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ABSTRACT 

 

African elephants are known to survive in habitats with ambient temperatures from below 0°C to 

about 50°C, implying that they may be exposed to great thermal challenges, especially in hot 

regions of Africa, where they are common. Thermoregulatory behaviour of the African forest 

elephant in its natural habitat and the microclimates that it utilizes have not previously been 

investigated. To understand how such an enormous animal behaves in the hot, humid natural 

forest environment, I investigated microclimates at forest-savannah interfaces (bais) in Lobeke 

National Park in Cameroon, observed forest elephants’ likely thermoregulatory behaviour and 

correlated the behaviours with environmental microclimatic variables. Portable weather stations 

equipped with data loggers were deployed at five study sites to record microclimatic variables 

for three days per site. I used the fixed point sampling method to observe and record behaviours 

of forest elephants, during the hot, dry season. 

 

Black globe temperature reached an average of about 33ºC during the day in the bais and 

decreased to a mean of about 20ºC in the night. The day globe temperature often exceeded the 

body temperature of the elephants, but the vapour pressure of air was lower than that on the 

elephant’s skin. Therefore, at 100% humidity and estimated skin temperature of 35ºC, I assume 

elephants of this study lost heat by evaporation, both under the forest canopy and in the open 

bais. Wind speed in the bais was higher than that under the forest canopy, possibly facilitating 

convective heat loss from the elephants, particularly at night. Ear-flapping rate of the elephants 

correlated linearly and positively with dry-bulb and globe temperatures. Shade-seeking and dust-

bathing only showed weak positive associations both with dry-bulb globe and temperatures. 

Between 06:00-24:00, elephants that were observed spent a mean of 40% of their time walking, 
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55% foraging, 7% shade-seeking, 45% ear-flapping, 4% dust-bathing and 9% of time performing 

water-related activities. The higher number of elephants in the bais at night as opposed to the 

numbers in the bais during the day, as revealed by the findings of this study, suggests that the 

forest elephant may have a more favourable mode of dumping its excess body heat in the open 

bais than under the forest canopy at night. All the bais and their vicinity that were investigated in 

this study were heavily trampled with elephant spoors, because many elephants frequently 

congregated in the area due the presence of nutritious herbaceous plants, mineral salts and 

variations in microclimates in the bai-savannah interfaces. The differences in microclimates in 

the bais and their vicinity may play a major role in influencing the forest elephant’s 

thermoregulatory behaviour. To the best of my knowledge, my study suggests for the first time 

that the forest elephant may use microclimates at the bai interface for thermoregulatory needs. 

However, my study is limited because it was executed for a short duration and over the hot dry 

season, and factors that may affect elephants such as physiology, the availability and quality of 

forage and predation risk were not included in this investigation. All these factors may have 

affected the accuracy of my findings. For these reasons the inferences made in this study on 

elephant microclimate selection would need further investigation before concrete conclusions are 

drawn. Expensive research cost, human safety, fear of human presence and hence alteration of 

elephant behaviour and the obscure nature of the equatorial forest have been recurrent issues 

hindering the investigation of behaviour of free-living African forest elephants. I suggest that it 

would be worthwhile investigating the forest elephant’s behaviour further by applying 

GPS/satellite telemetry, real time bio-logging and camera trap techniques, which offer a practical 

means to carry out an extensive study in the evergreen hot humid equatorial forest of the Congo 

Basin.  
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1.1 African elephants and their thermal niche  

 

The African elephant (Loxodonta africana) is the largest existing terrestrial mammal and inhabits 

diverse thermal niches characterised predominantly by high environmental temperature (Spinage, 

1968). African elephants currently occur in 37 countries in sub-Saharan Africa. They are known 

to have become nationally extinct in Burundi in the 1970s, in Gambia in 1913, in Mauritania in 

the 1980s and in Swaziland in 1920, where they were reintroduced in the 1980s and 1990s 

(Blanc et al., 2007). The quality of knowledge available on elephant distribution varies 

considerably across the species' range. While distribution patterns are well understood in most of 

Eastern, Southern and West Africa, there is little reliable information on elephant distribution for 

much of Central Africa (Blanc et al., 2007). Little is known about the African forest elephant 

population. But recent reports reveal that the African forest elephant is under threat of extinction. 

About 62% of all forest elephants have been killed over the past decade due to mainly poaching 

to feed Asia’s demand for ivory (UNEP et al., 2013) .   

 

African elephants are found in localised regions across the continent from the hot and dry deserts 

of the Kalahari and Sahara, and the hot and humid jungle of the Congo Basin, to the temperate 

savannahs and grasslands of eastern and southern Africa (Skinner and Chimimba, 2005). As such 

the African elephant has developed ways of coping with the diverse environmental conditions it 

encounters (Skinner and Chimimba, 2005). They are known to survive in habitats with ambient 

temperatures from a little below 0ºC to about 50ºC (Sikes, 1971), which shows that they are 

often under extreme thermal challenge, especially in the typical hot climate in which they 

normally dwell. This thermal challenge is aggravated by the elephant’s small surface area to 

volume ratio that impairs quick loss of excess body heat (Wright and Luck, 1984), and can be 
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problematic if an elephant is exposed to heat but could be advantageous in the cold (Taylor, 

1970a).  

 

Like all other mammals, the rate at which the elephant exchanges heat with its environment 

depends on evaporation, radiation, convection and conduction (see summarized information 

about the four methods of heat transfer and factors that influence the rate of heat transfer in 

Table 1 (Ingram, 1975; Weissenböck, 2010) ). The magnitude of heat transfer by these routes 

largely depends on the temperature gradient between an elephant's skin and the microclimate of 

the habitat the elephant is in, the colour of its skin, its body shape, mass, conductance of body 

tissues and the metabolic heat that the elephant’s produces (Willmer et al., 2005). Evaporative 

cooling may be limited in the natural habitat of the African forest elephant (Loxodonta africana 

cyclotis Matschie), because of the high vapour pressure of the forest.  

 

The nearly hairless body of elephants leaves the animal’s skin exposed to radiation and 

desiccation (Lillywhite and Stein, 1987), but on the other hand, the lack of fur may promote heat 

loss, via convective and conductive routes. As the temperature gradient between an elephant and 

its environment diminishes, radiation, convection and conduction become less effective in 

keeping the elephant cool (Taylor and Lyman, 1967). Thus in circumstances of very small 

temperature gradients or when air temperature exceeds body temperature, elephants can only 

effectively dissipate heat by evaporative means (Grenot, 1992; Taylor, 1969).  

 

Much literature exists about the thermal challenges and behavioural thermoregulation of  

 

savannah elephants (Loxodonta africana africana Matschie) (Kinahan et al., 2007ab) but little  
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Table 1.1 Factors that influence evaporation, conduction, convection and radiation between an 

animal and its environment. Sources of information to make Table 1.1: (Ingram, 1975; 

Weissenböck, 2010) 

  

 

Mode of transfer Animal Factors Environmental Factors 

Evaporation Surface temperature, total 

percentage wetted area 

 

Sites of evaporation 

 

Humidity 

Wind speed and direction 

Conduction  Surface temperature 

 

Effective surface area 

Surface temperature, thermal 

conductivity and thermal capacity of 

the contact material  

 

Convection 

 

Surface temperature 

 

Effective convective area 

 

Radius of curvature and surface 

type 

 

Influencing structure like fur or 

feathers 

 

Air temperature; wind speed and 

direction 

 

Radiation 

 

Mean radiant temperature of 

surface 

 

Effective radiating area, reflecting 

area, reflectivity and emissivity of 

a surface. 

 

Mean radiant temperature, solar 

radiation and reflectivity of 

surroundings   

 

 

 

information exists for forest elephants (UNEP et al., 2013). Elephants in the Congo Basin inhabit 

the dark canopy, hot and humid forest with average annual environmental temperature ranging 

between 23ºC to 31ºC (Nowell, 2005) and a relative humidity of 60% to 90% (WWF, 2006). 

Therefore, the behaviours of the African forest elephants may be different from that of savannah 

elephants, due to their structural differences and the different habitats in which these animals 

inhabit including; forest, arid and semi-arid regions. Both elephant subspecies have massive 
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bodies that produce large amount of total metabolic heat (McNab, 1983), but because of their 

relatively smaller surface area to volume ratio, elephants will lose heat, per unit body mass, 

much slower than will small mammals in the same thermal environment and using the same 

mechanisms (Williams, 1990). In contrast, the low surface area to mass ratio may be an 

advantage in that during hot periods an elephant will gain heat from the environment more 

slowly than an animal of smaller body size (Taylor, 1969). In order to cope with the nutritive 

requirements of their large bodies African elephants consume about six percent of their body 

weight daily (Laws, 1970b) and Asian elephants exhibit cathemerality (Van Schaik and Griffiths, 

1996) so that they can forage for long periods all day to sustain their needs. Cathemerality is a 

thermoregulatory behaviour whereby animals reduce their diurnal activities, by resting in a cool 

environment, and compensate the time lost for activities such as mating, hunting and feeding by 

increasing their nocturnal activities when it is cool. African elephants devote about three-quarters 

of their time foraging and spend relatively less time inactive compared to smaller animals 

(Owen-Smith, 1988). A study of the feeding habits of savannah elephants in Chobe NP in 

Botswana showed that adult male elephants spend more time foraging than adult females 

because males are larger than females (Stokke and Du Toit, 2002). Only about 40% of what the 

elephant eats is digested (Colbert, 1993). The result is that the elephant must eat about 410 kg of 

food (Cott, 1975) daily in order to maintain its body weight and nutritional needs (Benedict and 

Lee, 1938). 

 

However, the time elephants spend foraging is influenced by the variation in seasons, the quality 

and availability of forage and the macroclimate and microclimate which they experience 

(Kabigumila, 1993a). As the biomass of vegetation (De Beer and Van Aarde, 2008), water 

supply (Stokke and Du Toit, 2002; Verlinden and Gavor, 1998), climate (Kinahan et al., 2007b) 
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and absence or presence of humans (Hoare, 1999) differs from place to place and region to 

region, so do elephants’ activity levels and behaviours differ in time and space. Therefore, to 

have survived so successfully throughout Africa, the African elephant must have evolved and 

developed morphology, unique behaviours and autonomic mechanisms to effectively avoid 

deleterious increases in body temperature. (Blanc et al., 2007; Skinner and Chimimba, 2005).  

1.2 Morphological traits of elephants which influence thermoregulation 

 

The large size of an elephant poses a problem, because a small surface area limits heat loss, and 

therefore metabolic heat builds up that may result in an animal overheating (Colbert, 1993). 

Sparse and uneven hair distribution impairs the insulating capacity of air on the elephant’s body 

surface as compared to other hairy mammals. The combination of thick skin and a thin layer of 

fat beneath the skin and the low inertia of the elephant’s massive body enable it to tolerate cold 

temperatures (Wright and Luck, 1984) . The skin of elephants is sculptured with wrinkles and 

crevices arranged in a prominent regular pattern. These wrinkles trap moisture and facilitate the 

movement of fluid over the body surface and enhance cooling by increasing the skin’s surface 

area and decreasing the time it takes for moisture to evaporate (Lillywhite and Stein, 1987). 

Therefore, wrinkles on elephants’ skin facilitate the elephants’ body cooling for longer than if 

they had smooth skin (Smith, 1890). In addition, elephants diffuse water which assists in 

regulating the body temperature through evaporative cooling (Carrington, 1959). One key organ 

that elephants use for thermoregulation is their ears. The African elephant’s ears have a large 

surface area-volume ratio as well as a heavily vascularised network of superficial vessels which 

enables the ear to act as an efficient heat radiator (Wright, 1984). Ear-flapping facilitates heat 

loss from the large ear surface.  
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1.3 Autonomic thermoregulation of elephants 

 

An elephant can maintain homeothermy while minimizing energy cost by using different 

strategies including autonomic thermoregulation. Elephants like all mammals and birds are 

endotherms and have been reported to use various means of autonomic thermoregulation, which 

include vasoconstriction or vasodilation (Weissenböck, 2010) and evaporative water loss through 

their porous skin (Williams, 1990). A 4000 kg elephant needs to maintain a heat loss of about 

4.65 kW while moving and feeding (Wright, 1984), and therefore must have an effective mode 

of controlling heat flow (Phillips and Heath, 1992). Control of the elephant’s skin temperature is 

an extremely important mechanism in thermoregulation (Phillips and Heath, 1995) and the most 

important thermoregulatory organ is the elephant’s ears, which act as “thermal windows”. The 

effect of heat loss or gain at these “thermal windows” is achieved by modifying and controlling 

blood flow, via vasoconstriction and vasodilation (Sumbera et al., 2007). Physiologically, an 

elephant can increase its heat loss by increasing blood flow to the surface of the body, thus 

elevating skin temperature, provided that ambient temperature does not exceed the skin 

temperature. Reports of continuous measurement made on the body temperature of African 

elephants have shown a high rhythmicity in their body temperatures rhythms with minimum 

body temperature values occurring early in the morning between 07:00-09:00 and maximum 

values in the late evening 18:00 (Hidden, 2009) or night at 22:00 (Kinahan et al., 2007a). 

Autonomic control of vasculature appears to play an important role in regulating elephant body 

temperature (Wright and Luck, 1984). Small rapid body temperature changes occur as elephants 

regulate their body temperature within a narrow daily range of about 1C (Hidden, 2009; 

Kinahan et al., 2007a). This narrow daily temperature range favours homeostatic processes in the 

elephant. Although elephants do not pant or sweat, they are still able to dissipate heat through 
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evaporation of water from their body surface (Williams, 1990). When liquid water evaporates it 

acquires latent heat from the animal’s body to transform from liquid to gaseous state. This heat is 

absorbed from the skin surface of the elephant and as the gas escapes from the elephant’s body 

surface, the elephant’s body temperature is decreased. Evaporative and convective heat loss is 

increased by flapping the ears (Hiley, 1975). Since elephants do not actively sweat or pant 

(Lillywhite and Stein, 1987; Spearman, 1970) it has been postulated (Robertshaw, 2006) that 

they also store heat, particularly, during the day, allowing body temperature to rise and dissipate 

the heat slowly at night (Hidden, 2009; Weissenböck, 2010) but it is not known if microclimate 

selection behaviour affects the way forest elephants dissipate their excess body heat.  

 

Temperature gradient, relative humidity and air movement are important environmental factors 

(Williams, 1990) that influence the elephant’s ability to maintain a fairly constant body 

temperature of about 36ºC (Kinahan et al., 2007a). When ambient temperature is less than the 

temperature of the body surface of an elephant, heat is transferred from the body surface to the 

environment. When microclimatic temperature exceeds that of body temperature, the ability of 

an elephant to lose heat is limited and the animal may in fact gain heat (Porter and Gates, 1969). 

In this scenario, evaporative heat loss becomes the only means by which elephants can dissipate 

excess body heat (Schmidt-Nielsen, 1997).  

 

The mean skin temperature of the African elephant ranges between 15ºC and 35ºC (Phillips and 

Heath, 1992; Williams, 1990) and as ambient dry-bulb air temperature increases, the mean skin 

temperature also increases (Hidden, 2009). However, as air movement increases, an elephant’s 

evaporative heat loss capacity also increases, and the heat loss capacity is dependent on the 
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movement of air to displace saturated air just above the damp surface (Gebremedhin and Wu, 

2001). The rate of evaporative heat loss also depends on the difference in water vapour pressure 

between the skin and ambient air. As the gradient between the vapour pressure of air on an 

animal’s body surface  and surrounding air increases, so does the animal’s evaporative heat loss 

capacity increase (Cohen et al., 1979). Evaporation stops when these two vapour pressures are 

equal.  

     

Another important factor that influences thermoregulation is tissue conductance. Conductance 

refers to the ease of heat flow through body tissue. Tissue conductance decreases with an 

increase in body size; heat flows quicker through the body of smaller animals than larger ones in 

the same thermal environment (McNab, 1983). Also the length of time blood takes to circulate 

through an animal’s body increases with increasing body mass (Schmidt-Nielsen, 1984), and the 

distribution of heat through the body of animals mostly depends on blood circulation (Mitchell et 

al., 1997). Elephants have amplitudes of daily body temperature fluctuations of only about 1ºC 

(Hidden, 2009). With access to water, they regulate body temperature well during the day and 

can dissipate this further heat during the more favourable thermal environment of the night 

(Hidden, 2009; Hiley, 1975; Weissenböck, 2010), thus decreasing the energetic cost of 

thermoregulation and the need of evaporative cooling (Robertshaw, 2006). 

1.4 Behavioural thermoregulation of elephants 

Elephant behaviour refers to a specific behavioural response of the elephant to a specific 

stimulus or group of stimuli. Behaviours that savannah elephants may use for thermoregulation 

include selecting microclimates (Hiley, 1975). Other behavioural thermoregulatory means 

include; wallowing in mud, resting, flapping ears, bathing with dust, immersing in water or 
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spraying water on their bodies (Hidden, 2009; Hiley, 1975; Kabigumila, 1993b; Kalemera, 1987; 

Leggett, 2008; MCKay, 1973; Scholander, 1955). Microclimate selection behaviour has been 

poorly studied in elephants. Microclimates are a suite of climatic conditions measured in a 

localized area near the earth’s surface (Geiger, 1965). They are mainly characterised by radiant 

heat, moisture and wind speed in the local environment that may influence thermoregulatory 

behaviour of mammals in their habitats. Habitats in terrestrial landscapes are thermally 

heterogeneous (Li and Reynolds, 1995) because of differences in topography, physical features, 

slope, gradients of elevation and vegetation types and may constitute a variety of microclimates 

(Geiger, 1965).  

