IMPLEMENTING TUPLE SPACE ON TRANSPUTER MESHES

CRrAIG RICHARD FAASEN

Degree awarded with distinction 27 June 1991

Research Report submitted to the Faculty of Science, University of the Witwater-

srand, Johannesburg, towards a partial fulfilment of the requirements for the degree
of Master of Science

Johannesburg 1991

Abstract

ABSTRACT

This report describes and evaluates an implementation of the Linda tuple space ab-
straction on Transputer networks. There is evidence that suggests a need for a new
programiming methodology to support Transputer-based applications, and Linda, as

an attractive and elegant alternative to existing methodologies, has great potential

for this role. The research focuses on the implementation of a particular tuple space -
model, intermediate uniform distribution, on Transputer meshes, The objective of
the research is to ascertain the extent of the communication overheads inherent in

the implementation and hence evalnate the feasibility of the approach. The over-

heads are measured relative to message passing performance on native Transputer

networks, and are shown to be significant. It is concluded that although the specific

tuple space model is not ideally suited to Transputer-based systems and the impile-

mentation, as it stands, is too inefficient to be of practical use, the approach re-

quires further exploration in order to exhaust its full research potential.

Deglaration

DECLARATION

1 declare that this research report is my own, unaided work. It 18 being submitted in
partial fulfillment of the requirements for the degree of Master of Science in the
University of the Witwatersrand, Johannesburg, It has not been submitted before
for any degree or examination in any other University.

_ 7 '
Craig Richard Faasen

14% day of February, 1991

it

e i b i e o

To my parents and two elder brothers - N

iti

Contents

CONTENTS
Abstract i
Declaration it
Prefice § _ : vii
List of Tables ix
List of Figures X
1.0 INTRODUCTION 1
2.0 THE LINDA PARADIGM ' ' ' 5
2.1 Tuple Space Model s vte L]
2.1.1T.ples . 6
2.1.2 Tuple Space 6
2.1.3 Tuple Space Operations.. 7
2.14 Matching Tuples,........ 8
2.2 Linda Programmicg Methodology. §
2.2.1 Replicated Worker Model 8
2.2.2 Uncoupled Style -
23 Advnntages of Linda 9
2.3.1 Criticisms 10
2.4 Discussion 11
3.0 TUPLE SPACE ON DISTRIBUTED MEMORY SYSTEMS 12
3.1 General Approaches 13
3.1.1 Uniform Distribition 13
3.1.1.1 Intermediate Uniform Distribution 14
3.2 The Linda Machioe..... - : 16
3,2.1 The Linda Engine 16
3.2.2 Maintaining TS Consistuacy, 17
3.3 Transputer-Based Linda Implemeniaﬁons 1%
3.3.1 Specialized Hardware and Sysism, Services 18
3.3 1.1 Hardware - 18
3.3.1.2 Cperating System-- 19
3.3.2 Ring-Based Linda Subsysiem 20
3.3,3 Distributed Hashing 21
3.3.4 Helios-Based Implemeniation. 22
3.3.5 Diséussion 22
4 THE X-LINDA APPROACH .24
4.1 The Need for a New Paradigm. .24
4.2 Implementation Environment 25
: '4.2.1 Computing Platform 25
4.2.2 The Host Transputer 26
4,2.3 Development System 27
4.3 X-Linda Design and Specification 27
4.3.1 Tuple Space Model 28
4.3.1,1 Tuple Storage 29
4.3.1.2 Tuple Structure - 30
4.3.1.3 TS Operationg--- 3!
4.3.1.4 Link Directions 31
4.3.2 X-Linda Node 32
5.0 IMPLEMENTATION DESIGN 34
5.1 Implementation of the TS Primitlves M
5,1.1 Out Operation - 34
§.1.1.1 Traversal of the Qut-Set 35
© 5.1.1.2 Processing the Out Requesi-— 36
5.1.1.3 Matching Tuples against Tempiates 24

iv

—

Contents

5.1.2 Rd Operation., 36
5.1.2.2 Satisfying the Request---- 37
_5.12.3 Muitiple Satisfaction of Requests 38
5.1.3 In Qperation, 38
5.1.3.1 Processing the In Reguest- 39
5.1.3.2 The Challenge Process 39
5.1.3.3 Satisfying the Reuest 42
5.1.3.4 Multiple Satigfaciion of Requests 42
- 5,14 Discussion 43
5.2 Process-1.evel Design 44
5.2.1 The Host Process 4
5.2.1.1 Monitor Process : - 44
- 5.2.1.2 NW Connection Pracess 46
5.2.2. The Linda Nods 46
5.22.1 Computation Process 47
5.2.2.2 Out Process 43
5.22.3 Rd Process 48
5.2.2.4 In Process 48
5.2.2.5 Challenge Manager Process 49
5.2.2.6 Queue Process 49
52.2.7 Interface Process b1
5.2.2.8 Discussion: a0
5 2.3 Spitware Specification. 51
5.2.3.1 Programuming Methodology 51
5.2.3.2 Storage Regquirements-- 51

6.0 ANALYSIS OF EFFICIENCY 54
- 6.1 Process Scheduling Overhead 55
" 6.2 Out Operation _ 56
' 6.2.1 Overhead of Out-Set 'I‘ra\nﬂ.',rsa1 56
6.2.2 Communication Overhead 57
6.2.3 Effect of Network Traffic 58
6.2.4 Processor Utilization. e 39
6.2.5 Comment 60
6.3 Rd Operation 60
6.3,1 Communication Ovuhead 60
6.3.3 Comment 62
6.4 In Operation 62
' 64.1 Extra Overhead 63
6.4.2 Processor Utilization, 63
6.4.3 Effect of Challenging 64
6.4.4 Comment 65
6.5 Data Exchange Between Processors 65
6.5.1 Replicating the Behaviour of X-Linda 67
6.3.2 Communicating Over a Mesh Configuration 69
6.5.3 Comment, 70
6.6 Overhead of a Sink Algarithm 70
6.6,1 Experiment 70
6.6.2 Comment. 1
6,7 TS Searci Time 7
6.7.1 Experiment 71
6,7.2 Comment...... w72
6.8 Review P e 72
.9 Discussion 3
6.9.1 Weaknesses of the Implementauon and E\raluat_nn 74
6.9.2 Etnseture of the X-Linda Node 75
6.9.3 Significance of Respective Overheads 75

7.0 EXAMPLE PROGRAMS

© 7.1 Numerical Integration

7.1.1 Algorithm

_ 7.1.2 Evaluation..

7.1.2.1 Execution 'Bme

- 7.1.2.2 CPU Utilization +
7.2 Matr bt Multiplication.... '

7.2.1 Algorithm .

7.2.2 Evaluation

- 7.2.2.] Execution Time -

7222CPU Uti!z'mrion

7.3 Sorting,

_‘ff! Observations....

7.4.1 Faciors Gomibting 1o Inefﬁciem:,-
7.8.2 Ease of Implementation. ..o

74,3 Progrun Behamm- o

‘80 ENHANCE:MLENTS AND FUTURERESEARCH
- 8.1 General Enhancements,

$.1.1 Dedicated Hardware Support

$.1.2 Speeding up thie Matching Prooess

8.2 Enbancing X-Linda
- 8.2, Reducing Storage and Commumcanun

- 2.2 Unblocking the Ont Operalion ...

ﬂzSReducmgmeLengumﬂheTemplateQuem

$2 4 Pipelining Transmission

-§.2.5 Tnvoking TS Operations from the Host

£.2.6 Using Arbitrary Nuribers of Nodes.,

8.2,7 Multipie Application Programs.. :

' SZSTheTupie\,hallenge?mcess

8,29 Link Directions
8-3])180“8&10!1 Ay

90 CONCLUSIONS o .
9.1 Review, - SO

5.2 Observationse

. Appendix1
Appendix2
Appendix 3
Appendix 4
Appendix 5
Appendix 4
‘Appendix 7

_Rel‘erences

Linda Bibliography

¥ii
78
738

30
81
8t

83

85
85
83

e 86
- 87

87
87

87

88

"y

28

90
20
91
91

.92

w88

g9

03

93

wares 95

o 101
110 -

116

125
130

136

i

119 .

13

 PREFACE

- 'This report constitutes the research requir .aent for the degree of Master of Science
. by course-work (609%) and research report (40%). The aim of the research is to in- -

vestigate the communication overheads associated with the implementation of the

" tuple space abstraction defined by the Linda parallel programming language on -
networks of Transputers, A particular tuple space model, intermediate nniform dis-

~ tribution, has been implemented on a mesh of Transputers, and this system is ana-.

Iyzed and evaluated in the course of the investigation. o S

- The preliminary literature survey for this research was conducted in August —
November 1989, and the implementation design started in February 1990, The
testing and verification of the implementation was completed in October 1990, As
stated previously, the ohjective of the research is to investigate the overheads inher-

- ent in the specific tuple space implementation — it was not the aim to develop a-

fully-fledged Linda system. The result of this investization is intended to shed light

" on the feasibility of a full Linda implementation (using the selected tuple space

methodology) on networks of Transputers. S - T

- Various sections within this document have appeared elsewhere in a slightly differ-
-ent form. Section 1 (Introduction) features excerpts from {Faasen 1989b and
1990a}, and section 2 (The Linda Pargdigm) is based heavily on a technical report
- that appeared in June 1990 [Faasen 1990d], as are the first two sub-sections within-
~ section 3 (Tuple Space on Distributed-Memory-Systems). The overview of the

Transputer and occam that appears in Appendix 1 has most of its sowrce in [Faasen -

- 1990a].

1 extend my thanks and gratitude fo my'ﬁxparvi-s’ors, Conrad Mueller and Scott
Hazelhurst, for their time, interest and enthusiasin, and for their valuable contribu-

- ons to many fruitful discussions during the course of this research, Thanks to

Yale University’s Department of Computer Science, notably Nick Carriero, Jerry
Leichter, Steven Ericsson Zenith and Venkatesh Krishnaswamy, for answering
- various questions and providing access to a significant amount of literature. 1
would also like to thank varions members of the Linda Users and North American
Transputer Users Groups for their responses to queries posted to the respective
bulletin boards. Thanks to lan Sanders for his comments on the conteit of this re~
- port, and to Derek Nitch for his remarks regarding the introductory section. Fi~
¥, I would like to thank to Lauren Bertola for her support and encouragement,
- and for her comments on aspects of the systern’s analysis, - ' -

Acknowledgement is given to the following registered trade-marks ¢
Linda is a frademark of Scientific Computing Associates, Ine.
IME and occam are trademarks of the INMIOS Group of Companies
~ SuperCluster and MultiTocl are trademarks of Parsytec GmbH =~
XTM and XTM Workstation are trademarks of Cogent Research, | i,
Macintosh is a wademark of Apple Comiputer, Inc. -
Helios is a trademark of Perihelion Software Litd. . ;
ComputeServer is a trademark of Chorus Supercoraputer Inc,
Sun i§ a trademvtk of Sun Microsystems, Ine,. -

AR e -

. With regard fo minor pomts conceming notatmn, natice that

T and out -
‘Tables, Figures and sub-sections that appear, in the Apr end:ces are numbered :

the terms Transputer: -4 transputer, and Occam and occam appear interchangn—
‘ably within the reler terature. This report adopts the notation prevalent in
- early-documentationn | i Trarwpu:er and occam (the latter i used synony--

mously with pccam 2y

angugge connterpms, the former appear m 2 dlstmcuve font ~ .8 in

Ax.y, where x is the number nf thc Append:x and Yy resp;acuve sequence

. numbet

B

-7

o dxsﬁn ish between ths names of the Linda pmmtive opetations and their '_ B

v

LAk 1RV

LIST OF TABLES

Table 5.Y> Stodge of Toples / Templates w49
Table 5,2 . Sizes of Snurce Cods Modules 52
Table 53 Tuple Space Storage Requirements auwie. : s D2
Table 6.1 DaiaRequirements for Tuple / Template Ttansmxsmon 55
Table 62 Overhead of Ous-Set Traversal e 56
‘Table 63 Out Opatation ~ Communication Overhead aee 57

© o Table64 Out Operation — Bffect of Netwotk Traffic .. 58
- Tatde 8.5 \JutOpBraﬁona-ProcemUulizannn 3
"Table65 RdOpesation — Communication Ovethead 61

Table 6,7 Rd Opertion - Effect of Network Traffic 62

© Table b8 - _InOpe:anon-Exu*aOmhead ; 63
Table 6,10 In Opérsisa - Effect ofChallengmg.... _ 65

"~ Table 6,11 ; Dasa Exchange - Number of Transmissions 67
. Table6.12 Data Exchange - Overhead (1). - . 68
Table 6,13 Daa Exchange - Overhead @) e B9
Table 6.14 \ . Sink Algorithm ~ Qverhead.. 7
Table 6,15 TS Search Time 72

" Table 6,16 —-Bost and Worse Case Overheads 2
-Table? 1 _Nkn&mall’ntegrmim Execution ’I"nnes and Spaed—Up 70
- Table 72 ‘Numerical Integration — Processor Utilization (4x4 mesh) .. 80
~Table 7.3 Matrix Multiplication — Bxecution Times and Speed-Up 84
- Table 74 "Mamrix Multiplication — Processor Utilization (4x4 mesh) ; 84
.- Table7.§ - MameulﬁphcannanfmrUhhﬂmn (Mmesh)“ NIPR—— A
" Table AZ:1 Experiment 1 - Results 102
T Table A22 Bxperiment 2 - Results , . 103
., ‘Iable A2.3 - Experiment 3--Results - 104
..+ Table A24 * Experiment 4 — Resuls k= 2o 10§
Table A2.5 Experiment 4 — Resuirs (k = 3) 105
Tabie A2.6 Experimgtﬂt —Resulis &k »4) 105
Table A2.7 Experiment 4 — Observations 105
Table A28 Experimient 5 - Resnlts...... 107
- Tabla A29 - Experiment 6 - Results 108

Table A2.10- Experirtent 7 ~ Results.. L 109
TabiaAS 1 CPU Utilizaum 115
. h
-

[—

List of Figures

‘Figurs A5.7

Interface Process — Structure and Interaction

LIST OF FIGURES
Figure 3.1 Glotal TS Operations 13
Figore 32 Local TS Operations 14
Figure 3.3 Tuple and Inverse Beams 14
Figure 34 Wrap-around Mesh of Nodes depicting In- and Out-Set 15
Figwwe 3.5 Structure of the Linda Engine.... 16
Fiure 3.6 XTMResoutce Server 19
Figure 3.7 Implementation of XTM Operating System 19
Figure 3.8 ng—Base.d Linda Subsystem.. 21
Ficure4,1 Parsytec SuperCluster— Pmcessormtemounecnon 36
Fxgum 4.2 Host Transputer Link Connecticn 27
Figure4.3 - 4x4 X.Linda Mesh 28
Hgure 44 Oui-Set — Tupls Storage 20
Figured.5 In-Set— Template Storage 30
Figure 4.6 Tuple / Template Stricture . a0
Figure 4.7 Transputer Communication Links 31
Figure 4.8 Direction of Data Transmission N
Figwe4.9 Structure of the X-Linda Node 32
Figme 51 3 Nede Out-Set.... 35
Figure 52 Out Operation —Unblocked 35
Figuwre 53 Ont Operation — Blotked 35
Figwe 54 Template Deletion 37
Pigure 5,5 Muitiple Satisfaction of Rd Request. 38
Figore 5.6 Multiple Matches on the Sams Tuple 40
Figure 8,7 Challenge Process : 41
Fisure 58 Muldple Satisfaction of In Request 43
gure 5.9 Layout of the Host Processor. 44
Figure 5,10 Monitor Screen i 45
Figure 5,11 Monitor Routing Path 46
Figure 5.12 Structure of the X-Linda Node (revisited) 47
Figure 6, 4x4 X-Linda Mesh, ' 54
Figuwre 6.2 Rd Operation - Location of Requested Tuple 60
Figure 63 Rd Operation — Link Traversal 61
Figurs 64 In Operation — Forcing a Challenge. 64
Figwwre 6.5 Graph of Best/Worst Case Overhead (1) 73
Fignre 6.6 Graph of Best/Worst Case Overhead (2) 73
Figiure 8.1 Intermediate Host Transputer 89
Figwe 82 5 Node Configuration 90
‘Figure 8.3 Single Application Program 51
Figure 84 Multiple Application Programs ..., o1
Figure ALl IMS T300 Architecture. 98
Figore A2 Transputer Interconnection . 99
Figure A2.1 Experiment 1 - Configuration 102
Figure A2.2 Experiment 2 ~ Configuration 103
Figure A2.3 Experiment 4 — Configuration 104
Figure A24 Experiment 5 - Routing Example 106
Figure A2.5 "Experiment 6 — Shoriest Paths 108
Figure AS.1 Computation Process — Structire and Interacdon 119
Figure A52 Out Process ~ Structure and Inter~tion 120
Figure A5.3 Rd Process ~ Structure and Intergction . 121
‘Figure A54 TnProcess - Stoicture and Interaction 122
Figure A5.5 Challenge Manager Pracess < - Interaction .., oo 123
Figure A58 Quene Process - Interaction. ; 123
124

1 — Introdaction:

SECTION 1

1.0 INTRODUCTION

Manufacturers of conventional (i.e. sequential) computers are constantly striving to
improve the performance of their hardware in a bid to keep up with ever-in “reasing
processing demands. However, as technologies approach the limits imposed by the
speed of light, so these efforts yield irnprovements of successively less significance
{INMOS 1989]. The solution to the problem of modelling real-world systems les
in the domain of parali¢l processing — dividing up a problem among a number of
processors and solving the sub-problems in parallel. Not only does this approach
increase processing speed, but it provides the means to express realistic sclutions to
inherently parallel problems. This is an important issue given that most real-world
systems involve some degree of concurrency. In a parallel environment, processes
can gxecute and function independently of each other. It is obvious, however, that
there must be some means df coordinating the processes in such a way that they can
~ cooperate and interact with each other. There are & wide range of such
synchronization and comrpunication mechanisins — e.g. semaphores, conditional
¢ritical regions, monitors, remote procedure calls and message passing, These
mechanisms are critically reviewed by Faasen [1989b], and are found, in general,
1o be applicable to specific domains {e.g. semaphores are obvious candidates for
shared-memory models, whereas messajte passing is highly suited to distibuoted-
memory systems). There is, however, & more recent and far more generalisable
mechanism than those listed above, "3is pertains to the Linda programming
paradigm, and is known as generative communication. ' -

Linda is a paradigm for high-level paralie} programming, the basis of whichisa

global, logically shared tuple space (TS). TS is a form of associative memory that =

is accessible to all processes running within a parallel program. These processes
communicate by manipulating the TS — i.e. by inserting and retricving data objects
{tuples). Processes therefore have no direct intersction with each other, Instead,
process synchronization and communication are achieved via tnple space opera- -
tions, providing an entirely new, conceptually simple approac!t to parallel pro-
gramrying. Inherently, a shared-memory archifecture appears most suited to sup-
}.tng Linda efficiently {since tuples within TS are accessible to every process
s1iain the system) and there a number of such implementations in existence
[Larriero 1987], However, distributed-memiory architectures are not excluded from
- the sphere of potantial Lincla target machines. Indeed, these systems are regarded as
an important areu of application as they are generally cheaper, less complex and
more scalable than shared-inemory hardware [Ahuja et 2. 1988]. -

The Transputer is representative of such distributed-memory architectures, offering -
- supercomputer performange for a fraction of the cost [INMOS 1989]. There is a
close relationship between the Transputer and its programming model, occam, This
means that problems to be solved using the hardware can be expressed naturally
and elegantly (and efficien(ly) in occam [Pountain 1989%]. However, because of the
close relationship between the hardware and the software formalism, the style of
programming is closely coupled to the specific hardware topology. Consequently,
the underlying processor configuration plays a prominerit rol¢ in algorithm design.
There is a steep lzaming curve associated with the effective and efficient utilization
of Transputers (this statement is based largely on personal experience in teaching
the use of occam and the "Pransputer; however, Pountaln [1990] and Rabagliati
{1990b] both allude to the difficultics imposed by the model of communication).

1~ Introduction

This suggesis a need for a new programming paradigm to snpport Transpnter-
based applications, Linda, as an ¢legant and conceptuaily simple alternative to exist-
ing methodologi~ *« a strong candidate for this role. Furthermore, Linda pro-
grams are portab.. atific 1989] ~ they can be run with little or no modification
on any arshitecture on witich the tuple space abstraction and communication kernel
are resident. Consequently, there is much to be gained by the provision of a Trans-
puter-based turget machine, S o

The implementation of a globally accessible tuple space on Transputers poses a

number of problems. As detailed in Appendix 1, the Transputer is a message pass-

" ing distributed-merory architecture, with processor interconnection via point-to-
point synchronous links. Hence, there is the problem of maintaining distributed
data over independent locul memories, and also having to deal with a potential

“communications bottleneck. Nevertheless, there are a number of Transputer-based
Linda implementations in existence, although, as will be seen later in this report,
the approach taken ix this research is unigue, : :

The objective of the research is to investigate the communication overheads im-
posed by a particulsr tuple space model, the intermediate uniformly distributed
scheme, on Transputer meshes, and hence evaluate the feasibility of such an im-
plementation. In suppert of this investigation, the model has been implemented in
occam 2 on meshes of Transputers. This implemenvation, termed X-Lindat, is the
vehicle of the investigation; ultimately, the research is concerned with as¢ertaining
the communication overheads inherent in this system. It should be pointed out that
X-Linda is not a fully-fledged Linda imiplementation. The design and functionality
of the model are resiricted to meet the needs and requirements of the investigation.

