 358310 358310 167254

Total ground truth visits 187447 187447 76479

Number of True positives 8054 14364 48214

Number of False positives 4319 7696 50129

Number of True negatives 166544 163167 40646

Number of False negatives 179393 173083 28265

Classification Rate 48.7% 49.5% 53.1%

Precision 0.651 0.651 0.490

Recall 0.043 0.077 0.630
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6.3.2.1 Ground Truth Validation flaws

The requirement for detected windows to overlap ground-truth regions by at least 50%

has many flaws. It is easy to see that with any step-size used for the sliding classifier,

the 50% requirement may penalise classifiers for recognising partially visible objects.

The question that arises is: are classifiers not supposed to recognise partially occluded

objects? Ideally, a robust classifier should recognise a human even if half of the body is

visible. It is concerning that most object detection benchmarks follow this rule and are

penalising classifiers unfairly.

To address this problem, the ROIs that were misclassified and their corresponding

ground truth labels were saved into files for reassessment. It appears that a large number

of images with noticeable full bodies of people are being marked as negative samples

due to the strict 50% rule [Figure 6.5]. Some images would show a person positioned at

the far horizontal sides of ROI and some would show relatively small people within the

ROI. This information should be enough to recognise people, as robust classifiers should

handle slight translations and occlusions.

Ground-truth validators should make provisions for detection windows that fall short

of meeting the required overlap. It is evident that the classifiers are identifying vital

patterns in images, but are unfairly penalised for doing so.

6.4 Results and Discussion

Human beings can easily identify people that are highly occluded, even from a picture

that only shows a head, hand or boots [Figure 6.4]. If future classifiers are expected

to possess such cognitive capabilities, then newer ways of evaluating their performance

should be established. The use of heat maps may address this problem, where detec-

tions are penalised the further they are from ground-truth window. Meaning detections

that are closer to the ground-truth region become favourable. Unlike semantic/mask

segmentation, it is difficult to determine the inclusion of objects in rectangular windows

without pixel-level ground-truth information. Therefore, heat map scoring/penalising

methods may mitigate this problem.

Another similar problem is penalising classifiers for recognising reflections of people

on reflective materials. Just like visible light, heat radiation can also be reflected on

surfaces that have high specularity. Consequently, some of the image samples showed

spectral ghostly reflections of people on doors and other reflecting materials [Figure 6.6].

Regrettably, these reflections were not considered during the annotation of the ground-

truth information since they were barely visible.
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Figure 6.5: Some of the images that were classified as negative samples by the strict
50% overlap requirement when validating object detection ground truth information [1,

7].

Figure 6.6: Heat reflections were not considered for ground-truth information, yet
some were classified as positive by the classifier.
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Figure 6.7: Some of the results from region-based CNNs detector.
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As expected, the classifiers would recognise these reflections as positives at times. Which

is good, because classifiers are mathematical models that see tensors (i.e multi-dimensional

arrays) instead of images as animals do. Because of the time constraints of this thesis, we

were unable to include these ghostly reflections to the ground-truth information. Nev-

ertheless, they would barely affect the results because only a few images have reflections

in the testing set.

Other CNN network models such as the AlexNet and GoogleNet were experimented with

to try and improve the results. However, the datasets used in this work were too small to

successfully train the AlexNet model without transfer learning. The larger GoogleNet

model required more system memory than the 8GB memory on the system used for

training the CNNs. Some of the recent CNN architectures can perform both detection

and classification of objects in images. The choice of a sliding window detector was

selected in this research to accurately assess the performance of all classifiers since two

of the classifiers used in this research cannot perform detection on their own. Transfer

learning was strictly not applied to discriminate the real performance differences from

applying different spectral-band images. This concludes the rationale for selecting the

older Lenet 5 architecture for the CNNs classifier.

Object detection is a challenging task to solve than image classification problems. With

object detection, computers are not expected to just classify the context of the images

but are required to predict the location of the bounding boxes that enclose the detected

objects in large images. Region-based CNNs have superior performance than the sliding

classifiers used in this research [76] and report less false positives due to the bounding-

box regressor which best fits a rectangle onto regions that contain detected objects.

