AN IMPLEMENTATION OF A SELF TUNING CONTROLLER

Mark Alfred He.ilbrunn

A Dissertation Submitted to the Faculty of Lngineering,
"niversity of the Witwatersrand, Johannesburg ,
ior the Degree of Master of Science.

Johannesburg 1982

DECLARATION

I declare chat this dissertation is nmy own unaided work. It is being submitted
tor the degree of Master of Science in the University of the Witwaterstand,
Johannesburg. It has not been submitted before for any degree or examination
in any other university.

MARK ALFRED HEILBRUNN

this 2 a (4 day of < - f 1932.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

SYNOPSIS

LIST OF SYMBOLS

1. INTRODUCTION
l.' Proportional Integral DerivativeControl
- the Industry Standard
1.2 Adaptive Controllers - An Overview
1.3 Approaches to Adaptive Control
2. APPROACHES TO SELF TUNING CONTROL

2.1 Identification Methods

2.1.1 One Shot Techniques

2.1.2 Recursive Techniques

2.2 Control Algorithms

2.2.1 The Minimum Variance Controller and Adaptations

2.2.2 Pole Zero Assignment Regulators

3. AN EASIER METHOD

3.1 Motivation and Derivationof a Self Tuner

Page

10

17

17

20

24

30

32

43

47

48

Section A

Section B

Section C

Section D

SIMUL.XTION STUDY

SELF TUNER IMPLEMENTATION - THE NUIS AND BOLTS

5.1 Practical Requirements
5.2 Hardware Description
5.3 Software Description

AN APPLICATION OF THE SELF TUNER

6.1 The Test Plant

6.2 Tests Undertaken and Results

DISCUSSION OF THE SELF TUNER PROPERTIES

7.1 Stability Properties
7.2 Convergence Properties
7.3 The Resulting Controller

7.4 Suggestions for Future Work

APPENDIX

7.5 Conclusions
BIBLIOGRAPHY
- Algorithm Derivation

Controller Software Listing

Controller Simulation Software Listing

Circuit Diagrams

Page

74

90

90

90

97

110

110

113

121

121

123

124

125

126

129

>

A7

ACKNOWLEDGEMENTS

To Dr. 1.J. Barker and Professor . Rodd
for (.heir guidance and encourage < 17,

To Che Council for Mineral Technology
tor cheir generous sponsorship of this
project.

To the Electrical Engineering Department of WITS
tor the generous use of their eoeipmenc.

To Mrs. G. Sklar for typing this manuscript.

SYNOPSIS

An algorithm for a non-parametrie Self Tuning Controller is derived. The
controller equates open and closed loop dynamics, which precludes the
necessity of pre-specifying a desired closed loop response. A simplified least
squares method is used for estimation of the model. The stability and
convergence properties of the controller are shown by computer simulation and

by a microprocessor based implementation on a test flow rig.

LIST OF SYMBOLS

Process Parameter polynomials

Vector of Process Coefficients

Process Parameters

Process Coefficients

Disturbance Signal

Process Steady State Offset

Set Point Error

Prediction Error

Steady State Set Point Error

Expectation Operator

Process Frequency

Sampling Frequency

Controller Parameter Polynomials

Filter Steady State Gain

Controller Transrer Function

Filter Transfer Function

Process Transfer Function

Unity Gain Process Transfer

Process Coefficients

Amount of Coefficients

—1

Polynomials in ?

Controller Coefficients

Filter Parameters

Laplacian Operator

Sampling Period

Process Time Constant

Parameter Polynomial in z

Function

Tld, Tig

U(k), u(t),

v(k), v(t),

v(y,y a)

w(k), w(t),

y(k), y(t),

Ym,

7(t)

U(z)

V(z)

W(z)

Y(2)

Filter Time Constants

Manipulated Variable (Pre Filter)

Vector of Process Inputs

Manipulated Variable (Post Filter)

Loss

Function

Set Point

Controlled Variable

Model Output

Backward Shift Operator

Vector

Vector

Vector

Cain

of Process Parameters

of Process States

r.f Least Squares Estimate of Process

Factor

Parameters

Tld, Tig

U(k), u(t), U(z)
v(k), v(t), V(z)
v(y,y

w(k), w(t), W(z)

y(k), y(t), Y(z)

Ym, 0(C)

9LS

Filter Time Constants

Manipulated Variable (Pre Filter)

Vector of Process Inputs

Manipulated Variable (Post Filter)

Loss

Function

Set Point

Controlled Variable

Model Output

Backward Shift Operator

Vector

Vector

Vector

Gain

of Process Parameters

of Process States

of Least Squares Estimate of Process Parameters

Factor

1/K

au,

AV,

etc.

Process Steady State Gain

Incremental Variables

Estimated or Predicted Values

INTRODUCTION

Up until the lace 1950'd, moat >utr.,] ievices r>und m a typical plant
were invariably pneumatic, 1is these were safer and more reliabl' than

their vacuum tuoe counterparts. However, with the advance of electronic

technology, these were gradually replace by solid state controllers.

‘evé"rtheless, whether pneumatic or electronic, conventional analog control
systems suffer from extreme inflexibility. Each control loop :unction
requires associated hardware to perform this function, and any desired
control strategy has to be implementable in analog hardware, and strategy

modification invariably requires hardware modification, a difficult and

sometimes impossible constraint.

To overcome these problems, control system designers looked at the digital
computer as early as the mid 1950's. Since then applications have
mushroomed throughout industry. However, by far the majority or computers
used have been in a supervisory capacity or for direct digital control
performing a discreet equivalent of conventional analog control. Anly in
the last decade or so have control nystem researchers and designers sought
to implement strategies which are uniquely suited tor digital computers.
The advent of the microprocessor in the mid 19M's, which has made
computing power readily available, reliable and above all cheap, has

clearly accelerated this process.

1.1 Industry Standard

Proportional Integral Derivative Control

A controller which has found widespread use in industry over a
period of many years is the so called proportional-integral."
derivative (PID) controller. These are usually placed in a

conventional feedback loop as shown below.

Controller Process

Set
Point

Figure 1
CONVENTIONAL FEEDBACK CONTROL LOOP
The controlled variable y(t) is measured by means of a sensor and the
signal is fed back to the controller. Here it is subtracted rrom the set

point (the desired value of y(t)) generating the error e(t). The control

law, the defining element of the controller acts on this to generate -'"e
manipulated variable v(t). This manipulates the actuator to drive -he
error e(t) to zero. In this way the controlled variable is forced to the

set point.

For a PID Controller, the manipulated variable v(t) Is related to the

error e(t) by the control law

v(t) - Kee(e(t) + 1 . Te(t) dt + Td de(t)”

T. dt

where Ke - Proportional Gain
a Integral or Reset Ilime

Td = Derivative Time

The above three values 8enerally appear as adjustments on the rear of the

controller.

The selection of their proper values Is called tuning and is

usually accomplished in one of 3 way:-
1) Trial and error,

2) Empirical methods based on some simple

nha raltpn trom the controlled

3) Prediction on the basis of frequency response

measurements mad, on the uncontrolled process.

The objectives In setting up and tuning a PID controller can Include the

following:-

a) Minimization of the error e(t> following a disturbance

wherever injected into rhe system.

b) Maximum rate of recovery to the set point a:ter a

disturbance.

¢) Minimum steady state error both initially and due to

changes in operating conditions.

Generally c¢) is satisfied if a sufficiently high gain
constant Kc can be achieved consistent with process
stability and speed of response following a disturbance or
change in set point. Derivative control is advantageous in
improving a) and b), while integral action may “e used *uen

¢) is not satisfied without it.

Adaptive Controllers - An Overview

Tuning a P.1.3. can however be a difficult task, especially when -he

plant

a)

b)

involved portrays the following characteristics
Unknown Parameters — When commissioning a control system or a
new plant, the controller has to be tuned to suit the plant. The

control action must be neither too sluggish and slow, nor must it
be too rapid, causing saturation of variables, or even
instability. To be able to properly tune a controller, at least
the rudiments of the process dynamics must be known. It they are
not, it is usually necessary to disturb the piant -n some *a/ n
order to find them out. Thereafter, the tuned settings may be
predicted. However, some plants may not be amenable to such
disturbance, especially where financia. or other iO#s may oe

incurred.

Time Varying Parameters - The above problem may be exacerba ted
in a situation where the process to be controlled has a transrer
function chat varies with time; i.e. the plant dynamics vary due
to such things as changes in raw material or plant throughput etc.
Should such a thing occur, a P.I.D. or any non-varying control-er
may fall out of tume. Inferior control would be the result. The
problem then reverts to the point made above, i.e. the control.er

would need to be retuned.

c) Nou Linear Behaviour - Process non linearity Tiay be generally
identified by the fact that Superposition does r-t hold, i.e. if a
process input u~Ct) pr.d>\ces output y”t) and similarly
uo(t) produces y~Cc), then the input u”t) + u2(t) will in
general not produce y~(t) + y”~~t) for a non linear plant, i.e.
the process characteristics differ at different operating points
If the plant is to operate in a different region, (causf.d for

example, by a set point change) retuning may be necessary.

d) Process Dead Time - This 1is an important consideration when
tuning. Suppose the plant contains a delay time T, then no matter
what input to the plant occurs, there will be no response for time
T. Therefore, the process engineer must choose the desired closed
loop response to contain a delay time of at least I time un-"s.
Otherwise, the controller will require future vaiues of the
controlled variable in order to calculate the current value of the
manipulated variable. This 1is obviously no. physically
realizable. For processes with significant dead times, even
physically realizable controllers may result in an unstable closed
loop response where the associated zero delay time plant wouid be
stable. A process engineer's nightmare is of course tie time

varying delay time.

P.I.D. controllers are widely used because they are cheap, reliable and
are remarkably effective in many processes. However, to cope with the
abovementioned problems, detuning 1is often necessary to ensure
stability over a wide range of conditions. The result 1is generally

mediocre control.

This has provided Che impecus for research into a form of controller

which can adapt itself to its environments. The environment includes

the system s input signals, the noise against which the system should

discriminate and the factors which vary the system's parameters.

ihere is still much confusion concerning terminology in the areca

globally referred to as "adaptive control". Names such as adaptive,

self organizing, self optimizing, self tuning and learning controllers

are used - loosely and interchangeably. Definitions are vague and it

is ocean difficult to draw the boundary lines between different types

of controllers. It is even difficult to determine if a controller 1is

adaptive or not, since many adaptive controllers can be regarded as non

linear or time varying controllers. Wictenmark (1) notes the following

points as basic functions common to most adaptive regulators

a) identification of unknown parameters
OR

Measurement of a Performance Index.

b) Decision of the control strategy.

cy un-line modification of the parameters of the controller.

Dirfering methods of synthesizing the above functions result in

different types of regulators.

Most adaptive control systems could be schematically drawn as in

Figure 2 (overleaf).

This has provided the impetus for research into a fora of controller
which can adapt itself to its environments. The environment includes
the system's input signals, the noise against which the system should

discriminate and the factors which vary the system's parameters.

There is still much confusion concerning terminology in the area
globally referred to as "adaptive control". Names such as adaptive,
self organizing, self optimizing, self tuning and learning controllers
are used - loosely and interchangeably. Definitions are vague and it
is often difficult to draw the boundary lines between different types
of controllers. It is even difficult to determine if a controller is
adaptive or not, since many adaptive controllers can be regarded as non
linear or time varying controllers. Wittenmark (1) notes the “oblowing

points as basic functions common to most adaptive regulators

a) Identification of unknown parameters

OR

Measurement of a Performance Index.

b) Decision of the control strategy.

c) On-line modification of the parameters of the controller.

Differing methods of synthesizing the above functions result in

different types of regulators.

Most adaptive control systems could be schematically drawn as in

Figure 2 (overleaf).

PLANT

™M
I
. CONTROLLER
r
I
I
I PARAMETER

CALCULATOR

PARAMETER ESTIMATOR!
OR PERFORMANCE |
INDEX MEASUREMENT |

Adaptive Regulator

Figure 2

ADAPTIVE CONTROL SYSTEM - SCHEMATIC

The process (OO be controlled Is codelled. The estimator attempts to

find those parameters which define the model. Alternatively a

Performance Index Is evaluated. The vector P Is the Information that

is passed to the parameter calculator which evaluates the nature of the

controller Itself. Finally the controller determines the input signal

v to the process. The divisions as noted In the diagram are Important

and differentiate between types of adaptive control systems.

The rapidprogress in micro-electronics, especially in the last decade,

has made it possible to implement controllers simply and cheaply. There

is now vigorous development of the field both at universities

and in
industry. However, no 'best' solution hasyet beenfound, if it exists
at all. What is clear however, is that'better' solutions are being

proposed as the understanding of tne theory and practice of adaptive

controllers advance.

I; is the objective of this research project to implement a computer

based adaptive controller as a direct replacement of a standard,

industrial P.I.D. controller. It is hoped that the experience gained

in doing so will enhance our perception of this exciting neld.

The process Co be controlled Is mrcelled. The estimator attempts to

find those parameters which define the model. Alternatively a

Performance Index is evaluated. The vector P is the Information that

is passed to the parameter calculator which evaluates the nature of the

controller itself. Finally the controller determines the input signal

v to the process. The divisions as noted in the diagram are importan

and differentiate between types of adaptive control systems.

The rapid progress in micro-electronics, especially in the last decade,

has made it possible to implement controllers simply and cheaply. There

is now vigorous development of the field both at universities and in

industry. However, no 'best' solution has yet been found, if it exists

at all. What is clear however, is that 'better' solutions are being

proposed as the understanding of the theory and practice of adaptive

controllers advance.

It is the objective of this research project to implement a computer

based adaptive controller as a direct replacement of a standard,

industrial P.I.D. controller. It is hoped that the experience gained

in doing so will enhance our perception of this exciting rield.

1.3

10

Approaches co Adaptive Control

In his paper 'Theory and Applications of adaptive Control',

Ast rtim (2) discusses three general methods of adaptive control which

are most prevalent in current applications.

These are

b)

c)

Gain scheduling.
Model Reference Control.

Self Tuning Control.

Gain Scheduling

This is the simplest method of the three. Here the regulator
parameters are varied as functions of auxiliary variables wnicti
indicate changes in the process dynamics. The filling and
emptying of a spherical tank is one such example, where level
control would need i higher gain at mid-level than at either top
or bottom extremes du to the non linearity involved. However,
gain scheduling is considered by many to be a non linear
controller rather than an adaptive one. This is due to the fact
that the regulator parameters ire changed in open loop, i.e. there
is no feedback to compensate for an incorrect schedule.
Nevertheless, gain scheduling appears to be the only 'adaptive
control' widely available on a commercial basis. (Operator

Convenience is Key as Process Controllers Evolve' (3)).

mloac” mv.eier’r.ca Aaaj'-ive ovacrias
Here che lontrol specifications are given in tenas of a reference
aodei. The set point .a ipoiied to both the model and the closed

loop regulator - rjcess combination. The error between the aode.

autput vy and tne process output y drives the parameter

adjustment mechanism of the regulator. In other words the
intention is to force the regulator - process loop to behave in
the same fashionm as the chosen model. The idea 1is shown

graphically in Figure 3.

Figure

MODEL

error ¢

_bet ADJUSTMENT
Point MECHANISM

Parameters
T

t!"
REGULATOR 1 wull PROCESS Output y

MODEL REFERENCE ADAPTIVE CONTROL

Model Rerarence Aaapcive iyscens

Hare the control specifications are given in teras of a reference
model. The set point is applied to both the model and the closed
loop regulator - process combination. The error between the mode -

output y”~ and the process output y drives the parameter

adjustment mechanism of the regulator. In other words tne
intention is to force the regulator - process loop to behave in
the same fashion as the chosen model. The idea 1is shown

graphically in Figure 3.

Figure |,
*n
MODEL
error e
Set | ADJUSTMENT
"Point | MECHANISM
Parameters
T
i I t!
j REGULATOR u : PROCESS Output y

MODEL REFERENCE ADAPTIVE CONTROL

The problem is to determine the parameter adjustment mechanism so
that a stable system results which forces the error to zero. The
solution is however, non trivial and a number of papers are
available on this topic, see (2) for references. Regulator
realizability in the context of the process to be controlled must

also be considered when choosing the reference model.

Self Tuning Regulation

Another means to adjust the parameters of a regulator is the
method of self tuning. This involves choosing a control law as if
the parameters of the process were known. The process paramters
are then estimated by some identification scheme. The estimated
parameters are then used in the control law to derive the control

signal. Figure 4 overleaf, shows this schematically.

The problem is to determine the parameter adjustment mechanism so
that a stable system results which forces the error to zero. The
solution 1is however, non trivial and a number of papers are
available on this topic, see (2) for references. Regulator
realizability in the context of the process to be controlled must

also be considered when choosing the reference model.

Self Tuning Regulation

Another means to adjust the parameters of a regulator 1is the
method of self tuning. This involves choosing a control law as if
the parameters of the process were known. The process paranters
are then estimated by some identification scheme. The estimated
parameters are then used in the control law to derive the control

signal. Figure 4 overleaf, shows this schematically.

Process 0-xramecers

REG | I
FARM, | | PARAMETER
CALCS 1 I I ESTIMATOR
Sec poinc
REGULATOR 1 u 1 | PROCESS 1 jj vy

Figure 4

SELF TUNING CONTROL

This is the most flexible method of chose discussed so far. Virtually
any control law can be combined with some means of idencification to

provide a self tuning regulator.

Wittennu.rk Ref (1), in a highly illuminating article entitled
'Stochastic Adaptive Control Methods - A Survey' discusses those
controllers which take into consideration the statistical nature of the

fluctuations of the parameters and the disturbances acting on the

systern.

He classifies stochastic adaptive controllers according to the

following diagram.

CERTAINTY EQUIVALENCE

NON
DUAL
STOCHASTIC CAUTIOUS
ADAPTIVE
CONTROLLERS
DUAL

Feldbaum (Ref 4) postulated the 'dual' controller which eff@ctive.ly
compromises between the two opposing actions involved in adaptive
control. On the one hand 'good' control means minimum control effort
to achieve minimum variation of a controlled variable from some desired
value. While good plant identification requires 'large' control
signals to excite the plant to be identified. The dual controller
attempts to find the middle path between a probing action (to set the
plant in motion) and a controlling action (to force the plant to some
stationary state). The formal solution of the dual control problem nas
been postulated but leads to a functional equation which is difficult

to solve in all but the simplest of cases.

mailto:eff@ctive.ly

The non dual controllers fall into two categories, i.e. certainty
equivalence controllers and cautious controllers. Here, no action LS
taken to excite the process, bar those that are necessary to control.

In other words, the identiticaton aspect takes a back seat.

Cautious control is based on the separation principle which holds ir it
is possible to make a separation between the identification of the
parameters of the process on one hand, and the determination or the
parameters of the controller on the other. This has significance in
that the controller parameters nay be functions both of the estimated
process parameters as well as the uncertainties of the parameters, i.e.
the controller takes cautious action if the identification scheme
produces poor results. Unfortunately this could lead to a problem
situation because of the control-identification interaction nentiDned
in the previous paragraph. Poor identification may lead to cautious
control, producing worse identification results and so on. In this
way, the controller may inadvertently be switched off for some time

until noise excites the system improving the identification accuracy.

The certainty equivalence controller 1is based on the certainty
equivalence principle which holds if it is possible to first determine
the controller as if the process to be controlled was completely <nown,
and correctly identified, and then substitute the estimated process
parameters as if they were the correct ones. Certainty equivalence .ias
been successfully used as a simple design philosophy. The self tuning

controller discussed beforehand falls directly under this category.

16

Ac this point it seems appropriate to reflect on those controllers

already mentioned in order to adopt some or other implementable policy.
In the case of dual, cautious and model reference adaptive controllers,
there are difficulties in computing the true optimal controllers as the
problem is highly non linear. Hence the most promising algorithms are
those which, to save computation, approximate to the optimal in some
way. One such approximation is the certainty-equivalent control which
ignores interaction between estimation and control. The self tuning
controller is one such certainty-equivalent law. With this in mind,
the rest of this report will be devoted to the design of a self tuning
controller based on the certainty-equivalence principle as a direct

replacement for a P.I.D. controller.

APPROACHES TO S7.LF TINING CONIROL

The certaint) equivalence principle, when used as an ad hoc design

basis suggests the use of identification and control as twoseparate
entities with a direct transfer of information between the model thus
Identified to the controller. With this in mind, it is worthwhile

considering process identification and process control separately with

a view both to choosing some identification - control combination (to

be implemented), as well as to compare the self tuner thus chosen, with

those methods noted in the literature.

Identification

Zadeh gives the following formulation of identification:

'"Identification is the determination on the basis of input

and output of a system within a specified class of systems

to which a system under test is equivalent.' (7)

Using this definition we need to specifiy

i) A class of systems (usually called models),

ii) A class of input signals.

iii) The meaning of equivalence.

18

The system under test is usually termed the 'process' or the plant

Equivalence is often defined in terms of a loss function or criterion

which is a function of the process output y and the model output

ym» i«e.
V- V(y,ym)
Two models and M2 are said to be equivalent if the value for the

loss function is the same for both models, i.e.

V(y,y) m V(y,y)
ml m

When equivalence 1is defined by means of a loss tunction the

identification 1is merely an optimisation problem, i.e. find a mode-L M
such that the loss function is as small as

possible.

Automatically the following questions arise

Is the minimum achieved?
Is there a unique solution?

Can we restrict the choice of model to ensure uniqueness.

These questions are not always answerable, as the complexity of the

systems involved may preclude analysis.

The models generally used fall into two distinct tategories.-
1) Non-parametric representations, 1i.e.
impulse responses, transfer functions,

covariance functions, spectral densities, etc.

ii) Parame crtc models, such as state space models.

The difference between the two exists in that a non-parametrie model

has in principle no finite number of parameters which describe 1its

input/output characteristics.

It is known that parametric models can give results with significant

errors if tne order of the model does not agree with the order of the

process, (Ref 7).

The input signals can also be characterised.-

Impulse functions, step functions, white noise, sinusoidal

signal, pseudo random binary noise (PRBS).

Whatever input signal is chosen, it must be capable of exciting ali the

modes of the p-ocess to be identified.

There exists no clearly defined method of choosing the model, the input

signal and the criterion other than to state that the final aim of the

identification, the process to be identified and the computational

facilities available should influence the choi-ii.

Some methods which have been used for those self tuners mentioned in

the literature will be mentioned here.

2.1.

1

20

Jne Shot Techniques

A very useful reference is Davis (8) 'System Identification for :>el:

Adaptive Control' where he discusses the methods of random signal

testing, concentrating on pseudo random noise and excitation signals in

the identification of processes. He enumerates various methods for
obtaining the impulse response curve and hence the frequency response
curve and transfer function. These methods are well understood and

tested, and are useful when non parametric representations are

required. However they require plant disturbance and due to their 'one
shot' nature, a further decision element is needed as to when reidenti-

fication is necessary.

There is one method of identification that warrants going into in some

depth. It is the least square identification method usually used with
parametric models. It is noteworthy in that by far the majority ot

self tumners based on parametric models mentioned in the literature use

the least squares method or some extension of it, (see for example,

References 9 to 17).

The form of model used is the so called generalised ARMA model (Auto

Regressive Moving Average) which is a state space representation of the

process to be identified, and has the remarkable property that the
state is exactly given Vy the past inputs and outputs to/of the plant.
Hence the model has parameters which are uniquely determined by the

observed data.

The model is expressed

v(k) = i/ Mkei ' ® iy -ik-2 * ... 4n

0 uk-11- D" uV - ~Abj u-<)} T

in the following equation

/1Kk-n .

in discrete form:

ei K-n/

where y(k) = plant output at kth instant of time
u(k) = plant input ic kth Instant of time
i,,0] ” associated plant parameters

= jrder)t tne system

The criterion nosen ' < oe minimised is

squared, see ket. for ->ome ithers 1«

as measured.

<KK) =2 a’y(.k-i) ¢ A btu(k-i)

where ?(k) m predicted plant output

the output prediction er.or

The prediction will he in error by an amount ep(k) such that

y(k) - 9(k) 3 Gplk)

y(k) - (Z a*.y(k-i) > 2 3i' u(k-t)) I1 (a)

Therefore assume we have a set of N input and output data.

(u(o),u(i). u(io, y(o), yd) y(N)

and we Ash to compute values or

B = (ai ,a2>eeean* bl ' *

which will best fit the observed data suer, tnat
\%

v (9) - jTe,(k,e) a minimum IT (b)

k«n 1

To do this we introduce some matrix notar ion

Let 0(k) = {y(k-1),y(k-2),...u(k-1)...u(k-n)}

and Y(N) - [y(m),...y(N)TI'
VN) = (0(n),0(n+1)...~(N)}*
E(N;9) * {ep(n)...ep(N)}r I11

9 m {aLeeecan,bi« **bn/

22

23

We can then write Y = ye + E(N;9) which is another way ' saying,

take the N sets of data n at a time and substitute them into equation

III.

Therefore II (b) can be written

V (9) = ET(N;9) E(N;9) v

Taking partial derivatives of equation IV with respect to 9 and

equating to zero we get the least square estimares of me parameters.

. |
9LS = (JTV) v >

see Ref 7 for more detail.

The system is said to be parameter identifiable if one, and only one

value of 9 makes V(9) a minimum.

There is an interesting addendum to the abovemethod. Suppose that

while taking the N sets of input/output data we realise that the

process parameters may have drifted slightly. we may therefore wish to

weight the recent data more than the olderones. This is easily

accomplished by specifying the criterion as

N

V(9) -]Tw(k)ep2(k;9) - S WE
K**

where W(k) is some positive weighting function. The estimated

parameters then become

9WLS = (VTWV)VTW

N-k
A common choice for Wk) Is (I- Y) ~ where Y near 1 causes a

long filter remory while smaller ¥ can track faster changes in process

parameters.

The above method stM1 suffers from the fact that it is one shot
'batch' in nature, since the formula presumes that one has a batch of
data of length N. A self tuner using this method would also need to

decide when retuning would be necessary.

The question then arises

Is there some way that the least square algorithm can be restructured
to cater for sequentially available data such that the estimate -an
track the changes which may occur in 9 if the computation is done

over and over as N increases ?

The recursive techniques of the following section deal with this

problem.

Recursive Techniques

Fortunately the above equation can be manipulated to obtain
identification recursively as the process develops such that the entire
string of input/output data need not be brought in at each step. It
can easily be shown that the least square estimate satisfies the

following recursive equation, (see Ref or 18).

2.

1

2

24

N-k
A common choice for WKk) is (I- ~ J where » near 1 causes a

long filter memory while smaller f can crack faster changes in process

parameters.

Tae above method still suffers from the fact that it is one shot or
'batch' in natur.. since the formula presumes that one has a batch of
data of length N. A self tuner using this method would also need to

decide when retuning would be necessary.

The question then arises

Is there some way that the least square algorithm can be restructured
to cater for sequentially available data such that the estimate can
track the change, which may occur in 9 if the computation :s done

over and over as N increases?

The recursive techniques of the following section deal with this

problem.

Recursive Techniques

Fortunately the above equation can be manipulated to obtai.i
identification recursively as the process develops such that the entire
string of input/output data need not be brought in at each step. It
can easily be shown that the least square estimate satisfies the

following recursive equation, (see Ref 7 or 18).

9WLS(N+1) - eWLSCN) + L(N+1){y(N+1) - 0TeWLS(N)}

where

P(N+1) - 1 (I-L(N+1)0T)P (b)
and I

L(N+1) = P 0(a 1+0TP0) © (¢)

A r g’N—k.
where the weighting function w = a

These are the least square recursive algorithims

follows

1) Select a, Y and N - -1 ordinary least

(a)

and are calculated

square

a - 1-/, 0<ix<l is exponentially

weighted least squares).

A
2) Select initial v»-ues for P(N) and9(N)

3) Collect y(o) ...y(N) andu(o).. .u(N) and form

4) Letk N

5) Solve L(k+1) wusing V (c¢)

6) Collect next input output values y(k+l) and u(k+1)
7) Solve for 9(k>1) using V (a)

8) Solve for P(k+1) using V (b)

9) Form $(k+2)

10) Let k»k 1

11) Go to step 6

Note that we could have intuitively expected the form of equation V a
since the next estimate of e is given by the old estimate corrected
by a term linear in the error between the observed output y(N+l) and

the predicted output 0Td(.N).

We still have the problem of how to choose the initiaL conditions, -wo

methods are mentioned (Ref 7)

1) Collect a batch of N>2n data values and solve the batch rormuxa

once for P(N), L(N-H) and 9(N).

2) Set 9(N) - 0, P(N) -* 1, where < is a large scalar

So far, the least square method has been presented with no comment
about the possibility that the data may be subject to random effects
i.e. in the real world most processes are stochastic in nature. The

true prediction model is more likely to be

6) Collect next input output values y(k+1) and u(k+l)
7) Solve for 9(k+1) using V (a)

8) Solve for P(k+1) using V (b)

9) Form 0 (k+2)

10) Let k*k+l

11) Go to step 6

Note that we could have intuitively expected the form of equation V a
since the next estimate of 9 is given by the old estimate corrected
by a term linear in the error between the observed output y(N+1) and

the predicted output 0T"(N).

We still have the problem of how to choose theinitial conditions. Two

methods are mentioned (Ref 7)

1’ Collect a batch of N>2n data values and solve the batch formula

once for P(N), L(N+1) and 9(N).

2) Set 9(N) * 0, P(N) ** I, whereX. is a lar“e scalar

So far, the least square method has been presented with no comment
about the possibility that the data may be subject to random effects
i.e. in the real world most processesare stochastic in nature. The

true prediction model is more likely to be

27

where e(k) * a disturbance which is a sequence of independant random

variables.

This equation is often written in terns of the polynomials A, 3, and C
-1
and the backward shift operator 2

-1 -1 -1
iLe. A@Z) y(t) - 52) u(t-1) + CZ) e(t) VI

However, the least squares method gives biased estimates unless the
-1
true system can be described by equation .1 with 0(Z) m 1.

This means that when the ARMA model has noise terms which are

correlated from one equation to the next, least square will result in a
K A

set of estimate parameters 9 such that the mean value of9 dir ter:

from the true value, 60Q, i.e. EO(N) - 6Q - bwhere bdo a- d

E - Expectation Operator.

To overcome this problem of bias, many other schemes have been
introduced, e.g. Extended Least Square Method, Maximum Liklihood
Method, Levin's Method, etc. Further information on these can be round
in References 7 and 18. All involve more computation or more prior
knowledge about the process to be identified (or both) than simple

least squares.

There are, of course, many different ways to obtain algorithms tor real
time recursive identification. But those that are computationally easy

to implement are of chief interest.

28

Practically all methods yield algorithms with the structure

d(N-H) »9(N) + r (N) e(N)

where f"(N) is a gain factor of varying complexity

e(N) is a generalised error such as output prediction error

Compare the above equation with equation V (a).