The structurs of this eport isintended to lead the reader in a systematic fashion into
the heart of the reseassh. The document progresses from introductory information
on Linda and tuple space methodologies into the design and implementation of X-
Linds, and then details the analysis and evaluation of the systera. The agtnal content
of the document is briefiy overviewed below, - _

A logical place to commence this report is with Linda itself. A broad overview of
linda is givey in section 2, illustrating the concepts of tuples and TS, and describ-
ing the primizive operations that may be used o magipulate the TS. The program-
ming methodology is introdiced, focussing on the replicated worker model and
Linda’s characteristic uncoupled style, and the related advantages and benefits of-
fered by Linda are discussed. As indicated earlier, although there is strong suppeat
for the implementation of Linda on shared-memory architectures, distributed-mem-
ory implementations remain an important area of application. Since this rescarch is
concerned with the implementation of tuple space on a distributed-memory system
(i.e. a network of Transputers), it is important to be aware of existing tnple space
models and methodologies that have been applied to distributed-memories. Section
3 presents various models of tuple space that can be fitted on to distributed-mem-
ory, and describes a custom-built distributed-memory system that has been de-
- signed specifically to support intermediate uniformly distributed tuple space (the
- Linda Machine}). The design of the Linda Machine is particularly relevant, since it
has, fo a lurge exient, influenced the design of X-Linda. The section also examines
-existing tuple space implementations on Transputers, illustrating how the various
ple space todels have been adapted and applied to this specific environment. The

- uniqueness of the X-Linda approach is also highlighted. S

1X-Lintia ? An abbreviation of Xputer-Lisida, derived from Transputer-Linda

e _ _ ¢ L-Inwonuchon

PR

'~ The X-Linda implementation is introduced in section 4, re-emphasizing the need for -

an alternative Transputer-based programming methodology as motivation for the
research direction in general. Since the regearch is implementation oriented, it is rel-
evant and important to describe the underlying hardware and development envi-
ronment, and details pertaining to the specitic computing platform (viz, a Pamsytec
- SuperCluster) and its development system are given here. The section then focuses
* on the fundamental design and specification of X-Linda, motivating the choice of
- tuple space model (intermediate uniform distribution). The inteniion here 13 siraply
to present the overall design and structore of X-Linda (Le. withont entering into -
- low-level implementation techniques). To this end, the remainder of the section

- gives a non-technical description of the storage of tuples within TS and the format
* of tuples and templates; the choice of TS primitives provided by the implementation -
is also justified. Finally, the structure of the individnal nodes that comprise the
system is described. A more detailed account of the implementation of the TS
primitive operations under X-Linda i3 given in section 5, highlighting varicus
problematic issues and design decisions that had to be addressed in orc.s to realize
the successful implementation of these operations. These considerations are impor-
tant since they have a direct impact on the overall efficiency of the system. Fyrther-
more, the very existence of a substantial design effort can be regarded as the first
indication of the unsuitability of the specific tuple space model on Transputers, This -
section also examines the design and structure of the system at the process level,
iliustrating the function and interaction of the individual processes that, collectively,
comprise X-Linda. -~ -~ . o S

~ 'The actual purpose of the research - to ascertain the commuaication overheads as-
sociated with X-Linda - is addressed in section 6, A series of experiments and tests
are presented that have been designed to measure the extent of these overheads
{relative to message passing performance on native Transputer networks), It is
- shown fn-this section that; in general, the communication overheads imposed by the -
system are sigpificant, and that the overall overhead of the implementation
(attributable to the collective effects of communication, TS search, synchronization,
- process scheduling and set-up) is sxcessive, The following section, 7, describes
- and evaluates two algorjthms (numerical integration and matrix mgidtiplication) that
~ have been implemented under X-Linda in order to observe the Fﬁciency_ of real
applications running on the system, Althongh the relevance of tliis section to the
- scope of the restarch may not be immediately obvious, the results presented here
complement those detailed in the previous section. Section 6 details specific over-
heads and inefficiencies and, here, the collective influence of these effects on the
overall efficiency of the system are illustrated,

There is 4 good deal of potential for future research with regard to the X-Linda
project, primarily with regard to enhancing the system and its performance, Section
8 discusses a number of sach sirategies, addressing the needs of, firstly, dis-
tributed-mermory Linda impléraentations in general, and, secondly, those specificto
X-Linda. It {s concluded in section 9 that although the specific tuple space model is

- not ideally suited to Trapgpuier-bused systems, the approach requires further explo.
- ration in order o exhous: s il #8search potential. _

N 'l"*'_-

The Ap ehdiceé delve into some enlightening areas that are not considered to be
. within the direit scope of this research, but which do provide supplementary infor-
mation that is related to and supportive of various issues covered in the course of

Appendix I ~ For readers unfamiliat with the Transputer and its native language,

oceam, a non-technical overview is given in Appendix 1 (and, for those who are

familiar with the snbject area, this Appendix incindes a description of the soon-to-
~ be released H) Transputer). N ' B .
~ Appendix 2 - Appendix 2 gives details of ibe design and results of the various ex-
periments that were devised as base tests against which the communication over-
~ heads of the X-Linda implementation are ascertained. The experimients are all con-
cerned with evaluating the rate of data transioission over various Transputer net-
- works and are obvionsly fundamental o the analysis of X-Linda, _ _
- Appendix 3 - The measuremient of the CPU utilization on each node within the -
~ system also features extensively in the analysis of X-Linda, and Appendix 3 de-
scribes how these utilization figures are derived. . - :
Appendix 4.~ Appendix 4 illustrates the top-level program structure of X-Linda,
highlighting the use of hemesses that permit the system 10 be either simulated on 4
sitigle processor or physically distributed over a network of processors, SR
Appendix 5 —'The process-level functionality and interaction of the X-Linda imple-
mentation is diagrammatically illustrated in Appendix 5, showing the suitability of
the occam programming model in the design of the systens, _ " o
- Appendix 6 Section 7 of this document deals with the design, implementation and
~analysis of two specific example programs, and the full code lstings are located in
- Appendix 6, The primary motivation for including these listings is to illustrate the.
- X-Linda programming style, Purthermore, these listings reflect a very rare pro-
gramming methodology, i.e. the use of Linda primitives embedded in occam 2 pro-
grams. _ : _ _ - _ _

Appendix 7 ~The last Appendix constiiute's a sho_rt d:scussum oix the semantics Te-

. garding the order in which tuples are added to tuple space. This issue is briefly

- touched on in section 5.1.1.1 in the context of the imlplementaﬁam of the out opiura-
tion ynfer X-Linda, and is expanded upon here simply in the context of an interest-
ing side-issue, T ' . ' Lo

~ Finally, to conclude this document, a comprehensive list of Linda-related Hterature
is given. This list features more than ninety references, and should be of nuse tore-
- searchers currently involved with Linda and especially to new-comers to the area. :

2 - The Linda Paradigm

SECTION 2

2.0 THE LINDA PARADIGM

This research is concemed with the implementation of the tuple space abstraction as
defined by the Linda parallel programming language. It is necessary, then, fo de-
scribe the concept of tuple space, and to discuss the operations that may be used to
manipulate the tuple space. This section, much of which has its source in [Faasen
19904], presents a broad overview of the Linda paradigm, concentrating on the
following areas : - - : .

1, The Tuple Space Model ' : '

An overview of Linda which focuses on the concepts of tuples, TS and TS opera-
tions, ' :

2. Programming Methodology

The issues of the replicated worker model and Linda’s characteristic uncoupled
style are discussed. It is shown that the approach differs greatly from, and has sev-
eral advantages ovet, conventional parallel programm:ng methodologies. :
3, Advantages of Linda

Here, the fundamental motivation for this research is given by means of illustrating
the benefits offered by Linda. In effect, this sub-section is answering the (unasked)
- question “What is the point of a Linda-like implementation 7", :

Renders familiar with the concept of tuple space can safely skip out the first of these

- sub-sections, The other two szctions should, it is hoped, maintain a general level of
interest, whether or not the idea of tuple space is a new one to the reader. Finally, a

 short digcussion on the Linda paradigm is given, emphasizing the fundamental dif-
ference between this approack and existing parailel programm 1g models. '

2.1 TUPLE SPACE MODEL

_ “Fhe abstract compuiation environment called "tuple spacc” I the basis of Linda's model of
B communicatics” [Gelernter 1982, p. 82 o

¥

- This section gives an introductory overview of Linda, and then-examines the ideas
of tuples and tuple space in some detail. Lindaisa tparadlgm for high-level parallel
programming that is ceutred around the concept of a global, logically shared tuple
space. The simplest way to think of tuple space is as an unordered “bag” containing
pieces of information (tuples), Processes communicate by adding tuples to and re-
trieving tuples from this globally accessible space. The model is described by Car-
riero and Gelermnter [1989] as one of generative communication - communication
‘between processes is achieved through the generation of data tuples and the creation
of processes is done by means of generating live tuples. Comraunication and pro-
coss creation are therefore closely related. Indeed, one of the Linda objectives is to
do away with the distinctions between synchronization, communication and pro-
cess creation [Gelernter 19894, Building a Linda program entails insesting process
- tples into the TS, whi-h then generate further process tuples, -

Linda is not a complete language in itself. It comprises a small nurober of primitive
operations that provide mechanisms for process coordination and creation within
the base language that they are injected into [Gelernter 1988]. Coordination and
communication between processes is implicitly achieved through the effects of the

Linda primitives execnting against the TS. The model of parallel processing is

% —The Linda Paradigm

orthogonal to the base langnage — Linda deals only with process creation and COOT-
dination and is divorced from all corputational issues. Consequently, Linda can
potentially be embedded in any language. _ :

Central themes underlying the Linda model are — : -

o Distributed data structures ~ Ahuja er al. [1988] define a distributed data struc-
ture as being “a data structure that is directly accessible to many processes simul-
taneously”, Any tuple in the TS can be accessed by any process in the system —
tuples are therefore distributed data structures. Distributed data structures are not
supported in the mgjority of paraliel programming languages. Instead, shared
«data is normally encapsulated inside manager processes, which are responsible
for making this data accessible to user processes {Abuja ez al. 19861,

« -Replicated worker processes — identical worker processes arc “statnped out” as
they are needed. The replicated worker mwiodel is discussed in section 2.2.1.

+ Spatial and temporal uncoupling — processes have no direct interaction with each

~ other. Uncoupling is addressed in section 2.2.2. '

‘The Linda model is vividly described by Ahuja et al. {1988] as **a swarm of taples,

some passive and some active, grows, shrinks, and maintains internal coordination

by generating and consuming more tuples”., - -

Tuples can be thought of as being shared pieces of information — they can assume
one of tvo forms ¢ '

1. Data tuples : _
A data tuple is an ordered collection of data ubjects known as fields, A tuple field
can either be an actial or a formal parameter {termed the field’s “poiarity” [Zenith
- 1990b]), An actual field contains some physical value ~ for example “A”, “hello®,
100, 3.142 or TRUE. A formal parameter specifies a typed variable name, for ex-
ample char letter, string message, int max, float pi or bool status, Communication be-
tween processes is in effect achieved by the transfer of data from actual to formal
tuple fields. For clarity, formal parameters are frequently preceded by an interroga-
tion mark — for example, ?int max. The actual data types that data fields can assume
is largely dependent on the host environment — records and arrays are, for example
- guite permissible. Gelernter [1985] formalizes the structure of tuples as
{N,Py,...,Py), where N is an actnal parameter, and Py,...,Py are either actual or for-
mmal parameters, The first field is reférred to as the tuple “name”, and is defined as a
character string (the specification of the tuple name has not been strictly adhered to
in later and current implementations). A tuple comprising two actuals and one for-
mal field might appesr as ("hello”, 7int i, 2.142). The specification of formal parame-
ters does have another variation — Ahuja et gl. [1986] state that “the annotation
formal may precede an already-declared variable to indicate that the programmer
intends a forma! parameter”. For example, (“A", ?int) is equivalent to (“A", formai i),
given that | has been previously declared to be of type integer,

2. Live tuples : : '

Live tuples invoke computation — they are “process tuples under active evaluation”
[Ahuja et al. 1988]. These tuples, in their simplest form, comprise the name of a
process to be executed. Live tuples are discussed in more detail with regard to the
eval operation (section 2,1.3),

2.1.2 TUPLE SPACE _
Tuple space is the basis of communication in Linda [Gelernter 19851, The Linda

miode] does not presumie the presence of an underlying shared-memory architecture.
The TS is however a logically shared object memory whose semantics reflect a

2 —The Linda Paradigm .

physically unordered underlying component [Carriero et al. 1986]. TS can be

thought of as a logically shared resource or memory space into which tples canbe

. deposited or, conversely, be withdrawn, Programmers are able to assume that they
- are using a physically shared-memory, even if none actually exists. It must be em-
phasized that the TS is a content addressable, associative memory [Ahuja er al,
198%] ~ the mapping from logical tuples to their physical addresses is a function of

* the Linda virtual machine [Gelernter 1985]). Tuples are not physically addressable —
they are selected on the basis of the structure and content of their fields, Locating a
tuple is based on a form of pattern matching, and involves the process of associa-
tive look-up [Gelernter 1988]. TS is accessible to any process in the system. All
tuples existing within the TS are distributed data structures — they are available to all
processes, but bound to none. An extension to the tuple space concept, that of mul-
tiple tuple spaces, is discussed by Gelernter [1989a].

2.1.3 TUPLE SPACE OPERATIONS

In order to modify a tuple, it is necessary to withdraw it from the TS, modify the
data, and then re-insert 1t back into the TS. Processes wishing to access the TS may
do so via four primitive operations : '

1. out (tuple) ' ' o

Adds a tuple to the TS; for example, the statement out(*A”,1) adds the tuple {(“A",1)
to TS, Qut does not block; the process inserting the tuple continues executing with-
out waiting for the tuple o be accessed by a reader process. '

2. in {template)

Withdraws a matching tuple from the TS. The actual parameters of the tuple are as-
signed to the formal parameters of the template, For example, if there is a tuple
{“A",1) in the TS, the staterment in{“A*,?int i} will remove the tuple and assign 1 to the
integer variabie |. Note that the fields pertaining to an In statement need not neces-
sarily include formal parameters — the statgment in(*A", 1) will remove the tuple from
the TS, but no data transfer will take place. In is a blocking operation. If a matching
tuple is not found, the process issuing the in command suspends until 2 matching
tuple is inserted into the TS, If two or more matching tuples are present in the TS,
one of these is chosen arbitrarily.

3. rd (femplats)

Same as in except that the tuple matching the template is not withdrawn from the
TS. A copy of the tuple’s fields is simply returned to the process invoking the
command. _

4, eval (tupls) .

Eval is like out, with the exception that the tuple is evaluated after (and not before) it
enters the TS. A process is implicitly forked to perform the evaluation, ‘The follow-
- ing example illusirates the effect of the eval primitive, and is adapted from an ex-
ample given by Zenith [1990b]. Assume that there exists a function F that yeturns
some integer value & The command eval{F) causes the process F to be placed in the
TS and to be executed, The evaluation of F then causes the active tuple (F) to be
transformed into the passive tuple (1),

"There are two other operations that are predicate variations of in and rd — inp

{tempiate} and rdp (tempiate). These operations behave like in / rd but do not block,

and return boolean values that indicate whether or not the operation was successful

[Camriero 1987]. Notice that inp and rdp are nor universally accepted primitives :

+ it appears that the predicate primitives will not appear in future releases of Linda,
but will be replaced by *some form of aliernation construet™ [Zenith 1990a]

* “.. the non-blocking operations are difficult to impleinent efficiently, hence
poor choices as primitive operations in a language intended to support efficient
programs; and are, in any ¢ase, unnecessary” [Leichter 19897,

2 —The Linda Pazadigm

Notation for Tuples and Templates _
For the sake of clarity, in this document tuples are generally identified by a letter of
the Greek alphabet, e.g. o, and matching templates by that letter with a bar abave,

~ e.g. o. This notation is typically used in conjunction with & primitive operation —

e.g. out{w).

2.1.4 MATCHING TUPLES

Tuples in TS are accessed by their logical names as opposed to any form of physi-

cal address [Ahuja et al. 1986]. In order to withdraw a particular tuple from the TS,

a process must issue a matching template. A match occurs if the values and field

types supplied in the template are identical to those of a tuple present in the TS, The

rules for matching a template against a taple are given formally by Catriero [1987] ;

1. the number of arguitments must be the same _

2. the field types must match - '

3. data fields (i.e. actual parameters) must be the same

4. formal fields in the tuple can not match formal fields in the template — i.e. for-
mais can only match actuals,

Aside —~ The Efficiency of Tuple Matching -

Intuitively, one might assume that the tuple matching process is a source of grea

inefficiency in any Linda implementation — i.e. given that a template must be se-

quentially matched against the contents of what, in essence, is an unordered list of

tuples. This is not necessarily the case - ways of speeding up the matching process
re discussed in section 8.1.2.

2.2 LINDA PROGRAMMING METHODOLOGY

"A paralle! program in Linda is a spatially and temporally unordered bag of processes, not a process
graph” [Ahuja et ul. 1986, p. 26]

.Writing paralle] programs in Linda is centred around the concept of replicated

workers operating on distributed data structures, In this section, the replicated
worker model — and a consequence of this approach, viz. an uncoupled style of
programming — is discussed. It is shown that the Linda approach differs greatly
from, and has several advantages over, ¢onventional parallel programming
methodologies. ' -

2.2.1 REPLICATED WORKER MODEL

A central issue in Linda’s programming methodology is that of the replicated

worker [Ahuja ez al. 1988]. Sub-processes are created by “stamping” out identical

copies of a single process as opposed to creating distinct sub-processes (obviously,

this is not the only way to write parallel programs ~ it is, however, a popular and

effective approach), Conventional network-style parallelism relies on partitioning,

where the program is partitioned amongst the processes. Linda employs replication

as opposed to partitioning — this has the advantages of : '

+ scaling transparently — the same program will work the same way, only faster,
as more processors are added [Carriero and Gelernter 1988a}

. grcvanting needless context switching - each processor runs a single process:

ence the number of processes only increases with the number of processors

[Ahuja er al. 1986] ' _

* dynamic load balancing — worker processes look for tasks that need to be com-
p.uted[ag}c‘ii t]asks are consequently distributed among the available workers at run-
time [ibid). - '

2 —The Linda Peradigm

The crux of the Linda programming methodology revolves around a set of dis-
tributed data structures that are manipulated by 4 set of identical worker processes
[Ahuja et gl, 1988].

2.2.2 UNCOUPLED STYLE _
A prime objective of Linda is to remove the coupling between parallel processes,
and hence reduce program complexity [Ahuja et al. 1986, Clayton et al. 1990]. Itis
desired that processes be able to produce and release data without concern for
which processes will use that data, Similarly processes should be able to consume
data without caring who produced it. A producer’s progress should not be re-
stricted by that of a consumer [Ahuja ef al. 1988). This feature allows communica-
tion patterns to be modified transparently and dynamically at run-time and also en-
courages asynchronous comronnication. Furthermore, it supports dynamic load
balancing by virtue of the fact that “evaluator processes™ can select sub-tasks to
ct;mpute, Enased on dynamic supply and demand [ibid.]. Linda supports two forms
of uncou ;
1. spaﬁaII’ un%oupling ~ sending processes do not care which processes will receive
their information, and vice-versa -
2. temporal uncoupling — there are no synchronization constraints invoived in
transmitting data since sending processes do not block. -
Lindsa is consequently “fully distributed in time and space” [Gelernter 1985]. Linda
achieves its uncoupled nature via the TS and processes do not interact directly with
each other. Uncoupling and dynamic scheduling are accommodated by having all
transactions operate on distributed data structures in the TS. The Linda program-
ming miodel has been described as an “unconnection machine” [Bjornson et al.
1987]. Whereas models such as occiam and the Connection Machine characteristi-
ca]lgaglilnd ﬂ?arallcl processes tightly together, Linda processes have no direct impact
on other.

2.3 ADVANTAGES OF LINDA

*... a large class of problams... can exploit the benefits a:fLinda as an easy and elegant way of paraliel
pregramming, affering portability and scalability.” [Borrmann and Herdieckerhoff 1989, p, 158}

The philosophy underlying Linda has, at this point in the document, been examined

at some length. The focus is now directed towards the advantages offered by the

paradigm. The following is an overview of the favourable aspects of Linda that are

gither shown or claimed in the literature, given as justification for the research di-

rection in general. _

1, Portability - A Linda program can be run without modification on message
passing systemss, shared-memory machines and local area networks [Scientific
1989]. The issue of portability is further discussed by Gelernter [1988].

2. Scalabilty ~ The replicated-worker model scales transparently [Ahuja er gl.

- 1986]. A program developed to execute on a single processor can be executed
{with zero or minimal modification) on a multi-processor system.

3. Orthogonality - Since Linda is orthogonal 1o the base language, it can be embed- -
ded in existing languages with minimal effort or modification [Chorus 1989a].
Carriero and Gelernter [19891 describe this feature as Linda’s ability to "coexist
peacefully with any number of base languages and computing models".

4. Ease of Use - Ahuja et al. {1986} claim that under Linda, writing a parallel pro-
gram is po more difficult than writing a sequential one. This is largely due to
Linda’s characteristic uncoupled style. Williams et al. [1989] illustrate the fact
that programis can be written without the need to consider :

». the identities of the source and destination processors involved in communi-
cation

2~ The Linda Paradigm.

« the architecture underlying the application

« the synchronization and coordination of processes.

As a result, programmers are able to concenirate on actual algorithms as opposed
to implementation details. Another issue worthy of mention is the fact that in
order to use Linda, it is not necessary to learn the features and idiosyncrasies of
an entirely new language. Apart from the extra TS operations, the host language
is unchanged. Programmers familiar with languages like FORTRAN and C can
address communication, synchronization and creation of processes in a uniform
manner [Kahn and Miller 1989). It is relevant to note that personal experience
gained in the course of this research undoubtedly supports the claim that Linda
simplifies parallel programming.

5. Dynamic Load Balancing — The replicated-worker model naturally provides dis-
tribution of tasks between available processors at run-time [Ahuja et al. 1986].
In this model, worker processes look for tasks that need to be computed — hence
tasks become distributed among the available workess.

6. General Development To ol — Lindz is a good gens. il purpose development tool
[Gelernter 1988], Carrierv and Gelernter [1988a] a. zue that
+ Linda can be applied to and subsequently solve “real” problems. This is sup-

ported by the wide range of application examples that Linda has been used in
» Linda solutions are conceptually simple to understand
+ Linda programs exhibit “real” speed-up.

- Linda caters for coarse, medium and fine-grained parallelism {Carriero and Gel-
emnter 1989]. Linda also has applications in the construction of operating sys-
tems [Gelemnter 1985]. The low level communication kernel of the XTM system
discussed in section 3.3.1 is based on Linda. Applications in information man-
agernent are described in detail by Gelernter [1989b]. '

7. Power and Expressiveness - Linda has greater power, expressiveness, simplic-
ity and elegance than existing models of parallel processing [Gelernter 1985,
Carriero and Gelernter 19891, _

Finally, in 2 more philosophic vein, Gelernter [1988] states that “Linda is a practi-

cal system; it is also an attractive and evocative thought tool”.

2.3.1 CRITICISMS

Obviously, every programming paradigm must have its faults. Gelexnter [1985]

discusses some general weaknesses of Linda ~

» Linda does not provide as much as other languages. Consequently, it is up to the
programmer to implement features such as calling routines and quene manage-
ment -

» the implementation of Linda in a distributed environment is potentially complex

+ generative communication could place massive overheads on network communi-
cation systems _

+ Linda offers no TS security. There is no protection mechanism to prevent unau-
thorized processes aecessing and modifying the TS (this point is also addressed
by Shapiro [1989]).

Davidson [1989] cites a number of other criticisms ;

e the run-time overhead is substantial

« retrieval of information from the TS is a potential bottlz-neck

+ Linda’s characteristic of spatial uncoupling is “potentially dangerons”. Davidson
claims that programmers should be forced to consider processor synchronization
in the interests of “complete and accurate” programming,

A final comment that i worthy of note is by Kehn and Miller [1989]. They state

that “Linda’s practicality rests upon global compiler optimizations”. Obviously, a

major task of any Linda compiler is to optimize the tuple matching process and

Linda’s dependency upon an efficient compiler can be regarded as a drawback.,

10

2 - 'The Linda Paradigm

The purpose of this research is not to attempt to prove or disprove the above
claims. It is simply concluded that there appear to be sufficient benefits offered by
the model to merit further mvcsngatwn

2.4 DISCUSSION
There is currently no single programming model that can offer a complete solurion
to the con:g:lexmes and problems that are inherent in the field of parallel program-
ming. Linda does, however, address many of the key issues in this area. Lindais a
relatively young paradigm, having first been comprehensively described in 1983,
The model is significantly different from existing approaches to parallel program-
ming (other models and approaches to process synchronization and communication
are examined by Faasen [1989b]). The programming style associated with Linda is
both simple and powerful. The advantages of the uncoupled replicated worker
model have been illustrated, and Linda does reduce the burden of writing parallel
gzograms Linda addresses a very important issue in the debate on whether it is
tter to develop new parallel languages, or to modify existing sequential ones.
Much research 1s being done on developing entirely new language models (i.e.
models that are, in themselves, a complete language), and it is important and neces-
sary that this trend continues. However, for those who argue against the tremen-
dous expense involved in developing, learning and utilizing a completely new
paradigm, Linda offers an ideal solution. The implementation of Linda's globally
accessible TS on distributed-memory architectures is dealt with in the following
section.

