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ABSTRACT

In today’s society, the need for the right inforroatat the right time and the right place
as well as increased number of high bandwidth es®Imultimedia services and the
explosive proliferation of smart phone and tabletides has led to increase in demand
for and use of radio spectrum, which is the primamgbler of wireless communications.
With this increase, the principal engineering dadle in wireless communications
domain is now on how to effectively manage the agadpectrum to ensure its
sustainability for future emerging wireless devjcemce virtually all usable radio
frequencies for wireless communications have bé&mnsed to commercial users and

government agencies.

Traditionally, the approach to radio spectrum managnt has been based on a fixed
allocation policy, whereby licenses are issued sersi or operators for the usage of
frequency bands. With a license, operators haveexistusive right to use the allocated
frequency bands for assigned services on a lomg-basis. However, over the last ten
years, this strict allocation policy has been sctig@ to a lot of criticism because of its

observed contribution to radio spectrum scarcity amderutilization.

In mitigating these negative effects of the curmaglio spectrum management policy, one
of the suggested measures is to open up the liddrsguency bands to unlicensed users
on a non-interference basis to licensed usershigriew spectrum access system, an
unlicensed or secondary user can opportunisticgigrate in unused licensed spectrum
bands without interfering with the licensed or pmmy user, thereby reducing radio
spectrum scarcity and at the same time increasiagefficiency of the radio spectrum

utilization.

In achieving this objective, there is a need toellgy a radio engine that can sense its
environment to determine the presence of primagrausCognitive radio is seen as the
enabling technology for opportunistic spectrum sitarit is a radio with the capability to
sense and understand its environment, and probctaleer its operational mode as
needed to avoid interference with a primary useremsure interference-free use to the



primary user, spectrum sensing and detection hais tleserved as a key functionality of

cognitive radio.

However, there is currently no single sensing metti@at can reliably sense and detect
all forms of primary radios’ signals in a cognitixedio environment. Therefore, in order
to achieve this goal, this thesis addresses th@groof accurate and reliable sensing and
detecting of a primary radio signal in a cognitikedio environment. The principal
research issue addressed is the possibility ofirsgm@sd detecting all forms of primary
radio signals in a cognitive radio environment. sTtobjective was achieved by
developing an adaptive cognitive radio engine tizet automatically recognize different

forms of modulation schemes in a cognitive radisiremment.

The thesis pictures spectrum sensing as the cotidnnaf signal detection and
modulation classification, and uses the term Autiicdodulation Classification (AMC)
to denote this combined process. The hypothesimdbahis detection method is that,
since all transmitters using the radio spectrumanage of one modulation scheme or
another, the ability to automatically recognize mlation schemes is sufficient to
confirm the presence of a primary user signal wtike opposite confirms absence of a

primary user signal.

The research work methodology was divided into stames. The first stage involves the
development of an automatic modulation recogni{®@iR) or AMC using an Artificial
Neural Network (ANN). The second stage involves tievelopment of the Cognitive
Radio Engine (CRE), which has the developed AMRitascore component. The
developed CRE was extensively evaluated to deterris) performance. The overall
numerical results obtained from the developed CR&wmluation shows that the
developed CRE can reliably and accurately detéth@lmodulation schemes considered
without bias towards a particular Signal-to-Noisati® (SNR) value, as well as any
modulation scheme. The research work also revehkdsingle spectrum sensing and
detection method can only be achieved when a gefeature common to all radio
signals is employed in its development rather thaimg features that are limited to

certain signal types.
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CHAPTER 1

1.0 INTRODUCTION AND BACKGROUND OF THE STUDY

This chapter provides the basic background ofttiesis. It presents basic information on
radio spectrum as an enabler of radio or wirelesmngunication. The chapter also
provides insight into the current radio spectrugutatory policy on the worldwide level,

and why the policy needs to be abolished. In amlditthe aim and objectives of the
research work, as well as its expected contribstionknowledge, are presented in this
chapter. The last section of the chapter also pesvidetailed information on the

organization of this thesis.

1.1 Introduction

Through the ages, people have devised differenthadst of communicating their

messages, thoughts and needs to others. In thé&ipesndays when human beings lived
in small groups distributed over a relatively smgdlographical area, communication
within the group took place through speech, gestared graphical symbols. As these
groups became larger and civilizations spread damge geographical areas, it was
necessary to develop methods of long-distance camuation (Popoola and Adeloye,

2007). Early attempts at long-distance communicaficluded using signs, such as

smoke signals, gun shots, and so forth.

With the beginning of the industrial revolutiongtheed for fast and accurate methods of
long-distance communication became more pressimgnn@unications systems using
electrical signals to convey information from on&age to another over different
transmission media provided an early solution #globlem of fast and accurate means
of long-distance communication. In 1895, Marconiol@mith, 2005) successfully
demonstrated the first radio transmission from Igle of Wight to a tugboat eighteen

miles away, and gave birth to radio communicat®ince this first employment of radio



spectrum over one hundred years ago to transnaitnrEtion, both the demand for radio
spectrum and the utilization of radio spectrum hgueatly increased (Olafssat al,
2007). This is because of an increase in both ¢éinefits of wireless services and users of
the radio spectrum over the years.

From its very beginning, radio or wireless commatian has played a vital role in
protecting lives and property and, subsequentisguiph the development of radio and
television broadcasting, in delivering informatiand entertainment programming to the
public at large. More recently, regions, countrieslustries, and individuals around the
world have realized that wireless communicatiors services are indispensable enablers
of productivity and economic growth (Hatfield, 1993his realization was as a result of
the capability of wireless communications and smwito deliver information services
directly to individuals on the move, far from th#fice desk or factory floor, thereby
increasing their personal productivity. In additidhere is an increasing realization that
wireless communication has a critical role to playthe telecommunications and
information sectors, as it can deliver informatitm fixed locations that cannot be
economically served by hard-wired facilities be@usf physical infeasibility or
prohibitively high costs. Thus, radio-based systgtay increasingly important roles in
rapidly and efficiently extending the benefits ofodern telecommunications and

information services.

In radio communication, radio spectrum availabilisy the most valuable resource.
Spectrum refers to electromagnetic waves that iithveugh the space. These waves are
used to convey information over a long distancdeuit wires or other physical media. It
consists of two major parts, namely radio waveslaid waves. While measurements of
radio waves are in terms of frequency or numbeosaillations per second, hertz (Hz),
the measurements of light waves are in terms ofeleagth (meters) or energy (electron
volts). The whole electromagnetic spectrum as shiowirable 1.1 consists of waves. The
radio spectrum covers from 3 kHz to 300 GHz. Thuecsrum is divided into different
bands. Table 1.2 shows the various frequency bandsheir corresponding frequency

ranges, as well as some applications of each dfdhds.



Table 1.1: Electromagnetic Waves Components and thieRanges

Electromagnetic waves

Range

Radio waves

3 kHz - 300 GHz (Frequency)

Sub-millimeter waves

100m — 1 mm (Wavelength)

Infrared 780 nm — 100m (Wavelength)
Visible light 380 nm — 780 nm (Wavelength)
Ultraviolet 10 nm — 380 nm (Wavelength)
X-ray 120 eV — 120 keV (Energy)
Gamma rays 120 keV and above (Energy)

Source: Prasad (2003).

Table 1.2: Radio Frequency Bands and their Correspuding Applications

Frequency Band

Frequency Range

Applications

Very Low Frequency 3 kHz — 30 kHz Radio navigation, maritime mobijle

(VLF) (communication on ships)

Low Frequency (LF) | 30 kHz — 300 kHz Radio navigatimaritime mobile

Medium  Frequency 300 kHz — 3 MHz AM radio broadcast, aeronautical

(MF) mobile

High Frequency (HF)| 3 MHz — 30 MHz Maritime mobiseronautical mobile

Very High Frequency Land mobile, FM broadcast, TV

(VHF) 30 MHz — 300 MHz broadcast, aeronautical mobile, radio
paging, trunked radio

Ultra High Frequency 300 MHz — 1 GHz TV broadcast, mobile satellitenda

(UHF) mobile, radio astronomy

L band 1 GHz -2 GHz Aeronautical radio navigatiamadio
astronomy, earth exploration satellite$

S band 2 GHz — 4 GHz Space research, fixed satellit
communication
Fixed satellite communication,

C band 4 GHz - 8 GHz meteorological satellite
communication

X band 8 GHz - 12 GHz Fixed satellite broadcast, acep
research

Ku band 12 GHz — 18 GHz Mobile and fixed satellite
communication, satellite broadcast

K band 18 GHz — 27 GHz Mobile and fixed satellite
communication

Ka band 27 GHz — 40 GHz Inter- satellite commumicgt mobile
satellite communication

Millimeter 40 GHz - 300 GHz Space research, Intersatellite

communications

Source: Prasad (2003).



Radio spectrum is a natural resource with someiapelaracteristics (Hatfield, 1993).
The key characteristics of the radio spectrum laeeptopagation features and the amount
of information that signals can carry (Cagkal, 2006). In general, according to these
authors, signals sent using the higher frequen@ash shorter distances, but have a
higher information-carrying capacity. These physsiciaaracteristics of radio spectrum
limit the currently identified range of applicat®rior which any particular frequency

band is suitable.

On the other hand, unlike most natural resourags) as oil, coal, iron or other mineral
resources, radio spectrum’s unique characterigitisat it is not consumed by use. This
means that the resource is infinitely renewablec&iit is renewable, radio spectrum
cannot be accumulated for later use but must b@epko managed. These factors
therefore necessitate an efficient process for ngpkiadio spectrum available for

purposes which are useful to society (Caval, 2006).

1.2 Radio Spectrum Management

As a public resource, radio spectrum is being maddy governments to ensure that it is
shared equitably to promote the public interestvenience, or necessity (Nunno, 2002).
It is being tightly regulated around the world bgtlp the international and national
regulators At international level, the International Telecommaation Union (ITU) is
managing spectrum. The International Telecommuioicat/nion-Radiocommunication
(ITU-R) Sector maintains a table of frequency akimns which identifies spectrum
bands for about forty (40) categories of wirelessvises with the aim of avoiding
interference among those services. Once the bradéehgaries are established, each
country may allocate spectrum for various servigglin its own borders in compliance
with ITU’s table of frequency allocations. The tallivides the world into three regions.
Region 1 includes Africa and Europe, region 2 idekl North and South America, and

region 3 includes Australia and Asia.



At the national level, the use of radio spectrummnost countries is currently being
managed by government agencies rather than by méskees. For instance, in the
United Kingdom, it is being regulated by the OfficeCommunications (Ofcom) while
the Federal Communications Commission (FCC) is amesiple for radio spectrum
regulation in the United States. The Independennhi@anications Authority of South
Africa (ICASA), the Nigerian Communications Comniass (NCC), the Ministry of
Communication Technology and Transport (MCTT), @@mmunications Commission
of Kenya (CCK) and the National Communications Auity (NCA) to mention but a
few, are responsible for radio spectrum regulafiorSouth Africa, Nigeria, Tunisia,
Kenya and Ghana respectively. In most of these toesn the primary tool of spectrum
management by government is a licensing systems Timvolves spectrum being
apportioned into blocks for specific uses, and gms=i licenses for these blocks to
specific users or companies. This divatedset aside policy grants exclusive right to use

the assigned spectrum to licensed users on a @ngkasis.

The main advantage of the licensing approach istkigalicensee completely controls its
assigned spectrum and can thus unilaterally maivdggerence between its users and
their quality of service. However, there has relgefiieen numbers of identifying
disadvantages of traditional “once and for all” meaf allocation of radio spectrum. One
of the disadvantages of this policy is the impasigibof re-allocating spectrum to
different technologies or other users who might endetter use for the spectrum
(Olafssonet al., 2007). Another observed disadvantage of the appr@ecording to
Olafssonet al. (2007) is that the allocation procedures were tlep@nd bureaucratic,
opening up the possibility that the decision-makmmgcess could be influenced by non-

relevant factors.

Furthermore, the once and for all allocation ofiwagpectrum that gives exclusive right
of using the spectrum to the licensed owners has bbserved as the main cause of both
spectrum underutilization and spectrum artificiereity (Akyildiz et al, 2006; Haykin,
2005). This is because allocation by fixed spectassignment policy encourages the
sporadic usage of spectrum as shown in FigureThé.figure, which shows the signal
strength distribution over a large portion of tla&lio spectrum, reveals that while the
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spectrum usage is concentrated on certain portbiise spectrum, a significant amount
of the spectrum remains unutilized in some bantiss Mecessitates the need for a more

flexible means of controlling radio spectrum usagd control.

Maximum Amplitudes

Heavy Use Heavy Use

Amplitude (dBm)

Frequency (MHz)

Sources: Akyildiz et al. (2006).

Figure 1.1: Spectrum Utilization

1.3  The Need for Flexibility in Spectrum Management

Based on the disadvantages of the current fixetiga spectrum assignment policy, as
well as increase in demand for radio spectrum, lesupith the increase in deployment
of new wireless applications and devices in the thecade, it is obvious that strict
command-and-control management of the spectrunotissuitable for the increasingly

dynamic nature of spectrum usage. This has geheegegulatory body, such as the FCC,
to begin to consider more flexible and comprehensises of available spectrum (FCC,
2002). The essence of this flexibility in spectrwsage is to deal with the conflicts

between spectrum scarcity and spectrum underuidizaas well as to provide spectrum
for emerging wireless communication technologietexible usage means that an
unlicensed or secondary user can opportunisticafgrate in an unused licensed
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spectrum bands. According to Sorg al., (2007) and Cheret al., (2008), this new
scheme is termed Opportunistic Spectrum Access jJQBAynamic Spectrum Access
(DSA).

In this new scheme for spectrum access controlmadagement, the secondary users
must not cause any interference to the primaryicmnsed users, as well as the other
unlicensed users sharing the same portion of teetspn. As the primary user still holds
exclusive right to the spectrum; it is not its resgbility to mitigate any additional
interference caused by unlicensed or secondarysuggeration. It is the secondary user
that periodically has to sense the spectrum toctibteth the primary and other secondary
users’ transmissions and should be able to adatbtetwvarying spectrum conditions for
mutual interference avoidance. An approach, whigh meet these goals according to
Cabri et al (2005), is to develop a radio that is able tdaldy sense the spectral
environment over a wide bandwidth, detect the presabsence of a legacy or primary
user, and use the spectrum only if communicatiesdwt interfere with the legacy user.
Radios that have such capability are termed cogniadios (Chakravarthgt al., 2005;
Haykin, 2005; Akyildizet al.,2006).

1.4 Enabler of Flexibility Spectrum Management

In order to implement dynamic spectrum managemamd areak the spectrum
inflexibility policy, Olafssonet al., (2007) suggested that the following three close-
coupling elements: spectrum, ownership and appicatneeds to be broken. This is
because the tight relationships, as shown in FiguBe among these three elements
support the present rigid regulatory policy. Heno break the interdependence of these
three elements, a radio device that is neitheriegapn-bound nor licensed-bound will

be the only solution.



Source: Olafsson et al. (2007)
Figure 1.2: Relationship between Applications, Ownship and Spectrum

Cognitive radio has been observed as the only rddibhas such capability. It is such a
radio that changes its transmitter parameters baséateraction with the environment in
which it operates (Akyildizt al, 2006). Cognitive radio is a promising technoldgy
overcoming the apparent spectrum scarcity problems, well as improving
communications efficiency. It has been described as intelligent wireless
communication device capable of adapting and regonhg itself to achieve the goal of
satisfying the needs of the end-user. The ideaghitive radio is that spectrum licensed
to primary users may be used in an unlicensed dashy secondary users, if these
secondary users do not create harmful interferémicéne primary users. Therefore, a
cognitive radio needs to continuously observe aainl the environmental parameters,
identify the primary requirements and objectivestti# user, and appropriately decide
upon the transmission parameters in order to ingtbe overall efficiency of the radio

communications.

Historically, Mitola and Maguire (1999) first coideghe term cognitive radio, and it has
recently become a topic of great research inter€signitive radio is a spectrum sharing
technology like Ultra-Wide-Band (UWB) (FCC, 2002)he key differences between
them is the fact that while the UWB signal spectrawerlaps with the primary user

signal spectrum, a cognitive radio’s signal speuntrasides solely in the unused spectrum

8



segments or “spectrum hole” (Tang, 2005). Thouginive radios can coexist with the
primary user or owner of the spectrum, they aresctmmed the lower priority or
secondary users. Hence, their fundamental requitemmeo ensure interference-free to
communication for the potential primary owner oewu their vicinity. Therefore, to
ensure interference-free communication, the cogmitadio must frequently sense all
degrees of freedom, which include time, frequenoy apaceCabric and Brodersen
(2005) while minimizing the time in sensinggbri¢ et al, 2006)

Spectrum sensing has been observed as a key endbhctionality to ensure that
cognitive radios do not interfere with primary uséfaykin, 2005; Akyildizet al, 2006;
Gandetto and Regazzoni, 20@&bri et al, 2006; Larsson and Regnoli, 2007). One way
to sense the spectrum is by scanning the corregppiiind for sometime and detect
whether any primary signal is present. If no sigisadetected, which is a condition
known asvacant frequencyor spectrum holgit may be concluded safe to begin

transmission at a small-predetermined power (Larsswl Regnoli, 2007).

There are two spectrum-sensing techniques propasddheoretically analyzed in the

literature using different detection methods. Thastction methods can be categorized
into different classes. Two of such classes areemit and non-coherent detection
methods. The different between them is that, waiherent detection method is used
when the cognitive radio haa priori knowledge of the primary user signal's

characteristic, the non-coherent detection methagséd for radio environment where the
cognitive radio haso a priori knowledge of the characteristic of the primary isser

signal. Other classes of detection methods arsowaband and wide band detection

methods. However, with these two spectrum sensngniques and different detection

schemes in place, the fundamental problem remaihsw to detect the presence of weak
primary user’s signal in a cognitive radio envira@mhor network (Larsson and Regnoli,

2007).

The problem of weak signal detection for cognitigdio has previously been studied in
Larsson and Regnoli (2007§;abri¢ and Brodersen (2005), Hoven (2005), Wild and
Ramachandran (2005), Haartsaral. (2005) andCabri et al. (2005). Hoven (2005) for
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instance, in his Master's Thesis, as reported bydRe(2008) showed that signal
detection is very difficult if there is uncertainity the receiver noise variance. Wild and
Ramachandran (2005) in detecting weak primary $griaok the advantage of Local
Oscillator (LO) leakage power emitted by the Ra@iequency (RF) front end to locate
the primary receivers and guaranteed that cognitide will not interfere with primary
receivers once their locations are known. Haargsexh, (2005) after establishing the fact
that it will be very hard for cognitive radio to tdet weak signals withoud priori
knowledge of the existing service signal signatthien suggested a new methodology to
identify weak signals based on studying signal ati@ristics. This suggestion supports
the suggestions afabri et al. (2005) and Leet al. (2005) that had also suggested that
the perfect identification of a primary user sigmvabuld be based upon the signal
characteristics or signatures and signal classibicasystem respectively.

Based on these suggestions, Atrtificial Intelliger{éd) techniques using rule-based
systems, neural networks and stochastic modelsjaai@us approaches for the detection
of a signal with known signature. However, thesetho#és may have problems in
detecting signals deviating from known signatureces most of the wireless signatures
have either static, which are previously known atgres or dynamic, which are those

deviating from the known signatures.

Judging from this number of recent research worksradio spectrum sensing and
detection, it is clear that primary radios’ signsémsing and detection is important for the
successful adoption of a cognitive radio in a lsssh spectrum. However, with the
limitations observed in virtually all the sensingdadetection methods proposed and
analyzed in the literature, it is also clear thadre is not a single sensing and detection
method that can currently detect all forms of priynadios’ signals in a cognitive radio
environment or network. Hence, for general acceltabf cognitive radio operation, it
has become a matter of urgency to devise an eféesgnsing and detection method that
can sense and detect the presence of all formsimohry radio signals, irrespective of
their natures, whether they are weak or strong;kpoevn or unknown. This is the
motivation behind this research work, because beinlg to reliably detect and sense
different radio environments will definitely enhanthe general acceptability of cognitive
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radio technology. In addition, it will indeed enleanspectrum usage efficiency and

reduce both spectrum scarcity and underutilization.

1.5 Problem Statement/Motivation

In sensing and detecting the presence of a prirnagr signal, numerous detection
schemes have been employed. However, the challdrejeg presently researched are
devising the effective technique(s) that can detdicforms of primary radios signals
present in the cognitive radio environment. In tleisearch work, therefore, an automatic
modulation identification technique using an Adiél Neural Network (ANN) is
proposed since all signal transmitting in the spectbands are modulated using one
form of modulation technique or another. The maistivation behind using Automatic
Modulation Recognition (AMR) in this research waskbased on the inherent potential
of AMR in accurate recognition of modulation comnaation signals without fore-
knowledge of its feature. The AMR for the studydsveloped using ANN, which has
ability to learn from past data and generalizgd#st experience when responding to new
input data (Kasabov, 1998). In addition, ANN wassidered as the best choice for this

study because of its following advantages.

. The network can make fast decisions due to its welgsparallel and
decentralized computing system, being an analoglyeohuman brain; and
. It gives results or outcomes that are very reliaid robust to interference

from noise (Kasabov, 1998).

The approach used in this thesis, assumed excluseeof the channel by the primary
user. Hence, once the cognitive radio or secondsey identifies any modulation scheme
on a channel, the presence of a primary user @aitcally inferred. Similarly, when it
is safe to transmit on the licensed spectrum bgcorsdary user or cognitive radio to
avoid interference to the primary user, the secondaer or cognitive radio can easily
determine when it does identify or recognize anylatation scheme on the channel.
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1.6 Research Aim and Objectives

From the discussions in the previous sections ivislent that the development of a
reliable and accurate spectrum-detection methddndamental to adoption of a DSA,
which obviously can mitigate the current ineffidiersage of radio spectrum, as well as
enhance the availability of radio spectrum for egireg wireless devices as both the users
and applications of wireless communication is iasieg. In light of this, this research
work is conceived to develop a cognitive radio erdgihat can detect all forms of radio
signals in a cognitive radio environment. This af the research work will be achieved

through the following objectives:

(1) By developing an automatic modulation recognitiobattcan automatically detect
both analog and digital modulation schemes withrenut pre-knowledge about the
modulation scheme;

(i) By developing a sensing time algorithm that canrowe cooperative spectrum
sensing reliability among secondary users collaliog together to detect a
primary radio signal in a cognitive radio environnteand

(i) By developing a cognitive radio engine that is -selfficient for automatic
recognition/identification of all forms of modulati schemes.

1.7 The Relevance of this Research Work

Despite the fact that a series of studies have baeied out on the development of a
cognitive radio engine that can detect differemtnpry radio signals in a cognitive radio
environment or network, none of these has beentaldetect all forms of radio signals
due to fundamental limitations of the central feesuemployed in developing those
detection methods. Preliminary investigations iateeries of earlier-developed detection
methods reveal that most of their central detectieatures are based on specific

characteristic of radio signals, instead of on gainfieatures common to all radio signals.
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Based on this observation, a novel detection methqutoposed in this research work
using the only best-known feature common to allaachnsmitting signals in the radio
spectrum. The common feature employed as the catextibn feature in this research
work is an Automatic Modulation Recognition (AMRIgassifier that can recognize all

forms of modulation signals without any pre-knovgeaf the signals.

In this research work, spectrum sensing and detect defined as a combination of
signal detection and modulation recognition. Hemcgomatic modulation recognition or
classification was used as the general term to tdetlds combined process. The
numerical results of performance from the developednitive radio engine for this
research work proves the suitability and practitgbof using automatic modulation
identification or recognition as means of detectitige presence of all forms of
communication signals in the cognitive radio enmiment, which is the major

contribution of this research work to knowledge.

1.8 The Thesis Outline

This thesis contains seven chapters, as illustiatétgure 1.3. This chapter, which is the
first chapter, contains the introduction, the stidgkground, motivation for the study
and the problem statement. Other information preskem this chapter includes the aim

and objectives of the study, as well as the relesan the research work.

The secondchapter provides a literature survey on softwaifdd radio and cognitive
radio technology. The chapter also provides inddeptsiews on different sensing and
detection methods in the literature. Reviews onfedkht automatic modulation
recognition techniques for different modulation esties, such as analog and digital, are
also presented in the chapter. It also preseniterature review on Artificial Neural
Networks (ANNSs). Various extraction keys for bothabbg and digital modulation

schemes classifiers are equally reviewed in theteha
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The third chapter focuses on the development of ttiree automatic modulation

recognition classifiers, namely analog, digitald amombined analog and digital, for the
research work. The methodology employed in extngcthe feature keys used as input
data sets for the three classifiers is fully disewdsin this chapter. The chapter highlights
the training and testing of the three classifias,well as the classifiers’ architectures.

The performances of the three developed class#ierpresented also in the chapter.

The fourth chapter of this thesis focuses on caatper spectrum sensing optimization.
The sensing time algorithm used in chapter five tfe development of the cognitive
radio engine for the research work is developdatiimchapter. This chapter also provides
detailed information on how to improve cooperats@ectrum sensing gain without
incurring cooperative overhead.

The fifth chapter of this thesis focuses on theettgyment of the Cognitive Radio Engine
(CRE) for the research work. Details on the CREEyedopment are described in the
chapter. The sixth chapter contains details onyarsatarried out on the developed CRE.
The results obtained in the course of testing tbeetbped CRE is presented and
discussed in line with the aim and objectives @f skudy. The seventh chapter, which is
the final chapter of this thesis, summarizes theysbutput based on the analysis carried
out in chapter six. Conclusions and recommendatlmased on the findings from the

research work are also presented in this chapter.
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CHAPTER 2

2.0 LITERATURE REVIEW

This chapter provides an in-depth literature sureeyadio evolution, Software Defined
Radio (SDR), Cognitive Radio (CR), automatic modata classification using various
methods and artificial neural network. In additiohe chapter reviews the principle of
operation of CR as well as different sensing anéa®n methods in the literature. The
goal of the chapter is to enlighten readers on sofike developmental history in radio
technology and terms that will be later employed.

2.1 Radio Evolution Technology

Historically, radios have been fixed-point desidRstte, 2006). However, over the last
decade, the design and implementation of wirelesscds has undergone a substantial
transition from pure hardware-based radios to sadiat involve a combination of
hardware and software. The functions that were éolyncarried out by hardware can
now be performed by software, and the new functipnaan easily be deployed on a
radio by simply updating the software running an Rart of this change has ushered in
the advent of SDR, which is currently standardagadithe military arena and is gaining
favour in academic and commercial environments lmeeaof its ability to support

wireless communication research and implementatioral-world radio system.

Unlike the traditional radio devices that had fixéesign and configuration, emerging
designs are allowing for much more flexibility ihese areas. The culmination of this
additional flexibility produced the software capabbhdio, which later transitioned into
the software programmable radios that gave birtB@&R (Polson, 2004). The next step
along this path yielded the aware radio and theptadaradio (Polson, 2004). In the
same vein, a more recent development has beerdtfemtaof CR. The transition in the

radio technology is illustrated in Figure 2.1.
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Figure 2.1: The Evolution of Radio Technology

CR is a form of radio in which a transceiver carteliigently detect which
communication channels are in use and which are arad thus instantly move into
vacant channels while avoiding occupied ones. ©pitimizes the use of the available
radio spectrum while minimizing interference toetlsers. It is an extension of modern
SDR with Al technology. The radio encompasseshalre-configurability attributes of a
conventional SDR, while possessing the intelligetweautomatically adapt operating
parameters, based on learning from previous evamdscurrent inputs to the system
(Newmanet al, 2007). The two components of the CR, the SDRAnavill be briefly
overviewed before reviewing the CR technology.

2.2 Software Defined Radio

The term Software Defined Radio (SDR) was coined991 by Joseph Mitola, who

published the first paper on the topic in 1992 (&t 1992). Although the concept was

first proposed in 1991, according to the Free Elupexdia (2009), SDR has its origin in

the defense sector since the late 1970s in botbtited States (US) and Europe. One of

the first public software defined radios’ initiatiy was a US military project named

SpeakEasy (Lackey and Upmal, 1995). As reportethbse authors, the primary aim of
17



the SpeakEasy project was to use programmable ggioceto emulate more than ten
existing military radios, operating in frequencynda between 2 and 2000 MHz. Another
designed goal of the radio, as reported, was tydaes able to incorporate new coding
and modulation standards in the future, so thattanyl communications can keep pace

with advances in coding and modulation techniques.

Conventionally, software defined radio is a radiomeunication system where
components that have typically been implementechandware, like mixers, filters,

amplifiers, modulators/demodulators, detectors aadforth, are instead implemented
using software on a personal computer (PC) or cthdyedded computing devices (Free
Encyclopedia, 2009).

According to Lackey and Upmal (1995), a SDR cossddt the same basic functional
blocks as any digital communication systems. HoweSBR lays new demands on many
of these blocks in order to provide multiple banahltiple service operation and re-
configurability needed for supporting various aterface standards. In order to achieve
this flexibility, the boundary of digital procesgishould be moved as closely as possible
to antenna, while specific integrated circuits #ue used for baseband signal processing,
need to be replaced with programmable implememsti®@alcic and Mecklenbrauker,
2002). The idea behind SDR is to do all the mathrieand demodulation with software,

instead of using dedicated circuitry.

In SDR, like the traditional radio, the signal isllsbeing received by an antenna.
However, in SDR, the signal is digitally converteda sequence of numbers representing
the value of the signal at regular time intervddsat¢ and Flynn, 2009). These digital
values are then processed in software, while theltreg output can then be converted
back into audio, video or remaining data. The warets in SDR are therefore generated
as sampled digital signals, converted from digitabnalog via a wideband Digital-to-
Analog Converter (DAC). The receiver similarly eoyd a wideband Analog-to-Digital
Converter (ADC) that extracts, down-converts, aachddulates the receive waveform or
signal using software built into a general-purppsecessor or PC (Bedell, 2005). The
radio employs a combination of techniques thatudel multiband antennas and RF
conversion; wideband ADC and DAC conversion anditi@ementation of Intermediate
18



Frequency (IF), baseband and bit stream-procesfumgtions in general-purpose

programmable processors, as shown in Figure 2.2.
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Figure 2.2: Software Defined Radio Communication Sgtem

2.3 Implementation of Software Defined Radio

Figure 2.2 shows a typical block diagram for awafe-defined radio. It implementation
involves using GNU Radio and the Universal Softw&adio Peripheral’'s (USRP)
motherboard and its associated daughterboard. TBiePUmotherboard provides the
ADC/DAC and Field Programmable Gate Array (FPGA)nditionality, while
daughterboard attached to the USRP motherboardide®uhe frequency translation
functionality of the RF front-end (FE). The pictuof a USRP motherboard with the
basic daughterboard’s slots is shown in Figure B daughterboard’s slots are labeled
J66X (where X =6, 7, 8 and 9).

There are number of experimental SDR platforms bizate been developed to support

individual research projects. A selection of thpkgforms included (Mindeat al., 2007,
Polydoroset al, 2003; Mishraet al, 2005; Adachiet al, 2007). These experimental
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SDRs were developed using GNU Radio and USRP. ifvislves writing code to

process signals and control the USRP.

Transmitter
Daughterboard
Interface A (J667)

Receiver
Daughter-board
Interface B (J668)

ADC/DAC ADC/DAC
Transmitter Receiver
Daughter-board Daughter-board
Interface B (J669) Interface A (J666)

USB Interface Chip
Source: Patton (2007)

Figure 2.3: USRP Motherboard without Daughterboard

2.3.1 GNU Radio

GNU Radio is a free software development toolkdttprovides the signal processing
runtime and processing block to implement softwadtos (SRs) or SDRs using readily
available RF hardware and commodity processorsapgdications are primarily written
using the Python Programming language (BlossomQR@thile its performance critical
signal path is implemented in C++ using floatingnp@xtensions (Katz and Flynn, 2009).
It is empowered with a rapid development environimepable of implementing real-

time, high-throughput radio systems.

GNU Radio framework incorporates software that swigpthe easy integration of a
number of hardware modules so that radio signalg lmeareceived from, transmitted to,
or exchanged with other GNU Radio-based SRs or eonal radio systems. As
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mentioned above, GNU Radio uses a modular blockebaschitecture with a hybrid
Python/C++ programming model. This combination gfthBn and C++ provides a
convenient and high performance platform for depefe to use in the development of
SR systems (Troxedt al, 2008). According to these authors, one of tlauies of the
GNU Radio framework is an extensive library of pefined and tested functional blocks.
The essence of these blocks is to provide signatgssing functionality, encapsulate
sources and sinks of data, as well as providingplginype conversions. According to
them, the blocks are written in C++ with an autdmaenerated Python wrapper or

interface that allows them to be manipulated, coteteand utilized in Python.

GNU Radio software typically consists of four difat elements: Sources, Sinks, Flow

graphs and Schedulers.

2.3.1.1 Gnu Radio Sources

Normally, typical GNU Radio sources usually havelesist one source. Each source
forms the head of a processing chain or flow graplgood example of a GNU Radio
source is USRP radio. The USRP radio is a radith&Ecan be connected to a computer
via a USB 2.0 or Gigabit Ethernet. USB 2.0 is ufmdconnecting USRP version 1 or
USRP1 to PC while Gigabit Ethernet is used for USRBIRBion 2 or USRP2.

2.3.1.2 Gnu Radio Sinks

Like GNU Radio sources, typical GNU Radio will naly have a least one sink. Each

sink is the tail of a flow graph. An example ofiaksis a sound card.

2.3.1.3 Gnu Radio Flow Graphs

A GNU Radio also has a flow graph. The flow graipikd together each source and sink
pair as well as any intermediate blocks. The inezhiate block(s) is or are required to
transform the data stream from a source into adotimt is understandable by the sink.
A good example of such conversion is the conversibman FM radio signal that is

received by a USRP into an audio signal that capldnged through a sound card.
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2.3.1.4 Gnu Radio Schedulers

A scheduler of a GNU Radio is associated with eaddive flow graph. The essence of
each scheduler is to move data through its flowplgr&® scheduler iterates through the
blocks in the flow graph in order to identify bl&kconditions per time. In its iteration
process, it will discover blocks that have suffitielata on their input(s) and sufficient
data on their output(s), it will then trigger theopessing function for those blocks to
enable it to process data. Figure 5.4 shows adlpixample of GNU Radio application

with these four components.