The following images in Figure 6.7, show the results of applying a single-shot detector

(SSD) on large images. This SSD detector employed a VGG architecture for the base

convolutional layers and was trained with the 2015 COCO dataset.

The best two performing classifiers (SVMs and CNNs) were selected to form a robust

cascade of classifiers that could be compared to the SSD detector. That is, a region-of-

interest is only predicted to contain a person if and only if, both SVMs and CNNs classify

it as positive. Through this joint SVMs+CNNs classifier, similar experiments of finding

people in large images were conducted and the detection results are shown in Figure 6.3.

The cascade of classifiers had fewer misclassifications than the other sliding-window-

based detectors, however, the recent region-based CNNs detectors are more accurate for

detection tasks and only require a single model to be trained. Other region-based CNN

architectures that are capable of robust human detection are the YOLO, Fast RCNNs,

SSD detector and DetectNet.
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6.5 Overal Results

The average performance gains that were obtained by each classifier can be calculated

by taking a sum of performance gains from both highly skewed (Experiments A) and less

skewed (Experiments B) dataset experiments and dividing it by two. This makes it easier

to interpret the overall results in Table 6.8. For instance, summing the performance

gain of the SVM classifier on highly skewed datasets (0.60%) with its gain on the less

skewed datasets (2.95%) and dividing this by two yields the overall performance gain of
3.55%

2 = 1.78% for this classifier. Doing the same calculation for the ELMs and CNNs

shows overall performance gains of 14.40%
2 and 3.83%

2 respectively.

Table 6.8: Overall classification performance gains per classifier.

Small Datasets Gains Large Datasets Gains Overall Gains

SVMs 0.60% 2.95% 1.78%

ELMs 8.40% 6.00% 7.20%

CNNs 2.17% 1.66% 1.92%

The ground-truth results justified this work’s hypotheses (H1 and H2) and show that

the classifiers are more likely to recognise the appearance of people in images with re-

duced noise levels like infrared images. The low recall rates of 0.043 and 0.077 (from

CNN INRIA and CNNNICTA respectively) indicate that the CNN classifier that was

trained with colour images failed to retrieve a remarkable large number of positive

ground-truth regions. This equates to just above 5.98% of positive ground-truth boxes

that were retrieved, versus a 63% of ground-truth regions that were retrieved by the in-

frared classifier. A high recall rate indicates a classifier that returned most of the relevant

results, whereas a high precision rate indicates a classifier that returned considerably

more relevant results than irrelevant ones. The ground-truth results from Table 6.7 show

that the precision and recall rates over infrared testing scenarios were more balanced

compared to the results on visual testing scenarios (when using a precision rate of 0.5

as a reference point), where the classifiers had a higher precision with a substantially

much poor recall rate.

Throughout all experiments, better results were obtained with the use of infrared images

than the use of visual images by the two shallow learning classifiers (SVMs and ELMs)

as well as the deep learning CNNs. Furthermore, the CNNs performed well than the

shallow learning classifiers, making the overall results favourable to the supposition of

this work. The findings of this research are concluded in the next chapter and future

work is proposed.
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Conclusion

This work has shown the advantage of using infrared imaging for human detection.

Several visual datasets were collected and compared with the newly created dataset

that is publicly available online [7]. The influence of using infrared images was studied

over six smaller subsets of the datasets, as well as larger datasets. Several classifiers were

intensively trained to determine the optimal parameters that could be used as a standard

for evaluating the extent of performance gains between the two spectral samples. The

use of similar parameters reduced possible biases between the two data sample types.

The hypothesised supposition was shown to hold for all classification test cases and all

three classifiers. As a result, we can conclude that the use of infrared images has the

potential to improve human detection results. Furthermore, the results show that deep

learning models may also benefit from the same supposition and better classification

results were obtained with deep convolutional neural networks than the shallow learning

SVMs and ELMs. The benefits were also apparent during the training process, as the

CNNs converged faster with the infrared dataset. On the large dataset experiments, the

classifiers (SVMs and ELMs) that used hand-engineered features benefited more than the

classifier (CNNs) that autonomously learned the desired filters for feature acquisition.

