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Abstract

ABSTRACT

This report describes and evaluates an implementation of the Linda tuple space ab-
straction on Transputer networks. There is evidence that suggests a need for a new
programming methodology to support Transputer-based applications, and Linda, as
an attractive and elegant alternative to existing methodologies, has great potential
for this role. The research focuses on the implementation of a particular tuple space
model, intermediate uniform distribution, on Transputer meshes. The objective of
the research is to ascertain the extent of the communication overheads inherent in
the implementation and hence evaluate the feasibility of the approach. The over-
heads are measured relative to message passing performance on native Transputer
networks, and are shown to be significant. It is concluded that although the specific
tuple space model is not ideally suited to Transputer-based systems and the imple-
mentation, as it stands, is too inefficient to be of practical use, the approach re-
quires further exploration in order to exhaust its full research potential.
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PREFACE
--------------------------.-,"'~----------------~.~------
This report constitutes the research requir .ient for the degree of Master of Science
by course-work (60%) and research report (40%). The aim of the research is to in-
vestigate the communication overheads associated with the implementation of the
tuple space abstraction defined by :,~eLinda parallel programming language on
networks of Transputers, A particular tuple space model, intermediate uniform dis-
tribution, has been implemented on a mesh of Transputers, and this system is ana-
lyzed and evaluated in the course of the investigation.

The preliminary literature survey for this research was conducted in August -
November 1989, and the implementation design started in February 1990. The
testing and verification of the implementation was completed inOctober 1990. As
stated previously, the objective of the research is to investigate the overheads inher-
ent in the specific tuple space implementation - it was not the aim to develop a,
fully-fledged Linda system. The result of this investigation is intended to shed light
on the feasibility of a full Linda implementation (using the selected tuple space
methodology) on networks of Transputers.

Various sections within this document have appeared elsewhere in a slightly differ-
ent form. Section 1 (Introduction) features excerpts from [Faasen 1989b and
1990a], and section 2 (The Linda Paradigm) is based heavily on a technical report
that appeared in June 1990 [Faasen 1990d], as are the first two sub-sections within
section 3 (Tuple Space on Distributed-Memory-Systems). The overview of the
Transputer and occam that appears in Appendix 1has most of its source in [Faasen
1990a].
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With regard to minor points concerning notation, notice that
o the terms Transputer, _.,,-1 transputer, and Occam and occam appear interchange-

ably within the reler 'terature, This report adopts the notation prevalent in
early documentation .1.\';. Transputer and occam (the latter is used synony-
mously with occam 2)

o to distinguish between the names of the Linda primitive operations and their
English language counterparts, the former appear in a distinctive font - e.g. in
and out '

• Tables, Figures and sub-sections that aPl?ear in the Appendices are numbered
Ax.y, where x is the number of the Appendix and y the respective sequence
number.
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1 - Introduction

SECTION 1

1.0 INTRODUCTION
Manufacturers of conventional (i.e. sequential) computers are constantly striving to
improve the performance of their hardware in a bid to keep up with ever-in 'reasing
processing demands. However, as technologies approach the limits imposed by the
speed of light, so these efforts yield improvements of successively less significance
[!NMOS 1989], The solution to the problem of modelling real-world systems lies
in the domain of parallel processing - dividing up a problem among a number of
processors and solving the sub-problems in parallel, Not only does this approach
increase processing speed, but it provides the means to express realistic solutions to
inherently parallel problems. This is an important issue given that most real-world
systems involve some degree of concurrency. In a parallel environment, processes
can execute and function independently of each other. It is obvious, however, that
there must.be some means of coordinating the processes in such a way that they can
cooperate and interact with each other. There are a wide range of such
synchronization and communication mechanisms - e.g. semaphores, conditional
critical regions, monitors, remote procedure calls and message passing. These
mechanisms are critically reviewed by Faasen [1989b], and are found! in general,
to be applicable to specific domains (e.g. semaphores are obvious candidates for
shared-memory models, whereas message passing is highly suited to distributed-
memory systems). There lts, however, ~ more recent and far more generalis able
mechanism than those listed above. "T!'tis pertains to the Linda programming
paradigm, and is known as generative communication.

Linda is a paradigm for high-level parallel programming, the basis 0; which is a
global, logically shared tuple space (TS). TS is a form of associative memory that
is accessible to all processes running within a parallel program. These processes
communicate by manipulating the TS - i.e. by inserting and retrieving data Objects
(tuples). Processes therefore have no direct interaction with each other. Instead,
process synchronization and communication are achieved via tnple space opera-
tions, providing an entirely new, conceptually simple approael l to parallel pro-
gramrring. Inherently, a shared-memory architecture appears most suited to sup-
1',J,,111gLinda efficiently (since tuples within TS are accessible to every process
~'U ain the system) and there a number of such implementations in existence
[Carriero 1987]. However, distributed-memory architectures are not excluded from
the sphere of potential Linda target machines. Indeed, these systems are regarded as
an important area of application as they are generally cheaper, less complex and
more scalable than shared-memory hardware [Ahuja et al. 1988].

The Transputer is representative of such distributed-memory architectures, offering
supercomputer performance for a fraction of the cost ,[INMOS 1989]. There is a
close relationship between the Transputer and its programming model, occam. This
means that problems to be solved using the hardware can be expressed naturally
and elegantly (and efficiently) in occam [Pountain 1989]. However, because of the
close relationship between the hardware and the software formalism, the style of
programming is closely coupled to the specific hardware topology. Consequently,
the underlying processor configuration plays a prominent role in algorithm design.
There is a steep learning curve associated with the effective and efficient utilization
of Transputers (this statement is based largely on personal experience in teaching
the use of occam and the Transputer; however, Pountain [1990] and Rabagliati
[1990b] both allude to the difficulties imposed by the model of communication).

1



1 - Introduction

This suggests a need for a new programming paradigm to support Transputer-
based applications. Linda, as an elegant and conceptually simple alternative to exist-
ing :'J1ethodologf- ~.~a strong candidate for this role. Furthermore, Linda pro-
grams are portab ..,. mtific 19891,_ they can be run with little: or no modification
on any architecture 011 wnich the tuple space abstraction and communication kernel
are resident. Consequently, there is much to be gained by the provision of a Trans-
puter-based target machine.

The implementation of a globally accessible tuple apace 011 Transputers poses a
number of problems. As detailed in Appendix 1, the Transputer is a message pass-
ing distributed-memory architecture, with processor interconnection via point-to-
point synchronous links. Hence, there is the problem of maintaining distributed
data over independent local memories, and also having to deal with a potential
communications bottleneck. Nevertheless, there are a number of Transputer-based
Linda implementations in existence, although, as will be seen later in this report,
the approach taken in this research is unique.

The objective of the research is to investigate the communication overheads im-
posed by a particular tuple space model, the intermediate uniformly distributed
scheme, on Transputer meshes, and hence evaluate the feasibility of such an im..
plementation, In suppca of this investigation, the model has been implemented in
occam 2 on meshes of Transputers. This implementation. termedX-Linda1, is the
vehicle of the investigation; ultimately, fhe research is concerned with ascertaining
the communication overheads inherent in this system. It should be pointed out that
X-Unda is not a fully-fledged Linda implementation. The design and functionality
of the model are restricted. to meet the needs and requirements of the investigation.

The structure of this report is intended to lead the reader in a systematic fashion into
the heart of the resea.ch. The document progresses from introductory information
on Linda and tuple space methodologies into the design and implementation of X-
Linda, and then details the analysis and evaluation of the system. The actual content
of the document is briefly overviewed below.

A logical place to commence this report is with Linda itself. A broad overview of
1uida is given in section 2, illustrating the concepts of tuples and TS. and describ-
Ing the primnive operations that may be used to manipulate the TS. The program-
ming methodology is introduced, focussing on the replicated. worker model and
Linda's characteristic uncoupled style, and the related advantages and benefits of-
fered by Linda are discussed. As indicated earlier, although there is strong SUpp0:U
for the implementation of Linda on shared-memory architectures, distributed-mem-
ory implementations remain an important area of application. Since this research is
concerned with the implementation of tuple space on a distributed-memory system
(i.e, a network of Transputers), it is important to be aware of existing tuple space
models and methodologies that have been applied to distributed-memories, Section
3 presents various models of tuple space that can be fitted on to distributed-mem-
ory, and describes a custom-built distributed-memory system that has been de-
Signed specifically to support intermediate uniformly distributed tuple space (the
Linda Machine). The design of the Linda Machine is particularly relevant, since it
has, to a large extent, influenced the design of X-Linda. The section also examines
existing tuple space implementations on Transputers, illustrating how the various
tuple space models have been adapted and appliedro this specific environment. The
uniqueness of the X-Linda approach is also highlighted.

IX-LincIa? An abbreviation of Xputer-Linda, derived from Transputer-Linda

2



1 - Introduction

The X-Linda implementation is introduced in section 4, re-emphasizing the need for
an alternative 'Iransputer ..based programmmg methodology as motivation for the
research direction in general. Since the research is implementation oriented, it is rel-
evant and important to describe the underlying hardware and development envi-
ronment, and details pertaining to the specific computing platform (viz, a Parsytec
SuperCluster) and its development system are given here. The section then focuses
on the fundamental design and specification of X-Linda, motivating the choice of
tuple space model (intermediate uniform distribution). The intention here 15 simply
to. present the overall design and structure of X-Linda (i.e. without entering into
low-level implementation techniques), To this end, the remainder of the section
gives a non-technical description of the storage of tuples within TS and the format
of tuples and templates; the choice of TS primitives provided by the implementation
is also justified. Finally ~the structure of the individual nodes that comprise the.
system is described. A more detailed account of the implementation of the TS
primitive operations under X-Linda is given in section 5, highlighting various
problematic issues and design decisions that had to be addressed in ord,;!"to realize
the successful implementation of these operations. These considerations are impor-
tant since they have a direct impact on the overall efficiency of the system. Further-
more, the very existence of a substantial design effort can be regarded as the first
indication of the unsuitability of the specific tuple space model on Transputers. This
section also examines the design and structure of the system at the process level,
illustrating the function and interaction of the individual processes that, collectively,
comprise X~Linda.

The actual purpose of the research - to ascertain the commuaication overheads as-
sociated with X-Linda - is addressed in section 6. A series of experiments and tests
are presented that have been designed to measure the extent of these overheads
(relative to message passing performance on native Transputer networks). It is
shown in this section that, in general, the communication. overheads imposed by the
system. are significant, and that the overall overhead of the implementation
(attributable to the collective effects of communication, 1'8 search, syncbronization,
process scheduling and set-up) is .xcesslve, The following section, 7, describes
and evaluates two algorithms (numerical integration and matrix mr;ltiplication) that
have been implemented under X~Linda in order to observe the ~fficiency of real
applications running on the system. Although the relevance of trHs section to the
scope of the research may not be immediately obvious, the results presented here
complement those detailed in the previous section. Section 6 details specific over-
heads and. inefficiencies and, here, the collective influence of these effects on the
overall efncxcTlcy of the system are illustrated.

There is a good deal of potential for future research with regard to the XriLinda
project, primarily with regard to enhancing the system and its performance, Section
8 discusses a number of such strategies, addressing the needs of, firstly, dis-
tributed-memory Linda implementations in general, and, secondly, those specific to
X-Linda. It is concluded in section 9 tnat although the specific tuple space model is
not ideally suited to T:ran~Wj.li:et~b&sedsystems, the approach requires further explo-
ration in order to exhaus; V$f~lHresearch potential.
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The Appendices delve into some enlightening areas that are not considered to be
within the direet scope of this research, but which do provide supplementary Infer ..
marion that is related to and supportive of various issues covered in the course of
this research,
Appendix 1 ....For readers unfamiliar with the Transputer and its native language,
occam, a non-technical overview is given in Appendix 1 (and, for those who are
familiar with the subject area, this Appendix includes a description of the soon-to-
be released HI Transputer).
Appendix 2 - Appendix 2 gives details of rhe design and results of the various ex-
periments that were devised as base tests against which the communication over-
heads of the X-Linc1..aimplementation are ascertained. The experiments are all con-
cerned with evaluating the rate of data transmission over various Transputer net-
works and are obviously fundamental to the analysis of X-Linda.
Appendix 3 - The measurement of the CPU utilization on each node within the
system also features extensively in the analysis of X-Linda, and Appendix 3 de-
scribes how these utilization figures are derived,
Appendix 4 - Appendix 4 illustrates the top-level program structure of X-Linda,
highlighting the use of harnesses that permit the system to be either simulated on a
single processor or physically distributed over a network of processors.
Appendix 5 ....The process-level functionality andinteraction of the X-Linda imple-
mentation is diagrammatically illustrated in Appendix 5, showing the suitability of
the occam programming model in the design elfthe system.
Appendix 6 - Section 7 of this document deals with the design, implementation and
analysis of two specific example programs, and the full code listings are located in
Appendix 6. The primary motivation for including these listings is to illustrate the
X-Linda programming style. Furthermore, these listings reflect a very rare pro ..
gramming methodology, i.e, the use of Linda primitives embedded in occam 2 pro-
grams ..
Appendix 7 - The last Appendix constitutes a short discussion 011 the se,p:la.nticsre-
garding the order in which tuples are added to tuple space. This issu'e is briefly
touched on in section 5.1.1.1 in the context of the implementation of the out op....ra-
tion under X...Linda, and is expanded upon here simply in the context of an.interest-
ing side-issue.

Finally, to conclude this document, a comprehensive list of Linda-related literature
is given. This list features more than ninety references, and should be ofuse to re-
searchers currently involved with Linda and especially to new-comers to the area.

4
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SECTION 2

2.0 THE LINDA PARADIGM

This research is concerned with the implementation of the tuple space abstraction as
defined by the Linda parallel programming language. It is necessary, then, to de-
scribe the concept of tuple space, and to discuss the operations that may be used to
manipulate the tuple space. This section, much of which has its source in [Faasen
1990d], presents a broad overview of the Linda paradigm, concentrating on the
following areas:
1. The Tuple Space Model
An overview of Linda which focuses on the concepts of tuples, TS and TS opera-
tions.
2. Programming Methodolo,gy
The issues of the replicated worker model and Linda's characteristic uncoupled
style are discuss-ed. It is shown that the approach differs greatly from, and has sev-
erfu advantages over, conventional parallel programming methodologies.
3. Advantages of Linda
Here, the fundamental motivation for this research is given by means of illustrating
the benefits offered by Linda. Ineffect, this sub-section is answering the (unasked)
question "What is the point of a Linda-like implementation 7".

Readers familiar with the concept of tuple space can safely skip out the first of these
sub-sections, The other two sections should, it is hoped, maintain a general level of
interest, whether or not the idea of tuple space is a new one to the reader. Finally, a
short discussion on the Linda paradigm is given, emphasizing the fundamental dif-
ference between this approach and existing parallel programm' '1gmodels.

2.1 TUPLE SPACE MODEL
"The abstract compuuuion environment called "tuple space" is tile basis of Linda' s model of

cammunicatlc-s;" {Geiern1er 198:;, p, 82.7

,-------------------------------~,-------
This section gives an introductory overview of Linda, and then-examines the ideas
of tuples and tuple space ill some detail. Linda is a paradigm for high-level parallel
programming that is centred around the concept of a global, logically shared tuple
space. The simplest way to thi!'.k of tuple space is as an unordered "bag" containing
pieces of information (tuples), Precesses communicate by adding tuples to and re-
trieving tuples from this globally accessible space. The model is described by Car-
riero and Gelernter [1989] as one of generative communication -, communication
between processes is achieved through the generation of data tuples and the creation
of processes is done by means of generating live tuples. Communication and pro-
cess creation are therefore closely related. Indeed, one of the Linda objectives is to
do away with the distinctions between synchronization, communication and pro-
cess creation [Gelernter 1989a]. Building a Linda program entails inserting process
tuples into the TS, whi h then generate further process tuples,

Linda is not a complete language in itself. It comprises a small number of primitive
operations that provide mechanisms for process coordination and creation within
the base language that they are injected into [Gelernter 1988]. Coordination and
communication between processes is implicitly achieved through the effects of the
Linda primitives executing against the TS. The model of parallel processing is
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orthogonal to the base language - Linda deals only with process creation and coor-
dination and is divorced from all computational issues. Consequently, Linda can
potentially be embedded in any language.

Central themes underlying the Linda model are -
~ Distributed data structures - Ahuja et al. [1988] define a distributed data struc-

ture as being "a data structure that is directly accessible to many processes simul-
taneously". Any tuple in the TS can be accessed by any process in the system-
tuples are therefore distributed data structures, Distributed data structures are not
supported in the majority of parallel programming languages. Instead, shared
data is normally encapsulated inside manager processes, which are responsible
for making this data accessible to user processes (Ahuja et al. 1986].

• Replicated worker processes - identical worker processes arc "stamped out" as
they are needed. The replicated worker model is discussed in section 2.2.1.

• Spatial and temporal uncoupling - processes have no direct interaction with each
other. Uncoupling is addressed in section 2.2.2.

The Linda model is vividly described by Ahuja et al. [19881 as "a swarm of tuples,
some passive and some active, grows, shrinks, and maintains internal coordination
by generating and consuming more tuples".

2.1.1 TUPLES
Tuples can be thought of as being shared pieces of information - they can assume
one of two forms:

1. Data tuples
A data tuple is an ordered collection of data objects known as fields. A tuple field
can either be an actual or sformal parameter (termed the field's "polarity" [Zenith
1990b]) ..An actual field contains some physical value - for example "A", "hello",
100, 3.142 or TRUE. A formal parameter specifies a typed variable name, for ex-
ample char letter, string message, int max, float pi or boo! status. Communication be-
tween processes is in effect achieved by the transfer of data from actual to formal
tuple fields. For clarity t formal parameters are frequently preceded by an interroga-
tion mark - for example, 11nt max, The actual data types that data fields can assume
is largely dependent on the host environment - records and arrays are, for example
quite permissible. Gelernter [1985] formalizes the structure of tuples as
(N,P2,,,.,PN)' where N is an actual parameter, and P2, ... ,PN are either actual or for-
mal parameters. The first field is referred to as the tuple "name", and is defined as a
character string (the specification of the tuple name has not been strictly adhered to
in later and current j\rrlplementations). A tuple comprising two actuals and one for-
mal field might appear as ("hello",1int i, 3.142). The specification of formal parame-
ters does have another variation - Ahuja et al. [1986] state that "the annotation
formal may precede an already-declared variable to indicate that the programmer
intends a formal parameter". For example, ("A", 11nt i) is equivalent to ("A", formal i),
given that ihas been previously declared to be of type integer.

2. Live tuples
Live tuples invoke computation - they are "process tuples under active evaluation"
[Ahuja et al. 1988]. These tuples, in their simplest form, comprise the name of a
process to be executed. Live tuples ate discussed in more detail with regard to the
eval operation (section 2.1.3),

2.1.2 TUPLE SPACE
Tuple space is the basis of communication in Linda [Gelernter 1985]. The Linda
model does not presume the presence of an underlying shared-memory architecture.
The TS is however a logically shared object memory whose semantics reflect a

6
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physically unordered underlying component [Carriero et al. 1986]. TS can be
thought of as a logically shared resource or memory space into which tuples can be
deposited or, conversely, be withdrawn. Programmers are able to assume that they
are using a physically Shared-memory, even if none actually exists. It must be em-
phasized that the TS is a content addressable, associative memory [Ahuja et al.
198~~]- the mapping from logical tuples to their physical addresses is a function of
the Linda virtual machine [Gelernter 1985]. Tuples are not physically addressable -
they are selected on the basis of the structure and content of their fields. Locating a
tuple is based on a form of pattern matching, and involves the process of associa-
tive look-up [Gelemter 1988]. TS is accessible to any process in the system. All
tuples existing within the TS are distributed data structures - they are available to all
processes, but bound to none. An extension to the tuple space concept, that of mul-
tiple tuple spaces, is discussed by Gelemter [1989a].

2.1.3 TUPLE SPACE OPERATIONS
In order to modify a tuple, it is necessary to withdraw it from the TS, modify the
data, and then lie-insert it back into the TS. Processes wishing to access the TS may
do so via four primitive operations: .
1. out (tuple)
Adds a tuple to the TS; for example, the statement out("A",1)adds the tuple ("A",1)
to TS. Out does not block; the process inserting the tuple continues executing with-
out waiting for the tuple to be accessed by a reader process.
2. in (template)
Withdraws a matching tuple from the TS. The actual parameters of the tuple are as-
signed to the formal parameters of the template. For example, if there is a tuple
C'A",1) in the TS, the statement in("A", ?int i) will remove the tuple and assign 1 to the
integer variable i.Note that the fields pertaining to an in statement need not neces-
sarily include formal parameters - the statement in("A",1) will remove the tuple from
the TS, but no data transfer will take place ..In is a blocking operation. If a matching
tuple is not found, the process issuing the in command suspends until a matching
tuple is inserted into tile TS. If two or more matching tuples are present in the TS,
one of these is chosen arbitrarily. .
3. rd (template)
Same as in except that the tuple matching "he template is not withdrawn from the
TS. A copy of the tuple's fields is simply returned to the process invoking the
command.
4. eval (tuple) .
Eva' ~slike out, with the exception that the tuple is evaluated after (and not before) it
enters the TS. A process is implicitly forked to perform the evaluation. The follow-
ing example illustrates the effect of the eval primitive, and is adapted from an ex-
ample given by Zenith [1990b]. Assume that there exists a function F that returns
some integer value i. The command eva!(F) causes the process F to be placed in the
TS and to be executed. The evaluation of F then causes the active tuple (F) to be
transformed into the passive tuple (I).

There are two other operations that are predicate variations of in and rd - lnp
(template) and rdp (template). These operations behave like in / rd but do not block,
and return boolean values that indicate whether or not the operation was successful
[Carriero 1987]. Notice that inp and rdp are not universally accepted primitives:
• it appears that the predicate primitives will not appear in future releases of Linda,

but will be replaced by "some form of alternation construct" [Zenith 1990a]
• ',I .. , the non-blocking operations are difficult to implement efficiently, hence

poor choices as primitive operations in a language intended to support efficient
programs; and are, in any case, unnecessary" [Leichter 1989].

7
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Notation for Tuples and Templates
For the sake of clarity, in this document tuples are generally identified by a letter of
the Greek alphabet, e.g. a, and matching templates by that letter with a bar above,
e.g. ii.This notation is typically used in conjuncti.m with a primitive operation -
e.g. outtn).

2.1.4 MATCHING TUPLES
Tuples inTS are accessed by their logical names as opposed to any form of physi-
cal address [Ahuja et al. 1986]. In order to withdraw a particular tuple from the TS,
a process must issue a matching template. A match occurs if the values and field
types 'supplied in the template are identical to those of a tuple present in the TS. The
rules for matching a template against a tuple are given formally by Carriero [1987] :
1. the number of arguments must be the same
2. the field types must match
3. data fields (i.e, actual parameters) must be the same
4. formal fields in the tuple can not match formal fields in the template - i.e. for-

mals can only match actuals.

Aside - The Efficiency of Tuple A'.fetching
Intuitively, one might assume that the tuple matching process is a source of great
inefficiency in any Linda implementation - i.e. given that a template must be se-
quentially matched against the contents (If what, in essence, is an unordered list of
tuples. This is not necessarily the case - ways of speeding up the matching process
re discussed in section 8.1.2.

2.2 LINDA PROGRAMMING METHODOLOGY

"A parallel program in Linda is a spatially and temporally unordered bag of processes, not a process
. graph." {Ahuja et 1\1/. 1986, p. 26]

Writing parallel programs in Linda is centred around the concept of replicated
workers operating on distributed data structures. In this section, the replicated
worker model - and a consequence of this approach, viz. an uncoupled style of
programming - is discussed. It is shown mat the Linda approach differs greatly
from, and has several advantages over, conventional parallel programming
methodologies.

2.2.1 REPLICATED WORKER MODEL
A central issue in Linda's programming methodology is that of the replicated
worker [Ahuja et al. 1988]. Sub-processes are created by "stamping" out identical
copies of a single process as opposed to creating distinct sub-processes (obviously,
this is not the only way to write parallel programs - it is, however, a popular and
effective approach). Conventional network-style parallelism relies on partitioning,
where the program is partitioned amongst the processes. Linda employs replication
as opposed to partitioning - this has the advantages of :
• scaling transparently - the same p~ogram win work the same way, only faster,

as more processors are added [Camero and Gelernter 1988a]
• preventing needless context switching - each processor runs a single process;

hence the number of processes only increases with the number of processors
[Ahuja et al. 1986]

• dynamic load balancing - worker processes look for tasks that need to be com-
puted and tasks are consequently distributed among the available workers at run-
time [ibid.]. ' '

8
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The crux of the Linda programming methodology revolves around a set of dis-
tributed data structures that are manipulated by a set of identical worker processes
[Ahuja et al. 1988].

2.2.2 UNCOUPLED STYLE
A prime objective of Linda is to remove the coupling between parallel processes,
and hence reduce program complexity [Ahuja et al. 1986, Clayton et al. 1990]. It is
desired that processes be able to produce and release data without concern for
which processes will use that data. Similarly processes should be able to consume
data without caring who produced it. A producer's progress should not be re-
stricted by that of a consumer [Ahuja et al. 1988]. This feature allows communica-
tion patterns to be modified transparently and dynamically at run-time and also en-
courages asynchronous communication. Furthermore, it supports dynamic load
balancing by virtue of the fact that "evaluator processes" can select sub-tasks to
compute, based on dynamic supply and demand [ibid.]. Linda supports two forms
of uncoupling:
1. spatial uncoupling - sending processes do not care which processes will receive

their information, and vice-versa .
2. temporal uncoupling - there are no synchronization constraints involved in

transmitting data since sending processes do not block.
Linda is consequently "fully distributed in time and space" [Gelernter 1985]. Linda
achieves its uncoupled nature via the TS and processes do not interact directly with
each other. Uncoupling and dynamic scheduling are accommodated by having all
transactions operate on distributed data structures in the TS. The Linda program-
ming model has been described as an "unconneetion machine" [Bjornson et al.
1987]. Whereas models such as occam and the Connection Machine characteristi-
cally bind parallel processes tightly together, Linda processes have no direct impact
on each other.

2.3 ADVANTAGESOF LINDA
•" ... a large class of problems ... can exploit the benefits of Linda as an eary and elegant way of parallel

programming, offering portability and scalability." [Borrmann and Herdieckerhoff 1989, p, 1S8}

The philosophy underlying Linda has, at this point in the document, been examined
at some length. The focus is now directed towards the advantages offered by the
paradigm. The following is an overview of the favourable aspects of Linda that are
either shown or claimed in the literature, given as justification for the research di-
rection ingeneral.
1. Portability - A Linda program can be run without modification on message

passing systems, shared-memory machines and local area networks (Scientific
1989], The issue of portability is further discussed by Gelernter [1988].

2, Scalabtlty - The replicated-worker model scales transparently (Ahuja et al.
1986]. A program developed to execute on a single processor can be executed
(with zero or minimal modification) on a multi-processor system.

3. Orthogonality - Since Linda is orthogonal to the base language, it can be embed-
ded in existing languages with minimal effort or modification (Chorus 1989a].
Carriero and Gelernter (1989] describe this feature as Linda's ability to "coexist
peacefully with any number of base languages and computing models".

4. Ease of Use - Ahuja et al. [1986] claim that under Linda, writing a parallel pro-
gram is no more difficult than writing a sequential one. This is largely due to
Linda's characteristic uncoupled style. Williams et al. [1989] illustrate the fact
that programs can be written without the need to consider
• the identities of the source and destination processors involved in communi-

cation

9
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• the architecture underlying the application
• the synchronization and coordination of processes.
As a result, programmers are able to concentrate on actual algorithms as opposed
to implementation details. Another issue worthy of mention is the fact that in
order to use Linda, it is not necessary to learn the features and idiosyncrasies of
an entirely new language. Apart from the extra TS operations, the host language
is unchanged. Programmers familiar with languages like FORTRAN and C can
address communication, synchronization and creation of processes in a uniform
manner [Kahn and Miller 1989]. It is relevant to note that personal experience
gained in the course of this research undoubtedly supports the claim that Linda
simplifies parallel programming.

5. Dynamic Load Balancing - The replicated-worker model naturally provides dis-
tribution of tasks between available processors at run-time [Ahuja et ai. 1986].
In this model, worker processes look for tasks that need to be computed - hence
tasks become distributed among the available workers,

6. General Development To01- Linda is a good gen-.al purpose development tool
[Gelernter 1988]. Carriero and Gelemter [1988a] a.gue that
• Linda can be applied to and subsequently solve "real" problems. This is sup-

ported by the wide range of application examples that Linda has been used in
• Linda solutions are conceptually simple to understand
• Linda programs exhibit "real" speed-up.
Linda caters for coarse, medium and fine-grained parallelism [Carriero and Gel-
ernter 1989]. Linda also has applications in the construction of operating sys-
tems [Gelernter 1985]. The low level communication kernel of the XTM system
discussed in section 3.3.1 is based on Linda. Applications in information man-
agement are described in detail by Gelernter [1989b].

7. Power and Expressiveness - Linda has greater power, expressiveness, simplic-
ity and elegance than existing models of parallel processing [Gelemter 1985,
Camero and Gelernter 1989].

Finally, in a more philosophic vein, Gelernter [1988] states that "Linda is a practi-
cal system; it is also an attractive and evocative thought tool".

2.3.1 CRITICISMS
Obviously, every programming paradigm must have its faults. Gelernter [1985]
discusses some general weaknesses of Linda -
• Linda does not provide as much as other languages. Consequently, it is up to the

programmer to implement features such as calling routines and queue manage-
ment

• the implementation of Linda in a distributed environment is potentially complex
• generative communication could place massive overheads on network communi-

cation systems
• Linda offers no TS security. There is no protection mechanism to prevent unau-

thorized processes accessing and modifying the TS (this point is also addressed
by Shapiro [1989]).

Davidson (1989] cites a number of other criticisms:
o the run-time overhead is substantial
• retrieval of information from the TS is a potential bottle-neck
• Linda's characteristic of spatial uncoupling is "potentially dangerous". Davidson

claims that programmers should be forced to consider processor synchronization
in the interests of "complete and accurate" programming.

A final comment that is worthy of note is by Kahn and Miller [1989]. They state
that "Linda's practicality rests upon global compiler optimizations". Obviously, a
major task of any Linda compiler is to optimize the tuple matching process and
Linda's dependency upon an efficient compiler can be regarded as a drawback.

10
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The purpose of this research is not to attempt to prove or disprove the above
claims. It is simply concluded that there appear to be sufficient benefits offered by
the model to merit further investigation.

2.4 DISCUSSION
There is currently no single programming model that can offer a complete solution
to the complexities and problems that are inherent in the field of parallel program-
ming. Linda does, however, address many of the key issues in this area. Linda is a
relatively young paradigm, having first been comprehensively described in 1983.
The model is significantly different from existing approaches to parallel program-
ming (other models and approaches to process synchronization and communication
are examined by Faasen [1989b]). The programming style associated with Linda is
both simple and powerful. The advantages of the uncoupled replicated worker
model have been illustrated, and Linda does reduce the burden of writing parallel
programs. Linda addresses a very important issue in the debate on whether it is
better to develop new parallel languages, or to modify existing sequential ones.
Much research is being done on developing entirely new language models (i.e,
models that are, in themselves, a complete language), and it is important and neces-
sary that this trend continues. However, for those who argue against the tremen-
dous expense involved in developing, learning and utilizing a completely new
paradigm, Linda offers an ideal solution. The implementation of Linda's globally
accessible TS on distributed-memory architectures is dealt with in the following
section.

11
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SECTION 3

3.0 TUPLE SPACE ON DISTRIBUTED-MEMORY
SYSTEMS

"The power of the VLM {Virtual Linda Machine] will be realised only if the communication kernel can be
implemented efficiently." [Gelemter 1985, p, 103]

The fact that every tuple within the TS is a distributed data structure (i.e. is acces-
sible to any node in the system) is strong support for the implementation of Linda
on a shared-memory architecture. !.r.deed,Ahuja et al. [1988] state that "Linda is,
of course, inherently a shared-memory model". However, distributed-memory
systems are cheaper, less complex and more scalable than shared-memory ma-
chines [ibid.],Linda's logically shared-memory is sufficiently coarse (i.e. the units
of storage are tuples, not bytes) to be implemented on distributed-memory [Ahuja et
al. 1986]. Furthermore, shared-memory is not suited to local area networks, which
are an important area of application. Since this research is based on the implemen-
tation of tuple space on Transputers (i.e. on a distributed-memory architecture), it is
important to illustrate the various models of tuple space that can be fitted onto dis-
tributed-memory. The purpose of this section is three-fold - firstly, to present gen-
eral approaches to implementing tuple space on distributed-memory systems; sec-
ondly, to describe an approach featuring custom-built distributed hardware to sup-
port tuple space (the Linda Machine); and, lastly, to illustrate specific approaches
taken in the implementation of Linda on Transputer-based architectures. The con-
tent and-motivation for these areas of investigation are briefly outlined below.
1. General Approaches
Two notable approaches to implementing tuple space on distributed memories are
distributed hashing and uniform distribuiion» These methodologies are introduced,
and the emphasis of the investigation is directed towards a scheme known as inter-
mediate uniform distribution. It is shown that intermediate uniform distribution is
arguably the most efficient and elegant of the approaches; hence the motivation for
implementing X~Linda under this scheme. Intermediate uniform distribution is cov-
ered in some detail since it is the foundation of X-Linda. A thorough understanding
of this methodology is a prerequisite for understanding, evaluating and appreciating
the X~Linda approach.
2. The Linda Machine
The Linda Machine is an example of the implementation of tuple space on dedicated
hardware. A description of this system is particularly relevant. since
• it, like the X~Linda system, features an intermediate uniformly distributed tuple

space on a mesh of processors
• the design of this system greatly influenced that of X-Linda.
3. Transputer-Based Implementations
A range of existing Transputer-based Linda implementations are presented in Older
to. illustrate the variety of approaches taken, and to illustrate the uniqueness of XM
Linda. None of the implementations reviewed utilize the intermediate uniforrnl;
distributed methodology. Some comments on the relative strengths and weaknesses
of the approaches are given, and reasons for the absence of the intermediate '" ..:-
formly distributed scheme are discussed.