2.3.2 Universal Software Radio Peripheral

The common hardware platform to run GNU Radio othes USRP. USRP is a device
that enables the creation of a SDR (Gahadzd, 2009), using any computer with either
a USB 2.0 port or Gigabit Ethernet port dependimgtibe version of USRP. With

different plug-on daughterboards nowadays, it i& possible to use USRP on different
radio frequency bands. A good example of USRP igasEUSRP that allows general-

purpose computers to function as a high bandwié&b. S

The USRP1 motherboard for instance, contains f@uits 64M samples/sec ADCs, four
14-bit 128M samples/sec DACs, an FPGA for IF up/iowonversion, and a
programmable USB 2.0 controller to transfer consighals and baseband data sequences
between the host and the hardware. The motherbmardsupport up to two pairs of
transmitter/receiver (Tx/Rx) radio front ends ire tftorm of daughterboards. Figure 2.4

shows a simple block diagram of USRP1.

There are multiple daughterboards options for wbfié frequency bands. XCVR2450
transceiver daughterboards in junction with USRR2employed in this research work.
The USRP2 full description and mode of operatian @resented in Appendix B of this

thesis.
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Figure 2.4: USRP1 Block Diagram

2.4  Atrtificial Intelligence Techniques in CognitiveRadio

The heart of a CR’s application is in its abilityitnprove performance through learning.
This behavioral capability is achieved by the Actdl Intelligence Technique (AIT)
associated with CR. Artificial Intelligence is @lfi that is concerned with the design and
development of an algorithm that enables computdedrn. It is suitable for situations

based on experience, as they learn by examplecity @analogy.

In CR, the integration of a learning engine hasnbestablished as very important
(Tsagkariset al, 2008; Katidiotiset al, 2010). This has led to the proposal of different
intelligence algorithms for CR in literature. Fostance, a cognitive engine developed at
Virginia Tech was developed using a Genetic Algonit(GA). Their simulation results

validate that their GA implementation does change transmission parameters to
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different settings (Maldonadet al, 2005; Rondeaet al, 2004). In a similar research
conducted by Newmaet al. (2007), GA was equally employed. Their work goegdnd
only demonstrating GA output selection, but alsovtes the numerical analysis of the
relationships between the environmental paramatsighe transmission parameters.

Several other Al methods have been employed imtipeementation of a cognitive radio
engine. A few of such methods are rule-based systewman, 2008), case-based
reasoning (Heet al, 2009), fuzzy logic (Shatilet al, 2009), and neural networks
(Tsagkaris,et al, 2008). A schematic diagram of the Al cognitivadipo-learning
algorithm employed by Zhaet al. (2006) is shown in Figure 2.5. The Al cognitiveia
learning algorithm is referred to as a Radio Enwinent Map (REM) enabled situation-
aware learning algorithm. It comprises both a Hiegrel and low-level learning loop. The
high-level loop is based on case-based learninggreag, which leverages various
learning algorithms to select the most appropri@éening method for the current radio
scenario. The low-level loop is responsible foriopting the corresponding parameters

used in the specific learning algorithm.

2.5 Cognitive Engine

The Cognitive Engine (CE) is the intelligence systbehind a CR or a node in a
Cognitive Network (CN). The CE combines sensingrieng and optimization to control
the CR or CN. A distinctive feature of CRs is theapability of making decisions and
adaptations based on past experience, on currenatagnal conditions and possibly also
on future behaviour predictions (Mackeneieal., 2009). According to these authors, an
underlying aspect of this concept is that CRs neffitiently represent and store
environmental and operational information in datssa These resulting databases, which
can be individual or shared, enable different fiomalities of the CE. A possible

embodiment of such databases is discussed in fOREMD!S.

The application of REMs to CR systems was firsippsed in the context of unlicensed

wireless wide area networks in Bated al (2004) and Krenik and Batra (2005). A

detailed study of the use of REMs by different G&sliscussed in (Zhaet al, 2006;
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Zhao,et al. 2007a; Zhaoet al 2007b). In REMs, the database contains informatthat
characterizes the environment in a given geograplaiea such as spectral regulations,
geographical features and the locations and aesvdf radios (Zhacet al, 2006; Zhao,

et al, 2007a; Zhaogt al, 2007b).
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Figure 2.5: System Flow and Framework of REM-Enabld Situation-Aware
Learning Algorithms

According to Mackenzieet al. (2009), REMs can be divided into two classes, hame
global REMs and local REMs. While global REMs présa global view of the
environment around the CR, the local REMs preselucal view of the environment

25



around the CR. A source of global REM is usuallg tretwork infrastructure, while a
local REM is usually obtained, for example, by eeatio from its own spectrum sensing
and by monitoring transmissions of nearby CRs amohd&y Users (PUs). The
information in REMs is vital, as CRs uses it toimte their transmit waveforms and

other parameters across the protocol stack.

2.6  Area of Application of Cognitive Radio

Technology is futile without its application. Outt many applications of CR, DSA has
been the most recognized application of CR. DSAaislecentralized approach to
spectrum allocation policy that allows a communaatdevice to operate on any unused
spectrum. In this new paradigm, unlicensed or s#&onusers can opportunistically
operate in an unused licensed spectrum, as lodges not cause interference to the

licensed or primary users, thereby increasing theency of spectrum utilization.

As shown in Figure 2.6, DSA strategies can be ifladsnto three basic models: The
dynamic exclusive-use model, Open sharing modeiwis also known as the spectrum

common model and Hierarchical access model.

Dynamic Spectrum Access

Dynamic Exclusive Open Sharing Model Hierarchical Access
Use Model (Spectrum Common Model) Model
Spectrum Dynamic Spectrum  Spectrum Underlay Spectrum Overlay
Property Rights Allocation (UltraWide Band)  (Opportunistic Spectrum Access)

Source: Zhao and Swami (2007)

Figure 2.6: Taxonomy of Dynamic Spectrum Access
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2.6.1 Dynamic Exclusive Use Model

This model maintains the basic structure of theremir spectrum allocation policy,
whereby spectrum bands are licensed to users @usaxe use. This method of spectrum
allocation policy has led to many successful appilkins, like broadcasting and cellular,
which can be cited as evidence by the proponenspeétrum property rights (lleri and
Mandayam, 2008). However, the method has also batoized as inefficient in the
overall use of spectrum. For instance, a recentrtepresenting statistics regarding
spectrum utilization show that only about 13% aof dilocated spectrums were utilized
(McHenry and McCloskey, 2004). In addition to theolgem of underutilization
characterizing the current fixed spectrum allogatipolicy, the inherent political
inefficiency of government controllers also playsoée in the poor effectiveness of the

current allocation policy.

To correct this problem, the proposed idea is tmduce flexibility to spectrum access.
Two approaches have been proposed under this mbaelfirst approach is spectrum
property rights (Coase, 1959; Hatfield and Wies¥105). As reported by Zhao and
Swami (2007), this approach allows licensees tbasel trade spectrum, and to freely

choose technology.

The second approach is dynamic spectrum allocgfxan et al, 2000), which was

brought about by the European DRIVE project. Ita,aas reported by Zhao and Swami
(2007), was to improve spectrum efficiency throwhmamic spectrum assignment by
exploiting the spatial and temporal traffic statistof different services. Similar to the
current fixed spectrum allocation policy, this stgy allocates, at a given time and
region, a portion of the spectrum to a radio acoeswork for its exclusive use. Based on
an exclusive-use model, it has been establishedbtth spectrum property rights and
dynamic spectrum allocation cannot eliminate theresu problem of spectrum

underutilization with increasing wireless traffich@o and Swami, 2007).

27



2.6.2 Open Sharing Model

The open sharing model, which is also referredstepgectrum commons model (Lehr and
Crowcroft, 2005), puts all users on equal footidgdo and Swami, 2007), provided that
users obey specific rules similar to current umgzel Industrial, Scientific and Medical

(ISM) radio bands. According to Zhao and Swami (@Q@dvocates of this model draw
support from the phenomenal success of wirelesgicesr operating in the current

unlicensed ISM radio band, like Wireless Fidellyi{Fi).

2.6.3 Hierarchical Access Model

Under this radio spectrum access model, the rapextsum is viewed as having a
primary or licensed user, as well as a secondarynticensed user. The model is
considered a hybrid of the other two models preslipuliscussed. It is fundamentally
different from the other two models in both teclahi@and regulatory aspects. The
fundamental idea of the model is to open licengesgttsum to unlicensed users, but with
Interference Avoidance (IA) to the licensed us&ased on this concept, two different
approaches to radio spectrum sharing between kdeansd unlicensed users have been
considered, namely spectrum underlay and spectuaray, which are further discussed

below.

2.6.3.1 Spectrum Underlay

The spectrum underlay technique is a spectrum acegstem whereby signals with a
very low spectral power density can coexist asrs@ary users (SUs) with the PUs of the
frequency bands. The technique imposes severairdston the transmission power of
SUs so that they operate below the noise floorlds.FAn UWB transmitter that uses this
technology usually spreads its transmitted signar @ wide frequency band in order to
achieve short-range high data rate with extremmly transmission power. The detection
component for PUs is not required in spectrum uagiersince the energy of the

transmission signals by the SUs are spread overawide frequency range, thus only
negligibly increasing the interference tempera(@ertholdet al, 2007).
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However, according to Khoshkholgt al, (2010), satisfying the interference constraint
is technically challenging, since the interferermawer constraints associated with
underlay access strategy only allows short-rangenwonications (Srinivasa and Jafar,
2007). In addition, in underlay spectrum sharirigg secondary user must satisfy the
interference threshold condition even when the arymuser is idle. During this idle

period, fulfilling the interference constraint litai the transmission power of the
secondary user, hence reducing its achievable nviga®n capability. More so, in

underlay access strategy, the achievable capalufitthe secondary user is further
reduced during the busy periods of the primary bseause of the interference imposed
by the primary user’s activity at the secondaryr'sseeceiver. In order to tackle these

aforementioned issues, overlay spectrum sharingongsosed.

2.6.3.2 Spectrum Overlay

The spectrum overlay technique is a spectrum acsgstem whereby a SU uses a
spectrum band from a PU only when it is free. Ualike underlay system, which hides
the transmission signal under the noise level ef PitU, overlay system must have the
capability of dynamic spectrum access, as they mumk dynamically around the

licensed system’s allocation. This technique isedasn a detection and interference-
avoidance mechanism. This mechanism requires theoSdnse the frequency spectrum

and thus, if a PU is active, the channel will netused.

The spectrum overlay access strategy was firstsemed by Mitola (1999) under the
term spectrum pooling. It was later investigated tbg Defense Advance Research
Projects Agency neXt Generation (DARPA XG) programnder the term OSA (Zhao and
Swami, 2007). Unlike the spectrum underlay, thdio@pectrum access strategy does not
impose severe restrictions on the transmission paweSUs, but rather there are

restrictions on when and where SUs can transmit.

Spectrum overlay, according to Fujii and SuzukiO®0 can be applied in either temporal
or spatial domain. When using the radio spectrutenmporal domain, SUs aim to exploit
temporal spectrum opportunities resulting from blisy traffic of primary users. On the
other hand, when the radio spectrum is used inigdpabmain, SUs aim to exploit
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frequency bands that are not used by PUs in acpéati geographic area. This unused
portion of the licensed spectrum is known as ‘wisipace’ or ‘spectrum hole’. Haykin
(2005) defines it asa'band of frequencies assigned to a primary usémaba particular
time and specific geographic location the band a$ Ideing utilized by that userThe
special radios that are enablers of OSA or DSA ttaat use spectrum holes in an

opportunistic fashion are known as cognitive radios

2.7  Cognitive Radio

A cognitive radio is a new paradigm in radio commsations that promises an enhanced
utilization of the limited radio spectral resour@@meoneet al, 2007). According to
these authors, the basic idea is to employ a lvieia model, where both primary and
secondary users coexist in the same frequencyrspectUnlike the conventional radio
that is only allowed to operate in a designatedctspmn band due to regulatory
restrictions, CR has the capability to operateiffexent spectrum bands. It is a form of
wireless communication system in which a transeceoan intelligently detect which
communication channels are in use and which areamate, and instantly move into

vacant channels while avoiding occupied ones.

The term ‘cognitive radio’ was first used in Mitollh and Maguire (1999). It is a term
that defines the wireless system that can sensawhee of, learn from, and adapt to the
surrounding environment according to inner and rostenuli. The radio provides a
tempting solution to the spectral crowding problém introducing the opportunistic
usage of frequency bands that are not occupietiday licensed users. The radio concept
proposes to furnish the radio system with the tdyslito measure and be aware of
parameters related to the radio channel charatitstiavailability of spectrum and power,
interference and noise temperature, available m&syaodes, and infrastructures, as well

as local policies and other operating restrictighrslan andSahin, 2007).

Recently, CR has emerged as a prime candidatexfdoigng the increasing flexible

licensing of wireless spectrum. The flexible licegsof radio spectrum was suggested as
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the spectrum resources are facing both huge usafjdeanands with the rapid growth of
wireless services and applications in recent dexadEghis increase in both spectrum
usage and demands has led to the belief that scarftradio spectrum is due to the
emergence of new wireless services and applicatldowever, this misconception about
spectrum scarcity is being tempered by a recenegury a Spectrum Policy Task Force
(SPTF) within FCC. The result of their survey shawat the actual licensed spectrum
under the current fixed spectrum allocation poligylargely underutilized in vast

temporal and geographic dimensions (FCC, 2002).

As reported by Letaief and Zhang (2007), a fieldcspum measurement taken in New
York City showed that the maximum total spectrunsup@ancy is only 13.1% from 30
MHz to 3 GHz. A similar measurement result undeztaln an urban setting, reported by
Cabric and Brodersen (2005), revealed a typical util@atf 0.5% in the 3-4 GHz band.
The authors reported that the utilization drop amted to 0.3% in the 4-5 GHz band.
Another related survey’s result reported by Sagal (2007) also showed that, on
average, there is only about 5.2% of the allocapettrum below 3 GHz actually in use.
These exciting findings shed light on the problenspectrum scarcity and motive a new

direction to solve the paradox between spectruncggand spectrum underutilization.

A remedy to spectrum scarcity as a result of spetunderutilization is then to improve
spectrum utilization by allowing secondary users atcess underutilized licensed
frequency bands dynamically when and where licenssgts are absent. The main
enabler of this opportunistic spectrum access,&sioned above, is cognitive radio.

Based on its abilities to sense and adapt to éifteradio environments, cognitive radio
has been defined in various ways (Haykin, 2005;ilky et al, 2006; Ghozzet al.,
2006; Hamdiet al., 2007). For instance, it was defined in Akyildiz al. (2006) as, &
radio that can change its transmitter parameterssdzh on interaction with the
environment in which it operatésSimilarly, Haykin (2005) defines CR aarfi intelligent
wireless communication system that is aware afutsounding environment (i.e., outside
world), and uses the methodology of understandingtblding to learn from the

environment and adapt its internal states to stiaéé variations in the incoming radio
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frequency (RF) stimuli by making corresponding dem in certain operating
parameters (e.g., transmit-power, carrier-frequenapd modulation strategy) in real-
time, with two primary objectives in mind:

* highly reliable communications whenever and wheraeeded; and

« efficient utilization of the radio spectrum.”

For CR to operate in an interference-avoidance wag, of most critical components of
CR is spectrum sensing. By sensing and adaptirtheieenvironment, a CR is able to
utilize spectrum holes and serves its users witlvautsing interference to the licensed
user. To ensure interference-free communicatidferént sensing and detection methods
have been proposed for detecting the presenceamépyr or licensed radio signals. These

different sensing and detection methods are rewdawsection 2.8.

2.8 Spectrum Sensing Techniques

Spectrum sensing is a key element in CR commupitstias it should be firstly
performed before allowing unlicensed users to ace@sunused licensed spectrum. The
essences of spectrum sensing are two-fold: onaegore CR or secondary user does not
cause interference to a PU and two, to assist Gde@yndary user to identify and exploit
the spectrum holes for the required quality of mer¢Popoola and van Olst 2011c). This
sensing operation is a binary hypothesis-testindglpm. The goal of spectrum sensing is

to decide between the following two hypotheses:

(2.1)

where, H, denotes the absence of the primary usgrdenotes the presence of the
primary userx(t) is the received signal at the cognitive radigf) is the transmitted

signal from the primary transmitter am(t) is the Additive White Gaussian Noise

(AWGN). The determination of the two hypothesesalted the spectrum sensing.
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Generally, spectrum sensing techniques are cledsifito either non-cooperative or
cooperative. However, from the perspective of digleection, sensing techniques are
classified into four broad categories (Akyildizal, 2011). The first two broad categories
are coherent and non-coherent detection techniguesoherent detectiona priori
knowledge of the primary users’ signals is requinetich will be compared with the
received signal to coherently detect the primagnal. In non-coherent detection, ao
priori knowledge of primary users’ signals is required ¢doherent detection. The last
two broad categories, which are based on the balttkdwif the spectrum of interest for
sensing, are narrowband and wideband detectiomitpods. The classification of sensing

techniques is shown in Figure 2.7.

Spectrum Sensing Techniques:
Cooperative or Non-cooperative

Coherent Narrowband
T
............................ |
e el T—-——=—~
1 1 1
H 1 H L 1
Matched Filter Cyclostationary Energy Wavelet Compressed
Detection Detection Detection Detection Detection

Source: Akyildz et al., (2011)

Figure 2.7: Classification of Spectrum Sensing Teciques

2.8.1 Non-cooperative Spectrum Sensing Method

An individual CR device or secondary user doesnte-cooperative spectrum sensing
method locally. Each secondary user will sense sfpectrum channel to detect the
presence or absence of a primary user. Since thginge method does not involve
spectrum sensing results’ sharing, as well as fiegision making, energy consumption
is very low compare to cooperative spectrum sengihgre users consume significant

energy because of heavy communication. Howeverjéection accuracy of the method
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is very low compared to the cooperative methods Thbecause poor channel conditions

do affect single user spectrum sensing results éneleWolf, 2008).

2.8.2 Cooperative Spectrum Sensing Method

Unlike non-cooperative spectrum sensing methodgrevian individual cognitive radio
surveys the spectrum to gather information, thepecative spectrum sensing method
usually involves two or more cognitive radios waigkitogether. In this spectrum sensing
method, an individual cognitive radio or secondasger will perform local spectrum
sensing independently and then makes a decisiared@fier, all the cognitive users will
forward their decisions to a common receiver or tdasNode (MN). The common
receiver will combine these decisions and makesal flecision to infer the presence or

absence of the primary user in the observed freguleand.

In general, activities in cooperative spectrum sensan be summarized in three basic

steps as follows:

 Step I: Each cognitive radio performs its own locapectrum sensing
measurement independently and then makes a birerigioh on whether the

primary user is present or not.

» Step II: All the cognitive radios forward their dgions to the MN or common

receiver.

» Step lll: The MN aggregates the cognitive radiasaby decisions received using
an “OR” logic and finally makes a decision to ertirder the presence or absence

of the primary user.

The primary idea of cooperative spectrum sensing isnhance the spectrum sensing
performance by exploiting the spatial diversitythe observations of spatially located
secondary users. Since it is unlikely that all spigt distributed secondary users in a
cognitive radio environment will concurrently expgrce the fading or receiver

uncertainty problem. Hence, when users collabosastg share the spectrum sensing
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results among themselves, the combined cooperdéeision derived from the spatially
collected observations can overcome the deficiavfcindividual observation of each
secondary user. This is why the cooperative spectensing method has been observed
as an effective method to combat fading and shaupwas well as mitigating the
receiver-uncertainty problem in a cognitive radimvieonment (Akyildzet al, 2011,
Mishraet al.,2006).

Architecturally, cooperative spectrum sensing iegarized into three classes based on
how cooperating cognitive radio users share thesisgninformation or data in the
network (Akyildz et al, 2011; Popoola and van Olst, 2011a). The claaseshamely
centralized, distributed and relay-assisted. Theethclasses of cooperative spectrum
sensing illustrated in Figure 2.8 are briefly dssed in the following subsections.
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Adapted from: Popoola and van Olst (2011a)

Figure 2.8: Classification of Cooperative Sensinga) Centralized, (b) Distributed,
and (c) Relay-assisted

2.8.2.1 Centralized Cooperative Spectrum Sensing

In centralized cooperative spectrum sensing, ar@eitlentity called the master node or
fusion centre controls the three steps involvedaaperative sensing described above. In

Figure 2.8(a), CRis the master node and €RRs are the cooperative cognitive radio
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users performing local sensing and reporting tlalte back to CR CR; or MN collects
sensing information from CRCRs, identifies unused spectrum and broadcasts the
information to CR-CRe.

2.8.2.2 Distributed Cooperative Spectrum Sensing

Unlike centralized cooperative sensing, distributambperative sensing, as shown in
Figure 2.8(b), does not rely on a MN for making fimal cooperative decision. In this
cooperative sensing, after local sensing, the t¢gnnodes CRCR, share the local
sensing results amongst each other, but they nmateadwn decisions as to which part of
the spectrum they can use. If there is no cleaisaecafter this initial process, cognitive
radio users send their combined results to othersuand repeat the sensing process until
the algorithm is converged and a decision is redcthkyildz et al, 2011). The
disadvantage of distributed cooperative sensing decision delay possibility because

several iterations may be involved to reach a unans cooperative decision.

2.8.2.3 Relay-assisted Cooperative Spectrum Sensing

The third cooperative spectrum-sensing scheme lay/-essisted. It was proposed to
overcome the imperfection in both sensing and tepprchannels, so that a CR user
experiences a weak sensing channel and a stroongirgpchannel and a CR experiences
a strong sensing channel and a weak reporting ehacean complement and collaborate
with each other to improve the overall performaméethe cooperative sensing. For
instance in Figure 2.8(c), GRCR; and CR that observe strong primary users’ signals
will observe a weak reporting channel. £&hd CR that have strong reporting channels
can serve as relays to the prior CRs and assist thdorwarding their sensing results to
MN. In Figure 2.8(c), reporting channels from £a&hd CR report to MN and are known
as relay channels (Akyildet al,, 2011).

2.8.3 Detection Methods for Spectrum Sensing

Irrespective of the type of spectrum sensing teplmior method used, either non-
cooperative or cooperative, every secondary ussdn first detect the spectrum status
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using one specific detection method. Figure 2.7wshéive of most commonly used
detection methods in spectrum sensing in a cogniadio environment or network. Each
detection method is briefly reviewed with emphasis their merit and demerit, as

follows:

2.8.3.1 Matched Filter Detection

Matched filter detection is an optimal detectiontinoel Cabrié et al, 2004) normally
used in a situation where a secondary usemhasori knowledge of the primary user’s
signal. The matched filter is achieved by corralgata known signal or template with an
unknown signal in order to detect the presenceéheftemplate in the unknown signal.
The primary advantage of the matched filter detecis that it requires less time to
achieve high processing gain due to coherent detedtiowever, the use of matched
filter detection is currently limited because ne4inowledge of the primary user’s signal
is expected to be known by the cognitive radiosegondary users. This disadvantage
and the needs for cognitive radios or secondargsusehave receivers for all signal types
make matched filter detection method uneconomizahiplement (Lataief and Zhang,
2009).

2.8.3.2 Energy Detection

The energy detector based approach, also calledmatty or periodogram, is more
generic as the receiver does not need any pre-kag®lof the primary user’s signal. In
the absence a priori knowledge concerning the primary signal, it hasrbproved to be
appropriate to use an energy detector in deteritine presence of unknown signal
(Hamdi and Letaief, 2007).

It is suitable for wideband spectrum sensing, wisaraultaneous sensing of a number of
sub-bands can be realized by simply sensing theepspectral density of the received
wideband signal. It works by measuring the RF epéngthe channel or the received

signal strength indicator to determine whetherd@nnel is idle or not.
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Although an energy detection technique can be imptged in an environment where
there is noa priori knowledge about the primary user signal charaattesi it still has
some limitations. Its first limitation is that itaB poor performance under low SNR
conditions. This is because energy detection dagsaocurately determine the noise
variance at low SNR, causing noise uncertaintyetader the energy detection useless.
The second limitation of energy detection is itabiity to distinguish between
interference from other secondary users sharingdnge channel as that of the primary
user (Shankaet al, 2005). The third observed limitation of thigeltion method is the
high sensing time required to achieve a given pbiibha of detection (Shankaet al,
2005).

In spite of these limitations, the energy detectinathod remains the most common
detection mechanism currently in use in cooperasipectrum sensing (Akyildet al,
2011). This is because some of its performanceadiagjon, due to noise uncertainty, can

be mitigated by the diversity gain resulting froooperation.

2.8.3.3 Cyclostationary Feature Detection

Radio signals are generally non-stationary withtistteal characteristics that exhibit
periodicity. Since the periodicity varies periodigawith time, radio signals and other
related signals that exhibit periodicity, are reddrto as cyclostationary signals. In
telecommunications, periodicity may be caused byutaiion, sampling, multiplexing
and coding operations (Gardnetr al, 2006; Maet al, 2009), or even be intentionally
produced to aid channel estimation and synchrapizgiVa et al, 2009). A detection
technique where such periodicity is utilized fortedion of random signal with a
particular modulation type in a background of no&és® other modulated signals is
known as cyclostationary detection. The cyclostetry feature detection technique is a
method for detecting a primary user’s signal byleiipg the cyclostationary features of
the received signals (Shankaral.,, 2005).

The cyclostationary detection method, as repomedkyildz et al, (2011), exploits the

periodicity in the received primary user’s signal itlentify the presence of primary
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signals. It is an optimized technique that canlgasolate the noise from the primary
user’s signal (Maliket al, 2010). This is because noise is a stationanyasigiith no
correlation, while modulated signals are cyclostadry signals with spectral correlation
due to the embedded redundancy of signal perigdi{€iibric and Brodersen, 2005;
Akyildiz et al, 2006). This makes cyclostationary feature deirabutperform energy
detection when discriminating against noise dué&gaobustness to the uncertainty in
noise power (Akyildzt al, 2011; Akyildizet al, 2006).

However, the drawbacks of cyclostationary featustection, when compared with
energy detection, are the needdgpriori knowledge of the primary user’s signal such as
the modulation scheme and its implementation coxigleAnother disadvantage of the
cyclostationary detection method is its poor pem@ance when a user experiences
shadowing or fading effects. This is because ththatecannot distinguish between an

unused band and a deep fade in such cases (Hathtetaief, 2007).

2.8.3.4 Wavel et Detection

The wavelet detection method uses the principleafelet transformation where multi-
resolution analysis mechanisms decompose the isjgmal into different frequency
components. Each component is then studied witblugsns matched to its scales.
Wavelet transform uses irregularly-shaped wavedstdasic functions and thus offers
better tools to represent sharp changes (Worr@36)L In order to identify the locations
of idle frequency bands, the entire wideband is e as a train of consecutive
frequency sub-bands where the power spectral desistec is smooth within each sub-
band, but changes abruptly on the border of twaghimring sub-bands (Lataief and
Zhang, 2009). By analyzing the irregularitieshe power spectral density characteristic
with wavelet transform, the spectrum hole is lodates advantage is that it can perform

optimally withouta priori knowledge information about the primary user’'shaig

2.8.3.5 Compressed Sensing

In energy or cyclostationary detection, detectisnbased on a set of observations

sampled by an analog-digital converter at a Nyguait in the interested frequency band.
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In either of the two detection techniques, the spet sensing approach is to sense one
band at a time because of their hardware limitation the sampling speed. In order to
sense multiple frequency bands using either teciighe cognitive radio or the
secondary user needs to use multiple radio frequéont-ends for sensing multiple
bands. Hence, using these techniques for widebandirgy will either cause a long

sensing delay or incur higher computational comipfjeand hardware cost.

On the other hand, sampling of the wideband sigaaks sub-Nyquist rate to relax the
analog-digital converter is now possible througimpeessed sensing (Candes al,
2006; Donoho, 2006). Its operation is based onagsmumption that radio spectrum is
currently underutilized. Based on this assumptcampressed sensing can be utilized to
approximate and recover the sensed radio spectumeh facilitates the detection of
sparse primary users’ signals in wideband specidikyildz et al, 2011). This makes
compressed sensing a valid sensing technique, wtickently provides promising
solutions to prompt recovery of wideband signald é&arcilitates wideband sensing at

reasonable computational complexity.

2.9  Spectrum Sensing Detection Methods Analyses

Analyses of the above five spectrum sensing detectiethods in literature show that no
single detection method can detect all forms ofaathnal. This necessitates the advent
of another sensing/detection method that can oweecihese shortcomings identified in
the spectrum sensing detection method currenttyenliterature. In addition, since the
CR is expected to be unaware of the transmissibarse used by the primary user of the
spectrum and not be synchronized to the primarysisggnal, it means that the CR is
constrained to use a non-coherent detection methdnch has poor performances

compared to the coherent method under low or we&dR.S

Coupled with this issue of low SNR is the hiddemmi@al problem that arises because of
shadowing. This occurs because of topographicaheads, such as tall buildings, trees

and other structures in the transmission patha Aesult of this shadowing effect, the CR
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or secondary user may be shadowed away from thepyitransmitter, but there may be
a primary receiver closer to the CR or secondasr tisat is not shadowed from the
primary transmitter. In such a situation, if the @Bnsmits, it may interfere with the
primary receiver’s reception. Another challengehis signal fading problem, which can
be as a result of radio signal diffraction whemdaidents on tall buildings, trees and other
structures in the transmission path. The negatifexteof signal fading is that, it will
reduce the signal strength and impairs the seitgitof the secondary user. In such
fading environment, the CR transmission can interfgith the primary user signal as a
result of weak signal strength at the CR termihignce, for the general acceptability of
application of CR technology, the issues of aceudstection of all forms of primary
radio signals, coupled with the probability of hesdterminals as well as signal fading,
need to be addressed in order to guarantee theajeteployment of CR by both the

spectrum regulatory bodies and the spectrum-licknsaers.

A solution to such challenges is the motivation tlois study. In attempting to find a
sensing/detection method that can adequately detietdrms of primary radio signals
whether they are weak or strong, pre-known or umknoas well as overcoming the
hidden terminal issue in a cognitive radio enviremty this research work proposed an
alternative spectrum sensing/detection method.riié#hod employed in this study is the
usage of an automatic modulation classificatiommrautomatic modulation recognition
scheme to detect all forms of modulation signalthancognitive radio environment. An
AMR classifier using an ANN is proposed. This agmo is used because all signal
transmissions in the spectrum bands are modulas#ny wne form of modulation

technique or another.

The detection method is proposed because moduleamynition must be an important
feature of a CR and that knowledge of the typesigrial modulations on a channel can
assist CR deciding to jump either into or out o$pectrum band in a way to prevent
interference to and from primary users of the gpect Since all wireless devices in the
radio environment make use of a specific modulatsmmeme, the extra spectral

awareness provided by AMR will indeed contribute @osafer environment for the

41



primary users and enhances higher CR performanciet#iled literature review on both
the AMR and ANN are presented in the Sections aridl2.12 respectively.

2.10 Basic Modulation Techniques

In a wireless communication system, before a messiamal, which is either in analog or
digital form, is transmitted through a communicatichannel, some form of modulation
process is typically utilized to produce a sigrdttcan easily be accommodated by the
communication channel. A modulation process usugdigslates an information-bearing
signal, also referred to as the message signa, new spectral location (Ziemer and
Tranter, 1990). Modulation, by definition, is theopess by which some parameters of
high frequency waveform, called the carrier wawe,varied in accordance with a

modulating wave or message signal.

Mathematically, modulation is described as the @ssof mapping from a message space
to a signal space. A fundamental requirement fergbaneration of the desired type of
modulation is the use of a carrier. A carrier mustcharacterized by some property that
makes it distinguishable from other carriers of fane or different class that may be
present simultaneously (Baghdady, 1961). For examal sinusoidal carrier can be

distinguished by its amplitudg, ), frequency(f,), or its phasdg). The general

expression for a sinusoidal carrier is:
x.(t) = A cod27f t + ) (2.2)

These three parameterd,, f. and ¢, may be varied for the purpose of transmitting

information, hence giving respectively amplitudeguency and phase modulation, Table
2.1.

When choosing a modulation format in a wirelesstesys, the ultimate goal is to

transmit with a certain energy as much informatsrpossible over a channel (Molisch,

2005), with a minimum bandwidth, while assuring ertain transmission quality.

However, since there is no ideal modulation fornfat all forms of wireless
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communications, the modulation format then has o delected according to the
requirement of a specific system and applicatiohe Teads to diverse modulation

formats in wireless communication.

Generally, as shown in Table 2.1, modulation can classified into two classes
depending on the transmitted signal. If a contirsusignal is transmitted, the modulation
is referred to as analog modulation. If a discegmal is transmitted, the modulation is

referred to as digital modulation.

Table 2.1: Analog and Digital Modulation Techniques

Modulation Modulation Scheme Notation Types
Technique
Amplitude Modulation AM Linear
Analog Modulation| Frequency Modulation FM Non- Linear
Techniques Phase Modulation PM Non- Linear
Amplitude Shift Keying ASK Linear
Digital Modulation | Frequency Shift Keying FSK Non- Linear,
Techniques Phase Shift Keying PSK Linear

2.10.1 Analog Modulation

Traditional wireless communications systems usevewotional analog modulation
techniques, such as Amplitude Modulation (AM), Freacy Modulation (FM), and
Phase Modulation (PM). Analog modulation typesfarther classified into either linear

or non-linear (angle) modulation (Haykin, 2001).

2.10.1.1 Linear Modulation
A linearly modulated carrier is represented byisgtthe instantaneous phage,in (2.2)

equal to zero. Thus a linearly modulated carrieegesented as:

x.(t) = A cos27f t (2.3)
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in which the carrier amplitudé, varies in one-to-one corresponding with the messag

signal. The following sub-sections briefly disctiss different types of linear modulation

schemes.

Amplitude Modulation

Amplitude Modulation (AM), also known as conven@ramplitude modulation, is an
example of linear modulation. It is obtained byy#ag the amplitude of the carrier wave
in accordance with the modulating or informatioratiieg signal. The analytic
representation of the amplitude-modulated signa @im of the carrier signal and the
modulating signal shifted in frequency by the @rfrequency (Hossegt al, 2007). The
modulation scheme is used in applications suchads rand television broadcasting.