 

Many studies, as well as anecdotal stories, reveal that elephants flap their ears to keep cool, 

increasing the rate of ear-flapping as dry-bulb air temperature rises (Hiley, 1975). The rate of 

ear-flapping has been reported to be positively related to temperature increases but inversely 

related to wind velocity (Buss and Estes, 1971), because increase wind speed facilitates heat loss 

through convection. However, semi-tame free-ranging elephants in the Pilanesberg NP (South 

Africa) flapped their ears irrespective of wind speed (Hidden, 2009) for an unknown reason.  

 

In hot conditions elephants also specifically spray their ears with water (Hiley, 1975). At such 

times, the ear’s large blood vessels make it especially useful as a heat loss organ. Other reports 

have revealed that another behavioural means by which elephants control their body temperature 

is frequently wallowing in mud when it is hot, since heat transfer to water is considerably higher 

than that of air (Scholander, 1955). By rolling on mud or rubbing themselves or immersing 

themselves in water or spraying themselves with water or mud, elephants lose heat through 
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evaporation and conduction. On very hot days, when water is lacking, elephants will draw up 

water from their stomach through their trunks and spray themselves (Hiley, 1975).  

 

Elephant are sometimes found in areas where there is little tree cover or surface water, therefore 

restricting their behavioural options (Hiley, 1975). Although no thermoregulatory study has been 

carried out under such conditions, the animal would probably experience thermal and 

osmoregulatory stress, which if severe enough could adversely affect its survival. Desert-

dwelling elephants in Namibia have been reported to have the lowest defecation rate of any 

elephant studied in Africa. The low defecation rate in the desert dwelling-elephant is because the 

elephant spends only seven hours of the day foraging and spends the rest of the time avoiding 

increasing its body temperature, through exposing itself to radiant heat by standing in the shade 

(Leggett, 2008).  

 

 

Although elephants do select habitats that offer different microclimates (Hiley, 1975), whether 

they seek various microclimates for thermoregulatory purposes is not well documented. It has 

been argued that environmental temperature is a factor that limits landscape choice in the African 

elephant (Kinahan et al., 2007b) and that elephants select habitats based on their physiological 

needs (Huey, 1991; Young and Van Aarde, 2010). Elephants seek and stand in the shade, where 

dry-bulb air and ground temperatures are normally cooler, thereby avoiding long-wave radiant 

heat load and much of the short-wave radiant heat load from the sun (Hiley, 1975). At midday 

elephants also decrease their activity, thus minimizing the internal heat production. The decrease 

is midday activity affects the feeding habits of savannah elephants such that they mostly feed in 

the morning and early in the evening (Guy, 1976; Hiley, 1977; Kinahan et al., 2007a).  Studies in 
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Tsavo NP (Kenya), Lake Manyara NP (Tanzania) and desert-dwelling elephants in the Kunene 

Region (Namibia) have shown that savannah elephants reduce their activities during the hottest 

time of the day, in order to reduce their metabolic heat production (Hiley, 1975; Kalemera, 1987; 

Leggett, 2008). Little or no research has been done on forest elephants (UNEP et al., 2013). 

Body temperature measurements have been made only in savannah elephants, albeit in confined 

habitat. Forest elephants are difficult to study because of the nature of their forest habitat. The 

effects of microclimates on forest elephants’ thermoregulatory behaviour are not known. 

Assessment of microclimates and their use by forest elephants will provide conservation 

managers with improved insight into the environmental physiology of African forest elephants, 

and possibly other large forest mammals, as well as provide valuable information for land-use 

planning.  

 

Some animals use other strategies in addition to shade-seeking to reduce their exposure to solar 

radiation and at times to avoid predators. To enable itself to remain more active during the day, 

giraffe (Giraffa camelopardalis) orients the long-axis of its body parallel to the rays of the sun 

thereby reducing the amount of radiant energy it intercepts (Mitchell and Skinner, 2004). Other 

large mammals such as the buffalo (Syncerus caffer) (Sinclair, 1977) and the Arabian oryx (Oryx 

leucoryxreduce) (Hetem et al., 2010) heat gain by solar radiation by transferring their activity 

from day to night, when day environmental heat loads increase. Similarly, the black rhinoceros 

(Diceros bicornis) alter their sleep patterns; during the hot period of the day they sleep, but move 

about and forage in the early morning, late afternoon and at night (Goddard, 1967). Furthermore, 

a megaherbivore, like the hippopotamus (Hippopotamus amphibius) usually comes out to forage 

on land at night, but spends the day at least partially or fully submerged in water (Luck and 

http://a-z-animals.com/animals/giraffe/
http://a-z-animals.com/animals/buffalo/
http://a-z-animals.com/animals/black-rhinoceros/
http://a-z-animals.com/animals/hippo/
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Wright, 1964). The advantage of change of daily activity to the various times of the day is that 

animals can avoid the adverse effect caused during hash environment conditions in order to 

become active only when conditions become favourable. At night, ambient temperature is lower 

than body temperature of mammals thus allowing passive loss of body heat to the surrounding 

environment through convection, conduction and radiation. Little or no evidence exists to 

indicate if the elephant uses these thermoregulatory strategies, that Mitchell et al. (2004), Sinclair 

(1977), Hetem et al. (2010), Goddard (1967) and Luck & Wright (1964) have described. It has 

been argued that the principal thermoregulatory mechanism by which elephants cope with warm 

environments is simple storage of heat during day and cooling during night (Hidden, 2009; 

Robertshaw, 2006; Weissenböck, 2010), which would be highly efficient in an animal of this 

size (Elder and Rodgers, 1975; Hiley, 1975).   

 

Many reports have suggested dust-bathing too, in both the African and Asian elephants, is an 

important behaviour that may have a thermoregulatory function. They argue that dust-bathing 

protects the skin from the sun (Barnes, 1984; Feldhamer et al., 1999; Haltenorth and Diller, 

1980; MCKay, 1973; Rees, 2002), but the extent to which dust plays a role in thermoregulation 

still needs further investigation.  

 

Thermoregulatory behaviours are often favoured over autonomic thermoregulation as less energy 

and water is required (Jessen, 2001).  Because of their size, elephants are limited in the variety of 

microclimates available to them. Smaller mammals, for example, are able to escape into burrows 

and crevices, with cool microclimates, while larger mammals, such as the elephants are unable to 

do so. On the other hand, elephants are able to quickly escape harsh environmental conditions by 

rapidly traversing large distances (Parker and Robbins, 1985).  
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While studies on captive elephants have helped us understand their thermoregulation, little 

information exists on how elephants thermoregulate in the wild and how thermal constraints 

affect their ecology. Energy and water balance are key determinants for the survival of elephants. 

Savannah elephants select landscapes based on food and water availability and the thermal 

characteristics of the environment (Kinahan et al., 2007b). Studies on food (Dublin, 1996; Young 

and Van Aarde, 2010), water (Stokke and Du Toit, 2002; Verlinden and Gavor, 1998), nutrients 

(Houston et al., 2001; Ruggiero and Fay, 1994), terrain (De Boer et al., 2000; Nellemann et al., 

2002), human settlements (Hoare, 1999), vegetation density (De Beer and Van Aarde, 2008), and 

ambient environmental temperature (Kinahan et al., 2007b) have aided our understanding of 

savannah elephant ecology. Young and Van Aarde’s (2010) investigation of one of the world’s 

largest populations of savannah elephants in southern Africa, demonstrated that the elephant 

population regulation is driven by a spatial response to water variability, environmental 

stochasticity and population density. However, they suggest that further research still needs to be 

done to identify the demographics and behaviour variables that drive population density.  

In the Tembe Elephant Park in Maputoland (South Africa) elephants often seek refuge in thick 

vegetation, but this behaviour may have deleterious effects on conservation as the vegetation in 

this park consists of rare endemic sand forests, which due to their unique biology are susceptible 

to elephant browsing (Mathews et al., 2001). The provision of water points near the Tembe 

Elephant Park has encouraged elephant population growth and other large herbivores, resulting 

in them feeding more extensively in these fragile habitats, and as such increasing habitat 

degeneration and the loss of biodiversity (Shannon et al., 2013) that may exacerbate loss of 

microclimate useful to elephants in the park.  
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Biodiversity and habitat loss, poaching and degradation, are worldwide problems. A growing 

human population and also increase in subsistence farmlands and livestock farming have resulted 

in a drastic decrease in wildlife habitats and probably also valuable thermoregulatory 

microclimates available to the African elephant. For example, this is happening in Tsavo NP and 

its vicinity, where grassland is changing into semi-desert, consequently the trees that provide 

vital shade and surface water to elephants are disappearing (Hiley, 1975).  

 

African elephants are keystone species. A keystone species is a species that has a 

disproportionately large effect on its environment relative to its abundance (Paine, 1995). 

African elephants play a critical role in maintaining the structure of the grassland and forest 

ecological systems because elephants determine the type and number of other species in an 

ecosystem (Schulze et al., 1994). Therefore, elephants are key animals that provide ecosystem 

services. These services ensure the survival of other organisms that are adapted to live with 

elephants in the same ecosystems. Despite all the research done on the roles African elephants 

play in ecosystems and how savannah elephants behave and thermoregulate, our understanding 

of savannah and forest elephants’ thermoregulatory behaviour is not complete.  

1.5 Dissertation aims 

Studies done at boundaries between different types of habitats within landscapes suggest that 

habitat demarcation cause different sorts of microclimates (Geiger, 1965; Li and Reynolds, 1995; 

Saunders et al., 1998; Wachob, 1996). There is evidence that ambient temperature is a factor that 

may limit landscape choice in the African elephant (Kinahan et al., 2007b) but tools to assess the 

activity and behaviour of free-range savannah African elephants have been limited to 

observations on a macroclimatic scale within different landscapes. As a consequence, 

http://en.wikipedia.org/wiki/Species
http://en.wikipedia.org/wiki/Natural_environment
http://en.wikipedia.org/wiki/Ecological_community
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information on elephant’s behaviour at the microclimatic level is lacking, particularly in the 

forest habitats. Based on the variability of microclimates within landscapes, it has been 

suggested that savannah elephants (Hiley, 1975) including desert-dwelling elephants use 

microclimate selection to regulate their body temperature (Leggett, 2008). It is not known 

whether microclimate selection is a thermoregulatory strategy that forest elephants use when 

challenged with the typical hot and humid equatorial forest conditions. Therefore, the aim of my 

study is to find out the following:  

- compare the microclimates in bais (Savannah-like forest clearings) and in forest canopy 

areas. 

- investigate if forest elephants’ activities in the open bais and under the forest canopy are 

influenced by the thermal properties at the bai interface. 

- determine if observed elephant thermoregulatory behaviours correlate with microclimatic 

variables. 

To answer these questions I used miradows (brown painted chalets) in bais to observe elephant 

behaviour in Lobeke NP, in the Congo Basin region of south-east Cameroon. In chapter two I 

discuss the methods and procedure used to collect climatic and behavioural data and how I 

interpreted and analysed the data. In chapter three I summarize and present the data that I 

collected from forest elephants in five locations in Cameroon. In Chapter four I summarize my 

findings and the findings of studies in Zimbabwe, Uganda, Cameroon, Namibia and Tanzania 

and discuss the results in the context of elephant behaviour and thermoregulatory strategies. 
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CHAPTER 2 
 

STUDY SITE 
 



18 

 

2.1     Introduction 

 

This chapter aims to describe the study site, the animals studied, the infrastructure, tools and the 

methods used in this study.  

 

Most of the original data presented in this dissertation were collected during three field trips to 

Lobeke NP, in south-east Cameroon, between 15 November and 15 December 2010. This period 

was chosen to carry out the study because it was the hottest season of the year. Lobeke NP was 

chosen because of the presence of African forest elephant in it and because of the high 

probability to view and study elephant behaviour in the bais that are in the park.  

 

Free-living forest elephants inhabit the dense tropical closed-canopy evergreen forest. For this 

reason it is difficult, and potentially dangerous, to observe the elephants in their natural habitat. 

However, bais found in these forest habitats are preferred observation sites for elephants and 

other large mammals, because these animals often visit the bais (WWF, 2006). Elephants are 

usually taller than the vegetation growing in the bais and the animals may be viewed easily from 

a safe distance without the animals being aware of human presence in their vicinity. 

2.2 Study site 

 

2.2.1 Lobeke National Park 
 

This study was performed in five bais and their vicinities in Lobeke NP namely Djaloumbe, 

Djangui, Petite Savane, Base de Djembe and Bolou Bais (see Table 2.2). Lobeke NP is situated  
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Table 2.2 Dates and sites where weather stations were deployed during study  

Dates Bais Number of days 

15 – 18 November 2010 Djaloumbe Bai 3 

05 – 08 December 2010 Djangui Bai & Petite Savane 3 

10 – 13 December 2010 Bolou Bai & Base de Djembe 3 

 

 

in the East Province of Cameroon between latitudes N2°05’ to N2°30’ and longitudes E15°33’ to 

E16°11’ (see Figure 2.1), north-west of the Congo Basin. Sunrise was at about 06:00 and sunset 

18:00 in Lobeke NP area during the period of this study. The region has a relatively flat relief 

with occasional hillocks of varying altitudes between 400 m and 700 m above sea level (WWF, 

2006).  

 

The park has a surface area of 217,854 ha and shares buffer zones (transition zones) with six 

community hunting zones surrounding the park (WWF, 2006). The tributaries of River Congo, 

the Sangha River and Ngoko River, are supplied by many streams that flow through Lobeke 

region throughout the year. Among the rivers and streams is the Lobeke River that flows and 

maintain water supply to two of the bais (WWF, 2006). Bais, as referred to in the local Baka 

pygmy language, are forest clearings or savannah-like open vegetation sites that occur within the 

Congo Basin closed-canopy forest (see Figure 2.2). Lobeke forest is made up of typical African 

tropical closed-canopy dense humid forest-tree-complexes, composed predominantly of three 

evergreen forest types with vegetation of varying patterns, disseminated unevenly in the region. 
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Lobeke NP is characterized by a rich variety of habitats, including primary rain forest with a 

closed-canopy and open-under forest layer (Nzooh Dongmo, 2003). The forest in the Congo 

Basin is dominated by the densest pattern of Marantaceae plant species known to date 

(Hecketsweiler et al., 1991; Lejoly, 1996). This type of forest harbours one of the largest 

populations of African forest elephants and it is believed that bais and Marantaceae plant species 

are attractive to elephants (Nzooh Dongmo, 2003). Elephants forage on the Marantaceae plants 

and frequent the bais to feed on other herbaceous plants (Carroll, 1996; White et al., 1993) and 

mineral salts too (Turkalo and Fay, 1995; White et al., 1993).  

 

The location of Lobeke NP in the interior of the west coast of Africa means it experiences a more 

or less monsoon-type climate (Baumann, 2009). Normally, Tropical Easterly winds blow from 

the Atlantic Ocean, flowing westwards towards South America, but between March and October, 

some of these winds turn eastwards as they cross the equator and blow towards Africa. The 

changing of the Tropical Easterlies coming from the North Atlantic determines when areas along 

the west coast of Africa receive a large amount of rain (Baumann, 2009). As a consequence of 

the changes in the course of the Tropical Easterlies the wind in West Africa flows in a west-east 

direction that seems to have some influence on the African forest elephant’s movement 

behaviour on their paths in the forest, in the Central African region (Vanleeuwe and Gautier-

Hion, 1998).  

 

The climate of Lobeke region is typically equatorial and is made up of four seasons. Precipitation 

occurs throughout the year, peaking twice a year to an average precipitation of about 1500 mm 

per annum, occurring in April and October (Ekobo, 1995; Harrisson and Agland, 1987). The  
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Figure 2.1 Map of Africa, Central Africa and Cameroon showing the location of Lobeke NP in 

south-east Cameroon. The green circles are the principal clearings or bais where this study was 

carried out. Note the rich network of rivers and streams evenly distributed in the park assuring 

adequate supply of water to elephants. Layers obtained from WWF to produce map, using 

Arcview 3.2 GIS ESRI software, USA.  



22 

 

 

   
A                                                                    B 

    

C                                                                      D 

 

E                                                                                                                                                                                                                              

 Figure 2.2 The landscapes of bais at the study sites. (A) Base de Djembe clearing at the banks 

of River Sangha,  (B) Bolou Bai, (C) Djaloumbe Bai, (D) Djangui Bai early in the morning,  

(E) Petite Savane.  
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short wet season (rainy period) is between September to early November while the long wet 

season is between March and June. The long dry season (period without rain) lasts from  

November to February and the short dry season lasts from July to August (Ekobo, 1995; 

Harrisson and Agland, 1987). The average dry-bulb air temperature ranges between 23ºC and 

31ºC during the year (Nowell, 2005). Relative humidity of air varies from 60% to 90% (WWF, 

2006). The period with the coolest dry-bulb air temperature of the year is during the long wet 

season while the period with the hottest dry-bulb air temperature of the year is during the dry 

season.  