12
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3.1 GENERAL ApPROACHES
Implementing tuple space on a machine that lacks physically shared-memory poses
a number of implementation problems [Gelernter 1985, Carriero 1987]. Various
approaches to implementing a logically shared tuple space across distributed mem-
ories have been proposed - the most significant of these are :
1. Hashing
Carriero et al. [1986] describe a scheme based on distributed hash tables. Tuples
are stored on 'Unique nodes in the system, where the identity of the node responsi-
ble for any given tuple is hashed from the tuple's fields, Hashing is economical
[Bjornson et al. 1987] since tuples do not need to be replicated, and there is never a
need to broadcast data over the network. Hashing has been successfully imple-
mented on a number of systems. The scheme may not, however, be optimal for
messa ge passing systems since, in the worst cases, the distances that a message
must travel between nodes will cause a severe communication overhead. Hash-
based approaches are described in more detail by Carriero [1987] and Ahuja et al.
[1988].
2. Uniform distribution
The uniform distribution of tuples across the TS is described below.

3.1.1 UNIFORM DISTRIBUTION
Gelerntcr [1985] and Ahuja et al. [1988] describe a technique that attempts to dis-
tribute the TS evenly over the nodes in the system. Each node has an "out-set" and
an "in-set". Tuples to be inserted into the TS are sent to the nodes that make up the
out-set, and tuple requests (templates) are broadcast to those in the in-set. Uniform
distribution covers a wide range of implementation possibilities.
Global TS - at the one extreme of the scheme, tuples injected into the TS are
passed to and subsequently stored in every node in the system. An in or rd opera-
tion would therefore necessitate a requesting node to perform a search of its own
tuple memory. Note that tuple deletion requires a network-wide operation - Fleck-
enstein and Hemmendinger [1989] propose a methodology to address this issue:
the node that outs a tuple is that tuple's owner; nodes wishing to withdraw the tuple
must get permission from the owner. A Linda kernel for the AT & T Bell Labs
SlNet has been implemented using the global TS approach [Carriero 1987, Carriero
and Gelernter 1986] with a hashing scheme for computing physical tuple addresses
within a node's tuple memory. The concept of Global TS is illustrated in Figure
3.1, which shows storage of tuples (denoted a) and templates (denoted ex) over the
nodes in a system.

L in(Ci)

Figure 3.1 : Global TS Operations

Local TS - at the other extreme, tuples could be stored only in the memories of
the nodes performing an out operation. In this case, a global network search would
be necessary in order to locate a specific tuple, as illustrated in Figure 3.2. This ap-
proach simplifies the maintenance of TS consistency.

13
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out (a)

Figure 3.2 : Local TS Operations

3.1.1.1 Intermediate Uniform Distribution
This scheme is mid-way between the local and global strategies. Assuming that
there are k nodes in the system, both the in-set and out-set comprise ...Jk nodes and
must intersect. Since the number of nodes involved in the insertion and withdrawal
of a tuple irs only 2...Jk (...Jk for an out and ...Jk for an in), "the intermediate scheme is
provably optimal even if we consider the entire spectrum of uniform distribution
schemes:' [Ahuja et al. 1988]. An interesting description of how TS operations are
implemented under the intermediate uniformly distributed scheme is given using the
concepts of tuple beams and inverse beams [ibid.] - also known as out-threads and
in-threads [Gelernter 1985], Tuples in TS (injected using all out statement) are rep-
resented as a tuple "beam" across a row of nodes (i.e. the out-set). When a node
requires to locate a tuple (executing an in command), it "flashes an inverse bean,
along a colnmn". If two matching beams intersect, the desired tuple is returned to
the requesting node, and both beams disappear. This is depicted in Figure 3.3.

tuple beam I
out-thread

inverse beam I
in-thread

Figure 3.3 : Tuple and Inverse Beams

The uniform distribution scheme suggests itself as an effective way of sharing the
communication load among the nodes in the system [Ahuja et al. 1988]. Further-
more, it may be generalis able to bigger systems and is an extremely effective way
of implementing tuple space over distributed-memory systems [Bjornson et al.
1987]. Finally, a "well designed" uniformly distributed implementation has the ad-
vantages of [Ahuja et al. 1988] :
• making tuple reads "cheap and convenient"
• supporting parallelism among individual TS operations
• being well-suited to hardware and low-level protocol support.
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Hardware Topology
Intermediate uniform distribution lends itself to a particular topology - a WD wrap-
around hypercube [Gelernter 1985] or, stated more simply, a:..Jkby -vkgrid of pro-
cessors [Ahuja et al. 1988]. This topology comprises a grid of processors where
• the number of rows is the same as the number of columns, i.e. the grid is square
• the first node in any row/column is linked to the last node in that row/column.
In this document, the ~.rm mesh is used synonymously with the above description.
Using this topology, a node's out-set is defmed as the nodes on its row of the grid
and the in-set as the nodes that make up a column. This is illustrated in Figure 3.4,
with reference to a 4x4 mesh.

In-Set for
Nodes
2,6,10,14

Out-Set
for Nodas
4,5,6,7

Figure 3.4 : Wrap-around Mesh of Nodes depicting In- and Out-Set

Each node maintains a store of tuples and tuple requests. An out operation causes a
tuple to be sent to all nodes along a row and an in or rd operation causes a template
to be sent to the nodes in a column. A tuple match occurs when a particular node is
in possession of both a tuple and a matching template. The tuple is sent to the re-
questing node and, in the case of an in operation, t:.betuple is deleted from the TS.
Notice that if broadcast buses are used for network interconnection, transmitting a
tuple to a node's respective in- or out-set can be accomplished 'in a single operation.

Maintaining TS Consistency
The issue of maintaining tuple space consistency under the intermediate uniformly
distributed scheme is addressed in the next section in the context of the Linda Ma-
chine (section 3.2.2)
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3.2 THE LINDA MACHINE
The Linda Machine is an attempt to implement TS and TS operations on a custom-
built distributed-memory architecture. It will be seen in due course that the design
of the Linda Machine has greatly influenced the design of the X-Linda system.
Consequently, althougn the Linda Machine is itself not within the scope of this re-
search, it will be briefly overviewed here. The design of the Linda Machine was
first comprehensively detailed b:;'Ahuja et al. [1988] who described the system as
"a parallel computer that has been designed to support the Linda parallel program-
ming environment in hardware". A. prototype version of the Machine has been built
and, since fairly recently, been functional [V. Krishnaswamy, personal communi-
cation, Nov. 1990]. The objectives of the Linda Machine are to provide a system
that is
• easily programmable
• efficient - although the emphasis of the project concerns ease of programming, it

is shown that existing Linda implementations (i.e. on conventional hardware)
exhibit massive communication overheads; there is a need to utilize a dedicated
communications processor.

The system comprises a network of Linda nodes. These nodes in tum consist of a
computation processor and a Linda co-processor (ter, ted the Linda Engine) that is
responsible for TS communication and management. TS in the Linda Machine is
implemented under the intermediate uniformly distributed scheme on a mesh of
Linda nodes. The nodes are connected via broadcast buses -- as a result, tuples can
be sent to their respective in- and out-sets in a single operation.

3.2.1 THE LINDA ENGINE
The Linda node, as stated above, comprises a computation processor and a Linda
engine -- obviously, this section is only concerned with the structure and operation
of the Linda engine. The Linda engine comprises a tuple memory, a working store,
an operations controller (consisting of an IN- and OUT-processor) and interfaces to
the buses and computation processor. This is illustrated in Figure 3.5.

CPU
Interface

OUT Bus
Interface

~ ~l
OUT Bus

Tuple Memory

Figure 3.5 : Structure of the Linda Engine

The tuple memory, working store and operations controller are very briefly de-
scribed below.
Tuple Memory
The tuple memory must not only store the data fields of the tuples, but also, for the
purpose of tuple matching, information pertaining to the size and type of these
fields. The representation must therefore treat tuples as self-contained data objects.
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Tuples are linked together in "tuple groups" --Le, groups of tuples having similar
field characteristics.
Working Store
The working store holds two queues - the in-request, which stores pending in re-
quests (either from the computation processor or from other nodes), and the out-
request which stores out requests from the computation processor.
Operations Controller
The operations controller comprises the IN-processor and the OUT-processor
which operate on the in-request and out-request queues respectively.

Operation
A TS operation is invoked and serviced as follows:
• the operation is initiated by the computation processor
• in the case of an out request, the operations controller contends for the out-bus

and writes the tuple to identical memory locations within the nodes in the out-set
(the X -Linda system also employs this strategy -- refer section 4.3.1.1)

• in tile case of an in request, the operations controller broadcasts the request to all
nodes in the in-set (these nodes store the request in their in-queues) and matches
the template against the tuples in its tuple memory. If any node in the in-set
(including the one invoking the request) resolves a match, it must send the tuple
field information to the requesting node and delete the tuple (the protocols for
maintaining TS consistency are discussed below).

3.2.2 MAINTAINING TS CONSISTENCY
In any Linda system, the maintenance of TS consistency is a key issue [Gelemter
1985], and X~Linda:1s no exception. This aspect is fundamental to the design of the
X-Linda system, and, without doubt, the majority of the implementation effort (i.e.
design, verification and modification) was dedicated to this problem. With respect
to an intermediate uniformly distributed TS, the biggest problem is with regard to
the in operation - if two nodes issue identical tuple requests, only one must succeed
in retrieving the data and deleting the tuple. Network protocols must be imple-
mented in order to make certain that TS operations me carried out correctly and to
ensure TS consistency. Ahuja et al. [1988] discuss the network protocols that are
proposed in the design of' the Linda Machine, which employs broadcast buses for
node interconnection. The protocols are based on distributed arbitration and al-
though they have been formalized with broadcast buses in mind, the concepts are
both important and generalis able. Specifically, the protocols address the following
problems :
1.Inserting Tuples into TS
Two or more nodes in the same out-set attempting to add a tuple to TS simultane-
ously causes a problem since tuples are written to identical memory addresses of all
nodes in the out-set Nodes wishing to install tuples must contend for the out-bus -
the successful node then writes the tuple to the other nodes.
2. Withdrawing Tuples from TS (a)
Ifmore than one node in the same in-set simultaneously issue an in request for the
same tuple, only one must succeed. Nodes wishing to withdraw tuples must con-
tend for the in-bus in order to retrieve a tuple, and then contend for the out-bus to
delete it.
3. Withdrawing Tuples from TS (b)
Two or more nodes in different in-sets simultaneously wishing to resolve a match
on the Same tuple is slightly less complicated than the above situation. It is neces-
sary for a node to win ownership of the out-bus before the tuple can be retrieved
and subsequently deleted. .
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The Linda Machine project is actually the topic of a Yale University Ph.D thesis,
and a 16-node prototype is currently in existence [V. Krishnaswamy, personal
communication, Nov. 1990]. When the Machine was initially proposed, itwas ex-
pected that performance would far outstrip existing implementations since
t' communications and TS management are handled by a dedicated processor
• TS search operations are microcoded
• the intermediate uniformly distributed scheme reduces the length of data broad-

casts.
It was also indicated that the Machine would scale far more efficiently than existing
systems. Actual performance figures tend to support these expectations. A 12-node
implementation exhibited performance "comparable to current shared-memory im-
plementations and. vastly superior to distributed-memory versions of Linda"! [N.
Carriero, personal communication, Nov. 1990]. Furthermore, the results indicate
that this performance will scale comfortably to several hundred. nodes. As will be
seen in the next section (regarding Transputer-based Linda implementations), the
design of custom-built hardware specifically to support the Linda 'paradigm appears
to hold promise as an effective approach to implementing the model on distributed
memories.

3.3 TRANSPUTERmBASED LINDA IMPLEMENTATIONS
There are a variety of Linda systems that have been implemented on Transputer-
based computing platforms which appear both in the commercial market and in aca-
demic research environments. These systems are overviewed in this section to illus-
trate the different approaches taken in implementing tuple space on Transputers,
and, where possible, comment is given on the merits and defects of the approaches.
The following implementations are addressed :
1. a system featuring specialized hardware and software support for Linda
2. a Linda sub-system implemented on a ring of Transputers
3. two implementations based on a distributed hashing methodology
4. a system built on top of the Helios operating system.
Notice that the X-Linda approach (i.e. intermediate uniformly distributed tuple
space on a mesh configuration) is not included in the above list. This absence is ad-
dressed in the conclusion to this section in a brief discussion on the subject of
Linda on Transputers.

3.3.1 SPECIALIZED HARDWARE AND SYSTEM SERVICES
Cogent Research Inc. have developed a commercially available Linda system, the
XTIv1.The X1M features a specialized Transputer-based architecture, and supports
a Linda-oriented operating system. This approach is important since it is an exam-
ple of the trend towards the use of specialized hard- and software support in order
to implement Linda efficiently. The XTM is described in more detail below.

3.3.1.1 Hardware
The entry-level system (the XTM Workstation) comprises two rMS T800 'Trans-
puters, each of which has access to 4 MBytes of RAM. The "backbone" of the
system is the XTM Resource Server [G. Brand, personal communication, Nov.
1989], consisting of a 16-s10t backplane, a 32-bit communications bus and an in-
telligent crossbar switch. XTM Compute Cards (also comprising two IMS T800
Transputers) Can be inserted into available slots in order to provide additional pI'O~
cessing power. A single resource server is capable of linking up to 15 workstations
(i.e. 30 processors) together. The layout of the XTM Resource Server [Hayes
1988] is depicted in Figure 3.6.

lExtracted from V. Krishnaswamy's thesis defence announcement
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Figure 3.6 : XTM Resource Server

All the Transputers ill the system share the communications bus, and, in addition,
the 4 links of each processor are connected to the crossbar switch. The switching
system provides dynamic system reconfiguration. Typically, a processor requiring
to transmit information will send a request through the bus to the switch controller.
The controller then establishes a direct connection between the two processors, al-
lowing data transfer to take place without affecting the communication of any other
processor. The specifications of the XTM Workstation, Resource Server and Com-
pute Card m-edetailed in Cogent [1989].

3.3.1.2 Operating System
The XTh1 operating system, Qt{, is a distributed system, and provides multiple
tuple spaces, system level programming and dynamic reconfiguration. Each pro-
cessor runs a small kernel that handles memory management, process creation,
communication and synchronization. QIX is implemented on top of Kernel Linda, a
low-level communications backbone, as shown inFigure 3.7.

Figure 3.7 : Implementation of XTM Operating System

Kernel Linda and QIX are described in more detail below.

Kernel Linda
Kernel Linda [LeIer 1990, Cogent 1990] provides a low-level inter-process com-
munication mechanism, and is designed for system level programming. It is a ver-
sion of Linda that provides a underlying communication structure on top of which
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general Linda implementations can be built. Kernel Linda is a completely general
system. Itwas designed neither for implementation on a specific type of hardware,
nor to support a particular language. Although tuples comprise only a single key
field, the system does provide extensions to Linda -
" multiple tuple spaces (a tuple field may itself be a tuple space)
" a set of language independent data types (since it does not only provide support

for a specific language class).
Implementation of Tuple Space
Tuple space is implemented using a hashing approach. A tuple space name is re-
ferred to as a dictionary, and tuples within dictionaries comprise a single key /value
field. Notice that a value can itself be a structured data type (e.g. an array) and can,
in effect, comprise many values. Associated with each dictionary is a distributed
pointer (or "locator"), that specifies the identity of the processor responsible for that
object. Linda Kernel primitives and operations are described in detail in Cogent
[1990].

QIX
QIX [Leier 1990] is a parallel, server-based operating system designed for Trans-
puter-based systems. A small replicated kernel is implemented on each processor.
QIX is built on top of Kernel Linda, and provides the lowest level system facilities:
memory management, process creation and synchronization, device drivers and
communication (through Kernel Linda). Higher level operating system functions
are provided by servers that share resources via Kernel Linda. QIX has the advan-
tages of
• providing a UNIX compatible environment
• providing Linda extensions
• supporting familiar languages.
The overheads associated with the implementation are due to the hashing function,
TS searches and semaphore locking. Leler points out that this overhead is not ex-
cessive (about 10% for "reasonable" amounts of data).

Comment
This approach shows a great deal of promise. It is quite obvious that much effort
has gone into the specification, design and creation of the product, and the benefits
of the system are apparent. As stated earlier in this section, it is maintained that a
"specialized" approach such as this is important, perhaps even necessary, for the
efficient implementation of Linda on Transputer-based architectures,

3.3.2 RING-BASED LINDA SUBSYSTEM
Zenith [1990b] describes a Linda subsystem implemented on a ring of Transputers.
The philosophy underlying the design is that Transputers are cheap and easily
available. Consequently, as long as the processors are capable of achieving their
designated requirements, the actual amount of processor utilization is immaterial.
Like the XTM system described above, this approach, to 80m3 extent, is based on a
specialized architecture - the system comprises two types of' dedicated processing
nodes:
" Tuple space machines (TSMs) which make up the Linda subsystem
• Computation nodes (eNs) which, as their name implies, are responsible for

handling a program's computational requirements.
Two CNs are attached to each TSM which are connected in a ring configuration.
The prototype described features 5 TSMs, 10 CN" and one processor dedicated to
providing monitoring functions. The system configuration is shown in Figure 3.8
(extracted from [Zenith 1990b]).
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TSM : Tuple Space Machine
Mon : MOIl~or

Figure 3.8 : Ring-Based Linda Subsystem

The tuple space is distributed evenly over the Linda subsystem by means of dis-
tributed hash tables (distributed hashing is discussed below in section 3.3.3), This,
in effect, means that the tuple space is divided into distinct subsets on the basis of
tuple structure (i.e, the number, type, order and polarity of fields), and these sub-
sets are distributed among the TSMs.

Comment
TIle system described above is of interest since it
1. like the XTM discussed in section 3.3.1 features dedicated hardware (although

to a lesser extent)
2. utilizes the popular distributed hashing methodology.
The implementation did not advance past the prototype phase [So Zenith, personal
communication, Nov, 1990], which is regrettable since the approach appears to
hold promise.

3.3.3 DISTRIJnJTED HASHING
The scheme whereby tuples are stored on unique nodes in the system and the iden-
tity of the node responsible for any given tuple is hashed from that tuple's fields
features prominently in Linda-related literature. This approach appears to be fairly
popular in general (i.e, not only with respect to Transputer-based implementations).
In addition to Zenith IS approach described above, distributed hashing is also used
in the following implementations:
1. The Chorus Computeserver [Chorus 1989b, Williams, et al. 1989] is a com ..
mercially available multi-user Linda-oriented implementation that features a dis-
tributed hashing scheme. A cluster of 1 to 16 IMS T800 Transputers is attached to
an Apple Macintosh network, and access to the computing cluster by users on the
network is provided by a dedicated 32-bit I/O processor. Unfortunately, perfor-
mance figures for this system are not available.
2. Tensing [198S1] describes another hash-based approach, implemented in 3L
Parallel C. Tuples and templates within each node's tuple memory are stored in
linked lists. These lists are accessed via arrays of pointers which are indexedby a
function of the hashing algorithm. Consequently, the hash function, in addition to
returning a specific processor identity I also specifies the location in the processor's.
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local memory where the tuple is stored. The eval primitive is implemented using the
normal task-creation facilities provided by Parallel C.

Comment
Specific details (especially with respect to performance figures) are not available for
the above implementations. All that can be said at this point is that distributed
hashing is a well-understood, tried and tested approach - and has been utilized in
non- Transputer-based distributed implementations. It does appear, then, to be a
fairly "safe" approach. However, it is suspected that, with regard to Transputer-
based implementations, there is much potential for a communications bottle-neck
(for example, if many nodes simultaneously attempt to retrieve one specific tuple).

3.3.4 HELlOS-BASED IMPLEMENTATION
Wentworth [1990] and Clayton et ai. [1990] describe a Linda system implemented
on a network ofTransputers running under the Helios [King and Powell 1990] op-
erating system. The system, known as Rhoda, employs a centralized TS approach
where TS is implemented on a dedicated server. access towhich is provided trans-
parently by Hellos. Although the TS is centralized, it is partitioned into sub ..groups
of related tuples in an attempt to reduce the overhead of tuple matching (it is perti-
nent at this point to emphasize. the fact that X-Linda does not employ this technique
- as described in sections 4.3.1.2 and 6.7, the matching process is implemented
simply by means of a linear TS search). A pre-processor has been developed to
analyze TS usage in a program in order to
• sub-divide the TS into disjoint sub-sets
.. give. an indication of where in the network the TS groups and components of the

application program should be physically located.
Details of the techniques employed in the analysis are given by Wells [1990] and
Claytoner al. [1990]. It is indicated that future research will be aimed at decentraliz-
ing the TS and distributing it over a number of processors. Rhoda can be Imple-
mented on any Transputer network configuration. The system has been tested on
relatively small networks (up to 16 nodes), and the results in terms of achieved
speed-up for certain applications have been most promising.

Comment
Intuitively, one would feel that a centralized approach is not a good idea for Trans-
puter-based systems (because of the potential for communication bottle-necks).
Furthermore, one might expect that the overheads imposed by.Helios would have
some effect on the efficiency of the implementation. However, as indicated above,
the system has yielded impressive results; it is expected that the partitioning of TS
into sub-groups is a major factor contributing to the overall efficiency of the sys-
tem. It will be of great interest to see what effect the proposed decentralizing of
tuple space has on the performance of the system.

3.3.5 DISCUSSION
It has been seen in this section that there are a number of Transputer-based Linda
systems in existence, built around a variety of tuple space models. There is also
evidence of other related work =
• Topologix Inc, have developed Transputer-based add- on boards for Sun work-

stations to support the Linda model [Gelernter 1988]
.. it is indicated that collaboration between Yale University and !NMOS Ltd. has

been proposed in connection with a Transputer-based Lirt.1a project [N. Car-
riero, personal communication, Oct. 1989]

• it is reported [various personal communicatlonsj that research in the area is being
I has been conducted at Edinburgh University, The University of Minnesota and
Cornell University.
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Perhaps the most promising of these approaches are those that feature specialized
hardware and software support, although one can obviously not disregard the suc-
cesses of the other implementations (for example, Rhoda). It is not easy to conclu ..
sively state that a specific approach is superior to any other. Both Linda and the
Transputer are relatively young entrants to the field of parallel processing, and there
is a clear need for further investigative research in this regard. The X~Linda ap-
proach (i.e, intermediate uniformly distributed tuple space on a mesh configuration)
is conspicuous by its absence from the approaches reviewed here, although a. simi-
Iar approach has been recently proposed at the University of Copenhagen [H.
Kristensen, personal communication. August 1990]. The fact that the intermediate
uniformly distributed approach bas not been pursued is probably due to a reluctance
to implement in- and out-sets via the relatively slow point-to-point links of the
Transputer. Nevertheless, this illustrates the uniqueness and originality of the X-
Linda approach, the design and structure of which is addressed in the next section.
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SECTION 4

4.0 THE X..LINDA APPROACH

It is worthwhile at this point to re-examine the purpose of this research. The aim of
the research is to investigate the communication overheads associated with the im-
plementation of a particular tuple space methodology on networks of Transputers.
The implementation, referred to as X-Linda, is the vehicle through which the inves-
tigation is conducted - this system is analyzed and evaluated in order to ascertain
the extent of these overheads. This section introduces the X-Linda implementation
- i.e, an intermediate uniformly distributed tuple space implemented in occam 2 on
a mesh of Transputers. The motivation, objective, implementation environment and
fundamental design of X-Linda are covered as follows:
1. The Need/or a New Programming Paradigm
The motivation for the research is presented in the context of the need for a new
programming methodology for Transputers, and justification for choosing the
Linda approach is given.
2. Implementation Environment
The implementation environment is described with reference to the physical com-
puting platform and the software development system.
3. x-uea« Design
Finally, the basic or fundamental design of X-Linda is introduced by describing the
tuple space model and corresponding hardware configuration. It should be kept in
mind that X-Linda is not a fully-fledged Linda system. As discussed in this section,
the range of TS primitives and the structure of the tuples themselves are restricted -
l.e. limited to the needs of this research. Finally, the structure of the individual
nodes in the system is overviewed. Notice that this sub-section does not delve
deeply into implementation details - the implementation of the TS operations is cov-
ered in section 5.1, and the low-level specification of the system is detailed in sec-
tion 5.2.

4.1 THE NEE)) FOR ANEW PARADIGM

"As soon as you want to distribute the processes onto differe1l1 transputers for real parallelism, though,
you find you are limited because the chip has only four cemmunication links ••This constraint severely

cramps the way you can write programs •.." {Pountain. 1990, p, 3]

"One limitation of existing Transputer networks is the need to match algorithms to the inierconnectiv-
ity in a specific machine. This means the software is net readily ported to other machines with different

link topologies." [Rabagllatl 1990b)

Since their inception in the mid~1980s, the use of Transputers has Steadily become
more widespread in industrial and academic spheres. Similarly, ocoam enjoys high
regard as an effective vehicle for expressing problems on Transputers (Pounrain
[1989] describes occam as "a safe, elegant, and efficient way to program transputer
networks"). As discussed in Appendix 1, occam supports the process model of
concurrency, and the software formalism is closely coupled to the physical architec-
ture of the Transputer (INMOS [1988a] refer to the "architectural relationship" be-
tween the programming model and the hardware). This means that problems to be
solved using the hardware can be simply and naturally expressed in occam, It also'
means, however, that the programmer must have a clear idea of the architecture un-
derlying a specific application. The hardware configuration plays a prominent role
in algorithm design [Rabagliati 1990b]. Not only is the programmer restricted by
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the physical number of communication links [Pountain 1990], there is the addeil
burden of having to explicitly identify source and destination processors involvea
in communication, and the responsibility of processor synchronization and coordi-
nation. Furthermore, algorithms designed for specific hardware topologies are not
easily portable to different configurations [Rabagliati 1990b]. The occam model is
based on that of CSP [Hoare 1978]; i.e, process communication occurs via syn-
chronous message-passing. Consequently, the sending process is blocked until the
receiver is ready to accept the message. This conflicts with the notion of spatial un-
coupling addressed in section 2.2.2 - i.e. that a producer's progress should not be
restricted by that of a consumer. Bal et al. [1989] state that the synchronous model
of coinmnnication has a "major impact" on the style of programming. Finally,
Bjornson et al. [1987] criticize the tight binding of parallel processes within the
occam model.

It is felt that there is a need to tear down the process I processor coupling inherent
in the style of programming, and unburden the programmer from the restrictions
imposed by the model of communication - Le, a need for a programming
methodology that will complement the power and availability of Transputers. This,
of course, is where Linda comes in. It may be argued that there is no need to
specifically use occam. There are a variety of other languages that can be integrated
into the development environment, and there are a number of operating systems
running on Transputers that effectively "hide" the underlying hardware
configuration from the user. Nonetheless, it is maintained that there is a need for a
programming methodology that
• is conceptually simple
• is portahie
• from the programmer's point of view, is topology independent
• does not obscure the raw processing power of the Transputer.
Ithas been illustrated inprevious sections that Linda offers an attractive alternative
to existing models of concurrency. The objective of this research, then, is to inves-
tigate the feasibility of implementing a particular tuple space model on Transputers.
In ascertaining this feasibility, the focus is directed at a specific aspect of the im-
plementation - analyzing the communication overheads of the model relative to na-
tive Transputer networks.

4.2 IMPLEMENTATION ENVIRONMENT •
This research is implementation oriented - it has, as its foundation, an implementa-
tion of tuple space on a Transputer-based system, Consequently, it is both relevant
and important to describe the underlying hardware and development environment.

4.2.1 COMPUTING PLATFORM
The computing platform (viz. a Parsytec SuperCluster). and development environ-
ment are described briefly below. Some detail is also dedicated to illustrating the
use of the host Transputer, as this processor is included in an out-set of the X-
Linda mesh. The SuperCluster series [Parsytec 1989a] comprises a range of multi-
user Transputer-based systems that are reconfigurable and expandable. Inter-
Transputer connectivity is achieved via a Network Configuration Unit (NCU), an
electronically configurable unit based on the IMS C004 programmable crossbar
switch, Although communicating through a C004 does incur some overhead, the
delay is negligible. The specific SuperCluster model used in this research features
16 TROOl Transputers, each of which has access to 1 Mbyte external RAM. Notice

1IMS T800·G20S - 20 MHz clock speed, 50 ns cycle time
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that the link speeds of the processors are set at 10 Mbits/second2• The intercoaeec-
tion of the processors via the NCU is illustrated inFigure 4.1.

Ir~o] Ir~ol [~) I~J
II 'Ij

.1:
I c; II::>

Ir~ol !~I c:

I~] II;]~
.Q "

iii.... Taoo
:::I..._
~
0

tl$J11[l;J [~~
o

I~I1=
-i'::
~O{I
I])

I :z: !.h
II ill

G;] I~ol ~~= I~I Ir':oI~

-
Figure 4.1 ~Parsytec SuperCluster - Processor Interconnection

4.2.2 THE HOST T~ANS»U1'ER "
A stand-alone Transputer. termed the host Tranli!>uteris used to develop and com-
pile the programs that will be ultimately loaded Ol~.and executed by the processo ~s
in the SuperCluster. This Transputer resides on a board that typically has several
Mbytes of RAM, and the board (for this specific irritlementation environment) is
plugged into a conventional AT-type machine. Link\~Oof this Transputer Is con- .
nected to the AT's keyboard and screen, and one of the other links (known as the
primary link) is connected to a Transputer within the SuperCluster. It is possible to
connect another of the host's links (the secondary link) to another processor in the
SuperCluster (a maximum of 2links from the host into the SuperCluster are permit-
ted - the host's remaining link is unused) ..The processor that is attached to the sec ..
ondary link has the identity 1024- it is worth noting this point here since processor
1024 is referred to in various places in this document, The connection of the host
Transputer's links is illustrated in Figure 4.2.

2It was necessary to reduce the rate from 20 Mbitslsecond to support applications not related to
this research . ".

26



4 - The X-Linda Approach

Figure 4.2. : Host Transputer Link Connection

A final point that should be noted with regard to the host Transputer is that it was
only possible to connect both the primary and the secondary link to a T414 Trans-
puter - the secondary link malfunctioned when used with a T800. This IS important
since
1. as shown in the next Figure (4.3), the X-Linda system requires the use of the

secondary link
2. the T414 is a slower processor that the T800.
With regard this last issue (i.e, that the T414 is slower), it is shown in Appendix 2
that, transmitting sized of arrays of integers, the T414's rate of transmission is 1.29
times slower-than the T800. The reason for this is multi-faceted :
.. !NMOS [1988a] quote a maximum bi-directional data rate of 2.4 Mbytes/second

per link for the T800. and 1.6 Mbytes/second for the T414
• the T414 must receive an entire byte before it can send an acknowledgement,

whereas the T800 employs an overlapped link protocol and sends an acknowl-
edgement after it has received the first 2 bits of the message

• the connection between the T414 and the SuperCluster is through 2_iCUs, each
of which has a signal dela; ('several ns [Parsytec GmbH, personal communi-
cation, September 1990].

4.2.3 DEVELOPMENT SYSTEM .
X-Linda was developed under MultiTooI [Parsytec 1989b], a Transputer develop-
ment environment based heavily on tho !NMOS IDS (Transputer Development
System). It features a fully integ; ...ted editor and tool-set, and provides the means to
edit, compile, configure, load and run occam 2 programs. The version utilized,
MultiToo15.0, is fundamentally equivalent to the IMS D700D IDS, and supports
network analysis and debugging facilities, and illS COO4 [INMOS 1988a] link
switch configuration.

4.3 XnLINDA DESIGN AND SPECIFICATION
This section motivates and describes the fundamental design of X-Linda. The im-
plementation of the tuple space model (intermediate unifo. .n distribution) is dis-
cussed, and the structure of tuples and templates defined. The choice of TS primi-
tive operations provided by the system is also explained. Finally, the design of the
nodes within the system is described.

Before launching into the design of the system, it is important to be aware of the
inherent difficulties associated with the implementation of globally accessible tuple
space on Transputer meshes. To this enti~ it is worth restating the observations
made in this regard in section 1. Firstly. there is the problem of maintaining dis-
tributed data over independent local memories (this is discussed in section 3.2.2 in
the context of maintaining TS consistency within the Linda Machine), Secondly,
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there is a problem that is related to the point-to-point nature of Transputer intercon-
nection - i.e. that of a potential communications bottle-neck. This has a significant
effect on the transmission of information over the in- and out-sets. The use of syn-
chronous, point-to-point communication links implies that data must be passed
consecutively along the nodes in the sets (i.e. it is not possible to broadcast infor-
mation across an entire set in a single operation, as is the case with communication
buses).

