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ABSTRACT 

 
In today’s society, the need for the right information at the right time and the right place 

as well as increased number of high bandwidth wireless multimedia services and the 

explosive proliferation of smart phone and tablet devices has led to increase in demand 

for and use of radio spectrum, which is the primary enabler of wireless communications. 

With this increase, the principal engineering challenge in wireless communications 

domain is now on how to effectively manage the radio spectrum to ensure its 

sustainability for future emerging wireless devices, since virtually all usable radio 

frequencies for wireless communications have been licensed to commercial users and 

government agencies.   

 

Traditionally, the approach to radio spectrum management has been based on a fixed 

allocation policy, whereby licenses are issued to users or operators for the usage of 

frequency bands. With a license, operators have the exclusive right to use the allocated 

frequency bands for assigned services on a long-term basis. However, over the last ten 

years, this strict allocation policy has been subjected to a lot of criticism because of its 

observed contribution to radio spectrum scarcity and underutilization.  

 

In mitigating these negative effects of the current radio spectrum management policy, one 

of the suggested measures is to open up the licensed frequency bands to unlicensed users 

on a non-interference basis to licensed users. In this new spectrum access system, an 

unlicensed or secondary user can opportunistically operate in unused licensed spectrum 

bands without interfering with the licensed or primary user, thereby reducing radio 

spectrum scarcity and at the same time increasing the efficiency of the radio spectrum 

utilization.  

 

In achieving this objective, there is a need to develop a radio engine that can sense its 

environment to determine the presence of primary users. Cognitive radio is seen as the 

enabling technology for opportunistic spectrum sharing. It is a radio with the capability to 

sense and understand its environment, and proactively alter its operational mode as 

needed to avoid interference with a primary user. To ensure interference-free use to the 
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primary user, spectrum sensing and detection has been observed as a key functionality of 

cognitive radio.  

 

However, there is currently no single sensing method that can reliably sense and detect 

all forms of primary radios’ signals in a cognitive radio environment. Therefore, in order 

to achieve this goal, this thesis addresses the problem of accurate and reliable sensing and 

detecting of a primary radio signal in a cognitive radio environment. The principal 

research issue addressed is the possibility of sensing and detecting all forms of primary 

radio signals in a cognitive radio environment. This objective was achieved by 

developing an adaptive cognitive radio engine that can automatically recognize different 

forms of modulation schemes in a cognitive radio environment.   

 

The thesis pictures spectrum sensing as the combination of signal detection and 

modulation classification, and uses the term Automatic Modulation Classification (AMC) 

to denote this combined process. The hypothesis behind this detection method is that, 

since all transmitters using the radio spectrum make use of one modulation scheme or 

another, the ability to automatically recognize modulation schemes is sufficient to 

confirm the presence of a primary user signal while the opposite confirms absence of a 

primary user signal.  

 

The research work methodology was divided into two stages. The first stage involves the 

development of an automatic modulation recognition (AMR) or AMC using an Artificial 

Neural Network (ANN).  The second stage involves the development of the Cognitive 

Radio Engine (CRE), which has the developed AMR as its core component. The 

developed CRE was extensively evaluated to determine its performance. The overall 

numerical results obtained from the developed CRE’s evaluation shows that the 

developed CRE can reliably and accurately detect all the modulation schemes considered 

without bias towards a particular Signal-to-Noise Ratio (SNR) value, as well as any 

modulation scheme. The research work also revealed that single spectrum sensing and 

detection method can only be achieved when a general feature common to all radio 

signals is employed in its development rather than using features that are limited to 

certain signal types. 
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CHAPTER 1 

 

1.0 INTRODUCTION AND BACKGROUND OF THE STUDY 

 
This chapter provides the basic background of this thesis. It presents basic information on 

radio spectrum as an enabler of radio or wireless communication. The chapter also 

provides insight into the current radio spectrum regulatory policy on the worldwide level, 

and why the policy needs to be abolished. In addition, the aim and objectives of the 

research work, as well as its expected contributions to knowledge, are presented in this 

chapter. The last section of the chapter also provides detailed information on the 

organization of this thesis.  

 

1.1 Introduction 

 
Through the ages, people have devised different methods of communicating their 

messages, thoughts and needs to others. In the primitives days when human beings lived 

in small groups distributed over a relatively small geographical area, communication 

within the group took place through speech, gestures and graphical symbols. As these 

groups became larger and civilizations spread over large geographical areas, it was 

necessary to develop methods of long-distance communication (Popoola and Adeloye, 

2007). Early attempts at long-distance communication included using signs, such as 

smoke signals, gun shots, and so forth.  

 

With the beginning of the industrial revolution, the need for fast and accurate methods of 

long-distance communication became more pressing. Communications systems using 

electrical signals to convey information from one place to another over different 

transmission media provided an early solution to the problem of fast and accurate means 

of long-distance communication. In 1895, Marconi (Goldsmith, 2005) successfully 

demonstrated the first radio transmission from the Isle of Wight to a tugboat eighteen 

miles away, and gave birth to radio communication. Since this first employment of radio 
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spectrum over one hundred years ago to transmit information, both the demand for radio 

spectrum and the utilization of radio spectrum have greatly increased (Olafsson et al., 

2007). This is because of an increase in both the benefits of wireless services and users of 

the radio spectrum over the years.  

 

From its very beginning, radio or wireless communication has played a vital role in 

protecting lives and property and, subsequently, through the development of radio and 

television broadcasting, in delivering information and entertainment programming to the 

public at large. More recently, regions, countries, industries, and individuals around the 

world have realized that wireless communications and services are indispensable enablers 

of productivity and economic growth (Hatfield, 1993). This realization was as a result of 

the capability of wireless communications and services to deliver information services 

directly to individuals on the move, far from the office desk or factory floor, thereby 

increasing their personal productivity. In addition, there is an increasing realization that 

wireless communication has a critical role to play in the telecommunications and 

information sectors, as it can deliver information to fixed locations that cannot be 

economically served by hard-wired facilities because of physical infeasibility or 

prohibitively high costs. Thus, radio-based systems play increasingly important roles in 

rapidly and efficiently extending the benefits of modern telecommunications and 

information services.  

 

In radio communication, radio spectrum availability is the most valuable resource. 

Spectrum refers to electromagnetic waves that travel through the space.  These waves are 

used to convey information over a long distance without wires or other physical media. It 

consists of two major parts, namely radio waves and light waves. While measurements of 

radio waves are in terms of frequency or number of oscillations per second, hertz (Hz), 

the measurements of light waves are in terms of wavelength (meters) or energy (electron 

volts). The whole electromagnetic spectrum as shown in Table 1.1 consists of waves. The 

radio spectrum covers from 3 kHz to 300 GHz. This spectrum is divided into different 

bands. Table 1.2 shows the various frequency bands and their corresponding frequency 

ranges, as well as some applications of each of the bands. 
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Table 1.1: Electromagnetic Waves Components and their Ranges 
 

 

 

 

 

 

 
Source: Prasad (2003). 

 

 
 

Table 1.2: Radio Frequency Bands and their Corresponding Applications 
 

Frequency Band Frequency Range Applications 
Very Low Frequency 
(VLF) 

3 kHz – 30 kHz Radio navigation, maritime mobile 
(communication on ships) 

Low Frequency (LF) 30 kHz – 300 kHz Radio navigation, maritime mobile 
Medium Frequency 
(MF) 

300 kHz – 3 MHz AM radio broadcast, aeronautical 
mobile 

High Frequency (HF) 3 MHz – 30 MHz Maritime mobile, aeronautical mobile 
Very High Frequency 
(VHF) 

 
30 MHz – 300 MHz 

Land mobile, FM broadcast, TV 
broadcast, aeronautical mobile, radio 
paging, trunked radio 

Ultra High Frequency 
(UHF) 

300  MHz – 1 GHz TV broadcast, mobile satellite, land 
mobile, radio astronomy 

L band 1 GHz – 2 GHz Aeronautical radio navigation, radio 
astronomy, earth exploration satellites 

S band 2 GHz – 4 GHz Space research, fixed satellite 
communication 

 
C band 

 
4 GHz – 8 GHz 

Fixed satellite communication, 
meteorological  satellite 
communication 

X band 8 GHz – 12 GHz Fixed satellite broadcast, space 
research 

Ku band 12 GHz – 18 GHz Mobile and fixed satellite 
communication, satellite broadcast 

K band 18 GHz – 27 GHz Mobile and fixed satellite 
communication 

Ka band 27 GHz – 40 GHz Inter- satellite communication, mobile 
satellite communication 

Millimeter 40 GHz – 300 GHz Space research, Inter- satellite 
communications 

 

Source: Prasad (2003). 

 

Electromagnetic waves Range 

Radio waves 3 kHz - 300 GHz (Frequency) 
Sub-millimeter waves 100 µm – 1 mm (Wavelength) 
Infrared 780 nm – 100 µm (Wavelength) 
Visible light 380 nm – 780 nm (Wavelength) 
Ultraviolet 10 nm – 380 nm (Wavelength) 
X-ray 120 eV – 120 keV (Energy) 
Gamma rays 120 keV and above (Energy) 
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Radio spectrum is a natural resource with some special characteristics (Hatfield, 1993). 

The key characteristics of the radio spectrum are the propagation features and the amount 

of information that signals can carry (Cave et al., 2006). In general, according to these 

authors, signals sent using the higher frequencies reach shorter distances, but have a 

higher information-carrying capacity. These physical characteristics of radio spectrum 

limit the currently identified range of applications for which any particular frequency 

band is suitable. 

 

On the other hand, unlike most natural resources, such as oil, coal, iron or other mineral 

resources, radio spectrum’s unique characteristics is that it is not consumed by use. This 

means that the resource is infinitely renewable. Since it is renewable, radio spectrum 

cannot be accumulated for later use but must be properly managed. These factors 

therefore necessitate an efficient process for making radio spectrum available for 

purposes which are useful to society (Cave et al., 2006). 

 

 1.2 Radio Spectrum Management 

 

As a public resource, radio spectrum is being managed by governments to ensure that it is 

shared equitably to promote the public interest, convenience, or necessity (Nunno, 2002). 

It is being tightly regulated around the world by both the international and national 

regulators. At international level, the International Telecommunication Union (ITU) is 

managing spectrum. The International Telecommunication Union-Radiocommunication 

(ITU-R) Sector maintains a table of frequency allocations which identifies spectrum 

bands for about forty (40) categories of wireless services with the aim of avoiding 

interference among those services. Once the broad categories are established, each 

country may allocate spectrum for various services within its own borders in compliance 

with ITU’s table of frequency allocations. The table divides the world into three regions. 

Region 1 includes Africa and Europe, region 2 includes North and South America, and 

region 3 includes Australia and Asia.  
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At the national level, the use of radio spectrum in most countries is currently being 

managed by government agencies rather than by market forces. For instance, in the 

United Kingdom, it is being regulated by the Office of Communications (Ofcom) while 

the Federal Communications Commission (FCC) is responsible for radio spectrum 

regulation in the United States. The Independent Communications Authority of South 

Africa (ICASA), the Nigerian Communications Commission (NCC), the Ministry of 

Communication Technology and Transport (MCTT), the Communications Commission 

of Kenya (CCK) and the National Communications Authority (NCA) to mention but a 

few, are responsible for radio spectrum regulation in South Africa, Nigeria, Tunisia, 

Kenya and Ghana respectively. In most of these countries, the primary tool of spectrum 

management by government is a licensing system. This involves spectrum being 

apportioned into blocks for specific uses, and assigned licenses for these blocks to 

specific users or companies. This divide and set aside policy grants exclusive right to use 

the assigned spectrum to licensed users on a long-term basis.   

 

The main advantage of the licensing approach is that the licensee completely controls its 

assigned spectrum and can thus unilaterally manage interference between its users and 

their quality of service. However, there has recently been numbers of identifying 

disadvantages of traditional “once and for all” means of allocation of radio spectrum. One 

of the disadvantages of this policy is the impossibility of re-allocating spectrum to 

different technologies or other users who might have better use for the spectrum 

(Olafsson et al., 2007). Another observed disadvantage of the approach according to 

Olafsson et al. (2007) is that the allocation procedures were lengthy and bureaucratic, 

opening up the possibility that the decision-making process could be influenced by non-

relevant factors.  

 

Furthermore, the once and for all allocation of radio spectrum that gives exclusive right 

of using the spectrum to the licensed owners has been observed as the main cause of both 

spectrum underutilization and spectrum artificial scarcity (Akyildiz et al., 2006; Haykin, 

2005). This is because allocation by fixed spectrum assignment policy encourages the 

sporadic usage of spectrum as shown in Figure 1.1. The figure, which shows the signal 

strength distribution over a large portion of the radio spectrum, reveals that while the 
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spectrum usage is concentrated on certain portions of the spectrum, a significant amount 

of the spectrum remains unutilized in some bands. This necessitates the need for a more 

flexible means of controlling radio spectrum usage and control. 

 

      

 
  

Sources: Akyildiz et al. (2006). 
  

Figure 1.1: Spectrum Utilization 
 
 
  

1.3 The Need for Flexibility in Spectrum Management        

 

Based on the disadvantages of the current fixed or rigid spectrum assignment policy, as 

well as increase in demand for radio spectrum, coupled with the increase in deployment 

of new wireless applications and devices in the last decade, it is obvious that strict 

command-and-control management of the spectrum is not suitable for the increasingly 

dynamic nature of spectrum usage. This has geared the regulatory body, such as the FCC, 

to begin to consider more flexible and comprehensive uses of available spectrum (FCC, 

2002). The essence of this flexibility in spectrum usage is to deal with the conflicts 

between spectrum scarcity and spectrum underutilization, as well as to provide spectrum 

for emerging wireless communication technologies. Flexible usage means that an 

unlicensed or secondary user can opportunistically operate in an unused licensed 
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spectrum bands. According to Song et al., (2007) and Chen et al., (2008), this new 

scheme is termed Opportunistic Spectrum Access (OSA) or Dynamic Spectrum Access 

(DSA).  

 

In this new scheme for spectrum access control and management, the secondary users 

must not cause any interference to the primary or licensed users, as well as the other 

unlicensed users sharing the same portion of the spectrum. As the primary user still holds 

exclusive right to the spectrum; it is not its responsibility to mitigate any additional 

interference caused by unlicensed or secondary user’s operation. It is the secondary user 

that periodically has to sense the spectrum to detect both the primary and other secondary 

users’ transmissions and should be able to adapt to the varying spectrum conditions for 

mutual interference avoidance. An approach, which can meet these goals according to 

Čabrić et al. (2005), is to develop a radio that is able to reliably sense the spectral 

environment over a wide bandwidth, detect the presence/absence of a legacy or primary 

user, and use the spectrum only if communication does not interfere with the legacy user. 

Radios that have such capability are termed cognitive radios (Chakravarthy et al., 2005; 

Haykin, 2005; Akyildiz et al., 2006). 

 

1.4 Enabler of Flexibility Spectrum Management  

 

In order to implement dynamic spectrum management and break the spectrum 

inflexibility policy, Olafsson et al., (2007) suggested that the following three close- 

coupling elements: spectrum, ownership and applications needs to be broken. This is 

because the tight relationships, as shown in Figure 1.2, among these three elements 

support the present rigid regulatory policy.   Hence, to break the interdependence of these 

three elements, a radio device that is neither application-bound nor licensed-bound will 

be the only solution.   
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Source: Olafsson et al. (2007) 

Figure 1.2: Relationship between Applications, Ownership and Spectrum 
 

 

Cognitive radio has been observed as the only radio that has such capability. It is such a 

radio that changes its transmitter parameters based on interaction with the environment in 

which it operates (Akyildiz et al., 2006). Cognitive radio is a promising technology for 

overcoming the apparent spectrum scarcity problem, as well as improving 

communications efficiency. It has been described as an intelligent wireless 

communication device capable of adapting and reconfiguring itself to achieve the goal of 

satisfying the needs of the end-user. The idea of cognitive radio is that spectrum licensed 

to primary users may be used in an unlicensed fashion by secondary users, if these 

secondary users do not create harmful interference for the primary users. Therefore, a 

cognitive radio needs to continuously observe and learn the environmental parameters, 

identify the primary requirements and objectives of the user, and appropriately decide 

upon the transmission parameters in order to improve the overall efficiency of the radio 

communications.  

 

Historically, Mitola and Maguire (1999) first coined the term cognitive radio, and it has 

recently become a topic of great research interests. Cognitive radio is a spectrum sharing 

technology like Ultra-Wide-Band (UWB) (FCC, 2002). The key differences between 

them is the fact that while the UWB signal spectrum overlaps with the primary user 

signal spectrum, a cognitive radio’s signal spectrum resides solely in the unused spectrum 

Ownership 

Applications 

Spectrum 
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segments or “spectrum hole” (Tang, 2005). Though cognitive radios can coexist with the 

primary user or owner of the spectrum, they are considered the lower priority or 

secondary users. Hence, their fundamental requirement is to ensure interference-free to 

communication for the potential primary owner or user in their vicinity. Therefore, to 

ensure interference-free communication, the cognitive radio must frequently sense all 

degrees of freedom, which include time, frequency and space, Čabrić and Brodersen 

(2005) while minimizing the time in sensing (Čabrić et al., 2006) 

 

Spectrum sensing has been observed as a key enabling functionality to ensure that 

cognitive radios do not interfere with primary users (Haykin, 2005; Akyildiz et al., 2006; 

Gandetto and Regazzoni, 2007; Čabrić et al., 2006; Larsson and Regnoli, 2007). One way 

to sense the spectrum is by scanning the corresponding band for sometime and detect 

whether any primary signal is present. If no signal is detected, which is a condition 

known as vacant frequency or spectrum hole, it may be concluded safe to begin 

transmission at a small-predetermined power (Larsson and Regnoli, 2007). 

 

There are two spectrum-sensing techniques proposed and theoretically analyzed in the 

literature using different detection methods. These detection methods can be categorized 

into different classes. Two of such classes are coherent and non-coherent detection 

methods. The different between them is that, while a coherent detection method is used 

when the cognitive radio has a priori knowledge of the primary user signal’s 

characteristic, the non-coherent detection method is used for radio environment where the 

cognitive radio has no a priori knowledge of the characteristic of the primary user’s 

signal.  Other classes of detection methods are narrow band and wide band detection 

methods. However, with these two spectrum sensing techniques and different detection 

schemes in place, the fundamental problem remains is how to detect the presence of weak 

primary user’s signal in a cognitive radio environment or network (Larsson and Regnoli, 

2007).   

 

The problem of weak signal detection for cognitive radio has previously been studied in 

Larsson and Regnoli (2007), Čabrić and Brodersen (2005), Hoven (2005), Wild and 

Ramachandran (2005), Haartsen et al. (2005) and Čabrić et al. (2005). Hoven (2005) for 



 10

instance, in his Master’s Thesis, as reported by Reddy (2008) showed that signal 

detection is very difficult if there is uncertainty in the receiver noise variance. Wild and 

Ramachandran (2005) in detecting weak primary signals, took the advantage of Local 

Oscillator (LO) leakage power emitted by the Radio Frequency (RF) front end to locate 

the primary receivers and guaranteed that cognitive radio will not interfere with primary 

receivers once their locations are known. Haartsen et al., (2005) after establishing the fact 

that it will be very hard for cognitive radio to detect weak signals without a priori 

knowledge of the existing service signal signature, then suggested a new methodology to 

identify weak signals based on studying signal characteristics. This suggestion supports 

the suggestions of Čabrić et al. (2005) and Le et al. (2005) that had also suggested that 

the perfect identification of a primary user signal would be based upon the signal 

characteristics or signatures and signal classification system respectively. 

 

Based on these suggestions, Artificial Intelligence (AI) techniques using rule-based 

systems, neural networks and stochastic models, are various approaches for the detection 

of a signal with known signature. However, these methods may have problems in 

detecting signals deviating from known signature, since most of the wireless signatures 

have either static, which are previously known signatures or dynamic, which are those 

deviating from the known signatures.  

 

Judging from this number of recent research works on radio spectrum sensing and 

detection, it is clear that primary radios’ signals sensing and detection is important for the 

successful adoption of a cognitive radio in a licensed spectrum. However, with the 

limitations observed in virtually all the sensing and detection methods proposed and 

analyzed in the literature, it is also clear that there is not a single sensing and detection 

method that can currently detect all forms of primary radios’ signals in a cognitive radio 

environment or network. Hence, for general acceptability of cognitive radio operation, it 

has become a matter of urgency to devise an effective sensing and detection method that 

can sense and detect the presence of all forms of primary radio signals, irrespective of 

their natures, whether they are weak or strong, pre-known or unknown. This is the 

motivation behind this research work, because being able to reliably detect and sense 

different radio environments will definitely enhance the general acceptability of cognitive 
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radio technology. In addition, it will indeed enhance spectrum usage efficiency and 

reduce both spectrum scarcity and underutilization.  

 

1.5 Problem Statement/Motivation  

 

In sensing and detecting the presence of a primary user signal, numerous detection 

schemes have been employed. However, the challenges being presently researched are 

devising the effective technique(s) that can detect all forms of primary radios signals 

present in the cognitive radio environment. In this research work, therefore, an automatic 

modulation identification technique using an Artificial Neural Network (ANN) is 

proposed since all signal transmitting in the spectrum bands are modulated using one 

form of modulation technique or another.  The main motivation behind using Automatic 

Modulation Recognition (AMR) in this research work is based on the inherent potential 

of AMR in accurate recognition of modulation communication signals without fore-

knowledge of its feature. The AMR for the study is developed using ANN, which has 

ability to learn from past data and generalize its past experience when responding to new 

input data (Kasabov, 1998). In addition, ANN was considered as the best choice for this 

study because of its following advantages.  

 

• The network can make fast decisions due to its massively parallel and 

decentralized computing system, being an analogy of the human brain; and  

• It gives results or outcomes that are very reliable and robust to interference 

from noise (Kasabov, 1998). 

 

The approach used in this thesis, assumed exclusive use of the channel by the primary 

user. Hence, once the cognitive radio or secondary user identifies any modulation scheme 

on a channel, the presence of a primary user is automatically inferred. Similarly, when it 

is safe to transmit on the licensed spectrum by a secondary user or cognitive radio to 

avoid interference to the primary user, the secondary user or cognitive radio can easily 

determine when it does identify or recognize any modulation scheme on the channel.  
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1.6 Research Aim and Objectives 

 

From the discussions in the previous sections it is evident that the development of a 

reliable and accurate spectrum-detection method is fundamental to adoption of a DSA, 

which obviously can mitigate the current inefficient usage of radio spectrum, as well as 

enhance the availability of radio spectrum for emerging wireless devices as both the users 

and applications of wireless communication is increasing.  In light of this, this research 

work is conceived to develop a cognitive radio engine that can detect all forms of radio 

signals in a cognitive radio environment.   This aim of the research work will be achieved 

through the following objectives: 

 

(i) By developing an automatic modulation recognition that can automatically detect 
both analog and digital modulation schemes without any pre-knowledge about the 
modulation scheme;  

 
(ii) By developing a sensing time algorithm that can improve cooperative spectrum 

sensing reliability among secondary users collaborating together to detect a 
primary radio signal in a cognitive radio environment; and. 

 
(iii) By developing a cognitive radio engine that is self-sufficient for automatic 

recognition/identification of all forms of modulation schemes.  
 
 
 

1.7 The Relevance of this Research Work 

 

Despite the fact that a series of studies have been carried out on the development of a 

cognitive radio engine that can detect different primary radio signals in a cognitive radio 

environment or network, none of these has been able to detect all forms of radio signals 

due to fundamental limitations of the central features employed in developing those 

detection methods. Preliminary investigations into a series of earlier-developed detection 

methods reveal that most of their central detection features are based on specific 

characteristic of radio signals, instead of on general features common to all radio signals. 
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Based on this observation, a novel detection method is proposed in this research work 

using the only best-known feature common to all radio transmitting signals in the radio 

spectrum. The common feature employed as the core detection feature in this research 

work is an Automatic Modulation Recognition (AMR) classifier that can recognize all 

forms of modulation signals without any pre-knowledge of the signals.  

 

In this research work, spectrum sensing and detection is defined as a combination of 

signal detection and modulation recognition. Hence, automatic modulation recognition or 

classification was used as the general term to denote this combined process. The 

numerical results of performance from the developed cognitive radio engine for this 

research work proves the suitability and practicability of using automatic modulation 

identification or recognition as means of detecting the presence of all forms of 

communication signals in the cognitive radio environment, which is the major 

contribution of this research work to knowledge.  

 

1.8 The Thesis Outline 

 

This thesis contains seven chapters, as illustrated in Figure 1.3. This chapter, which is the 

first chapter, contains the introduction, the study background, motivation for the study 

and the problem statement. Other information presented in this chapter includes the aim 

and objectives of the study, as well as the relevance of the research work.  

  

The second chapter provides a literature survey on software-defined radio and cognitive 

radio technology. The chapter also provides in-depth reviews on different sensing and 

detection methods in the literature. Reviews on different automatic modulation 

recognition techniques for different modulation schemes, such as analog and digital, are 

also presented in the chapter. It also presents a literature review on Artificial Neural 

Networks (ANNs). Various extraction keys for both analog and digital modulation 

schemes classifiers are equally reviewed in the chapter.  
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The third chapter focuses on the development of the three automatic modulation 

recognition classifiers, namely analog, digital, and combined analog and digital, for the 

research work. The methodology employed in extracting the feature keys used as input 

data sets for the three classifiers is fully discussed in this chapter. The chapter highlights 

the training and testing of the three classifiers, as well as the classifiers’ architectures. 

The performances of the three developed classifiers are presented also in the chapter. 

 

The fourth chapter of this thesis focuses on cooperative spectrum sensing optimization. 

The sensing time algorithm used in chapter five for the development of the cognitive 

radio engine for the research work is developed in this chapter. This chapter also provides 

detailed information on how to improve cooperative spectrum sensing gain without 

incurring cooperative overhead.    

 

The fifth chapter of this thesis focuses on the development of the Cognitive Radio Engine 

(CRE) for the research work. Details on the CRE’s development are described in the 

chapter. The sixth chapter contains details on analysis carried out on the developed CRE. 

The results obtained in the course of testing the developed CRE is presented and 

discussed in line with the aim and objectives of the study. The seventh chapter, which is 

the final chapter of this thesis, summarizes the study output based on the analysis carried 

out in chapter six. Conclusions and recommendations based on the findings from the 

research work are also presented in this chapter.  
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Figure 1.3: The Dissertation Outline Flowchart 

Chapter 1 
• introduction 
• background of the study 
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• research aim and objectives 
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• review on AMR 
• review on ANN 
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• performance evaluation of the developed 

combined classifier  
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digital modulated signals  
• development of digital classifier using 
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• performance evaluation of the developed 
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• the study analysis  
• overall performance evaluation of 

the CRE 

 

Chapter 5 
• development of the study CE  
• development of the study SDR 
• development of the study CRE 
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CHAPTER 2 

 

2.0 LITERATURE REVIEW  

 
This chapter provides an in-depth literature survey on radio evolution, Software Defined 

Radio (SDR), Cognitive Radio (CR), automatic modulation classification using various 

methods and artificial neural network. In addition, the chapter reviews the principle of 

operation of CR as well as different sensing and detection methods in the literature. The 

goal of the chapter is to enlighten readers on some of the developmental history in radio 

technology and terms that will be later employed. 

 
 

2.1 Radio Evolution Technology 

 

Historically, radios have been fixed-point designs (Fette, 2006). However, over the last 

decade, the design and implementation of wireless devices has undergone a substantial 

transition from pure hardware-based radios to radios that involve a combination of 

hardware and software. The functions that were formerly carried out by hardware can 

now be performed by software, and the new functionality can easily be deployed on a 

radio by simply updating the software running on it.  Part of this change has ushered in 

the advent of SDR, which is currently standard radio in the military arena and is gaining 

favour in academic and commercial environments because of its ability to support 

wireless communication research and implementation of real-world radio system.  

 
Unlike the traditional radio devices that had fixed design and configuration, emerging 

designs are allowing for much more flexibility in these areas. The culmination of this 

additional flexibility produced the software capable radio, which later transitioned into 

the software programmable radios that gave birth to SDR (Polson, 2004). The next step 

along this path yielded the aware radio and the adaptive radio (Polson, 2004).  In the 

same vein, a more recent development has been the advent of CR. The transition in the 

radio technology is illustrated in Figure 2.1. 
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Figure 2.1: The Evolution of Radio Technology 
 

 

CR is a form of radio in which a transceiver can intelligently detect which 

communication channels are in use and which are not, and thus instantly move into 

vacant channels while avoiding occupied ones. This optimizes the use of the available 

radio spectrum while minimizing interference to other users. It is an extension of modern 

SDR with AI technology. The radio encompasses all the re-configurability attributes of a 

conventional SDR, while possessing the intelligence to automatically adapt operating 

parameters, based on learning from previous events and current inputs to the system 

(Newman et al., 2007). The two components of the CR, the SDR and AI, will be briefly 

overviewed before reviewing the CR technology. 

 

2.2 Software Defined Radio 

 

The term Software Defined Radio (SDR) was coined in 1991 by Joseph Mitola, who 

published the first paper on the topic in 1992 (Mitola, 1992). Although the concept was 

first proposed in 1991, according to the Free Encyclopedia (2009), SDR has its origin in 

the defense sector since the late 1970s in both the United States (US) and Europe. One of 

the first public software defined radios’ initiatives was a US military project named 

SpeakEasy (Lackey and Upmal, 1995). As reported by these authors, the primary aim of 
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the SpeakEasy project was to use programmable processing to emulate more than ten 

existing military radios, operating in frequency bands between 2 and 2000 MHz. Another 

designed goal of the radio, as reported, was to easily be able to incorporate new coding 

and modulation standards in the future, so that military communications can keep pace 

with advances in coding and modulation techniques. 

 
Conventionally, software defined radio is a radio communication system where 

components that have typically been implemented in hardware, like mixers, filters, 

amplifiers, modulators/demodulators, detectors and so forth, are instead implemented 

using software on a personal computer (PC) or other embedded computing devices (Free 

Encyclopedia, 2009).  

 

According to Lackey and Upmal (1995), a SDR consists of the same basic functional 

blocks as any digital communication systems. However, SDR lays new demands on many 

of these blocks in order to provide multiple bands, multiple service operation and re-

configurability needed for supporting various air interface standards. In order to achieve 

this flexibility, the boundary of digital processing should be moved as closely as possible 

to antenna, while specific integrated circuits that are used for baseband signal processing, 

need to be replaced with programmable implementations (Salcic and Mecklenbrauker, 

2002).  The idea behind SDR is to do all the modulation and demodulation with software, 

instead of using dedicated circuitry.     

 
In SDR, like the traditional radio, the signal is still being received by an antenna. 

However, in SDR, the signal is digitally converted to a sequence of numbers representing 

the value of the signal at regular time intervals (Katz and Flynn, 2009). These digital 

values are then processed in software, while the resulting output can then be converted 

back into audio, video or remaining data. The waveforms in SDR are therefore generated 

as sampled digital signals, converted from digital to analog via a wideband Digital-to-

Analog Converter (DAC). The receiver similarly employs a wideband Analog-to-Digital 

Converter (ADC) that extracts, down-converts, and demodulates the receive waveform or 

signal using software built into a general-purpose processor or PC (Bedell, 2005). The 

radio employs a combination of techniques that include multiband antennas and RF 

conversion; wideband ADC and DAC conversion and the implementation of Intermediate 
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Frequency (IF), baseband and bit stream-processing functions in general-purpose 

programmable processors, as shown in Figure 2.2.   

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2: Software Defined Radio Communication System 
 
 

2.3 Implementation of Software Defined Radio 

 

Figure 2.2 shows a typical block diagram for a software-defined radio. It implementation 
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motherboard and its associated daughterboard. The USRP motherboard provides the 

ADC/DAC and Field Programmable Gate Array (FPGA) functionality, while 

daughterboard attached to the USRP motherboard provides the frequency translation 

functionality of the RF front-end (FE).  The picture of a USRP motherboard with the 

basic daughterboard’s slots is shown in Figure 2.3. The daughterboard’s slots are labeled 

J66X (where X = 6, 7, 8 and 9).  
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SDRs were developed using GNU Radio and USRP. This involves writing code to 

process signals and control the USRP. 

 
Source: Patton (2007) 

 
Figure 2.3: USRP Motherboard without Daughterboard 
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mentioned above, GNU Radio uses a modular block-based architecture with a hybrid 

Python/C++ programming model. This combination of Python and C++ provides a 

convenient and high performance platform for developers to use in the development of 

SR systems (Troxel et al., 2008). According to these authors, one of the features of the 

GNU Radio framework is an extensive library of pre-defined and tested functional blocks. 

The essence of these blocks is to provide signal processing functionality, encapsulate 

sources and sinks of data, as well as providing simple type conversions. According to 

them, the blocks are written in C++ with an automatic generated Python wrapper or 

interface that allows them to be manipulated, connected and utilized in Python. 

 

GNU Radio software typically consists of four different elements: Sources, Sinks, Flow 

graphs and Schedulers. 

 

2.3.1.1 Gnu Radio Sources 

Normally, typical GNU Radio sources usually have at least one source. Each source 

forms the head of a processing chain or flow graph. A good example of a GNU Radio 

source is USRP radio. The USRP radio is a radio FE that can be connected to a computer 

via a USB 2.0 or Gigabit Ethernet. USB 2.0 is used for connecting USRP version 1 or 

USRP1 to PC while Gigabit Ethernet is used for USRP version 2 or USRP2.  