Some of the better known methods (see Ref 7) are
Steepest Descent
Newtons Method

Stochastic Approximation
Gradient Method

The stochastic approximation method will be taken as an example.

Here d(k) represents the constant model parameters during the kth
measurement interval. The next parameter vector is chosen as the old
vector, corrected with a quantity proportional to the gradient of the

error function. A normal regressive function can be taken as the model

wi th

y(k) - b-u(k-1) > b2u(k-2) ... bm(k-m)

i.e. based on the parameters and inputs only.

29

The following matries can be formed:-

0(k) - b i(k) Uk) = u(k-1)
b m(k) u(k-m)
parameter vector input vector

Then ?(k) = UI(k) 9(k)
and output prediction error ep(k) - y - Ul(k) 9(k)

where y is as measured.
Eykhoff (18) solves the stochastic approximation formula
9(k+1) =9(k) - (1/2)" f"(k) * (ep*“(k))

9

(where ry represents the gradient with respect to 9.)
d
to get

%(k+l) - 6(k) + F'(k)'U(k+1)-{y(k+1) - UI(k+1)*8(k)} VII
which is the stochastic approximation algorithm.
For convergence P (k) has to fulfill the conditions

k) >0, *“r(k) m 00 and %r" (k) <
Mm K®

2.2

30

This can be fulfilled by H (k) = :/k~

with ¢>0 and 0,5 < * 41

If the process is deterrain clc, i.e. any noise corrupting the Ldea”.

model output is negligible, 5 can be chosen as a constant.

Control

Having studied identification in general, and no explicit methods in
particular, we can now turn our attention to the problem ct . Lruling

suitable control algorithms. Though there are obviously many varied

ways to go about this, this section will concentrate specifically on
those algorithms mentioned in research papers of the last few years as

having been used for self tuning controL.

A natural step would seem to be the. self tuning of a PID controller.
There has been mention of this see e.g. References 5 and 6. Most of
these methods use some perturbation signal to produce a non-paramecnc
model and then use standard error criterion (e.g. integral squared

error) to evaluate PID tuning parameters. To my knowledge, none .iave

been an unqualified success. At any rate, ;iven the computing power

available today, it low cost, there is no reason why more complex
algorithms (involving more than three tuning parameters) may not he

implemented.

In -he ut« AStrBm -ind :L co-worker -

produced a series or excellent theoretical ana applications papers on
the subject of self tuning controllers. Since then there has been
widespread interest in the subject, and there is at present (198*.; much

on-going research in this exciting area.

Before discussing the control algorithms themselves, some terminology

should be defined.

Controllers usually accomplish one of two tasks or both. Tnese are.-

1) Control against random noise whenever introduced into the system.
This is wusually termed 'the regulator problem and the associated

machine is called a 'regulator'.

2) Follow a time varying reference value (set point) usually cabled
the 'servo problem' . The associated machine is usually called a

servo controller.

3) The word controller seems to cover either or both of the above

two.

Furthermore self tuning controllers may be either explicit or implicit.

1) An explicit controller first identifies the parameters of the

model of the process, then further calculation is necessary to

calculate the parameters of the controller.

2) An implicit self tuner identifies the parameters of the controller

directly.

The Minimum Variance Regulator and Adaptations

References 16, 17 and 20.

Astrttm showed that if the prediction model is assumed as previously:-

A(z) y(t) m 3(z) u(t-k) + C(z) e(t) VIII

where A, 3 and C are polynomials in the forward shift operator z, e.g.

n-1
A(z) » zn + V/ ... an

and k represents the time delay.

Then one can postulate and calculate control laws which minimise \e

criterion:-

Hovever, the optimal solution requires solving steady state Ricatti
equations. The situation can be s Lmpli'led if there is no cost on the
control, i.e. g-o. The criterion t j;en reduces to minimising the
variance of the output, i.e. the resulting controller is called a

minimum variance regulator.

Astrbm proposed that the manipulated variable u(t) be calculated as:-

u(t) =-z2G(z) y(t) IX
S(z)F(z)

where F(z) * zK + eee j"k

a—1 n-2
G(z) = g0 2 A 81 2 *%% Qn-1

which are determined from

Zk C(z) - F(2)A(z) + G(2) X

Substitution of IX and X into VIII verifies that the minimum variance
regulator can be interpreted as choosing the control signal such cnat
the predicted value kt1 steps ahead will be equal to zero.

Astrbm also showed that using equation X, the predictor equation can

be written as
y(t+k+l) + «iXU) + <m(t-m+1)
* 0j{u(t) + 3 ~u(t-1) eee r 2~ JU(t-3) :

+ A(tFit+]) XI

and the controller equation can be written directly in terms of

u(t) mJ_ {fry(e) + ... o’ny(t-m+l)}
K
- 0 Mu(t-1) - ... -0 jUCH) XII

i.e. in implicit foraat.

Summing up, the algorithm involves

At the sampling period Ts determine the model parameters XI,

using a recursive least squares estimator.

Then determine the control variable from equation XII.

repeated at every sampling period.

34

These are

In order to evaluate the minimum variance regulator, AstrBm et an-

consider three areas for analvsis

1) Overall stability of the closed loop system

2) Convergence of the regulator

3) Identiflability aspects.

Stability is obviously the most important property for an applied
system. Astrtim uses the heuristic argument that if the
estimated parameters at any one time are so bad that an unstable
closed loop system results, then the resulting increase in input
ond output signals causes the estimates to rapidly approach their
true values.The system will then restabilize. He also shows that

provided

t) The time delay k ofthe process is known;

ii) The order of the system is not underestimated;

Hi) The process to be controlled is minimum phase;

the least square estimator plus minimum variance controller will

stabilize any linear time invariant process.

Astrtim proves that ifthe parameter estimatesconverge, the
control law obtained isthe minimum variance controllaw that
could be computed if the parameters of the system were known.
However, general results giving conditions for convergence are not
available but simulations have shown that convergence 1is

attainable in many instances (see Ref 16).

It is known that certain problems exist if identification is
performed while the system is in closed loop, (see Ref 21, Survey
Paper e« Identification of Processes in Closed Loop -

Identifiability and Accuracy Aspects).

36

The problem is overcome here in two ways
1) The feedback is time varying. (Constant feedback would cause

identiflability problems).

ii) The first non-zero parameter is fixed to a given value ("3

in equation XI) such that

0,5b < <* , b - actual plant parameter

where (O <0,5b gives an unstable algorithm

30 too large gives slow convergence

A number of implementations of the minimum variance controller
(self tuned) have been noted, see Ref 20. Xn industrial
application of a self tuning regulator, by Borrison and
Wittenoark. These have been generally successful, though some

problems have been noted

i) The controller does not penalise excessive control action.

ii) Non-minimum phase systems may cause unstable closed loop

systems.

iii) Set point following has not been included. (Though this has
been added in AstrUm's later papers with the associated

computational difficultie see Ref 1b).

iv) The necessity to choose one parameter ($ Q) for
identif lability purposes detracts slightly from the 'self

tuning' philosophy.

37

v) The order of the system must not be underestimated,

vi) The time delay k must be known as a' Priori.

To solve some of these problems, Clarke and Gawthrop of the University
of Oxford designed and implemented a variation of the minimum variance
regulator. The results are published in a series of articles, the
seminal work being the report of the Department of Engineering,
University of Oxford, entitled 'Feasibility Study of the Application of
Microprocessors to Self Tuning Controllers', Report No. 1137/75

(Ref 23), see also Refs 14 and 15.

Instead of minimizing the output variance only, this method minimises

the variance of an auxiliary output function given by 0(k)

-1 -1 -1
0(t) * P(z) y(t) + Q(z) u(t-k; - R(z) w(t-k)

1
where P, Q and R are polynomials in z and w(t) is the set point.

This is another way of saying, minimise the criterion

I m S{(*pj_y(t+k-1) - 2fr*w(t-i))“

+ (7~ qltu(t-1))2}

37

v) The order of Che system must not be underestimated.

vi) The time delay k must be known as a' Priori.

To solve some of these problems, Clarke and Gawthrop of the University
of Oxford designed and implemented a variation of the minimum variance
regulator. The results are published in a series of articles, the
seminal work being the report of the Department of Engineering,
University of Oxford, entitled 'Feasibility Study of the Application of
Microprocessors to Self Tuning Controllers', Report No. 1137/75

(Ref 23), see also Refs 14 and 15.

Instead of minimizing the output variance only, this method minimise,

tne variance of an auxiliary output function given by ?Kk)

-1 -1 -1
0(t) * P(z) y(t) + Qz) u(t-k) - R(z) w(t-k)

-1
where P, Q and R are polynomials in | and wft) is the set point.

This is another way of saying, minimise the criterion

I - E{(2pi.y(t+k-1) m,Ariw(t-i))*

+ (7 qlju(t-i)")

Note that this includes set point following and acontrol cost on
the plant input u(t). P, Q and R are specified by the user to obtain

more general closed loopbehaviour.

Note also that Q m Ra 0 is the minimum variance regulator discussed

before.

The problem reduces to predicting the output 0(t) at time t-Hc and

evaluating the input u(t) such that this prediction is set to zero.

Since QU(t) and RW(t) are known at time t, the problem is to predict
the component of j)(t+k) due to the output y(t), i.e. 0y(t+k), where
Oy(t) m Py(t). The suggested estimation procedure is some form of

recursive least squares, usually extended least square acting on

Oy (t).

The explicit expression for the plant input is then

u(t) = Rw(t) - 0y(t+k)
Q

and the closed loop properties are defined by

y(t) - z~kB R w(t) XIII
PH + QA In terms of the set point only

39

The stability of the system is determined by the roots of

PB+ QA- 0

i.e. when Q is negligible, the closed loop behaviour is determined by
B, i.e. for a non-minimum phase plant we have unstable poles including
the case where Q * 0 for the minimum variance regulator. The closed
loop poles can therefore be modified by ensuring that the QA term

dominates and even non-minimum phase system can be accommodated.

.Larrce at al, Rel. 13, also discuss two important practical aspects.
The #rst arises :rom the fact that system models assumed for self
tuning are loca” linearizations to typically non-linear responses. The
input/output signals are generally perturbations around non-zero mean
levels. These are denoted by W, U, 7 which are set point, manipulated
variable (input), controlled variable (output) mean levels,
respectively. these are net usually related only by the steady state
gain of the model, so a control offset must be added for generality,

-his extra term is just a fvrther parameter which may be evaluated with

all the rest. However, there n e ways of getting rid of it.

The following gives

a pictorial example of this.

Actua 1
Plant

Characceris ti

Linearised
Model

* Operating Point

Figure 5

PROCESS CHARACTERISTICS

40

The previous model equation VI would become

A(z

-1 -1 -1
) y(t) - 3(z) u(t-1) + C(z) e(c) + d

where d is the constant offset.

The second aspect is to ensure zero steady state error, i.e. that the

plant output equals the set point at steady state.

Clarke mentions the following (Ref. 13):-

1)

2)

3)

4)

Insert an integrator into the loop after the self tuner, i.e.

effectively compute increments in control signal. This a] i.ows d

to be omitted from the estimation of parameters, but it detracts

from the closed loop performance and in fact can seriously arrect

convergence of the self tuner.

|
Setting Q - X (1-z) ensures zero steady state error but d

must be estimated as a further parameter. This method can be

unstable for non-minimum phase systems.

Adding integrators into both P and R polynomials and d is (once

more) eliminated. Again, however, the system fails tor certain

non-minimum phase systems.

The fourth method cascades a self tuner in the inner loop and an

integrator in the >uter loc The integrator gain must be chosen.

42
These practical ispect- ire 29 ter ind ;he associated difficulties
vn solving them -1)fder , point out some or the considerations to

eaken .nto account when Implementing a sell uner. "he following points

ire noteworthy m the Jlar'w, iawthrop controller

1) Non-minimum phase systems can be handled by correct choice of

oolynomlal Q.

The cost >n tne input Kt ensures '.hat input actuators are

not

damaged, i.e. excessive ontrol action is prevented.

i) aet point following LSincluded.

4, 2ixing parameter is not lecttsarv out improves robustmss.

1) The order >r the system must not be underestimated.

P> The time deiay k rust re known.

7 P, che cost in the >utput should be chosen)t the same order as
the process to prevent interior results.

w Solutions ne j;onatant offset parameter d, ana zero stead/

-,cate problems may ilso produce inf. rinr results.

control algorithm is subopcimal in comparison to the minimum

ariance mmcr V ..er ;r. that minimization > the variance of che

utour mnr miseti ¢ . prevent ex. easive .-.on’vol iCtion.

Pole/Zero Assignment Ke”uiaiors

Another method of controller design iS chat >r pole/zero placement

based on classical control methods. Here the con.rol objective is to

move the closed loop poles/zeros to prespecified positions vhich derine

a transient response. Both regulator and servo problems have been

tackled. One such regulator is discussed by Welstead Prager and

Zanker, Ref 13 'Pole Assignment Self Tuning Regulator

They postulate a model:

-k -1 "1
vir) » z 3(2) u(t) + i + z | W XV
" _T”

-1
1 + A(z)

1 + A(z)

which is identical to the model described by equation VI with the rirst

parameters al and C[equal to unity.

The feedback regulator is given by

-1
u(t) - G(z) y(t) XV

i

1+ F2)

and the object of the self tuning pole assignment regulator is to

automatically move the closed loop system poles from their open loop

locations to the values specified by the polynomial 1 + U:)

where the zeros of TU ') are preselected by the process engineer

taking into consideration the process at hand.

44

Substituting XV into XIV gives the closed loop eq ition and equating

with the required response

-1
y(t) - 1+ F(z) e(t)
~r
1 + T(z)

the regulator parameters can be solved for (polymonials G and F) by

solving
-1 -1 -k -1
{1 + A(z)} {l + F(z)} -z B(z) G(z }
-1 "I
* {1+ T(z)y 11 + C(z)} XVI

where A, B and C are assumed known and T is chosen.

Self tuning then proceeds as follows

1) At each sample interval, the parameters of equation XIV are
estimated by recursive least squares. (C is usually chosen as
Z€ro).

2) The estimated polynomials A and B are used to calculate F and G by

equation XVI.

3) The control input u(t) is obtained from equation XV using F and G

evaluated in 2) above.

The following points may be noted about the above mentioned self

tuner:-

1) The principle of pole assignment self tuning, proved in Reference
13 states that if the system converges, it will converge to the

desired closed loop configuration.

2) Process zeros are not cancelled, only the poles are shirted so the
system does not suffer from instability due to the presence of

non-minimum phase zeros.

3) Varying and unknown time delays can be accommodated but the
numerator polynomial must be extended to ensure that the maximum
transport delay expected is catered for. THis may cause problems
with over parimetization ana the self tuning properties may be
lost. However it is claimed by the author (Ref 13) that
simulation has shown that successful regulation may still be

achieved.

4) By the very nature of the controller, excessive control effort may

be avoided.

5) Set point tracking can be included (See e.g. Ref 10 'Servo Sel:
Tuners') but there is 'a significant increase in computational

effort' (the author's own words).

Astrtim and Wittenmark (Ref 12 'Self Tuning Controllers Based on Pole
Zero Placement') concentrates specifically on the servo problem. Both
explicit and implicit algorithms are given. They discuss the problem
of choosing a closed loop transfer function as this cannot be specified
arbitrarily. Specifically, the delay time of the closed loop response
must be at least as long as the processes. They note that open loop
process zeros in the right hand plane cannot be cancelled and remain

zeros of the closed loop system.

45

1) The principle of pole assignment self tuning, proved in Reference

13 states that if the system converges, it will converge to the

desired closed loop configuration.

2) Process zeros are not cancelled, only the poles are shifted so the

system does not suffer from Instability due to the presence of

non- minimum phase zeros.

3) Varying and unknown time delays can be accommodated but the

numerator polynomial must be extended to ensure that the maximum

transport delay expected is catered for. THis may cause problems

with over parametization and the self tuning properties may be

lost. However it is claimed by the author (Ref 13) that

simulation has shown that successful regulation may still be

achieved.

4) By the very nature of the controller, excessive control effort may

be avoided.

5) Set point tracking can be included (See e.g. Ret 1) Servo Self

Tuners') but there is 'a significant increase in computational

effort' (the author's own words).

Astrttm and Wittenmark (Ref 12 'Self Tuning Controllers Based on Pole

Zero Placement') concentrates specifically on the servo problem. Both

explicit and implicit algorithms are given. They discuss the problem

of choosing a closed loop transfer function as this cannot be specitied

arbitrarily. Specifically, the delay time of the closed loop response

must be at least ao long as the processed. They note that open loop

process zeros in the right hand plane cannot be cancelled and remain

zeros of the closed loop system.

Two basic types of controllers/regulators have been discussed. These

are

1) 'Optimal' controllers bast: = linear duadratic gaussian control
theory. Specifically mentioned WE€re the minimum variance
regulator by Astrttm and co-workers > and the Clarke Gawthrop
extension.

2) Pole Zero Assignment Contioller based on classical control theory.

Here, work has been done by Weistead and company, Astrbm and

Company and the Clarke, Gawthrop team.

The above mentioned are certainly not an exhaustive review of the work
that has been done in this sphere. However it is felt that most selr
tuners do fall into one of the two basic categories mentioned above.
The link between these two, and model reference adaptive systems (.MRAs)
is the subject of current research (e.g. the Clarke Gawthrop controller
may be considered as a model reference adaptive controller under
certain conditions, see Ref. 19). All the self tuners mentioned have
used some form of recursive least square as the identification
procedure combined with a parametric model. The problems associated

with each type of controller have also been mentioned.

AK EASIER METHOD

47

The ideal controller is a "black box". It has input connections,

output connections, possibly some means of displaying

controlled and

manipulated variables ana that is all. There are no dials or <nobs or

switches to allow human interference. It is universaly

handling all types of process under all conditions.

transportable,

The ideal is approached to some extent by those self tuners already

mentioned. Simulation and practice has shown that they do provide

superior performance where constant controllers fail.

However they do need the following when commissioned

1) A rigid specification of the required closed loop

characteristics.

ii) Certain information imbedded in the prediction

model used.

That is to say, when these ST controllers are first placed within the

structure of a process loop, certain control parameters have to be

preset in terms of the above two points. This implies a certain a

Priori knowledge of the process at hand, which detracts

slightly from

the self tuning philosophy. Prior knowledge of model order, plant dead

time and controller realizability is needed before use on any plant. If

self tuners are to replace P.I.D.'s on a broad scale, they must not

only improve performance, but also minimise the human effort involved.

3.1

Motivation and Derivation of L Self Tuner

Considering some prime characteristics which should be sought

when

replacing a P.I.D. by a self tuning controller.

From a user's point of view:-

iii)

iv)

From

iii)

which

Transportability between differing plants;

Compatability with the skills of the plant operator;

Simplicity of implementation and maintenance;

Plant disturbance should be avoided.

a designer's point of view a self tuner should capable of

Identifying and controlling a plant when commissioning;

Handling non-linear plant behaviour;

Handling time varying plant characteristics;

Solving both servo and regulator problems;

means to

Ensure zero steady state error at all times;

48

after,

49

vi) Cope with transport delays automatically;

vii) Cope with non-minimum phase plants;

viii) Ensure system stability at all times.

With the above discussion in mind, a control algorithm, the basis or

which can be found in reference 24 ('Synthesizng a Digital Algorithm for

Optimised Control') by Tu and Tsing, is thought suitable for

implementation. It will be shown that this controller has a number ot

interesting characteristics while some slight modification to ‘t, allows

for greater flexibility.

The basis of the algorithm is the performance criterion that equates

open and closed loop dynamics. This automatically ensures physical

realizability o* the closed loop system. A snort derivation now

follows.

Assume the following closed loop system:-

I I
u(t) , 1G-(z)
I I

Figure 6
CLOSED LOOP SYSTEM

w(t) is the set point

where G?(z) is the plant transfer function

and G p(z) - 1 G'p(z) such that G'p(z) has unity steady state gain

K

while 1 denotes the steady state gain of Gp(z).

K

GG(z) is the controller transfer function.

The feedback system will have a closed loop transfer function of

Y (z) Gp(z) Ge(z)

W(z) 1 + GL(z) Ge(z)

51

Tu and Tsing now equate open and closed loop dynamics and substituting

Gp ” IGp' (dropping the z).

Gp' - (1/K) Gp' Gc

1+ (1/K) Gp Ge

Solving for Gec gives

which leaves G-' and K to be synthesized,
Now if a step input is applied to the plant the output

is

Y(z) - (1 - ¢ i)z +(1-C277Z + etc

where is defined as below.

given as

T 2T 3T «T t —

p.3 ba Generalised Process Step Response Sampled at T Interval
where the plant input - z * u(z) wm step
z - 1
Therefore the plant dynamics denoted by is given as
_1 |12
G ' - KY(z) ' z-1 K. {(1 - ¢ i) z + (L - ¢ 2)z
U(z) y/ K K
-1 -2 ~3

- K{(1 - ci)z + (ci - ¢2)z + (e¢2 - ¢3)z ...}

K
XVIII

now

Gc nm K - U(2)

1-Gp' E(z)

-lle uiUllt Lng " p k< kR '

-1 "
U(=) - U(z)z - Uci* - (c2 " ci)z
-3
_1 III
U(z) - U(z)z - KE() - K {Clz +
-2 -1

oz ...} U(z)(-z)

jhich in the time domain

A1) Pt xt) - u(n(t-1))

= Ke(t) - K{cLau(t-1) + C2'Aa(t-2) + ...} XVIII

This equation is the Tu Tsing controller in directly usable torm tor a

computer based application. In other words, given the values (, and Kk,

the '.ontroller will ensure that open loop and closed loop dynamics are

-.ae j;ame. This has the important result of relieving the process

isiglneer ot specifying a desired closed loop response, i.e. one step

loser to our ideal 'black box'. At any rate, in most industrial

ipol: :ations exact specifications of such things as damping factor, rise

:.me, number of overshoots, etc. are not necessar> . Rather such things

, jverai L .ystem stability and ensuring zero steady state error are more

important ispects. Closed loop dynamic, equal to open loop dynamics is a

.uf'.cient criterion for most applications particularly in the process

.ontrol field (as compared to the aerospace industry for instance.)

vv>t ;»r mportaal i"pect :s that the controller is physically realizable,

I . contains no predictive modes. It has as many poles as zeros, and

: loop tranmport delay equals that of the open loop, the minimum

* sqi

Furthermore, process zeros are not cancelled, ;o zeros in ne n”*n

plane of the root locus plot can not be cancel .ed by potentiaxv.

ins-io.
poles. Hence non minimum phase systems ire contro lid=lh ne -..4---
mencloned.
However some questions remain. What about ensuring zero steady state

errors? Under what steady state conditions will the controlled /anaoic

y(t) and the set point be equal ? Ions ide r igam

disturbance D(s) added in, i.e.
DCs)

w3) >

Figure

FEEDBACK CONTROL SYSTEM

It is well known that for a system in single 1loop feedback

configuration, the following holds

1) For zero steady state error with respect to a step change in sec

point, there must be a forward loop pole at the origin (free

integrator), i.e. an integrator in either controller or plant. The

disturbance is assumed zero here.

2) For zero steady state error with respect to the application or a

step change in disturbance, the controller alone must have at

least one free integrator.

For a linear system these two cases are additive due to superposition

(As they are for linearized systems. The problem of constant offset
will be dealt with 1later). So in general, the steady state error in
response to an input function, disturbance or load, of the torn

F(t) - 3tn
is zero If the controller has a multiplicity of poles of order m such
that m>n. Of primary Interest here Is the steady state error due to
step change In set point and

(a worst case) stepchange In disturbance.

Therefore the controller needs

at least one freeIntegrator to ensure

zero steady state error.

It will shortly be shown that the cottroll.r does in fact insert a

single forward 1loop integrator. This means Inter alia that the

controller mentioned solves both the regulator and servo problems, i.e.

controls against both set point changes and di..turbances. An Important

factor to note Is that the Inserted Integrator does not detract from

the desired closed 1loop response (as In some cases mentioned earlier)

but is an inherent part of the controller.

56

The following problem now presents Itself. When using a self tuning
controller, the actual plant dynamics Gp may not be toown accurately
at some time t. Instead,

an estimate denoted by Gp Is the only

available Information. This may continue for some time until the plant

is sufficiently excited to Improve the estimate Gp. In fact It may

take a number of set point

changes or disturbance applications to

improve the estimate of Cp. Will =zero steady state error still be

achieved? If the estimate of Gp is

given by Gp, and ot K is 4. 'en oy

K, these are 'incorrect' representations but nevertheless provide

stable control. The following analysis may be considered with respect

to the disturbance input D(z).

The error E(z) * Gp (z) 3(z)

1 + Gp (z) Gc(z)

now let Gc be defined in terms of Gp and x, i.e.

>

AA

Therefore E(z) * GpD(z) {1l ~

1l - KGp + GpK

If D(z) I (step)

then the steady state error ess

Lira (z-1) G ptl“KG p}

2 o 1 (z-1) 1-KG p+G pK

Mow since

11m VA (Z - l) G p -1
z *] (z - 1I) K
by definition, iwhich

is the estimated steady state gain of Gp).

AZ A
K

The numerator {1 - KG p} goes to ({I -

x A

A
K
and hence ess * 0.

Obviously, If Gc is defined in terms of the actual plant Gp, and not

the estimated Gp, then ess still equals).

The controller equation having been chosen, we need an identification

scheme to tune it. As always, Che identification method must be chosen

with the final aim of the identification in mind.

A class of systems i.e. a model is needed first. The derivation of the

controller algorithm is helpful here.

From equation XVII, the plant Gp was given as

{1 - ¢ ,) =z + (¢ 1 " ¢ %)z

-3
+ (c2 ~ 03)2 , . + d XIX

Where all variables are difined as previously, but d, a constant offset

has been added for generality. The reasons have been given in

Section 2.2 .1.

58

Equation XIX contains all the necessary information needed by the

controller of equation XVIII..

It is interesting to note that equation XIX is in fact a non-parametric

model since (1 - c*, (cL - c2) etc. forms an infinite series.

K
However, as can be seen from Figure 6- the values ct become negligible
for large i and a stable plant. The series may therefore ce truncated

and equation XIX may be rewritten.

z + d where ~ t m c ~ ci

t'i i-1

and /S ~ for i>N are

considered negligible.

To avoid confusion from here onward, a discrete parametric model

be considered to be represented by 'parameters' while a discrete non-

parametric model will be represented by 'coefficients'.

59

The simplest method of evaluating the coefficients cL "

(or would, or

course, be to apply a step input to the open 1loop plant and calculate ct

directly from the response. However, this would violate the 'do not disturb

constraint mentioned previously.

A better path to take would be to use equation XIX as the basis of a prediction

model which could be applied recursively together withthe controller at every

sampling instant. This is obviously in similar veinto the methods mentioned

in Section 2.2.1, i.e.

1) Predict the controlled variable 9(t) at some time t

using some form of equation XIX.

2) Measure the actual controller variable y'vt) and generate
a prediction error ep(t) = y(t) - 9(c).
3) Update the coefficients by using some form of

6 (t +1) - £ (t) + r U)ep(t)
£ Q

where * (t) - Vector of estimated coefficients p 3j

f- (t) * Gain factor yet to be determined.

4) Calculate the controller coefficients from the
A
vector (t) .
5) Calculate the manipulated variable using some

form of equation XVIII.

6) Return to point 1) at the next sampling interval.

The peculiar aspect of this method is the use of an update procedure

(point 3) which is specifically devised for parametic models for a non

parametric formulation.

itself to this type of use.

Due to the 1large number of coefficients necessary, an update algorithmas

complex as the recursive least squares is out of the question due tothe

vast computation involved. However, the stochastic approximation met nod

in Section 2.1 1looks appealing.

Point 3) above could then be re-written as

£ (£t + I) - |<t) + £ U(t)ep (t) XX

where U(t) * Vector containing a history of the plant input at the

sampling instants.

U(t) - u(t-1) & £ (t) =
u(t-2) 3 2
i o ﬁ‘ .3 N

P

In order to ensure that the identification action never dies out, Gamma

must be chosen as a constant. The exact value of Gamma must still be

decided.

61

The algorithm mentioned is appealing because it is conceptually

and easy to implement. Furthermore, the non-parametrlc does not

require the prior specification of expected plant order, or the <?re-

setting of certain parameters to zero to account for process dead time.

FrolLL. a practical point of view it is worthwhile modifying equation XIX oy

differencing on both sides. This provides a number of benefit

The model now becomes

-1 * 2 ..
Gp “ AY(2) - e +C= 1" ¢ 2)z
AU(z) K
or in the time domain
A y(e) - (1 - ci) Au(t-1) + (ci - e2; *u(t-:).
K
+ (¢ - CN)CKku(t-N)

N-1

which can be compared with the controller

A u(t) #WMKa(t) - K{cvAu(t-1) > c2-Au(t-:).

+ cyAu(t-N)} XXI (b)

62

The advantages become immediately obvious

1) The array Awu(t-i) is common to both equations,
saving memory space and programming effort in a

computer based application.

2) The offset d is cancelled out and need not be estimated.

The result however, is an explicit self tuner as the controller

coefficients must be evaluated from the estimated model coefficients *~ i

by

b ,i«f’

A

K

and §_ =2 - M

1-1

The basic controller algorithm may be manipulated even further, .he

implementation should allow for the variation of the closed loop response

to something other than that of open loop should the process engineer so

require it.

The idea Is not to destroy the 'black box' constructed In the last feu

sections. Rather the point Is to It.ple.ent a system which allows a

certain amount of adaptation, should this be thought necessary. This can

be implemented by Including a preplant 'filter' as part of the software

as shown below.

62

The advantages become immediately obvious:-

1) The array Awu(t-i) is common to both equations,
savins memory space and programming effort in a
computer based application.

2) The offset d is cancelled out and need not be estimated.

The result however, 1 an explicit self tuner as the controller

coefficients oust be evaluated from the estimated model coefficients ~ 1

by
i
and cl » 2 ~ N
1-1
The basic contr ,er algorithm may be manipulated even further. The

implementation should allow for the variation of the closed loop response

to something other than that of open loop should the process engineer so

require it.

The idea Is not to destroy the 'black box' constructed in the last few

sections. Rather the point Is to Implement a system which allows a

certain amount of adaptation, should this be thought necessary. This can

be implemented by Including a preplant 'filter' as part of the soft are

as shown below.

63

"t

Figure 3
CONTROL LOOP WITH ADDITIONAL FILTER

The filter Gf is physically part of the controller but effectively part

of the plant, i.e. since the controller equates open and closed .1JO?

dynamics , Gf can be included so as to-appear directly in the closed loop

response.
i,e. Y - GCGfGp m GIfGoyp
W 1 +*G CG fG p

The process engineer can prespecify Gf so as to cancex. shx.t the

poles/zeros of G? to attain a required response. (Zeros in the right

hand plane of the pole zero plane may of course not be cancelled).