The localisation experiments addressed an imbalanced binary classification problem,

where one of the classes (negative background samples) had the overwhelming majority

of the data samples. In such cases, precision rates are not a good measure because

they can be easily obtained by any classifier that is biased to the overwhelming class.

Instead, the recall rate metric becomes a better measure as it shows a model’s ability

to find relevant samples from a testing scenario that has considerably more irrelevant

samples.
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The results from the localisation experiments were favourable to the infrared testing

scenarios as the classifier trained with infrared images showed a higher recall rate and a

balanced trade-off between the precision and recall rate. Compared to the visual testing

scenarios, the classifiers had higher precision rates and substantially poor recall rates

proving to be biased to the negative class. The recall rates showed that the classifiers

trained with colour datasets failed to retrieve about 95% of the positive ground-truth

regions versus about 36.96% from the classifier trained with infrared images.

It is clear that a more precise outcome of this research would be possible should the

datasets from both spectral types be captured in synchronously. In addition, the datasets

should be captured at different times of the day and different environments to improve

the generalisation of the classifiers.

7.1 Future Work

Our current and future work is on developing other methods for enhancing the quality

of extracted edge information. Based on prior experiments, we propose the unification

of similar colours in local regions for lessening the amount of low-frequency edges on

foreground objects. This may improve the quality of HOG/CNN features. To imple-

ment this method, we tried “cartooning” the images using the Selective Gaussian Blur

filter from the cross-platform image editor GIMP. Sample results of this are shown in

Figure 7.1, where low-frequency edges are visibly reduced whilst the pictorial shape of

the pedestrian is retained. Superior descriptive shape information may be extracted

should this filter be applied to all image samples as this method reduces the clutter of

edge-noise on both foreground and background regions.

Another approach could be applying a Watershed Colour Segmentation algorithm for

unifying solid colours that are within object boundaries. The Bilateral filter has similar

effects like the Selective Gaussian Blur filter but has a higher computational cost. The

benefits of the proposed steps are not only limited to HOG features. Unifying colours in

images may benefit other feature descriptors and classifiers. As discussed in this work [12,

77], quantising colours can assist shape detection algorithms and colour segmentation

tasks. Lastly, another contribution could be creating a large synced infrared datasets

with high-resolution images, where infrared samples are captured in synchronous with

the visual samples. This will require special optical lenses that will allow different

cameras to capture similar pictures with similar depth perception.

Developing a convolutional neural network architecture that is capable of suppressing

edge-noise in images before applying object classification or detection can be a crucial
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step in this research. Further work may entail the use of generative adversarial networks

(GANS) for generating artistic-decoded images with reduced noise and unified colours.

Figure 7.1: Cartooned image, colour unification for better boundary edge extraction.
Top left is the original image. Followed by its cartooned version (top-right). The

corresponding magnitudes of gradients images are shown below it [1].
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[47] Chen Datong, Bourlard Hervé, and Thiran J-P. “Text Identification in Complex

Background Using SVM”. In: Computer Vision and Pattern Recognition, 2001.

CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference On.

Vol. 2. IEEE. 2001, pp. II–621 (cit. on p. 31).

[48] Werbos Paul. “Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences”. Harvard University, 1974 (cit. on p. 31).

[49] Huang Guang-Bin, Zhu Qin-Yu, and Siew Chee-Kheong. “Extreme Learning Ma-

chine: Theory and Applications”. In: Neurocomputing 70.1 (2006), pp. 489–501

(cit. on pp. 31, 33, 34).

[50] Fan Jialue, Xu Wei, Wu Ying, and Gong Yihong. “Human Tracking Using Con-

volutional Neural Networks”. In: IEEE Transactions on Neural Networks 21.10

(2010), pp. 1610–1623 (cit. on p. 31).

[51] McCulloch Warren S and Pitts Walter. “A Logical Calculus of the Ideas Imma-

nent in Nervous Activity”. In: The bulletin of mathematical biophysics 5.4 (1943),

pp. 115–133 (cit. on p. 31).

[52] Rosenblatt Frank. “The Perceptron: A Probabilistic Model for Information Storage

and Organization in the Brain.” In: Psychological review 65.6 (1958), p. 386 (cit.

on p. 31).

[53] Nicholson Chris. “A Beginner’s Guide to Neural Networks and Deep Learning”.