Amplitude modulated carrier signak,(t), is represented as:

x.(t) = A [1+bmt)] cos2/f t (2.4)

wherem(t) = A cos27f  is the normalized message or modulating signal keisdthe

index of modulation, which is a positive constaetvween 0 and 1.

During transmission, the transmitted AM signal ent@aminated with white Gaussian

additive noise,n(t). The expression for the received signal plus thisenis given by:

X (t)= A [L+bm(t)]] cos27ft +n(t) (2.5)

Double-Sideband Amplitude Modulation
According to Ziemer and Tranter (1990), doublesatel (DSB) modulation results

when A is proportional to the message sigmal(t). Thus the output of a DSB modulator

can be represented as:
x.(t) = A, m(t)cos277 t (2.6)
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which indicates that DSB modulation is simply theultiplication of a carrier,

A.cos27f t, by the message signal. It follows from the modatattheorem that the

spectrum of a DSB signal is given by:
1 1
X(f)=5AM(f + T )+ SAM(F - 1) (27

The spectraM (f + f.) and M(f - f.) are simply the message spectrum translated
to f =xf_. This type of modulation is referred to as ampl@umodulation double

sideband transmitted carrier (AM-DSB-TC). Howevkthe carrier is suppressed, the
modulation type is called amplitude modulation dewideband suppressed carrier (AM-
DSB-SC). In many respects, conventional AM is qusimilar to DSB amplitude

modulation. The only difference is that in conventl AM, m(t) in DSB is substituted
with [1+ bn(t)]. This substitution makes conventional AM a lessnemical modulation

scheme in terms of power utilization (Proagisal, 2004).

Single-Sideband Amplitude Modulation
Another type of AM is the single sideband (SSB)which only one sideband of the
spectraM(f + fc), as in upper sideband (USB) M(f - fc), as in lower sideband

(LSB) in (2.7) is transmitted. It occupies only fhie bandwidth compared to AM-DSB-
TC or AM-DSB-SC (Hosseret al, 2007), which makes it an efficient form of AM

scheme.

Generally, this family of analog modulation schensesharacterized by a low bandwidth
requirement and power inefficiency in comparisonttte angle modulation schemes
(Proakiset al, 2004). The bandwidth requirement for AM systerases between W and

2W, where W denotes the bandwidth of the messapplsiThe AM systems are widely

used in broadcasting, as in AM radio and televisrateo broadcasting, point-to-point

45



communication (SSB), and multiplexing applicatisueh as the transmission of many

telephone channels over microwave links.

2.10.1.2 Angle Modulation

Angle modulation schemes, which include FM and Belong to the class of analog
non-linear modulation schemes. These families dlan modulation schemes are
characterized by their high bandwidth requiremeat&l good performance in the
presence of noise (Proaket al, 2004). These modulation schemes are visualized as
modulation techniques that trade-off bandwidthgower and are, therefore, used where

bandwidth is not the major concern, but where I8HtR is required.

Frequency modulation is widely used in high fidelRM broadcasting radio, television
audio broadcasting, microwave carrier modulatiomg @oint-to-point communication
systems. Frequency modulation and phase moduldifter from the linear amplitude
modulation scheme. The major difference is in tistantaneous amplitude, which varies
in AM but remains constant in both FM and PM. Hoeg\the frequency of the carrier in
FM and phase of the carrier in PM varies with resge the modulating or message

signal.

To generate angle modulation, the amplitude ohtlbeulated carrier is held constant and
either the phase or the time derivative of the phafsthe carrier is varied linearly with

the message signah(t). Thus, the general angle-modulated signal is gbsen

x,(t) = A, cosprt t +gft)] 2.8)

The instantaneous phasexft)is defined as:

¢((t) =wt+ qa(t); w, = 27f, (2.9)

The instantaneous frequency is defined as:
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vvi(t)zd—%:w L 9¢ (2.10)

The functionsg(t) and d¢ 4 are known as the phase deviation and frequenciaitev

respectively.

PM implies that the phase deviation of the canseproportional to the message signal.
Thus, for PM:

dt) = x,mlt) 2.11)

where « is the deviation constant in radians per unitm(f). Similarly, frequency
modulation implies that the frequency deviationtlbé carrier is proportional to the
modulating signal. This gives:

dg _
G k, m(t) (2.12)

2.10.2 Comparative Analysis of Analog Modulation Stemes

Restricting to the domain of analog modulation teghes, a brief overview analysis of
different analog modulation schemes were providedhis sub-section. The overview
through extensive literature survey in a tabulammfo presented in this sub-section
establishes the superiority at a glance of speadfadulation scheme for a particular
application. Generally, according to Glover and r&ré2000), different modulation
schemes can be compared on basis of their spacugbower efficiencies. According to
these authors, spectral efficiency is defined aseasure of information transmission rate
per hertz (Hz) of bandwidth used. On the other haheé authors defined power
efficiency as the ratio of signal energy to noisgpr spectral density.

Basically, as discussed above, there are thresedasf analog modulation techniques,

namely AM, FM and PM. These three modulation teghes have in turn lot of class,
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sub-class or derivatives. For instance, in cagg\dshown in Table 2.2, there are several
derivatives. These derivatives as shown in Tal#lesBow that AM-SSB-SC has smaller
bandwidth and power requirements in contrast witti-BSB-TC and AM-SSB-FC.
Hence, using SSB-SC proves to be better than drey &M schemes.

Similarly, comparative analysis of AM and FM schens@ows a great merit of FM over
AM because FM can suppress the effects of noiseabakpense of bandwidth. On the
other hand, AM is characterized by a low bandwigitjuirement and power inefficiency

in comparison to FM scheme.

Table 2.2: Performance Analysis of Analog Modulatin Scheme

Type of Analog| Bandwidth Power Percentage Power
Modulation Scheme| Requirement Requirement Saving (%)
AM-DSB-TC 2w, % (Pc) Standard
AM-DSB-SC 2w, % (Pc) 66.67
AM-SSB-TC w, % (Ff:) 16.67
AM-SSB-SC w, % (Ff:) 83.33
where «), isthemodulating frequencyand P. thecarrier power

Adapted from: Sharma et al., (2010)

2.10.3 Digital Modulation

In modern wireless communications systems, trasilicommunications systems that
use conventional analog modulation techniques, aschM, FM, and PM, are gradually
being replaced with digital communications systethat use digital modulation

techniques. Digital modulation techniques offer esal’ outstanding advantages over

traditional analog modulations techniques. Somihede advantages are:

» better spectral efficiency;
» easier multiplexing of different forms of informaii, such as voice, video and

data;
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* Dbetter noise and fade-rejecting capability;
* easier implementation of error correction and @sweryption; and

» greater noise immunity and robustness to channghiment.

Like in analog communication systems, in digitaintounication systems the signal is
superimposed onto a sinusoidal carrier in ordeadbieve modulation. By adjusting a
physical characteristic of the sinusoidal carrgarch as the frequency, phase, amplitude
or a combination thereof, Frequency Shift KeyingKly, Phase Shift Keying (PSK),
Amplitude Shift Keying (ASK), Quadrature Amplitud®odulation (QAM), are

respectively achieved as the different basic digiadulation schemes.

Digital modulation techniques, like analog moduwatitechniques, can broadly be
classified as linear or non-linear depending on hbe amplitude of the transmitted
signals varies with the modulated waveform. A reve each class is presented in the
following sections, along with their correspondamdyantages and disadvantages.

2.10.3.1 Linear Digital Modulation Techniques

In linear digital modulation techniques, the amyi of the transmitted signal varies
linearly with the modulation signal. The modulatisthemes do not have a constant
envelop. The modulation techniques have bandwiffitiency (Rappaport, 2002), which

makes it attractive for use in wireless communaratsystems where there is an

increasing demand for more users within a limigeecsrum.

Despite having very good spectral efficiency, tignal to be transmitted using linear
digital modulation techniques must use linear RIplémars, which have very poor power

efficiency since they are continuously switched longetting around this disadvantage,
complex linear modulation techniques have been |dped, but only a few basic

techniques are discussed here. Examples of basiarldigital modulation techniques are
the ASK scheme and PSK scheme and its variatiohghwincludes Quadrature Phase
Shift Keying, (QPSK). These modulation schemesreferred to as linear, because they

require linear amplification.
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Amplitude Shift Keying

This is the simplest form of digital modulation safe. In an ASK system, the amplitude
of the sine wave to transmit digital data is alwassied. Digital data in ASK are
represented by variations in amplitude. For insgtabimary symbol 1 can be represented

by transmitting a sinusoidal carrier wave of amyulg A and fixed frequencyf, for the
bit durationT, seconds, while binary O is represented by switcluffgthe carrier for

T, seconds. In mathematical terms, ASK wa{g is expressed as:

A cod27ft), symboll
— 2.1
s(t)= {O, symbol0 (2.13)

The general analytic expression for the ASK is:

5(t)= Zit cod27ft+¢);, 0<t<T; i=12--M (2.14)

where the amplitude terquEift i/T has M discrete values, and the phase tgris an

arbitrary constant. The parametéEsandT are the symbol energy and time duration

respectively.

ASK is the simplest kind of modulation to generatel detect. However, it can only be
used when the SNR is very high and does not coadesmdwidth. ASK demonstrates

poor performance, as it is heavily affected by e@sd interference.

Phase Shift Keying

PSK is an example of linear digital modulation suobehat transmits data by varying the
phase of the carrier wave. It is now widely usednititary and commercial wireless
communications systems. PSK has many represergatién convenient way of

representing PSK modulation is by using a signacepdiagram known as the
constellation diagram (Du and Swamy, 2010). A celfetion diagram consists of a

group of points representing the different symlibés carrier in a PSK modulated signal
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can assume. Typical constellation diagrams for BifRhase Shift Keying (BPSK) and
QPSK are shown in Figure 2.9 and Figure 2.10 résmbg. The two representations of
PSK are described in the following sections.

The general analytic expression for PSK is:

5(t)= ZET't cod2rft+gft), Os<t<T; i=12--M (2.15)
where the phase termg(t), will have M discrete values, typically given by:

dt)=="— i=12---,M (2.16)

Binary phase shift keying
The simplest form of PSK is called the BPSK. In BR§stem, a sinusoidal carrier wave

of fixed amplitudeA, and fixed frequency, is used to represent both symbols 1 and O,
except that the carrier phase for each symbolrditiy 18¢° (or 77, radian). While symbol

or logic 1 is sent as a cosine signal withphase shift, logic 0 is sent as a cosine signal
with 180 phase shift. BPSK is thus a binary antipodak ABu and Swamy, 2010). In

mathematical terms, BPSK wawf) is expressed as:

%)- {&cos(anJ), symboll 2.17)

A cod27f t + 1), symbol0

In BPSK, where each bit is represented by one simlkas in either

A cos(Zn‘ct) or A cos(2n‘ct —1803) , the constellation diagram consists of two poa#s

shown in Figure 2.9. These two points have the sam@litude, A , but are 180 apart.
This means that a symbol 1 corresponds\teog27ft) while a symbol O corresponds

to A cod27f.t -18¢F).
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Figure 2.9: BPSK Constellation Diagram

Quadrature Binary Phase Shift Keying

Another common example or representation of PSKQRSK. QPSK is a higher
modulation scheme often used in preference to BRB&n improved spectral efficiency
is required. Unlike BPSK, with two define phaseteta QPSK uses four possible

phases45’ or (%),135°or (3%) 225 or (5%),315°or (7%) for carrier with the

same amplitude. With the four phases, QPSK trasstwid bits in a single modulation
symbol. This accounts for why QPSK has twice thedwadth efficiency of BPSK
(Rappaport, 2002), because as the number of swtesreasing, more data bits per

symbol can be transmitted. Mathematically, QPSKaigan be represented as:
sft) = A cod2rit + -1)%) i=1234 (2.18)

Using trigonometric identitycos(x+ y) =cosxcosy —sinxsiny, (2.18) can be re-written

as:
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st)= A cos(anct)coi(i %} A sin(27£ t) sm{ %} i= 1234 (2.19)

which expresses QPSK signal in terms of an in-plidsend quadrature (Q) components.
Based on this representation, QPSK signal canlbstriited using a two dimensional
constellation diagram with four points correspomdio the four phase states of the RF
carrier as shown in Figure 2.10.

»O

Figure 2.10: QPSK Constellation where Carrier Phasgare 45°,135,225°,315

2.10.3.2 Non-Linear Digital Modulation Techniques

Non-linear modulations techniques have either linea constant carrier envelopes,
unlike linear digital modulation schemes that do Imave a constant envelop. This class
of non-linear modulation scheme with constant emwelvhere the amplitude of the
carrier is constant regardless of the variatiothenmodulating signal, are used in mobile
communications systems. The schemes permit thefusan-linear amplifiers to improve
the power efficiency without degrading the spectmfrthe transmitted signal. The major
disadvantage of constant envelop modulations it ttiey occupy a larger bandwidth
unlike linear modulation schemes. This makes tihemses well suited to systems where
power efficiency is more important than bandwidtFiceency, as in a mobile
communication handset. An example of a non-lineanstant digital modulation
technique is FSK and its variations, namely Binargquency Shift Keying, (BFSK), are

discussed below.
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Frequency Shift Keying

FSK is a relatively simple form of digital modulari. It is a constant envelop modulation
technique, appropriate for channels that lack plstaiility. FSK has the advantage of
being simple to generate and demodulate. It hasrakadvantages over ASK because
the carrier has a constant amplitude. Some advesitpgesent in FSK include its
immunity to non-linearity; that is the high ordearmonics do not superimpose on the
fundamental signal (Chen and Tsao, 1998), immutotyapid fading, immunity to
adjacent channel interference and the ability tcharge SNR for bandwidth. The
significant disadvantage, however, are the pooctspleefficiency and Bit Error Rate
(BER) performance. This preludes its use in theicbfmm from cellular and even

cordless systems.

The general analytic expression for FSK modulatson

5(t) a/% cod27f t + ¢)
=1/$ cofwt+¢), 0<t<T; i=12---,M

where the frequency has M discrete values and the phase tgrns an arbitrary

(2.20)

constant.

Depending on how the frequency variations are itegainto the carrier signal, the FSK
will either have a discontinuous phase or contisuphase between bits (Rappaport,
2002). The discontinuous phase FSK is normally gead by switching between two
independent oscillators according to whether tha Oéa or message signal is a 0 or a 1.
Under this condition, the generated FSK signal radgmresults in a waveform that is
discontinuous at the switching times. Since phaseodtinuities pose problems, such as
spectral spreading and spurious transmissionsjypes of FSK is generally not used in

highly regulated wireless communications systems.

On the other hand, continuous phase frequency kéifing is an attractive choice of
modulation, because of its well-behaved spectraratdteristics and ability to be non-
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coherently detected (Chemg al, 2007). In addition, while the Power Spectral 8ign
(PSD) ultimately falls off as the inverse fourthwe of the frequency offset from the
carrier frequency in continuous phase frequencit &kying, the PSD falls off as the
inverse square of the spectrum frequency offsetfrthe carrier frequency in
discontinuous phase frequency shift keying. Thasoa also makes continuous phase

systems more desirable than discontinuous ones.

Binary Frequency Shift Keying
In binary frequency-shift keying, the instantanedtexjuency of the carrier signal is
usually shifted between two discrete values, repriasg symbol 1 and symbol 0. Two

sinusoidal carrier waves of the same amplitude,différent frequencied, and f, are

used to represent binary symbol 1 and 0, respdygtiVhat is, the modulated waveform is
cos27ft for symbol 1 andcos274,t for symbol 0. Therefore, from (2.20) BFSK wave,

s(t), can be expressed mathematically as:

1/% cod27f_ +27f )t, symboll
1/2_|_—E cod27f, - 2mf )t, symbol0

where 27Af is a constant offset from the nominal carrier fiexgy.

s(t) =

(2.21)

The PSD of a BFSK signal consists of discrete feeqy components at

f. and f_ £ nAf, wherenis an integer. This makes the bandwidB; { of an FM signal

to be ideally infinite. However according to Rappap(2002), for a BFSK signal, the
approximatdB. , is provided by Carson’s rule as:

B, = 2Af +2B (2.22)

where B is the bandwidth of the digital baseband signal.
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2.10.4 Multicarrier Modulation Scheme

2.10.4.1 Orthogonal Frequency Division Multiplexing

Orthogonal Frequency Division Multiplexing (OFDM}¥ ia promising multicarrier
modulation system for transmission of a high rdteasn with spectral efficiency and
fading immunity. As a multicarrier modulation syste OFDM utilizes a parallel
processing technique that allows the simultanecarssiission of data on many sub-
carriers that are orthogonally closely spaced (Albtuet al, 2009). This multicarrier
transmission densely squeezes multiple modulatédcarriers that are orthogonal to
each other together in the frequency domain. Ttreogonality of the multiple modulated
sub-carriers enhances interference-free commuaitamongst the multiple modulated
sub-carriers and is accomplished by exploiting gheperties of the symbol windowing
function, as well as by choosing the precise suliazafrequencies. The sub-carriers are

encoded using different digital modulation techmigjisuch as BPSK, QPSK and QAM.

The primary reason for using OFDM is to increase tbbustness against frequency
selective fading (Anibal, 2000). Another reason @ising OFDM is because it offers
good spectral efficiency and efficient eliminatiohsub-channel and symbol interference
using the Fast Fourier Transform (FFT) for modolatand demodulation, which does
not require equalization (Djordjevic and Vasic, 8d(Hence, any digital communication
system utilizing an OFDM modulation scheme willdhetically use available bandwidth
more efficiently than many other modulation schenidss is because of its ability to
break the bandwidth up into smaller sub-channelghvienables different sub-carrier
modulation schemes to be used, depending on thétyquwd each section of the

bandwidth. This makes OFDM efficient, flexible aamdiaptable to changing environments.

The establishment of OFDM-based systems as an rélegal popular method for
overcoming the frequency selective fading (Ekstrémal, 2006), aids its usage in
different flavours of Broadband Cellular Wirele&CW) systems (Laroiat al, 2004).
According to Srikantret al (2006), the IEEE 802.16d and 802.16e standardghvware
more popularly known by the industry forum name Werde interoperability for

Microwave Access (WIMAX), were first considered f&CW and were the first
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standards to use the OFDM transmission techniqikewlise, the IEEE 802.11 a/g
standards for Wireless Local Area Networks (WLANsyhich are more popularly
known as Wi-Fi have used OFDM to achieve speedisecbrder of 50 Mbps in an indoor
multipath environment. Other systems that use OFB&lude digital audio and video
broadcasting systems, high-definition televisioryrdstrial broadcasting and ultra-

wideband-based systems for short-range wireless.

2.10.4.2 Quadrature Amplitude Modulation

Due to its high spectral efficiency, Multilevel Qlrature Amplitude Modulation (M-
QAM) is an attractive modulation technique for W&®s communications (Targg al,
1999). QAM is a combination of ASK and PSK. It istlb an analog and a digital
modulation scheme that can convey two analog messamals, or two digital bit
streams by modulating the amplitudes of two carn@ves using the ASK digital
modulation scheme or AM analog modulation schenme. dnalog versions of QAM are
typically used to allow multiple analog signalsb® carried on a single carrier. Likewise,
when QAM is used for digital transmission, radiontounication applications are able to
carry higher data rates than ordinary amplitude uteddd schemes and phase modulated

schemes.

In QAM, two carrier waves(cos27f t) and(sin277.t), that are out of phase with each

other by9(® are usually employed, and are thus called quamraarriers or quadrature
components. The modulated waves are algebraicaitynged, the results of which is a
single signal to be transmitted, containing thehase () and quadrature (Q) information
(Hannaret al, 2010).

An M-ary Quadrature Amplitude Modulation (M-QAM)gsial is defined mathematically
as:

s(t) = 1 (t). cod27% t) + Q(t). sin(27£ t)

= A glt).cod27f t)+ A.g(t). sin(27f t) m=123M (2.23)
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where| (t)and Q(t) are the modulating signalgy, and A? are the sets of the amplitude

levels for the in-phase and quadrature phase réeglyc and g(t) is the real valued

signal pulse, whose shape influences the spectfuhe dransmitted signal.

Digital formats of QAM are often referred to as gtized QAM. In digital M-QAM, two
or more bits are usually grouped together to foymimls and one of M possible signals

is transmitted during each symbol period. Normathe number of possible signals is

M =2", where n is an integer. Hence, possible M-QAMs are: 4-QAVQAM, 16-
QAM, 32-QAM, 64-QAM, as soon on. The number of 4, B, 32 and 64 is

corresponding t®* 23, 2%, 2° and2° in which the superscript number 2, 3, 4, 5 or 6 is

the bits per symbol respectively.

As with many digital modulation schemes, the cdfetten diagram of M-QAM
provides a graphical representation of the compgexelope of each possible symbol
state. Some popular constellation diagrams for MMX#&ported by Pappet al, (2009)
are the square QAM (SQAM), the triangular QAM (TQANF hexagonal packing, the
rectangular-QAM (RQAM), and the circular-QAM (CQAMyhile the cross-QAM (C-
QAM) was reported in Vitthaladevuet al, (2005).

Although a large variety of QAM constellations daa constructed, studies have shown
that some specific constellations attracted spdoigrest due to the low complexity
demodulation methods required (Pappial, 2009). In addition, the authors observed
that for a specific value of the SNR, the maximuensmission efficiency achieved by
different constellation types varied. In Vitthaladaei et al (2005), it was established that
RQAM is a typically used constellation when the tn@mof bits in a symbol is even, as
4-, 16-, 64-, 256-QAMs, and unsuitable for M-QAMtlvodd number of bits per symbol.

The first even rectangular QAM usually encountet6sQAM. This is because analysis
has revealed it that 4-QAM is a typical QPSK. Irs thtudy, 16-QAM and 64-QAM are
used. Figure 2.11 shows the constellation diagi@il6-QAM with gray coded bit-

assignment.
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Figure 2.11: Constellation Diagram for Rectangularl6-QAM

The various analog and digital modulation technggdescribed above are simulated in
this study using MATLAB Software. Similarly, an automatic modulation cléies;
using an ANN for both the analog and digital motiola schemes, are developed. The
purpose is to use the classifiers in the CRE develdhis study. The simulation details
are presented in next chapter. Meanwhile, this telmdprther review AMC or AMR and

ANN, as it applies in the next chapter.

2.10.5 Comparative Analyses of Digital Modulation &hemes

In this sub-section, brief overview analyses of eamfi the digital modulation schemes
discussed under Sub-section 2.10.3 and Sub-se2tidh4 and their derivatives were
provided. The analyses establish the superiority gtance of those digital modulation
schemes by stating their respective merit(s) amaedi(s). Like the comparative analysis
carried out on the analog modulation schemes insggbon 2.10.2, the comparative
analyses in this sub-section was basis on the sshepectral and power efficiencies as
well as their respective cost and implementatiomgexity. The comparative result was

presented in a tabular form in Table 2.3.
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Table 2.3: Comparative Analyses of Some Digital Magdation Schemes

Type of Derived From Merit Demerit
Digital
Modulation
Scheme
2ASK ASK Low cost and Simple to implement  Ineffieey bandwidth scheme. |t
is noise prone. It can only operdte
in linear region
2FSK FSK Low cost and Simple to implement  Receidesign is complex
BPSK PSK Simple to implement. It is robust| Inefficient use of bandwidth
is used mostly for satellite
communication. It has about 3 dB
power advantage over 2ASK
QPSK PSK It is bandwidth efficient and mordt requires complex receiver
spectrally efficient than 2PSK design
QAM ASK and AM It is bandwidth efficient and highBecause QAM involves AM
data rates linearity of the transmitter’s
power amplifiers can cause the
system error
OFDM From It is robust to Inter-channellt is sensitive to Doppler shift. It
multicarrier interference  and  inter-symbolhas inefficient transmitter power
modulation interference. It is high spectralconsumption since linear power

scheme such &
16-QAM, QPSK,

etc

be

implemented using FFT. Tune

sefficiency. It efficiently

sub-channel receiver filter is n

amplifier is required
d
Dt

required.

2.11 Automatic Modulation Recognition

One of the major variables of the radio signalg tteeed to be determined, whenever an

unknown radio signal is being monitored, is the mation scheme or format of the radio

signal. The process of determining the modulatioheme of a radio signal without

foreknowledge of the signal modulation charactesstis known as modulation
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recognition. Radio signal modulation recognitiom te& carried out in two ways, either in
an automatic or non-automatic fashion. In a nomaatic fashion, the classification and
identification of the modulation signal depends am operator’s interpretation of the
measured parameters (Hsue and Soliman, 1990). gppreach is unpopular because its
success is subjected to the operator’s conditiongpled with its slow rate in a hostile
environment (Dominguezt al, 1991). For a fast response, automatic modulation

recognition techniques are employed (Guldemir agray8r, 2007).

Automatic modulation recognition of both analog adigital radio communications

signals are important signal processing fieldstoflg in communications and its related
areas. It is an intermediate step between signiafception and information recovery
(Yaqgin et al, 2003; Azzouz and Nandi, 1996a; Prakasam and Btadiran, 2008),

which automatically identifies the modulation typé the received signal for further
demodulation and other tasks (Yacgeh al, 2003) such as signal identification and
interference management. It is one of the importemiracteristics used in signal
monitoring and identification (Arulampalaet al, 1999). It is an extremely important
process in communication intelligent applicatiorss &everal reasons. It helps in
preventing the application of the communicatiomalgo an improper demodulator, as
this act may damage the signal information confdandi and Azzouz, 1995). Since any
damage of the communication signal information eonthtconsiderably confuses the
following deciphering process, which converts themddulated message from its
ciphered, or non-intelligible, form to the decipbér or intelligible, one. Furthermore,
knowing the correct modulation type helps in recoigug threat signal and jamming

waveforms (Nandi and Azzouz, 1995).

Automatic modulation type identification generafilays an important role for various
applications and purposes. For example, in a mjlitomain, it can be employed for
electronic surveillance, electronic warfare ana#tranalysis. In the civilian domain, its
applications include signal confirmation, interfece identification and spectrum
management (Prakasam and Madheswaran, 2008; Aralampt al, 1999). Similarly,

in communications applications, such as in theeillance of the radio spectrum, there is
a requirement for rapid and automatic identificated the modulation type of a received
signal. A receiver continuously scans over the spactof interest and when it detects a
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transmission signal, the output of its IF amplifiepassed on to an identifier. The task of
the identifier is to determine the transmission@dumlation type, which may be any form

of modulation schemes, such as DSB modulation, ®@8&ulation, FM, PM or FSK.

Numerous modulation recognition methods have beeopgsed. A significant
contribution has been made by E.E. Azzouz and AKndi, who have proposed an
Analog Modulation Recognition Algorithm (AMRA), Digl Modulation Recognition
Algorithm (DMRA), and Analog and Digital ModulatiorRecognition Algorithm
(ADMRA) based on the decision-theoretic approachz@uz and Nandi, 1997a; Azzouz
and Nandi, 1996b) and an artificial neural netwagproach (Azzouz and Nandi, 1997b).
In another research project of this group in 13@8nputer simulations of different types
of band-limited analog and digitally modulated sitgn corrupted by band-limited
Gaussian noise sequences were carried out to needlar performance of their
algorithms (Nandi and Azzouz, 1998). Likewise, matiyer authors have made different
contributions on the topic of AMR using differenethods, such as decision theoretic,
neural networks, statistical pattern recognitioayelet transform and filtering (Prakasam
and Madheswaran, 2009; Yagat al, 2003; Wong and Nandi, 2001; Kavalov, 2001;
Zhang, 2000; Lopatka and Pedzisz, 2000; Arulampaiaah, 1999; Dubuet al, 1999).

Generally, automatic modulation type identificationethods fall into two main
categories, decision theoretic (DT) and patterrogation (PR). DT approaches use
probabilistic and hypothesis testing argumentsotantilate the recognition problem and
to obtain the classification rule (Wei and Mend#)00; Panagotioet al, 2000). The
approach is based on the likelihood functioru¢®¥k and Arslan, 2004; Zhao and Tao,
2004), where modulation classification is deemed awultiple-hypothesis test. Once the
appropriate likelihood functions are establisheithee Average Likelihood Ratio Test
(ALRT), Generalized Likelihood Ratio Test (GLRT); Blybrid Likelihood Ratio Test
(HLRT) can be adopted as the potential solution.

The merits of DT classifiers developed using Maximuikelihood (ML) are that they
performed optimally. However, one of its demergshigh computational complexity
(Zadehet al, 2006). Another drawback of this approach isftw that is not robust with
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respect to the model mismatch in the presence adgbr frequency offsets and residual
channel effects (¥cek and Arslan, 2004; Zhao and Tao, 2004). Tablesimmaries

some of the likelihood-based classifiers in litarat

Table 2.4: A Summary of Likelihood-Based Classifies

Author(s) Classifier(s) Type Modulations Used Channel Used

Kim and Polydoros| Quasi-ALRT BPSK, QPSK AWGN

(1988)

Polydoros and Kim| Quasi-ALRT BPSK, QPSK AWGN

(1990)

Longet al, (1994) Quasi-ALRT 16PSK, 16QAM, V29 | AWGN

Huang and Quasi-ALRT BPSK, QPSK, 8PSK,AWGN

Polydoros, (1995) 16PSK

Beidas and Webel, ALRT and Quasi-{ 32FSK, 64FSK AWGN

(1995; 1996; 1998) ALRT

Chugget al, (1995) HLRT BPSK, QPSK, OQPSK AWGN

Sapiano and Martin, ALRT BPSK, QPSK, 8PSK AWGN

(1996)

Sills, (1999) ALRT BPSK, QPSK, 16QAM,AWGN

V.29, 32QAM, 64QAM

Wei and Mendel| ALRT 16QAM, V29 AWGN

(2000)

Panagiotou et al, | GLRT and HLRT 16PSK, 16QAM, V29 AWGN

(2000)

Hong and Ho, (2002) HLRT BPSK, QPSK AWGN

Hong and Ho, (2003) ALRT BPSK, QPSK AWGN

Abdi et al., (2004) ALRT and Quasit 16QAM, 32QAM, | Flat Fading
ALRT 64QAM

Li et al, (2005) Quasi-ALRT 4QAM, 16QAM, 64QAM | AWGN

Source: Dobre et al. (2007)

These are the modulation schemes used in the afigapers.
2V29 is a special QAM modulation with 16 pointstia signal constellation.
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On the other hand, in the PR approach, the modulaiassification module is divided
into two subsystems, namely the feature extractobsystem and the classifier
subsystem (Zadeét al, 2006; Dobreet al, 2007; Swami and Sadler, 2000; Mobasseri,
2000; Nandi and Azzouz, 1998). In the first submystof this approach, feature
extraction keys are extracted from the radio sig@ame of the commonly adopted
feature extraction keys are higher-order statigtit®S), including moments, cumulants,
and cyclic cumulants (CC) of the signal (Wual, 2008; Zadelet al, 2006; Dobreet al,
2003; Dobreet al, 2004; Dobreet al, 2005), fuzzy logic (Wei and Mendel, 1999;
Lopatka and Pedzisz, 2000), a constellation shapevery method (Mobasseri, 1999)
and usage of information contained in an incomimgga (Nandi and Azzouz, 1995;
Nandi and Azzouz, 1998; Azzouz and Nandi, 1996&odz and Nandi, 1997a; Azzouz
and Nandi, 1996b; Guldemir and Sengur, 2007; Arpaamet al, 1999; Wong and
Nandi 2001; Popoola and van Olst, 2011b).

The second subsystem of the PR approach is ampagteosgnizer, which processes those
feature keys and determines the modulation typthefreceived signal according to a
pre-designed decision rule. Multi-Layer Perceptimural Network (MLPNN) is one of
the classifiers that are used in modulation iderdifon systems. It has been shown that
this type of classifier outperforms other classdjesuch as the K-nearest neighborhood
algorithm (Nandi and Azzouz, 1998). Table 2.5 sumrea most of the feature based
automatic modulation classifiers in literature, émgizing the features employed,

modulation format classified and channel used.
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Table 2.5: A Summary of Feature Based Classifiers

Author(s) Features Modulations Used Channel
Used
Nandi and| Maximum power spectral density | AM, FM, DSB, SSB,| AWGN
Azzouz, (PSD) of normalized centered BPSK, QPSK, 2ASK,
(1988) amplitude, standard deviations of | 4ASK, 2FSK, 4FSK
normalized centered amplitude,
phase and frequency
Arulampalam | Maximum PSD of normalized 2ASK, 4ASK, MSK,| AWGN
et al, (1999) | centered amplitude, standar@®FSK, 4FSK, 2PSK
deviations of normalized centerediPSK
amplitude, phase and frequency,
standard deviations of direct value |of
instantaneous amplitude, standard
deviations of the normalized
instantaneous frequency, evaluated
over the non-weak segment of the
intercepted signal and maximum
PSD of the normalized instantanequs
frequency of the intercepted signal
Dobre et al, | Eighth-order cyclic cumulants of theBPSK, QPSK, 8PSK AWGN
(2003) received signal 4ASK, 8ASK, 16QAM,
64QAM, 256QAM
Yu et al, | Discrete Fourier Transform (DFT) 0of2FSK, 4FSK, 8FSK| AWGN
(2003) the received signal 16FSK, 32FSK
Dobre et al, | Eighth-, sixth-, and fourth-ordgr4QAM,16QAM AWGN,
(2004) cyclic cumulants of the received impulsive
signal noise
Zadeh et al, | Normalized eighth-order momentsAASK, 8ASK, 2PSK, AWGN
(2006) and cumulants of the received signaldPSK, 8PSK, 16QAM
32QAM, 64QAM, Star-
8QAM?, V29
Guldemir and| Maximum PSD of normalized AM, FM, DSB, SSB| AWGN
Sengur, (2007) centered amplitude, standardLSB, USB), CW
deviations of normalized centered
amplitude, phase and frequency
Wu et al, | Normalized fourth-order cumulants | BPSK, QPSK AWGN and
(2008) of the received signal Multipath
Fading
Source: Dobre et al.(2007)
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3 Star-8QAM s a star shaped M-QAM modulation whdre 2" (M = 4, 8, 16, etc, n is the number of bits
per one symbol).
“If the signal has no phase information and no amgé information, it is called a CW signal. In tlisse,

the instantaneous phase is a linear function oétand the instantaneous amplitude is constant, ingan
that the CW signal has no useful information; ngolimde and no phase information.