64

mshould this not oe required ur will defaul' 'o:ancei HIL’ i A

.j chosen to be a lead-lay ;ompensator

;f(s) =Tid s T 1 rid, Tig » filter time constants

Tig s d 1

which is equivalent to

-1
Gf(z) - Fg yR1 - ~
T -1
(R2 - z)

where Ri, R2, Fg are defined in terms ofthe timeconstants oi of(s)

i.e. Rl m1+ Is , R = L+ Ts

Tld Tig

Fg * Tld ensures unity steady state gain

Tig
Ts = sampling period

The process engineer may then do the following. After due consideration

K vie process it nand, TId may be chosen to cancel the dominant plant

pole and Tig may then be chose to attain required dynamics. Various

other ,pdons are available. However, it must be stressed again that

ti. action 1ietracts rrom the 'black box' philosophy and must only be

onsidered necessary. >therwtse the controller will default to

- %= Tig, i.e. effectively cancelling the filter action.

Should this not be required Gf will default to cancel out, i.e. tl ut

is chosen co be a lead-lag compensator

Gf(g) =Tid s + 1 Tld, Tig - filter time constants

Tig s + 1

which is equivalent to

Gf(z) - Fg (Rl - z)

K2 - z)

where R1, R2, Fg are defined in terms of the time constants of Gf(s)

i.e. Rl - 1+ Ts , R =1+ Is

Tid Tig

Fg - Tld ensures unity steady state gain

Tig

Ts m sampling period

The process engineer my Chen do Che fol.owlng. tier due consider.cion

of Che process ac hand. Tld may be chosen Co cancel Che domlnanc plan-

pole and Tig may Chen be chosen Co accaln requiren dynamics. Vatyou,

ocher opcions are available. However. 1C muse be accessed again chec

this acclon decraccs from ch, 'black box' philosophy and muse ,nly be

used If considered necessary. Otherwise Che mcro'.ler .ill leraulc

Tld - Tig, i.e. effectively cancelling the filter ict: m.

I,, fact Gf can be directly combined with Cc to form a single equation

but it must be remembered that 0£ is effectively part of the plant. This

final reformatting of the controller equation and the corresponding model

equation can be found In the Appendix Section A and will not be repeated

here.

The final implementable version is then as follows

(The result of the manipulations of Appendix Section A).

AC time c¢, where C coincides with sample interval do the following

1) Sample the plant i.e. measure y(t).

Then predict -ny(t) - e U eIkt >'»v(t-1) * L2(t-1) eu v

b

R1 Fg
+ IN(t-1)-av(t-N)] + Ay(t-1) }

where R1, R2 and Fg are as described aoove

LiCt-1). ... LN(t-1) are N coefficients describing the plant dynamics

updated at the previous interval.

»v(t-i) IS the history of the Incremental values of manipulated

variable.

nv(t-1) the incremental controlled variable as measured at the (t-1)th

sampling interval.

2) Update the coefficients proportional to the prediction erro,

Li(t) * Li (t-1) +P Av(t-i) {ay(t) -Ay(t)} i = 1*

P m constant weighting factor

3) Calculate the incremental manipulated variable

Av(t) - K-« {QI(t)«<xvCt-1) + QzCt) x Av(t-2).

R2

+ QfICt) x Av(t-N)}

+ RFg-{Rle(t) - e(t-1)}

and output v(t) to plant actuator.

where 1 = 21L t(t) is the estimated plant steady state

r. R2-i

and Q~Ct) are the controller coefficients defined by

Qi(t) - 1 ~R + L (1)

K

and Qi(t) - Lt(t) +Q U) i-1.s.N
i-1

e(t) - set point error - w(t) - y(t)

4) At the next sampling interval (t + 1), repeat steps 1 to 3.

The above equations will be collectively known as equation XXIII,

points 1) to 4) above.

In order to start the algorithm, the following variables must be chosen:

1) The coefficients L1 for i - 1 toN.

2) N, the number of coefficients to beused.

3) Sampling time.

4) The weighting function 1

5) Rl and R2, the filter parameters, if deemed necessary

else they default to Rl * R2.

Both the simulation and the implementation sections will discuss these

choices further, however, two can be tackled immediately.
When choosing the sampling period, it is common to choose, as a rule ot
thumb, a sampling rate ten times faster than the fastest mode in t-he

system, i.e. if the fastest mode is given by

fa

s + fa

The sampling frequency may be chosen as ts = 1Ufa to satisfy Nyqui.*c

68

Furtae-more, che number of coefficients Li used, represented by N must

span the time response of the plant (e.g. to a step input).

Since, in four time constants Tc, a plant has reached 1,8% of its final

value after a step change in input, we may use this as a criterion, i.e.

Ts (seconds per sample) * 1

fs

can be chosen such that N x Ts * 4 Tc

Therefore if the fastest mode of the open loop plant Ta = 1/fa is

approximately known, the sampling period can be chosen by

Ts - Ta

10

Then if the time constant Tc of the open loop plant is approximately

known, choose

Nmd4Tc =4 Tec x 10

Ts Ta

Note that if the plant is first order dominant and other modes are

neglected, Ta * Tc, and we have the remarakable result that

N - 40

The noteworthy characteristics

1)

2)

3)

4)

3)

6)

7)

8)

oE the self tuner may be summarized:-

The controller equates open and closed loop dynamics. This
precludes the necessity of specifying a different desired response

for different plants.

The model used is non-parametric. Hence the problems associated

with parametric models do not arise (i.e. need to speciry number of

parameters and maximum expected dead time).

The self tuner should provide stable control for non-minimum phase

systems.

Dead time is handled automatically.

Time varying and non-linear plant behaviour is handled

automatically.

Set point (reference) tracking and regulation against noise are

included.

The control criterion should not cause excessive controlaction.

Zero steady state error is achieved at all times even when the

estimated coefficients of the model ire not the 'correct ones.

9) Open loop unstable plants are not controllable by

10) The algorithm needs more memory space

than those based un parametric models*

this

method.

in a computer Implementation

When using Che controller just described (or any adaptive controller) tne

resultant closed loop

Analysis of the behaviour of the self tuner Is

trivial.

The main areas of interest are:-

I Overall stability of the system.

IT Convergence of the model coefficients.
I11 The properties of the resulting controller.
To expand

| Overall stability is obviously of prime importance.

controller is wuseless. Of particular Interest
choices of the following to system stability:-
A
a) The coefficients Li(o)
b) N, the number of coefficients to be used.
¢) The sampling period Ts.

d) The weighting function.

therefore

Without

are the

system is usually time varying and non-linear.

far from

it, the

initial

By looking at the controller equation of XXIII, some intuitively

dangerous pitfalls may be avoided:-

t) Since the manipulated variable is given by

AV(C) “ X ~Qi(t)" Av(t-i) + K-F g {Rl e(c) -e(t-1)}
R2

negative K would drive the system away from the set point.

Since K* R2 - 1

A Li

then Li(o), 1 ™1, N must be chosen at startup to ensure X > 0

(R2 is always > 1).

ii) '"Very small' values of Li(o) may lead to a large control.er
forward gain K. The controller would then be very sensitive to
even small set point errors. Though the resulting plant
activity would improve the estimates of Li very quickly,

process variables may saturate first.

72

ill) The weighting constant /' 1is important. The update equation is

Li(t) » Li(t-1) + T &v(t-i) {ep(t)}

If r is 'too Large' over compensation may occur, i.e. either

a) Negative Over Compensation -

A A
Causing small or negative values of Li. K would become

large or negative resulting in instability.

b) Positive Over Compensation -

A *

Causing large values of Li, K would become very small and

the control action would switch off.

iv) 'Too large' a sampling period may cause instability, while too

small a period may cause excessive control action.

IT A host of questions arise, as to the convergence of the model

coefficients

A
i) Under what conditions will Li(t) converge from those values

given at startup to some final value?

11) If they converge, how fast will they converge?

I11) If the plant parameters vary with time, will the self tuner be

able to 'keep up'?

I11

73

iv) Will the coefficients converge to the same values (for the same
plant) no matter what initial conditions (e.g. Lt(o) and

r at t - 0)?

If the coefficients converge will the resulting controller oe the

required one?

Obviously the ideal situation is to find some analytical solution to
the abovementioned problems. However, due to the dirticu-=vxes
involved in such i task, a second best approach must be considered,

i.e. computer simulation.

74

SIMULATION STUDY

The objectives of the simulation cacried out were

i)

To ascertain whether the self tuning algorithm (equation XXIII) is
at all practical to implement in the light of the problems

mentioned in the previous chapter.

To gain an intuitive 'feel' of the self tuner characteristics in

order to ease implementation.

A number of simulations were run using ACSL (Automatic Continuous

Simulation L-'"uage) on the IBM 370 mainframe at the University of the

Witwatersrand. ACSL is a Fortran like, high level language,

specifically designed for simulation in the control iield and other

related subjects. Transfer functions and time varying signals are

easily implemented in a single line of code.

The plant to be controlled was chosen to represent a gas cleaning plant

on a submerged arc-furnace, the intended target plant for the self

tuner.

1,7

(100S+1) (15S8+1) (3S+1)

The filter G f * 100S+L was chosen

15S-H

to give a stable second order dominant

1,7

(15S-H) 2 (3S+L)

75

vnooserv,dbie 'oi ,e vas icded , the manipulated variable prior co

application to the plant. The noise was simulated using the Ornstein

“hienbeck., zero mean, band limited noise generator provided by ACSL.

ene sampling rate was chosen to be at one second intervals to satisfy

-ae Nyquist Jriterion.

A number of simulations were run with differing values of, initial

coetticients Li(o), weighting constant Gamma and number of coefficients

Tne most noteworthy characteristic overall appears to be the

insensitivity of system stability to variations in the above. Although

tne choices were made with due consideration of the facts mentioned in

po nt 1 in the previous chapter . All in all, it appears that, given

Atable initial conditions, the coefficients appear to converge and the

system is then stable at all times.

As an example, consider the results of the following run. To cover the

.ime response of the system, N, the number of coefficients used, was

chosen to be 80.

Gamma was set constant at 0,01 throughout the run. Initial

coefficients Li(o) were chosen = 0,001 (all eighty). This deserves

some discussion. Prespecifying 80 coefficients so that the model in

lv- approximates the plant G f G p in some way is both arduous and

seir defeating in this context. Specifying all initial coefficients

equai, is i much easier task and provides a reference for comparison

wit!: the -onverqed coefficients.

The set point was fixed at unity arbitrary units (throughout) while »t

zero time the plant was set at a steady stare value of 1,7 units. The

run lasts for 3 000 seconds.

The variation, with time of the tenth coefficient t~ U) is shown

in Figure 9.

We can note the following

) The coefficient converge t ro a constant value, but vitn

variation about a mean.

11) Convergence is fast, . ained in a mean sense within 300 seconds.

The controlled variable Y(t) is shown in Figure 10(a) over tne sane

time span.

i) Stability is maintained at ill times.

ii) Initial control is erratic as would be expected while the initial

coefficients Li(o) are incorrect

iii) The controlled variable converges to the set point.

As a comparison, an identical re-run (even the noise is repeatable' but

with Gammm ¢),00i gave the results in Figure 11.

ce

tn

&

ooV

80

Where for L (t)
10

i) Convergence is slower Chan for Gamnm m 0,01
ii) There is less variation about the mean.

iii) The coefficients converge to different valu s tnan for t run

Gamm * 0,01.

Points i) & ii) are expected as a lower Gamma reduces the effect of the

prediction error, while simultaneously reducing the effect or the

unpredictable noi*e on any new estimate of Li. Point iii) poses a

problem, and will oe discussed shortly.

In Figure 10(b) the controlled variable is shown for this run.

i) As expected, due to slower convergence of the coefficients, the

initial control is worse than for Gamma - 0,01.

ii) Once coefficients have converged, the associated regulation

properties appea. identical to case i>e

Now from the simulation it appears “hat the values to which the

coefficients converge are dependant on:-
a) Initial state of the plant.

b) Initial coefficients Li(o).

c) Driving noise.

d) Gammma - the estimator weighting constant.

Change juat one =£ these, and the coefficients appear to converge

somewhere else. This Is most distressing as the original Tu Tslng

controller Is evaluated via the impulse reponse (which Is unique) from

the step response of a plant.

Many attempts at rectifying this

situation proved fruitless. It was

noted, however, that the coefficients Li as calculated from the actual

step response, If used as the Initial condition, did not converge

els ewhere.

AstrSm et al (Ref 16) presets a single parameter In order to ensure

Identlflability. 1In this case, presetting up to three coefficients to

fixed values had no affect on the final (converged) coefficient

estimates. This was possibly due to the large amount of coefficients

involved. Presetting any mere than this defeats the object of the

exercise.

The best that can be done In this situation Is, to quote Astrom

(Ref 16) on Che non uniqueness of parameters:-

-We must, however, remark that In the present context we do not

bother very much about the behaviour of the parameter estimates.

They are only used as an Intermediary step to compute the

controller parameters, and our main concern 1. the convergence of

the regulator'.

82

Howevei we do need Co measure the achievement of the self tuner in some
manner. As with other identification methods, the host test is that
which has toe ultimate aim oi the identification in mind. In this
case, open and closed loop dynamics should be identical upon

convergence of the coefficients Li(t).

figure 12(a) shows the open loop step response of

GfGp " LIZ

(158+1) 2 (3S+1)

to a unit step input over 200 seconds of real time. The result has
been normalised to unity. Superimposed on this (b) is the closed loop
response of the self tuned system to a unit step change in set point.
For this run the adaitive noise has been removed, the estimator
bypassed, i.e. the controller coefficients fixed for the duration of
the run at the values arrived at during the first simulation run
mentioned, (i.e. oamraa * J,01), These figures are as good as
Identical. Not all runs produced such excellent results. Using
converged values of Li from the second nan mentioned (Gamma °* 0,001),
the clos-'u, loop, unit stepchange (in set point)response is shown in
Figure 13. Compared to the open loop stepresponseFigure 12(a), is

identical for the first 25 seconds, after that, a distinct 'dent' is

noted which affects the rest of the response.

Os

"Sec. a

82

However we do need to measure the achievement of the self tuner in some

manner. As with other identification methods, the best test is that

which has the ultimate aim of the identification in mind. in this

case, open and closed loop dynamics should be identical

upon
convergence of the coefficients LL(t).
Figure 12(a) shows the open loop step response of
111
(15S+1) 2 (3S+1)
to a unit step input over 200 seconds of real time. The result has
been normalised t wunity. Superimposed on this (b) is the closed loop

response of the sc.f tuned system to i unit step change in set point.

For this run the additive noise has been removed, the esti tor

bypassed, i.e. the controller coefficients fixed for the durar of

the rum at the values arrived at during the first

Simulac Jun
mentioned, (i.e. Gamma - 0,01). These figures ?
identical. Not all runs produced such excellen r, =1
converged values of Li from the second run mention (Gam, - 0,001),

Che closed loop, unit step change (In set point) response is shown in

Figure 13. Compared to the open loop step response Figure 12(a), is
identical for the first 25 seconds, after that, a distinct 'dent' is

which affects the rest of the response.

01

(0]

N -

INI A

v<
o

[=X=)

Z I =

(XI
X1

%

Nevertheless, the closed loop response is still quite $milar w) ..nr

open loop esponse. One reason for the apparent discrepancy could be
the affect >f the unpredictable noise in the estimates coefficients,
i. > the >erficients converge in a mean sense about a constant value,
, ie variation -bout the mean depends on the driving noise, and Gamma
the weighting onstant. Furthermore the system excitation may not be

sufficient <« identify all the system modes.

In genera the coefficients converged such that if Li were plotted

igainst i tor - number of runs, the results are as shown overleaf.

"he following .an be noted:-

All runs -asulted in the typical bell shapei curve (similar to the

impulse response).

The peak - La the bell shape occur at approximately the same value

of i for any rum regardless.

The stimated plant steady state gain 1/& was consistent in all

ares (regardless of -ther conditions) within 41 to the actual

,nt gain.

cigxir i

WNVF.RUED :OKFKL.;i KNT* . mKSV

37

As a rurther example, another run is shown in Figures 15 and 1b. Here

initial conditions are identical to one mentioned previously (Gamn.. -

0,01) but at 1 000 seconds, the plant gain was changed from 1,7 to 3, .

instantaneously, simulating a time varying plant. The effect on Li(t)

can be seen in Figure 15 and on the controlled variable y(t) in

Figure 16. The system is thrown 'off balance' for a while but soon

m

»

recovers to normal operation.

LO sum up the simulation results

i) The algorithm for the self tuner appears to be very robust.

Stability is achievable under a wide range of initial conditions

ii) The coefficients appear to converge whenever there is system

stabili ty.

Hi) Ir the coefficients converge, the resulting controller is a good

approximation to the required controller.

However, it must be stressed here that the above sort of simulation can

never give global results of stability and convergence properties.

Nevertheless, to the question, 1is the self tuning algorithm worthwhile

implementing? , the answer must be .nqualified 'YES'.

s

SO AfDJFS

00~

r~

INT A

99'0

ac o

[——4

(=1}

cC

oB

CD
CD

1C
cc

°g

90

5. SELF TUNER IMPLEMENTATION - THE NL'TS A.NU BOLTS

5.1 Practical Requirements

A self tuner of general industrial applicability must appear, to both
operator and plant, to be a standard PID type controller minus a manual
tuning ability. To this end the controller must have the following

functions

i) Automatic operation (self tuning).

i1) Manual operation (allowing operator intervention)

and an added feature, here termed]

Hi) Interrogation operation.

xhe latter entails the ability to review and manipulate all variables
pertinent to the operation of the self tuner at any time. -his is a

necessary feature in a research project of this nature.

To achieve the above, hardwa e and software were developed and are

described in the following sections.

5.2 Hardware

Considering the arithmetic manipulations, it is a foregone conclusion

that the self tuner must be computer based. learly, a microprocessor

is ideal for this type ot application.

91

The heart of the system was cnosen to be the Intel single board

computer based on the (3Q80A microprocessor. Tne board, called the Sii®
80-10 by Intel was a natural choice due to its availability.
Furthermore, both the University of the Witwatersrand Electrical
Engineering Department, and the National Institute for Metallurgy have
extensive hardware and software development aids for Intel
microprocessors. These take the form of emulation stations and PLM 80
compilers respectively. From a user s point of view, the controller is

as shown in the figure below.

| Terminal |

I I
—_—

v __

IZH ' .
I

I Micro "™ ————— »S)| Control |
I Plant | | Computer j* A i Panel

ot -SL

L] ! I
I Chart
| Recorder |

I

Figure 17

CONTROLLER SCHEMATIC

where

il1)

The contuol panel allows Che operator to specify different modes of

operation.

The terminal enables controller variables to be examined and

modified.

The chart recorder enables the recording of process and controller

variables for post operative analysis.

A more detailed view is shown in Figure 19.

The central unit contains four boards

SBC 80-10 Microcomputer which Includes

1 x 8080, CPU

IKb Random Access Memory (RAM)
4Kb EPROM

1 x SERIAL I/O Interface

48 x Parallel I/O Lines

SBC 104 Memory and [I/O Extension Board which includes

4Kb RAM
4Kb EPROM
1 x SERIAL I/O Interface

48 x Parallel I/O Lines

ill) RTI 1200 Board which contains

2 x 12 bit Digital to Analogue C nverters with

associated current outputs (4-20 mA)

1 x 12 bit Analogue to Digital Converter

(32 singled ended, multiplexed input Channels)

1 x Real Time Clock used as an interrupt

iv) Ix Custom wire wrapped board which buffers, filters and amplifies
the controlled variable signal. An extra voltage to current

converter is also available on this board.

The operator deals mainly with the control panel, a picture of which

can be seen in Figure 18.

There are two LED displays marked CV and MV. These display the
controlled and manipulated variables respectively in percentage values.
The thumbwheel switch enables set point alteraton. There are axso a
number of switches present. These fulfil the following roles. Three
single pole changeover switches are used as hardware flags via an input

port and are as marked.

i) MONIT - In the up position, this halts control action. Program
flow is directed to the SBC 80-10 monitor program to allow all

variables located in memory to be examined and altered if desired.

Figure 18

CONTROL PANEL

-fc'Le

95

oPzI ws Z on)
5T 3 pRels ¢

a7 osE ootz
QSuu,mw .H_.

5P G = -3

4o PR A,

30

iln)

The

MANUAL/AUTO - (Top lefec). This enables control action, oither in
the auto-mode (Down) or manual mode (Up). If rnanuax mode Is
requested, the single pole changeover switch (biased to centre ort)
directly beneath (called the ramp fl*g) enables the operator to

vary the manipulated variable via the microcomputer.

PRT - This switch enables or disables the wr: ting of preselected

data to the terminal during run time.

final switch

OVRD - This aJlows a complete operator override, i.e. the micro is

bypassed and the operator hra complete control over the manipulated

variable.

An array of seven LED's are also present on the control panele Six of

these are used for a qualitative display of the prediction error during

run

time. The extra LED is used as an alarm indicator.

Additional controller features include

*

*

Galvanic isolation for plant input and output.

The use of the second D/A channel to display

my preselected variable on a Ch rt Recorder.

Figure

Flow Chart - - 'mer

START

INITIALISE CONTROLLER

INTER-
ROGATE?
CALL
’MONITOR
INSERT'
CALL
MANUAL

MODE'

i) An initialization procedure which initializes all hardware
devices and software parameters before self tuning actually
begins. Here ports are defined as input or output, /iriabies

are preset, etc.

ii) A continual'do-loop which checks the operator's requirements
via the hardware generated flags on the control panel. the

result is one of three operations.

a) Full Automatic Control
b) Manual Control

) Interrogation Mode

In cases a) and b) program flow returns to the self tuner control
module when the associated function has been executed. In case c¢)

program flow is at operator discretion.

Monitor Insort Module

Should the operator request interrogation mode, the sell tuner
control module' discussed above directs program flow to this
routine, which is the only routine written in Assembler. This
module eases transfer to the SBC SOP monitor program which enables
the operator to inspect memory, registers etc. via the RS232 link.
The self tuner control module is the only place where transfer to

interrogation mode can occur, (see previous Ilow chart).

The interrogation request has precedence over the a to or manual
modes. Upon entering the monitor program ill cootrol processing
halts. However, the manual override (OVRD) function allows the

operator control over the plant in bypassing the microcomputer.

Automatic Mode Module

This module's function is to control program flow during automatic

mode. A flow chart is shown in the figure overleaf. This routine

is called only by the 'self tuner control module’.

Flow Chart - Automatic Mode Module

Star t

Time
Flag
Set?y

Call

eturn Input Controlled Variable

Sat.?

Call Warning
'Predict & Update' LED

Call
'Manipulated Variable

cal b v

Call
'Analog Out

Call
Extra Variable'

Call
Data Shuffle'

etur

Figure 21

101

A flag, set by the real time clock is tested to see whether a

sampling period has passed. If negative, program execution returns
to the calling program. If positive, the controlled variable is
Measured and checked for saturation at both high and low limits. It

*here is no saturation, the following modules are called in order

i) Predict and update (model coefficients)
ii) Manipulated variable calculation
iii) Analogue out

tv) Extra variable

v) Data shuffle (prepare for next loop)

and will be described later. If saturation is found to exist, a
warning LED (SAT on the control panel) is lit for operator
notification, the 'predict and update' module is skipped and

execution continues sequentially.

Manual Mode Module

This module is similar to the 'automatic mode module' in many
respects. It is called by the self tuner control module when the
operator desires manual control. If the real time clock generated
flag allows, and the controlled variable is not saturated the

following modules are called

i) Predict and Update
ii) Extra Variable

ill) Data Shuffle

5.

In

computer,

this mode too, the manipulated variable is

handled by the

according to the operator's direction request. However,

the manipulated variable is not outputted here. Instead a tlag is

set which notifies the interrupt module that manua

1 operation ia

under way. The interrupt module then handles tiaeous outputs to

the plant. This ensures much smoother control.

Interrupt Processor Module

Once

flow

i)

every 40 ms,a hardware generated interruptca

uses program

to revert tothis module. Two functions aresatisfied here.

Operation ofa real time clock.

Handling of manipulated variable during

manual operation.

At every interrupt a counter is incremented.
When reaching a terminal count, the counter is
reset and a flag is set. This flag is polled
by both 'Auto' and 'Manual' modules in order to

keep track of real time.

2 If conditions are favourable on an interrupt
(i.e. manual operation has been requested ana
the automatic mode is not being interrupted)

then the following takes place. The ramp r.ag

is tested to sce whether the operator require-,
ramp up, ramp down or no operation U.e.

increase, decrease manipulated variable or

inaction). Dependant on this, an increment in
» « » e o o . *ok «e e . »

manipulated variable is calculated and passed
to 'analog out module' for outputting to the
plant. This type of manual operation is usettu.
in that bumpless transfer automatically occurs
in either direction and it is compatible with
the self tuning algorithms discussed, enabling
the controller to keep track of the piant

dynamics even in manual mode.

A further feature Implemented In this module Is the variation of

output sensitivity. When manual operation Is first requested, the

sensitivity is set to a high value. After a set period has passeu,

sens!‘Ivity Is decreased and output proceeds much faster. Variables

.»h as sampling period may be changed using Interrogation mode.

alogue Out Module

13 short module has the function of transferring the controller

itput to the plant. It accepts a 16 bit binary number

.presenting the incremental change In manipulated varlabte. This

Hue is,subtracted to/from the previous manipulated variable

ad outputted to the plant via one of the two D/A converters on the

n-1200 board. Both auto and manual modules call this module.

Input Controlled Variable Module

This u.oaule measures the controlled variable by initiating tt ; A/D
conversion, waiting for a period, reading in and storing the

variable. Both auto and manual modes call this moduie.

Predict and Update Module

This module essentially attempts to improve on the model of the

plant by predicting

*y(e) -J_ U (2Li(t-D «Av(t-i)} + Ay(t-1)}
Rl Fg

where all symbols are defined as before (see Section 3).

The model coefficients are then updated by

Li(t) - Li(t-1) + r- av;t-i) {ay(c) - Ay(t)}

and the estimated steady arate gain of the plant is calc ilated by
1K - ZLi(t)

R -1

106

All of Che above, i.e. Li(t), N, f , 1/K have default values on
startup, but they may be altered (at any time) by the operator by
an interrogation request. Only auto and manual modules call this

routine.

Manipulated Variable Calculation Module

This module calculates the desired manipulated variable. The
updated model coefficients are passed directly from 'Predict and

update module', i.e.

av(t) = K {5"Qi mAv(t-i)}
R

+ K » Fg {Al-e(t) - e(t-1)}

where Qi “ 1 - R2 + Li(t)
N

and

Qi(t) =Li (t) + Q._"(t) i - 1L,N

Full arrays (N values) of Li(t) and ~v(t) are kept, however, only

one storage space is necessary for Q.(t) since Q (t)
1+1
replaces t).

10.

107

Av(t) is then passed to 'Analogue out' module ror oucputting to

the plant. This routine is called by 'auto module' only.

Both 'Predict and Update Module' and 'Manipulated Variable
Calculation Module' entail, a fair amount of arithmetic
manipulation. The Intel supplied FPAL software (floating point
arithmetic language) was used to achieve the large variation in
number magnitude needed for this application. However, as ecach
floating point number is represented by four bytes (32 bits) the

storage capacity needed is quite large.

Extra Variable Module

There are two means thereby the operator may be aware of the

performance of the self tuner. The first method Is an
interrogation request. Here all variables may be examined, but the
action of the self tuner is stopped during this request. A further

method which enables run time information to reach the operator
without disturbing the controller, is handled by this module. The

functions carried out once every sampling period are.

i) An output to the terminal of a single

preselected estimated model coefficient.

il) A display of the prediction error visually via
a row of six light emitting diodes on the

control panel.

) the output, via the 2nd D/A channel of the

prediction error to i chart recorder.

function i) entails converting a 32 bit
floating point number into decimal (ASCII)
format and sending the result to the terminal

if the ?RT (print) flag is enabled.

Function ii) entails choosing the first
prediction error after a reset or an
interrogation request as a reference vaj.ue ror
those that follow (which are likely to be

smaller in magnitude).

The result is a qualitative display which
should indicate to the operator whether the
self tuner is tuning (i.e prediction error is

decreasing with time).

Data Shuffle Module

This module is called at the end of any one pass through the
controller i.e. once every sampling period. Here data evaluated
during the pass is 'shuffled' to prepare for the next pass, i.e.

Av(t) is shuffled back one step in time to av(t-1), etc. Program

flow then returns to 'Self Tune Control Module' and the cycle is

repeated.

me <liobycr- jf bUP moaicor program amounted L

9 Kb Code
1/2 xbv Data

i70 (decimal) bytes of atack

1'he execution ir a single Automatic nodt. oop vas calculated is not

exceeding 500 ms when using 50 c efficients.

ft.1

10

AN APPLICATION OF THE SELF TUNER

A suitable test process, in the form of a flow rig was used to evaluate

the self tuner. The criteria used in choosing this were:-

i) Minimal consequences should failure occur.

11) Similarity to an industrial type plant.

The Test Plant

The flow rig ’ .own in the following photograph and schematic.
The pho' -y shows the flow rig on the right and the
ins trumeu. .sing on the left. The latter contains a standard PI
controller and associated displays and chart recorders. On the far

left is the self tuner housing linked by flat cable to the control

panel. A chart recorder and teletype are also visible.

-igure 22

Vi

LT

STCR

fX 1

TANK

TANK 2

HOW RIG SCHEMATIC

Figure 23

- Level Transmitter

Flow Recorder

Flow Transmitter

- Self Tuning Controller and Recorder

Flow Restrictor

TANK 3

112

The schematic shows the test rig as set up with the self tuning

controller. The objective was to control the level of water in tank /
by manipulation of VI. Tank 3 was merely a reservoir while
manipulation of V2, V3, V4 and V5 enabled the configuration of
differing plants. In particular V4, V5 open and V2, V5 closed results
in a single order system while V2, V3 and V5 open and V4 closed results

in a second order system.

Objectives

It must be emphasised once more that no global conclusions can resu-i."
from an implementation of this sort. There is no substitute "“or a
thorough theoretical analysis in this regard. However, one can look
for general trends and apparent characteristics. Again, chief areas of

interest are

i) Overall system stability,
ii) Convergence of the model coefficients.

Lii) Properties of the resulting controller.

Here, the simulation study mentioned previously and the implementation
must surely complement one another. Simulation has provided an Insight
into the properties of the self tuner. However, certain assumptions
were made when mathematically modelling the system. In particular, the
simulation used a linear plant. The test rig, as with most practical
plants, has non-linear characteristics. The self tuner assumes a
linearized model about an operating point. It is in the light of such
'real' plant characteristics that the self tuning properties must be

evaluated.

Tests Uniertak-.in ar.d Results
Stability
The two important values on which stability depends are

A
i) The initial coefficients Li(o).

ii) The updating constant Gamma.