 

2.3.1.2 Gnu Radio Sinks 

Like GNU Radio sources, typical GNU Radio will normally have a least one sink. Each 

sink is the tail of a flow graph. An example of a sink is a sound card.  

 

2.3.1.3 Gnu Radio Flow Graphs 

A GNU Radio also has a flow graph. The flow graph links together each source and sink 

pair as well as any intermediate blocks. The intermediate block(s) is or are required to 

transform the data stream from a source into a format that is understandable by the sink. 

A good example of such conversion is the conversion of an FM radio signal that is 

received by a USRP into an audio signal that can be played through a sound card.      
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2.3.1.4 Gnu Radio Schedulers 

A scheduler of a GNU Radio is associated with each active flow graph. The essence of 

each scheduler is to move data through its flow graph. A scheduler iterates through the 

blocks in the flow graph in order to identify blocks’ conditions per time. In its iteration 

process, it will discover blocks that have sufficient data on their input(s) and sufficient 

data on their output(s), it will then trigger the processing function for those blocks to 

enable it to process data. Figure 5.4 shows a typical example of GNU Radio application 

with these four components. 

 

2.3.2 Universal Software Radio Peripheral  

 

The common hardware platform to run GNU Radio on is the USRP. USRP is a device 

that enables the creation of a SDR (Gahadza et al., 2009), using any computer with either 

a USB 2.0 port or Gigabit Ethernet port depending on the version of USRP. With 

different plug-on daughterboards nowadays, it is now possible to use USRP on different 

radio frequency bands. A good example of USRP is Ettus’ USRP that allows general-

purpose computers to function as a high bandwidth SRs.  

 

The USRP1 motherboard for instance, contains four 12-bits 64M samples/sec ADCs, four 

14-bit 128M samples/sec DACs, an FPGA for IF up/down conversion, and a 

programmable USB 2.0 controller to transfer control signals and baseband data sequences 

between the host and the hardware.  The motherboard can support up to two pairs of 

transmitter/receiver (Tx/Rx) radio front ends in the form of daughterboards. Figure 2.4 

shows a simple block diagram of USRP1. 

 

There are multiple daughterboards options for different frequency bands. XCVR2450 

transceiver daughterboards in junction with USRP2 are employed in this research work. 

The USRP2 full description and mode of operation are presented in Appendix B of this 

thesis.  
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Figure 2.4: USRP1 Block Diagram 
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different settings (Maldonado et al., 2005; Rondeau et al., 2004). In a similar research 

conducted by Newman et al. (2007), GA was equally employed. Their work goes beyond 

only demonstrating GA output selection, but also provides the numerical analysis of the 

relationships between the environmental parameters and the transmission parameters. 

 
Several other AI methods have been employed in the implementation of a cognitive radio 

engine. A few of such methods are rule-based systems (Newman, 2008), case-based 

reasoning (He et al., 2009), fuzzy logic (Shatila et al., 2009), and neural networks 

(Tsagkaris, et al., 2008). A schematic diagram of the AI cognitive radio-learning 

algorithm employed by Zhao et al. (2006) is shown in Figure 2.5. The AI cognitive radio- 

learning algorithm is referred to as a Radio Environment Map (REM) enabled situation-

aware learning algorithm. It comprises both a high-level and low-level learning loop. The 

high-level loop is based on case-based learning/reasoning, which leverages various 

learning algorithms to select the most appropriate learning method for the current radio 

scenario. The low-level loop is responsible for optimizing the corresponding parameters 

used in the specific learning algorithm.   

     

2.5 Cognitive Engine 

 

The Cognitive Engine (CE) is the intelligence system behind a CR or a node in a 

Cognitive Network (CN). The CE combines sensing, learning and optimization to control 

the CR or CN. A distinctive feature of CRs is their capability of making decisions and 

adaptations based on past experience, on current operational conditions and possibly also 

on future behaviour predictions (Mackenzie et al., 2009). According to these authors, an 

underlying aspect of this concept is that CRs must efficiently represent and store 

environmental and operational information in databases. These resulting databases, which 

can be individual or shared, enable different functionalities of the CE. A possible 

embodiment of such databases is discussed in form of REMs. 

 

The application of REMs to CR systems was first proposed in the context of unlicensed 

wireless wide area networks in Batra et al. (2004) and Krenik and Batra (2005). A 

detailed study of the use of REMs by different CEs is discussed in (Zhao et al., 2006; 
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Zhao, et al. 2007a; Zhao, et al. 2007b). In REMs, the database contains information that 

characterizes the environment in a given geographical area such as spectral regulations, 

geographical features and the locations and activities of radios (Zhao, et al., 2006; Zhao, 

et al., 2007a; Zhao, et al., 2007b). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     

Source: Zhao, et al., (2006) 
 

Figure 2.5: System Flow and Framework of REM-Enabled Situation-Aware 
Learning Algorithms 
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around the CR. A source of global REM is usually the network infrastructure, while a 

local REM is usually obtained, for example, by each radio from its own spectrum sensing 

and by monitoring transmissions of nearby CRs and Primary Users (PUs). The 

information in REMs is vital, as CRs uses it to optimize their transmit waveforms and 

other parameters across the protocol stack.  

  

2.6 Area of Application of Cognitive Radio 

 

Technology is futile without its application. Out of many applications of CR, DSA has 

been the most recognized application of CR. DSA is a decentralized approach to 

spectrum allocation policy that allows a communication device to operate on any unused 

spectrum. In this new paradigm, unlicensed or secondary users can opportunistically 

operate in an unused licensed spectrum, as long it does not cause interference to the 

licensed or primary users, thereby increasing the efficiency of spectrum utilization.        

 

As shown in Figure 2.6, DSA strategies can be classified into three basic models: The 

dynamic exclusive-use model, Open sharing model, which is also known as the spectrum 

common model and Hierarchical access model.  

 

 

 
 
 
  
 
 
 
 
 
 
 
 

 
Source: Zhao and Swami (2007) 
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2.6.1 Dynamic Exclusive Use Model 

This model maintains the basic structure of the current spectrum allocation policy, 

whereby spectrum bands are licensed to users for exclusive use. This method of spectrum 

allocation policy has led to many successful applications, like broadcasting and cellular, 

which can be cited as evidence by the proponents of spectrum property rights (Ileri and 

Mandayam, 2008). However, the method has also been criticized as inefficient in the 

overall use of spectrum. For instance, a recent report presenting statistics regarding 

spectrum utilization show that only about 13% of the allocated spectrums were utilized 

(McHenry and McCloskey, 2004). In addition to the problem of underutilization 

characterizing the current fixed spectrum allocation policy, the inherent political 

inefficiency of government controllers also plays a role in the poor effectiveness of the 

current allocation policy. 

 
To correct this problem, the proposed idea is to introduce flexibility to spectrum access. 

Two approaches have been proposed under this model. The first approach is spectrum 

property rights (Coase, 1959; Hatfield and Wieser, 2005). As reported by Zhao and 

Swami (2007), this approach allows licensees to sell and trade spectrum, and to freely 

choose technology.   

 

The second approach is dynamic spectrum allocation (Xu et al., 2000), which was 

brought about by the European DRiVE project. Its aim, as reported by Zhao and Swami 

(2007), was to improve spectrum efficiency through dynamic spectrum assignment by 

exploiting the spatial and temporal traffic statistics of different services. Similar to the 

current fixed spectrum allocation policy, this strategy allocates, at a given time and 

region, a portion of the spectrum to a radio access network for its exclusive use. Based on 

an exclusive-use model, it has been established that both spectrum property rights and 

dynamic spectrum allocation cannot eliminate the current problem of spectrum 

underutilization with increasing wireless traffic (Zhao and Swami, 2007).       
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2.6.2 Open Sharing Model 

The open sharing model, which is also referred to as spectrum commons model (Lehr and 

Crowcroft, 2005), puts all users on equal footing (Zhao and Swami, 2007), provided that 

users obey specific rules similar to current unlicensed Industrial, Scientific and Medical 

(ISM) radio bands. According to Zhao and Swami (2007), advocates of this model draw 

support from the phenomenal success of wireless services operating in the current 

unlicensed ISM radio band, like Wireless Fidelity (Wi-Fi).     

 

2.6.3 Hierarchical Access Model 

Under this radio spectrum access model, the radio spectrum is viewed as having a 

primary or licensed user, as well as a secondary or unlicensed user. The model is 

considered a hybrid of the other two models previously discussed. It is fundamentally 

different from the other two models in both technical and regulatory aspects. The 

fundamental idea of the model is to open licensed spectrum to unlicensed users, but with 

Interference Avoidance (IA) to the licensed users. Based on this concept, two different 

approaches to radio spectrum sharing between licensed and unlicensed users have been 

considered, namely spectrum underlay and spectrum overlay, which are further discussed 

below.  

 

2.6.3.1 Spectrum Underlay  

The spectrum underlay technique is a spectrum access system whereby signals with a 

very low spectral power density can coexist as secondary users (SUs) with the PUs of the 

frequency bands. The technique imposes severe restraints on the transmission power of 

SUs so that they operate below the noise floor of PUs. An UWB transmitter that uses this 

technology usually spreads its transmitted signal over a wide frequency band in order to 

achieve short-range high data rate with extremely low transmission power. The detection 

component for PUs is not required in spectrum underlay, since the energy of the 

transmission signals by the SUs are spread over a very wide frequency range, thus only 

negligibly increasing the interference temperature (Berthold et al., 2007).  
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However, according to Khoshkholgh et al., (2010), satisfying the interference constraint 

is technically challenging, since the interference power constraints associated with 

underlay access strategy only allows short-range communications (Srinivasa and Jafar, 

2007). In addition, in underlay spectrum sharing, the secondary user must satisfy the 

interference threshold condition even when the primary user is idle. During this idle 

period, fulfilling the interference constraint limits the transmission power of the 

secondary user, hence reducing its achievable transmission capability. More so, in 

underlay access strategy, the achievable capability of the secondary user is further 

reduced during the busy periods of the primary user because of the interference imposed 

by the primary user’s activity at the secondary user’s receiver. In order to tackle these 

aforementioned issues, overlay spectrum sharing was proposed. 

 

2.6.3.2 Spectrum Overlay  

The spectrum overlay technique is a spectrum access system whereby a SU uses a 

spectrum band from a PU only when it is free. Unlike the underlay system, which hides 

the transmission signal under the noise level of the PU, overlay system must have the 

capability of dynamic spectrum access, as they must work dynamically around the 

licensed system’s allocation. This technique is based on a detection and interference- 

avoidance mechanism. This mechanism requires the SU to sense the frequency spectrum 

and thus, if a PU is active, the channel will not be used.  

 
The spectrum overlay access strategy was first envisioned by Mitola (1999) under the 

term spectrum pooling. It was later investigated by the Defense Advance Research 

Projects Agency neXt Generation (DARPA XG) program under the term OSA (Zhao and 

Swami, 2007). Unlike the spectrum underlay, this radio spectrum access strategy does not 

impose severe restrictions on the transmission power of SUs, but rather there are 

restrictions on when and where SUs can transmit.  

 
Spectrum overlay, according to Fujii and Suzuki (2005), can be applied in either temporal 

or spatial domain. When using the radio spectrum in temporal domain, SUs aim to exploit 

temporal spectrum opportunities resulting from the busy traffic of primary users. On the 

other hand, when the radio spectrum is used in spatial domain, SUs aim to exploit 
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frequency bands that are not used by PUs in a particular geographic area. This unused 

portion of the licensed spectrum is known as ‘white space’ or ‘spectrum hole’. Haykin 

(2005) defines it as, “a band of frequencies assigned to a primary user but at a particular 

time and specific geographic location the band is not being utilized by that user”. The 

special radios that are enablers of OSA or DSA that can use spectrum holes in an 

opportunistic fashion are known as cognitive radios.  

 

2.7 Cognitive Radio 

 

A cognitive radio is a new paradigm in radio communications that promises an enhanced 

utilization of the limited radio spectral resource (Simeone et al., 2007). According to 

these authors, the basic idea is to employ a hierarchical model, where both primary and 

secondary users coexist in the same frequency spectrum.  Unlike the conventional radio 

that is only allowed to operate in a designated spectrum band due to regulatory 

restrictions, CR has the capability to operate in different spectrum bands. It is a form of 

wireless communication system in which a transceiver can intelligently detect which 

communication channels are in use and which are not in use, and instantly move into 

vacant channels while avoiding occupied ones.  

 
The term ‘cognitive radio’ was first used in Mitola III and Maguire (1999). It is a term 

that defines the wireless system that can sense, be aware of, learn from, and adapt to the 

surrounding environment according to inner and outer stimuli. The radio provides a 

tempting solution to the spectral crowding problem by introducing the opportunistic 

usage of frequency bands that are not occupied by their licensed users. The radio concept 

proposes to furnish the radio system with the abilities to measure and be aware of 

parameters related to the radio channel characteristics, availability of spectrum and power, 

interference and noise temperature, available networks, nodes, and infrastructures, as well 

as local policies and other operating restrictions (Arslan and Şahin, 2007).    

 

Recently, CR has emerged as a prime candidate for exploiting the increasing flexible 

licensing of wireless spectrum. The flexible licensing of radio spectrum was suggested as 



 31

the spectrum resources are facing both huge usage and demands with the rapid growth of 

wireless services and applications in recent decades.  This increase in both spectrum 

usage and demands has led to the belief that scarcity of radio spectrum is due to the 

emergence of new wireless services and applications. However, this misconception about 

spectrum scarcity is being tempered by a recent survey by a Spectrum Policy Task Force 

(SPTF) within FCC. The result of their survey shows that the actual licensed spectrum 

under the current fixed spectrum allocation policy is largely underutilized in vast 

temporal and geographic dimensions (FCC, 2002).  

 

As reported by Letaief and Zhang (2007), a field spectrum measurement taken in New 

York City showed that the maximum total spectrum occupancy is only 13.1% from 30 

MHz to 3 GHz. A similar measurement result undertaken in an urban setting, reported by 

Čabrić and Brodersen (2005), revealed a typical utilization of 0.5% in the 3-4 GHz band. 

The authors reported that the utilization drop amounted to 0.3% in the 4-5 GHz band. 

Another related survey’s result reported by Song et al. (2007) also showed that, on 

average, there is only about 5.2% of the allocated spectrum below 3 GHz actually in use. 

These exciting findings shed light on the problem of spectrum scarcity and motive a new 

direction to solve the paradox between spectrum scarcity and spectrum underutilization. 

 
A remedy to spectrum scarcity as a result of spectrum underutilization is then to improve 

spectrum utilization by allowing secondary users to access underutilized licensed 

frequency bands dynamically when and where licensed users are absent.  The main 

enabler of this opportunistic spectrum access, as mentioned above, is cognitive radio.  

 

Based on its abilities to sense and adapt to different radio environments, cognitive radio 

has been defined in various ways (Haykin, 2005; Akyildiz et al., 2006; Ghozzi et al., 

2006; Hamdi et al., 2007). For instance, it was defined in Akyildiz et al. (2006) as, “a 

radio that can change its transmitter parameters based on interaction with the 

environment in which it operates.” Similarly, Haykin (2005) defines CR as “an intelligent 

wireless communication system that is aware of its surrounding environment (i.e., outside 

world), and uses the methodology of understanding-by-building to learn from the 

environment and adapt its internal states to statistical variations in the incoming radio 
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frequency (RF) stimuli by making corresponding changes in certain operating 

parameters (e.g., transmit-power, carrier-frequency, and modulation strategy) in real-

time, with two primary objectives in mind: 

• highly reliable communications whenever and wherever needed; and 

• efficient utilization of the radio spectrum.” 

 
For CR to operate in an interference-avoidance way, one of most critical components of 

CR is spectrum sensing. By sensing and adapting to the environment, a CR is able to 

utilize spectrum holes and serves its users without causing interference to the licensed 

user. To ensure interference-free communication, different sensing and detection methods 

have been proposed for detecting the presence of primary or licensed radio signals. These 

different sensing and detection methods are reviewed in section 2.8.  

 

2.8 Spectrum Sensing Techniques 

 

Spectrum sensing is a key element in CR communications, as it should be firstly 

performed before allowing unlicensed users to access an unused licensed spectrum. The 

essences of spectrum sensing are two-fold: one to ensure CR or secondary user does not 

cause interference to a PU and two, to assist CR or secondary user to identify and exploit 

the spectrum holes for the required quality of service (Popoola and van Olst 2011c). This 

sensing operation is a binary hypothesis-testing problem. The goal of spectrum sensing is 

to decide between the following two hypotheses: 

 
( ) ( )
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where, 0H  denotes the absence of the primary user, 1H  denotes the presence of the 

primary user, ( )tx  is the received signal at the cognitive radio,  ( )ts  is the transmitted 

signal from the primary transmitter and ( )tn  is the Additive White Gaussian Noise 

(AWGN). The determination of the two hypotheses is called the spectrum sensing.  
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Generally, spectrum sensing techniques are classified into either non-cooperative or 

cooperative. However, from the perspective of signal detection, sensing techniques are 

classified into four broad categories (Akyildz et al., 2011). The first two broad categories 

are coherent and non-coherent detection techniques. In coherent detection, a priori 

knowledge of the primary users’ signals is required, which will be compared with the 

received signal to coherently detect the primary signal. In non-coherent detection, no a 

priori  knowledge of primary users’ signals is required for coherent detection. The last 

two broad categories, which are based on the bandwidth of the spectrum of interest for 

sensing, are narrowband and wideband detection techniques. The classification of sensing 

techniques is shown in Figure 2.7.   

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Source: Akyildz et al., (2011) 
 

Figure 2.7: Classification of Spectrum Sensing Techniques 
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is very low compared to the cooperative method. This is because poor channel conditions 

do affect single user spectrum sensing results (Lee and Wolf, 2008).  

 

2.8.2 Cooperative Spectrum Sensing Method 

Unlike non-cooperative spectrum sensing methods, where an individual cognitive radio 

surveys the spectrum to gather information, the cooperative spectrum sensing method 

usually involves two or more cognitive radios working together. In this spectrum sensing 

method, an individual cognitive radio or secondary user will perform local spectrum 

sensing independently and then makes a decision. Thereafter, all the cognitive users will 

forward their decisions to a common receiver or Master Node (MN). The common 

receiver will combine these decisions and makes a final decision to infer the presence or 

absence of the primary user in the observed frequency band.  

 

In general, activities in cooperative spectrum sensing can be summarized in three basic 

steps as follows:  

 

• Step I: Each cognitive radio performs its own local spectrum sensing 

measurement independently and then makes a binary decision on whether the 

primary user is present or not. 

 
• Step II: All the cognitive radios forward their decisions to the MN or common 

receiver.  

 
• Step III: The MN aggregates the cognitive radios binary decisions received using 

an “OR” logic and finally makes a decision to either infer the presence or absence 

of the primary user. 

 

The primary idea of cooperative spectrum sensing is to enhance the spectrum sensing 

performance by exploiting the spatial diversity in the observations of spatially located 

secondary users. Since it is unlikely that all spatially distributed secondary users in a 

cognitive radio environment will concurrently experience the fading or receiver 

uncertainty problem. Hence, when users collaborate and share the spectrum sensing 
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results among themselves, the combined cooperative decision derived from the spatially 

collected observations can overcome the deficiency of individual observation of each 

secondary user. This is why the cooperative spectrum sensing method has been observed 

as an effective method to combat fading and shadowing, as well as mitigating the 

receiver-uncertainty problem in a cognitive radio environment (Akyildz et al., 2011; 

Mishra et al., 2006).   

 

Architecturally, cooperative spectrum sensing is categorized into three classes based on 

how cooperating cognitive radio users share the sensing information or data in the 

network (Akyildz et al., 2011; Popoola and van Olst, 2011a). The classes are namely 

centralized, distributed and relay-assisted. The three classes of cooperative spectrum 

sensing illustrated in Figure 2.8 are briefly discussed in the following subsections. 

 

 

 

 
  
 
 
 
 
 
 
 
 
 
 
 
 

Adapted from: Popoola and van Olst (2011a) 
 

Figure 2.8: Classification of Cooperative Sensing: (a) Centralized, (b) Distributed, 
and (c) Relay-assisted 
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users performing local sensing and reporting the results back to CR1. CR1 or MN collects 

sensing information from CR2-CR6, identifies unused spectrum and broadcasts the 

information to CR2-CR6.  

 

2.8.2.2 Distributed Cooperative Spectrum Sensing  

Unlike centralized cooperative sensing, distributed cooperative sensing, as shown in 

Figure 2.8(b), does not rely on a MN for making the final cooperative decision. In this 

cooperative sensing, after local sensing, the cognitive nodes CR1-CR4 share the local 

sensing results amongst each other, but they make their own decisions as to which part of 

the spectrum they can use. If there is no clear decision after this initial process, cognitive 

radio users send their combined results to other users and repeat the sensing process until 

the algorithm is converged and a decision is reached (Akyildz et al., 2011). The 

disadvantage of distributed cooperative sensing is a decision delay possibility because 

several iterations may be involved to reach a unanimous cooperative decision. 

 

2.8.2.3 Relay-assisted Cooperative Spectrum Sensing  

The third cooperative spectrum-sensing scheme is relay-assisted. It was proposed to 

overcome the imperfection in both sensing and reporting channels, so that a CR user 

experiences a weak sensing channel and a strong reporting channel and a CR experiences 

a strong sensing channel and a weak reporting channel, can complement and collaborate 

with each other to improve the overall performance of the cooperative sensing. For 

instance in Figure 2.8(c), CR2, CR5 and CR6 that observe strong primary users’ signals 

will observe a weak reporting channel. CR3 and CR4 that have strong reporting channels 

can serve as relays to the prior CRs and assist them in forwarding their sensing results to 

MN. In Figure 2.8(c), reporting channels from CR3 and CR4 report to MN and are known 

as relay channels (Akyildz et al., 2011).   

 

2.8.3 Detection Methods for Spectrum Sensing  

Irrespective of the type of spectrum sensing technique or method used, either non-

cooperative or cooperative, every secondary user needs to first detect the spectrum status 
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using one specific detection method. Figure 2.7 shows five of most commonly used 

detection methods in spectrum sensing in a cognitive radio environment or network. Each 

detection method is briefly reviewed with emphasis on their merit and demerit, as 

follows:    

 

2.8.3.1 Matched Filter Detection 

Matched filter detection is an optimal detection method (Čabrić et al., 2004) normally 

used in a situation where a secondary user has a priori knowledge of the primary user’s 

signal. The matched filter is achieved by correlating a known signal or template with an 

unknown signal in order to detect the presence of the template in the unknown signal. 

The primary advantage of the matched filter detection is that it requires less time to 

achieve high processing gain due to coherent detection. However, the use of matched 

filter detection is currently limited because no pre-knowledge of the primary user’s signal 

is expected to be known by the cognitive radios or secondary users. This disadvantage 

and the needs for cognitive radios or secondary users to have receivers for all signal types 

make matched filter detection method uneconomical to implement (Lataief and Zhang, 

2009).  

 

2.8.3.2 Energy Detection 

The energy detector based approach, also called radiometry or periodogram, is more 

generic as the receiver does not need any pre-knowledge of the primary user’s signal. In 

the absence of a priori knowledge concerning the primary signal, it has been proved to be 

appropriate to use an energy detector in determining the presence of unknown signal 

(Hamdi and Letaief, 2007).  

 

It is suitable for wideband spectrum sensing, where simultaneous sensing of a number of 

sub-bands can be realized by simply sensing the power spectral density of the received 

wideband signal. It works by measuring the RF energy in the channel or the received 

signal strength indicator to determine whether the channel is idle or not.  
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Although an energy detection technique can be implemented in an environment where 

there is no a priori knowledge about the primary user signal characteristics, it still has 

some limitations. Its first limitation is that it has poor performance under low SNR 

conditions. This is because energy detection does not accurately determine the noise 

variance at low SNR, causing noise uncertainty to render the energy detection useless. 

The second limitation of energy detection is its inability to distinguish between 

interference from other secondary users sharing the same channel as that of the primary 

user (Shankar et al., 2005).  The third observed limitation of this detection method is the 

high sensing time required to achieve a given probability of detection (Shankar et al., 

2005).   

 

In spite of these limitations, the energy detection method remains the most common 

detection mechanism currently in use in cooperative spectrum sensing (Akyildz et al., 

2011). This is because some of its performance degradation, due to noise uncertainty, can 

be mitigated by the diversity gain resulting from cooperation.  

 

2.8.3.3 Cyclostationary Feature Detection 

Radio signals are generally non-stationary with statistical characteristics that exhibit 

periodicity. Since the periodicity varies periodically with time, radio signals and other 

related signals that exhibit periodicity, are referred to as cyclostationary signals. In 

telecommunications, periodicity may be caused by modulation, sampling, multiplexing 

and coding operations (Gardner et al., 2006; Ma et al., 2009), or even be intentionally 

produced to aid channel estimation and synchronization (Ma et al., 2009). A detection 

technique where such periodicity is utilized for detection of random signal with a 

particular modulation type in a background of noise and other modulated signals is 

known as cyclostationary detection. The cyclostationary feature detection technique is a 

method for detecting a primary user’s signal by exploiting the cyclostationary features of 

the received signals (Shankar et al., 2005).  

 

The cyclostationary detection method, as reported in Akyildz et al., (2011), exploits the 

periodicity in the received primary user’s signal to identify the presence of primary 
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signals. It is an optimized technique that can easily isolate the noise from the primary 

user’s signal (Malik et al., 2010). This is because noise is a stationary signal with no 

correlation, while modulated signals are cyclostationary signals with spectral correlation 

due to the embedded redundancy of signal periodicity (Čabrić and Brodersen, 2005; 

Akyildiz et al., 2006). This makes cyclostationary feature detection outperform energy 

detection when discriminating against noise due to its robustness to the uncertainty in 

noise power (Akyildz et al., 2011; Akyildiz et al., 2006).  

 

However, the drawbacks of cyclostationary feature detection, when compared with 

energy detection, are the need for a priori knowledge of the primary user’s signal such as 

the modulation scheme and its implementation complexity. Another disadvantage of the 

cyclostationary detection method is its poor performance when a user experiences 

shadowing or fading effects. This is because the method cannot distinguish between an 

unused band and a deep fade in such cases (Hamdi and Letaief, 2007). 

 

2.8.3.4 Wavelet Detection 

The wavelet detection method uses the principle of wavelet transformation where multi-

resolution analysis mechanisms decompose the input signal into different frequency 

components. Each component is then studied with resolutions matched to its scales. 

Wavelet transform uses irregularly-shaped wavelets as basic functions and thus offers 

better tools to represent sharp changes (Wornell, 1996).  In order to identify the locations 

of idle frequency bands, the entire wideband is modeled as a train of consecutive 

frequency sub-bands where the power spectral characteristic is smooth within each sub-

band, but changes abruptly on the border of two neighboring sub-bands (Lataief and 

Zhang, 2009).  By analyzing the irregularities in the power spectral density characteristic 

with wavelet transform, the spectrum hole is located. Its advantage is that it can perform 

optimally without a priori knowledge information about the primary user’s signal. 

 

2.8.3.5 Compressed Sensing  

In energy or cyclostationary detection, detection is based on a set of observations 

sampled by an analog-digital converter at a Nyquist rate in the interested frequency band. 
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In either of the two detection techniques, the spectrum sensing approach is to sense one 

band at a time because of their hardware limitations on the sampling speed. In order to 

sense multiple frequency bands using either technique, the cognitive radio or the 

secondary user needs to use multiple radio frequency front-ends for sensing multiple 

bands. Hence, using these techniques for wideband sensing will either cause a long 

sensing delay or incur higher computational complexity and hardware cost.  

 

On the other hand, sampling of the wideband signals at a sub-Nyquist rate to relax the 

analog-digital converter is now possible through compressed sensing (Candes et al., 

2006; Donoho, 2006). Its operation is based on the assumption that radio spectrum is 

currently underutilized. Based on this assumption, compressed sensing can be utilized to 

approximate and recover the sensed radio spectrum, which facilitates the detection of 

sparse primary users’ signals in wideband spectrum (Akyildz et al., 2011). This makes 

compressed sensing a valid sensing technique, which currently provides promising 

solutions to prompt recovery of wideband signals and facilitates wideband sensing at 

reasonable computational complexity.  

 

2.9 Spectrum Sensing Detection Methods Analyses  

 

Analyses of the above five spectrum sensing detection methods in literature show that no 

single detection method can detect all forms of radio signal. This necessitates the advent 

of another sensing/detection method that can overcome these shortcomings identified in 

the spectrum sensing detection method currently in the literature.  In addition, since the 

CR is expected to be unaware of the transmission scheme used by the primary user of the 

spectrum and not be synchronized to the primary user’s signal, it means that the CR is 

constrained to use a non-coherent detection method, which has poor performances 

compared to the coherent method under low or weak SNR.  

 

Coupled with this issue of low SNR is the hidden terminal problem that arises because of 

shadowing. This occurs because of topographical elements, such as tall buildings, trees 

and other structures in the transmission path.  As a result of this shadowing effect, the CR 
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or secondary user may be shadowed away from the primary transmitter, but there may be 

a primary receiver closer to the CR or secondary user that is not shadowed from the 

primary transmitter. In such a situation, if the CR transmits, it may interfere with the 

primary receiver’s reception. Another challenge is the signal fading problem, which can 

be as a result of radio signal diffraction when it incidents on tall buildings, trees and other 

structures in the transmission path. The negative effect of signal fading is that, it will 

reduce the signal strength and impairs the sensitivity of the secondary user. In such 

fading environment, the CR transmission can interfere with the primary user signal as a 

result of weak signal strength at the CR terminal. Hence, for the general acceptability of 

application of CR technology, the issues of accurate detection of all forms of primary 

radio signals, coupled with the probability of hidden terminals as well as signal fading, 

need to be addressed in order to guarantee the general deployment of CR by both the 

spectrum regulatory bodies and the spectrum-licensed owners.  

 

A solution to such challenges is the motivation for this study. In attempting to find a 

sensing/detection method that can adequately detect all forms of primary radio signals 

whether they are weak or strong, pre-known or unknown, as well as overcoming the 

hidden terminal issue in a cognitive radio environment, this research work proposed an 

alternative spectrum sensing/detection method. The method employed in this study is the 

usage of an automatic modulation classification or an automatic modulation recognition 

scheme to detect all forms of modulation signals in the cognitive radio environment. An 

AMR classifier using an ANN is proposed. This approach is used because all signal 

transmissions in the spectrum bands are modulated using one form of modulation 

technique or another.  

 

The detection method is proposed because modulation recognition must be an important 

feature of a CR and that knowledge of the types of signal modulations on a channel can 

assist CR deciding to jump either into or out of a spectrum band in a way to prevent 

interference to and from primary users of the spectrum. Since all wireless devices in the 

radio environment make use of a specific modulation scheme, the extra spectral 

awareness provided by AMR will indeed contribute to a safer environment for the 
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primary users and enhances higher CR performance. A detailed literature review on both 

the AMR and ANN are presented in the Sections 2.11 and 2.12 respectively. 

 

2.10 Basic Modulation Techniques  

 

In a wireless communication system, before a message signal, which is either in analog or 

digital form, is transmitted through a communication channel, some form of modulation 

process is typically utilized to produce a signal that can easily be accommodated by the 

communication channel. A modulation process usually translates an information-bearing 

signal, also referred to as the message signal, to a new spectral location (Ziemer and 

Tranter, 1990). Modulation, by definition, is the process by which some parameters of 

high frequency waveform, called the carrier wave, is varied in accordance with a 

modulating wave or message signal.  

 
Mathematically, modulation is described as the process of mapping from a message space 

to a signal space. A fundamental requirement for the generation of the desired type of 

modulation is the use of a carrier. A carrier must be characterized by some property that 

makes it distinguishable from other carriers of the same or different class that may be 

present simultaneously (Baghdady, 1961). For example, a sinusoidal carrier can be 

distinguished by its amplitude( )cA , frequency( )cf , or its phase( )φ . The general 

expression for a sinusoidal carrier is: 

 

( ) ( )φπ += tfAtx ccc 2cos                (2.2) 

 

These three parameters, ,, cc fA and φ , may be varied for the purpose of transmitting 

information, hence giving respectively amplitude, frequency and phase modulation, Table 

2.1.  

 
When choosing a modulation format in a wireless systems, the ultimate goal is to 

transmit with a certain energy as much information as possible over a channel (Molisch, 

2005), with a minimum bandwidth, while assuring a certain transmission quality.  

However, since there is no ideal modulation format for all forms of wireless 
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communications, the modulation format then has to be selected according to the 

requirement of a specific system and application. The leads to diverse modulation 

formats in wireless communication.  

 
Generally, as shown in Table 2.1, modulation can be classified into two classes 

depending on the transmitted signal. If a continuous signal is transmitted, the modulation 

is referred to as analog modulation. If a discrete signal is transmitted, the modulation is 

referred to as digital modulation.  