In contrast to the DT approaches, the PR methods reanon-optimal, but simple to
implement and can often achieve the nearly optipeaformance, if carefully designed.
Furthermore, the PR methods can be robust witheotdp the aforementioned model
mismatches. In addition, observation from Table arl Table 2.5 revealed that
classifiers developed using feature based PR methaste capable of handling or
classifying more modulation schemes when comparghl elassifiers developed using
likelihood-based DT approaches. Also, the high catafgonal complexity involved in
likelihood-based DT approaches compared to theifedtased PR classifiers does hinder
these types of classifiers from handling more matiloih schemes. These capabilities of
feature-based PR classifiers over the likelihooskeldaDT approach were considered in
this thesis. Thus, the PR approach was used in developing th@matic modulation
classifiers for this research work. In this studye maximum PSD of normalized
centered amplitude, standard deviations of norredlizentered amplitude, phase and
frequency are used as the primary feature extrackieys for the three classifiers
developed. In all the three classifiers, an aréfimeural network was used for the
development of the AMC. Details on the developmeinthe three classifiers for this

research work were presented in chapter 3.

2.12 Artificial Neural Networks

Artificial Neural Networks (ANNSs) are informatiorrpcessing systems that have certain
performance characteristics in common with biolagioeural networks. They are
computational modeling tools that have recently rggme and found extensive acceptance
in many disciplines for modeling complex real-wopdoblems (Liao and Wen, 2007,
Basheer and Hajmeer, 2000). They are defined agtstes consisting of densely
interconnected adaptive simple processing eleneatiesd artificial neurons or nodes that
are capable of performing massively parallel compomns for data processing and
knowledge representation (Hecht-Nielsen, 1990; Boffa1997). The main objective of
developing ANN-based computing, like neurocomputiirgyto develop mathematical
algorithms that will enable ANNs to learn by mimio§ information processing and

knowledge acquisition in the human brain (Basheedrtdajmeer, 2000).
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Though ANNSs are drastic abstractions of biologmaliral network, the idea of ANNs is
not to replicate the operation of the biologicadteyns, but simply to make use of what is
known about the functionality of the biological maéunetworks for solving complex
problems. According to Basheer and Hajmeer (20@) attractiveness of ANNs comes
from the remarkable information processing chargties of the biological neural
networks, namely non-linearity, high parallelismabustness, fault and failure tolerance,
learning, ability to handle imprecise and fuzzyomfation and their capability to
generalize (Jaiet al, 1996).

Artificial models possessing these processing dhtaratics of the biological neural
networks are desirable firstly because nonlinealitgyws a better fit to the data; secondly
because high parallelism implies fast processird) leardware failure tolerance; thirdly
because learning and adaptivity allow the systermupdate or modify its internal
structure in response to the changing environmand, lastly because generalization

enables application of the model to unlearned data.

The main features of ANNs are that they have thétyalbo learn complex nonlinear
input-output relationships, use sequential traippnacedures, and adapt themselves to the
data. Based on these characteristics, an ANN hasgeah as an important tool for
classification, which is one of the most frequerghcountered decision-making tasks of
human activity. Usually, a classification problerocors when an object needs to be
assigned into a predefined group or class basedmumber of observed attributes related
to that object. Many problems in science, engimggrbusiness and medicine can be
treated as classification problems. Common examplekide character recognition,
speech recognition, quality control, modulationesule recognition, medical diagnosis,

fraud and bankruptcy prediction to mention a few.

Recent research activities in neural classificaliame established that ANNs or simply
neural networks (NNs) are a promising alternatverdrious conventional classification
methods (Zhang, 2000). Its effectiveness as classiis been empirically tested. Many
researchers (Packianather and Drake, 2005; Rebeat, 1997; Curram and Mingers,

1994; Huang and Lippmann, 1987) have carried dfgrént performance comparisons
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between NNs and conventional classifiers. Similadgveral computer experimental
evaluations of NNs for classification problems haween conducted under different
conditions (Patweet al, 1993; Subramaniaet al, 1993) confirming the superiority of
the NN classifier over other classifiers.

There are three main features that normally cheraetan ANN:

(1) The pattern of connectivity among neurons, thahésANN architecture
or structure;

(i) The method of determining connection strengths AN learning or
training algorithm; and

(i)  The activation functions of the network neurons.

2.12.1 Artificial Neural Network Architecture

ANNs contain a sequence of layers. Each layer sthsf set of neurons, also called
Processing Elements (PEs). The arrangement of mgeuro PEs into layers and the
connection patterns within and between layers gseeto the neural network architecture.
In neural network architecture, the first and thst llayers are called input and output

layers (Suryanarayare al., 2008).

To cope with nonlinearly separable problems, addéi layer(s) of neurons are usually
placed in between the input layer and the outpydrléo form a Multi-Layer Perceptron
(MLP) architecture (Basheer and Hajmeer, 2000)s Tiiermediate layer(s) of neurons,
are called hidden layer(s) and the nodes are call@den nodes, because they do not
interact with the external environment. The inahmsdf intermediate or hidden layer(s)
usually empowers the perceptron by extending iigyabo solve nonlinear classification
problems. The number of hidden layers is usually kriown; hence its number of
neurons only depends on the problem considerecedxor purely linear networks, the
more neurons used in the hidden layer, the moreedalvthe network (Demuth and
Beale, 2000). The number of both input and outpedrons, on the other hand, are
usually problem dependent (Aggarvedlal, 2005).
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In terms of architectural structure, neural networkre classified into two major
categories, namely Feed-Forward Neural NetworksN{#$) and Recurrent Neural
Networks (RNNs). In a FFNN, the connections betweearons are in a feed-forward
manner. Similarly, the signal’s flow is usually fncdhe input layer to the output layer in a
forward direction without feedback. The networkigially arranged in the form of layers.
The arrangement is such that there is no connebgbmeen the neurons within the same

layer and no feedback between layers.

A fully connected single layer and multilayer nduratwork, as shown in Figure 2.12 (a)
and (b) respectively are examples of FFNNs. Orother hand, the fully interconnected
multilayer neural network shown in Figure 2.13 msexample of RNN. The fundamental

feature of RNN is that the network usually contahteast one feedback connection.

( ‘ )
@] >8
5 5 E
£ = 15 =
y,
\ output
Input layer of Layer of output Input layer of . neurons
source nodes neurons source nodes  Laverof hidden
neurons
(a) Single Layer Network (b) Multilayer Layer Network

Figure 2.12: Fully-Connected Multiple Inputs Multiple Output Feed-Forward
Neural Networks

69



[] Propagating neuron (O Processing neuron

Input
A
ndino

\

Input Layer Hidden Layer Output Layer

Figure 2.13: Fully-Connected Multiple Inputs Multiple Output Recurrent Neural
Networks

2.12.2 Training or Learning Methods

In NNs, learning or training corresponds to thecpss by which the network’s
parameters, or weights, are adapted or adjustedghra mechanism of the presentation
of an input stimulus. It is an algorithm for findirsuitable weights\W, and/or other
network parameters. NNs are usually trained by lepAn epoch is a complete run when
all training examples are presented to the netwan# processed using the learning

algorithm only once.

Generally, when NNs are to be used, it is belighad the exact nature of the relationship
between inputs and outputs are not known, otherthiseuser would have modeled the
system directly. Hence for NNs to model the reladitp between the inputs and outputs,
they need to learn the inputs and outputs reldtipngirough training. There are three
types of training used in NNs, with different typelsnetworks using different types of
training. These training types are supervised lagrnunsupervised learning and
reinforcement learning. Supervised learning is th@st common and is the training

method applied in this research work.
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Supervised learning is widely used in problems Whiavolve pattern recognition or

classification, approximation, control modeling addntification, signal processing and
optimization. Unsupervised learning schemes, ondtmer hand are mainly used for
pattern recognition, clustering, vector quantizatisignal coding and data analysis while
reinforcement learning is usually used in contMbre details about the three types of

learning methods in a neural network are presentéalowing subsections.

2.12.2.1 Supervised Learning

This learning method embeds the concept of a sigmerer teacher, who has the prior-
knowledge about the environment in which the nekw@ operating. This prior-
knowledge is represented in form of a set of inputput samples or patterns. These
input-output samples or patterns are provided imfof input data and desired output or
target (Torrecillaet al, 2007). In order words, the desired output ogeais the output

expected to be received from the given input data.

The input data is propagated forward through thevomk until activation reaches the
output neurons. The output from the network willdoenpared with the desired output. If
the output from the network agrees with the desoatput, there will be no need to
change the network parameters. However, if theutdtpm the network differs from the
desired output then there will be a need to adjustnetwork parameters to ensure that
the network gives the correct answer in the futdnen it is presented with the same or
similar input data. This adjustment of the netwpakameters is carried out by adjusting a
combination of the training pattern set and theesponding errors between the desired

output and the actual network response.

This network parameters adjustment scheme is vehlabtown as supervised learning or
learning with a teacher. It is being regarded ataed-loop feedback system where the
error is the feedback signal. It is being donehsd the network can emulate the system.
A diagrammatic representation of a supervised Iegralgorithm is shown in Figure

2.14. The environment in Figure 2.14 provides thput patterns to train the network.
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| Supervisor Desired output
Input Network
. patterns Neural output
Environment > Network

A

Error signal

Figure 2.14: Diagrammatic Representation of Superged Learning Algorithm

In order to control the learning process, a cuteris needed to decide the time for
terminating the learning process. In supervisednlag, an error measure, which
indicates the difference between the network ougnd the output from the training
sample, is normally used to control the learningcpss. This error measure is obtained
by the Mean Squared Error (MSE), which is matheradlyi expressed as:

l N
Wz (2.24)

where N is the number of the pattern pairs in the samplés the output part of theth

]
pattern pair andy, is the network output corresponding to the pattearx. The

error,E, is calculated afresh after each epoch, whilddaming process terminates when
Eis sufficiently small (Du and Swamy, 2006).

According to Du and Swamy (2006), errarcan be made to decrease toward zero by
applying a gradient-descent procedure. The gradiestent method converges to a local
minimum in a neighborhood of the initial solutiohtbe network parameters. The least
mean square and back-propagation (BP), as repytdte authors, are the two early and

most popular supervised learning algorithms. The tf them are derived using the
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gradient-descent procedure. In this research whekBP learning algorithm was used in

reducing the error.

2.12.2.2 Unsupervised Learning

Unlike supervised learning, the unsupervised dr@ganized learning method does not
involve a supervisor or target values to evaluhteretwork performance in relation to
the input data set, as shown in Figure 2.15. Theork is only provided with the input
data to teach itself depending on some structuréise input data. These structures may
be some form of redundancy in the input data ostels in the input data. The learning

method is particularly suitable for biological learg, in that it does not rely on a teacher.

Input Network
. patterns Neural Output
Environment > 5
"1 Network

Figure 2.15: Diagrammatic Representation of an Unquervised Learning Algorithm

Like the supervised learning, an unsupervised iegrmethod needs a criterion to
terminate the learning process. This is to pretkatlearning process from continuing
indefinitely. In this regard, Du and Swamy (200@&ported that, Hebbian learning,
competitive learning and Kohonen’s self-organizatimaps are the three mostly used
unsupervised learning criteria. Generally unsupedilearning has been observed to be

slow to settle into stable conditions.

2.12.2.3 Reinforcement Learning

This learning method is half-way between the supeds and unsupervised learning
methods. It is distinguished from the other leagnmmethods as it only relies on learning
from direct interaction with the environment, buted not rely on explicit supervision or
complete models of the environment as shown inreigul6. In this learning method,
the network is provided with the input data. Theivation will then be propagated
forward with additional information, such as a feneement signal, telling the network
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whether it has produced the desired output or iidhe network produces an output
different from the desired output, some adjustnadrthe network weights will be done
so that a desired output is obtained in the fupresentation of that particular input. In
this learning method, the network’s output providies environment with information

about how the neural network is performing.

Input
patterns Neural
Network

Environment

Reinforcement
3 signal

Network output

Figure 2. 16: Diagrammatic Representation of Reinficement Algorithm

In the real sense, reinforcement learning is aiapease of supervised learning (Baeto
al., 1983). It is useful for learning control stragsgonly from a performance index
without any teacher who instructs how to controfystem at each moment. It is a
learning procedure that rewards the NN for its goatput result and punishes it for a
bad output result. It is normally used in a sitoatwhere the correct output for an input
pattern is not available and there is need for ldgweg a certain output. It is a less
powerful method when compare with supervised leaaind sometimes requires a large
amount of time. Reinforcement learning teachesnéitevork structure by trial-and-error

and is suitable for online learning (Badbal, 1983; Kaelblinget al, 1996).

2.12.3 Transfer Function

An activation or transfer function is a functioredsto transform the activation level of a
neuron into an output signal. It determines how dtee of a neuron and its internal
activation is going to be modified in order to pnod the neuron output. They are
monotonically non-decreasing and present non-lityeassociated with saturation (De
Castro and Timmis, 2002). The most common actindtimctions employed in artificial

neural networks are hard limit, linear, logistinddog-sigmoid transfer functions.
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* The hard limit transfer function usually sets thetpait of the neuron to zero if the
function argument is less than zero, or one i&itgument is greater than or equal

to zero.

» The linear transfer function usually set its outiguits input.

* The log-sigmoid transfer function takes an input thas any value between plus
and minus infinity and squashes the output intoréimge O to 1, according to the

expression:

1
1+e™

(2.25)

* The log-sigmoid (logsig), tan-sigmoid (tansig) afidear (purelin) transfer
functions are commonly used in multilayer netwottkat are trained using a BP
algorithm because these transfer functions arerdiftiable and also monotonic
increasing functions. Meaning that, the output a€le function increases with

increase in its input value (Demuth and Beale, 2000

In BP networks, one or more layers of sigmoid nesrare usually used as the hidden
layer, followed by an output layer of linear newsoifhe multiple layers of sigmoid or
non-linear transfer functions allow the network tearn non-linear and linear
relationships between input and output vectors.tk@n other hand, the linear transfer
function at the output layer allows the networlptoduce values outside the range -1 and
+1. However, when it is desirable to constrain dlputs of a network to have values
between 0 and +1, then a sigmoid or non-linearstearfunction, such as logsig, can be
used at the output layer. The mathematical dedimsti of commonly used activation
functions are presented in Table 2.6.
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Table 2.6: Activation Functions

Function Definition Range
Identity X (—inf, +inf)
- 1
Logistic 1—el (0, + 1)
X _ A~ X — :L + 1
Hyperbolic €-¢ ( )
e +e”
Exponential e (0, +inf )
X
Softmax c

Zexi (0,+1)

X
Unit sum g (o, +1)
Square root Jx (0,+inf)
Sine sin(x) (0,+1)
-1: x=-1
Ramp X: —l<x<+l (-1+2)
+1. x=+1
0: x<0O
Step +1: x=0 (0.+1)

2.13 Summary

The focus of this chapter was to present basic drackd to this thesis, as well as to
enlighten all classes of readers on some of theldpmental history in radio technology
and terms that will be later employed in this tee3io fulfill these objectives, the chapter
has provided an overview of radio evolution, whietl to both digital radio realizations
and software radio capabilities. The inclusion oftware in radio systems has made
possible software capable radio that processe® Edgnals digitally. In the pursuit of
flexibility, software programmable radio, which eneally gave birth to the SDR, is
currently a standard in the military domain anddgdly gaining recognition in the

commercial world especially in an academic envirentmas reviewed in Section 2.1.
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In Sections 2.2 and 2.3, a detailed background BiR &and GNU Radio in the

development of CR was reviewed. Section 2.4 presgevdrious AIT associated with CR,
while the intelligence systems behind CR or CNrakgewed in section 2.5. Sections 2.6
and 2.7 presented full reviews of CR applicatidiise sections also provided reviews on
the demerits of the current radio spectrum managerpelicy and the suitability of

cognitive radio technology as a novel technologysoiving spectrum management
problems. The DSA application, based on cognitagia technology to enhance radio

spectrum efficiency, was fully reviewed.

Section 2.8 and Section 2.9 of this chapter focusethe analyses of various sensing and
detection techniques in the surveyed literaturpaesvely. The review shows that none
of the available sensing and detection methodsslae of sensing and detecting all
forms of radio signals in the cognitive radio eowiment. An attempt to address this
challenge motivated this research work, which psggoan alternative sensing and
detection techniqgue using AMC. The proposed seraitfjdetection method using AMC
was envisioned because all users of the radio ymectake use of one form of
modulation scheme or another. Hence, the abilitadourately detect the modulation
schemes of radio signals is sufficient to confirhe tpresence of radio signal in a

cognitive radio environment.

Section 2.10 is therefore devoted to the in-depttiexvs of both fundamental analog and
digital modulation schemes. In Section 2.11, a cemensive review of AMC for

various fundamental analog and digital modulatiochesnes used in wireless
communications systems and applications was caaigd Section 2.12, concludes the

study literature review work with a comprehensieeiew on ANNS.

Finally, having observed the demerits of the vagiauailable spectrum sensing detection
methods in the surveyed literature, this researctkws embarked upon finding a novel
technique for sensing and detecting all forms dfiaasignals in a cognitive radio
environment. The execution of the research worfresented in two phases. The first
phase involves the development of the AMR usedguMATLAB®. The second phase
involves the experimental development of the CREgien USRP2 coupled with a
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combined analog and digital AMR classifier develbpethe first stage of the study. The
diagrammatic representation of the radio envirortnmeadel for the study is shown in
Figure 2.17.

Licensed Network

Figure 2.17: Cognitive Radio Environment Model

In order to ensure reliable and effective spectsensing, each SU(secondary user
sensor), in Figure 2.17 will individually perfornpexctrum sensing and relay its decision
to the master node secondary user sensor (§UThe SUMN will finally broadcast the
condition of the spectrum to all the SUs connetteitifor dynamic spectrum access. The
other function of the StV is to determine the SU terminal or node to actessree
spectrum per time, while the Slare continuing spectrum sensing. The>%Ualso

ensures even distribution of the spectral resouanesngst the SUs.

The condition for DSA of licensed spectrum in tiesearch work is based on non-
detection of any form of modulation scheme on amnoel considered. This condition is
fulfilled by the in-built capability of the AMR immrporated into the developed CRE.
Therefore, the focus of the next chapter will bedemelopment of automatic modulation
classifiers for the research work. The next chagiscusses details on how the feature
extraction keys used in developing the AMR classififor the research are obtained
using simulation. The chapter also provides in-deptormation on how the three AMR

classifiers were developed using ANNs, as welha# individual performance.
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CHAPTER 3

3.0 DEVELOPMENT OF AUTOMATIC MODULATION CLASSIFIERS

This chapter presents details on the developmenhefthree automatic modulation
classifiers developed in this study. The developtksifiers are: analog automatic
modulation recognition (AAMR), digital automatic ohaation recognition (DAMR) and
combined analog and digital automatic modulatiacogaition (ADAMR). The AAMR
was developed to discriminate between four of tlestfnown analog modulation
schemes, namely AM, DSB modulation, SSB modulaiidh The developed DAMR
was developed to discriminate between eight of lieet-known digital modulation

schemes, which are:

- two symbol amplitude shift keying (2ASK);

- four symbol amplitude shift keying (4ASK);

- two symbol frequency shift keying (2FSK);

- two symbol phase shift keying (BPSK);

- four symbol phase shift keying (QPSK);

- orthogonal frequency division multiplexing (OFDM)

- sixteen symbol quadrature amplitude modulatig@AM); and

- sixty-four symbol quadrature amplitude modulat{64-QAM).

The combined ADAMR was developed to discriminatereen twelve, four analog and
eight digital modulation schemes considered, asl wel un-modulated noise. The
classifiers are feature based modulation recogngigorithms using statistical features.
The classifiers are developed using MATLAB. Theg anplemented in a hierarchical
approach to classify radio signals using the srsialéanount of required data, while
simultaneously maximizing the reliability of theaskifiers. The twelve simulated
modulation schemes were realized using MATLAB codes addition to the basic

MATLAB ® software, the Netlab Algorithm for pattern recdigm was used in

developing the three classifiers.
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This chapter’s focus, however, is not to develapew feature extraction key algorithm
but simply to develop AMC classifiers that would kbeployed in developing the
spectrum sensing engine for the thesis. Hence, ewveldping the three developed
classifiers for the thesis, earlier existing featugxtraction keys algorithms were
employed. However, the employed feature extrackieys algorithms were not from a
single study but from various studies based on dffectiveness of those feature

extraction keys.

3.1  Analog Classifier Development

The development of the three AMR classifiers fois tresearch work involved three
different stages as shown in Figure 3.1. For theM®Aclassifier, the four analog
modulation schemes employed were first simulatadguMATLAB codes in the first
stage. In addition, in this first stage, the thieasture keys that were used as input data
sets to the classifier to discriminate betweenfthe analog modulation schemes were
extracted using MATLAB codes. The second step wetlthe development of the
classifier, while the third step was on the perfance evaluation of the developed
classifier. Details on each of the three stagepaasented in the following subsections.

Pre-Processing: Network Training: Network Testing:
Feature Keys »| Classifier Structure »| Classifier Performance
Extraction Adjustment Evaluation

Source: Azzouz and Nandi (1996a)

Figure 3.1: Functional Blocks for AMR Development

3.1.1 Pre-Processing Stage

This stage deals with the extraction of the feakenys used in discriminating between the
four analog modulation schemes considered. In @onaatic modulation identification
study, finding the proper feature extraction kesygery important (Zadeét al, 2006). In
the development of the AAMR for this research wdtkee feature keys were used to
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discriminate between the four analog modulationessts of interest. The three key
extraction features were derived from the instagtas amplitude(t) and phase(t) of

the simulated signals.

The first feature extraction key usedys,,, which represents the maximum value of the

PSD of the normalized instantaneous amplitude ef dignal, or, simply put, as the
squared Fourier transform of the normalized sigmaplitude. It is defined as (Popoola
and van Olst, 2011b):

Vinax = maxw (3.1)

where N is the number of samples per segment agg(l) is the value of the normalized-

centered instantaneous amplitude of the signaine tnstantst = % (i=12--,N),

f,is the sampling frequency (Hz) araq1(i) is defined as:
a,(i)=a,(i)-1 (3.2)

and; a,(i)= (3.3)

where m, is the average value of the instantaneous ampliteidaluated over one

segment. It is defined as:

m, =3 af) 34

i=1

The feature g

max

) was used to measure the envelope variation ofmbeulated signal

and aids in the reliable classification of constanvelope signals from non-constant

envelope signals.
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The second feature extraction key usedrjs, which is the standard deviation of the

direct instantaneous phase of the of the simulsighl. It extracts information from the

instantaneous phase of the simulated sigmgl.is defined as (Popoola and van Olst,

2011b):

e S

a, (i)>a

whereg,, ( )s the value of the non-linear component of theéainteneous phase at time

instantst, Cis the number of the samplesgg, i ,(@da, is the threshold.

The third feature extraction key used is for meiaguthe spectrum symmetry around the
carrier frequency. This feature extraction key &sdxl on the spectral powers for the
lower and upper sidebands of the simulated sigrta. Key is defined as (Popoola and
van Olst, 2011b):

_ PL B Pu
) 8
where
fen fen
Po=Y X0 and R =D [X.(i+fe+D 3.7
i=1 =

where X, ()is the Fourier transform of the intercepted sigigél, +1)is the sample
number corresponding to the carrier frequericgnd f_, is defined as

_fN
cn f

S

f

1 (3.8)

Based on equations (3.1) — (3.8), the graphicalahofithe three feature extraction keys
obtained for the simulated analog modulated sigraisAWGN channel, are shown in
Figure 3.2(a) — (c).
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Figure 3.2: Graphical lllustration of y, .., 0, and P for Analog Modulated Signals
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The choice of,,,, 0, and P as feature keys for the development of the AAMR

ax 1
classifier for this research work is based on thgabaity of these extracted feature keys
to discriminate between the four analog modulasicimemes considered. Firstly,, was

chosen because it can discriminate between sighatshave direct phase information
and signal that has no direct phase informations,lttherefore, used to discriminate

between AM as a subset and (DSB, SSB and FM) as tendesubset. If t(adp)
represents the threshold valug,, value for AM that has no direct phase informatisn i
therefore expected to be less than threshold \Qa,!,ye:t(adp)). On the other hand, for the
other types of signals (DSB, SSB and FM) that Hdixect phase information by nature,
Azzouz and Nandi (1996a), they have théudp) values greater or equal to
(Jdpzt(adp)) . The g,, values for the four modulation schemes obtainenfithe

simulation result are presented in Figure 3.2(b).

Secondly, P was chosen because it can discrimipeti®@een signals that have unity
sidebands spectral power and those whose sidebanttatgmwer is less than one. As
shown in Figure 3.2(c), the choice of the ratio Based on its capability to discriminate
between (DSB and FM) with their sidebands spectral péegs than one as one subset,
and SSB as another subset, whose sideband spemirai pquals one. The accuracy of
the simulation result presented in Figure 3.2 ga)adnfirmation of its conformity with the

earlier result obtained in Guldermir and SengurP720

Thirdly, y....was chosen because of its capability to discrimihatisveen signals that

have amplitude information and signals that dohave amplitude information. Hence, it
was used to discriminate between DSB with amplituderin&tion as a subset and FM

without amplitude information as a second subsetcéai(ymax) represents the threshold
value, they, ., value for a FM signal without amplitude informatienlesser than the
threshold valudy, ., <t(y;..)), as shown in Figure 3.2(a). On the other hand, DSBiwhi

possesses amplitude information, hag g value greater or equal to the threshold value,
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(V. 2t(v.)). Hence,y,  was used to discriminate between DSB as one subset and

FM as another subset.

Analog Modulated Signal

YES

AM FM DSB SSB

Figure 3.3: Flowchart for the Developed AAMR

Based on these criteria, the algorithm used inrsgarch work to distinguish between
the four analog modulated signals considered isvehm Figure 3.3 in form of a
flowchart. The optimum feature keys threshol{g,.,), t(o,,) andt(P), in Figure 3.3
are automatically and adaptively chosen at eachoneaf the ANN (Azzouz and Nandi,
1996a). This is one of the advantages of the PRoaph employed in this research, as
opposed to the DT approach, where a suitable thrédboleach feature key has to be

selected.
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y max

p

Figure 3.4: The AAMR Architecture

3.1.2 Network Training Stage

This stage involves the actual development anchitrgiof the AAMR classifier. The
AAMR classifier was developed using an ANN. The Aldi¢hitecture that was used for
this classification problem is a MLP, which is médl to as a feed-forward
backpropagation network, while the training methaxed is the supervised learning
method, discussed in Section 2.12.2. The architectfithe developed classifier is shown
in Figure 3.4 having the statistical feature extdckeys discussed above as the input
data sets. The MLP consists of one input layer, bidelen or intermediate layer of
computational nodes or neurons and one output lafyeomputational neurons. All the

neurons are fully connected as shown in Figure 3.4.

Neurons at the input layer do not perform compatesj but only distribute the input
features to the computing neurons in the hidderrlajhe neurons in the hidden layer,
on the other hand, perform computations on thetifoun the input layer and pass their
results to the neurons in the output layer. Threarons are used at the input layer
corresponding to the number of input features, sswen neurons are used at the hidden
layer. The network has four neurons at the outayer corresponding to the number of
targets. The specifications for the developed AAM&Sssifier for this research work are

shown in Table 3.1.
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Table 3.1: Specifications for the Developed AAMR

Item Parameters Value

1. Type of neural network architecture | Feed-forward
2. No. of neurons in input layer 3

3. No. of neurons in hidden layer 7

4, No. of neurons in output layer 4

5. Coefficient of weight-decay 0.01

6. Activation function in hidden layer tanh
7. Activation function in output layer logistic
8. Maximum number of epochs 100

9. Performance function MSE
10. Learning algorithm SCG

During the training or learning process, input vestand corresponding target vectors
are used to train the network until it can clasdifie modulation schemes in an
appropriate way. Whenever the results of the outgutrons differ from the expected or
target value, errors are propagated in a backwaadner from the output layer to the
hidden layer. This backpropagation algorithm (BRAyolves two paths, namely the

forward and the backward path.
The forward path involves creating a feed-forwasdwork by initializing weight and
training the network. During this path, the iniizagld weights are fixed when the inputs

are propagated through the network layer by lagershown in Figure 3.4. The phase

ends with the error signédq) computation using the relationship:

e =t -y (3.9)

where t, is the target or desired response ioffh input andy, is the actual output

produced by the network in response toittieinput.
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The backward path involves a network update by fgodj the connection weights to

reduce the total error in the network output. Th@resignal (q) generated during the

forward path is propagated in a backward directtmough the network of Figure 3.4.
The backward error signal propagation causes arsgdgnt in network weights, so as to

minimize the error signal in a statistical sensagiSE (E,):

—Niz& ~y )} (3.10)

ip i=0

where N, is the total number of input.

A total of 2000 data elements, with three inputd &wur target outputs, were used in
developing the AAMR classifier for this researcheTprocedures followed to train the

developed AAMR are highlighted, as follows:

(1) Generated data, consists of input vectors ardet vectors, were imported

into a MATLAB environment from an excel spreadghee
(2) The loaded data were normalized and randonrhggo

3) The loaded data were partitioned into trainimglidation and testing data sets.
50% of the generated total data were used for #teark training. The training
data set was used to update the weights of theonletwhe training was done
until the MSE, which was used as the performanpetfan, was minimal. 25% of
the total data were used to validate that the ndétw@s able to generalize and
stop training before the network was over fittifidne last 25% of the total data
were used as a completely independent test datatesv the network

generalization; and

(4) The ANN classifier was created. A feed-forwardtwork with non-linearity
activation functions of tan-sigmoid (tanh) and kigi (log-sigmoid) were used in

the hidden and output layers respectively in otdeintroduce non-linearity into
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the network because without non-linearity, the rmekawill not be more powerful
than plain perceptrons. The MLP was trained udiegScaled Conjugate Gradient
(SCG), which has been shown to handle large-scalalgms effectively (Moller,
1993). As reported in Mohamaat al., (2010), SCG utilizes second order
information from the neural network, but has modesimory requirements with
high accuracy and speed due to inexpensive calonlabf the gradient
information. These findings about SCG were confoinme Section 3.3.3, where
SCG performance is compared with another trainitgporahm, Conjugate
Gradient (CONJGRAD). The CONJGRAD training algamthwas chosen
because it is also known to be a fast trainingritlgm with numerical efficiency

and very low memory requirement (Sharehal.,2009).

3.1.3 Network Testing Stage

After the development and training of the networkctassifier, its performance was
evaluated by using 25% of the total generated @ataest data. The performance
evaluation carried out was investigated on diffe@NR values of -5, 0, 5, 10, 15 and 20
dB. Table 3.2 lists the success recognition rateafiothe SNR values considered when
the developed AAMR was run for 100 cycles. The Itesuthe performance evaluation
of the developed AAMR shows that the classifier carrectly and accurately recognize

the four analog modulation schemes considered, afithaverage success rate above
99.80%.

Table 3.2: Developed AAMR Success Recognition Rate

Modulation Percentage of success recognition rate at diff@BiR value
scheme -5dB 0dB 5 dB 10 dB 15 dB 20 dB
AM 99.84 99.89 99.93 99.97 99.98 99.99
DSB 99.87 99.92 99.95 99.97 99.99 99.99
SSB 99.93 99.96 99.97 99.98 99.99 99.98
FM 99.90 99.95 99.97 99.97 99.98 99.99
Overall

success rate | 99.89 99.93 | 99.96 99.97 99.99 99.99
(%)
Operational 1.14 1.10 1.11 1.11 1.10 1.11
time taken
(milliseconds)

Average operational time = 1.11 milliseconds
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3.2 Digital Classifier Development

Like the AAMR classifier discussed in section 3Hie development of the DAMR for
this research work follows the same procedures.mégsage signal was first modulated
onto the baseband signal using MATLAB code. Eighttlee best known digital
modulation schemes were classified: 2ASK, 4ASK, RFBPSK, QPSK, OFDM, 16-
QAM and 64-QAM. The three stages involve in depeig the DAMR for this research

work are discussed in detail in the following sudtigms.

3.2.1 Pre-Processing Stage

Feature keys extraction was carrier out, as was dhrring the development of the
AAMR, described in Section 3.1.1. The feature kexaction was carried out in order
to obtain input feature keys for the DAMR classifiEeature keys that compute a small
number of salient features from the raw modulaigdads were extracted. The choice of
the feature keys is a trade-off between minimizimg number of features to reduce the
ANN input size, as well as the computational comppjeand including all necessary
features for the reliable recognition of the digmaodulation schemes. Some previous
studies in Arulampalanet al, (1999), Azzouz and Nandi, (1996a) have explorad t
trade-off.

A set of seven feature keys are used in develogiagligital classifier for this research
work. As for the analog classifier, the seven feaextracted keys are extracted from the

instantaneous amplituda(t), and the instantaneous phag) of the simulated signal.

Two out of the seven feature extraction keygs, ando, , had already been described in

p?
section 3.1.1. Their mathematical expressions arengby equations (3.1) and (3.5).
Equations (3.1), (3.5) and (3.11) — (3.15) are usatkscribe and define the seven feature
extracted keys used for the development of the DAVIRese feature extracted keys have
earlier been employed in Azzouz and Nandi, (1998a&).et al (2010), Dobreet al
(2005) and Huangt al. (2008), but none of these authors combined tlye &6 is done in
this research work. The sources of each of theawire extracted keys employed are

presented in tabular form in Table 3.3.