4.3.1 tUPLE SPACE MODEL
Tuple space is implemented under the intermediate uniformly distributed scheme on
a mesh of Transputers. Intermediate uniform distribution IS discussed in detail in
section 3.1.1.1- all the concepts described in that section apply directly to X-Lind:..
(e.g. the definition of in- and.out-sets and the hardware topology are unchanged),
This particular scheme was chosen for the reasons that it is
• simple and elegant
.. featured in a "state-of-the-art" Linda implementation (the Linda machine =reter

section 3.2)
• unique within the sphere of existing Transputer-based Linda implementations.
The tuple space model has been implemented on meshes of 4, 9 and J 6 Transputers
- for the sake of clarity, the 16 Transputer case (i.e, 4x4 mesh) is depicted in
Figure 4.3.

r- r- J:_-- r-
L I I I J I

~ B ~ ~ ~r-r-- l- I- f- l- I- F- I-l

r-l I J J
I I J JF I os I ~ G 01-L.... Br- I- t- f'-

I ~:-T- I I

L I J J J UG l- I-8l- I- G l- I- GI-
l J J J
I I I I

...... G i-F0 ..... rn"0~.,..... G r~~

L_ L_ I ,__.,
Fig~\re 4.3 : 4x4 X-Linda Mesh

Notice the presence of the T414 host Transputer in the above Figure (all the rest of
the nodes are T800s). As indicated in section 4.2.2, it is necessary to maintain a
link between the host Transputer and those ir the network. As a result, this host
Transputer must be included in the top row of the mesh. This means that the out-set
corresponding to this \~owincludes an extra (slow) processor; as shown in section
6.2.2, the presence of this extra processor has quite a significant effect on the,per-
formance of the system. For the purposes of clarification, notice that Node 3~s
physical identity is 1024 (i.e, this is the processor that is connected to the host's
secondary link),
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4.3.1.1 Tuple Storage
A major influence of the Linda Machine on X-Linda is seen in the way that individ-
ual tuples are stored in the same TS addresses of aU the nodes within a specific out-
set, This technique was taken a step further and also applied to templates which are
also stored ill the same lccations over the nodes in the in-sets. The need for this
technique is evident with regard to maintaining TS consistency - most notably with
respect to tuple I template deletion (using this technique, only an address is required
for deletion - otherwise, a search would have to be made for the required tuple or
template). Given uAatthere are k nodes in the mesh, each in- and out-set comprises
vic nodes. The tuple and template queues on each node are sub-divided into Yk
"buckets" - Le, every node maintains a bucket that belongs to each of the other
nodes in its respective in- or out-set. As a result, it is possible to ensure that every
tuple or template issued from a specific node will occupy the identical location in
the tuple and template request queues within all of the nodes in the sets. The storage
of tuples across an out-set is illustrated in Figure 4.4 - this shows the TS structure
of the nodes within an out-set of a 3x3 mesh. In the example shown, the bucket
size is 128 entries and, consequently, each node's TS comprises 384 ~ntries.

C[i~~
out (a) out «(3) out (-v

,~ J~l,~8
:8~:~,
~:8~:8_:ru

Figure 4.4 : Out-Set - Tuple Storage

The above Figure shows the storage of three tuples, IX, p and 'Y, outed from Nodes
3, 4 and 5 respectively. Notice that each node "owns" a specific bucket, and that
the tuples are stored in identical locations across the out-set.

Similarly, the storage of templates within an in-set is illustrated in Figure 4.5.
Again, the example chosen reflects an in-set pertaining to a 3x3 mesh, and shows
the addition of three templates, -a, ]3 and 1, irivoked from each of the nodes in the
in-set respectively, In exactly the same way as for the out-set, it should be obvious
tha.teach node is assigned a specific bucket, and that the templates are stored in the
same locations Over the in-set.
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~'------------------------------~
bucket size = 2.1 '" 126

queue length '" 3 X 2,7 '" 384

Figure 4.5 : In-Set - Template Storage

4.3.1.2 Tuple Structure
This research is concerned only with the communication overheads associated with
the implementation of TS - it was desired that the intricacies and added complexity
of tuple matching not be included in the investigation. It is therefore required that
• the tuple-matching process be kept as simple as possible (a simple linear search

is utilized for this purpose)
• tuple, fields be able to assume different lengths for the purpose of ascertaining

the overheads with respect to the size of the tuple.
To meet this specification, tuples and templates need only comprise two fields - a
tuple name (for matching) and a data field (of modifiable length). For ease of im-
plementation, the tuple name is defined as a single 32-bit integer, and the data field
comprises an array of integers. This is illustrated on Figure 4.6.

Tuple Name

o 31.....BTIrlT:=-rl1
~

Figure 4.6 : Tuple / Template Structure

Notice that the name is always an.actual parameter; it always contains some physi-
cal value, irrespective of whether it pertains to a tuple or a template. Tuple matching
is therefore performed against a single key field -- without attempting to draw too
close an analogy, it is pertinent to note that the S/Net implementation [Camero and
Gelernter 1986] and, as described in section 3.3.1.2, Kernel Linda [Leler 1990]
both feature a single key field. A tuple's data field is likewise always an actual pa-
rameter. Conversely, the data field for a template is alwayG!ormal (i.e. a variable
name that is assigned a value when the template name 'is successfully matched
against a corresponding tuple). The above specification may appear overly restric-
tive. Indeed, under X-Linda it is not possible to capture the full "flavour" of the
Linda programming methodology (keeping in mind, of course, that this was never
the intention), However, as illustrated in the example programs discussed in section
7, it is still possible to prograu, algorithms in a fairly elegant and expressive way.
This, it is felt, is indicative of the power and potential of the Linda paradigm.
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4.3.1.3 TS Operations
In order to investigate the communication overheads of the model, it was only nec-
essary to provide the out, in and rd operations. Eval and the predicate operations
were not implemented, as discussed below:
eval - The presence of this primitive would achieve little with regard to ascertaining
the communication overhead of the implementation.
inp, rdp - Similarly, the predicate operations, inp and rep, were not considered. In
section 2.1.3, it was indicated that these operations are not universally accepted
primitives. Furthermore, the feasibility of their inclusion within a distributed envi-
ronment is highly debatable. Leichter [1990] argues against the implementation of
inp and rdp in a distributed environment, claiming that their inclusion in such sys-
tems either causes inefficiencY or introduces "bizarre semantics",

4.3.1.4 Link Directions
It is relevant to note the direction of communication along the in- and out-sets.
From the definition of the in..and out-sets, it is evident that the links between the
nodes in the X-Linda mesh must, at least, carry tuples, templates and requests to
delete these. Now, as shown in Figure 4.7, the Transputer's communication links
are bi-directional.

Figure 4.7 : Transputer Communication Littles

Hence the traffic need not all be transmitted in a single direction. The implementa-
tion utilizes this bi-directionality to reduce the amount of one-way network traffic
over the links. The specific link directions used to transmit the traffic are shown in
Figure 4.8. .

ITemplate Addition I
(in / rd request) ITuple Addition IlTuple Deletion I IMS

(out request)

T800 ...

ITemPlate I Return Tuple
Deletion (Satisfy in/rd

Request),
.Figure 4.8 : Dlrection of Data Transrnlssion
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Examining the number of links that need to be traversed in order for a template to
be sent along an in-set to a row containing the desired tuple, and then for that tuple
to be transmitted back to the requesting node, it should be noted that, on average,
this number is identical irrespective of whether one- or two-way communication is
utilized.

4.3.2 X-LINDA NODE
Each Transputer within the mesh executes a number of inter-communicating, con-
current processes, each of which is dedicated to some specific function. For the
sake of clarity, the Transputers are referred to as X-Linda nodes to make a distinc-
tion between them and the Linda nodes that are specific to the Linda Machine de-
scribed in section 3.2. Recall that the Linda node comprises a Linda Engine and a
computation co-processor, and that the Linda Engine has dedicated hardware com-
ponents that are responsible for tuple memory, TS management and the processing
of TS operations. The Linda Engine also has interfaces to the in- and out-buses.
This arrangement was very influential in the design of the X-Linda node, to the ex-
tent that it (the X...Linda node) can, in a sense, be regarded as a software implemen-
tation of the Linda node. The X-Linda node features dedicated software processes
which are responsible for the functions of computation, tuple storage and TS man-
agement, the processing of primitive operations and providing an interface: into the
in- and out-sets. The structure of the X-Linda node is shown in Figure 4.9.

Links to Network.

Challenge
Manager

Ad

Computation

Flgure 4.9 : Structure of the X~LindaNode

Linda programs are .launched within the Computation process - i.e, the primitive
operations are invoked from here. The In, Out and Rd processes control the pro-
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cessing of the TS operations, received both locally (i.e. from the Computation pro-
cess) and externally (received via the Interfaceprocess). Tuple space (i.e, the tuple
and template queues) is stored on the Queue process - all tuple space addition,
deletion and matching is done here. The Interfaceprocess is responsible for:
1. receiving tuples and templates from the In, Out and Rd Processes, and distribut-

ing them to the in- and out-sets
2. the reverse operation -- i.e. receiving information from the in- and out-sets, and

sending it on to the internal processes.
Finally, the Challenge Manageris an extra process dedicated to handling the requests
for tuple ownership and subsequent deletion associated with the satisfaction of an in
operation.

Aside - The Applicability of Occam 2
It is worth commenting on the applicability of occam 2 in the implementation of the
X-Linda node. Occam, as stated previously, supports the process model of concur-
rency. Hence, it provides a very natural and elegant way of expressing the above
process interaction. It must be said that occam does support an elegant program-
ming model. However, as mentioned before. in a physically distributed environ-
ment, this model is too tightly coupled to the underlying hardware.

TIlt';intent ofthis section was to outline the structure and operation of the X-Linda
node, and to illustrate the influence of the Linda Machine on its design. Specifica-
tions of the implementation of the out, in and rd operation, and a more detailed ac-
count of the X-Linda node's internal structure is given in the following section.
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SECTION 5

5.0 IMPLEMENTATION DESIGN
The purpose of this section is to illustrate the implementation of the tuple space
primitive operations under X-Linda, and, by examining the design and structure of
the system at the precess-level, to shew hew this functionality is achieved through
the operation and interaction of the respective modules. These issues are addressed
as follows :
1. Implementation of the TS Primitives
Shews hew the primitive tuple space operations (i.e. out, in and rd) are imple-
mented under X-Linda, and highlights various problematic issues that had to be ad-
dressed in order to successfully realize the implementation of these operations,
2. Process-Level Design
Describes the operation of the host processor and the X-Linda node at the precess
level, illustrating the functionality and interaction of the processes that comprise the
system. A note en the system's software specifications, regarding the programming
methodology and the storage requirements is also given here.

5.1 IMPLEMENTATION OF THE TS PRIMITIVES
This section describes the design considerations regarding the specification and
implementation of the TS primitive operations, It is of importance te note these
considerations as they have a direct influence en the efficiency of the system. Fur-
thermore, it is of interest te observe how TS consistency is maintained in the course
of processing these primitives. Itwill be seen in this section that a geed deal of de-
sign effort was required in order ro realize the successful implementation of the TS
primitives and the protocols fer maintaining TS consistency, This is attributable to
the fact that point-to-point communication links are net an ideal medium fer the
implementation of in- and out-sets. The implementation of the primitive operations
is covered as follows :
1. Out operation ~ an overview of the out operation is given, and some detail re-
garding a very important design strategy (i.e. the blocking of the processor invok-
ing the out) is presented. The processing of the out request and some tuple match-
ing considerations are discussed.
2. Rd operation - as fer the out primitive, the precessing of the rd operation is dis-
cussed in general. The satisfaction of rd requests is described, and an interesting
aspect of request satisfaction (i.e. multiple request satisfaction) is presented.
3. In operation - a large part of this section is devoted to the explanation of the
"challenge" process (i.e. when two nodes simultaneously issue in requests for the
same tuple, they must contend to ascertain which one has the right to delete and re-
trieve the tuple). As for the rd operation, the precess of satisfying the request is de-
scribed, and the issues of multiple request satisfaction and subsequent tuple
restoration are discussed.

s.i.i OUT OPERA\. TION
Tuples (luted by an application pre gram are stored in local tuple space (i.e. en the
processor where the program is running) and then sent to the out-set of that node.
The node blocks until the tuple has traversed the entire out-set (the reason fer this
blocking requirement is discussed below), The tuple is added to each node in the
set and is matched against any pending templates en that node - if a match is found,
the satisfaction of the associated in or rd request is invoked. The following issues
are discussed in mere detail. below :
• blocking the processor until the tuple has traversed the entire out-set
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• the general processing of out requests
• matching tuples against templates.

5.1.1.1 Traversal of the Out-Set
Consider an out-set comprising three nodes (0, 1 and 2) connected via point-to-
point serial links in a ring as shown in Figure 5.1.

qOHDHoP
Node 0 Node 1 Node 2

Figure 5.1 : 3 Node Out-Set

The execution of out (a) causes the tuple a to be sent around the out-set and stored
in the local memories of each node. Assume that Node 0 outs two tuples, a1 and
ca. consecutively. There are two ways [Faasen 1990b] in which the addition of
these tuples to the out-set can be handled:

1. No Delay between Transmissions
If no delay between the operations is specified as soon as a1 is transmitted from
Node 0 and received by Node 1, ca can also be forwarded to the out-set - i.e. «a
will be sent the the out-set before a1 has been stored in every node in the set. This
is shown in Figure 5.2.

IL[I]~~~Ou
Node 0 Node 1 NOde 2

Figure 5.2 : Out Operation - Unblocked

As a side issue, notice that, depending on the specification of the implementation, it
is possible that a2 may "overtake" <Ii. This leads to a query regarding the semantic
equivalence of outto-) ; out(a2) and out(a2) ; out(a1), which is addressed in Ap-
pendix 7.

2. Blocking the Transmission
.A~ternatively, it is possible to force the transmission of a2 to be delayed until a1 has
been stored in every node in the out-set - i.e. to wait until the tuple returns to the
node that invoked the out. This is shown in Figure 5.3.

LrnJ~I!J~~J
Node 0 Node 1 Node 2.FIgure 5.3 : Out Operation - Blocked

Both strategies satisfy Linda's semantic specifications equally well. The first ap-
proach was implemented in earlier phases of X-Linda. However, this unrestrained
form of transmission understandably resulted in the out-set becoming saturated,
and consequently caused deadlock. Hence, the second strategy was adopted. The
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effect of forcing the processor to block does have a significant effect on the effi-
ciency of the out operation (refer section 6.2.1) - however, a proposal for reducing
the effect of blocking is discussed in section 8.2.2.

5.1.1.2 Processing' the Out Request
Locally Invoked
A locally invoked out request can be either a normal out operation (i.e, invoked by
an application program) or the restoration a tuple satisfying an in request (a single in
request may be satisfied at more than one location, resulting in multiple tuples being
returned to the requesting node - as detailed in section 5.1.3.4, the "extra" tuples
must be re-inserted into TS). In either case, the processing of the request is the
same. The tuple is added to local TS and matched against pending templates in the
request queue. If no match is found, the tuple is forwarded to the out-set. In the
case of a match against a rd request, the tuple is still forwarded to the out-set - rds
are non-destructive, and the tuple must as usual be added to TS - and the satisfac-
tion of the request invoked. A successful match against an in request causes the
tuple to be deleted from the local TS before it is returned to the application program
that is requesting it.
Externally Invoked
Nodes receiving external out requests add these tuples to their TS and attempt to
match them against their local request queues. If no match is found, the tuple is
passed to the next node in the in-set - otherwise, the associated tuple is sent via the
in-set to the node that issued the request.

5.1.1.3 Matching Tuples against Templates
Rd Requests
As stated above, a tuple added to a local TS must be matched against the templates
ill the reque- .:queue. It is worth noting that if a match is found against a rd request
(as opposed to an in request), it is necessary to test for further matches. Rds are
non-destructive; hence, a single tuple may match all pending rd requests in the re-
quest queue. Therefore, on successfully locating a rd request, the matching process
must be successively repeated until
.. allmatching rei templates have been located, or
• an in request is encountered.
Successful matches are satisfied as discussed in section 5.1.2.2 below.
In Requests
Obviously, the procedure regarding an in request is different - only one matching in
request in the request queue can be satisfied by a single tuple, These requests are
satisfied as discussed in section 5.1.3.3 below.

!tl.2 RDOPERATION
A rdoperation causes a template to be stored in the local memory of the node from
which it is invoked, and then to be transmitted to all nodes that make up the in-set.
The template is added to the request queues within these nodes, and is matched
against the tuples present in the tuple space. A successful match causes the associ-
ated tuple to be returned to the requesting node, and the request to be deleted from
the nodes within the in-set. It is possible that the same rd request may be satisfied at
more than one node. In this case, the requesting node will receive more than one
tuple - it must accept only the first tuple it receives, and discard all others. Below!
the following aes are discussed inmore detail :
o the processing of the rdrequest
• the satisfaction of requests and deletion of templates
• multiple request satisfaction.
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5.1.2.1 Processing the Rd Request
Locally Invoked
Local rd requests are appended to the request queue of the processor invoking the
operation and matched against the tuples resident in the local TS. If no match is
found, the request is then transmitted to the other nodes in the in-set. If a match is
found, the request obviously need not be sent to the in-set as the request can im-
mediately be satisfied (this procedure is different with respect to an in request - re-
fer section 5.1.3.1).
Externally Invoked
Nodes receiving external rd requests add these templates to their request queues and
attempt to match them against their local TS. If no match is found, the template is
passed to the next node in the in-set - otherwise, the associated tuple is sent via the
in-set to the node that issued the request.

5.1.2.2 Satisfying the Request
When a template is successfully matched, that template is deleted from the local re-
quest queue. If the request was invoked locally, no further action is necessary. On
the other hand, the satisfaction of an external request necessitates
• the deletion of the request from the entire in-set
• returning the asso .ated tuple to the requesting node.
The node satisfying me match must transmit a delete command to the nodes in the
in-set. On receipt of this command, these nodes remove the template from their re-
quest queues. Notice, however, that this is slightly more comp'icated than simply
deleting the entry. As is illustrated in Figure 5.4, an attempt may be made to delete
a template that has not yet been added to the request queue (recall from section
4.3.1.4 that requests are sent upwards and delete commands downwards).

Template
Addition

Template
Deletion

4. Template added to local queue
5. Template sent upwards
6. Match found - template deleted

7. Delete command sent downwards I

8. Delate command received -
template deleted

9. Delete command sent downwards

1. Request Invoked
2. Template added to local queue
3. Template sent upwards

10. Template has not yet
reached destination

~1. Delete command received -
template has NOT yet been
received

Consequently, before a template can be deleted, a check must be made that it actu-
ally exists. Ifnot, the state of the entry in the queue corresponding to that template
is set to "delete pending" - when the template finally arrives and is added to the
queue, it will immediately be removed. Notice that the processor that invoked the
request is unable to re-use the specific address 'of the template until the delete mes-
sage has traversed the in-set. This prevents a situation whereby a new template may
be incorrectly deleted due to a "delete pending" state.
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Tuples that satisfy templates are returned to the requesting node via the in-set.

Satisfaction by an Out Operation
As discussed in section 5.1.1, a pending template present in the request queue can
be matched by a tuple added to the processor's local TS. If the template was locally
invoked the request is satisfied locally - otherwise, the tuple is passed via the in-set
to the requesting processor.

5.1.2,,3 Multiple Satisfaction of Requests
It is possible that a rd request may be satisfied at more than one node. Figure 5.5
shows a situation where Node 0 issues a template, and then Nodes 2 and 8 both
issue matching tuples. This causes matches to be found at Nodes 0 and 6, and
hence causes multiple request satisfaction.

6. Request satisfied
twice

6rn 3. Matching tuple
outed

1. Template issued -
sent to in sot

4. Match found -
Request satisfied
locally

2. Matching tuple
outed

5. Match found -
Tuple sent to
Node 0

Figure 5.5 : Multiple Satisfaction of Rd Request

In this case, the requesting node will receive more than one tuple. It must accept
only the first tuple it receives, and discard all others. The strategy for detecting and
consequently discarding multiple request satisfies is straight forward. It is based on
a method of two counters - lnvoked oount and satisfied_count. When a request is
invoked, invoked_count is incremented. This count is stored with the actual tem-
plate in the respective request queues. When that template is successfully matched
and the associated tuple returned to the requesting node, invoked_count is transmit-
ted with the tuple. A node receiving a tuple in response to a rd request increments
its satisfied_count and then tests whether invoked_count = satisfied_count. If the
count values are different, the request has already been satisfied, and the tuple is
discarded.

5.1.3 IN OPERATION
The processing of an in operation is similar to the rd in that the template is stored lo-
cally and in the memories of nodes in the in-set; and is matched against the tuples in
the respective tuple spaces. However, on a successful match, the associated tuple is
deleted from the entire out-set before it is returned to the requesting node. Nodes
requiring to satisfy an in request must contend, for the tuple in question. If there is
more than one request on the same tuple, only one of these may succeed in deleting
the tuple and returning it to the requesting processor. When a request has been sat-
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isfied, the template is removed from the nodes in the in-set. It was shown in section
5.1.2.3 that a template may find a match at a number of nodes simultaneously,
causing multiple request satisfaction. The requesting node must, as for a rd opera-
tion, accept only the first tuple it receives in response to the request. Notice, how-
ever, that any other tuples that are received cannot merely be discarded. These
tuples are deleted from TS by the node satisfying the in request, and the requesting
node must therefore re-cut the tuples into TS, The following issues are discussed
below.
• the processing of the in request
• the challenge process
• the satisfaction of requests, and deletion of templates
• multiple request satisfaction and tuple restoration.

5.1.3.1 Processing the In Request
Locally Invoked
Local in requests are appended to the request queue of the processor invoking the
operation and matched against the tuples resident in the local TS. If no match is
found, the request is then transmitted to the other nodes in the in-set. Notice that, in
the case of successful match, the template must still be transmitted to the in-set It is
possible that another node may also request the tuple in question; hence templates
must always be sent to the in-set as the node invoking the request may lose a tuple
challenge and have to find another tuple elsewhere. When a match is found, the
tuple cannot be simply deleted from TS and consumed. The node must "challenge"
the other nodes in the out-set in case they too are attempting to satisfy a request on
the same tuple.
Externally Invoked
Nodes receiving external in requests add these templates to their request queues and
attempt to match them against their local TS. If no match is found. the template is
passed to the next node in the in-set - otherwise, the satisfaction of the request can
be invoked. As discussed above. the node must invoke a challenge before it may
delete and return the tuple.

5.1.3.2 The Challenge Process
The issue of tuple contention was briefly mentioned above. This is a very real
problem. If two nodes simultaneously issue a request for, and successfully locate
the same tuple, only one may be permitted to retrieve that tuple and delete it from
1'S; the other must w'thdraw from contention and seek another tuple. Take the ex-
ample whereby a tuple is present in the top row of the mesh. Now, if two nodes in
different in ...sets simultaneously issue requests for that tuple, a match will succeed
in two locations - this is illustrated in Figure 5.6.
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Figure 5.6 : Multiple Matches on the Same Tuple

On finding a match, a node must "fight" for ownership of the associated tuple be-
fore it can be deleted from the TS and returned to the requesting node. This is im-
plemented using a simple and efficient strategy. When a match is found, the node
sends to the out-set a challenge token, which essentially contains the address (i.,'
location in TS) of the tuple to be deleted and the identity of the node invoking the
challenge. A node receiving a token from a foreign processor tests whether or not it
itself is attempting to satisfy an in request on the same tuple. If not, it deletes the
tuple from its local TS and passes the token on. On the other hand, if it too iI). satis-
fying a request on the same tuple, it must contend the challenge - i.e. /me of the
nodes must lose out and withdraw from contention. The strategy used in determin-
ing the outcome of a challenge is simple. The node with lowest identity wins the
challenge; if the identity of the node receiving the token is less than that of the node
that issued the token, it wins the challenge; otherwise IL loses. The procedure asso-
ciated with winning or losing challenges is outlined below :
• Winning a challenge - If the node wins the challenge, it consumes the token (i.e.

the losing node's challenge "dies").
• Losing a challenge -- Conversely, on losing :nc. challenge, the node deletes the

tuple from its local TS, passes the token on, and then re-attempts to find a match
for the unsatisfied template. Effectively, the node has now withdrawn from
contention with regard to the tuple that it originally tried to claim.

Once a token returns to the node that issued it, it is guaranteed that the associated
tuple has been deleted from TS, and can now be returned to the requesting node.
The idea is expressed by means of an example in Figure 5.7.
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The contention strategy (i.e. based on the identity of the conflicting nodes) is
somewhat arbitrary, and obviously favours nodes on the left hand side of the mesh.
The strategy is, however, simple to implement and, since this issue does dot di-
rectly relate to the objective of the research, was considered acceptable to use.

Other Possible Challenge Strategies
Some alternative methods for determining the outcome of tuple contention are dis-
cussed below. They are mentioned here for the sake of interest, and, in section
8.~.8, are briefly re-visited in the context of future research.
1. Honouring Tuple Ownership
If two nodes are challenging for the same tuple, and that tuple was outed by one of
the nodes in contention, then that node will automatically win the challenge. The
practicality of the approach would depend on the frequency with which application
programs tend to request tuples that they themselves initially put into TS. This
strategy was implemented in earlier phases of X-Lindli, but was ultimately dis-
carded for the sake of simplicity.
2. Fairness Policies
As stated previously, the X-Linda tuple contention scheme is biased towards nodes
with low processor identities· i.e. nodes on the left-hand side of the mesh. It
would be of interest to investigate a "fairer" policy that would distribute the power
to win challenge requests. Instinctively, a random selection policy may seem attrac-
tive. If two nodes are contesting for the same tuple, a random decision could be
taken locally to determine whether or not a specific node should win or lose the
conflict. This is, of course, nonsensical, since both nodes might win ownership of
the tuple on this basis. A strategy that received serious consideration (and which
was in fact implemented in earlier phases of the system) was that of a virtual iden-
tity scheme. Every processor is given a VirluallD,initial J set to the processor iden-
tity. The strategy for determining the outcome of a challenge is then similar to that
described previously, but uses the Virtual ID instead of the processor identity. A
node wins ownership of the tuple if its VirluallD is less than that of the external
(chauenging) node's Vtrtual 10, Now, if there are k nodes in the system, a node's
VirluallD could be incremented by '\lIe whenever it wins a challenge. This would
guarantee that the node would lose the next challenge, providing a fairer challenge

0\ 0\

b31To21
a41!§J

a1 NO':'e 00 issues token ~

bi Node 02 issues token ~

a2 Node m~receives [!QQJ - 02 loses challenge & re-tries to satisfy

b2 Node 01 recelvss [§] -0\ is deleted-
~ - 0\ already deleteda3 Node 01 racalves

b3 Node 00 receives ~ • 02 loses challenge; token is consumed

a4 Node 00 receives IToo I - tlJpJe is returned to requesting process

Figure 5.7 : Challenge Process
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scheme. The strategy is obviously suited to the situation whereby every node issues
a single tuple challenge at a time. However, a node can simultaneously be respon-
sible for several (up to a maximum of vk) challenge requests. The complexity of
maintaining a consistent Virtual 10 in this situation prohibited the inclusion of the
scheme.

Deleting Tuples
It is worth commenting on the complexity involved in deleting tuples from the out-
set - the operation is not at 1111 straight forward. The first problem is exactly that
which was described with respect to deleting templates - i.e, it is possible that a
tuple will not yet have been installed on a node when the command to delete that
tuple is received. This is solved in exactly the same way as for template deletion,
using a "delete pending" state. The second problem is related to this one, Referring
back to Figure 5.7, notice that, with regard to Node 1, the following situatic
occurs :
~N-o-d-e-o1--re-ce-iv-e-s'~=Too~---a-al-ro-a-dy-d-e-Ie-te-d---------------~I
Now, when Node 1receives this token, how does it know that ex. has already been
deleted. It cannot simply apply the rule that when a delete command is applied to a
tuple that does not exist, the state of that tuple must be set to "delete pending".
Hence, it is necessary to store extra identifying information with the tuple address
to prevent this situation from occurring.

5.1..3.3 Satisfying the Request
When a template is successfully matched, that template is deleted from the local re-
quest queue. Itmust also (even in the case of a local request) be deleted from the
entire in-set (as was seen previously, Inrequests are always sent to the entire in-
set). Furthermore, the associated tuple must be either returned to
• the application program in the case of a local request, or
• the requesting node via the in-set for an external request
The same procedure for deleting templates that was described for the rd operation
(refer section 5.1.2.2) is utilized here. Notably, care must again be taken against
deleting a template that has not yet been added to the request queue, and the "delete
pending" state is used in this regard.

Satisfaction by an Out Operation
Pending templates present in the request queue that are matched by a tuple added to
the processor's local TS are processed as descriled above. .

5.1.3.4 Multiple Satisfaction of Requests
With respect to the rd operation, it was described in section ;},1.2.3 how a request
could be satisfied at more than node - obviously, the same applies to in requests.
The same strategy as described for I'd requests (i.e, using two counters -
Invoked_c1:;luntand satisfied_count) is employed. Notice, however, that a tuple that
has already been received can no longer merely be discarded. It will hav been
deleted from the TS, and must therefore be restored as described below,

Tuple Restoration
The process of tuple restoration is best explained by means of a simple example.
Referring to Figure 5.8, assume that a tuple is present in the out-set comprising
Nodes 3, 4 and 5, and another tuple with the same name exists in the out-set com-
prising Nodes 6, 7 and 8. Now, if Node 0 issues a template that matches both of
these tuples, a match will be found at Nodes 3 and 6. The tuples will be deleted
from the respective out sets, and both tuples will be returned to Node O.
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I Issue Template I~ -,G51 [0] [0
Ia
V'

Ma~h: Jl~
Delete 0: 1 from out-set ~ fCX. ~ll..l.
Return 0: 1 to Node 0 L§J
~------~---~---~1

0:

t
Match: ._bgd
Delete 0:2 frOITI out-set. ~ [ ..~ I
Return 0:2 to Node 0

Figure 5.8 : Multiple Satisfaction of In Request

Node 0 will therefore receive two tuples in response to its request. Assume that it
receives ttl fri'st - this tuple is then consumed by the application-program that in ..
voked the request. However, on receipt of «21Node 0 must re-out ~lis tuple since it
has (incorrectly) been deleted from Node 6's out ..set. Notice th((t this scheme can
actually enhance the performance of the in operation ..IfNode,;,'Onow requests an-
other tuple '.'lith the same name, this request will be satisfied locally.

S.l..4 DISCtJSSION
The design considerations detailed in this section have illustrated that the implemen-
tation of the TS operations was far from trivial. The greatest factor contributing to
the overall complexity stems from the need to maintain TS consistency, a problem
obviously common to all systems that are required to maintain distributed data. It is
claimed that th~TS primitives and protocols for maintaining TS consistency have
been implemented in a simple and effective fashion. However, it is worth pointing
out that their successful implementation ultimately required a great deal of design
effort, verification and modification. This is perhaps indicative of the fact that in-
and out-sets are not well suited to implementation over the Transputer's communi-
cation links. IUs also relevant to note that. given the design considerations outlined
in this section, the implementation of the predicate operations (inp and rdp) would
be exceedingly difficult, justifying the comments in section 4.3,1.3 regarding their
unsuitability to distributed-memory implementations,
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5.2 PROCESS-LEVEL DESIGN
The overall design and structure of X-Linda is given below in terms of the opera-
tion and functionality of the various modules that comprise the system. It is not the
intention to give a blow-by-blow account of the occam programs themselves; in-
stead, the focu ....is at the process level. It should by now be evident that X-Linda is,
in essence, a collection of intercommunicating concurrent processes. In this sec-
tion, the purpose and interaction of these processes is described. The design of the
system is systematically addressed with respect to the Host process and the X-
Linda node !
1. Host process - the host process is that which resides on the host Transputer -
i.e, the extra T414 processor that is included within the top row of the mesh. The
primary functions of the host process - to act as an intermediate node and to pro-
vide monitoring facilities - are described in the context of the two concurrent pro-
cesses that provide these operations.
2. X-Linda node - the operation of each Transputer within the X-Linda mesh is
given with respect to the dedicated software processes that reside on each processor
(i.e, Interface, In, Out, Rd, Queue, Computation and Challenge Manager). The infor-
mation is neither technical nor detailed, and is intended simply to provide an
overview of the function of the processes.

5.2.1 THE HOST PROCESS
As indicated in section 4.3.1, the host Transputer functions primarily as an interme-
diate node in. the network, simply passing on information that it receives from the
nodes that comprise the top row of the mesh. A secondary function of the proces-
sor is to provide monitoring routines that enable the local TS on each node to be in-
spected. These two functions are implemented by means of parallel, intercommuni-
cating processes as shown in Figure 5.9 (recall from section 4.2.2 that the proces-
sor that is attached to the host processor's secondary link has the lQf,t'nti.ty 1024).

~----------------------,. ----------~Flguce 5.9 : Layout of the Host Processor

The operation of the Monitorand Network {NW) Connection processes are described
in more detail below. .