 
Table 2.1: Analog and Digital Modulation Techniques  
 

Modulation 
Technique 

Modulation Scheme Notation Types 

 
Analog Modulation 

Techniques 

Amplitude Modulation AM Linear  
Frequency Modulation FM Non- Linear 

Phase Modulation PM Non- Linear 
 

Digital Modulation 
Techniques 

Amplitude Shift Keying ASK Linear 
Frequency Shift Keying FSK Non- Linear 

Phase Shift Keying PSK Linear 
 

 

2.10.1 Analog Modulation 

Traditional wireless communications systems use conventional analog modulation 

techniques, such as Amplitude Modulation (AM), Frequency Modulation (FM), and 

Phase Modulation (PM). Analog modulation types are further classified into either linear 

or non-linear (angle) modulation (Haykin, 2001).    

  

2.10.1.1   Linear Modulation 

A linearly modulated carrier is represented by setting the instantaneous phase, φ , in (2.2) 

equal to zero. Thus a linearly modulated carrier is represented as: 

 

( ) tfAtx ccc π2cos=                            (2.3) 
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in which the carrier amplitude cA  varies in one-to-one corresponding with the message 

signal. The following sub-sections briefly discuss the different types of linear modulation 

schemes. 

 

Amplitude Modulation  

Amplitude Modulation (AM), also known as conventional amplitude modulation, is an 

example of linear modulation. It is obtained by varying the amplitude of the carrier wave 

in accordance with the modulating or information-bearing signal. The analytic 

representation of the amplitude-modulated signal is a sum of the carrier signal and the 

modulating signal shifted in frequency by the carrier frequency (Hossen et al., 2007). The 

modulation scheme is used in applications such as radio and television broadcasting. 

Amplitude modulated carrier signal, ( )txc , is represented as: 

 

( ) ( ) tftbmAtx ccc π2cos]1[ +=                          (2.4) 

 

where ( ) mm fAtm π2cos= is the normalized message or modulating signal and b is the 

index of modulation, which is a positive constant between 0 and 1. 

  

During transmission, the transmitted AM signal is contaminated with white Gaussian 

additive noise, ( )tn . The expression for the received signal plus the noise is given by: 

 

( ) ( ) ( )tntftbmAtx ccr ++= π2cos]1[                          (2.5) 

 

 

Double-Sideband Amplitude Modulation 

According to Ziemer and Tranter (1990), double-sideband (DSB) modulation results 

when cA is proportional to the message signal, ( )tm . Thus the output of a DSB modulator 

can be represented as:  

 

( ) ( ) tftmAtx ccc π2cos=                           (2.6) 
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which indicates that DSB modulation is simply the multiplication of a carrier, 

,2cos tfA cc π  by the message signal. It follows from the modulation theorem that the 

spectrum of a DSB signal is given by: 

 

 ( ) ( ) ( )ccccc ffMAffMAfX −++=
2
1

2
1

                        (2.7) 

 

The spectra ( )cffM +  and ( )cffM −  are simply the message spectrum translated 

to cff ±= . This type of modulation is referred to as amplitude modulation double 

sideband transmitted carrier (AM-DSB-TC). However if the carrier is suppressed, the 

modulation type is called amplitude modulation double sideband suppressed carrier (AM-

DSB-SC). In many respects, conventional AM is quite similar to DSB amplitude 

modulation. The only difference is that in conventional AM, ( )tm  in DSB is substituted 

with ( )[ ]tbm+1 . This substitution makes conventional AM a less economical modulation 

scheme in terms of power utilization (Proakis et al., 2004).   

 

 
 Single-Sideband Amplitude Modulation 

Another type of AM is the single sideband (SSB), in which only one sideband of the 

spectra ( )cffM + , as in upper sideband (USB) or ( )cffM − , as in lower sideband 

(LSB) in (2.7) is transmitted. It occupies only half the bandwidth compared to AM-DSB-

TC or AM-DSB-SC (Hossen et al., 2007), which makes it an efficient form of AM 

scheme.  

 

Generally, this family of analog modulation schemes is characterized by a low bandwidth 

requirement and power inefficiency in comparison to the angle modulation schemes 

(Proakis et al., 2004). The bandwidth requirement for AM systems varies between W and 

2W, where W denotes the bandwidth of the message signal. The AM systems are widely 

used in broadcasting, as in AM radio and television video broadcasting, point-to-point 



 46

communication (SSB), and multiplexing applications such as the transmission of many 

telephone channels over microwave links. 

 

2.10.1.2   Angle Modulation 

Angle modulation schemes, which include FM and PM, belong to the class of analog 

non-linear modulation schemes. These families of analog modulation schemes are 

characterized by their high bandwidth requirements and good performance in the 

presence of noise (Proakis et al., 2004). These modulation schemes are visualized as 

modulation techniques that trade-off bandwidth for power and are, therefore, used where 

bandwidth is not the major concern, but where high SNR is required.  

 

Frequency modulation is widely used in high fidelity FM broadcasting radio, television 

audio broadcasting, microwave carrier modulation, and point-to-point communication 

systems.  Frequency modulation and phase modulation differ from the linear amplitude 

modulation scheme. The major difference is in the instantaneous amplitude, which varies 

in AM but remains constant in both FM and PM. However, the frequency of the carrier in 

FM and phase of the carrier in PM varies with respect to the modulating or message 

signal.  

 
To generate angle modulation, the amplitude of the modulated carrier is held constant and 

either the phase or the time derivative of the phase of the carrier is varied linearly with 

the message signal, ( )tm . Thus, the general angle-modulated signal is given by: 

 

( ) ( )]2cos[ ttfAtx ccc φπ +=                           (2.8) 

 

The instantaneous phase of ( )txc is defined as: 

 

 ( ) ( ) ccci fwttwt πφφ 2; =+=            (2.9)  

 

The instantaneous frequency is defined as: 
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( )
dt

d
w

dt

d
tw c

i
i

φφ +==                      (2.10) 

 

The functions ( )tφ  and dt
dφ  are known as the phase deviation and frequency deviation 

respectively. 

 

PM implies that the phase deviation of the carrier is proportional to the message signal. 

Thus, for PM: 

 

( ) ( )tmt pκφ =              (2.11) 

 

where pκ is the deviation constant in radians per unit of ( )tm . Similarly, frequency 

modulation implies that the frequency deviation of the carrier is proportional to the 

modulating signal. This gives: 

  ( )tmk
dt

d
f=φ

           (2.12) 

 
 

2.10.2 Comparative Analysis of Analog Modulation Schemes  

Restricting to the domain of analog modulation techniques, a brief overview analysis of 

different analog modulation schemes were provided in this sub-section. The overview 

through extensive literature survey in a tabular form, presented in this sub-section 

establishes the superiority at a glance of specific modulation scheme for a particular 

application. Generally, according to Glover and Grant (2000), different modulation 

schemes can be compared on basis of their spectral and power efficiencies. According to 

these authors, spectral efficiency is defined as a measure of information transmission rate 

per hertz (Hz) of bandwidth used. On the other hand, the authors defined power 

efficiency as the ratio of signal energy to noise power spectral density. 

 

Basically, as discussed above, there are three classes of analog modulation techniques, 

namely AM, FM and PM. These three modulation techniques have in turn lot of class, 
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sub-class or derivatives. For instance, in case of AM shown in Table 2.2, there are several 

derivatives. These derivatives as shown in Table 2.2 show that AM-SSB-SC has smaller 

bandwidth and power requirements in contrast with AM-DSB-TC and AM-SSB-FC. 

Hence, using SSB-SC proves to be better than any other AM schemes.  

 

Similarly, comparative analysis of AM and FM schemes shows a great merit of FM over 

AM because FM can suppress the effects of noise but at expense of bandwidth. On the 

other hand, AM is characterized by a low bandwidth requirement and power inefficiency 

in comparison to FM scheme.     

 
Table 2.2: Performance Analysis of Analog Modulation Scheme 

 
Type of Analog 
Modulation Scheme 

Bandwidth 
Requirement 

Power 
Requirement 

Percentage Power 
Saving (%) 

AM-DSB-TC 
mω2  ( )cP2

3  
Standard 

AM-DSB-SC 
mω2  ( )cP4

5  
66.67 

AM-SSB-TC 
mω  ( )cP2

1  
16.67 

AM-SSB-SC 
mω  ( )cP4

1  
83.33 

powercarrierthePandfrequencyulatingtheiswhere cm modω  

 
Adapted from: Sharma et al., (2010) 

 

2.10.3 Digital Modulation 

In modern wireless communications systems, traditional communications systems that 

use conventional analog modulation techniques, such as AM, FM, and PM, are gradually 

being replaced with digital communications systems that use digital modulation 

techniques. Digital modulation techniques offer several outstanding advantages over 

traditional analog modulations techniques. Some of these advantages are:  

 

• better spectral efficiency; 

• easier multiplexing of different forms of information, such as voice, video and 

data; 
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• better noise and fade-rejecting capability; 

• easier implementation of error correction and data encryption; and 

• greater noise immunity and robustness to channel impairment. 

 
Like in analog communication systems, in digital communication systems the signal is 

superimposed onto a sinusoidal carrier in order to achieve modulation. By adjusting a 

physical characteristic of the sinusoidal carrier, such as the frequency, phase, amplitude 

or a combination thereof, Frequency Shift Keying (FSK), Phase Shift Keying (PSK), 

Amplitude Shift Keying (ASK), Quadrature Amplitude Modulation (QAM), are 

respectively achieved as the different basic digital modulation schemes.  

 
Digital modulation techniques, like analog modulation techniques, can broadly be 

classified as linear or non-linear depending on how the amplitude of the transmitted 

signals varies with the modulated waveform. A review of each class is presented in the 

following sections, along with their corresponding advantages and disadvantages. 

 

2.10.3.1   Linear Digital Modulation Techniques 

In linear digital modulation techniques, the amplitude of the transmitted signal varies 

linearly with the modulation signal. The modulation schemes do not have a constant 

envelop. The modulation techniques have bandwidth efficiency (Rappaport, 2002), which 

makes it attractive for use in wireless communication systems where there is an 

increasing demand for more users within a limited spectrum.  

 

Despite having very good spectral efficiency, the signal to be transmitted using linear 

digital modulation techniques must use linear RF amplifiers, which have very poor power 

efficiency since they are continuously switched on. In getting around this disadvantage, 

complex linear modulation techniques have been developed, but only a few basic 

techniques are discussed here. Examples of basic linear digital modulation techniques are 

the ASK scheme and PSK scheme and its variations, which includes Quadrature Phase 

Shift Keying, (QPSK). These modulation schemes are referred to as linear, because they 

require linear amplification.    
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Amplitude Shift Keying 

This is the simplest form of digital modulation scheme. In an ASK system, the amplitude 

of the sine wave to transmit digital data is always varied. Digital data in ASK are 

represented by variations in amplitude. For instance, binary symbol 1 can be represented 

by transmitting a sinusoidal carrier wave of amplitude cA and fixed frequency cf  for the 

bit duration bT seconds, while binary 0 is represented by switching off the carrier for 

bT seconds. In mathematical terms, ASK wave ( )ts  is expressed as: 

 

( )
0,0

1,2cos

symbol

symboltfA cc π
           (2.13) 

 

The general analytic expression for the ASK is: 

 

             ( ) ( ) ( ) MiTttf
T

tE
ts c

i
i ,,2,1;0;2cos

2
L=≤≤+= φπ                             (2.14) 

where the amplitude term ( ) TtEi2  has M discrete values, and the phase term φ  is an 

arbitrary constant. The parameters iE  and T  are the symbol energy and time duration 

respectively.  

  

ASK is the simplest kind of modulation to generate and detect. However, it can only be 

used when the SNR is very high and does not conserve bandwidth. ASK demonstrates 

poor performance, as it is heavily affected by noise and interference. 

 
 
Phase Shift Keying 

PSK is an example of linear digital modulation scheme that transmits data by varying the 

phase of the carrier wave. It is now widely used in military and commercial wireless 

communications systems. PSK has many representations. A convenient way of 

representing PSK modulation is by using a signal space diagram known as the 

constellation diagram (Du and Swamy, 2010). A constellation diagram consists of a 

group of points representing the different symbols the carrier in a PSK modulated signal 

( ) =ts  
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can assume. Typical constellation diagrams for Binary Phase Shift Keying (BPSK) and 

QPSK are shown in Figure 2.9 and Figure 2.10 respectively. The two representations of 

PSK are described in the following sections. 

 
The general analytic expression for PSK is: 

 

             ( ) ( ) ( )[ ] MiTtttf
T

tE
ts c

i
i ,,2,1;0;2cos

2
L=≤≤+= φπ                         (2.15) 

 

where the phase term, )(tφ , will have M discrete values, typically given by: 

 

( ) Mi
M

i
t ,,2,1

2
L== πφ                 (2.16) 

 
 
Binary phase shift keying   

The simplest form of PSK is called the BPSK. In BPSK system, a sinusoidal carrier wave 

of fixed amplitude cA  and fixed frequency cf  is used to represent both symbols 1 and 0, 

except that the carrier phase for each symbol differs by ( )radianor ,1800 π . While symbol 

or logic 1 is sent as a cosine signal with 00  phase shift, logic 0 is sent as a cosine signal 

with 0180  phase shift. BPSK is thus a binary antipodal ASK (Du and Swamy, 2010). In 

mathematical terms, BPSK wave ( )ts  is expressed as: 

 

( )
( ) 0,2cos

1,2cos

symboltfA

symboltfA

cc

cc

ππ
π

+
           (2.17) 

 

In BPSK, where each bit is represented by one symbol, as in either 

( ) ( )01802cos2cos −tfAortfA cccc ππ  , the constellation diagram consists of two points as 

shown in Figure 2.9. These two points have the same amplitude, cA , but are  0180  apart. 

This means that a symbol 1 corresponds to ( )tfA cc π2cos while a symbol 0 corresponds 

to ( )01802cos −tfA cc π . 

( ) =ts  
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Figure 2.9: BPSK Constellation Diagram 
 

 

Quadrature Binary Phase Shift Keying  

Another common example or representation of PSK is QPSK. QPSK is a higher 

modulation scheme often used in preference to BPSK when improved spectral efficiency 

is required. Unlike BPSK, with two define phase states, QPSK uses four possible 

phases, ( )4450 πor , ( )4
31350 πor , ( )4

52250 πor , ( )4
73150 πor , for carrier with the 

same amplitude. With the four phases, QPSK transmits two bits in a single modulation 

symbol. This accounts for why QPSK has twice the bandwidth efficiency of BPSK 

(Rappaport, 2002), because as the number of states is increasing, more data bits per 

symbol can be transmitted. Mathematically, QPSK signal can be represented as: 

 

( ) ( )( ) 4,3,2,1212cos =−+= iitfAts cc
ππ         (2.18)  

 

Using trigonometric identity, ( ) yxyxyx sinsincoscoscos −=+ , (2.18) can be re-written 

as: 

 

0180  
1 0 

cA  cA  

Q 

I 

( )tfA cc π2cos−  ( )tfA cc π2cos  
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( ) ( ) ( ){ } ( ) ( ){ } 4,3,2,121sin2sin21cos2cos =−−−= iitfAitfAts cccc
ππππ                   (2.19) 

 

which expresses QPSK signal in terms of an in-phase (I) and quadrature (Q) components. 

Based on this representation, QPSK signal can be illustrated using a two dimensional 

constellation diagram with four points corresponding to the four phase states of the RF 

carrier as shown in Figure 2.10.   

                               
 
 
 
 
 
 
 
 
 
 

Figure 2.10: QPSK Constellation where Carrier Phases are 0000 315,225,135,45  

 

2.10.3.2   Non-Linear Digital Modulation Techniques 

Non-linear modulations techniques have either linear or constant carrier envelopes, 

unlike linear digital modulation schemes that do not have a constant envelop. This class 

of non-linear modulation scheme with constant envelop where the amplitude of the 

carrier is constant regardless of the variation in the modulating signal, are used in mobile 

communications systems. The schemes permit the use of non-linear amplifiers to improve 

the power efficiency without degrading the spectrum of the transmitted signal. The major 

disadvantage of constant envelop modulations is that they occupy a larger bandwidth 

unlike linear modulation schemes. This makes the schemes well suited to systems where 

power efficiency is more important than bandwidth efficiency, as in a mobile 

communication handset. An example of a non-linear constant digital modulation 

technique is FSK and its variations, namely Binary Frequency Shift Keying, (BFSK), are 

discussed below.  
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Frequency Shift Keying 

FSK is a relatively simple form of digital modulation. It is a constant envelop modulation 

technique, appropriate for channels that lack phase stability. FSK has the advantage of 

being simple to generate and demodulate. It has several advantages over ASK because 

the carrier has a constant amplitude. Some advantages present in FSK include its 

immunity to non-linearity; that is the high order harmonics do not superimpose on the 

fundamental signal (Chen and Tsao, 1998), immunity to rapid fading, immunity to 

adjacent channel interference and the ability to exchange SNR for bandwidth. The 

significant disadvantage, however, are the poor spectral efficiency and Bit Error Rate 

(BER) performance. This preludes its use in the basic form from cellular and even 

cordless systems. 

 
The general analytic expression for FSK modulation is: 

   

             
( ) ( )

( ) MiTttw
T

E

tf
T

E
ts

i

ci

,,2,1;0;cos
2

2cos
2

L=≤≤+=

+=

φ

φπ
                                  (2.20) 

where the frequency iw has M discrete values and the phase term φ  is an arbitrary 

constant.   

 

Depending on how the frequency variations are imparted into the carrier signal, the FSK 

will either have a discontinuous phase or continuous phase between bits (Rappaport, 

2002). The discontinuous phase FSK is normally generated by switching between two 

independent oscillators according to whether the data bit or message signal is a 0 or a 1. 

Under this condition, the generated FSK signal normally results in a waveform that is 

discontinuous at the switching times. Since phase discontinuities pose problems, such as 

spectral spreading and spurious transmissions, this type of FSK is generally not used in 

highly regulated wireless communications systems.  

 

On the other hand, continuous phase frequency shift keying is an attractive choice of 

modulation, because of its well-behaved spectral characteristics and ability to be non-
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coherently detected (Cheng et al., 2007). In addition, while the Power Spectral Density 

(PSD) ultimately falls off as the inverse fourth power of the frequency offset from the 

carrier frequency in continuous phase frequency shift keying, the PSD falls off as the 

inverse square of the spectrum frequency offset from the carrier frequency in 

discontinuous phase frequency shift keying. This reason also makes continuous phase 

systems more desirable than discontinuous ones.      

 
Binary Frequency Shift Keying 

In binary frequency-shift keying, the instantaneous frequency of the carrier signal is 

usually shifted between two discrete values, representing symbol 1 and symbol 0. Two 

sinusoidal carrier waves of the same amplitude, but different frequencies 1f  and 2f  are 

used to represent binary symbol 1 and 0, respectively. That is, the modulated waveform is 

tf12cos π  for symbol 1 and tf22cos π for symbol 0. Therefore, from (2.20) BFSK wave, 

( )ts , can be expressed mathematically as: 
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where f∆π2 is a constant offset from the nominal carrier frequency. 

 
The PSD of a BFSK signal consists of discrete frequency components at 

,fnfandf cc ∆±  where n is an integer.  This makes the bandwidth (TB ) of an FM signal 

to be ideally infinite. However according to Rappaport (2002), for a BFSK signal, the 

approximate TB , is provided by Carson’s rule as: 

 

BfBT 22 +∆=                  (2.22) 

 

where B  is the bandwidth of the digital baseband signal.  

 
 

( ) =ts  
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2.10.4 Multicarrier Modulation Scheme 

2.10.4.1   Orthogonal Frequency Division Multiplexing  

Orthogonal Frequency Division Multiplexing (OFDM) is a promising multicarrier 

modulation system for transmission of a high rate stream with spectral efficiency and 

fading immunity. As a multicarrier modulation system, OFDM utilizes a parallel 

processing technique that allows the simultaneous transmission of data on many sub-

carriers that are orthogonally closely spaced (Abdullah et al., 2009). This multicarrier 

transmission densely squeezes multiple modulated sub-carriers that are orthogonal to 

each other together in the frequency domain. The orthogonality of the multiple modulated 

sub-carriers enhances interference-free communication amongst the multiple modulated 

sub-carriers and is accomplished by exploiting the properties of the symbol windowing 

function, as well as by choosing the precise sub-carrier frequencies. The sub-carriers are 

encoded using different digital modulation techniques such as BPSK, QPSK and QAM.  

 

The primary reason for using OFDM is to increase the robustness against frequency 

selective fading (Anibal, 2000). Another reason for using OFDM is because it offers 

good spectral efficiency and efficient elimination of sub-channel and symbol interference 

using the Fast Fourier Transform (FFT) for modulation and demodulation, which does 

not require equalization (Djordjevic and Vasic, 2006). Hence, any digital communication 

system utilizing an OFDM modulation scheme will theoretically use available bandwidth 

more efficiently than many other modulation schemes. This is because of its ability to 

break the bandwidth up into smaller sub-channels which enables different sub-carrier 

modulation schemes to be used, depending on the quality of each section of the 

bandwidth. This makes OFDM efficient, flexible and adaptable to changing environments.   

 

The establishment of OFDM-based systems as an elegant and popular method for 

overcoming the frequency selective fading (Ekström et al., 2006), aids its usage in 

different flavours of Broadband Cellular Wireless (BCW)  systems (Laroia et al., 2004). 

According to Srikanth et al. (2006), the IEEE 802.16d and 802.16e standards, which are 

more popularly known by the industry forum name Worldwide interoperability for 

Microwave Access (WiMAX), were first considered for BCW and were the first 
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standards to use the OFDM transmission technique. Likewise, the IEEE 802.11 a/g 

standards for Wireless Local Area Networks (WLANs) , which are more popularly 

known as Wi-Fi have used OFDM to achieve speeds of the order of 50 Mbps in an indoor 

multipath environment. Other systems that use OFDM include digital audio and video 

broadcasting systems, high-definition television, terrestrial broadcasting and ultra-

wideband-based systems for short-range wireless. 

 

2.10.4.2   Quadrature Amplitude Modulation  

Due to its high spectral efficiency, Multilevel Quadrature Amplitude Modulation (M-

QAM) is an attractive modulation technique for wireless communications (Tang et al., 

1999). QAM is a combination of ASK and PSK. It is both an analog and a digital 

modulation scheme that can convey two analog message signals, or two digital bit 

streams by modulating the amplitudes of two carrier waves using the ASK digital 

modulation scheme or AM analog modulation scheme. The analog versions of QAM are 

typically used to allow multiple analog signals to be carried on a single carrier. Likewise, 

when QAM is used for digital transmission, radio communication applications are able to 

carry higher data rates than ordinary amplitude modulated schemes and phase modulated 

schemes.  

 

In QAM, two carrier waves, ( )tfcπ2cos  and ( )tfcπ2sin , that are out of phase with each 

other by 090 are usually employed, and are thus called quadrature carriers or quadrature 

components. The modulated waves are algebraically summed, the results of which is a 

single signal to be transmitted, containing the in-phase (I) and quadrature (Q) information 

(Hannan et al., 2010). 

 

An M-ary Quadrature Amplitude Modulation (M-QAM) signal is defined mathematically 

as: 
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where ( )tI and ( )tQ   are the modulating signals, ImA  and Q
mA  are the sets of the amplitude 

levels for the in-phase and quadrature phase respectively, and ( )tg  is the real valued 

signal pulse, whose shape influences the spectrum of the transmitted signal. 

 

Digital formats of QAM are often referred to as quantized QAM. In digital M-QAM, two 

or more bits are usually grouped together to form symbols and one of M possible signals 

is transmitted during each symbol period. Normally, the number of possible signals is 

nM 2= , where  n  is an integer. Hence, possible M-QAMs are: 4-QAM, 8-QAM, 16-

QAM, 32-QAM, 64-QAM, as soon on. The number of 4, 8, 16, 32 and 64 is 

corresponding to ,22  ,23  ,24 52  and 62  in which the superscript number 2, 3, 4, 5 or 6 is 

the bits per symbol respectively. 

 

As with many digital modulation schemes, the constellation diagram of M-QAM 

provides a graphical representation of the complex envelope of each possible symbol 

state. Some popular constellation diagrams for M-QAM reported by Pappi et al., (2009) 

are the square QAM (SQAM), the triangular QAM (TQAM) or hexagonal packing, the 

rectangular-QAM (RQAM), and the circular-QAM (CQAM) while the cross-QAM (C-

QAM) was reported in Vitthaladevuni et al., (2005).  

 

Although a large variety of QAM constellations can be constructed, studies have shown 

that some specific constellations attracted special interest due to the low complexity 

demodulation methods required (Pappi et al., 2009).  In addition, the authors observed 

that for a specific value of the SNR, the maximum transmission efficiency achieved by 

different constellation types varied. In Vitthaladevuni et al. (2005), it was established that 

RQAM is a typically used constellation when the number of bits in a symbol is even, as 

4-, 16-, 64-, 256-QAMs, and unsuitable for M-QAM with odd number of bits per symbol.  

 

The first even rectangular QAM usually encounter is 16-QAM. This is because analysis 

has revealed it that 4-QAM is a typical QPSK. In this study, 16-QAM and 64-QAM are 

used.  Figure 2.11 shows the constellation diagram for 16-QAM with gray coded bit- 

assignment. 
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Figure 2.11: Constellation Diagram for Rectangular 16-QAM 

 

 

The various analog and digital modulation techniques described above are simulated in 

this study using MATLAB® Software. Similarly, an automatic modulation classifier, 

using an ANN for both the analog and digital modulation schemes, are developed. The 

purpose is to use the classifiers in the CRE develop in this study. The simulation details 

are presented in next chapter. Meanwhile, this chapter further review AMC or AMR and 

ANN, as it applies in the next chapter.  

 

2.10.5 Comparative Analyses of Digital Modulation Schemes  

In this sub-section, brief overview analyses of some of the digital modulation schemes 

discussed under Sub-section 2.10.3 and Sub-section 2.10.4 and their derivatives were 

provided. The analyses establish the superiority at a glance of those digital modulation 

schemes by stating their respective merit(s) and demerit(s). Like the comparative analysis 

carried out on the analog modulation schemes in Sub-section 2.10.2, the comparative 

analyses in this sub-section was basis on the schemes spectral and power efficiencies as 

well as their respective cost and implementation complexity. The comparative result was 

presented in a tabular form in Table 2.3. 
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Table 2.3: Comparative Analyses of Some Digital Modulation Schemes 
 

Type of 

Digital 

Modulation 

Scheme 

Derived From Merit Demerit 

2ASK ASK Low cost and Simple to implement Inefficiency bandwidth scheme. It 

is noise prone. It can only operate 

in linear region   

2FSK FSK Low cost and Simple to implement Received design is complex 

BPSK PSK Simple to implement. It is robust. It 

is used mostly for satellite 

communication. It has about 3 dB 

power advantage over 2ASK  

Inefficient use of bandwidth   

QPSK PSK It is bandwidth efficient and more 

spectrally efficient than 2PSK 

It requires complex receiver 

design 

QAM ASK and AM It is bandwidth efficient and high 

data rates 

Because QAM involves AM, 

linearity of the transmitter’s 

power amplifiers can cause the 

system error   

OFDM From 

multicarrier 

modulation 

scheme such as 

16-QAM, QPSK, 

etc 

It is robust to Inter-channel 

interference and inter-symbol 

interference. It is high spectral 

efficiency. It be efficiently 

implemented using FFT. Tuned 

sub-channel receiver filter is not 

required.  

It is sensitive to Doppler shift. It 

has inefficient transmitter power 

consumption since linear power 

amplifier is required   

 

 

2.11 Automatic Modulation Recognition 

 

One of the major variables of the radio signals that need to be determined, whenever an 

unknown radio signal is being monitored, is the modulation scheme or format of the radio 

signal. The process of determining the modulation scheme of a radio signal without 

foreknowledge of the signal modulation characteristics is known as modulation 



 61

recognition. Radio signal modulation recognition can be carried out in two ways, either in 

an automatic or non-automatic fashion. In a non-automatic fashion, the classification and 

identification of the modulation signal depends on an operator’s interpretation of the 

measured parameters (Hsue and Soliman, 1990). The approach is unpopular because its 

success is subjected to the operator’s conditions coupled with its slow rate in a hostile 

environment (Dominguez et al., 1991). For a fast response, automatic modulation 

recognition techniques are employed (Guldemir and Sengur, 2007). 

 
Automatic modulation recognition of both analog and digital radio communications 

signals are important signal processing fields of study in communications and its related 

areas. It is an intermediate step between signal interception and information recovery 

(Yaqin et al., 2003; Azzouz and Nandi, 1996a; Prakasam and Madheswaran, 2008), 

which automatically identifies the modulation type of the received signal for further 

demodulation and other tasks (Yaqin et al., 2003) such as signal identification and 

interference management. It is one of the important characteristics used in signal 

monitoring and identification (Arulampalam et al., 1999). It is an extremely important 

process in communication intelligent applications for several reasons. It helps in 

preventing the application of the communication signal to an improper demodulator, as 

this act may damage the signal information content (Nandi and Azzouz, 1995). Since any 

damage of the communication signal information content considerably confuses the 

following deciphering process, which converts the demodulated message from its 

ciphered, or non-intelligible, form to the deciphered, or intelligible, one. Furthermore, 

knowing the correct modulation type helps in recognizing threat signal and jamming 

waveforms (Nandi and Azzouz, 1995).   

 
Automatic modulation type identification generally plays an important role for various 

applications and purposes. For example, in a military domain, it can be employed for 

electronic surveillance, electronic warfare and threat analysis. In the civilian domain, its 

applications include signal confirmation, interference identification and spectrum 

management (Prakasam and Madheswaran, 2008; Arulampalam et al., 1999). Similarly, 

in communications applications, such as in the surveillance of the radio spectrum, there is 

a requirement for rapid and automatic identification of the modulation type of a received 

signal. A receiver continuously scans over the spectrum of interest and when it detects a 
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transmission signal, the output of its IF amplifier is passed on to an identifier. The task of 

the identifier is to determine the transmission’s modulation type, which may be any form 

of modulation schemes, such as DSB modulation, SSB modulation, FM, PM or FSK. 

 

Numerous modulation recognition methods have been proposed. A significant 

contribution has been made by E.E. Azzouz and A.K. Nandi, who have proposed an 

Analog Modulation Recognition Algorithm (AMRA), Digital Modulation Recognition 

Algorithm (DMRA), and Analog and Digital Modulation Recognition Algorithm 

(ADMRA) based on the decision-theoretic approach (Azzouz and Nandi, 1997a; Azzouz 

and Nandi, 1996b) and an artificial neural networks approach (Azzouz and Nandi, 1997b).  

In another research project of this group in 1998, computer simulations of different types 

of band-limited analog and digitally modulated signals corrupted by band-limited 

Gaussian noise sequences were carried out to measure the performance of their 

algorithms (Nandi and Azzouz, 1998). Likewise, many other authors have made different 

contributions on the topic of AMR using different methods, such as decision theoretic, 

neural networks, statistical pattern recognition, wavelet transform and filtering (Prakasam 

and Madheswaran, 2009; Yaqin et al., 2003; Wong and Nandi, 2001; Kavalov, 2001; 

Zhang, 2000; Lopatka and Pedzisz, 2000; Arulampalam et al., 1999; Dubuc et al., 1999).  

 

Generally, automatic modulation type identification methods fall into two main 

categories, decision theoretic (DT) and pattern recognition (PR). DT approaches use 

probabilistic and hypothesis testing arguments to formulate the recognition problem and 

to obtain the classification rule (Wei and Mendel, 2000; Panagotiou et al., 2000). The 

approach is based on the likelihood function (Yücek and Arslan, 2004; Zhao and Tao, 

2004), where modulation classification is deemed as a multiple-hypothesis test. Once the 

appropriate likelihood functions are established, either Average Likelihood Ratio Test 

(ALRT), Generalized Likelihood Ratio Test (GLRT), or Hybrid Likelihood Ratio Test 

(HLRT) can be adopted as the potential solution.  

 

The merits of DT classifiers developed using Maximum Likelihood (ML) are that they 

performed optimally. However, one of its demerits is high computational complexity 

(Zadeh et al., 2006). Another drawback of this approach is the fact that is not robust with 
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respect to the model mismatch in the presence of phase or frequency offsets and residual 

channel effects (Yücek and Arslan, 2004; Zhao and Tao, 2004). Table 2.4 summaries 

some of the likelihood-based classifiers in literature. 