 

2.2.2 Bais and elephant paths 

 

 

Fieldwork to collect microclimate data and explore forest elephant behaviour was done in bais 

and their environs, since bais exist in the natural habitat of forest elephants. Also, elephants often 

visit bais (WWF, 2006), bais were safe to perform this research and visibility was good. Based 

on Vanleeuwe and Gautier-Hion’s (1998) surveys, a network of three distinct types of elephant 

paths are found to converge to alleys that open into bais (WWF, 2006). Records of high indices 

of elephant activity have reveal that path alleys near bais and bais are important forest sites to 

forest elephants (Vanleeuwe and Gautier-Hion, 1998). As far as I am aware, no study has 

investigated if path alleys and bais play any role on thermoregulation in forest elephants. Based 

on the sudden change of the vegetation cover in the bais and their vicinity, it is likely that 

microclimatic changes also occur as the vegetation of habitats change in path alleys and their 

bais. These microclimatic changes may affect the changes in the body temperature of forest 

elephants (due to changes in the effect of radiation, vapour pressure and wind speeds) as  
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Figure 2.3 (A) Elephant east-west direction corridors (Boulevards). Paths used by elephants to 

rapidly link important sites such as bais in the forest. (B) A typical elephant alley link near Base 

de Djembe at midday. The effect of wind and radiation on this paths may play some role in 

elephant thermoregulation.   
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elephants move across these habitat demarcations. Vanleeuwe and Gautier-Hion’s (1998)                                   

described elephant paths in the forest, and they distinguished paths based on their direction, 

length, width, elephant activity and the types of forests that elephants pass through. They called 

these paths boulevards, foraging paths, and bai alleys. Elephant foraging paths mainly run 

through the medium-density Marantaceae forests which provide elephants with both herbaceous 

foods and tree fruit while boulevards follow a more or less east-west orientation and are used for 

travelling over long distances (up to 34 km) and for linking up favourite sites. Foraging paths are 

sinuous and show little consistency in direction. Near bais, all these different types of paths 

ramify into dense networks of bai alleys (see Figure 2.3A & B).  

 

Swampy bais are mainly covered with forbs and herbaceous plant species. Hard-ground 

vegetation of bais often have grass different from the hard-ground cover vegetation under the 

forest canopy areas in the vicinity of bais, often covered with small trees and shrubs. Bais have 

peculiar climatic conditions; because of the sudden changes in vegetation cover from that of the 

surrounding forest. As mentioned earlier in this section, these changes affect the intensity of 

radiation and wind speed of the local environment and the microclimatic changes may be 

attractive for thermoregulatory purpose to wildlife. The soil composition of bais also have 

natural mineral salts that favours the sprouting of grasses and herbs, contributing to the 

uniqueness and the complexity of the bais, bai alleys and their surroundings (WWF, 2006) . 

2.3   Study population 

 

Between 15 November and 15 December 2010, I observed forest elephants for a total time of 

67.4 hours. Eleven individuals (5 females, 4 males and 2 juveniles) were seen. A total of 429 

behaviour observations were made during the day and 425 at night, using the naked eye or 10x50 



26 

 

mm binoculars. Day observations were made between 06:00-18:00 and night observations 

between 18:00-24:00 (See Table 2.1 & Figure 2.4). Lobeke NP is one of the most-populated 

forest elephant areas in Central Africa with a density of between 0.81-1.14 individuals per km² 

(Nzooh Dongmo, 2003; Tutin and Fernandez, 1984; WCS, 1996). During the dry season some 

elephants traverse the Sangha River through well-defined corridors in to Nuabale-Ndoki NP in 

the Republic of Congo. More than 2,100 elephants have been identified in the adjacent Dzanga 

Bai in the Dzanga-Ndoki NP in Central African Republic (Turkalo and Fay, 1995). Based on 

estimated density of one individual per km², Turkalo and Fay (1995) suggested that the whole 

elephant population of the Dzanga-Sangha-Ndoki complex may visit the Dzanga Bai. Indirect 

evidence suggests that forest elephants travel over long distances traversing long forest corridors 

from bai to bai (Vanleeuwe and Gautier-Hion, 1998) and other important sites.  

2.4   Microclimate assessment 

 

Portable weather stations were used to collect microclimatic data in Djaloumbe, Djangui, Petite 

Savane, Bolou and Base de Djembe Bais. A typical weather station consisted of three main 

components; a white plastic hollow tube on which a vane and a fin are attached (Figure 2.5A), 

and a black globe (Figure 2.5B) and a data logger (Figure 2.6) protected in a freely ventilated 

grey plastic box (Figure 2.5A). The fin and hollow tube ensured that the vane always pointed 

into the prevailing wind, and the white plastic tubing protected the dry-bulb thermometer erected 

within the tube, from radiation. The sensor of the dry-bulb thermometer was situated at the 

centre of vane. The vane was attached to the cross-arm at the stand (Figure 2.5B), and the other 

cross-arm held a globe thermometer, 1.2 m above the ground. The globe thermometer (Vernon, 

1930) was a matte black copper 150 mm globe with a temperature-sensitive sensor put in its 
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C                                                                            D                                                                     

Figure 2.4 (A) An elephant bull observed near Base de Djembe. (B) A herd of elephants eating, 

drinking and spilling mud on their bodies in Djaloumbe Bai in Lobeke NP. (C)  A herd of five 

individuals seen early in the morning foraging and drinking water in Djangui Bai. (D) Solitary 

bull in Base de Djembe.   
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A    

                            
                                                                                      

 

                          B 

                           

Figure 2.5 (A) White air vane and a tail fin. Also seen is a cable used to connect dry-bulb 

thermometer to data logger housing. (B) Weather station installed in the field, the vane on left 

arm of pole and black globe on right arm of pole. 
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                         Figure 2.6 Two 4-channel data loggers.  
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centre. The black globe thermometer provided an integrated measure of the effect of the wind, 

air temperature and radiation (Vernon, 1930). The dry-bulb thermometer and the globe sensors 

were connected to a data logger (Hobo®, temp/RH2 ext., Onset Computer Cooperation 

Massachusetts, USA) and housed below the logger in a naturally-ventilated plastic box. The data 

logger also measured RH of air via an on-board sensor.  

 

The dry-bulb temperature, relative humidity and globe thermometer, 1.2 m above the ground, 

were attached on a rotating vane and stand. The data logger logged the variables at five minute 

intervals. The data logger’s memory could store 43,000 data points, so, at a sampling interval of 

5 minutes, could log microclimatic data for about 60 days. 

2.4.1 Calibration of data logger 

 

I calibrated the data loggers and their sensors using the procedure applied by Hidden (2009). I 

used a precision thermometer (Quat 100, Heraeus, Hahau, Germany) to calibrate the temperature 

data loggers connected to sensors in a stirred insulated water bath, across a range of six 

temperatures between 32°C to 45°C. These temperatures were within the range of the 

environmental temperature expected to encounter in Lobeke NP during the hot dry season. A 

linear equation (y=a+bx) provided a suitable fit for calibration data from all the data loggers 

(TableCurve 2D for Windows v3.05, Jandel Scientific, California, USA). The calibration 

accuracy at the thermometer, as assessed by the standard errors of the fitted lines, was better than 

0.1°C. I repeated the calibration procedure at the end of field work and detected no drift 

exceeding 1°C (i.e. within the temperature range of the amplitude of elephant daily body 

temperature fluctuation (Hidden, 2009)). Figure 2.8 illustrates an example of a thermometer 
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Figure 2.7 One example of the linear regression analysis used for the calibration of the Hobo 

data logger thermometers that were used for this study, Hobo thermometer (A) temperature = 

(●) and Hobo thermometer (B) temperature = (■). The linear regression fit to this calibration 

data was y=a+bx; Where (a=3.9, b=0.90). r²=0.99 Fitted standard error=0.016°C. This study 

considered the temperature range within which the normal body temperature of an elephant and 

also the environmental temperature range that Lobeke NP would be during the dry hot season 

(20°C to 46°C), before the calibration 
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calibration done before and after field work. I employed the calibration from the factory for the 

hygrometer to measure relative humidity. 

 

.4.2 Procedure for collecting microclimatic data 

 

A pair of weather stations was erected at each bai (Table 2.2). Using a measuring tape to 

measure distance, one weather station was erected 100 m away from the open bai under the 

closed forest canopy, and the second weather station was deployed in the open area of the bai, 

such that the weather station was exposed to free air movements and also exposed directly to 

radiant heat during the day (Figure 2.8). Five bais were assessed during this study. The weather 

stations logged data at each site for three days each. I downloaded information from the data 

loggers using a personal computer and software (HoboWare, Onset Computer Cooperation 

Massachusetts, USA). All data were then exported to Excel spread sheets (MS Office, USA) for 

analysis. 

 

In addition to the microclimate variables measured with weather stations, I measured 

microclimate wind speed at chosen sites near the weather stations in the bais and under the forest 

canopy, at 30 minute intervals from 06:00-18:00 in all of the study sites. I employed factory 

calibration for the anemometers. I used a hot-wire anemometer (GGA-65, Alnor Thermo-

Anemometer, Finland) and the field assistant in the second group of field workers in this study 

used a wind vane anemometer (AM-4201 digital Lutron anemometer, USA) to measure and 

record wind speed (m/s).  
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Figure 2.8 (A) Weather station at noon under closed-forest canopy near Djangui Bai. (B) 

Weather station at noon in the middle of Djangui Bai. (C) Miradow in Djangui Bai. (D) Side 

view of closed-canopy forest in Lobeke NP. 
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2.5 Procedure for collecting behaviour data 

 

 I exclusively investigated the behaviour and thermoregulatory strategies of the forest elephant 

during the field-work of this dissertation. I was assisted by Raul Mambele, an experienced field 

worker, trained to collect microclimate and elephant behaviour observations for my study. We 

made observations from 06:00 to 18:00, whenever elephants entered the bais. We observed from 

the miradows, taking precautions not to disturb the animals. Miradows are dull green or brown 

painted chalets, built on wooden platforms, usually at the forest-savannah borders, with 

balconies overlooking the bais. The colour of the chalet blends with the surrounding 

environment of the forest, serving as a camouflage. Tourists and researchers use the miradows as 

shelter and accommodation to observe wildlife safely in the forest vicinity for weeks and even 

months, without apparent disturbance to animals in their natural environment. On three occasions 

we observed and recorded data of elephant activity between 18:00 to 24:00 at the banks of the 

Sangha River in Base de Djembe.   

 

Using the naked eye or 10x50 mm binoculars, we recorded the activity of the eleven elephants 

seen at five minute intervals. We applied the fixed interval time point sampling method (Guy, 

1976; Martin and Bateson, 1986; Wyatt and Eltringham, 1974) to observe elephant behaviour. At 

times my assistant and I recorded behaviour from different elephants simultaneously using data-

recording sheets to record behaviour (Table 2.3). At each five-minute sampling point, we 

recorded the activity of a focal elephant as one of the behaviour categories previously described 

in section 2.5. However, I classified the following elephant activities: drinking of water, 
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swimming, soil eating (geophagy), splashing and smearing of mud on the elephant’s body as 

water-related because water is involved in all the activities.  

 

Since we observed animals from miradows it was difficult to watch nocturnal behaviour of 

elephants in most of the bais at night. However, we observed elephants that visited the Base de 

Djembe during three consecutive nights between 18:00-24:00. Base de Djembe had security 

lights that illuminated part of the clearing at night, enough for an observer to see animals at 

certain locations. Nevertheless, at certain instances throughout this study, the focal animal was 

obscured by vegetation or darkness, in which case data recording was interrupted. Both of these 

difficulties were some of the flows in my study.   

 

To overcome some of these difficulties, I also used indices of elephant presence to assess the 

number of elephants visiting the bais and its environs during this study, in order to ascertain 

elephant presence in the bais and its environs at night and in obscure areas of the bais.  These 

data were important to assess if elephants were present or absent in the bais or under the forest 

canopy during varying environmental conditions in the course of the 24-hour day period. In 

many cases indirect methods, such as surveying signs of animals (dung or nests counts) have 

been used to carryout wildlife surveys in the forest because of the poor visibility and the safety 

concerns of my field personnel. As such I used indirect methods to estimate the number of 

elephants entering the bais.  

 

I checked whether elephants entered the bais in the day or night without being noticed during 

this study using a topofil. A topofil is a portable instrument made of a small wheel having a   
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Table 2.3 Field data sheet. 

Individual:                                  

Date:    Locality:                              

                                        

 5 Minute focal sampling       : Thermoregulatory behaviour        

                     Seeking shelter   Body orientation relative to   

                             from:    Solar radiation       Wind    

      ACTIVITY LEVEL        FORAGING 

   

BODY   SUN        WIND  Pll Pplar Obl Pll Pllar Obl   

       Ear activity Dusting Mudding   POSITION                    

Time Ly St Wlk Ru Ho Mt Stll  Yes No Yes No  Feed Drink 

  

Ly St   Yes No   Yes No   r l r l  r l r l Notes 

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

Ly= lying, St =standing, Wlk= walking, Ru=running, Ho= splashing water, Stll= standing still, Pll=parallel, Pplar= perpendicular, Obl=oblique, r=right, l=left  
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string-pile of sewing thread wound on the wheel that is mounted on an axle. The wheel turns and 

unwound the thread in the direction of pull.  I placed thin sewing threads attached to a topofil, at 

various entrances of elephant paths into the bais along the forest-savannah boundaries. Any 

elephant or other large animal entering the bais would automatically cut and displace the thread 

with its legs or body towards the direction of motion. I could identify the species subsequently 

by examining the footprint on the soil. Also, by measuring elephant footprint size, I was able to 

assess the number of elephants and estimate the time the animals passed through any bai 

entrance. Other supplementary tools that I used to estimate the number of elephants that visited 

the study sites included number of vocalizations heard at night and number of fresh faecal 

dropping (fresh faecal < 12 hours old was usually green) identified and the faecal positions noted 

on the paths and alleys in the vicinity of the bais. By measuring the sizes of faecal droppings and 

foot prints, identifying the shapes and sizes of toe nails, I could estimate the number of 

elephants. Also the vocal sounds of adults were louder than the vocal sound of calves and 

juveniles, and these differences were also used to estimate elephant numbers.   

2.6 Data analysis 

In all statistical analyses throughout this dissertation a p value less than 0.05 was considered 

significant. I ran two-way ANOVA to assess the differences between the means of the categories 

of microclimatic data from various weather stations under forest canopy and weather stations 

from the open bais. I also analysed the differences between microclimatic variables in open bais 

and under forest canopy for all the study sites using two-way ANOVA and correlation analysis 

to assess relationships between microclimatic variables.  

Relative humidity data were converted to vapour pressure using a barometric chart (Barenbrug, 

1974). To obtain a more accurate microclimate variable for each hour, the mean of five-minute 
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temperatures and vapour pressures for each hour during a 24-hour time sequence was computed. 

The mean of the temperatures and vapour pressure for each hour from 06:00 to 18:00 was 

computed to obtain the mean and standard deviation for globe temperature, the mean and 

standard deviation for dry-bulb temperature and the mean vapour pressure and standard deviation 

for each of the sites studied. The standard deviation indicated the how high or low variables were 

from the mean of the variables.  The mean hourly globe temperature, dry-bulb temperature and 

vapour pressure per site for each day were computed to obtain the mean and standard deviation 

for three-day microclimatic variables for each study site. To assess if microclimate variables 

were different between study sites, two-way ANOVA was used to compare the mean 

microclimatic variables.  To assess the 24-hour pattern of the globe temperature (environmental 

heat load) in open bais and the closed-forest canopy at the different study sites, I plotted the 

mean hourly black globe temperature, dry-bulb temperature and vapour pressure against time of 

the day for each study site, using GraphPad Prism (Version 4 software, San Diego, CA, USA). In 

addition to computing the five-minute values of temperature and vapour pressure, I computed the 

hourly mean wind speed during the day at each study site in the open bais, and at each study site 

under the forest canopy, to obtain a more accurate wind speed for each study site per hour. I 

plotted graphs of mean wind speed against time of the day for all the study sites. 

2.6.1 Analysis of behaviour data 

I used data from five-minute observations categorising elephant behaviour to obtain the 

percentage of the time each of the elephants in this study spent on each activity, at different 

hours of the day. I then calculated the mean percentage of time spent per hour for each activity 

by averaging activity times of all elephants that I observed in that specific hour of the 24-hour 

day. I also calculated the standard deviation of time spent per hour in each activity. I also ran 
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correlation analyses to compare the mean black globe temperature, dry-bulb temperature and 

vapour pressure of air for all the study sites with the mean percentages time that all the elephants 

in this study spent on each activity. This analysis was done in order to ascertain if observed 

elephant thermoregulatory behaviours correlate with microclimatic variables. 

2.6.2 Analysis of microclimatic and behaviour data 

 

The elephant activities such as walking, foraging, shade-seeking, ear-flapping, dust-bathing and 

water related activities of this study that correlated with black globe temperature, dry-bulb air 

temperature and water vapour pressure of air were plotted (i.e. behaviour against microclimatic 

variables). Only the microclimatic profiles that were similar for all the study sites were used to 

assess effects on elephant behaviour. However, most of my data of elephant activities were 

obtained mainly in the bais and at the edges of the bais where elephants were visible and where 

elephants’ indices of presence were seen. I used the indices of elephant presence in this study to 

assess the number of elephant that entered the bais and elephants that were present at the forest 

canopy at the vicinity of the bais in this study. Although no thermoregulatory behaviour could be 

obtained from the data of elephants’ indices of presence, the indices data was important because 

I used the number of elephants identified to visit the study site at any time of the 24-hour day 

period to find out if any correlation exist between elephant numbers and microclimate variable of 

the period of visit.  
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3.1    Introduction 

 

In this chapter I report the results of the microclimates and the behavioural data of the elephants 

that I observed at five study sites in Lobeke NP. I obtained microclimate data logged at five 

minute intervals, for three days each per site, covering 360 hours and total of over 4000 

measurements of black globe (Tg), dry-bulb (Ta), vapour pressure of air (VP) and wind speed 

(WS) variables.  