2016. url: https://pathmind.com/wiki/neural-network (cit. on pp. 32, 35).

https://www.aitrends.com/ai-insider/support-vector-machines-svm-ai-self-driving-cars/
https://www.aitrends.com/ai-insider/support-vector-machines-svm-ai-self-driving-cars/
http://dx.doi.org/http://dx.doi.org/10.1016/j.media.2011.05.007
http://www.sciencedirect.com/science/article/pii/S1361841511000594
http://www.sciencedirect.com/science/article/pii/S1361841511000594
https://pathmind.com/wiki/neural-network


BIBLIOGRAPHY 99

[54] Glosser Ca. “An example artificial neural network with a hidden layer”. 2013.

url: https://en.wikipedia.org/wiki/Artificial_neural_network#/media/

File:Colored_neural_network.svg (cit. on p. 33).

[55] Huang Gao, Huang Guang-Bin, Song Shiji, and You Keyou. “Trends in Extreme

Learning Machines: A Review”. In: Neural Networks 61 (2015), pp. 32–48 (cit. on

p. 34).

[56] Zhang Rui, Lan Yuan, Huang Guang-bin, and Xu Zong-Ben. “Universal Approx-

imation of Extreme Learning Machine with Adaptive Growth of Hidden Nodes”.

In: IEEE Transactions on Neural Networks and Learning Systems 23.2 (2012),

pp. 365–371 (cit. on p. 34).

[57] Lan Yuan, Soh Yeng Chai, and Huang Guang-Bin. “Two-Stage Extreme Learning

Machine for Regression”. In: Neurocomputing 73.16 (2010), pp. 3028–3038 (cit. on

p. 34).

[58] LeCun Yann and Bengio Yoshua. “Convolutional Networks for Images, Speech,

and Time Series”. In: The handbook of brain theory and neural networks 3361.10

(1995), p. 1995 (cit. on pp. 35, 55).

[59] Taigman Yaniv, Yang Ming, Ranzato Marc’Aurelio, and Wolf Lior. “Deepface:

Closing the Gap to Human-Level Performance in Face Verification”. In: Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014,

pp. 1701–1708 (cit. on p. 35).

[60] Davis Jesse and Goadrich Mark. “The Relationship between Precision-Recall and

ROC Curves”. In: Proceedings of the 23rd International Conference on Machine

Learning. ACM. 2006, pp. 233–240 (cit. on p. 36).

[61] Davis James W and Keck Mark A. “A Two-Stage Template Approach to Per-

son Detection in Thermal Imagery”. In: Application of Computer Vision, 2005.

WACV/MOTIONS’05 Volume 1. Seventh IEEE Workshops On. Vol. 1. IEEE.

2005, pp. 364–369 (cit. on p. 39).

[62] Portmann Jan, Lynen Simon, Chli Margarita, and Siegwart Roland. “People De-

tection and Tracking from Aerial Thermal Views”. In: Robotics and Automation

(ICRA), 2014 IEEE International Conference On. IEEE. 2014, pp. 1794–1800 (cit.

on pp. 39, 40).

[63] Zhang Li, Wu Bo, and Nevatia Ram. “Pedestrian Detection in Infrared Images

Based on Local Shape Features”. In: Computer Vision and Pattern Recognition,

2007. CVPR’07. IEEE Conference On. IEEE. 2007, pp. 1–8 (cit. on p. 40).

[64] Xenics. “Xenics Infrared Solutions - Gobi 640 Series”. 2016. url: https://www.

xenics.com/long-wave-infrared-imagers/gobi-640-series/ (cit. on p. 44).

https://en.wikipedia.org/wiki/Artificial_neural_network#/media/File:Colored_neural_network.svg
https://en.wikipedia.org/wiki/Artificial_neural_network#/media/File:Colored_neural_network.svg
https://www.xenics.com/long-wave-infrared-imagers/gobi-640-series/
https://www.xenics.com/long-wave-infrared-imagers/gobi-640-series/


BIBLIOGRAPHY 100

[65] Kunene Dumisani. “Dataset GroundTruth Creator”. In: (2016) (cit. on p. 44).