11,

3 — Tuple Space en Distributed-Mamory Sysiems

SECTION 3

3.0 TUPLE SPACE ON DISTRIBUTED-MEMORY
SYSTEMS '

“The power of the VLM [Virtual Lindg Machine] will be realised only if the communication kernel can be
implemented efficienmly.” [Gelernter 1985, p. 103}

The fact that every tuple within the TS is a distributed data structure (i.e. is acces-
sible to any node in the system) is strong support for the imglementation of Linda
on a shared-memory architecture. in.deed, Ahuja et al. [1988] state that “Linda is,
of course, inherently a shared-memory model”. However, distributed-memory
systerns are cheaper, less complex and more scalable than shured-memory ma-
chines [ibid.]. Linda’s logically shared-memory is sufficiently coarse (i.e. the units
of storage are tuples, not bytes) to be implemented on distributed-memory [Ahuja et
al. 1986]. Furthermore, shared-memory is not suited to local area networks, which
are an important area of application. Since this research is based on the implemen-
tation of tuple space on Transputers (i.e. on a distributed-memory architecture), it is
important to illustrate the various models of tuple space that can be fitted onto dis-
ributed-memory, The purpose of this section is three-fold — firstly, to present gen-
eral approaches to implementing tuple space on distributed-memory systems; sec-
ondly, to describe an approach featuring custom-built distributed hardware to sup-
port tuple space (the Linda Machine); and, lastly, to iliustrate specific approaches
taken in the implementation of Linda o Transputer-based architectures. The con-
tent and motivation for these areas of investigation are briefly outlined below.
1. General Approaches _ _
Two notable approaches to implementing tuple space on distributed memories are
distributed hashing and uniform distribution» These methodologies are introduced,
and the emphasis of the investigation is directed towards a scheme known as inter-
mediate uniform distribution. It is shown that intermediate uniform distribution is
arguably the most efficient and elegant of the approaches; hence the motivation for
implementing X-Linda under this scheme. Intermediate uniform distribution is cov-
ered in some detail since it is the foundation of X-Linda. A thorough understanding
of this methodology is a prerequisite for understanding, evaluating and appreciating
the X-Linda approach.
2. The Linda Machine
The Linda Machine is an example of the implementation of tuple space on dedicated
hardware. A description of this system is particularly relevant, since
+ it, like the X-Linda systern, features an intermediate uniformly distributed tuple
space on a mesh of processors
« the design of this system greatly influenced that of X-Linda.
3. Transputer-Based Implementations
A range of existing Transputer-based Linda implementations are presented in ozder
to illustrate the variety of approaches taken, and to illustrate the uniqueness of X-
Linda. None of the impiementations reviewed utilize the intermediate uniformi;
distributed methodology. Some comments on the relative strengths and weaknes:&s
of the approaches are given, and reasons for the absence of the intermediate =...:-
formly distributed scheme are discussed.

12

3 — Tuple Space on Distributed-Memory Systems

3.1 GENERAL APPROACHES

Implementing; taple space on a machine that lacks physically shared-mernory poses

a number of implementation problems [Gelernter 1985, Carriero 1987]. Various

approacher. to implementing a logically shared tuple space across distributed mem-

ories have been proposed ~ the most significant of these are :

1. Hashing

Carriero et al. [1986] describe a scheme based on distributed hash tables. Tuples

are stored on ynique nodes in the system, where the identity of the node responsi-

ble for any given tuple is hashed from the tuple’s fields. Hashing is economical

[Bjornson et al. 1987] since tuples do not need to be replicated, and there is never a

need to broadeast data over the network. Hashing has been successfully imple-

mented on a number of systems. The scheme may not, however, be optimal for

message passing systems since, in the worst cases, the distances that a message
~must travel between nodes will cause a severe communication overhead. Hash-

?fgg%]approaches are described in more detail by Carriero [1987] and Ahuja et al.

2. Uniform distribution X

The uniform distribution of tuples across the TS is described below.

3.L1 UNIFORM DISTRIBUTION

Gelernter [1985] and Ahuja er al, F1988] describe a technique that attempis to dis-
tribate the TS evenly over the nodes in the system. Each node has an “out-set” and
an “in-set”, Tuples to be ingerted into the TS are sent to the nodes that make up the
out-set, and tuple requests (templates) are broadcast to those in the in-set, Uniform
distribution covers a wide range of implementation possibilities.

Global TS - at the one exireme of the scheine, tuples injected into the TS are
passed to and subsequently stored in every node in the system. An in or rd opera-
tion wounld therefore necessitate a requesting node to perform a search of its own
tuple memory, Note that tuple deletion requires a network-wide operation — Fleck-
- enstein and Hemmendinger [1989] propose a methodology to address this issue ¢
the node that outs a tuple is that tuple’s owner; nodes wishing to withdraw the tuple
must get permission from the owner, A Linda kernel for the AT & T Bell Labs
S/Net has been implemented using the global TS approach [Carriero 1987, Carriero
and Gelernter 1986] with a hashing scheme for computing physical tuple addresses
within a node’s tuple memory. The concept of Global TS is illustrated in Figure
3.1, which shows storage of tuples (denoted o) and templates (denoted «) over the
nodes in a system. .

out (&) '
Y @

Ty |

- of

in(@)
Figure 3.1 : Giobal TS Operations

Local TS — at the other extreme, tuples could be stored only in the memories of
the nodes performing an out operation, In this case, a global network search would
be necessary in order to locate a specific tuple, as illustrated in Figure 3.2. This ap-
proach simplifies the maintenance of TS consistency.

3 — Tuple Space on Distributed-Memory Systems

out { o))
v
o
& (| ® @ a
X _
Y S S N

Figure 3.2 : Local TS Operations

3.1.1.1 Intermediate Uniform Distribution

This scheme is mid-way between the local and global sirategies. Assuming that
there are k£ nodes in the system, both the in-set and out-set comprise vk nodes and
must intersect. Since the number of nodes involved in the insertion and withdrawal
of a tuple is only 2vk (Vk for an out and vk for an in), *the intermediate scheme is
provably optimal even if we consider the entire spectrum of uniform distribution
- schemes.” [Ahuja et al. 1988). An interesting description of how TS operations are
implemented under the intermediate uniformly distributed scheme is given using the
concepts of tuple beams and inverse beams [ibid,] — also known as out-threads and
in-threads [Gelernter 1985]. Tuples in TS (injected using an out statement) are rep-
resented as a tuple “beam” across a row of nodes (i.e. the out-set). When a node
requires to locate a tuple (executing an In command), it “flashes an inverse beam
along a coluran”. If two matching beams intersect, the desired tuple is returned to
the requesting node, and both beams disappear. This is depicted in Figare 3.3.

tuple beam /%
out-thread -

invarse beam /
in-thread

Figure 3.3 : Tuple and Inverse Beams

The uniform distribution scheme suggests itself as an effective way of sharing the
commuunication load among the nodes in the system [Ahuja et al. 1988]. Further-
more, it may be generalisabie to bigger systems and is an extremely cffective way
of implementing tuple space over distributed-memory systems [Bjornson et al.
1987]. Finally, a “wel designed” uniformly distributed implementation has the ad-
vantages of [Ahuja er al. 1988] :

+ making tuple reads “cheap and convenient”

+ supporting parallelism among individual TS operations

+ being well-suited to hardware and low-level protocol support,

14

3 - Tuple Spece on Distributed-Memory Systems

Rardware Topology :

Intermediate uniform distribution lends itself to a particular topology - a WD wrap-
around hypercube [Gelernter 1985] ar, stated more simply, a vk by vk grid of pro-
cessors [Ahuja er al. 1988]. This topology comprises a grid of processors where

» the number of rows is the saroe as the number of columns, i.e. the grid is square
» the first node in anv row/column is linked to the last node in that row/column.

In this document, the \.rm mesh is used Synonymously with the above description,
Using this topology, a node’s out-set is defined as the nodes on its row of the grid
and the in-set as the nodes that make up a column. This is illustrated in Figute 3.4,
- with reference to a 4x4 mesh,

|_

In-Set for
Nodea
2.6,10,14

Figure 3.4 : Wrap-around Mesh of Nodes depicting In- and Out-Set

Exch node maintains a store of tuples and tuple requests. An out operation causes a
tuple to be sent to all nodes along a row and an in or rd operation causes a template
to be sent to the nodes in a column, A tuple match occurs when a particular node is
in possession of both a tuple and a matching remplate, The tuple is sent to the re-
questing node and, in the case of an in operation, e tuple is deleted from the TS,
Notice that if broadcast buses are used for networx interconnection, transmitting a
tuple to a node’s respective in- or out-set can be accomplished in a single operation.

Maintaining TS Consistency : '

The issue of maintaining tuple space consistency nnder the interrnediate uniformly
distributed scheme is addressed in the next section in the context of the Linda Ma-
chine (section 3.2.2)

15

3 —Tuple Space on Distributed-Meniory Systems

3.2 THE LINDA MACHINE

The Linda Machine is an attempt to implement TS and TS operations on a custom-

built distributed-memory architecture. It will be seen in due course that the design

of the Linda Machine has greatly influenced the design of the X-Linda system,

Consequently, althougn the Linda Machine is itself not withint the scope of this re-

search, it will be briefly overviewed here. The design of the Linda Machine was

first comprehensively detailed by Ahuja ef al, [1988] who described the system as

“a parallel computer that has beea designed to support the Linda parallel program-

ming environment in hardware”, A prototype version of the Machine has been built

and, since fairly recently, been functional [V. Krishnaswamy, personal communi-
glftiqn, Nov, 1990]. The objectivzs of the Linda Machine are to provide a system
atis

+ casily programmable :

+ efficient - although the emphasis of the project concerns ease of programming, it
is shown that existing Linda implementations (i.e. on convennonal hardware)
exhibit massive communication overheads; there is a need to utilize a dedicated

' comtaurications processor. ‘

The system comprises a network of Linda nodes. These nodes in turn consist of a

computation processor and a Linda co-processor (ter: ved the Linda Engine) that is

responsible for TS communication and management. TS in the Linda Machine is
implernented under the intermediate nniformly distributed scheme on a mesh of

Linda nodes. The nodes are connected via broadcast buses — as a result, tuples can

be sent to their respective in- and out-sets in a single operation.

3.2.1 THE LINDA ENGINE '

The Linda node, as stated above, comprises a computation processor and a Linda
engine — obviously, this section is only concerned with the structure and operation
of the Linda engine. The Linda engine comprises a tuple memory, a working store,
an operations controller (consisting of an IN- and OUT-processor) and interfaces to
the buses and computation processor. This is illustrated in Figure 3.5,

OUT Bus

N ouT
Processor | | Precessor

| Working Butfer Memory \

hY
Working Buffer
Bus

Intartace o

IN us
Figure 3.5 : Structure of the Linda Rngine

The tuple memory, working store and operations controller are very briefly de~
scribed below.

Tuple Memory '

The tuple memory must not only store the data fields of the tuples, but also, for the
purpose of tuple matching, information pertaining to the size and type of these
fields. The representation must therefore treat tuples as self-contained data objects.

16

3 .- Tuple Space on Distribused-Memory Systems

Tuples are linked together in “tuple groups” --i.e. groups of tuples having similar
field characteristics. -
- Working Store , .
The wozking store holds two queues — the in-request, which stores pending in re-
quests (zither from the computation processor or from other nodes), and the out-
request which stores out requests from the computation processor.
Operations Controller - '

e operations controller comprises the IN-processor and the OUT-processor
which operate on the in-request and out-request queues respectively.

Operation :

A TS operation is invoked and serviced as follows :

* the operation is initiated by the computation processor

* in the case of an out request, the operations controiler contends for the out-bus
and writes the tuple to identical memory locarions within the nodes in the out-set
(the X-Linda system also employs this strategy -- refer section 4.3.1.1)

* in the case of an in request, the operations controller broadeasts the request to all
novies in the in-set (these nodes store the request in their in-queues) and matches
the template against the tuples in its tuple memory. If any node in the in-set
{including the one invoking the request) resolves a match, it must send the tuple -

-field information to the requesting node snd delete the tpie (the protocols for
maintaining TS consistency are discussed below).

3.2.2 MAINTAINING TS CONSISTENCY
In any Linda system, the maintenance of TS consistency is a key issue [Gelernter
1985}, and X-Linda is no exception. This aspect is fundamental to the design of the
X-Linda system, and, without doubt, the majority of the implementation effort (i.e.
design, verification and modification) was dedicated to this problem. With respect
to an intermediate uniformly distributed TS, the biggest problem is with regard to
the in operation — if two nodes issue identical tuple requests, only one must succeed
in retrieving the data and deleting the tuple. Network protocols must be imple-
mented in order to make certain that TS opergtions are carried out correctly and to
ensure TS consistency. Ahuja ez al. [1988] discuss the network protocols that are
proposed in the design of the Linda Machine, which employs broadcast buses for
node interconnection. The protocols are based on distributed arbitration and al-
though they have been formalized with broadcast buses in mind, the concepts are
.botlglirnpqrtant and generalisable. Specifically, the protocols address the following
problems :
1, Inserting Tuples into TS
Two or more nodes in the same out-set attempting to add a tuple to TS simnltane-
ously causes a problem since tuples are written to identical memory addresses of all
nodes in the out-set. Nodes wishing to install tuples must contend for the out-bus —
the successful node then writes the tuple to the other nodes.
2. Withdrawing Tuples from TS (a)
If more than one node in the same in-set simultaneously issue an in request for the
same tuple, only one must succeed. Nodes wishing to withdraw tuples must con-
':13;11:1 for the in-bus in order to retdeve a tuple, and then contend for the out-bus to
gte 1t
3, Withdrawing Tuples from TS (b)
Two or more nodes in different in-sets simultaneously wishing to resolve a match
on the same tuple is slightly less complicated than the above situation, It is neces-
for a node to win ownership of the out-bus before the tuple can be retrieved
and subsequently deleted,

17

3 — Tuple Space on Distributed-Memory Systems _

The Linda Machine project is actually the topic of a Yale University Ph.DD thesis,
and a 16-node prototype is currently in existence [V, Krishnaswamy, personal
communication, Nov. 1990]. When the Machine was initially proposed, it was ex-
pected that performance would far outstrip existing implementations since
+ communications and TS management are handled by a dedicated processor
s TS search operations are microcoded :
« the intermediate uniformly distributed scheme reduces the length of data broad-
Casts. . . o
It was also indicated that the Machine would scale far more efficiently than existing
systems. Actual performance figures tend to support these expuctations, A 12-node
implementation exhibited performance “comparable to current shared-memory im-
plementations and vastly superior to distributed-memory versions of Linda™ [N.
- Carriero, personal communication, Nov. 1990]. Furthermore, the results indicate
that this performance will scale comfortably to several hundred nodes. As will be
seen in the next section (regarding Transputer-based Linda implementations), the
design of custom-built hardware specifically to support the Linda t.aradigm appears
to hold promise as an effective approach to implementing the model on disttibuted
memories. - '

‘3.3 TRANSPUTER-BASED LINDA IMPLEMENTATIONS
There are a variety of Linda systems that have been irnplemented on Transputer-
based computing platforms which appear both in the commercial market and in aca-
demiic research environments. These systems are overviewed in this section to illus-
trate the different approaches taken in implementing tuple space on Transputers,
znd, where possible, comment is given on the merits and defects of the approaches,
The following implementations are sddressed : _ _
1. asystem featuring specialized hardware and software support for Linda
2. a Linda sub-system implemented on a ring of Transputers _
3. two implementations based on a distributed hashing methodology -
4. asystem built on top of the Helios operating system.
Notice that the X-Linda approach (i.e. intermediate uniformly distributed tuple
space on a mesh configuration) is not included in the above list. This absence is ad-
dressed in the conclusion to this section in a brief discussion on the subject of
Linda on Transputers.

3.3.1 SPECIALIZED HARDWARE AND SYSTEM SERVICES _
Cogent Research Inc, have developed a commercially available Linda system, the
XTM. The XTM features a specialized Transputer-based architecture, and supports
a Linda-oriented operating system. This approach is important since it is an exam-
ple of the trend towards the use of speciulized hard- and software support in order
to implement Linda efficiently. The XTM is described in more detail below.

3.3.1.1 Hardware : _

The entry-level system (the XTM Workstation) comprises two IMS T800 Trans-
puters, each of which has access to 4 MBytes of RAM. The “backbone™ of the
system is the XTM Resource Server [G. Brand, personal communication, Nov.
1989), consisting of a 16-siot backplane, a 32-bit communications bus and an in-
telligent crossbar switch. XTM Compute Cards (also coraprising two IMS T800
Transputers) ¢an be inserted into available slots in order to provide additional pro-
cessing power. A single resource server is capuble of linking up to 15 workstations
(i.e. 30 processors) together. The layout of the XTM Resource Server [Hayes
1988] is depicted in Figure 3.6. o

1Bxiracted from V, Krishnaswamy‘s thesis defence annpimcement

18

3 - Tuple Space on Distributed-Memory Systems

| Teoo || | [Teay | [Taco
| Controller 1O ¥)

. Figure 3.6 : XTM Resource Server

All the Transputers iu the system share the communications bus, and, in addition,

the 4 links of each processor are connected to the crossbar switch, The switching
system provides dynamic system reconfiguration. Typically, a processor requiring

to transmit information will send a request through the bus to the switch controller.

The controller then establishes a direct connection between the two processors, al-

lowing data iransfer to take place without affecting the communication of any other

processor. The specifications of the XTI Workstatiun, Resource Server and Com-
pute Card are detailed in Cogent [19809].

3.3.1.2 Operating System _

The XTM operating system, QL¥, is a distributed system, and provides multiple

tuple spaces, system level programming and dynanyc reconfiguration, Each pro-

cessor runs a small kernel that handles memory management, process creation,

* comraurication and synchronization, QIX is implemented on top of Kernel Linda, a
low-level communications backbone, as shown in Figure 3.7. :

Application Program
{with Lintia Extensions)

QIX

- Kernal Linda

IMS T800 Transputer

Figure 3.7 : Implementation of XTM Operating 'Systgm
Kernel Linda and QIX are described in more detail below.

Kernel Lz’nda'

- Kernel Linda [Leler 1990, Cogent 1990] provides a low-level inter-process com-
munication mechanism, and is designed for system level programming. It is a ver-
sion of Linda that provides a underlying communication structure on top of which

19

3 —Tuple Space on Distributed-Memory Systems

general Linda implementations can be built. Kernel Linda is a completely general
system. It was designed neither for implementation on a specific type of hardware,
not to support a particular language. Although tuples comprise only a single key
field, the system does provide extensions to Linda '
» multiple tuple spaces (a tuple field may itself be a tuple space)
« - a set of language independent data types (since it does not only provide support
for a specific langnage class). - _
Implementaiion of Tuple Space _ _
Tuple space is implemented using a hashing approach. A tuple space name is re-
ferred to as a dictionqry, and tuples within dictionaries comprise a single key / value
field. Notice that a value can itself be a structured data type (e.g. an array) and can,
in effect, comprise many values. Associated with each dictionary is a distributed
pointer (or “locator™), that specifies the identity of the sor responsible for that
' ?%gcg] Linda Kernel primitives and operations are described in detail in Cogent

QIx n '

QIX [Leler 1990] is a parallel, server-based operating system designed for Trans-
puter-based systems, A small replicated kernel is implemented on each processor.
-QIX is built on top of Kernel Linda, and provides the lowest level system facilities :
memory management, process creation and synchronization, device drivers and
communication (through Kernel Linda). Higher level operating system functions
are progided by servers that share resources via Kernel Linda. QIX has the advan-
» providing a UNIX compatible environment

- » providing Linda extensions

s supporting familiar languages. .

The overheads associated with the implementation are due to the hashing function,
TS searches and semaphore locking, Leler points out that this overhead is not ex-
cessive (about 10% for “reasonable” amounts of data). '

L}

Comment : _
This approach shows a great deal of promise. It is quite obvious that much effort
has gone into the specification, design and creation of the praduct, and the benefits

- of the system are apparent. As stated earlier in this section, it is maintained that a

“specialized” approach such as this is important, perhaps even necessary, for the
efficient implementation of Linda on Transputer-based architectures.

3.3.2 RING-BASED LINDA SUBSYSTEM _ _
Zenith {19%0b] describes a Linda subsystem implemented on a ring of Transputers.
The philosophy underlying the design is that Transputers are cheap and easily
available. Consequently, as long as the processors are capable of achieving their
designated requirements, the actual amount of processor utilization is immaterial.
Like the XTM system described above, this approach, to som extent, is based on a
sPOEceialized architecture — the system comprises two types of dedicated processing
nodes :
» Tuple space machines (TSMs) which make up the Linda subsystem
+ Computation nodes (CNs) which, as their natne implies, are responsible for
handling a program’s computational requirements, :
Two CNs are attached to each TSM which are connected in a ring configuration.
The prototype described features 5 TSMs, 10 CN+ and one processor dedicated to
providing monitoring functions, The system confi guration is shown in Figure 3.8
(extracted from [Zenith 1990b]). ' :

20

= = JUPIS OPRGE Ofl RASTLIDUECAAVIMIIOLY 51_fswms .

= ==
{0 {1} 4
il e d @]l _ Al |
Lo (o {I€— ™ ._j;4)-._<'|-_
. A A |
v 2 2
N | N e
& @[~ Il @
'?N":Computﬁthnalﬂhda' I
TSM : Tuple Space Machine
Mon : Monkter '

Figure 3. : Ring-Bascd Linda Subsystem

The tuple space is distributed evenly over the Linda subsystem by means of dis-
tributed hash tables (distributed hashing is discussed below in section 3.3,3). This,
in effect, means that the tuple space is divided into distinct subsets on the basis of -
tuple structure (i.e, the number, type, order and polarity of fields), and these sub-
sets are distributed among the TSMs. : _ S

Comment ' _
The system described above is of interest since it o

1. like the XTM discussed in section 3.3.1 features dedicated hardware {althongh

toalesserextenty =~ o ' S _

2. uiilizes the popular distributed hashing methodology. o :

The implementation did not advance past the prototype phase [S. Zenith, personal
ﬁolnémunicption, Nov. 19901, which is regrettable since the approach appears to

old promise. : : S

3.3.3 DISTRIBUTED HASHING . o ' o
'The scheme whereby tuples are stored on unique nodes in the system and the iden-
tity of the node responsible for any given tuple is hashed from that tuple’s fields
features prominently in Linda-related literature. This approach appears to be fairly
popular in general (Le, not only with respect to Transputer-based implementations).
In addition to Zenith’s approach described above, distributed hashing is also used
in the following implementations : _ o o _ '
1. The Chorus ComputeServer [Chorus 1989b, Williams, et al. 1989] is a com-
mercially available multi-user Linda-oriented implementation that features a dis-
tributed hashing scheme. A closter of 1 to 16 IMS T800 Transputers is attached to
an Apple Macintosh network, and access to the computing cluster by users on the
network is provided by 2 dedicated 32-bit }/O processor, Unfortunately, perfor-
mance figures for this system are not available, ' : '
2. Tonsing [1989] describes another hash-based approach, implemented in 3L
Parallel C. Tuples and templates within each node’s tuple memary are stored in
linked lists, These lists are accessed via arrays of pointers which are indexed by a
function of the hashing algorithm, Consequently, the hash function, in addition to
returning a specific processor identity, also specifies the location in the processor’s

R T T FPIRE T T R AT aprp sn A O TLTR Kal e g -

3 - Tuple Space on Distiibuted-Memory Jystems

| Iocal memory where the tuple is stored. The eval pnmlnve is nnplemenwd using the
normal task-creatzon facilities provxded by Parallel C. |

Comment :

-~ Specific details (especially with respect 1o perfonnance ﬁgures) are not available for
the above implementations. All that can be said at this point is that distributed
hashing is a well-understood, tried and tested approach — and has been utilized in
non-Transputer-based distributed implementations. It does appear, then, to be a
fairly “safe” appraach. However, it is suspected that, with regard to Transputer-

. based implementations, there is much potential for a communications bottle-neck.
(for example, 1fmany nodes simultaneousty attempt to retrieve one spemﬁc tuple).