90



Table 3.3: DAMR Feature Extraction Keys Sources

Previous Study Adapted Feature Extracted Key
An et al., (2010) Voo
Dobre et al., (2005) B
Huanget al (2008) X
Azzouz and Nandi, (1996a) Vinaxs Tapr O ANA T,

The mathematical expressions and function desongtiof the seven keys used are

provided, as follows:

The first feature extraction key employed for tlevelopment of the DAMR classifier is

V,, , Which is the combined or mixed order moments. eBasn the Joint Power
Estimation and Modulation Classification (JPEMC)galthm, v,, is defined

mathematically in Aret al (2010) as:

M) ) melS S <4y )2 o1
TOMLO) E)) (s als )
wherem,, = 42 (w)_ 2k, andk,, = Ms(s) _ 2k, (3)12

M2 (u)

The theoretical values &,, for 16-QAM, 64-QAM and OFDM according to Wang and

Ge (2005) are 1.312, 1.378 and 2.0 respectivelys €ktracted feature was used to
discriminate between OFDM, where information isrieat in more than one channel and
other modulation schemes, where the informatiozaisied in only one channel. Hence,

the feature keyy,,, was used to distinguish between OFDM as a sufyskthe rest of

the modulation schemes considered as another subset
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The second feature extraction key employed fordielopment of the DAMR is signal

power key denoted a$§ This key was used to discriminate between a sigviti

complex and real signals components. Mathematic#llys defined by Dobrest al
(2005) as:

ﬁiﬁi— (3.13)

wherer,(t) andr, (t) are the quadrature components, while indeixesid Qstand for

in-phase and quadrature component respectivelys Bixitracted key was used to
discriminate between 16-QAM and 64-QAM as a subsel the rest of the modulation
schemes as another subset. Although, by natureK@R® has in-phase and quadrature

components, but because it§ value is lower that the threshold valug), it therefore

falls among the rest of the modulation schemes.

The third feature extraction key used is the mesdnevof the amplitude designatedxas
It is defined mathematically by Huaegal (2008) as:

X=%ZA (314

where A, is the instantaneous amplitude. This key was tséiscriminate between 16-

QAM as a subset and 64-QAM as the other subset.

The fourth feature extraction key employed for tievelopment of the DAMR for this
research work ig/...,, which is already described Section 3.1.1 for AAMRI defined
by the equation (3.1). It is used to distinguishween signals that have amplitude
information as a subset and those without amplitnflgmation as another subset. In this
research worky,..was used to distinguish 2FSK without amplitude infation as a
subset from 2ASK, 4ASK, BPSK and QPSK with amplgudformation as the second

subset. Since 2FSK has no amplitude informatisnyjL, value is less than the threshold
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value,t(ymax), while other signals with amplitude informationvkeay, ., values greater
than the threshold valué(y, . ). The BPSK and QPSK have amplitude information

because the band limitation imposes amplitude mé&iion on them at the transitions
between successive symbols (Azzouz and Nandi, }996a

The fifth feature key used in developing of the DRMs o, , which is the standard

ap’
deviation of the absolute value of the non-lineanponent of the instantaneous phase. It

is defined as:

Ou =J%{ an&(i)j—(é Z|<oNL(i)|j2 (315

a, (i)>a, a, (i)>a,

whereg,, ( )s the value of the non-linear component of theéansneous phase at time

instantst :% , Cis the number of the samplesgr, i ,(@nda, is the threshold.

This fifth key was used to distinguish between algnthat have no absolute phase
information and those that have absolute phasenraton. It is thus used to distinguish
between 2ASK, 4ASK and BPSK as a subset and QPSKeasecond subset. By their
nature, 2ASK and 4ASK have no absolute phase irdbam, while, according to
(Azzouz and Nandi, 1996a) BPSK also has no abspluése information. Hence, their
o,, values are less thaI(Uap) , Which is the threshold value. On the other h&fplESK

has absolute information by nature. This makegifsvalue greater thétl(Uap). So,0,,

was used to distinguish between 2ASK, 4ASK and BRSK subset and QPSK as the
second subset.

The sixth feature key used dg,,, which is also used in developing AAMR in Section

3.1.1 and it is defined by the equation (3.5)slused to distinguish between signals that
have direct phase information and those withouealiphase information. 2ASK and

4ASK have no direct phase information, while BPSKtlee other hand has direct phase
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information. Hence, whiler,, values for both 2ASK and 4ASK are less th&mdp),
which is the threshold value, thg,,value for BPSK in contrast is greater than or egoal
the threshold value. Sar,, was used to distinguish between 2ASK and 4ASK as a

subset and BPSK as the second subset.

The seventh feature extraction key used in devetpphe DAMR iso,,. It is the

standard deviation of the absolute value of themadized instantaneous amplitude of the

simulated signal. It is defined as:

(X L) (18 )
Oaa =17 Zacn(l) - _Z|acn(lx (316)
N = N =
o,, was used to distinguish between 2ASK as a sulmge#ASK as the second subset.

The discrimination between the two signals is pmesibecause the value of the
normalized instantaneous amplitude of 2ASK is camistso it has no absolute amplitude

information. This makes,, value for 2ASK to be less thafo,, ), being the threshold

value. On the other hand, the 4ASK signal has absaind direct amplitude information

by nature, which makes is,, value greater than the threshold valug,,). So, o, is

used to distinguish between 2ASK and 4ASK.

Detailed graphical plots of these feature extrakiys against SNR values are shown in
Figure 3.5, while the algorithm used to discrimenbetween the eight digital modulated
signals is shown in Figure 3.6. The optimum feakags thresholds(3), t(y,..), t(X),

t(0..), tloy,), tlo,,) andt(v,), shown in Figure 3.6, are automatically and adai

chosen at each neuron of the ANN, which is onéhefadvantages of PR approach over
DT approach where suitable threshold for each fedtay has to be chosen (Azzouz and
Nandi, 1996a).
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3.2.2 Network Training Stage

As in the development of the AAMR in Section 3.1tl#s stage discussed the training
and development of the developed DAMR classifiehe TDAMR classifier was
developed using the ANN. A MLP or feed-forward bapagation network was also
employed in developing the DAMR. The architecturéhe developed DAMR classifier
is shown in Figure 3.7, as having the statistiedtdre extracted keys discussed in

Section 3.2.1 as the input data sets.

The MLP consists of one input layer, one hiddemtermediate layer of computational
nodes or neurons and one output layer of compuiatineurons. All the neurons are
fully connected, as shown in Figure 3.7. Seven oreurare used at the input layer
corresponding to the number of input features awrs neurons are used at the hidden
layer. The network has eight neurons at the ougyer corresponding to the number of
targets. The specifications for the ANN employed tms research work for the

classification of the digital modulation schemessidered are shown in Table 3.4.

Table 3.4: Specifications for the Developed DAMR

Iltem | Parameters Value

1. Type of neural network architecture Feed-forward
2. No. of neurons in input layer 7

3. No. of neurons in hidden layer 7

4. No. of neurons in output layer 8

5. Coefficient of weight-decay 0.01

6. Activation function in hidden layer tanh
7. Activation function in output layer logistic
8. Maximum number of epochs 100

9. Performance function MSE
10. Learning algorithm SCG

The training of the developed DAMR for this reséarwork followed the same
procedures described for the developed AAMR in i8ecB.1.2. Input vectors and

corresponding target vectors are used to trainnétgvork until it could classify the
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modulation schemes in appropriate way. Wheneverréselts of the output neurons
differ from the expected or target value, errore propagated in a backward manner
from the output layer to the hidden layer. This BiPolves two paths as described in
Section 3.1.2. A total of 3500 data elements wéhes inputs vectors and eight target

outputs vectors were used.

3.2.3 Network Testing Stage

After the development and training of the classjfies performance was evaluated by
using 25% of the total generated data as the &¢atset. The performance evaluation was
investigated using six different SNR values ofG55, 10 15 and 20 dB. Table 3.5 lists
the success recognition rate for all the SNR valcessidered when the developed
DAMR was run for 100 cycles. The result of the pariance evaluation of the
developed DAMR shows that the classifier can calyeand accurately recognize the
eight digital modulation schemes considered, wittagerage success rate above 99.60%
for signals with SNR values from 0 dB upward and\e98.0% for signal at — 5 dB
SNR value without a pre-knowledge of the signalapeeters.

Table 3.5: Developed DAMR Success Recognition Rate

Modulation Percentage of success recognition at different SAl&
scheme -5dB 0dB 5 dB 10 dB 15 dB 20 dB
2ASK 98.43 99.29 99.57 99.91 99.94 99.98
4ASK 95.40 99.55 99.76 99.89 99.96 99.99
2FSK 99.79 99.87 99.90 99.92 99.95 99.97
BPSK 99.91 99.94 99.95 99.9Y 99.99 99.99
QPSK 99.35 99.89 99.92 99.96 99.98 99.99
OFDM 99.71 99.82 99.87 99.94 99.97 99.99
16QAM 98.95 99.64 99.79 99.83 99.92 99.98
64QAM 97.19 99.29 99.57 99.62 99.84 99.95
Overall
success rate| 98.59 99.66 99.79 99.88 99.94 99.98
(%)
Operational
time taken 0.50 0.49 0.49 0.53 0.50 0.54
(milliseconds)
Average operational time = 0.51 ms
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3.3  Combined Analog and Digital Classifier Developent

The development of the combined ADAMR for this es@ work follows the same steps
observed in developing both AAMR and DAMR, respealiy described in sections 3.1
and 3.2. The development of only the DAMR would éndépeen sufficient alone, because
of the increasing usage of digital modulation sckern radio technologies, such as
wireless communication nowadays. However, becans¢éog modulation schemes are
still in use in most developing countries, the gtadso includes the developing of the
AAMR. The ADAMR classifier presented in this sectios included because in a
cognitive radio environment, it is unexpected @& tdognitive device or secondary user to
know in advance the features of the primary useigmal, including its modulation
scheme, whether it is analog modulated or digitailydulated. Therefore, the desire to
have a universal AMR that can operate in a blinghdove radio environment underlines
the development of the combined ADAMR presenteithig Section.

As in the development of both AAMR and DAMR clagsi$ discussed in Sections 3.1
and 3.2, the development of the ADAMR for the stddijows the three functional

blocks for AMR development, as shown in Figure 3Thirteen target outputs comprise
of twelve-combined analog and digital modulatiornesoes and un-modulated noise
signal were classified. The un-modulated noisammodulation was added only to this
ADAMR classifier to serve as control experiment,ethrepresents absence of a primary
radio signal in a cognitive radio environment. ®dalition of the un-modulated noise to
only this classifier is because of the peculianfythe classifier as the only one later
incorporated into the developed CRE for this the3ise three stages involved, as

illustrated in Figure 3.1, are observed as disaigséhe following subsections.

3.3.1 Pre-Processing Stage

The feature keys extraction process was carrierasutione for both AAMR and DAMR.
A set of eight feature keys were used in develophy combined analog and digital

classifier. The eight feature keys were derivednfrthe instantaneous amplitud(l),

and the instantaneous phagle) of the simulated signal. The eight feature exinact
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keys employed arey,.,, 04,, P,Vy, B, mean X,o,, ando,, which have already

been described in Sections 3.1.1 and 3.2.1. Thathematical expressions are given by
equations (3.1), (3.5), (3.6), (3.11), (3.13), 43,X3.15) and (3.16) respectively. Detailed
graphical plots of these extracted feature keymag&NR are shown in Figure 3.8.
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3.3.2 Network Training Stage

As in the development of both AAMR and DAMR, thtage involves the training of the
ADAMR classifier. The ADAMR classifier was develapeising an ANN. A MLP or
feed-forward backpropagation network was employedeveloping the ADAMR for this
research work. The developed ADAMR was also traingithg the supervised learning

method.

The architecture of the developed ADAMR classiigeshown in Figure 3.9 as having the
statistical feature extracted keys plotted in Feg3t8(a)-(h) as the inputs. The MLP
consists of one input layer, one hidden or interiatedayer of computational nodes or
neurons and one output layer of computational meurd\ll the neurons are fully
connected, as presented in Figure 3.9. Eight nsumare used at the input layer
corresponding to the number of input features, fiftelen neurons were used at the
hidden layer. The network has thirteen neurond@toutput layer corresponding to the
number of targets, thus 12 combined analog andatlignodulation schemes and the
noise signal or un-modulated signal. The noise a&igs included to serve as control
experiment for the absence of a primary radio ighiae noise signal or un-modulated
signal is, as mentioned above, included in only thassifier because it is the one further
used in developing the CRE for the research wohke 3pecifications for the developed
ADAMR classifier are shown in Table 3.6.
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Table 3.6: Specifications for the Developed ADAMR

Item Parameters Value

1. Type of neural network architecture¢ Feed-forward
2. No. of neurons in input layer 8

3. No. of neurons in hidden layer 15

4. No. of neurons in output layer 13

5. Coefficient of weight-decay 0.01

6. Activation function in hidden layer tanh

7. Activation function in output layer logistic

8. Maximum number of epochs 150

9. Performance function MSE

10. Learning algorithm SCG and CONJGRAD

In the training of the developed ADAMR for this easch work, input vectors and
corresponding target vectors are used to trainnitevork until it could classify the
modulated signals and the noise signal in apprtgpmeanner. Whenever the results of the
output neurons differ from the expected or targelu®, errors are propagated in a
backward manner from the output layer to the hiddgar, as described in Section 3.1.2.
A total of 6500 data elements, with eight featurpuits vector and nine target outputs
vectors were used. The procedures followed in itvgirthe developed ADAMR are
exactly the training procedure described in Sec3idn2 for the AAMR.

As a result of the sensitivity of this particuldassifier, it was trained using two different
types of training algorithms. The first algorithrsed is the normal SCG used for the
other two classifiers. The second and new traimiggrithm used to train the classifier is
CONJGRAD. The essences of using the two trainiggrihms for only this classifier,
i.e. the developed ADAMR, were two-fold. The firsason is because the classifier was
the only one used later in developing the CRE Her thesis. The second reason was to
determine the effect of different training algonith on the classifier's performance.
Hence, the use of the two training algorithms piledi information on the appropriate
training algorithms for the thesis. It also helpadeliminating the negative effect the
wrong choice of training algorithm might have calise the classifier’'s performance and
the developed CRE. The choice of the approptraiaing algorithm was achieved by
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comparing the two training algorithms’ performangegerms of success detection rate
and operational time taken. The obtained succetsctiten rate and operational time

taken results were presented in Section 3.3.3.

3.3.3 Network Testing Stage

After the development and training of the developEAMR classifier, its performance
was evaluated using 25% of the total generated alata test data set. The performance
evaluation was investigated on different SNR valoiesd, 0, 5, 10, 15 and 20 dB, using
the SCG and the CONJGRAD training algorithms. Tiecsess recognition or detection
rate and the operational time taken when the coesbADAMR was run for 150 cycles,
using the two training algorithms, SCG and CONJGRARN the same test input data
sets are presented in Table 3.7 and Table 3.8ctagly.

Table 3.7: Developed Combined ADAMR Success Recogan Rate when Trained

with SCG
Modulation Performance of success recognition rate at diffe8&R value using 15 hidden
scheme neurons and 150 training cycles on additive whitei€sian noise (AWGN)
channel
-5dB 0dB 5dB 10dB 15 dB 20 dB
2ASK 97.55 99.46 99.66 99.84 99.91 99.97
4ASK 96.79 97.77 98.68 99.47 99.94 99.98
2FSK 99.22 99.65 99.79 99.84 99.97 99.99
BPSK 99.85 99.89 99.93 99.97 99.98 99.99
QPSK 99.54 99.64 99.88 99.92 99.97 99.98
AM 99.91 99.93 99.94 99.96 99.98 100.00
DSB 99.84 99.87 99.90 99.95 99.97 99.9§
SSB 99.91 99.95 99.97 99.98 99.99 99.99
FM 99.93 99.95 99.96 99.97 99.99 99.99
OFDM 99.81 99.89 99.94 99.96 99.97 99.98
16QAM 98.89 99.15 99.88 99.91 99.95 99.99
640QAM 98.75 98.97 99.75 99.89 99.93 99.97
Overall
success rate | 99.17 99.51 99.77 99.89 99.96 99.98
(%)
Absence of
modulation 92.92 99.93 99.95 99.96 99.98 99.99
scheme
Operational
time taken 4.15 4.04 4.07 4.06 4.04 4.08
(milliseconds)
Average operational time = 4.07 ms
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Table 3.8: Developed Combined ADAMR Success Recogon Rate when Trained
with CONJGRAD

Modulation Performance of success recognition rate at diffe8&R value using 15 hidden
scheme neurons and 150 training cycles on additive whitei€sian noise (AWGN)
channel
-5dB 0dB 5dB 10dB 15 dB 20 dB
2ASK 87.10 99.91 99.94 99.97 99.99 99.99
4ASK 82.21 99.87 99.91 99.96 99.98 99.99
2FSK 99.56 99.88 99.93 99.95 99.98 99.99
BPSK 99.92 99.95 99.96 99.97 99.99 100.00
QPSK 99.42 99.76 99.84 99.96 99.98 99.99
AM 99.57 99.89 99.94 99.97 99.98 99.99
DSB 97.87 99.82 99.93 99.95 99.97 99.98
SSB 99.90 99.94 99.95 99.97 99.99 100.00
FM 99.93 99.95 99.97 99.98 99.99 99.99
OFDM 99.48 99.91 99.94 99.96 99.98 99.98
16QAM 98.46 99.87 99.84 99.92 99.97 99.98
64QAM 93.66 98.91 99.65 99.87 99.94 99.99
Overall
success rate | 96.42 99.81 99.90 99.95 99.98 99.99
(%)
Absence of
modulation 99.92 99.96 99.97 99.99 100.00 100.00
scheme
Operational
time taken 10.17 10.00 10.49 11.03 10.18 11.97
(milliseconds)
Average operational time = 10.64 ms

The results of the performance evaluation of theslibped, combined ADAMR with the
two training algorithms shows that the classifieuld correctly and accurately recognize
the twelve combined analog and digital modulationesnes considered with an average
success rate above 99.0% for signals with SNR sdieen 0 dB upward without a pre-
knowledge of the signals parameters. However, fignas at — 5 dB SNR, the
performance varies slightly, where SCG outperfo@@NJGRAD. The results show a
progressive increase in the success recognititimeaSNR value increases.

The developed, combined ADAMR is also able to detbe noise signal introduced,
which acts as the control experiment for absence mbdulation scheme at over 99.90%
success rate using the two training algorithms. Sigeificant difference between the two
training algorithms used is their operational titaken. The results show that SCG acts
faster than CONJGRAD, with average operational tieken of about 4.0 milliseconds,
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while that of CONJGRAD is above 10.0 millisecondsIhus, the developed ADAMR
classifier, using SCG training algorithm, is usedlevelopment of CRE for this research
work, because speed in detecting a primary radioasiis important in a cognitive radio

environment.

Furthermore, the pictorial classification outputloé developed ADAMR, irrespective of
the training algorithm employed, illustrating thiagsifier accuracy is shown in Figure
3.10. The figure shows the typical output of thesslfier when tested using test data sets
that are different from the training data sets. Tésult shows that not only does the
classifier perfectly recognize the test data skts, also does without any error. This
shows that the developed ADAMR classifier is capaiflrecognizing data sets that were
different from those used to train it. This indesthow the classifier behaves when

incorporated into the developed CRE.
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Figure 3.10: Typical Network Output Result of the Beveloped ADAMR Classifier
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The “t( ) " used as a function to determine the thresholdevéor each of the feature

keys is an optimum feature extraction key valus.vitlue,t(y,..), tloy,), t(P), t(8),
t(X), t(o,.), tlo,,), andt(v,), for each of the feature extracted keys is autimaiay

and adaptively chosen at each neuron of the ANNzgAz and Nandi, 1996a). This

automatic determination oft(‘ ) " is one of the advantages of PR approach employed

developing the three classifiers for this thesssppposed to the DT approach where a

suitable threshold for each feature extracted kesytb be selected.

3.4 Summary

The focus of this chapter is on the developmentABfR, which can automatically
recognize all forms of modulation schemes. The whrapfocus is primarily in meeting
one of the objectives of this research work. Iffilfilg this objective, three different
automatic modulation classifiers were developedieig AAMR, DAMR and ADAMR.
The m-files for the development and the traininghe three classifiers are presented in
Appendix A. Details on their developments were enéasd in Section 3.1, Section 3.2

and Section 3.3 respectively.

The performance evaluation studies carried outhmnthree classifiers show that the
initial objective of developing an automatic modida classifier or recognizer that can
automatically classify or recognize modulation sobe without any pre-knowledge
about the modulation scheme was achieved. In additn this chapter, the two different
training algorithms used to train the combined ADRMspecially shows that different
training algorithms have different effects on ANNrformance. The results obtained
using the SCG and CONJGRAD training algorithms shinat the SCG training

algorithm is faster than the CONJGRAD training aidoon. Similarly, the operational

time taken using the SCG training algorithm reveiag the developed DAMR classifier
is the fastest, followed directly by AAMR and lasthy ADAMR, with an average

operational time taken of 0.51 milliseconds, 1.lilliseconds and 4.07 milliseconds
respectively. These calculated average operatiom& taken show that the developed
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DAMR classifier executes almost twice as fast asdéveloped AAMR classifier. This is
as a result of digital modulation schemes’ inheggeater noise immunity and robustness
to channel impairment compared with analog modutagchemes. Similarly, the high
operational time experienced in the combined ADAMRSs a result of the inherent poor
noise immunity the analog modulated signal incoapemt into the combined ADAMR

introduced to the combined classifier.

However, the only observed limitation that was canmto the three developed

classifiers is their incorrect prediction of theme(s) of other modulation scheme(s) that
were not included in their designed. Although wiies three developed classifiers were
tested using modulation scheme(s) that were nduded in their respective designs,
each of them was able to detect the presence otilatomh scheme but the modulation
name-type given to such modulation scheme(s) weappropriate. This is because
respective classifiers could only correlate thosedafation scheme(s) to one of the
modulation schemes involved in their designs. Hawemone of the three classifiers was
unable to detect those modulation scheme(s). Likevwthe combined ADAMR classifier,

which un-modulated noise was included in its desdjd not classify such modulation

scheme(s) as un-modulated signal. This shows higathree developed classifiers could
reliably detect all forms of modulation schemesethler included in their designs or not,
presented to them except that they could not diesd “strange modulation scheme(s)”

the appropriate modulation name-type.
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CHAPTER 4

40 COOPERATIVE SPECTRUM SENSING OPTIMIZATION

Cognitive radio technology introduces the ideapdcrum sharing between the primary
or licensed owner of the spectrum, and the unleer® secondary user. The aim is to
overcome the current underutilization of licenspdctrum. To deploy a CR technology
application or DSA, reliable detection of the lised owner signal, so as to avoid
interference between the primary and secondarysuseust be guaranteed. This
condition makes spectrum sensing to detect theepoesof the primary user, as well as
identifying the available spectrum holes, a priatipequirement in a cognitive radio

environment or network.

The cooperative spectrum sensing technique hasitiesfified as an effective spectrum
sensing technique, as a result of its spatial dityescheme. Despite its effectiveness, the
cooperative spectrum sensing technique can in@moperative overhead, such as extra
sensing time, delay, energy and operations dewuotedllaborative sensing (Popoola and
van Olst 2011c). These cooperative overheads aasw@ result of an increasing traffic
burden from the series of reports that are neeoldxt tsent over the channel when large

numbers of secondary users collaborate.

In order to overcome this problem, this chapter leaspzes the development of an
effective cooperative spectrum sensing algorithat ttan prevent the recurrence of a
cooperative overhead. This objective was achievgddéveloping a sensing time
algorithm that can predict spectrum sensing dumatidhe detailed information on the

development and performance of the algorithm isqmeed in this chapter.
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4.1  Cooperative Sensing Time Algorithm Development

In order to optimize the usage of the radio spectrine CR or secondary user should be
able to detect the presence of the primary uségisakwithin a very short time frame.
Though spending more time in spectrum sensing mhEeCtrum sensing accuracy, its
excessive duration can cause secondary user irgecke to a primary user, as well as
hinder immediate vacation of the secondary usetaiges where the primary user re-
appears when the secondary user is transmittingoré&eent this scenario, an algorithm
was employed in the cooperative spectrum sensiolginosuch a way that the primary
user’s signal can be detected within a short tiereog.

In developing the sensing time algorithm, the exgbdotal time taken to reliably sense
the spectrum was divided into two parts. The fpatt is the time required to quickly

sweep over the whole system’s bandwidtgygBwhich is called rough resolution sensing
time, Trrs During this period, the CR user is expected @nsior possible frequency

bands or channels with less probability of an &pximary user signal. During the rough
resolution sensing, the cooperative sensors;CR as shown in Figure 4.1, are to detect
the presence of any form of modulation scheme ah ddock or channel that makes up

the Bsys, as shown in Figure 4.2.

The second part is the fine resolution sensing .tithes the time required for the
cooperative sensors, G®Rs, to thoroughly scan the detected idle frequenaydbeor
blocks observed during the rough resolution senpiogess. At this period, the system
bandwidth must be processed in smaller blockshass in Figure 4.2, each having a
smaller bandwidth, Bk. The time taken for carrying out fine resolutioensing is

denoted by frs
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Figure 4.1: Centralized Cooperative Sensing
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Figure 4.2: Channel Model

In Figure 4.1, if M numbers of cooperative sensmrsecondary users are cooperating
together to sense the spectrum, the total numbeyugfh blocks that must be sensed per

secondary user is expressed as:

B
N =_—svs 4.1
= VB, (4.1)

where B is the number of channel or blocks constitutirgibugh sensing bandwidth.

After the completion of the rough scanning of tiire system bandwidth, the smaller

bandwidth, Bk, will be processed or scanned at a fine resolufrequency, kes

During the fine resolution sensing, all the M co@piee sensors or secondary users are

to down-convert the same frequencies and use anté-fpfocess the singlesk being
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considered. According to Neihaet al, (2007), an N fast Fourier transform, which
converts time-domain signal or continuous signatlistrete frequency-domain data or
signal, is required to set up a fine sensing badtwiB:s, as well as the minimum

sensing fine frequency resolutiorkgs Apart from the time-domain to frequency-domain
conversion of the signal, the other usefulnesshef N fast Fourier transform is to
improve the signal resolution, as increase in Nroups the signal resolution. Therefore,
the fine sensing bandwidth8 set by an N fast Fourier transform at a minimune f

sensing frequency resolutiomnzds is thus given as:

BFS =N I:RES (4 2)

As shown in Figure 4.2, the same way the overatesy bandwidth is divided into
frequency bands or blocks of rough sensing bantw{Bks), the entire fine sensing
bandwidth (B k) also was divided into frequency blocks of finesag bandwidth (Bs)
where Bsis a multiple integer of Bs given as:

Brs = 0B (4.3)

wherea = 1234,--- ,is the number of fine frequency blocks from a totépck.

Now substituting (4.2) and (4.3) in (4.1), the n@nbf rough sensing blocks that must
be sensed by each cooperative sensor or cogratiire user is given as:

Ny =— 5% (4.4)
aMNFgg

As reported in Neiharet al, (2007) and Zamat and Nataarajan (2009), thé not@ber
of real additions and multiplications that neegbésform a power-of-two N-point FFT in

a practical implementation is given as:

4Nlog,(N)-6N +8 (4.5)
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The essence of performing a power-of-two N-poinT k- to reduce the computational
complexity of the algorithm. Hence, for optimum nimg speed of the algorithm, the

FFT need the data size to be a power of two, cadldik-2 N-point FFT, which reduces
the signal or data multiplications %(logz(N)) and the signal additions (log,(N)).
Therefore, if the operating frequency of each CBrus cooperative sensor igd- the

total time required to perform rough resolutionseg of the entire system bandwidth,

Bsys, is given as:

B N N N
T = SYs 4— loa| — |- — |+8 4.6
aMNFRESFci ool } o

When a fine bandwidth of sizeB_, has been detected, the fine resolution sensitig wi

then take place using N points of FFT. Thus, thialtduration to perform a fine

resolution sensing fat frequency blocks is given as:

Toos = £ [410g,(N) - 6(N) +¢] 4.7)

CR

Therefore, the total sensing times, To perform the overall spectrum sensing by al th
cooperative sensors or secondary users collabgredgether is simply the sum of (4.6)
and (4.7), which is:

B N N N a
T. = SYs 4—log,| — |-6 — |+8|+—|4Nlog,(N)-6N +8 4.8
= e A on |6 |8+ g (n)-en el 4

Equation (4.8) is therefore used to develop thepecative spectrum sensing duration
from which various system level trades-offs werasidered and their effects upog dre
examined. The results obtained are used in predithie possible optimization strategies

for maximizing the cooperative gain without incagia cooperative overhead.
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4.2  Cooperative Spectrum Sensing Optimization

A computational implementation of the proposed sgnsme algorithm was developed.
The computational algorithm was tested with a sggbandwidth, Bys, frequency of 2.5
GHz, which is divided into rough sub-bands bandwidks, of 25 MHz. The Rs is
further sub-divided into 2.5 MHz fine bandwidthzBfrequency. The FFT size (N) is
chosen as 32. The other fixed parameter use@¢dsMhich equates to 100 kHz, while
various values ofa, M and kes are used to evaluate the performance of the
computational algorithm developed in achieving ebgective of this research work. The
value of cgr was fixed at 100 kHz because the lowest frequéranyd, Table 5.1-5.4, of
the four wireless services considered is in thexjfiency range. The summary of the
simulation parameters for analyzing the develogestsum sensing duration algorithm’s
performance evaluation is shown in Table 4.1. Imetlgping the algorithm, location of
the terminals as well as their spatial ranges aparé assumed to be negligible because

of the space constraint of the laboratory setup.

Table 4:1: The Simulation Parameters for the Develged Spectrum Sensing Time

Algorithm
Parameter Value
Operating Frequency of the Systeny (8 0-25GHz
Rough Sub-bands Bandwidth{ 25 MHz
Fine Sub-bands Bandwidth &) 2.5 MHz
CR User or Cooperative Sensor Operating 100 kHz
Frequency (Er)
FFT Size (N) 32
SNR Range -5dBto 30 dB
Channel Condition AWGN
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Equation (4.8) is used to compare the sensing toeejcted as d for two or more

cognitive radios performing cooperative sensindgitégues with a single cognitive radio
performing spectrum sensing individually. Variousgtical trade-offs are explored for
achieving optimal cooperative gain with minimal sieg time, such as the number of
cognitive radios required in cooperative sensimgl their impact on the number of sub-
bands in Rs, as well as the appropriate rough resolution baditwfrequency settings.

The numerical results obtained are presented iphgzal form and discussed in the

following sub-sections.

4.2.1 Number of Cognitive Radios Collaborating

The parameter in equation (4.8), with its impacspactrum sensing optimization, which
was first considered, is the number of cognitivdigar cooperative sensors, M, that can
collaborate together to achieve minimal sensing twith optimal cooperative gain, and
without incurring a cooperative overhead. From é&qua(4.8), it is observed thatsTs
inversely proportional to M. Therefore, theoretigalit is possible for as many
cooperative sensors as possible to collaboratehegén sensing the spectrum without
incurring a cooperative overhead. However, in &yral sense, increasing the number of
cognitive radios or cooperative sensors withoutioawvill cause a substantial penalty in
power consumption due to duplication of transcentains. In addition, a large spatial
distance will be required to ensure that the reamkisignals between the cognitive radios
are uncorrelated. The impractical nature of thigdadistance in the cognitive radio
environment, as well as the power consumption reduiplaces a premium on the

number of cognitive radios that can be used.

In order to maintain a balance between distancgsined, the power consumption, the
system performance and effective sensing time,ifspgaiumbers of cognitive radios
need to collaborate together in spectrum sensingndfical results obtained from the
simulation carried out show that a maximum of faagnitive radios or cooperative
sensors are ideal to collaborate. This can beyedsduced from Figure 4.3, which shows
a plot of Ts against a number of cognitive radios M atd= 10 kHz and fixed values of

Bsvs Brs Brs, N and kg stated above.
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From Figure 4.3, it is observed that the sensinet(Ts) decreases with increasing
number of cognitive radios. However, as the nundfecognitive radios collaborating
becomes four, a point of diminishing returns ischesl. Hence, after M = 4, an increase
in the number of cognitive radios is not justifigiden the small decrease in sensing time
achieved. Based on this observation, this reseaaork established that a maximum of
four cognitive radios users are ideal for optimabmgeration gain in a cognitive radio

environment in order to avoid incurring cooperamwerhead.

: s s r -
1 =2 =3 1 = =] F
rMumber of Cognitive Radio

e
@

10

Figure 4.3: Plot of Sensing Time against Number dafognitive Radios

Careful observation of Figure 4.3 also shows tlectffeness of cooperative spectrum
sensing techniques over non-cooperative spectrunsirgge techniques. As shown in the
figure, while it takes one cognitive radio sensd Billiseconds to sense the spectrum
alone, it takes two cognitive radio sensors coltabog together about 0.7 milliseconds

to sense the same portion of the spectrum.

4.2.2 Effect of Fine Frequency Sensing Resolutiorefgction

The second parameter, as in equation (4.8), vatkffect on cooperative gain which was
considered, is fine frequency sensing resolutiegdF Fresis the frequency required to
process the smaller bandwidth denoted bykBin Figure 4.2, after the completion of the
rough scanning of the entire system’s bandwidtfysBLike the number of cognitive
radios, Ikes is inversely proportional to the sensing timeg. Hence, a theoretical
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assumption that a high value afds will improve the cooperative gain without incuigin

cooperative overhead is impracticable, as showsgare 4.4.

From Figure 4.4, it is observed that the decreases with increase in fine frequency
sensing resolution until 60 kHz, when a point ahulishing returns is reached. Hence,
after this frequency, observations show that amresse in fine frequency sensing
resolution does not justify the small decreaseeimssg time. This shows that for optimal
cooperative gain, an appropriate fine frequencgisgresolution needs to be determined,

SO as not to incur a cooperative overhead.

o165
-

enzing Duration (ms)
a

oo

oO.0s

10 =20 =0 40 S0 =1m]} SO =0 =20 100
Fine Freguency Sensing Resaolution (kH=)

Figure 4.4: Plot of Sensing Time against Fine Freaguncy Sensing Resolution

4.2.3 Impact of Effect ofa value Selection

The third and last parameter in equation (4.8)hwtg impact which was also considered
is a, or the number of fine frequency blocks in a rodick. Considering Figure 4.5,
which shows the plot of sensing time against thelmer of cognitive radios at different
values ofa, it is noted that for a small number of cognitraglios, for example M = 2, a
large value ofa gives a minimal sensing time and vice-versa. Hawgethis is not
generally true as the number of cognitive radiolaborating for spectrum sensing

increase.