[66] Fitzgerald Mary Pat. “MIT Pedestrian Dataset”. 2000. url: http://cbcl.mit.

edu/software-datasets/PedestrianData.html (cit. on pp. 48, 57).

[67] Guang-Bin Huang. “Extreme Learning Machines”. 2004. url: https://www.ntu.

edu.sg/home/egbhuang/elm_codes.html (cit. on p. 54).

[68] Vedaldi A. and Lenc K. “MatConvNet: Convolutional Neural Networks for MAT-

LAB”. In: ACM International Conference on Multimedia. 2015 (cit. on pp. 55, 56,

72).

[69] Xu Danfei. “Convolutional Neural Networks for Visual Recognition”. 2016. url:

https://cs231n.github.io/convolutional-networks/ (cit. on p. 56).

[70] LeCun Yann, Jackel LD, Bottou Leon, Brunot A, Cortes Corinna, Denker JS,

Drucker Harris, Guyon I, Muller UA, Sackinger Eduard, et al. “Comparison of

Learning Algorithms for Handwritten Digit Recognition”. In: International Con-

ference on Artificial Neural Networks. Vol. 60. Perth, Australia. 1995, pp. 53–60

(cit. on p. 56).

[71] Krizhevsky Alex and Hinton G. “Convolutional Deep Belief Networks on Cifar-10”.

In: Unpublished manuscript 40 (2010) (cit. on p. 57).

[72] Jung Yoonsuh and Hu Jianhua. “AK-fold averaging cross-validation procedure”.

In: Journal of nonparametric statistics 27.2 (2015), pp. 167–179 (cit. on p. 60).

[73] Di Franco Anthony, Guo Hui, and Rubio-González Cindy. “A comprehensive
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Appendix A

Appendixes

A.1 Introduction

The appendixes present extra material to substantiate the discussion of the instruments

used for this research. The ground truth validation tool that was used in this work is

presented in Appendix A.2 The ethics clearance for capturing the samples of the SIGNI

dataset is shown in Figure A.6.

A typical example of the XML files that store ground-truth information is shown in

Figure A.2. The code in Listing A.1 shows how the ROI coordinates were mapped from

the scaled-down pyramid images to the ground-truth resolution space for correct ground-

truth validation. The cases to consider when evaluating the extent of overlap between

the detection window and the ground-truth regions are shown in Figure A.3, Figure A.4

and Figure A.5. The Matlab code Listing A.2 shows the algorithm for evaluating the

detection window’s extent of overlap over each Ground Truth ROIs.

A.2 Localisation Tool

Thanks to Matlab’s MEX compiler, a global wrapper that applies the sliding window

mechanism for all classifiers was developed for ground-truth validation when addressing

the human detection problem. This allows the detection and localisation of people

on images that are larger than the classifier’s descriptor windows. This tool takes as

inputs, a trained classifier object, the image to be tested, its resolution and XML-tag, the

detection window’s coordinates and resolution, and lastly the original image’s resolution.

The optional XML-tag argument is only required when testing images with ground-truth

information.
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Thanks to Matlab’s MEX compiler, a global wrapper that applies the sliding window

mechanism for all classifiers was developed for ground-truth validation to address. This

allows the detection and localisation of people on images that are larger than the clas-

sifier’s descriptor windows. This tool takes as inputs, a trained classifier object, the

image to be tested, its resolution and XML-tag, the detection window’s coordinates and

resolution, and lastly the original image’s resolution. The optional XML-tag argument

is only required when testing images with ground-truth information.

An alternative to MEX files is the use of a robot operating system (ROS) environment,

which allows images to be sent to the executables that implement the different clas-

sifiers for processing. Once the images are classified, the classification results can be

sent back to the ground-truth assessment tool. The ROS environment facilitates data

communication between different executable nodes.

Consider a scenario where the original image’s resolution is 640 × 480 and it is scaled

down by a fraction of 0.2 whenever the descriptor window completes a convolution over

it. If the image is scaled down 6 times, the resolution will change from [640 × 480] to

[512 × 384], [410 × 307], ..., [209 × 157]. From this image, suppose a detection occurs at

position (x0, y0) = (60, 35) with a [128×64] descriptor window, and we need to determine

if this a true detection or not using the ground truth information.