 

 

Table 2.4: A Summary of Likelihood-Based Classifiers 
 

Author(s) Classifier(s) Type Modulations1 Used Channel Used 

Kim and Polydoros, 
(1988) 

Quasi-ALRT BPSK, QPSK AWGN 

Polydoros and Kim, 
(1990) 

Quasi-ALRT BPSK, QPSK AWGN 

Long et al., (1994) Quasi-ALRT 16PSK, 16QAM, V292 AWGN 
Huang and 
Polydoros, (1995) 

Quasi-ALRT BPSK, QPSK, 8PSK, 
16PSK 

AWGN 

Beidas and Weber, 
(1995; 1996; 1998) 

ALRT and Quasi-
ALRT 

32FSK, 64FSK AWGN 

Chugg et al., (1995) HLRT BPSK, QPSK, OQPSK AWGN 
Sapiano and Martin, 
(1996) 

ALRT BPSK, QPSK, 8PSK AWGN 

Sills, (1999) ALRT BPSK, QPSK, 16QAM, 
V.29,  32QAM, 64QAM 

AWGN 

Wei and Mendel, 
(2000) 

ALRT 16QAM, V29   AWGN 

Panagiotou et al., 
(2000) 

GLRT and HLRT 16PSK, 16QAM, V29   AWGN 

Hong and Ho, (2002) HLRT BPSK, QPSK AWGN 
Hong and Ho, (2003) ALRT BPSK, QPSK AWGN 
Abdi et al., (2004) ALRT and Quasi-

ALRT 
16QAM, 32QAM, 
64QAM 

Flat Fading 

Li et al., (2005) Quasi-ALRT 4QAM, 16QAM, 64QAM AWGN 

Source: Dobre et al. (2007) 

 

 

 

 

 
 

 

 

 

 

1These are the modulation schemes used in the original papers. 
2 V29 is a special QAM modulation with 16 points in the signal constellation.  
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On the other hand, in the PR approach, the modulation classification module is divided 

into two subsystems, namely the feature extraction subsystem and the classifier 

subsystem (Zadeh et al., 2006; Dobre et al., 2007; Swami and Sadler, 2000; Mobasseri, 

2000; Nandi and Azzouz, 1998). In the first subsystem of this approach, feature 

extraction keys are extracted from the radio signal. Some of the commonly adopted 

feature extraction keys are higher-order statistics (HOS), including moments, cumulants, 

and cyclic cumulants (CC) of the signal (Wu et al., 2008; Zadeh et al., 2006; Dobre et al., 

2003; Dobre et al., 2004;  Dobre et al., 2005), fuzzy logic (Wei and Mendel, 1999; 

Lopatka and Pedzisz, 2000), a constellation shape recovery method (Mobasseri, 1999) 

and usage of information contained in an incoming signal (Nandi and Azzouz, 1995; 

Nandi and Azzouz, 1998; Azzouz and Nandi, 1996a; Azzouz and Nandi, 1997a; Azzouz 

and Nandi, 1996b; Guldemir and Sengur, 2007; Arulampalam et al., 1999; Wong and 

Nandi 2001; Popoola and van Olst, 2011b). 

 

The second subsystem of the PR approach is a pattern recognizer, which processes those 

feature keys and determines the modulation type of the received signal according to a 

pre-designed decision rule. Multi-Layer Perceptron Neural Network (MLPNN) is one of 

the classifiers that are used in modulation identification systems. It has been shown that 

this type of classifier outperforms other classifiers, such as the K-nearest neighborhood 

algorithm (Nandi and Azzouz, 1998). Table 2.5 summarizes most of the feature based 

automatic modulation classifiers in literature, emphasizing the features employed, 

modulation format classified and channel used.   
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Table 2.5: A Summary of Feature Based Classifiers 
 

Author(s) Features Modulations1 Used Channel 

Used 

Nandi and 
Azzouz, 
(1988) 

Maximum power spectral density 
(PSD) of normalized centered 
amplitude, standard deviations of  
normalized centered amplitude, 
phase and frequency 

AM, FM, DSB, SSB, 
BPSK, QPSK, 2ASK, 
4ASK, 2FSK, 4FSK  

AWGN 

Arulampalam 
et al., (1999) 

Maximum PSD of normalized 
centered amplitude, standard 
deviations of  normalized centered 
amplitude, phase and frequency, 
standard deviations of direct value of 
instantaneous amplitude, standard 
deviations of the normalized 
instantaneous frequency, evaluated 
over the non-weak segment of the 
intercepted signal and maximum 
PSD of the normalized instantaneous 
frequency of the intercepted signal 

2ASK, 4ASK, MSK, 
2FSK, 4FSK, 2PSK, 
4PSK 

AWGN 

Dobre et al., 
(2003) 

Eighth-order cyclic cumulants of the 
received signal  

BPSK, QPSK, 8PSK 
4ASK, 8ASK, 16QAM, 
64QAM, 256QAM 

AWGN 

Yu et al., 
(2003) 

Discrete Fourier Transform (DFT) of 
the received signal  

2FSK, 4FSK, 8FSK, 
16FSK, 32FSK 

AWGN 

Dobre et al., 
(2004) 

Eighth-, sixth-, and fourth-order 
cyclic cumulants of the received 
signal 

4QAM,16QAM AWGN, 
impulsive 
noise 

Zadeh et al., 
(2006) 

Normalized eighth-order moments 
and cumulants of the received signal   

4ASK, 8ASK, 2PSK, 
4PSK, 8PSK, 16QAM, 
32QAM, 64QAM, Star-
8QAM3, V29 

AWGN 

Guldemir and 
Sengur, (2007) 

Maximum PSD of normalized 
centered amplitude, standard 
deviations of  normalized centered 
amplitude, phase and frequency 

AM, FM, DSB, SSB 
(LSB, USB), CW4  

AWGN 

Wu et al., 
(2008) 

Normalized fourth-order cumulants 
of the received signal   

BPSK, QPSK AWGN and 
Multipath 
Fading 

Source: Dobre et al.(2007) 
 
 
 
 

 

 

 

 

1These are the modulation schemes used in the original papers. 
3 Star-8QAM is a star shaped M-QAM modulation where M = 2n (M = 4, 8, 16, etc, n is the number of bits 
per one symbol).   
4If the signal has no phase information and no amplitude information, it is called a CW signal. In this case, 
the instantaneous phase is a linear function of time and the instantaneous amplitude is constant, meaning 
that the CW signal has no useful information; no amplitude and no phase information.  
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In contrast to the DT approaches, the PR methods may be non-optimal, but simple to 

implement and can often achieve the nearly optimal performance, if carefully designed. 

Furthermore, the PR methods can be robust with respect to the aforementioned model 

mismatches. In addition, observation from Table 2.4 and Table 2.5 revealed that 

classifiers developed using feature based PR methods were capable of handling or 

classifying more modulation schemes when compared with classifiers developed using 

likelihood-based DT approaches. Also, the high computational complexity involved in 

likelihood-based DT approaches compared to the feature based PR classifiers does hinder 

these types of classifiers from handling more modulation schemes. These capabilities of 

feature-based PR classifiers over the likelihood-based DT approach were considered in 

this thesis.  Thus, the PR approach was used in developing the automatic modulation 

classifiers for this research work. In this study, the maximum PSD of normalized 

centered amplitude, standard deviations of normalized centered amplitude, phase and 

frequency are used as the primary feature extraction keys for the three classifiers 

developed. In all the three classifiers, an artificial neural network was used for the 

development of the AMC. Details on the development of the three classifiers for this 

research work were presented in chapter 3. 

 

2.12 Artificial Neural Networks  

 

Artificial Neural Networks (ANNs) are information-processing systems that have certain 

performance characteristics in common with biological neural networks. They are 

computational modeling tools that have recently emerged and found extensive acceptance 

in many disciplines for modeling complex real-world problems (Liao and Wen, 2007; 

Basheer and Hajmeer, 2000). They are defined as structures consisting of densely 

interconnected adaptive simple processing elements called artificial neurons or nodes that 

are capable of performing massively parallel computations for data processing and 

knowledge representation (Hecht-Nielsen, 1990; Schalkoff, 1997). The main objective of 

developing ANN-based computing, like neurocomputing, is to develop mathematical 

algorithms that will enable ANNs to learn by mimicking information processing and 

knowledge acquisition in the human brain (Basheer and Hajmeer, 2000). 
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Though ANNs are drastic abstractions of biological neural network, the idea of ANNs is 

not to replicate the operation of the biological systems, but simply to make use of what is 

known about the functionality of the biological neural networks for solving complex 

problems. According to Basheer and Hajmeer (2000), the attractiveness of ANNs comes 

from the remarkable information processing characteristics of the biological neural 

networks, namely non-linearity, high parallelism, robustness, fault and failure tolerance, 

learning, ability to handle imprecise and fuzzy information and their capability to 

generalize (Jain et al., 1996).  

 

Artificial models possessing these processing characteristics of the biological neural 

networks are desirable firstly because nonlinearity allows a better fit to the data; secondly 

because high parallelism implies fast processing and hardware failure tolerance; thirdly 

because learning and adaptivity allow the system to update or modify its internal 

structure in response to the changing environment, and lastly because generalization 

enables application of the model to unlearned data.  

 

The main features of ANNs are that they have the ability to learn complex nonlinear 

input-output relationships, use sequential training procedures, and adapt themselves to the 

data. Based on these characteristics, an ANN has emerged as an important tool for 

classification, which is one of the most frequently encountered decision-making tasks of 

human activity. Usually, a classification problem occurs when an object needs to be 

assigned into a predefined group or class based on a number of observed attributes related 

to that object. Many problems in science, engineering, business and medicine can be 

treated as classification problems. Common examples include character recognition, 

speech recognition, quality control, modulation scheme recognition, medical diagnosis, 

fraud and bankruptcy prediction to mention a few.     

 
Recent research activities in neural classification have established that ANNs or simply 

neural networks (NNs) are a promising alternative to various conventional classification 

methods (Zhang, 2000). Its effectiveness as classifier has been empirically tested. Many 

researchers (Packianather and Drake, 2005; Robert et al., 1997; Curram and Mingers, 

1994; Huang and Lippmann, 1987) have carried out different performance comparisons 
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between NNs and conventional classifiers. Similarly, several computer experimental 

evaluations of NNs for classification problems have been conducted under different 

conditions (Patwo et al., 1993; Subramanian et al., 1993) confirming the superiority of 

the NN classifier over other classifiers.  

 
There are three main features that normally characterize an ANN: 

 

(i) The pattern of connectivity among neurons, that is the ANN architecture 

or structure;  

(ii)  The method of determining connection strengths i.e. ANN learning or 

training  algorithm; and  

(iii)  The activation functions of the network neurons.  

 

2.12.1 Artificial Neural Network Architecture 

ANNs contain a sequence of layers. Each layer consists of set of neurons, also called 

Processing Elements (PEs). The arrangement of neurons or PEs into layers and the 

connection patterns within and between layers give rise to the neural network architecture. 

In neural network architecture, the first and the last layers are called input and output 

layers (Suryanarayana et al., 2008).  

 

To cope with nonlinearly separable problems, additional layer(s) of neurons are usually 

placed in between the input layer and the output layer to form a Multi-Layer Perceptron 

(MLP) architecture (Basheer and Hajmeer, 2000). This intermediate layer(s) of neurons, 

are called hidden layer(s) and the nodes are called hidden nodes, because they do not 

interact with the external environment. The inclusion of intermediate or hidden layer(s) 

usually empowers the perceptron by extending its ability to solve nonlinear classification 

problems. The number of hidden layers is usually not known; hence its number of 

neurons only depends on the problem considered. Except for purely linear networks, the 

more neurons used in the hidden layer, the more powerful the network (Demuth and 

Beale, 2000). The number of both input and output neurons, on the other hand, are 

usually problem dependent (Aggarwal et al., 2005).  
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In terms of architectural structure, neural networks are classified into two major 

categories, namely Feed-Forward Neural Networks (FFNNs) and Recurrent Neural 

Networks (RNNs). In a FFNN, the connections between neurons are in a feed-forward 

manner. Similarly, the signal’s flow is usually from the input layer to the output layer in a 

forward direction without feedback. The network is usually arranged in the form of layers. 

The arrangement is such that there is no connection between the neurons within the same 

layer and no feedback between layers.  

 
A fully connected single layer and multilayer neural network, as shown in Figure 2.12 (a) 

and (b) respectively are examples of FFNNs. On the other hand, the fully interconnected 

multilayer neural network shown in Figure 2.13 is an example of RNN. The fundamental 

feature of RNN is that the network usually contains at least one feedback connection.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.12: Fully-Connected Multiple Inputs Multip le Output Feed-Forward 
Neural Networks 
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Figure 2.13: Fully-Connected Multiple Inputs Multip le Output Recurrent Neural 
Networks 

 

 

2.12.2 Training or Learning Methods 

In NNs, learning or training corresponds to the process by which the network’s 

parameters, or weights, are adapted or adjusted through a mechanism of the presentation 

of an input stimulus. It is an algorithm for finding suitable weights, W , and/or other 

network parameters. NNs are usually trained by epoch. An epoch is a complete run when 

all training examples are presented to the network and processed using the learning 

algorithm only once.     

 

Generally, when NNs are to be used, it is believed that the exact nature of the relationship 

between inputs and outputs are not known, otherwise the user would have modeled the 

system directly. Hence for NNs to model the relationship between the inputs and outputs, 

they need to learn the inputs and outputs relationship through training. There are three 

types of training used in NNs, with different types of networks using different types of 

training. These training types are supervised learning, unsupervised learning and 

reinforcement learning. Supervised learning is the most common and is the training 

method applied in this research work. 
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Supervised learning is widely used in problems which involve pattern recognition or 

classification, approximation, control modeling and identification, signal processing and 

optimization. Unsupervised learning schemes, on the other hand are mainly used for 

pattern recognition, clustering, vector quantization, signal coding and data analysis while 

reinforcement learning is usually used in control. More details about the three types of 

learning methods in a neural network are presented in following subsections. 

 

2.12.2.1   Supervised Learning 

This learning method embeds the concept of a supervisor or teacher, who has the prior-

knowledge about the environment in which the network is operating. This prior-

knowledge is represented in form of a set of input-output samples or patterns. These 

input-output samples or patterns are provided in form of input data and desired output or 

target (Torrecilla et al., 2007). In order words, the desired output or target is the output 

expected to be received from the given input data.  

 

The input data is propagated forward through the network until activation reaches the 

output neurons. The output from the network will be compared with the desired output. If 

the output from the network agrees with the desired output, there will be no need to 

change the network parameters. However, if the output from the network differs from the 

desired output then there will be a need to adjust the network parameters to ensure that 

the network gives the correct answer in the future when it is presented with the same or 

similar input data. This adjustment of the network parameters is carried out by adjusting a 

combination of the training pattern set and the corresponding errors between the desired 

output and the actual network response.  

 

This network parameters adjustment scheme is what is known as supervised learning or 

learning with a teacher. It is being regarded as a closed-loop feedback system where the 

error is the feedback signal. It is being done so that the network can emulate the system. 

A diagrammatic representation of a supervised learning algorithm is shown in Figure 

2.14. The environment in Figure 2.14 provides the input patterns to train the network.  
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Figure 2.14: Diagrammatic Representation of Supervised Learning Algorithm 
 
 

In order to control the learning process, a criterion is needed to decide the time for 

terminating the learning process. In supervised learning, an error measure, which 

indicates the difference between the network output and the output from the training 

sample, is normally used to control the learning process. This error measure is obtained 

by the Mean Squared Error (MSE), which is mathematically expressed as:   
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where N is the number of the pattern pairs in the sample, xy is the output part of the xth 

pattern pair and xy
∧

 is the network output corresponding to the pattern pair x . The 

error,E , is calculated afresh after each epoch, while the learning process terminates when 

E is sufficiently small (Du and Swamy, 2006).  

 
According to Du and Swamy (2006), error E  can be made to decrease toward zero by 

applying a gradient-descent procedure. The gradient-descent method converges to a local 

minimum in a neighborhood of the initial solution of the network parameters. The least 

mean square and back-propagation (BP), as reported by the authors, are the two early and 

most popular supervised learning algorithms. The two of them are derived using the 
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gradient-descent procedure. In this research work, the BP learning algorithm was used in 

reducing the error.   

 

2.12.2.2   Unsupervised Learning 

Unlike supervised learning, the unsupervised or self-organized learning method does not 

involve a supervisor or target values to evaluate the network performance in relation to 

the input data set, as shown in Figure 2.15. The network is only provided with the input 

data to teach itself depending on some structures in the input data. These structures may 

be some form of redundancy in the input data or clusters in the input data. The learning 

method is particularly suitable for biological learning, in that it does not rely on a teacher.  

 

 
 
 
 
 
Figure 2.15: Diagrammatic Representation of an Unsupervised Learning Algorithm 
 
 
 
Like the supervised learning, an unsupervised learning method needs a criterion to 

terminate the learning process. This is to prevent the learning process from continuing 

indefinitely. In this regard, Du and Swamy (2006) reported that, Hebbian learning, 

competitive learning and Kohonen’s self-organization maps are the three mostly used 

unsupervised learning criteria. Generally unsupervised learning has been observed to be 

slow to settle into stable conditions. 

 

2.12.2.3   Reinforcement Learning 

This learning method is half-way between the supervised and unsupervised learning 

methods. It is distinguished from the other learning methods as it only relies on learning 

from direct interaction with the environment, but does not rely on explicit supervision or 

complete models of the environment as shown in Figure 2.16. In this learning method, 

the network is provided with the input data. The activation will then be propagated 

forward with additional information, such as a reinforcement signal, telling the network 
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whether it has produced the desired output or not. If the network produces an output 

different from the desired output, some adjustment of the network weights will be done 

so that a desired output is obtained in the future presentation of that particular input. In 

this learning method, the network’s output provides the environment with information 

about how the neural network is performing.   

 

 
 
 
 
 
 
 
 

Figure 2. 16: Diagrammatic Representation of Reinforcement Algorithm 
 
 
 
In the real sense, reinforcement learning is a special case of supervised learning (Barto et 

al., 1983). It is useful for learning control strategies only from a performance index 

without any teacher who instructs how to control a system at each moment. It is a 

learning procedure that rewards the NN for its good output result and punishes it for a 

bad output result. It is normally used in a situation where the correct output for an input 

pattern is not available and there is need for developing a certain output. It is a less 

powerful method when compare with supervised learning and sometimes requires a large 

amount of time. Reinforcement learning teaches the network structure by trial-and-error 

and is suitable for online learning (Barto et al., 1983; Kaelbling et al., 1996).  

 
 

2.12.3 Transfer Function 

An activation or transfer function is a function used to transform the activation level of a 

neuron into an output signal. It determines how the state of a neuron and its internal 

activation is going to be modified in order to produce the neuron output. They are 

monotonically non-decreasing and present non-linearity associated with saturation (De 

Castro and Timmis, 2002). The most common activation functions employed in artificial 

neural networks are hard limit, linear, logistic, and log-sigmoid transfer functions.  
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• The hard limit transfer function usually sets the output of the neuron to zero if the 

function argument is less than zero, or one if its argument is greater than or equal 

to zero.  

 

• The linear transfer function usually set its output to its input.  

 

• The log-sigmoid transfer function takes an input that has any value between plus 

and minus infinity and squashes the output into the range 0 to 1, according to the 

expression: 
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• The log-sigmoid (logsig), tan-sigmoid (tansig) and linear (purelin) transfer 

functions are commonly used in multilayer networks that are trained using a BP 

algorithm because these transfer functions are differentiable and also monotonic 

increasing functions. Meaning that, the output of each function increases with 

increase in its input value (Demuth and Beale, 2000).  

 

In BP networks, one or more layers of sigmoid neurons are usually used as the hidden 

layer, followed by an output layer of linear neurons. The multiple layers of sigmoid or 

non-linear transfer functions allow the network to learn non-linear and linear 

relationships between input and output vectors. On the other hand, the linear transfer 

function at the output layer allows the network to produce values outside the range -1 and 

+1. However, when it is desirable to constrain the outputs of a network to have values 

between 0 and +1, then a sigmoid or non-linear transfer function, such as logsig, can be 

used at the output layer. The mathematical definitions of commonly used activation 

functions are presented in Table 2.6. 
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Table 2.6: Activation Functions 
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2.13 Summary  

The focus of this chapter was to present basic background to this thesis, as well as to 

enlighten all classes of readers on some of the developmental history in radio technology 

and terms that will be later employed in this thesis. To fulfill these objectives, the chapter 

has provided an overview of radio evolution, which led to both digital radio realizations 

and software radio capabilities. The inclusion of software in radio systems has made 

possible software capable radio that processes radio signals digitally. In the pursuit of 

flexibility, software programmable radio, which eventually gave birth to the SDR, is 

currently a standard in the military domain and gradually gaining recognition in the 

commercial world especially in an academic environment, as reviewed in Section 2.1. 
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In Sections 2.2 and 2.3, a detailed background on SDR and GNU Radio in the 

development of CR was reviewed. Section 2.4 presented various AIT associated with CR, 

while the intelligence systems behind CR or CN are reviewed in section 2.5. Sections 2.6 

and 2.7 presented full reviews of CR applications. The sections also provided reviews on 

the demerits of the current radio spectrum management policy and the suitability of 

cognitive radio technology as a novel technology in solving spectrum management 

problems. The DSA application, based on cognitive radio technology to enhance radio 

spectrum efficiency, was fully reviewed.  

 

Section 2.8 and Section 2.9 of this chapter focused on the analyses of various sensing and 

detection techniques in the surveyed literature respectively. The review shows that none 

of the available sensing and detection methods is capable of sensing and detecting all 

forms of radio signals in the cognitive radio environment. An attempt to address this 

challenge motivated this research work, which proposes an alternative sensing and 

detection technique using AMC. The proposed sensing and detection method using AMC 

was envisioned because all users of the radio spectrum make use of one form of 

modulation scheme or another. Hence, the ability to accurately detect the modulation 

schemes of radio signals is sufficient to confirm the presence of radio signal in a 

cognitive radio environment. 

 

Section 2.10 is therefore devoted to the in-depth reviews of both fundamental analog and 

digital modulation schemes. In Section 2.11, a comprehensive review of AMC for 

various fundamental analog and digital modulation schemes used in wireless 

communications systems and applications was carried out. Section 2.12, concludes the 

study literature review work with a comprehensive review on ANNs.  

 

Finally, having observed the demerits of the various available spectrum sensing detection 

methods in the surveyed literature, this research work is embarked upon finding a novel 

technique for sensing and detecting all forms of radio signals in a cognitive radio 

environment. The execution of the research work is presented in two phases. The first 

phase involves the development of the AMR used using MATLAB ®. The second phase 

involves the experimental development of the CRE using an USRP2 coupled with a 
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combined analog and digital AMR classifier developed in the first stage of the study. The 

diagrammatic representation of the radio environment model for the study is shown in 

Figure 2.17.         

 
   
 
 
 
 
 
 
 
 
 
 

Figure 2.17: Cognitive Radio Environment Model 
 

 

In order to ensure reliable and effective spectrum sensing, each SUS (secondary user 

sensor), in Figure 2.17 will individually perform spectrum sensing and relay its decision 

to the master node secondary user sensor (SUSMN). The SUSMN will finally broadcast the 

condition of the spectrum to all the SUs connected to it for dynamic spectrum access. The 

other function of the SUSMN is to determine the SU terminal or node to access the free 

spectrum per time, while the SUS are continuing spectrum sensing. The SUSMN also 

ensures even distribution of the spectral resources amongst the SUs.     

 

The condition for DSA of licensed spectrum in this research work is based on non-

detection of any form of modulation scheme on any channel considered. This condition is 

fulfilled by the in-built capability of the AMR incorporated into the developed CRE. 

Therefore, the focus of the next chapter will be on development of automatic modulation 

classifiers for the research work. The next chapter discusses details on how the feature 

extraction keys used in developing the AMR classifiers for the research are obtained 

using simulation. The chapter also provides in-depth information on how the three AMR 

classifiers were developed using ANNs, as well as their individual performance.  
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CHAPTER 3 

 

3.0 DEVELOPMENT OF AUTOMATIC MODULATION CLASSIFIERS   

 

This chapter presents details on the development of the three automatic modulation 

classifiers developed in this study. The developed classifiers are: analog automatic 

modulation recognition (AAMR), digital automatic modulation recognition (DAMR) and 

combined analog and digital automatic modulation recognition (ADAMR). The AAMR 

was developed to discriminate between four of the best-known analog modulation 

schemes, namely AM, DSB modulation, SSB modulation FM. The developed DAMR 

was developed to discriminate between eight of the best-known digital modulation 

schemes, which are:  

 

- two symbol amplitude shift keying (2ASK); 

- four symbol amplitude shift keying (4ASK); 

- two symbol frequency shift keying (2FSK); 

- two symbol phase shift keying (BPSK); 

- four symbol phase shift keying (QPSK); 

- orthogonal frequency division multiplexing (OFDM); 

- sixteen symbol quadrature amplitude modulation (16-QAM); and 

- sixty-four symbol quadrature amplitude modulation (64-QAM).  

 

The combined ADAMR was developed to discriminate between twelve, four analog and 

eight digital modulation schemes considered, as well as un-modulated noise. The 

classifiers are feature based modulation recognition algorithms using statistical features. 

The classifiers are developed using MATLAB. They are implemented in a hierarchical 

approach to classify radio signals using the smallest amount of required data, while 

simultaneously maximizing the reliability of the classifiers.  The twelve simulated 

modulation schemes were realized using MATLAB codes. In addition to the basic 

MATLAB ® software, the Netlab Algorithm for pattern recognition was used in 

developing the three classifiers.  
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This chapter’s focus, however, is not to develop a new feature extraction key algorithm 

but simply to develop AMC classifiers that would be employed in developing the 

spectrum sensing engine for the thesis. Hence, in developing the three developed 

classifiers for the thesis, earlier existing feature extraction keys algorithms were 

employed. However, the employed feature extraction keys algorithms were not from a 

single study but from various studies based on the effectiveness of those feature 

extraction keys.        

 

3.1 Analog Classifier Development   

 

The development of the three AMR classifiers for this research work involved three 

different stages as shown in Figure 3.1. For the AAMR classifier, the four analog 

modulation schemes employed were first simulated using MATLAB codes in the first 

stage. In addition, in this first stage, the three feature keys that were used as input data 

sets to the classifier to discriminate between the four analog modulation schemes were 

extracted using MATLAB codes. The second step involved the development of the 

classifier, while the third step was on the performance evaluation of the developed 

classifier. Details on each of the three stages are presented in the following subsections.  

 

 

 

 

 

Source: Azzouz and Nandi (1996a) 

Figure 3.1: Functional Blocks for AMR Development 
 

3.1.1 Pre-Processing Stage  

This stage deals with the extraction of the feature keys used in discriminating between the 

four analog modulation schemes considered. In an automatic modulation identification 

study, finding the proper feature extraction keys is very important (Zadeh et al., 2006). In 

the development of the AAMR for this research work, three feature keys were used to 
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discriminate between the four analog modulation schemes of interest. The three key 

extraction features were derived from the instantaneous amplitude ( )ta  and phase ( )tφ  of 

the simulated signals.   

 

The first feature extraction key used is maxγ , which represents the maximum value of the 

PSD of the normalized instantaneous amplitude of the signal, or, simply put, as the 

squared Fourier transform of the normalized signal amplitude. It is defined as (Popoola 

and van Olst, 2011b): 

( )( )
N

iaDFT cn

2

max max=γ                     (3.1)   
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where am  is the average value of the instantaneous amplitude evaluated over one 

segment. It is defined as: 
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The feature ( maxγ ) was used to measure the envelope variation of the modulated signal 

and aids in the reliable classification of constant envelope signals from non-constant 

envelope signals.   
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The second feature extraction key used is,dpσ , which is the standard deviation of the 

direct instantaneous phase of the of the simulated signal. It extracts information from the 

instantaneous phase of the simulated signal. dpσ  is defined as (Popoola and van Olst, 

2011b):  
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where )(iNLφ is the value of the non-linear component of the instantaneous phase at time 

instants t , C is the number of the samples in )(iNLφ , and ta is the threshold. 

 

The third feature extraction key used is for measuring the spectrum symmetry around the 

carrier frequency. This feature extraction key is based on the spectral powers for the 

lower and upper sidebands of the simulated signal. The key is defined as (Popoola and 

van Olst, 2011b): 
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where )(iXC  is the Fourier transform of the intercepted signal, )1( +cnf is the sample 

number corresponding to the carrier frequency cf and cnf  is defined as 
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Based on equations (3.1) – (3.8), the graphical model of the three feature extraction keys 

obtained for the simulated analog modulated signals, on AWGN channel, are shown in 

Figure 3.2(a) – (c).  



 83

                        

                                                                   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2: Graphical Illustration of maxγ , dpσ  and P  for Analog Modulated Signals 

(a) 

(b) 

(c) 
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The choice of maxγ , dpσ  and P  as feature keys for the development of the AAMR 

classifier for this research work is based on the capability of these extracted feature keys 

to discriminate between the four analog modulation schemes considered. Firstly, dpσ  was 

chosen because it can discriminate between signals that have direct phase information 

and signal that has no direct phase information. It is, therefore, used to discriminate 

between AM as a subset and (DSB, SSB and FM) as the second subset. If   ( )dpt σ  

represents the threshold value, dpσ  value for AM that has no direct phase information is 

therefore expected to be less than threshold value ( )( )dpdp t σσ < . On the other hand, for the 

other types of signals (DSB, SSB and FM) that  have direct phase information by nature, 

Azzouz and Nandi (1996a), they have their ( )dpσ  values greater or equal to 

( ( )dpdp t σσ ≥ ) . The dpσ  values for the four modulation schemes obtained from the 

simulation result are presented in Figure 3.2(b).   

 

Secondly, P was chosen because it can discriminate between signals that have unity 

sidebands spectral power and those whose sideband spectral power is less than one. As 

shown in Figure 3.2(c), the choice of the ratio P is based on its capability to discriminate 

between (DSB and FM) with their sidebands spectral power less than one as one subset, 

and SSB as another subset, whose sideband spectral power equals one. The accuracy of 

the simulation result presented in Figure 3.2 (c) is confirmation of its conformity with the 

earlier result obtained in Guldermir and Sengur, (2007).   

 

Thirdly, maxγ was chosen because of its capability to discriminate between signals that 

have amplitude information and signals that do not have amplitude information. Hence, it 

was used to discriminate between DSB with amplitude information as a subset and FM 

without amplitude information as a second subset. Since ( )maxγt  represents the threshold 

value, the maxγ  value for a FM signal without amplitude information is lesser than the 

threshold value ( )( )maxmax γγ t< , as shown in Figure 3.2(a). On the other hand, DSB which 

possesses amplitude information, has a maxγ  value greater or equal to the threshold value, 
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( )( )maxmax γγ t≥ . Hence, maxγ was used to discriminate between DSB as one subset and 

FM as another subset.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.3: Flowchart for the Developed AAMR 

 

 

Based on these criteria, the algorithm used in this research work to distinguish between 

the four analog modulated signals considered is shown in Figure 3.3 in form of a 

flowchart. The optimum feature keys thresholds, ( )maxγt , ( )dpt σ  and ( )Pt , in Figure 3.3 

are automatically and adaptively chosen at each neuron of the ANN (Azzouz and Nandi, 

1996a). This is one of the advantages of the PR approach employed in this research, as 

opposed to the DT approach, where a suitable threshold for each feature key has to be 

selected.    
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Figure 3.4: The AAMR Architecture 

 

3.1.2 Network Training Stage 

This stage involves the actual development and training of the AAMR classifier. The 

AAMR classifier was developed using an ANN. The ANN architecture that was used for 

this classification problem is a MLP, which is referred to as a feed-forward 

backpropagation network, while the training method used is the supervised learning 

method, discussed in Section 2.12.2. The architecture of the developed classifier is shown 

in Figure 3.4 having the statistical feature extracted keys discussed above as the input 

data sets. The MLP consists of one input layer, one hidden or intermediate layer of 

computational nodes or neurons and one output layer of computational neurons. All the 

neurons are fully connected as shown in Figure 3.4.  

 

Neurons at the input layer do not perform computations, but only distribute the input 

features to the computing neurons in the hidden layer. The neurons in the hidden layer, 

on the other hand, perform computations on the input from the input layer and pass their 

results to the neurons in the output layer. Three neurons are used at the input layer 

corresponding to the number of input features, and seven neurons are used at the hidden 

layer. The network has four neurons at the output layer corresponding to the number of 

targets. The specifications for the developed AAMR classifier for this research work are 

shown in Table 3.1.   
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Table 3.1: Specifications for the Developed AAMR 
 

Item Parameters Value 

1. Type of neural network architecture Feed-forward 

2. No. of neurons in input layer  3 

3. No. of neurons in hidden layer  7 

4. No. of neurons in output layer  4 

5. Coefficient of weight-decay  0.01 

6. Activation function in hidden layer tanh 

7. Activation function in output layer logistic 

8. Maximum number of epochs 100 

9. Performance function MSE 

10. Learning algorithm SCG 

 

  

During the training or learning process, input vectors and corresponding target vectors 

are used to train the network until it can classify the modulation schemes in an 

appropriate way. Whenever the results of the output neurons differ from the expected or 

target value, errors are propagated in a backward manner from the output layer to the 

hidden layer. This backpropagation algorithm (BPA) involves two paths, namely the 

forward and the backward path. 

 

The forward path involves creating a feed-forward network by initializing weight and 

training the network. During this path, the initialized weights are fixed when the inputs 

are propagated through the network layer by layer, as shown in Figure 3.4. The phase 

ends with the error signal ( )ie  computation using the relationship: 

 

iii yte −=                                (3.9) 

 

where it  is the target or desired response of, i th input and iy is the actual output 

produced by the network in response to the i th input.  
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The backward path involves a network update by modifying the connection weights to 

reduce the total error in the network output. The error signal ( )ie  generated during the 

forward path is propagated in a backward direction through the network of Figure 3.4. 

The backward error signal propagation causes an adjustment in network weights, so as to 

minimize the error signal in a statistical sense using MSE ( )RE : 
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where ipN is the total number of input. 