334 HELIDS-BASED IMPLEMENTATION :
‘Weatworth [1990] and Clayton ez al. [1990] describe a Lmda syshem implemented

* on a network of "Transputers running under the Helios [King and Powell 1990] op-

- relatively small networks (up to 16 nodes), and the results in terms of &Chlevcd

erating system. The system, known as Rhoda, enploys a centralized TS approach
~where TS is upuﬂl)ememed on a dedicated server; #ccess to-which is provided trans-
parently by Helios. Although the TS is centralized, it is f1:vart1tmm.=.d into sub-groups
- of related tuples in an attemnpt to reduce the overhead of tuple matching (it is perti-
nent at thig point to emphasize the fact that X-Linda daes not employ this technique
~ as described in sections 4.3.1.2 and 6.7, the matching process is mplemanted_
sitply by means of 4 linear TS séarch), A pre-pmccssor has been developed 1o
‘analyze TS usage in a program in order to
» sub-divide the TS into disjoint sub-sets :
-« give an indication of where in the network the TS groups and compﬂnents ofthe -
- __ application program should bi physicaily located.
Details of the techniques employed in the analysis are given by Wells [1990] and
Clayton e al. [1990], It is indicated that future regearch will be aimed at decentraliz-
ing the TS and distributing it over a number of processors. Rhoda can be imple-
mented on any Transputer network configuration. The system has been tested on

specd~up for certain apphcauons have been most pmmlsmg

Commant '

Intuitively, one would feel that a centrahzaed approach is not a good idea for Trans-
puter-based systems (because of the potential for communication bottle-necks).
- Furthermore, ong might expect that the overheads imposed by Helios would have

- some effect on the efficiency of the implementation, However, as indicated above,
- the system has yielded impressive results; it is expected that the partitioning of TS

into sub-groups is a major factor contnbunng fo the overall efficiency of the sys-

- tem, It will be of great interest to see what effect the proposed decenu‘ahzmg of

tuple space has on the performance nf the system. _

3.3.5 DISCUSSION
- It bas been seen in this section that there ate a number of Transputer-based Lmda
- systems in existence, built around a variety of tuple space models. There is also
emdence of other related work :
* Topologix Inc. have developed Trans uter—based add-on bnaxﬂs for Sun work-
stations to su éspon the Linda model [Gclember 19881
= itis indicated that collaboration between Yale University and INMOS Ltd, has
been proposed in connection with a Transputcr—based Lisds pro_]ect [N Car-
riero, personal communication, Qct. 1985]
¢ ftis reportad [various personal communications] that research in the area is being
- / has been conducted at Edmburgh Umvermty, The Umversny of Minnesota and
Comell Umve.mty '

T T T , TN

* Perhaps the most promising of these approaches are those that feature specialized
- bardware and software support, although one can obviously not disregard the suc- .

~ sively state that a specific approach is superior to any other, Both Linda and the

.om

- 3 ~Tupls Spacs ot Distributed-Memory Systems

cesses of the other implementations (for example, Rhoda), It is not easy to conclu-

Transputer are relatively young entrants to the field of paralle! processing, and there
is 4 clear need for further investigative research in this regard. The X-Linda ap-
proach (ie. intermediate uniformly distributed tuple space on a mesh configuration)

18 conspicuous by its absence from the approaches reviewed here, although a simi-
~ lar approach bas been recently proposed at the University of Copenhagen [H.
- Kristensen, communication, August 1990); The fact that the intermediate

uniformly disttibuted approach has not been pursued is probably due to a reluctance

to implement in- and out-sets via the relatively slow point-to-point links of the

Transputer. Nevertheless, this illustrates the uniqueness and originality of the X-

. Linda approach, the design and structure of which is addressed in the next section.

4 - The XLinds Approach

SECTION 4

4.0 THE X-LINDA APPROACH

It is worthwhile at this point to re-examine the purpose of this research. The aim of
the research is fo investigate the. communication overheads associated with the im- -
plementation of a particular tuple space methodology on networks of Transputers.
The iraplementation, referred to as X-Linda, is the vehicle through which the inves-
tigation is conducted — this system is analyzed and evaluated in order to ascertain
the extent of these overheads. This section introduces the X-Linda implementation.
~1i.e, an intermediate uniformly distribnted tuple space implemented in occam 2 on
a mesh of Transputers. The motivation, objective, implementation environment and
- fundamental design of X-Linda are covered as follows : _
1., The Need for a New Programming Paradigin _)
"The motivation for the research is presented in the context of the need for a new
Eggramming methodology for Transputers, and justification for choosing the
* Linda approach is given. _
2. Implementation Environment _ ' :
The iroplementation environment is described with reference to the physical com-
uting platform and the software development system. ' _
3, X-Linda Design _ ' '
Finally, the basic or fundamental design of X-Linda is introduced by describing the
tuple space mode! and corresponding hardware configuration. It should be kept in
mind that X-Linda is not a fully-fledged Linda system. As discussed in this section,
the ranige of TS lﬁrimitives and the structure of the tuples themselves are restricted —
i.e. limited to the needs of this research. Finally, the structure of the individual
‘nodes in the system is overviewed. Notice that this sub-section does not delve-
deeply into implementation details — the implementation of the TS operations is coy-
ered gnzsection 5.1, and the low-level specification of the system is detailed in sec-
tion 3.2.

4.1 THE NEED FOR A NEW PARADIGM

"As soon as you want Yo distribute the processes onzo different transputers for real parallelism, though,
you find you are limited because the chip has only four cemmunication links, This constraint severely
cramps the way you can write programs ,." [Pountain 1990, p, 31

" “One limitation of existing Transputer networks is the need to match algorithms to the interconnectiv-
ity in a specific machine, This means the sdftware is not veadily ported lo othér machives with different
. Hink topologies,” [Rabagliati 1990b}

Since their inception in the mid-1980s, the use of Transputers has steadily become
more widespread in indusirial and academic spheres, Similarly, cccam enjoys high
regard as an effective vehicle for expressing problems on Transputers (Pountain
{19891 describes occam as “a safe, elegant, and efficient way to program {ransputer
networks™). As discussed in Appendix 1, occam supplorts the process model of
concirrency, and the software formalism is closely coupled to the physical architec-
- ture of the Transputer (INMOS {1988a] refer fo the “architectural relationship” be-
tween the prairammmg model and the hardware), This means that problems to be
solved using the hardware can be simply and naturally expressed in accam. Tt also
-means, however, that the programmer must have a clear idea of the architecture un-
derlying a specific apgﬁcaﬁon. The hardware configuration plays a prominent role
in algorithm design [Rabagliati 1990b]. Not only is the programmer restricted by

e]

the physical number of communication links [Pountain 1990}, there is the addes
burden of having to explicitly identify source and destination processors involvea
in communication, and the responsibility of processor synchronization and coordi-
nation. Furthermore, algorithms designed for specific hardware topologies are not
easily portable to different configurations [Rebagliati 1990b]. The cccam model is
based on that of CSP [Hoare 1978]; i.e. process communication occars via syn-
chronous message-passing. Consequently, the sending process is blocked until the
receiver is ready to accept the message. This contlicts with the notion of spatial un-
coupling addressed in section 2,2.2 — 1.e, that a producer’s progress should not be
restricted by that of a consumer. Bal er al. [1989] state that the synchronous model

of communication has a “major impact” on the style of programming, Finally,
Bjornson figl. al. {1987] criticize the tight binding of parallel processes within the

It is felt that there is a need to tear down the glmce's_sl processor coupling inherent

in the style of programming, and unburden the programmer from the restrictions

imposed by the model of communication — i.e. a nesd for a programming

methodology that will complement the power and availability of Transputers. This,

of course, is where Linda comes in. It may be argued that there i3 no need to

specifically use occam, There are a variety of other languages that can be integrated

into the development environment, and there are a number of operating systems

- running on Transputers that effectively “hide” the underlying hardware
configuration from the uset. Nonetheless, it is maintained that thero is a need for a

programming methodology that : : ' :

+. is conceptually sitple

» ‘isportable ' o

 “from the programmer’s point of view, is topology independent

 -does not obscure the raw processing power of the Transputer.

N It has been illustrated in previous sections that Linda offers an attractive alternative

to existing models of concurrency. The objective of this research, then, is to inves-
- tigate the feasibiiity of implementing a particular tuple space model on Transputexs.
In astertaining this feasibility, the focus is directed at a specific gse}wct of the im-
plementation — anatyzing the communication overheads of the model relative to na-
tive Transputer networks.

4.2 IMPLEMENTATION ENVIRONMENT .

This research is implementation oriented — it has, as its foundation, an implementa-
tion of tuple space on 4 Transputer-based system, Consequently, it is both relevant
and important to describe the underlying hardware and development environment,

4.2,1 COMPUTING PLATFORM
‘The computing platform (viz, a Parsytec SuperCluster) and development environ-
ment are described briefty below. Some detail is also dedicated to illustrating the
‘nse of the host Transputer, as this processor is included in an out-set of the X-
Linda mesh. The SuperCluster series [Parsytec 19894] comprises a range of multi-
user Transputer-based systems that are reconfigurable and expandable, Inter-
Transputer connectivity is achieved via a Network Configuration Unit (NCU), an
-electronically configurable unit based on the IMS C004 programmable crossbar
switch. Although communicating through a C004 does incur some overhead, the
delay is negligible. The specific SuperCloster inodel used in this research features
16 T200! Transputers, each of which has access to 1 Mbyte external RAM. Notice

1IMS T800-G208 ~ 20 MHz clack speed, 50 ns cycle time

o :that the link speeds of the processors are set at 10 Mbits/second2. The int@tcdzﬁaeéu o
~ tion of the processors via the NCU is illustrated in Figure 4.1, o

=
MS. 1 MS £ pre—i [M3 m | I
| 800 T600 E == |mo] Ta00]| |
= Jms) a5]|
% == | Tac0’ T
prme] 1 IS s
=—1. | Taoo f [rena

~Figuve 4.1 7 Parsyios SupsrClnsier - Processor Tneroonneotion

A stand-alone Transputer, termed the host Transputer is used to develop and com-
- pile the prograrns that will be ultimately loaded oiy and executed by the processa s

- in the SuperCluster, This Transputer resides on a board that typically hes several
Mbytes of RAM, and the board (for this specific implementation environmenty is
plugged into & conventional AT-type machine, LinkY) of this Transputer is con- -
nected to the AT's keyboard and screen, and one of the other links (known ds the
primary link) is conpected to a Transputer within the SuperCluster. It is possible to
connect another of the host's links (the secondary link) to snother processor in the
SuperCluster (a maximumn of 2 links from the host into the SuperCluster are permit-
ted — the host's remaining link is unused). The processor that 1s attached to the sec-
ondary link has the identity 1024 — it is worth noting this point here since processor .
- 1024 is referred to in vaﬁoutseslaces in this document, The connection ¢f the host

- Transputer’s links is illustrated in Figure 4.2. - L

21t was necessary to veduce memw&omzomitslsecondﬁsuppm applications not related to -
mm - o . R . - 3 L .

4 = The X-Linda Approach

" Secondary Link.

" ¥igure 42 ; Host Transpuier Link Conmection

A final point that should be noted with regatd to the host Transputer is that it was
* only possible to connect both the primary and the secondary link to a T414 Trans-
- puter — the secondary link malfunctioned when nsed with 4 T800. This is important
. since
1.-as shown in the next Figure (4.3), the X-Linda system requires the use of the
secondary link - _ '
2, the T414'is a slower processor that the T800. - . _
- With regard this last issue (i.e. that the T414 is siower), it is.shown in Appendix 2
* that, transmitting sized of arrays of integers, the T414°s rate of transmission is 1.29

.- times glower than the 'T800, The reason for this is multi-faceted :

-+ INMOS [1988a] quots & maximum bi-directional data rate of 2.4 Mbyies/second
~ per link for the T800, and 1.6 sfsecond for the T414 _

« the T414 must receive an entire byte before it can send an acknowledgement, -

whereas the T300 employs an overlapped link protocol and sends-an acknowl-
- edgement after it has received the first 2 bits of the message S
« the connection between the T414 and the SuperCluster is through 2 -iCUs, each
of which has a signal dela; - ” several ns [Parsytec GmbH, personal communi-
cation, September 1990], o _

4.2.3 DEVELOPMENT SYSTEM = . ,
X-Linda was developed under MultiTool [P c 19895}, a Transputer develop-
ment environment based heavily on the INMOS TDS (Trausputer Development
- System). It features a fully intépiuied editor and tool-set, and provides the means to

~ edit, compile, configure, load and run occam 2 programs, The version utilized,

MultiTool 5.0, is fundamentally equivalent to the IMS D700D TDS, and supports

netvork analysis and debugging facilities, and IMS C004 [INMOS 19884a] link

switch configuration. . L

4.3 X-LINDA DESIGN AND SPECIFICATION S

This section motivates and describes the fundamental design of X-Linda, The im-
plementation of the tuple space modol (intermediate wnifo:x distrbution) is dis-
cussed, and the structure of tuples and templates defined. The choice of TS primi-
tive operations provided by the system is also explained. Finally, the design of the
- ‘nodes within the system is described. - ' -

Before launching into the design of the systém, it is important to be awars of the
inherent difficnlties associated with the impiementation of globally accessible tuple
space on Transputer meshes. To this end, it i3 worth restating the observations
made in this regard in section 1, Firstly, there is the problem of maintaining dis-
iributed data over independent locsl memories (this is discussed in section 3.2.2 in
the context of maintaining ‘TS consistency within the Linda Machine). Secondly,

27

4 —'The X-Linda Appeoach

there is a problem: that is related to the point-to-point nature of Transputer intercon-
nection — i.e. that of a potential communications bottle-neck. This has a significant
effect on the transmission of information over the in- and out-sets. The use of syn-
chronous, point-to-point communication links implies that data must be passed
consecutively along the nodes in the sets (i.e. it is not possible to broadeast infor- -
Lnatiox)l across an entire set in a single operati;.y, as is the case with communication
buses). _ _

* 4.3.1 TUPLE SPACE MODEL

Tuple space is implemented under the iptermediate uniformly distributed scheme on
a mesh of Transputers. Intermediate uniform distribution 1s discussed in detail in
section 3,1.1,1 — all the coricepts described in that section apply directly to X-Linda
(¢.g. the definition of in- and out-sets and e hardware topology are unchangd).
This particular scheme was chosen for the reasons thatitis ' '

s simple and elegant _ ' :

» feamredsig)a “state-of-the-wt” Linda implementation (the Linda machine —refer

section 3. SR : -

s unigue within the sphere of existing Transputer-based Linda implementations,
The mple space model has been implemented on raeshes of 4, 9 and 16 Transputers

-— for the sake of clarity, the 16 Transputer case (i.e. 4x4 mesh) is depicted in

Fi.gure 4.3, : -
L:& . [.,:0; = = - 03 L
-
1 | 08 __09'“ 10 11
| :12 ._13 | - e s
) — 1 1

Figwre 4.3 : 44 X-Lindz Mesh

Notice the presence of the T414 host Transputer in the above Figure (all the rest of
the nodes are T800s). As indicated in section 4.2,2, it is necessary to maintain a
link between the host Transputer and those ir the network. As a result, this host
Transputer must be included in the top row of the mesh. This means that the ont-set
corresponding to this vow includes an exira (slow) processor; as shown in section

6.2.2, the presence of this extra processor has quite a significant effect on the per-

formance of the system. For the purposes of clarification, notice that Node 3°s

* physical identity is 1024 (i.e. this is the processor thai i§ connected to the host's
secondary link), ' x

4 ~The X-Linda Approach

- 4.3.1.1 Tuple Storage
A major influence of the Linda Machine on X-Linda is seent in the way that individ-
ual tuples are stored in the same TS addresses of all the nodes within a specific ount-
set. This technique was taken a step further and also applied to templates which are
also stored in the same Iccations over the rtodes in the in-sets. The need for this
technique is evident with regard to maintaining TS consistency - most notably with
respect o tuple / template deletion (using this technigue, only an address is required
for deletion - otherwise, & search would have to be made for the required tple or
plate), Given tuat there are £ nodes in the mesh, each in- and out-set compris
V& nodes, The tuple and template quenes cn ¢ach node are sub-divided into vk
“buckets”™ — i.e, every node maintains a bucket that belongs to each of the other
-nodes in its respective in- or put-set. As a result, it is possible to ensure that every
tuple or template issued from a specific node will occupy the identical Jocation in
the tuple and template request queves within wll of the nodes in the sets. The storage
of tuples across an out-set is illustrated in Figure 4.4 — this shows the TS structure
of the nodes within an out-set of a 3x3 mesh. In the example shown, the bucket
size is 128 entries and, consequently, each nede’s TS comprises 384 entries.

bucketslze = 27 = 128
| Tqueulength » 3 x 27 » 254

| J— |
=1 02 | 0] O_SJ

out(a) out (B) out ()

a4 o 0o o o] «

| JRL - w1, 1o

| el 1 B8 12 g]

285 285] a6

254 % sy 1 sl ¥
aga]) saa[assf

~ Figure 4.4 : Out-Set - Tuple Storage

The above Figure shows the storage of three tuples, o, p and v, outed from Nodes

3, 4 and 5 respectively. Notice that each node “owns™ a spevific bucket, and that
the tuples are stored in identical locations across the out-set.

Similarly, the storage of templates within an in-get is illustrated in Figure 4.5.

~ Again, the example chosen reflects an in-get pertaiding to & 3x3 mesh, and shows
the addition of three templates, o, B and ¥, invoked from each of the nodes in the

in-set respectively, In exactly the same way as for the out-set, it should be obvious

- that each node is assigned a specific bucket, and that the templates are stored in the
‘same locations over the in-set, :

4 —The X-Linda Approech

bucketelze = 27 = 128
Gusua length = 3 x 2 . am4

_ ; 1] 127 128 255 256 983
ini® {1 o e

ey
e |

0 127 128 255 258 383

in{pi{| 07
Figure 4.5 ; In-Sct — Template Storage

L]
=l
=zl I

4.3.1.2 Tuple Structure
This research is concerned only with the communication overheads associated with
the implementation of TS — it was desired that the intricacies and added complexity
of tuple matching not be incloded in the investigation. It is therefore required that
+ the tuple-matching process be kept as sitnple as possible (a simple linear search

is utilized for this purpose) _ S
« tuple fields be able to assume different lengths for the purpose of ascertaining

the overheads with respect to the size of the tuple, '

To meet this specification, tuples and temé)lares need only comprise two fields —a
tuple name (for matching) and a data field (of modifiable length). For ease of im-
plementation, the tuple name is defined as a single 32-bit integer, and the data field
coroprises an array of integers, This is illustrated on Figure 4.6.

0 89 0 810 2 o 31

LR ENXE] swnanm | [RN EN Y fue e

Tuple Name Tuﬁle Data
' Figure 4.6 : Tuple / Template Strcture

Notice that the name is always an gcmal parameter; it always contains some physi-

cal value, irrespective of whether it pertains to a tuple or a template, Tuple matching

is therefore performed against a single key field — without attempting to draw too

. close an analogy, it is pertinent to note that the S/Net implementation [Carriero and
Gelernter 1986] and, as described in section 3.3.1.2, Kernel Linda [Leler 1990]
both feature a single key field, A tuple’s data field is likewise always an actaal pa-
rameter, Conversely, the data field for a template is always formal (Le. a variable
name that is assigned a value when the template name 1s successfully matched

~against a corresponding tuple). The above specification may appear overly restric-
tive. Indeed, under X-Linda it is not possible to capture the gﬂl “flavour” of the
Linda programming methodology (keeping in mind, of course, that this was never
the intention). However, as illustrated in the example programs discussed in section
7, it is still possible to prograa algorithms in a fairly elegant and expressive way.
This, it is felt, is indicative of the power and potentisl of the Linda paradigm,

30

4 ~'The ¥-Linda Approach

4.3.1.3 TS Operations o ' '

In order to investigate the communication overheads of the model, it was only nec-
essary to provide the out, in.and rd operations. Eval and the predicate operations
were not implemented, as discussed below ; , .

eval —~ The presence of this primitive would achieve little with regard to ascertaining
the communication overhiead of the implementation. :

inp, rdp — Similatly, the predicate operations, inp and rdp, were not considered. In
section 2.1.3, it was indicated that these operations are nor universaily accepted
‘primitives. Furthermore, the feasibility of their inclusion within a distributed envi-
ronment is highly debatable. Leichter [1990] argues against the implementation of
inp and rdp in a distributed environment, claiming that their inclusion in such sys-
- tems either causes inefficiency or introduces “bizarre semantics™, o

4.3,1.4 Link Directions - _

- Jt is relevant to note the direction of communication along the in- and out-sets,
From the definition of the in~ and ont-sets, it is evident that the links between the
nodes in the X-Linda mesh must, at least, cary tuples, temnplates and requests 1o
delete these. Now, as shown in Figure 4.7, the Transputer's communication links
- are hi-directional, ' o : _

. Link3 _
Figure 4,7 ; Transputer Communicafion Links

Herice the traffic need not ail be transmitted in a single direction. The implementa-

tion utilizes this bi-directionality 1o reduce the amount of one~-way network traffic

' %ver the4 lgnks The specific link directions used to transmit the traffic are shown in
lgm LA L o . B . .

Tomplate Addition
(In/ rd request)
1

[Tuple Additon |

' l__uple Deletion | IMS {out raquast) |
' T800 - 1

Termpiate | | [Retar Tuple
Delation | || {5atisty infrd
- Raguest)

Figure 4.8 : Direction of Data Trnstiesion.

31

4 —The X-Linda Approach

Examining the number of links that need to be traversed in order for a template to
be seat along an in-set to a row containing the desired tuple, and then for that tuple
to be transmitted back to the requesting node, it should be noted that, on average,
this number is identical irrespective of whether one- or two-way communication is
utilized.