The problem to solve is finding the descriptor window’s relative position and size to the

original image’s resolution [See Figure A.1]. This can be solved arithmetically as follows:

1. Determine the ratios between the (ROI position coordinates on the scaled-down

image) and the (resolution of the scaled-down image).

2. Then multiply the ratios with the original image’s resolution to obtain the ROI’s

position on the original image. The same is done for mapping the width and

height.

Note that the subscript D refers to the variables from the scaled-down image resolution

space hence the (D), and the subscript G refers to the variables in the ground truth

resolution space hence the (G). The Matlab code snippet n Listing A.1 does this task.

After mapping the ROI’s from scaled-down images to the original image size. The extent

of overlap for ROIs over the ground truth subregions is evaluated. To do this, the six

possible cases shown in Figure A.3 must be considered, Figure A.4, and Figure A.5.

The evaluation of the detection window is only conducted if the distance from the

(midpoint of the detection window rectangle) to the (midpoint of the evaluated ground
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Figure A.1: The detection window position and size mapped to the ground truth
resolution.

truth window) is less than half the length of the ground truth rectangle’s hypotenuse.

Therefore, the extent of overlap for detection windows that are far from the ground

truth window is not applied to avoid unnecessary computation.

Once the ground-truth ROI coordinates are extracted from an XML file (similar to

Figure A.2) using the code from lines 2 to 8 in Listing A.2, six conditions are evaluated

using several conditional statements. For Cases A, B, C and D, the detection window

is first examined whether it is above or below the ground truth ROI. From there, the

height of the overlapping rectangle is calculated followed by the horizontal overlap. For

cases E and G, the overlapping width and height become the actual side lengths of the

detection window since the entire detection window is within the ground truth ROI.

With the case of F, the overlap equals the ground truth window’s sides.

The lines 17 to 55 in Listing A.2 show the self-explanatory implementation of this in

Matlab. With the width and height of the overlap, the area of the overlapping rectangle

can be calculated and compared to the area of the ground truth rectangle. A detection

window is only regarded as a ”true position” if it overlaps the ground truth window by

at least 50%, such that the detection window is not twice as big as the ground truth

window.

OpenCV has an easier approach for evaluating the extent of overlap between ROIs.



Appendix A Appendixes 106

Given two OpenCV rectangles of types Rect2d, the intersection rectangle can be com-

puted by the line in python overlapRect = ROI 1 & ROI 2;, and the area of overlap can

be determined by simply calling the function overlapRectable.area();.

Figure A.2: A typical example of the produced xml tree containing ground-truth
information.
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Figure A.3: Cases A and B, when the detection window is above the ROI coordinate.

1 %ROI p o s i t i o n coo rd ina t e s vs s c a l e d down image r e s o l u t i o n .

2 y1pos i t i onRat i o = y1D / Height D ;

3 x1pos i t i onRat i o = x1D / Width D ;

4

5 %Re la t i v e ROI p o s i t i o n mapped to the Ground Truth r e s o l u t i o n space .

6 y1G = round ( Height G ∗ y1pos i t i onRat i o ) ;

7 x1G = round ( Width G ∗ x1pos i t i onRat i o ) ;

8

9 %ROI s i z e vs s c a l e d down image r e s o l u t i o n .

10 he ight = y2D − y1D ;

11 width = x2D − x1D ;

12 currentHe ightRat io = he ight /Height D ;

13 currentWidthRatio = width/Width D ;

14

15 %Re la t i v e ROI s i z e mapped to the Ground Truth r e s o l u t i o n space .

16 originalWindowHeight = round ( Height D∗ currentHe ightRat io ) ;

17 originalWindowWidth = round ( Width D∗ currentWidthRatio ) ;

18 x2G = x1Or ig ina l + originalWindowWidth ;

19 y2G = y1Or ig ina l + originalWindowHeight ;

Listing A.1: Mechanism for mapping the position and size of the scaled down de-

scriptor window to the ground truth resolution space.
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Figure A.4: Cases C and D, are for cases when the detection window is below the
ground truth ROI coordinate.