 

A total of 2000 data elements, with three inputs and four target outputs, were used in 

developing the AAMR classifier for this research. The procedures followed to train the 

developed AAMR are highlighted, as follows: 

 

(1) Generated data, consists of input vectors and target vectors, were imported 

 into a MATLAB environment from an excel spreadsheet.  

 

(2) The loaded data were normalized and randomly sorted. 

 

(3) The loaded data were partitioned into training, validation and testing data sets. 

50% of the generated total data were used for the network training. The training 

data set was used to update the weights of the network. The training was done 

until the MSE, which was used as the performance function, was minimal. 25% of 

the total data were used to validate that the network was able to generalize and 

stop training before the network was over fitting. The last 25% of the total data 

were used as a completely independent test data to test the network 

generalization; and 

 

(4) The ANN classifier was created. A feed-forward network with non-linearity 

activation functions of tan-sigmoid (tanh) and logistic (log-sigmoid) were used in 

the hidden and output layers respectively in order to introduce non-linearity into 
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the network because without non-linearity, the network will not be more powerful 

than plain perceptrons. The MLP was trained using the Scaled Conjugate Gradient 

(SCG), which has been shown to handle large-scale problems effectively (Moller, 

1993). As reported in Mohamad, et al., (2010), SCG utilizes second order 

information from the neural network, but has modest memory requirements with 

high accuracy and speed due to inexpensive calculation of the gradient 

information. These findings about SCG were confirmed in Section 3.3.3, where 

SCG performance is compared with another training algorithm, Conjugate 

Gradient (CONJGRAD). The CONJGRAD training algorithm was chosen 

because it is also known to be a fast training algorithm with numerical efficiency 

and very low memory requirement (Shanthi et al., 2009).     

3.1.3 Network Testing Stage 

After the development and training of the network or classifier, its performance was 

evaluated by using 25% of the total generated data as test data. The performance 

evaluation carried out was investigated on different SNR values of -5, 0, 5, 10, 15 and 20 

dB. Table 3.2 lists the success recognition rate for all the SNR values considered when 

the developed AAMR was run for 100 cycles. The result of the performance evaluation 

of the developed AAMR shows that the classifier can correctly and accurately recognize 

the four analog modulation schemes considered, with an average success rate above 

99.80%.  

 
Table 3.2: Developed AAMR Success Recognition Rate 

 
Modulation 

scheme 
Percentage of success recognition rate at different SNR value 

- 5 dB 0 dB 5 dB 10 dB 15 dB 20 dB 
AM 99.84 99.89 99.93 99.97 99.98 99.99 
DSB 99.87 99.92 99.95 99.97 99.99 99.99 
SSB 99.93 99.96 99.97 99.98 99.99 99.98 
FM 99.90 99.95 99.97 99.97 99.98 99.99 

Overall 
success rate 

(%) 

 
99.89 

 
99.93 

 
99.96 

 
99.97 

 
99.99 

 
99.99 

Operational 
time taken 

(milliseconds) 

1.14 1.10 1.11 1.11 1.10 1.11 

Average operational time = 1.11 milliseconds 
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3.2 Digital Classifier Development   

 

Like the AAMR classifier discussed in section 3.1, the development of the DAMR for 

this research work follows the same procedures. The message signal was first modulated 

onto the baseband signal using MATLAB code. Eight of the best known digital 

modulation schemes were classified: 2ASK, 4ASK, 2FSK, BPSK, QPSK, OFDM, 16-

QAM and 64-QAM.  The three stages involve in developing the DAMR for this research 

work are discussed in detail in the following subsections. 

 

3.2.1 Pre-Processing Stage  

Feature keys extraction was carrier out, as was done during the development of the 

AAMR, described in Section 3.1.1. The feature keys extraction was carried out in order 

to obtain input feature keys for the DAMR classifier. Feature keys that compute a small 

number of salient features from the raw modulated signals were extracted. The choice of 

the feature keys is a trade-off between minimizing the number of features to reduce the 

ANN input size, as well as the computational complexity and including all necessary 

features for the reliable recognition of the digital modulation schemes. Some previous 

studies in Arulampalam et al., (1999), Azzouz and Nandi, (1996a) have explored this 

trade-off.   

 

A set of seven feature keys are used in developing the digital classifier for this research 

work. As for the analog classifier, the seven feature extracted keys are extracted from the 

instantaneous amplitude, ( )ta , and the instantaneous phase ( )tφ  of the simulated signal. 

Two out of the seven feature extraction keys, maxγ  and dpσ , had already been described in 

section 3.1.1. Their mathematical expressions are given by equations (3.1) and (3.5). 

Equations (3.1), (3.5) and (3.11) – (3.15) are used to describe and define the seven feature 

extracted keys used for the development of the DAMR. These feature extracted keys have 

earlier been employed in Azzouz and Nandi, (1996a), An et al. (2010), Dobre et al. 

(2005) and Huang et al. (2008), but none of these authors combined the keys as is done in 

this research work. The sources of each of these feature extracted keys employed are 

presented in tabular form in Table 3.3. 
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Table 3.3: DAMR Feature Extraction Keys Sources 
  

Previous Study Adapted Feature Extracted Key 

An et al., (2010) 
20v  

Dobre et al., (2005) β  

Huang et al. (2008) X  

Azzouz and Nandi, (1996a) 
aadpap andσσσγ ,,max  

 

 

The mathematical expressions and function descriptions of the seven keys used are 

provided, as follows: 

 

The first feature extraction key employed for the development of the DAMR classifier is 

20v , which is the combined or mixed order moments. Based on the Joint Power 

Estimation and Modulation Classification (JPEMC) algorithm, 20v  is defined 

mathematically in An et al. (2010) as:    
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The theoretical values of 20k  for 16-QAM, 64-QAM and OFDM according to Wang and 

Ge (2005) are 1.312, 1.378 and 2.0 respectively. This extracted feature was used to 

discriminate between OFDM, where information is carried in more than one channel and 

other modulation schemes, where the information is carried in only one channel. Hence, 

the feature key, 20v , was used to distinguish between OFDM as a subset and the rest of 

the modulation schemes considered as another subset.    
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The second feature extraction key employed for the development of the DAMR is signal 

power key denoted as .β  This key was used to discriminate between a signal with 

complex and real signals components. Mathematically, it is defined by Dobre et al. 

(2005) as: 
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β                                     (3.13) 

 

where ( )trQ  and ( )trI  are the quadrature components, while indexes I  and Qstand for 

in-phase and quadrature component respectively. This extracted key was used to 

discriminate between 16-QAM and 64-QAM as a subset and the rest of the modulation 

schemes as another subset. Although, by nature, QPSK also has in-phase and quadrature 

components, but because itsβ  value is lower that the threshold value, ( )βt , it therefore 

falls among the rest of the modulation schemes.  

 

The third feature extraction key used is the mean value of the amplitude designated asX . 

It is defined mathematically by Huang et al. (2008) as: 
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where nA  is the instantaneous amplitude. This key was used to discriminate between 16-

QAM as a subset and 64-QAM as the other subset. 

 

The fourth feature extraction key employed for the development of the DAMR for this 

research work is maxγ , which is already described Section 3.1.1 for AAMR and defined 

by the equation (3.1). It is used to distinguish between signals that have amplitude 

information as a subset and those without amplitude information as another subset. In this 

research work, maxγ was used to distinguish 2FSK without amplitude information as a 

subset from 2ASK, 4ASK, BPSK and QPSK with amplitude information as the second 

subset. Since 2FSK has no amplitude information, its maxγ  value is less than the threshold 
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value, ( )maxγt , while other signals with amplitude information have maxγ values greater 

than the threshold value, ( )maxγt .  The BPSK and QPSK have amplitude information 

because the band limitation imposes amplitude information on them at the transitions 

between successive symbols (Azzouz and Nandi, 1996a).   

 

The fifth feature key used in developing of the DAMR is apσ , which is the standard 

deviation of the absolute value of the non-linear component of the instantaneous phase. It 

is defined as: 

 

2

)()(

2 )(
1

)(
1











−








= ∑∑

>> tntn aia
NL

aia
NLap i

C
i

C
φφσ              (3.15)                                                         

 

where )(iNLφ is the value of the non-linear component of the instantaneous phase at time 

instants 
sf

it = , C is the number of the samples in )(iNLφ , and ta is the threshold.  

 

This fifth key was used to distinguish between signals that have no absolute phase 

information and those that have absolute phase information. It is thus used to distinguish 

between 2ASK, 4ASK and BPSK as a subset and QPSK as the second subset.  By their 

nature, 2ASK and 4ASK have no absolute phase information, while, according to 

(Azzouz and Nandi, 1996a) BPSK also has no absolute phase information. Hence, their 

apσ  values are less than ( )apt σ  , which is the threshold value. On the other hand, QPSK 

has absolute information by nature. This makes its apσ  value greater than( )apt σ . So, apσ  

was used to distinguish between 2ASK, 4ASK and BPSK as a subset and QPSK as the 

second subset. 

 

The sixth feature key used is dpσ , which is also used in developing AAMR in Section 

3.1.1 and it is defined by the equation (3.5). It is used to distinguish between signals that 

have direct phase information and those without direct phase information.  2ASK and 

4ASK have no direct phase information, while BPSK on the other hand has direct phase 
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information. Hence, while dpσ  values for both 2ASK and 4ASK are less than ( )dpt σ , 

which is the threshold value, the dpσ value for BPSK in contrast is greater than or equal to 

the threshold value. So, dpσ  was used to distinguish between 2ASK and 4ASK as a 

subset and BPSK as the second subset. 

 

The seventh feature extraction key used in developing the DAMR is aaσ . It is the 

standard deviation of the absolute value of the normalized instantaneous amplitude of the 

simulated signal. It is defined as: 
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aaσ  was used to distinguish between 2ASK as a subset and 4ASK as the second subset. 

The discrimination between the two signals is possible because the value of the 

normalized instantaneous amplitude of 2ASK is constant, so it has no absolute amplitude 

information. This makes aaσ  value for 2ASK to be less than ( )aat σ , being the threshold 

value. On the other hand, the 4ASK signal has absolute and direct amplitude information 

by nature, which makes its aaσ  value greater than the threshold value,  ( )aat σ . So, aaσ  is 

used to distinguish between 2ASK and 4ASK.  

 

Detailed graphical plots of these feature extracted keys against SNR values are shown in 

Figure 3.5, while the algorithm used to discriminate between the eight digital modulated 

signals is shown in Figure 3.6. The optimum feature keys thresholds, ( )βt , ( )maxγt , ( )Xt , 

( )aat σ , ( )dpt σ , ( )apt σ  and ( )20vt , shown in Figure 3.6, are automatically and adaptively 

chosen at each neuron of the ANN, which is one of the advantages of PR approach over 

DT approach where suitable threshold for each feature key has to be chosen (Azzouz and 

Nandi, 1996a).     
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Figure 3.5: Variation of (a) β , (b) maxγ , (c) Mean, X, (d) aaσ ,    (e) apσ  , (f) dpσ and 

(g) 20v with SNR for Digital Modulated Signals 

(g) 
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Figure 3.6: Functional Flowchart for Digitally Modu lated Signals 

 

 

 
 
 
 
 
 
 
 
  
 
 
 

Figure 3.7: Multilayer Feed-forward Network Archite cture for the DAMR 
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3.2.2 Network Training Stage 

As in the development of the AAMR in Section 3.1.2, this stage discussed the training 

and development of the developed DAMR classifier. The DAMR classifier was 

developed using the ANN. A MLP or feed-forward backpropagation network was also 

employed in developing the DAMR. The architecture of the developed DAMR classifier 

is shown in Figure 3.7, as having the statistical feature extracted keys discussed in 

Section 3.2.1 as the input data sets.  

 

The MLP consists of one input layer, one hidden or intermediate layer of computational 

nodes or neurons and one output layer of computational neurons. All the neurons are 

fully connected, as shown in Figure 3.7. Seven neurons are used at the input layer 

corresponding to the number of input features and seven neurons are used at the hidden 

layer. The network has eight neurons at the output layer corresponding to the number of 

targets. The specifications for the ANN employed in this research work for the 

classification of the digital modulation schemes considered are shown in Table 3.4. 

 

Table 3.4: Specifications for the Developed DAMR 
 

Item Parameters Value 

1. Type of neural network architecture Feed-forward 

2. No. of neurons in input layer  7 

3. No. of neurons in hidden layer  7 

4. No. of neurons in output layer  8 

5. Coefficient of weight-decay  0.01 

6. Activation function in hidden layer tanh 

7. Activation function in output layer logistic 

8. Maximum number of epochs 100 

9. Performance function MSE 

10. Learning algorithm SCG 

 

 

The training of the developed DAMR for this research work followed the same 

procedures described for the developed AAMR in Section 3.1.2. Input vectors and 

corresponding target vectors are used to train the network until it could classify the 
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modulation schemes in appropriate way. Whenever the results of the output neurons 

differ from the expected or target value, errors are propagated in a backward manner 

from the output layer to the hidden layer. This BPA involves two paths as described in 

Section 3.1.2. A total of 3500 data elements with seven inputs vectors and eight target 

outputs vectors were used.  

 

3.2.3 Network Testing Stage 

After the development and training of the classifier, its performance was evaluated by 

using 25% of the total generated data as the test data set. The performance evaluation was 

investigated using six different SNR values of -5, 0, 5, 10 15 and 20 dB. Table 3.5 lists 

the success recognition rate for all the SNR values considered when the developed 

DAMR was run for 100 cycles. The result of the performance evaluation of the 

developed DAMR shows that the classifier can correctly and accurately recognize the 

eight digital modulation schemes considered, with an average success rate above 99.60% 

for signals with SNR values from 0 dB upward and above 98.0% for signal at – 5 dB 

SNR value without a pre-knowledge of the signals parameters.  

 

Table 3.5: Developed DAMR Success Recognition Rate  
 

Modulation 
scheme 

Percentage of success recognition at different SNR vale 
- 5 dB 0 dB 5 dB 10 dB 15 dB 20 dB 

2ASK 98.43 99.29 99.57 99.91 99.94 99.98 
4ASK 95.40 99.55 99.76 99.89 99.96 99.99 
2FSK 99.79 99.87 99.90 99.92 99.95 99.97 
BPSK 99.91 99.94 99.95 99.97 99.99 99.99 
QPSK 99.35 99.89 99.92 99.95 99.98 99.99 
OFDM 99.71 99.82 99.87 99.94 99.97 99.99 
16QAM 98.95 99.64 99.79 99.83 99.92 99.98 
64QAM 97.19 99.29 99.57 99.62 99.84 99.95 
Overall 

success rate 
(%) 

 
98.59 

 
99.66 

 
99.79 

 
99.88 

 
99.94 

 
99.98 

Operational 
time taken 

(milliseconds) 

 
0.50 

 
0.49 

 
0.49 

 
0.53 

 
0.50 

 
0.54 

Average operational time = 0.51 ms 
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3.3 Combined Analog and Digital Classifier Development   

 

The development of the combined ADAMR for this research work follows the same steps 

observed in developing both AAMR and DAMR, respectively described in sections 3.1 

and 3.2. The development of only the DAMR would have been sufficient alone, because 

of the increasing usage of digital modulation schemes in radio technologies, such as 

wireless communication nowadays. However, because analog modulation schemes are 

still in use in most developing countries, the study also includes the developing of the 

AAMR. The ADAMR classifier presented in this section is included because in a 

cognitive radio environment, it is unexpected of the cognitive device or secondary user to 

know in advance the features of the primary user’s signal, including its modulation 

scheme, whether it is analog modulated or digitally modulated. Therefore, the desire to 

have a universal AMR that can operate in a blind cognitive radio environment underlines 

the development of the combined ADAMR presented in this Section.  

 
As in the development of both AAMR and DAMR classifiers discussed in Sections 3.1 

and 3.2, the development of the ADAMR for the study follows the three functional 

blocks for AMR development, as shown in Figure 3.1.  Thirteen target outputs comprise 

of twelve-combined analog and digital modulation schemes and un-modulated noise 

signal were classified.  The un-modulated noise or no modulation was added only to this 

ADAMR classifier to serve as control experiment, which represents absence of a primary 

radio signal in a cognitive radio environment. The addition of the un-modulated noise to 

only this classifier is because of the peculiarity of the classifier as the only one later 

incorporated into the developed CRE for this thesis. The three stages involved, as 

illustrated in Figure 3.1, are observed as discussed in the following subsections. 

 

3.3.1 Pre-Processing Stage  

The feature keys extraction process was carrier out, as done for both AAMR and DAMR. 

A set of eight feature keys were used in developing the combined analog and digital 

classifier. The eight feature keys were derived from the instantaneous amplitude ( )ta , 

and the instantaneous phase ( )tφ  of the simulated signal. The eight feature extraction 
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keys employed are: maxγ , dpσ , P, 20v , β , mean X, apσ  and aaσ    which have already 

been described in Sections 3.1.1 and 3.2.1. Their mathematical expressions are given by 

equations (3.1), (3.5), (3.6), (3.11), (3.13), (3.14), (3.15) and (3.16) respectively. Detailed 

graphical plots of these extracted feature keys against SNR are shown in Figure 3.8.  
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Figure 3.8: Variation of (a) β , (b) maxγ , (c) Mean, X,  (d) P, (e) aaσ , (f) apσ  , (g) 

dpσ and (h) 20v with SNR for Digital Modulated Signals 

 

(g) 

(h) 
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Figure 3.9: Multilayer Feed-Forward Network Architecture for the ADAMR 

 

3.3.2 Network Training Stage 

As in the development of both AAMR and DAMR, this stage involves the training of the 

ADAMR classifier. The ADAMR classifier was developed using an ANN. A MLP or 

feed-forward backpropagation network was employed in developing the ADAMR for this 

research work. The developed ADAMR was also trained using the supervised learning 

method. 

 

The architecture of the developed ADAMR classifier is shown in Figure 3.9 as having the 

statistical feature extracted keys plotted in Figure 3.8(a)-(h) as the inputs. The MLP 

consists of one input layer, one hidden or intermediate layer of computational nodes or 

neurons and one output layer of computational neurons. All the neurons are fully 

connected, as presented in Figure 3.9. Eight neurons were used at the input layer 

corresponding to the number of input features, and fifteen neurons were used at the 

hidden layer. The network has thirteen neurons at the output layer corresponding to the 

number of targets, thus 12 combined analog and digital modulation schemes and the 

noise signal or un-modulated signal. The noise signal is included to serve as control 

experiment for the absence of a primary radio signal. The noise signal or un-modulated 

signal is, as mentioned above, included in only this classifier because it is the one further 

used in developing the CRE for the research work. The specifications for the developed 

ADAMR classifier are shown in Table 3.6. 
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Table 3.6: Specifications for the Developed ADAMR 
  

Item Parameters Value 

1. Type of neural network architecture Feed-forward 

2. No. of neurons in input layer  8 

3. No. of neurons in hidden layer  15 

4. No. of neurons in output layer  13 

5. Coefficient of weight-decay  0.01 

6. Activation function in hidden layer tanh 

7. Activation function in output layer logistic 

8. Maximum number of epochs 150 

9. Performance function MSE 

10. Learning algorithm SCG and CONJGRAD 

 

In the training of the developed ADAMR for this research work, input vectors and 

corresponding target vectors are used to train the network until it could classify the 

modulated signals and the noise signal in appropriate manner. Whenever the results of the 

output neurons differ from the expected or target value, errors are propagated in a 

backward manner from the output layer to the hidden layer, as described in Section 3.1.2. 

A total of 6500 data elements, with eight feature inputs vector and nine target outputs 

vectors were used. The procedures followed in training the developed ADAMR are 

exactly the training procedure described in Section 3.1.2 for the AAMR. 

 

As a result of the sensitivity of this particular classifier, it was trained using two different 

types of training algorithms. The first algorithm used is the normal SCG used for the 

other two classifiers. The second and new training algorithm used to train the classifier is 

CONJGRAD. The essences of using the two training algorithms for only this classifier, 

i.e. the developed ADAMR, were two-fold. The first reason is because the classifier was 

the only one used later in developing the CRE for the thesis. The second reason was to 

determine the effect of different training algorithms on the classifier’s performance. 

Hence, the use of the two training algorithms provided information on the appropriate 

training algorithms for the thesis. It also helped in eliminating the negative effect the 

wrong choice of training algorithm might have caused on the classifier’s performance and 

the developed CRE.   The choice of the appropriate training algorithm was achieved by 
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comparing the two training algorithms’ performances in terms of success detection rate 

and operational time taken. The obtained success detection rate and operational time 

taken results were presented in Section 3.3.3. 

3.3.3 Network Testing Stage 

After the development and training of the developed ADAMR classifier, its performance 

was evaluated using 25% of the total generated data as a test data set. The performance 

evaluation was investigated on different SNR values of -5, 0, 5, 10, 15 and 20 dB, using 

the SCG and the CONJGRAD training algorithms. The success recognition or detection 

rate and the operational time taken when the combined ADAMR was run for 150 cycles, 

using the two training algorithms, SCG and CONJGRAD, with the same test input data 

sets are presented in Table 3.7 and Table 3.8 respectively.  

 

 
Table 3.7: Developed Combined ADAMR Success Recognition Rate when Trained 

with SCG 
 

Modulation 
scheme 

Performance of success recognition rate at different SNR value using 15 hidden 
neurons and 150 training cycles on additive white Gaussian noise (AWGN) 

channel  
- 5 dB 0 dB 5 dB 10 dB 15 dB 20 dB 

2ASK 97.55 99.46 99.66 99.84 99.91 99.97 
4ASK 96.79 97.77 98.68 99.47 99.94 99.98 
2FSK 99.22 99.65 99.79 99.84 99.97 99.99 
BPSK 99.85 99.89 99.93 99.97 99.98 99.99 
QPSK 99.54 99.64 99.88 99.92 99.97 99.98 
AM 99.91 99.93 99.94 99.96 99.98 100.00 
DSB 99.84 99.87 99.90 99.95 99.97 99.98 
SSB 99.91 99.95 99.97 99.98 99.99 99.99 
FM 99.93 99.95 99.96 99.97 99.99 99.99 

OFDM 99.81 99.89 99.94 99.96 99.97 99.98 
16QAM 98.89 99.15 99.88 99.91 99.95 99.99 
64QAM 98.75 98.97 99.75 99.89 99.93 99.97 
Overall 

success rate 
(%) 

 
99.17 

 
99.51 

 
99.77 

 
99.89 

 
99.96 

 
99.98 

Absence of 
modulation 

scheme 

 
92.92 

 
99.93 

 
99.95 

 
99.96 

 
99.98 

 
99.99 

Operational 
time taken 

(milliseconds) 

 
4.15 

 
4.04 

 
4.07 

 
4.06 

 
4.04 

 
4.08 

Average operational time = 4.07 ms 
 
 



 110

Table 3.8: Developed Combined ADAMR Success Recognition Rate when Trained 
with CONJGRAD 
 

Modulation 
scheme 

Performance of success recognition rate at different SNR value using 15 hidden 
neurons and 150 training cycles on additive white Gaussian noise (AWGN) 

channel 
- 5 dB 0 dB 5 dB 10 dB 15 dB 20 dB 

2ASK 87.10 99.91 99.94 99.97 99.99 99.99 
4ASK 82.21 99.87 99.91 99.96 99.98 99.99 
2FSK 99.56 99.88 99.93 99.95 99.98 99.99 
BPSK 99.92 99.95 99.96 99.97 99.99 100.00 
QPSK 99.42 99.76 99.84 99.96 99.98 99.99 
AM 99.57 99.89 99.94 99.97 99.98 99.99 
DSB 97.87 99.82 99.93 99.95 99.97 99.98 
SSB 99.90 99.94 99.95 99.97 99.99 100.00 
FM 99.93 99.95 99.97 99.98 99.99 99.99 

OFDM 99.48 99.91 99.94 99.96 99.98 99.98 
16QAM 98.46 99.87 99.84 99.92 99.97 99.98 
64QAM 93.66 98.91 99.65 99.87 99.94 99.99 
Overall 

success rate 
(%) 

 
96.42 

 
99.81 

 
99.90 

 
99.95 

 
99.98 

 
99.99 

Absence of 
modulation 

scheme 

 
99.92 

 

 
99.96 

 
99.97 

 
99.99 

 
100.00 

 
100.00 

Operational 
time taken 

(milliseconds) 

   
10.17 

 
10.00 

 
10.49 

 
11.03 

 
10.18 

 
11.97 

Average operational time = 10.64 ms 
 
 
 

The results of the performance evaluation of the developed, combined ADAMR with the 

two training algorithms shows that the classifier could correctly and accurately recognize 

the twelve combined analog and digital modulation schemes considered with an average 

success rate above 99.0% for signals with SNR values from 0 dB upward without a pre-

knowledge of the signals parameters. However, for signal at – 5 dB SNR, the 

performance varies slightly, where SCG outperforms CONJGRAD.  The results show a 

progressive increase in the success recognition as the SNR value increases.  

 

The developed, combined ADAMR is also able to detect the noise signal introduced, 

which acts as the control experiment for absence of a modulation scheme at over 99.90% 

success rate using the two training algorithms. The significant difference between the two 

training algorithms used is their operational time taken. The results show that SCG acts 

faster than CONJGRAD, with average operational time taken of about 4.0 milliseconds, 



 111

while that of CONJGRAD is above 10.0 milliseconds.   Thus, the developed ADAMR 

classifier, using SCG training algorithm, is used in development of CRE for this research 

work, because speed in detecting a primary radio signal is important in a cognitive radio 

environment.   

 

Furthermore, the pictorial classification output of the developed ADAMR, irrespective of 

the training algorithm employed, illustrating the classifier accuracy is shown in Figure 

3.10. The figure shows the typical output of the classifier when tested using test data sets 

that are different from the training data sets. The result shows that not only does the 

classifier perfectly recognize the test data sets, but also does without any error. This 

shows that the developed ADAMR classifier is capable of recognizing data sets that were 

different from those used to train it. This indicates how the classifier behaves when 

incorporated into the developed CRE.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The m-files for the development, training and testing of the three automatic modulation 

classifiers; AAMR, DAMR and combined ADAMR, are presented in Appendix A1, 

Appendix A2 and Appendix A3 respectively.  

 
 
 

Figure 3.10: Typical Network Output Result of the Developed ADAMR Classifier 
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The “ ( )t  ” used as a function to determine the threshold value for each of the feature 

keys is an optimum feature extraction key value. Its value, ( )maxγt , ( )dpt σ , ( )Pt , ( )βt , 

( )Xt , ( )aat σ , ( )apt σ , and ( )20vt , for each of the feature extracted keys is automatically 

and adaptively chosen at each neuron of the ANN (Azzouz and Nandi, 1996a). This 

automatic determination of “( )t  ” is one of the advantages of PR approach employed in 

developing the three classifiers for this thesis, as opposed to the DT approach where a 

suitable threshold for each feature extracted key has to be selected.  

 

3.4 Summary    

 

The focus of this chapter is on the development of AMR, which can automatically 

recognize all forms of modulation schemes. The chapter’s focus is primarily in meeting 

one of the objectives of this research work. In fulfilling this objective, three different 

automatic modulation classifiers were developed, namely AAMR, DAMR and ADAMR. 

The m-files for the development and the training of the three classifiers are presented in 

Appendix A. Details on their developments were presented in Section 3.1, Section 3.2 

and Section 3.3 respectively.  

 

The performance evaluation studies carried out on the three classifiers show that the 

initial objective of developing an automatic modulation classifier or recognizer that can 

automatically classify or recognize modulation schemes without any pre-knowledge 

about the modulation scheme was achieved. In addition, in this chapter, the two different 

training algorithms used to train the combined ADAMR especially shows that different 

training algorithms have different effects on ANN performance. The results obtained 

using the SCG and CONJGRAD training algorithms show that the SCG training 

algorithm is faster than the CONJGRAD training algorithm.  Similarly, the operational 

time taken using the SCG training algorithm reveals that the developed DAMR classifier 

is the fastest, followed directly by AAMR and lastly by ADAMR, with an average 

operational time taken of 0.51 milliseconds, 1.11 milliseconds and 4.07 milliseconds 

respectively. These calculated average operational time taken show that the developed 
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DAMR classifier executes almost twice as fast as the developed AAMR classifier. This is 

as a result of digital modulation schemes’ inherent greater noise immunity and robustness 

to channel impairment compared with analog modulation schemes. Similarly, the high 

operational time experienced in the combined ADAMR is as a result of the inherent poor 

noise immunity the analog modulated signal incorporated into the combined ADAMR 

introduced to the combined classifier.   

 

However, the only observed limitation that was common to the three developed 

classifiers is their incorrect prediction of the name(s) of other modulation scheme(s) that 

were not included in their designed. Although when the three developed classifiers were 

tested using modulation scheme(s) that were not included in their respective designs, 

each of them was able to detect the presence of modulation scheme but the modulation 

name-type given to such modulation scheme(s) were inappropriate. This is because 

respective classifiers could only correlate those modulation scheme(s) to one of the 

modulation schemes involved in their designs. However, none of the three classifiers was 

unable to detect those modulation scheme(s). Likewise, the combined ADAMR classifier, 

which un-modulated noise was included in its design, did not classify such modulation 

scheme(s) as un-modulated signal. This shows that the three developed classifiers could 

reliably detect all forms of modulation schemes, whether included in their designs or not, 

presented to them except that they could not give those “strange modulation scheme(s)” 

the appropriate modulation name-type.          

 



 114

CHAPTER 4 

 

4.0 COOPERATIVE SPECTRUM SENSING OPTIMIZATION 

 

Cognitive radio technology introduces the idea of spectrum sharing between the primary 

or licensed owner of the spectrum, and the unlicensed or secondary user. The aim is to 

overcome the current underutilization of licensed spectrum. To deploy a CR technology 

application or DSA, reliable detection of the licensed owner signal, so as to avoid 

interference between the primary and secondary users, must be guaranteed. This 

condition makes spectrum sensing to detect the presence of the primary user, as well as 

identifying the available spectrum holes, a principal requirement in a cognitive radio 

environment or network.  

 

The cooperative spectrum sensing technique has been identified as an effective spectrum 

sensing technique, as a result of its spatial diversity scheme. Despite its effectiveness, the 

cooperative spectrum sensing technique can incur a cooperative overhead, such as extra 

sensing time, delay, energy and operations devoted to collaborative sensing (Popoola and 

van Olst 2011c). These cooperative overheads occur as a result of an increasing traffic 

burden from the series of reports that are needed to be sent over the channel when large 

numbers of secondary users collaborate.        

 

In order to overcome this problem, this chapter emphasizes the development of an 

effective cooperative spectrum sensing algorithm that can prevent the recurrence of a 

cooperative overhead. This objective was achieved by developing a sensing time 

algorithm that can predict spectrum sensing duration.  The detailed information on the 

development and performance of the algorithm is presented in this chapter.  
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4.1 Cooperative Sensing Time Algorithm Development 

 

In order to optimize the usage of the radio spectrum, the CR or secondary user should be 

able to detect the presence of the primary user’s signal within a very short time frame. 

Though spending more time in spectrum sensing can aid spectrum sensing accuracy, its 

excessive duration can cause secondary user interference to a primary user, as well as 

hinder immediate vacation of the secondary user in cases where the primary user re-

appears when the secondary user is transmitting. To prevent this scenario, an algorithm 

was employed in the cooperative spectrum sensing tool in such a way that the primary 

user’s signal can be detected within a short time period.  

 

In developing the sensing time algorithm, the expected total time taken to reliably sense 

the spectrum was divided into two parts. The first part is the time required to quickly 

sweep over the whole system’s bandwidth, BSYS, which is called rough resolution sensing 

time, TRRS. During this period, the CR user is expected to scan for possible frequency 

bands or channels with less probability of an active primary user signal. During the rough 

resolution sensing, the cooperative sensors, CR1-CR6 as shown in Figure 4.1, are to detect 

the presence of any form of modulation scheme in each block or channel that makes up 

the BSYS, as shown in Figure 4.2.   

 

The second part is the fine resolution sensing time. It is the time required for the 

cooperative sensors, CR1-CR6, to thoroughly scan the detected idle frequency bands or 

blocks observed during the rough resolution sensing process. At this period, the system 

bandwidth must be processed in smaller blocks, as shown in Figure 4.2, each having a 

smaller bandwidth, BBLK. The time taken for carrying out fine resolution sensing is 

denoted by TFRS.       
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Adapted from: Popoola and van Olst (2011c) 

Figure 4.1: Centralized Cooperative Sensing 
 

 

 

 

 

 

 

Source: Popoola and van Olst (2011c) 

Figure 4.2: Channel Model 
 

 

In Figure 4.1, if M numbers of cooperative sensors or secondary users are cooperating 

together to sense the spectrum, the total number of rough blocks that must be sensed per 

secondary user is expressed as:   

 

RS

SYS
CR MB

B
N =                             (4.1) 

where RSB  is the number of channel or blocks constituting the rough sensing bandwidth. 

 

After the completion of the rough scanning of the entire system bandwidth, the smaller 

bandwidth, BBLK, will be processed or scanned at a fine resolution frequency, FRES. 