122



For instance, when the four cognitive radios predicas the appropriate maximum
cognitive radios to collaborate for spectrum semswere considered, the numerical result
obtained from the algorithm shows that minimum sensime was obtained at = 30,
rather than a& = 50. This shows that, as valuesuahcrease beyond a certain point, it is
only adding to the number of blocks to be scannethd the fine sensing process, rather
than contributing to a fast sensing rate. Hence,airpractical implementation of
cooperative sensing, the appropriate value ofeeds to be wisely selected in order to
achieve optimal cooperative gain without incurrangooperative overhead. Based on the
fixed parameters used, as well as four maximum musiof cooperative sensors or
cognitive radios suggested for collaborative senginthis study, the ideal value affor

optimal cooperative gain without incurring a cogise overhead is 30.
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Figure 4.5: Plot of Sensing Time against Number dfognitive Radios at Different
Values ofa

4.3 Comparative Analysis of the Developed Sensingrie Algorithm

To further evaluate the accuracy of this thesi€pm sensing time algorithm, one of its
analysis results or graphs shown in Figure 4.3 w@®pared with a similar graph
presented in Neihaet al, (2007). The choice of the reference work wastam the

fact that the two studies employed the same sensirgyalgorithm. Though this thesis

and the reference work employed different simufatgarameters in obtained their
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respective graphs shown in Figure 4.6(a) and Figu6é¢b) respectively, observation
shows that the two obtained graphs were similars $imilarity in the nature of the two
graphs and predictions of equal numbers of secygndzaers that can collaborate together
to obtain optimal cooperation gain without incugicooperative overhead, show that the
simulation result in this thesis is as accuratéhas of the reference work. The similarity
also indicates that inferences made in this tregsaccurate and that the results obtained

from it can perform favourably with the resultsrfrahe reference work.
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Figure 4.6: Comparative Analysis of the SimulatiorResults between this Research
Work and Neihart et al., (2007)

Furthermore, the peculiarity and improvement tihests made to the earlier study of
Zamat and Nataarajan (2009) on sensing time algordevelopment was in replacing
the Dedicated Sensing Receiver (DSR) used in thatyswith SG™N, which is a
transceiver. The improvement, this introductiortid SUMN added was that it enables
the MN or central controller in this thesis to reeesensing results’ information from
other secondary sensors as well as combining teeved sensing results’ information to
decide the channel condition before broadcastirggfial decision it made to other
secondary sensors. Although the two-way commumicatntroduced in this thesis
consumed more energy, it indeed enhances overalttrsp;n sensing result when
compared with the DSR used in Zamat and Nataa(2fz00).
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4.4 Summary

This chapter focused on improving cooperative spattsensing reliability for detecting

primary radio signals in a cognitive radio enviramh This is another major objective of
this research work. In addition to the developmehta sensing time algorithm for

cooperative sensing in a cognitive radio environinéme results of the sensing time
algorithm have shown the effectiveness of cooperaiensing techniques over non-
cooperative sensing techniques. The simulationltretwws that cooperative spectrum
sensing outperforms non-cooperative spectrum sgndihe developed sensing time
algorithm was optimized by striking a balance bemvéhe fast, but less accurate, rough
sensing operation and the slow, but more accufate,sensing operation. Numerical

results from the developed algorithm in this chamleow that cooperative spectrum
sensing can work effectively without incurring aoperative overhead, if the sensing
time parameters are carefully selected. The idaedrpeters obtained in this chapter are
used in chapter 5 for the development of the cogniadio engine for this research work.
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CHAPTER 5

5.0 DEVELOPMENT OF THE STUDY COGNITIVE RADIO ENGINE

This chapter focuses on the development of the @REhis research work. The CRE
development was based on the CR architecture atl&pi® Clancyet al. (2007) shown

in Figure 5.1. The development of the CRE wagléi into three stages. The first stage
centered on the development of an adaptive CEhtordsearch work. In the second stage,
the SDR for radio signal transmission and recepti@s developed. The third stage,
which was the last stage for the CRE developmentplves the coupling of the
developed CE and SDR together. The full descrippbreach stage is presented in
Section 5.1, Section 5.2 and Section 5.3 respédygtive

5.1 Cognitive Engine Development

Following up on the development of the ADAMR cldiesi and cooperation spectrum
sensing optimization algorithm, as presented irpt#a3 and chapter 4 respectively, an
adaptive CE to characterize the primary user’sviiets is described in this chapter. The
CE uses the developed sensing time algorithm aed ADAMR classifier for the

spectrum sensing time determination and primaryoraignal sensing and detection
respectively on the frequency band of interest. th&t core of the CE is the ADAMR

which was developed for the automatic detection noddulation schemes when

monitoring the primary user activities on licensgectrum.
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Developed SDR for radio signal Developed CE, which is the brain of the
transmission and reception on idle developed CRE, senses and detects radjo
channel or frequency detected by CE frequency bands or channel in CR
environment

S N 4
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N7/ Engine
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= Base A\ Learning
GNU Radio NV Engine
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\__ Software Defined Radio (SDR) _/ \_  Cognitive Engine (CE) J

Adapted from: Clancy et al. (2007)

Figure 5.1: Developed Cognitive Radio Architecture

The CE consists of three components, namely a ledya base, a learning engine and a
reasoning engine, as shown in Figure 5.1. ThesQfeveloped in such a way that it can
learn and store these lessons as experience kmtivdedge base. This experience can be
retrieved to perform similar actions and decisiarien needed in the future. Based on
past experiences and interactions with informatromoth the learning engine and the

reasoning engine, the knowledge base generatés#heecision for the CE.

The reasoning engine in this study serves as actipasitory system for the CE. The
actions stored in the reasoning engine are pretiondictions defining the operations the
reasoning engine should perform based on the stéttiee primary user activities. The

precondition action the reasoning engine perforsn®iinfer either an idle or occupied

spectrum band. The reasoning engine therefore lab#tse current status of the spectrum
to determine the right actions ideal for that ctindi Based on the precondition action
taken, the knowledge base evaluates the appropesdeof the reasoning engine action

based on its past experience.

The learning engine in this study is the ADAMR eléisr described in chapter 3 using

an ANN. Its major function is to precisely charaize a primary user’s activities by
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monitoring the modulation scheme on the radio ceaiman effort to find a means of
optimizing radio spectrum utilization. Thereforbgtrole of the learning engine in this
research work is to provide radio frequency baatistics of “1” and “0”, each denoting
an occupied channel or an idle channel respectivBtys is intended to predict the
probability of secondary frequency usage. The ofinection of the learning engine is to
update both the knowledge base and the reasonigipesmwith its experience on the
channel per time period. As the learning enginenteabout different radio frequency
bands or channels, it will store these lessonsenknowledge base for future use by the
reasoning engine. Other functions of this engime: the two other components of the CE

for this research work are provided in section 5.4.

5.2 Software Defined Radio Development

The components of the SDR employed in the developmokthe CRE for this research
work are the GNU Radio and USRP2, as depicted gurEi 5.1. GNU Radio, as
described in chapter 2 is an open-source softwaokkit, which consists of a signal-
processing block library and the glue to tie thédecks together for SR or SDR
deployment. With GNU Radio, the SDR is built byatreg a graph, which its vertices
are signal-processing blocks and the edges représerdata flow between them. The
procedures involved in installing the GNU Radio aodfiguring the USRP2 used in this

research work are presented in Appendix B.

5.3 Coupling of the Developed SDR and CE

As shown in Figure 5.1, a CR can be defined asxéension of the SDR by adding an
intelligent CE comprising of a knowledge base,aneg engine and a reasoning engine
to drive software modifications. For the componetttscommunicate, an application
programming interface was developed that enabkesdmponents, namely the SDR and

CE, to interact or communicate with each other.
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5.4  Laboratory Spectrum Sensing Setup

The research laboratory spectrum sensing setupshasvn in Figure 5.2, was
implemented using the developed CRE. The laboradpectrum sensing and detection
functionality to detect the status of the chanrselthe sole responsibility of the CE
component of the developed CRE. The spectrum-sgisgitup is divided into two stages.
The first stage involves the cooperative sensingaaitor the frequency band or channel
in order to detect a primary user’s radio sigmalthis step of the spectrum sensing setup,
each of the cognitive radios or secondary userams($U) in Figure 5.3 employed the
developed ADAMR to perform individual or local speen sensing to detect the primary
user. The detection observation made by each iSWeported to the secondary user’s
sensor master node (8®) for the final decision on the channel. The depetb
Spectrum _$@nsing _ad Detection _Agorithm (SSADA) graphical user interface to
demonstrate the operational description of theestasgpresented in section 5.5.

UREF2 Spectrum Analyser GHU Radio + AMC
(Hardware Component) (Software Component)

Figure 5.2: Laboratory Setup for the Spectrum Sensig Modulation Identification
Method
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Figure 5.3: Cooperative Sensing Model

Licensed Network

The second stage of the research laboratory specensing setup is the seizure of the
identified or detected idle channel for secondagge by the cognitive or secondary user
(SV) in Figure 5.3. To transmit radio or signal whorm in software form, an extension
of GNU Radio called GNU Radio Companion (GRC) wasedito facilitate the creation
of an appropriate system of GNU Radio blocks wita &id of a visual flow graph. A
typical GRC flow graph created is shown in Figur¢ 5
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Figure 5.4: Typical GNU Radio Companion Model
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At the transmitting end of Figure 5.4, the sourtack produces the digital stream from
the hardware component or USRP2. The digital stremmnodulated using different
modulation schemes. Figure 5.4 specifically shovesQAM, which is one of the
modulation schemes used. The modulated data ismigted using the developed SDR.
The designated USRP2 device that was used asithargrtransmitter is device ;pwith

IP address 192.168.10.2. The modulated signal waptoefore transmitting is shown in
Figure 5.5. The center frequency of the transmittas set at 2.5 GHz in order to prevent

interference to the ISM band employed.

Frequency Display I Waterfall Display | Time Domain Display | Constellation Display |

=

i
Pud
=

A
=]

|
2, IDGHz. L R

Power (dB)

r | T T T T I T T T T | T T T T | T T T T I T T T T I T T T T | 1
2.41198 2.41199 2.41199 241200 2.41200 2.41201 2.41201

Frequency (GHz)

Figure 5.5: Typical Modulated Signal using XCVR245Maughterboard

At the receiving end, the center frequency of e@this set at 2.5 GHz. SU and 3l
Figure 5.3 are transceiver cognitive radios equipp&th the developed ADAMR to
enable each to automatically detect the modulatreme of the primary user’s signal
from the transmitter. In addition, different desaggd responsibilities were assigned to
SU and SU despite the fact that they have the same capebiliSUs are used only as

secondary transmitters, while &Jare used as secondary user sensors to ensure
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continuous spectrum sensing when one or more &k igansmitting. This is to ensure
instantaneous detection of a primary user’'s re-a@mee in a channel when the SU is

transmitting. Typical captured waveform at the reéiog end is shown in Figure 5.6.

Freguency Display | Waterfsll Display | Time Domain Display | Constellation Display |

o —|
—-z0 —
_ao —|

Power (dB)

50 —|
_s0 —|

—-100 —

—120:i P—— -I----.1;,-:r.-l.-u.--.-lﬂlg;dl!]Mu M.hllii"l"i':'l'

77— 77—
2.39998 2.399099 2.39999 2_40000 2.40000 240001 2.40001
Frequency (GHzZz)

Figure 5.6: Typical Received Signal using XCVR245Daughterboard

5.5 Developed Spectrum Sensing and Detection Algtinm Description

The developed SSADA demonstration for the researofk is initiated in stage 1 of
Figure 5.7, by choosing a wireless service of egernn the developed graphic user
interface program. A hypothetical South Africa fueqcy allocation table was used for
the spectrum sensing and detection demonstratitvites using four wireless services’
frequency bands namely radio broadcasting, tel@visiroadcasting, mobile telephone
and unlicensed, or ISM frequency bands. The foequency bands were stored in the
knowledge base, as demonstrated in Figure 5.1,hwéscves as the database for the
developed CRE. In addition, the latitude and lamdg of the six main cities in South
Africa, namely Bloemfontein, Cape Town, Durban, auesburg, Port Elizabeth and
Pretoria, used as the test sites, were storeceidatabase to provide information about
the location of each of the cities. After providitige preference service and location, the
reasoning engine in Figure 5.1 was updated with tliita and the developed SSADA
commences rough spectrum sensing by scanning low@mtire system bandwidthd{),

as described in chapter 4.

132



[ Start Spectrum Sensing ]
v

[Enter Preference Service and Loc%tion

v
[ Start rough sensing by ]

scanning Bys (Figure 4.2)

STAGE 1.

Note the channel as idle.

Record the channel status as (s

Is any

Calculate krsvalue and store.

modulation
scheme

Go to the next channel

detecteg~

STAGE 2.

Note the channel as occupied.

Record the channel status as 1.

Go to the next channel

Note the channel as idle.

Update the channel status as (

Start fine sensing by
scanning Bk (Figure 4.2)

Calculate Frsvalue and store.

Is any

Report channel status to MN.

Note the channel as occupied.

scheme

Go to the next channel

Update the channel status as 1.

detected”

A 4

Report channel status to MN.

Go to the next channel

STAGE 3.

[ MN combines observations ]

from STAGE 3
v

Confirm channel as idle.

l

MN makes final decision on J
observations using “OR” logi

Update the channel status safg«

CR or SU can transmit.

Is logic
output 1?

Start Spectrum Sensing

—» Confirm channel as occupied.

»| Update channel status unsafg.

L

time or duration (3).

[Calculation of total spectrum sens}ng

Start Spectrum Sensing

[ MN transmits “OR” logic result

CR or SU.

j

Figure 5.7: Developed SSADA Flowcharg"stop >

STAGE 4.
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Stage 2 of the SSADA, as demonstrated in Figure fiefforms the rough sensing by
sweeping over the frequency bands or channels tectd@resence of a modulation
scheme. The hypothetical frequency bands tablegroes for each of the services is
shown in Tables 5.1 — 5.4. If any of the modulatswhemes is detected, the algorithm
notes the channel as occupied and record the chstates as “1” in the learning engine.
On the other hand, if no modulation scheme is dedet¢he algorithm notes the channel
as idle and “0”, is recorded against the channg¢h@learning engine. For idle channels,
the algorithm also calculates the time taken toycawnt the rough spectrum sensinggd

using equation (4.6) and stores the value obtam#uk learning engine.

Table 5.1: Table of FM broadcasting Frequency Bands

System Bandwidth (Bsy<)/MHz Band Allocation
87.00 87.23 | 87.46| 87.69 87.92 88.15 88.40 Band 1
88.50 88.73 | 88.96] 89.19 89.42 89.65 89.90 Band 2
90.00 90.23 | 90.46] 90.69 90.92 91.15 ®1.4| Band 3
91.50 91.73| 91.96] 92.19 92.42 92.65 9®2. | Band 4
93.00 93.23 | 93.46] 93.69 93.92 94.15 404. | Band 5
94.50 94.73 | 94.96] 95.19 95.42 95.65 95.90 Band 6
96.00 96.23| 96.46] 96.69 96.92 97.15 ®7.4| Band 7
97.50 97.73| 97.96] 98.19 98.42 98.65 98.90 Band 8
99.00 99.23 | 99.46| 99.69 99.92 100.15 4mO. | Band 9
100.50 | 100.73| 100.96 101.19 | 101.42 101.65 101.90 | Band 10
102.00 | 102.23 102.46102.69 | 102.92 103.15 103.40 | Band 11
103.50 | 103.73| 103.96 104.19 | 104.42 104.65 104.90 | Band 12
105.00 | 105.23| 105.46 105.69 | 105.92 106.15 106.40 | Band 13
106.50 | 106.73| 106.96 107.19 | 107.42 107.65 107.90 | Band 14
108.00 | 108.23| 108.46 108.69 | 108.92 109.15 109.40 | Band 15

Table 5.2: Table of ISM Frequency Bands

System Bandwidth (Bsy<)/MHz Band Allocation
2400.00| 2401.17| 2402.3% 2403.51 2404.68 2405|85 7.240| Band 1
2407.14| 2408.31| 2409.4 2410.65 2411.82 2412|99 4.281| Band 2
2414.28| 2415.45| 2416.6 2417.79 2418.96 2420|18 1.322| Band 3
2421.42| 2422.59| 2423.7 242493 2426.10 2427|27 8.282| Band 4
2428.56| 2429.73| 24309 2432.07 2433.24  2434|41 5.803| Band 5
2435.70| 2436.87| 2438.0 2439.21 2440.838 2441|55 2.244| Band 6
2442.84| 2444.01| 24451 2446.35 244752  2448|69 9.884| Band 7
2449.98| 2451.15| 2452.3 2453.49 245466 2455|83 7.925| Band 8
2457.12| 2458.29| 2459.4 2460.63 2461.80 2462|97 4.286| Band 9
2464.26| 2465.43| 2466.6 2467.T7 2468.94 2470|11 1.387| Band 10
2471.40| 247257 2473.7 247491 2476.08 2477|25 8.247| Band 11
2478.54| 2479.71| 2480.8 2482.05 2483.22 2484|39 5.388| Band 12
2485.68| 2486.85| 2488.0 2489.19 2490.836 2491|53 2.229| Band 13
2492.82| 2494.00) 2495.1 2496.36 2497.54  2498|72 9.909| Band 14
2500.00| 2501.17| 2502.3 2503.51 2504.68 2505|85 7.280| Band 15
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Table 5.3: Table of Television Broadcasting Frequasy Bands

System Bandwidth (Byy<)/MHz

Band Allocation

174.00

174.25

174.50

174.75

175.00

175.25

175.50

175.75

176.00

176.25

176.50

176.75

177.00

177.27

Band 1

177.37

177.62

177.37

178.12

178.37

178.62

178.87

179.12

179.37

179.62

179.87

180.12

180.37

180.64

Band 2

180.74

180.99

181.24

181.49

181.74

181.99

182.24

182.49

182.74

182.99

183.24

183.49

183.74

184.01

Band 3

184.11

184.36

184.61

184.86

185.11

185.36

185.61

185.86

186.11

186.36

186.61

186.86

187.11

187.38

Band 4

187.48

187.73

187.98

188.23

188.48

188.73

188.98

189.23

189.48

189.73

189.98

190.23

190.48

190.75

Band 5

190.85

191.10

191.35

191.60

191.85

192.10

192.35

192.60

192.85

193.10

193.35

193.60

193.85

194.12

Band 6

194.22

194.47

194.72

194.97

195.22

195.47

195.72

195.97

196.22

196.47

196.72

196.97

197.22

197.49

Band 7

197.59

197.84

198.09

198.34

198.59

198.84

199.09

199.34

199.59

199.84

200.09

200.34

200.59

200.86

Band 8

200.96

201.21

201.46

201.71

201.96

202.21

202.46

202.71

202.96

203.21

203.46

203.71

203.96

204.23

Band 9

204.33

204.58

204.83

205.08

205.33

205.58

205.83

206.08

206.33

206.58

206.83

207.08

207.33

207.60

Band 10

207.70

207.95

208.20

208.45

208.70

208.95

209.20

209.45

209.70

209.95

210.20

210.45

210.70

210.97

Band 11

211.07

211.32

211.57

211.82

212.07

212.32

212.57

212.82

213.07

213.32

213.57

213.82

214.07

214.34

Band 12

214.44

214.69

214.94

215.19

215.44

215.69

215.94

216.19

216.44

216.69

216.94

217.19

217.44

217.71

Band 13

217.81

218.06

218.31

218.56

218.81

219.06

219.31

219.56

219.81

220.06

220.31

220.56

220.81

221.08

Band 14

221.18

221.43

221.68

221.93

222.18

222.43

222.68

222.93

223.18

223.43

223.68

223.93

224.18

224.45

Band 15

224.55

224.80

225.05

225.30

225.55

225.80

226.05

226.30

226.55

226.80

227.05

227.30

227.55

227.82

Band 16

227.92

228.17

228.42

228.67

228.92

229.17

229.42

229.67

229.92

230.17

230.42

230.67

230.92

231.19

Band 17

231.29

231.54

231.79

232.04

232.29

232.54

232.79

233.04

233.29

233.54

233.79

234.04

234.29

234.56

Band 18

234.66

234.91

235.16

23541

235.66

235.91

236.16

236.41

236.66

236.91

237.16

237.41

237.66

237.90

Band 19

238.00

238.61

239.22

239.83

240.44

241.05

241.66

242.27

242.88

243.49

244.10

244.71

245.32

245.90

Band 20

246.00

246.06

246.12

246.18

246.24

246.30

246.36

246.42

246.48

246.54

246.60

246.66

246.72

246.79

Band 21

246.89

246.95

247.01

247.07

247.13

247.19

247.25

247.31

247.37

247.43

247.49

247.55

247.61

247.68

Band 22

247.78

247.84

247.90

24796

248.02

248.08

248.14

248.20

248.26

248.32

248.38

248.44

248.50

248.57

Band 23

248.67

248.73

248.79

248.85

248.91

248.97

249.03

249.09

249.15

249.21

249.27

249.33

249.39

249.46

Band 24

249.56

249.62

249.6

B 249.74

249.80

249.86

249.92

249.98

250.04

250.10

250.16

250.22

250.28

250.35

Band 25

250.45

250.51

250.57

250.63

250.69

250.75

250.81

250.87

250.93

250.99

251.05

251.11

251.17

251.24

Band 26

251.34

251.40

251.46

251.52

251.58

251.64

251.70

251.76

251.82

251.88

251.94

252.00

252.06

252.13

Band 27

252.23

252.29

252.35

25241

252.47

252.53

252.59

252.65

252.71

252.77

252.83

252.89

252.95

253.02

Band 27

253.12

253.18

253.24

253.30

253.36

253.42

253.48

253.54

253.60

253.66

253.72

253.78

253.84

253.90

Band 29

254.00

254.06

254.12

254.18

254.24

254.30

254.36

254.42

254.48

254.54

254.60

254.66

254.72

254.79

Band 30
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Table 5.4: Table of Mobile Phone Frequency Bands

System Bandwidth (Bsys)/MHz

Band Allocation

890.00 890.28 890.56 890.84 891.12 891.4@91.68 891.96 892.24 892.5p 892.80 @3] 893.36 893.58| Band 1

893.68 893.96 894.24 894.52 894.490 895.p895.36 895.64 895.92 896.20 896.48 896.7/@97.04 897.26 | Band 2

897.36 897.64 897.92 898.2 898.48 898.7399.04 899.32 899.60 899.88 900.16 9004 900.72 900.94 | Band 3

901.04 | 901.32 901.60 901.8 902.16 902.44 02. 72 903.00 903.28 903.54 903.84 904.11D04.40 904.62 | Band 4

904.72 905.00 905.28 905.5¢ 905.84 906.1306.40 906.68 906.96| 907.24 907.%2 &7, 908.08 908.30| Band 5

908.40 | 908.68 | 908.96 | 909.24 | 909.52 | 909.80 | 910.08 | 910.36 | 910.64 | 910.92 | 911.20 | 911.48 | 911.76 | 911.98 | Band 6

912.08 | 912.36 | 912.64 | 912.92 | 913.20 | 913.48 | 913.76 | 914.04 | 914.32 | 914.60 | 914.88 | 915.16 | 915.44 | 915.66 | Band 7

915.76 | 916.04 | 916.32 | 916.60 | 916.88 | 917.16 | 917.44 | 917.72 | 918.00 | 918.28 | 918.56 | 918.84 | 919.12 | 919.34 | Band 8

919.44 | 919.72 | 920.00 | 920.28 | 920.56 | 920.84 | 921.12 | 921.40 | 921.68 | 921.96 | 922.24 | 922.52 | 922.80 | 923.02 | Band 9

923.12 | 923.40 | 923.68 | 923.96 | 924.24 | 924.52 | 924.80 | 925.08 | 925.36 | 925.64 | 925.92 | 926.20 | 926.48 | 926.70 | Band 10
926.80 | 927.08 | 927.36 | 927.64 | 927.92 | 928.20 | 928.48 | 928.76 | 929.04 | 929.32 | 929.60 | 929.88 | 930.16 | 930.38 | Band 11
930.48 | 930.76 | 931.04 | 931.32 | 931.60 | 931.88 | 932.16 | 932.44 | 932.72 | 933.00 | 933.28 | 933.56 | 933.84 | 934.06 | Band 12
934.16 | 934.44 | 934.72 | 935.00 | 935.28 | 935.56 | 935.84 | 936.12 | 936.40 | 936.68 | 936.96 | 937.24 | 937.52 | 937.74 | Band 13
937.84 | 938.12 | 938.40 | 938.68 | 938.96 | 939.24 | 939.52 | 939.80 | 940.08 | 940.36 | 940.64 | 940.92 | 941.20 | 941.42 | Band 14
941.52 | 941.80 | 942.08 | 942.36 | 942.64 | 942.92 | 943.20 | 943.48 | 943.76 | 944.04 | 944.32 | 944.60 | 944.88 | 945.10 | Band 15
945.20 | 945.48 | 945.76 | 946.04 | 946.32 | 946.60 | 946.88 | 947.16 | 947.44 | 947.72 | 948.00 | 948.28 | 948.56 | 948.78 | Band 16
948.88 | 949.16 | 949.44 | 949.72 | 950.00 | 950.28 | 950.56 | 950.84 | 951.12 | 951.40 | 951.68 | 951.96 | 952.24 | 952.46 | Band 17
952.56 | 952.84 | 953.12 | 953.40 | 953.68 | 953.96 | 954.24 | 954.52 | 954.80 | 955.08 | 955.36 | 955.64 | 955.92 | 956.14 | Band 18
956.24 | 956.52 | 956.80 | 957.08 | 957.36 | 957.64 | 957.92 | 958.20 | 958.48 | 958.76 | 959.04 | 959.32 | 959.60 | 959.90 | Band 19
960.00 | 1028.45| 1096.90| 1165.35| 1233.80| 1302.25| 1370.70| 1439.15| 1507.60| 1576.05| 1712.95| 1644.50| 1781.40| 1849.90| Band 20
1850.00| 1851.19| 1852.38| 1853.57| 1854.76| 1855.95| 1857.14| 1858.33| 1859.52| 1860.71| 1861.90| 1863.09| 1864.28| 1865.46| Band 21
1865.56| 1866.75| 1867.94| 1869.13| 1870.32| 1871.51| 1872.70| 1873.89| 1875.08| 1876.27| 1877.46| 1878.65| 1879.84| 1881.02| Band 22
1881.12| 1882.31| 1883.50| 1884.69| 1885.88| 1887.07| 1888.26| 1889.45| 1890.64| 1891.83| 1893.02| 1894.21| 1895.40| 1896.58| Band 23
1896.68| 1897.87| 1899.06| 1900.25| 1901.44| 1902.63| 1903.82| 1905.01| 1906.20| 1907.39| 1908.58| 1909.77| 1910.96| 1912.14| Band 24
1912.24| 1913.43| 1914.62| 1915.81| 1917.00| 1918.19| 1919.38| 1920.57| 1921.76| 1922.95| 1924.14| 1925.33| 1926.52| 1927.70| Band 25
1927.80| 1928.99| 1930.18| 1931.37| 1932.56| 1933.75| 1934.94| 1936.13| 1937.32| 1938.51| 1939.70| 1940.89| 1942.08| 1943.26| Band 26
1943.36| 1944.55| 1945.74| 1946.93| 1948.12| 1949.31| 1950.50| 1951.69| 1952.88| 1954.07| 1955.26| 1956.45| 1957.64| 1958.82| Band 27
1958.92| 1960.11| 1961.30| 1962.49| 1963.68| 1964.87 | 1966.06| 1967.25| 1968.44| 1969.63| 1970.82| 1972.01| 1973.20| 1974.38| Band 27
1974.48| 1975.67| 1976.86| 1978.05| 1979.24| 1980.43| 1981.62| 1982.81| 1984.00| 1985.19| 1986.38| 1987.57| 1988.76| 1989.90| Band 29
1990.00| 1991.19| 1992.38| 1993.57| 1994.76| 1995.95| 1997.14| 1998.33| 1999.52| 2000.71| 2001.90| 2003.09| 2004.28| 2005.46| Band 30
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To ascertain the particular modulation detectedhieyalgorithm, the developed ADAMR
was designed in a matrix form called a table of Mation Scheme Detection Matrix
(MSDM), as shown in Figure 5.8. The position of “Iri each row of the table indicates
the presence of the corresponding modulation schemthe channel. This table of
MSDM, Figure 5.8, is used in stages 2 and 3 oftgerithm to detect the presence of the

modulation scheme in the channel.

2ASK |
4ASK
2FSK
BPSK
QPSK
AM
DSB
SSB
FM
OFDM
16QAM
64QAM
| NONE |

MSDM =

P O O O O O O O oo o o o
O P OO O O O O oo o o o
O O FrPr OO O O O o o o o o
O O O Fr OO0 OO O O o o o
O O O O Fr OO0 O O O o o o
O O O OO PFr OO0 O O o o o
O O O OO O Fr OO0 O o o o
O O O O O O O PFr OO0 O o o
O OO OO O oo orr oo oo
O O O OO0 O o o orr oo o
O O OO O O o o oo+ oo
O O O 0O O O o o oo o+ o
O O O O OO O O oo o o .

Figure 5.8: Modulation Scheme Detection Matrix

In stage 3, a fine spectrum-sensing operation és@ed. The algorithm searches for the
presence of any modulation scheme by scanning ghrahe B « as previously
described and demonstrated in Figure 4.2 of chaptrany of the modulation schemes
are detected, the channel is noted as occupiedirally the status of the channel during
this local sensing process is updated as “1”, enlgarning engine. However, if there is
no modulation scheme in the channel, the chanmaldtesd as idle and its status is updated
as “0”, in the learning engine. These binary obaeowns of “1” and “0”, for occupied and
idle channels respectively, are the results ofitkal spectrum sensing that are reported
to the SUMN by SUs. This local sensing reporting procedure is ititstd in Figure 5.9.
Also, at this stage, the time taken to carry oetfithe sensing ({rg is calculated using
equation (4.7). The calculate@gE value is stored in the learning engine.
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Primary User

“« B,
Figure 5.9: Local Cooperative Sensing Reporting Moel

In stage 4, depicted in Figure 5.7, which is tre tdage of the algorithm, terminates one
complete cycle. In the stage, the U combines all the binary observations from the
third stage using “OR” logic, as illustrated in Talb.5. The “OR” logic was used to
prevent both false and miss detection rate proivialil Furthermore, in this stage, the
“OR” logic result is tested. If the “OR” logic relsus “1”, the channel is confirmed as

occupied and unsafe for secondary transmissioniby S

However, if the “OR” logic result testing is “O'hé channel is confirmed as idle and safe
for secondary or opportunistic usage. The resuthef‘OR” logic test provides the final
decision on the channel. A typical result of theedpm scanning exercise by the
algorithm is shown in Figure 6.4. When the finatidion is made like this, the S¥J",
also known as MN, transmits the final decisiondpportunistic secondary transmission
possibility to the CR or SU as illustrated in Fig.3. The algorithm finally determines

the total time () taken to carry out the overall spectrum-senssgiggiequation (4.8).

Table 5.5: Table of “OR” logic

SU°® SUf SUMN
0 0 0
0 1 1

1C 0 1
1 1 1
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After a complete cycle like this, the spectrum semdy the SU starts all over again
while SU is transmitting on the detected idle chtdnAs mentioned earlier, the proposed
sensing and detection method uses separate degdhe spectrum sensor and secondary
transmitter. This approach enables continued sgradithe cognitive radio environment,
even when the secondary transmitter is transmitbpgortunistically in a licensed
spectrum. The approach therefore assists in prieneeecondary user interference to a
primary owner in a situation where the primary ussiappears while the secondary
transmission is in progress. The evaluation ofdbaeeloped SSADA, described above,

in achieving the desired objective of the studgrissented in the next chapter.

5.6 Summary

The objective of developing a CRE that can autaralyi sense and detect radio signals
in the cognitive radio environment without haviagriori information about the signals
characteristics was achieved in this chapter usig developed SDR and CE. The
performance evaluations of the developed CRE anrdiD®$ also known as CE, are

presented in chapter 6.
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CHAPTER 6

6.0 THE DEVELOPED COGNITIVE RADIO ENGINE EVALUATION

This chapter presents detailed information on #régpmance evaluation tests carried out
on the CRE as developed. The tests are classifiggrutwo main headings, namely
laboratory/experimental setup and SSADA proof ofncapt evaluation. The
performance of the CRE for spectrum sensing andctlet is analyzed and verified

through the numerical results obtained.

6.1 Experimental Evaluation of the Developed Cognite Radio Engine

Experiments were conducted to evaluate the perfocmaf the developed CRE setup in
the previous chapter. Three main performance @iter metrics were employed. The
designated USRP2 primary transmitter was usedatesinit modulated signals generated
in the host PC. The results obtained for each efp@rformance evaluation metrics are
presented and discussed in the following sub-sextio

6.1.1 Detection States

From equation (2.1), it can be deduced that thetajp®a sensing output can fall into any

of these three detection states, namely:

* correct detection;
* miss detection; and

+ false detection.

These three detection states are defined, as fallow
* Occupied spectrum or channel detected as occupigdraunoccupied spectrum
or channel detected as unoccupied (i.e. correectenh);
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* Occupied spectrum or channel detected as unocc(pediss detection); and

* Unoccupied spectrum or channel detected as occ(ipgedialse detection).