Figure A.5: Cases E and G, are for cases when the detection windows is within or
equal to the ground truth ROI. Then in case F, the detection window fully covers the

ground truth ROI.
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1 %Read a l l subreg ions

2 subreg ion = xmlImageTag . g e t F i r s t C h i l d ( ) ;

3 f o r i =1:numSubRegions

4 %Coord i ta te s o f the Ground Truth window

5 x1G = uint16 ( eva l ( char ( subreg ion . ge tAt t r ibute ( ’ xStart ’ ) ) ) ) ;

6 y1G = uint16 ( eva l ( char ( subreg ion . ge tAt t r ibute ( ’ yStart ’ ) ) ) ) ;

7 x2G = uint16 ( eva l ( char ( subreg ion . ge tAt t r ibute ( ’xEnd ’ ) ) ) ) ;

8 y2G = uint16 ( eva l ( char ( subreg ion . ge tAt t r ibute ( ’yEnd ’ ) ) ) ) ;

9

10 %% Val idate Ground Truth

11 [ overlappingWidth , over lappingHeight , over lapPercentange ] = dea l ( 0 . 0 ) ;

12

13 % Overlaping ca s e s between the d e t e c t i o n and ground truth window

14 % Case A and B

15 i f ( (y1D < y1G) && ( ( y2D)> y1G) && (y2G>y2D ) ) %v e r t i c a l over lap

16 over lapp ingHe ight = (y2D)−y1G ;

17 %Case A

18 i f ( (x1D < x1G) && (x1G<x2D) && (x2D<x2G) ) %h o r i z o n t a l over lap

19 overlappingWidth = x2D−x1G ;

20 end

21 %Case B

22 i f ( (x1D > x1G) && (x1D<x2G) && (x2G<x2D) )

23 overlappingWidth = x2G−x1D ;

24 end

25

26 %Case C and D

27 e l s e i f ( (y1D > y1G) && ( (y2G)>y1D) && (y2D>y2G) )

28 over lapp ingHe ight = (y2G)−y1D ;

29 %Case C

30 i f ( (x1D < x1G) && (x1G<x2D) && (x2D<x2G) )

31 overlappingWidth = x2D−x1G ;

32 end

33 %Case D

34 i f ( (x1D > x1G) && (x1D<x2G) && (x2G<x2D ) )

35 overlappingWidth = x2G−x1D ;

36 end

37 %Case E and G

38 e l s e i f ( ( x1D >= x1G) && (y1D>= y1G) )

39 i f ( ( x2D) <= x2G && (y2D<= y2G) )

40 overlappingWidth = widthDetect ion ;

41 over lapp ingHe ight = he ightDetec t i on ;

42 end

43 %Case F
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44 e l s e i f ( ( x1D < x1G) && (y1D<y1G) )

45 i f ( ( x2D) > y2G)

46 i f ( widthDetect ion ∗ he ightDetec t i on )/ GroundTruthAreaSize <= 2

47 overlappingWidth = widthGroundTruth ;

48 over lapp ingHe ight = heightGroundTruth ;

49 e l s e

50 cont inue ; % False P o s i t i v e

51 end

52 end

53

54 %Val idate the over lap percentange

55 heightGroundTruth = y2G − y1G ;

56 widthGroundTruth = x2G − x1G ;

57 GroundTruthAreaSize = s i n g l e ( widthGroundTruth∗heightGroundTruth ) ;

58 Over lappingAreaSize = overlappingWidth ∗ over lapp ingHe ight ;

59 over lapPercentange = s i n g l e ( Over lappingAreaSize ) / GroundTruthAreaSize ;

60 i f ( over lapPercentange >= 0.5 && over lapPercentange<=2)

61 numTruePositives = numTruePositives +1;

62 re turn ;

63 e l s e

64 %Move to the next subreg ion on the xml

65 subreg ion = subreg ion . getNex1GSibl ing ( ) ;

66 cont inue ; % False P o s i t i v e

67 end

68 end

Listing A.2: Mechanism for evaluating the detection window’s extent of overlap over

each Ground Truth ROIs.
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A.3 Ethics Clearance

A permit and ethics clearance from the University of the Witwatersrand was obtained

prior to the creation of this dataset. The document is shown in Figure A.6.

Figure A.6: The necessary ethics clearance for creating the SIGNI dataset.
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