During the fine resolution sensing, all the M cooperative sensors or secondary users are 

to down-convert the same frequencies and use an FFT to process the single BBLK being 
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considered. According to Neihart et al., (2007), an N fast Fourier transform, which 

converts time-domain signal or continuous signal to discrete frequency-domain data or 

signal, is required to set up a fine sensing bandwidth, BFS, as well as the minimum 

sensing fine frequency resolution, FRES. Apart from the time-domain to frequency-domain 

conversion of the signal, the other usefulness of the N fast Fourier transform is to 

improve the signal resolution, as increase in N improves the signal resolution. Therefore, 

the fine sensing bandwidth, BFS, set by an N fast Fourier transform at a minimum fine 

sensing frequency resolution, FRES, is thus given as:  

 

   RESFS NFB =             (4.2)   

As shown in Figure 4.2, the same way the overall system bandwidth is divided into 

frequency bands or blocks of rough sensing bandwidth (BRS), the entire fine sensing 

bandwidth (BBLK) also was divided into frequency blocks of fine sensing bandwidth (BFS) 

where BRS is α multiple integer of BFS given as:   

 

  FSRS BB α=               (4.3) 

where ,,4,3,2,1 L=α  is the number of fine frequency blocks from a rough block. 

 

Now substituting (4.2) and (4.3) in (4.1), the number of rough sensing blocks that must 

be sensed by each cooperative sensor or cognitive radio user is given as: 

 

 
RES

SYS
CR MNF

B
N

α
=              (4.4) 

 

As reported in Neihart et al., (2007) and Zamat and Nataarajan (2009), the total number 

of real additions and multiplications that need to perform a power-of-two N-point FFT in 

a practical implementation is given as: 

 

( ) 86log4 2 +− NNN                        (4.5) 
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The essence of performing a power-of-two N-point FFT is to reduce the computational 

complexity of the algorithm. Hence, for optimum running speed of the algorithm, the 

FFT need the data size to be a power of two, called radix-2 N-point FFT, which reduces 

the signal or data multiplications to ( )( )NN
2log2  and the signal additions to ( )( )NN 2log . 

Therefore, if the operating frequency of each CR user or cooperative sensor is FCR, the 

total time required to perform rough resolution sensing of the entire system bandwidth, 

BSYS, is given as:  

 








 +






−
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 (4.6)                                                          

       

When a fine bandwidth of size FSBα , has been detected, the fine resolution sensing will 

then take place using N points of FFT. Thus, the total duration to perform a fine 

resolution sensing for α frequency blocks is given as: 

     

    ( ) ( )[ ]86log4 2 +−= NN
F

T
CR

FRS

α
                   (4.7) 

 

Therefore, the total sensing time, TS, to perform the overall spectrum sensing by all the 

cooperative sensors or secondary users collaborating together is simply the sum of (4.6) 

and (4.7), which is:  

 

( )[ ]86log486log4 22 +−+
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          (4.8)                                                

                                                                                           

Equation (4.8) is therefore used to develop the cooperative spectrum sensing duration 

from which various system level trades-offs were considered and their effects upon TS are 

examined. The results obtained are used in predicting the possible optimization strategies 

for maximizing the cooperative gain without incurring a cooperative overhead.  
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4.2 Cooperative Spectrum Sensing Optimization  

 

A computational implementation of the proposed sensing time algorithm was developed. 

The computational algorithm was tested with a system bandwidth, BSYS, frequency of 2.5 

GHz, which is divided into rough sub-bands bandwidth, BRS, of 25 MHz. The BRS is 

further sub-divided into 2.5 MHz fine bandwidth, BFS, frequency. The FFT size (N) is 

chosen as 32. The other fixed parameter used is FCR which equates to 100 kHz, while 

various values of α, M and FRES are used to evaluate the performance of the 

computational algorithm developed in achieving the objective of this research work. The 

value of FCR was fixed at 100 kHz because the lowest frequency band, Table 5.1-5.4, of 

the four wireless services considered is in this frequency range. The summary of the 

simulation parameters for analyzing the developed spectrum sensing duration algorithm’s 

performance evaluation is shown in Table 4.1. In developing the algorithm, location of 

the terminals as well as their spatial ranges apart were assumed to be negligible because 

of the space constraint of the laboratory setup.   

    

 

Table 4:1: The Simulation Parameters for the Developed Spectrum Sensing Time 
Algorithm 

 
Parameter Value 

Operating Frequency of the System (BSYS) 0 – 2.5 GHz 

Rough Sub-bands Bandwidth (BRS) 25 MHz 

Fine Sub-bands Bandwidth (BBLK) 2.5 MHz 

CR User or Cooperative Sensor Operating 

Frequency (FCR) 

100 kHz 

FFT Size (N) 32 

SNR Range - 5 dB to 30 dB 

Channel Condition AWGN 
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Equation (4.8) is used to compare the sensing time, depicted as TS for two or more 

cognitive radios performing cooperative sensing techniques with a single cognitive radio 

performing spectrum sensing individually. Various practical trade-offs are explored for 

achieving optimal cooperative gain with minimal sensing time, such as the number of 

cognitive radios required in cooperative sensing, and their impact on the number of sub-

bands in BRS, as well as the appropriate rough resolution bandwidth frequency settings. 

The numerical results obtained are presented in graphical form and discussed in the 

following sub-sections.        

 

4.2.1 Number of Cognitive Radios Collaborating  

The parameter in equation (4.8), with its impact on spectrum sensing optimization, which 

was first considered, is the number of cognitive radio or cooperative sensors, M, that can 

collaborate together to achieve minimal sensing time with optimal cooperative gain, and 

without incurring a cooperative overhead. From equation (4.8), it is observed that TS is 

inversely proportional to M. Therefore, theoretically, it is possible for as many 

cooperative sensors as possible to collaborate together in sensing the spectrum without 

incurring a cooperative overhead. However, in a practical sense, increasing the number of 

cognitive radios or cooperative sensors without caution will cause a substantial penalty in 

power consumption due to duplication of transceiver chains. In addition, a large spatial 

distance will be required to ensure that the received signals between the cognitive radios 

are uncorrelated. The impractical nature of this large distance in the cognitive radio 

environment, as well as the power consumption required, places a premium on the 

number of cognitive radios that can be used.  

 

In order to maintain a balance between distances required, the power consumption, the 

system performance and effective sensing time, specified numbers of cognitive radios 

need to collaborate together in spectrum sensing. Numerical results obtained from the 

simulation carried out show that a maximum of four cognitive radios or cooperative 

sensors are ideal to collaborate. This can be easily deduced from Figure 4.3, which shows 

a plot of TS against a number of cognitive radios M at FRES = 10 kHz and fixed values of 

BSYS, BRS, BFS, N and FCR stated above. 
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From Figure 4.3, it is observed that the sensing time (TS) decreases with increasing 

number of cognitive radios. However, as the number of cognitive radios collaborating 

becomes four, a point of diminishing returns is reached. Hence, after M = 4, an increase 

in the number of cognitive radios is not justified given the small decrease in sensing time 

achieved. Based on this observation, this research work established that a maximum of 

four cognitive radios users are ideal for optimal cooperation gain in a cognitive radio 

environment in order to avoid incurring cooperative overhead.  

 

 

 

 

 

 

 

 

 

 
Figure 4.3: Plot of Sensing Time against Number of Cognitive Radios 

 
 
Careful observation of Figure 4.3 also shows the effectiveness of cooperative spectrum 

sensing techniques over non-cooperative spectrum sensing techniques. As shown in the 

figure, while it takes one cognitive radio sensor 3.6 milliseconds to sense the spectrum 

alone, it takes two cognitive radio sensors collaborating together about 0.7 milliseconds 

to sense the same portion of the spectrum.     

 

4.2.2 Effect of Fine Frequency Sensing Resolution Selection  

The second parameter, as in equation (4.8), with its effect on cooperative gain which was 

considered, is fine frequency sensing resolution (FRES).  FRES is the frequency required to 

process the smaller bandwidth denoted by BBLK, in Figure 4.2, after the completion of the 

rough scanning of the entire system’s bandwidth, BSYS. Like the number of cognitive 

radios, FRES is inversely proportional to the sensing time, TS. Hence, a theoretical 
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assumption that a high value of FRES will improve the cooperative gain without incurring 

cooperative overhead is impracticable, as shown in Figure 4.4.  

 

From Figure 4.4, it is observed that the TS decreases with increase in fine frequency 

sensing resolution until 60 kHz, when a point of diminishing returns is reached. Hence, 

after this frequency, observations show that an increase in fine frequency sensing 

resolution does not justify the small decrease in sensing time. This shows that for optimal 

cooperative gain, an appropriate fine frequency sensing resolution needs to be determined, 

so as not to incur a cooperative overhead.  

 

 

 

 

 

 

 

 

 

 

 
Figure 4.4: Plot of Sensing Time against Fine Frequency Sensing Resolution 

 

4.2.3 Impact of Effect of α value Selection  

The third and last parameter in equation (4.8), with its impact which was also considered 

is α, or the number of fine frequency blocks in a rough block. Considering Figure 4.5, 

which shows the plot of sensing time against the number of cognitive radios at different 

values of α, it is noted that for a small number of cognitive radios, for example M = 2, a 

large value of α gives a minimal sensing time and vice-versa. However, this is not 

generally true as the number of cognitive radios collaborating for spectrum sensing 

increase.  
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For instance, when the four cognitive radios predicted as the appropriate maximum 

cognitive radios to collaborate for spectrum sensing were considered, the numerical result 

obtained from the algorithm shows that minimum sensing time was obtained at α = 30, 

rather than at α = 50. This shows that, as values of α increase beyond a certain point, it is 

only adding to the number of blocks to be scanned during the fine sensing process, rather 

than contributing to a fast sensing rate. Hence, in a practical implementation of 

cooperative sensing, the appropriate value of α needs to be wisely selected in order to 

achieve optimal cooperative gain without incurring a cooperative overhead. Based on the 

fixed parameters used, as well as four maximum numbers of cooperative sensors or 

cognitive radios suggested for collaborative sensing in this study, the ideal value of α for 

optimal cooperative gain without incurring a cooperative overhead is 30.    

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.5: Plot of Sensing Time against Number of Cognitive Radios at Different 

Values of α 

 

4.3 Comparative Analysis of the Developed Sensing Time Algorithm 

To further evaluate the accuracy of this thesis spectrum sensing time algorithm, one of its 

analysis results or graphs shown in Figure 4.3 was compared with a similar graph 

presented in Neihart et al., (2007). The choice of the reference work was based on the 

fact that the two studies employed the same sensing time algorithm. Though this thesis 

and the reference work employed different simulation parameters in obtained their 
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respective graphs shown in Figure 4.6(a) and Figure 4.6(b) respectively, observation 

shows that the two obtained graphs were similar. This similarity in the nature of the two 

graphs and predictions of equal numbers of secondary users that can collaborate together 

to obtain optimal cooperation gain without incurring cooperative overhead, show that the 

simulation result in this thesis is as accurate as that of the reference work. The similarity 

also indicates that inferences made in this thesis are accurate and that the results obtained 

from it can perform favourably with the results from the reference work.    

 

                                                                                                                                                

 

 

 

 

Figure 4.6: Comparative Analysis of the Simulation Results between this Research 
Work and Neihart et al., (2007) 

 

Furthermore, the peculiarity and improvement this thesis made to the earlier study of 

Zamat and Nataarajan (2009) on sensing time algorithm development was in replacing 

the Dedicated Sensing Receiver (DSR) used in that study with SUSMN, which is a 

transceiver. The improvement, this introduction of the SUSMN added was that it enables 

the MN or central controller in this thesis to receive sensing results’ information from 

other secondary sensors as well as combining the received sensing results’ information to 

decide the channel condition before broadcasting the final decision it made to other 

secondary sensors. Although the two-way communication introduced in this thesis 

consumed more energy, it indeed enhances overall spectrum sensing result when 

compared with the DSR used in Zamat and Nataarajan (2009).     

 

(a) Present Work: Popoola (2012) 
PhD Thesis 

(b) Reference Work: Neihart et 
al., (2007) 

Conference Paper 
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4.4 Summary 

This chapter focused on improving cooperative spectrum sensing reliability for detecting 

primary radio signals in a cognitive radio environment. This is another major objective of 

this research work. In addition to the development of a sensing time algorithm for 

cooperative sensing in a cognitive radio environment, the results of the sensing time 

algorithm have shown the effectiveness of cooperative sensing techniques over non-

cooperative sensing techniques. The simulation result shows that cooperative spectrum 

sensing outperforms non-cooperative spectrum sensing. The developed sensing time 

algorithm was optimized by striking a balance between the fast, but less accurate, rough 

sensing operation and the slow, but more accurate, fine sensing operation. Numerical 

results from the developed algorithm in this chapter show that cooperative spectrum 

sensing can work effectively without incurring a cooperative overhead, if the sensing 

time parameters are carefully selected. The ideal parameters obtained in this chapter are 

used in chapter 5 for the development of the cognitive radio engine for this research work.  
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CHAPTER 5 

 

5.0 DEVELOPMENT OF THE STUDY COGNITIVE RADIO ENGINE  

 

This chapter focuses on the development of the CRE for this research work. The CRE 

development was based on the CR architecture adapted from Clancy et al. (2007) shown 

in Figure 5.1.   The development of the CRE was divided into three stages. The first stage 

centered on the development of an adaptive CE for the research work. In the second stage, 

the SDR for radio signal transmission and reception was developed. The third stage, 

which was the last stage for the CRE development, involves the coupling of the 

developed CE and SDR together. The full description of each stage is presented in 

Section 5.1, Section 5.2 and Section 5.3 respectively.  

 

5.1 Cognitive Engine Development 

 

Following up on the development of the ADAMR classifier and cooperation spectrum 

sensing optimization algorithm, as presented in chapter 3 and chapter 4 respectively, an 

adaptive CE to characterize the primary user’s activities is described in this chapter. The 

CE uses the developed sensing time algorithm and the ADAMR classifier for the 

spectrum sensing time determination and primary radio signal sensing and detection 

respectively on the frequency band of interest.  At the core of the CE is the ADAMR 

which was developed for the automatic detection of modulation schemes when 

monitoring the primary user activities on licensed spectrum. 
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Adapted from: Clancy et al. (2007) 
 

Figure 5.1: Developed Cognitive Radio Architecture 
 

 

The CE consists of three components, namely a knowledge base, a learning engine and a 

reasoning engine, as shown in Figure 5.1.  The CE is developed in such a way that it can 

learn and store these lessons as experience in the knowledge base. This experience can be 

retrieved to perform similar actions and decisions when needed in the future. Based on 

past experiences and interactions with information in both the learning engine and the 

reasoning engine, the knowledge base generates the final decision for the CE.   

 
The reasoning engine in this study serves as action repository system for the CE. The 

actions stored in the reasoning engine are precondition actions defining the operations the 

reasoning engine should perform based on the status of the primary user activities. The 

precondition action the reasoning engine performs is to infer either an idle or occupied 

spectrum band. The reasoning engine therefore looks at the current status of the spectrum 

to determine the right actions ideal for that condition. Based on the precondition action 

taken, the knowledge base evaluates the appropriateness of the reasoning engine action 

based on its past experience.  

 

The learning engine in this study is the ADAMR classifier described in chapter 3 using 

an ANN. Its major function is to precisely characterize a primary user’s activities by 
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monitoring the modulation scheme on the radio channel in an effort to find a means of 

optimizing radio spectrum utilization. Therefore, the role of the learning engine in this 

research work is to provide radio frequency band statistics of “1” and “0”, each denoting 

an occupied channel or an idle channel respectively. This is intended to predict the 

probability of secondary frequency usage. The other function of the learning engine is to 

update both the knowledge base and the reasoning engine with its experience on the 

channel per time period. As the learning engine learns about different radio frequency 

bands or channels, it will store these lessons in the knowledge base for future use by the 

reasoning engine.  Other functions of this engine and the two other components of the CE 

for this research work are provided in section 5.4. 

 

5.2 Software Defined Radio Development 

 

The components of the SDR employed in the development of the CRE for this research 

work are the GNU Radio and USRP2, as depicted in Figure 5.1. GNU Radio, as 

described in chapter 2 is an open-source software toolkit, which consists of a signal-

processing block library and the glue to tie these blocks together for SR or SDR 

deployment. With GNU Radio, the SDR is built by creating a graph, which its vertices 

are signal-processing blocks and the edges represent the data flow between them. The 

procedures involved in installing the GNU Radio and configuring the USRP2 used in this 

research work are presented in Appendix B.   

 

 5.3 Coupling of the Developed SDR and CE  

 
As shown in Figure 5.1, a CR can be defined as an extension of the SDR by adding an 

intelligent CE comprising of a knowledge base, a learning engine and a reasoning engine 

to drive software modifications. For the components to communicate, an application 

programming interface was developed that enables the components, namely the SDR and 

CE, to interact or communicate with each other. 
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5.4 Laboratory Spectrum Sensing Setup   

 

The research laboratory spectrum sensing setup, as shown in Figure 5.2, was 

implemented using the developed CRE. The laboratory spectrum sensing and detection 

functionality to detect the status of the channel is the sole responsibility of the CE 

component of the developed CRE. The spectrum-sensing setup is divided into two stages. 

The first stage involves the cooperative sensing to monitor the frequency band or channel 

in order to detect a primary user’s radio signal. In this step of the spectrum sensing setup, 

each of the cognitive radios or secondary user sensors (SUS) in Figure 5.3 employed the 

developed ADAMR to perform individual or local spectrum sensing to detect the primary 

user. The detection observation made by each SUS is reported to the secondary user’s 

sensor master node (SUSMN) for the final decision on the channel. The developed 

Spectrum Sensing and Detection Algorithm (SSADA) graphical user interface to 

demonstrate the operational description of the stage, is presented in section 5.5.  

 

 

 

 

 

 

 

 

 

  

 
 
 
 
 
 
 
 
Figure 5.2: Laboratory Setup for the Spectrum Sensing Modulation Identification 

Method 
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Figure 5.3: Cooperative Sensing Model 
 

The second stage of the research laboratory spectrum-sensing setup is the seizure of the 

identified or detected idle channel for secondary usage by the cognitive or secondary user 

(SU) in Figure 5.3. To transmit radio or signal waveform in software form, an extension 

of GNU Radio called GNU Radio Companion (GRC) was used to facilitate the creation 

of an appropriate system of GNU Radio blocks with the aid of a visual flow graph. A 

typical GRC flow graph created is shown in Figure 5.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.4: Typical GNU Radio Companion Model 
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At the transmitting end of Figure 5.4, the source block produces the digital stream from 

the hardware component or USRP2. The digital stream is modulated using different 

modulation schemes. Figure 5.4 specifically shows 16-QAM, which is one of the 

modulation schemes used. The modulated data is transmitted using the developed SDR. 

The designated USRP2 device that was used as the primary transmitter is device D1, with 

IP address 192.168.10.2. The modulated signal captured before transmitting is shown in 

Figure 5.5. The center frequency of the transmitter was set at 2.5 GHz in order to prevent 

interference to the ISM band employed.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.5: Typical Modulated Signal using XCVR2450 Daughterboard  

 
   
 
 
At the receiving end, the center frequency of each SU is set at 2.5 GHz. SU and SUS in 

Figure 5.3 are transceiver cognitive radios equipped with the developed ADAMR to 

enable each to automatically detect the modulation scheme of the primary user’s signal 

from the transmitter. In addition, different designated responsibilities were assigned to 

SU and SUS despite the fact that they have the same capabilities. SUs are used only as 

secondary transmitters, while SUSs are used as secondary user sensors to ensure 
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continuous spectrum sensing when one or more SUs is/are transmitting. This is to ensure 

instantaneous detection of a primary user’s re-appearance in a channel when the SU is 

transmitting. Typical captured waveform at the receiving end is shown in Figure 5.6.  

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 5.6: Typical Received Signal using XCVR2450 Daughterboard 
 

 

5.5 Developed Spectrum Sensing and Detection Algorithm Description 

 

The developed SSADA demonstration for the research work is initiated in stage 1 of 

Figure 5.7, by choosing a wireless service of interest in the developed graphic user 

interface program. A hypothetical South Africa frequency allocation table was used for 

the spectrum sensing and detection demonstration activities using four wireless services’ 

frequency bands namely radio broadcasting, television broadcasting, mobile telephone 

and unlicensed, or ISM frequency bands. The four frequency bands were stored in the 

knowledge base, as demonstrated in Figure 5.1, which serves as the database for the 

developed CRE.  In addition, the latitude and longitude of the six main cities in South 

Africa, namely Bloemfontein, Cape Town, Durban, Johannesburg, Port Elizabeth and 

Pretoria, used as the test sites, were stored in the database to provide information about 

the location of each of the cities. After providing the preference service and location, the 

reasoning engine in Figure 5.1 was updated with this data and the developed SSADA 

commences rough spectrum sensing by scanning over the entire system bandwidth (BSYS), 

as described in chapter 4. 
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Figure 5.7: Developed SSADA Flowchart 

START 

Start Spectrum Sensing 

Enter Preference Service and Location 

Start rough sensing by 
scanning BSYS (Figure 4.2)  

Is any 
modulation 
scheme 
detected? 

Yes No 

Note the channel as idle. 

Record the channel status as 0. 

Calculate TRRS value and store. 

Go to the next channel  

Note the channel as occupied. 

Record the channel status as 1. 

Go to the next channel  

STAGE 2. 

Is any 
modulation 
scheme 
detected? 

Yes No 

Update the channel status as 0. 

Calculate TFRS value and store. 

Report channel status to MN. 

Go to the next channel  

STAGE 3. 

Start fine sensing by 
scanning BBLK (Figure 4.2)  

Note the channel as occupied. 

Update the channel status as 1. 

Report channel status to MN. 

Go to the next channel  

Note the channel as idle. 

STAGE 1. 

MN combines observations 
from STAGE 3. 

 

   Is logic 
output 1? 

Yes No 

Confirm channel as idle. 

Update the channel status safe. 

CR or SU can transmit. 

Start Spectrum Sensing  

Confirm channel as occupied. 

Update channel status unsafe. 

Start Spectrum Sensing  

STAGE 4. 

MN makes final decision on 
observations using “OR” logic 

 
MN transmits “OR” logic result to 

CR or SU. 
 

Calculation of total spectrum sensing 
time or duration (TS). 

 

STOP 



 134

Stage 2 of the SSADA, as demonstrated in Figure 5.7, performs the rough sensing by 

sweeping over the frequency bands or channels to detect presence of a modulation 

scheme. The hypothetical frequency bands tables designed for each of the services is 

shown in Tables 5.1 – 5.4. If any of the modulation schemes is detected, the algorithm 

notes the channel as occupied and record the channel status as “1” in the learning engine. 

On the other hand, if no modulation scheme is detected, the algorithm notes the channel 

as idle and “0”, is recorded against the channel in the learning engine. For idle channels, 

the algorithm also calculates the time taken to carry out the rough spectrum sensing, TRRS, 

using equation (4.6) and stores the value obtained in the learning engine. 

 

Table 5.1: Table of FM broadcasting Frequency Bands 
 

System Bandwidth (BSYS)/MHz Band Allocation 
87.00 87.23   87.46   87.69   87.92   88.15   88.40   Band 1 
88.50 88.73   88.96   89.19   89.42   89.65   89.90  Band 2 
90.00  90.23   90.46   90.69   90.92   91.15   91.40   Band 3 
91.50   91.73   91.96   92.19   92.42   92.65   92.90   Band 4 
93.00   93.23   93.46   93.69   93.92   94.15   94.40   Band 5 
94.50   94.73 94.96   95.19   95.42   95.65   95.90   Band 6 
96.00   96. 23 96.46   96.69   96.92   97.15   97.40   Band 7 
97.50   97.73 97.96   98.19   98.42   98.65   98.90   Band 8 
99.00   99.23 99.46   99.69   99.92   100.15   100.40   Band 9 
100.50   100.73 100.96   101.19   101.42   101.65   101.90   Band 10 
102.00  102.23 102.46   102.69   102.92   103.15   103.40   Band 11 
103.50   103.73 103.96   104.19   104.42   104.65   104.90   Band 12 
105.00   105.23 105.46   105.69   105.92   106.15   106.40   Band 13 
106.50   106.73 106.96   107.19   107.42   107.65   107.90   Band 14 
108.00   108.23 108.46   108.69   108.92   109.15   109.40 Band 15  

 
Table 5.2: Table of ISM Frequency Bands 

 
System Bandwidth (BSYS)/MHz Band Allocation 

2400.00 2401.17 2402.34 2403.51 2404.68 2405.85 2407.04 Band 1 
2407.14 2408.31 2409.48 2410.65 2411.82 2412.99 2414.18 Band 2 
2414.28 2415.45 2416.62 2417.79 2418.96 2420.18 2421.32 Band 3 
2421.42 2422.59 2423.76 2424.93 2426.10 2427.27 2428.46 Band 4 
2428.56 2429.73 2430.90 2432.07 2433.24 2434.41 2435.60 Band 5 
2435.70 2436.87 2438.04 2439.21 2440.38 2441.55 2442.74 Band 6 
2442.84 2444.01 2445.18 2446.35 2447.52 2448.69 2449.88 Band 7 
2449.98 2451.15 2452.32 2453.49 2454.66 2455.83 2457.02 Band 8 
2457.12 2458.29 2459.46 2460.63 2461.80 2462.97 2464.16 Band 9 
2464.26 2465.43 2466.60 2467.77 2468.94 2470.11 2471.30 Band 10 
2471.40 2472.57 2473.74 2474.91 2476.08 2477.25 2478.44 Band 11 
2478.54 2479.71 2480.88 2482.05 2483.22 2484.39 2485.58 Band 12 
2485.68 2486.85 2488.02 2489.19 2490.36 2491.53 2492.72 Band 13 
2492.82 2494.00 2495.18 2496.36 2497.54 2498.72 2499.90 Band 14 
2500.00 2501.17 2502.34 2503.51 2504.68 2505.85 2507.04 Band 15  
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Table 5.3: Table of Television Broadcasting Frequency Bands 
 

System Bandwidth (BSYS)/MHz  Band Allocation 
174.00   174.25   174.50   174.75   175.00   175.25   175.50   175.75   176.00   176.25   176.50   176.75   177.00   177.27   Band 1 
177.37   177.62   177.37   178.12   178.37   178.62   178.87   179.12   179.37   179.62   179.87   180.12   180.37   180.64   Band 2 
180.74   180.99   181.24   181.49   181.74   181.99   182.24   182.49   182.74   182.99   183.24   183.49   183.74   184.01   Band 3 
184.11   184.36   184.61   184.86   185.11   185.36   185.61   185.86   186.11   186.36   186.61   186.86   187.11   187.38   Band 4 
187.48   187.73   187.98   188.23   188.48   188.73   188.98   189.23   189.48   189.73   189.98   190.23   190.48   190.75   Band 5 
190.85 191.10   191.35   191.60   191.85   192.10   192.35   192.60   192.85   193.10   193.35   193.60   193.85   194.12   Band 6 
194.22   194.47   194.72   194.97   195.22   195.47   195.72   195.97   196.22   196.47   196.72   196.97   197.22   197.49 Band 7 

197.59 197.84   198.09   198.34   198.59   198.84   199.09   199.34   199.59   199.84   200.09   200.34   200.59   200.86   Band 8 

200.96  201.21   201.46   201.71   201.96   202.21   202.46   202.71   202.96   203.21   203.46   203.71   203.96   204.23   Band 9 

204.33 204.58   204.83   205.08   205.33   205.58   205.83   206.08   206.33   206.58   206.83   207.08   207.33   207.60   Band 10 

207.70   207.95   208.20   208.45 208.70    208.95 209.20   209.45   209.70   209.95    210.20 210.45   210.70   210.97 Band 11 
211.07 211.32   211.57   211.82   212.07   212.32   212.57   212.82   213.07   213.32   213.57   213.82    214.07 214.34   Band 12 

214.44 214.69   214.94   215.19   215.44   215.69   215.94   216.19   216.44   216.69   216.94   217.19   217.44   217.71   Band 13 

217.81 218.06   218.31   218.56   218.81   219.06   219.31   219.56   219.81   220.06   220.31   220.56   220.81   221.08   Band 14 

221.18 221.43   221.68   221.93   222.18   222.43   222.68   222.93   223.18   223.43   223.68   223.93   224.18   224.45   Band 15  

224.55  224.80   225.05   225.30   225.55   225.80   226.05   226.30   226.55   226.80   227.05   227.30   227.55   227.82   Band 16 
227.92 228.17   228.42   228.67   228.92    229.17 229.42    229.67 229.92   230.17   230.42   230.67   230.92   231.19   Band 17 

231.29 231.54   231.79   232.04   232.29   232.54   232.79   233.04   233.29   233.54   233.79   234.04   234.29   234.56   Band 18  

234.66  234.91   235.16   235.41   235.66   235.91   236.16   236.41   236.66   236.91   237.16   237.41   237.66   237.90   Band 19  

238.00 238.61   239.22   239.83   240.44   241.05   241.66   242.27   242.88   243.49   244.10   244.71   245.32   245.90   Band 20  

246.00  246.06   246.12   246.18   246.24   246.30   246.36   246.42   246.48   246.54   246.60  246.66   246.72   246.79   Band 21 
246.89  246.95   247.01   247.07   247.13   247.19   247.25   247.31   247.37   247.43   247.49   247.55   247.61   247.68   Band 22 

247.78 247.84   247.90   247.96    248.02 248.08   248.14   248.20   248.26   248.32   248.38   248.44   248.50   248.57   Band 23 

248.67  248.73   248.79    248.85 248.91   248.97   249.03   249.09   249.15   249.21   249.27   249.33   249.39   249.46   Band 24 

249.56 249.62 249.68   249.74   249.80   249.86   249.92   249.98   250.04   250.10   250.16   250.22   250.28   250.35   Band 25 

250.45  250.51   250.57   250.63   250.69   250.75   250.81   250.87   250.93 250.99   251.05   251.11   251.17   251.24   Band 26 
251.34 251.40   251.46   251.52    251.58 251.64   251.70   251.76   251.82   251.88   251.94   252.00   252.06   252.13   Band 27 

252.23   252.29   252.35   252.41   252.47   252.53   252.59   252.65   252.71   252.77   252.83   252.89   252.95   253.02   Band 27 

253.12   253.18   253.24   253.30   253.36   253.42   253.48   253.54   253.60   253.66   253.72   253.78   253.84   253.90   Band 29 

254.00   254.06   254.12   254.18   254.24   254.30   254.36   254.42   254.48   254.54   254.60   254.66   254.72   254.79   Band 30 
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Table 5.4: Table of Mobile Phone Frequency Bands 
 

System Bandwidth (BSYS)/MHz  Band Allocation 
890.00   890.28   890.56   890.84   891.12   891.40   891.68   891.96   892.24   892.52   892.80   893.08   893.36   893.58   Band 1 
893.68 893.96   894.24   894.52   894.80   895.08   895.36   895.64   895.92   896.20   896.48 896.76   897.04   897.26   Band 2 
897.36 897.64   897.92   898.20   898.48   898.76   899.04   899.32   899.60   899.88   900.16   900.44   900.72   900.94   Band 3 
901.04 901.32   901.60   901.88 902.16   902.44   902.72   903.00   903.28   903.56   903.84   904.12   904.40   904.62   Band 4 
904.72  905.00   905.28   905.56   905.84   906.12   906.40   906.68   906.96   907.24   907.52   907.80   908.08   908.30   Band 5 
908.40   908.68   908.96   909.24   909.52   909.80   910.08   910.36   910.64   910.92   911.20   911.48   911.76   911.98   Band 6 
912.08 912.36   912.64   912.92   913.20   913.48   913.76   914.04   914.32   914.60   914.88   915.16   915.44   915.66   Band 7 
915.76 916.04   916.32   916.60   916.88   917.16   917.44   917.72   918.00   918.28   918.56   918.84   919.12   919.34   Band 8 
919.44 919.72   920.00   920.28   920.56   920.84   921.12   921.40   921.68   921.96   922.24   922.52   922.80   923.02   Band 9 
923.12 923.40   923.68   923.96   924.24   924.52   924.80   925.08   925.36   925.64   925.92   926.20   926.48   926.70   Band 10 
926.80   927.08   927.36   927.64   927.92   928.20   928.48   928.76   929.04   929.32   929.60   929.88   930.16   930.38   Band 11 
930.48 930.76   931.04   931.32   931.60   931.88   932.16   932.44   932.72   933.00   933.28   933.56   933.84   934.06   Band 12 
934.16  934.44   934.72   935.00   935.28   935.56   935.84   936.12   936.40   936.68   936.96   937.24   937.52   937.74   Band 13 
937.84  938.12   938.40   938.68   938.96   939.24   939.52   939.80   940.08   940.36   940.64   940.92   941.20   941.42   Band 14 
941.52 941.80   942.08   942.36   942.64   942.92   943.20   943.48   943.76   944.04   944.32   944.60   944.88   945.10   Band 15  
945.20  945.48   945.76   946.04   946.32   946.60   946.88   947.16   947.44   947.72   948.00   948.28   948.56   948.78   Band 16 
948.88 949.16   949.44   949.72   950.00   950.28   950.56   950.84 951.12   951.40   951.68     951.96 952.24   952.46   Band 17 
952.56 952.84   953.12   953.40   953.68 953.96   954.24   954.52   954.80   955.08   955.36   955.64   955.92 956.14   Band 18  
956.24 956.52   956.80   957.08   957.36   957.64   957.92   958.20   958.48   958.76   959.04   959.32   959.60   959.90   Band 19  
960.00 1028.45   1096.90   1165.35   1233.80   1302.25   1370.70   1439.15   1507.60   1576.05   1712.95   1644.50   1781.40   1849.90   Band 20  
1850.00 1851.19   1852.38   1853.57   1854.76   1855.95   1857.14   1858.33   1859.52   1860.71   1861.90   1863.09   1864.28   1865.46   Band 21 
1865.56 1866.75   1867.94   1869.13 1870.32   1871.51   1872.70   1873.89   1875.08   1876.27   1877.46   1878.65   1879.84   1881.02   Band 22 
1881.12 1882.31   1883.50   1884.69   1885.88   1887.07   1888.26   1889.45   1890.64   1891.83   1893.02   1894.21   1895.40   1896.58   Band 23 
1896.68 1897.87   1899.06   1900.25   1901.44   1902.63   1903.82   1905.01   1906.20   1907.39   1908.58   1909.77   1910.96   1912.14   Band 24 
1912.24 1913.43   1914.62   1915.81   1917.00   1918.19   1919.38   1920.57   1921.76   1922.95   1924.14   1925.33   1926.52   1927.70   Band 25 
1927.80   1928.99   1930.18   1931.37   1932.56   1933.75   1934.94   1936.13   1937.32   1938.51   1939.70   1940.89   1942.08   1943.26   Band 26 
1943.36  1944.55   1945.74   1946.93   1948.12   1949.31   1950.50   1951.69   1952.88   1954.07   1955.26   1956.45   1957.64   1958.82   Band 27 
1958.92 1960.11   1961.30   1962.49   1963.68   1964.87   1966.06   1967.25   1968.44   1969.63   1970.82   1972.01   1973.20   1974.38   Band 27 
1974.48 1975.67   1976.86   1978.05   1979.24   1980.43   1981.62   1982.81   1984.00   1985.19   1986.38   1987.57   1988.76   1989.90   Band 29 
1990.00  1991.19   1992.38   1993.57   1994.76   1995.95 1997.14   1998.33   1999.52   2000.71   2001.90   2003.09   2004.28   2005.46   Band 30 
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To ascertain the particular modulation detected by the algorithm, the developed ADAMR 

was designed in a matrix form called a table of Modulation Scheme Detection Matrix 

(MSDM), as shown in Figure 5.8. The position of “1”, in each row of the table indicates 

the presence of the corresponding modulation scheme in the channel. This table of 

MSDM, Figure 5.8, is used in stages 2 and 3 of the algorithm to detect the presence of the 

modulation scheme in the channel.  
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Figure 5.8: Modulation Scheme Detection Matrix  

 
 

In stage 3, a fine spectrum-sensing operation is executed. The algorithm searches for the 

presence of any modulation scheme by scanning through the BBLK as previously 

described and demonstrated in Figure 4.2 of chapter 4. If any of the modulation schemes 

are detected, the channel is noted as occupied and finally the status of the channel during 

this local sensing process is updated as “1”, in the learning engine. However, if there is 

no modulation scheme in the channel, the channel is noted as idle and its status is updated 

as “0”, in the learning engine. These binary observations of “1” and “0”, for occupied and 

idle channels respectively, are the results of the local spectrum sensing that are reported 

to the SUSMN by SUSs. This local sensing reporting procedure is illustrated in Figure 5.9. 