3.2 Microclimate data 

3.2.1 Black globe temperature   

The Tg in the open bais and under the tree canopy is illustrated in Figure 3.1. Tg showed a 

prominent rhythm, with the profiles on consecutive days being similar, with exceptions on the 

first day in Djaloumbe and Bolou Bais. Tg peaked between 11:00-13:00, at a maximum 

temperature that exceeded 40ºC in the open bais of four of the five sites. Under the tree canopy, 

maxima were usually below 30ºC. Curves of the Tg profiles for the Djangui Bai were different 

from the other four sites, in that maximum Tg in the open bais was close to that under the 

canopy. Also, the Tg in the bai for Djangui was 40ºC, unlike that for the other four bais. Tg in 

both the open bais and under the tree canopy for all the bais declined gradually during the night, 

reaching a minimum just before dawn.  

3.2.2 Dry-bulb temperature 

Figure 3.2 illustrates the three-day 24-hour pattern of Ta in the bais and under the forest canopy. 

Early in the morning, at approximately 08:00 the Ta in the open bais and under the forest canopy 

ranged between 15-23ºC. As the sun rose in the morning, the Ta also began to rise; steadily 

increasing to peak at 38ºC in the open bais and 28ºC under the forest canopy, and then gradually  
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 Figure 3.1 Tg in the open bais (__), and Tg under the forest canopy (….), at the different study 

sites in Lobeke NP. The dark bars represent night.  
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Figure 3.2 Ta in the open bais (__), and Ta under the tree canopy (….), at the different study sites 

in Lobeke NP. The dark bars represent night.  
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decreasing until sunset. During the night the Ta in the open bais and under the forest canopy 

continued to gradually decrease to just below 19ºC just before sunrise.  

 3.2.3 Difference between black globe and dry-bulb temperature 

The temperature difference between Tg and Ta (Tg-Ta) in each of the open bais is shown in 

Figure 3.3. Generally, during the day the Tg and Ta increased with the increase in sunlight 

intensity, and the peak of Tg-Ta occurred at about midday. Between 18:00 and 06:00 Tg-Ta in 

the bais and under the forest canopy was close to zero for all the study sites. However, on the 

first day of data recording, the patterns of Tg-Ta in Djaloumbe, Petit Savane and Bolou Bais 

were inconsistent. In the mornings of some days, the Tg-Ta of Djaloumbe, Base de Djembe and 

Bolou Bais started increased about 15 minutes before 06:00. While the Tg-Ta of the first day of 

Djaloumbe, Petite Savane and Bolou Bais showed patterns peculiar to Tg-Ta of the rest of the 

days. Tg-Ta for all the days in Djangui, day-1 and day-2 of Base de Djembe, day-2 and day-3 of 

Petite Savane showed Tg-Ta increasing at 06:00.     

3.2.4 Vapour pressure of air 

Both the VP in the open bais and under the forest canopy started to rise at about 8:00 in the 

morning. Generally, the VP of Djaloumbe, Base de Djembe, Petite Savane and Bolou Bais 

followed a similar day and night pattern. VP peaks occurred at different times during the day in 

each of the sites. However, during the first and the second days at Djangui the VP curve showed 

a sudden upsurge as high as 3.5 kPa under the forest canopy during the day, but this phenomenon 

did not occur on the third day. The VP patterns in the open bais and under the canopy were fairly 

similar to each other during the night, but much higher under the forest canopy than in the open 

bais during the day (see in Figure 3.4). 
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Figure 3.3 Differences between Tg and Ta (Tg-Ta) in the open bai (__), and under the 

forest canopy (….), at the different study sites in Lobeke NP. The dark bars represent 

night.  
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Figure 3.4 VP  in the open bais (__), and under the forest canopy (….), at the different 

study sites in the Lobeke NP. The dark bars represent night. 
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 3.2.5 Wind speed 

Figure 3.5 illustrates the mean three-day WS profiles for each of the study sites from 06:00-

24:00. The WS differed significantly between study sites (p<0.05, f=2.68). There were significant 

differences between day WS for five of the study sites (p<0.01, f=0.74). WS were generally faster 

in the open bais than under the forest canopy for each of the study sites (p<0.05, f=0.740, during 

the day; and p=0.05, f=2.68) during the night. WS between day and night differed significantly 

(p<0.05, f=15.2) (see the summary of statistics in Table 5.1 in the appendix).   

Figure 3.6 illustrates the three-day mean Tg, Ta, VP and the WS in the open bais and under the 

forest canopy, during day and night, for each of the study sites. There were no significant 

differences between the mean Tg and Ta in the open of each bais during the day and during the 

night (p=1.10, f=0.03 for Tg in bai and under forest canopy during day; p=0.87, f=0.31 for Tg in 

bai and under forest canopy at night). Also, no significant differences were recorded between Ta 

in the bais and under the canopy and VP in the bais and under the forest canopy during the day 

and night (see stats in Figure 3.6). However, WS was significantly different in the bai and under 

the forest canopy (p<0.05, f=7.39) during the day and p<0.05, f=2.68) during the night. WS in the 

open bais and under the forest canopy were similar for Djaloumbe and Djangui Bais, but the 

mean WS in the open bais for Base de Djembe, Petite Savane and Bolou Bais were  slower than 

under the forest canopy during the day. At night, the WS in the open bais for all the study sites 

were faster than the speed under the forest canopy. There was no significant difference between 

the mean Tg-Ta in the open bais and under the forest canopy for each of the study sites (p=0.10, 

f=0.16) during the day. However, there were a significant differences between Tg-Tg during the 

night ( p<0.05, f=0.41) during the night. Tg during the day in the  
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Figure 3.5 Mean three-day (±SD) WS profile in the open bais (○) and under the 

forest canopy (●) for five of the study sites in Lobeke NP between 06:00-24:00. 

The dark bars represent the night.  
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open bai and under the forest canopy was generally higher in value than Ta and as a result Tg-Ta 

had positive values. But at night Tg-Ta was significantly different (p<0.05, f=0.41) some being 

positive in value others being negative (see Figure 3.7). There was no significant difference 

between the mean Tgs for all the study sites. Also, no significant difference was recorded 

between Tas, and VPs for all the study sites too (p=1.0, f=0.03 for day Tg; p =0.98, f=9.01 for 

day Ta; p=0.66, f=0.67 for day VP in the open bais and under the forest canopy respectively). 

Lobeke NP had similar Tg and Ta and VP profiles at all of five study sites but the WS profiles 

were significantly different. Table 3.1 summarises the mean microclimatic profile for Lobeke 

NP, (Tg, Ta and VP as well as that for Tg-Ta, during day and at night). Since WS were 

significantly different in each of my study sites, it was not possible to obtain a profile that 

pertains broadly to Lobeke area.  

Figure 3.8 illustrates the three-day mean Tg, Ta, Tg-Ta and VP profiles for all of the study sites 

in Lobeke NP. Generally, the mean Tg profiles in the open bais were significantly higher than 

the Tg under the forest canopy between 06:00-24:00 (p=0.005, f=4.27). There was no significant 

difference between the Ta profile in the open bais and under the forest canopy during 06:00-

24:00 (p=0.31, f=2.72). The profile of Tg-Ta in the open bais was significantly higher than Tg-

Ta under the forest canopy (p<0.0001, f=11.8). During similar period, the mean VP under the 

forest canopy was significantly higher than VP in the open bais (p<0.0001, f=1.55) but no 

significant correlation was observed between Tg and VP (p=3.33, f=2.83).  

Figure 3.9 illustrates the linear regressions of the variables that correlated with each other 

following the correlation analysis of the means of the microclimatic variables for all of the study 

sites. The Ta in the bais correlated with the Tg in the bais (p<0.05, r²=0.94). Similarly, Ta and Tg 
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correlated under the forest canopy (p<0.05, r²=0.96). The Tg in the bais correlated with the Tg 

under the forest canopy ((p<0.05, r²=0.86) and the Ta in bais also correlated with the Ta under 

the forest canopy ((p<0.05, r²=0.93).   

 

Referring to the values of Tg and Ta Vp and WS in Table 3.1, there was no significant difference 

between the mean Tg in bais  during the day and night (p=0.15, f=3.81) or in bai and Tg under 

the forest canopy (p=0.66, f=0.0.59). No significant difference was recorded between the Ta 

during the day and night (p=0.64, f=0.41) or between the Ta in bais and Ta under the forest 

canopy (p=0.70, f=0.27). There was no significant difference between VP in the day and VP at 

night (p=0.206, f=9.00), or VP in the bai and VP under the forest canopy (p=0.20, p=09.0).    

Table 3.1 Summary of mean (±SD) microclimatic variables for all the study sites and the 

differences between the variables in the bais and under the forest canopy during day and night. 

Microclimatic variables Day  Night 

Mean Tgb 32.8±1.1ºC 19.6±1.2°C 

Mean Tgt 25.5±0.8ºC 20.5±1.3°C 

Tgb-Tgt  7.30±0.3ºC -1.1±0.1°C 

    

Mean Tab 26.9±1.2ºC 19.8±1.3°C 

Mean Tat 19.4±0.8ºC 21.2±0.7°C 

Tab-Tat   7.5±0.4ºC -2.6±0.6°C 

    

Mean VPb  2.10±0.10 kPa 2.08±0.11 kPa 

Mean VPt 2.08±0.10 kPa 2.04±0.23 kPa 

VPb-VPt -0.02±0.00 kPa 0.04±0.88 kPa 

 

Tgb=globe temperature in bai, Tab=Dry-bulb temperature in bai, Tgt= globe temperature under 

forest canopy, Tat= dry-bulb temperature under forest canopy, VPb= vapour pressure of air in 

bai, VPt =vapour pressure of air under forest canopy.  
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Table 3.2 summaries the mean WS for each of the study sites. The highest mean WS was 

recorded in the Djangui Bai (3.9 m/s), the least windy conditions occurred in Petite Savane (0.7 

m/s). The mean WS profiles for each of the study sites were different from one another. For this 

reason the profiles did not represent the WS of Lobeke NP and could not be used to assess how 

WS in the park generally influence the forest elephant’s behaviour in the park. 
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Figure 3.6 Mean Tg, Ta, VP and WS (±SD) for three days in the bais and under the forest canopy, during 

the day (06:00-18:00) and the night, for all study sites (18:00-06:00) bais in the Lobeke NP. The open bars 

represent variables in the open bais and shaded bars represent variables under the forest canopy. 
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Figure 3.7 Difference of three-day means of Tg and Ta (Tg-Ta) in the bais and under the 

forest canopy during the day (06:00-18:00) during night (18:00-06:00) at the different 

study sites in the Lobeke NP. The open bars represent variables in the open bais and 

shaded bars represent variables under the forest canopy. 
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Figure 3.8 Typical mean (±SD) three-day profile of microclimate variables in the 

open bais and under the forest canopy for all the study sites in the Lobeke NP 

between 06:00-24:00. Difference between mean Tg & Ta = mean Tg minus mean 

Ta. The dark bars = night, -●- = microclimatic variables under the tree canopy,-○- 

microclimatic variables in the open bais. 
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3.3 Elephant behaviour 

Elephant behaviour was recorded for a total time of 64.7 hours. Behaviour data was collected as 

using fixe interval time point sampling method previously described in section 2.5. Figures 3.10 

to 3.13 show some of the elephant behaviours that were observed during this study. These 

behaviours may influence thermoregulation in elephants. The total number of elephants that were 

seen and those identified indirectly using elephant indices of presence at each of the study sites, 

during the day and night is shown in Table 3.3. The data indicated that most of the elephants 

seen and their indices of present recorded in the bais at night (between 18:00-06:00), resulting in 

a range of 0-22 elephants that entered the open bais, and a range of 0-5 elephants that entered the 

bais during the day (between 06:00-18:00). No elephant was seen visiting Djangui Bai during the 

night and none seen visiting Petite Savane and Bolou Bais during the day.  

 

The mean percentage of time that the elephants were seen spent walking and foraging between 

06:00-24:00 is illustrated in Figure 3.14. Only two elephants were observed between 06:00-

11:00, at most seven seen between 12:00-15:00, two between 16:00-20:00, none between 18:00-

20:00 and three between 20:00-24:00.  

 

Generally the elephants spent a mean time of about 40% walking throughout the day, between 

06:00-24:00. They spent less than 25% of their time walking in the morning but, as the morning 

progressed, their walking activity increased and peaked at about 75% by 10:00. Thereafter, the 

elephants decreased their walking-time to less than 25% in the late afternoon. However, they 

spent 55% to 75% of their time between 18:00-24:00 walking. The elephants spent more time 

feeding in the morning compared to the time they spent walking. 
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Table 3.2 Summary of mean (±SD) WS (m/s) for five of the study sites and the differences 

between mean WS in the open bais and under the forest canopy for the day and night. 

_____________________________________________________________________________ 

DAY  

Study sites   
Djaloumbe 

Bai 

Djangui 

Bai 

Bese de 

Djembe 

Petite 

Savane 

Bolou 

Bai 

____________________________________________________________________________ 

              

WSb in open bai  2.7±0.3 3.9±0.4 0.9±0.7 1.8±0.5 2.2±0.5 

WS  under forest canopy 2.8±0.2 3.8±0.4 1.2±0.6 2.8±0.6 2.4±0.4 

Difference  WS in bai & 

WS under forest canopy -0.1±0.1 0.1±0.0 -0.3±0.1 -1.0±0.1 -0.2±0.1 

       _____________________________________________________________________________ 

NIGHT             

Study sites     
Djaloumbe 

Bai 

Djangui 

Bai 

Base de 

Djembe 

Petite 

Savane 

Bolou 

Bai 

              

WSb 2.8±0.2 3.8±1.2 1.2±0.6 2.8±0.6 2.4±0.4 

WSt 1.8±0.3 1.7±0.4 0.8±0.5 0.7±0.3 0.9±0.6 

WSb-WSt  1.0±0.1 2.1±0.8 0.4±0.1 2.1±0.3 1.5±0.2 

_____________________________________________________________________________ 

WSb= in open bai  

WSt = under forest canopy 
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Figure 3.9 Linear regressions between mean Tg and mean Ta in the open bais and under the 

forest canopy (between 06:00-18:00) for all the study sites in Lobeke NP. 
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Elephant 

Figure 3.10 (A) An elephant standing under shade in Djaloumbe Bai in the afternoon of a 

sunny day. (B) The arrow indicates an elephant foraging at midday in the shady area of 

Marantaceae forest thicket near Djaloumbe Bai.  
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Figure 3.11 A cow elephant foraging in Base de Djembe. 
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Figure 3.12 (A) A bull elephant having telemetry collar on its neck. It was seen near 

base de Djembe, after taking a dust bath such that patches of brown soil were on its 

body.  (B) An elephant bathing its belly with mud (see grey patches of mud on its belly 

and brown patches of dust on its back from an earlier dust-bath).  
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Figure 3.13 (A) An elephant seen just after walking across the Lobeke River 

during a hot afternoon. See wet portion of the elephant’s body below the ears, 

while the ears and back remained dry, since these portions were not immense 

in water (B) Elephant swimming in the Sangha River. 
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Table 3.3 Estimated number of elephants (using their indices of presence) that were identified to 

have entered each of the five bais during the day and night during the three-day study period at 

each bai.   

 

Time of day Djaloumbe 

Bai 

Petite 

Savane 

Djangui 

Bai 

Base de 

Djembe 

Bolou 

Bai 

Day 3 0 5 3 0 

Night 9 6 0 22 12 

 

 

Figure 3.15 illustrates the mean percentage of time that observed elephants spent seeking shade, 

dust-bathing, ear-flapping and performing water-related activities between 06:00-24:00. They 

started showing shade-seeking activity late in the morning, which progressively increased from 

about 11:00, peaking at about 50% between 13:00-14:00. Thereafter, their shade-seeking activity 

continued for about an hour and then stopped or reduced. Dust-bathing occurred between 08:00-

12:00 and elephants sprayed dust and dirt on their bodies for between 10-25% of their time. Ear-

flapping occurred throughout the day but did so more than 50% of the time between 09:00-12:00. 

Ear-flapping also occurred frequently at night. Water-related activities were irregular and 

inconsistent. Elephants in this study were seen performing water-related activities (drink water, 

bathe with mud or spray body with water) between 08:00-13:00 only, and the total time the 

elephants spent performing water-related activities between this time was generally less than 

25% per session.  Base the Djembe is situated at the banks of the Sangha River. All the elephants 

observed were not seen to drink water or perform any other water-related activity between 18:00-

24:00.   
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Figure 3.14 Mean (+SD) percentage of time per hour that the elephants observed in the study spent 

walking (top panel) and foraging (bottom panel) between 06:00-24:00. The number of individuals 

observed is indicated above the bar for each period. The black bar on the x-axis represents night. 
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Figure 3.15 Mean (+SD) percentage of time that the elephants observed in the study spent per hour on each activity between 06:00-24:00. The number 

of individuals observed is indicated above the bar for each time period. The black bar on the x-axis represents night. 
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  Figure 3.16 Mean (±SD) percentage of time that the elephants observed in this 

study spent on each activity between 06:00-12:00, 12:00-18:00 and 18:00-24:00. 