5.2.1..1 Monitor Process
TIle Monitorprocess provides the means to inspect the tuple space by accessing the
tuple and template queues for selected processors. The screen shown in Figure
5.10 is displayed to the user - this shows the arrangement of the X-Linda mesh,
relevant system dimensions, and various TS inspection options.
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EJEJGEJ
G G 5J 0'

mesh dimension 4
no. of nodes 16

bucket dimension 5
bucket size 32

c;ueuelength 128

tupl~dimension 6
tupl~size 64

( TU~9Nam~

Template Nalmos

InspectTuples

Quit

Figure 5.10 : Monitor Screen

TS inspection (
For any spe.·ified node identity, the MonHor can be invoked to display
• the names of the tuples present in the TS Ii

• the names of the templates queued on that node
• the contents of the data fields of tuples. .•...••. n

"The above requests are relayed to the NWConnection process andJ!ien sent to the
required processor. The information returns to tbe Monnor £rom the network via the
NW Connection process, and is displayed in a suit&bleformat •.
Aside ... Routing Strategy '.
The algorithm for routing monitor messages from th~host to a specified processor
and back again is simple. The design and Implementation of an optimal routing
strategy was not considered to be necessary for the pprpose of monitoring. The
message is passed along the top row of the mesh until it l'yacheslhe column that the
specified node comprises (unless, of course, this node i$ itself present in the top
row). The message is then passed down the column until it reaches its destination ..
This route is reversed in order to return the TS information. to the host. The route
taken in accessing the TS on processor 7 in a 3x3 mesh is sh6~n in Figure 5.11.

I)
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FigUl'e 5.11 : Monitor Routing Path

5.2.1.2 NW Connection Process
The NW,gonnection process is res)onsible for
• providfrlgll<!.in'kbetween Node 0 and Node 1024
, passing monitor Information between the Monitorprocess and the network.
'The process loops continually, testing for input on its relevant channels and re-di-
recting this input as required. This operation is illustrated below:

-------------------,----------------------------------~---
DO PoyavGr1

At.Tornativ.
ROJ~iv$Monnol' inftmnation from Node 0
Send 10 Monlt~~rProcess

• RElCalvG X-Undtt information from NotJa 0 •
Send to Noda 1024

• Receive X·Llnda Information from Node 1024
Slllnd to Nr;lde 0 .,

• RQ¢ElivEIMonitor req~n:~stfrom Monitor Process
'Sand to Node 0

JENDOO__ ~ ....__ ~~--~ --_._.~M .....__ ~-- ~~ __
i'

5.2.2 THE LINDA Notre
Recall from section 4.3.2 that the processors within the X·Linda mesh are referred
to as X~Linda nodes. These nodes execute a number of inter-communicating, (;0:0.-
current processes, each of which is dedicated to some specific function - i.e. com-
putation, tuple storage and TS management, the processing of primitive operations
and providing an interface into the in- and (JUt-sets. The structure of the X-Linda
node is shown again in Figure 5.12.

lllWe pick 'FOREVER' to be n very10ng time, equal to thelargcst number that can be stored on
the machine the universe is being simulated on, or \he lengUl of time until the Last Judgement,
depending on your relig~on," O. McDermott. A Temporal Logic for Reasoning about Processes
and films, Cognitive Science (6). 1.982, 123
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Figure 5.12 : Structure \)f tile X-Linda Node (revisited)

Below, the function of these processes is briefly outlined, illustrating how the
overall functionality of the system is achieved via the interaction of the processes.
The description follows a diagrammatically bottom-up order - i.e. starting with the
Computation process and ending with the interface (a more detailed diagrammatic
representation and the structure and interaction of these processes is given in Ap-
pendix 5). To conclude the overview, some comment is given on the need for
buffering and for atomicity of operations within the X~Linda node, and the suitabil-
ity of the occam 2 programming model as a vehicle for expressing the above pro-
cess interaction is briefly re-addressed.

5.2.2.1 Computation Process
The computation process hosts the application programs that are executed under X-
Linda. TS operations are invoked via procedure cans within the process, from
where control is transferred to the relevant TS primitive process (i.e, In, Out or Rd).
The processing of TS requests is briefly outlined below:
1. Out Requests - tuples outed from the application program are transmitted to the
Out process. Once the. tuple has traversed the out ...set, an acknowledgement is sent
back from the Out process to the procedure from which the out was invoked - re ...
call that the application program is ~locked during this time.
2. Rd Requests - rd requests are sent to the Rd process. When a successful match
is located. the associated tuple is returned to the procedure invoking the request,
and consumed by the application program.
3.In Requests - as for a rd request, in requests are transmitted directly to the Irl pro-
cess. Information returned from the Inprocess can be one of two types :

Computation
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1. a requested tuple ~ as for the rd, the tuple is consumed by the application pro-
gram that invoked the request

2. a requested tuple that has already been received. Itwas illustrated in section
5.1.3.4 that a single in request can be satisfied at more than one location, and
that the "extra" tuples must be restored to TS. These tuples are simply re-di-
rected to the Out process for addition to TS in tne normal way.

5.2.2.2 Out Process
The Out process is responsible for receiving OUf requests (i.e, tuples) invoked both
locally and externally. It must add these tuples to TS, and depending on whether or
not there exists a matching template, transfer control to the appropriate process (i.e.
In or Rd). Locally invoked tuples are received from the Computation process and
external tuples from the Interface. These tuples pass through a pair of buffer pro-
cesses before being processed (buffering is necessary to avoid network saturation).
The tuples .'~'" sent to the Queue process for addition to TS, where they are also
matched against pending templates. If a match is found, the Out process transmits
the tuple to the In or Rd process (depending on the type of the template) for subse-
quent ,. '·~faction. Notice that
1. if a "L' l~.h is found against a rd request, an attempt must be made to Iocate further

matches
2. locally invoked tuples must be sent to the Interface for addition to the out-set

5.2.2.3 Rd Process
Locally and externally invoked rd requests are handled by the Rd process. As for
the Out process, local requeuts are received from the Computation process, and ex-
ternal requests arrive via the Interface. In both cases, the associated request is di-
rected ";0 the Queue process for addition to the template queue and subsequent
matchn iinst the tuple queue. If a match is successfully located, the Rdprocess
return. quested tuple to the Computationprocess in the case of a local request,
or to II .rtace for transmission to the requesting node in the case of an external
request, When the Rd process receives a tuple in response to a request that is satis-
fied at an external location, it tests whether or not the request has already been sat-
isfied (as described in section 5.1.2.3), If the request has not yet been satisfied, the
tuple is sent to the computation process, and a command to delete the associated
template from the in-set is sent to the Interface- otherwise, the tuple is discarded.

It l'(as seen above that tuples matched against rd requests by the Out process are
transmitted to the Ad process. These tuples are redirected from the Rdprocess in the
normal way (i.e. to the computation process or the Interface process, depending on
whether a local or external request is to be satisfied).

5.2.2.4 In Process
The function and operation of the Inprocess is similar to that of the Rd. As before,
the In process receives locally invoked inrequests from the Computation process,
and external templates from the Interface.These requests are sent to the Queue pro-
cess for addition to the template queue and for matching against the tuples in TS.
Notice, however, that the Inprocess does not directly act. upon successful matches.
When a match is found within the Queue process, it (the Queue process) sends the
tuple to the Challenge Manager process for addition to the list of "claimed" tuples,
and the Challenge Manager issues a Challenge token to the out-set. When the Inpro-
cess receives a locally invoked challenge token, it knows that it has won ownership
of the tuple, and can delete and return that tuple to the requesting process accord-
ingly. On the other hand, on receipt of an externally invoked token, the Inprocess
queries the Challenge Manager precess to determine whether or not the tuple in
;I("·e,stbn has also been claimed locally. If not, the token is simply passed on to the
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next node in the out-set. However, if there is tuple contention, this must be re-
solved using the processor identity scheme detailed in section 5.1.3.2. It is worth
noting the added complexity associated with a node losing a tuple challenge; when
this occurs, the tuple must be re-requested, Re-requesting is done by simply re-
adding the template to the list within the Queue process. Notice, however, that if
the template in question was originally invoked by an external node, and if that re-
quest has subsequently been satisfied, it is possible that the template entry may
since have been deleted, or even overwritten by a new request. Hence care must be
exercised when re-inserting the template into the list.

Otherwise, the operation of the In process is much the sone as the Rd, i.e. with re-
spect to redirecting tuples returned in response to request satisfaction, processing
requests satisfied by the Out process and issuing template deletion commands. Th.e
processing of requests that have been satisfied more than once is, however, slightly
different. The extra tuples are not simply discarded (as done by the Adprocess).
Instead, they ate sent to the Computation process from where a normal out operation
sends them to the Out process and subsequently into TS.

5.2.2.5 Challenge Manager Process
The Challenge Manager process is responsible for maintaining the list of tuples that
a specific node has claimed and requites to delete in fulfilment of an in request. A
single node can at any time be responsible for "'k such tuples, given that there are k
nodes within the mesh. Tuples matched against in requests within the Queue pro-
cess are sent to the Challenge Mana.ger and added to the list of claimed tuples. The
Challenge Manager then sends a challenge "token" (essentially the TS address of the
tuple) to the Interface for transmission to the out-set. When the Inprocess receives a
token issued from an external node, it sends this token to the Challenge Manager
where it is matched against the claimed tuples in the list. If a match is found, the
Challenge Manager informs the In process that tuple contention has occurred, and the
In process resolves this conflict as described in section 5.1.3.2. Alternatively, on
receiving a locally issued token from the In process, the Challenge Manager simply
removes the corresponding tuple from its list (this tuple has been successfully
claimed and is of no further interest),

5.2.2.6 Queue Process
Local TS is maintained within the Queue process in the form of a tuple list and a
template list. Tuples and templates comprise the 32~bit integer fields shown in
Table 5.1, and the lists are simply implemented as arrays of these fields.

TUples TJI.!!:!Q!l!tes IName NI~me
Source Source JSequence Sequence
StatE) Type
Data (inteaer array) State
Table 5.1 : Storage of Tuples I Templates

The fields shown above in non-bold font represent extra identification information
required by the system. Source is the identity of the node issuing the tuple or tem-
plate, Sequenoe is the corresponding sequence number of the TS operation, State
holds the state of the particular entry (e.g.Iocked, free, etc.) and Type identifies the
template as being an in or a rd request

The operation of the Queue process is simple. Its primary function is LO receive re-
quests to add tuples and templates from the Out, In and Rd processes. In general,
these items are added to their respective lists and matched against the opposite list
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(i.e. tuples against templates and vice versa), and the result of the match is returned
to the process invoking the addition. The Queue process must also be able to re-
ceive and act upon requests on specific tuple space entries - for example, to lock or
delete a specific tuple. Finally, the Queue process is responsible for accessing and
retrieving the TS information requested by the Monitor process residing on the host
Transputer, Notice that access into the Queue process is restricted by a first-come-
first-served policy. When the process receives a request, it blocks out all other in-
teractions until that request has been completed; this is to avoid the contents of TS
being accessed by a number of processes concurrently.

5.2.2~7 Interface Process
It should by now be apparent that the Interface process simply redirects traffic from
the processes within the node cut to the in .. and out-sets, and vice versa. It is, how-
ever, worth noting that internal structure of the Interface is quite complex •.The pro-
cess comprises 13 concurrent sub-processes - these sub-processes are dedicated to
serving
1. each of the Transputer's 4 input and output channels
2. traffic from each of the Out, In, Rd and Challenge. Manager processes to the in-

and out-sets, and, obviously, traffic in the reverse direction
3. the monitor routing strategy (i.e. redirecting requests for TS inspection from the

Monnor process resident on the host Transputer to the required node, then into
the Queue process to retrieve the information and, finally, back to the host pro-
cessor).

5.2.2.8 Discussion
Each of the process modules described above comprise a number of sub-processes
(in all, each X-Linda node comprises over 40 concurrent processes) - a diagram-
matic overview of the interaction of all of these sub-processes is given in Appendix
5. In the design of the X-Linda node, there were two recurring needs that had to be
addressed :
1. Buffering - overall. 20% of the sub-processes running on each node are dedi-
cated to the provision of buffering. The problem of saturation (both over the net-
work and within the nodes themselves) is very real, and could only be effectively
resolved by providing process buffers.
2. Atomicity - this problem Is more subtle than that described above. Consider the
sequence of a node receiving *" template, testing for a match against the tuples in TS
and then invoking th~ satisfaction of the request if a match is. found. In between
these operations being completed, it is possible that some event, for example the
addition of a new tuple or template, may occur. If this is allowed to happen, the re ..
sults can be disastrous (for example, the satisfaction of a request might be invoked
from both the Out and the In processes). Consequently? it was necessary to enforce
atomicity into the processing of tuple space requests to ensure the completion of a
particular operation before starting the next.

As discussed in previous sections, the latention in designing the X-Linda node was
to provide a software implementation of the Linda Machine node. It is maintained
that this objective has been achieved - and, more than this. the objective has been
attained in an elegant fashion. The design of the X-Linda node is both logical and
well ..structured, and there is a great deal of modularity inherent in the system.

Tile Applicability Of Occam 2 (revisited)
In section 4.3.2, comment was made on the applicability of occam 2 in the imple-
mentation of the X-Linda node. Occam provides a very natural and elegant way of
expressing the process interaction detailed in this section - the programming model
is extremely suitable for this role.
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5.2.3 SOFTWARE SPECIFICATION
The design and specification of the X-Linda implementation has been detailed at
some length ill this section. A related issue, the programming methodology applied
in the construction of X-Linda, is briefly overviewed below, illustrating an adher-
ence to "good'; occam programming style. Finally, the storage requirements of the
system (of both source and memory-resident code) are detailed.

5.2.3.1 Programming Methodology
The National Transputer Support Centre, Sheffield [NTSC 1990] recommends the
adherence to the following conventions in the interests of enhancing occam pro-
gramming style -
• correct use of the folding editor as means of implicitly commenting programs,

providing logical grouping of blocks of code and providing a natural approach to
top-down program development

• the use of channel protocols as a means of providing security to occam programs
I' the use of abbreviations for the purposes of improving readability, performance

and automating security checking
• providing for easy implementation on different hardware configurations - i.e,

the ease with which the number of processors on which the program in running
can be increased

• the use of procedures and input/output conventions simply in the interests of en-
hancing program readability.

It cart be claimed with confidence that the programming methodology applied in the
implementation of X-Linda closely adheres to the above conventions.

Aside ... X-Linda on more titan 16 Nodes
Regarding the above point pertaining to increasing the number of processors on
Which the system is running, it is very easy to switch between 4, 9 and 16 Trans-
puters. However, it is not known whether or not X-Linda will function on meshes
greater than 4x4. It would be trivial to load the system onto a 5x5 (say) mesh.
However, the system has not been tested on meshes larger then 4x4; it is quite pos-
sible that doing so would require the implementation of additional buffering to pre-
vent network saturation.

It is"otinterest to note that there is a version of X-Linda running on a single Trans-
puter. The'dnitial development of the system was done on one Transputer. where
the physical processors and hard links were simulated in software. The simulated
version is not a separate system as such - the X-Linda modules are simply
"attached" to a harness that, for the simulated system, launches the nodes in parallel
on a single Transputer, and, in \'he distributed case, physically places the nodes and
associated communication links 011 independent processors. Hence, the two ver-
sions run identical code and have been shown to produce the same results for vari-
ous application programs. Notice that simulating a 4x4 mesh of processors on a
single Transputer causes more than 600 concurrent processes to be launched on that
Transputer. The structure of the simulated and distributed versions of X-Linda is
shown in Appendix 4.

5.2.3.2 Storage Requirements
The storage requirements pertaining to X-Linda's source and executable code are
detailed below. This gives some indication of the magnitude of the system, and also
highlights the excessive memory requirements.
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Source Code
X-Linda comprises close on 120 source files that occupy more than 300 Kbytes of
disk storage. The actual number of lines and bytes taken up the source modules is
depicted in Table 5.2.

[J5'Locess I -I J)nes I Bytes

Host ProC"ess 310 9799
NW Connection 258 7937
Monitor 10~9 28077

1597 45813
X-Linda Node 1416 44668

Interface 1799 54049
Queue 1658 520~·+
Out 705 20589
In 1545 47140
Rd 992 29157
Computation 417 9611
Challenge Manager 523 15245

9055 271513
ApplicatIons

(1) Testing 429 8041
(2) Efficiency 1572 29324
(3} Exameles 665 13160

2666 50525

[JQtaJ , I I 133181 3678511
Table 5.2 : Sizes of Source Code Modules

Assm .......ng that blank lines. comments, etc. take up 40% of the source code (which
is fairly realistic), the actual implementation is close on 8000 lines long ~ i.e, a rea-
sonably large system.

Memory Requirements
To get some idea of X-Linda's actual memory requirements, consider the naked
system (i.e, without the extra storage needed by application programs) running on a
4x4 mesh. Keeping in mind that that each node in the system has access to only 1
Mbyte RAM, some maximum tuple and tuple space specifications are given in
Table 5.3, using the following notation: .
m -- tuple dimension == lOg2N
N -- tuple size == 2m
d - bucket dimension == log2B
B - bucket size == 2d
S - size ofTS == 4B

Table 5.3 : Tuple Space Storage Requlrements

The three primary factors contributing to these excessive storage needs are detailed
below.
1. Storage o/Tuples/Templates
It was shown in section 5.2.2,6 that a significant amount of extra information is re-
quired to store tuples and templates (for example, the identification of the node in-

Tupla Length Bucket Size size ofTS Storage
m N d B S _lKlW_eftl_

4 16 9 512 2048 986
7 128 6 64 256 832

10 1024 3 8 32 923.
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Yoking the associated operation). Obviously, these extra fields have a significant ef-
fect on the amount of storage required, especially when "large" tuple spar .;s are re-
quired (the reduction of the amount of extra information is briefly dealt with in sec-
tion 8.2.1).
2. Length of Request Queue
For ease of implementation, the lists that hold tuples and templates respectively on
each node were specified to be of the same dimension. Now, since the number of
requests that can be pending within the system. at any given time is bounded by the
square root of the number of nodes, it is obvions that the request queue requires
fewer entries than the tuple queue. This would consequently reduce the overall stor-
age requirements (this aspect is further addressed in section 8.2.3).
3. Replication of Storage
Each "major" occam process resident on a node -- recall that there are 7 such pro-
cesses : Interface, Computation, In, Out, Bd, Queue and Challenge Manager - is a
self-compiled unit. This implies that each processmust have it') own self-contained
Storage space. Hence, some degree of storage replication is inevitable (for example,
each of these processes must have sufficient storage space for (large) tuples). More
than this, recall from section 5.2.2 ..1 that each of these major processes are com-
posed of a number of smaller concurrent sub-processes. Now, it is usually the case
that the majority of these sub-process also require access to a specific data stru,'-
ture. To prevent parallel access to this data, each sub-process must be able to access
its own copy of the data, and hence must cater locally for the storage of the data.

T:> conclude this sectic I it is appropriate to make mention of an implicit and as yet
unstated objective of the X-Linda project - Le, to establish. whether or not it is
possible to implement intermediate uniformly distributed TS on meshes of Trans-
puters. Obviously, the success of this objective has by now been made apparent,
and this section, it is hoped, has illustrated the suitability of the design specification
in achieving this.
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SECTION 6

6.0 ANALYSIS OF EFFICIENCY
This section focuses on the actual research question concerning the communication
overheads associated with the X-Linda implementation. The analysis takes the fol-
lowing form :
1. Scheduling Overhead - although not directly related to communication o
heads, this is important as it illustrates a source of inefficiency brought about by I.ue
scheduling of the numerous processes that reside on the X~Linda node.
2. Out Operation - the overhead of the out operation, focussing on the overhead of
out-set traversal, the communication overhead of tuple transmission, the effect of
network traffic on the operation and the amount of CPU utilization involved in pre-
cessing the operation.
3. Rd Operation - the communication overhead of the rd operation, and the effect of
network traffic on the processing of the operation.
4.111. Operation _, the extra overhead of the in operation relative to me rd, and the
amount of CPU utilization required to process an in operation. This section also in-
vestigates the overhead of tuple contention (i.e. challenging).
5. Data Exchange - the overhead of interchanging information between two proces-
sors, relative to
• an X-Linda emulation
• a shortest-path approach on a mesh of processors.
6. Sink Algorithm - the efficiency of a sink algorithm running under X-Linda rela-
tive to the same t ;:_,.)nlthm implemented on a native mesh of processors.
7. TS Search - although not related to communication overhead, this investigation
does highlight the inefficiency ofX-Linda's tuple matching process, and shows the
effect of the scheduling overhead on this operation.
8. Review - an overview of the best and worst case communication overheads.

Notice that the following points apply to the experiments conducted in the section:
1. All the experiments were conducted on a 4x4 mesh - the 2x2 and 3x3 cases were

not considered. Recall that the nodes within a 4x4 mesh are arranged and num-
bered as shown in Figure 6.1.

I 0 1column2 (3 I
Rgw8[B][§][§j]
18888
2 [88G1Jl]]
3 ~8[GJ8
__ I

Figurt. 6.1 : 4x4 X-Linda Mesh

2. The "base' tests (i.e. relative to which the overheads are evaluated) are detailed
in Appendix 2.

3. The tests were run a number of times, and the results averaged out to reduce ex-
perimental error.
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4. The following notation is used throughout-
N - size of tuple (i.e. number of 32-bit integers)
m - 10g2N
Time - Total time in microseconds to perform the experiment
Rate - Transmission rate ::= Bytes I Time:::: 4N I Time.

5, With regard to the evaluation of in and rd, it was required that the extra overhead
of the matching process not enter into the results. To this end, the experiments to
test these operations we-reimplemented with the smallest possible amount of
tuple space. Itcannot be guaranteed that the effect of the matching process has
been completely eliminated - however, it can be safely assumed that this effect is
negligible in relation to the overall communication times.

6. Given that there are k nodes is the mesh, each node has a unique identity,
Processor_ID, in the range O..k-1 (i.e, as shown in Figure. 6.1 above). Many of
the algorithms presented in this section involve a Processor_ID.

A Note on Communication Requirements
It is, of course, important to be aware of the extra communication imposed by X-
Linda on the transmission of tuples and templates, Table 6.1 shows the information
that is associated with the transmission of tuples, template requests and tuples that
are returned as a result of request satiefaction. All the fields are 32-bit integers un-
less otherwise specified.

I Tuple Template Tuple (ReqUest Satisfy)11. protocol tag 1. protocol tag 1. protocol tagu' Tuple-Index 2. Template-Index 2. Template-Source
• Tuple-Source 3. Template-Source 3. Template-Index

4. ruple-Name 4. TemplatGl-Name 4. Tuple-Data (array)
• Tuple-Data (array) 5. Template-Count 5. Tuple-Name
· Home-Id 6. Tuple-Source

7. Tuele·Seguence 7. Template-Count
'fable 6.1 : Data Requirements for Tuple I Template Transmission

The fields highlighted in bold-font in the above Table are "necessary". These fields
represent the minimum amount of information required in tuple or template trans-
mission; the other fields represent extra "implementation" information, Now, it is
important to note that the base experiments (i.e, on native Transputer networks)
against which X-Linda's communication overheads are evaluated are concerned
only with the transmission of the minimal data. Hence, the communication over-
heads discussed in this section pertain to
• the extra information that must be transmitted over the links
• the various delays imposed by the system (the overheads pertaining to schedul-

ing, synchronization and set-up are discussed in the course of this analysis).

To conclude this section, the inherent overheads and inefficiency of the system are
discussed, and comment is given OIl general weaknesses of the implementation and
method of evaluation. The overheads imposed by the design and structure of the X..
Linda node are addressed and an attempt is made to evaluate the significance of all
of the associated system overheads. Finally, a note.on the simple and elegant way
in which the experiments were implemented under X-Linda is given.

6.1 PROCESS SCHEDULING OVERHEAD
The overhead of scheduling the 40 odd concurrent processes that reside on each
processor can be evaluated simply by measuring the amount of CPU utilization on
each processor, given that there is no application program running (i.e. on the
"naked" system). It was found that the CPU utilization associated with running a
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naked implementation was 32% (details regarding the derivation of the CPU uti-
lization figures are given in Appendix 3). This figure of 32% is important, since it
1. represents the lower limit of the range of CPU utilization - i.e. the utilization

figures quoted throughout this section should be regarded relative to this base
value

2. indicates that there is a high scheduling overhead associated with the system -
i.e, "doing nothing" is expensive under X-Linda and a significant amount of
processor utilization is taken up simply in the running of the system.

Conversely, it is also necessary to place an upper limit on the range of utilization. A
test was conducted whereby each node executed a busy loop. As was expected,
each node registered 100% CPU utilization - hence, the derivation of the upper
limit against which other utilization figures obtained can be related.

The effect of this scheduling overhead obviously has a significant impact on the
overall efficiency of the system. The effect on TS searching in particular is dis-
cussed in section 6.7.

6.2 OUT OPERATION
Section 5.1.1 described the approach taken in implementing the out operation,
where the node invoking the out waits until the tuple has traversed the entire oat-set
(i.e. until the tuple returns to the node that outed it). This obviously is the cause of
great inefficiency, since the processor invoking the operation is forced to remain
idle for a certain amount of time. This section describes experiments that were un-
dertaken to ascertain the amount of overhead involved in processing an out. There
are four aspects of the operation that are of particular interest in this evaluation:
1. The extra overhead (i.e, delay) incurred by forcing the node to block until the

tuple has traversed the out-set
2. The communication overhead imposed by the system as a whole. Given that the

tuple does traverse the out-set, how long does this traversal take relative to a na-
tive occam 2 implementation of the same operation?

3. The effects of other nodes in the out-set. If.the other nodes are busy and creating
network traffic, how does this affect the performance of the out operation?

4. The extra amount of processor utilization needed to process an out operation.
The experiments performed to investigate these issues are described below. ,

6.2.1 OVERHEAD OF OUT-SET TRAVERSAL

1. Objective
To ascertain the amount of delay imposed by forcing the node invoking an out op-
eration to delay until ~!l,eassociated tuple has traversed the out-set.
2. Design
Two specific tests were performed to measure the time taken for an out operation to
complete, given that
1. the tuple traverses the out-set
2. the tuple is simply added to the local node's TS - i.e. not including the time

taken for the tuple to be sent to the nodes in the out-set.
3. Results
The tests were performed only for a tuple of one size; 210 integers. "....be results of
the tests ate shown in Table 6.2.

TUple Length lima
m I N With Traversal (1) 1 No Dalay (2) 1 (11/{2)

1o:'aa101 1024 362241 33921
Table 6.2 ~Overhead of Out-Set Traversal
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4. 0 bservation
Blocking the node invoking the out operation until the associated tuple has tra-
versed the out-set has a significant effect. For the specific size of tuple used in this
experiment, the node invoking the operation is forced tc remain idle for close on 11
times longer than if it simply added the tuple to local TS and continued processing.
This obviously has a great effect on the overall efficiency of the system. A tech-
nique for reducing this overhead is discussed in section 8.2.2.

6.2.2 COMMUNICATION OVERHEAD

1. Objective
To ascertain the communication overhead associated with the out operation - i.e.
the overhead of outing a tuple over the out-set relative to a native occam 2 imple-
mentation of the same operation.
2. Design
The time taken to complete an out operation was compared with the time taken for
an occam 2 program to transmit an integer array around a ring of Transputers (this
latter experiment is detailed in section A2.4 (Experiment 4). Notice that, with re-
gard to the X-Linda experiment, the time taken to complete the out operation was
measured at every node. The values obtained at each specific node were (as can be
expected) fundamentally identical, and the averages of these values are presented
below. The values pertaining to nodes in the top row of the mesh must, however,
be treated separately, since this row includes the (extra) T414 processor.
3. Results
The tests were performed with tuples (i.e. integer arrays) of various dimension.
The results are depicted in Table 6.3, where
• The values for nodes 0..3 are presented separately, since they form the top row

of the mesh
.. the Sase figures correspond to the transmission of an array of integers around a

ring of processors using occam 2 (these figures have been extracted from Table
A2.6 - notice that the base figures corresponding to Row 0 were measured with
an extra T414 in the ring), .

Row 0 (Nodes O..3} ~
Tuple Lenoth Time Rate
m N X-Linda X-Linda (1) Base (2) (2) I (1)
4 16 2352 0.0272 0.1200 4.41
6 64 4528 0.0565 0.1200 2.12
8 256 13392 0.0765 0.1200 1.57

10 1024 48768 0.0840 0.1200 1.43

Rows 1-3 (Nodes 4••15)
Tuple Length lime Rate
m N X-Linda X-Lincla (1) Base (2) (2) I (i)
4 16 2043 0.0313 0.1814 5.80
6 64 3584 0.0714 0.1814 2.54
8 256 10133 0.1011 0.1814 1.79

10 1024 36224 0.1131 0.1814 1.60
Table 6.3 : Out Operation - Communication Overhead

4. Observations
The amount of communication overhead incurred in the transmission of tuples of
substantial size is not excessive (for tuples comprising 1024 integers, X-Linda is
approximately 1.5 times slower than the base experiment). It is, however, interest-
ing to note the large overhead associated with the transmission of "small" tuples
(i.e, about 5 times slower for tuples comprising 16 integers). It is expected that
some experimental error has crept into these results (working with very low times
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is error-prone). However, this still indicates the presence of a large "set-up" over-
head, attributable to
• adding the tuple to local TS, and
• the transmission of the tuple through the various internal processes within the X-

Linda node bef re it can he actually sent to the out-set (the issue of the set-up
overhead is further discussed in section 6.9.2).

6.2.3 EFFECT 011'NETWORK TRAFFIC

1. Objective
To ascertain the effect of netwc 'k traffic on the out operation, Given that the other
nodes in the out-set are busy and making use of their hardware links, how does this
affect the tuple's traversal of the out-set
2. Design
Four nodes (0, 4, 8 and 12) were selected for comparison - they simply performed
the out operations in the normal way. The rest of the processors generated network
traffic by continually executing ins and outs. .
3. Results
Table 6.4 shows the average execution times for out operations invoked :h1m the
selected nodes without network traffic and with traffic generated as I'll. ,eliDed
above. The test was performed for tuples of various dimension, and, as before, the
values for Node 0 are presented separately.

Node 0 ..
Tuple L_;ngth lime
m N No Traffioj1J 1raffioj2) j2_l1_{11

4 16 2368 6336 2.6757
8 256 1344ll 20672 1.5381

10 1024 48832 78400 1.6055
AV(J 1.95

Nodes 4, 8, .12
Tuple Length limaml N No Traffic (1) Traffic (2) _(2W1L.

~I 16 2043 6059 2.9657
256 10133 13376 1.3200

10 1024 36224 41024 1.1325
A\IQ_ 1.81

Table 6.4 : Out Operation - Effect of Network Traffic

4. Observations
The effect of network traffic, although hardly negligible, is not overly excessive.
Notice again that it is with respect to the smaller tuples that the worst overheads are
experienced.

Aside - The Effect of Program Behaviour
It is interesting to note, as a side issue, the effect the overall behaviour of the sys-
terr. has on this test. As a variation, an experiment was set up whereby
• Nodes 0, 4-,8, 12 behave as before (i.e. invoke out operations)
• the other nodes generate network traffic. However, instead of simply looping

around performing ins and outs on specific tuples, the following algorithm was
used (recall that each node in the system has a unique identity, Processor_ID, in
the :range O..k-1). .
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define integer array Tuple. Data :
out (Processor_IO. Tuple.Oata)
DOi .. OFORk

j<-(k-i-1)
in Q. Tuple.Data)
out O. Tuple.Data)

END DO

This algorithm causes all the nodes to fight for specific tuples, wth,;l-f:1"V' them from
TS and then re-insert them again. It st. happens in this specific exe: -ple 6flt Node
15 "loses out" much of time - i.e. it continually has to re-issue challenges 'I') win a
specific tuple, and, t "timately, all the outed tuples end up on this node. Ni.'W, this
has quite an effect on the out ope, itions performed by the other nodes. Using a
tuple of dimension 4 (i.e. 16 integers), it was found that the out invoked from
Node 12 took more than 1.6 times longer to complete than those invoked from
Nodes 4 and 8. Node 12 is in the same (".1: set as Node 15, and. since Node 15 is
very busy (and generating much network i..:affic),it slowed down the processing of
the operation on Node 12. This is just r small example that illustrates the complex-
ity involved in analyzing Linda program behaviour, which is further addressed in
sections 7.4.3 and 8.3. The above algorithm was also run on its own on each of the
nodes. Using a tuple of dimension 6 (i.e. 64 integers), the utilization at each node
for the execution of this example ranged from 53% to 69%. with an average utiliza-
tion of 59%. This figure is relatively low, given that the nodes were busy for the
duration of the test - i.e. one would expect figures closer to 100%. However, the
fact that the utilization is fairly low indicates that the processors are idle for reason-
ably large amounts of time. This is due to
• the fundamental communication overheads inherent in the system - I.e, the de-

lays incurred in transmitting tuples ana tuple requests
• the fact that the specific example chosen forces a great deal of challenges on

specific ruples. Many nodes end up losing 'challenges and have to wait until the
tuple is re-issued before they can re-challenge (and possibly lose yet again).

6.2.4 PROCESSOR UTILIZA nON

1. Objective
To ascertain the CPU utilization associated with processing an out operation.
2. Design
As was done in the previous experiment, four nodes (0, 4, 8 and 12) were selected
to perform the out operation - the other nodes were idle. The percentage CPU uti-
lization for each processor was measured for a tuple of dimension 6 (64 integers).
3. Results
The percentage processor utilization for Nodes 0,4,8 and 12 (Test Nodes) and the
rest of the processors (Others) is shown in Table 6.5.