The plant was configured as a second c¢ Jar process because of the
increased difficulty in controlling and identifying it compared to a

first order system.

A major problem may occur when Li(o) are chosen to give an unstable
closed loop system. Thougn the self tuning would act to stabilize the
svs tem, catastrophic results may occur before this. With this in mind,
the weighting constant Gamma was set to zero, effectively cancelling
out the self tuning action and the closed loop system was subjected to
a 10% change in set point for varying values of ALi(o). When actually
implementing the self tuner as much information as is known should be
used to arrive at the initial coefficient values ALi(o). However to

A

gain an insight into the insensitivity of system stability to Li(o),
A
all Li(o) were chosen aqual, i e 1 to N. The following table depicts

the results. For all runs 40 coefficients were used (N - 40),

Sampling Period - 30 seconds and Gapmm * 0.

(0),

6,0 x 10

1,2 x 10

2,5 x 10

1x 10

2 x 10

i

1 to 40

RESULT

Control Variable unstable, tank overflowed

Mani;ulated variable (valve position)
saturates at both ends. Tank level highly

oscillatory but finally settles to set point.

No saturation, response oscillatory
See Figure 24.

Damped Response

Response slows down

No con(.o0l action apparent

114

igure 24

Step Response

L.(0) » 2,5 x 10'5

100%
Note chac Chart Recorder Pens
are half a division apart
7'%' Manipulated
't* A~ Variable
(Valve
Controlled — [Position)

Variable
(Level in Tank)

DA Electronic* Ltd. J* <

Time
30 mmh —*

115

Figure 24

Step Response

-3
L,(0) = 2,5 x 10

1007.

Note that Chart Recorder Pens
are half a division apart

Manipulated
'Variable

(Valve
Controlled Position)
Variable
(Level in Tank)

DA Electronics Ltd. e« ¢

Time
30 mmh —=*

BMP

-Trnr

Negative values of Li(t) were also found to cauc instability. This
occurred when Gamma was large enough to cause over compensation in the
update equation when self tuning was applied (Gamma non zero)

Li(t) - Li(t-1) + f «&v(t-1) {Ay(c) - Ay(t)}
ALi(o) were chosen small. Larger values chosen for ALi(o) often produced
stable results for the same Gamma.
Convergence

Points looked for here were

i) The variation of the estimated coefficients fr ome constant

initial vaJ.ue Li(o) to same final value Li(
ii) The speed of convergence from Li(o) to Li().
ill) The final values of Li(0Os).

To evaluateall of these points the following two runs were

undertaken:-

COEFFICIENTS AT T =0 | Li(o) 5 x 10 | Li(o) 1x 10

NO. OF COEFFICIENTS | N 40 1 N 40
SAMPLING PERIOD , Ts 30 Seconds I Ts 30 Secogds
UPDATE CONSTANT | Gamma 1 x 10 ? | Gammm m 5 x 10
FILTER PARAMETERS | RI R I Rl > R2

RN 1

The system was allowed to run night and day for over three weeks. As
coefficient convergence was found to be slow, set point changes were
introduced during daytime to improve system excitation. The tenth
coefficient was printed out hourly to the teletype to serve as an
indicator as to the convergence of the model. At the end of toe period
mentioned, the coefficients had apparently not reached steady values.

The run was therefore halted and Run 2 initiated.

RUN 2

Here the initial coefficients ALi(o) were increased to ensure stability
with Increased weighting constant Gamma, to speed up convergence. The
results were remarkably different to those of Run 1. Within four days
and four nights the coefficients had apparently converged. Again set
point changes over a ten percent operating region were used to excite
the system during the day. At the end >f four days, set point changes
caused no marked changes in the coefficient values. (Though the values
were noted to vary slightly about a mean). The resulting plot of

A

Li(<0 against 1 is shown in Figure 25.

RUN 1 RUN 2

; 2
COEFFICIENTS AT T - 0 Li(o) 5 x 10 ! Li(o) 1 x 10
NO. OF COEFFICIENTS N 40 N 40
SAMPLING PERIOD Ts 30 Seconds Ts 30 Seconds
UPDATE CONSTANT Gmm 1 x 10 ? Gmm 5 x 10
FILTER PARAMETERS m R RI R

RUN 1

The syscem was allowed co run nighc and day for over three weeks. As
coefficient convergence was found to be slow, set point changes were
introduced during daytime to improve system excitation. The tenth
coefficient was printed out hourly to the teletype to serve as an
indicator as to the convergence of the model. At the end of the period
mentioned, the coefficients had apparently not reached steady values.

The run was therefore halted and Run 2 initiated.
RUN 2

Here the initial coefficients ALi(o) were increased to ensure stability
with increased weighting constant Gamma, to speed up convergence. The
results were remarkably different to those of Run I. Within four days
and four nights the coefficients had apparently converged. Again set
point changes over a ten percent operating region were used to excite
the system during the day. At the end of four days, set point changes
caused no marked changes in the coefficient values. (.Though the values
were noted to vary slightly about a mean). The resulting plot of

A

Li(°0) against 1 is shown in Figure 25.

119

iiere the bell shaped curve, similar to the impulse response curve
expected, can be clearly seen. Note that for both large and small i,

coefficients have actually taken on negative values, (1 = 1, 37, 40).

Resulting Controller

Figure 26 shows the step response, of the system corresponding to Run
Figure 26(a) represents the closed loop set point response (step
change) with initial conditions only and no self tuning (Gamma - J).

Figure 26(b) represents the set point step response after the model

coefficients irently converged. The self tuned system has a
much slower . sc * th a dominant time constant of 7,5 minutes. In
>rder to compare t. is it; e open loop response a number of open loop
wcep tests vere indert.iK.un. nfortunately due to the inherent non

I:neari-y .if the plant it was found to be impossible to produce
repeacaole results for the tests and open loop dominant time constants

vere measured between 6 and 10 minutes.

The plant vas alto controlled by the PI Controller available. Here the
;i ~gier Nichols nethod was used to tune the controller over an
merating region at 10% It was found that set point changes out of

i- region tried severe limit cycling. The self tuner however, was
:ipabie uf withstanding i 10X set point change (once self tuned)

,; mnone tstabi .ity.

120

=B

et

A B

i

QodEng oPf

— R e

ml. CUV >.B

]
—

= 3

7.

7.1

121

DISCUSSION OF THE SELF TUNER PROPERTIES

Stability

The self tuner showed remarkable stability properties, both at the
crucial initial stage and thereafter. Although the dynamics of the
plant were completely neglected in specifying the initia” mode-
coefficients, system stability was attainable for a wide choice of

these coefficients.

The overall system was found to become unstable when a large number of
coefficients became negative. The instability is probably due to the
fact that the estimated steady state gain 1/K then becomes nega j;ive as
well. The result is effectively positive feedback. In general the
combination of unpredictable noise acting on the system and a large
weighting cons tar.t 'amma were responsible for the negating of the model
coefficients. easy solution to this problem is the minimization of

Gamma.

The above discussion suggests that while it is not crucial to specify
'correct' values of model coefficients Li(o) and Gamma to start the
self tuner, these choices must be a fair approximation. To achieve
this, consider the following equation of the estimated steady state

gain:-

1 - %Li(t)

R2 - 1

Since both simulation and implementation suggest that all model
coefficients can be chosen equal to one another at start wup, then

choose

Li(o) - R - 1

where N represents the number of coefficients used (this choice has
been discussed before in Chapter 3). R2 is chosen by the process
engineer, or the default value may be used. However, an estimate ot
the process, steady state gain needs to be specified. I: this is known
accurately, good and well. If not, an approximate guess is likely to
suffice. As can be seen from Section 6.2 where -Ko) were all chosen *
1,2 x 10-3, the resulting estimated gain 1/IA(m 0,1728, and a closed
loop stable system was achieved. However, from RUN 2 noted in

Section 6.2, the estimated gain when the mode L had apparently converged

was 1/K - 1,8507 which is representative c he actual plant gain.

The choice of Gammma must be made to prevent the model coefficients from
becoming too large (causing controller switch off) or too sma”l or
negative such as to cause unstable control. Here the update equation

must be born in mind

Li(t) - Li(t-1) + p . d v(t-1) {Ay(t) - ay(t)}

Since both simulation and implementation suggest that all modex
coefficients can be chosen equal to one another at start up, then

choose

Li(o) = R - 1
% . N

where N represents the number of coefficients used (this choice nas
been discussed before in Chapter 3). R2 is chosen by the process
engineer, or the default value may be used. However, an estimate of
the process, steady state gain needs to be specified. r this is Xnown
accurately, good and well. If not, an approximate guess vs JIL<e”e* to

A

suffice. As can be seen from Section 6.2 where Li(o) were all chosen
-3 A

1,2 x 10 , the resulting estimated gain 1/K = 0,1728, and a closed

loop stable system was achieved. However, from RIN 2 noted in

Section 6.2, the estimated gain when the model had apparently converged

was 1/K - 1,8507 which is representative of the actual plant gain.

The choice of Gammm must be made to prevent the model coefficients from
becoming too large (causing controller switch off) or ~oo sma”i or
negative such as to cause unstable control. Here the update equation

must be born in mind

Li(t) m Li(t-1) + T ' Av(t-1) {Ay(t) -~ (t)

The implementation suggests that over compensation of the coefficients
occurs either ac start up (where prediction error is large) or when a

sizable disturbance occurs (again prediction error is large).

Using the initial model coefficients as a basis, chooue Gamma assuming

maximum variation of prediction error and manipulated variable,

i.e a * Li(o)

Av(t-i)m . {Ay(t) -ay(t)}m

where a is a fraction of unity and m sub-*-ript represents the maximum

expected value.

This should ensure that over compensation does not occur.

Convergence Properties

Here the implementation results were very similar to simulation. Given
initial model coefficients that could not possibly represent the
dynamics of the plant, the model converged to value: that could well
represent it. In particular the model coefficients L i () when
plotted against 1 represent the familiar bell shaped curve so similar
to the impulse response. The weighting constant Gamma was clearly
shown to affect the speed of the model convergence. Figure ?5 (Li(")
versus i) seems to suggest that a smaller value of Gamma would have

been more appropriate here.

This would have produced a smoother curve and ensured that all tuned
coefficients were positive. However, the resulting decrease ”“n speed

of convergence of the model might have been untenable.

The calculation of Gamma in the previous section makes no mention of
the affect of Gamma on the speed of the convergence of the model. In
fact, this aspect is difficult to quantify other than to state tnat
increased Gamma increases speed of convergence. “he previous section s
calculation of Gamma should therefore be taken as a rirst approximation
and may be increased if desired, bearing in mind that instability may

occur.

The Resulting Controller

What is of particular interest is the resulting controller, once the
model has converged to a final form. Figure -6(b) clearly shows tnat
the self tuner has converged to a slower closed loop response than that
represented by the initial conditions in Figure 26(a) and "s
particularly gratifying and suggests that the algorithm fulfills the
self tuning property, i.e. that if the coefficients converge, (to
unique values or not) the resulting controller is such that the open
and closed loop dynamics are equivalent. This is difficult to prove
conclusively here, and suffice to say that (as with simulation), upon
apparent convergence of the coefficients, the resulting controller is a

good approximation to the required controller.

In addition, whether disturbed by a set point change or extraneous
noise, the steady state error was zero at all times during any (stable >

run. This concurred well with theory (see Chapter 3).

7.3

124

This would have produced a smoother curve and ensured that all tuned
coefficients were positive. However, the resulting decrease in speed

of convergence of the model might have been untenable.

The calculation of Gammm in the previous section makes no mention of
the affect of Gamma on the speed of the convergence of the model. In
fact, this aspect is difficult to quantify other than to state tnat
increased Gammma increases speed of convergence. “he previous section s
calculation of Gammm should therefore be ta*.cn as a first approximation
and may be increased if desired, bearing in mind that instability may

occur.

The Resulting Controller

What is of particular interest is the resulting controller, once the
model has converged to a final form. Figure 26(b) clearly shows that
the self tuner has converged to a slower closed loop response than that
represented by the initial conditions in Figure 26(a) and is
particularly gratifying and suggests that the algorithm fulfills the
self tuning property, i.e. that if the coefficients converge, (to
unique values or not) the resulting controller is such tnat mne open
and closed loop dynamics are equivalent. This is difficult to prove
conclusively here, and suffice to say that (as with simulation), upon
apparent convergence of the coefficients, the resulting controller is a

good approximation to the required controller.

In addition, whether disturbed by a set point change or extraneous
noise, the steady state error was zero at all times during any (stable)

run. This concurred well with theory (see Chapter 3).

All in all, the self tuner compares favourably with those self tuners

mentioned in the literature. The performance criterion is such that
open and closed loop responses ire equated. The controller should be
most useful in ensuring stability when time varying delays or strong
non linearities are prevalent. The non parametric basis of the
algorithm ensures that the equations are easy to implement in practice
as only standard arithmetic functions are needed. i.ae choice of
certain variables to start the self tumner are not critical and onvy
minimal prior knowledge of the plant is needed. the problem or
estimating a steady state offset coefficient and the related problem of
zero steady state error with respect to set point is handled
automatically. (Certain other self tuners have only had marginal
success in this regard). (See Chapter -). A preplant filter nas seen

included vo allow closed loop variation, at the operator's discretion.

Suggestions for Future Work

First and foremost, the self tuner needs to be analysed from a
theoretical viewpoint, especially with regard to the convergence
properties and the resulting controller characteristics ¢

particular, it is felt that the algorithm proposed may well exhibit the
self tuning property for all open loop stable plants, provided there *s
sufficient excitation. Analysis may also provide a better insight into
the initial choices of the model coefficients and the weighting
constant Gamma. Possibly the choice of Jamma itsel: could oe

automated.

7.4

125

All in all, the self tuner compares favourably with those self tuners

mentioned In the literature. The performance criterion is such that

open and closed loop responses are equated. The controller should be

most useful in ensuring stability when time varying delays or strong

non linearities are prevalent. The non parametric basts of the

algorithm ensures that the equations are easy to Implement In practice

as only standard arithmetic functions ere needed. The choice of

certain variables to start the self tuner are not critical and only

minimal prior knowledge of the plant Is needed. The problem or

estimating a steady state offset coefficient and the related problem of

zero steady state error with respect to set point is handled

automatically. (Certain other self tuners have only had marginal

success in this regard). (See Chapter 2). A preplant filter has been

included to allow closed loop variation, at the operator's discretion.

Suggestions for Future Work

First and foremost, the self tuner needs to be analysed from a

theoretical viewpoint, especially with regard to the convergence

properties and the resulting controller characteristics,

particular. It Is felt that the algorithm proposed may well exhibit the

self tuning property for all open loop stable plants, provided there 1Is

sufficient excitation. Analysis may also provide a better Insight Into

the initial choices of the model coefficients and the weighting

constant Gamma. Possibly the choice of Gamma Itself could be

7.5

126

Two major problems become apparenc during the testing of the self

tuner. Firstly, being constrained to real time, much time was wasted
waiting for results. Hence the self tuner was not as thoroughly tested
as might have been the case. Secondly, the transfer function of the
plant was not known exactly nor would any identification scheme have
been necessarily better than that used by the self tuner. The open
loop step response tests were also not definitive. Hence it was
difficult to determine whether in fact the closed and open loop

response were identical (they were definitely similar) once the

coefficients had apparently converged.

In order to solve both of these problems, it is suggested that the sel:
tuner be thoroughly tested out on an analogue computer. Here the pxant
can be prespecified, results may be obtained faster and (in the absence
of theoretical analysis) the self tuning property may be tested on

plants with varying dead times and non linearities.

Conclusions

i) A non parametic self tuning controller algorithm has been proposed
and implemented in practice. The explicit self tuner was able to

satisfactorily control the level in the tank of a laboratory tlow

rig.

ii) The controller equates open and closed loop dynamics . This
precludes the necessity of prespecifying a different desired

response for different plants.

iii)

tv)

Vi)

vii)

viii)

x1)

xii)

127

The controller Includes a facility to vary the closed loop response

if required.

The model used for tuning is non parametic. Hence the problems

associated with parametic models do not arise.

The self tuner should provide adequate control for use on non

minimum phase systems, in particular systems with uncertain -cad

timed.

The self tuner solves both the servo and regulator problems,

Control action is not excessive..

The self tuner exhibits zero steady state error <characteristics

even while 'untuned'.

System stability seems to show a high degree of insensitivity to
initial conditions, especially the starting values of the model
coefficients.

Tests undertaken suggest that the self timer exhibits

a) Reasonable convergence properties;

b) The self tuning property.

The self tuner is particularly easy to install and commission.

In general, open loop unstable plants are not controllable by this

method.

xiii)

xiv)

XV)

128

rhe performance :riterion may not be suitable for certain

applications.

Further work needs to be done in the theoretical analysis of the
controller, especially with regard to the convergence properties

and the characteristics of the resulting controller.

The self tuner should be particularly useful

For those processes where a constant controller

would need regular retuning;

* Where the requirements of the process are such that
stability and zero steady state error at all times

are of prime importance.

BIBLIOGRAPHY

1. WITTENMARK, B. Stochastic Adaptive Control Methods, A Survey.
INT. J. CONTROL, 1975 Vol. 21, vo. 5, pp 705-7 30.

2. ASTROM, K.J. Theory and Applications of Adaptive Control.
PROC. IFAC, 8th World Congress, Kyoto, Japan 1981.

3. MORRIS, H.M. Operator Convenience is Key as Process Controllers Evolve
CONTROL ENG., March 1981, pp 65-70.

4. FELDBAUM, A.A. P fontrol Theory I - IV,
4 RSMOTE CONTROL, 21 1960.

5. NISHIKAWA, Y
SANNOMIYA, ¢ A Method for Auto Tuning of PIP Control Parame /
PROC. IFAC, 8th World Congress, Kyoto, Japan I>v..

6. ANDREIEV, N. A New Dimension: A Self Tuning Controller that
Continually Optimizes PiD Constants,
CONTROL ENG, August 1981.

7. ASTROM, K.J.,
EYKHOFF, P. System Identification, A Survey.
AUTOMATICA Vol. 7, pp 123-162, Pergamon Press 1971

8. DAVIS, W.D.T. System Identlflcativ" for Self Adaptive Control,
Wiley & Sons 1970.

9. WELLSTEAD, P.E.,
EDMUNDS, J.M.,
PRAGER, D.,
ZANKER, P. Selr Tuning Pole/Zero Assignment Regulators,
INT. J. CONTROL, Vol. 30, No. 1, 1-26 1979.

10. WELLSTEAD, P.E.,
ZANKER, P. Servo Self Tuners
INT. J. CONTROL Vol. 30, No. 1, 27-36 1979.

BIBLIOGRAPHY

1. WITTENMARK, B Stochastic Adaptive Control Methods, A Survey.
INT. J. CONTROL, 1975 Vol. 21, No. 5, pp 705-730.

2. ASTROM, K.J. Theory and Applications of Adaptive Control.
PROC. TFAC, 8th World Congress, Kyoto, Japan 198I1.

3. MORRIS, H.M. Operator Convenience is Key as Process Controllers Evolve
CONTROL ENG. , Parch 1981, pp 65-70.

4. FELDBAUM, A.A Dual Control Theory I - IV,
AUTOMN REMOTE CONTROL, 21 1960.

5. NISHIKAWA, Y.
SANNOMIYA, N. A Method for Auto Tuning of PIP Control Parameters,
PROC. TFAC, 8th World Congress, Kyoto, Japan 1981.

6. ANDREIEV, N. A New Dimension; A Self Tuning Controller that
Continually Optimizes PID Constants,
CONTROL ENG, August 1981.

7. ASTROM, K .J.,
EYKHOFF, P. System Identification, A Survey.
AUTOMATICA Vol. 7, pp 123-162, Pergamon Press 1971.

8. DAVIS, W.D.T. System Identification for Self Adaptive Control,
Wiley & Sons 1970.

9. WELLSTEAD, P

EDMUNDS, J.M

PRAGER, D.,
ZANKER, P. Self Tuning Pole/Zero Assignment Regulators,
INT. J. CONTROL, Vol. 30, No. 1, 1-26 1979.

10. WELLSTEAD, P.E.,
ZANKER, P. Servo Self Tuners
INT. J. CONTROL Vol. 30, No. 1, 27-36 1979.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

WELLSTEAD, P.E.,
EDMUNDS, J.M.

ASTROM, K .J.,
WITTENMARK, B.

WELLSTEAD, P.E.,

PRAGER, D .,
2ANKER, P.

CLARKE, D.W.,
GAWTHROP, P .J.

CLARKE, D.W.,
GAWTHROP, P.J.

ASTROM, K.J.,
BORRISSON, U .,
LJUNG, T .,

WITTENMARK, B.

ASTROM, K .J.,
WITTENMARK, B.

EYKHOFF, P.

GAWTHROP, P.J.

BORRISSON, U .,
WITTENMARK, B.

Least Squares Identification or Closed

INT. J. CONTROL, 1975, Vol. 21, No. 4, pp 689-699.

Self Tuning Controllers Based on Pole Zero Placement

IEE PROC., Vol. 127, Pt. D, No. 3, May 1980.

Pole Assignment Self Tuning Regulators,
PROC IEE, Vol. 126, No. 8, August 1972.

Self Tuning Controller,
PROC IEE, Vol. 122, No. 9, September 1975 pp 929-934,

Self Tuning Control,
PROC IEE, Vol. 126, No. 6, June 1979, pp 633-639.

Theory and Applications of Self Tuning Re*ulators,
AUTOMATICA, Vol. 13, pp 457-476, 1977.

On Self Tuning Regulators
AUTOMATICA, Vol. 9, pp 185-199, 1973.

System Identification - Parameter and State Estimation,

Wiley & Sons; 1974.

Some Interpretations of the Self Tuning Controller,

->ROC IEE, Vol. 124, 889, 1977.

An Industrial Application of a Self Tuning Rcgul afo r,
PROC IFAC/IFIP Conference 1974.

130

21.

22.

23.

24.

25.

26.

27.

GUSTAVSSON, 1.,
LJUNG, L.,
SODERSTROM, T.

CLARKE, D.W.,
GAWTHROP, P.J .

CLARKE, D.W.,
GAWIHROP, P.J.,
COPE, P.J.

TU, F.C.Y.,
TSING, J.Y.H.

FRANKLIN, F.G.,
POWELL, J.D.

SHEIRAH, M.A.,
MALIK, O.P.

MORRIS, A.J.,
WRIGHT, A.R.,
NAZER, Y.,

CHRISHOLM, K.

WoOD, R.K.,
LIEUSON, H.

Identification of Processes In Closed Loop

Identifiability and Accuracy Aspects,

AUTOMATICA, Vol. 13, pp 59-75, Pergamon Press 1977.

Implementation and Application of Microprocessor -
Based Self Tuners,
AUTOMATICA, Vol. 17, No. 1, pp 233-244, 1981.

Feasibility Study of the Application of Microprocessors

to Self Tuning Regulators,
Report No. 1137/75, 1975, Oxford Univ. E.L. Report.

Synthesizing a Digital Algorithm :or Optimized oontro-,

INTECH May 1979, pp 52-55.

Digital Control of Dynamic Systems,
Addison Wesley 1980.

Self Tuning Microprocessor Universal Controller,

IEEE TRANS, on IND. ELECTR. Vol. IE-29, No. 1, Feb

Self Tuning Control of Some Pilot Plant Processes,
Microprocessors and Microsystems, Vol. 5, No. 1,

Jan/Feb 1931.

13:

1982.

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

SODERSTROM, T. ,

GUSTAVSSON, 1
UUNG, L.

HARRIS, C.J.,
BILLINGS S.A.
(EDITORS)

SMITH, C.L.

WILLIAMS, T.J.

L]

132

Identiflability Conditions for Linear Systems Operating

in Closed Loop
INT. J. CONTROL, 1975, Vol. 21, No. 2, pp 243-255.

In Circuit Emulation 80, Operator's Manual

INTEL CORP, No. 98-1; 'C, 1975.

PIM 80, Programming Manual
INTEL CORP, No. 9800268B, 1976.

8080/8085, Assembly Language Programming Manual,
INTEL CORP, No. 9800301-04, 1977.

8080/8085, Floating Point Arithmetic Library User's
INTEL CORP, No. 9800452-03, 1977.

SBC-80/10, Hardware Reference Manual,
INTEL CORP, No. 98-230B, 1976.

Advanced Continuous Simulation Language (ACSL),
User Guide/Reference Manual,

Mitchell and Gauthier Assoc.

RTI 1200 Real Time Interface, User's Manual
ANALOG DEVICES, 1976.

Self Tuning and Adaptive Control,
IEE Jcntrol Engineering Series 15, 1981.

Digital Control of Industrial Processes,

Computing Surveys, Vol. 2, No. 3, 1970.

iwo Dccjdes of Change - A Review of the 20 Year
History of Computer Control,
CONTROL ENG., September 1977, pp 71-76.

Manual

39.

40.

41.

GUPTA, S.C.,
HASDORF, L.,

Hr?, P.

MCLAREN, S.G.,
RATHORN, A.P.

133

Fundamentals or AuComir:< Concrol,

John Wiley & Sons, 1970.

Digital Control Using Microprocessors,

Prentice Hall Int. 1981.

Advances in Model Following Adaptive Control Theory,
Proceadings-Sympos ium on Control Theory and Applications

CSIR, Pretoria, June 1982.

Al

APPENDIX SECTION A

Final Derivation of Algorithm

Given the following closed loop system:

w(t) e(t) | Ge I vi) I Gf I v(t) r1 Gp I

Figure 1(a)
Gc * Controller
Gf " Preplant Filter . Fg (RI - z ~)/(R2 - z)
Gp - Plant

The following equations were developed in the text prior to the inclusion of
the :ilter:-

G ;* Y(z) -(-Cjz 1, (ci- 02)2 2

U(z) K
. x -N
+ (C% 1 - cN)z
-1 X -2
and Ge¢ - K/{1 - K {(1 -¢™)z + (cj - C2>z o o
K

+ (CN-1 " C")Z N}}
See Chapter 3.

It is now worthwhile to revamp the above equations to include the filter Gg,
i.e. the effective 'plant' now becomes
-1 -2
Gf x GpmY(z) - (1 - ct)z + (ci - C)z “ ...

U(z) K

+ <cN-i - CN>Z"N

ZJXzai

APPENDIX SECTION A

Final Derivation of Algorithm

Given the following closed loop system:-

e(t) u(t) v(t)

Figure 1(a)

Gec * Controller
Gf * Preplant Filter - Fg (R - z)/(R2 - z)
Gp = Plant

v(t)

The following equations were developed in the text prior to the inclusion of

the filter:-
-1 -2
Gp " Y(zp - (1 - Cy)z 1+ (c; - C2)z

U(z) K

+ (eN-1 " (N)Z

—

)
and Gc¢ - K {1 - K{(1 - c¢"z + (¢; - ¢2)z

K

+ (¢cN_1 - e¢cN)z m}}

See Chapter 3.

It is now worthwhile to revamp the above equations to
i.e. the effective 'plant' now becomes

GExGpwmwY(@) (1 -c¢cMz 1+ (¢ - ¢c2)z " ...

U(z) K

+ (¢%_ 1 - QN)Z~;

include

the

tiller

Og,

The controller, to set the closed loop response

GeIG? » GfGp' (Gp' has unity steady state gain)
1 + GGfGp
is Ge¢ « K s U(z)
1 - KG fG p' E(z)
- K
1 - K{(! - cMNz 1+ (¢ - C)z + (cN-1 - cN)z }
K

Since both Gc and Gf areboth software implementations of transferfunctions,
we can combine theminto one equation, cancelling out the intermediate variable
u(t) and including the actual manipulated variable v(t), i.e.

Ge - U®z) G/ - VI

E(z) U.z -

Therefore G GG t * V(z)

E(z)
= (Rl -z) K Fg
R - 2z"1) {1 - K{(/K - c¢l)z"1,,,(CN-1 ' QVZ }}
which when multiplied out, combining like values of :z and extracting

(1 -z"1)

V(z>{R2 + KR-C - 1) + ... GRGj - KeN-DZ™M x (1 - z"1)
E(z) K'Fg(RI - z"1)

which in the time domainis

Av(t) * Ket(F RCi)av(t-1) + ... +(cN-1 - R2c%)' av(t-N)}

R2 K

+ K-Fg'{Rl-e(t) - e(t-D)

We would now like co manipulate Che model equation to be in terns of a At~i)
and then ensure that the correct coefficients are passed between mode-, and
controller, i.e.

GfGp - Y(7) Gf - V,2)

J(z) U(2)

Therefor® Gp * GfG p * Y(z) x U(z) m i(z)

Gf U(z) V(z) (?)
i.e. Gp -c¢c*z 1+ ...(¢cN-1 - cN)z N
K
x (R2 - z"1) - Y(2)
(Rl - z'L) F z V(z)

cross multiplying and solving for Y(z)
Y(z) a 11 » t&2(1 - c*)z

RI F g K

> R2(ci - ci)z “ + (¢ - 1/K)z

+

R(cn-1 - ¢cN)z*N + (¢N_1 - cN-2)z N}V(Z)

+ Y(z)z' L}

I
) out of both sides or the ibove equation we can have the

by caking (1 - z
V(z) without altering the format.

nodel in terms of Y(z) and

"he ibove etquacions are unwieldy in terms of the coefficients.

t Tianes sense to rewrite the model as:-

Ay(.t/ * 1 m{i ¢ tLje"v(t-1) + 1% av(t-2)... + Ly av(t-N)} + ay(t-1)}
Rl Fg

XX Ch)
* estimated coefficient

A
where ¢ * 1 - such that

X R

N « - Si-2 * <al>

and the controller
av(t) * K {Qieav(t-1) + Q2-av(t-2) + ... eav(t-N)}

R2
+ K Fg {Rle(t) - e(t-1)} ... (b) -

where Qj m ¢*, ~ - &2c¢\ ... (bl)

A
Now, in order to transfer from Li to the controller coefficients Q7

substitute equation (al) into (bl)

% * (N-1 " R {CN-1 + (V1 " (N2 " ")}
R2

- =1,-2 +
which from equation (bl) with N - I1replacing N

~ which is an easy transfer from model to controller.

Note also that A

1*1

f " =I> 4+ <ai-i 'V 2)

imJ
- R(1 -)

K
+ R(c i-c¢c2)+ (c1-1)
[J

+ R2(c2 - C3) > (c2 - ci) etc. cN+H A u “abie

i.e. all cancel out except

L 1-yjL1-1

K K

or

which allows the estimated see. dy state gain to oe caicu ated from
coefficients L~.

The resulting sequence of events to be carried out, using these equations,
been set out in Chanter 3.

A6

APPENDIX SECTION B

Controller Software Listing

The following is a listing of the PLM and Assembler routines used to implement
the self tuning controller. Each module is numbered and a brief description ot

the module is “iven.