Considering the three detection states, it is alwithat while both correct and false
detection states would cause no interference toptimary user in a cognitive radio
environment, miss detection would certainly cause@ndary user to interfere with the
primary user’s transmission. Hence, if interfereageidance to the primary user is the
only parameter considered in determining both thecgveness and efficiency of the
developed CRE, high correct detection and highefdistection with low miss detection
would have been the expected result from the dpeel CRE. However with high false
detection, one of the disadvantages is that thetspe would not be efficiently utilized,
since idle spectrum is being classified as busytsyp@. Another disadvantage of high
false detection is that it would introduce a higioperative overhead to the spectrum

sensing in terms of additional energy and sensme.t

Therefore, in assessing both the effectivenesseffiiency of the developed CRE for

this research work, its detection accuracy withlprewn modulation schemes, denoting
an occupied channel, and non-modulated noise, hgnah unoccupied channel, were
examined. The average, overall detection accurasylts obtained are shown in Figure
6.1. From Figure 6.1, it is evident that both thessrand false detection states of the
developed CRE are negligible. The result shows thatcorrect detection state is the
highest, which is an indication of both high in&ggnce-free and high spectrum

utilization efficiency.
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Figure 6.1: The Developed CRE Detection State

6.1.2 Probability of Detection

The sequel to the negligible false and miss detecttates obtained when the developed
CRE’s overall signal-detection capability was tdstwas further evaluated. The
additional performance evaluation test carried oot the developed CRE was its
spectrum-sensing probability of detection)PThe metric, B, was used to determine the
CRE level of interference protection provided te thrimary user. The metric was
determined for each of the modulation schemes eyafl@t various SNR values. The

numerical results obtained are presented in grapfoem in Figure 6.2(a-h).

The B was measured for SNR levels ranging from — 5 dBQa@B. The measurements
were repeated 50 times for each SNR value in dadaccurately measure theg Palues
obtained. The average, Ralues plotted against the various SNR are shawRigure
6.2(a-h) for eight out of the twelve modulation ectes considered. The Bbtained at
each SNR value for each of these eight modulatidrerses is compared with the

corresponding detection rate of the developed ADAMBsented in Table 3.6. Figure
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6.2(a-h), shows that the,Ror the developed CRE was less compared with sparding
Pp values for the developed ADAMR at low SNR valués-& dB and 0 dB. However,
as the SNR values increase, for instance from glBard, the CRE’s f°performance

increases comparably with that of the ADAMR.

Figure 6.2(a-h), also shows that the develope& GRel of interference protection to
the primary user is favourable at all the SNR valcensidered with the average Wlue
above 0.9. The metric value also shows that theldped CRE is not biased towards
either of the modulation schemes employed or arth@SNR values. It was also evident
from these figures that the performance of thigctein method is directly proportional
to that of the developed ADAMR used. The implicatiof this observation is that the
sensitivity of the automatic classifier employeds ha direct impact on thepPof the
developed CRE. Hence, if the detection abilityld tlassifier employed is low, the) P
ability of the CRE will also be low.
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Further consideration of Figure 6.2(a-h) showshketer performance of the cooperative
nodes over the non-cooperative or single node iddally performing the spectrum
sensing operation. A careful observation of eacthefeight plots (a) to (h) in Figure 6.2
shows that the corresponding values pff6t cooperative nodes are higher than that of
non-cooperative nodes. The plots also reveal tieaf values of the cooperative nodes
are favourable with that of the ADAMR compared witiose of corresponding non-
cooperative nodes. This again shows the advantiaggoperative spectrum sensing over
the non-cooperative spectrum sensing in term ofopeance index. In addition, the
analysis shows that cooperative spectrum sensinglicapon guarantees high

interference protection to the primary user than-oooperative sensing method.

6.1.3 Detection Response Time

The third performance evaluation metric that waedus evaluate the performance of the
developed CRE for this research work is the timeenato detect different modulation
schemes. This detection response time is diffefeotn the calculated average
recognition time for the AAMR, DAMR and combined AR classifiers presented in
Table 3.2, Table 3.5, and Table 3.7 respectivehe Glassifier recognition time taken or
duration presented in those Tables on page 89, &l 109 respectively are the
respective classifier’'s recognition time. But tlksponse time considered in this section is
the time taken for the developed CRE to recognipelutation schemes used to test its

response rate.

As mentioned earlier, out of these three classifienly the combined ADAMR classifier
was employed in the CRE developed for this studgnd¢, when this test was carried out,
the response time obtained was the CRE respongse fomthe different modulation
schemes transmitted. Analog, digital and combinedlcey and digital modulation
schemes were transmitted from the designated USRR®Bmitter at random. The

duration of detecting the modulation schemes wagsmved.

The detection response time, presented graphigallfFigure 6.3, reveals that the
detection response time for the modulated signalses considerably from one
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modulated type to another. The numerical resukksgmted in Figure 6.3 shows that the
developed CRE response time for the digitally matkd signal is the fastest, while its
response time to detect a combined analog andabigibdulated signal was the slowest.
The detection response time for the analog modiisignal falls somewhere in between.

Although the CRE’s response time or observatioretior the modulated signals varies
from one modulated type to another, the overalttsthme, in the ranges of milliseconds
that the CRE uses to detect all the modulationreelseconsidered coupled with its non-
complexity in nature, makes the implementationh&f proposed sensing and detection

method practically feasible.

Sralos Irigital Cormbined Analog arnd Dagital
hIodulation Scherne

Figure 6.3: Detection Response Time for FM, 16-QAMNnd Combined Modulated
Signals

6.2  Comparative Analysis

To further evaluate the performance of the CRHEjlte®btained from it were compared
with a recent study on another spectrum sensinglatettion method. The choice of the

reference study, Hangt al, (2010), was characterized by:
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* usage of both GNU Radio and USRP;

» usage of the same ranges of SNR;

» application of mixed or combined analog and digaldulation schemes;
* usage of same AWGN channel condition; and

» usage of the same USRP daughterboard (XCVR 2450).

However, two differences are observed between rdssarch work and the reference
study in Hanizet al, (2010). The first is the SNR ranges employedil®\ihis research
work used SNR values ranges from — 5 to 20 dBreéference study used SNR values
ranges from — 20 to 10 dB. Hence, for the compagadinalysis, only the limited SNR
ranges of — 5 dB to 10 dB, common to the two stidwere considered. The second
observed difference between this research work saindy presented in Haniet al,
(2010), is the detection method employed. While thierence work used the energy
detection method, which is currently acclaimedtbst detection method (Akyildet al,

2011) in literature, this study employed the autbeaodulation recognition technique.

However, the authors of the reference study uséd AM and BPSK modulated signals,
which are parts of the modulation schemes congildier¢his research work, to test their
spectrum sensing performance. The two modulatidrerses used to evaluate their
spectrum sensing system as well as the best aadadetection method used in the
reference study makes it the most appropriate stoidyrther evaluate the performance
of the developed CRE and the detection method gexpan this research work. The

obtained comparison result is presented in Taldle 6.

The result shows that this research work produetiibR results at a low SNR value of
— 5 dB for the two modulation schemes considerdue Ppoor performance of the
reference work at this low SNR value indicates thatreference work detection of weak
primary radio signal is relatively low compared hvithis thesis. Therefore, the
outperformance of this research work at this lownRSMalue shows that the developed
CRE in this research work can reliably detect weaknary radio signal in a CR

environment better than the reference work. Heapglication of the detection method

developed in this thesis does guarantee interferdree in a CR environment when
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compared with the reference work. In addition, le&er B results of this research work
at a low SNR value over the reference work makesrdsearch work more relevant in
CR environment than the reference work. This isabee the ability of the developed
CRE in this research work to reliably detect weaknpry radio signal has provided
another milestone toward solving the problem of kvesgnal detection in CR

environment, which is one of the challenging issneSR environment.

The reference work, however, outperforms this neteavork in the other three SNR
values but with only a close margin. The overalalgsis of the comparative study
presented in Table 6.1 shows that this researctk werforms favourably well with
previous work in the literature. The analysis reslso confirms that the automatic
modulation identification’s detection method propads$n this research work can compare
favourably well with the energy detection methodickhis the current generally

acclaimed best detection method.
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Table 6:1: Probability of Detection Values’ Comparson between this Research Work and Haniet al., (2010)

Doctoral Thesis (Popoola, 2011) Conference Proceedings (Haeizal, (2010) *
SNR Pp Value for AM Signal B Value for BPSK Signal #Value for AM Signal B Value for BPSK Signal
(dB) Single Node| Cooperative Single Node Cooperative | Single Node Cooperative | Single Node Cooperative
Nodes Nodes Nodes Nodes

-5 0.996 0.998 0.995 0.997 0.500 0.900 0.550 0.930

0 0.997 0.998 0.996 0.998 0.950 1.000 0.990 1.000

5 0.998 0.999 0.998 0.999 1.000 1.000 1.000 1.000
10 0.998 0.999 0.998 0.999 1.000 1.000 1.000 1.000

*. Data’s second decimal points are apipnate values extracted from graphs.
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6.3  SSADA Proof of Concept Evaluation

Due to limitations of the USRP2 daughterboards laldity, the tests results presented
above were carried out using an XCVR2450 daughtethmperating in an ISM
frequency band. Therefore, in order to extend #mirig, as well as showcase the
practicability of the proposed spectrum sensing datkéction method in other usable
frequency bands, the CE, which is the brain ofdiecloped CRE, was further developed
in a graphical user interface called SSADA. The B384 development was fully
described in chapter 5, while its performance igeflyr examined in this chapter.
Additional information on the performance evaluatiof SSADA is presented in
Appendix C. Meanwhile, its performance evaluation a hypothetical television
frequency allocation table is presented below usivig of its features. The two features
demonstrated are its spectrum scanning and coopeigdin optimization prediction’s
capabilities presented in section 6.3.1 and 6&spectively.

6.3.1 SSADA Spectrum Scanning Capability Test

A typical spectrum scanning result by the develof8ADA is presented here. Based on
the current radio spectrum allocation policy, tredeVision (TV) frequency bands shown
in Table 5.4 are randomly allocated among the #iescused. The frequency bands’
random allocation was carried out to conform to ¢heent frequency allocation policy.
Figure 6.4 shows typical cooperative spectrum sgnigir the hypothetical TV frequency
band. The algorithm scans each frequency band tectdspectrum holes in each band
before proceeding to the next band. The result shtvat the developed SSADA
functions well, with a high capability of detectimgcupied bands and spectrum holes

respectively in the TV frequency bands used tithte it capability.
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SCANNING STARTED ON TELEVISION BROADCASTING: 174MH7 - 238MHZ; 246MHZ - 254MH7Z

SCANNING: Frequency range 174.0MHz - 177.27MHz: Spectrum hole exists and safe for secondary use.

Frequency 174.0MHz: Occupied and not safe for secondary use,

160AM detected.

Frequency 174.25MHz: Occupied and not safe for secondary use,

DSB detected.

Frequency 174.5MHz: Spectrum hole exisis and safe for secondary use.
Freqguency 174.75MHz: Occupied and not safe for secondary use.

640AM detected.

Frequency 175.0MHz; Spectrum hole exists and safe for secondary use.
Frequency 175.25MHz: Spectrum hole exists and safe for secondary use.
Frequency 175.5KMHz; Occupied and not safe for secondary use.

QP3K detected.

Frequency 175.75MHz: Occupied and not safe for secondary use.

BPSK detected.

Frequency 176.0MHz; Occupied and not safe for secondary use.

DSB detected.

Frequency 176.25MHz: Spectrum hole exists and safe for secondary use.
Frequency 176.5MHz: Spectrum hole exisis and safe for secondary use.
Frequency 176.75MHz: Spectrum hole exists and safe for secondary use.
Frequency 177.0MHz: Spectrum hole exisis and safe for secondary use.
Frequency 177.27MHz: Occupied and not safe for secondary use.

Al detected.
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Frequency 253.72MHz: Spectrum hole exists and safe for secondary use.
Freguency 253.78MHz: Spectrum hole exists and safe for secondary use.
Frequency 253.840MHz: Spectrum hole exists and safe for secondary use.
Frequency 253.9MHz: Spectrum hole exisis and safe for secondary use.

SCANNING: Freguency range 254.0MHz - 254.79MHz: Spectrum hole exists and safe for secondary use.

Frequency 254,0MHz: Spectrum hole exists and safe for secondary use.
Frequency 254.06MHz: Spectrum hole exists and safe for secondary use.
Frequency 254.12MHz: Spectrum hole exists and safe for secondary use.
Frequency 254.18MHz: Spectrum hole exists and safe for secondary use.
Frequency 254.240MHz: Occupied and not safe for secondary use.

Al detected.

Frequency 254.3MHz: Spectrum hole exisis and safe for secondary use.
Frequency 254.36MHz: Spectrum hole exists and safe for secondary use.
Frequency 254 .42MHz: Spectrum hole exists and safe for secondary use.
Frequency 254 .48MHz: Spectrum hole exists and safe for secondary use.
Frequency 254.540MHz: Spectrum hole exists and safe for secondary use.
Frequency 254.6MHz: Occupied and not safe for secondary use,

4ASK detected.

Frequency 254.66MHz: Spectrum hole exists and safe for secondary use.
Frequency 254.72MHz: Spectrum hole exists and safe for secondary use.
Freqguency 254.79MHz: Occupied and not safe for secondary use.

QPSK detected.
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Figure 6.4: A Section of Typical TV Frequency Band$Scanning Result
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Careful observation of the developed SSADA shovet, tlirespective of the allocated
frequency bands for each of the locations, the ldpeel SSADA is designed to scan the
overall frequency bands for each wireless servites approach enables OSA or DSA
deployment in all the locations as the overall sgag of the spectrum provides
information on primary user activity on each chdnper time period, and therefore
enhances overall optimal spectrum utilization. Rertevaluations of the SSADA are

presented in Appendix C.

6.3.2 Sensing Time versus FFT size

The second evaluation test carried out on the dpeel SSADA is its capability of
predicting the appropriate setting of the FFT «i¥¢ so as not to incur a cooperative
overhead. The parameter, N, was not considerechapter 4, however, observation
shows that its indiscriminate selection can affdw sensing time and increase the
cooperative overhead. Considering Figure 6.5, wklobws the plot of the sensing time
against N obtained from the developed SSADA, wi#thug of N varying from 16 to
1024; the figure shows that the sensing time irsgeawith increase in N. This is
expected since processing gain is proportionalHd &ize N and observation or sensing
time (Cabri¢ et al, 2004). However, Figure 6.5 shows that indisanabé choice of N
will increase the sensing time and cooperative lve&d rather than increasing the sensing
accuracy. Thus, in this research work, FFT siz82oWas employed. The FFT size of 32
was chosen because values of FFT sizes above $§Zaumte a sporadic increase in Ts.
This shows that the increase in N’s value aboveoBBR increases the sensing or

observation time, Ts, without enhancing the debactirobability.
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Figure 6.5: SSADA Sensing Time against FFT size N

6.4 Summary

In this chapter, the focus is on performance evamnaof the developed CRE for this
research work. The laboratory setup to evaluatepdrormance of the developed CRE
by determining its detection states and detecti@babilities using various modulation
schemes at different SNR shows that primary aimaddjelctives of the research had been
achieved. Though the sensing time required H@ $ensing and detection method
varies from one modulation type to another, itshhigprrect detection state with
negligible false and miss detection states is ohéhe significant advantages of the
proposed method. Its other advantage is its higinaae B values that cut across all the

SNR values for all the modulation schemes constiere

In addition, the capability of the developed SSADWt could scan all the hypothetical
allocated frequency bands for the four wirelessvises within the country is an
indication that the CRE as developed, which incoafes implemented CE as its core,
can enhance OSA or DSA deployment in any part efdbuntry. Similarly, since the
hypothetical allocated frequency bands can be cefdldy any frequency bands of any

country, makes the developed CRE’s deployment egiplie to any part of the world.
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CHAPTER 7

7.0 RESEARCH SUMMARY AND CONCLUSION

This chapter concludes this thesis with a brief mamy of the thesis and the
contributions of the work to the field of primargdios’ signals sensing and detection in a
cognitive radio environment. The chapter ends wettommendations on the adoption of
DSA as an alternative spectrum access strategyitigating the current challenge of
spectrum underutilization and enhancing the coetinavailability of radio spectrum for

future wireless devices.

7.1  Thesis Summary

The world as a whole is approaching the limits loé tavailability of useable radio
frequency for wireless communication, while at faene time the demand for and use of
radio spectrum for wireless services and applioatiaxe greatly increasing. Observations
have also shown that, as the demand for and ube e&dio spectrum is increasing, so do
the challenges to the successful management oéthe spectrum using the current fixed
allocation policy. In light of this, there is a me® adopt an alternative radio spectrum
access strategy and management policy that wouldnee both the management and
usage of radio spectrum in order to enhance radectsum availability for future
wireless devices. The aim of this research workstated in chapter 1, is to develop a
CRE that can sense and detect all forms of prinnadyo signals in a cognitive radio
environment. This is because the development sftitpe of radio engine that generates
little or no interference to primary users in a mibge radio environment, such a radio
engine is one solution that can guarantee the gkr@ceptance of cognitive radio
technology, which is a promising solution for owaring radio spectrum scarcity and

underutilization currently experiencing worldwide.

In achieving this aim, a comprehensive literatieeiew on conventional primary radio

detection methods in a cognitive radio environmeas carried out in chapter 2. It was
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during the literature survey that factors respdesifor failure of most of these
conventional spectrum sensing and detection methadsdiscovered, as most of these
methods were developed based on features thatimited to certain types of radio
signals, instead of employing a feature that is romm to all primary radio signals. This
shortfall was accounted for in this research wdrk,using an automatic modulation
identification methodology to develop this reseansbork’s spectrum sensing and
detection method. The methodology was used beausalios using the radio spectrum

make use of one modulation or another.

Chapter 3 discussed in full the procedures involweddeveloping the Automatic
Modulation Recognition (AMR) classifier used foetresearch. The starting point for the
AMR classifiers’ development, which is the featukeys extraction process, was
presented in chapter 3. The chapter also contaitasled information on the development
and evaluation of the three AMR classifiers devethbpln chapter 4, the sensing time
algorithm for enhancing cooperative spectrum sengerformance was developed.

Chapter 5 of this thesis was devoted to one ofntlagor components of this research
work, which is on the development of a CRE to semgkdetect a primary radio signal in
a cognitive radio environment. The importance ofEJR cognitive radio technology was
reviewed in section 2.5. Different Al schemes emgptbin developing previous CRESs
were also reviewed in that section. The reviewhese schemes revealed their limitations,
such as non-resistance to noise, which was addyguttkeen care of in the ANN
employed for the development of the CRE in thigaesh work.

The other major component of this research is tneldpment of an SSADA or CE
using the JAVA programming language. The user-ftigninterface program was
developed to provide a proof of concept evaluatbrihe developed CRE, where the
developed SSADA is its core brain. The SSADA incogbes the following three
modules:

- Preferred service and location for radio spectraansing and random

table of frequency allocation per geographical limca
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- The plotting section, where the sensing time pataraeselection for
optimizing cooperative spectrum sensing gain caddme; and

- The manual calculations section for calculating spectrum sensing
time (Ts).

The three modules incorporated in the developed3SAre shown in Figure C.1 in

Appendix C.

Testing of the developed CRE and SSADA using diffiérperformance criteria and
metrics was undertaken. Although the proposed sgreid detection method’s response
time varies with the modulation schemes, the oVeesults revealed that the developed
CRE and SSADA were versatile. In addition, the fsantle comparative analysis result
obtained when the results of the proposed sensidglatection method in this research
work was compared with the generally acclaimed Hestction method in the literature

provides a good assessment of the proposed samsihdetection method in this research.

7.2 Conclusion and Recommendation

The dynamic spectrum access, which is one of th@icgions of cognitive radio

technology, has been observed as a promising epltdi the problem of radio spectrum
scarcity and underutilization by introducing thepopunistic usage of licensed frequency
bands that are not efficiently utilized by licensaaners. Following the general belief
that spectrum sensing is the key functionalityriatde DSA, this research work focused
on issues of spectrum sensing. The thesis discuaseits and demerits of most of the
current detection methods or algorithms presemelitérature. After a careful, neutral

and constructive analysis of most of the curretécteon methods in literature, it showed
that none of the methods can adequately and reliddtiect all forms of primary radio

signals in a cognitive radio environment. This kad the novel detection method

proposed in this research work using an automatidulation recognition method.
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The implementation of this study’s detection methisthg both hardware and software
components has been fully discussed. Also the teesalitained in this study, when
compared with other conventional detection methai®wed high reliability of the
proposed detection method in detecting all formgrohary radio signals in a cognitive
radio environment. Although the proposed sensind) detection method’s observation
time or sensing time varies with modulation scherttes numerical result from the study
shows the significant performance of the proposstéaion method, even at a low SNR
values, where the conventional detection methodallysperform poorly.

In addition to these, another significant contribatof this research work is the practical
implementation of the proposed detection methodnguspractical and available

components. This study has shown that the pradeatlopment of a reliable detection
method is possible and attainable using AMR. TheRAMhich is the core identification

feature employed in this detection method, hasiooefl the preliminary investigated

discovery during the literature survey that moshwvemtional detection methods in
literature perform poorly because the features ugsEe not features common to all radio
signals like the modulation identification schemrmepéoyed in this study. The proposed
detection method in this research shows a favoeraimparison with the energy
detection method, whereby signal energy contenigiwis also a feature common to all
radio signals, shows that a single spectrum seremgdetection method can only be
achieved when a feature common to all radio sigisalemployed in its development

rather than using features that are limited toatersignal types.

Another significant factor or contribution of thieesearch work is the bedrock
information it has provided on how to improve co@iwe spectrum sensing gain
without incurring a cooperative overhead. Numerreslults from the study have shown
that not only does the detection method performi,viseit that the overall objectives of
the research work have been achieved.

Based on the results obtained from this researak @aod the performance of the novel
spectrum sensing detection method proposed irstady, it is hereby recommended that
the adoption of an opportunistic spectrum accdss, known as DSA, as an alternative
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spectrum access strategy be adopted. The accatsygtis proposed because it will not
only solve the current problem of radio spectrurdarntilization, but will equally reduce
the current problem of radio spectrum scarcity.tlf@nmore, because the proposed
detection method in this thesis guarantees nofa@resrce amongst users of the spectrum,
which is the primary objective of the traditionadefd spectrum allocation policy, thus the
adoption of DSA will not compromise the performandexisting radio systems that will
continue to adopt the traditional radio spectrungutation system with the
implementation of the novel detection method deVisethis research work.

7.3 Future Work Recommendations

With the success recorded in this research woeketts guarantee now that the perceived
danger of interference due to DSA radio operatias heen solved and the adoption of
DSA using CR technology for radio spectrum manageénand access is gradually
becoming a reality. However, some research work sgeds to be done. The
recommended work is actually outside the scopehaf tesearch project but it is
recommended for future work so as to enhance thE @&eloped in this research as
well as accelerating the immediate adoption of D¥#e future work recommended is as

follows:

» Firstly, future work needs to be carried out on hlovincorporate an efficient and
adaptive channel access scheme that can suppbardioeamic channel selection
and power allocation in a cognitive radio enviromin® the CRE developed. To
achieve this, instead of the random allocationhef tadio spectrum band by MN
in this study, game theory for spectral resoursegh as power and spectrum
bands, allocation can be incorporated into the @e#eloped. The use of game
theory was specified because of its inherent céipatd check users that behave
in a selfish manner by seeking a performance adganover other users at the

cost of overall network performance.
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Secondly, future work needs to be carried out oa developed ADAMR
classifier incorporated in the developed CRE is thesis. This is to improve the
classifier operational time and the developed CRiedation time. Another
alternative work to this is to replace the ADAMRassifier employed in the
development of the CRE for this thesis with DAMRtlwbetter operational time
performance especially now that most systems arinsaare shifting from
analog communication system to digital communicatgstem. Furthermore, the
number of the modulation schemes can be increasedctcommodate more

modulation schemes.

Thirdly, comparative future work analysis on thegis algorithm complexity and
that of energy method needs to be carried. Thisrdwivork is essential as it will
provide basis for comparing the two spectrum senamd detection methods on
their respective complexity, which is different rimothe comparative 2
performance analysis carried out in this thesis.
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APPENDIX Al: ANALOG CLASSIFIER M-FILE

% s s s s s s s e ————
% Author: J.J. Popoola

% Date: 17/02/2011
72

% Script for preparing the Analog generated data fo r Automatic

% Modulation Classification (AMC)

% The 3 feature extracted keys generated form the i nputs to the

% classifier

% The classifier has 4 outputs corresponding to the four modulation
% schemes (AM, DSB, SSB and FM) intended to classif y or identify

% Inputs features and output target are combined in matrix form

% Database is split into training data, validation data and test data

% Prepare_Features(traindata,validdata,testdata)
% s s s s s s — e s s s

% Load the generated feature extracted data importe d to MATLAB
% environment from excel called data already in inp ut-output matrix
% form

load data

Off) mmmmmmmmmmmmmmmmmcmmmmmmcmmmmmmmmmmmmmmmeee
% Normalize each column of the 400 x 7 data matrix

[r,c] =size(data);

Max = repmat(max(data), [r 1]);
Min = repmat(min(data), [r 1]);
outputl = (data - Min)./(Max - Min);

Off) mmmmmmmmmmmmmmmmmmcmcmmmmmmmmmmmmmmmmmemmeee
% Randomizing the normalized data matrix each colum n of the 400 x 7 data
matrix

output2 = outputl(randperm(size(outputl,1)),:);
72

% Now split the randomized data i.e. output2 into t rainingset,
validationset and testset data sets in 50%, 25% and 25% respectively
% Save the divided data sets as Prepared_Features.m at

trainingset = output2([1:200],:);
trainingsetinput = trainingset(;,[1:3]);
trainingsetoutput = trainingset(;,[4:7]);
X_trn = [trainingsetinput,trainingsetoutput];
save trn_data X_trn;

validationset = output2([201:300],:);
validationsetinput = validationset(:,[1:3]);
validationsetoutput = validationset(;,[4:7]);

X valid = [trainingsetinput,trainingsetoutput];
save valid_data X _valid;

testset = output2([301:400],:);
testsetinput = testset(;,[1:3]);
testsetoutput = testset(;,[4:7]);
X_test = [testsetinput,testsetoutput];
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save test_data X_test;

save('Prepared_Features.mat’, 'testsetinput’, 'test
'validationsetinput', 'validationsetoutput’, 'train
'trainingsetoutput’)

% start stopwatch timer for the "operation” using t
% current time

tic

% Load features

load Prepared_Features.mat

% classifying the input-output size

no_input = size(validationsetinput,2);
no_out = size(validationsetoutput,2);

%
% Set up Network Parameters

% net = mlp(nin,nhidden,nout,outfunc,alpha)

nin = no_input; % Number of inputs.

nhidden = 7; % Number of hidden units or

nout = no_out; % Number of outputs.

alpha = 0.01; % Coefficient of weight-dec

outfunc ="'logistic'; % String describing the out
function

% Create and initialize network weight vector.
net = mlp(nin,nhidden,nout,outfunc,alpha);

% Training the network

%
% Set up vector of options for the optimiser

options = zeros(1,18);

setoutput’,
ingsetinput',

ic, which save the

neurones.

ay prior.
put unit activation

options(1) = 1; % This provides display of err or values
options(14) = 100; % Number of training cycles ob served
% Train using scaled conjugate gradients.

[net, options] = netopt(net, options, trainingsetin

trainingsetoutput, 'scg";

% Test the Network
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%

Output_Ts_mlp = mipfwd(net, testsetinput);
Output_Ts_mlp = round(Output_Ts_mlp);
error = Output_Ts_mlp - testsetoutput;

%

% Script for displaying the network training output

figure,

subplot(3, 1, 1);

imagesc(Output_Ts_mip");

xlabel('Network Output Pattern’),ylabel('Success Ra
MLP Output');

subplot(3, 1, 2);

imagesc(testsetoutput’);

xlabel('Testset Pattern’),ylabel('Success Rate'),ti
Output);

subplot(3,1,3), hold on;

imagesc(error');

xlabel('Network Error Pattern”),ylabel('Failure Rat
Error MLP Output");

figure,

subplot(3, 1, 1);

bar(Output_Ts_mlp");

xlabel('Network Output Pattern’),ylabel('Success Ra
MLP Output');

subplot(3, 1, 2);

bar(testsetoutput’);

xlabel('Testset Pattern’),ylabel('Success Rate'),ti
Output);

subplot(3,1,3);

bar(error");

xlabel('Network Error Pattern”),ylabel('Failure Rat
Error MLP Output");

%

% Save the AANN classifier
save ((AANN_Model.mat', 'net");

% Loading of the (AANN_Model.mat','net") at Comman
% to evaluate the developed AANN classifier; thus:
%

% load ('AANN_Model.mat','net’)
mipfwd(net,[training/validation/test data set]);

roundedValues = round(mlpfw(net,[training/validatio
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e"),title('Network

te") title('Network

tle(Testset MLP

e"),title('Network

d Window can be used
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fori=1:4

if i==1 && roundedValues(i,1)==1
disp '‘AM’;

end

if i==2 && roundedValues(i,2)==1
disp 'DSB";

end

if i==3 && roundedValues(i,3)==1
disp 'SSB';

end

if i==4 && roundedValues(i,4)==1
disp 'FM’;

end

end

%toc at the end of the "operation" measures the ela
"operation”

toc

% round(mlipfw(net,[training/validation/test data se
% not necessary in order to give actual percentage
% each modulation scheme

%
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APPENDIX A2: DIGITAL CLASSIFIER M-FILE

% - - -

% Author: J.J. Popoola
% Date: 17/02/2011

%
% Script for preparing the Digital generated data f

% Automatic Modulation Recognition (DAMR)

% The 7 feature extracted keys generated form the i

% classifier

% The classifier has 8 outputs corresponding to the

% schemes (2ASK, 4ASK, 2FSK, BPSK, QPSK, OFDM, 16-Q
% intended to classify or identify

% Inputs features and output target are combined in

% Database is split into training data, validation

% Prepare_Features_Digital_new(traindatasetdn,valid
% testdatasetdn)

% - - -

% Load the generated feature extracted data importe
% environment from excel called newdigitaldata alre
% matrix form

load newdigitaldata

%

% Normalize each column of the 800 x 15 data matrix

[r,c] = size(newdigitaldata);

Max = repmat(max(newdigitaldata), [r 1]);

Min = repmat(min(newdigitaldata), [r 1]);
outputddl = (newdigitaldata - Min)./(Max - Min);
%

% Randomizing the normalized data matrix each colum
% data matrix

outputdd? = outputdd1(randperm(size(outputddl,1)),:

%

% Now split the randomized data i.e. outputd2 into
% validationsetdn and testsetdn data sets in 50%, 2
% respectively

% Save the divided data sets as Prepared_Features_D

trainingsetdn = outputdd2([1:400],>);
trainingsetinputdn = trainingsetdn(:,[1:7]);
trainingsetoutputdn = trainingsetdn(;,[8:15]);
X_trndn = [trainingsetinputdn,trainingsetoutputdn];
save trndn_data X_trndn;
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validationsetdn = outputdd2([401:600],:);
validationsetinputdn = validationsetdn(:,[1:7]);
validationsetoutputdn = validationsetdn(:,[8:15]);
X_validdn = [trainingsetinputdn,trainingsetoutputdn
save validdn_data X_validdn;

testsetdn = outputdd2([601:800],:);
testsetinputdn = testsetdn(;,[1:7]);
testsetoutputdn = testsetdn(;,[8:15]);
X_testdn = [testsetinputdn,testsetoutputdn];
save testdn_data X _testdn;

save('Prepared_Features_Digital_new.mat',
‘testsetoutputdn’, ‘validationsetinputdn’, 'validat
‘trainingsetinputdn’, 'trainingsetoutputdn’)

% start stopwatch timer for the "operation” using t
% current time

tic

% Load features

load Prepared_Features_Digital new.mat
% classifying the input-output size

no_input = size(validationsetinputdn,2);
no_out = size(validationsetoutputdn,?2);

%
% Set up Network Parameters

% net = mlp(nin,nhidden,nout,outfunc,alpha)

nin = no_input; % Number of inputs.

nhidden = 7; % Number of hidden units or

nout = no_out; % Number of outputs.

alpha = 0.01; % Coefficient of weight-dec

outfunc ="logistic'; % String describing the out
function

% Create and initialize network weight vector.
net = mlp(nin,nhidden,nout,outfunc,alpha);
% Training the network

%

% Set up vector of options for the optimiser
options = zeros(1,18);

options(1) = 1; % This provides display of erro
options(14) = 100; % Number of training cycles ob
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% Train using scaled conjugate gradients.