- 4,3,2 X-LINDA NODE :

Euch Transputer within the mesh executes & number of inter-communicating, con-
current processes, each of which is dedicated to some specific function. For the
sake of clarity, the Transputers are referred to as X-Linda nodes to make a distinc-
tion between them and the Linda nodes that are specific to the Linda Machine de-
scribed in section 3.2, Recall that the Linda node comprises a Linda Engine and a
- computation co-processor, and that the Linda Engine has dedicated hardware com-
ponents that are responsible for tuple memory, TS management and the processing
of TS operations. The Linda Engine also has interfaces to the in- and out-buses.
This arrangement was very influential in the design of the X-Linda node, o the ex-
tent that it (the X-Linda node) can, in a sense, be regarded as a software implemen-
tation of the Linda node, The X-Linda node features dedicated software processes
which are responsible for the functions of computation, tuple storage and TS man-
agement, the processing of primitive operations and providing an interface into the
in- and out-sets. The structure of the X-Linda node is shown in Figure 4.9,

 Links o Network

| Challenge
| Manager

| Computation |

Figure 3.9 1 Swacome of the X-Linda Node

Linda pmgranis are launched within the oo-_rr{putation process - 1.g, the primitive
operations are invoked from here. The In, Out and Rd processes control the pro-

2

4 —'The X-Linda Approach

cessing of the TS operations, received both locally (i.e. from the Computation pro-

cess) and externally (received via the interiace process). Tuple space (i.e. the tuple

and template queues) is stored on the Queue process — all tuple space addition,

deletion and matching is done here. The Interface process is responsible for :

1. receiving tuples and templates from the In, Out and Rd Processes, and distribut-
ing them to the in- and out-sets _ .

2. the reverse operation — i.e. receiving information from the in- and out-sets, and

. sending iton to the internal processes. :

Finally, the Challenge Manager is an extra process dedicated to handling the requests

for tuple ownership and subsequent deletion assoctated with the satisfaction of an in

. Operation, :

- Aside ~ The Applicability of Occam 2 L
It is worth commenting on the applicability of occam 2 in the implementation of the
X-Linda node. Oceam, as stated previously, sapports the process model of concur-
rency: Hence, it provides a very natural and elegant way of expressing the above
Pprocess interaction, It must be said that occam does support an elegant program-
ing model. However, as mentionad. before, in a physically distributed environ-
ment, this model is too tightly coupled to the underlying hardware. :

The intent of this section was to outling the structure and operation of the X-Linda
node, and to illusirate the influence of the Linda Machine on its design. Specifica~

tions of the im;ilfz"lmentaﬁo.n of the out, in and rd operation, and a more detailed ac-

coutit of the X-Linda node's internal siructure is given in the following section,

33

5 — Implementation Design

SECTION 5

5.0 IMPLEMENTATION DESIGN

The purpose of this section is to iliustrate the implementation of the tuple space
primitive operations under X-Linda, and, by examining the design and structure of
the system at the process-level, to show how this functionality is achieved through
the operation and interaction of the respective modules. These issues are addressed
as follows : _ _

1. Implementation of the TS Primitives

Shows how the primitive tuple space operations (i.e. out, in and rd) are imple-
mented under X-Linda, and highlights various problematic issues that had to be ad-
dressed in order to successfully realize the implementation of these operations.

2. Process-Level Design

Describes the operation of the host processor and the X-Linda node at the process
level, illusirating the functionality and intéraction of the processes that comprise the
system. A note on the system’s software specifications, regarding the programming
methodology and the storage requirements is also given here.

5.1 IMPLEMENTATION OF THE TS PRIMITIVES

This section describes the design considerations regarding the specification and
implementation of the T'S primitive operations. It is of importance to note these
considerations as they have a direct inflnence on the efficiency of the system. Fur-
thermore, it is of interest to observe how TS consistency is maintained in the course
of processing these primitives. It will be seen in this section that a good deal of de-
sign effort was required in order to realize the successful implementation of the TS
primitives and the protocols for maintaining TS consistency. This {s attributable to
the fact that point-to-point communication links are not an ideal medium for the
implgmentation of in- and out-sets. The implementation of the primitive operations
is covered as follows : ' _

1. Out operation — an overview of the out operation is given, and some detail re-
garding a very important design strategy (i.e. the blocking of the processor invok-
ing the out} is presented. The processing of the out request and some tuple match-
ing considerations are discussed.

2. Rd operation — as for the out primitive, the processing of the rd operation is dis-
cussed in general. The satisfaction of rd requests is described, and an interesting
aspect of request satisfaction (i.e. multiple request satisfaction) is presented.

3. In operation ~ a large part of this section is devoted to the explanation of the
“challenge” process (i.e. when two nodes simultancously issue in requests for the
same tuple, they must contend to ascertain which one has the right to delete and re-
trieve the tuple). As for the rd operation, the process of satisfying the request is de-
scribed, and the issues of multiple request satisfaction and subsequent tuple
restoration are discussed.

5.1.1 QUT OPERATION

Tuples outed by an application program are stored in local tuple space (i.e. on the
processor where the program is running) and then sent to the out-set of that node.
The node blocks until the tuple has traversed the entire out-set (the reason for this
blocking requirement is discussed below). The tuple is added to each node in the
set and is matched against any pending templates on that node — if a match is found,
the satisfaction of the associated in or rd request is invoked. The following issues
are discussed in more detail below :

» blocking the processor until the tuple has traversed the entire out-set

34

5 - Implementation Design

+ the general processing of out requests
« matching tuples against templates,

5.1.1.1 Traversal of the Out-Set
Consider an out-set comprising three nodes (0, 1 and 2) connected via point-to-
point serial links in a ring as shown in Figure 5.1.

Noda 0 Node1 Nods2
Figure 5.1 : 3 Node Out-Set

The execution of out () causes the tuple a to be sent around the out-set and stored
in the local memories of each node. Assume that Node O outs two tuples, o and
a2, consecutively. There are two ways [Faasen 1990b] in which the addition of
these tuples to the out-set can be handled :

1. No Delay between Transmissions

If no delay between the operations is specified as soon as a4 is transmitted from
Node 0 and received by Node 1, ap can aiso be forwarded to the out-set —i.e. ap
will be sent the the out-set before o4 has been stored in every node in the set. This

is shown in Figure 5.2

Node0 Node1. Node2
Figore 5.2 : Out Operation — Unblocked

As g side issue, notice that, depending on the specification of the implementation, it
is possible that op may “overtake” a.y. This leads to a query regarding the semantic
equz:lgnce of out{a1) ; out{ap) and out{ep) ; out{ay), which is addressed in Ap-
pendix 7. .

2. Blocking the Transmission

Alternatively, it is possible to force the transmission of ap to be delayed until o has
been stored in every node in the out-set — i.e. to wait until the tuple returns to the
node that invoked the out. This is shown in Figure 5.3,

.

Node 2
Figure 5.3 : Out Operation — Blocked

Y

Both strategies satisfy Linda’s semantic specifications equally weil. The first ap-
proach was implemented in earlier phases of X-Linda, However, this unrestrained
form of transmission understandably resulted in the out-set becoming saturated,
and consequently caused deadlock. Hence, the second strategy was adopted. The

35

5 ~ Implementation Design

effect of forcing the processor to block does have a significant effect on the effi-
ciency of the out operation (refer section 6.2.1) ~ however, a proposal for reducing
the effect of blocking is discussed in section 8.2.2.

5.1.1.2 Processing-the Qut Request

Locally Invoked

A locally invoked out request can be either a normal out operation (i.e, invoked by
an application program) or the restoration a tuple satisfying an in request (a single in
request may be satisfied at more than one location, resulting in multiple tuples being
returned to the requesting node — as detailed in section 5.1.3.4, the “extra” tuples
must be re-inserted into TS). In either case, the processing of the request is the
same. The tuple is added to local TS and matched against pending ternplates in the
request queue, If no match is found, the tuple is forwarded to the oui-set, In the
case of a match against a rd request, the tuple is st/ forwarded to the out-set — rds
are non-destructive, and the tuple must as usual be added to TS ~ and the satisfac-
tion of the request invoked. A successful match againgt an in request canses the
tuple to be deleted from the local TS before it is returned to the application program
that is requesting it.

Externally Invoked _

Nodes receiving external out requests add these tuples to their TS and attempt to
match them against their local request queuss. If no match is found, the tuple is
passed to the next node in the ip-set — otherwise, the associated tuple is sent via the
in-set to the node that issued the request.

5.1.1.3 Matching Tuples against Templates

Rd Requests

As stated above, a tuple added to a local TS must be matched against the templates

in the reques. gueue, It is worth noting that if a match is found against a rd request

(as opposed to an in Tequest), it is necessary to test for further matches. Rds are

non-destructive; hence, a single tuple may match alf pending rd requests in the re-

quest queue. Therefore, on successfully locating a vd request, the matching process

must be successively repeated until -

» all matching rd templates have been located, or

« an in request is encountered,

Successful matches are satisfied as discussed in section 5.1.2.2 below.

In Requests _

Obviously, the procedure regarding an in request is different — only one matching n
uest in the request queue can be satisfied by a single tuple. These requests are

satisfied as discussed in section 5.1.3.3 below.

- 5.1.2 RD OPERATION

A rd operation causes a template to be stored in the local memory of the node from
which it is invoked, and then to be transmitted to all nodes that make up the in-set,
The template is added to the request queues within these nodes, and is matched
against the tuples present in the tuple space. A successful match causes the asgoci-
ated tple to be returned to the requesting node, and the request to be deleted from
the nodes within the in-set. It is possible that the same rd request may be satisfied at
more than one node. In this case, the requesting node will receive more than one
tuple — it must accept only the first tuple it receives, and discard ail others, Below,
the following ues are discussed in more detail :

e the processing of the rd request

» the satisfaction of requests and deletion of templates

» multiple request satisfaction,

36

5 — Implementation Design

5.1.2.1 Processing the Rd Request

Locally Invoked

Local rd requests are appended to the request queue of the processor invoking the
operation and matched against the tuples resident in the local TS. If no match is
found, the request is then transmitted to the other nodes in the in-set. If a match is
found, the request obviously need not be sent to the in-set as the request can im-
mediately be satisfied (this procedure is different with respect to an in request - re-
fer section 5.1.3.1).

Externally Invoked

Nodes receiving external td requests add these templates to their request queues and
attempt to match them against their local TS. If no match is found, the template is
passed to the next node in the in-set — otherwise, the associated tuple is sent via the
in-set to the node that issued the request.

5.1.2,2 Satisfying the Request _

When a template is successfully matched, that template is deleted from the local re-
quest queue, If the request was invoked locally, no further action is necessary. On
the other hand, the satisfaction of an external request necessitates '

* the deletion of the request from the entire in-set

 returning the asso-"ated tuple to the requesting node.

The node satisfying we match must transmit a delete command to the nodes in the
in-set. On receipt of this command, these nodes remove the template from their re-
quest quenes. Notice, however, that this is slightly more comp’icated than simply
deleting the entry. As is illustrated in Figure 5.4, an attempt may be made to delete
a template that has not yet been added to the request queue (recall from section
4,3,1.4 that requesis are sent upwards and delete commands downwards).

Templale Template
Addition Daletion

Ay

4, Template added to local queus [:

5, Template sent upwards lm o l 7. Dalete command sent downwards

8. Matctt found — template dsleted . '

1. Request invoked — 8. Delete command racsived —

2. Template added to local quaue a _ template daleted

3. Template sent upwards 9. Delste command sent downwards

10. Template hes not yat | | | 1. Delete command received —
reached destination template has NOT yet been
recaived

Y

Figure 5.4 : Template Deletion

Consequently, before a template can be deleted, a check must be made that it actu-
ally exists. If not, the state of the entry in the queue corresponding to that template
is set to “delete pending” — when the template finally arrives and is added to the
queue, it will immediately be removed. Notice that the processor that invoked the
request is unable to re-use the specific address of the template until the delete mes-
sage has traversed the in-set. This prevents a situation whereby a new template may
be incorrectly deleted due to a “delete pending” state. . _

37

5 — Implementation Design

Tuples thai satisfy templates are returned to the requesting node via the in-set.

Satisfaction by an Out Operation _ o

As discussed in section 5.1.1, a pending template present in the request queue can
be matched by a tuple added to the processor’s local TS. If the iemplate was locally
invoked the request is satisfied locally — otherwise, the tuple is passed via the in-set
to the requesting processor.

5.1,2.3 Multiple Satisfaction of Requests

It is possible that a rd request may be satisfied at more than one node. Figure 5.5
shows a situation where Node O issues a template, and then Nodes 2 and 8 both
issue matching tuples. This causes matches to be found at Nodes 0 ard 6, and
hence causes multiple request satisfaction.

1. Template Issuead - _) -
sertto in set L1 L} :
, ' |12, Matching tuple
3. Maich found - _“‘I l(“ I[-_H_] outed 7
Request satisfied .
focally &

6. Request satlsfied

1
. a
' | 6] [7T
‘5. Maich found - [j
Node O o _ outed

Figure 5.5 : Multipie Satistaction of Bd Requost

In this case, the requesting node will receive more than one tuple. It must accept
only the first tuple it receives, and discard all others. The strategy for detecting and
consequently discarding multiple request satisfies is straight forward. It is based on
a method of two counters — invoked_count and satisfied_count. When a request is
invoked, invoked, count is incremented. This count is stored with the actual tem-
plate in the respeciive request queues. When that template is successfully matched
and the associated tuple returned to the requesting node, invoked_count is transmit-
ted with the tuple. A node receiving a tuple in response to a rd request increments
its satistied_count and then tests whether Invoked_count = satisfied_count. If the
ggunag:clfes are different, the request has already been satisfied, and the tuple is
8¢

5.1.3 IN OPERATION

The processing of an in operation is similar to the rd in that the template is stored lo-
cally and in the memories of nodes in the in-set, and is matched against the tuples in
the respective tuple spaces. However, on a successful match, the associated tuple is
deleted from the entire out-set before it is retuned to the requesting node. Nodes
requiring to satisfy an in request must contend for the tuple in question. If there is
more than one request on the same tuple, only one of these may succeed in deleting
the tuple and returning it to the requesting processor. When a request has been sat-

38

5 = Implementation Design

isfied, the template is removed from the nodes in the in-set. It was shown in section
3.1.2.3 that a template may find a match a- a number of nodes simultaneously,
causing multiple request satisfaction. The requesting node must, as for a rd opera-
“tion, accept only the first tuple it receives 1n response to the reguest. Notice, how-
ever, that any other tuples that are received cannot merely be discarded. These
tuples are deleted from TS by the node satisfying the In request, and the requesting
ggidc must therefore re-out the tuples into TS. The following issues are discussed
oW, '

« the processing of the in request

the challenge process
the satisfaction of requests, and deletion of templates

multiple request satisfaction and tuple restoration.

- & &

5.1.3.1 Processing the In Request
Locally Invoked _
Local In requests are appended to the request queune of the processor invoking the
operation and matched against the tuples resident in the local TS. If no match is
found, the request is then transmitted to the other nodes in the in-set. Notice that, in
the case of successful match, the template must still be fransmitted to the in-set. It is
possible that another node may also request the tuple in question; hence templates
must always be sent to the in-set as the node invoking the request may lose a tuple
challenge and have to find another tuple elsewhere. When a match is found, the
tuple cannot be simply deleted from TS and consumed. The node must “challenge”
the other nodes in the out-set in case they too are attempting to satisfy a request on
the sisne tple, . : _
Externally Invoked _ S _ =
Nodes receiving external in requests add these templates to their request queues and
attempt to match them against their local TS. If no match is found, the template is
passed to the next node in the in-set — otherwise, the satisfaction of the request can
- be invoked. As discussed above, the node must invoke a challenge before it may
delete and return the tuple, , ,

§5.1.3.2 The Challenge Process : '

The issue of tuple contention was briefly mentioned above. This is a very real
problem. ¥ two nodes siminltaneously issue a request for, and successfully locate
the same tuple, only onz may be permitted to retrieve that tuple and delete it from
TS; the other must w'thdraw from contention and seek another tuple. Take the ex-
ampie whereby a tuple is preset in the top row of the mesh. Now, if two nodes in
different in-sets simultanesusly issue requests for that tuple, 2 métch will succeed
in two locationg — this is fllustrated in Figure 5.6, :

39

5 ~ Implementation Design

| x | © | 5
¥ |
e
& {
__rory o T
Issue Ly, I] _ ' issue
Template o | [Template;{

Figure 5.6 : Muitiple Matches on the Same Teple

On finding a match, a node must *“fight” for ownership of the associated tuple be-
fore it can be deleted from the TS and returned to the requesting node, This is int-
plemented using a simple and efficient sivategy. When a match is found, the node
sends to the out-set a challenge token, which essentially contains the address (i
location in TS) of the tuple to be deleted and the identity of the node invoking the
challenge. A node receiving a token from a foreign processor tests whether or not it
itself is attempting to satisfy an in request on the same tuple. If not, it deletes the
tuple from its local TS and passes the token on. On the other hand, if it to0 is satis-
fying a request on the same tuple, it must contend the challenge — i.e. rne of the
rodes must Jose out and withdraw from contention, The strategy useéd in determin-
ing the outcome of a challenge is simple. The node with lowess identity wins the
challenge; if the identity of the node receiving the token is Jess than that of the node
that issued the token, it wins the challenge; otherwise 1v loses. The procedure asso-
ciated with winning or losing challenges is outlined below -

» Winning a challenge ~ If the node wins the challenge, it consumes the wken (i.e.
the losing node’s challenge “dies™), _ - - '

» Losing a challenge - Conversely, on losing (=& challenge, the node deletes the
tuple from ity local TS, passes the token on, and then re-attempts to find 2 match
for the unsatisfied template, Effectively, the node has now withdrawn from
contention with regard to the tuple that it originally tried to claim.

Once & token returns to the node that issued it, it is guaranteed that the associated

- - tuple has been deleted from TS, and can now be returned to the requesting node.

The idea is expressed by means of an example in Figure 5.7.

40

5 —~ Implementation Design

o — JEE

Too] [211%2] | fegerd P41 | g eg
wff] ik
(%o] -

al | Noe 00 issues token [Too]
Nods 02 Isstes token {To] _

Node 02 receives |Too] - 02 loses challenge & re-tries to satisfy
Node 01 recoives - is deleted '
Neds 01 recaivas - c.alraady delated _

Noda 00 receives - 02 loses challenge; token Is consumed
Node 00 recelves -tuple Is returned fo requesting process

BESE

AERBOE

Figure 5.7 : Challengs Process

The contention strategy (i.e. based on the identity of the conflicting nodes) is
somewhat atbitrary, and obviously favours nodes on the left hand side of the mesh.
The strategy is, however, simple to implement and, since this issue dues ot di-
rectly relate to the objective of the research, was considered accepiable to use.

Other Passible Challenge Sirategies

Some alternative methods for determining the outcome of tuple contention are dis-
cussed below. They are mentioned here for the sake of interest, and, in section
8.2.8, are briefly re-visited in thv: context of future research.

1. Honouring Tuple Ownership

If two nodes are challenging for the same tuple, and that tuple was outed by one of
the nodes in contention, then that node will automatically win the challenge. The
practicality of the approach would depend on the frequency with which application
programs tend to request tuples that they themselves initially put into TS. This
strategy was implemented in eurlier phases of X-Linds, but was ultimately dis-
carded for the sake of simplicity'

2. Fairness Policies

As stated previously, the X-Linda tuple contention scheme is biased towards nodes
with low processor identities - i.e. nodes on the left-hand side of the mesh. It
would be of interest to investigate a “fairer” policy that would distribute the power
to win challenge requests, Instinctively, a random selection policy may seem attrac-
tive. If two nodes are contesting for the same tuple, a random decision could be
taken locally to determine whether or not a specific node shruld win or lose the
conflict. This is, of course, nonsensical, since both nodes might win ownership of
the tuple on this basis. A strategy that received serious consideration (and which
was in fact implemented in earlier phases of the system) was that of a virtual iden-
tity scheme, Every processor is given a Virtual ID, initial y set to the processor iden-
tity. The strategy for determining the outcome of a challenge is then similar to that
described previously, but nses the Virtua! ID instead of the processor identity. A
node wins ownership of the tuple if its Virdual 1D is less than that of the external
{chauenging) node’s Virtual ID. Now, if there are k nodes in the system, a node's
Virtual ID could be incremented by ¥k whenever it wins a challenge. This wonld
guarantee that the node would lose the next challenge, providing a fairer challenge

41

5 - Implementation Design

scheme. The strategy is obviously suited to the situation whereby every node issues
a single tuple challenge at a time. I-Iow?rer, a node can simultaneously be respon-
sible for several (up to a maximum of Vk) challenge reguests. The complexity of
maintaining a consistent Virfual ID in this situation prohibited the inclusion of the
scheme.

Deleting Tuples .

It is worth commenting on the complexity involved in deleting tuples from the out-
set — the operation is not at all straight forward. The first problem is exactly that
which was described with respect to deisting templates — i.e. it is possible that a
tuple will not yet have been installed on a node when the command to delete that
tuple is received. This is solved in exactly the same way as for.temngplate deletion, .
using a “delete pending” state, The second problem is refated to this ons. Referring
back to Figure 5.7, notice that, with regard to Node 1, the following situatic.
ocours : : : '

I E-¢ | | Node 01 raceives {Too] - already delsted |

Now, when Node 1 receives this token, bow does it know that o has already been
deleted. It cannot simply apply the rule that when a delete command is applied to a
tuple that does not exist, the state of that tuple must be set to “delete pending”.
Hence, it is necessary to store extra identifying information with the tuple address
to prevent this sitnation from occurring,

5.1.3.3 Satisfying the Request _

When a template is successfully ma'ched, that template is deleted from the local re-
quest queue. It must also (even in the case of a local request) be deleted from the
entire in-set {as was seen previously, in requests are always sent to the entire in-
set). Furthermore, the associated tuple must be gither returned to '

« the application program in the case of a local request, or

» the requesting node via the in-set for an external request. :

The same procedure for deleting templates that was described for the rd operation
(refer section 5.1.2.2) is utilized here. Notably, care must again bt taken against
deleting a teraplate that has not yet been added to the request queue, and the “delete
pending” state is used in this regard,

Satisfaction by an Out Operation. -
Pending teriplates present in thie request queue thet are maiched by a tuple added to
the processor’s local TS are processed as descrited above.

5.1.3.4 Muitiple Satisfaction of Requests

With respect to the rd operation, it was described in section 5.1.2.3 how a request
could be satisfied at more than node — obviously, the same applies to in requests,
The same strategy as described for rd :eguests (i.e. wsing two counters —
Invoked_count and satisfied_count) is empioyed. Notice, however, that a tuple that
has already been received can no longer mierely be discarded. It will hav been
deleted from the TS, and must therefore be restored as described beiow.

Tuple Restoration

The process of tuple restoration i best explained by means of 2 simple example.
Referring to Figure 5.8, assume that a tuple is present in the out-set comprising
Nodes 3, 4 and 5, and aneother tuple witls the same name exists in the out-set com-
prising Nodes 6, 7 and §. Now, if Node O issues a template that matches both of
these tuples, 2 match will be found at Nodes 3 and 6. The tuples will be deleted
from the respective out- sets, and both tuples will be returned to Node 0.

42

_ 5 Irriplementatiqﬁ 'Dcsigr:-?