A Memory Map and Symbol Table is also supplied. Many of the symbols used are
self defining, e.g. SET POINT, CONIVARO (Controlled Variable), SETERRORO (Set

Point Error).

Some of the symbols are used as in the text, e.g. the array L (Process
Coefficients), GAMMA (Gain Factor), R1, R2 (Filter Parameters). All symbols
with a suffix of 0, e.g. MANIPVARO (Manipulated Variable) denote the most
Recent Value of the Variable. A suffix of 1 denotes the immediate Past Value
of the Variable. a prefix of D, e.g. the array DV (Manipulated Variable)
denotes an incremental variable. All flags are named as such with a Qualifier.

All symbols addressed between 0400H and 1FB8H are merely module names.

PL/N-80 COMPILER
PAGE

ISIS-11 PL/M-80 V3. 1 COMPILATION OF MODULE SELFT'JNECQNI RQLMODUL.
OBJECT MODULE PLACED IN :F4:MODI.OBJ
COMPILER INVOKED BY: PLM30 :F4:MODI.SRC

/********************** ++***» *.**'*********.*<.****. (.**<.**~k*/

*/

******************************‘****************.*‘**..**.’

/ *

/% MODULE 1 :;

/ %

/ A SELF TUNING CONTROL PROGRAM ¢/
*/

/ *

[THIS MAIN MODULE INITIALIZES THE CONTROLLER J

/ A\D SETS UP A CONTINUAL LOOP WHICH CHECKS J

)% THE FLAG WORD AND HENCE CALLS A MODE PROCEDURE */

) THESE ARE AUTOMATIC MODE, MANUAL MODE OR %)

/* MONITOR ENTRY "

/ *

/

/

*

*/
SELF STUNESCCNTAOL "3MQDULS:

DO;
> 1 MANUALSMODE:
PROCEDURE EXTERNAL;
2 END MANUALSMODE;
4 1 -UTOMATICSMODE:
PROCEDURE EXTERNAL;
5 2 END AUTOMATICSMODE;
6" 1 ASCSOUT:

PROCEDURE (THING) EXTERNAL;

7 DECLARE THING BYTE;
3 END ASCSOUT;
3 1 MONINS:
PROCEDURE EXTERNAL;
10 i END MONINS;
11 1 FSET:
PROCEDURE(FA,OPl, 0P2) EXTERNAL;
12 DECLARE(FA,0P1,0P:) ADDRESS;
13 END FSET;
14 1 FSUs :
PROCEDURE(FA, OA) EXTERNAL;
15 DECLARE (FA,OA) ADDRESS;
16 END FSUB;

17 FADD:

PL/-"I-80 COMPILER

13
13

20

21

27
28

23

30
31

-G
37

38

33

41

42
4)

44

45
46

47
43
43

50

PAGE

PROCEDURE('A,0A) EXTERNAL;
DECLARE (FA,0A) ADDRESS;
END FADD;

FOFB2D:
PROCEDURE(FA, OA)
DECLARE (FA,OA)
END FOFB2D;

EXTERNAL;
ADDRESS;

FD1V:
PROCEDURE(FA,0A)

DECLARE (FA,OA)
END FD1V;

EXTERNAL;
ADDRESS;

FMUL:
PROCEDURE("A,OA)

DECLARE (FA,OA)
END FMUL;

EXTERNAL;
ADDRESS;

FLOAD:
PROCEDURE(FA, CA)

DECLARE (FA,OA)
END FLOAD;

EXTERNAL;
ADDRESJ;

FSTOR:
PROCEDURE(FA,OA)

DECLARE (FA,OA)
END FSTOR;

EXTERNAL;
ADDRESS;

FCLR:

PROCEDURE (FA) EXTERNAL;
DECLARE FA ADDRESS;
END FCLR;

FNEG:

PROCEDURE (FA) EXTERNAL"
DECLARE FA ADDRESS;
END FNEG;

FLTDS:

PROCEDURE (FA,0A) EXTERNAL;
DECLARE (FA,0A) ADDRESS;
END FLTDS;

FIXSD:

PROCEDURE (FA,DP; EXTERNAL;
DECLARE (FA,0A) ADDRESS;
END FIXSD;

INTERRUPT s PROCESSOR:

PROCEDURE EXTERNAL;
END INTERRUPTSPROCESSOR;

DECLARE FPR(18 D) BYTE PUBLIC;

DECLARE MIDDLEMAN(40) BYlec

PUBLIC;

PL/M-80 COMPILER

56
57
58
59

61
62
63
66
65
66

68
69
70
71
72
73
76
75
76
77
78
79
80
31
82
83
36
35

36.

37
08
89
90
91
92
93
96
95
96

97
98

99

100

DECLARE
DECLARE
DECLARE

PUBLIC;
DECLARE
DECLARE

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

PAGE

FIRSTSERRCRSELAG BYTE PUBLIC;
FOREVER LITERALLY °*WHILE V ;
FLAGSWORD BYTE PUBLIC;

DECLARE (MANUALSFLAG,INTERRCGATESFLAGI BYTE

SETSPGINT (¢ D) BYTE PUBLIC;
FROM!PLANT < D) BYTE OUBLIC;

DECLARE TO$ PLANT ADDRESS PUBLIC;

CONTVARO(s D) BYTE PUBLIC;
CONTVARIUD) BYTE PUBLIC;
MA.Nl PVARO <s D) BYTE PUBLIC;
MANIPVAR1(s D) BYTE PUBLIC;
DELTAVO(40) BYTE PUBLIC;
DYO(iD) BYTE PUBLIC;

DY1(s D) BYTE PUBLIC;
(LOLSVEL,HILEVED ADDRESS PUBLIC;
(MAXLEVEL, MINLEVEL) ADDRESS °UBLI
(SAT,ERR) BYTE PUBLIC;
CONSTANT(¢ D) BYTE PUBLIC;
CI(AD) BYTE;
SET3£RROR0(60) BYTE PUBLIC;
SETSERROR1(¢ D) BYTE PUBLIC;
INCREMENT(60) BYTE PUBLIC;
L(200D) BYTE PUBLIC;
DV(200D) BYTE PUBLIC;
FILTGAIN <4D) BYTE PUBLIC;
R2(6D) BYTE PUBLIC;

R1(4D) BYTE PUBLIC;

ONE(60) BYTE PUBLIC;

TLD <4D) BYTE PUBLIC;

DECLARE TLG(s D) BYTE PUBLIC;

SAMPLING!PERIOD(4D) BYTE PUBLIC;
R2SUB1(4D) BYTE PUBLIC;
GAMMA4D) BYTE PUBLIC;
HUNDRED(60) BYTE PUBLIC;
PLANTSGAIN (4D> BYTE PUBLIC;
DYORED(4D) BYTE PUBLIC;
ERRPRED(4D) BYTE PUBLIC;

DECLARE SAMPLESTIME BYTE PUBLIC;
pEC:-ARE: MANUALSCOUNT BYTE PUBLIC;
DECLARE SAMPLESCOUNT ADDRESS PUBLIC;
DECLARE (RAMPSFLAG,ENABLESMANUAL> BYTE PUBLIC:
DECLARE ENDSCOUNT ADDRESS PUBLIC;
DECLARE SLMSL(4D) BYTE PUBLIC;
DECLARE ARRAYSLENGTH BYTE PUBLIC;
DECLARE PARVINO BYTE PUBLIC;
DECLARE SPECIFY STRUCTURE(
SIGN BYTE,
SCALE ADDRESS,
SLENGTH BYTE,
STRINGSWTR ADDRESS) PUBLIC;
DECLARE DECSSTRING(10D) BYTE PUBLIC;
DECLARE (TTYSFLAG,TTY HI ME, TTYsUP)
BYTE PUBLIC;
DECLARE MESSAGE(*) BYTE DATA (
> INITIALISATION COMPLETE’);
DECLARE STATEMENT(*) BYTE DATA (

PL/M-80 COMPILER
PAGE 4

' MONITOR ENTERED');

101 DECLARE 1 BYTE;

DECLARE DACIL0 BYTE AT (7FF6H);
103 DECLARE DACiHI BYTE AT (7FF7H);
104 DECLARE DAC2L0 BYTE AT (7FT4H);

DECLARE DAC2HI BYTE AT (7FFSH);
106 DECLARE INITL BYTE AT (7FFO0H)-

/* CALLED SETUP IN RIT BOOK */

107 DECLARE MUXADR BYTE AT (7FFAH);
108 DECLARE GAINSEL BYTE AT (7FF3H);
109 DECLARE LOCS3C3D BYTf ATCC3DH);
110 DECLARE LGCS3C3E ADDRESS AT(3C3Eh);
111 DECLARE (A,D ADDRESS °UBLIC;
112 DECLARE CHANGE'STIME BYTE PUBLIC;
13 SELFSTUNESCONTROLI

T R TR R o S o S T o o o o Tk

DO;

> THE FOLLOWING SECTION OF PROGRAM INITIALIZES
THE CONTROLLER. ALL PORTS ARE DEFINED I.E.
AS INPUT OR OUTPUT.ALL VARIABLES NOT PRESET
ELSEWHERE ARE INITIALISED HERE.ALL SOFTWARE FLAGS
ARE INITIALISED HERE.

THIS SECTION OF PROGRAM IS RLN ONCE L ON A

HARDWARE RESET H,\D IS NOT CALLED AGAIN BY
ANY OTHER PROCEDURE.

114 SETUP

/* 1ST TASK: INITIALISE PORTS
*/

DISABLE; /* ALLOW NO INTERRUPTS */
116 OUTPUT(0E7H)=3BH;

* DEFINES 1)PORT EpH AS INPUT.
THESE ARE FRONT PANEL SWITCHES.

2)PORT ESH AS INPUr.
THESE ARE THUMBWHEZ- SWITCHS.

3) PORT E4H AS OUTPUT.
THESE ARE LIGHT EMITTING DIODES
ON FRONT PANEL.
*/

117 OUTPUT(0E4H) = OOH;

PL/M-80 COMPILER

PAGE
/* ALL LIGHTS OFF. */
113 SAT-00;
11E ERR=00;

/*

*/

100
121

*/

/%
*/

124

THESE TWO VARIABLES INDICATE:
1) SATURATION HAS OCCURED
(EITHER CONTROLLED OR
MANIPULATED VARIABLES)
AND VARIABLE 'SAT'
ENSURES CORRECT LED .
LIGHTS UP.
2)PREDICTION ERROR IS
VISUALLY DISPLAYED
VIA °ERR’ DURING CONTROL
TIME.
SAT AND ERR USE SAME
OUTPUT PORT.
BOTH ARE INITIALISED
TO ' LIGHTS OFF °
UPON INITIALISATION.

/* PLACE JMP INSTRUCTION AT LOCATION CCCDH
%*
TO INTERRUPT PROCESSOR MODULE /

QCS3C3D = 0C3H;
LOCB3C3E * . INTERRUPTSPROCESSUR;

/* NOW INITIALIZE FT1I BOARD.
THIS -NTAILS INITIALIZING INTERRUPT
TIMING,CHANNEL SELECT,GAIN SELEC "
OUTPUTTING INITIAL VALUES.

DACILO0
DAC1IHI

OFFH;
07H;

INITIALIZE TO CONTROLLED VAR TO MIDRANGE

DAC2L0 = 00;

126

127

123

/# INITIALIZE CHART REC TO ZERO */

MUXADR = 00; /* CHOOSE CHANNEL ZFRO */
GAINSEL = 00; /* AMPLIFIER AT UNITY GAIN *
INITL = 02;

/* R-C PACER TRIGGERS INTRRUPT */

* NOW INITIALIZE TELETYPE

PL/M-a0 COMPILER

113
119

120
121

123

124
123

126
127

123

PAGE

/* ALL L, HTS OFF.

SAT*00;
ERF=00;

/* THESE TWO VARIABLES INDICATE:

1) SATURATION HAS OCCURED
(EITHER CONTROLLED OR
MANIPULATED VARIABLES)
AND VARIABLE °’ SAT’
ENSURES CORRECT LED
LIGHTS UP.

2) PREDICTION ERROR IS
VISUALLY DISPLAYED
VIA °ERR’ DURING CONTROL

TIME.

SAT AND ERR USE SAME
OUTPUT PORT.
BOTH ARE INITIALISED
TO ° LIGHTS OFF °
UPON INITIALISATION.

*/

/* PLACE JMP INSTRUCTION AT LJCAT-IN 3C30H
TO interrupt PROCESSOR MODULE

LOCS3C3D
LOC83C3E

0C3H;
. INTERRUPTSPROCESSOR;

/* NOW INITIALIZE RTI BOARD.
THIS ENTAILS INITIALIZING INTERRUPT
TIMING,CHANNEL SELECT,GAIN SELEC".
OUTPUTTING INITIAL VALUES.

*/

DACILO0
DAC1IHI

OFFH;
0/H;

/* INITIALIZE TO CONTROLLED VAR TO MIDRANGE
#/

DAC2L0 = 00;
DAC2HI = 00;

/4 INITIALIZE CHART REC TO ZERO */
MUXADR = 00; /* CHOOSE CHANNEL ZERO */
GAINSEL * 00; /* AMPLIFIER AT UNITY GAIN *
INITL = 02;

R-C PACER TRIGGERS INTRRUPT */

/* NOW INITIALIZE TELETYPE

PL/'T 80 COMPILE -

129
130

131
132

138

PAGE

OUTPUT(OEDH) - OCFH; /* MODE WORD */

*/

OUTPUT (CEDH) - 25H; /* COMMAND WORD */

/* THE FOLLOWING VARIABLES ARE USED BY
MODULE 7, I.E. EXTRA VARIABLE MODULE
WHICH OUTPUTS A HISTORY OF A MODEL
PARAMETER (DURING CONTROL TIME)

TO THE TELETYPE.

1) TTYSFLAG (HARDWARE) :-
IF < 01 THEN MODEL PARAMETER
IS NOT OUTED TO TTY.
2) TTYSTI MEs-
A COUNTER TO ENABLE PRINTING
ONLY ONCE EVERY ’ TTYSUP’ SAMPLING
PERIODS.
3>TTYSUP:-
AS EXPLAINED ABOVE.

TTYSTIME = 01H; /* INITIALISE COUNTER 10 1 */

TTYSUP = 00D; /* PRINT EVERY SAMPLING

*/

PERIOD IF TTYSFLAG ALLOWS
*/

/* ' PARMNO’ DEFINES WHICH PARAMETER
IS OUTPUTTED TO TTY DURING RUN
TIME.

PARMNO = 10D; /* TENTH PARAMETER */

#/

=

/* THE ABOVE MENTIONED PARAMETER

IS CONV RTED FROM BINARY TO
DECIMAL FLOATING PT FORMAT(ASCII)
PR, CISION FOR CONVERSION IS DEFINED
BY SPECIFY. SLENGTH.

L .FY. SLENGTH = UD; /* 5 DECIMAL DIGITS */

/* NOW VALUES ACTUALLY RELATED TO IDENTIFICATION
’ I. iTIA ISED.

/*F > > M(if). (¢ : TANTIs A" NOW
IM7IA, ITm D. P * I II TNG RA'E OF

CHAN, 4 -1 De>Ir. 3 WUC> ON
(A CR B) 1s ALL :VL [ANY ON-. TIME. *,

10D;
3D;
"L

C T V. TV f « Lv ti

PL/M-80 COMPT

13b

139 2
140

143 (i §)

2
145 2
146 2

147 2
146 3
149 3
150 3
151)
152 2
153 2
154 2
155 2
156 2
157 2
158 2
159 2
160 2
161 2
'62)

163 2
164 3
165 3
166 3

R

5 L'G.xDS.
r A 8 m ' - 4,

. 'V, M«

/#«*******/

vti m 4 -3,

,Jquui*L PtiRA'z J w B

WK m ot
/# 4U

* jv VEL « 24w,
f ILEVE,_ » 407GD;

i) it/

A\ «

:D cLIrAi. .

U 10 CERTAIN PR .. n

'"VRR1 (0)
MANIPVARI(l) -
MA\TPVnR: t , v
MANIPVARI (3) * w

0 TO (ARRAYS, w s
00;
= <0°

po I =
L<I; *
ov(l)

9

FSET(.FPR, 0 <) -

CALL
FCLR(.FPR) -

CALL

FSTOR(. FPR) . DEuf AVO) »
FSTOR(.FPR, . DYl >nm
FSTOR(,, FPR, . SET*f:RRURI) ;

CALL
CALL
CALL

DO I * 0 TO 4D*(ARRAYSLENGTH-1) by 4D
L(I) = 01H;
DV(1l) =

9

01H;

/* INITIALIZE ARBITRARILY

PAGE 3

L(I) =.01D

DV(I) = .010

(DIVISION BY 1000 LATER ON)
%/

TLD(O) = 1030;
TLG(O) = 1080;

/* FILTER * (180S * !)/<1303+1) */
/* 1E CANCEL UNLESS CHANGED BY OPERA

SAMPLINGSPER10D<00) = 54D;
/* ASSUMING 2 MIN. TIME CONST. +/

SAMPLES TIME = 00;

/* FLAG OFF. DO NOT SAMPLE PLANT
UNTIL FLAG TURNED ON BY REAL
TIME CLOCK

*/

SAMPLESCOUNT - 00H;
MANUALSCOUNT = 00H;

/> SAMPLESCOUNT COUNTS INTERRUPTS
TO KEEP TRACK OF REAL TIME.
MANUALSCOLNT COUNTS INTERRUPTS

TO ENABLE CHANGE OF OUTPUT
SENSITIVITY DURING MANUAL MODE */

ONE(0) = ID;
/* THE CONSTANT ONE ¢/

GAMMA(0) = OAOH;

/ ¢ UPDATE WEIGHTING FACTOR */
/* STILL TO BE DIVIDED BY 10**3D */

HUNDRED(0) = 100D;

/* FACTOR * 100 */

Cl (O) = OFFH;
Cl(1) = O0CH;

Cl(2) = ooH;

Cl(3) =o0H;

/* USED TO GET CONSTANT 60,96 */
TO6 :-'LANT' = 07FFH ;

/* PREVIOUS OUTPUT TO PLANT AS
USED BY ANALOGUE OUT MODULE */

PL/M-a0 COMPILER

iai
ia2
183
134

ial

136

.a?

°33
:39

, 3J
igi
fg-.

13ii

: 33
199
>00
201
202

20u

205
206

208
209
210
211

* ENDm

JAGE 9

DO 1=00 TO LAST(STATEMENT);

3 CALL ASCSOUT(STATEMENT(I));
~ END;

CALL ASCSOUT(ODH) ;
X CALL ASCSOUT(OAH) ;

/% INFORM OPERATOR OF MONITOR ENTRY */

CALL MONINS;

t AT THIS JOINT A JUMP TO MONITOR IS MADE
TO ENABLE VARITIONS OF INITIAL
CONDITIONS TO BE "ADE.

A~ NOW DO ALL NECESSARY CALCS */
I' ID®COUNT = (DOUBLE (SAMPLINGI PERIOD<0) >* 1GOOD) /40D
¢ NO. OF INTERRUPTS TO BE COUNTED BEFORE
SAMPLING -LANT.
aOMS 3FR INTERRUPT ASSUMED HERE.
» 1) CONVERT ALu INTEGERS TO FLOAT PT */

- CALL FLTDS (. FPR, . HUNDRED) ;
CALL FSTOR(.FPR,. HUNDRED);

DO I = 0 "0 4D*(ARRAYSLEN(STH-1D) BY nD:
3 CALI FLTDS(,FPR,.L(I));
3 CALL FDIV (.FPR, .HUNDRED) ;

- CALL FSTOR(.FPR,.L(I1));

~ CALL FLTDS (. FPR, . DV (1)) ;
CALL FDIV (.FOR,. HUNDRED) *
CALL FS O.K.FPR, .DV(I));

CAIL FLTDS (. rPR, . Cl);
CAL- FSTOR(.FPR, .01);
CALL FLTDS(.FPR,. DELTAVO
CALL FSTOR(.FPR,. DELTAVO)
CAL_ alLTDS (. FPR, . GAVMA) ;
CALL FDIV(. FPR,. HUNDRED);
:ALL FDIV(. FPP . HUNDRED) ;

CALL "DIV(. FPR,. HUNDRED) ;
CALL FSTOR(.FPR,.GAMMA); DIVIDE BY 10**8 D */
;Auu FLTDS (.FPR, . ONE) ;

:ALL - _TDS(. FPR, . TLD)
CALL ¢STOR>.PPi,, TLD)
:AuL. F_'DS .- ."LG)

>

PL/M-80 COMPILER

213
214
215

2 1S
217

213
219
220
221

224

2726
227

223
229
230

231

234

236

IS
19

240

JQGE 10

CALL FSTOR <.FPR,. TLG) ;

CALL FLTDS(. rPR, . SAMPLING*PERIOD >+
CALL FSTOR(. - PR, . SAIMPLINGSPERICD
CALL FDIV(.FPR,.TLG);

CALL FSTOR(.FPR,. R23LB1);

/4 CALCULATE FILTER CONSTANTS
RI=(SAMPLINGSPERIOD/TLD) + 1
R2=(SAMPLING'SPERIOD/TLG) + 1
FILTGAIN = TLD/TLG

R2SUB1 = R2 - 1

CALL FADD(.FPR,. ONE) ;

CALL FSTOR(.FPR,.R2)e /* R2 CALC */
CALL FLTDS(.FPR,. MANIPVARI) »
CALL FSTORt.FPR,.MANIPVARI1);

CALL FLTDS(.FPR,. CONTVARI1);
CALL FSTOR(.FPR,. CONTVARI1);

CALL FLCAD(. FPR, . SAMPLINGSPERIOD) ;
CALL FDIV (. FPR, . TLD)

CALL FADD(.FPR,. ONE)

CALL FSTOR(.caR,.RI1) /* Rl CALC */

CALL FLOAD(. FPR, . TLD) ;
CALL FDIV (.FPR, . TLG) ;
CALL FSTOR(.FPR,.FILTGAIN); /* FILTGAIN *,

CALL FLOAD (. FPR, .CD ;

CALL FDIV(.FPR,. HUNDRED);

CALL FSTOR(.FPR,. CONSTANT); /* = 40,96 */
FISSTtERRORSFLAG = 01H;

/* SIGNALS EXTRA VAR MODULE
TO TAKE FIRST ERROR AS REFERENCE */

/* NOW PRINT MESSAGE TO TTY */
DO I - 0 TO LAST(MESSAGE);
CALL ASOSOUT(MESSAGE(D));

END;

CALL ASCSOUT(ODH);
CALL ASCSOUT(0AH>;

ENABLE: /* INTERRUP'9 *

PL/N-QO COMPILER
PAGE 11

241 2 BEG INSLOOP:
DO FOREVER;

/* SINCE THE INTERRUPT' MODULE CONTROLS OUTPUT
DURING MANUAL OPERATION . A DANGER EXISTS
THAT WHILE IN THE MIDDLE OF AU"0 MODULE
AN OPERATOR MIGHT REQUEST MANUAL OPERATION.
THE INTERRUPT MODULE SENSING CHANGE IN
HARDWARE FLAG WOULD OUTPUT TO PLANT EVERY
INTERRUPT.AT THE SAME TI"E AUTO MODULE
WOULD ALSO OUTPUT TO PLANT.

THEREFORE TO ENSURE MANUAL OUTPUT ONLY
WHEN MANUAL MODULE IS ENTERED, A FLmJ
CALLED ENABLESMANUAL IS SET WHENEVER
MANUAL MODULE IS ENTERED. THE FLAG IS RE3E1
UPON A CALL TO AUTO OR TO INTERROGATE

/* READ IN FLAG WORD AND ISOLATE REQUIRED

FLAG BITS %
242 3 FLAGSWORD-INPUT(OEs H) ;
243 MANUALSFLAG=SKR(FLAGSWORD,1) AND OIH;
244w INTERROGATESFLAG=FLAG SWORD AND 01H;
245 u TTYSFLAG = SHR<FLAGSWORD,2) A\0
246 DISABLE;
247 o IF INTERROGATESFLAG =014 THEN
243 3 DO;
249 4 FIRSTSERRORSFLAG = 01H;
250 4 ENABLESMANUAL = 00;
251 4 DO 1=00H TO LAST(STATEMENT);
252 5 CALL ASCSOUT(STATEMENT(I));
*53 5 END:
234 4 CALL ASCSOUT<ODH);
235 4 CALL A3 CSCJT(OAH);
256 4 CALL MONINS ;
/* CALL MONITOR
%
257 4 END;

/* 1F AN INTERROGATION IS REQUESTED >/
/* OR A HARDWARE RESTART OCCURS 7 -£
FIRST ERROR FLAG SIGNALS TO T.“E
LEDS ROUTINE TO TAKE A NSW
REFERENCE FOR PREDICTION */

253 ENABLE;

PL/.>1-30 COMPILER

PAGE 12
259 3 IF MANUALSFLAG =01H THEN
260 3 DO;
261 U ENABLESMANUAL = 01H;
262 4 CALL MANUALSMODE;
263 4 END;
ELSE
264 3 DO;
265 4 ENABLESMANUAL = OOH;
266 4 CALL AUTOMATICSMODE;
267 4 END;
263 3 ENDSLOOP:
END; /* THE FOREVER */
/’.’:’k’k*+’k’k’k’k***********************+*+*****/
269 2 SELFSTUNESCONTROL;
270 1 END SELFSTUNESCCNTROLSMODULE;

MODULE INFORMATION:

CODE AREA SIZE = 04A5H
VARIABLE AREA SIZE =0249H
MAXIMUM STACA SIZE = 0004H

639 LINES READ
0 PROGRAM ERROR(3)

H39D
535D
4D

PL/M-a0O COMPILES

AUTOMATICMODEMCDULE
ISIS-1I PL/rt-QO V3. 1 COMPILATION Oh MODULE

PPGE 1

OBJECT MODULE PLACED IN :FL:M0D2.OBJ

COMPILES

INVOKED BY: PLM80 :r L:MODI'. SSC

/% MODULE 3

/% MODx. »

]

/* SOUTLNt untLUna ru: "-:; w7r;ii--n--nTrTTnN
|/ Yo

/%

%

/* PHUUiXHn ri_uw i* !

/» ROUTINE IN MODULE 1.

~ t'je

*
/ AUTOMAT ICSMODESMODULE

*/

#./
#/

S oo o N &

10
11

13
14
15
1S
17
13
19
20

21

DO:

DECLARE TROMSPLANT(AD) BYTE fcXTERNKu;
/% SETATN-D AS INTEGER THROUGHOUT */
DECLARE (LOLEVEL, HILEVEL) ADDRESS EXTERNAL;
... SAMPLESTIME BYTE EXTERNAL;
DECLARE CONTVARI(AD) BYTE EXTERNAL;
ncn! ppi€£ MANIPVARO (AD) BYTE EXic.-NAL;
DECLARE MANIPVAR1(AD) BYTE EXTERNAL;
DECLARE TOSPLANT ADDRESS EXicRNAL;
DECLARE SETSERRORO(AD) BYTE EXTERNAL;
DECLARE DV(200D) BYTE EXTERNAL;
DECLARE DYO(AD) BYTE EXTERNAL;
DECLARE CONSTANT(AD) BYTE EXTERNAL;
DECLARE INCREMENT(AD) BYTE EXTERNAL;
DECLARE (SAT ERR) BYTE EXTERNAL;
DECLARE SETSPOINT(AD) BYTE EXTERNAL

INPUTSCONTROLLEDSVARIABLE:
PROCEDURE EXTERNAL;
END INPUTSCONTROLLEDSVARIABLE;

PREDICTSANDSUPDATE:
PROCEDURE EXTERNAL;
E ;D P *EDICTSANDSUPDATE;

MANIPSVARIABLESCALC:

PL/.1-80 COMPILER

22

r.3

AU
26

2g

29

.10
31

32

35

36
37

38

39
.40

41

42
43

44

45
46

47

68
49

50

51
52

§-N

O

&

PAGE

PROCEDURE EXTERNAL;
END MANIPSVAPIABLESCPLC;

ANALOGUESOUT:

PROCEDURE EXTERNAL;
END ANALOGUE$OUT;

EXTRA3VARIABLE:
PROCEDURE EXTERNAL;
END EXTRASVARIABLE;

DATASSHUFFLE:
PROCEDURE EXTERNAL;
END DATASSHLFFLE;

$ INCLUDE(:F4 :FLOAT.SRC)

=SET:

PROCEDURE*FA,,0 P1,0P2) EX
DECLARE (FA, CPI, 0P2) ADDR
END FSET;

FSUB:
PROCEDURE'FA,0A) EXTERNAL;
DECLARE (FA,0A) ADDRESS;
END FSUB;

FADD:

PROCEDURE(FA, CA) EXTERNAL;
DECLARE (FA,0A) ADDRESS;
END FADD;

FDIV:

PROCEDURE(FA,CA) EXTERNAL;
DECLARE (FA,CA) ADDRESS;
END FDIV;

FMUL:

PROCEDURE(FA, OA) EXTERNAL;
DECLARE (FA,0A) ADDRESS;
END FMUL;

FLOAD:

PROCEDURE(FA, OA) EXTERNAL;
DECLARE (FA,0A) ADDRESS;
END FLOAD;

R:

PROCEDURE(FA) EXTERNAL;
DECLARE FA ADDRESS;
END FCLR;

FNEG:

PROCEDURE (FA) EXTERNAL;
DECLARE FA ADDRESS;
END FNEG;

PAGE

FLTDS:

PROCEDURE (FA,0A) EXTERNAL;
DECLARE (FA,OA) ADDRESS;
END FLTDS;

FIXSD:

PROCEDURE (FA,0A) EXTERNAL;
DECLARE (FA,OA) ADDRESS;
END FIXSD;

FSTOR:
PROCEDURE(FA, OA) EXTERNAL;
DECLARE (FA,OA) ADDRESS;
END FSTOR;

DECLARE FPR(iaD) BYTE EXTERNAL;

/* MODULE 2 - MAIN PROGRAM */

AUTOMATICSMODE:
PROCEDURE PUBLIC;

DECLARE (TENS,UNITS) BYTE;
DECLARE FP ADDRESS;
DECLARE I BYTE;

IF SAMPLESTIME - OIH THEN

DO;
SAMPLESTIME = OOH;
CALL FCLR(.FPR);
CALL FSTOR(.FPR,.SETSPOINT);

CALL FSTOR(.FPR,. FROMSPLANT);
/* CLEAR AREA FOR SETPOINT AND CONROLLED VARIABLE

/* TWO FLOATING POINT VARIABLES OF CONTROLLED

VARIABLE ARE KEPT IE. CONTVARO <T=v),
CONTVAR1 (T=-1 SAMPLE TIME)

DO NOT CONFUSE WITH DYO AND DY1 WHICH ARE VELOCITY
VERSIONS OF ABOVE(FLOATING), OR VARIABLE CALLED
FROMSPLANT = INTEGER VALUE OF CONTVARV