TURle Length % CPU Utilization
m I N Test Nodes (1) I Others (2) I (1)-12)
61 64 471 32 I 15

32 % Is the base (i.e. 'idlllj limit
Table 6.S : Out Operation - Processor Utilization

4. Observations
1. An extra 15% CPU utilization is needed by the processors invoking the out op-

eration. .
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2. The rest of the processors (i.e. Others) are not completely idle - they must store
the tuples in their local TS, and pass the tuples onto the other nodes in the out-
set. However, as their CPU utilization is the same as that of an idle processor, it
can be deduced that storing and passing on the tuples is very inexpensive.

6.2.5 COMMENT
It has been has shown that processing an out operation is reasonably expensive.
The strategy of blocking the node invoking the operation inflicts a tremendous
amount of overhead, and the communication overheads involved in transmitting
tuples is far from negligible. This serves to emphasize a problem that is inherent in
X-Linda - that the implementation of out-sets over point-to-point synchronous
links results in a great deal of inefficiency. Obviously, there is a need for communi-
cation buses in this regard (i.e. as used in the implementation of the Linda Ma-
chine). Naturally, this is impossible to achieve using the conventional point-to-
point links of the Transputer.

6.3 RD OPERATION
The following series of tests were designed to
1. ascertain the communication overheads associated with the rd operation
2. illustrate the effect of network traffic on this operation.
To measure the time taken to locate and return a tuple, a single tuple was outed
from a selected node on the mesh. Each node then, in turn, issued a r j request for
that tuple. Node 4 was selected to out the initial tuple - this decision was somewhat
arbitrary, and was based primarily on a desire for the selected node not to reside on
the outermost rows of the mesh- (i.e. it should reside on a row that is "central"). For
the sake of clarity, this is illustrated inFigure 6.2.

Requested
07 ~Tuple

Figure 6.2 : Rd Operation - Location of Requested Tuple

The experiments performed to investigate the communication overhead and effects
of network traffic are outlined below.

6.3.1 COMMUNICATION OVERHEAD

1. Objective
To ascertain the communication overhead associated with the rd operation relative to
a native occam 2 implementation of the same operation. The way the "same opera-
tion" was implemented is described below.
2. Design
As described previously, a tuple was outed from Node 4, and then all the nodes in
the mesh consecutively issued rd requests for this tuple. Recall from section
4.3.1.4 that a template request is sent up a column, and the requested tuple is re-
turned down that column, To ascertain the communication overhead, the base test
was designed to emulate this behaviour. The base test is described in section A2.3
(Experiment 3) - it entails
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1. transmitting a single integer to a ncde in the row where the tuple is stored - i.e.
simulating the sending of the request up the in-set

2. returning an array of integer data - i.e. simulating the retrieval of the tuple.
The distances that the messages have to travel are obviously relevant; these are
shown in Figure 6.3 below.

No. of links
between
requestiJ9
Node and
Location
of Tuple

Figure 6.3 : Rd Operation - Link Traversal

3. Results
As can be expected, nodes within each row of the X-Linda mesh yielded funda-
mentally identical results. These results have therefore been averaged and the fig-
ures are presented for the rows as opposed to individual nodes. Table 6.6 shows
the times for the retrieval of tuples of various dimension. The Base times listed be-
low have been derived from Table A2.3.

Tuple Lflngth Row Time

t--o
X·Linda_(1) 8ase{g} _(1_l/_(g)_

m .. 4 3008 263 11.4373
N = 16 t' 384 . .

2 1856 84 22.0952
3 2432 174 13.9770

Am 15.84

Tuple Length Row Time

~
X·Lindal1)_ Base (~) _(1)_l(2)

m=10 28800 16801 1.7142
N .. 1024 f 2752 - .

2 14912 5367 2.7785
3 21840 11106 1.9665

Avo 2.15.
Requested tuple stored here

Table 6.6 : Rd Operation - Communication Overhead

4. Observations
1. The overheads associated with small tuples (i.e, of dimension 4 in the above

Table) are extremely high. These results may be error-prone and should not be
taken too literally. However, this is again indicative of the massive set-up over-
heads associated with the implementation.

2. With respect to larger tuples, the results are more reasonable, although the X-
Linda implementation hi still, on average, more than twice as slow as the base
experiment

61



6 - Analysis of Efficiency

6.3.2 EFFECT OF NETWORK TRAF)\'!C

1. Objective
To ascertain the effect of network traffic on ~he rd operation. Given that the other
nodes in the system are busy and there is netv. ..Jrktraffic, how does this affect the
retrieval of tuples ?
2. Design
Four nodes (0, 4, 8, and 12) were selected for comparison. They simply issued rd
requests on a tuple that, as in the previous e....: eriment, was outed from Node 4.
The rest of the nodes generated netwoi': traffic by continually executing ins and
outs.
3. Results
Table 6.7 shows the average execution times of the rd opr: xtion for the selected
nodes without network traffic (extracted from Table 6.6), and with traffic generated
as described above.

Tuple Lenuth Node lime
m=4 No Traffic (1) Traffic {2} (g}_I{1l
N = 16 0 3008 5664 1.8830

4' 384 1600 4.1667
8 1856 3936 2.1207
12 2432 4704 1.9342

Avg 2.53

r Tuple Lsnqth Node lime
m=10 No Traffic (1) Traffic (2} ~(~l_m

14 .. 1024 0 28800 34944 1.2133
4' 2752 4992 1.8140
8 14912 19392 1.2894
12 21840 27776 1.2727

Avg 1.40.
Requested tuDle stored hare - note excessive effect on local requests
Table 6,7 : Rd Operation - Effect of Network Traffic

4. 0 bservations
As for the out operation (section 6.2.3), the effect of network traffic here is not
overly excessive. It is, however, worth noting the large overhead imposed on the
retrieval of a local tuple. The processing of a local rd request without the effects of
traffic is extremely fast relative to the processing of external requests; hence, local
requests are far more susceptible to the effects of interference.

6.3.3 COMMENT
As with the previous experiment (i.e. regarding the out operation), these results
exhibit the need for communication via buses as opposed to point-to-point links. In
fact, the situation in this case is worse, since, on a 4x4 mesh, the successful com-
pletion of a rd operation requires, at worst, 6 transmissions (i.e, 3 to send the re-
quest and 3 to return the tuple). Unfortunately, there is no evident way of reducing
the communication requirements of the rdoperation under X-Linda.

6.4 IN OPERATION
The communication overhead associated with the transmission of an inrequest and
the return of the respective tuple is obviously identical to that of the rd operation.
However, it should be obvious that the completion of an in operation takes longer
than a rd, since, for every successfully matched inrequest, a challenge: must be sent
around the out-set before the tuple can.be returned to the requesting node (the chal-
lenge process is detailed in section 5.1.3.2).
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The objectives of the series of tests described in this section are to evaluate
1. the extra overhead involved in processing an in request (relative to a rd opera-

tion)
2. the amount of CPU utilize __~.associatedwith processing an in request
3. the effect of losing a challenge (i.e, having to re-request a specific tuple).
The approach taken in these experiments is, in essence, identical to that used for the
evaluation of the rd operation (refer section 6.3) ~ Node 4 outs a tuple that is, in
turn, requested by all the nodes in the system.

6.4.1 EXTRA OVERHEAD

1. Objective
To ascertain the extra overhead associated with an in request (i.e. relative to a rd op-
eration).
2. Design
The experiment was performed in exactly the same way as for the evaluation of the
rd (refer section 6.3.1). Notice that. in this evaluation, base (i.e. native occam 2)
figures were not required, since the results are presented relative to those obtained
for the rd operation.
3. Results
TIle times taken to complete an in operation are presented in Table 6.8 below, with
the corresponding figures obtained for a rd operation (extracted from Table 6.6).

Tuple Length Row Time
.-

rd (1) in(~ Illili[
m=4 0 ~O08 5354 1.7799
N = 16 f 384 2618 6.8177

2 1856 4042 2.1778
3 2432 4711 1.9371

AVr;l 3.18

Tuple Length Row Time

r--- rdW in (2) (211_(1l
rn-10 0 28800 31363 1.0890

N ""1024 1- 2752 63'17 2.2954
2 14912 17370 1.1648
3 21840 24426 1.1184

AVfJ ~..J.Ag_.
Requested tuple stored here - note excessive overhead on local requsats

Table 6.8 ; In Operation - Extra Overhead

4. 0 bservations
1. As expected, the in operation exhibits some extra overhead relative to the rd. The

magnitude of this extra overhead is not excessive, and, as han been seen before,
the retrieval of small tuples incurs a greater overhead than the retrieval of larger
tuples.

2. Notice the excessive extra overhead associated with local requests (i.e. Row 1
above). Again. this is due to the fact that local rd requests are very fast, and im-
posing any sort of delay on the processing of a local request has a significant ef-
fect.

6.4.2 PROCESSOR UTILIZATION

1. Objective
To ascertain the amount of CPU utilization inprocessing an in request
2. Design . .
Using the same approach as before (i.e, all nodes consecutively request a tuple
outed from Node 4), the CPU utilization was measured at each node.
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3. Results
Recall from section 6.1 that the "idle" (i.e. minimum) CPU utilization was mea-
sured to be 32%. The average percentage utilization for each row of the mesh is
given inTable 6.9, relative to the minimum utilization figures.

Tuple Length Row % CPU Utilization
Actual (1) Idle (2) (1) - (2)

m::6 0 45 32 13
N=64 f 56 32 ·24

2 48 32 16
3 46 32 14

AVQ 48.75 32 16.75
Requested tuple stored here

Table 6.9 : In Operation - Processor Utilization

4. 0 bservations
The amount of CPU utilization is similar to that for an out operation (47% - refer
Table 6.5). It is significant to note that the utilization on Row 1 is higher than on
any (If the other rows. Obviously, this is due to the fact that the requested tuple is
stored here, and these nodes are responsible for satisfying the requests; hence, they
would be expected to do more work.

6.4.3 EFFECT OF CHALLENGING

1. Objective
To ascertain the extra overhead associated with the challenge process - i.e, the
amount of delay incurred when? node loses a challenge mid has to re-issue a tuple
request.
2. Design
As before, tuples were outed from Node 4. Two experiments were conducted
WHereNodes 14 and 15 then issued requests for tuples such that
1. no challenge would be necessary - i.e. the nodes requested different tuples
2. a challenge would occur - i.e. lx -:I,nodes requested the same tuple.
This is illustrated in Figure 6.4 below.

Tuple
Request

Figure 6.4 : In Operation - Forcing a Challenge

The test in which a challenge was forced to occur was structured so that, on receipt
of the respective template, Node 6 would win the challenge and, consequently,
Node 7 would lose and have to locate another tuple. Hence, Node 15 would be
forced to wait longer than Node 14 to receive the requested tuple.
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3. Results
Table 6.10 shows the times taken for Nodes 14 and 15 to complete their in re-
quests. The values are giVG11for the cases where, firstly, no challenge was neces-
sary, and, secondly, when a challenge occurred.

'N' = 256
lime

Node No Challenge (1) Challenge (2) (~i(1)
14 10227 11290 1.1039
15 10010 12544 1.2531

N = 10~4
lime

Node No Challenge (1) Challenge (2) (2)1(1)
14 24819 27200 1.0959
15 24614 31667 1.2865

Avg I
Tahle 6.10 : In Operation - Effect of Challenging

4. 0 bservations
The challenge process has a significant effect on the nodes involved, irrespective of
whether a node wins or loses the challenge. The overhead associated with process-
ing and ultimately winning a challenge is around 1V%, while losing a challenge
costs a significant 27%.

6.4.4 COMMENT
Not much more can be said about the efficiency of the in operation. Everything that
was concluded about the rd operation (section 6.3) is applicable here. It is, how-
ever, worth commenting on the fact that the implementation of the tuple deletion
protocol is very efficient (i.e. a single traversal of the out-set is needed both to
claim ownership of a tuple and to delete it). However, resolving tuple contention is
quite expensive. As detailed in section 5.2.2.5, a node receiving a challenge token
must search linearly through its own list of "claimed" tuples in order to identify
whether or not a challenge must be resolved.

6.5 DATA EXCHANGE BETWEEN PROCESSORS'
This experiment investigates the overhead associated with sending a message from
a source node to a destination node and back again - i.e. communication between
two specific nodes. Achieving the message interchange under X-Linda is simple.
Assume that the source node has the identity Source_ID, and the destination has the
identity QesUD. Then, running the following code on the source and destination
processors respectively will cause information to be exchanged:

-- source node
define integer array Tuple_Data:
out (Dest_ID, Tuple_Data)
in ~Source_JD.TupleData)

-- destination node
define integer array Tuple_Data:
in (Dest_ID, Tuple_Data)
out (Source_ID, Tuple_Data)

The data exchange was performed between a selected source node and all the other
nodes in the mesh. To remain consistent with the previous experiment, Node 4 was
selected as the source node. This node communicated with and received informa-
tion from all the other processors in turn, and the timing information was gathered
here. It is interesting to note that the experiment was designed such that Node 4
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also communicates with itself - i.e. it outs a tuple, retrieves that tuple, re-outs it
and, finally, re-requests it again. The algorithms running on Node 4 and the other
nodes are depicted below (assuming again that each node in the system has a
unique identity, Processor_ID, in the range O..k-1) :

-Noda4
define integer array Tuple_Data:
define intogaf array time_taken:
DOi=FORk

clock ? start
out (i, Tuple_Data)
in I rd (4, Tup!e_Data)
clock? finish
time_taken [i] <- (finish MINUS start) • 64·· microseconds
••• Delay - so that the tests do NOT overlap

END DO

- all other nodes
define integer array Tuple_Data:
in I rd (Processor_ID, Tuple_Data)
out (4, Tuple_Data)

As can be seen from the code segment above, the experiment was tested using both
the in and rd operations to retrieve the desired tuples.

COMMENT - BASE TEST COMPARISON
Given the experiment running under X-Linda as described above, some comment
must be given on what this algorithm should be tested against - i.e. what should be
the base test relative to which the overhead of the implementation can be evaluated ?
There are 3 obvious candidates, discussed below:

1. Direct Communication Between Processors
This is the most trivial comparison. Since the X-Linda algorithm, in effect, causes
information to be exchanged between two Transputers, itmight be argued that the
base test should simply constitute transmitting data between two adjacent proces-
sors - i.e, across a single link connecting the two Transputers. Support for this ar-
gument stems from the idea that, given" dynamicall'yreconfigurable network, such
a direct connection could be made at any instant that two processors need to com-
municate. Evaluating the X-Linda implementation against this base test does, how-
ever, have serious flaws:
1. It would achieve very little. It is quite obvious that the X·,Linda approach is do-

ing more than simply exchanging information between adjacent processors.
He- ."le, we would expect to see a significant amount of overhead; but the magni-
tur. ...,:f this overhead would be, to all intents and purposes, meaningless.

2. Dj.' ..rnic:allyreconfigurable networks are very seldom, if at all, used in practice.
The intricacies and overheads associated with setting up and tearing down
physical links between processors precludes this approach from standard appli-
cations.

Hence, this test is, effectively, worthless as a base comparison. It is not dealt with
again in this section. .

2. Replicating the Behaviour of the X-Linda Approach
A far more reasonable comparison would be to. using occam 2, replicate all of the
data transmission needed to effect the exchange under X-Linda. This would give an
indication of the communicationoverheads incurred by the system-s i.e, the delays
in communication imposed purely by running the algorithms on top of X-Linda.
This experiment was conducted (section A2.5 - Experiment 5), and a comparison
is detailed in section 6.5.1 below.
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3. Communicating Over a Mesh Configuration
Another comparison that is worthy of consideration is to use a mesh configuration,
and, using occam Z, C''l{p~ge information between two processors over the short-
est possible path ..Th!. . .,arison wOuld.highlight X-Linda's routing overheads.
Given that X-Linda ana l.!1eQ;cam 2 base test a:i~ both implemented on a mesh, tile
comparison would illustrate the difference between using in- and out-sets and the
shortest possible path to achieve the data exchange. This experiment is detailed in
section 6.5.2 below.

6.5.1 REPLICATING TilE BEHAVIOUR. OF X-LINDA

1. Objective
To ascertain the communication overheads associated with exchanging information
between two processors under X-Linda. This emails.,taking the data transmissions
necessary to complete the operation and comparing the time taken to perform these
transmissions us'..t.g occam 2.
2. Design
This particular base test:is described in section A2.5 (Experiment 5), X-Linda's
data transmission requiremerus needed to effect the exchange of information be-
tween two nodes were replicated ssing occam 2. Itwas shown in this experiment
that. from Node 4, either 4&}l" 8 transrcissions are required to send a message to ~,
destination node and back again. For the sake 9£ clarity, the respective transmission
times for ~ntS\$er arrays of various dimensi6-'1fl(extracted from Table A2.8) are
shown again ii.\ Table 6.11 : !

1ima
N...1024
21423'
42846

Ttansmiss!l:>ns Nodes N.,16 N...2S6
4 O. 5. 6. 7, ~j.12 335 5356

. 8\.. 12.39.1011,1314.15 670 10712
\ Tabte 6.11'~·Data B~c'l1?41se- Number of Transmissi:t)ps

3. Results
From 'Table 6.11 above it can be seW1 that the lowest communication requirements
(4 transmissions) pertain to the nodes in the. second row of the mesh (i.e. Nodes 5,
6 and 7)~and !he nodes in the first COlUITlll of the mesh (i.e, 0, 8 and 12) - obvi-
i)usl~.~Node 4 is not included in these groups, All the rest of the nodes require 8
transmissions to complete the exchange. the actual figures obtained from running
the X-Lhlda implementation reflect this pattern. For every row of the mesh, the
time taken to exchange data With Node 4 is the lowest for the first node, and the
other nodes in the row all reflect a similar communication time. Hence, in present-
ing the results, the times pertaining to the last three nodes of any row are presented
as an average. The results are given in Table 6.12 under the headings of :
rd ""'. times taken using the rd operation to retrieve tuples
In times taken using the in operation to retrieve tuples
Base - base test times.extracted from Table A2.8.
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,............:--
TimeN:= 16

A:;,y Node rd(1) in (2) Base (3) (1 }/(3) _(2)/(~).
0 0 4527 5552 335 13.51 16.57

1..3 6482 1104S 670 9.67 16.49
1 4 2498 4578 - - -5..7 4080 8156 670 6.09 12.17
2 8 6024 57;S 335 17.98 17.06

9..11 6246 10689 670 9.32 15.95
3 12 5212 5495 335 15.56 . 16.40

13..15 6184 10689 670 9.23 15.95
Av_g 11.6 15.8

N = 256 Time
Pow Node rd(1) in(2) Base (S) (1)/(3) (2)1(3)
0 0 15943 15664 ';356 2.98 '2.92

1..3 28431 34330 10712 2.65 3.~0
1 4 11183 13592 - - -

5..7 15448 21055 10712 1.44 1.97
2 8 20757 15612 5356 3.88 2:91

9••11 25194 31132 10712 2.35 2.91
3 '12 17981 16608 5356 3.34 2.91

13.•15 25263 3116fl 10712 2.36 2.91
AVSJ 2.7 2.8

N :: 1024 lime
Row Node rd (1) In (2) Base (S) (1}/(S) (2)/13)
0 0 53862 56231 21423 2.51 2.62

1•.3 97959 102931 42846 2.29 2."0
1 4 39168 42599 - - -

5...7 " 52324 56142 42846 1.22 1.31
2 8 675134 49166 21423 3.15 2.30

9..11 85498 9()S01 42846 2.00 2.11
:3 12 60S72 49171 21423 2.83 2.30

13..15 85617 90583 ~2a4G 2.00 2.11
.._ ..!\v_g 2.3 2.2• in faster than j

Table 6.12 : Data Exchange - Overhead (1)

4. Observations
1. On average, the X-Linda implementation is, at best, more than twice as slow as

the base experiment. This illustrates the overhead on the extra communication
that must be transmitted withtuples and templates, and also the effect of the
scheduling overhead,

2. The overhead associated with the exchange of small tuples is huge. This is a
common trend exhibited throughout the results presented in this analysis.

3. In some instances, using the in operation is faster than using the rd. This is due
to the fact that, in these cases, templates are issued prior to the matching tuples.
When a locally outed tuple is matched against a pending in template on a local re-
quest queue, there is no need to challenge since it is impossible that any other
node will try to claim this particular tuple (i.e, the request is satisfied locally).
Hence, in these cases, the processing time for rds and ins should be equivalent.
The fact that they are 110tis simply due to experimental influence.

4. Notice the results pertaining to Node 4 in the above Table. It is, evident that there
is a reasonable expense associated with a node communicating with itself. This
is an interesting aspect, since a "clever" Linda pre-compiler should be able to
eliminate this son of behaviour.
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6.5.2 COMMUNICATING OVER A MESa CONFIGURATION

1. Objectlve
To compare the overhead of data interchrui(;'" r1etween two processors under X~
LU1da against the shortest path approach - l.e. given a mesh configuration, taking
the optimal route between the source and destination nodes. This comparison ex-
poses the overhead of utilizing in- and out-sets on a mesh configuration relative to
transmission over the shortest possible path in order to effect information exchange
between 1'NO nodes.
2. Design
The X-Linda algorithm has already been described in this section. The base test
(i.e, communication over the optimal routes) is described in section A2.6 (Experi ..
ment S),
3. Results
The only way to meaningfully compare the X-Linda. implementation with the ease
test is to use an average communication rate - Le, sum the individual times pertain-
ing to each node and calculate an average rate from this. Table 6.13 shows the aver-
age commnnicadon rates for tuples of various dimension, using the following nota-
tion .!
Total Time

AvgTlme
Rate
Base

- (i~ta1of the times taken to exchange information for individum desti-
nation nodes, excluding the time pertaining to Node 4

- Total Time 115. (i.e, excluding Node 4)
- 4N1AvgTime (i.e. bytes Imicrosecond)

The rate pertaining to the base test (extracted from Taq~.eA2.9)

The results corresponding to the use o£,rd and In to retrieve tuples ate presented
separately

rd
Tuple Length Tirns Rate
m N Totall1me Avgl1!n~ X·Linda(1) Base (2f (1) I (2)
4 16 84738 5649.20 0.0113 0.1629 14.38a 256 314987 20999.13 0.0488 0.1629 3.34
10 1024 1146315 70421.00 0.0536 0.1629 &,{l4

In
rupia Length Time I Rate

(tli{2rm N Total Time AV9.Tim'\i X·Unda(1) Base{2)
4 16 138509 9233.931 0.0069 0.1629 23.50
8 256 399934 26662.2i,j 0.0384 O.t629 4.24
10 102.4 1175040 78336.00 0.0523 0.1629 3.12

Table 6.13 : Data Exchange - Overhead (2)

4. Observations
1. This experiment, which focuses on the overheads associated with routing, is a

sterner base comparison than the p~evious experiment. Here, X·Linda is, at
best, about 3 times slower than the base test - in the previous experiment, this
factor was only two-fold. It can be concluded that the routing performed under
X-Linda in order to effect data exchange is vastly inferior to an optimal routing
strategy on a mesh of processors.

2. Notice that, yet again, the overhead associated with small tuples is massive. It is
felt that these figures are, to some extent, influenced by experimental error.
Nonetheless, they are indicative of large set-up overheads.
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6.5.3 COMMENT
These experiments have illustrated the overall effects of
• the extra communication necessary to transmit tuples and requests
• the inferiority of routing via in- and out-sets.
It is maintained that the extra communication can be reduced (refer section 8.2.1).
However, under X-Linda, the routing strategy cannot be altered. and the ineffi-
ciency of implementing in- and out-sets over point-to-point communication links
cannot be helped.

6.6 OVERHEAD OF A SINK ALGORITHM
A "sink" is a node in a distributed system that collects information from all the other
nodes in the system. This experiment describes the X-Linda implementation of a
sink, and evaluates the efficiency of the implementation relative to the same opera-
tion on a native mesh configuration.

6.6.1 EXPERIMENT

'1. Objective
To ascertain the efficiency of a sink algorithm implemented under X-Linda. By
comparing the time to execute the X-Linda algorithm with an algorithm imple-
mented on a mesh of Transputers, an indication ofX-Linda's communication and
routing overheads can be obtained.
2. Design
Node 4 was, to retain consistency with the previous experiments, selected to be the
sink. It simply collected in information transmitted from all the other nodes in the
system. The X-Linda implementation of this algorithm is trivial :

-Node4
dfiJfina integer array TuplfiJ_Oata :
DO f ... 0 FORk. ;;t4

in I rei (I. Tuple_Data)
END DO

- all other nodes
define integer array Tuple_Data:
out (PI'OcessoUD. Tuple_Data)

The base test relative to which the above algonthm is evaluated is detailed in section
A2.7 (Experiment 7). This test consisted of the implementation of a sink on a me "
configuration whereby Node 4 issued requests to and received information from all
the other nodes in the mesh? using the shortest possible path.
3. Results
As for the previous experiment, tne most meaningful way to compare these results
is by using average transmission rates. Again, the following notation is used:
Total Time - Time to perform the sink algorithm
Avg Time - TotalTime J 15 (i,e. excluding Node 4)
Rate - 4N I Avg Time (i.e, bytes Imicrosecond)
Base - Rate calculated as above for a native occam 2 implementation on a

mesh configuration (extracted from Table A2.l0).

The results pertaining to the retrieval of tuples of various dimension are shown in
Table 6.14. Note that the results obtained with the use of either a rd or an in to re-
trieve the tuples are presented sejjJanltely.
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rei
Tuple Length Time

~te]1II Base(2)m N Total Time AvgTillle Jlli(2).
4 16 28749 1916.60 O,O33~1 0.3259 9.76
10 1024 232981 15532.07 0.2637 0.3259 1.24

In
Tuple Length Time
m N Total Time AygTim& RateJll Base_(2) _{l}lJ21
4 16 62084 4138.93 0.0155 0.3259 21.08
10 1024 278591 18572.73 0.2205 0.3259 1.48

Table 6.14 : Sink Algorithm - Overhead

6.6.2 COMMENT
The overheads of the sklk algorithm are significantly less than those associated with
data exchange (previous experiment - refer section 6.5), Indeed, for tuples of di-
mension 10, the results are quite reasonable. This is, to. some extent, to be ex-
pected, since this experiment is really only concerned with one-way communica-
tion. The overhead of the previous experiment, which involved two-way communi-
cation, was 2.5 and 2.1 times greater with the use of the rd and the in operation re..
spectively for tuples of dimension 10.

6.7 TS SEARCH TIME
A great source of X -Linda' s inefficiency lies in the tuple matching process. A tem-
plate is matched against the tuples in TS by means of a linear search (and the same
process. is used to match tuples against templates in the request queue), It is of in-
terest to determine how expensive tllis search operation is and to observe the effect
of the scheduling overhead (i.e. to compare the search time with the time taken for
the match process running by itself on a processor).

~.7.1EXPERIMENT

1. Objective
To ascertain the worst case overhead of searching TS linearly, and to evaluate the
effect of the process scheduling overhead on this operation.
2. Design
The time 'taken to match a tuple against an empty request queue was measured - i.e.
the worst case search time was evaluated. The experiment was tested for bucket
dimensions of various size (recall. from section 4.3.1.1 that, given there are k nodes
in the system, a specific node's TS is sub-divided into '\/k buckets). The experiment
was run under X-Unda, and the match process was then also executed individually
in order to ascertain the effect of the scheduling overhead.
3. Results
The times taken to carry out the searches are shown inTable 6.15, using the fol-
lowing notation:
d - bucket dimension = log2B
B - bucket size :::2d
S - size ofTS . :::4B (i.e, 4 buckets per node)
Base - time taken to search the TS given that the match process is the only pro-

cess running on the Transputer
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Bucket Sile QfTS lime
d B S X·Unda(ll aase (2} (1) I (2)
6 64 256 1344 960 1.4000
8' 256 1024 5632 3904 1.4426

....1Q., 1024 _j__ 4096 22720 15808 1.4372
Avg 1.43

Table 6.15 : TS Search Time

Applying linear regression with respect to S and Time yields the following relation-
ships -- 1

X~Linda : 'rime = S x 5.57 - 74.67
Base : Time = S x 3.87 - 42.67

6.7.2 COMMENT
The time to search TS,Jinearly is naturally O(size of TS) - obviously, a linear
search is not an optimal way of locating a specific tuple, It is worth noting that,
given an empty TS, the overhead of tuple or template addition includes this extra
expense. Nonce too that the scheduling-overhead increases the search time by a
fac~,:! of approximately 1.4 - i.e. a.significant amount,

6.8 REVIE'W
To get some overall feel for the overheads exposed in this section.dt is useful to
collectively review the results, and, in particular, examine the best and worst case
figures. This review is concerned only with communication overheads, and the re-
sults pertaining to other aspects (such as CPU utilization and the effects of network
traffic) are not dealt with here. The figures of interest are those that reflect the
magnitude of the respective overheads relative to the base experiments (i.e. ob-
tained by dividing the results of the X-Linda experiments by those obtained in the
base tests). The best and worst case results are presented in Table 6.16, under the
following headings (the Table numbers identify the source of the information) :
Out - Table 6.3 (average of Row 0 and Rows 1w3)
Rd -- Table 6.6
In - Table 6.8 (X~Llnda) and Table 6.6 (Base)
Data Exchange (1) - Table 6.12
Data exChange (2) - Table 6.13
Sink - Table 6.14

Ou~
Rd
In

1.52
2.15
2.20

5.11
16.84
27.08

Data Exchange fi}
Ad
In

2.3
2.2

11.6
15.8

Bast Worst

~ta Exchange (2,) 3.041, 14.$8
~1=n ___.__ ~~3~.1,~3.~~
...,s""'l,-n"=-k...."...-----r--------,.-'-·-
Ad L24 9.76
In 1.49 21.08

Table 6.16 : Best and Worst Case Overheads
.0

These results are presented graphically in Figure 6.5 (Out, In and Rd) and Figure
6.6 (Data Exchange and Sink).
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30

111 Bast
m Worst
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Figure 6.5 : Graph of BestIWorst Case Overhead (1)

11 Best
11 Worst

ReI In Rd' In Rd In
Exch. (1) Exch.(2) Sink

Figure 6.6: Graph of Best/Worst Case Overhead (2)

The implications of these results are discussed below.

6.9 DISCUSSION
This section has given a great deal of insight into X ..Linda' s inherent communica-
tion overheads and inefficiency; although it is difficult to make a conclusive state-
ment regarding the severity of these overheads. From Table 6.16 and Figures 6.5
and 6.6. it is obvious that the worst case communication overheads (generally as-
sociated with the transmission of "small" tuples) are indeed excessive. However;
the overheads pertaining; to larger tuples (i.e, the best case analysis) are not nearly
as severe. Without doubt, X-Linda does imnose a significant amount of overhead
on the processing of tuple space operations (at best, the rd and in operations are
more than twice as slow as the base experiments, and the out is approximately 1.5
times slower). However, given the fact that, according to the Linda philosophy, it
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is acceptable to trade some processing performance against the gains provided by
the programming paradigm [Ahuja et al. 1988], it can be argued that the communi-
cation overheads (at least, in the best case situations) are reasonable. This is not to
say that X-Linda is the answer to programming Transputer networks. Apart from
the communication overheads. there are a host of other overheads associated with
the implementation. The process scheduling overhead and inefficiency of TS search
have already been discussed, and the synchronization constraints and "set-up"
overheads are dealt with in sections 6.9.1 and 6.9.2 respectively.

To conclude this section, comment is given on the
1. weaknesses inherent in the implementation and this evaluation
2. "set-up" overheads induced by the structure of the X-Linda node
3. severity of the respective overheads
4. ease of implementation of the experiments used in the above analysis.

6.9.1 WEAKNESSES OF TilE IMPLEMENTATION ANI) EVALUAT!ON
In general, the weaknesses of the system (i.e, the way in which TS and the primi-
tive operations have been implemented) and consequently the ways inwhich it can
be improved are discussed in section 8 in the context of future research. However,
it is worth pointing out here that a fundamental weakness concerning the efficiency
of the implementation lies in the synchronization of all the processes residing on the
X-Linda node. Byway of example, consider a TS primitive process (i.e, In.Out or
Rd) wishing to lock a particular entry in TS. In general, a request is sent to the
Queue process to perform the operation, and the process invoking the command is
blocked until an acknowledgement is received from the Queue process indicating
that the operation has been completed. Now, to some extent, this form of blocking
synchronization is essential for ensuring atomicity of operations - however, it is
.felt that this aspect has been carried too far in X-Linda. Returning to the above sce-
nario, consider what happens when the Queue process is busy, adding a tuple to
TS for example. Access to the Queue process is restricted by a first-come-first-
served poliCy to ensure that the 'contents of TS are not accessed in parallel. Hence,
the process wishing to lock a tuple space entry must wait until the current operation
is complete (i.e. the addition of the tuple and the matching against the template
queue) and also until its own command has been processed before it can continue.

, This small example is representative of a whole host of other such synchronization
issues that have a similar effect on the p",rformance of individual processes. It is not
immediately obvious specifically how the synchronization constraints can be re-
duced. However, an in-depth investigation of the process interaction would un-
doabtedly reveal a number of unnecessary constraints.