The number of individuals observed is indicated above the bar for each time 

period. 
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The activities performed by the elephants during all three periods of the day (morning 06:00-

12:00, afternoon 12:00-18:00 and night 18:00-24:00) are summarized in Figure 3.16. Walking, 

foraging, and ear-flapping were the predominant behaviours recorded. Dust-bathing was seen 

only in the morning, while water-related activities occurred in the morning and afternoon.  

 

3.4 Association between microclimate and elephant behaviour at the study sites 

3.4.1 Walking behaviour 

 

There was no significant correlation between the mean Tg in the five open bais and mean percent 

time the elephants spent walking (p=0.33, r²=0.06, n=17) (see Figure 3.17A). Figure 3.17 C 

illustrates that there is no significant correlation between the mean when the VP  in the five open 

bais and the mean percent time the elephants spent walking during each hour of the day at the 

study sites. Similarly, Figure 3.17 C shows that there was no correlation between the time the 

elephants spent flapping their ears and the time they spent walking.   

3.4.2 Foraging behaviour 

 

Figure 3.18A illustrates that there was no association between the mean Tg in the open bais and  

the mean time the elephants spent foraging. Foraging behaviour did not show any significant 

association with VP (see Figure 3.18 B). Similarly Figure 3.18 C shows no association between 

foraging and walking times. 

3.4.3 Shade-seeking behaviour 

 

The mean time that the elephants spent seeking-shade as a function of mean Tg in the bais is 

illustrated in Figure 3.19A. The elephants in the bais started showing shade-seeking activity at 
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Figure 3.17 (A) Correlation between the mean Tg in open bais and the mean percentage time of each hour 

that the elephants spent walking for all the study sites. (B) Correlation between the mean VP in open bais and 

the mean percentage time of each hour that the elephants spent walking for all the study sites. (C) Association 

between the percent time during each hour that elephants of this study spent walking and flapping their ears.  
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Figure 3.18 (A). Association between the mean percent time elephants spent forging during each hour 

and mean Tg for that hour in all the bais. (B). Correlation between the mean VP in open bais and mean 

percent time the elephants spent foraging during each hour for all the study sites. (C) Association 

between the percent time during each hour that all elephants observed spent walking and foraging for 

all the study sites.  
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Figure 3.19 (A) Mean (±SD) percent time of each hour that the elephants spent seeking shade (-■-, 

left axis) and mean (±SD) Tg for that hour (-●-, right axis), plotted as a function of time of the day 

for all five study sites. The dark bar indicates night. (B). Correlation between mean Tg in the open of 

all the bais and mean percent time the elephants spent seeking shade during each hour for all of the 

study sites. (C) Mean (±SD) percent time of each hour that the elephants spent seeking shade (-■-, 

left axis) and mean (±SD) VP for that hour (-●-, right axis), plotted as a function of time of the day 

for all five study sites. The dark bar indicates night. (D) Correlation between mean VP in the open 

bais and the mean percent time elephants spent seeking shade during each hour for all the study sites.   
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about 11:00, when mean Tg in the bais was higher than 35ºC. Both the shade-seeking activity of 

the elephants and the Tg increased progressively and peaked between 13:00-14:00. At this point 

elephants spent about 52% of their time seeking shade. Between 13:00-14:00 the Tg in some of 

the bais was as high as 46ºC. There was a weak association between the time elephants spent 

seeking shade in the bais and the Tg (p=0.07, r²=0.52). The shade-seeking activity was 

remarkable high at Tg above 35ºC (Figure 3.19B).    

 

The mean time that the elephants spent shade-seeking as a function of mean VP in the bais is 

shown in Figure 3.19 C. At about 10:00 as the mean VP in the bais decreased, elephants in the 

bais started seeking-shade more progressively until about 13:00 in the afternoon, and then started 

reducing their shade-seeking activity until about 16:00.  No correlation existed between shade-

seeking activity and mean VP in the bais (Figure 3.19 D). 

3.4.4 Ear flapping behaviour 

 

The percentage time of each hour that the elephant performed ear-flapping and mean Tg for each 

hour plotted as a function of the time of the day, for all five study sites, is shown in Figure 3.20 

A. The elephants flapped their ears all day, progressively increasing the rate of ear-flapping 

throughout the day. The ear-flapping activity was maintained above 50% until late in the 

afternoon. There was a significant correlation between the Tg and the percentage time spent ear-

flapping per hour (p<0.01, r²=0.47, see Figure 3.20 C). Figure 3.20 B illustrates the percentage 

time of each hour that elephants in this study spent flapping their ears and the mean VP of the air 

for each hour, plotted as a function of time of the day for all study sites. There was no correlation 

between VP and the time spent ear-flapping per hour (p=0.35, r²=0.0.05, see Figure 3.20 D), and 
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no correlation between percentage ear-flapping per hour and foraging (p=0.08, r²=0.20, Figure 

3.20 E).    

3.4.5 Dust-bathing behaviour 

The mean time that the elephants spent dust-bathing as a function of mean Tg in the bais is 

shown in Figure 3.21 A. Generally the elephants observed in this study bathed with dust between 

06:00-13:00. The elephant’s dust-bathing behaviour showed a weak association with the mean 

Tg in the bais (p=0.07, r²=0.06, see Figure 3.21 B). Figure 3.21 C illustrates the mean percentage 

time the elephants in this study spent dust-bathing per hour as a function of mean VP in the bais. 

Figure 3.21 D illustrates that there is no correlation between Tg or VP and percentage time per 

hour the elephants spent dust-bathing in the bais (p=0.07, r²=0.6).  

3.4.6 Water-related behaviours 

 

There was no correlation between mean Tg and percentage time performing water-related 

activities per hour in the bais (see Figure 3.22 A). Figure 3.22 B illustrates that there is no 

correlation between the percentage time spent per hour on water-related-activities and the VP in 

the bais (p=0.29, r²=0.13). 
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Figure 3.20 (A). Mean (±SD) percent time of each hour that the elephants spent ear-flapping (.■., left axis) 

and the mean (±SD) Tg for that hour (-●-, right axis), plotted as a function of time of the day for all five 

study sites. The dark bar indicates night. (B). Correlation between the mean Tg in the open of five bais and 

the mean percent time elephants spent flapping their ears each hour at all the study sites. (C) Mean (±SD) 

percent time of each hour that the elephants spent ear-flapping (.■., left axis) and mean (±SD) VP for that 

hour (-●-, right axis), plotted as a function of time of the day for all five study sites. The dark bar indicates 

night. (D). Correlation between the mean VP in the open bais and mean percent time the elephants spent 

flapping their ears each hour for all the study sites. (E) Association between foraging and ear-flapping for 

all of elephants observed in the study.  
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Figure 3.21 (A) Mean (±SD) percent time of each hour that elephants spent dust-bathing (-■-, left 

axis) and the mean (±SD) Tg for that hour (-●-, right axis), plotted as a function of time of the day for 

all five study sites. The dark bar indicates night. B). Correlation between the mean Tg in the open and 

under forest canopy and mean percent time the elephants spent dust-bathing during each hour for all 

the study sites. (C) Mean (±SD) percent time of each hour that the elephants spent dust-bathing (-■-, 

left axis) and mean (±SD) VP for that hour (-●-, right axis), plotted as a function of time of the day 

for all five study sites. The dark bar indicates night. (D). Correlation between mean VP of air in the 

open and under forest canopy and mean percent time elephants spent dust-bathing during each hour 

for all the study sites.   
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Figure 3.2.2 (A). Association between the percent time elephants performed water-related 

activities per hour and Tg for that hour for all study sites. (B) Correlation between mean VP in 

the open bais and mean percent time the elephants spent on water-related activities during each 

hour for all the study sites.   
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4.1 Introduction 

 

In this chapter I summarise my findings and discuss my results in the context of elephant 

behaviour and thermoregulatory strategies in Lobeke NP, Cameroon. I then compare my data on 

behaviour of African forest elephants to that derived from the works of other elephant studies 

across Africa. These researchers used either fixed point interval technique (Guy, 1976; Martin 

and Bateson, 1986; Wyatt and Eltringham, 1974) or continuous survey (Guy.1976) but data 

obtained by both techniques could be compared without problems since both types of data are 

statistically similar as reported by Leggett (2008).  

4.2. Microclimate mosaic at my study site 

 

The microclimate available to elephants in Lobeke NP was measured at five sites in the open 

bais and under the forest canopy adjacent to the sites. It was found that the Tg, Ta, VP profiles 

were similar across all the study sites. There were no significant differences in the Tg, Ta and VP 

between each of the study sites. No significant difference was recorded between Tg, Ta, VP in 

the bais and under the forest canopy for each of the study sites. However, the WS were 

significantly different between some of the sites. The difference in WS was due to variations in 

vegetation density at each site. The vegetation density affected the ease with which air flowed 

through the habitat of that site. The discrepancies in the time Tg-Ta started increasing in the 

mornings observed in Djaoumbe and Bolou Bais in Figure 3.3 was due to the height of trees and 

the difference in tree density per unit space at the eastern edge of both bais. Low tree density per 

unit space in the eastern edge of Base de Djambe, Petit Savane and Djangui Bais seemed to 

cover early morning sun rays less than those in Djaloumbe and Bolou Bais as the early morning 
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sun rays easily penetrated through spaces between tree leaves and branches and heat up the 

thermometers. As such, the Tg and Ta thermometers reflected higher temperatures in Djaloumbe 

and Bolou Bais, thus increasing Tg-Ta about 15 minutes earlier than Tg-Ta in Djangui and Petite 

Savane. Tg-Ta in in Djangui and Petite Savane started rising at 06:00.  The peculiar Tg-Ta during 

the first days in Djaloumbe, Petite Savana and Bolou Bais were due to the thermometer stand 

falling to the ground altering the position of the temperature sensors to give misleading 

temperature values.  

As shown earlier in section 3.2.5, WS in all the study sites were significantly different between 

open bais and under the forest canopy (p<0.05, f=074, during the day and p<0.01, f=2.69 at 

night). WS were significantly different between study sites (p<0.05, f=2.68). WS at Djangui Bai, 

Base de Djembe and Petit Savane were the highest, particularly in the late afternoon and at night. 

Generally, the winds in the open bais were higher than those under the forest canopy. The 

differences in the WS between the open bais and under the forest canopy can be explained by the 

way that air flows through the different vegetation types at the different sites. The less the 

density of vegetation in any portion of the forest, the faster the wind, due to less resistance to air 

flow in that portion. On the other hand, the thicker the vegetation-cover, the more the resistance 

of air flow in that portion, resulting to slow wind. Overall, WS’s were relatively low, usually less 

than 2 m/s and rarely exceeding 4 m/s. 

The higher WS in the open bais than that under the forest canopy at night seems to attract 

elephants to visit the bais. This may be explained by the higher number of elephants observed or 

more indices of presence that was recorded in the bais than under the forest canopy at night. WS 

and direction not only certainly contributed to the way the elephants selected the microclimates 
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of this study, but it also seems that forest elephants use wind directions to identify their 

orientation in the forest. I observed that elephants entered or left the bais mostly following east-

west direction. This phenomenon had also been reported on forest elephants by Vanleeuwe & 

Gautier-Hion (1998). 

Vanleeuwe & Gautier-Hion (1998) argued that forest elephants use the direction of the wind to 

monitor predators before entering the bais. The highly developed sense of smell in the elephant 

(Skinner and Chimimba, 2005) enables them to perceive the direction from which the wind 

blows toward the elephant’s trunk. The wind also enables the elephant to perceive the smell of 

humans, animals and forage. It is for these reasons that Vanleewe and Gautier (1998) speculated 

that poachers have been using the elephants’ alleged monitoring strategies to poach elephants in 

protected areas in the Congo Basin Forest. Humans remain the number one predator of the 

African forest elephants in northern Congo (Fay and Agnagna, 1991). Large numbers of carcases 

of poached elephants have been discovered at the east-west path entrances to bais in Congo 

Forest, which suggest that the wind direction could be a key factor involved (Vanleeuwe and 

Gautier-Hion, 1998). However, more studies need to be done since the direction of elephants 

entering the bais and the angle to which they orientate their bodies to the prevailing wind may be 

thermoregulatory motivated too.  

 

There are also arguments that elephants use long straight paths called “boulevards” to travel long 

distances in the forest (Vanleeuwe and Gautier-Hion, 1998). These “boulevards” share a more or 

less common east-west orientation and there are speculations that forest elephants are influenced 

by the direction of the local prevailing Tropical Easterlies (tropical winds).  
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Normally the Tropical Easterlies over the Atlantic would be flow westward toward South 

America, but during the rainy season in the tropics, some of these winds turn eastward as they 

cross the Equator and head to Africa (Baumann, 2009). The roles that the Tropical Easterlies 

play on the forest elephant’s choice of construction of its paths are still speculations. Whether the 

direction that elephants construct their paths to enter the bais, or the way elephants orientate their 

bodies at various microclimatic portions of the forest is influenced by thermoregulatory 

behaviour requirement is unknown.  Also the extent to which the Tropical Easterlies may affect 

the microclimate in both the elephant’s paths and bais in the tropical forest, are still questions 

that need more research to find answers.    

 

This study was undertaken during the hot, dry season to assess the microclimates available to 

forest elephants at this time of the year, when the animals were expected to be under the greatest 

thermal stress. An average Tg of about 33ºC was observed during the day in the bais, although 

maximum Tg usually exceeding 40°C. During the night the mean Tg decreased to a mean of 

about 20ºC. On the hottest day, the Tg and Ta in some of the open bais reached 46°C and 35°C, 

respectively. The lower Tg under the forest canopy during the day is explained by the Tg 

absorbing less solar radiation under the forest canopy, and long-wave heat from the ground and 

near-by objects. At night, the mean Tg in the bais were about 1°C lower than the mean Tg under 

the forest canopy, possibly because of the cooling effect of faster WS in the open bais than under 

the forest canopy, or because of greater radiative heat loss to the open sky above the weather 

station in the open bais.  In terms of Tg, the open bais differed from the forest canopy only 

during the day. In the day, forest canopy Tg rarely exceeded 30°C, so the forest canopy offered a 

thermal refuge to the elephants. 
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The mean Ta in the bais in the day was 27°C and under the forest canopy it was 20°C. At night 

the mean Ta in the bais was as low as 20°C, about 3°C less than the Ta under the forest canopy, 

probably due to the effect of cooling by faster winds (Cohen et al., 1979) in the open bais than 

under the forest canopy. As expected, Ta’s were positively and linearly correlated with Tg’s in 

this study. Because Tg integrates effects of radiation, Ta and WS into a single index (Vernon, 

1930). I therefore used Tg, rather than Ta, to investigate the relationship between microclimate 

and elephant behaviour. 

 

As mentioned previously in Table 3.1, the mean Tg in the open bais and under the forest canopy 

during the day and night was 32.8ºC while during the night the mean Tg falls to 19.6ºC, but 

under the forest canopy during the day, mean Tg was 25.5ºC while at night it was 20.5ºC. This 

study suggests that the Tg profiles in all the open bais of this study were significantly higher than 

under the forest canopy during the day and night (p<0.05, f=4.27). The mean VP in the bais of 

this study was 2.10 kPa and 2.08 kPa under the forest canopy during the day. At night the mean 

VP was 2.08 kPa in the bais and 2.04 kPa under the forest canopy. VP profiles in the open bais 

were significantly lower than under the forest canopy for all the study sites both during the day 

and at night (p<0.001, f=1.5). Implying that at any time of the day, elephants would lose excess 

body heat through evaporation easier in the bais than under the forest canopy at any time of the 

day. VP occasionally exceeded 3.00 kPa in the open bais and under the forest canopy. Therefore, 

at 100% humidity, the elephants’ estimated skin temperature is 35ºC (Phillips and Heath, 1992), 

and the VP on the elephant’s skin would be 5.30 kPa. In order for elephants to lose heat through 

evaporation the VP gradient at their body surface must exceed that of the environment (Cohen et 

al., 1979). For the Lobeke NP elephants, it is therefore likely that they were able to lose heat by 
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evaporation both under the forest canopy and in the open bais, however, due to the lower VP 

profile in the open bais than under the forest canopy during the day and night. Forest elephants 

would dissipate body heat easier through evaporation in the open bais than under the forest 

canopy, since large VP gradient would favour evaporative heat loss. Although there was no wind 

profile that patterns to all the bais or forest canopy, WS was generally faster in the open bais than 

under the forest canopy for most of the study sites and WS during the day and night differed 

significantly (p<0.05, f=15.2). But WS in open bais were significantly faster than under the forest 

canopy. This implies that fast winds in the bais would facilitate heat loss from the body of 

elephants through convection as wind would continuously displace hot air from the elephant’s 

body surface.  