[net, options] =
trainingsetoutputdn, 'scg’);

netopt(net, options, trainingsetin

% Test the Network
%

Output_Ts_mlpdn = mipfwd(net, testsetinputdn);
Output_Ts_mlpdn = round(Output_Ts_mlpdn);
Error = Output_Ts_mlpdn - testsetoutputdn;

%

% Script for displaying the network training output

figure,

subplot(3, 1, 1);

imagesc(Output_Ts_mlpadnoise");

xlabel('Network Output Pattern’),ylabel('Success Ra
MLP Output');

subplot(3, 1, 2);

imagesc(testsetoutputadnoise');

xlabel('Testset Pattern’),ylabel('Success Rate'),ti
Output;

subplot(3,1,3), hold on;

imagesc(error');

xlabel('Network Error
Error MLP Output");

Pattern"),ylabel('Failure Rat

figure,

subplot(3, 1, 1);

bar(Output_Ts_mlpadnoise’);

xlabel('Network Output Pattern’),ylabel('Success Ra
MLP Output');

subplot(3, 1, 2);
bar(testsetoutputadnoise’);

xlabel('Testset Pattern'),ylabel('Success
Output;
subplot(3,1,3);
bar(error');
xlabel('Network Error
Error MLP Output");

%

Rate"),ti

Pattern"),ylabel('Failure Rat

% Save the DAMR classifier

save ((DAMRN_Model.mat', 'net’);

% Loading of the 'DAMRN_Model.mat' at Command Windo
% evaluate

% the developed DAMR classiifer; thus:

%

% load (DAMRN_Model.mat', 'net’)
mipfwd(net,[training/validation/test data set]);
roundedValues = round(mlpfw(net,[training/validatio
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fori=1:8
if i==1 && roundedValues(i,8)==1

disp '2ASK;
end
if i==2 && roundedValues(i,7)==1
disp '4ASK’;
end
if i==3 && roundedValues(i,6)==1
disp '2FSK’;
end
if i==4 && roundedValues(i,5)==1
disp 'BPSK’;
end
if i==5 && roundedValues(i,4)==1
disp 'QPSK’;
end
if i==6 && roundedValues(i,3)==1
disp 'OFDM’;
end
if i==7 && roundedValues(i,2)==1
disp '16-QAM’;
end
if i==8 && roundedValues(i,1)==1
disp '64-QAM’;
end
end
%toc at the end of the "operation" measures the ela psed time for the
"operation”
toc
% round(mlipfwd(net,[trainingd/validationd/test data d set])); rounding
% up not necessary in order to give actual percenta ge of classification

% of each modulation scheme
Off) mmmmmmmmmmmmmmmmmcmcmmmmmmmmmmmmmmmmmmmmeee
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APPENDIX A3: COMBINED ANALOG AND DIGITAL CLASSIFIERM-FILE

% --—- —- ==

% Author: J.J. Popoola
% Date: 17/02/2011

%
% Script for preparing the Combined Analog-Digital

% Noise for the Combined Analog-Digital Automatic M
% Modulation Recognition (ADAMR)

% The 8 feature extracted keys generated form the i

% classifier

% The classifier has 13 outputs corresponding to th

% analog and digital modulation schemes (2ASK, 4ASK

% AM, DSB, SSB, FM, OFDM, 16-QAM, 64-QAM and Noise)

% classify or identify

% Inputs features and output target are combined in

% Database is split into training data, validation

% Prepare_Features_ADcn(traindatasetadnoise,validda
% testdatasetadnoise)

% s s s

% Load the generated feature extracted data importe

% environment from excel called adnoisedata already

matrix
% form

load adnoisedata

%
% Normalize each column of the 1300 x 21 data matri

[r,c] = size(adnoisedata);

Max = repmat(max(adnoisedata), [r 1]);

Min = repmat(min(adnoisedata), [r 1]);
outputadnoisel = (adnoisedata - Min)./(Max - Min);
%
% Randomizing the normalized data matrix each colum
% data matrix

outputadnoise2 = outputadnoisel(randperm(size(outpu

%

% Now split the randomized data i.e. outputdnoise2

% trainingsetadnoise, validationsetadnoise and test

% in 50%, 25% and 25% respectively

% Save the divided data sets as Prepared_Features_A

trainingsetadnoise = outputadnoise2([1:650],:);
trainingsetinputadnoise = trainingsetadnoise(;,[1:8
trainingsetoutputadnoise = trainingsetadnoise(;,[9:
X_trnadnoise = [trainingsetinputadnoise,trainingset
save trnadnoise_data X_trnadnoise;
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validationsetadnoise = outputadnoise2([651:975],:);
validationsetinputadnoise = validationsetadnoise(;,

validationsetoutputadnoise = validationsetadnoise(:
X_validadnoise = [trainingsetinputadnoise,trainings
save validadnoise_data X_validadnoise;

testsetadnoise = outputadnoise2([976:1300],:);
testsetinputadnoise = testsetadnoise(:,[1:8]);
testsetoutputadnoise = testsetadnoise(;,[9:21])

(1:8]);
,[9:21]);
etoutputadnoise];

X_testadnoise = [testsetinputadnoise,testsetoutputa dnoise];

save testadnoise_data X testadnoise;

save('Prepared_Features_ ADNOISE.mat','testsetinputa dnoise’,
'testsetoutputadnoise’,'validationsetinputadnoise’,

'validationsetoutputadnoise’, ‘trainingsetinputadno ise’,

'trainingsetoutputadnoise’)

% start stopwatch timer for the "operation” using t
% current time

tic

% Load features

load Prepared_Features_ ADNOISE.mat
% classifying the input-output size

no_input = size(validationsetinputadnoise,?2);
no_out = size(validationsetoutputadnoise,?);

%
% Set up Network Parameters

% net = mlp(nin,nhidden,nout,outfunc,alpha)

nin = no_input; % Number of inputs.

nhidden = 15; % Number of hidden units o

nout = no_out; % Number of outputs.

alpha = 0.01; % Coefficient of weight-de

outfunc ="logistic'; % String describing the ou
function

% Create and initialize network weight vector.
net = mlp(nin,nhidden,nout,outfunc,alpha);

% Training the network

%

% Set up vector of options for the optimiser

options = zeros(1,18);
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options(1) = 1; % This provides display of
options(14) = 150; % Number of training cycles

% Train using scaled conjugate gradients.

[net, options] = netopt(net, options, trainingsetin
trainingsetoutputadnoise, 'scg");

% Test the Network
%

Output_Ts_mlpadnoise = mipfwd(net, testsetinputadno
Output_Ts_mlpadnoise = round(Output_Ts_mlpadnoise);
ErroR = Output_Ts_mlpadnoise - testsetoutputadnoise

%

% Script for displaying the network training output

figure,

subplot(3, 1, 1);

imagesc(Output_Ts_mip");

xlabel('Network Output Pattern’),ylabel('Success Ra
MLP Output');

subplot(3, 1, 2);

imagesc(testsetoutput’);

xlabel('Testset Pattern’),ylabel('Success Rate'),ti
Output");

subplot(3,1,3), hold on;

imagesc(error');

xlabel('Network Error Pattern’),ylabel('Failure Rat
Error MLP Output");

figure,

subplot(3, 1, 1);

bar(Output_Ts_mlp");

xlabel('Network Output Pattern’),ylabel('Success Ra
MLP Output');

subplot(3, 1, 2);

bar(testsetoutput’);

xlabel('Testset Pattern’),ylabel('Success Rate'),ti
Output);

subplot(3,1,3);

bar(error');

xlabel('Network Error Pattern”),ylabel('Failure Rat
Error MLP Output");

%

% Save the ADNAMR classifier

save (ADNAMR_Model.mat', 'net’);

% Loading of the 'ADNAMR_Model.mat' at Command Wind
% evaluate the developed DAMR classifier; thus:

%
% load (ADNAMR_Model.mat', 'net’)
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mipfwd(net,[training/validation/test data set]);
roundedValues = round(mlpfw(net,[training/validatio

for i=1:13

if i==1 && roundedValues(i,13)==1
disp '2ASK;

end

if i==2 && roundedValues(i,12)==1
disp '4ASK’;

end

if i==3 && roundedValues(i,11)==1
disp '2FSK’;

end

if i==4 && roundedValues(i,10)==1
disp 'BPSK’;

end

if i==5 && roundedValues(i,9)==1
disp 'QPSK’;

end

if i==6 && roundedValues(i,8)==1
disp '‘AM’;

end

if i==7 && roundedValues(i,7)==1
disp 'DSB";

end

if i==8 && roundedValues(i,6)==1
disp 'SSB’;

end

if i==9 && roundedValues(i,5)==1
disp 'FM’;

end

if i==10 && roundedValues(i,4)==1
disp 'OFDM’;

end

if i==11 && roundedValues(i,3)==1
disp '16-QAM’;

end

if i==12 && roundedValues(i,2)==1
disp '64-QAM’;

end

if i==13 && roundedValues(i,1)==1
disp ‘'NO MODULATION;

end

end

%toc at the end of the "operation" measures the ela

"operation”

toc

% round(mlipfwd(net,[trainingd/validationd/test data
% up not necessary in order to give actual percenta
% of each modulation scheme

%

188

n/test data set])):

psed time for the

sets])); rounding
ge of classification



APPENDIX B: GNU RADIO INSTALLATION AND USRP2 CONFIG URATION
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B.1 GNU Radio Installation
GNU Radio runs in virtually all the operating syste or platforms. However, some

installations are easier than others. In ordernsuee a complete installation of GNU
Radio, the software must be compiled from sourod, @l the dependencies have to be
included. The Ubuntu operating system is an idedfgrm for a GNU Radio installation,
because all the dependencies can be easily accoatedod he installer simply needs to

select the correct check boxes and select “install”

However, installing GNU Radio is somewhat more dediin other platforms. For this
research work, GNU Radio was installed on a Micito¥dindows Operating System
(OS) using Cygwin, which is a Linux emulation elviment. The steps involve in GNU
Radio installation on Microsoft Windows OS in thissearch work is highlighted as

follows:

Step I: Downloading and installation of Universal Hardw&dver (UHD). The latest
UDH installer driver was downloaded and installed ront

http://code.ettus.com/redmine/ettus/projects/uhid/Miihe goal of a UHD is to provide a

host driver and Application Programming Interfagd”l) for current and future Ettus

Research products.

Step I1: Downloading and the installation of the latest GIR@dio installer. This was

downloaded and installed fronitp://www.ettus.com/downloads/gnuradio/

Step 111: Downloading and the installation of the PYTHONPAEHvironment variable
for the GNU Radio installation using the syntax: :\gcogram files

(x86)\gnuradio\lib\site-packages”.

Step IV: Installation of the Microsoft Visual C++ (MSVC) 20 redistributable package
(x86) from http://www.microsoft.com/downloads/en/details.adpxilylD=a7b7a05e-
6de6-4d3a-a423-37bf0912db84
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Step V: Finally, at the last step, the installer for trependencies was downloaded and

installed from http://www.ettus.com/downloads/gnuradio/other depth installers/

The command window (cmd.exe) was opened and “gkpro files
(x86)\gnuradio\bin\gnuradio-companion.py” was eaterBy pressing the enter key, the
GNU Radio Companion (GRC) page was opened, showiag the installation was
comprehensive and completed. The online instafighimcedure followed is available on

http://www.joshknows.com/gnuradio

B.2 USRP2 Components Description and Configuration
The hardware component employed in the developmwietite SDR for the CRE in this

research work is the USRP2. The USRP2 is an updradesion of its earlier release,
USRP1. The four USRP2s used were purchased froos Research LLC, Mountain
View, California, USA.

B.2.1 USRP2 Component Description
The USRP2 employed consists of two main boards,ehatte motherboard and the

daughterboard. The motherboard has four 14-bit NIGJs ADC, four 16-bit 400 MS/s
DAC, two digital down converter (DDC) and two dajitup converter (DUC) with
programmable interpolation rates. The four inpud antput channels of the ADCs and
DACs are connected to Xilinx Spartan 3 200 FPGAe HPGA, in turn, connects to a
Gigabit Ethernet (1000 MBIts/s) interface chip amdto the host PC.

In the USRP2, high sampling rate processing tgtase in the FPGA, while the low

sampling rate processing takes place in the hostT®€ two DDCs mix, filter and

decimate incoming signals in the FPGA. The two DUiisrpolate baseband signals to
100 MS/s before translating them to the selectegbudufrequency. This process is
illustrated in Figure B.1, while Figure B.2 shows pacture of a typical USRP2

motherboard.
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Figure B.1: USRP2 Flow Graph
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Figure B.2: USRP2 Motherboard

The second main board of USRP2 is the daughterpadridh acts as the RF FEs of the
SDR. Therefore, for the USRP2 to function as a SDRonjunction with GNU Radio,
the daughterboard needs to be connected to theRBUFEs slots on the motherboard.
The four FEs slots are TXA, RXA, TXB and RXB, a®egim in Figure 5.3. Two of the
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four slots labeled TXA and TXB are meant for sigmahsmission via the daughterboard,

while the other two slots labeled RXA and RXB asedignal reception.

A wide variety of available daughterboards pernsage of different frequencies for a
broad range of applications. In this research wthk, XCVR2450 daughterboard was
employed. This daughterboard is a dual-band travesceperating at 2.4 GHz and 5 GHz.
It transmits and/or receives signals around the t&id, namely between 2.4 GHz and
2.5 GHz.

B.2.2 USRP2 Configuration
For the host PC, where the GNU Radio software watalled to recognize USRP2, the

USRP2 needs to be configured and to interface iitfihe host interface is setup by
connecting the USRP2 to the host PC using the Gigdbernet cable with a RJ-45 jack
at both ends. The USRP2 communicates at the usagrdan protocol/internet protocol
(UDP/IP) layer over the Gigabit Ethernet. The d#fdB address of the USRP2 is
192.168.10.2. Hence, the host Ethernet interface aafigured with a static IP address
to enable communication. An address of 192.168.1@nt a subnet mask of

255.255.255.0 were used in the interface setup.

The multiple USRP2 devices were connected via al@idg-thernet switch. In such cases,
each Ethernet interface has its own subnet, anccdah@sponding USRP2 device was
assigned an address in that subnet. Thereforethtorfour USRP2 devices used, the
USRP2s were configured as follows:

Configuration for USRP2 device;:D
+ FEthernet interface IPv4 address: 192.168.10.1

+ Ethernet interface subnet mask: 255.255.255.0
« USRP2 device IPv4 address: 192.168.10.2
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Configuration for USRP2 device;D

+ Ethernet interface IPv4 address: 192.168.20.1
+ Ethernet interface subnet mask: 255.255.255.0
« USRP2 device IPv4 address: 192.168.20.2

Configuration for USRP2 devicesD

+ FEthernet interface IPv4 address: 192.168.30.1
+ Ethernet interface subnet mask: 255.255.255.0
« USRP2 device IPv4 address: 192.168.30.2

Configuration for USRP2 device,D

+ Ethernet interface IPv4 address: 192.168.40.1
* Ethernet interface subnet mask: 255.255.255.0
« USRP2 device IPv4 address: 192.168.40.2

After connecting the USRP2 with GNU Radio and bhiriggit to an up-and-running
condition to form SDR, a GNU Radio Companion (GRs then executed. The GNU
Radio and USRP2 are utilized to implement the spattsensing system. The sensing
system was developed to detect a primary usertsabigodulation scheme for spectrum
monitoring. The specifications of the host PC usexipresented in Table B.1.

Table B.1: Host Comfrr Specifications

Component Specifications

Processor Intel(R) Core (TM) CPU 930 @ 2.80 GHz
RAM 6. 00 GB

Operating System 64-bit, 5.4 Windows 2010

Programs Python, JAVA, C++ and MATLAB.
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C.1  Introduction

The spectrum sensing and detection algorithm ensplogs the core brain of the
developed CRE in this thesis was further implengkimea user friendly program called
SSADA. SSADA is an acronym forp8ctrum_®nsing_ad Detection_Agorithm. It is a
software algorithm developed to demonstrate specsensing procedures, as well as
series of measures to ensure optimal cooperative \gdahout incurring cooperative

overhead.

C.2 SSADA Manual Purpose and Target User

The essence of this manual is to provide fundarerftamation about the operation of
SSADA, as well as to provide a general overviewttdd basic functions and editing
conventions each of the program modules performs.dssumed that user(s) of SSADA
has/have some background knowledge of wireless conuation systems, as well as
being familiar with the Microsoft Windows OS. Thesamption was made because the
information in the manual is not sufficient enoughserve as a tutorial for novices in
either wireless communication system or Microsoftindféw system. The main
application of SSADA is to demonstrate spectrumss®nand primary radio signal

detection activities in a cognitive radio environmer network.

C.3 SSADA System Requirements

SSADA was written using the Java programming laggudt does require a compatible
Microsoft Windows 98 or later version with JAVA. It requires at least a 32-bit
operating system with a minimum random access mgiftAM) of 256 MB and about

1.8 GHz processor. Its size on disk is about 1.8 M

C.4  SSADA working Environment

The SSADA working environment is shown in Figurel. At consists of three modules
and is capable of performing three basic functiofise first module is the preferred
service and location, which enables SSADA to sdam overall preferred service
allocated frequency band in South Africa. The lmratincluded enables SSADA to
decide upon an appropriate idle channel to claipodpnistically using DSA so as not to

cause co-channel interference to a primary useitneg from a re-used frequency.
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A :\‘Lj‘}/\' SSADA - Spectrum Sensing and Detection Algorithm

This is a plot for Television Broadeasting Service

Choose Preferred Service: iTelevision Broadcasfi.. | v| Plot: Variations of Ts with M v

Run Sensing Process for this Service: | Run T 1. T
— No. of Cognitive Radios (M): From (4 v| to |2 v|

- ’ T Rough Bandwidth/Fine Bandwidth (a}: |
Choose Preferred Location:  |{Johannesburg ‘ |

No. of Fast Fourier Transform (M): |

View Frequency Allocations for this location | View |

Fine Sensing Frequency Resolution (Fres): | ‘ |H1 |‘|

‘ PLOT ‘

Manual Calculations

Frequencies of operation of the cognitive radios, Fcr: ‘ | i_Hl !v|
Rough Bandwidth, Brs, Frequency: Number of Fourier Transform (N): |
—
Fine Bandwidth, Bfs, Frequency: | 'Hz |v| Number of the cognitive radio for cooperative sensing (M) ‘

FineSensmgFrequeucpReso\uéinn.Fres:i .Hz ]T| CALCULATE Total Time, Ts:

Figure C.1: The Developed SSADA Attributes

Total System bandwidth, Bsys, frequency:

The second module on an SSADA working environmgihé plotting section, where the
sensing time parameters selection for optimizingpesative spectrum sensing gain can
be derived. The third module in an SSADA workingviemnment is the manual
calculations section, for determining sensing tiffig). The basic different between this
module and the second module is that it presentesults in numerals, while the second
module presents its results in a graphical form.

C.4. SSADA Applications

This section of this manual is devoted to showsasee of the capabilities of SSADA.
The three modules on SSADA are demonstrated udiegfour wireless services
employed. Detailed activities of each module arewstased with examples in section
C.4.1 to section C.4.3.
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C.4.1 SSADA Spectrum Scanning Module Application

This section presents the application of the finsdule of SSADA. In using the module,
the user needs to choose the preferred services.piéferred service is chosen by
selecting either the block or the drop down arr@Wy ieside it. This will bring down a
dialog box that contains the four services, namedgio broadcasting, television
broadcasting, mobile telephone and ISM. The usen gelects the preferred one. The
user can subsequently run the program by seleatimgblock’. Selecting this option
activates the program to carry out overall spectsemsing or scanning for the selected or
preferred wireless service. A typical result of ls@am overall radio broadcasting system

scanning exercise is shown in Figure C.2.

SCANNING STARTED ON RADIO BROADCASTING: 87MHZ - 108MHZ

SCANNING: Frequency range 87.0MHz - 82.4MHz: Occupied and not safe for secondary use.

SCANHNING: Freguency range 88.5MHz - 89.9MHz: Spectrum hole exists and safe for secondary use.
Frequency 88.5MHz: Occupied and not safe for secondary use.

AN detected.

Frequency 88.73MHz: Spectrum hole exists and safe for secondary use.
Frequency 88.96MHz: Occupied and not safe for secondary use.

QPSK detected.

Frequency 89.19MHz: Spectrum hole exists and safe for secondary use.
Frequency 89.42MHz: Occupied and not safe for secondary use.

OFDM detected.

Frequency 89.65MHz: Occupied and not safe for secondary use.

16QAM detected.

Frequency 89.9MHz: Spectrum hole exists and safe for secondary use.

SCANNING: Frequency range S0.0MHz - 91.4MHz: Spectrum hole exisis and safe for secondary use.
Frequency 90.0MHz: Spectrum hole exists and safe for secondary use.

Frequency 90.23MHz: Spectrum hole exists and safe for secondary use.

Frequency 90.46MHz: Occupied and not safe for secondary use.

OFDM detected.

Frequency 90.69MHz: Occupied and not safe for secondary use.

QPSK detected.

4

Frequency 90.92MHz: Spectrum hole exists and safe for secondary use.
Frequency 91.15MHz: Occupied and not safe for secondary use.

4ASK detected.

Frequency 91.4MHz: Occupied and not safe for secondary use.

2ASK detected.

I

SCANNING: Freguency range 91.5MHz - 92.9MHz: Occupied and not safe for secondary use.

SCANNING: Frequency range 93.0MHz - 94 4MHz: Spectrum hole exists and safe for secondary use.
Frequency 93.0MHz: Occupied and not safe for secondary use.

DSB detected.

Frequency 93.23MHz: Occupied and not safe for secondary use.

BPSK detected.

Frequency 93.46MHz: Occupied and not safe for secondary use.

16QAM detected.

Frequency 93.69MHz: Spectrum hole exists and safe for secondary use.
Frequency 93.92MHz: Occupied and not safe for secondary use.

2F SK detected.

Frequency 94.15MHz: Spectrum hole exists and safe for secondary use.
Frequency 94.4MHz: Spectrum hole exists and safe for secondary use.

SCANNING: Frequency range 94.5MHz - 95.9MHz: Spectrum hole exisis and safe for secondary use.
Frequency 94.5MHz: Occupied and not safe for secondary use.

16QAM detected.

Frequency 94.73MHz: Spectrum hole exists and safe for secondary use.

Frequency 94.96MHz: Occupied and not safe for secondary use. =
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640AM detected.
Frequency 95.19MHz: Occupied and not safe for secondary use.

DSB detected.

Frequency 95.42MHz: Spectrum hole exists and safe for secondary use.
Frequency 95.65MHz: Occupied and nol safe for secondary use.

2F 3K detected.

Frequency 95.9MHz: Occupied and not safe for secondary use.

2F 3K detected.

SCANNING: Freguency range 96.0MHz - 97.4MHz: Spectrum hole exists and safe for secondary use.
Frequency 96.0MHz: Spectrum hole exists and safe for secondary use.
Frequency 96.23MHz: Spectrum hole exisis and safe for secondary use.
Frequency 96.46MHz: Spectrum hole exists and safe for secondary use,
Frequency 96.69MHz: Spectrum hole exisis and safe for secondary use.
Frequency 96.92MHz: Occupied and not safe for secondary use.

S5B detected.

Frequency 97.15MHz: Occupied and not safe for secondary use.

BPSK detected.

Frequency 97.4MHz: Occupied and not safe for secondary use.

FM detected.

SCANNING: Freguency range 97.5MHz - 98.9MHz: Specirum hole exists and safe for secondary use.
Frequency 97 . 5MHz: Cccupied and not safe for secondary use.

2F 5K detected.

Frequency 97.73MHz: Occupied and not safe for secondary use.

160QAM detected.

l

Frequency 101.42MHz: Spectrum hole exists.and safe for secondary use.
Freguency 101.65MHz: Occupied and not safe for secondary use.

55B detected.

Frequency 101.9MHz: Occupied and not safe for secondary use.

QPSK detected.

SCANNING: Frequency range 102.0MHz - 103.4MHz: Spectrum hole exists and safe for secondary use.

Frequency 102.0MHz: Spectrum hole exists and safe for secondary use.
Frequency 102.23MHz: Cccupied and not safe for secondary use.

4ASK detected.

Frequency 102.46MHz: Occupied and not safe for secondary use.
16QAM detected.

Frequency 102.69MHz: Spectrum hole exists.and safe for secondary use.
Frequency 102.92MHz: Occupied and not safe for secondary use.

55B detected.

Frequency 103.15MHz: Occupied and not safe for secondary use.

QPSK detected.

Frequency 103.4MHz: Occupied and not safe for secondary use.

OFDM detected.

SCANNING: Freguency range 103.5MHz - 104.9MHz: Occupied and not safe for secondary use.

SCANNING: Freguency range 105.0MHz - 106.4MHz: Occupied and not safe for secondary use.

SCANNING: Freguency range 106.5MHz - 107.9MHz: Spectrum hole exists and safe for secondary use.

Frequency 106.5MHz: Spectrum hole exists and safe for secondary use.

|k

Fregquency 106.73MHz: Occupied and not safe for secondary use.

S5B detected.

Frequency 106.96MHz: Spectrum hole exists and safe for secondary use.
Fregquency 107.19MHz: Spectrum hole exists and safe for secondary use.
Frequency 107.42MHz: Spectrum hole exists and safe for secondary use.
Frequency 107.65MHz: Occupied and not safe for secondarny use,

QP SK detected.

Freguency 107.9MHz: Spectrum hole exists and safe for Secondary use.

SCANNING: Frequency range 108.0MHz - 109.4MHz: Spectrum hole exists and safe for secondary use.

Frequency 108.0MHz: Spectrum hole exisis and safe for secondary use.
Freguency 108.23MHz: Spectrum hole exists and safe for secondary use.
Frequency 108.46MHz: Occupied and not safe for secondary use.

2ASK detected.

Frequency 108.69MHz: Specirum hole exists and safe for secondary use.
Freguency 108.92MHz: Occupied and not safe for secondary use.

FM detected.

Frequency 109.15MHz: Occupied and not safe for secondary use.

SS5B detected.

Freguency 109.4MHz: Occupied and not safe for secondary use,

B40QAM detected.

Figure C.2: Typical SSADA Spectrum Sensing Resulof Radio Broadcasting
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The user likewise needs to select the preferredtitmt by selecting either the location
block or the drop down arrow]j beside it. This will also bring down a dialog btrat
contains the lists of all the six location or dtienamely Johannesburg, Cape Town,
Durban, Port Elizabeth, Bloemfontein and Pretofiae user then selects the preferred
location. After selecting the appropriate or pregdrlocation, the user needs to select the
‘view-block’ to view the drop down box contains thst of all the allocated frequency
tables for that location and the four services.uFegC.3 shows a typical result for
Bloemfontein. The scanning result presented in f&igQd.3, for instance, enables an
SSADA to predict the appropriate idle channel te iseach location per time, so as not
to cause co-channel interference, as explainedeeariThe copying of the spectrum
sensing and location results from the SSADA worlengironment was done by pressing
‘Ctrl + Alt + Print Scrn’ keys together to copy teereen and paste the copied results on a

Microsoft Word environment using ‘paste’ command.

|£| Frequency allocations for Bloemfontein: 20c DB'S lat & 260 O7'E long

Allocated frequency bandwidths for Bloemfontein: 290 06'S lat 8 260 07'E long:

Radio Frequency Bands {MHz):
87.0 87.23 87.46 87.69 87.92 88.15 88.4
103.5 103.73 103.96 104.19 104.42 104.65 104.9

Television Frequency Bands (MHz):

204.33 204.58 204.83 205.08 205.33 205.58 205.83 206.08 206.33 206.58 206.83 207.08 207.33 207.6
227.92 22817 22842 228.67 228.92 22917 229.42 229.67 22992 23017 23042 230.67 230.92 23119
246.89 246.95 247.01 247.07 24713 24719 247.25 247.31 24737 247.43 247.49 247.55 247.61 247 .68
250.45 250.51 250.57 250.63 250.69 250.75 250.81 250.87 250.93 250.99 251.05 251.11 25117 251.24 =

MobileTelephone Frequency Bands (MHz):

893.68 893.96 894.24 894.52 894.8 895.08 895.36 B895.64 895.92 896.2 896.48 B896.76 897.04 897.26
904.72 905.0 905.28 905.56 905.84 906.12 906.4 906.68 906.96 907.24 907.52 907.8 908.08 9083

912.08 912.36 912.64 912.92 913.2 913.48 913.76 2914.04 914.32 9146 914.88 915.16 915.44 915.66
930.48 930.76 931.04 931.32 931.6 931.88 93216 932.44 932,72 933.0 933.28 933.56 933.84 934.06

ISM Frequency Bands (MHz):

2400.0 240117 240234 240351 240468 2405285 Z407.04
240714 2408.31 2409.48 241065 2411.82 241298 241418
Z414.28 241545 2416.62 2417.79 2418.96 242013 2421.32
242142 242259 242376 242493 24261 2427.27 242848
242856 2429.73 24309 243207 243324 243444 2435.6
24357 2436.87 2438.04 243921 244038 244155 244274
2447284 2444.01 244518 244635 244752 244869 2449.B8
2449.98 245115 245232 245349 245466 245583 2457.02
Z457.12 2458.2%9 245946 2460.63 2461.8 2462.97 2464.16
2464.26 246543 2466.6 246777 2468.94 247011 24713
2471.4 247257 247374 247491 2476.08 2477.25 2Z478.44

[§I&N!

2478.54 247971 2480.88 2482.05 2483.22 248439 248558
2485.68 2486.85 2488.02 248919 2490.36 2491.53 249272
2492.82 24940 249518 2496.36 2497.54 249872 24999

2500.0 250117 2502.34 2503.51 2504.68 250585 2507.04

Figure C.3: SSADA Overall Table of Frequency Alloction for Bloemfontein
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C.4.2 SSADA Sensing Time (Ts) Plots Module Applicein

This section is devoted to demonstration of th@sdenodule of the developed SSADA.
The module was developed to generate four diffepéats for determining ideal sensing
time parameters settings for optimal cooperativim,gaithout incurring a cooperative
overhead. In this module, the user needs to faisics the type of service parameter to use
its table of allocation. The second step is to dellee type of plot to be generated by
selecting either the plot block or the drop dowmwar((J) beside it and a dialog box that
contains the four plots, namely variation of TshwvM, variation of Ts with kes
variation of Ts with M at different values of alptg and the variation of Ts with N, will
drop down for the user to select the preferred plpe. The next step is to input the
values ofa, the FFT size (N) and the fine resolution frequefiees). The user does not
need to input the system’s bandwidths¢g value because the SSADA plot's module
takes the value directly from the table of frequealtocation.

C.4.2.1 Sensing Time (Ts) Plot against Number Gfognitive Radio (M)

In demonstrating the usage of this module, the Yaueless services were used. The plot
of the variation of Ts with M was demonstrated gsthe TV broadcasting frequency
band for Cape Town as the preferred location. Eiselted plot, as shown in Figure C.4,
when compared with Figure 4.3, looks exactly alikeature. The difference in values of
Ts is as a result of differences in value gfk8employed though the values @f N and
Fresareequal. For plot shown in Figure 4.3g\Bvalue is 2.5 GHz, while the value of
Bsyswas automatically selected by SSADA from the fremyeof allocation for Cape
Town’s TV broadcasting system. The SSADA designtesys enable automatically

generation of the system bandwidths¢B values for the plot module.

A comparison between the two figures, as demomstrat Figure 4.3 and Figure C.4,
shows that they are identical in nature. The smitylan these figures shows that the
sensing time algorithm developed using MATLAB inapker 4, which was used in
developing the CRE for this research, and the SSABAd to showcase the research

work proof of concept are accurately developed@arfkectly executed.
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Figure C.4: SSADA Generated Ts Plot against Numbesf Cognitive Radios (M)

C.4.2.2 Sensing Time (Ts) Plot againskEs

This second SSADA plotting module application felk the same step described in
section C.4.2.1. In demonstrating this plot, the bitgo phone parameters for
Johannesburg were used. The system bandwidihs)(Bvas automatically selected by
SSADA with constant values af= 10 and N = 32 whiledgswas varied from 10 kHz to

100 kHz. The result obtained is shown in Figure. @hen comparing Figure 4.4 with
Figure C.5, the two graphs look alike in naturecept their Ts values that differ as a
result of the difference indsvalues employed.

0.0 . ________ ________ L S S ________
=sil S N U FNS WS —— . -
15,04}
1259}
ool OO St AU MRS b USSR DOSSUE NOUSNNS VOS! WO -
I TS .
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Figure C.5: SSADA Generated Ts Plot againstdes
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C.4.2.3 Sensing Time (Ts) Plot against M at Dédrent Values ofa

This SSADA module application also follows the sasteps described in section C.4.2.1.
In demonstrating this plot, the TV broadcastingapagters were used with Durban as the
preferred location or test site. TheyB8 was automatically selected by SSADA. The
values of M were varied from 2 to 4, while the \edwf alphad) were also varied from
10 to 50 with constant values of N = 32 angd= 10 Hz respectively. The plot obtained
is shown in Figure C.6. When comparing Figure 4ith Wwigure C.6, the two graphs look
alike in nature except their Ts values that diisra result of difference insks values
employed. This is an indication of high accuratyleveloping both the MATLAB form

of the algorithm in chapter 4 and the developed B&Abeing evaluating here.

A
all

Ts
f

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

M

|--?'- dlpha = 10,0 #alpha = 20,0 = apha = 30.0  alpha = 40.0 = apha = 5|j,|;||

Figure C.6: SSADA Generated Ts Plot against M at Mfierent Values ofa

C.4.2.4 Sensing Time (Ts) Plot against FFT sigH)

This SSADA module demonstration was carried outgisihe radio broadcasting

frequency table. Pretoria was chosen as the peefdocation or test site. Thesi was

automatically selected by SSADA. The values of Nevearied from 16 to 1024 with
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constant values of M = 4, = 10 and kes = 10 Hz respectively. The plot obtained is
shown in Figure C.7.

375
350
3
300
275
250
225

200

Ts

175
150
125
100
75
50
25

0 100 200 300 400 500 800 700 800 900 1,000

N
Figure C.7: SSADA Generated Ts Plot against FFT Sez(N)

C.4.3 SSADA Plot Module Editing Environment

In SSADA plot module, copying of the plots can mnd in two ways. The first is by
following the process for the first module wherehg ‘Ctrl + Alt + Print Scrn’ keys are
pressed together to copy the screen and pastddtseegm Microsoft Word. The second
approach is by right-clicking the mouse on the plotironment to bring down the inbuilt
editing feature incorporated in this second modateshown in Figure C.8. Apart from

copying the plot, other editing can be done onplioés.
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Figure C.8: In-built Editing Capability for SSADA P lot Module

C.4.4 SSADA Manual Calculations

The manual calculation module is the third workmgdule on the developed SSADA
working environment. Unlike the two other moduldee Bsys value is not automatically
selected. The user has to input all the requirddegaon the keyboard for SSADA
manual calculations’” module to work. Copying of thanual calculations’” module result
follows the same procedure as the first module,rele the ‘Ctrl + Alt + Print Scrn’
keys are pressed together to copy the screen astd thee results on Microsoft Word
using the paste command. A typical example ofstge is presented in Figure C.9 using

the ISM parameter employed in chapter 4.
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,(I” SSADA - Spectru m-Sensing and Detection Algarithm : i EE
S5ADA - Spectrum Sensing and Detection Algorithm
This is a plot for Radio Broadcasting Service
Plot: Variations of Ts with M

Choose Preferred Service:  |Radio Broadcasting

Run Sensing Process for this Service: Run
e Ho. of Cognitive Radios (W) From m "
. Rough Bandwidth/Fine Bandwidth (a).
Choose Preferred Location:
View Frequency Allocafions for this location: Vi
No. of Fast Fourier Transform (H):

g
[4]

Fine Sensing Frequency Resolution (Fres): | |

PLOT

Manual Calculations

Total System bandwidth, Bsys, frequency: 25 Frequencies of operation of the cognitive radios, Fen 100
Rough Bandwidth, Brs, Frequency: 75 H Number of Fourier Transform (N): 32
Fine Bandwidth, Bfs, Frequency: 75 H Number of the cognitive radio for cooperative sensing (M): 4

Fine Sensing Frequency Resolution, Fres: 10 ICALCULATE | Total Time, Ts: 0.0467

Figure C.9: Typical SSADA Manual Calculation Demongation
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