 Issue Template > | _ E:l
ot 5
Match: S £4] 1 LA el]
Delete oy from out-set - ' *1 ﬂ
{ [Retza & 1 10 Node 0 - L : 1
o st : : f—
- A
e Pl T ol
| Delete o3 from out-set {-p) | =2 1F%2] ATe2 1|
Rewrn aptoNode0 - | | L& | :

Figure 5.8 ; Multiplo Satistaction of In Requost

Nodé 0 will therefors receive two tuples in response to its request. Assume that it
receives oy fitst — this tuple is then consumed by the applicn&owggogrmn that in-

* voked the request, However, on receipt of «g, Node O must re-out this tuple since it

has (ailzln_comactly)- been deleted from Node 6's out-set. Notice thgt this scheme can
-actually el
other tuple with the same name, this request will be satisfied locally,

5,14 DISCUSSION e
The design considerations detailed in this section have illustrated that the implemen-

- ‘tation of the TS operations was far from trivial, The greatest factor contributing to |

the overall complexity stems from the need to maintain TS consistency, a problem
obvionsly common to all systems that are required to maintain distributed data. It is
claimed that the TS primitives and protocols for maintaining TS consistency have
* been kmplemented in a simple and sffective fashion, However, it is worth pointing
- out that their successful implementation ultimately required a great deal of design
effort, verification and modification. This is perhaps indicative of the fact that in-
and out-sets ave not well suited to implementation over the Transputer s commiuni-
cation Hnks, It iy also relevant 1o note that, given the design considerations outlined
in this se¢tion, the implementation of the predicate operations (inp and rdp) would
be excesdingly difﬁcul_ttégusﬁfying the comments in gection 4.3,1.3 regarding their
unsuitability to distributed-memory implementations, :

43

nce the performance of the in operation. If Node.0 now requests an-

\'*‘“4*-,-_:.-:6‘ : .

" 5 - Implementation Design

5.2 PROCESS-LEVEL DESIGN _ - _
- 'The averall design and strusture of X-Linda is given below in terms of the opera-
tion and functionatity of the various modules that comprise the system. It is not the
intention to give a blow-by-blow account of the occam programs themselves; in-
stead, the focu. s at the process level, It should by now be evident that X-Linda is,
in essence, a collection of intercommunicating concurrent processes, In this sec-
tion, the purpose and interaction of these processes is described. The design of the
- system ci)ﬁ:ystemaﬁcﬂiy addressed with respect to the Host process and the X-
Lindan LS . . i
1. Host process — the host process is that which resides on the hgst Transputer —
i.e. the extra T414 processor that is included within the top row of the mash, The
primary functions of the host process — to act as an intermediate node and to pro~
‘vide monitoring facilities — are described in the context of the two congurrent pro--
cesses that provide these operations, - - y :
- 2. X-Linda node — the operation of each Transputer within the X-Linda mesh is
glven with respect to the dedicated software processes that reside on each processor
~ -(le. Interface, In, Out, Rd, Queue, Computation and Challenge Manager). The infor-
. mation i$ neither technical nor detailed, and is intended sirply to provide an

~ overview of the function of the processes.

5.2.1 THE HOST PROCESS o
As indicated in section 4.3.1, the host Transputer functions g;mmﬂy as an interme-
diate node in the networl, simply passing on information that it receives from the
- nodes that comprise the top row of the mesh, A secondary function of the proces-
soris to %gg‘vide monitoring routines that enable the local TS on each node to be in-
bhese two fanctions are implemented by means of parallel, intercommuni-

-cating processes as shown in Figure 5.9 {recall from section 4.2.2 that the proces-

sor that is attached to the host processor’s secondary link has the idintity 1024).

—
. Lingsto
—— - Network

ol _‘_“_N:é Node 0

| Host Transputer . :
TFiguve 59 ; Layout 'nt’_ the Host Processor

The operation of the Monltor and Network {NW) Connectlon processes are described

in more detail below. I _ : .
5.2.1.1 Monitor Process _ - :
‘The Monitor process provides the means to inspect the tuple space by 4ccessing the

- tu;i’le and template quenes for selected processors, The screen shown in Figure
5.10 is displayed to the user — this shows the arrangement of the X-Linda mesh,.
relevant system dimensions, and various TS inspection options, -~ -

_S-Imp_lmz_w_naﬁbn Pesign

T e : — 1 m_esh'dlmansinn_ — 4 !
oo | for| |2 jes || |rocfmedes _16.]
. ' . buukaidimanslnn 8
| | _"budcetslza o "
[a] T[] [w] [#]] [cmelnmn | s
tupla size 64
o | fos | b0 { |11 [} - M upieNames
Tl s s _'--1§ -\15. _ .lnquct’l_’uples‘ '
-'\.\' - - o

B 0 S

TS Irzspecriau
For any speified node idennty, the Monﬂnr can be invnked to dxsplay
» the names of the wples presentinthe TS -

s - the names of the templates g .madonﬂmtmde

. thecontentsofthedataﬁelds of tuples, -

" The abave requests are relayed to the NW Gcnnaction process and ;ﬂen sent to the
required processor. The information returhs 16 the Monitor frora the networlevia the o

NwW connacﬂon process, and is displayed in mnta\ble format. -
Aside - Routing Strotegy

The algorithm for routing monitor massages ﬁ-om the host to 4 specxﬁed pmcessor :
and back again is simple. The design and implementation of an optimal routing -

strategy was not considered to he necessary for the se of monitoring: The
- message is passed along the u'ﬂ’ row of the mesh until %es ‘the column that the

'specified node comprises (unless, of course, this node iy itself present in the top
row). The message 1s then passed dowr: the colums until it reaches its destination.

This route is reversed in order to retum the TS mformauun&pv the host, The route

~ taken in accessing the TS on prooessor? mm mesh is shdwn inF‘gm-c 5‘11

b

45

=t

§ - Tmplementation Des:gn

L= =0:= e
-t | 03 04 05

T Tigure 541 Mioniior Roulag s

_ '5.2.1.2 NW C‘onnection Prucesa
- The NWQonneation rocess is res Jonsible for

prowh:ﬂg*.snk etween Node 0 and Node 1024

~ .+ passing monitor infotmation between the Montor process and the nmtv&ork.
- 'The process loops continnally, testing for input on its relevant channels and re-dl- -
o recting ﬂus mput as wquzred Thls operauon is musn'ated below I

: DGForowr‘_ o

ALTernati\rp Ca
o2 Bovaive Manftnr infornation from Node 0
S Bend to Monltor Procass '

-« Raceive X-Linda informetion from Node 0.

- Bend to Nede 1024

- "« Regelve X-Linda lnhrmatlun from Node 1024
© Sandte Neda o .
_ « Raceive Mohilar requast from Manitr Pmcass

" sand fo Nede @ -
g -ENQ-BQ . L

523 THE LmpA NobE o |
.. Recall from section 4,3.2 that the processors w;thm the X-Linda mesh are referred
- to as X-Linda nodes. These nodes execnte a number of inter-communicating, con-

current processes, each of which is dedicated to some specific function - i.e. com-

' putanon, ‘uple storage and TS management, the progessing of primitive operations -

providing an interface into the in- and vut-sets. The structure of the X-I.mda

_ _Inndens shownagmn in Figure 5. 12.

oo

" I“Wepick ‘FDREVER to be o very dong time, equal to melargestnumber that can be stored on

the machine the universé is Be.mg simulated on. or the lengsh of tinse until the Last Judgement,
depending on your religion.” 1. McDermptt, A Tempaml Logic for Reasoning abom Pmcesses

-_ and Pkms Cogmtive Sclence (6), 1582, 123

R

§ - Jmplementation Desipn

* Links to Network

Challsnge
Manager |

Y,

| computation |

" Figure 5.12 ; Struotire of the X-Linda Node (rovisited)

Below, the function of these processes is briefly outlined, jllustrating how the

overall functionality of the system is achieved via the interaction of the processes.

The description follows a diagrammatically bottom-up order —i.e. starting with the

Gomputation pracess and snding with the Intériace (a more detailed diagrammatic

representation and the structure and interaction of these processes is given in Ap-

pendix 5). To conclude the overview, some comment is given on the need for

buffering and for atomicity of operations within the X-Linda node, and the snitabil-
ity of the occar 2 programming model as a vehicle for expressing the above pro-

‘cess interaction is briefly re-addressed. '

5.2,2.1 Computation Process ' .
‘The Computation process hosts the application programs that are executed under X-
Linda, TS operations are invoked via procedure calls within the process, from
where control is transferred to the relevant TS primitiva pracess (i.e, In, Out or Rd).
The processing of TS requests is briefly outlined below: _
I, Out Requesis — tuples outed from the apglication program are transmitted to the
Out process. Once the tuple has traversed the out-set, an acknowledgement is sent
back from the Out process to the procedurs from which the out was invoked ~re-
call that the application prograra is bHlocked during this tithe, o
2. Rd Requests — vd tequests are sent to the Rd process. When a successful match
is logated, the associated tuple is returned w the procedure invoking the request,
and consurnied by the application program, - o

3. In Requests - as for a vd request, In requests are ransmitted directly to the In pro-
cess, Information returned from the {h process can be one of two types :

-

5 — Tmplementation Design

1. & requested tuple — as for the rd, the tuple is consumed by the application pro-
gram that invoked the request : _)

2, a requested tuple that has already been received. It was illustrated in section
5.1.3.4 that a single in request can be satisfied at more than one location, and
that the “extra” tuples must be restored to TS, These tuples are simply re-di-
rected to the Out process for addition to TS in the normal way.

5,2.2.2 Out Process I : _ o _
The Out process is responsible for receiving out requests (i.e. tuples) invoked both
locally and externally. It must add these tuples to TS, and depending on whether or
not therg exists a matching template, transfer control to the appropriate process (i.e.
Ir or Rd). Locally invoked tuples are received from the Computation process and
external tuples from the Interface. These tuples pass through a pair of buffer pro- -
cesses before being processed (buffering is necessary to avoid network saturation).
The tuples « = sent to the Queue process for addition to TS, where they are also
matched agawast pending templates, If 2 match is found, the Out process transinits-
the tuple to the In or Rd process (depending ot the type of the template) for subse-
quen(=+ «faction. Notice that :
1. if 4 v his found against a rd request, an attempt mmst be made to locate furth
matches : - B '
2. locally invoked tuples must be sent to the Interface for addition to the out-sst.

5.2.2.3 Rd Process :
Locally and externally invoked rd requests are handled by the Rd process. As for
the Qut process, local requests are received from the Computation process, and ex-
ternal requests arrive via the Interface. In both cases, the associated request is di-
rected "o the Queue process for addition to the template quene and subsequent
matchix - inst the tuple quene, If a match is successfully located, the Rd process
return, quested tuple 1o the Computation process in the case of a local request,
ortotl : _dace for transmission to the requesting node in the case of an external
request. When the Rd process receives & tuple in résponse to a regmest that is satis-
fied at an external location, it tests whether or not the request has already been sat-
isfied (as described in section 5.1.2.3), If the request has not yet been satisfied, the
tuple is sent to the Computation process, and a command to delete the associated
template from the in-set is sent to the Interface — otherwise, the tuple is discarded.

It vras seen above that tuples matched against rd requests by the Out process are
transmitted to the Rd process. These uples are redirected from the Rd process in the
normel way (.e. to the Computation process or the Interface process, depending on
whether a local or external request is to be satisfied), S

5.2.2.4 In Process

The function and operation of the in process is similar to that of the Rd. As before,
the in process receives locally invoked in requests from the Computation process,
and external templates from the Interface. These requests are sent to the Quaue pro-
cess for addition to the template quene and for matching against the tuples in TS.
Notice, however, that the In process does not directly act upon successful matches.
When a match is found within the Queue process, it (the Queus process) sends the
tuple to the Challenge Manager process for addition to the list of “claimed” tuples,
and the Chaflenge Manager issues a challengs token to the out-set, When the In pro-
cess receives a locally invoked challenge token, it knows that it has won ownership
of the tuple, and can delete and return that tuple to the requesting process accord-
ingly. On the other hand, on receipt of an extemally invoked token, the In process
queries the Challenge Manager process to determine whether or not the tuple in
dvastion has also been claimed locally, If not, the token is simply passed on to the

a8

5- Implemantaﬁaﬁ Design

next node in the out-set. However, if there is tuple contention, this must be re-

solved using the processor identity scheme detailed in section 5.1.3.2, It is worth
noting the added complexity associated with a node losing a tnple challenge; when
this occurs, the tuple must be re-requested. Re-requesting is done by simply re-
-adding the femplate to the list within the Queue process. Notice, however, that if

 the template in question was originally invoked by an external node, and if that re-
quest has subsequently been satisfied, it is possible that the template entry may
since have been deleted, or even overwritien by a new request, Hence care must be
exercised when re-inserting the template into the list, :

Otherwise, the operation of the In process is much the scme as the Rd, i.e, with re-
spect to redirecting tuples returned in response to request satisfaction, processing
requests satisfied by the Out process and issuing template deletion commands. The
processing of requests that have been satisfied more than once is, however, slightly
- different. The extra tuples are not simply discarded (as done by the Rd process).
Instead, they are sent o the Computation process from where a normal out Operation
sends them 1o the Out process and subsequently into TS,

5.2.2.5 Challenge Manager Process _
The Challenge Manager process is responsible for maintaining the list of tuples that
a specific node has claimed and requires to debetc- in fulfilment of an Inrequest. A
- single node can at any time be responsible for vk such tuples, given that there are k
‘nodes within the mesh. Tuples matched against in requests within the Queue pro-
- cess are sent to the Challenge Mariager and added to the list of claimed tuples. The
~ Ghallenge Manager then sends a challenge “token” (essentially the TS address of the
tuple) to the interface for transmission to the out-set. When the In process receives a
token issued from an external node, it sends this token to the Challenge Manager
‘where it is matched against the ¢laimed tuples in the list. If a match is found, the
Challenge Manager informs the in process that tuple contention has occurred, and the
_In process resolves this conflict as described in section 5.1.3.2. Alternatively, on
-reteiving a locally issued token from the Jn process, the Challenge Manager simply
- removes the corresponding tuple from its list (this tuple has been successfully
claimed and is of no further interest),

5.2.2.6 Queue Process =~ _
Local TS is maintained within the Queue process in the form of & tuple list and a
template list. Tuples and templates comprise the 32-bit integer fields shown in
Table 5.1, and the Hists are simply implemented as arrays of these fields.

[Tuples__ 1 .T_g'_rp_g!étes ——
‘Name | [N#ime
Sourca 1 Source

Saquaensce Sequance
|State . Typs
{ Data {intsger amay) State ~ |
Table 5.1: Storage of Tuples / Templates

The fields shown above in non-bold font represent exira identification information
required by the system. Source is the identity of the node issuing the tuple or tem-
plate, Sequence is the corresponding sequence number of the TS operation, State
holds the state of the pariicuiar entry (e.g. locked, free, etc.) and Type identifies the
tomplate as being aninorardrequest. .

- 'The operation of the Queue process is simple, Its pri function is (0 receive re-
quests to add tuples and templates from t -Gut,mad processes. In general,
these items are added to their respective lists and matched against the opposite kst

49

§ ~ Ymplementation Design

~ {i.e. tuples against templates and vice versa), and the result of the match is returned

to the process invoking the addition, The Queue process must also be able to re-
ceive and act upon requests on specific tuple space enites — for example, to lock or
delete a specific tuple. Finally, the Quoue process is responsible for accessing and
retrieving the TS information requested by the Monitor pracess residing on the host
Traasputer, Notice that access into the Queue process is restricted by & first-come-
first-served policy. When the process receives a request, it blocks out all other in-
teractions until that request has been completed; this is to avoid the contents of TS
being accessed by a number of processes concurrently. o

'§,2.2,7 Interface Process = - S '
It should by now be apparent that the interface process simply redirects traffic from
the processes within the node out to the in- and out-sets, and vice versa. It is, how-
ever, worth noting thar internal structure of the Interface is quite complex, The pro-
cess coroprises 13 concuirent sub-processes ~ these sub-processes are dedicated to

1. each of the Transputer’s 4 input and cutputchamnels .~~~ -~
2. traffic from each of the Out, In, Rd and Challenge Maniager processes io the in-
- and out-sets, and, obviously, wraffic in the reverse direction _ .
3. the monitor routing strategy (i.e. redirecting requests for TS inspection from the.

Monitor process resident on the host Transputer to the required node, then into

the Gueus process to retrieve the information and, finally, back to the host pro-
t*.essa:). [S

5.2.2.8 Disenssion . o o

Each of the process modules described above comprise 4 number of sub-processes

(in al, each X-Linda node comprises over 40 concurrent processes) - a diagram-

matic overview of the interaction of all of these sub-processes is given in Appendix
- 5. In the design of the X-Linda node, there were two recurring needs that had to be

1. Byffering — overall, 20% of the sub-procgsses running on each node are dedi-
cated to the provision of buffering, The problem of saturation (both over the net-
work and within the nodes themselves) is very real, and could onty be effectively
resolved by providing process buffers, - " T
2. Aromicity ~ this problem is more subtle than that described above, Consider the
sequence of & node receiving \t template, testing for a match against the tuples in TS
and then invoking the, satisfaction of the request if a match is.found. In between
these operations being completed, it is possible that some event, for example the

- addition of a new tuple or tempiate, may oceur. If this is alowed to happen, the re-

. sults cun be disastrous (for example, the sadsfaction of a request might be invoked -

-from both the Out and the In processes). Consequently, it was necessary to enforce

~ atomicity into the processing of tuple space requests to ensure the completion of &
particular operation before starting the next. L '

- As discussed in previous sections, the tatention in designing the X-Linda node was.

1o provide a software implementation of the Linda Machine node. It is maintained
that this objective has been achieved — and, more than this, the objective has béen
attained in an elegant fashion, The design of the X-Lind« node is both logical and .
well-structured, and there is a great deal of modulerity inherent in the system. g

The Applicability of Occam 2 (revisited) T
In section 4.3.2, comment was made on the applicability of occam 2 in the imple-
mentation of the X-Linda node, Occam provides a very naturel and elegant way of
gxpressing the process interaction detailed in this section — the programming model
is extremely suitable for this role, - - : R

5 — Implementation Design

5.2.3 SOFTWARE SPECIFICATION _ _ _

The design and specification of the X-Linda implementation has been detailed as
some length in this section. A related issue, the programming methodology applied
in the construction of X-Linda, is briefly overviewed below, illustrating an adher-
ence to “good” occam programming style. Finaily, the storage requirements of the
-system {of both source and memory-resident code) are detailed.

5.2.3,] Programming Methodology -
The National Transputer Support Centre, Sheffield [NTSC 1990] recommends the
. adherence to the following conventions in the interests of enhancing occam pro-
gramming style— - _ _
» correct use of the folding editor as means of implicitly commenting programs,
~providing logical grouping of blocks of code and providing a natural approach to
. top-down program development _ _
-« the use of channel protocols as a means of providing security to occam programs
‘o the use of abbreviations for the purposes of improving readability, performance
~and automating security checking S
.+ providing for easy implementation on different hardware configurations — i.e.
-the ease with which the number of processors on which the program in running
gan be increased _ ' _) _
+ the use of procedures and input/ontput conventions simply in the interests of en-
hancing program readebility. . '
It can be claimed with confidence that the programming methodology applied in the
-implementation of X-Linda closely adheres to the above conventions. -

-Aside - X-Linda on more than 16 Nodes ' S
‘Regarding the above point pertaining to increasing the number of processors on
which the systern is running, it is very easy to switch between 4, 9 and 16 Trans-
~ puters, However, it Is not known whether or not X-Linda will function on meshes

~ greater than 4x4. It would be trivial 1o load the system onto a 5x5 (say) mesh.

. However, the system has not been tested on meshes larger then 4x4; it is quite pos-

~ sible that doing so would require the implementation of additional buffering 1o pre- -

vent network saturation. e

It isoftinterest to note that there is a version of X-Linda running on 4 single Trans-
puter. Thednitial development of the system was done on one Transputer, where
the physical processors and hard links were simulated in software. The simulated
_‘version i$ not a separate system as such — the X-Linda modules are simply

“attached” to a harness that, for the simulated system, launches the nodes in pﬂra%el '
~on a single Transputer, and, in the distributed case, physically places the nodes and -
associnted communication links on independent processors. Hence, the two ver-

- sions run identical code and have been shown to prodnce the same results for vari-
~ous application programs. Notice that simulating a 4x4 mesh of processors on a

single Transputer causes more than 600 concurrent processes to be launched on that
Transputer. The structure of the simnlated and distributed versions of X-Linda is
- shown in Appendix 4.

5.2.3.2 Storage Requirements . '
- The storage requirements pertaining to X-Linda's source and executable code are
- detailed below. This gives some indication of the magnitude of the system, and also
highlights the excessive memory requirements. '

51

5 ~ Tmplementation Design _

Seurce Code | i

X-Linda comprises close on 120 source files that occupy more than 300 Kbytes of
disk storage. The actual number of lines and bytes taken up the source modules is
depwted in Table 5.2,

[Process - _ I- ! Ll_nss [Bytes |
Host Procass . 310 9798
_ .- NW Connection 258| 7937
Maniior) . _ 1028} 28077
' S 1597 - 48813
I X-LindaNods - [1416[A4868]
" interface 1798| 854049
Queus { | 1888F 520¢.]
ow . - 705| 20889
‘In . ' . 1845|4740
" Rd ' : . op2| 28157
Computaﬂou 1 1. 417l st
' Ghal]enga Manager 523{ 152451
e 8055 271513]
Applications S - _
7 (1) Testing 429 Bo41]|
 {2) Efficiency ' 1672| 29324/
Examples | | 665 13160].
o ' | 2B66] 50585
[Tetal - - A EESEIN as7asﬂ

Tabhle 5.2 : Sizeg of SOurce Code Modules

Assm..mg that blank l,mes, comments, etc. take up 40% of the source cods: (wh:ch
is fairly realistic), the actual mplementauon is close on 8000 lines long - i.¢, a rea-
sonably iarge system. .

Memor;v Requirements
“To get some idea of X-Linda's actugl memory requirements, consider the naked -
system (i.e, withour the extra storage needed by application programs) running on .
4x4 mesh. Keeping in mind that that each node in the system has access tv only 1
Mbyte RAM, some maximum tuple and tuple space Speczﬁcauons are given in
Table 5.3, using the fcllowing notation :

ple dimension = logeN

N - tuplesue = 2
d - bucket dimension =log;B
B - bucketsize =24
S - sizeof TS =48 _ _
Tuple Length] | Bucket Size size of TS | | Storaga
[m I N |- d] B (. .8 -1 |(Kbyes
A 16 GRS 2048 686
7p 128 8 843 256 | 832
10| 1024 sl 8] | a2{ { _ 923

“Table 5.3 : Tuple Space Slorage Requuemenu

"fhle three pnma:y factors contributing to thess excesswe storage needs are deta:led :
- below. '

1. Storage bf TupleslTemplares '
It was shown in section 5.2.2.6 that 4 mgmﬁcam amount of Extra mformauon isre-
quired to st@re tuplcs and templates {for example the 1dent1ﬁcaurm of the node in-

5 — Implementation Design

voking the associated operation). Obviously, these extra fields have a significant ef-
fect on the amount of storage tequired, especially when “large” tuple spar s are re-
' qmreg g:li(; reduction of the amount of extra infortnation is briefly dealt with in sec-
thl'l wonte & fu - .
2. Length of Request Quene _ '
For ease cf implententation, the lists that hold tuples and templates respectively on
each node were specified to be of the same dimension, Now, siuce the number of
requests that can be pending within the system at any given time is bounded by the
square root of the number of nodes, it is obvions that the request queue requures
fewer entries than the tuple queue. This would consequently reduce the overall stor-
age requirements (this aspect is further addressed in section 8.2,3).
3. Replication of Storage - S L _
Each “major” occam process resident on a node — recall that there arg 7 such pro-
cesses +Interface, Computation, in, Qut, Rd, Queue and Challenge Manager—~isa
self-compiled unit. This implies that each process must liave its own self-contained
storage space. Hence, some degres of storage replication is inevitable (for example,
each of these processes must have sufficient storage space for (large) tuples), More
than this, recall from section 5.2.2.3 that each of these major processes are com-
. posed of a number of smaller concurrent sub-processes. Now, it i usually the case
- that the majority of these sub-process also require access to a specific data stru.-
~ ture. To prevent parallel access to this data, each sub-process must be able to access
its own copy of the data, and hence must cater Jocally for the storage of the data,

T'> conclude this sectic ., it is appropriate to make mention of an implicit and as yet
unstated objective of the X-Linda project — .. fo establish whether or not itis

- _possible to implement iniermediate uniformty distributed TS on meshes of Trans-

puters, Obviously, the success of this objective has by now been made apparent,
and this section, it is hoped, has illustrated the suitability of the design specification

in achieving this,

- 53

§ — Analysis of Efficiency

~ SECTION 6

6.0 ANALYSIS OF EFFICIENCY

This section focuses on the actual research question concemmg the communication

iwerhca;is associated with the X-Linda implementation. The analysis takes the fol-
owing form :

1, Schedulmg Overhead ~ although not directly related to communication o'

heads, this is important as it illustrates a source of inefficiency brought about by we

schedulmg of the numerous processes that reside on the X-Linda node.