 

As far as I am aware, this study is the first to investigate microclimates available to forest 

African elephants in and around bais. While there is general macroclimatic data available for 

forested regions occupied by elephants, there has been no systematic investigation of the 

microclimates and their influence on the behaviour of the African forest elephants in its natural 

habitat, particularly in and around the forest-savannah interface (bais). However, my study is 

limited to the hot, dry season, and to only three days of data collection at each of five study sites, 

November and December and lack of elephant physiology data, because of limited financial 

resources for this research and field personnel safety concerns. Long-term monitoring of 

microclimates in forests and forests clearings is important if we wish to understand the 

environmental stress that the African forest elephants in Lobeke NP and other forest in Africa 

face, particularly in the face of deforestation and increasingly fragmented habitats (Chen et al., 

1995).  
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The thermal challenges that the savannah elephant faces are likely to be different from elephants 

in the forest. In the savannahs, temperature extremes during summer (air temperature up to 50°C, 

(Cole, 1986); and winter Ta below 0°C at night (Scholes and Walker, 1993) have been 

documented. My elephants were exposed to Ta’s above 30°C during the day, both inside and 

outside the forest canopy, but were exposed to moderate Ta’s (<25°C) at night. In the Congo 

Basin, annual Ta range between 23ºC to 31ºC (Nowell, 2005) and RH is as high as 60% to 90% 

(WWF, 2006), Ta’s are unlikely to drop below 0ºC currently, so elephants in this habitat are 

likely to be subjected to less cold stress. Savannah elephants show preference to particular 

landscapes, for example, during the dry season they may prefer closed woodlands to open areas 

because the former provides more food. Savannah elephants may also select microclimates in 

landscapes where the absolute or rate of change in air temperature suits their thermoregulatory 

needs (Kinahan et al., 2007b). By moving between landscapes with varying microclimates, 

savannah elephants have the chance to manipulate the rate at which they exchange heat with the 

environment (Hiley, 1975). Compared to savannahs, the habitat is less heterogeneous in regions 

where forest elephants are found. Savannah elephants reduce heat load from the sun by seeking 

shade but may have to move greater distances to find sufficient shade, than forest elephants do. 

During the cold season, the need for savannah elephants to seek refuge from solar radiation is 

reduced (Kinahan et al., 2007b).           

In comparison to microclimates experienced by savannah elephants (Hiley, 1975) in the hot, dry 

season, the Lobeke NP elephants faced higher Tg, particularly during the day. While Tg’s were 

only slightly lower in open bais than under the forest canopy at night, one would predict that the 

ambient Tg and VP in the open bais may be substantially lower on clear nights (with radiation to 
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the cold night sky) and higher wind speeds. For this reason, the forest elephant may prefer 

staying in the open bais at night where heat loss by non-evaporative means is facilitated by lower 

Tg and. However, longer duration of Tg, VP and WS measurements and elephant physiology data 

are needed to confirm these hypotheses. 

4.3 Relationship between microclimate mosaic and elephant behaviour 

Vegetation, relief and landforms of the Lobeke NP landscape are heterogeneous, and 

consequently, radiant heat, VP, WS and wind direction are all expected to be inconsistent within 

the landscape, resulting in mosaics of varying microclimatic profiles. Changes in environmental 

variables over the course of the day, and between study sites, combined with the elephant 

behaviour data that I observed, allowed me to assess the relationship between microclimate and 

elephant behaviours. As discussed previously in section 2.5, I examined behaviours necessary for 

thermoregulation such as walking and foraging and behaviours associated with water. I also 

examined other behaviours that may alter the elephant’s thermal physiology such as shade-

seeking, ear-flapping and dust-bathing. I compared my data on elephant behaviour to that 

obtained from other studies, in which similar behaviours have been quantified for forest and 

savannah elephants. These behaviours include; walking, foraging, ear-flapping, and dust-bathing 

and behaviours associated with water. Table 4.1 summarises information on the studies that I 

have used for comparison with my elephants. 

4.3.1 Walking behaviour of elephants 

 

Although no elephant was seen between 18:00-20:00 during this study, all the elephants 

observed in Lobeke NP were walking throughout the day. Early in the morning (06:00) the 

elephants spent less than 25% of their time walking per hour and progressively increased the 
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time spent walking to a maximum of about 75% late in the morning (12:00). It is not obvious 

why these elephants roamed so much, since there is an abundance of forage and water widely 

distributed in the park. However, based on folklore and anecdotal information it seems that the 

elephants in Lobeke NP are faced with different choice of what to eat. The Baka Pigmies of 

Lobeke Region argued that the forest elephants prefer foraging on certain fruits and leaves which 

are sparsely distributed in the forest (unpublished WWF report). For this reason, elephants may 

need to move from place to place in search of their preferred food. Also, Vanleeuwe and Gautier-

Hion (1998) argued that the forest elephant is under serious threat from humans because of the 

high demand for ivory and bush-meat. For fear of humans, the forest elephants also may move 

continuously in the forest (Harris et al., 2008). However, my data showed that during the day 

elephants continue to move in the shade under the forest canopy most likely because of the 

continuous cooler diurnal microclimatic mosaic under the forest canopy with less radiant heat 

than in the bais.  

 

The elephants of this study seem to spend more time during a 24-hour day walking than 

elephants in Namibia, Zimbabwe, Tanzania and Uganda did, despite the abundance of forage and 

water in Lobeke NP (see Figure 4.1 to 4.3). The savannah elephants of Sengwa Area in 

Zimbabwe (Guy, 1976), Lake Manyara (Kalemera, 1987), Ngogrongoro NP (Kabigumila, 

1993a) in Tanzania, and Queen Elizabeth NP in Uganda (Wyatt and Eltringham, 1974) spent less  
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Figure 4.2 Mean percent time (±SD) elephants spent walking within 12-hour day period (between 

06:00-18:00) in Lobeke NP, Lake Manyara NP and Ngorongoro NP. Data for Lobeke NP was from my 

study and data for Lake Manyara NP and Ngorongoro NP were derived from Kalemera (1987) p. 260, 

and Kabigumila (1993a) p.78 respectively. 
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(<25%) time walking between 06:00-24:00 in comparison to Lobeke NP elephants. Desert-

dwelling elephants in Namibia (Leggett, 2008) were closest in terms of time spent walking 

between 06:00-24:00 (see Figure 4.3). The desert-dwelling elephants of Namibia may spend 

more time walking than savannah elephants studied in Zimbabwe, Tanzania and Uganda because 

of less number of trees in the savannahs and fewer shaded microclimate mosaic patches within 

the diurnal landscape and the scarcity of quality forage and water compared with the other 

regions. Desert-dwelling elephants need to walk more than the elephants of Zimbabwe, Tanzania 

and Uganda since they have to traversing a large portion of barren landscapes, in search of 

forage to cope with their nutritional requirements of their large sizes. Also, since the desert is 

usually hot during the day, the desert elephants need to walk more in the cooler period of a 24-

hour day (see Figure 4.3). The amount of time spent walking may have energetic and 

thermoregulatory consequences for elephants (Wright, 1984). During resting, elephants generate 

less heat than when they are exercising through walking, running, playing, fighting or courting. 

A 4,000 kg elephant, for example, going along with its daily activities needs to maintain a heat 

loss of 4.65 kW (Wright, 1984). Elephants must also have an effective means of 

thermoregulation to allow this excess energy to escape as heat. Elephants therefore need to 

balance costs of walking and other energy-demanding activities with a need to dissipate heat, 

most likely achieved through seeking cooler microclimates and evaporative heat lose through 

their skins. 
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Table 4.1 Table of study area, elephant species, climate, seasons and vegetation types  

 

 

Study area Elephant 

species 

No. of 

elephants or 

Density of 

elephants  

Climate Average 

rainfall 

(mm/year) or 

Rainfall range 

in mm/year  

Vegetation type Season 

Lobeke NP 

 

 

Santchou Reserve, 

Cameroon 

Forest 

elephants 
 

Forest 

elephant 

0.11-1.14 

km² 

 

 

 

0.76 km² 

Equatorial 

 

 

Equatorial 

1500 

 

 

1750 

Equatorial forest 

 

 

Montane forest, wet 

lowland forest & 

grassland 

Dry season 

 

 

Dry season 

Rainy season 

 

Sengwa Area in 

Zimbabwe 

 

Savannah 

elephant 

 

8 elephants 

 

Generally 

equatorial 

  

Mixed woodland, 

Mopain & Miombo 

 

Three seasons: cold 

dry 

 

Queen Elizabeth 

(Ruwenzori) NP, 

Uganda 

 

Savannah 

elephant  

 

18 elephants 

 

Generally 

equatorial 

 

1200 

 

Wide variety of 

terrain, including 

volcanic craters, 

grassy plains & 

tropical forest 

 

Three seasons: the 

cold,  hot and wet 

 

Manovo-Gounda-St. 

Floris NP, Central 

African Republic    

 

Savannah 

elephant 

 

9 elephants  

 

 

 

 

 

Semi-humid  

 

 

900 

 

Seasonally-inundated 

grasslands in the 

north, riverine wooded 

savannah, and gallery 

forests 

 

Four seasons, two 

wet & two dry 

Lake Manyara, 

Tanzania   

Savannah 

elephant 

1-140 

elephants per 

transect 

 

Warm 

temperate 

climate 

650 Habitats ranging from 

the rift wall, ground 

water forest, acacia 

woodlands, Open 

 

 

Warm summers & 

dry winters  
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Sources of data Santchou Reserve (Tchamba and Seme, 1993), Manovo-Gounda- St Floris NP (Ruggiero, 1992), Zengwa Area (Guy, 

1976), Ruaha NP (Barnes, 1982a), Ngorongoro NP (Kabigumila, 1993a), Manyara NP (Kalemera, 1987), Kunene Region (Leggett, 

2008), Queen Elizabeth NP (Wyatt and Eltringham, 1974) , (Field, 1971) and Lobeke NP (Kuwong,2013). 

grasslands, Acacia 

tortilis woodland 

       

 

Ruaha NP 

 

Savannah 

elephant 

 

4 km² 

 

Semi-arid 

 

580 

 

Combretum / 

Terminailia or 

Commiphora 

woodland with 

majestic baobabs 

found all over the 

park. Black cotton 

grassland & Miombo 

woodland  

 

 

One wet season,  one 

dry season, hot dry, 

warm wet 

Ngorongoro Crater,  

Tanzania 

Savannah 

elephant 

103 elephants Semi-humid  

 

400-1200 Grassland & bushland 

dotted with Euphorbia 

bussei trees.  

The crater floor is 

mostly open grassland 

with two small 

wooded areas 

dominated by Acacia 

xanthophloea 

 

Rainy season & dry 

season 

 

Kunene Region,  

Namibia 

 

 

Savannah 

elephant 

52 elephants Semi-arid 50-350 Typically arid Wet, cold & hot dry 

season 

Table 4.1 Table of study area, some macroclimates, seasons and vegetation types 

 

 

http://en.wikipedia.org/w/index.php?title=Euphorbia_bussei&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Euphorbia_bussei&action=edit&redlink=1
http://en.wikipedia.org/wiki/Acacia_xanthophloea
http://en.wikipedia.org/wiki/Acacia_xanthophloea
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Figure 4.1 Mean percent time elephants spent walking during each hour in Lobeke NP (●) and in 

Ngorongoro NP (○) between 06:00-18:00. Mean data for Lobeke NP was from my study and the 

data for Ngorongoro was extracted from Kabigumila (1993a). 
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Figure 4.3 Mean percent time that elephants spent walking between 06:00-24:00 in different studies 

compared with the walking activities of my elephant study in Lobeke NP, Cameroon.  

Data from other studies were derived from: 

Namibia, Leggett (2008a) p.29 & Barnes (1982a)    

Uganda, Wyatt & Eltringham (1974) 

Zimbabwe, Guy (1976) 

Tanzania, Kabigumila (1993a) 
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4.3.2 Foraging behaviour of elephants 

 

Lobeke NP elephants fed for about half of their time between 06:00-24:00. Although my study 

was executed during the hottest and driest season of the year in Lobeke NP (between November 

and December), the vegetation was still relatively green and wet, compared to the dry seasons in 

the savannah and semi-arid regions (Leggett, 2008; Ruggiero, 1992). Since elephants have an 

insatiable appetite for foraging (Benedict, 1936; Lee, 1938; Carrington, 1959; Law, 1970) and 

because of the elephants’ inefficient digestive system (Benedict, 1936), I expected that elephants 

will continue to forage as much as they can, when forage is abundant. On very hot days in 

Lobeke NP the forest elephants may continue to forage on abundant foliage along the forage 

paths and the alleys, while keeping their body cool in the microclimate mosaic under the forest 

canopy. Consequently, I predicted the forest elephants of my study would have similar time 

spent foraging compared with the forest elephants of Santchou Reserve and much longer than the 

savannah elephants. The time that Lobeke elephants spent foraging was higher than the foraging 

time reported in the arid Kunene Region but much lower than the foraging time the forest 

elephants of Santchou. Perhaps due to poor visibility in the forest during this study, coupled with 

the small data size, elephant fright responses to human observers, the sampling method that I 

used, place, time, and season the season that this research was executed, or a combination of 

these factors, might have accounted for the differences in my foraging data collected and that of 

other researchers across. Wyatt and Eltringham (1974), Guys (1976), Leggett (2008), Ruggiero 

(1992) and all used the focal point sampling method. However, Tchamba and Seme (1993) did 

not specify the method that they used to collect or analyse the foraging data of their elephants.  
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The Lobeke NP elephant’s foraging time-range falls within the range reported for savannah 

elephants of Amboseli NP in Kenya (Poole, 1987), Sengwa Area in Zimbabwe (Guy, 1976), 

Ruaha, Manyara and Mikumi (Barnes 1982a; Barnes 1983), Lake Manayara (Kalemera 1987), 

Ngorongoro NP (Kabigumila, 1993a) in Tanzania. However, the data of all these studies, 

including that of this study, were significantly lower than the three-quarters foraging-time per 

24-hour day range reported for savannah elephants of North Bunyero and Queen Elizabeth NP’s 

in Uganda (Laws, 1970a), Manovo-Gounda St Floris NP in Central African Republic (Ruggiero, 

1992) and forest elephants of Santchou Reserve in Cameroon (Tchamba and Seme, 1993). 

Among these reports only the data from my study and Santchou Reserve were from the African 

forest elephant and the rest from savannah elephants. Table 4.2 summarises data obtained at 

different sites across Africa, in an ascending order of the time elephants spent foraging. The 

desert-dwelling elephants (also savannah elephants) of Namibia had the least foraging time 

recorded, while the savannah elephants of Ruaha recorded the most foraging time.  

  

Leggett (2008) argued that the desert-dwelling elephant spends only between 24-29% foraging 

because of the very hot environment (>40°C), few trees, discontinuous cool microclimate 

mosaics, scarcity of water and little foliage to feed on in the Kunene Region, restricting their 

behavioural options during a hot day. Kabigumila’s (1993a) report showed that high Ta also 

influences the behaviour of savannah elephants in the Ngorongoro Crater, such that they spend 

more of their time resting in shade to mitigate the scorching radiant heat during the day. 

However, Ngorongoro elephants spent more than 50% of their time foraging between 06:00-

18:00 (Kabigumila, 1993a). Although Lobeke NP elephants spent more than 60% of their time 

feeding during the day (06:00-18:00), they reduced their foraging rate to below 40% late in the 
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Table 4.2 Summary of foraging data of the forest elephants in Lobeke NP compared to elephants from some other regions across 

Africa during day and night  

Elephant species Mean time 

spent 

foraging (h) 

per day  

% of  time spent  

foraging   

Research site Country Source of data 

   

Savannah elephant 6-7  24-29 Kunene Region Namibia (Leggett, 2008) 

Savannah elephant 7-13 30-55 Amboseli NP Kenya (Poole, 1987) 

Savannah elephant  12-14 36 -57 Sengwa Area Zimbabwe (Guy, 1976) 

Forest elephant 13 54 Lobeke NP Cameroon (Kuwong, 2014) 

Savannah elephant 13-15 56-64 (dry season) Ruaha NP Tanzania (Barnes, 1982a)  

Savannah elephant 

Savannah elephant 

13-20          

14 

56-85 

58  (dry season) 

Mikumi NP 

Lake Manyara 

Tanzania 

Tanzania 

(Barnes, 1983)  

(Kalemera, 1987)  

Savannah elephant 16-18  67-75          North Bunyero Uganda (Laws, 1970a)  

Savannah elephant 16-18 67-75          Inadequate information  Inadequate information (Carrington, 1959)  

Savannah elephant 16-18 67-75          Information not specified  Zambia (Hanks, 1979) 

Savannah elephant 17 70 Manovo-Gounda  St. Floris  

NP 

Central African Republic (Ruggiero, 1992) 

Savannah elephant 18 75 Queen Elizabeth NP  Uganda (Wyatt and Eltringham, 

1974)  

Forest elephant 20 83 Santchou Reserve Cameroon (Tchamba and Seme, 

1993)  

Savannah elephant 20 82-85 (wet season) Ruaha NP Tanzania (Barnes, 1983) 
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morning and afternoon (between 10:00-11:00 and between 14:00-16:00), the time, which 

elephant were thought to be resting. The 12-hour day (06:00-18:00) foraging profile for 

elephants in Lobeke NP and Ngorongoro NP is shown in Figure 4.4. 

 

Elephants spend most of their time feeding in order to cope with the nutritive requirements of 

their enormous bodies (Benedict et al., 1921) . In the course of the normal day, adult savannah 

elephants required 160-250 kg of vegetation and up to 160 L of water (Sikes, 1971). As the 

supplies of these commodities differ in different regions, so do elephants’ behaviours tend to 

differ. Savannah elephants and Asian elephants have been reported to devote about three-

quarters of their time to foraging, and spend relatively less time inactive (Owen-Smith, 1988). 

They are known to have diurnal activity patterns with peak feeding times in the early hours of 

the morning and afternoon (Guy, 1976; Wyatt and Eltringham, 1974).  