*

/ CALL INPUTSCONTROLLEDSVARIABLE;

CALL FLTDS(.FPR,. FROMSPLANT);

CALL FSTOR(.cPR, » CONTVARO) ;
/¥« CONVERT MEASURED VALUE TO FLOAT POINT */

CALL FSUB(.FPR,. CONTVARI);
CALL FSTOR(.FPR, . DYO);
/* GENERATE VELOCITY VARIABLE DYO =Y(T)-Y(T-1)

*/

/¥ CHECK FOR CONTROLLED VARIABLE SATURATION */

PL/M-80 COMPILER

PAGE
E 1 | 1 L r S I 1 E
*/
FP®DOUBLE(FROMSPLANt(0)) OR . .. (DOUBLE(rROMt7LANT(1)),
73
IF (FP > LOLEVEL) AND (FP < HILEVEL)
79 THEN
DO:
30 /* RESET WARNING LIGHT */
s CALL PREDICTSANDSUPDATE;
31
SAT-00¢
02 4
SETS OF LIGHTS ARE AVAILABLE
(RAISED ON FRONT PANEL)
2) LIGHTS SIX IN LINE.
AND ERR (PREDICTION ERROR)
*/
33 END;
ELSE
* WARNING LIGHT THAT PREDICTION SKIPPED */
DO;
84 SAT-80H;
36 END;
37 OUTPUT(0E4H)-SAT OR ERR;
/* READ IN SETPOINT FROM THUMBWHEEL SWITCH
AND CONVERT TO FLOAT POINT
"/ TENS = SHR((NOT(INPUT(0E5H))),4D);
33 UNITS » NOT(INPUT(OESH)) AND OFH;
/* READ IN PERCENTAGE */
00 SET SPOI NT (0) = <UNITS-*-10D*TiNS) ;
CALL FLTDS(.FPR,.SETSPOINT);
91 L

: CALL (.FPR,. CONSTANT);
92

PL/M-80 COMPILER PAGE

95
94
,* CONVERT FROM 100% TO 4096 UNI'S
CALL MANIPSVARIABLc-SCALC , oy
95 /* CALCULATES IN VELOCITY FORM
CALL FLQAD(.FPR, . DV(0)>;
96
/* XFORM MANIPULATED VARIABLE TO INTEGER rORM */
o7 CALL FIXSDt.FPR,. INCREMENT) ;
IF (INCREMENT(3) AND BOH) = SOH THEN
98 DO:
99 INCREMENT(3) = BOH:
100
101 INCREMENT(I)=NQT(INCREMENF(1»);
102 END »
103 INCREMENT(0) = INCREMENT(0)+1:
igg IF INCREMENT(0) = OOH THEN
00 *
106 INCREMENT(1) = INCREMENT(1 > *1;
107
108 IF '
109 END:
1to END: ’
111 ’
/* CONVERT FROM 25 COMPLEMENT TO
SIGNED BINARY.
*/
12 z. fID3S outPuts '
/* JO PLANT VIA D/A No. 1
MANIPVARO(O) 0 TOSPLANT)-
113 MANIPVARO(I) ()
114 MANIPVARO(2) 00;
! 112 MANIPVARO(3) 00;
> REGENERATE OVIO, IN CASE OF SATURATION ./
CALL FLTDS(. FPR, * MANIPVARO) ;
117 CALL FSTOR(.FPR,. MANIPVARO>;
118 CALL FSUBt.FPR, . MANIPVARU ;
119 CALL FSTOR (.FPR, .DV) ;
120
CALL EXTRASVARIABLE; ny
121 /* OUTPUTS rwo EXTRA VARIABLES .
L 1) TO TELETYPE

2) TO CHART RECORDER Y

PL/N-80 COMPILER
PAGE 6

122 /* THE5 LPREPARESHDATA FOR NEXT ITERATION */

123 END;
124 END AUTOMATICSMODE;
125 END AUTOMATICHMODESMODULE;

MODULE INFORMATION:

CODE AREA SIZE 01 7CH 3300
VARIABLE ARFEA SIZE 0005H SD
MAXIMUM STACK SIZE 0004H 4D

287 LINES READ
0 PROGRAM ERROR(S)

END OF PL/M-QO COMPILATION

t'L/M-BO COMPILER

1

1

PAGE 1

ISIS-11 Pu/K-Gu V3¢1 COMPILATION O MODULE MANUALMODEMODULE

MODULE PLACED IN :F6:MOD3.CDJ
COMPILER INVC'iCD BY:

OBJECT

—_ Ll
\] HG\OG\\IO\UIQM

[
w

14

15
16

17
18
19

20

PIMBO :FLsMOD3. SRC DEBUG

/’k**+****’k**+’k****’k**’.’:*****************«****/

/*
/*
/‘k
/*
/*
[«
/*
/m*
/#
[«
/‘k
/*
/*

MODULE 3 .

MANUAL MODE : //
ThIS ROUTINE IS ACCESSED WHENEVER %/
THE OPERATOR REQUESTS MANUAL OPERATION.*/
HERE,THE NECESSARY TIME FLAGS ARE *
CHECKED FOR PREDICTION AND UPDATE %/
PURPOSES. ACTUAL MANUAL OUTPUT IS *
CONTROLLED FROM THE INTERRUPPT %/
MODULE FOR EASE OF TIMING. */

*/

/*******7‘:**************7‘.‘********************/

o

#/

MANUALSMODE*MODULE:

DO;

DECLARE CONTVARO(4D) BYTE EXTERNAL;
DECLARE CONTVAR1<4D) BYTE EXTERNAL;
DECLARE DELTAVO(4D) BYTE EXTERNAL;
DECLARE DYO(4D) BYTE EXTERNAL;

DECLARE SAMPLE*!IME BYTE EXTERNAL;

DECLARE FROMSPLANT(4D) BYTE EXTERNAL;
DECLARE ENABLE*MANUAL BYTE EXTERNAL;
DECLARE (LOLEVEL,HILEVEL) ADDRESS EXTERNAL;
DECLARE (SAT,ERR) BYTE EXTERNAL;

DECLARE DV(200D) BYTE EXTERNAL;

1 INPUT*CONTRQLLED*VARIABLE:

PROCEDURE EXTERNAL;

5 END INPUT*CONTROLLED*VARIABLE;
* INCLUDE <:F1 : FLOAT. SRC)
FSET:
PROCEDURE(FA,0P1.0P2) EXTERNAL;
) DECLARE(FA,DPI, 0P2) ADDRESS;
END FSET;
FSUB:
PROCEDURE(FA,0A) EXTERNAL;
DECLARE (FA,00) ADDRESS;
s . END FSUB;

FADD:
PROCEDURE(FA,0A) EXTERNAL;

PL/M-80 COMPIi-ER

ot 2
23 1
24 2
Lu
26 1
27 B
28
29 1
30 2 =
31 2
32 1
D3 %
34 2
35 1
36 2 =
7
38 1 D
39
40
a
41 1
%
42 2
40
44 1
%
45 2
46 2
3
47 1
- a
48 f
49
%
50 1 3
51 1
b\
53 1

CAGE

DECLARE (FA,OA)
END FADD;

ADDRESS;

FQFB2D:
PROCEDURE(FA,OA)
DECLARE (FA,OA)

END FDFB2D;

EXTERNAL;
ADDRESS;

FDIV:
PROCEDURE(FA,OA)
DECLARE (FA,OA)

END FDIV;

EXTERNAL;
ADDRESS;

FMUL :
PROCEDURE(FA,OA)

DECLARE (FA,OA)
END FMUL;

EXTERNAL;
ADDRESS;

FLOAD:
PROCEDURE(FA,OA)

DECLARE (FA,OA)
END FLOAD:;

EXTERNAL;
ADDRESS;

FCLR:
PROCEDURE(FA) EXTERNAL;

DECLARE FA ADDRESS;
END FCLR;

FNEG s
PROCEDURE (FA) EXTERNAL,
DECLARE FA ADDRESS;

END FNEG;

FLTDS:
PROCEDURE (FA,0A) EXTERNAL;

DECLARE (FA,0A) ADDRESS;
END FLTDS;

FIXSD:

PROCEDURE (FA,0A) EXTERNAL;
DECLARE (FA,0A) ADDRESS;
END FIXSD;

FSTQR:
PROCEDURE'FA,OA)

DECLARE
END FSTQR;

EXTERNAL;
(FA,O0A) ADDRESS;

DECLARE FPR(ISD) BYTE EXTERNAL;
PREDICTSANDtUPDATE:

PROCEDURE EXTERNAL;
END PREDICTfANDSUPDATE;

EXTRASVARIABLE:
PROCEDURE EXTERNAL;

3L/M-80 COMPILER

3AGE
S5a END EXTRASVARIABLE:
55 : DATASSHUFFLE:
PROCEDURE EXTERNAL:
56 _ END DATASSHUFFLE:
57 ; >1AINUALSMODE:

PROCEDURE PUBLIC;

58 : DECLARE FP ADDRESS;

59 2 IF SAMPLESTIME = 01H THEN

60 2 DO;

61 3 SAMPLESTIME = 00; /* RESET FLAG */

62 3 CALL PCLR(.FPR);

63 3 CALL FSTOR(.FPR,. FROM*PLANT);

/* CLEAR ¢ ROM $PLANT */
/* SINCE THE INTERRUPT HANDLER OUTPUTS

TO PLANT DURING MANUAL OP,ONCE
EVERY INTERRUPT,WE NEED TO ADD
UP ALL THESE OUTPUTS PER SAMPLING
PERIOD TC PASS TO PREDICT AND UPDATE
MODULE-DELTAVO IS THIS SUMMATION.IT
IS CONVERTED TO FLOATING PT ONCE EVERY
SAMPLING PERIOD AND THEN CLEARED FOR
NEXT PERIOD. 5/

su DISABLE;

65 3 CALL FLOADt.FPR,. DELTAVO);

66 3 CALL FSTORt.FPR,. DV<0));

67 3 CALL FCLR(.FPR);

68 zZ CALL £STOR(. FPR, . DELTAVO) ;

69 : ENABLE;

CALL INPUTSCONTROLLEDSVAR IABLE;

" 3 CALL FLTDS(.FPR,. FROMSPLANT);

73 3 CALLFSTOR(. FPR,. CONTVARO);

73 3 CALL FSUB(.FPR,. CONTVARI);

74 3 CALL FSTOR (. FPR, . DYO) ;

/* GENERATE VELOCITY VARIABLE
DYO = CONTROL VAR AT TIME °’ T’
DY1= CONTROL VAR AT 'T-I’
*/

FP = DOUBLE(FROMSPLANT(0)) OR
SHL(DOUBLE(FROMSPLANT(1)),8);

/* USE INTEGER VALUE OF CONTROLLED VAR
TO CHECK FOR SATURATION.

BOTTOM 2 BYTES ARE ADEQUATE AS

A/D CONVERTER HAS ONLY 12 BITS PRECISION

*/

PL/M-80 COMPILER

76

77
78
79

81
82

83
34
85
86
87

88
89

PAGE

3 IF (FP > LOLEVEL
' THEN

(FP < HILEVEL

DO;
SAT = 00;

B paw

END;

ELS
DO;
SAT = 80;

U

) AND

CALL PREDICTSANDfUPDATE;

/* WARN OPERATOR VIA L.E.D
THAT PREDICT * AND*UPDATE SKIPPED
*/
4 END;

3 OUTPUT(0E4H)

3 CALL EXTRASVARIABLE;

3 CALL DATA4SHUFFLE;
3 END;

2 END MANUAL.*MODE;

1 END MANUALfMODE*MODULE:

MODULE INFORMATION:

CODE AREA SIZE = 00B6H
VARIABLE AREA SIZE = 0002H
MAXIMUM STACK SIZE = 0004H

190 LINES READ
0 PROGRAM ERROR(S)

END OF PL/M-80 COMPILATION

182D
2D
4D

(SAT OR ERR);

iliv

PL/M-60 COMPILER

PAGE 1

ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE INTERRUPTMODULfc
OBJECT MODULE PLACED IN :F4iM0D4.0BJ

COMPILER INVOKED BY:

DN AW

11
12
13
14
15
I'b

/**

/*
/*
/*
/*
/*
1#
] *
/*
/*
/*
/*
/*
/*
/*
/*
] *
/ *
] *
/ *
/*
/*
] *
] *
/*

PLMAIO 1F41MO0D4.ERC

MODULE 4

THIS IS THE INTERRUPT MODULI.
THERE IS ONLY A SINGLE INTERR T IN THE ENTIRE
SYSTEM. THIS T™O FUNCTIONS:

1) A REAL TIMc¢ CLOCK
2) OUTPUT OF MANIPULATED VARIABLE
DURING MANUAL OPERATION.

AN INTERRUPT OCCURS EVERY 40mS.(APPROX)

IF CONDITIONS ARE FAVOURABLE (,.e. THE OPERATOR
HAS REQUESTED MANUAL OPERATION AND WE ARE NOT
INTERRUPTING THE AUTOMATIC MODE.) THEN
MANIPULATED VARIABLE IS EVALUATED AND OUTPUTTED
TO THE PLANT.

EVERY INTERRUPT A COUNTER IS UPDATED. UPON
REACH NG A TERMINAL VALUE, A FLAU IS SET,
SIGNIFYING THAT A SAMPLING PERIOD HAS PASSED.
THIS FLAG < SAMPLESIIiME) PERM fS TIMED ENIRY
INTO THE PREDICT SANDSUPDATE & MANIPULATED*

VAWM ABL ESCALC ROUT IME,.

/********************’.’:**»*’k**

/ *
*/

INTL RRL ' SMODULEI

DO;

DECLARE MANUALS. C N
BYTE EXTERNAL;
Ix. CLARE SAMPLESCOUNT ADDRESS X \ ;
DECLARE ENDSLOUN ADI < >Cx v.v,;

DECLARE (SAr, H4) BY te '

DLCLARI SI <ru-. BYIT F <
/* SAMFr-j_iNO INITIALLY Dr. ;R.D T */
/ » I.e. SECONDS * 4TI * 40MC */
D LuA <. (SAMDLLS IM) ' < < L,
IE. AR (FLA:iSW:"D, e tut...a a, .. e BY

EX ir.R,\MI_;
L NABI.. , V. -
BYTE .

1" m. iR
L.Cw d JEL
1 .LIT tro\

L (MW :") AD p vV 1

LI C.uue A |

L .Lir-L. D .u.V.M41)) IT K v

i i . RCUJw. . L

v/
*/
*/
*/

#/
*/
#/
*/
*/
*/
*/
*/
*/
*/
*/
*/
#/
*/
*/
*/
*/
*/

*/

t'l/r" 80 COriPH IR

onap

k * TKRwi-11

< SET MOD

pi./tf-ao COMPILER

41
42
43
44

46

47
43
4»
50

51
52

53

34

'h.kuw

if

PAGE

/M INCREMENT 13 THE AMOUNT BY WHICH TrE
/* manipulated variable is Increased OR

/* DECREASED EVERY 40 ns DURING MANUAL

/* OPERA'ION. °>Q RATES ARE APPLICABLE.
/* NAMELY A UNITS PER 40,ms OR B UNITS

/' * PER 40in3.
/* NOTE T'-AT A > B .

DO;
INCREMENT(i) = o0o0;
INCREMENT(2) = OOH;
INCREMENT(@3D) = 00;

/* MSB OF INCREMENT(3) IS SIGN BIT &

IS SPECIFIED LATER DEPENDING ON

*/
*/
*/

*/
*/

HARDWARE RAMP FLAG AS SET BY OPERATOR

I.E. RAMP UP OR RAMP DOWN
+/

END;

/* NOW THE RAMP3FLAG IS INPUT AND TESTED
/* FOR DIRECTION CF MANUAL OUTPUT.

RAMPf CLAG=3H,R (INPUT (oEcH) , 3) AND 03H;

/* CASE is OPERATOR REQUIRES NO OPERATION
/¥ NOTE: OUTPUT SENSITIVITY 15 INCREASED
/* FROM HERE ONWARDS BY RESETTING

/* MANUAL3COUNT.

IF RAMPSFLAG-03H THEN
DO;
MANUAL3COUNT=00;
INCREMENT(0) = 00;

/> I1.E.OUTPUT NOTHING */

GO TO ENOUGH; * SKIP .
END;

/* CHECK FOR SATURATED MANIPULATED VARIABLE

/ « AND TAKE APPROPRIATE ACTION

*/
+/
*/

*

/

+/

((hampsflag = 0:8> and trosplant > maxlevel);

OR
((RAMPS "LAG

THEN
DO;

/* ABNORMAL OPERATION:- EFFECTIVELY DO
/m NOTHING BUT WARN

*/

10B) AND (TOSPLA IT < MINLEVED)

«

¢/
*/

PL/m-80 COirPtLS;"
PAGE &

INCREMENT(0) = 00;

56 4 SAT =BOH ; /* ALARM OPERATCI */
57 4 END;
ELSE
55 3 DO; /* NORMAL OPERATION */
)9 SAT = 00; /* NORMAL OPERATION , NO ALARM */
/* CASE 2&3: */
/* RAMP UP IF 01, DOWN IF 10 (BINARY)
60 4 IF RAMPSFLAG=0:M THEN
61 4 DO;
62 5 INCREMENT(3) = 8OH;
63 3 END;
/* ADD NEGATIVE SIGN FOR RAMP DOWN %
64 4 END;
65 3 OUTPUT(0E4H) * SAT OR ERR;

/* RAMPSFLAG SHOULD NEVER EQUAL 00
/* 1IF TH:3 HAPPENS , IT 13 CHECKED 4 TIMES. */

66 3 IF RAMPSFLAG * OOH THEN
67 3 DO;
68 4 NUMBER = 5;
69 u DO WHILE (NUtrSER > 1)
AND

((ShR(INPUT(0E6H),3) AND C3H)=00H);
yr, s NUMBER = NUMBER-1;
71 5 END;
72! 4 IF NUMBER < 2 THEN
73 4 CALL FLASH;

/* ALARM TO OPERATOR VIA LEDS

7 4 4 INCREMENT(O) = OOH;
75 4 END;
76 3 ENOUGH: CALL ANALOGLE&OUT;
/*. MANUAL OUTPUT AS DEFIN-=D BV INCREMENT »
77 3 IF RAMP*"LAG = 02H
THEN DO:;
79 4 INCREMENT((3D) = OOH;
gn 4 DOI * 0 TO 3;
33 < INCREMENT <U=NOT(I'iCfiEMENT<TI))
02 5 END;
63 4 INCREMENT(0)* INCREMENT(0)+1;

END;

PL/'1-80 COMPILER
PAGE

/«* CONVERT NEGATIVE NUMBER TO 25 COMP

85 CALL FLTDS(.FPR,. INCREMENT);
86 CALL FADO(.*“PR,. DELTAVO);

87 CALL FSTOR(.FPR, . DELTAVO) ;
S3 3 END; /* MANUAL SECTION

/* NOW PROCESS SAMPLING TIME FLAG

89 2 SAMPLC$COUNT=SAMPLESCOUNT+1;
2o 2 IF 3AMPLESCOUNDEND3COUNT THEN
91 2 DO;
92 3 SAMPLESCOUNT=00H; /* RESET COUNT */
92 3 SAMPLESTIME = 01H; /* SET FLAG */
3d 3 END;
95 2 STATUS = STATUS;

/* CLEAR INTERRUPT BY THIS STATEMENT */
96 2 END IN fERRUPT $PRGC-530R;
97 i END INTERRL3TSMODULc;

MODULE INFUTMATI j.n :

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
269 LINES READ

- 0 PROGRAM ERROR(S)

0173H 371D
0002H CDh
OOOEH 1AD

END OF orL/M-80 compilation

PL/M-30 COMPILER
RAGE

I31IS-II PL/M-a0 03. 1 COMPILATION OF MODULE ANALOGULOUTrCOUt
ODJECT MODULE PLACED IN :F4!MCDS5.0BJ
COMPILER INVOf-ED BV’ PLM3" :F4 vrQDS. SRC DEBUG

MODULE */

/¢ */
/* ANALOGUE OUT -
/ % */
/* THIS MODULE ACCEPTS A 16 BIT NUMBER, REA-SSL' IMG
/* THE INCREMENTAL CHANGE IN MANIPULATED VARIAEL *
/[THE 12 LSBS ARE SIGNIFICANT.

/*m . THIS 1is ADDED/SUBTRACTED -0o/?Ro

/> THE PREVIOUS MANIPULATED VAR(ABLE PnD OUTPUT! ID *,
/* TO THE PLANT VIA D/A NO. 1. (WHICH IS MEMORY *
/* ADDRESSED) THE VALUE ’TOSSLANT’ IS MADE >
/* AVAILABLE TO OTHER ROUTINES AS THE 1 IDIATS *
/* PAST MANIPULATED VARIABLE.

*

.

/*

+/

YJALOGU2 sou TSMODULE :

DO:
DECLARE iNCREMEINT (4D) BYTE EXTERNAL;
DECLARE TO SPLANT ADDRESS EXTERNAc.;
. DECLARE (SAT,ERR) BYTE EXTERNAL;
5 DECLARE (MINLEVEL,MAXLEVEL) ADDRESS EXTERNAL;
ANALOGUE SCUT:
PROCEDURE PUBLIC;
7 DECLARE TEMP ADDRESS;
3 DECLARE DACILO BYTE AT (7FF&H);
9 DECLARE DAC1HI BYTE AT (7FF7H) ;
10 SAT = oo0;
1 TEMP*(DOUBLE(INUREMENT(0)) OR
SHL (DOUBLE ((NOREMENT (1)),?)) 3
12 IF INCREMENT(2) OR (INCREMENT(3> AND 7FH)
<> OOH THEN
13 DO;
14 SAT = 30H;
15 TQSPLANT- MAXSLEVEL;
10 IF (INCREMENT(3) AND 80 T-EN
17 TOSPLANT = MINLSVEL;
13 END;
ELSE
13 DO;

I" (11 CREMENT (3D) And s«H = 80=

PL/M-80 COMPILER

PAGE
THEN
21 3 TOSPLANT = TO*PLANT - TEMP;
/* CHECK FOR NEGATIVE SIGN AND REMOVE IT */
/* IF NECESSARY. */
ELSE
- - TCSALANT = TOSPLANT * TEMP;
23 IF (TOSPLANT)MAXLEVEL) THEN
24 3 DO;
25 4 PAT-30H,
26 4 TOIiSLANT = MAXSLEVEL;
27 4 END:;
28 3 IF (TOSPLANT <MINLEVEL) THEN
29 DO;
30 4 SAT=aOH;
31 4 TO*PLANT »MINLEVEL;
32 4 END;
u 3 END;
34 2 OUTPUT(0E4H) = SAT OR ERR;
/* LIGHT LEDS */
35 2 DACIL0 - LOW(TOSPLANT) ;
36 2 DACIHI = HIGH(TOSPLANT);
/* SEND TO D/A AND CONVERT.
37 END ANALOGUESOUT;
33 1 END AMALOGUESOUTSMODULE;

MODULE INFORMATION:

CODE AREA SIZE = 00B7H 1330
VARIABLE AREA SIZE = 0002H 2D
MAXIMUM STACK SIZE = 0004H . 40

,83 LINES READ
0 PROGRAM ERROR(S)

END OF PL/M-80 COMPILATION

/ Sededese e ek et g g K K Kk k k ke k)
/ * */
/* MODULE 12 */
/¥ */
/* THIS MODULE IS CALLED TO ENABLE */
/* A SMOOTH ENTRY TO A EXIT FROM +/

/* MONITOR WHEN REQUESTED BY OPERTR¢/
/* ¢/

/‘*************************»***.*****/

STITLE('JUMP TO MONITOR ROUTINE’)
NAMETERROGATE

CSEG

MONINS» RST 1
BACK: RET; ENSURE THAT CONTROLLER
:3Toca IS USED ON RETURN

c\jn

PL/*-80 ccrP
PAGE 1

PL/M-80 V3. 1 COMPILATION OF MODULE INCONTVARIABLEMODULE

OBJECT MODULE PLACED IN :F4:M0D6.QBJ
COMPILER INVOKED BY: PL*30 :-4:,10D6. SRC

/ k

/* MODULE ¢

/ %

»l* . > . 1 CONTROUTED VAAIOBLE

/* THIS MODULE INITIATES A/D CONVERSION,

/* WAITS, AND READS IN RESULT AS 12 BIT (L'SB)
/* VALUE. THE VARIABLE FROMSPLANT IS

/* AVAILABLE ”0 OTHER ROUTINES AS THE MOST

/* RECENT VALUE OF THE CONTROLLED VARIABLE.

*/

1 IN*CONTSVARIABLEIMODULE f
DO;
2 1 DECLARE FROMSPLANT(4D) BYTE EXTERNAL;
1 INPUTSCCNTROLLED 5VARIABLE!

PROCEDURE PUBLIC;

4 _ DECLARE ADCHI BYTE AT (7FFEH);
5 2 DECLARE ADCLO BYTE AT (7F.-DH) r
6 2 DECLARE STATUS BYTE AT (7FFCH);
7 2 DECLARE CNVCMD BYTE AT (7-FBH);
8 2 DISABLE ;
9 2 CNVCMD = 00;
/* START CONVERSION */
10 2 DO WH(LE ((STATUS AND 80H) = 80H);
11 3 END; /* WHILE LOOP */
i
/+ TEST FO1 END OF A/D CONVERSION.*/
/* READ WHEN READY. */
12 2 FRO"15PLANT (0)-ADCLO;
13 2 FROM6PLAN f (1)=ADCHI;
/* READ IN RESULT FROM A/D o/
14 2 ENABLE;
15 2 END [vPijT BOON r?Ol.LEDSVAR; ABLE ;

16 t -\D IN<CONTSVARIABLESMODULE;

2U 'rf-ao CCfPILcR
PAGE 1

19:3-1: PL/M-80 V3.1 COMPILATION OF MODULE INCONTVARIABLEMODULE
OBJECT MODULE PLACED IN :F4:MODS.OBJ
COMP(LER INVOKED BY: PLM30 :-6:M OD6.SRC

ok ok sk sk oskosk sk ok oskoskoskosk ok sk ok sk sk ok osk ok sk ok % ******/

/ * */

/* MODULE ¢ */
/ * *
/* . jyi*TRgL*AEI* VARJABL _

/&

/* THIS MODULE INITIATE? 1/D CONVERSION, >/

/* WAITS, AND READS IN RESULT AS 12 BIT(USB) */

/% AVAILABLE TO OTHER ROUTINES AS THE MOST */
/* RECENT VALUE OF THE CONTROLLED VARIABLE. */
| # */

»*****‘/

*/

1 INSCONTSVA RIABLE SMODULE i

DO;
2 1 DECLARE FROMSPLANT(LD) BYTE EXTERNAL
3 1 INPUTSCONT ROLLEDs VARIABLE:

PROCEDURE PUBLIC;

4 2 DECLARE ADCHI BYTE AT (7FFSH)e
5 2 DECLARE ADCLO BYTE AT (7F-DH)e
6 2 DECLARE STATUS BYTE AT (7FFCH);
7 2 DECLARE CNVCML j/TE AT <7=FBH>;
3 2 DISABLE
9 2 CNVCMD = 00;
/* START CONVERSION */
10 2 DO WHILE <(STAUS AND 30H) » BOH);
11 3 END; /¢ WHILE LOOP */
i
/* TEST FOi END OF A/D CONVERSION. */
/* READ WHEN READY. */
12 2 FROM?PLANT(0)=ADCLO;
13 2 FROM'SPLANT <1)=ADCh I ;
/* READ IN RESULT FROM A/D ¢/
14 2 ENABLE;
15 2 END INOIJ TBCONTROLLED SVARTABLE ;

16 1 F\D INSCONTSVARIABLESMODULE;

PL/rt-80 COMPILER
PAGE

MODULE INFORMATION:

CCDI AREA SIZE - 0021H 33D
VARIABLE AREA SIZE = OOOOH 00
MAXIMUM STACK SIZE = OOOvrt 00

AS LINES REAL
0 PROGRAM ERROR(S)

END OF PL/M-BO COMPILATION

PL/m-80 COMPILER
PAGE

i513-11 PL. M-80 V3.1 COMPILATION OF MODULE SXTRAVARIABLEMODULE

OBJECT MODULE PLACED IN :F4: M0D7. OBJ
"OMPIubR INVOKED BY. -LM30 :yJ :MOD7. 3RC DEBUG

/ %

/* MODULE 7

/* EXTRA VARIABLE MODULE

/ m

/* THIS MODULE UNDERTAKESO TASKS:-

/* 1) OUTPUT OFPREDICTION ERROR
IN ANALOGUE FORM TO A CHART
RECORDER .

2) DISPLAY PREDICTION ERROR VIA
VIA LIGHT EMITTING DIODES ON
THE FRONT PANEL IN BAR GRAPH
FORMAT.

3) OUTPUT OF A SINGLE MODEL
PARAMETER TO * r "SLET\ £

* %

% s * o ®

* ALL ABOVE FUNCT .CUR REGULAR-
/* LY DURING RUN TIM.
/> ALL ARE INTENDED TO rvEEP -T OPER-
* ATOR INFORMED OF PROGRE.T .
/ *

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

LR O O *>"<** LR R G *.****** *****>*«.**/

/*

*/
EXTRA iVARI ABLESMODULE:
DO;

6 INCLUDE (:F1:FLOAT.SRC)

FSET:

PROCEDURE (FA, OPI1, OP'2) EXTERNAL;
DECLARE(FA,OPl, 0P2) ADDRESS;
END FSET;

FSUB:

“ROCEDURE (FA, QA) EXTERNAL;
DECLARE (FA,0A) ADDRESS;
END -SUB;

-ADD:

ROCEDURE(FA,0A) EXTERNAL;
DECLARE (FA,0A) ADDRESS;
END -ADD;

FOFB2D:

*OCEDURE(FA,0A) EXTERNAL;
DECLARE (FA,0A) ADDRESS;
_NO FDFB2D;

*/

PL/1-80 COMPILER
PAGE

14 1 FDIV:
PROCEDURE(FA,CA) EXTERNAL;
15 DECLARE (FA,OA) ADDRESS;
16 2 END FDIV;
17 1 FMUL :
PROCEDURE(FA,0A) EXTERNAL;
13 DECLARE (FA,OA) ADDRESS;
19 2 END FMUL;
20 1 FLOAD:
PROCEDURE(FA,0A) EXTERNAL;
2 DECLARE (FA,OA) ADDRESS;
END FLOAD;
T FCLR:
PROCEDURE(FA) EXTERNAL;
24 DECLARE FA ADDRESS;
L5 END FCLR;
26 1 FNEG:
PROCEDURE (FA) EXTERNAL;
27 2 DECLARE FA ADDRESS;
23 END FNEG;
29 1 -LTD'S:
PROCEDURE (FA,0A) EXTERNAL;
30 2 DECLARE (FA,0A) ADDRESS;
END FLTDS;
1 FIXSD:
PROCEDURE (FA,0A) EXTERNAL;
Uw L DECLARE (FA,OA) ADDRESS;
34 END FIXSD:
33 1 "5TOR s
PROCEDURE(FA,0A) EXTERNAL;
= DECLARE (FA,O0A) ADDRESS;
37 END FSTOR;
33 1 > DECLARE FPR <V3D) BYTE EXTERNAL;
39 1 DECLARE ERRPRED(4D) BYTE EXTERNAL;
40 1 DECLARE FIRSTfiSRRORSrLAG BY“E EXTERNAL
41 1 DECLARE SPECIFY STRUCTURE:
SIGN BYTE,
SCALE ADDRESS,
SLENGTH BYTE,
STRINGtPTR ADDRESS) EXTERNAL;
42 1 DECLARE DECSSTR:NG (10) BfTE EXTERNAL;
43 1 DECLARE <IT r*FLAG, TTYITL--E, TTYSUP) BY'
EXTERNAL:
44 1 CECL, (E PATNXiJ Byrc EXTERNAL;

/’T D:.!,Lh.>: CA: :RR: BY"-. EATFRNAL :

PL/rt-SO COMPILER

46

47

43

49

50

51

52
53

54

Ss.