It is also possible todirect some criticism at the method of evaluating the system
(i.e. the way in which the overheads have been ascertained). The analysis has been
successful in that it has illustrated the overall overheads and inefficiencies of the
system. However, it has told us very little of the specifics of these overheads - i.e,
the precise overheads attributable to scheduling, the need to transmit the extra in-
formation required to support the system, the routing strategies, the overly restric-
tive synchronization constraints, etc. (an intuitive idea of the severity of these re-
spective overheads is given in section 6.9.3), There is also some uncertainty re-
garding the applicability of the base test experiments. Exactly what should the
overheads of X-Linda be measured relative to 'I The answer to this question is not
clear; the best method of evaluating, for example, the efficiency of the in operation
is not Obvious. Finally, it should be re-emphasized that the results of the base ex-
periments pertaining to the transmission of small amounts of data are prone to
error, and can at best be regarded as an approximation.
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6.9.2 StRUCTURE OF THE X-LINDA NODE
As was discussed at some length in a previous section (5.2.3.1), the X-Linda node
has been implemented with adherence to the principles of good occam 2 program-
ming style - i.e, the extensive use of concurrent, self-contained, communicating
processes. This, however, is the cause: of what has been in this section referred to
as "set-up" overhead. Recall from section 5.2.2 that the X-Linda node comprises 7
"major" processes (Computation, In, Out, Rd, Interface, Queue and Challenge Man-
ager). Now, take the example of an out operation. Outs are invoked from applica-
tion programs within the Computation process. The tuple is passed from the appli-
cation program to a sub-process within Computation that handles out operations.
From here, it is sent to the Out process, and then to the Queue process for addition
to TS. Finally, the tuple is sent to the Interfaceprocess where it travels via a number
of internal sub-processes to the Transputer's physical links along which it is ulti-
mately transmitted to the out-set. This traversal of the internal software processes
may appear insignificant. However, these processes are therrselves time-slicing
between various sub-processes, and a significant delay may ~-••incurred between
the time that the operation is invoked and when it finally reache .. the physical links.
Hence, there is evidence of some "set-up" overhead - and this overhead is associ-
ated not only with the out operation, but also with the issuing and satisfaction of
requests, etc.

6.9.3 SIGNIFICANCE OF RESPECTIVE OVERHEADS
At this point, it is appropriate to pass comment on what are believed to be the most
serious of the system overheads. The specific overheads that have been revealed in
this section are those of communication, process scheduling, TS search, synchro-
nization and set-up, With respectto the comzsunication overhead (i.e, the overhead
involved in processing the out, in and rd operations), it is fairly obvious that the
greatest cause of inefficiency lies in the blocking of the node invoking the out until
the tuple' has traversed the out-set. In Table 6.2, it is shown that this causes the
addition of the tuple to the out-set to take almost 11 times longer than simply adding
it to local TS. Conversely, the implementation of the in and rei primitives. is very ef-
ficient (this is especially so with regard to the the in,whereby a single traversal of
the out-set is required to claim and delete a specific tuple).

Evaluating the severity of each of the respective overheads is obviously not easy,
However, based partially on the results presented in this section and those pertain-
ing to the execution of the example programs given the next (section 7) - but rely-
ing more heavily on intuition - the magnitude of the individual overheads (i.e. in
terms of their effect on the efficiency of the system) are estimated to assume the
following ranking :

1. TS search
2. communication
3. synchronization
4. process scheduling
5. set-up

The inefficiency of TS search is probably the most significant of these overheads,
and it is reasonable to assume that, together, TS search and communication are re-
sponsible for the vast majority of the overall overhead. Notice, however, that the
value in isolating the respective overheads is questionable since the overheads are
generally all closely inter-related. For example, the overheads attributable to pro-
cess scheduling and synchronization have a direct influence on all of the other over-
heads.
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Ease of Implementation 0/ Experiments
As a side issue, it is worth noting the technique employed in obtaining the majority
of the test results presented in this section. Control of the testing and the collection
of the relevant results were done using a Linda-like methodology, and, in further
support of the claim that Linda simplifies parallel programming (refer section 2.3),
this methodology will be briefly discussed here. It is common in the analysis of
distributed systems that each node in the system should carry out a specific test
procedure, and that these tests should not run concurrently (to avoid the effects of
the individual tests interfering with each other). Furthermore; there must be some
way of, at the conclusion of all the tests, accessing the results obtained at the
nodes: Using conventional parallel programming methodologies, this can be a non-
trivial exercise - under X-Linda, the process was simple. Assuming again that each
node in the system has a unique identity, Processor_ID, in the range O..k-1, each
node executes the following piece of code:

Define integer Array Tuple_Data:
in (Prcpassor_lD, Tuple__Data)
••• Perform Test
Tuple..:.Data [Processor _10] <- result of test
out (Procossor_lD + 1, Tuple_Data)

This algorithm is simple, powerful and elegant. The testing process is invoked by
placing the tuple (O,Tuple_D~ta) in TS. Node 0 Ins this tuple, performs its test,
writes the result to the cth element of 'ruple_Data, and outs the tuple (1,Tuple__Data)
- now Node 1 can initiate its test TIlZS. sequence .ontinues until all the nodes have,
in turn, performed their tests. Finally, there will be left in TS the. tuple
(k,Tuple__Data), where Tuple_Data ttl contains the test result pertaining to Node i,As
indicated previously, this synchronization of processors and subsequent collection
of results would not nearly be so straight forward on a native Transputer system,
and this simple example highlights the power and elegance of the Linda approach •.
As is discussed in the conclusions to this document (section 9). it is maintained
that, despite the inefficiency and overheads exposed, the X-Linda approach re-
quires a great deal more investigation. Possible ways of enhancing the efficiency
are addressed in section 8, and there is great potential for future research in this
area. The following section ties all of the results presented in this section together
by evaluating the efficiency of application programs running under XMLinda-- i.e,
by illustrating the severity of the overall effect of these overheads on the perfor-
mance of the system.
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SECTION 7

7.0 EXAMPLE PROGRAMS
This section details a selection of example programs that were implemented under
X-Linda in order to
L test and verify the system (obviously, the verification was not based purely on

the results of these example programs - a wide range of algorithms were run
through the system in order to verify the maintenance of TS consistency under
various conditions and circumstances)

2. observe the efficiency (or, as it turned out, the lack thereof) of the system.

Specifically, algorithms to perform numerical integration, matrix multiplication and
sorting were designed and implemented. These algorithms (with the exception of
the sort) are presented and evaluated in some detail below. Although the description
and analysis of the problems is not directly within the scope of this research, it is
maintained that they have great value in illustrating:
• thatvreal" problems can be solved using X-Linda
" how the X-Linda programming methodology differs from conventional Linda

approaches .
• certain aspects of the model that are the cause of vast inefficiency.
The above points are sufficient motivation for including the algorithms here. Fur-
thermore, it is believed that the introduction of some degree of "practicality" into the
research is of interest and importance. It must be noted at the outset of this section
that, unlike the experiments conducted in the previous section, the overhead of TS
search has a direct influence on the execution of these programs. The algorithms
require a certain amount of TS storage, and the inefficiency associated with
searching this space linearly (discussed in section 6.7) obviously has an effect on
the overall efficiency of the execution.

Host Process
In all of the X-Linda algorithms illustrated below, it should be noted that one spe-
cific node in the mesh was chosen to perform a double function - Le. that of the
host and of a worker process. This is because the host Transputer in the system is
itself not equipped to perform X-Linda operations (this is disct ssed in detail in sec-
tion 8.2.5). Selecting a specific node to perform this double function was some-
what arbitrary - with the restriction that the node chosen should not exist within the
top row of the mesh (i.e, should not suffer the extra overhead of communicating
through the host Transputer). For consistency, the first node in the second row of
the mesh (i.e, the node with identity equal to the dimension of the mesh) was
chosen throughout to act both as the host and as a worker process.

The algorithms are evaluated with respect to their execution time and the percentage
CPU utilization. This analysis highlights aspects of interest with regard to the effi-
ciency of the system. To conclude this section, some observations are made regard-
ing
.. . the cause of the system's apparent inefficiency
• the ease of design and implementation of the algorithms
• general program behaviour.
The full code listings for these examples are located in Appendix 6.
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7.1 NUMERICAL INTEGRATION
Numerical integration is the type of problem that must surely be a favourite with
marketers of distributed systems as a means of illustrating the efficiency of their
particular system. The parallelization of this algorithm gives lise to an implementa-
tion that features massive computation with minimal communication requirements.
Hence, any distributed system can be expected to give impressive results for this
problem. The example is included here since
1. it is a good example of a "perfect" parallelizable algoritem that is sure to show

impressive speed-up
Z. it illustrates the implementation of a "real" problem under X-Linda.

7.1.1 ALGORITHM
It was decided to implement numerical integration using tile Trapezoidal Rule, since
this method is exceptionally simple.

Trapezoidal Rule
The following definition of the Trapezoidal Rule has its source in Spiegel [1974].
To evaluate the integral
b

$f(x).dx
a
sub-divide the interval [~jb] into n equal parts of length IlX = (b-a)/o.
Denote f(a+l<Ax).I: f(Xk) by Yk, k = 0, 1, 2, "', n. Then
b

ff(x).d~~,.. (/lX 12) x {YO+ 2y, + 2Y2 + ...+2Yn-l +Yn}
a
The paraflelizaden of this algorithm is straight forward. Each worker is simply
given a sub-range of the integral to compute, and the integral is then calculated is
the sum of these sub-results.

X·Linda Algorithm
The algorithm, as implemented using X-Linda, is given below - a full code listing
for this example is given in Appendix 6. Given that the mesh comprises k nodes,
then each processor is uniquely assigned an identity, Processor_IO, in the range
O•.k-t, The host process, which, as mentioned previously. is implemented on a
worker node, outs the limits of the sub-ranges that each worker will be responsible
for :

define n, a, b :
delta_x <••(b-a)!n
sub lnterval <•• nil<
OOT.. oFORk

IntarvaLstart <•• i* sub_interval
out(l. (a, delta_x. sub_interval, intervaLstart})

SNODO

'The workers receive the sub-ranges corresponding to their Processor jns, perform
the calculation, and out the sub-result. Recall from section 2. L 1 that a "t"preced-
ing a variable name indicates a/ormal parameter, which is assigned the value of the
corresponding actual parameter in the requested tuple. The operations carried out by
the workers are specified as follows:
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in (Processe:t_lD. [?a, ?delta_x. ?sub_interval, ?intervaLstart])
result <-- 0oo k ... int.:-rval start FOR sub lntarval

result <•• result + 2f(a + k.delta_x)
- if k = 0, replace 2f(...) by f( ...)

END DO
out (Prot~assor_ID + 10CO, result)
•• note naming convention· to distinguish data tuples from result tuples

The host then collects and sums the tuples with name "Processor_lD+1000":

result <._ 0
DOI",OFORk

In (I + 1000, ?sul:uesult)
- recall·: result tvples are named "i + 1000"
result <•• result 'r sub result

ENDOD ~

It must also compute and add Yn, and multiply the total by llX/2.

7.1.2 EVALUATION
The efficiency of the a1g

i
Clrithm running under XsLinda is evaluated below with re-

spect to execution time and CPU utilization.

7.1.2.1 Execution Time
The algorithm was tested for a specific example, where
1(x) '"' (x 1213) - 1
n - f222.a ,. -n/2 .. .221

b .. 3n/2 .. 3X221

Notice that exceedingly large values for n, a and t) were chosen to maximize com-
putation. Using 4 processors, each node must evaluate the function 220 times,
whereas using 16 processors, the function is computed. 218 times. The algorithm
was implemented in a variety of environments :
Sequential - Sequential occam 2 implementation on a ('!.igleT800
Simulated - 4x4X-Linda mesh - simulated on. a single T800
2X2 - 2x2 X-Linda mesh - physically distributed (4 processors)
4x4 - 4x4 X-Linda mesh - physically distributed (16 processors).

Table 7.1 shows the time taken (in microseconds) for these algoritnms to execute.
The relative speed-ups (obtained by dividing the figures corresponding to the top
tow of the Table by those down the left-hand side) are also shown.

r iim~ Speed-Up
SeQuential Simulated 2x2 4x4

SEHlUential 37451520 1
Simulated '59113280 0.6S 1
2x2 12765645

I
2.93 4.63 1

~r- 4975514 7.63 11.88 2.57 1
• mclude:J ume to draw MOtUtor Setetn

Table 7.1 ~Numerical Integration - Execution Times and Speed-Up
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Some interesting information can be drawn from these results :
1. Simulated is 1.6 times slower than Sequential. Even disregarding the extra time

taken to write to the screen, this still indicates some inherent inefficiency
2. 2x2 is 2.9 times faster than Sequential. Calculating the efficiency [Quinn 1987]

of the algorithms as rime (Sequential) A 100
4 x Time (2X2)

we see that the algorithm is ....~% efficient
3. 4x4 is 7.5 times faster than Sequential, and 2.6 times faster than 2x2. Notice,

however, that the efficiency (relative to Sequential) is, in this 'case, only 47%.

Th.efact that some significant speed-up was attained for this algorithm is no great
cause for celebration. The nature of the example chosen suggests that speed-up is
inevitable - i.e. something would have to be seriously wrong for speed-up not to
occur. Conversely, notice that the efficiency of 4x4 is a poor 47% - this, with the
results that are presented with the next example (matrix multiplication) illustrates the
model's inherent lack of efficiency. Factors contributing to this lack of efficiency
are discussed in 7.4.1.

7.1.2.2 CPU Utilization
It is of interest to examine the percentage CPU utilization associated with the exe-
cution of this algorithm (the derivation of the CPU utilization figures is explained in
Appendix 3).

J 6 Processors (4X4 mesh)
Table 7.2 shows the percentage CPU utilization for 16 processors (i.e, 4x4 mesh).
Notice that the structure of the Table reflects the mesh itself ~ the identity of the
node appears above the CPU uttilz.~tionfigure.

I.. Column i:ilo I 1 I 2 3

Row 0

'1
~

'3

00 01' 02 03
99 99 99 98
04 05 06 07
. ~9 94 92 89

a 09 10 11
wI) 82 75 74
12 13 14 15
79 69 67 64

Tah'e 7.l :Numericsl Integration - Processor Utilization (4x4 mesh)

In this case, the host process was resident on Node 4 - i.e. this node was also re-
sponsible for putting the interval :1aformadon into TS and collecting the results.
Notice that the utilization figure for Node 4 applies only to the worker process.
This figure would be significantly lower if the execution of the host process was
also taken into account. Some interesting observations can be made with regard to
these figures :
1.The percentage CPU utilization progressively decreases over the processors in

the mesh. The reason for this is obvious - recall that the host process outs the
sub-intervals sequentially; i.e, starting with the information for Node 0 :'-l.nd
ending with Node 15. Hence. Node 0 can start its computation almost immedi-
ately, whereas Node 15 has to wait for a reasonable amount of time before its in-
formation becomes available.

2. The utilization on Row 1 (Nodes 4, 5, 6 and 7) is relatively high. These nodes
retrieve tuples that are stored locally, and therefore do not have to wait for the in-
formation to be sent from external sources. The (relatively) low utilization on
Node 4 is inexplicable. It has been stated already that the execution of the host
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process was disregarded, and the utilization was measured only with respect to
the worker. When the worker was invoked, it should have found its requested
information locally, and immediately started computation - i.e. one would ex-
pect a higher degree of CPU utilization.

3. The utilization in Column 0, excluding Node 4 (i.e, Nodes 0,8 and 12) is rela-
tively high. There is a good reason for this. The templates issued frem these
nodes are sent to the in-set, which, for these nodes, includes Node 4 (the host
process). Hence, as soon as the requested tuples are outed by the host, they are
matched against pending templates in the local (i.e. Node 4's)request queue and
satisfied immediately. Therefore, there is no delay in waiting for the tuple to tra-
verse the nodes in the out-set before finding a match.

4 Processors (2x2 mesh)
In the case of the 2x2 mesh, all 4 processors measured 100 % CPU utilization (1).
This reflects the effect of the communication overheads. For meshes of larger di-
mension, the communication overhead increases significantly, and processors
spend more time waiting for information (i.e. idle).

7.2 MATRIX MULTIPLICATION
Matrix multiplication is an example that is frequently cited in the literature (e.g.
[Ahuja et al, 1986 and 1988], [Carriero et al. 1986] and [Wentworth 1989]) as a
means of illustrating how a "real" algorithm can be implemented using Linda. In-
deed, it has come to be regarded as a "classic" Linda problem. It was decided to in-
cluded this example here since:
1. as indicated above, it is well-known and understood in the context of Linda-

based implementations
2. like the previous example, it serves to illustrate the implementation of a "real"

problem on the X-Linda system.

7.2.1 ALGORITHM
The standard, or classic approach to this problem is simple to describe - hence, al-
though this is not directly relevant, it is outlined briefly below. As will be seen
later, it is of interest to compare the "classic" approach with the X-Linda equivalent.

"Classic" Algorithm
This algorithm is based on those presented by Ahuja et al. [1988] and Wentworth
[1989]. Assume that two nxn matrices, A and B, are to be:multiplied together to
create a resultant nxnmatrix, C. The host process outs the rows of A and columns
of B into TS as follows :

DOi ...OFORn
out ("A",I, <ith row of A»
out ("B", I, <ith column of B»

END DO

It also outs "instructions" telling the worker processes that inner-product operations
must be performed on these rows and columns :

DOI=OFORn
DOj=oFORn

out ("compute IP", I, j)
END DO

END DO
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[he workers loop forever, reading in the rows and columns, computing inner-
products, and outing the correspondir q results:

DO forever
in ("compute lp·, ?i, ?j)
rd ("An, l, ?A_row)
rd ("B", j, ?B_col)
ip <_. Inner_Product (A_row, B_col)
out ("result·, i, j. ip)

END DO

To collect in the results of the computations, the host simply ins all of the "result"
tuples (irrespective of the order in which they become available) :

DO k ::l 0 F'OR (nxn)
in ("rer..ult",?i, 7j, 7ip)
C[i,n <-- ip

END DO

X..Linda Algorithm
Since X-Linda tuples comprise only 2 fields (refer section 4.3.1.2), viz. an integer
name and an array of integer data, it is obvious that the algorithm as described
above could not be directly implemented. The problem had to be modified to fit the
constraints of the tuple structure. The algorithm is outlined below, and the fun code
listing may be found in Appendix 6. Notice that, once again, one worker node must
double as the host. As in the classic approach, the host process outs the rows of A
and the columns of B :

DOi=OFORn
out (I, <ith row of k.)
out (i + n, <ith column of B»
-- use "I + 0" to distinguish between the name of tuples pertaining to A and B

END DO

The strategy at each worker is as follows. The workers rd the entire B matrix, and
then, for each selected row of A, compute and out an entire row of the result
matrix. Although this differs vastly from the classic approach, it is probably the
most logical and efficient method available given the tuple structure constraints, The
strategy for determining which row of A should be accessed by a specific worker is
not complicated. Initially, each worker Insthe row that corresponds to its processor
identity (as in the previous example, assume that the mesh comprise k nodes. where
each processor is uniquely assigned an identity, Processor_IO, in the range O..k-i).
After each computation, each worker simply adds k to the index that identifies the
row to be accessed. Hence, the workers are guaranteed that they will access distinct
rows of the A matrix. This is expressed by the following:
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- read entire B matrix
DOi",OFORn

rd (i + n, ?B [ij> -- recall: lth column of B is named "i + n"
END DO

-- computation
A index <,_ Processor ID
DO WHILE A index -e n

rd (A_index, ?A_row)
DOi",OFORn

C_row [i] <-- Inner_Product (A_row. B Ii])
END DO
out (2n + A_lndex, C_fOW)-- ith row of C Is narned "2n + i"
A index <-- A index+ k

ENODO -

To collect in the results (i.e. the rows of the C). the host ins the tuples with the
name "2n + l" :

DOI .. OFORn
in (20 + i, ?C rm

END DO

Comparing this (i.e. X-Linda) algorithm with the classic approach, we see that, in
essence, they are similar. The classic approach, however, exhibits a far finer grain
of parallelism, and the storage requirements of the X-Linda solution are far higher.

7.2.2 EVALUATION
The efficiency of the algorithm running under X-Linda is discussed below, again
with respect to execution time and CPU utilization.

7.2.2.1 Execution Time
As will be seen in this section, the efficiency of the system is appalling - the algo-
rithm takes longer to execute as more processors are added I A specific example
was used as a test case - the multiplication of two 32x32 matrices - on meshes of 4
and 16 processors. From the description of the algorithm given earlier, it should be
obvious that, in the 4 processor case, each worker computes 8 rows of the result
matrix and, in the 16 processor case, each worker is responsible for only 2 rows.
This algorithm was also implemented sequentially on a T800 Transputer, and on a
2x2 XsLinda mesh simulated on a single T800. As for the previous example, the
following notation is used to define to various algorithms :
Sequential ._ Sequential occam 2 implementation on a single T8G:)
Simulated - 2x2 X-Linda mesh - simulated on a single T800
2x2 - 2x2 X-Linda mesh - physically distributed (4 processors)
4x4 - 4x4 X-Linda mesh - physically distributed (16 processors).

Table 7.3 shows the time taken (in microseconds) for these algorithms to execute.
The relative "speed-ups" (obtained by dividing the figures corresponding to the top
row of the Table by those down the left-hand side) are also shown.
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lime Speed-Up
Seguential Simulated 2x2 4x4

Sequential 345728 1
Simulated "1505984 0.23 1
2x2 566379 0.61 2.66 1
4x4 1487526 0.23 ~.O ; 0.38 1
• Includes time to draw Monitor Screen

Table 7.3 : Matrix Multiplication - Execution Times and Speed-Up

The inefficiency of the system is self-evident - the results of Table 7.3 can be re-
stated' as follows:
L Simulated is 4.4 times slower than Sequential. Although the time taken to write

to the screen must be taken into consideration, this still gives an indication of the
inefficiency of the model running on a single processor

2. 2x2 is 1.6 times slower than Sequential and 2.6 times faster than 4x4
3. 4x4 is

• 4.3 times slower than Sequential
• approximately the same as Simulated
• 2.6 times slower than 2x2.

Factors contributing to these poor results are outlined in section 7.4.1.

7.2.2.2 CPU Utilization
Some interesting observations can be made with regard to the respective CPU uti-
lization of the processors for this example.

16 Processors (4x4 mesh)
Table 7.4 shows the percentage CPU utilization for 16 processors (i.e. 4x4 mesh).

t 0 I ~olt~ I ;J
00 01' 02 03
38 46 46 46
04 05 06 07
74 74 74 74
08 09 '10 11
40 48 48 48
12 13 14 15
39 47 47 47..Table 7.4 : Matrix Multiplloation - Processor Utilization (4x4 mesh)

As in the previous example. the host process was resident on Node 4. There are 3
important observations that can be made regarding these figures :
1. The utilization of the nodes in Row 1 of the Table (i.e, Nodes 4, 5, 6 and 7) is

far higher than for any of the other rows. This is because these nodes are able to
access the matrix information in TS locally - they do not have to wait for the re-
quested tuples to be sent from other nodes in the mesh.

2. The utilization of the nodes in Column 0, excluding Node 4 (i.e. Nodes 0, 8 and
12) is significantly less than any of the other utilization figures. It is suspected
that this is because the templates issued from these nodes travel through Node 4,
and, since Node 4 is the busiest node in the mesh, these requests take longer to
be satisfied.
Note: in the previous example, Nodes 0,8 and 12 exhibited relatively high uti-
lization. This is a prime example of how different program behaviour can have a
dramatic effect on processor efficiency. In the previous example, the host did
very little work (i.e. outed a relatively small number of small tuples); in this ex-
ample, it does far more.
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3. Row ° (Nodes 0, 1,2 and 3) has the lowest CPU utilization. Although the dif-
ference is not significant, the fact that this row also comprises a (slow) host
T414 Transputer and therefore suffers the extra communication overhead obvi-
ously has some effect.

4 Processors (2x2 mesh)
Consider now the case of the 2x2 mesh. Table 7.5 shows the percentage processor
utilization:

Column
o I 1

r~
Table 7.5 : Matrix Multiplication - Processor Utilization (2x2 mesh)

Here, the host processor was implemented on Node 2. The trend of the figures is
similar to those for the 4x4 mesh and will not be re-analyzed. It is important, how-
ever, to note that these figures are proportionally higher than those for the 4x4
mesh. This is significant, and is again indicative of the system's communication
overheads.

00 01
42 53
02 03
75 85

7.3 SORTING
A sort algorithm, based on a distributed dimensional collapse [Faasen 1987], was
also implemented using X~Linda. The algorithm had previously been implemented
on a native Transputer network in occam 2, and showed significant speed-up as
more processors were utilized. Little would be gained by presenting the algorithm
and analyzing the result of the execution under X-Linda here. Suffice to say that, as
for the matrix multiplication example, the execution time increased wlth the size of
the mesh. Observations regarding the implementation and efficiency of the example
programs are given below.

7.4 OBSERVATIONS
Some factors contributing to the inefficiency of the algorithms executing under X-
Linda are presented below, and general note regarding the design and implementa-
tion of the problems is given. A short discussion on general Linda program be-
haviour is given in conclusion.

7.4.1 FACTORS CONTRIBUTING TO INE1FFICIENCY
The following issues are all related to the general lack of efficiency exhibited in ex-
ecution of the algorithms. It is important to note these factors, since they highlight
general sources of inefficiency within the system as a whole.
1. Tuple Matching
It was indicated at the outset of this section that the execution of these algorithms is
influenced by the inefficiency of the tuple matching process. It is not unreasonable
to assume that the utilization of TS partitioning (as featured in, among others, the
Rhoda implementation discussed in section 3.3.4) would have a significant effect
on the overall efficiency of the system.
2. Host Processor
As has been described at length in various places throughout this document, the top
row of the X-Linda mesh incorporates an extra processor - a (slow) T414. Hence,
communication through this row incurs extra overhead,
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3.Host Process
In all the examples described, the host process is implemented on a worker node -
i.e. this node performs a double function. This is guaranteed to affect the efficiency
of the system.
4. Using ins instead of rds
The in operation is slower than the rd (refer section 6.4.1). In the interests of effi-
ciency, rds could, in most instances, have been used instead of ins. This was not
done in order to conserve some of the true "flavour" of Linda programming. Fur-
thermore, ins "clean up" TS - had rds been used instead of ins, a tremendous
amount of extra TS storage would have been necessary.
5. overheads incurred by the size of the Mesh
Increasing the dimension of the mesh (for example, from 2x2 to 4x4) causes
• the length of the in- and out-sets to be increased. Hence, the times taken to per-

form an out operation and to locate and retrieve specific tuples are increased ac-
cordingly

• the amount of local tuple space on each node (and, consequently, the amount of
search time required to locate a tuple) to be increased. This is especially relevant
with regard to the matrix multiplication example. For this specific example (i.e.
multiplying two 32x32 matrices), each node maintains a local tuple bucket of
128 entries. Recall from section 4.3.1.1 that local tuple space is subdivided into
...Jk buckets, where ...JI< is the number of nodes in a particular out-set. A node's
local TS for a 2x2 mesh therefore comprises 256 tuples, where nodes in 4x4
mesh maintain 512 entries. Hence, the worst case search time in the 4x4 case is
double that of the 2x2 case.

7.4.2 EASE OF IMI'LE!MENTATION
Disregarding the efficiency issues, it is worth making the point that the actual de-
sign and implementation of the algorithms under X-Linda was extremely easy. Per-
sonal experience with distributed systems, and, in particular, Transputer-based
systems has shown that the issues of processor synchronization and communica-
tion add a large degree of corcpiexity to algorithm design. The experience of pro-
gramming under X-Linda. has, without doubt, verified the claim (refer section 2.3)
that Linda, in general, eases the burden of writing parallel programs, and provides
an easy and natural approach to parallel algorithm design and implementation.

7.4.3 PROGRAM BEHAVIOUR
The behaviour of Linda application programs on a given system is a field of study
on its own, and has much valuable research potential. A thorough understanding of
program behaviour would give important insight into system design. Merely
touching on the surface of this issue, it is of interest to compare the percentage
CPU utilization figures for the numerical integration example (Table 7.2) with those
for the matrix multiplication example (Table 7.4). The two algorithms are some-
what similar in that the host outs information, the workers receive this data, per-
form some computation and out a result, and the host collects the sub-results, The
percentage CPU utilization figures associated with the two algorithms are signifi-
cantly different - i.e. they are behaving in fundamentally different ways. The whole
issue of program behaviour is of great importance, and it is believed that this area
will feature prominently in future Linda-oriented research (this topic is addressed
br'clly at the end of the next section in the context of future research).
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SECTION 8

8.0 ENHANCEMENTS AND FUTURE RESEARCH
There is a good deal of potential for future research with regard to the X-Linda
project. In this section, a number of ways of enhancing the system and its perfor-
mance are discussed; these enhancements obviously fall into the scope of future re-
search. The proposals for improving the system are presented under two broad cat-
egories:
1. enhancing the performance of general distributed-memory Linda implementa-

tions - obviously, these approaches are by default applicable to the X-Linda
system itself

2. enhancements specific to th~X-Linda implementation - here, approaches to gen-
erally improving the system as well enhancing its performance are discussed.

Finally, a short discussion regarding future research in the area of analyzing pro-
gram behaviour is given.

8.1 GENERAL ENHANCEMENTS
There are two obvious ways of enhancing the system performance in general-
1. using dedicated processors to handle communications and tuple space manage-

ment
2. speeding up the matching process (obviously, this issue is applicable to any

Linda implementation - not specifically distributed-memory systems).
These issues are discussed in more detail below.

8.1.1 DEDICA.TED HARDWARE SUPPORT
It is evident that the primary sources of X-Linda's inefficiency are the overheads of
communication and the matching process, and it is reasonable to assume that these
problems are common to the majority of distributed-memory implementations. A
technique that can be employed to speed up matching is discussed in section 8.1.2.
However, the greatest gain in efficiency would necessitate the utilization of dedi-
cated processors to handle communication and TS management. The Linda Ma-
chine (refer section 3.2) makes use of dedicated processing power - and this ap-
proach has been addressed in connection with a proposed Transputer-based imple-
mentation (section 3.3.2). Adopting the philosophy related to the latter proposal
(i.e, that Transputers are cheap and easily available), the approach is certainly fea-
sible. It is envisaged that each node in the mesh would actually comprise 2 proces-
sors - one dedicated to communicating with the in- and out-sets, and one on which
TS and TS management would be implemented (or, going a step further, imple-
menting a large TS over a number of processors). This would greatly reduce the
overheads of communication and of the matching process. It is maintained that this
approach must receive further investigation. The benefits of the programming
model, it is believed, far outweigh the extra cost of providing processing power.

8.1.2 SPEEDING UP THE MATCHING PR.OCESS
In section 2.1.4, the fact that TS search may inherently seem to be a source of great
inefficiency was briefly mentioned. There are, however, ways of speeding up this
process. Leler [1990] describes such a method; that of dividing TS into sub-sets. A
Linda preprocessor can be built in order to identify the usage of tuples in a particu-
lar program. Tuples with similar characteristics can be grouped together in mem-
ory, hence reducing the amount of TS searching at run-time. This technique of ef-
fectively dividing the TS into subsets is utilized in the Rhoda implementation (refer
section 3.3.4). Preprocessors can not, however, be used in conjunction with inter-
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preted languages, nor with compiled languages where the programs that manipulate
the TS are compiled independently.

8.2 ENHANCING X-LINDA
The scope for providing enhancements to the X-Linda implementation is vast.
Some obvious ways in which the system could be improved (besides the general
strategies covered above) are discussed below and it is hoped that these proposals
will be addressed in the course of future research. The issues discussed below re-
late both to improving the efficiency of the system, and to providing a more useable
system.

8.2.1 REDUCING STORAGE AND COMMUNICATION
The storage and communication requirements of the system are huge. A detailed
analysis of these requirements is needed in order to ascertain what information is
actually necessary (i.e. opposed to extra or redundant information that is present as
a result of ease of implementation or oversight). Take, for example, the storage and
communication requirements pertaining to a single tuple. The extra information re-
quired to store a tuple is shown in Table 5.1, and Table 6.1 details the extra infor-
mation that is needed in the transmission of a tuple. Some of this extra information
can, undoubtedly, be discarded. For example, storing the identity of the node issu-
ing the tuple is redundant since this can be computed from the tuple's location in
tuple space. This is just one small example of how the amount of extra information
can be reduced. No doubt a re-write of X-Linda would expose many more such in-
stances.

8.2.2 UNBLOCKING THE OUT OPERATION
In section 5.1.1.1 the technique of blocking the processor invoking an out opera-
tion until the associated tuple hac traversed the out-set was discussed. This was
done to prevent network saturation and subsequent deadlock. This has a dramatic
effect of the efficiency of the out operation. It is difficult to eliminate the need for
blocking altogether - however, it is certainly possible to reduce it. One possible
way of doing this would be to provide network buffering for a reasonable number
of outed tuples. Then the consecutive outing of tuples up to this limit would be un-
hindered (i.e. the processor would not block). Only once this limit was reached
(and if the previous tuples had not yet been through the entire out-set) would
blocking be enforced to prevent saturation. This would have a significant effect on
the overhead of the out operation. Alternatively, S. Hazelhurst [personal communi-
cation, Jan. 1991] suggests a scheme whereby the node invoking the out would be
allowed to continue processing, and only block when attempting to perform a sub-
sequent out operation.

8.2.3 REDUCING THE LENGTH OF THE TEMPLATE QUEUE
Itwas seen in section 5.2.3.2 that the length of the template queue on any given
node is defined to be of the same length as the tuple queue. This is obviously not
necessary, and much of the system's efficiency is lost through the searching of this
overly-long list. The number of requests that can be pending within the system at
any given time is bounded by a function of the number of nodes. Hence, the tem-
plate queue could be greatly shortened. This would consequently reduce the over-
head of the matching process, as well as the overall storage requirements.