 

However, the time elephants spent foraging may be influenced by variation in the quality and 

availability of forage (Kabigumila, 1993a; Leggett, 2008) and perhaps the microclimates 

available to elephants with specific vegetation. Generally, most foraging activity in Lobeke NP 

took place in the morning and early evening, similar to the behaviour of elephants in Uganda 

(Wyatt and Eltringham, 1974), Kenya (Hiley, 1975) and South Africa (Hidden, 2009). The 

elephant has a high heat production per unit of surface area; approximately 2,000 calories per 

square meter per 24-hours (Benedict and Lee, 1938). This implies that the elephant not only 

generates energy through metabolism but must also have an effective means of thermoregulation 

to allow excess energy to escape out as heat. Food availability, the time available to forage, the 

rate of food collection while foraging and physiological factors such as; the rate of digestion of  
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Figure 4.4 Mean time elephants spent foraging in Lobeke National Park (●), and in Ngorongoro 

National Park (○), between 06:00-18:00. I obtained the data for Lobeke National Park from my study 

and the data for Ngorongoro Crater were derived from Kabigumila (1993a). 
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food in an elephant’s gut, the ability to assemble and deliver nutrients and oxygen to the tissues 

and the work capacity of various tissues, dictate the magnitude of energy flow in the elephant 

(Colbert, 1993).  

 

At midday in Lobeke NP some elephants spent their time in the open bais to bathe with mud in 

the saline marshes, probably to cool their body as well, while the elephants in the foraging paths 

continued to forage on the foliage. On hot days during the long dry season, Lobeke NP elephants 

spent their time standing under shade in the bais and grazed on grasses, walked or rested under 

the forest canopy in the hot midday and browsed on trees. The forest elephants did seek shade in 

the hottest part of the day, all of them foraging under trees until the temperature dropped. 

Although Lobeke elephants showed evidence of feeding while seeking shade, my results did not 

reflect the advantage of the continuous cool shady mosaic under the forest canopy, nor on the 

feeding time that forest elephants may have over savannah elephants during the hot season. The 

lower than expected foraging time reported for the Lobeke NP elephants also may have resulted 

from the few elephants seen and the paucity of data collected. 

4.3.3 Shade-seeking behaviour of elephants 

 

As shown earlier in my results in Figure 3.21 A, during the day, the shade-seeking activities of 

the Lobeke NP elephants changed with the Tg in the bais. As Tg rose, so did the shade-seeking 

behaviour of the elephants. However, although my data showed no significant correlation 

between shade-seeking behaviour and Tg (p=0.07, r²=0.6), there appear to be a critical 

temperature, Tg above 35ºC, at which elephants in the bais initiated shade-seeking behaviour 

(see Figure 3.21 B).  
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The finding of this study suggests that elephants seek microclimates in the forest habitat for 

thermoregulatory reasons. This finding is similar to those of savannah elephants (Hidden, 2009; 

Hiley, 1975), implying that shade-seeking and its duration may differ from place to place, 

because of the variations in environmental temperature during different times of the day, 

variability in quality and availability of tree-shade, continuity of cool microclimate mosaic, 

forage and water availability.  

 

Although the hottest day Tg in Lobeke NP was as high as 46°C, similar to the  temperatures 

reported in the Kunene Region in Namibia (>45°C) during the hot dry season. The Lobeke NP 

elephants spent a mean time of only 7% seeking shade in the bais and bai-alleys and 53% of 

their time foraging between 06:00-24:00. During the hot dry season in the Kunene Region, the 

desert-dwelling elephant spent a mean time of about 14% seeking shade and foraged for only 24-

29% of total time. The  difference in shade-seeking time may be attributed to a hotter 

microclimate mosaic with fewer trees and patchy shade, combined with scarce forage and water 

in Kunene Region (Leggett, 2008), compared with that in Lobeke NP. Thus the elephants in 

Kunene Region may spend much of their time trying to mitigate the effect of the high 

environmental heat of the day at the expense of energy intake. As a consequence of 

discontinuous cool microclimate mosaic in the Kunene Region, resulting from the scarce and 

sparsely distributed tree-shades in the landscape, desert-dwelling elephants spend only between 

six to seven hours of day feeding, since they spend most of the hot day (at times, >58% ) 

standing under shade (Leggett, 2008). Figure 4.5 illustrates shade-seeking activity of the Lobeke 

NP elephants compared to shade-seeking activity of the elephants in the Kunene Region. Lobeke 
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NP data were obtained in the dry season only, while Kunene data were collected year round 

during the wet, cold and dry hot seasons. Kunene elephants sought shade the most (24%) during 

the wet season, less (14%) during the hot-dry season and least (3%) during the cold season, 

suggesting that foraging requirements in the dry season may be traded off with shade use 

(Leggett, 2008).  

The mean time elephants spent shade-seeking in Lobeke NP and in Ngorongoro NP during the 

day (see Figure 4.6). The habitat of Lobeke NP is closed-canopy evergreen forest while 

Ngorongoro is grassland and bushland dotted with Euphorbia bussei trees. Forest elephants seen 

in Lobeke NP start exhibiting shade-seeking activity between 10:00-11:00, increased 

progressively and peaked between 13:00-14:00, and decreased progressively after 15:00. The 

savannah elephants of Ngorongoro NP spent less than 25% of their time resting or seeking-shade 

but sought some shade at all times of day (Kabigumila, 1993a). 

 

The Lobeke NP elephants’ resting time during the day often coincided with shade-seeking time. 

They did not rest between 06:00-10:00 and between 20:00-24:00, but rested for about 18% of 

their time between 10:00-14:00, and 16% of their time between 14:00-18:00. Figure 4.7 

illustrates the mean time elephants in Zimbabwe, Tanzania, Namibia, Uganda and this study. The 

Lobeke NP elephants spent a mean of less than 25% of their total time resting between 06:00-

24:00, similar to the resting time reported by Kalemera (1987) and Kabigumila (1993a) for the 

savannah elephants of Manyara and Ngorongoro in Tanzania, respectively.  

 

Shade-seeking activity did not hinder the feeding habits of the Lobeke NP elephants and 

probably also the forest elephants in Santchou Reserve, since these elephants can forage under 

http://en.wikipedia.org/w/index.php?title=Euphorbia_bussei&action=edit&redlink=1
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Figure 4.5 Mean percent of time (±SD) that elephants spent shade-seeking between 07:00-

19:00, the dry season in Lobeke NP and during the wet, cold and dry hot seasons in Kunene 

Region. Kunene data were derived from Leggett (2008 p.28) and Lobeke NP data were obtained 

from this study. 
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Figure 4.6 Mean percent of time that elephants spent shade-seeking in Lobeke NP (●) and 

savannah elephants in Ngorongoro NP (○) between 06:00-18:00. Data for Lobeke NP were 

from this study, the data for the Ngorongoro Crater were extracted from Kabigumila 

(1993a). 
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Figure 4.7 Mean percent of time that elephants spent resting between 06:00-24:00 in different studies 

compared with the resting activities during study in Lobeke NP, Cameroon. Data from other studies 

were derived from: 

Namibia, Legett (2008) p.29 & Barnes (1982a)    

Uganda, Wyatt & Eltringham (1974) 

Zimbabwe, Guy (1976) 

Tanzania, Kabigumila (1993a) 
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the cool and continuous shady portions under the forest canopy during hot sunny days. The 

savannah woodland habitats of the Central African Republic, Tanzania, Namibia, Uganda and 

Zimbabwe may have trees to provide adequate shade, but underneath the trees, forage may be 

absent or sparsely distributed within the microhabitats. 

 

During the day, most of Lobeke NP elephants were seen in the bais only at dawn, dusk or when 

they were under shade of trees, which implied that the forest elephants were thermally stressed 

during the dry season when I executed this study. The shaded forest was much cooler (by about 

7ºC) than the open bais. Elephants therefore may have preferred the forest canopy because of a 

much bigger temperature gradient between the animal’s body temperature and the environment 

facilitating passive cooling of the elephant’s body. The forest elephants seen in the open bais of 

Lobeke NP sought shade between 11:00-15:00, while other elephants seen in the park preferred 

staying in shade under the forest canopy. Although elephants were not seen easily in the forest, 

their calls could be heard often indicating that they were in the forest portion during hot day.  

 4.3.4 Ear-flapping behaviour of elephants  

This study showed a positive correlation between ear-flapping behaviour and Tg in bais, but 

lacked data under the forest canopy. Unlike, earlier investigators, which considered only the 

influence of Tg or Ta on ear-flapping, in this study, I assess if ear-flapping correlated with VP 

and wind variations, to ascertain if theses microclimatic variables influenced thermoregulatory 

behaviour of the forest elephants. VP did not correlation with ear-flapping behaviour of the 

elephants in this study (p=0.35, r²=0.05).  As seen earlier, winds in the open bais were often 

faster than wind under the forest canopy. Because fast winds facilitate evaporative heat from the   
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body surfaces of elephants, evaporative heat loss resulting from the effect of wind is more 

effective in the open bais than under the forest canopy. This effective cooling effect seems to 

attract more elephants in the bais at night than during the day, bases on the data previously 

shown on Table 3.3, indicating the number of elephants that entered each bai during the night or 

day. My result on ear-flapping responses to environmental temperature was similar to that of 

Buss and Estes (1971), Hidden (2009) and Rowe (1999), which also showed that the ear-flapping 

rate of elephants increased with an increase in environmental temperature.  

 

 According to earlier studies, savannah elephants flap their ears to keep their body cool (Hiley, 

1975; Wright and Luck, 1984); and the rate of flapping increase as temperature rises (Buss and 

Estes, 1971; Hidden, 2009). Studies on savannah elephants have shown that blood leaving the 

ears is significantly cooler than blood entering the ears, which suggests that the ear radiates heat 

from the elephant’s (Phillips and Heath, 1992). It is likely that flapping the ears facilitates not 

only convective heat loss from the ear of elephants, but also evaporation of water from the ears. 

Elephants also may flap ears in response to other factors such as bites of tse-tse (Glossina spp.) 

and horse flies (Tabanidae spp.) found in Lobeke NP. The bites of theses flies irritate elephants, 

causing them to shake their body and flap their ears (personal observations). However, the 

finding of this study showed that ear-flapping increased with Tg suggesting that ear-flapping 

serves to cool the body of forest elephants too. 

4.3.5 Dust-bathing behaviour of elephants 

 

No correlation was observed between dust-bathing behaviour and Tg under the forest canopy 

(p=0.07, r²=0.26). However, there was a weak positive association between dust-bathing 
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 behaviour and Tg in the bais (p=0.01, r²=0.47), suggesting that dust-bathing may also be a 

thermoregulatory behaviour in forest elephants. The elephants in the open bais spend more time 

dust-bathing than those observed under the tree-shades in the bais or under the forest canopy. 

Perhaps this discrepancy in the correlation of environmental heat load and dust-bathing in the 

bais and under the forest canopy could be because few numbers of elephants observed in this 

study due to the obscure nature of the dense evergreen Equatorial Forest.  

As shown in the earlier photographs (Figure 3.12), after elephants dust-bathed in Lobeke NP, a 

thin film of dust particles stuck on their bodies and they appeared reddish-brown. Reports have 

suggested dust-bathing is an important thermoregulatory mechanism of savannah and Asian 

elephants (Barnes, 1984; Feldhamer et al., 1999; Haltenorth and Diller, 1980; MCKay, 1973; 

Rees, 2002). Dust protects the elephant’s skin from the sun or parasites; or a combination of both 

of these functions in the savannah elephants (Barnes, 1984; Feldhamer et al., 1999; Haltenorth 

and Diller, 1980; MCKay, 1973; Rees, 2002). It has been argued that the desert-dwelling 

 

elephants in Namibia performed dust-bathing behaviour for thermoregulatory reasons (Leggett, 

2008). Although both the forest elephants and desert-dwelling elephants spent less than 25% of 

the time between 07:00-19:00 dust-bathing, the desert-dwelling elephants performed dust-

bathing behaviour less than the Lobeke NP elephants. However, Lobeke NP data was obtained in 

the dry season only; while desert-dwelling elephant data were collected year round (see Figure 

4.8).     

4.3.6 Water-related activities of elephants  
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Figure 4.8 Mean percent time (±SD) that elephants spent dust-bathing activities 

between 07:00-19:00, during the dry season in Lobeke NP only, and during the 

wet, cold and dry hot seasons in Kunene Region. Kunene data was derived 

 from Leggett (2008 p.28) and Lobeke data was obtained from my study. 
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No significant correlation between Tg and water-related activities were observed (p=0.29, 

r²=0.13). Also, there was no association between the amount of time the Lokeke NP elephants 

spent on water-related activities and ambient VP (p=0.67, r²=0.02). A similar study in 

Ngorongoro NP showed that elephants maintained a more or less steady profile of water-related 

activities, below 10% of total time (Kabigumila, 1993a); see Figure 4.9). Throughout the year, 

the desert-dwelling elephants performed elephants performed fewer water-related activities than 

the Lobeke NP elephants (Figure 4.10). This research was done only during the hot dry season, 

so that may explain the higher indices of water-related activities in Lobeke NP. However, the 

abundance of swampy bais and water supply in Lobeke NP also may explain why forest 

elephants’ behaviour is different to that of elephants in other regions, even in the hot dry season.  

 

 Researchers have argued that dry mud on an Indian or savannah elephant’s body serves as a thin 

protective sheet against solar radiation and also serves as a remedy for parasites similar to dust 

(Barnes, 1984; Feldhamer et al., 1999; Haltenorth and Diller, 1980; MCKay, 1973; Rees, 2002). 

But it is not known if mud serves the same purpose as in the savannah and Indian elephant. Some 

researchers have argued that forest elephants visit the bais to bathe and eat mud because of the 

nutritive benefits that forest elephants obtain from the natural mineral salt deposits on the top 

soils present in bais (Turkalo and Kidjo, 1996; White et al., 1993).  

 

Based on other reports on savannah elephants (Hiley, 1975; Leggett, 2008) it also seems likely 

that water-related activities in forest elephants may be influenced by thermoregulatory needs.  

All elephants lack sweat glands, thus the main mode of excess body heat loss is through 

evaporative heat loss through a porous skin (Carrington, 1959). Regular wetting of the skin  



 

 

110 

 

 

 

 

0

25

50

75

100

M
e
a
n
 t

im
e
 s

p
e
n
t 

o
n

w
a
te

r-
re

la
te

d
 a

c
ti
v
it
ie

s
(%

)

12:00 18:00

     Time of day (h)
 

Figure 4.9 Mean percent time that elephants spent on water related activity in Lobeke 

NP (●) and in Ngorongoro NP (○) between 06:00-18:00. Data for Lobeke NP were from 

my study and data for Ngorongoro from Kabigumila (1993a). 
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Figure 4.10 Mean time (±SD) that elephants spent on water-related activity between 07:00-19:00, 

during the during the dry season in Lobeke NP and during the wet, cold and dry hot seasons in Kunene 

Region. Kunene data was derived from Leggett (2008 p.28) and Lobeke NP data was obtained from 

my study. 
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favours continued evaporative heat loss  (Lillywhite and Stein, 1987). Lobeke NP elephants may 

perform water-related activities in order to facilitate evaporative heat loss by maintaining a high 

diffusion gradient (Taylor and Layman, 1967) between the skin VP and the ambient VP of 

Lobeke area. It is likely that African forest elephants would prefer a microclimate that facilitates 

evaporative heat loss. Although my finding suggest that VP in the bais were significantly lower 

than that under the forest canopy during the day and night, forest elephants preferred staying 

under the forest canopy probably because of the high environmental heat load in the bais during 

the day, although the low VP in the bais and under the forest canopy would favour evaporative 

heat loss from the body of an elephant. This behaviour may have accounted for the low number 

of elephants (0 to 5) that visited the bais during the day between 06:00-18:00 and the high 

number of elephants (0 to 22) that visited the bais at night (18:00-06:00). This data was based on 

the number of elephants seen and their indices of presence recorded in this study. The higher 

number of elephants that entered Djangui Bai compared to the other four bais could have been 

because of the lower mean Tg recorded at Djangui Bai during the day. The lower local Tg and Ta 

of Djangui Bai during this study resulted a dusty haze above the Djangui area, following a 

violent storm. The dusty haze impaired solar radiant heat from reaching Djangui Bai thus 

preventing the area from heating up during the day. Also the elephants were observed to perform 

more water-related activities than only drinking water. These activities included; eating mud, 

smearing mud on their body and spraying water on their bodies probably as an alternative means 

to mitigate heat stress, instead of selecting a favourable microclimate. Reports have shown that 

the morphology of elephants’ skin surface favours the retention of water in the skin crevices 

(Lillywhite and Stein, 1987). As moisture is retained on elephants’ body surface (Lillywhite and 

Stein, 1987), evaporative heat loss is facilitated and cooling of the body is maintained (Hiley, 
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1975).  In the arid region of Namibia, the day temperatures are high (>40°C) and surface water is 

scarce (Leggett, 2008).  As a result, survival is difficult for these animals (Seely, 1978; Viljoen, 

1992) because of the extreme high temperatures and dry environment. Water activities of the 

desert-dwelling elephants between 07:00-19:00 throughout the year were higher than had been 

reported by any other study (Leggett, 2008) when compared to 24-hour day water-related 

activities of savannah elephants reported in other studies e.g. Zimbabwe, Tanzania and Uganda 

(Figure 4.11). This is because the desert-dwelling elephant uses water-related activities as the 

main way of mitigating heat stress (Leggett, 2008), though, it also exhibits microclimate 

selection too. Whether the water-related activities of the Lobeke NP elephants were for 

thermoregulatory reasons, nutrition, anti-parasitic therapy or a combination of all these functions 

is still not elucidated. More research is required to be able to answer these questions.  