57
53

59
60
61
62

63

64
65

66
67

63
63

70
1

1

NN NN N

&C

NW W &'

PAGE

DECLARE L(200D) BYTE EXTERNAL;

ASCS50UT:
PROCEDURE(THING) PUBLIC:

/*.**’k**.’.’:.* “K__’k’k*******_***********'**/

/* THIS PROCEDURE CHECKS STATUS OF +/
/*- TTY AND OUTPUTS PARAMETER TO IT */
/* WHEN READY. */

DECLARE THING BYTE;

CO: IF(INPUT(237D) AND OIH) = ooH

THEN
GO TO CO;

ELSE
OUTPUT(OECH) = THING ;

END ASCSOUT;

NUMOUT:
PROCEDURE (AMOUNT,WIDTH):
+ +++ + % KRGS R0 KX

/* NUMOUT TAKES A BINARY N XR
CONVERTS IT TO DECIMAL IN

ASCII FORMAT. THIS IS 01 TO
TTY.

*/

DECLARE AMOUNT ADDRESS;

DECLARE WIDTH BYTE;

DECLARE 1 BYTE;

DECLARE CHARS(1) BYTE;

DECLARE DIGITS(*) BYTE DATA (°0123456733°

DO 1=1 TO WIDTH;

CHARS(WIDTH-I) -DIGITS(AMOUNT MOD 10D);
= AMOUNT/10D;

END;

I = 00;

DO WHILE CHARS(I) = O’ AMD I (WIDTH-i;
CHARS(1)=00;

1=1+1;

END;

DO 1=0 TO WIDTH-I;
CALL ASC3QUT(CHARS(I>);
END;

END NUMOUT;

PL/-1-30 COMPILER

72

73
74
75
76
77
78

30

31
32

33

34
35
36

37

33

39
90
91

92

93

NN O NN NN

MMN NN

W W N

°PGE

EXTRASVARIABLE:
PROCEDURE PUBLIC;

/**************+**********+**/

/» PREDICTION ERROR IS CONVERTED TO INTEGER */

/* AND OUTPUTTED TO D/A NO 2 AND CHART RECORDER #/

/* SUCH THAT 0 TO 100% ERROR = 0 TO 10 VOLTS */
/* NOTE THAT PRED ERR CAN RANGE 0 TO 200% BUT */
/* IS NOT EXPECTED TO. */

DECLARE DAC2L0 BYTE AT (7FF4H);
DECLARE DAC2HI BYTE AT (7FF5H);

DECLARE LEDSSERR ADDRESS:

DECLARE LEDS BYTE;

DECLARE REFERENCE ADDRESS;

DECLARE DIGS (7) BYTE DATA (0, 1,3, 7, 15D,31D,63D);

DECLARE 1 BYTE;

DECLARE P BYTE;

CALL FLOAD(.FPR, . ERRPRED);
CALL FIXSD(.FPR,. ERRPRED);

/* CHECK FOR OVERFLOW */

IF ((ERRPRED (2) (> OOH) OR
((ERRPRED(3) AND 07FH) < OOH) OR
((ERRPRED <1) AND OFOH) O OOH)) THEN

DO;
DAC2LO-OFFH;
DAC2HI=0FFH;

LEDSSERR = OFFFH;
/* PASSED TO FRONT PANEL DISPLAY SECTION */

END;
ELSE

DO;
DAC2L0=£RRPRED(O);
DAC2HI=ERRPRED <1) :

LEDSSERR = SHL(DOUBLE(ERRPRED<1)),3)
OR DOUBLE(ERRPRED(0)) ;

END;

R e o S S L R S L R L L

/'- THIS ROUTINE DISPLAYS PREDICTION ERROR
VIA ¢ LEDS ON THE FRONT PANEL. THE FIRST
EDICT ION ERROR AFTER A RESET OR AN INTER-
ROGATE REQUEST IS USED AS A REFERENCE.

PL/M-80 COMPILER
PAGE

SUBSEQUENT ERRORS APE NORMALISED TO THIS +/

94 2 ERRORSLED:
JRR kK e Kk p PP YT

DO;
95 o IF FIRSTSERPORIFLAG = 01H THEN
96 3 DO;
97 4 REFERENCE = LEDS5SERR;
98 4 FIRSTSERROR'SFLAG = 00;
99 4 END;
100 W LEDS » DIGS(<(3HL(LEDSsERR,4)/REFERENCE)
101 & IF (LEDSSERR > REFERENCE) THEN
102 LEDS=063D;
/* FOR A LINEAR DISPLAY ON LEDS , "AO
PREDICTION ERROR AS A NUMBER BETWEEN
0 & 6, THEN LOOK UP IN TABLE (DIGS)
AND OUTPUT THIS NUMBER TO LEDS PORT =
103 ERR = SHL (LEDS,)
104 OUTPUT(22801 - SAT OR ERR ;
105 3 END; /* ERROHSLED*/
10h PARMSOUi:
IF TTYSFLAG=0I
THEN
107 2 DO ;
103 3 IF TTYIiTIME > TTYSUP THEN
109 3 DO;
HO 4 TTY3TIME = 00;
HI a P = (PARMNO0%*4D);
112 4 CALL FLOAD(.FPR,.L (P));
11: U SPECIFY.STRINGSPTR*.DECSTRING;
114 4 CALL FQFti2D(.FPR,. SPECIFY);
/* CONVERT TO BINARY THE PARAMETER POINTED
TO BY PARMNO.
*/
/¢ NOW OUTPUT TO TTY */
115 4 CALL ASC5CU ! >)
1iS 4 CALL ACC5CUT (° L’) ;
117 4 CALL ASC30UT < ") ;
113 4 CALL ASC60UT(’ ’);
119 a CALL ASCSOUT(SPECIFY.SION);
120 4 CALL ASCSOUTV ' »;
121 4 CALL ASOICUT (':'");
122 a CALL ASCSOUT('X*) ;

PL/M-80 COMPILE =

123

124
125

126

127

123
129

130

131
132

133
134

135
136
137

138

PAGE 6
4 CALL ASCiOUT (* P’) ;
4 IF (;SPECIFY. SCALE AND aOOOH) =30001-0 THEN
4 CALL ASOSOUT
ELSE
4 CALL ASCS0UT (° *) ;
4 SPECIFY.SCALE =<(NOT(SPECIFY.SCALE)>> OOOIH);

/»a CONVERT FROM :'S COMPLEMENT */

4 CALL NUMOUT(SPECIFY.SCALE,:);
4 CALL ASCSOUTC *);

4 DO I-0 TO SPECIFY.SLENGTH;

5 CALL ASCSOUT(DEC5STWING(I));
5 END;

4 CALL ASCSOUT(ODH);

4 CALL ASCSCUr(OAH);

/* CAR? RET & LINE FEED */

4 END;
TTYSTIME=TTYSTI"E*01;

2 Ei'.d;

2 END EXTrRASVARIAG'-£;

i END EXTRA'SVARIABLE SMOOLL*;

MODULE INFORMATION:

END

* CODE AREA SIZE = 026DH S21D
VARIABLE AREA SIZE =000DH 13D
MAXIMUM STACK SIZE =0006H 6D

310 LINES READ
0 PROGRAM ERROR(S)

OF PL/M-3U COMPILATION

PL/ %-80 CO.rPI _£R
PAGE

1315-11 PL/M-30 V3.1 COMPILATION o0r MODULE PREDICTANDUPDATEMODULE

OBJECT MODULE PLACED IN :F4tMODB. OBJ
COMPILER I,WnKEQ BY: PLMS80 :-4 JMnD6.3PC

/* */
/* MODULE NO. 3 */
[PREDICT AND UPDATE */
/* MODULE */

/ # */
/* THIS MODULE PREDICTS CONTROLLED VARIABLE */
/* DYPRED. PREDICTION ERROR IS THEN USED TO */
/+ UPDATE MODEL PARAMETERS (L(I)). %/
/* GAMMA IS PURELY A WEIGHTING CONSTANT. *
/* THIS ROUTINE IS CALLED IN BOTH MANUAL AND */
/* AUTO MODES. IMPORTANT VARIABLES ARE AVAIL-*/
/* ABLE TO OTHER ROUTINES (DATAS3HUFFLE, %/

/» DISPLAYSVARIABLE). */
/* */

/ *

/
PREDICTSAND3UPC ATESMQDULE:

DO;

EAuD:

PROCEDURE(FA, CA) .
3 DECLARE (FA,0A) ADDRESS;
4 - END FADD;
5 1 FDIV:

PROCEDURE(FA,0A) EXTERNAL;
6 2 DECLARE (FA,QA) ADDRESS;
7 END FDIV;
3 1 FMUL:

P ROCEDURE(FA, OA) EXTERNAL;
9 DECLARE (FA,0A) ADDRESS;
10 END FMUL;
11 1 FLOAD:

PROCEDURE(FA,CA) EXTERNAL;
12 2 DECLARE (FA,0A) ADDRESS;

END FLOAD;
14 1 FSTORt

PROCEDURE(FA,OA)
13 DECLARE (FA,CA) ADDRESS;
15 END FSTOR;

17 1 "CL 1:

Pi./71-a0 COMPILE!
PAGE

PROCEDURE (FA) EXTERNAL;

13 2 DECLARE FA ADDRESS;
19 2 END FCLR;
20 1 FNEG:
PROCEDURE (FA) EXTERNAL;
21 2 DECLARE FA ADDRESS;
22 2 END FNEG;
U DECLARE SUNSL(4D) BYTE EXTERNAL;
24 DECLARE ARRAYSLENGTM BYTE EXTERNAL;

DECLARE FPRQ3D) BYTE EXTERNAL;
26 DECLARE MIDDLEMAN (4D) BYTE EXTERNAL;

27 DECLARE L(200D) BYTE EXTERNAL;
23 DECLARE DV(200D) BYTE EXTERNAL;
29 DECLARE FILTGAIN(40) BYTE EXTERNAL;
DO DECLARE R2(4D> BYTE EXTERNAL;
31 DECLARE R1(4D) BYTE EXTERNAL;
u— DECLARE DY1(4D> BYTE EXTERNAL;
ww DECLARE R2SUB1(4D) BYTE EXTERNAL;
34 DECi.ARE DYO (40) BYTE EXTERNAL;
35 DECLARE GAMMA(4D) BYTE EXTERNAL;
36 DECLARE PLANTS6AIN(40) BYTE EXTERNAL;
37 DECLARE DYPRED(4D) BYTE EXTERNAL;
33 DECLARE ERRPRED (40) BYTE EX"ERMAL;
39 1 PREDICTSANDIUPDATE:
PROCEDURE PUBLIC;
40 2 DECLARE I BYTE;
41 2 DO;
42 3 CALL FCIR(.FPR); / < CuEAR FLOA-InG PT ACC. *
43 3 CALL FSTOR(.FPR,. DYPRED-;
44 3 CALL FSTOR (. FPR, . ERRPRED) ;
/* CLEAR PREDICTION & ERROR FOR RECYCL
/* NOW PREDICT */

45 3 DO I = 4D TO (ARRAYSLEMGTH * 40 - 40) BY 4D;
46 4 CALL FLOAD(.FPR,. L(1));

/* LOAD MODEL PARAMETER */
47 4 CALL FMUL (. - PR, . DV(1)) ;

/* MULTIPLY BY MANIPULATED VARIABLE */
43 4 CALL FQDO(.FPR,. DYPRED);

/* ADD RESULT TO PREDICTION */
49 4 CALL FSTOR(. * PR,. DYPRED)e

/* AND STORE RESULT

50 E -D;

PL/M-dO COMPILE!

54 3
53 3
56 3
57 3
58 3
59 3
60 3

61 4
62 4
63 4
64 4
65 4

66 3

67 3
68 4

69 4
7ii 3

PAGE

/% THE ABOVE DO LOOP CALCULATES SUM
OF MODEL PARAMETERS * HISTORY OF
MANIPULATED VARIABLE */

CALL CDIV <.FAR, * *ILT3AIN) ;
/+ DIVIDE BY FILTER GAIN */

CALL FADD (. FPR, . DY1) ;
/» ADD PREVIOUS VALUE OF CONTROLLED
VARIABLE *

CALL FDIV(. FPR, . R1);

CALL FSTOR(.FPR,. DYPRED);
/% STORE FINAL PREDICTION RESULT »/

/* NOW UPDATE */

CALL FnEG<.-PR);
/* NEGATES PREDICTION TO -YPRED*/

CALL FADD (.!-PR, . DYO) ;
/* CALCULATE PREDICTION ERROR */

CALL F3rOR(.FPR,. ERRPRED) ;

CALL FMUL<.FPR,. GAMMA);
/* MULTIPLY BY WEIGHTING FACTOR */

CALL FSTOR(.FPR,. MIDDLEMAN)-
/* KEEP FOR LATER USE */

DO 1=4D TO (ARRAYSLENOTH#4D-4D) BY 4D;

caLL FLOAD(.FPR,. MIDDLEMAN);
CALL FMUL(. “PR,. DV(1));
/ < DV(1) *OAmmA‘ PREDICTION ERROR */

CALL FADD(.FPR,.L(1)>;
/* FOR EACH MODEL PARAMETER (1)
CALCULATE NEW PARAMETER
= OLD L<I) > GAMMA»OV <I) *£RRPRED */

CALL FSTQR(.FPU,.L<I)>;
/* STORE EACH NEW PARAMETER IN TURN */

END-
/* now calculate estimated plant s.s. GaIN */

/* i/'s = SSG = SUMMATION L (I1)/R2-1 o/
CA..L FSTCR (. FPR, ,L<40)); /* LOAD FIRST L */

DO 1= 4D TO <ARRAYSISNGTH*4D-3D) BY 40;
CALL FAODt.FPR,.L(I>4D>>;
END;

CA-.L FSTOK. FPR, . SUMSL) ;

PL/ir-80 COMPILER

PAGE 4
71 CALL FDIV(.FPR,. R23L31);
/* R2SUB1 = CONSTANT = R2-1 INITIALIZED IN SETUP */
72 CALL F3TOR (. FPR, . PLANTSGAIN) ;
7J < END ;
74 END; /* PROCEDURE */
75 1 EVIj. /4 PREDICT SAND SUPDATEStfODULE */

rQCULE INFORMATION:

0196H 406D
OOOIH ID
0002:4 2D

CODE AiFA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
174 LINES READ

0 DxOG ?AM ERROR (S)

END OF PL/>1-30 COMPILATION

PL//-30

PQGZ

1315-!'1 PL/.-:-30 VJ. 1 CL ON C- MODULE MAN 1PVfIRI ABLECALCMODUL

OBJECT MODULE 1I'LACED 'i rCDO. OBJ

COMPILER TI'JVOr. CD BY: “ r30 :-L:rODB. SRC
/ 1>*..*f**** :'.**++*.‘.’d¢.! 44/
/% 4/
/* r CDUL / 1 9 */
/*m MANIPULATED VARIAULE */
/* CALCULATION =mmCLU"L. */
/ * *!
/* this MODULE ran.es - .'3; ¢co -:uc., »/
/ * PARAMETERS OBTAINED °-IM * «-EDICT AND Y,
/* UPDATE MODULE THESE UPC UCED 0 0, ,o- *,

"/
LY.

[* [MOOR 3NT VARIABLES PR- A’JAIL- +/
/* ABLE TO OTHER ROUTI' IS < CAT, 3" U-.-.E,
/ m DISPLAY6VARIABLE ./
/‘k
/ *<.>**>* sk sk sk sk 3‘!4* skkskokoksk skkok «.**t* ¢ >>>l< %k skk «.ﬂzﬂjgl

/ *
“f
MANISSVARIABLESCALC$MODULE
DO:
u i FSUBIi

PROCEDURE(FA, CA) EXTERNAL;
- DECLARE (FA,CA) ADDRESS;

4 END FSUB;
5 1 FADD :
PROCEDURE <'A, CA) EXTERNAL;
6 2 DECLARE (FA,0A) ADD -ESS;
END FADD:;
a I FDIV:
PROCEDL"E(FA,OH) EXTERNAL;
9 2 DECLARE (FA,O0A) ADDRESS;
10 2 2ND FDIV;
11 1 FMUL :
) PROCEDL :'E(-A, CA) EXfERNAL;
12 N DECLARE C“A,0A> .
| END FMUL;
14 1 FLOOD:
PROCEDURE ('-A, CA) EX Ry .;
r* DECLARE v-A, *A) ADD':- 3U;
1:- 2 END F.CAQ;

17 1 -3 'OR:

PL/M-80 COM - EI

13
13

21

24
25

26
27
28
29

30
31
32
33
34
35
36
37
33
33

41
42
43
44
45
46

47
43

43

PPGE

PROCEDURE (FA, OA) EXTIV' AL ;
DECLARE (FA, 0*> ADDRESS;

E\D FS 'Cl;

-CL,::
PROCEDURE (
DECLARE FA

E'iD FCLR;

FNEG:
PROCEDURE (FA)

EXTERNAL;
PCD.ESS;

EXTERNA.;

DECLARE FA ADDRESS;

END FNEO:;

DECLARE
DECLARE
DECLARE
DECLARE

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLA.'T
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

e el e T T B G g N S gy Sy

ARRAYSLENCH
SUi"VSL (4D
SETBE RRCRO (4D> BY Ex
SETSERRORI

:-VT" EXTERNAL;
BYTE EX EV..-L;
- ll.Al ;

(-D) BY E EXTERNAL;

FP'-v(13D.) BYTE EX:iR'"L;

L(2000) BYTE EXTERNAL;
DV<200B> By r£ EX -ERNAL;
FILTGA:N (4D) BYTE E.-TER »AL;
R2 (4D> BY uX 'E 'NAL;
RI1(4D) BYTE E*r:3NAL;

DY: (4D) BYTE Ex ERix
fijSUB 1(40) BYTE E< : AL;
OYO(40) BYTE EXTER’AL ;
GAMI1A(40) BYTE EXTER' AL;
1LANTSi33i>: (4Di BYTE EX ERNAL;
DYPRED(40) BYTE EXTERNAL;
ERRPREO(4D) BYTE -XT.?:AL;

1 MANI - SVARI ABLESCALC’
PROCEDURE PUBLIC;

DECLARE 1 BYTE;

NN

W W

CALLFCL H.-PR); /*
CALL FSTQR(. F3Rj . DV(V)); /*

DECLARE QUD> BY’ E;

CLEAl FLOATING PTACC.*/

DV(:D 13VMAMIP VAR

TO LE CALCULATED ANO OUTED TO PL-'-1 */
/* INITIALIZED TO ZERO HERE */

3 CALL FLOAD(.FPR,. SLNtL);
/* SUMMATION OF YODEL Cd,to>,E™E <S CALCULATED
IN ’ «PREDICT AND LPDATE PROC ° */

3 CALL FN£G(. FDR) ;

/* -VE
/* 01 = LI -

VALUE NEEDED */
SUMMATION (L(I))
= LI + (1-R2) /\

CAN NOW PE CALCULATED. */

* -E FCLI. '"WI\G CO .COO CALCULATES

; 'HEN CALCULATES
. -ITCH IS PARTIAL COMHIBL
IANIP VAR TO BE CALCULATED
. .3 JJADED FOR A RECYCLE ' .
.:H E1 4+1) TO BE CALCULATED

-HRAYS .ENGT- * uD - i0O> 3" -D:

:ALL FADD <.FAR,.L(I));
- 1 I) IN ACCUMULATOR -

M_ FSTOR(. FPR, .
- "STORE *OR USE 1 I

. ._ FMUL . :PR, . OV. : 5
*DVT' * Q"N

AL -ROD +. PR, .DV<)):
-STOR .FPR,.DV(-;

_ FLOADC. FPR, . Q) ;
< " :Ar o -OR NEXT CYCLE 0(N+1)=C(N) +. ; m

D;

-, M (.mR)V 0>);

;ALCL* A’ >AR: AL RESUL

.V = (I/PLANTSAIN)*<1/ 2°» T ' DV:I *C
FD:. . rf R .PLANTS$GAIN - :

» DIVIDEBY PLANT GAIN */

.J. V . PR, ..

e: .-. -PR,. DV .0))

w .-ROR TOM SET n CON RI
:= ADDED "0 DV<0)

JAD - L JbTfe ROR
ALL FMUL(.FPR,.31);
e CP " .ATE 31*E(0)

303 . :p<,. SCTtERAORY) :

GAIN);
- i i . T,. .ANMGAI'i
woeo =LUL . ‘- < LViI A -
.'L- -3TON. -PR, .DV<0)) ;

@ c AN JAI ;*e-1 GA .)

PL/M-00 COMPILER
'AGE

70 END-

71 2ND. # g-JCEC'Jh.- * '

"ODULE INFORMATION:

CODE AREA SIZE = OOFort
VARIABLE AREA S.ZE = 0005-
MAXIMUM STACK S ,ZE = >0021-1

172 LIMEL READ
0 PROGRAM ER"MORCS)

END Cr PL/M-80 Cu”RXLA I1OM

PL/.1-80 COMPILER

1313 -11
OBJECT
COMPILER INVOKED

PL/M-SO V3.
MODULE PLACED IN :F4:MOD10.0BJ

1QGE

1 COMPILA ION L> MCOLLIE AL. rMUv- .

BY: PL '8 s -a.: IGD10. 3KC

[#*» %> qm¥*>%% %%

4 i

5 2
5 2

7

3 2

9 2
10 3
11 3
12 4
13 4
14 3
15 2
16 2
17 i

/ *

/* MODULE 10

/* ALARM MODL-E

/*m

/4 THIS MODULE IS CP-wED CiNTAi— E -
/* TECTIQN. ALL LEDS 'LASH.

[

w1y
* 1
*/
*/
*/
*/
*/

EE S S G R O R S O O »/\&**»***_» L */

/ »
*/
ALARMSMODULE:
DO;

DECLARE (SAT,ERR) BYTE EXTERNAL;

DECLARE FIRSTi'SRRORIFLAG BY*E EX*'§RN-.

flash;
PROCEDURE PUBLIC;

DECLARE (1,J) BYTE;

SAT=00:
ERR=0C;
FIRSTSERRORSFLAG = 01H;

DO 1=1 TO SOD;
OUTPUT (0E4H) =INQT (SAT) ;

DO J= 1 TO 25;
CALL TIMECS50D);
END;

END;

SAT=00;

END FLA3H;

END ALARM3MODULE;

MODULE INFORMATIONS

CODE ARFEA SIZE - 004AH 74D
VARIABLE ARFA SIZE
MAXIMUM STACK SIZE (@)

37 LINES

READ

0 PROGRAM ERROR(S)

PL/M—00 LCM-1

.
9

/*
/*
/*

MODULE
DATA 3HUr~L3

\O. 11
MODUuUE

/ >

/* THIS MODULE TAKES THE TIr.E DEPENDANT

'% PARAMETERS USED DURING GEL,- TUNING AND

/ * CONTROLLING AND Sr 'K-FIES THEM BACKWARDS
/* IN TIME IN PREPERATION FOR FOR THE NEX',
/* CYCLE . CONSEQUENTLY TH'S MODULE IS ONLY
/* CALLED AT THE END Or EACH CYCLE BY EITHER
/* AUTO OR MANUAL MODE.

*/
DATAS3HUFFL—SMGDULe.:

DO;

SINCLUDE(: FL: -LOAN.SRC >

DECLARE ARRAYSLENGI1 4 BYTE EX'ERNAL;
DECLARE SE7SERRCR0O (LD) BYTE EX E-.Al;
DECLARE SETSERROR1 UJ> BYTE EXTERNAL;

DECLARE
DECLARE
DECLARE
DECLARE

L(200D) BYTE EXTE -NAL;
DV(200D) BYTE EXTERNAL ;
DY1(AD> BYTE EXTERNAL;
DYO<4D) Br'TE EXTERNA, ;

*/
*/

* 1

*/
*/
>/
*/

*/
*/

*/

DECLARE
DECLARE

DECLARE
DECLARE

DECLARE

DATA-SSHu'FLE:
PROCEDURE PUBLIC;

DECLARE 1 BYE;

CONfVARO (AD) BYTE ¢X 'z TNPL;
CON7VAR1(4D) BYT? ?X'ERNAL;
MANIPVARO(40) BYTE EXTERNA,
MANI AVAR 1 (4D) BYTE ERNA ,
70SPLANT ADDRESS EX'ERNA.;

DECLARE II BYTE;

DO I='i
11
DV (I1)

/ * SHIL E°

CAae

TO 4Q*ARRAY'3LENGT;- -

= 4D*ARRAY£L: >GTH -

D;

1 - I

= D'v (11 - 40);

® °..AT,D VAVIABLE : ACKWARCS

DO I = OO0 TO 2ZD

DY1(7)=DYO(I);
SETZERAC31 (1)=5E'$E'<#v2;-0 : 1)
CON"VAIl (1)=CONTVALV <:);

MANIPVAAI(I) = MPNIPVARO(I)

END;

END; /*a PROCEDURE */
nD; /- DA USnijFr: E$i*ODULE */

ASM80 :F6:M0D12.SRC

ISIS-IT 8080/8083 MACQ S H Sc/< 74.

LCC OBJ LINE SOURCE STA--:'ENT

/

/¥ */
/o* ‘GDULE 12 >/
/ * *

/«» THIS MODULE IS CALLED TO STABLE 7
/* A SNCO1H ENTRY TO & EXIT FROM *,

f /* MONITOR WHEN REQUESTED BY C~ERTR*/
8 /# */
10
11
12 TITLE (* JUT3 TO MONITOR ROUTI'.E’)
13 NAME THRRGGATE
14
15 CSEG
15
0000 OF 17 MQNINS: RET
000A C9 18 BACK: RET s ENSURE THAT QCN"ROLLER
19 ;STACK IS USED ON -E "R
20 END
PUBLIC SYMBOLS
EXTERNAL SYMBOLS
USER' SYMBOLS
BACK C 0001 MONINS 0 0000

ASSEMBLY COMPLETE, NO ERRORS

ISIS-1 I OBJECT LOCATER V .0 IN"OKED BY:
-LOCATE :F! :BAD.MOD CGDE(C400H> DWTAODOFH) STACK(412(H &

+*0RDEP(CODE DATA STACK) MAP SYMBOLS PRINT(:LP:)

SYMBOL TABLE OF MODULE BAD
READ F"OM FILE :F1: BAD.MOD
URITT' 4 TO FILE :FI:BAD

VALUL TYPE sY:1BOL

MOD SELFTUNE CONTPOLMODULE
41 ACH SYM MEMORV
3DOFH SYM FRR .
3D21H SYM MIDDLEMAN
3D25H SYM FIRSTERRORFLAG
3D26H SYM FLAGWORD
3D27H SYM MANUALFLAG
3D28H SYM INTERROGATEFLAG
3D29H SYM SETPOINT
3D2DH SYM FROMPLANT
3D31 H SYM TOPLANT
3D33H SYM CONTVARO
3D37H SYM CONTVAR1
303BH SYM MANIPYVMRO
3D3FH SYM MANIPVARI
3D43H SYM DELTAVO
3D47H SYM DYO
3D4BH SYM DY1
3D4FH SYM LOLEVEL
3D51H SYM HI LEVEL
3D53H BYM MXLEVEL
3D55H SYM MINLEVEL
3D57H SYM SAT
305SH SYM EPF
3D39H SYM CONSTANT
3DSDH SYM (1
3D61 H erM SETERRORO
3D65H SYM SETEPRORI1
3D6 =H INCREMENT
3DoDH SYM L
3E35H SYM DV
3EFDH SYM FILTGAIN
3F01IH SYM P2
3F0SH SYM Ri
3F09H SYM ONE
3FODH SYyM TLD
3F1 1H SYM TLG
3F15H SYM SAMPL INGPERIOD
3F19H SYM R2SUB1
3FIDH SYM GAMVA
3F21H SYM HUNDRED
3F25H SYM PLANTGAIN
3F29H SYymM D,PRED
3F2DH SYM ERFFRED
3F31H SYM SAMPLETIME
3F32H SYM NANUALCOUNT
3F33H SYM SAMPLECOUNT
3F35H SYM RAMPFLAG

3F36H ENABLEMANUAL
3F37H SYM ENDCOUNT
3F39H SUML

3F3DH SYM ARRAYLENGTH
3F3EH SYM FARM 10
3F3FH SYM SPECIF,

SF COH SMI

SF51H
040 CH
041 7H
3F52H
TFFoH
7FFTH
7FF4H
7FF5H
7FFOH
7FFAH
7FF9H
SC SDH
3C3EH
3F53H
3F55H
3F57H
0429H
0429H
048CH
0822H
08MOH

7FESH
7FFCH
7CO00H
3D00H

SYM
SYM
SYM

3D0 1H SYM

7CFCH

7FE3H
7D84H
3D02H
7D8SH
709 AH
3D03H
3D05H
3D0eH
3D07H
7D73H
7E4 2H
7FF4H
7FF5H
3D0 8H
3 DOAH
3D0BH
7D7DH
3DODH
300 EH
7EB7H
7FO0BH

02B*H
08A»H
08ASH

41ADH
08A7H
3F58H

4 1ADH
09SDH
3FSAH

7FF6H
7FFTH

TT'i T IME

TTYUP

MESSAGE
STATEMENT

I

DMCILO

DmC 1HI

DAC2LO

DaC2 HI

INITL

MU ADR

GAINSEL

I0C SC30
LOC3C3E

A

(Y

CHANGETIME
SELFTUNECONTROL
SETUP
MODELMARS
BEGINLOOP
ENDLOOP
INTERRUPTMODULE
MEMORY

STATUS
INTERRUPTPROCESSOR
NUMBER

I

ENOUGH

E TRAM*RIABLEMODULE
MEMORY

MSCOUT

THING

co

NUMOUT

AMOUNT

WIDTH

I

CHAPS

DIGITS
EXTRAMA RIA BLE
DAC2LO

DAC2HI

LEDSERR

LEDS
REFERENCE
DIGS

I

P

ERPOPLEO
PARMOUT
TERFOG

MON ITO

BACK

MONINS
MANUALMODEMODULE
MEI1ORY
MANUALMODE

FP
ANALOGUEOUTMODULE
MEMORY

ANA LOGUEOUT
TEMP

DAC1LO

DAC1HI

:FS50H
3F51H
040 OH
041 7H
3F52H
7FFcH
7FFTH
7FF4H
7FF5H
7FFOH
7FFAH
7FF9H
3C3DH
3C3EH
3F33H
3F55H
3F57H
0429H
0429H
04SCH
0822H
08m CH

7FESH
7FFCH
7CO0H
300 OH
300 1H
7CFCH

7FESH
7084H
3002H
7088H
7D9AH
3003H
300 SH
300 oH
3007H
7073H
7TE42H
7FF4H
7FFSH
300 8H
300 MH
3D0OBH
7070H
300 OH
300 EH
7EB7H
7FO0BH

02BeH
08A6H
0 SASH

41A0H
08A7H
3F58H

41A0H
095DH
3F5mMH
TFFcH
TFFTH

TTi TIMVE

TTYUP

MESSrtOE
STATEMENT

I

DHC1LO

0ACIHI

OAC2LO

DAC2HT

INI TL

MUXAOR

Or-1 MSEL
LO0C3C3D
LOC3C3E

A

B

CHANOETIME
SELFTUNECONTFOL
SETUP
MOOELMARS
BEGINLOOP
ENDLOOF
INTERRUFTMOOULE
MehIORY

STATUS
IMTERRUPTPROCE3SOR
NUMBER

I

ENOUGH

E TRAVARIABLEMOOULE
M =Y

ASCAU'T

THING

(€0

NUMOUT

AMOUNT

WIDTH

I

CHAPS

DIGITS
EXTRAVARIABLE
DAC2L0

DA C2HI

LEOSERR

LEDS
REFERENCE

DIGS

I

P

EPPOFLED

PA RMOUT
TERROG

MONITO

BACK

MONIMS
MANDAIMO0 0 EMO 0 ULE
MEMORY
MANUALMODE

FP
ANALOGUEOUTMODULE
MEMORY

Al'lA LOGUEOUT
TEMP

DACILO

DACIHI

11U A Tum* 1tCWL 1t IODULE
41H[H S>11 MEM(F,
0HOBH 3YM MUTOVMMTICMODE
3FSCH £YM TENS
3F5SDH SYM INITS

SYM FP
3F60H I

MOD ALARVMMODULE
4' SYM MEMORY

0BS7TH SYM FLASH
MOD INCONTVA RIABLEMODULE
S\M MEMORY
OBSDH SYM INPUTCONTROLLEDVAF'IMBLE
7FFEH SiM ADCHI
7FFDH SYM MD-L0
7FFCH SYM STATUS
7FFBH SYM O\VCrID
MOD DATASHUFFLEfIODULE
411HDH MEMORY
0BvVEH SYM DATASHUFFLE
3FolH SYM 1
3F62H SYM 11
MOD FREDICTANDUPDATEMODULE
41ADH SYM MEMORY
0C67H SYM PREDICTANDUPDATE
3F63H SYM 1
MOD MANIPVAPIABLECMLCMD DULE
41ADH SYM MEMORY
ODFDH SYM MAMIPVARIABLECALC
3F64H 1
3F65sH SYM u

MEMORv MAP OF MODULE BAD
FEHO FPOM FILE :F1:BAD.MOD
WRITTEN TO FILE :F1:EuD
MODULE STMRT ADDRESS 04 26H

START STOP LENGTH PEL NAME

0038H 003AH 3H A ABSOLUTE
0400d 1FBSH 1EBY9H B CODE
3DOFH 3F68H 25AH B DATA

41 20H 41A SDH B STACK
41ADH F6BFH BS13H B MEMORY
7000H 7FE7TH 3ESH A ABSOLUTE

(MEMORY OVERLAP FROM 7C00H THROUGH 7FE7H)

A7

APPENDIX SECTION C

Controller Simulation Software Listing

Three AS(L (Automatic Continuous Simulation Language) programs, used for
simulating the self tuner are listed below. Program I was the program used to

simulate self tuning and control. The following points should be ni*ed:-

1) The actual process coefficier- .(I) are listed as
calculated from an open loop step t.st done prior to the
self tuning run. These arused purely for ease of
reference. The starting values for this run are all

L(I) - 0,001 I * IN.