8.2.4 PIPELINING TRANSMISSION
When passing messages of significant length between Transputers, it is possible to,
instead of sending and receiving the entire message in its entirety, break up the
message into segments, or packets. This is of great importance with regard to
pipelined configurations, where a message must be passed consecutively along the
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processors in the pipe. By breaking up the message into smaller segments, it is
I10ssible for a Transputer to concurrently receive and transmit packets on its hard-
ware links. Lakier [1989b] illustrates that this has a tremendous effect on the
overall rate of communication through a pipeline of processors. This technique has
an obvious application in X-Linda. The effect of using the approach in the trans-
mission of tuples over the out-set and in returning tuples to requesting nodes over
the in-set would be of great interest.

8.2.5 INVOKING TS OPERATIONS FROM THE HOST
TIle host Transputer is not capable of invoking Linda primitive operations. As de-
scribed at length at section 5.2.1, its primary function is to act as an intermediate
node and provide a link between the first and last processors in the top row of the
mesh. For the sake of clarity, this is depicted again in Figure 8.1.

Links to Column

Links to Column LInks to Column

Flgure i.i :Intermediate Host Transputer

Since the host processor is not part of any inverse beam (i.e. column of the mesh),
it is not possible to invoke in or rd operations from this node. However, it is pro-
posed that the system could be enhanced by having Node 0 carry out these opera-
tions on the host's behalf. Templates would then be sent from the host to Node 0
and processed in the normal fashion. Tuples returned to Node 0 as a result of a re-
quest from the host being satisfied would then be passed back accordingly. Al-
though this scheme would necessitate Node 0 handling more TS operations and
network traffic, it should prove to be more advantageous than the current scheme
whereby the implementation of applications that exhibit typical master / slave be-
haviour necessitates one processor in the mesh functioning both as the host and as a
worker. Apart from providing greater efficiency, this feature would also provide a
more effective user interface. Currently, the results of a computation can only be
observed by inspecting the TS of the node on which the host process is impIe-
merited (TS inspection is performed via a monitoring routine - refer section
5.2.1.1). By incorporating the host Transputer into the system, the user would
have the means to both provide input to and directly observe the output from a par-
ticular application program.

Aside - Configuring the Host out oj the Mesh
Conversely, it is also feasible to consider dynamically configuring the host Trans-
puter out of the X-Linda mesh [C. Mueller, personal communication, Dec. 1990].
TIle presence of this extra processor in the top row of the mesh does have an effect
on the efficiency of the system. Consequently) it may be desirable to load the appli-
cation programs from the host onto the network, and then dynamically connect
Processor 0 to Processor 1024, effectively blocking the host out. Once the pro-
grams have terminated, the link from Processor 0 to the host could be re-estab-
lished in order to access the results of the computation. This approach, although
potentially beneficial to the overall efficiency of the system, is unfortunately rather
clumsy.
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8.2.6 USING ARBITRARY NUMDERS OF NODES
This idea is closely related to that of invoking TS operations from the host proces-
sor. The system has been designed for use on a ~k by "I/kmesh of processors.
Obviously, this is an ideal grid dimension since it allows the tuple and inverse
beams to be of equal length. However, it would be useful if the system could still
operate on configurations where the number of processors available was not neces-
sarily a perfect square. This could be achieved in a fashion similar to that described
above. Take, for example, a configuration comprising only 5 no i.es. These nodes
could be configured as shown in Figure 8.2. .

Figure 8.2 : 5 Node Configuration

Templates invoked from Node 2 would now be passed to Node 1 and processed
there, and tuples satisfying these requests would then be redirected accordingly.

Inherent in both of the schemes described (i.e, 'nvoking TS operations from the
host processor and catering for configurations of arbitrary size) is the problem that
specific nodes would incur extra storage and communication overheads. The effect
of these overheads is difficult to estimate, and would require implementation anal-
ysis to be accurately determined, '

8.2.7 MULTIPLE ApPLICATION PROGRAMS
X-Linda permits only a single application process to be active on a processor at any
one time. It should by now be obvious that the Transputer supports concurrent pro-
cess execution, and, as described in Appendix 1, task switching is controlled by
microcode (i.e. is extremely fast), Hence, it is feasible to envisage multiple applica-
tion programs running on the same processor. Although Ahuja et al. [1986] main ..
tam that an advantage of the replicated worker model (refer section 2.2.1) lies in the
fact that each processor executes a single process, eliminating the need for context
switching, it is felt that Transputers are an exceptional case. As described in section
5.2.2.1, application programs are executed from within a Computation process, and
the Linda primitives invoked. from here are transmitted to and handled by dedicated
processes (i.e. the In.Out and Rd processes). This is illustrated in Figure 8.3.
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In,Out&Rd

Figure 8.3 : Single Application Program

An extension to the system would be to permit multiple application processes to be
invoked concurrently 011 each node. This would allow the programmer to take ad-
vantage of occam's process model of concurrency, and therefore provide greater
freedom in providing a more powerful means for expressing problems It is envis-
aged that these multiple programs could then be multiplexed through a uigle con-
trolling process in order to communicate with the In, Out and Rd processes, as
shown inFigure 8.4.

In,Out&Rd

Figure 8.4 : Multiple Application Programs

A tremendous amount of modification to the system would not be needed to imple-
ment multiple application programs. One obvious consideration that does come to
mind, however, is the fact that every template would need to have associated with it
the identity of the sub-process that invoked it, so that satisfied tuple requests could
be returned to the appropriate requesting processes.

8.2.8 TaE TUPLE CHALLENGE PROCESS
Alternative strategies for determining which node should win a tuple "challenge"
(i.e. when two nodes simultaneously attempt to .satisfy in requests on the same
tuple) were discussed in section 5.1.3.2. This topic has obvious potential for future
research, and should receive further investigation.

8.2.9 LINK DIRECTIONS
It was shown in section 4,3.1.4 that the tuple space requests and operations are
transmitted hi-directionally (e.g. templates are sent up the in-sets; tuples returned in
response to request satisfaction are passed down the in-sets). It was also pointed
out that, on average, the number of links traversed is identical irrespective of
whether one- or two-way communication is utilized. Nevertheless, it would be of
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Jnterest to test other directional strategies and ascertain what effect (if any) these
,would have on the efficiency of the system.

8.3 DIS''::USSION
The scope for enhancing X-Linda and the possibilities for future research are vast.
As is discussed in the next section at some length, it is felt that, despite the ineffi-
ciencies and overheads of the system, the potential for development and improve-
ment should not be neglected. The future research directions considered in this sec-
tion have focussed on enhancing or improving the implementation. However, a
further direction that is important, even critical, to future Linda research in general
is that of program behaviour. This issue has been touched on in sections 6.2.3 and
7.4.3, and it is worth re-emphasizing the importance of this area. It is felt th~~cur-
rently not enough is known about the behaviour of Linda programs in general. An
intensive investigation into this topic would prove invaluable in foreseeing the im-
plementation requirements of any proposed system.
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SECTION 9
---------------.------------"',_
9.0 CONCLUSIONS
In cg~dl1sion, it is worthwhile to re-examine the motivation and objective of this
research. It is indicated in this report that although occam does provide an elegant
and efficient means of programming Transputer networks, the software formalism
is very closely coupled to the hardware. This causes the underlying processor
topology to become an integral part of the design and implementation of parallel al-
gorithms,' On the other hand, Linda is a conceptually simple. topology independent
programming model; and, more than this, Linda programs are portable. It is there-
fore elaimed that there is much that can be gained by the implementation of the
Linda model on Transputer networks. The objective of this research is to investi-
gate the communication overheads imposed by a specific tuple space model on
Transputer meshes, and hence evaluate the feasibility of such an implementation.
The X-Linda system was created to conduct the investigation, and the research is
ulti.trxatelyconcerned with ascertaining the communication overheads inherent inX-
Linda, Below, a review of the report is conducted, and observations regarding the
findings of the research given.

9.1 REVIEW
To place the document inperspective, it is.useful to briefly review the content up to
this point. "The intention has been to lead gradually into the crux of the research, in-
troducing Linda and tuple space methodologies, then describing the design and
implementation of X-Linda and, finally, delving into the analysis and evaluation of
the system. To start with, section 2 describes the Linda paradigm, illustrating the
concepts of tuples and TS, and describing the primitive operations that may be used
to manipulate TS. This section is in 6tself useful, as it collates information located
across a broad range of reference material and presents a readable overview of the
relevant issues. Importantly, it is shown that Linda processes have no direct inter-
action with each other. Instead, process synchronization and communication are
achiev7d via tuple space operations, providing an entirely new, conceptually simple
approach to parallel programming. The benefits of the style of programming are in"
trodnced, and the advantages of the paradigm discussed. It is concluded in this sen-
tion that although there is no one programming model that can offer a complete
solution to the complexities and problems inherent in parallel programming, Linda
does address many key issees in the area.

Issues pertaining to the implementation of TS on distributed-memory systems are
considered in section 3, and two specific approaches (hashing and uniform distri-
bution) presented. Much emphasis i~given to intermediate uniform distribution, il-
lustrating that it is an elegant and conceptually simple approach (and hence its use in
the X-L.inda implementation). The Linda Machine, a distributed-memory system
designed specifically to support intermediate uniformly distributed tuple space, is
described, illustrating the advantages of using custom-built hardware. The design
of the Linda Machine js particularly relevant, since it has, to a large extent, influ-
enced the design ofX-Lin.da. This influence is apparent invarious places through-
ou~the document. Existing Transputer-based Linda implementations are also exam-
ined, illustrating that such Implementations are feasible and. by its absence, the
uniqueness of the X ..Linda approach. A further point raised within the context of
these Transputer-based implementations is the applicability of dediczsed hardware
to support Linda.
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The X-Linda implementation is introduced in section 4, motivating the project in
terms of a desire for a new programming methodology. X-Linda's implementation
environment (i.e. computing platform and development system) is described, em-
phasizing the complications imposed by communication between the host Trans-
puter and the network. The fundamental design and specification of the system are
outlined in this section, motivating the choice of tuple space model by virtue of its
simplicity and elegance, and its uniqueness within the sphere of existing Trans-
puter-based Linda implementations, A major influence of the Linda Machine is
shown in the storige of tuples and templates under X-Linda (i.e. the use of identi-
cal TS locations across the in- and out-sets). The design of the Individual nodes
within the system is described with reference to the design of the Linda Machine,
and it is shown that, essentially, the X'Linda node is a software implementation of
the Linda node. The applicability of occam 2 in the design and implementation of
the X-Linda node is discussed, emphasizing the value of a natural and elegant
means of expressing the required process interaction. The section also deals with
the structure of tuples undc,: X~Linda, illustrating the influence of the research
needs.

Section 5 delves deeper into the design specification. examining the actual imple-
mentation c: the TS primitive operations (i.e. In, out and re). Various problematic
issues and design considerations are addressed. The importance of detailing these
considerations lies in the fact that they have a direct impact on the overall efficiency
of the system, and, furthermore, they illustrate the maintenance of TS consistency
in the processing of the primitives. It is also important to note that the very exis-
tence of a substantial design effort can be regarded as an indication of the unsuit-
ability of the specific tuple space model on Transputers. This section also examines
the overall design and structure of the system at the process level, illustratlng the
function and interaction of the individual processes that, collectively, comprise X-
Linda. The design of the system is addressed with regard to the Host process and
the X-Linda node by means of an overview of the operation of the V~lriOUSmodules
within the system. A discussion on two fundamentally important aspects of the de-
sign (i.e. the provision of buffering and atomicity) is given, and the applicability of
occam 2 to the overall design is readdressed. It is maintained that the decision to
model the X-Linda implementation on the Linda Machine is well justified, and that
the design objective (i.e. to provide a software l'Uplementation of the Linda
Machine) has been achieved. In addition, it is claimec that the objective has been at-
tained in an elegant fashion. To conclude the section, the programming methodol-
ogy applied in the construction of X-Linda is briefly overviewed, illustrating an
adherence to "good" occam programming style. Finally, the (excessive) storage re-
quirements of the system and the causes thereof are detailed.

The actual purpose of the research - to ascertain the communication overheads as-
sociated with X-Linda - is covered in section 6. X-Linda is analyzed by means of a
comprehensive series of tests and experiments designed to measure the communi-
cation overheads of the model (relative to message passing performance on native
Transputer networks). The overheads specific to the TS primitive operations are
evaluated, and experiments are conducted to measure the overhead of data exchange
between processors and of a sink algorithm. In addition, the process scheduling
overhead and the inefficiency of the tuple matching process are discussed. It is
shown in this section that, in general, the communication overheads of the imple ...
mentation are significant and that, in addition, the collective influence of all of the
associated system overheads is excessive. The following section, 7, describes and
evaluates two example programs implemented under X-Linda. The results pre-
sented here complement those detailed in the previous section in that they illustrate
the collective influence of the various overheads on the overall efficiency of the
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system - i.e. emphasizing the extreme nature of the overheads and the resultant in-
efficiency of the system. Section 7 also gives some interesting insight into the
causes of this inefficiency. It is worth restating here that the implementation of the
experiments in section 6 and the example programs in section 7 was extremely easy
under X-Linda, supporting the claim in section 2.3 that Linda, by virtue of its
power and expressiveness, simplifies parallel programming.

The final section in this document, 8, deals with the future research potential of X-
Linda and discusses means of enhancing the system and its performance, It is ap-
parent that X-Linda has vast scope for future research and it is maintained that
much can be gained inpursuing the ideas dealt with here.

9.2 OBSERVATIONS
It has been shown that the X-Linda implementation suffers significant communica-
tion overheads and that the system, as it stands, is too inefficient to be of practical
use. However, it is important to keep in mind that X-Linda is not intended to be a
fully-fledged Linda system, but was created to provide a means of investigating the
communication overheads pertaining to It specific TS model. This is especially rele-
vant with regard to the TS search strategy, the inefficiency ofwhlch is illustrated in
section 6.7. It is not unreasonable to assume that a redesign of the system, given
the knowledge acquired in the course of this research and taking into account the
enhancements discussed in section 8 (particularly the schemes for speeding up the
matching process), may yield "acceptable" performance. Of course, it would never
be possible to achieve performance equal to that provided by native Transputer
networks. However, the e.' ophasis of Linda is on ease of programming (i.e. it is
acceptable to trade some performance off against the gains of the programming
paradigm [Ahuja et al. 1988]). With regard to scalability, the approach does not,
however, hold promise. Given a mesh of 210 processors, each in .. and out-set
would comprise 32 nodes, and the corresponding amount of communication neces-
sary to transmit tuples and templates across the respective sets would be significant.

It is concluded that the communication capabilities of the Transputer are 110t well
suited to the efficient implementation of in- and out-sets (of course, this statement
will need to be re-addressed with the introduction of the HI Transputer described in
Appendix 1), The fact that a massive design effort, with a great deal of additional
modification, was required to successfully implement the TS primitive operations is
immediately indicative of this unsuitability, and the extent of the overheads inherent
in the implementation illustrates this point in a more obvious way. The: overall effi-
ciency of the system is appalling, indicating the cumulative effect of all the associ-
ated overheads (i.e. communication, TS search, synchronization, process
scheduling and set-up). This, however, does not mean that the approach must be
discarded. It was shown that the communication overheads are not necessarily pro-
hibitive and it is felt that by addressing the other overheads listed above, it is pos-
sible to develop a usable system. More than this, as indicated in section 6.9.1, there
are various weaknesses in the design and implementation of the system. It is, there-
fore, maintained that, although the tuple space model is not well suited to
Transputer networks, the X-Linda approach requires further exploration in order to
exhaust its full research potential.

Finally, comment must be made on one aspect of ~heobjective of this research that
has been previously stated, but not yet addressed; to evaluate the feasibility of a full
Linda implementation based on the X-Linda approach. Infavour of this evaluation,
there is the elegance of a design that is modelled on the successful Linda Machine
project, and the fact that, as a result of this research, it is known that the design can
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be applied to Transputer networks. Working against these advantages are the facts
that
1. the point ..to-point communication Iinks of the Transputer are not ideally suited to

the implementation of in- and out-sets, and
2. apart from the resultant communication overheads, there are other inherent over-

heads that have a significant effect on performance,
Therefore, is a full Linda implementation feasible? The answer to this question is
reservedly affirmative. The system undoubtedly has the potential for development
into an efficient and usable product; however, extensive effort would be required to
achieve this. Personal opinion favours further development of the system, and, in
particular, investigating the USe of dedicated hardware support in this regard.
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Appendix 1

ApPENDIX 1

Al THE TRANSPUT£R AND OCCAM

For those unfamiliar with the Transputer and its native language, occam, a brief in-
troduction is given below. The information is based primarily on an overview given
by Faasen [1990a] and is non-technical in nature.

The Transputer is a microcomputer developed in the mid-1980s by !NMOS Lim-
ited. The fundamental components of the Transputer are a 16 or 32-bit processor
(CPU), fast local memory and high-speed communication links that provide point-
to-point connections between Transputers; all of these components reside on a sin-
gle chip and can operate concurrently. The IMS T414 Transputer is an example of
this basic model ~-other special purpose members of the Transputer fa.-nily feature
additional circuitry, microcode and interfaces that support a specific task (e.g. disk
and memory controllers). The. IM:S T8001 Transputer includes an on-chip floating-
point unit (FPU). The CPU, memory, communication links and FPU (in the case
of the IMS T800) all share a 32-bit data J address bus. An external memory inter-
face is provided to allow access to additional, off-chip memory. A block diagram of
the IMS T800 architecture is given in Figure ALl.

1In this Appendix, the term T8Ga by default refet's to a 20 MHz processor. Where necessary, the
notation T800-20 and T800·30 is used to distinguish between processors running at 20 and 30
:MHz respectively
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Figure AI.1 : IMS T800 Architecture

Parallel applications invariably involve a high degree of communication and tar'
switching. The Transputer utilizes microcode to control these aspects of concur-
rency. The result is exceptionally fast context switching (the IMS T800-20 can
switch between tasks in less than 950 nanoseconds). Consequently, it is possible to
achieve real-time multi-tasking performance. Transputers can be utilized as high-
speed stand-alone processors; alternatively 7 they can be easily networked together
to provide parallel computing surfaces. The process model of concurrency is sup-
ported by both the hardware and the programming model. Problems are described
using the software formalism, and, since the there is a close relationship between
this formalism and the physical architecture, the implementation in hardware on a
configuration that best meets the processing requirements is relatively straight-for-
ward.

At.1 PERFORMANCE
'The Transputer is a fast processor. The IMS 1414, released in 1985, is capable of
10 MIPS. The IMS T800 ..20, announced in 19'86, delivers 1.5 MFLOPS of 32~bit
IEEE standard arithmetic, and the IMS T800-30 is capable of 2.25 MFLOPS. With
regard to floating-point performance, these impressive results are largely due to the
fact that the FPU and CPU reside on the same chip and can operate in parallel -
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which means that the figures quoted represent sustained as opposed to peak per-
formance.

Al.2 COMMUNICATION
The Transputer has 4 high-speed serial links that provide full-duplex point-to-point
communication with other Transputers. Each link has an input and an output
channel. A connection between two Transputers is implemented by connecting
these channels together via a pair of uni-directional signal lines, as shown in Figure
A1.2: .

1

Figure Al.2 : Transputer Interconnection

Data that are sent along a link's output channel are acknowledged on the input
channel and process synchronization is provided by a handshaking technique. The
lMS T800 allows messages to be pre-acknowledged and each of the links are ca-
pable of transmitting data at a rate of 20 Mbits/second, which corresponds to
roughly 2.3 Mbytes/second of real data (i.e. excluding control information). The
fact that each link has its own DMA controller means that any specific link can op-
erate independently and in parallel with the other three links, the CPU and, in the
case of the LMS T800, the FPU. Communication, therefore, does not involve pro-
cessor overhead, The faCt that the speed of the processor is so much faster than that
of the links does, however, mean that communication is the bottle-neck in any
Transputer-based system and is the limiting factor in efforts to achieve speed-up
and processor efficiency. Networks of Transputers can be configured via the com-
munication links to specific topologies - for example, a pipe, ring, mesh or hyper-
cube.

Al.3 OCCaM
Occam is the programming model for the Transputer and was .developed concur-
rently with the hardware. Occam is based on the CSP model [Hoare 1978], and
was originally intended as a low-level compiler target for Transputers, However,
the language bas been successively developed into its current form, occam 2~which
is a. fully-fledged general purpose programming language with built-in support for
concurrency and commzaioation. Occam provides a simple and natural way of de-
scribing parallel systems. The model supports concurrent processes and inter-pro-
cess communication via. channels. These processes are used to model Transputers,
and the channels to simulate the physical links. Consequently, it is possible to de-
velop and test application programs on a single Transputer and then physically dis ..
tribute the programs on networks of Transputers.

Further details regarding the hardware specifications can be found in [!NMOS
1988a and 1989], and INMOS [1988b], Pountain [1989] and Jones and Goldsmith
[1988] cover the specification and usage of occam 2.
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AlA LOOKING AHEAD - THE HI TRANSPUTER
INMOS have announced a new generation of Transputer, the H1, which is due for
release ill 1991. The following details have their source Pountain [1990J and
Rabagliati [1990b]. The Hl will feature enhanced hardware with more powerful
operating system facilities to provide a faster and more usable computing platform.
The chip itself will run at 50 MHz, and will be capable of l00~150 MIPS and 20
MFLOPS. Again, only 4 communication links will be provided - however, each of
the links will be capable of a data transmission rate of 100 Mbits/second (about 5
times faster than at present). On-chip memory will be expanded to 16 Kbytes, and
it is significant to note that this memory will be cached.

Perhaps the most radical feature of the H1 is the introduction of virtual channels. A
separate on-chip communications controller is provided to multiplex any number of
logical channels onto the 4 physical links - i.e, the hard Jinks will be shared trans-
parently. A dedicated routing chip, the CI04, is also under development for use
with the HI. The CI04 is a high-performance 32x3Z packet-switching exchange
which will provide a transparent connection between any two Transputers in a net-
work. The HI and Cl04 will ease the burden associated with occam programming,
perhaps most significantly in that there will no longer be a need to "PLACE"
communication channels at physical link addresses. The programmer may, instead,
specify as many channels as necessary which the routing mechanism will
interconnect as required.

(,
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ApPENDIX 2

A2 BASE FIGURE EXPERIMENTS

Details regarding rates of inter-processor data transmission using occam 2 on native
Transputer networks are presented in this Appendix. The values obtained from the
experiments described below are the base figures against which the X-Linda mea-
surement were compared in order to ascertain the communication overheads of the
model (refer section 6). Notice that :
1. All the tests were conducted on the Parsytec SuperCluster described in section

4.2.1. Recall that the link speeds of the processors within the SupetCluster are
set at 10 Mbits/second

2. All the experiments are based on the transmission of sized errays of 32-bit inte-
gers

3. The experiments were run a number of times. and the results averaged out to
eliminate experimental error

4. The following notation is used throughout:
N - length of array (i.e. number of 32-bit integers in message)
m - 10g2N
Time - Time in microseconds
Rate - Transmission rate == ByteGI Time 0: N x 41 Time

5. In general, transmission rates are listed for messages of length between 210 and
217 integers, and an overall average rate is cited, It was often the case that the
times pertaining to the transmission of small messages (e.g, 24 integers) were
too low to be reliable (i.e, times of the order of' a few internal clock ticks).
Althougl it is realized that the rate of transmission of small messages is different
to that f~r very large messages, it was considered more practical to use the val-
ues pertaining to "stabilized" rates (for messages of length 210 words and up,
the rates of transmission are very similar) • ..

6. The technique of breaking up messages into smaller packets, and receiving and
sending on these packets concurrently was not employed (this technique can be
used to enhance the speed of transmission through a pipe of processors - refer
section 8.2.4).

7" The experiments detailed below exhibit some degree of replication (for example,
two different experiments are conducted to investigate one-: and two-way com-
munication between processors). Although these sorts of results may have been
inferred from other experiments, in the interests of accuracy it was not consid ..
ered prudent to do this.

------------------------------------------------------
A2.! EXPERIMENT 1
ONE WAY COMMUNICi1TION BETWEEN PROCESSOR.S

1. Objeettve
This eXfII!riment, based on that performed by Lakier [1989a], was designed to eval-
uate the speed of transmitting data from one processor to another. Furthermore, it
was desired to compare the rate of communication from a T414 processor to a T800
with that ber"~en two T800s (tlllS is of particular significance since the top row of
the X-Linda mesh incorporates a 1'414 host Transputer). . .
2. Design
The configuration shown in Figure A2.1 was used for this experiment.
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Flgure A2.1 : Experiment 1 - Configuration

The experiment was run. in two phases - it was necessary to measure the time taken
to transmit a message from
1. T414 Host to T800 (0)
2. T800 (O) to T800 (1).
In both cases, the time was obtained as follows, where Link.Out is the name of the
link between the source and destination Transputers :

cicek? start
Llnk,Out I arr;;;y size:: array
clock? finish -
time_taken :... (ffnish MINUS start) * 64 - microseconds

3. Results
The communication times and corresponding transmission rates for this experiment
are shown inTable A2.1.

Messaoe Lan T414 - T800(Ql ~.QQiQl"" TBOQ{ll
m N Time Rata lime Rate
10 1024 7360 0.5565 5696 0.7191
11 ~04a 14720 0.5565 11456 0.7151
12 4096 29440 0.5565 22912 0.7151
13 8192 58944 0.5569 45888 0.7141
14 16394 117952 0.5556 91712 0.7146
15 32768 235840 0,5558 183488 0.7143
16 65536 47H44 0.5557 366976 0.7143
17 131072 943616 0.5556 734016 0.7143

Avg 0.5560 Avg 0.7151
Table A2.1 : Experiment 1 _.Results

4. Observations .
1. The tate of transmission between two T800s is 1.29 times that of the rate from a

T414 to a T800. Factors contributing to this phenomenon are discussed in sec-
tion 4.2.2.

2. The rates of transmission call be more meaningfully stated as
• T414- 1800 (0) : 543 Kbytes/second
• T800 (0) - TeOO (1) : 698 Kbytes/second - this result correlates those ob-

tained by Lakier [1989a].

A2.2 EXPERIMENT 2
1'WO WAY COMMUNICATION BETWEEN PROCeSSORS (1)

1. Objective
The objective of this experiment was to evaluate the time taken to transmit a mes-
sage from a source to a destination Transputer, and then back again. Measurements
were required for transmission between adjacent processors, and also for the case
where communication occurs through intermediate nodes.
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2. Design
The configuration. shown in Figure A2.2 was used for this experiment.

~-~I Host I _ .....

~ ) - (3)
1.- __

Figure A2.2 : Experiment 2 - Configuration

The time taken for a message to travel from TaoO (0) to each of TaoO (1), (2) and (3)
and back again was measured. Notice that communication from the host is not mea-
sured in this experiment. It therefore does not matter whether this is a T414 or a
T800 processor.
3. Results
Table A2.2 shows the communication times and corresponding rates of transmis-
sion for this experiment. Notice that these transmission rates correspond to the
entire transmission of the message (from source to destination and back again).

Message Len TaOO(O)- T800(1) T80a(0) - T800(2) T800(0) - T800 (3)
m N Time Rate Time Rate Time Rate
10 1024 10713 0.3823 21452 0.1909 32633 0.1255
11 2048 21388 0.3830 42873 O.i911 65222 0.1256
12 4096 42752 0.3832 85696 0.1912 13036B 0.1257
13 8192 85504 0.3832 171328 0.1913 260672 0.1257
14 16384 170944 0.3834 342636 0.191S 521254 0.1257
15 32768 341888 0.3834 685222 0.1913 1042438 0.1257
16 65536 683750 0.3834 1370400 0.1913 2084800 0.1257
17 131072 1367468 0.3834 2740793 0.1913 4169586 0.1257

Avg 0.3832 Avg 0.1912 Avg 0.1257
Table A2.2 : Experirnent 2 - Results

4. 0bservations
1. The rate pertaining to TaDO (0) - T8DO (1) is slightly more (i.e, about 7%) than

half the rate of a one-way communication (refer previous experiment - Table
A2.1). The reason for this is unclear.

2. The rates shown above in Table A2.2 appear reasonably scalable as more pro-
cessors are added (i.e, there is an approximately linear relationship between the
rates and the number of links traversed),

A2.3 EXPERIMEN'T 3
TWO WAY COMMUNICATION BETWEEN PROCESSORS (2)

1. Objective
As in the previous experiment, the objective here was to evaluate the time taken to
transmit a message from a source to a destination Transputer, and then back again.
However, in order to implement a base test against which the in and rd operations
could be compared (sections 6.3 and 6.4), the above experiment had to be amended
slightly. The message from the source to the host, instead of consisting of an array
of integers. now simply comprised a single integer; the return message, however,
consisted of an integer array, as before.
2. Design
Refer to Experiment 2 and Figure A2.2. The experiments are identical except for
the fact that, here, only a single integer is sent from source to destination.
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3. Results
Table A2.3 shows the communication time s and corresponding rates of transmis-
sion for this experiment.

Messaqe Len 11100(0) - T800(1) T800eO)- T800(2) T800(0) - T800 (~
m N Time Rate Time Rate Time Rate
10 1024 5382 0.7611 11136 0.3678 16889 0.2452
12 4096 21459 0.7635 44416 0.3689 67379 0.2432
14 16384 85760 0.7642 177542 0.3691 269350 0.2433
16 65536 343091 0.7641 710105 0.3692 1077126 0.2434

Avg 0.7632 A~ 0.3688 A\I_g_ 0.2438
Table A2.3 : Experiment 3 - Results

4. Observations
As expected, the rates shown above are approximately half those obtained in the
previous experiment (Table A2.2).------"y_,--------------------
A2.4 EXPERIMENT 4
COMMUNICATIONS THROUGH A RING OF PROCESSORS

1. Objective
This test was designed specifically for comparison with X·Linda's out operation
(section 6.2), Communication times were required for the transmission of mes-
sages around rings of various dimension, and itwas also desired to observe the ·ef~
feet ~:>fincluding the host T414 Transputer within the ring.
2. Design
The experiment was tested. on rings comprising 2, 3 and 4 Transputers - each case
was tested with and without the additional host Transputer. The configuration used
is shown in Figure A2.3 below, where k represents the number of T800s in the
ring.

Figure A2.3 : Experiment 4 - Configuration

The message was transmitted from TaOo (0), and time taken for that message to tra-
verse the ring was measured. Two specific test cases were used, where the ring
1. did not include the Host - i.e. it comprised only T800 (0) through Taoo (k-1)
2. included the Host - i.e, the message had to go from T800 (k-1) through the Host

to get back to T800 (0).
3. Results
The results for the various configurations are given in Tables A2.4 - A2.6. For
each Table, the number (k) of T800s in the ring is given, and figures are quoted for
1. NoHost -not including the T414
2. With Host -including the T414 in the ring.
Notice that the transmission rates quoted correspond to the transmission of the
message over the entire ring.

t
[;ill " [i:J I- - - {[;TI l-

t ~ ) (1<-1)

A- I
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k=2
Message Len No Host With Host
m N Time Rate Time Rate
10 1024 11136 0.3678 22976 0.1783
11 2048 22336 0.3668 45952 0.1783
12 4096 44672 0.3668 91840 0.1784
13 8192 89280 0.3670 183680 0.1784
14 16384 178560 0.3670 367360 c 1784
15 32768 357184 0.3670 734720 0.1784
16 65536 714368 0.3670 1469440 0.1784
17 131072 1428672 0.3670 2938880 0.1784

Avg 0.3671 Av_g 0.1784
Table A2.4 : Experiment 4 - Results (k :::2)

k=3
Massage Lan No Host With Host
rn N Time Rate lime Rate
10 1024 16832 0.2433 28672 0.1429
11 2048 33664 0.2433 57280 0.1430.~ 4096 67328 0.2433 114560 0.1430
13 8192 134656 0.2433 229120 0.1430
14 16384 269312 0.2433 458240 0.1430
15 32768 538624 0.2433 916480 0.1430
16 65536 1077248 0.2433 1832832 0.1430
17 131072 2154432 0.2434 3665792 0.1430

Ava 0.2433 Avg 0.1430
Table A2.S : Bxperiment 4 - Results (k ::: 3)

k=4
M6<lsage len No Host With Host
m N Time Rate lime Rate
10 1024 22592 0.1813 34176 0,1199
11 2048 45184 0.1813 68288 0.1200
12 4096 90304 0.18.14 136576 0.1200
13 8192 180608 0.1814 273152 0.1200
14 16384 361216 0.1814 546240 0.1200
15 32768 722368 0.1814 1092416 O.1:2CO
16 65536 1444800 0.1814 2184960 0.1200
17 131072 2"89536 0.1814 4369920 0.1200

Ava 0.18141
AVSJ 0.1200

Table A2.1i : Expenment 4 - Results (k = 4) .