Also, at this stage, the time taken to carry out the fine sensing (TFRS) is calculated using 

equation (4.7). The calculated TFRS value is stored in the learning engine.    
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Figure 5.9: Local Cooperative Sensing Reporting Model 
 

 
In stage 4, depicted in Figure 5.7, which is the last stage of the algorithm, terminates one 

complete cycle. In the stage, the SUSMN combines all the binary observations from the 

third stage using “OR” logic, as illustrated in Table 5.5. The “OR” logic was used to 

prevent both false and miss detection rate probabilities. Furthermore, in this stage, the 

“OR” logic result is tested. If the “OR” logic result is “1”, the channel is confirmed as 

occupied and unsafe for secondary transmission by SU.  

 

However, if the “OR” logic result testing is “0”, the channel is confirmed as idle and safe 

for secondary or opportunistic usage. The result of the “OR” logic test provides the final 

decision on the channel. A typical result of the spectrum scanning exercise by the 

algorithm is shown in Figure 6.4.  When the final decision is made like this, the SUSMN, 

also known as MN, transmits the final decision for opportunistic secondary transmission 

possibility to the CR or SU as illustrated in Figure 5.3.  The algorithm finally determines 

the total time (TS) taken to carry out the overall spectrum-sensing using equation (4.8). 

 

Table 5.5: Table of “OR” logic 
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After a complete cycle like this, the spectrum sensing by the SUS starts all over again 

while SU is transmitting on the detected idle channel. As mentioned earlier, the proposed 

sensing and detection method uses separate devices as the spectrum sensor and secondary 

transmitter.  This approach enables continued sensing of the cognitive radio environment, 

even when the secondary transmitter is transmitting opportunistically in a licensed 

spectrum. The approach therefore assists in preventing secondary user interference to a 

primary owner in a situation where the primary user re-appears while the secondary 

transmission is in progress.  The evaluation of the developed SSADA, described above, 

in achieving the desired objective of the study is presented in the next chapter.  

 
 

5.6 Summary  

 

The objective of developing a CRE that can automatically sense and detect radio signals 

in the cognitive radio environment without having a priori information about the signals 

characteristics was achieved in this chapter using the developed SDR and CE. The 

performance evaluations of the developed CRE and SSADA, also known as CE, are 

presented in chapter 6.   
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 CHAPTER 6 

 

6.0 THE DEVELOPED COGNITIVE RADIO ENGINE EVALUATION   

 

This chapter presents detailed information on the performance evaluation tests carried out 

on the CRE as developed. The tests are classified under two main headings, namely 

laboratory/experimental setup and SSADA proof of concept evaluation.  The 

performance of the CRE for spectrum sensing and detection is analyzed and verified 

through the numerical results obtained. 

 

6.1 Experimental Evaluation of the Developed Cognitive Radio Engine  

 

Experiments were conducted to evaluate the performance of the developed CRE setup in 

the previous chapter. Three main performance criteria or metrics were employed. The 

designated USRP2 primary transmitter was used to transmit modulated signals generated 

in the host PC. The results obtained for each of the performance evaluation metrics are 

presented and discussed in the following sub-sections. 

 

6.1.1 Detection States 

From equation (2.1), it can be deduced that the spectrum sensing output can fall into any 

of these three detection states, namely: 

 

• correct detection; 

• miss detection; and 

• false detection.  

 

These three detection states are defined, as follows:   

• Occupied spectrum or channel detected as occupied and/or unoccupied spectrum 

or channel detected as unoccupied (i.e. correct detection); 
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• Occupied spectrum or channel detected as unoccupied (i.e. miss detection); and 

• Unoccupied spectrum or channel detected as occupied (i.e. false detection). 

 

Considering the three detection states, it is obvious that while both correct and false 

detection states would cause no interference to the primary user in a cognitive radio 

environment, miss detection would certainly cause a secondary user to interfere with the 

primary user’s transmission. Hence, if interference avoidance to the primary user is the 

only parameter considered in determining both the effectiveness and efficiency of the 

developed CRE, high correct detection and high false detection with low miss detection 

would have been the expected result from the developed CRE. However with high false 

detection, one of the disadvantages is that the spectrum would not be efficiently utilized, 

since idle spectrum is being classified as busy spectrum. Another disadvantage of high 

false detection is that it would introduce a high cooperative overhead to the spectrum 

sensing in terms of additional energy and sensing time.  

 

Therefore, in assessing both the effectiveness and efficiency of the developed CRE for 

this research work, its detection accuracy with pre-known modulation schemes, denoting 

an occupied channel, and non-modulated noise, denoting an unoccupied channel, were 

examined. The average, overall detection accuracy results obtained are shown in Figure 

6.1. From Figure 6.1, it is evident that both the miss and false detection states of the 

developed CRE are negligible. The result shows that the correct detection state is the 

highest, which is an indication of both high interference-free and high spectrum 

utilization efficiency.  
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Figure 6.1: The Developed CRE Detection State 

 

6.1.2 Probability of Detection  

The sequel to the negligible false and miss detection states obtained when the developed 

CRE’s overall signal-detection capability was tested was further evaluated. The 

additional performance evaluation test carried out on the developed CRE was its 

spectrum-sensing probability of detection (PD). The metric, PD, was used to determine the 

CRE level of interference protection provided to the primary user. The metric was 

determined for each of the modulation schemes employed at various SNR values. The 

numerical results obtained are presented in graphical form in Figure 6.2(a-h).  

 

The PD was measured for SNR levels ranging from – 5 dB to 20 dB. The measurements 

were repeated 50 times for each SNR value in order to accurately measure the PD values 

obtained. The average PD values plotted against the various SNR are shown in Figure 

6.2(a-h) for eight out of the twelve modulation schemes considered. The PD obtained at 

each SNR value for each of these eight modulation schemes is compared with the 

corresponding detection rate of the developed ADAMR presented in Table 3.6. Figure 
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6.2(a-h), shows that the PD for the developed CRE was less compared with corresponding 

PD values for the developed ADAMR at low SNR values of – 5 dB and 0 dB. However, 

as the SNR values increase, for instance from 5 dB upward, the CRE’s PD performance 

increases comparably with that of the ADAMR. 

 
Figure 6.2(a-h),   also shows that the developed CRE level of interference protection to 

the primary user is favourable at all the SNR values considered with the average PD value 

above 0.9. The metric value also shows that the developed CRE is not biased towards 

either of the modulation schemes employed or any of the SNR values. It was also evident 

from these figures that the performance of this detection method is directly proportional 

to that of the developed ADAMR used. The implication of this observation is that the 

sensitivity of the automatic classifier employed has a direct impact on the PD of the 

developed CRE. Hence, if the detection ability of the classifier employed is low, the PD 

ability of the CRE will also be low.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    (a)    (b) 
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Figure 6.2: The Developed ADAMR and CRE Detection Probability 
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Further consideration of Figure 6.2(a-h) shows the better performance of the cooperative 

nodes over the non-cooperative or single node individually performing the spectrum 

sensing operation. A careful observation of each of the eight plots (a) to (h) in Figure 6.2 

shows that the corresponding values of PD for cooperative nodes are higher than that of 

non-cooperative nodes. The plots also reveal that the PD values of the cooperative nodes 

are favourable with that of the ADAMR compared with those of corresponding non-

cooperative nodes. This again shows the advantage of cooperative spectrum sensing over 

the non-cooperative spectrum sensing in term of performance index. In addition, the 

analysis shows that cooperative spectrum sensing application guarantees high 

interference protection to the primary user than non-cooperative sensing method.   

 

6.1.3 Detection Response Time 

The third performance evaluation metric that was used to evaluate the performance of the 

developed CRE for this research work is the time taken to detect different modulation 

schemes. This detection response time is different from the calculated average 

recognition time for the AAMR, DAMR and combined ADAMR classifiers presented in 

Table 3.2, Table 3.5, and Table 3.7 respectively. The classifier recognition time taken or 

duration presented in those Tables on page 89, 101 and 109 respectively are the 

respective classifier’s recognition time. But the response time considered in this section is 

the time taken for the developed CRE to recognize modulation schemes used to test its 

response rate.  

 

As mentioned earlier, out of these three classifiers, only the combined ADAMR classifier 

was employed in the CRE developed for this study. Hence, when this test was carried out, 

the response time obtained was the CRE response time for the different modulation 

schemes transmitted. Analog, digital and combined analog and digital modulation 

schemes were transmitted from the designated USRP2 transmitter at random. The 

duration of detecting the modulation schemes was observed.  

 

The detection response time, presented graphically in Figure 6.3, reveals that the 

detection response time for the modulated signals varies considerably from one 
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modulated type to another. The numerical results presented in Figure 6.3 shows that the 

developed CRE response time for the digitally modulated signal is the fastest, while its 

response time to detect a combined analog and digital modulated signal was the slowest. 

The detection response time for the analog modulated signal falls somewhere in between.  

 

Although the CRE’s response time or observation time for the modulated signals varies 

from one modulated type to another, the overall short time, in the ranges of milliseconds 

that the CRE uses to detect all the modulation schemes considered coupled with its non-

complexity in nature, makes the implementation of the proposed sensing and detection 

method practically feasible. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.3: Detection Response Time for FM, 16-QAM and Combined Modulated 
Signals 

 

 

6.2 Comparative Analysis   

 
To further evaluate the performance of the CRE, results obtained from it were compared 

with a recent study on another spectrum sensing and detection method. The choice of the 

reference study, Haniz et al., (2010), was characterized by: 
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• usage of both  GNU Radio and USRP;  

• usage of the same ranges of SNR; 

• application of mixed or combined analog and digital modulation schemes; 

• usage of same AWGN channel condition; and 

• usage of the same USRP daughterboard (XCVR 2450).   

 

However, two differences are observed between this research work and the reference 

study in Haniz et al., (2010). The first is the SNR ranges employed. While this research 

work used SNR values ranges from – 5 to 20 dB, the reference study used SNR values 

ranges from – 20 to 10 dB. Hence, for the comparative analysis, only the limited SNR 

ranges of – 5 dB to 10 dB, common to the two studies were considered. The second 

observed difference between this research work and study presented in Haniz et al., 

(2010), is the detection method employed. While the reference work used the energy 

detection method, which is currently acclaimed the best detection method (Akyildiz et al., 

2011) in literature, this study employed the automatic modulation recognition technique.  

 

However, the authors of the reference study used both AM and BPSK modulated signals, 

which are parts of the modulation schemes considered in this research work, to test their 

spectrum sensing performance. The two modulation schemes used to evaluate their 

spectrum sensing system as well as the best acclaimed detection method used in the 

reference study makes it the most appropriate study to further evaluate the performance 

of the developed CRE and the detection method proposed in this research work. The 

obtained comparison result is presented in Table 6.1. 

 

The result shows that this research work produced better PD results at a low SNR value of 

– 5 dB for the two modulation schemes considered. The poor performance of the 

reference work at this low SNR value indicates that the reference work detection of weak 

primary radio signal is relatively low compared with this thesis. Therefore, the 

outperformance of this research work at this low SNR value shows that the developed 

CRE in this research work can reliably detect weak primary radio signal in a CR 

environment better than the reference work. Hence, application of the detection method 

developed in this thesis does guarantee interference free in a CR environment when 
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compared with the reference work. In addition, the better PD results of this research work 

at a low SNR value over the reference work makes this research work more relevant in 

CR environment than the reference work. This is because the ability of the developed 

CRE in this research work to reliably detect weak primary radio signal has provided 

another milestone toward solving the problem of weak signal detection in CR 

environment, which is one of the challenging issues in CR environment.  

 

The reference work, however, outperforms this research work in the other three SNR 

values but with only a close margin. The overall analysis of the comparative study 

presented in Table 6.1 shows that this research work performs favourably well with 

previous work in the literature. The analysis result also confirms that the automatic 

modulation identification’s detection method proposed in this research work can compare 

favourably well with the energy detection method which is the current generally 

acclaimed best detection method.   
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Table 6:1: Probability of Detection Values’ Comparison between this Research Work and Haniz et al., (2010) 
 

 

 

SNR 

(dB) 

 

Doctoral Thesis (Popoola, 2011) 

 

Conference Proceedings (Haniz et al., (2010) *  

PD Value  for AM Signal PD Value  for BPSK Signal PD Value  for AM Signal PD Value  for BPSK Signal 

Single Node Cooperative 

Nodes 

Single Node Cooperative 

Nodes 

Single Node Cooperative 

Nodes 

Single Node Cooperative 

Nodes 

- 5 0.996 0.998 0.995 0.997 0.500 0.900 0.550 0.930 

0 0.997 0.998 0.996 0.998 0.950 1.000 0.990 1.000 

5 0.998 0.999 0.998 0.999 1.000 1.000 1.000 1.000 

10 0.998 0.999 0.998 0.999 1.000 1.000 1.000 1.000 

 
         *:  Data’s second decimal points are approximate values extracted from graphs. 
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6.3 SSADA Proof of Concept Evaluation  

 

Due to limitations of the USRP2 daughterboards availability, the tests results presented 

above were carried out using an XCVR2450 daughterboard operating in an ISM 

frequency band. Therefore, in order to extend the testing, as well as showcase the 

practicability of the proposed spectrum sensing and detection method in other usable 

frequency bands, the CE, which is the brain of the developed CRE, was further developed 

in a graphical user interface called SSADA. The SSADA’s development was fully 

described in chapter 5, while its performance is briefly examined in this chapter. 

Additional information on the performance evaluation of SSADA is presented in 

Appendix C. Meanwhile, its performance evaluation in a hypothetical television 

frequency allocation table is presented below using two of its features. The two features 

demonstrated are its spectrum scanning and cooperative gain optimization prediction’s 

capabilities presented in section 6.3.1 and 6.3.2 respectively.      

 

6.3.1 SSADA Spectrum Scanning Capability Test  

A typical spectrum scanning result by the developed SSADA is presented here. Based on 

the current radio spectrum allocation policy, the Television (TV) frequency bands shown 

in Table 5.4 are randomly allocated among the six cities used. The frequency bands’ 

random allocation was carried out to conform to the current frequency allocation policy.  

Figure 6.4 shows typical cooperative spectrum sensing for the hypothetical TV frequency 

band. The algorithm scans each frequency band to detect spectrum holes in each band 

before proceeding to the next band. The result shows that the developed SSADA 

functions well, with a high capability of detecting occupied bands and spectrum holes 

respectively in the TV frequency bands used to illustrate it capability.  
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Figure 6.4: A Section of Typical TV Frequency Bands Scanning Result 
 

: Represent some cut off parts of the scanning result’s screen 
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Careful observation of the developed SSADA shows that, irrespective of the allocated 

frequency bands for each of the locations, the developed SSADA is designed to scan the 

overall frequency bands for each wireless service. This approach enables OSA or DSA 

deployment in all the locations as the overall scanning of the spectrum provides 

information on primary user activity on each channel per time period, and therefore 

enhances overall optimal spectrum utilization. Further evaluations of the SSADA are 

presented in Appendix C.  

 

 

6.3.2 Sensing Time versus FFT size 

The second evaluation test carried out on the developed SSADA is its capability of 

predicting the appropriate setting of the FFT size (N), so as not to incur a cooperative 

overhead. The parameter, N, was not considered in chapter 4, however, observation 

shows that its indiscriminate selection can affect the sensing time and increase the 

cooperative overhead. Considering Figure 6.5, which shows the plot of the sensing time 

against N obtained from the developed SSADA, with value of N varying from 16 to 

1024; the figure shows that the sensing time increases with increase in N. This is 

expected since processing gain is proportional to FFT size N and observation or sensing 

time (Čabrić et al., 2004). However, Figure 6.5 shows that indiscriminate choice of N 

will increase the sensing time and cooperative overhead rather than increasing the sensing 

accuracy. Thus, in this research work, FFT size of 32 was employed. The FFT size of 32 

was chosen because values of FFT sizes above 32 only cause a sporadic increase in Ts. 

This shows that the increase in N’s value above 32 only increases the sensing or 

observation time, Ts, without enhancing the detection probability.  
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 Figure 6.5: SSADA Sensing Time against FFT size N 

 

6.4 Summary  

 
In this chapter, the focus is on performance evaluation of the developed CRE for this 

research work. The laboratory setup to evaluate the performance of the developed CRE 

by determining its detection states and detection probabilities using various modulation 

schemes at different SNR shows that primary aim and objectives of the research had been 

achieved.    Though the sensing time required for this sensing and detection method 

varies from one modulation type to another, its high correct detection state with 

negligible false and miss detection states is one of the significant advantages of the 

proposed method. Its other advantage is its high average PD values that cut across all the 

SNR values for all the modulation schemes considered. 

  

In addition, the capability of the developed SSADA that could scan all the hypothetical 

allocated frequency bands for the four wireless services within the country is an 

indication that the CRE as developed, which incorporates implemented CE as its core, 

can enhance OSA or DSA deployment in any part of the country. Similarly, since the 

hypothetical allocated frequency bands can be replaced by any frequency bands of any 

country, makes the developed CRE’s deployment applicable to any part of the world.  
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CHAPTER 7 

 

7.0 RESEARCH SUMMARY AND CONCLUSION  

 

This chapter concludes this thesis with a brief summary of the thesis and the 

contributions of the work to the field of primary radios’ signals sensing and detection in a 

cognitive radio environment. The chapter ends with recommendations on the adoption of 

DSA as an alternative spectrum access strategy in mitigating the current challenge of 

spectrum underutilization and enhancing the continued availability of radio spectrum for 

future wireless devices.    

 

7.1 Thesis Summary  

 
The world as a whole is approaching the limits of the availability of useable radio 

frequency for wireless communication, while at the same time the demand for and use of 

radio spectrum for wireless services and applications are greatly increasing. Observations 

have also shown that, as the demand for and use of the radio spectrum is increasing, so do 

the challenges to the successful management of the radio spectrum using the current fixed 

allocation policy. In light of this, there is a need to adopt an alternative radio spectrum 

access strategy and management policy that would enhance both the management and 

usage of radio spectrum in order to enhance radio spectrum availability for future 

wireless devices. The aim of this research work, as stated in chapter 1, is to develop a 

CRE that can sense and detect all forms of primary radio signals in a cognitive radio 

environment. This is because the development of this type of radio engine that generates 

little or no interference to primary users in a cognitive radio environment, such a radio 

engine is one solution that can guarantee the general acceptance of cognitive radio 

technology, which is a promising solution for overcoming radio spectrum scarcity and 

underutilization currently experiencing worldwide.  

 

In achieving this aim, a comprehensive literature review on conventional primary radio 

detection methods in a cognitive radio environment was carried out in chapter 2. It was 
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during the literature survey that factors responsible for failure of most of these 

conventional spectrum sensing and detection methods was discovered, as most of these 

methods were developed based on features that are limited to certain types of radio 

signals, instead of employing a feature that is common to all primary radio signals. This 

shortfall was accounted for in this research work, by using an automatic modulation 

identification methodology to develop this research work’s spectrum sensing and 

detection method. The methodology was used because all radios using the radio spectrum 

make use of one modulation or another.  

 

 

Chapter 3 discussed in full the procedures involved in developing the Automatic 

Modulation Recognition (AMR) classifier used for the research. The starting point for the 

AMR classifiers’ development, which is the feature keys extraction process, was 

presented in chapter 3. The chapter also contains detailed information on the development 

and evaluation of the three AMR classifiers developed. In chapter 4, the sensing time 

algorithm for enhancing cooperative spectrum sensing performance was developed.  

 

Chapter 5 of this thesis was devoted to one of the major components of this research 

work, which is on the development of a CRE to sense and detect a primary radio signal in 

a cognitive radio environment. The importance of CRE in cognitive radio technology was 

reviewed in section 2.5. Different AI schemes employed in developing previous CREs 

were also reviewed in that section. The review of these schemes revealed their limitations, 

such as non-resistance to noise, which was adequately taken care of in the ANN 

employed for the development of the CRE in this research work.  

 

The other major component of this research is the development of an SSADA or CE 

using the JAVA programming language. The user-friendly interface program was 

developed to provide a proof of concept evaluation of the developed CRE, where the 

developed SSADA is its core brain. The SSADA incorporates the following three 

modules:  

- Preferred service and location for radio spectrum scanning and random 

table of frequency allocation per geographical location;  
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- The plotting section, where the sensing time parameters selection for 

optimizing cooperative spectrum sensing gain can be done; and 

- The manual calculations section for calculating the spectrum sensing 

time (Ts).  

 

The three modules incorporated in the developed SSADA are shown in Figure C.1 in 

Appendix C.    

 

Testing of the developed CRE and SSADA using different performance criteria and 

metrics was undertaken. Although the proposed sensing and detection method’s response 

time varies with the modulation schemes, the overall results revealed that the developed 

CRE and SSADA were versatile. In addition, the favouarble comparative analysis result 

obtained when the results of the proposed sensing and detection method in this research 

work was compared with the generally acclaimed best detection method in the literature 

provides a good assessment of the proposed sensing and detection method in this research.  

 

7.2 Conclusion and Recommendation  

 

The dynamic spectrum access, which is one of the applications of cognitive radio 

technology, has been observed as a promising solution to the problem of radio spectrum 

scarcity and underutilization by introducing the opportunistic usage of licensed frequency 

bands that are not efficiently utilized by licensed owners. Following the general belief 

that spectrum sensing is the key functionality to enable DSA, this research work focused 

on issues of spectrum sensing. The thesis discussed merits and demerits of most of the 

current detection methods or algorithms presented in literature. After a careful, neutral 

and constructive analysis of most of the current detection methods in literature, it showed 

that none of the methods can adequately and reliably detect all forms of primary radio 

signals in a cognitive radio environment. This leads to the novel detection method 

proposed in this research work using an automatic modulation recognition method. 
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The implementation of this study’s detection method using both hardware and software 

components has been fully discussed. Also the results obtained in this study, when 

compared with other conventional detection methods, showed high reliability of the 

proposed detection method in detecting all forms of primary radio signals in a cognitive 

radio environment. Although the proposed sensing and detection method’s observation 

time or sensing time varies with modulation schemes, the numerical result from the study 

shows the significant performance of the proposed detection method, even at a low SNR 

values, where the conventional detection methods usually perform poorly. 

 

In addition to these, another significant contribution of this research work is the practical 

implementation of the proposed detection method using practical and available 

components. This study has shown that the practical development of a reliable detection 

method is possible and attainable using AMR. The AMR, which is the core identification 

feature employed in this detection method, has confirmed the preliminary investigated 

discovery during the literature survey that most conventional detection methods in 

literature perform poorly because the features used were not features common to all radio 

signals like the modulation identification scheme employed in this study. The proposed 

detection method in this research shows a favourable comparison with the energy 

detection method, whereby signal energy content, which is also a feature common to all 

radio signals, shows that a single spectrum sensing and detection method can only be 

achieved when a feature common to all radio signals is employed in its development 

rather than using features that are limited to certain signal types.  

 

Another significant factor or contribution of this research work is the bedrock 

information it has provided on how to improve cooperative spectrum sensing gain 

without incurring a cooperative overhead. Numerical results from the study have shown 

that not only does the detection method perform well, but that the overall objectives of 

the research work have been achieved.        

 

Based on the results obtained from this research work and the performance of the novel 

spectrum sensing detection method proposed in this study, it is hereby recommended that 

the adoption of an opportunistic spectrum access, also known as DSA, as an alternative 
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spectrum access strategy be adopted. The access strategy is proposed because it will not 

only solve the current problem of radio spectrum underutilization, but will equally reduce 

the current problem of radio spectrum scarcity. Furthermore, because the proposed 

detection method in this thesis guarantees no interference amongst users of the spectrum, 

which is the primary objective of the traditional fixed spectrum allocation policy, thus the 

adoption of DSA will not compromise the performance of existing radio systems that will 

continue to adopt the traditional radio spectrum regulation system with the 

implementation of the novel detection method devised in this research work.        

 

7.3 Future Work Recommendations  

 

With the success recorded in this research work, there is guarantee now that the perceived 

danger of interference due to DSA radio operation has been solved and the adoption of 

DSA using CR technology for radio spectrum management and access is gradually 

becoming a reality. However, some research work still needs to be done. The 

recommended work is actually outside the scope of this research project but it is 

recommended for future work so as to enhance the CRE developed in this research as 

well as accelerating the immediate adoption of DSA. The future work recommended is as 

follows:   

 

• Firstly, future work needs to be carried out on how to incorporate an efficient and 

adaptive channel access scheme that can support both dynamic channel selection 

and power allocation in a cognitive radio environment to the CRE developed. To 

achieve this, instead of the random allocation of the radio spectrum band by MN 

in this study, game theory for spectral resources, such as power and spectrum 

bands, allocation can be incorporated into the CRE developed. The use of game 

theory was specified because of its inherent capability to check users that behave 

in a selfish manner by seeking a performance advantage over other users at the 

cost of overall network performance.  
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• Secondly, future work needs to be carried out on the developed ADAMR 

classifier incorporated in the developed CRE in this thesis. This is to improve the 

classifier operational time and the developed CRE detection time. Another 

alternative work to this is to replace the ADAMR classifier employed in the 

development of the CRE for this thesis with DAMR with better operational time 

performance especially now that most systems and nations are shifting from 

analog communication system to digital communication system. Furthermore, the 

number of the modulation schemes can be increased to accommodate more 

modulation schemes.      