2) The form of the self tuner used here is the absolute form,
i.e. mnot the incremental version used for the actual
implementa.tion for practical reasons. Here, the model
equation is of the same format as the incremental version.
However, the controller equation differs somewhat in
appearance. Nevertheless, it is the same controller as

derived previously in Appendix Section A in absolute form.

A8

Program Il is a closed loop unit change in set point test. Here the self
tuning has been removed and only the controller is present. The coefficients

used are those arrived at by self tunic using Program [until the coefficients

appeared stable.

Program III is identical to Program II except that the coefficients used are
the ideal coefficients calculated from an open loop step test. The objective

here ii a comparison between the ideal' case (Program III) and the self tuned

case (Program II).

-

A=K

v e

lo#MlNz [7)]

=]

'
3
nnmmomnmn
— @ a. a* a, .a a

—aaaaaea. aaxaa*a<jeac”™ n<f VIMA I~ VIO *

-
K mNLOQ OH
“iZzoO* OF

=20 o=x

“OZ =0 OH
_flO o
oV Y=

CO¥ O * o=

ssl YN PO |exn |o@ [F x| ¢

* NEVe A

«|
>>_3_S<
| 2 cne Z |

H 33_NXW*

OD
*x QN Q2 * 0~

Nr

XX XXX xx W X

e X W —»w R w)8

333333 33333333333333.

-t x W W e

> > fu
<l<<<

s K

SNen FHaen>NK >oX senex .

2l ». -
S asX s

A
s

codnOnKEs Bz =

N i=cOen 2
mnenen DN

Scemn NE M MHa @V

ag< | wr Ve a XOlezanxZ %A

. NOe »

¥ W ENo &S w4

.I.U.d —k N _

N|lve niv.iS

Z

>

e *nm=a e

| A ORO

Aen V4 S
003M oN|

~

=

KO =

4

=]

V3_U

NV mXxﬂmo
I Emaaly
Va axonmsdanes 5| ot
< N o
_<3a =1]

.Jt_

- =O .
SvIiA meves oF o®

V JenoaiN

N

= I<2aoaa

— B S=fNUs N Nen, XXz

= A emNA

o— A

* Oy

= O K33 o TizeS oV

aE®amEr =

RV AN O

s =ABvTses <ok o=

oA Fhe e @ik ¥ o0 ¢ * ok Kk K X & &

—_—— e N oS

<

i

® o 0k o &

z YA =A

xQ .

s

ZO OV x
u

a

. V4

s

=L .

o !
o= =

-V O 0N
N Sh Sz
>
A

>Ry
VeRen
ml3C2o
35 Nk
N ERd

0 0¥ e

v

Yoa v

[
o
—
<o
=
o
[Tol-"
o
T
S~
S
R
7))
—
e
=i
Z2
—<
QM4444444444444444444444 [Te} TH
0_$$$4400$ﬂ40ﬂ0m00000000MMMMMMMMMMM%M%%Mﬂ%%%SSSSSSSSS MM
~ - _EEEE __E_ _T_____________ e ' __8_00000000
e 1 1o 1 1 1
10E696I%ﬂﬂE“UEEm%EmESSEEESSSE88888E88C8EE&38E8&_&&_&_ 1 Z, -
~ e N oA n TR e S S A S~ TR an SN IS ES Qe N A S o
o ——ent O N LNOo Ca ROV "~ PN T D NN~ s g
et e Tt S PR AN AT A o N S A e
PN sy B 1. a0 29.642.9876513210926050567396&“7&2%4” .NAM
v o o o o o o A D S~ . -—
P e il nEnt Tt dmma N an ol o e - A A R e f e $.90THL
AT TR I L | T T T [Il = TN SOOI g ot Nenenenal e >
—~—R A~~~ oo v/ L1 T T T T O T (T o ~r sv/ N
—~ A) AN) e AL I gy Wwwny nes p47,)
< C7C901234L07C901 AN~ AN A S A=A~ ~A ~n x —v &%

=9 AA0TASL0 NN O PP qgont o~ o [ReR NT oI GNP
AV AN MRNSANSSAN 555555596&M6M6ﬂ66@7ﬂnnﬂﬁmﬂmW0W(”*
A LLLLLLLL3ILLL ((L S it dii A VNV NIV AL VNIV <((00 L9
et e e o i] e] e 88LLLL8LLLLLLLLLULLLLLLILLLLM S
_ N

-

v
- — -

-

I/SSulE* T.> -

*

N
4m | <d4| j | |

1=1

MANLC»0FOMt PLANT 1INPtjT

DO 985

*«

YCFL=1. ?

i HIUEiJH=0 0
MZC];ZG.O
K4(1)=0.0
roriut- tld/ tlg
Mi=1 .C0C*S 1/TLD
R2=I.CCCtST/ILG
MANVAR=C. 1

CINTERVAL CINT=1.0
NDK'CF INIIIAL-
1, VNAMIC

EH IVATIVE

NOS=(i(0.01.0.0.1.0)

KN[?N =MANVAR«-fiO<
YA-K*HEALPL(20.0,MANIP,1.0)
YO-HEALPL(TI. YA.T1.71

 UAND LIMITED NCISF.-1HZ*
YINT-REALPL(T".YD.1.7)

e ACTUAL PLANT AT 1.7 AT T=0 -
éPLIIM(}T NOISE TC SYSTEM CAPABILITY »
OLTERH=5P-YI NT

NOt «CF DER I VAT IVE *

*INTEGRATES FORWARD TC NOW-
* IC NEED TO PREDICT YINT-
CALCS ARE ONLY DONE AT SAMPLE INTERVALS

IC(COUNT .NE. I]% GO TC 1000
S LE ONCE EVERY ST
COUNT=0

SLM=0.0

DC 57 I=I1.N
SUM=SUM*L(1)*V(1)$ » SUMMATION L(I)eV(I> «
57 ..CONTINUE

* NCw PREDICT PLANT OUTPUT -

YPHED=(1. 0/(GFIL TWRL)) ¢ (YDEL#GFILT+SUM)

YCEL-Y
PRE DER=YINT-YPRED

* UPDATE PARMS ACCORDING TO ERROR '

GAMMAs 0.00 T

DO 56 Is 1,N

L(1I =L{I>H GAMMA) ¢ (v (1) ¢PREDER)
5H. . CONTINUE

wCIGHT=1.0

e CALCULATE SSG ¢¢-1 -

SUML.sO. ¢

DO 59 Is|,n

SLML=SUML+L(I)
SR..CONTINUL

UG 61 I-1I-N

at n=L&1
b1..CONTIhUE

Q(1)*0(I)*I. U/KP

« AND CCNTHQL -
])060 1=2.N

o’ M4(I ; %(1 11;‘;344)(I-1)

CCN TINile
M5-M4(N)+(Q(|)#V(1;)$ ' SUMMATION 0(1)*V(1)e

MC=RI*OITEHR-PHEHH
PREHH-<OLTEHH
MANv*R=(KP/HZ)*M5+(KC*or|Lr/H2)*M6

CELAY AIL VALUES UY ST
00 26 I3I«N

DLNCE %N]IE v<I)

UC 30 1=2.N
V(t)=DUNCE(I- 1)

JC. .CON 1INUE
VI 1)=MAMVAW

1000..CON TINUE

COLN T=CCUNT+1

fCHMT{ f.GE. TMAX>
NO*'OF DYNAMIC*
LHMINAL

NOS * OF TERMINAL '

NO *+CF PROGRAM®
/LKEC.SYSLIB DU
/ DO
/ DD DSN=SYSii.PI.UTL 10.DI SP=ShH
/ LKEDe SYS IN DO *

INCLUDE SYSLIU(CAPPLt)
/GO.PLOTAXYZ OO UNI T=PLCTOUT, SPACI =(CYL. (J,3))
/GO. SYSIN CO +

SCf NSTP=1

ET TITLE*'SELF ID t Ct.NTROL*
ET CALPL T=. TUUE. .PRNPI. T=.F ALSt ¢.XINCPl =9.0,YINCPI

PREPAW T. L.(10> SOUTERR, Y NT

PRINT 1. LI 10) . . *hCIPRN *=10
OISPLY L, KP YINT MANVAR.NOS

PLOT *XAf(IS-—T «XLO*=0.0, *XHI *=3000 .0 .L(10)
PLOT *XAX| $* =Tt +XLC **0. 0. *XMI #-29<>a .0 , YINS

a

2

LANGUAGfc****n*** AGE

*

1¢ST/TLG

R2

(pi-Z**-1 >¢(ILD/T1 G)/(H2-Z*4-n

»ST/TLD

TUD/TLG ENSURES UNITY GAIN

IN Z DOMAIN THIS IS
GF

A0S
p?2S?rPRocJISAIZ2TS!A ™
1
M
INITIA

ARRAY M1(S0).M2(50).M34 50).M4(50)

ARRAY 0

ARRAY D(USNOC)E(50)

3328528520876789
o nT = O Do o NT M N —
e men Voo oo
SCecoCooo
S Co
. -

iy —
cOP X aao
0_04500900
SHN T Too oS o0o
(SOOCOOOOOOOOOOOOOOO >

cocoo . s o e §
st c I

(—) o oo [T :x:x,_:_:

03__n_V0,_w\,_ LA~ A ARAAARANARA
F\’))\,_)))))0123456789012345
—e 4567891111111111222222
NN N N T g (((I.\(\((((((

I
U i R OO U (U U (U U S el AP NETRETRE TR TS [PR S8

44404404+ ADVANCED

CONTINUOUS

ACSL TNANSuA TOH VEHSION 4 LEVEL 50

PROGRAM ESTIMATES TESI PROGRAM
*THIS PROGRAM CONTROLS A
* 3RD ORDER PLANT VIA:

e e

I e

L)

* RI
INITI
INTE
CONS

CONSTANT T2=3.0.K

NOTE

THE TU TSING ALGORITHM. -

KP IS PLANT STEADY STATE GAIN
KC IS CONTROLLER GAIN WHICH -
CONTROLS SPEED OH RESPONSE -

Q COEFS

ARE DERIVED FROM -

STEP RESPONSE OF PLANT{FILTER

INCLUDED FOR

.A)PREFIL TER TLDS+1/TLGS+1

STABILITY

IN z DOMAIN THIS IS '

#

*

*

SIMULATION
80/337

GF= (Rl-Z**-1>*(TLI.J/TLG)/tR2-2**-11 *
T O/TLG ENSURES UNITY GAIN

tST/TLD

N. COUNT . I.
I N=50#T1=

J
1

R2=I*ST/TLG

8.0.WEIGHT»1+0
1.7 *COUNT=I

CONSTANT ST=1.0.TMAX= 10C.0
CONSTANT TL0=100.0.TLG*15.0

L(50).VIs0)
(50),M2<50).M3<50) ,M41 50)

ARRAY
ARRAY
ARRAY
ARRAY

—_— A

~
5"0'
A

Y i

e e AAH,—..—.H

[l el ol ol wpl apl wnl el vl el ol vl ol enl el ol el el
DO DD DO N N o o e ek et P] P ek \D QO ~]

e

B o DN

OD%JSNOC)E(50)

=0.CCO00
E-04

v_«vv
AR
Coow
O
=
W
L "N —]

Trnnnnn e
[—}

[—X—]
(=3

coc'
QoSS oesrwiw
WSS Lo
NQoOoONIN=0S

(=)
w
=

coCcoooa"
. .. -
CRIRNISNNXN)P WW

=

coo.

AMNHO\OOO\]Q\UIAMNHQVW
[—=X—J—]

V ik ok i e e e e e e | Inn

NN
RN 5 I W W
—p PR RN D\C W

coocoococose

W
o
S

LANGUAGE®¢¢¢*000¢0
14.24.42

p

2

PAGE

LANGUAGE

14.24 .4/

SIMULATION
80/337

t>D

CONTINUOUS

¢4 ADVANCED

ACSL TRANSLATOR VERSION 4 LEVEL

%)
TE T I EF T OO0 0NN SN N 00 nnn

>
592%“616295297“2%9”%%43 ﬁﬂﬂﬂﬂﬂﬁﬂﬁﬂﬂﬂ%ﬂﬂﬂﬁ&ﬂﬂﬂm _ﬂﬂﬁ
EN Wiyt cnenen N 1 1
— R e R R PR IMPRIRDRD EESEfE88888E888883Wn888E88%
OV e ™= — V— Y - 31:814f1/81;ﬂ3771087ﬁ30 07:52a40

p—t =) = coceoe o —
(=R —] < cCocooooooo e 86 n/I w0 =N ~t ~< =) o
(o] A~ W0 O\, Y, O\ en
adeeSefesgssSSSesssTeSes 67M2009M13Mn5352147007324M27
MOWOCOOOWOOOOOOOOOOOOOOO0 99f7CS322109Jﬁ0505673963C ne
L. % I LI T | A I TR TR T O T T | R~ N R N O N N
00F=)Flhhlllllllllhllllll 1111111%%19%%87766%%ﬂﬂﬂﬂ%ﬂ%
o
Tl @=Nosno-0as=anrn oo @ m‘F\m/__ .F.F__‘Fll__‘Fll‘F‘F ! __lFlllllllll
LR NN NN T T T T T TN o — — e <t v~
ST [N [(VUG (U (5 N W (U RSO W RS R B B S PR P P 85555555566M6666166 —
~ o . e e]] T P ™] e o

= = e e e et e e e e e e e e e i el e

4000004090 AI'VANCEO CONTINUOUS
SL TRANSLATOR VERSION 4 LEVEL 50

=3.066 6E~ 05

=2.64996-05

=2.67506-05
.CENTINUE

[Qe

OF ILT=TLO/ TLG
R1=1.0CO+ST/TLO

R2=1.000*ST/TLG
MANVAR=0.0

CINTERVAL CINT=1.o0
END*«OF INITIAL*
DYNAMIC

e THE PLANT IS INITIALLY

BUT LNIT SET POINT

FOR COMPARISON
DERIVATIVE

MAN 1P-MANVAR

AT ZERO
APPLIED
WITH IDEAL CASE

VA=K*REALPL(100.0.MANIP.0.0)
YyB=REALPL(TI . VA, 0.01
e BAND LIMITED NOISC-I HZ *

CARAUILI TV

SP=1 0
OUTE WR=SP—YINT
ENDS' OF DERIVATIVE"

* INTEGRATES FORWARD TO NOW
.clLCSEARETnNLYLOONE ~*SAMPLE

1000

IF(COUNT.NE. I]%_“VEGEYT(S)I*

*SAMPLE ONCE
COUNT=C

L}I;=0.
L12)=3.9906-04
L(3)=0.00206

e CALCULATE SSG ¢ I *
SUML=0.0

SIMULATION
00/337

STATE *
AT T=0.Q

INTERVALS'

LANGUAGE*********AA/\

14.24 .42

44944444+ ADVANCED CONTINUOUS SIMULATION LANGUAGE*®#*® %% %%
ACSL TRANSLATOR VERSION 4 LEVEL 50 80/337 14.24 .42 PAGE 4

C0 59 I=I.N
SUML=SLML+. (1)
59 ..CONTINUE

KP=(R2-1.0)/SUML
e Y

« TRANSFER PARMS TO CONTROLLER -
00 61 1=1.N
01 I)=L (I>
6 1. .CCNT INUE
C(1)=0 (1)»I+O/KP

« AND CONTROL -
00 80 1=2.N
Mil i)=0(1)4V(I
M4(1)=M3(1)+M4(1-1)
60 . .COhTINUE
M5=M4(N)*(Q(I)*V(I))S'SUMMATION 0(1) *V(I) «

Mb=HI* CUTERH—PRERR
PRERR=CUTERR
MANVAR=(KP/R2)*m5 ¢ (KC*GF1LT/R2) *M6

‘DELAY ALL VALUES HY ST*
C0 28 1=1.N
OUNCE<1)=VII)

28. .CONTINUE
00 30 1=2.N
V(1)=OUNCE(1-1)

30 ..CONTINUE
V(I)=MANV AH

1000..CON IINUE
COUNT=COUNT + 1
TERMT(T.GE. TMAX)
ENO4+ OF DYNAMIC*
TERMINAL
ENOSe OF TERMINAL

ENOS *0F PROGRAM-

* JRD ORDER P

44440400 ADVANCED CONTINUOUS
ACSt. THANSLAIOH VEUSION 4 LEVEL tiD
PHOGRAM ESTIMATES TEST PROGRAM
*THIS PROGRAM CONTROLS A
LANT VIA: .
 THE TU TSING ALGORITHM. -
 KP IS PLANT STEADY STATE GAIN -

e« KC IS CONTROLLER GAIN
e CONTROLS SPEED OF RESPONSE '
ARE DERIVED FROM -

« 0 COEFS

e STEP RESPONSE OF PLANT TFILTER

* NOTE:
.

WHICH

"A)PREFIL TER TLOS¢I/ TLGS¢I

INCLUDED FOR STABILITY
e IN Z OCMAIN THIS IS '

e

«

*RI=t*ST/TLO
NITIAL

R2=1¢ST/TLG

INTEGER N.COUNT, I1.J

CONSTANT N=50.Tf=1§

CONSTANT T2=3.
CONSTANT ST=I .
CONSTANT TLD=I
ARRAY L (50). V(

.0.WEI
0.K=1.7.

0 . TMAX=300.
00.0.TLG=15.
50)

a
a
oc

*

ARRAY MI1(5C>.M2(50).M3(50).M*(50)

ARRA¥ 10)%51\10(:)13(50

)

L(I1=0.0(000
L 2g=2. 3475E-04
L(3)-0.00122
L(4)=0.0C205
L(51=0.00256
L(6)=0.0C2H6
L§7§=0.0C300
L(C)=0.0C304
L}9l=0.0C301
L(10i=0. C0203
1(11;=0.C0282
Lglz =0.00270
L(13)=0.00256
L(14)=0.00243
L(151=0.00220
L(16)=0.C0215
L(If 1=0.00202
L<Ifl1=0.00100
L(191=0.0017 0
L (20 1=0 . COI66
L(211=0.(0155
L (22 1=0. 00 145
L;2J)=0.C01J6
L(241=0.00127
L(251=0.(01 19

* %

SIMULATION

00/33 1

GF= (H|-Z**-1)*(1ILD/TLG)/<R2-Z**-1) *
TLD/TLG ENSURES UNITY GAIN

15.52.01

KAUC

pftu M

221

SN s 1r GE.nnn.

ii*r'?s

ACSL

_00_00.00_0 0_0.00_ L]
1 1 1 1 [
R) R g R e
e O A \O =N N D0 =y Qg R
11191202725406339360
0501b3486694224730990371
06C4e3C3S518529642976421
o.oo.-...-..... e e e
&%9ﬂ6ﬂ7%6%ﬁ5ﬂ443333222222
N Il Il ! l Il ([T T |
A e ™ llllx_lllllh.l g e ¥
oz —en i S =
WX NS =AM IND RND A Ty T A2
QO N g en €0 en €N NN leN en T < <t< <t I T
MDA VINGNSNINININIPERNE S Ghddiding N

LLLLLLLLLLILLILLLLtLLtLLL

sttt TY <+ <<t T I+ T
= AN = 0004
'SR I R

— e R R R =

W
4444444444555J55J0555555555
OOOMOOOOO%OMO& Om oo Too
LS N L S TN L y st b vt
EEEEE8EE8E8EEEE38E088680E
770252202

6~42009013625352147
99876533210926C505673963075
*..lo.o.....-..o........-.
111111111199887766554444333
L ey e e e
111111111

=)

m==f_i
T YT T e e e T e e ¥ e
123456789012345678901234567
A6 O 10100 NN 1O o O\ OO0 O e~~~ e T
e N N 7!\((((((((((((((/ e =
—_—o=ccoooe

) o e et e e e e e e]

$4c4444+tAOVANCED CONTINUOUS SIMULATION
ACSL TRANSLATOR VERSION 4 LEVEL 50 BO/337

L(7ti)=J. C66tiE-C5

1 $79 »=2.eag E-os

L(tiOl=2.e? gE-OS
9V 6..CCNTINUE

RI=1.CCO0+S5T/TLC
R2- 1.0CO+ST/TLG
MANVAR* 0.0

CINTERVAL CIN7=1.0
ENOS »0F INITIAL*
DYNAMIC

e THE PLANT IS INITIALLY AT ZERO STATE
e BUT VNIT SET POINT APPLIED AT T=C.O

DERIVATIVE

MANIPsMANVAH
Kt I.7
/A=K*R6ALPL(100.0.MAN|P.0.0)
YG=REALHL (TI .YA.0.0O)
e HAND LIMITED NOISE-1HZ*
YINT=REALPL(T2.Y0.0.0)
 LIMIT NOIS TO SYSTEM CAPABILITY *
SP-1.0
CUTERR=5P-YINT
ENOS+OF DERIVATIVE*

* INTEGRATES FORWARD TO NOW*
IE NEEC TO PREDICT VINT
CALCS ARE ONLY DONE AT SAMPLE INTERVALS

IF(COUNT.NF.I) GO TO 1000
SAMPLE ONCE EVERY ST
COUNT =0

e CALCULATE SSG **%-1 *
SUML=0 .0

*

(]
*

15.52.U1

LANGUAGE®¢*¢* 0000

PAGE

3

CO 5%¥3 I- 1 .f«
GUML =SLML. *L (I)
59..CONTINUE

KP=(R2-1+0)/SUM
KC=KP

TRANSFER PAWNS 10 CONTROLLER *
CO 6I 1=1.N

61, -CONT INUre

YeNA{ I- 1)

»V(1) JI'SUMMATION

DELAY ALL VAi LittS 6Y ST
co 28 1=1.N
CUNCE(1)=V< 1)

2 8 ..CONTINUE
O 30 1=2.N
V(I)=DLNCE(I-11

30..CONTINUE
V(1 >=MANVAR

1000..CCNIINUE
COUNT = CUUNT! 1
TERMT(T.GE.TMAX)
ENDt'UF DYNAMIC*
TERM INAL
ENOf OF TERMINAL

ENDS'CF PRC GR AM*

O(1I) *VII)«

LANGUAGE
15.52.0 1

PAGE

4

APPENDIX SECTION D

Circuit Diagrams

An overall connection diagram is shown in Figure A-1. This shows the essential
connection be tween four boards containing inalog ird digit- electronic
circuitry and various peripherals. This figure must be read in on junction
with Figures A-2 and A-3 which respectively depict the analog me iigitai

circuits built specifically for this project.

Figure A-4 is the systi.i interconnection diagram. Here “-20 mA controlled
variable as measured was connected to the input stage of the axisting P.
controller. This enabled the existing display and recorder to oe isec for this

variable.

N

Bld

dd

(\JOILH MN9IINOD

PIN CONNECTIONS AND RELATED INFORMATION

EDGE CONNECIOR J1

SBC 80/10 BOARD

Pin No.

11

13

15

25

29

19

17

21

41

45

47

39

37

35

33

50 PIN

Function

Least significant digit

Thumb Wheel Switch

Most significant Digit

Thumb Wheel Switch

Interrogate Flag Switch
MANAUT Flag Switch
Display Flag Switch
Ranp Flag Switch (LSB)
Ranp Flag Switch (MSB)
Display Diodes (LSB)

(LSB+I)

(MSB)

Controller Skipped Switch

EDGE CONNECIOR J1 SBC 80/10 iSOARB 50 PIN

(Continued)

Pin No. Function

27
28
23 5V Supply
24
31

32

43 Shield Connection

44 T Earth

49

50

Note:

1) All others are tied to ground.

2) 3M mating connector 3415-0001.

EDGE CONNECTOR J3 SRC 80/10 BOARD ;o0 IX TJ TELETYPE

RS232C Connecc Pin No. Function
12 23 in RX DATA
24 22 TTY RX DATA RETURN
25 24 TTY TX DATA RETURN
13 25 TTY TX DATA
Notes:

1) 3M Mating Connector No. 3462-0001,

EDGE CONNECTOR P-5 RTI 1200 BOARD 20 PIN - ALL ANALOG SIGNALS

Pin No. Function

5 Extra Channel, VoltageOut

to Chart Recorder

6 Analog Common to Chart
Recorder

8 Tied to Pin 19

9 Analog Common

10 Analog Common

15 Analog Common

16 Analog Common

17 Manipulated Variable Voltage

Out to Plant and Chart

Recorder

18 Anlog Common to Chart
Recorder

19 Tied to Pin 8 (+15V)

20 Manipulated Variable, Current

Output to Plant and Chart

Recorder

EDGE CONNECTOR P4 RTI 1200

Controlled Variable form Analog Board

Pin So. Function
1 Signal HI
2 Signal L0
G\D (Shield)

Notes:

1) S3M Connector 3433-1002.

¥) Bl

(<=
SN A=

Hi&

= 22

Component List

Resistors in Kilo-ohms

RI, RI7 400
R2, RIS 100
3 200

R4, R6, R9, RIO, RI1I, R12, RI13,

R14, R16, R19, R21 1
RS, RIS 0,25
. 6,20
28 10
20 2,50

Capacitances in Micro-Farads

1 45
I 22
03 0.1

- Zener Diode 5W BZX85C

TL 084C

IC1, IC2

NS PM 3,5
DPM

60-111
ISOL XFORMER (¢ *>

AD 2B20A

V/I CONVERTER

Pio A 2

citcuirx®__
F 0,0MT ? ANC1 -
SAL
>* X[
'&%«T L
B 3
111
-0 I?
cgv
5 KTA L \
iNVe.VICF> 'bc-6 J_1 l_L
C
\Y%
> Srv
300A 5 300.CZ. 300
300+ 3c=fL % aoelJlg
-041
o -0 << 11
H.3
71 3fO-
390
39.0 PuflO AurTC-MfcS *SV
rsU ska/
3<a< ska
i 0281 31
Tt
5 ? 3k
3KiZ 1 '
oS -0 24
. — 31
-0 14
uSv ru.*C,
3,kH.
il>
icl \C2 >uoo X.

-0 21

F'O A*

S CHEMATIC I

DP

<1--A

Jfk P
mlu M ft

[*.r

4 A*r
A#.

Author Heilbrunn M A
Name of thesis An Implementationof a self tuning controller 1982

PUBLISH ER:

University of the Witwatersrand, Johannesburg

©2013

LEGAL YOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website
are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise
published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you

may download material (one machine readable copy and one print copy per page) for your personal and/or
educational non-commercial use only.

The University of the W itwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any
and all liability for any errors in or omissions from the information on the Library website.