2, Our Operation ~ the overhead of the out operation, focussing on the overhead of

out-set traversal, the comniunication overhead of tuple transmission, the effect of
network traffic on the operation and the amount of CPU utilization involved in pro-
ot‘ﬁsmg the operation.

3. Rd Operation — the commumcauon overhead of the rd operation, and the effect of

network traffic on the processing of the operation.

4. In Operation - the extra overhead of the in operation relative t the rd, and the.

arnount of CPLJ utilization required to process an In operation, This scctmn also in-
vestigates the overhead of tuple contention (i.e. challenging).

3. Dara Exchange —the overhead of interchanging information between two proces-
sors, relative to _

+ an X-Linda emmlation

« a shortest-path approach on a mesh of processors.

6. Sink Algoﬁrhm the efficiency of a sink algorithm mnmng under X-Linda rela-

tive to the same ¢ ;:, orithm implemented on a native mesh of processors,
7. TS Segrch - althouph not refated to communication oveshead, this investigation

L P

~ does highlight the inefficiency of X-Linda’s tuple matching process, and showsthe.

effect of the scheduling overhead on this operation.
8. Review —an ovemew of the best and worst case communication overheads.

Notice that the fo]lmmng points apply to the experiments conducted in the section : -

1. All the ents were conducted on a 4x4 mesh — the 2x2 and 3x3 cases were
not consi . Regall that the nodes within a 4x4 mesh are auanged and nurm-
bered as shown in Figure 6.1.

FEILTE
| -"E@:lm .
ﬂﬂﬁiﬂ

“Figure 6.1 4x4 X-Linda Mesh

_@e

2. The “base™ tests (i.e. relative to which the overheads ure evaluamd) are detailed
in Appendix 2.

3. 'The tests were run a numb.:; of times, and the results averaged ot to reduce ex-

pmmental Iror,

bl

6 — Analysis of Efficiency

4. The following notation is used throughout —
N. -~ size of tuple (i.e. number of 32-bit integers)
m - logmN ' :
Time —~ Total time in microseconds to perform the experiment
Rate - Transmission rate = Bytes/ Time = 4N / Time. _

5, With regard to the evaluation of in and rd, it was required that the extra overhead
of the matching process not enter into the results. To this end, the experiments to
test these operations were implemented with the smallest possible amount of
tuple space. It cannot be guaranteed that the effect of the matching process has
been completely eliminated — however, it can be safely assurned that this effect is
negligible in relation to the overall communication times,

6. Given that there are k nodes is the mesh, each node has a unique identity,

~ Processor_[D, in the range 0..k-1 (L.e. as shown in Figure 6.1 above). Many of

* the algorithms presented in this section involve a Processor_!D.

A Note on Communication Requirements

1t is, of course, important to be aware of the extra communication imposed by X-
Linds on the transmission of tuples and templates. Table 6.1 shows the information

that is associated with the transmission of tuples, teraplate requests and tuples that

are returned as a result of reqnest saticfaction. All the fields are 32-bit integers un-

less otherwise specified.

 Tuple T TTomplate T T Tuple (Request Satisfy)
1. protacol tag 1. profocol tag - 1. protocol tag

2, Tupls-Index 2, Template-index 2, Template-Source
8, Tuple-Sourea " | 8. Template-Source | 8, Template-index

4. Tuple-Name 4, Tompiate-Name 4. Tuple-Data (array)
- 5. Tupie-Data {array) | | 8. Template-Couint 5, Tuple-Name

8. Home-ld { 6. Tuple-Source

7. Tuple-Sequence 7. Template-Count

‘Table 6.1 : Data Requiremonts for Tuple / Template Transmission

The fields highlighted in bold-font in the above Table are “necessary”. These fields
represent the minimum amount of information required in tuple or template trans-
mission; the other fields represent extra “implementation” information. Now, it is
important to niote that the base experiments (i.e. on native Transputer networks)
against which X-Linda’s communication overheads are evaluated are concerned
* only with the transmission of the minimal data. Hence, the communication over-
heads discussed in this section pertainto

o the extra information that must be transmitted over the links :
» the various delays imposed by the system (the overheads pertaining to schedul

ing, synchronization and set-up are discussed in the course of this analysis).

Tao conclude this section, the inkerent overheads and inefficiency of the system are
discussed, and comment is given on general weaknesses of the implementation and
method of evaluation. The overheads imposed by the design and structure of the X~
~ Linda node are addressed and an attempt is made to evaluate the significance of all
of the associated system overhieads. Finally, a note on the simple and elegant way
in which the experiments were implemented under X-Linda is given.

6.1 PROCESS SCHEDULING OVERHEAD

The overhead of scheduling the 40 odd concurrent processes that reside on each
- processor can be evaiuated siniply by measuring the amount of CPU utilization on
each processor, given that there is o application program running (i.e. on the
“naked” system). It was found that the CPU ntilization asscciated with running a

6 — Analysis of Efficiency

naked implementation was 32% (details regarding the derivation of the CPU uti-
lization figures are given in Appendix 3). This figure of 32% is important, since it
1. represents the lower limit of the range of CPU utilization —i.e, the utilization
?algums quoted thronghout this section should be regarded relative to this base
ue
2. indicates thar there is a high scheduling overhead associated with the system —
Le. “doing nothing” is expensive under X-Linda and a significant amount of
processor utilization is taleen up simply in the running of the system.
Conversely, it is also necessary to place an upper limit on the range of utilization. A
test was conducted whereby each node executed a busy loop. As was expected,
¢ach node registered 100% CPU utilization — hence, the derivation of the upper
limit against which other utilization figures obtained can be related.

The effect of this scheduling overhead obviously has a significant impact on the
overall efficiency of the system. The effect on TS searching in particnlar is dis-
cussed in section 6.7. _

6.2 OUT OPERATION '
Section 5.1.1 described the approach taken in implementing the out operanon, :
where the node invoking the out waits until the tuple has traversed the entire cut-set
(i.e. until the tuple returns to the node that outed it). This obviously is the cause of
eat mefﬁmency, since the processor invok:mg the operation is forced to remain
idle for a certain amount of time. This section describes experiments that were un-
dertaken to ascertain the amount of overhead involved in processing an out. Thete
are four aspects of the operation that are of particular interest in this evaluation
1. The extra overhead (i.e. delay) incurred by forcing the node to block until the
~ tuple has traversed the out-set
2. The communication overhead imposed by the system as a whole. Given that the
tuple does traverse the out-set, how long does this traversal take relative to a na-
tive occam 2 implementation of the same operation ?
3. The effects of other nodes in the out-set, If the other nodes are busy and creatmg
network traffic, how does this affect the performance of the out operation ?
4, The extra amount of processor utilization needed to process an out operation.
The experiments performeci to mvesugate these issues are t‘escn‘bed below,

6.2.1 OVERHEAD OF QUT-SET TRAVERSAL.

1. Objective
To ascertain the amonnt of delay imposed by forcing the nodc invoking an out op-
;ra.uDon t;) delay until *1e associated tuple has traversed the out-set.
esign
Two specific tests were performed to measure the time taken for an out operation to
complete, given that
1. the tuple traverses the out-set
2. the tuple is simply added to the local node s TS —i.e. not mclu&ng the. ume
taken for the tuple to be sent to the nodes in the out-set.
3. Results
~ The tests were performed only for a tuple of one size; 210 mtegm. “he results of
the tests are shown in Table 6.2, _

Tupla_ Lang‘h. - " ' i "ﬁrné'] .
mi{ N] WIthTraversaH‘l) NoDeigx;ZI (1}/(3)
0] 1024 36724 33g2] T "q0.88]

Table 6.2 * Overhiead of Out-Set Traversal

56

6 — Analysis of Efficiency

4. Observation . .

Blocking the node invoking the out operation until the associated fuple has tra-
versed the out-set has a significant effect. For the specific size of tuple used in this
experiment, the node invoking the operation is forced te- remain idle for close on 11
times longer than if it simply added the tuple to local TS and continued processing.
This obviously has a great effect on the oversll efficiency of the system. A tech-
nique for reducing this overhead is discussed in section 8.2.2.

6.2.2 COMMUNICATION OVERHEAD

-1, Objective _ : _
~ To ascertain the communication overhead associated with the out operation — i.e.
the overhead of outing a tuple over the out-set relative to a native occam 2 imple-
mentation of the same operation, '
2. Design _
The time taken to complete an out operation was compared with the time taken for
an occam 2 program to transmit an integer array around a ring of Transputers (this -
iatter experiment is detailed in section A2.4 (Experiment 4)). Notice that, with re-
gard to the X-Linda experiment, the time taken to complete the out operation was
measured at every node, The values obtained at each specific node were (as can be
ected) fundamentally identical, and the averages of these values are presented
low. The values pertgining to nodes in the top row of the mesh must, however,
ge u;atedl :epamely, since this row includes the (extra) T414 processor.
3. Results : : : '
The tests were performed with tuples (i.e. integer arrays) of various dimension,
e resulis are depicted in Table 6.3, where
+ The values for nodes 0..3 are presented separately, since they form the top row
- of the mesh
+ the Base figures correspond to the transmission of an array of integers around &
ring of processors using occam 2 (these figures have been extracted from Table
. A2.6 —notice that the base figures corresponding to Row 0 were measured with
an extra T414 in the ring), ; |

" Tow 0 (Hodas 0,51
' __Rate

" Tuple Lengih] L Tme _ ! _
m | N1 [Xdindai { Xlinda() | Base(2) | (2)/(1)

4 16 2352 0.0272] 0.1200 4.41
6] 84 4528 0.0566 0.12001 - 212
B} 2668] | 18382 0.0765| . 0.1200 1.57

10| 1024 48768 0.0840| 0.1200 1.43

Aows 1.3 (iodes 4-15)

_Tuple Length | Time. _ R . .
ml N Xlinda | { Xlnda()] Base@ | @)/(1)
4 16 2043 0.0313 0.1814 5.80
6 64 9584 0.0714 0.1814 2,54
8| 256) (| 10133| | 0.1011 01814 - 179
10| 1024 | 38224] | 0.1131 01814 ~ 1.60

Table 6.3 : Out Operation — Communication Overhead

4. Obgervstions . :

The amount of communication overhead incurred in the transmission of tples of
substantial size is not excessive (for tuples comprising 1024 integers, X-Linda is
pppmxlmately 1.5 times slower than the base experiment). It is, however, interast-
~ Ing t0 note the large overhead associated with the transmission of “small” tuples
(i.e. about 5 times slower for tuples comprising 16 integers). It is expected that
some experimental error has crept into these vesults (working with very low times

57

6 — Analysis of Efficiency

is error-prone). However, this still indicates the presence of a large “set-up” over-

head, attributable to

» adding the tuple to local TS, and :

+ the transmission of the piple throngh the various infernal processes within the X-
Linda node befi »e it can be actually sent to the out-set Frtlgeciswe of the set-up
overhead is further discussed in section 6.9.2), _

6.2.3 EFFECT O* NETWORK TRAFFIC
1. Objective

To ascertain the effect of netwo *k traffic on the out operation, Given that the other
nodes in the ont-set are busy and making ase of their hardware links, how does this
affect the tuple’s traversal of the out-set,

2. Design ' '

Four nodes (0, 4, 8 and 12) were selected for comparison — they sitmply performed
the out operations in the normal way. The rest of the processors generated network
traffic by continually executing ins and outs. .

3. Results _ ' _
Table 6,4 shows the average execution times for out operations invoked fivm the
selected nodes without network traffic and with traffic generated as dectihed
above. The test was performed for mples of various dimension, and, as beforv, the
values for Node 0 are presented separately. :

— Nade 0
Tuple Lungth _ .. Fme
m N | | _NoTmffic{l) ;. lraflic{?) @7{n_ |
41 18 2368 | 6336 2.6757|
8 266 13444 20672 1.5381
10 1024 48882| 78400 1.6055
Avg 1.95
| Nodas 4, 8, 12
Tuple Lenath — _Time
m N No Trafflc (1} Traffic (2) 2)/(1
4 16 - 2043 6059 2.9657
8 256 10183 13376 1.3200
10 1024} 36224 | 41024 1.1325
Avd 1.81

Table 6.4 : Out Operation — Effect of Network Traffic

4. Observations

The effect of network traffic, although hardly negligible, is not overly excessive,
Notice aﬁ that it is with respect to the smaller tuples that the worst overheads are
experien

Aside ~ The Ejffect of Program Behaviour

It is interesting to note, as a side issue, the effect the overall behaviour of the sys-

ters. has on this test, As a variation, an experiment was set up whereby

» Nodes 0, 4, 8, 12 behave as before (i.e. invoke out operations)

» the other nodes generate network traffic, However, instead of simply looping
around performing ins and outs on specific tuples, the following algorithm was
used (recall that each node in the system has a unigue identity, Processor_|D, in
the range 0..k-1). : ‘

58

66— Amlyuisl of Efficiency

define Intagar array Tuple.Data ;
out {Processar_!D, Tuple.Data)
DOi=0FORK
o k-1-1)
i {f, Tupls.Data)
out {j, Tuple.Data)
END DO

This algorithm causes all the nodes to fight for specific tuples, witharny them from
TS and then re-insert them again. It s¢. happens in this specific exa;ple tant Node
15 “loses out™ much of time ~ i.e. it continually has to re-issue chalienges 5o win a
specific tuple, and, : “imately, all the outed tuples end up on this node. Niw, this
has quite an effect on the out opc. xtions performed by the other nodes. Using a
tuple of dimension 4 (i.e. 16 integers), it was found that the out invoked from
. Node 12 took more than 1.6 tires longer to complete than those invoked from
Nodes 4 and 8, Node 12 is in the same owt set as Node 15, and, since Node 15 is
very busy (and generating much network i.atfic), it slowed down the processing of
the operation on Node 12. This is just # small example that illustrates the complex-
ity involved in analyzing Linda program behaviour, which is further addressed in
sections 7,4.3 and 8.3. The above algorithm was also run on its own on each of the
nodes. Using a tuple of dimension 6 (i.e. 64 integers), the utilization at each node
for the execution of this example ranged from 53% to §9%, with an average utiliza-
tion of 59%. This figure is relatively low, given that the nodes were busy for the
duration of the test — i.e. one would expect figures closer to 100%, However, the
fact that the utilization is fairly low indicates that the processors are idle for reason-
atly large amounts of time, This is due to '
s the fundamental communication overhieads inherent in the system — i.¢. the de-
lays incurred in transmitting tuples anc tuple requests
» the fact that the specific example chosen forces a great deal of challenges on
specific tuples. Many nodes end up losing ‘challenges and have to wait until the
tuple is re-issued before they can re-challenge (and possibly lose yet again).

6.2.4 PROCESSOR UTILIZATION

1. Objective _
'{o %cez:tain the CPU utilization associated with processing an out operation.

. Design
As was done in the previous experiment, four nodes (0, 4, 8 and 12) were selected
to perform the out operation — the other nodes were idle, The percentage CPU uti-
;izatiifn fcﬁ each processor was measured for a tuple of dimension 6 (64 intzgers).

. Resulis
The percentage processor utilization for Nodes 0, 4, 8 and 12 (Test Nodes) and the
rest of the processors (Others) is shown in Table 6.5,

[Tuple Lengih | L % GPU Utlization____
m N TestNodes {1} | _Others {2) (1)~ (2}
3 64 47 32 _ 15

82 % ta the bage e, dia") fimit
Table 6.5 ; Qut Operation — Processor Utilization

4. QObservations

1. An extra 15% CPU utilization is needed by the processors invoking the out op-
eration, ' '

59

6 — Analysis of Efficiency

2. The rest of the processors (i.e. Others) are not completely idle — they mwust store
the tuples in their local TS, and pass the tuples onto the other nodes ir the out-
set. However, as their CPU utilization is the same as that of an idle processor, it
can be deduced that storing and passing on the tupies is very inexpensive.

6.2.5 COMMENT

It has been has shown that processing an out operation is reasonably expensive.
The strategy of blocking the node invoking the operation inflicts & tremendous
amount of overhead, and the communication overheads involved in transmitting
tuples is far from negligible. This serves to emphasize a problem that is inherent in
X-Linda — that the implementation of out-sets over point-to-point synchronons
links results in a great deal of inefficiency, Obviously, there is a need for communi-
cation buses in this regard (i.e. as used in the implementation of the Linda Ma-
chine). Naturaily, this is impossible to achieve using the conventionai point-to-
point links of the Transputer.

6.3 RD OPERATION

The following series of tests were designed to

1. ascertain the communication overheads associated with the rd operation

2. illustrate the effect of network traffic on this operation.

To measure the time taken to locate and return a tuple, a single tuple was outed
from a selected node on the mesh. Each node then, in turn, issued a rd request for
that tuple. Node 4 was selected to out the initial tuple — this decision was somewhui
arbitrary, and was based primarily on a desire for the selected node not to reside on
the outermost rows of the mesh™ (i.e. it should reside on a row that is “central”). For
the sake of clarity, this is illustrated in Figure 6.2.

EE

Fow 0

s Raquested
; ~&— Tuple

[ot]
10]| {41
13]

Row 2 [] 08

s [] [[[

Figure 6.2 : Rd Operation - Location of Requested Tuple

The experiments performed to investigate the comxmunication overhead and effects
of network traffic are outlined below.

6.3.1 COMMUNICATION OVERHEAD

1. Objective

To ascertain the communication overhead associated with the rd operation relative to
a native occam 2 implementation of the same operation. The way the “same opera-
tion” was implemented is described below,

2. Design

As described previously, a tuple was outed from Node 4, and then all the nodes in
the mesh consecutively issued rd requests for this tuple, Recall from section
4.3.1.4 that a template 1equest is sent #p a column, and the requested tuple is re-
turned down that column. To ascertain the communication overhead, the base test
was designed to emulate this behaviour. The base test is described in section A2.3
(Experiment 3) — it entails

60

& — Analysis of Efficiency

1. transmitting a single integer to a ncde in the row where the tuple is stored —ie.
simulating the sending of the request up the in-set _

2, returning an array of integsr data —i.e. simulating the retrieval of the tuple.

The distances that the messages have to travel are obviously relevant; these are

shown in Figure 6.3 below. '

Sand
Regquest _
Row 0 3 | No.of links
e = ' betwesn
Yi Row 1 I ‘u 0 I ﬁq:asﬂng
I | 4 0 nd
l ‘Rowa‘ | !l 1] Luc:ti:n-
Row 3 " 2 | of Tuple
. Tuge |

Eigure 6.3 : Rd Operation —~ Link Traversal

3. Rasults '
As can be expected, nodes within each row of the X-Linda mesh yielded funda-
mentally identical results, These results have therefore been averaged and the fig-
ures are presented for the rows as opposed to individual nodes. Table 6.6 shows.

© . the times for the retrieval of tuples of various dimension, The Base times listed be-

low have heen derived from Table A2.3,

Tuple Leangth Row
. X-linda (1) | Base (2} {1}/(2)
Mmed 0 3008} 262 11.4373
N=16 1 384 - .
2 1856 a4 22,0952
3 2432 174] _ 13.9770
Avg —15.84
Tuple Length Row _Time
e Xlinda {1} | Base(2) /(2
m=10) 28800 16801 17142
N=1024] 2752 - . -
2 14012 5387 2.7785
a 21840 11108 1.8665
Avg ' 2.15
*Requasted tupte stared hera

Table 6,6 ; Rd Operation -- Communication Overhead

4. Observations

1. The overheads associated with small tuples (i.e. of dimension 4 in the above
Table) are extremely high. These results may be error-prone and should not be
taken too literally, However, this is again indicative of the massive set-up over-
heads associated with the implementation.

2. With respect to larger tuples, the results are more reasonable, although the X-
Linda implementation is still, on average, more than twice as slow as the base
SXperment. ' _

61

6 — Analysis of Efficiency

6.3.2 EFFECT OF NETWORK TRAFVIC

1. Objective

To ascgrtain the effect of network traffic on the rd operation. Given that the other
nodes in the system are busy and there is netv. urk traffic, how does this affect the
retrieval of tuples 7.

2. Design

Four nodes (0, 4, 8, and 12) were selected for ¢omparison. They simply issned rd
requests on a tuple that, as in the provious ea; eriment, was outed from Node 4.
The rest of the nodes generated netwouls traffic by continually executing ins and
outs.

3. Results '

Table 6.7 shows the average execution times of the rd op. xtion for the selected
nodes without network traffic (extracted from Table 6,6), and with traffic generated
as described above,

|_Tuple Length Node ' Time
m=4 Mo Traffic (1) | _ Traffic (2) & /{1
N=18 0 3008 5664 1.8830
4 g4 1600 4.1667
8 1856 3938 2.1207
12 2432 4704 1.9342
Avg_ 253
Tuple Length Node __Tima
m=10 | [NoTraic(1) | Trefic(@) 1 (/{1
il = 1024 0 | 28800 34944 1,2133
4 2752 49582 1.8140
8 14812(- 19302 -1.2884
12 21840 _27776 1.2727
_Avg _1.40

"Requestad wnle atared hara —nate axcassive efiect on local requests
Table 6.7 : Rd Operation - Effect of Network Traffic

4. Observations

As for the out operation (section 6.2.3), the effect of network traific here is not
overly excessive. It is, however, worth noting the large overhead imposed on the
retrieval of a local tuple. The processing of a local rd request without the effects of
traffic is extremely fast relative to the processing of external requests; hence, local
requests are far more susceptible to the effects of interference. :

6.3.32 COMMENT -

As with the previous experiment (i.e, regarding the out operation), these resulis
exhibit the need for communication via buses as opposed to point-to-point links. In
fact, the situation in this case is worse, since, on a 4x4 mesh, the successful com-
pletion of a rd operation requires, at worst, 6 transmissions (i.e. 3 to send the re-
quest and 3 to return the tuple). Unfortunately, there is no evident way of reducing
the communication requirements of the rd operation under X-Linda,

6.4 IN OPERATION
The communication overhead associated with the transmission of an In request and
the return of the respective tuple is obviously identical to that of the rd operation.
However, it should be obvious that the completion of an in operation takes longer
than a rd, since, for every successfully matched in request, a challenge must bé sent
around the out-set before the tuple can be retumed to the requesting node (the chal-
lenge process is detailed in section 5,1.3.2).