4.4 Advantages and limitations of this study  

 

 

This study was limited because of the problems encountered to obtain Physiological data such as 

body temperature, rates of evaporative heat loss, respiratory rate and effect of altitude on forest 

elephants. Also environmental factors that may affect the behaviour of forest elephants such as 

predation risk, effect of altitude, availability of forage, food quality and quantity, fear for humans 

and water distribution could not be obtained due to the difficulties previously mentioned 

including. These include expensive project cost, difficulties surveying the forest elephants’ 

activities in the dense closed-cover tropical forest and personnel safety.  
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Figure 4.11 Mean percent of time that elephants spent on water-related activities between 

06:00-24:00 in different studies compared with the water-related activities of my elephant 

study in Lobeke NP, Cameroon. Data from other studies were derived from: 

Namibia, Legett (2008) p.29 & Barnes (1982a)    

Uganda, Wyatt & Eltringham (1974) 

Zimbabwe, Guy (1976) 

Tanzania, Kabigumila (1993a).  
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Previous studies have reported data on elephant feeding, resting and walking, and social 

activities e.g. (Kalemera, 1987; Kabigumila, 1993; Leggett, 2008a), but often omitted activities 

associated with thermoregulatory processes and microclimatic variables, particularly VP, WS and 

Tg. I could not compare my data systematically with that of previous studies since most 

researchers paid less attention to microclimate available to elephants. However, this is the 

novelty in my study and I recommend that future studies on elephant behaviour should include 

climatological data in both macroclimatic and microclimatic levels.  

 

The reported methods for analysing elephant behaviour and activity data also have varied 

significantly throughout the past decade, although most studies have used fixed point interval 

technique (Guy, 1976; Martin and Bateson, 1986; Wyatt and Eltringham, 1974). I used a five-

minute fixed point interval method to recorded elephant behaviour and activity data. Others have 

used four-minute sampling techniques (Barnes, 1983; Barnes, 1982a). In this method multiple 

animals were analysed at any one time. Wyatt and Eltringham (1976) collected data at four- 

minute intervals while Kabigumila (1993a) and Lee (1987) collected theirs at five-minute 

intervals. Others used a combination of multiple elephant surveys at five-minute intervals and the 

continuous survey method (Guy, 1976). However, it has been argued that different sampling 

methods may yield different conclusions, but Leggett (2008) has shown that there are no 

statistical significant differences between the data obtained by any of these methods, implying 

that the behaviour data obtained from either fixed sampling or continues sampling techniques 

would be yield similar results. 

 



 

 

116 

This forest elephant activity pattern study was carried out for only 15 days (only three days per 

study site) during the long dry season, between November and December 2010. No data was 

gathered during the short dry season, long rainy season or short rainy season. This elephant 

behaviour survey was done between 06:00-24:00. No survey was done 24:00-06:00. However, 

unlike previous studies, I did focus on activities such as foraging, ear-flapping, walking, resting, 

shade-seeking, water-related activities and dust-bathing behaviour, providing novel insight of the 

forest elephant’s thermoregulatory-related behaviour.   

 

As with the majority of behaviour studies on wild megaherbivores, investigating elephant 

activity is difficult (Harris et al., 2008; Wronski et al., 2006) and I believe it is dangerous and 

expensive. From personal experience, forest elephants are difficult to observe. For these reasons 

I used miradows at the edges of bais. Unfortunately, the behaviour of only eleven elephants was 

observed in this study. However, as mentioned previously in the procedure for collecting 

behaviour section 2.5, supplementary tools such as topofil (a device composed of a thread that 

may entangle on the leg of an animal and displaces towards the direction of movement of the 

animal indicating its presence at that place, even if the animal has moved off-sight), elephant 

vocalizations heard at night, fresh faecal droppings and foot prints identified, proofed useful to 

investigate some of the activities of the forest elephants and to also estimate the number of 

elephants that visited the study sites.  

4.5 Conclusion 

 

This study supported the hypothesis that habitats in the bais and in the vicinity of the bais differ 

in microclimates. The data of this study suggested that the differences in the microclimates 
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appeared to influence elephant behaviours, particularly those likely to be used for 

thermoregulatory purposes. Ear-flapping behaviour of the African forest elephants correlated 

positively with Tg and Ta. Very weak positive associations between Tg or Ta, and shade-seeking 

and dust-bathing were also observed in this study. Based on the weak association between dust-

bathing and Tg and suggestions on the thermoregulatory effect of dust-bathing in savannah 

elephants (Barnes, 1984; Feldhamer et al., 1999; Haltenorth and Diller, 1980; MCKay, 1973; 

Rees, 2002), dust-bathing behaviour in this study may have been an additional mechanism that 

forest elephants use to adjust their body heat load. VP did not correlate with thermoregulatory 

behaviour of elephants in this study. Also, the VP profiles for all the open bais in this study were 

significantly lower than under the forest canopy during the day and at night. This implies that a 

forest elephant would lose excessive body heat through evaporative heat loss faster in the open 

bais than under the forest canopy. However, WS in open bais were significantly higher than WS 

under the forest canopy during the day and at night.  Fast wind facilitates evaporative heat loss 

(Cohen et al., 1979). Although this study has shown that VP profiles in bais and under forest 

canopy are significantly different during day and at night, forest elephants prefer spending most 

of their day under the forest canopy and night in the open bais. However, based on reports 

savannah elephants often lose heat through evaporation since VP on their body surface is often 

higher than ambient VP. It is likely that Tg, VP, WS are the thermoregulatory factors that explain 

the high number of elephants seen or the indices of forest elephant presence recorded in the bais 

at night and less number of elephants during the day. Forest elephants probably avoid the higher 

Tg in the bais during the day in favour of the cool shade under the forest canopy. Also, during 

the day forest elephants may stay in the forage paths because of the abundant forage and the 

advantage of staying in a continuous cool microclimate mosaic during the heat of the day, and 
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return to the open bais at night to utilize the effect of wind to cool their bodies. Although I did 

not have physiological data for the forest elephants, it seems they are faced with serious 

thermoregulatory problems during the day because of the high Tg. But based on many 

anatomical similarities between forest elephants and savannah elephants (Skinner and 

Chimimba, 2005), I assume that the forest elephants in Lobeke NP also dump heat in the same 

manner described by Hidden (2009), Robertshaw (2006) and Weissenböck (2010); and heat 

dumping in the park at night is facilitated by the large VP and temperature gradients between 

elephants’ bodies and ambient Tg, VP and fast WS in the bais. 

 

To the best of my knowledge, this study in the Congo Basin forest suggests, for the first time, 

that shade-seeking and dust-bathing may be important thermoregulatory mechanisms that forest 

elephants use when hot, although other researchers have also suggested dust as a natural anti-

parasitic agent employed by elephants (Barnes, 1984; Feldhamer et al., 1999; Haltenorth and 

Diller, 1980; MCKay, 1973; Rees, 2002). Body and skin temperature measurements are required 

to elucidate if such behaviours do alter body temperature, or if they may be used for thermal 

comfort, possibly reflected by a reduced skin temperature. 

  

Based on the number of elephants that were observed and the indices of presence recorded, the 

meadows at all the bais and their vicinities investigated in this study were heavily trampled with 

elephant spoors, faeces and urine. This suggests that bais are “hotspots” in the forest frequented 

by forest elephants and, as elephants move in and out of these areas, the changes in the 

microclimates affect the elephant’s thermoregulatory processes. Bais also provide areas for 

social interactions (Turkalo and Fay, 1995), they are rich places for nutritious herbs (Carroll, 
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1996; White et al., 1993) and places with mineral salt-licks (Turkalo and Fay, 1995; White et al., 

1993).  

 

Although the data obtained in this study are too small to draw up concrete conclusions that may 

apply generally to the behaviour of forest elephants, the information provides an insight of how 

African forest elephants behave within the microclimatic mosaics in Lobeke NP, and perhaps 

across the Congo Basin forest landscapes. Studies on free-living African forest elephants’ 

behaviour in the microclimates anywhere in the Congo Basin Forest had not previously been 

investigated. Information on variability of microclimate and possible effects for 

thermoregulatory behaviour of a keystone species such the forest elephant is vital and urgent due 

the current threats; growth of human population due to reduced child mortality and longer human 

life span, deforestation, habitat loss, habitat fragmentation, poaching and climatic change 

(Chivian and Berstein, 2008), and alteration of forest biodiversity (Root and Schneider, 1995). 

Indeed, according to the IUCN's 2006 Red List, slash-and burn of bushes for crops and livestock 

is a threat to more than 20% of terrestrial species, including African forest elephants. Elephants 

are key animal species that always directly or indirectly ensure the survival of organisms living 

in the same ecosystems with them (Schulze et al., 1994), including humans. Thus human would 

be in serious trouble surviving, if elephant populations are reduced or if these animals cease to 

exist. African elephants are under serious threat of extinction because of poaching for ivory and 

bush meat trade, and have been listed as threatened on the IUCN Red List of Threatened Species 

(IUCN, 2009).  
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Humans have already altered to a varying degree nearly half of the earth's land surface (Wilson, 

2008) consequently, microclimates have also been altered. In the next thirty years, this number 

will likely rise to about 70% of the land surface (UNDP, 2002) further threatening the existence 

of elephants. Presently, home to about half of the world's population, cities are growing by 2% 

each year on average, so that urban population, according to the United Nation Population 

Division, will grow to 60% of the world's total  by the year 2030, with even greater proportion in 

the developing world (UNPD, 2005). Also the building of dams, irrigation projects, and other 

water development activities can disrupt the integrity of landscapes, habitats, macroclimate and 

microclimates and threaten species. While each of these activities bring great development to 

humanity, they all come with sufficient cost to species and ecosystems (Wilson, 2008) where 

elephants and humans coexist. Many scenarios have demonstrated complex relationships by 

changing land-use and land cover producing unforeseen impacts of both wildlife and human 

health. Land-use change has been linked with emerging diseases due to conversion of the 

tropical forest. The IUCN currently lists habitat loss, and therefore, loss of microclimates, as a 

key contributor to the endangerment of nearly 50% of all threatened species. (Wilson, 2008).  

 

Climate change projections indicate that key portions of the elephants’ habitats will become 

significantly hotter and drier (Root and Schneider, 1995), resulting in poorer foraging conditions 

and threatening survival of animals (Chivian and Berstein, 2008). Young and Van Aarde (2010) 

recently showed that a decrease in the survival rate of young elephants, between four to seven 

years old, in southern Africa may be associated with changes in vegetation productivity, water 

availability, ecophysiological variability and drought. Young elephants are particularly 

vulnerable in hotter and drier environments predicted to occur with climate change and 
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deforestation thus further aggravating the existence of effective elephant populations and 

ecosystems. 

 

In order to be able to predict and mitigate adverse effects on elephants, it is imperative to know 

the role microclimates play in the thermal biology of elephants. Inferences made in this study on 

the microclimate mosaics that forest elephant select for thermoregulatory reasons would need 

further investigation before concrete conclusions are drawn. Due to the difficulties, danger and 

high cost to study mega-herbivores in the wild (Harris et al., 2008; Wronski et al., 2006), I 

believe it would be worthwhile investigating forest elephants’ behaviour by applying 

GPS/satellite collaring, real time bio-logging and also camera trapping techniques, which may 

help characterize activity patterns. Both techniques are feasible in the forest, although activity 

data-loggers require capture of elephants to fit collars. In order to truly know how microclimate 

mosaics influence the thermoregulatory behaviour of a keystone species such as forest elephants 

in the evergreen, hot humid equatorial forest of the Congo Basin, extensive studies in all seasons 

within a wide range of habitats are necessary. This study serves as a starting point. Knowledge of 

wildlife behaviour in macroclimates and microclimates within a wide range of habitats will 

contribute to provide more information for the Millennium Ecosystem Assessment, which will 

provide insights for policy makers to approach development and human and wildlife health at the 

level of specific health risk factors, climate change, landscape and habitat change, and economies 

and behaviours. 
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APPENDICES 

 

Table 5.1 Summarized results of two-way ANOVA of microclimatic variables in the open bais 

and under the forest canopy during the day and at night and for all five of my study sites in 

Lobeke NP, Cameroon. 

   

Open bais or under tree 

canopy 

           
  

Microclimatic variables P value Significance       F          Df 

____________________________________________________________________________________ 

    

 

Open bais & under forest 

canopy  Day Tg  0.9971 No 0.0329 1 

Day & night 

  

0.1038 No 2.771 4 

       Open bais & under forest 

canopy Night Tg  0.8688 No 0.3112 1 

Day & night 

  

0.4530 No 0.5747 4 

       

       Open bais & under forest 

canopy Day Ta  0.9844 No 9.008 1 

Day & night 

  

0.0046 Yes 9.008 4 

       Open bais & under forest 

canopy Night Ta  0.5022 No 0.850 1 

Day & night 

  

0.1379 No 2.930 4 

       

       Open bais & under forest 

canopy Day Tg-Ta  0.9592 No 0.1559 1 

Day & night 

  

0.2234 No 1.5290 4 

       Open bais & under tree 

canopy Night Tg-Ta  0.0070 Yes  4.1110 1 

Day & night 

  

0.1192 No 2.5360 4 

       

       Open bais & under forest 

canopy Day VP 0.6153 No 0.6720 1 

Day & night 

  

0.8492 No 0.0360 4 

       Open bais & under forest 

canopy Night VP 0.5871 No 0.71430 1 
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Day & night 

  

0.8963 No 0.01721 4 

       Open bais & under tree 

canopy Day WS <0.0001 Yes 0.7390 1 

 

Day & night 

  

3.3306 No 0.9698 4 

       Open bais & under forest 

canopy Night WS 0.0045 Yes 2.684 1 

Day & night 

  

0.0004 Yes 15.23 4 

  

Tg = globe temperature, Ta= dry-bulb air temperature, Tg-Ta= difference in globe and dry-bulb air 

temperature, VP= water vapour pressure of air, WS=wind speed. P<0.05= significant difference between 

mean microclimatic variables, F= signifies the effects, Df=degree of freedom.  
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Table 5.2A Summary of the associations between the mean Tg, Ta and VP of air and the mean 

time my elephants spent per activity in Lobeke NP, Cameroon.  

 

 

 

Activity Tg in bais  Ta in bais  VP in bais  WS in bais 

        

Walking 

n=19  

r²=0.0638  

n=19 

r²=0.0419  

n=19 

r²=0.2011  

n=19         

r²=0.0011 

 p=0.3282  p=0.4307  p=0.0710  p=0.9017 

        

Foraging 

n=19 

r²=0.0628  

n=19 

r²=0.0236  

n=19  

r²=0.0694  

n=19         

r²=0.0475 

 p=0.3009  p=0.5560  p=0.3070  p=0.4007 

        

Shade-seeking 

n=19 

r²=0.5251  

n=19 

r²=0.7667  

n=19   

r²=0.2050  

n=19 

r²=0.0028 

 p=0.0655  p=0.0098  p=0.8155  p=0.8935 

        

Ear-flapping 

n=19  

r²=0.3015  

n=19 

r²=0.6099  

n=19  

r²=0.051  

n=19          

r²=0.0880 

 P<0.0125  p=0.0002  p=0.3501  p=0.2478 

        

Dust-bathing 

n=6  

r²=0.4732  

n=6 

r²=0.6321  

n=6 

r²=0.0510  

n=6          

r²=0.1485 

 P=0.0154  p=0.0587  p=0.6669  p=0.3932 

        

Water related  

activity 

n=19  

r²=0.1254  

n=19  

r²=0.1164  

n=19 

r²=0.0237  

n=19         

r²=0.0001 

 p=0.2854  p=0.3044  p=0.6326  p=0.9820 
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Table 5.2B Summary of the associations between microclimate and elephant behaviour under 

forest canopy for all my study sites Lobeke NP, Cameroon 

Activity 

Tg under 

tree 

canopy 

 

 

Ta under 

tree 

canopy  

VP under tree 

canopy  

WS under tree 

canopy 

        

Walking 

n=5 

r²=0.0285  

n=5 

r²=0.0267  

n=5 

r²=0.0030  

n=5 

r²=0.0050 

 p=0.5174  p=0.5308  p=0.8340  p=0.7889 

        

Foraging 

n=5 

r²=0.0193  

n=5 

r²=0.03048  

n=5 

r²=0.0104  

n=5 

r²=0.0084 

 p=0.5953  p=0.50270  p=0.6975  p=0.7266 

        

Shade-seeking 

n=6 

r²=0.8045  

n=6 

r²=0.7436  

n=6 

r²=0.0194  

n=6 

r²=0.0767 

 p=0.0154  p=0.0125  p=0.7659  p=0.4385 

        

Ear-flapping 

n=5 

r²=0.0116  

n=5 

r²=0.0196  

n=5 

r²=0.0020  

n=5 

r²=0.0020 

 p=0.6806  p=0.5919  p=0.8654  p=0.8633 

        

Dust-bathing 

n=3 

r²=0.2656  

n=3 

r²=0.226  

n=3 

r²=0.2592  

n=3 

r²=0.0291 

 p=0.0688  p=0.0657  p=0.3023  p=0.7464 

        

Water related  

activity 

n=3 

r²=0.0062  

n=3 

r²=0.0135  

n=3 

r²=0.0045  

n=3 

r²=0.1301 

 p=0.8106  p=0.7191  p=0.8538  p=0.3059 

 

Tg=globe temperature, Ta=dry-bulb temperature, VP= water vapour pressure air, WP= wind 

speed (Note wind speed was the only mean microclimate variable that was significantly different 

study sites).    

 

(Lee, 1987) 

 