4. 0 bservation
Transmitting the messages through the host T414 has a dramatic effect on trans-
mission times. Ideally, the rate of transmission through ring of size k+1without the
host should be same as that for a ring of size k with the host. Table A2.7 shows
that this is definitely not the case:

k R1 R2 R1(k+ 1)1R2(k)
Rate - No Host Rate - With Host

2 0.3671 0.1784 1.36
3 0.2433 0.1430 1.27
4 0.1814 0.1200 -

Table A2.7 : Experiment 4.,.. Observations

105



Appendix 2

A2.S EXPERIMENT 5
INFORMATION EXCHANGE ON A MESH CONFIGURATION (1)
The experiment described below constitutes the one of the base tests against which
the X-Linda implementation of data exchange between two processors was com-
pared (section 6.5.1).
1. Objective
To replicate the data transmission required to effect the exchange under X-Linda-
l.e. to perform and measure the identical amount of message transmission using
occam 2.
2. Design
The total number of tuple transmissions necessary to perform an information inter-
change between a source node and any destination node comprises the following:
Xmlt (1) - Transmission from the source node along its out-set to the column

containing the destination node
Xmit (2) - Transmission along the column to the destination node
Xmit (3) - Transmission from the destination node along its out-set to the column

containing the source node
Xmit (4) - Transmission along the column back to the source node

Notice that the transmission of templates has been neglected. This is because, due
to the nature of the X-Linda algorithm (refer section 6.5), it is possible to assume
that a template will be in place (i.e.resident on a specific node) before the matching
tuple reaches that node. Hence" the time taken to transmit a template can be disre-
garded,

The calculation of the total number of transmissions is best illustrated by means of
an example. Given that Node 4 is the source node (as was done for the X-Linda
implementation), assume that data exchange is to occur between it and Node 11 (the
destination node). Figure A2.4 shows tile sequence of transmissions necessary to
complete the exchange under X-Linda (recall from section 4.3.1.4 that tuples are
outed to the right, and are returned downwards),

Figure A2.4 : Experiment 5 - Routing Example
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From Figure A2.4, we can deduce that the total number of data transmissions
needed to exchange data between Nodes 4 and 11 is :

3. Results
In Experiment 2 it was shown that the overall rate of transmission over 4 links is
47800 integers/microsecond (refer Table A2.2). Hence, we can, with justification,
deduce the rate over 8 links to be half of this - i.e. 23900 integers/microsecond
(this is claimed "with justification" since the results pertaining to different number
of links appear to be scalable). Using these results, it is possible to deduce the
times taken to perform the data exchange with respect to each of the nodes in the
mesh for tuples of various dimension - these are shown in Table A2.8.

Time
Node Xm~ (1) Xm~(2) Xm~_(2) Xm~(3) Total N:::16 N=256 N=1024
0 0 3 0 1 4 335 5356 21423
1 1 3 3 1 8 670 10712 42846
2 2 3 2 1 8 670 10712 42846
3 3 3 1 1 ~- 670 10712 42846
4 0 0 0 0 0 - - -5 1 0 3 0 4 335 5356 21423
6 2 0 2 0 4 335 5356 21423
7 3 0 1 0 4 335 5356 .21423
8 0 1 0 3 4 335 5356 21423
9 1 1 3 3 8 670 10712 112846
10 2 1 2 3 8 670 10712 4~34G
11 3 1 1 3 8 670 10712 42846
12 0 2 0 2 4 335 5356 21423
13 1 2 3 2 8 670 10712 42846
14 2 2 2 2 8 670 10712 42846
15 3 2 1 2 8 670 10712 42846

Table A2.8 : Experiment 5 - Results

4. Observations
From the communication patterns, it is obvious that the first node in every row (i.e.
nodes 0, 8 and 12) of the mesh will have the same communication times - which is
the same as that for all the nodes in the second row (nodes 5, 6 and 7). Similarly,
the rest of the nodes all have the same communication times.

A2.6 EXPERIMENT 6
INFORMATION EXCHANGE ON A MESH CONFIGURATION (2)
The experiment described below constitutes the second base test against which the
X~Linda implementation of data exchange between two processors was compared
(section 6.5.2).

1. Objective
To evaluate the rate of data transmission between two processors residing on a
mesh configuration over the shortest possible path. Notice th-t the data transmis-
sion is two-way - i.e. an exchange of information.
2. Design
A single node, processor 4, was selected to act as the "controller", Arrays of inte-
gers were transmitted from this node to every other node and back again, over the
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shortest possible path. Figure A2.5 shows the paths that were used for the experi-
ment. Notice that, although the routes depicted in the Figure are optimal, they are
not unique; there are a variety of shortest possible paths using a mesh configura-
tion. The routes shown below were chosen simply because they seem to the most
logical,

Figure A2.S : Experiment 6 - Shortest Paths

Notice that Node 3's communication occurs through the host T414. Gbviously, this
route could have been specified differently. However, to retain some form of con-
sistency with the Xc·Lindaconfiguration (where communication does occur through
the host Transputer), it was decided to use the above route. Hence, the rate of
transmission to and from this processor can be expected to be relatively slow.
3. Results
The only way that this experiment can be meaningfully with the X-Linda equivalent
is to consider average data transmission rates; the results pertaining to specific
nodes are, on their own, meaningless. Hence, the times taken for the transmission
of messages from Node 4 to all the destination nodes and back again have been
summed, and an average rate of communication calculated from this. These rates
are shown in Table A2.9 for the transmission of integer arrays of various dimen-
sion, using the following notation:
Total Time - Total of individual transmission times
Avg Time - Total Time 115 (i.e. excluding Node 4)
Rate ~ N x 4/ Avg Time (i.e. bytes / microsecond)

Massage Len lime
Avglime -

Rate
m N Total lima
10 1024 377984 25198.93 0.1625
12 4096 1508160 100544.00 0.1630
14 16384 6029056 401937.06 0.1631
16 65536 24112448 1607497.53 0.1631

Avg 0.1629
Table A2.9 : Experiment 6 - Results
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A2.7 EXPERIMENT "'I
IMPLEMENTATION OF A SINK ON A MESH CONFIGURATION
This experiment is the base test against which the X-Linda implementation of a sink
is compared in section 6.6.
1. Objective
To evaluate the time taken for the a;..nodes within a mesh configuration to send in-
formation to a single requesting node (the sink),
2. Design
The experiment is almost identical to the previous one (Experiment 6). Node 4 was
selected to send a request to all the nodes in the mesh, and these nodes then re-
turned information to this node. The paths over which the processors communi-
cated are identical to those shown in Figure A2.5. The single difference between
this experiment and the previous one is that, here, Node 4 sends out a request for
data, as opposed to an entire integer array. Ideally, this request should take the
form of a single integer. In practice, 3 integers were required to carry routing in-
formation (obviously, using 3 integers instead of 1 has a negligible effect on the
overall rate of transmission). The time taken for Node 4 to transmit all of its data
requests and to receive messages (i.e. integer arrays) from all the other nodes in the
mesh was measured.
3. Results
As in the previous experiment, the results are presented under the headings of :
Total Time - Time taken for all the nodes to receive a request from, and return in-

formation to, Node 4
Avg Time - Total Time /15 (i.e. excluding Node 4)
Rate - N x 41 Avg Time (i.e. bytes Imicrosecond)

The results pertaining to the transmission of arrays of various dimension are shown
ill Table,A2.10.

MeSSaQ9 Len Time Rate
m N TotalT1me Avg Time
10 1024 189760 12650.67 0.3238
12 4096 753920 50261.33 0.3260
14 16384 ,90('18512 200567.47 0.3268
16 65536 12028096 801813.07 0.3269

AVg 0.3259
Table A2.10 : Experiment 7 - Results

4. 0 bservations
As expected, the average rate of transmission for this experiment is almost exactly
double that obtained in the previous experiment.
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ApPENDIX 3

A3 ASCERTAINING CPU UTILIZATION

The percentage CPU utilization figures used throughout this document have been of
great value in the analysis and evaluation of the system (refer section 6), and have
provided useful insight into the general behaviour of application programs running
under X-Linda. This Appendix describes the derivation of the utilization figures
used in the analysis, and, for the Transputer enthusiast, an assembly language rou-
tine for ascertaining these figures is also given. A comparison of these figures is
conducted, and they are shown to perform identically.

A3.1 OCCAM 2 SUPERVISOR PROCESS
The method of evaluation used in the X-Linda analysis is based on that developed
by Rabagliati [1990a], with some modification. Rabagliati's approach involves a
Supervisor process which is run in parallel with the rest of the processes on the
Transputer. This process operates in 2 phases, both of which are invoked by
sending input via a channel into the procedure :
1. Calibration - this phase evaluates the speed of the scheduling mechanism. It
simply increments a counter over a specified time period, and returns the final count
value. The calibration phase must be run when the rest of the processes are idle
(i.e. waiting) in order to obtain a true calibration value.
2. Timing - When this phase is iI..voked, the counter is reset and then incremented
until the command to end the timing is received. The amount of CPU utilization is
obtained by comparing the new count value with the one obtained in the calibration
phase -.in effect, the procedure actually measures how idle the processor is. The
percentage CPU utilization is calculated as follows:

Let Maxldle be the maximum value of the counter attainable during the timing
phase (i.e. based on the value obtained in.the Calibration phase and on the pe-
riod of time that the Timing phase was active).
Let Realldfe be the actual value of the counter that was obtained during the Tim-
ing phase.
Then the percentage CPU utilization, is calculated to be :
((Maxldle. Realldle) / Maxldle ) x 100

This value is then returned to the process invoking the Supervisor pJ.·ocedure.

The process described above was slightly modified in order to obtain a more accu-
rate calibration value. The calibration phase WhS taken out of the procedure, and run
on its own - the resultant calibration figure was then "hard-coded" back into the
Supervisor process. The Calibrate and Supervisor procedures are presented below.
Both processes run two code segments in parallel - one process increments the
counter, and the other is the "controller" that is responsible for resetting and return-
ing the count value. The idle counter segment, common to both procedures, is de-
fined as follows:

... Idle counter
INT now. then:
SEQ

Idle :.. 0

... Set initial 'then'
PRIPAR

llMERTIME:
TIME?then
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SKIP

... Loop forever
WHILE TRUE

SEQ

,.. Get 'now'
PRIPAR

TIMERTIME:
TIME ? now
SKIP

... Increment Idle
F

(now MINUS then) < 20
Idle :"" Idle + 1

TRUE
SKIP

--"If ... less than a certain number of Ticks - 20 seems
-- about right - SUPERVISOR must be the only process
-- active"

then:= now

The Calibrateprocedure launches the idle counter process and its controlling code in
parallel. The controller resets the counter, and then delays for one second (during
which time the counter is incremented by the counting process). It then returns the
new count value to the process that invoked it. The listing for this procedure is
given below :

PROC Callb.Proc (CHAN OF tNT start, result)

... Declarations
VAL period IS 15a25: -- one second
INT Idle, Calibrate: •• Idle is accessed in parallel- hence, usage checking must be off

PAR

{{{
... Idle counterm
... Controller
WHILE TRUE

SEa
start? Calibrate

... Delay while Idle Is incremented
INTnow:
TIMERTIME:
SEa

klle:= 0

... Delay
TIME ?1l0W
TIME? AFTER now PLUS period

Calibrate := Idle

result I Calibrate

The Calibrate procedure was executed a number of rimes, and an average count
value obtained. This value (157487) was then defined in the Supervisor procedure
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to be the maximum count value attainable in one second (i.e, given that the no other
processes are running on the Transputer). The Supervisor also launches the count
process and a controlling process in parallel. The controller is invoked by the re-
ceipt ofa '0' on the input channel. It resets the counter, and on receipt of a '1', ac-
cesses the new count value (that was, in the interim, incremented by the count pro-
cess). The percentage CPU utilization is then computed as described earlier, and
returned to the requesting process. The listing of the Supervisor process is given
below:

•• This p(oc written by Andy Rabagliati (INMOS)
•• Amended: Craig Faasan • Oct. 1990

PROC Su~ervlsor (CHAN OF INT command, result)

••• Declarations
.,. Define start, read
VAL start IS 0;
VAL read IS 1 ;

... Calibration
VAL tlrna.perlod IS 15625.0 (REAL32)
VAL calibrate IS 157487.0 (REAL32)
VAL count.rate IScalibrate / time. period

INT Idle : ~ Idle Is accessed in parallel- hence, usage checking must be off

•• one second
._ Obtained using Calibrate procedure

PAR

{{{
... Idle counter
}}}.
... Controll~'r
SE~

... Vars
INTbegin:
T1MERllME:

••• Loop forever
WHILE TRUE

INTsignal:sea
command? sigr:al
F

... start
signal .. startSEa

Idle:::: 0
TIME ?begln

... read
signal .. read

... Vars
INTflnish:
REAL32 Real.Idle, Max.ldle, CPU.utl! :

SEQ
Real,ldle~".. REAL32 ROUND. Idle
TIME? finish

... Calculate maximum possible count valus
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VAL REAL32 elapsed IS REAL32 ROUND (finish MINUS begin) :
Max.ldle := elapsed • count.rate
CPU.util :.. 0.0 (REAL32)

... Calculate percentage utilization
F

Max.ldle <> 0.0 (REAL32)
CPU.uti! := ((Max. IdlE - Baal.ldle) • 100.0 (AEAL3t>1)/ iVk1X.ldle

TRUE
SKIP

result liNT ROUND CPU.utii

A3.2 ASSEMllLY LANGUAGE ROUTINE
Mitchell et al, [1990] present a Tr-nsputer assembly language routine for estimating
processor utilization. This appro . .;h, although identical in principle to that dis-
cussed above, is the more sophisticated of the two. The fundamental difference
between the two methodolovies is in the implementation of the idle counter process.
Here, an assembly languag"" lir,e is used for this purpose, and the idle counter is
incremented if the low prior, .I process queue is empty. In effect, this criterion is
identical to that used in the occam 2 Supervisor approach - however, unlike occam
2, assembly language permits access to the scheduling registers. The idle counter
process, IdleTime, is listed below:

... sc IdlaTlme

... COMMENT
this PROC extracted from:
"Inside The Transputer", O. Mitchel
Blackwell Scientific, Oxford, 199(.1

PROC IdleTime (tNT IdlsCount, E....
... Vars
INT Lldlsocunt, L.Extr.aCovnt :
tNT Back.Low.Ptr, FronlLowi='tr:

G.J'(
... Initialize
LOCO
STL L.ldlaCot.nt
LOCO
STL L.ExtraCount

... Repeat n.
:REPEAT
LOL Semaphore
Cl .END
LDLP FrontLowPtr
SAVEL
LOL FrontLowPtr
MINT
OIFF
Cl .INCIC
LDL L.ExtraCount
ADC1
STL L.ExtraCount
J .PASS

... Increment Idle Count
:INCIC
LOL L.ldleCoun1
AOC 1

.unt, Semaphore)

-- initialize counters

-- read Semaphore
- if zsro terminate
-- read low priority queue registers

.- and compare front one with Minlnt

-- if queue empty inc idle count
.- otherwise inc extra count

.- Inc Idle count
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STL Lldlacount

... Schl;!duling ...
:PASS
LDC2
LDl.P 0
STARiP
STOPP
J .REPEAT

- add to end of low priority
.- active queue

- deschedufe this process

." Return Counts
:END
LDL LldleCount
STL IdleCount
LDL L.ExtraCount
S11. ExtraCount

- return counts and finish

This procedure is used in very much the same way as the idle counter process is
used by the Supervisor, As shown below, IdleTime is launched in parallel with the
rest of the processes on the Transputer. On terminating (by setting Semaphore to
0), the procedure returns the value of the idle counter (ldleCount), and also an indi-
cation of the time taken up by the execution of the procedure itself (ExtraCount) •

... Inhialize
Semaphore :.. 1
IdlsCount :'" 0
ExtraCount :.. 0

PAR
SEa

... Processes to be evaluated
Semaphore :"" 0 -- terminate IdleTime 0

IdleTlme (ldleCount, ExtraCount, Semaphore)

As for the Supervisor process, it is necessary to establish a calibration value relative
to which the actual IdleCount value can be measured, Again, this is done by running
IdleTime by itself for a specified amount of time and hardcoding the resultant count
values back into the evaluation procedure.

A3.3 COMPARISON
Both of the approaches were tested using the following evaluation process, where
the values of Idle Limit and Busy Limit were varied in order to produce a range of
processor utilization figures .

... Walt/Busy
clock ?tlme
clock? AFTER tim a PLUS Idle.Limit

SEa i'"0 FOR Busy.Limit
SKIP

The utilization figures returned using both the Supervisor and IdleTime procedures
were exactly the same - i.e. the approaches perform identically. The reason for us-
ing the Supervisor ill the analysis of X-Linda is simply that the author was exposed
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to this approach first. For the sake of interest, the results of the evaluation are listed
inFigure A3.} under the following headings:
Idle ... Idle limit x 1000
Busy - Busy Limit x 1000
% - %CPU Utilization

Idle Busy_ % Idle Busv % Idle Busy %
0 1000 100 10 1000 50 0 1000 100

1.25 875 88 10 875 47 1.25 1000 89
2.50 750 75 10 750 43 2.50 1000 800.75 625 63 iO 625 39 3.75 1000 73
5.00 500 50 10 500 34 5.00 1000 67
6.25 375 38 10 375 28 6.25 1000 62
7.50 250 25 10 250 20 7.50 1000 58
8.75 125 13 10 125 11 8.75 1000 54

10.00 0 0 10 0 0 10.00 1000 50..
Table A3.1 : CPU Utllizatior;
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ApPENDIX·4

-----"~----------------------
A4 X..LINDA PROGRAM STRUCTURE

In section 5.2.3.1, it was indicated that there are two versions of X-Linda in exis-
tence - a simulated system running on a single Transputer and. the physically dis-
tributed version. It was also noted that both of these versions run identical code
since. the X-Linda modules are simply attached to harnesses that, for the simulated
system, launch the X·Linda nodes concurrently on one processor (these nodes
communicate via software channels) and, in the distributed case, physically place
the nodes and associated communication channels on separate processors. This
Appendix shows the overall structure of the simulated and distributed systems.

A4.1 SIMULATED SYSTEM
This system launches the Host process and the X·Linda nodes on a single Trans ..
puter - i.e, the entire mesh of processors is simulated on one processor.

... EXE X.Llnda.Slmolated

..• Hard.Ohannel.Protcccls

••• SC Host.Process
... Hard.Channel.Protocols

PROC Host.Process ( CHAN OF INTkeyboard.
CHAN OF ANY screen,
... Network link!; )

... SO NW.Connaction

... SC Monitor

PAR
... launch NW.Connaction
... Launch Monitor
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••• SC T8 X.Llnda.Noda
... Hard.Channel.Protocols

PROO L1nda.Nods ( VAL INT Proc.ld,
... Input IOutput Links)

... Processes

... SO T8 Interface

... SOT8 Queue

... SeTS Out
... SCT€ 10
... SCTSRd
.•• SO T8 Com~\ut(ltion
... SO TB Ohalienga.Managar

PAR
... Launch Processes
... Interface
... Queue
... Out
".Rd
... In
... Oomputation
... Challenge.Managar

PAR --launch all processes concurrently on a.single processor
'" LaunchHC,$t.Process
... LaunChun4~~:S(O~.k.1_i)...- -... __ ~ .......... .....__ ___.__..__

!,

A4.2 DISTRIBUTED S'i ,:../:£M
In this version, the Host process is launched on the Host processor, and the X-
Linda nodes are launched on independent Transputers within the network. Notice
that the Host process and X-Linda nodes in this version are identical to those in the
simulated version.

EXE X.Llnda.Host
... Hard.Ohannel.Prctccols

... SO Hest.Preeeaa

... Hard.Channel.Protocols

PROO Host.PrOCI;lSS( CHAN OF tNT keyboard,
CHAN OF ANY screen,
... Network LInks)

... SO NW.ConnC'ction

... SO Monnor

PAR
... Launch NW.Connaction
... Launch Monitor

... Links to Network

... Host <_.> Processor 0

... Host <••> Processor 1024

SEQ
... launch Host Precess
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... PROGRAM Llnda.Netw()rk

... Hard.Channel.Protocols

••• SC T8 X.Llnda.Node
•••Hard.Ohannel.Protccols

PRoe Linda.Node { VAL INT Proc.id,
'" Input! Output Links)

... PrOC13S$(J'S

... SC Ta Interface

... SCT8Queue

..,SCT8Qut

... SCT8In

...sCraRd

... SC T8 Computation

." se T13 Challenge.Manager

PAR
... Launch Processes
... Interlace
... Cueue
... Out
... Rd
... Irt
n. ComputatIon
... Challenga.Mana!,ter

... NW.Cunflguration
PLACED PAR .- physically place the nodes and finks on separate processors

... Processors (O.. k·1)
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..A.PPENDIX 5

----------------------.~----------------------------
AS LOW-LEVEL PROCESS DESIGN

In section 5.2.2, thefunction and operation of the processes that comprise the X~
Linda node (i.e, Computation, Out, RdJ In, Challenge Manager, Queue and Interface)
were briefly described. This Appendix.shows the diagrammatic interaction of these
processes, and of the sub-processes resident within each. The intention here is not
so much to give the reader a clear and concise understanding of the workings of the
X-Linda nude, but more to illustrate the manner in which the overall design has
been based on low-level process interactien, It is desired that the following illustra-
tions emphasize the fact that the system has been designed with adherence to the
principles of good occam programming procedure, and also the suitability of the
ocsam programming model for this tole.
'The following identification scheme is used in presenting the process design :

Channel connectIng
to "Miller" PreceslI1-----....'_:.t. :"Ma}Or" process.]

Chllnll.1 connectMg
to IntlirOlIl ~l'i'JCUiI

..." Internal
Process

AS.1 COMPUTATION PROCESS

RElceive
Fl'Om In

Figur~ AS.1 :.Computation Process - Structure and Interaction
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AS.2 OUT PROCESS

Out Buffey

Out Buffer

[ In

Figure A5.2 : Out Process - Structure and Interaction
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A5.3 RD PROCESS

Interface

Rd Buffer Rd Buffer

Rd Buffar

Receive
Requests

comms
Queue

Comms
!face

Satisfy •
Request

Queua

Figure A5.3 : Rd Process - Structure and Interaction
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AS.4 IN PROCESS

In Buffer

In Buffer

Receive
Requests

Comms
Queue

Process
Challenge

Satisfy
Request

Challenge
Manager

Figure AS.4 : In Process - Structure and Interaction
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AS.S CHALLENGE MANAGER PROCESS

Challenge
Manager Interface

Figure A5.S : Challenge Manager Process - Interaction

A5.6 QUEUE PROCESS

In Interface

Rd

Out

Figure AS.6 : Queue Process - Interaction

Appendix 5
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AS.7 INTERFACE PROCESS

Send
Link 0

Appendix 5

Receive
linkS

Receive
Unk4

Receive
linkS

Send
Unk1

Send
Unk2

I

Figure AS.7 : Interface Process - Structure

InFigure AS.7, the central component actually comprises individual sub-processes
- the outaequest, InRequest, RdRuquest, oueueaequest.and ChaUengeRequest
sub-processes interact with the out, In, Rd, Queue and Challenge Manager pro-
cesses respectively. The illustration has been presented in the above form for sim-
plicity.

In Request
Rd Request

Queue Request

Send ReceiVe
linkS link 7
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ApPENDIX 6

A6 EXAMPLE PROGRAMS - CODE LISTINGS

The listings of the example programs (i.e, numerical integration and matrix multi-
plication) covered ill section 7 are given below. This is done largely for the sake of
interest - they give some idea of the "feel and flavour" of programming under X-
Linda. Furthermore, they illustrate a methodology the must surely be a rarity in the
world of programming - the use of Linda primitives embedded in occam 2 pro-
grams.

AG.1 NUMERICAL INTEGRATION
The code listing below corresponds to the example described in section 1.1-i.e.
the integration of the function f(x) :: (x .' 213)~1 over the interval-zst to 3x221 , using
the Trapezoidal Rule with 222 steps. Recall that, given there are k processors in the
system, the worker processes reside on k-t of the processors; the kth processor
functions as both the host and a worker process.

VAL tuple.length IS 4 :

••• Trapezoldal.Worker
PRoe Trapei!oldal. Work$r 0

••• f (x)
tNT FUNCTION f (VAL INT x)
INTresult :
VALOF

result ;= (x I 8192) - 1
RESUI.T result

... Vars
INT a, delta.x, worker. result. sub. interval. start :
[tuple.lengthl1NT Tuple.Data :

SEQ

... in sub-range information
in (Proc.ld, Tuple.Data)
a :.. Tuple.Data {OJ
dalta.x :. Tuple.Data [1J
sub.lntarval :.. Tuple.Data [2]
start ;'" Tuple.Data [3]

... Compute IntograJ over sub-range
worker. result :...0
SEQ k .. start FOR sub.interval

VAL INT arg IS (a + (k • dekax» :
F

k ...o
worker.result :...worker.result + (f (arg))

TRUE '
worker.result :"" worker. result + (2 • (f (arg)))

... Send out result
Tuple.Data [OJ :... worker. result
VAL Index IS Prco.ld + 1000 :
_. !'aming convention for SUb-results
out (indox, Tuple.Data)
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... Trapezoldal,Host
PROC Trapezoidal.Host ()

... f (x)
tNT FUNCTION f (IIAlINT x)
INTresult:
VALOt-:

result :.. (x 18192) - 1
RESULT result

." Consts
VAL n IS 1«22:
VAL a IS -(n 12):
VALb 15(3*0)/2:
VAL delta.x IS (boa) In:-2
VAL sub. interval IS n 1no.ot.nodss :

•.• Vars
[tuple.lengthl 4NTTuph~.Data :
TR,~ERclock :
'''''i''!\). t1, 12. tlme.taken :
INtresutt :
VAL tlma.tuple IS ·99 : -- name of tuple that holds result & time

SEa
... Obtain tim a to access clock
dock 7t1
clock 112
to :. 12MINUS t1

... Inniali:z:eTuple.Data
Tuple.Data [0] :.. a
Tuple.Data [1] :.. delta.x
Tuple.Data [2] :...sub. interval

... Distribute sub-lntervals
time.taken :.. 0
dock 1t1
SEQ i'"0 FOR nc.ot.ncdesSEa

Tupls.Data [3] := i*.,sub.interval
out (I, Tupla.Data)

... Launch Wort,er (node doubles as Host & Worker)
Trapezoldal.Worker 0

... Receive sub-results
result: .. 0
51:0 I - 0 FOR no.of.nodes

VAL Index IS i+ 1000:
., naming convention for sub-resultsSEa

in (index, Tuple.Data)
result :.. result + Tuple Data [0]

... Perform final computatlon
result :- result + f (a + (n * delta.x»)
result :.. result • (delta.x " 2)

clocK1t2
time.taken :...tlme.taken + (t2 MINUS (11MINUS to})
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... Send out result & time taken
Tuple.Data [0] :"" result
Tuple.Data [11 := time.taken * 64
Tuple.Data [2] :... -1
Tuple.Data [3] := -1

out (time.tupie. Tuple.Data)

--,----------------
••• launch HC)$~& Work<'lr precesses
sea

F

... Proo.ld '" mesh.dim - Worker doubles as Host
(Proc.ld • mesh. dim)

- Note; must not he on tho row wnh the Host Transputer
- i.e. ths host should not be slowed down by extra communication
Trapezoldai.Host ()

... otherwise, WorkerTRue
Trapezoldal.Worker ()

A6.Z M, ..1'RIX M·ULTIPLICATION
Secticrr 7.2 examined the multiplication of two matrices under X-Linda, and the
code listing for this example is shown below. As for the previous algorithm (i.e.
numerical integration), the workers reside on k-t ot the processors, while the last
processor doubles as a worker and a host process.

VAL array.dim IS 32 :

••• PRce Matrlx~Worker
PRQC Matrlx.Worker 0

... Inner. Product ()
INT FlJNCTION Inner.Product (VAL (array,dlm] INT A.row, a.col)

tNT Result,Prod :
VALOF

sea
Result.Prod := 0
sea I,. 0 FOR array.dim

Result.Prod :.. Result.Prod + (A.row [ij * B.col [il)
RESULT Result.Prod

,.. Vars
... A·row, C-row
[array.d:mlINT A.row. C.row :

... B-matrix
[array.dim][array,dim] INT B.eol :

INT A.indtax •

sea
... Read all Brows
sea I", 0 F9R array,dim

VAL INT B.index IS array.dlrn + i:
-- naming convention for B-columns
rd (a.index, B.col [i))
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A.index := Proo.ld

... Computation Loop
WHILE A.index < array.dim

SEQ

... in A-row
in (A.index, A.row)

... Inner Product
SEQ I..0 FOR array.dlm

C.row [ij := Inner.Product (A.row, B.col [i])

... out C-row
VAL C.ln,iex IS (2" array.dim) +A.lndex :
-- naming convention for result rows
out (C.index. C.row)

A.index :.. A.index + no.of.nodes

.,. PROC Matrlx.Host
PROC Matrix.Host ()

... Vars
TIMER clock :
INT to, t1 t t2, time.taken :

... Matrices
[array.dlm][array.dhTf A, t::!. C : - A • B '" C

... A-row, B-column
[array.dim] INT A.row, B.col :

VAL time.tuple IS -99 : -- name of :ha tuple that holds "time taken"

SEQ

.., Obtain time to access clock
clock 7ti
clock 7t2
to :... t2 MINUS t1

... In~iaUzeMatrix
SEQ i...0 FOR array.dlm

SEQ J .. 0 FOR array.dlm
VAL k IS (I·array.dim) + J :
SEQ

A[ijO]:=k
B [U[j] := k

... Distribute rows and columns
clock ?ti
SEQ I= 0 FOR array.dim

VAL B.index IS array.dim + i:
-- naming convention for B-columns
SEQ

... ithrowofA
A.row := A til
... lth col of B
SEQ j -: 0 FOR array.dlm

B.~ol[j] := B UJ[O
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out (i, A.row)
out (B.index. B.cal)

... Launch Worker (this Node doubles as a host and a worker)
Matrix.Worker ()

... Receive results
SEQ i= 0 FOR array,dim

VAL C.index IS (2· array.dim) + i :
- naming convention for result rows
in (C. index. C [ij)

clock ?t2
time.t*-!(sn :'" t2 MINUS (t~MINUS to)

... Out time taken
A.row [OJ:= time.taken • 64 •• mlcroseccnds
out (time.tuple. A.row)

••• launch Host & WorkEl.'7 processes
SEQ

F

... Proc.ld .. mash.dlm • Worki#r doubles as Host
(Proc.ld - mesh.dim)

._ Note: must not be on the row with the Host Transputer
- i.e. the host should not be slowed down by extra communication
Matrlx.Host ()

... Otherwise. Worker
TRUE

Matrix. Worker ()
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ApPENDIX 7

A7 ORDER OF TS ADDITION

In secrion 5.1.1.1, the issue of the order in which tuples are added to TS was
briefly mentioned. This issue is re-examined here, where we consider the question
of whether tuples must be added to TS in the order in which they are outed. This
question (initially raised by Faasen [1990c]) is discussed purely in the context of an
interesting side-issue - it has no bearing on the X-Linda implementation (where
tuples are added to TS in the order in which they are outed). However, the issue
does raise some interesting points regarding the semantics of Linda, and, as such,
is worthy of deeper investigation.

The specific case that is of interest here is that where it is not possible to distinguish
between tuples - i.e. they have the same names (but different data fields). Note that
the ierm tuple name, although prominent in early Linda literature, has little meaning
in many current Linda implementations. In this Appendix, the term is used in its
broadest sense, and the specification that two tuples have the same names simply
indicates that the tuples have the necessary characteristics for a single template to
successfully match both of them. Under these conditions, it is obvious that the or-
der in which tuples are added to TS may have a significant effect on the on the re-
sults produced by an application program. However, as shown below, it is claimed
that, semantically, this order is irrelevant.

A7.1 AN EXAMPLE SCENARIO
The question of tuple ordering can be expressed by means of a simple example.
Consider the following sets of statements :

(1) out ("AW, 1)
out ("AW, 2)

(2) out ("AW, 2)
out ("AW, 1)

The execution of (1) or (2) has the same effect on TS - i.e. two tuples, ("A", 1) and
("A", 2), are added to TS. Now, if the statement in ("A", ?int i) is invoked, the order in
which the tuples were inserted into the TS is irrelevant. Linda's semantics specify
that the tuple request will succeed on there being a matching tuple in the TS, and, if
there are more than one such tuples, one of these is selected arbitrarily. Conse-
quently, (1) is semantically equivalent to (2) - i.e. the order in which tuples are in-
serted into TS is not a semantic consideration.

Notice that the above argument assumes that a request was issued after the addition
of the tuples to TS. Obviously, it is possible that the request could have be-: in-
voked prior to the insertion of the tuples. However, as shown by Haze. 'st
[1990] the semantics of the in operation are the same whether the in request pre-
cedes or succeeds the insertion of the tuples into TS. Hence, in this instance, (1)
and (2) are also equivalent.

A7.2 DISCUSSION
Linda's semantics do not guarantee tuple ordering - this aspect remains the respon-
sibility of the programmer. The order in whicl zhe tuples are inserted into TS will
obviously have some effect on the execution of the program, as shown in the ex-
ample below. Assume that ("A",1) and ("A",2) are present in the TS, and the follow-
ing segment of code is executed:
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in ("A". 7int I)
in ("A", 7int j)
k<-i-j

Depending on the order in which the tuples are added to the TS, k may the assume
the values ~1 or 1.Linda's semantics allow either result - it is up to the programmer
to provide more explicit sequencing if required.

It is interesting to note that Jerry Leichter [personal communication, May 1990]
states that, with regard to his own Linda implementation [Leichter 1989], and that
of Nicholas Carriero's [Carriero 1987], the order in which requested tuples are re-
turned is usually the reverse of that in which they were outed. Conversely, the Co-
gent Research XTM system [Cogent 1990] guarantees the order of requested of
tuples.
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