 

• Thirdly, comparative future work analysis on this thesis algorithm complexity and 

that of energy method needs to be carried. This future work is essential as it will 

provide basis for comparing the two spectrum sensing and detection methods on 

their respective complexity, which is different from the comparative PD 

performance analysis carried out in this thesis.  
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APPENDIX A1: ANALOG CLASSIFIER M-FILE 
% ================================================= ===================  
% Author: J.J. Popoola  
% Date: 17/02/2011  
% ------------------------------------------------- --------------------  
% Script for preparing the Analog generated data fo r Automatic  
% Modulation Classification (AMC)  
% The 3 feature extracted keys generated form the i nputs to the  
% classifier  
% The classifier has 4 outputs corresponding to the  four modulation  
% schemes (AM, DSB, SSB and FM) intended to classif y or identify  
% Inputs features and output target are combined in  matrix form  
% Database is split into training data, validation data and test data  
% Prepare_Features(traindata,validdata,testdata)  
% ================================================= ====================  
% Load the generated feature extracted data importe d to MATLAB 
% environment from excel called data already in inp ut-output matrix  
% form  
  
load data  
 
% ------------------------------------------------- --------------------  
% Normalize each column of the 400 x 7 data matrix  
  
[r,c] =size(data);  
Max = repmat(max(data), [r 1]);  
Min = repmat(min(data), [r 1]);  
output1 = (data - Min)./(Max - Min);  
 
% ------------------------------------------------- --------------------  
% Randomizing the normalized data matrix each colum n of the 400 x 7 data 
matrix  
  
output2 = output1(randperm(size(output1,1)),:);  
% ------------------------------------------------- --------------------  
  
% Now split the randomized data i.e. output2 into t rainingset, 
validationset and testset data sets in 50%, 25% and  25% respectively  
 
% Save the divided data sets as Prepared_Features.m at  
  
trainingset = output2([1:200],:);  
trainingsetinput = trainingset(:,[1:3]);  
trainingsetoutput = trainingset(:,[4:7]);  
X_trn = [trainingsetinput,trainingsetoutput];  
save trn_data X_trn;  
  
validationset = output2([201:300],:);  
validationsetinput = validationset(:,[1:3]);  
validationsetoutput = validationset(:,[4:7]);  
X_valid = [trainingsetinput,trainingsetoutput];  
save valid_data X_valid;  
 
testset = output2([301:400],:);  
testsetinput = testset(:,[1:3]);  
testsetoutput = testset(:,[4:7]);  
X_test = [testsetinput,testsetoutput];  
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save test_data X_test;  
  
save('Prepared_Features.mat', 'testsetinput', 'test setoutput', 
'validationsetinput', 'validationsetoutput', 'train ingsetinput', 
'trainingsetoutput')  
  
% start stopwatch timer for the "operation" using t ic, which save the  
% current time  
 
tic 

 
% Load features 
 
load Prepared_Features.mat  
  
% classifying the input-output size  
  
no_input = size(validationsetinput,2);  
no_out = size(validationsetoutput,2);  
 
% ------------------------------------------------- --------------------  
% Set up Network Parameters  
  
% net = mlp(nin,nhidden,nout,outfunc,alpha)  
  
nin = no_input;         % Number of inputs.  
nhidden = 7;            % Number of hidden units or  neurones.  
nout = no_out;          % Number of outputs.  
alpha = 0.01;           % Coefficient of weight-dec ay prior.  
outfunc = 'logistic';   % String describing the out put unit activation   
                          function  
  
% Create and initialize network weight vector.  
  
net = mlp(nin,nhidden,nout,outfunc,alpha);  
  
% Training the network  
  
 
 
 
% ------------------------------------------------- --------------------  
  
% Set up vector of options for the optimiser  
  
options = zeros(1,18);  
options(1) = 1;      % This provides display of err or values  
options(14) = 100;   % Number of training cycles ob served  
  
% Train using scaled conjugate gradients.  
[net, options] = netopt(net, options, trainingsetin put,… 
trainingsetoutput, 'scg');  
  
 
% Test the Network  
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% ------------------------------------------------- --------------------  
  
Output_Ts_mlp = mlpfwd(net, testsetinput);  
Output_Ts_mlp = round(Output_Ts_mlp);  
error = Output_Ts_mlp - testsetoutput;  
 
% ------------------------------------------------- --------------------  
  
% Script for displaying the network training output  
  
figure,  
subplot(3, 1, 1);  
imagesc(Output_Ts_mlp');  
xlabel('Network Output Pattern'),ylabel('Success Ra te'),title('Network 
MLP Output');  
subplot(3, 1, 2);  
imagesc(testsetoutput');  
xlabel('Testset Pattern'),ylabel('Success Rate'),ti tle('Testset MLP 
Output');  
subplot(3,1,3), hold on;  
imagesc(error');  
xlabel('Network Error Pattern'),ylabel('Failure Rat e'),title('Network 
Error MLP Output');  
  
  
figure,  
subplot(3, 1, 1);  
bar(Output_Ts_mlp');  
xlabel('Network Output Pattern'),ylabel('Success Ra te'),title('Network 
MLP Output');  
subplot(3, 1, 2);  
bar(testsetoutput');  
xlabel('Testset Pattern'),ylabel('Success Rate'),ti tle('Testset MLP 
Output');  
subplot(3,1,3);  
bar(error');  
xlabel('Network Error Pattern'),ylabel('Failure Rat e'),title('Network 
Error MLP Output');  
 
 
 
% ------------------------------------------------- -------------------- 
  
% Save the AANN classifier  
  
save ('AANN_Model.mat', 'net'); 

 
% Loading of the ('AANN_Model.mat','net') at Comman d Window can be used 
% to evaluate the developed AANN classifier; thus:  
% ------------------------------------------------- --------------------  
 
% load ('AANN_Model.mat','net') 

 
mlpfwd(net,[training/validation/test data set]);  
 
roundedValues = round(mlpfw(net,[training/validatio n/test data set])); 
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for i=1:4  
    if i==1 && roundedValues(i,1)==1  
        disp 'AM';  
    end  
    if i==2 && roundedValues(i,2)==1  
        disp 'DSB';  
    end  
    if i==3 && roundedValues(i,3)==1  
        disp 'SSB';  
    end  
    if i==4 && roundedValues(i,4)==1  
        disp 'FM';  
    end  
     
end  
 
%toc at the end of the "operation" measures the ela psed time for the 
"operation"   
 
 
toc  
  
% round(mlpfw(net,[training/validation/test data se t])); rounding up  
% not necessary in order to give actual percentage of classification of  
% each modulation scheme  
% ------------------------------------------------- --------------------  
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APPENDIX A2: DIGITAL CLASSIFIER M-FILE 
 
% ================================================= ====================  
% Author: J.J. Popoola  
% Date: 17/02/2011  
% ------------------------------------------------- --------------------  
% Script for preparing the Digital generated data f or the Digital  
% Automatic Modulation Recognition (DAMR)  
% The 7 feature extracted keys generated form the i nputs to the 
% classifier  
% The classifier has 8 outputs corresponding to the  8 modulation 
% schemes (2ASK, 4ASK, 2FSK, BPSK, QPSK, OFDM, 16-Q AM and 64-QAM)  
% intended to classify or identify  
% Inputs features and output target are combined in  matrix form  
% Database is split into training data, validation data and test data  
  
% Prepare_Features_Digital_new(traindatasetdn,valid datasetdn,… 
%  testdatasetdn)  
 
% ================================================= ====================  
 
% Load the generated feature extracted data importe d to MATLAB 
% environment from excel called newdigitaldata alre ady in input-output 
% matrix form  
  
load newdigitaldata  
 
% ------------------------------------------------- --------------------  
 
% Normalize each column of the 800 x 15 data matrix  
  
[r,c] = size(newdigitaldata);  
Max = repmat(max(newdigitaldata), [r 1]);  
Min = repmat(min(newdigitaldata), [r 1]);  
outputdd1 = (newdigitaldata - Min)./(Max - Min);  
% ------------------------------------------------- --------------------  
 
% Randomizing the normalized data matrix each colum n of the 500 x 9  
% data matrix  
  
outputdd2 = outputdd1(randperm(size(outputdd1,1)),: );  
 
% ------------------------------------------------- --------------------  
  
% Now split the randomized data i.e. outputd2 into trainingsetdn,  
% validationsetdn and testsetdn data sets in 50%, 2 5% and 25% 
% respectively 

 
% Save the divided data sets as Prepared_Features_D igital.mat  
  
trainingsetdn = outputdd2([1:400],:);  
trainingsetinputdn = trainingsetdn(:,[1:7]);  
trainingsetoutputdn = trainingsetdn(:,[8:15]);  
X_trndn = [trainingsetinputdn,trainingsetoutputdn];  
save trndn_data X_trndn;  
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validationsetdn = outputdd2([401:600],:);  
validationsetinputdn = validationsetdn(:,[1:7]);  
validationsetoutputdn = validationsetdn(:,[8:15]);  
X_validdn = [trainingsetinputdn,trainingsetoutputdn ];  
save validdn_data X_validdn;  
  
testsetdn = outputdd2([601:800],:);  
testsetinputdn = testsetdn(:,[1:7]);  
testsetoutputdn = testsetdn(:,[8:15]);  
X_testdn = [testsetinputdn,testsetoutputdn];  
save testdn_data X_testdn;  
  
save('Prepared_Features_Digital_new.mat', 'testseti nputdn', 
'testsetoutputdn', 'validationsetinputdn', 'validat ionsetoutputdn', 
'trainingsetinputdn', 'trainingsetoutputdn')  
 
% start stopwatch timer for the "operation" using t ic, which save the  
% current time  
 
tic  
 
% Load features 
 
load Prepared_Features_Digital_new.mat  
  
% classifying the input-output size  
  
no_input = size(validationsetinputdn,2);  
no_out = size(validationsetoutputdn,2);  
 
% ------------------------------------------------- --------------------  
% Set up Network Parameters  
  
% net = mlp(nin,nhidden,nout,outfunc,alpha)  
  
nin = no_input;         % Number of inputs.  
nhidden = 7;           % Number of hidden units or neurones.  
nout = no_out;          % Number of outputs.  
alpha = 0.01;           % Coefficient of weight-dec ay prior.  
outfunc = 'logistic';   % String describing the out put unit activation  
                          function  
  
% Create and initialize network weight vector.  
  
net = mlp(nin,nhidden,nout,outfunc,alpha);  
  
% Training the network  
  
% ------------------------------------------------- --------------------  
  
% Set up vector of options for the optimiser  
  
options = zeros(1,18);  
options(1) = 1;     % This provides display of erro r values  
options(14) = 100;   % Number of training cycles ob served  
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 % Train using scaled conjugate gradients.  
 
[net, options] = netopt(net, options, trainingsetin putdn,… 
trainingsetoutputdn, 'scg');  
  
% Test the Network  
% ------------------------------------------------- --------------------  
  
Output_Ts_mlpdn = mlpfwd(net, testsetinputdn);  
Output_Ts_mlpdn = round(Output_Ts_mlpdn);  
Error = Output_Ts_mlpdn - testsetoutputdn;  
% ------------------------------------------------- --------------------  
  
% Script for displaying the network training output  
  
figure,  
subplot(3, 1, 1);  
imagesc(Output_Ts_mlpadnoise');  
xlabel('Network Output Pattern'),ylabel('Success Ra te'),title('Network 
MLP Output');  
subplot(3, 1, 2);  
imagesc(testsetoutputadnoise');  
xlabel('Testset Pattern'),ylabel('Success Rate'),ti tle('Testset MLP 
Output');  
subplot(3,1,3), hold on;  
imagesc(error');  
xlabel('Network Error Pattern'),ylabel('Failure Rat e'),title('Network 
Error MLP Output');  
  
  
figure,  
subplot(3, 1, 1);  
bar(Output_Ts_mlpadnoise');  
xlabel('Network Output Pattern'),ylabel('Success Ra te'),title('Network 
MLP Output');  
subplot(3, 1, 2);  
bar(testsetoutputadnoise');  
xlabel('Testset Pattern'),ylabel('Success Rate'),ti tle('Testset MLP 
Output');  
subplot(3,1,3);  
bar(error');  
xlabel('Network Error Pattern'),ylabel('Failure Rat e'),title('Network 
Error MLP Output');  
% ------------------------------------------------- --------------------  
 
% Save the DAMR classifier  
  
save ('DAMRn_Model.mat', 'net');  
 
% Loading of the 'DAMRn_Model.mat' at Command Windo w can be used to  
% evaluate  
% the developed DAMR classiifer; thus:  
% ------------------------------------------------- -------------------- 
 
% load ('DAMRn_Model.mat', 'net') 
mlpfwd(net,[training/validation/test data set]);  
roundedValues = round(mlpfw(net,[training/validatio n/test data set])); 
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for i=1:8  
    if i==1 && roundedValues(i,8)==1  
        disp '2ASK';  
    end  
    if i==2 && roundedValues(i,7)==1  
        disp '4ASK';  
    end  
    if i==3 && roundedValues(i,6)==1  
        disp '2FSK';  
    end  
    if i==4 && roundedValues(i,5)==1  
        disp 'BPSK';  
    end  
    if i==5 && roundedValues(i,4)==1  
        disp 'QPSK';  
    end  
    if i==6 && roundedValues(i,3)==1  
        disp 'OFDM';  
    end  
    if i==7 && roundedValues(i,2)==1  
        disp '16-QAM';  
    end  
    if i==8 && roundedValues(i,1)==1  
        disp '64-QAM';  
    end  
     
end 
 
%toc at the end of the "operation" measures the ela psed time for the 
"operation"   
 
toc  
 
% round(mlpfwd(net,[trainingd/validationd/test data d set])); rounding 
% up not necessary in order to give actual percenta ge of classification  
% of each modulation scheme  
% ------------------------------------------------- --------------------  
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APPENDIX A3: COMBINED ANALOG AND DIGITAL CLASSIFIER M-FILE 
 
% ================================================= ====================  
% Author: J.J. Popoola  
% Date: 17/02/2011  
% ------------------------------------------------- --------------------  
% Script for preparing the Combined Analog-Digital generated data with 
% Noise for the Combined Analog-Digital Automatic M odulation  
% Modulation Recognition (ADAMR)  
% The 8 feature extracted keys generated form the i nputs to the 
% classifier  
% The classifier has 13 outputs corresponding to th e 12 combined  
% analog and digital modulation schemes (2ASK, 4ASK , 2FSK, BPSK, QPSK, 
% AM, DSB, SSB, FM, OFDM, 16-QAM, 64-QAM and Noise)  intended to 
% classify or identify  
% Inputs features and output target are combined in  matrix form  
% Database is split into training data, validation data and test data  
% Prepare_Features_ADcn(traindatasetadnoise,validda tasetadnoise,… 
% testdatasetadnoise)  
% ================================================= ====================  
  
% Load the generated feature extracted data importe d to MATLAB  
% environment from excel called adnoisedata already  in input-output 
matrix 
% form  
  
load adnoisedata  
 
% ------------------------------------------------- --------------------  
% Normalize each column of the 1300 x 21 data matri x  
  
[r,c] = size(adnoisedata);  
Max = repmat(max(adnoisedata), [r 1]);  
Min = repmat(min(adnoisedata), [r 1]);  
outputadnoise1 = (adnoisedata - Min)./(Max - Min);  
% ------------------------------------------------- --------------------  
% Randomizing the normalized data matrix each colum n of the 1300 x 21  
% data matrix  
 
outputadnoise2 = outputadnoise1(randperm(size(outpu tadnoise1,1)),:);  
 
% ------------------------------------------------- -------------------  
  
% Now split the randomized data i.e. outputdnoise2 into  
% trainingsetadnoise, validationsetadnoise and test setadnoise data sets  
% in 50%, 25% and 25% respectively  
% Save the divided data sets as Prepared_Features_A DNOISE.mat  
  
trainingsetadnoise = outputadnoise2([1:650],:);  
trainingsetinputadnoise = trainingsetadnoise(:,[1:8 ]);  
trainingsetoutputadnoise = trainingsetadnoise(:,[9: 21]);  
X_trnadnoise = [trainingsetinputadnoise,trainingset outputadnoise];  
save trnadnoise_data X_trnadnoise;  
  
 
 
 



 186

validationsetadnoise = outputadnoise2([651:975],:);  
validationsetinputadnoise = validationsetadnoise(:, [1:8]);  
validationsetoutputadnoise = validationsetadnoise(: ,[9:21]);  
X_validadnoise = [trainingsetinputadnoise,trainings etoutputadnoise];  
save validadnoise_data X_validadnoise;  
  
testsetadnoise = outputadnoise2([976:1300],:);  
testsetinputadnoise = testsetadnoise(:,[1:8]);  
testsetoutputadnoise = testsetadnoise(:,[9:21])  
X_testadnoise = [testsetinputadnoise,testsetoutputa dnoise];  
save testadnoise_data X_testadnoise;  
  
save('Prepared_Features_ADNOISE.mat','testsetinputa dnoise', 
'testsetoutputadnoise','validationsetinputadnoise',  
'validationsetoutputadnoise', 'trainingsetinputadno ise', 
'trainingsetoutputadnoise')  
 
% start stopwatch timer for the "operation" using t ic, which save the  
% current time  
 
tic  
 
% Load features 

 
load Prepared_Features_ADNOISE.mat  
  
% classifying the input-output size  
  
no_input = size(validationsetinputadnoise,2);  
no_out = size(validationsetoutputadnoise,2);  
 
% ------------------------------------------------- --------------------  
% Set up Network Parameters  
  
% net = mlp(nin,nhidden,nout,outfunc,alpha)  
  
nin = no_input;          % Number of inputs.  
nhidden = 15;            % Number of hidden units o r neurones.  
nout = no_out;           % Number of outputs.  
alpha = 0.01;            % Coefficient of weight-de cay prior.  
outfunc = 'logistic';    % String describing the ou tput unit activation 
                           function  
  
% Create and initialize network weight vector.  
  
net = mlp(nin,nhidden,nout,outfunc,alpha);  
  
% Training the network  
  
 
% ------------------------------------------------- --------------------  
  
% Set up vector of options for the optimiser  
  
 
options = zeros(1,18);  
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options(1) = 1;         % This provides display of error values  
options(14) = 150;      % Number of training cycles  observed  
  
% Train using scaled conjugate gradients.  
 
[net, options] = netopt(net, options, trainingsetin putadnoise,… 
trainingsetoutputadnoise, 'scg');  
  
% Test the Network  
% ------------------------------------------------- --------------------  
  
Output_Ts_mlpadnoise = mlpfwd(net, testsetinputadno ise);  
Output_Ts_mlpadnoise = round(Output_Ts_mlpadnoise);  
ErroR = Output_Ts_mlpadnoise - testsetoutputadnoise ;  
 
% ------------------------------------------------- --------------------  
  
% Script for displaying the network training output  
  
figure,  
subplot(3, 1, 1);  
imagesc(Output_Ts_mlp');  
xlabel('Network Output Pattern'),ylabel('Success Ra te'),title('Network 
MLP Output');  
subplot(3, 1, 2);  
imagesc(testsetoutput');  
xlabel('Testset Pattern'),ylabel('Success Rate'),ti tle('Testset MLP 
Output');  
subplot(3,1,3), hold on;  
imagesc(error');  
xlabel('Network Error Pattern'),ylabel('Failure Rat e'),title('Network 
Error MLP Output');  
  
figure,  
subplot(3, 1, 1);  
bar(Output_Ts_mlp');  
xlabel('Network Output Pattern'),ylabel('Success Ra te'),title('Network 
MLP Output');  
subplot(3, 1, 2);  
bar(testsetoutput');  
xlabel('Testset Pattern'),ylabel('Success Rate'),ti tle('Testset MLP 
Output');  
subplot(3,1,3);  
bar(error');  
xlabel('Network Error Pattern'),ylabel('Failure Rat e'),title('Network 
Error MLP Output');  
 
% ------------------------------------------------- --------------------  
  
% Save the ADNAMR classifier  
  
save ('ADNAMR_Model.mat', 'net');  
% Loading of the 'ADNAMR_Model.mat' at Command Wind ow can be used to 
% evaluate the developed DAMR classifier; thus:  
% ------------------------------------------------- --------------------  
% load ('ADNAMR_Model.mat', 'net') 
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mlpfwd(net,[training/validation/test data set]);  
roundedValues = round(mlpfw(net,[training/validatio n/test data set])); 
 
 
for i=1:13  
    if i==1 && roundedValues(i,13)==1  
        disp '2ASK';  
    end  
    if i==2 && roundedValues(i,12)==1  
        disp '4ASK';  
    end  
    if i==3 && roundedValues(i,11)==1  
        disp '2FSK';  
    end  
    if i==4 && roundedValues(i,10)==1  
        disp 'BPSK';  
    end  
    if i==5 && roundedValues(i,9)==1  
        disp 'QPSK';  
    end  
    if i==6 && roundedValues(i,8)==1  
        disp 'AM';  
    end  
    if i==7 && roundedValues(i,7)==1  
        disp 'DSB';  
    end  
    if i==8 && roundedValues(i,6)==1  
        disp 'SSB';  
    end  
    if i==9 && roundedValues(i,5)==1  
        disp 'FM';  
    end  
    if i==10 && roundedValues(i,4)==1  
        disp 'OFDM';  
    end  
    if i==11 && roundedValues(i,3)==1  
        disp '16-QAM';  
    end  
    if i==12 && roundedValues(i,2)==1  
        disp '64-QAM';  
    end  
    if i==13 && roundedValues(i,1)==1  
        disp 'NO MODULATION';  
    end  
     
end  
 
%toc at the end of the "operation" measures the ela psed time for the 
"operation"   
 
toc 
 
% round(mlpfwd(net,[trainingd/validationd/test data  sets])); rounding 
% up not necessary in order to give actual percenta ge of classification 
% of each modulation scheme 
% ------------------------------------------------- -------------------- 
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APPENDIX B: GNU RADIO INSTALLATION AND USRP2 CONFIG URATION  
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B.1 GNU Radio Installation  
GNU Radio runs in virtually all the operating systems or platforms. However, some 

installations are easier than others. In order to ensure a complete installation of GNU 

Radio, the software must be compiled from source, and all the dependencies have to be 

included. The Ubuntu operating system is an ideal platform for a GNU Radio installation, 

because all the dependencies can be easily accommodated. The installer simply needs to 

select the correct check boxes and select “install”.  

 

However, installing GNU Radio is somewhat more tedious in other platforms. For this 

research work, GNU Radio was installed on a Microsoft Windows Operating System 

(OS) using Cygwin, which is a Linux emulation environment. The steps involve in GNU 

Radio installation on Microsoft Windows OS in this research work is highlighted as 

follows: 

 

Step I: Downloading and installation of Universal Hardware Driver (UHD). The latest 

UDH installer driver was downloaded and installed from 

http://code.ettus.com/redmine/ettus/projects/uhd/wiki. The goal of a UHD is to provide a 

host driver and Application Programming Interface (API) for current and future Ettus 

Research products.  

 

Step II: Downloading and the installation of the latest GNU Radio installer. This was 

downloaded and installed from http://www.ettus.com/downloads/gnuradio/.  

 

Step III: Downloading and the installation of the PYTHONPATH environment variable 

for the GNU Radio installation using the syntax: “c:\program files 

(x86)\gnuradio\lib\site-packages”.  

 

Step IV: Installation of the Microsoft Visual C++ (MSVC) 2010 redistributable package 

(x86) from http://www.microsoft.com/downloads/en/details.aspx?FamilyID=a7b7a05e-

6de6-4d3a-a423-37bf0912db84  
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Step V: Finally, at the last step, the installer for the dependencies was downloaded and 

installed from http://www.ettus.com/downloads/gnuradio/other_deps_with_installers/. 

The command window (cmd.exe) was opened and “c:\program files 

(x86)\gnuradio\bin\gnuradio-companion.py” was entered. By pressing the enter key, the 

GNU Radio Companion (GRC) page was opened, showing that the installation was 

comprehensive and completed. The online installation procedure followed is available on 

http://www.joshknows.com/gnuradio.  

 
B.2 USRP2 Components Description and Configuration  
The hardware component employed in the development of the SDR for the CRE in this 

research work is the USRP2. The USRP2 is an upgraded version of its earlier release, 

USRP1. The four USRP2s used were purchased from Ettus Research LLC, Mountain 

View, California, USA.  

 

B.2.1  USRP2 Component Description 
The USRP2 employed consists of two main boards, namely the motherboard and the 

daughterboard. The motherboard has four 14-bit 100 MS/s ADC, four 16-bit 400 MS/s 

DAC, two digital down converter (DDC) and two digital up converter (DUC) with 

programmable interpolation rates. The four input and output channels of the ADCs and 

DACs are connected to Xilinx Spartan 3 200 FPGA. The FPGA, in turn, connects to a 

Gigabit Ethernet (1000 MBits/s) interface chip and on to the host PC. 

 

 In the USRP2, high sampling rate processing takes place in the FPGA, while the low 

sampling rate processing takes place in the host PC. The two DDCs mix, filter and 

decimate incoming signals in the FPGA. The two DUCs interpolate baseband signals to 

100 MS/s before translating them to the selected output frequency. This process is 

illustrated in Figure B.1, while Figure B.2 shows a picture of a typical USRP2 

motherboard.  
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Source: Zhao et al. (2010) 

Figure B.1: USRP2 Flow Graph 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 

Source: Zhao et al. (2010) 

Figure B.2: USRP2 Motherboard 
 

 

The second main board of USRP2 is the daughterboard, which acts as the RF FEs of the 

SDR. Therefore, for the USRP2 to function as a SDR in conjunction with GNU Radio, 

the daughterboard needs to be connected to the four RF FEs slots on the motherboard. 

The four FEs slots are TXA, RXA, TXB and RXB, as shown in Figure 5.3. Two of the 
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four slots labeled TXA and TXB are meant for signal transmission via the daughterboard, 

while the other two slots labeled RXA and RXB are for signal reception.  

 

A wide variety of available daughterboards permit usage of different frequencies for a 

broad range of applications. In this research work, the XCVR2450 daughterboard was 

employed. This daughterboard is a dual-band transceiver operating at 2.4 GHz and 5 GHz. 

It transmits and/or receives signals around the ISM band, namely between 2.4 GHz and 

2.5 GHz.  

 

B.2.2 USRP2 Configuration 
For the host PC, where the GNU Radio software was installed to recognize USRP2, the 

USRP2 needs to be configured and to interface with it. The host interface is setup by 

connecting the USRP2 to the host PC using the Gigabit Ethernet cable with a RJ-45 jack 

at both ends. The USRP2 communicates at the user datagram protocol/internet protocol 

(UDP/IP) layer over the Gigabit Ethernet. The default IP address of the USRP2 is 

192.168.10.2. Hence, the host Ethernet interface was configured with a static IP address 

to enable communication. An address of 192.168.10.1 and a subnet mask of 

255.255.255.0 were used in the interface setup.   

 

The multiple USRP2 devices were connected via a Gigabit Ethernet switch. In such cases, 

each Ethernet interface has its own subnet, and the corresponding USRP2 device was 

assigned an address in that subnet. Therefore, for the four USRP2 devices used, the 

USRP2s were configured as follows: 

 

Configuration for USRP2 device D1: 

 

• Ethernet interface IPv4 address: 192.168.10.1 

• Ethernet interface subnet mask: 255.255.255.0 

• USRP2 device IPv4 address: 192.168.10.2 

 

 

 



 194

Configuration for USRP2 device D2: 

 

• Ethernet interface IPv4 address: 192.168.20.1 

• Ethernet interface subnet mask: 255.255.255.0 

• USRP2 device IPv4 address: 192.168.20.2 

 

Configuration for USRP2 device D3: 

 

• Ethernet interface IPv4 address: 192.168.30.1 

• Ethernet interface subnet mask: 255.255.255.0 

• USRP2 device IPv4 address: 192.168.30.2 

 

Configuration for USRP2 device D4: 

 

• Ethernet interface IPv4 address: 192.168.40.1 

• Ethernet interface subnet mask: 255.255.255.0 

• USRP2 device IPv4 address: 192.168.40.2 

 

After connecting the USRP2 with GNU Radio and bringing it to an up-and-running 

condition to form SDR, a GNU Radio Companion (GRC) was then executed. The GNU 

Radio and USRP2 are utilized to implement the spectrum sensing system. The sensing 

system was developed to detect a primary user’s signal modulation scheme for spectrum 

monitoring. The specifications of the host PC used are presented in Table B.1.     

 

                              Table B.1: Host Computer Specifications 
 

Component Specifications 
Processor Intel(R) Core (TM) CPU 930 @ 2.80 GHz   
RAM 6. 00 GB 
Operating System 64-bit, 5.4 Windows  2010 
Programs Python, JAVA, C++ and MATLAB. 
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APPENDIX C: USER MANUAL FOR SPECTRUM SENSING AND DETECTION 

ALGORITHM   
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C.1 Introduction  

The spectrum sensing and detection algorithm employed as the core brain of the 

developed CRE in this thesis was further implemented in a user friendly program called 

SSADA. SSADA is an acronym for Spectrum Sensing and Detection Algorithm. It is a 

software algorithm developed to demonstrate spectrum sensing procedures, as well as 

series of measures to ensure optimal cooperative gain without incurring cooperative 

overhead.  

 

C.2 SSADA Manual Purpose and Target User  

The essence of this manual is to provide fundamental information about the operation of 

SSADA, as well as to provide a general overview of the basic functions and editing 

conventions each of the program modules performs. It is assumed that user(s) of SSADA 

has/have some background knowledge of wireless communication systems, as well as 

being familiar with the Microsoft Windows OS. The assumption was made because the 

information in the manual is not sufficient enough to serve as a tutorial for novices in 

either wireless communication system or Microsoft Window system. The main 

application of SSADA is to demonstrate spectrum sensing and primary radio signal 

detection activities in a cognitive radio environment or network.  

 

C.3 SSADA System Requirements 

SSADA was written using the Java programming language. It does require a compatible 

Microsoft Windows 98 or later version with JAVA . It requires at least a 32-bit 

operating system with a minimum random access memory (RAM) of 256 MB and about 

1.8 GHz processor. Its size on disk is about 1.80 MB. 

 

C.4 SSADA working Environment  

The SSADA working environment is shown in Figure C.1. It consists of three modules 

and is capable of performing three basic functions. The first module is the preferred 

service and location, which enables SSADA to scan the overall preferred service 

allocated frequency band in South Africa. The location included enables SSADA to 

decide upon an appropriate idle channel to claim opportunistically using DSA so as not to 

cause co-channel interference to a primary user resulting from a re-used frequency.  
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Figure C.1: The Developed SSADA Attributes 
 

 

The second module on an SSADA working environment is the plotting section, where the 

sensing time parameters selection for optimizing cooperative spectrum sensing gain can 

be derived. The third module in an SSADA working environment is the manual 

calculations section, for determining sensing time (Ts). The basic different between this 

module and the second module is that it presents its results in numerals, while the second 

module presents its results in a graphical form.   

 

C.4. SSADA Applications 

This section of this manual is devoted to showcase some of the capabilities of SSADA. 

The three modules on SSADA are demonstrated using the four wireless services 

employed. Detailed activities of each module are showcased with examples in section 

C.4.1 to section C.4.3.  
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C.4.1 SSADA Spectrum Scanning Module Application 

This section presents the application of the first module of SSADA. In using the module, 

the user needs to choose the preferred services. The preferred service is chosen by 

selecting either the block or the drop down arrow (∇) beside it. This will bring down a 

dialog box that contains the four services, namely radio broadcasting, television 

broadcasting, mobile telephone and ISM. The user then selects the preferred one. The 

user can subsequently run the program by selecting ‘run-block’. Selecting this option 

activates the program to carry out overall spectrum sensing or scanning for the selected or 

preferred wireless service. A typical result of such an overall radio broadcasting system 

scanning exercise is shown in Figure C.2.   
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Figure C.2: Typical SSADA Spectrum Sensing Result for Radio Broadcasting 
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The user likewise needs to select the preferred location by selecting either the location 

block or the drop down arrow (∇) beside it. This will also bring down a dialog box that 

contains the lists of all the six location or cities, namely Johannesburg, Cape Town, 

Durban, Port Elizabeth, Bloemfontein and Pretoria. The user then selects the preferred 

location. After selecting the appropriate or preferred location, the user needs to select the 

‘view-block’ to view the drop down box contains the list of all the allocated frequency 

tables for that location and the four services. Figure C.3 shows a typical result for 

Bloemfontein. The scanning result presented in Figure C.3, for instance, enables an 

SSADA to predict the appropriate idle channel to use in each location per time, so as not 

to cause co-channel interference, as explained earlier.  The copying of the spectrum 

sensing and location results from the SSADA working environment was done by pressing 

‘Ctrl + Alt + Print Scrn’ keys together to copy the screen and paste the copied results on a 

Microsoft Word environment using ‘paste’ command.        

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C.3: SSADA Overall Table of Frequency Allocation for Bloemfontein 
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C.4.2 SSADA Sensing Time (Ts) Plots Module Application 

This section is devoted to demonstration of the second module of the developed SSADA. 

The module was developed to generate four different plots for determining ideal sensing 

time parameters settings for optimal cooperative gain, without incurring a cooperative 

overhead. In this module, the user needs to first select the type of service parameter to use 

its table of allocation. The second step is to select the type of plot to be generated by 

selecting either the plot block or the drop down arrow (∇) beside it and a dialog box that 

contains the four plots, namely variation of Ts with M, variation of Ts with FRES, 

variation of Ts with M at different values of alpha (α) and the variation of Ts with N, will 

drop down for the user to select the preferred plot type. The next step is to input the 

values of α, the FFT size (N) and the fine resolution frequency (FRES). The user does not 

need to input the system’s bandwidth (BSYS) value because the SSADA plot’s module 

takes the value directly from the table of frequency allocation. 

 

C.4.2.1    Sensing Time (Ts) Plot against Number of Cognitive Radio (M) 

In demonstrating the usage of this module, the four wireless services were used. The plot 

of the variation of Ts with M was demonstrated using the TV broadcasting frequency 

band for Cape Town as the preferred location. The resulted plot, as shown in Figure C.4, 

when compared with Figure 4.3, looks exactly alike in nature. The difference in values of 

Ts is as a result of differences in value of BSYS employed though the values of α, N and 

FRES are equal. For plot shown in Figure 4.3, BSYS value is 2.5 GHz, while the value of 

BSYS was automatically selected by SSADA from the frequency of allocation for Cape 

Town’s TV broadcasting system. The SSADA design system enable automatically 

generation of the system bandwidth (BSYS) values for the plot module.  

 

A comparison between the two figures, as demonstrated in Figure 4.3 and Figure C.4, 

shows that they are identical in nature. The similarity in these figures shows that the 

sensing time algorithm developed using MATLAB in chapter 4, which was used in 

developing the CRE for this research, and the SSADA used to showcase the research 

work proof of concept are accurately developed and perfectly executed. 
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Figure C.4: SSADA Generated Ts Plot against Number of Cognitive Radios (M) 

 

 

C.4.2.2     Sensing Time (Ts) Plot against FRES  

This second SSADA plotting module application follows the same step described in 

section C.4.2.1. In demonstrating this plot, the mobile phone parameters for 

Johannesburg were used. The system bandwidth (BSYS) was automatically selected by 

SSADA with constant values of α = 10 and N = 32 while FRES was varied from 10 kHz to 

100 kHz. The result obtained is shown in Figure C.5. When comparing Figure 4.4 with 

Figure C.5, the two graphs look alike in nature, except their Ts values that differ as a 

result of the difference in BSYS values employed.   

 

 

 

 

 

 

 

 

 
 
 

Figure C.5: SSADA Generated Ts Plot against FRES 
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C.4.2.3     Sensing Time (Ts) Plot against M at Different Values of α  

This SSADA module application also follows the same steps described in section C.4.2.1. 

In demonstrating this plot, the TV broadcasting parameters were used with Durban as the 

preferred location or test site. The BSYS was automatically selected by SSADA. The 

values of M were varied from 2 to 4, while the values of alpha (α) were also varied from 

10 to 50 with constant values of N = 32 and FRES = 10 Hz respectively.  The plot obtained 

is shown in Figure C.6. When comparing Figure 4.5 with Figure C.6, the two graphs look 

alike in nature except their Ts values that differ as a result of difference in BSYS values 

employed.  This is an indication of high accuracy in developing both the MATLAB form 

of the algorithm in chapter 4 and the developed SSADA, being evaluating here. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 

Figure C.6: SSADA Generated Ts Plot against M at Different Values of α 
 

 

C.4.2.4     Sensing Time (Ts) Plot against FFT size (N)   

This SSADA module demonstration was carried out using the radio broadcasting 

frequency table. Pretoria was chosen as the preferred location or test site. The BSYS was 

automatically selected by SSADA. The values of N were varied from 16 to 1024 with 
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constant values of M = 4, α = 10 and FRES = 10 Hz respectively.  The plot obtained is 

shown in Figure C.7.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure C.7: SSADA Generated Ts Plot against FFT Size (N) 
 

 

C.4.3 SSADA Plot Module Editing Environment 

In SSADA plot module, copying of the plots can be done in two ways. The first is by 

following the process for the first module whereby the ‘Ctrl + Alt + Print Scrn’ keys are 

pressed together to copy the screen and paste the plots on Microsoft Word. The second 

approach is by right-clicking the mouse on the plot environment to bring down the inbuilt 

editing feature incorporated in this second module, as shown in Figure C.8. Apart from 

copying the plot, other editing can be done on the plots. 
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Figure C.8: In-built Editing Capability for SSADA P lot Module 
 

 

C.4.4 SSADA Manual Calculations 

The manual calculation module is the third working module on the developed SSADA 

working environment. Unlike the two other modules, the BSYS value is not automatically 

selected. The user has to input all the required values on the keyboard for SSADA 

manual calculations’ module to work. Copying of the manual calculations’ module result 

follows the same procedure as the first module, whereby the ‘Ctrl + Alt + Print Scrn’ 

keys are pressed together to copy the screen and paste the results on Microsoft Word 

using the paste command. A typical example of its usage is presented in Figure C.9 using 

the ISM parameter employed in chapter 4.  
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Figure C.9: Typical SSADA Manual Calculation Demonstration 
 