62

6~ Analys_is of Efficiency .

The objecuvcs of the series of tests described in this section are to evaluate

1, the ;:xtra cverhead involvad in processing an in request (relative to a rd opera-
tion

2. the amount of CPUJ utiliza ... associated with proc&smng an in request

3. the effect of losing a challenge (i.e. having to re-request a specific tuple).

The appreach taken in these experiments is, in essence, identical to thax used for the

evaluation of the rd operation (refer section 6.3) — Node 4 outs a tuple that is, in

turn, requested by all the nodes in the system.

6.4.1 EXTRA OVERHEAD

1. Objective
'I‘o ascgrtam the extra overhead associated with an In request (i.c. relatlve to a rd op-
eration
2. Design
The experiment was performed in exactly the same way as for the evaluation of the
rd (refer section 6.3. 1) Notice that, in this evaluation, base (i.e. native occam 2)
figures were not required, since the results are presented relative to those obtained
for the rd operation.
3. Results
The times taken to complete an in operation are presented in Table 6.8 below, with
the corresponding figures obtained for a rd operation (extracted from Table 6.6).

—

Tuple Length " Row Tima
rd (1) in {2) 2y7(1)
Mimd 0 2008 5354 1.779%
N=18 1 284 2618 6.8177
2 1856 4042| 24778
3 2432 4711]1.9371
L_Avg. ~ 3.18
| Tupla Length Fow Time
. . d{f) | in@) 2)/¢1) |
M= {0 0 28800 31383 1.0890
N = 1024 1 2752 6317] 2.2054
: 2 14812 17370 1.1648
3 21840 24426! 1,1184
Avg 1.42 |

Hequastad tple stored here — noto exceasive ovarhead on iocal raqueats
Table 6.8 ; In Operation — Extra Overhead

4. Observations .

1. As expected, the in operation exhibits some extra overhead relative to the rd. The
magnitude of this extra overhead is not excessive, and, as has been seen before,
the Iremeval of small tuples incurs a greater overhead than the retrieval of larger
tuples.

2, Notice the excessive extra overhead associated with local requests (i.e. Row 1
above). Again, this is due to the fact that local rd requests are very fast, and im-
Fosmg any sort of delay on the processing of a local request has a significant ef-
ecL.

6.4.2 PROCESSOR UTILIZATION

1. Ob;ectlve '
g‘o gﬁcartmn the amount of CPU utilization in processing an in request.
esign -
Using the same approach as before (i.e. all nodes consccuuvely request a tuple
outed from Node the CPU utilization was measured at each node,

6 ~ Analysis of Efficiency

3. Results .

~ Recall from section 6.1 that the “idle” (i.e. minimum) CPU utilization was mea-
sured to be 32%. The average percentage uiilization for each row of the mesh is
given in Table 6.9, relative to the minimum utilization figures,

Tuple Length; | Fow % CPU Utllization
. - Actual (1) | 1l (2) | (13—=12) |
me8 0 45 92 13
N=64 1 58 a2 .24
2 48 32 16§
3 461 32 14
Avg 28,78 33| 16.75
"Requested tuple stored have

Table 6,9 : i Operation — Processor Utilization

4. Observations '

The amount of CPUJ utilization is similar to that for an out operation (47% - refer
Table 6.5). Tt is significant to note that the utilization on Row 1 is higher than on -
any of the other rows. Obviously, this is due to the fact that the requested tuple is
stored here, and these nodes are responsible for satisfying the requests; hence, they
would be expected to do more work.

6.4.3 EFFECT OF CHALLENGING

1. Objective o _ .

To ascertain the extra overhead associated with the challenge process — i.e. the
arnount of delay incurred when s node loses a challenge ax has to re-issue a tuple
request. _ o .

2, Design A - _

As before, tuples were outed from Node 4. Two experiments were conducted
wuere Nodes 14 and 15 then issued requests for tuples such that '
1. no challenge would be necessary —i.e. the nodes requested different tuples
2. a challenge would occur —i.e, bx..%. nodes requested the same tuple.

‘This is llustrated in Figure 6.4 below. . S

Row 0

Row 2

Row 3

The test in which a challenge was forced to occur was structured so that, on receipt
of the respective template, Node 6 would win the challenge and, consequently,
Node 7 would lose and have to locate another tuple. Hence, Node 15 would be
forced to wait longer than Node 14 to receive the requested tuple,

&

GwAnaIysisofEfﬁcimy

3. Resuits

Table 6.10 shows the times taken for Nodes 14 and 15 to complete their in re-
quests. The values are given for the cases where, firstly, no challenge was neces-
sary, and, secondly, when a challenge uccurred.

N = 256 . _
Time

Node No Ghallenge (1) | Ghallange (2) @
14 10227 11280 1.1039
18 10010 12544 1.2531
N = 1024 .

_Tima .

Node | No Challenge (1) | Challenge {2) /(1)
14 24819 27200 1.0059
15 24614 31667 1.2865

Node Avg
14 . 1.10
18 1.27

Tahle 6.10 ; In Operation — Effect of Challenging

4, QObservations _ _

The challenge process has a significant effect on the nodes involved, irrespective of
whether a node wins or loses the challenge. The overhead associated with process-
ing and ultimately winning a challenge is around 10%, while losing a challenge
costs a significant 27%.

6.4.4 COMMENT -

Not much more ¢ar be said abont the efficiency of the in operation. Everything that
was concluded about the rd operation (section 6,3) is applicable here. It is, how-
ever, worth commenting on the fact that the implementation of the tuple deletion
protocol is very efficient (i.e. a single traversal of the out-set is needed both to
claim ownership of a tuple and to delete it). However, resolving tuple contention is
quite expensive, As detailed in section 5.2.2.5, a node receiving a challenge token
must search linearly through its own list of “claimed™ tuples in order to identify
whether or not & challenge must be resolved.

6.5 DATA EXCHANGE BETWEEN PROCESSORS*

This experiment investigates the overhead associated with sending a message from
a source node to a destination node and back again —i.e. communication between
two specific nodes. Achieving the message interchange under X-Linda is simple.
Assume that the source node has the identity Source_{D, and the destination has the
identity Rest_ID. Then, running the following code on the source and destination
processors respectively will cause information to be exchanged :

- oures node : -- destinaticn node
define integer array Tuple_Data : define integer array Tuple_Data :
out (Dest_ID, Tuple_Data) in (Dast_ID, Tuple_Data)

in \Source_i{D, Tuple_Data). _ ~ out (Sourcs_ID, Tuple_Data)

The data exchange was performed between a selected source node and ail the other
nodes in the mesh. To remain consistent with the previous experiment, Node 4 was
selected as the source node. This node communicated with and received informa-
tion from all the other processors in turn, and the timing information was gathered
here. It is interesting to note that the experiment was designed such that Node 4

65

ﬁ—éni]ysispfﬁfﬁcimcy .

also communicates with itself -- i.e, it outs a tuple, retrieves that tuple, re-outs it
and, finally, re-requests it again, The algorithms running on Nodc 4 and the other
nodes are depicted below (assuming again that each node in the system has 2
unique jdentity, Processor_ID, in the range 0..k-1) : ’ .

. —Node 4 ' .. —allother nodes

define integer array Tuple_Data : datine integer array Tupis_Data:
define Intagar amay m_taken : in 7 rd {Processor_iD, 1%pls__0ata)
DOi=FORK _ owt (4, Tuple_Data)

dock 7 start . o

out (I, Tuple_Data)
in/ rd {4, Tuple_Data)
clock ? finish . _
1lme_taken [i) <= {finish MINUS starf} * 54 .- microgeconds
.N --b%alay -« g0 that the tests do NOT overlap
END .

As can be seen from the code segment above, the experiment was tested using both
the in and rd operations to retrieve the desired mpies. S -

COMMENT - BASE TEST COMPARISON _ o

Given the experiment running under X-Linda as described above, some comment
must be given on what this algorithm should be tesced against —i.e. what should be
the base test relative to which the overhead of the implernentation can be evaluated ?
‘There are 3 obvious candidates, discnssed below :

1. Direct Communication Between Processors _ o _
This is the most trivial comparison. Since the X-Linda algorithm, in effect, canses
information to be exchanged between two Transputers, it might be argued that the
base test should simply constitute transmitting data between two adjacent proces-

sors ~1.e, across a single link connecting the two Transputers. Suppozt for this ar-

gnment stems from the idea that, given u dynamically mconﬁgm'a'ﬁe netwotk, such

a direct connection could be made at any instant that two processors need to com-

municate. Evaluating the X-Linda implementation against this base test does, how-

ever, have serious flaws : o - 3

1. Tt would achieve very little, It is quité obvious that the X-Linda approach is
ing more than simply exchanging information between adjacent processors.
He+ ¢, we wounld expect to see a significant amount of overhead; but the magni-
tue.- ..f this overhead would be, to all intents and oses, meaningless,

2. D, ».mically reconfigurable networlks are very seldom, if at all, used in practice.
The intricacies and overheads associated with setting up and tearing down
physical links between processors preciudes this approach Erom standard appli-

~ cations. _

Hence, this test is, effectively, worthless as a base comparison. It is not dealt with

again in this section. '

2. Replicating the Behaviour of the X-Linda Approach

A far more reasonable comparison would be to, using occam 2, replicate ulf of the
data transmission needed to effect the exchange under X-Linda. This would give an
indication of the communication overhieads incurred by the system —i.e. the delays
in communication imposg1 purely by ranning the algorithms on top of X-Linda.
This experiment was conducted (section A2.5 — Experiment 5), and a comparison.
is detailed in section 6.5.1 below., , ' '

6~ Analysis of Efficieney <

a 3 Commumca*ing Over a Meﬂz Conﬁgumtzon : _

- Anotheér comparison that is worthy of consideration is to use a amesh conﬁgurauun, -

 and, using occam 2, exebange information between two processors over the short-

est possible path. Th arison would highlight X-Linda’s routing overheads.

_&venmmx-nndaanﬁmemcamz basetestambothimplemenwdonamesh the
- comparison would illustrate the difference between vsing in- and out-sets and the
 shortest possible patii to achmve the da.ta exchangc. This e.xpmment is detailed in

section 6.5.2 below. _ _ :

| : __6.5.1 REPLICATING THE BEHAVIOUR OF X-LINDA

_ Obj ective
: To ascé]nmn the communzcauun wcrheads assqc:awdmﬂmxchangmg mformmn
- between two processory under X-Linda. This eitails taking the data transmisgions
~ hecessary to cmlcm the nperanon and wmpanng the ﬁme taken to parfonn thess
: gannmsmi ons gcwam? o
2. Design :
- This particular bage test hs descnbed in section AZ.S (Expenment 5) X~Ianda’ :
data transmission requitinents needed to effect the exchange of information be- -
- tween two nodes were réjslicated using occam 2, It was shown in this experiment
- that, from Node 4, either 4 o 8 trantsnrissions are required to send a message tog.
- destination node and back again. For the sake ¢f clarity, the respective transmission..
times for intgger arra s o arious. dlmen pn (extracted from Table Az .8} are
shown again 11 able :

T&"ne '

d I A T N ST N=1024
4 0,5,8, 7, 5,12 335! 5356(21429
© 8y | 12we 011,13, 14.15 870| fo7i2] 42848

Y leﬁn.a)atanchange Numberof'rranmms - -

| 3 Results S o v . .
From Table 6.11 atove it can be soon that the Jowest communication requuements
(4 trangmissicns} pertain to the nodes in the second row of the mesh (i.c. Nodes 5, -

6 and 7), and the nodes in the first columnn of the mesh (i.e. 0, 8 and 12)~obv1~'

- ously Node 4 is not included in these gl%ips, All the rest of the nodes require §
transg)issions to complete the exchange, The dctual figures obtained from running
the X-Linda implementation reflect this pattern, For every row of the mesh, the

. umatakentoexchangedatathodez&mthelaweaforthef‘ustnode aud the

other nodes in the row all reflect a similar communication time, Hence, in presenit- -
- ing the results, the times pestaining 1o the last three nodes of any row are presented _
as an average. The results are given in Table 6,12 under the hendings of
rd - times taken using the rd operatjon to retrieve tuples - Ry
~In - times taken using the in operation to retrieve upies
' Ease - basa test tlmes cxu'acwd fmm Table A28, .

§ « Analysis of Efficiency

ol _H=s1 | . _Time e
Reiv | Node - d{l} [Inf2) | Base(3) (@ | 2ws)

0 |97 1 | 4827(BsB2] 3as5 18681 16.57]

113] .8482| 11o4g] 870 9.67] 16.49]
1t 4 - 24081 4578] I -

8.7 | 4080{ 8158) 670 e.09| 12.17|
Sy 2 {8 6024] 5716 385] 17,98 "7.08| -
S _ 6248| toegg| 670 982 18.95]
a1 5212 5485 335 1658 16.40
1815 | | 6is4; 106m9| . 870 - 9.23{ 15,95
_ . Avg |- 116] 158

| N=28 [R i ™ e

[Fow | Neds () | inE | Base(d) @ T @)
o [o 15943| 15864| 358 2.08 202] -

] J1.8 28431 [34830) 10712] 2.85| - 8.20!
1 |4 . 111837 13592 - - -

16,7 | | _is448} 21085] to7i2] | - 1.44] . 1.97

1 218 | 20757] 16612] 83se | s.88] 2o

8.1 25194 Ati32(10n2([238 291

13 12 170811 156808] 5356/ 3.94) - 291
113451 1 28263] 811881 10712] 238 29
T Avg T a7] 28
Nei024 T T~~~ ~ Twe
Bow [Node | | rd(l} | W(3) |Base@] [(B | (2VE)

[ofo 53862 582317 21428 2,51 2.62
S48) 1 _o7959! 102981] 42846 22091 2400
1. 74 "~ B39168] 42589 @@ - Y
157 52824| 58142| 42846 1,22 1,81
2 |8 1 | e7sa4] 49186} 21423(| 815{ 290
19,11 | | _B8b498f Dos01]| 42845| | 2.00] . 2.1

-8 112 80672 49171 21423|- 2.83] "2.30
_-]18.18 85617] 90533| 42848 200| 211

_ _Avg __ 23| 22|
* th faster them .

Table 6,12 : Data Exchenge ~ Overhead (1)

4. Observations o _

1. On average, the X-Linda imiplementation is, at best, more than twice as slow as

the base experiment. This illustrates the overhead on the extra communication
‘that must be transmitted with tuples and teroplates, and also the effect of the
scheduling overhtzad, _ o -

* 2. The overhead associated with the exchange of small tuples is huge. Thisis a

- coramot trend exhibited throughout the results presented in this analysis.

3. In some instances, using the in operation is faster than using the rd. This is due
to the fact that, in these cases, templates are issued prior to the matching taples.
When a locally outed tuple is matched against 1 pending in template on a Jocal re-
quest quene, there is no need to challenge since it is impossible that any other
node will try to claim this particular tuple (i.e. the request is satisfied locally).
Hence, in these cases, the processing time for rds and ins should be equivalent.
The fact that they are not is simply due to experimental influence,

4. Notice the results pertaining to Node 4 in the above Table, It is evident that there

- is areasonable e¥pense associated with a node communicating with itself. This
is an interesting aspect, since a “clever” Linda pre-compiler skould be able to
eliminate this sort of behaviour, .~ ' = ' '

6 « Analysis of Efficiency

_ 6.5.2 COMMUNICATING OVER A MESH CONFIGURJ&TIDN :

B Objectwv

-~ To compare the overhead of ﬂata mtemha;.;* hetwaen two processors under X
Linds against the shortest path approach - i.e. given a mesh configuration, taking
the optimal ronte between the source and destination nodes. This comparison ex-
~ poses the overhead of utilizing in- arid out-sets on a mesh confignration relative to
transmission over the shortest possxble path in order to effect mﬁormauan exchange
between two hodcs. : -
- 2. Design ' _

- The X-Linda algonthm has already been descnbed in this sectwn. 'I‘he base test
(e cg}mmumcauon over the opumal mutes) is dcscnbed in secnan A2 5 (Expen
ment - _
The only way o meamngfully compare the X—Lmda nmplenmntanon with the base
- testis to use an gverage communication rate —i.e. suo the individual tiroes pertain-
- ing to each node and calculate an average rate from this. Table 6.13 shows the aver- -
age cammumcaﬁm rates for tuples of varions damenmon. using the fouowmg nota-
R
ToialT‘me - i..‘atal of the times taken to exchange mfonnahon formdmdualdesn
- nation nodes, excluding the timepeminmgtoNode:% .
. AvgTime - Total Time/ 15 (Le. excluding Nods 4) o |
~Rate - = 4N/AvgTime (i.e. bytes / microsecond)
Base = - 'Iheratepemmingto the base test (exmtedﬁ'om'l‘al;,ﬁm)

~ The results correspondmg to thc use of vd a:nd in to mmevc tuples are presented |
separatcly .

'rd

Tugle Lengﬂ; o Time e, Rae
N_| | JoteiTime | AvgTime | | X-Linda{i) | "Base{d) | {1}/)
.4' e 847381 564920 2.0118 0.1629 14.38
‘8] =256 | 814887 20999.13/ 004881 - 0.1820] = 3.34
fof 1024i. | tiaswisi rea2t00] | oosse| 01629 med
R i) o i
“ople Length]| L. Tms _ T ﬁa:a .
{1 N Total Time | Avg Tiowe_ | |)G*Undam Basefd) 1 (/@) |
-4 18] 138509| 9233.98;. | -0,0069. 0.1829 23.50
- 8| 288 | 529934(26882.27 . hogss 0.1629 4,24
o} 1024] (1175040) 78336.00] - - 0.0823) - 01829] 8.12]

Table 6.13: Data Exchange Over!wad (2)

4. Observatmns ' '

1. This experiment, which focuses on the overheads associated w:th rouling. isa
sterner base comparison than the previous experiment. Here, X Linda is, at
best, about 3 times slower than the base test ~in the previous experiment, this
factor was only two-fold. It can be concluded that the routing performed under

- X-Linda in order to effect data exchange is vastly inferior 10 an opnmal routing
strategy on @ mesh of prucessors.

2.- Notice that, yet again, the overhead associated with small tuples is massive, Itis -
felr that these figures are, to some extent, influenced by expmmental error,
Nonethelcss they are mdlcative of Iarge set-up overheads. o _

6 — Analysis of Efficlesicy

6.5 3 COMMEN’I‘
These experiments have ﬂlusn'ated the overa.ll effects of
¢ the extra communication necessary to transmit mples and requests
-« the inferiority of routing vis in- and ont-sets. -
© 1t is maintained that the extra communication can be reduced (refer sect:on 8.2.1).
Howevet, under X-Linda, the routing strategy cannot be altered, and the ineffi-
ciency of implementing in- and out-sets over poin-to-point commumcauon links
~cannot be helped. '

6.6 OVERHEAD OF A SINK ALGORITHM =
A “sink” is 4 node in a distcibuted syster that collects information from all the other
- nodes in the system., This experiment describes the X-Linda implementation of a
sink, and evaluages the efficiency of the implementation relative to the same opera-
tion on & native mesh conﬁgumtmn. _ _ _

6.56.1 EXPERIMENT

B R OhJectlve .

- To ascertain the efficiency of a sink algonmm mplemented under X—Lmda. By
. comparing the time to execute the X-Linda algorithm with an algorithm imple-

- mented on a mesh of Transputers, an indication of X-Linda’s commmnication and
routing overheads can be obtmned _

2. Design
Node 4 was, to retain oou&stcncy with the previous expmments. selected o0 be the
sink. It simply collected in information transmitted from all the other nodes in the
systet, The x-hnda mplementanon of this algmthm is tnwal .

~Nods4) - sllothernodes

define Integararray'rupla Data: T - defing integer array Tuple,_Data :

DOlw= OFORK, 24 _ uut(PmnassoUD Tuple, Data)
ENIt*alsrd(i.Tuqr:vle _Data) | C |

The hasa test relatwe to which the above a]gauthm is evaluated is detaﬂ.edm section
A2.7 (Experimient 7). This test consisted of the implementation of 2 sink on a me: 4
configyration whereby Node 4 issued requests to and received information from ail
gxe %mer ui1todf:s in the mesh, using the shoriest pomble path.

esults
As for the previous experiment, tne yoost me«.ningful way 1o compare these results
is by using average ransmission rates. Again, the following notation is nsed :
Total Time - Time to perform the sink algorithm

AvgTime - Total Tims /15 (i.e, excluding Node 4)
Rate ~ 4N/ Avg Time (i.e. bytes / microsecond) -
Base - Rate calculated as above for a native occam 2 implementation on 2

- mesh configuration {extracted from Table A2.10).

" The results pertaining to the retrieval of tuplcs of various dimension are showa in
Table 6.14. Note that the resolts obtained with the use of either a rd or an in to re-
_tnevc the tuples are presented segarately. _

-0

P e i s i m e

= ANSLYSES UL SR

rd

Tupia Length e | IR -
mi N Tota!TIme Aviy Time | Rate (1) | Base (3)] (1)/(2) |
4| 18| [28749 1916.60| | 0.0884] 0,3259] .76
10l 1024 A 232081 15532.07] | 0.2637] 0.3350] - 1.24]
[Tupie Lenath] 1 Time_ T -
om 1 N Totai'l‘ima Ag'nme | Rate (1)] Beso)] (N/ () 1
1 a4 18] [- e62084] 4138,98| | 0.0185] 0.325%| 21.08}
16 1024] 278501] 18572.731 0.2205| 0.3258{ _1.48

_ _ Table 614 Smk Algumhm Omhead
6.6, 2 COMMENT

The overheads of the smkalgonthmare sigmﬁcantlylessthan those assomawdmm .

-~ data exchange (previous experiment - refer section 6.5). Indeed, for tuples of di-
mension 10, the results are quite reasonable. This is, to some extent, to be ex-

- pected, since this eﬁenment is really only concemed with one-way communica-

~ tion, The overhead previous experiment, which involved two-way communi-
caiion, was 2.5 and 2.1 titnes greater with the nse ofthe rd and thein opaanonw
- gpectively for tuples of d:mensmn 10, .

6.7 TS SEARCH TIME S
: Agreatsomcequhndasmeﬂimencyhesmﬂ:emplcmatchmg process.Atem
IawmmamhcdagamstmemplcsmTSbymeansofahmarsem:(andmesame

. process is used to match tuples against templates in the request queus). Itis of fn-
- terest to determine how expénsive this search operation is and to observe the effect -
of the scheduling overhead (Le. to tompare theseawhumewnh the umetakenfor'

- the match pmcass nummg by itself on a procassor)
&1.1 EXPERIMENT o

1, Objective
* To ascertain the worst case nverhead of smching 8 hnearly, and to evaluate the
= gft‘ecbt of the process scheduljng overkead on this operation,
. Design
The time'taken to match a tuple against an empty request queue was mieasured — i.e.
- the wors? case search time was evaluated. The experiment was tested for bucket
dimensions of various size (recall from section 4, 3 1.1 _bhnt, given there are k nodes
in the system, s;ﬁnc:ﬁc node’s TS is snb—dlvided into vk buckets), The experiment
was run uuderx da, and the tnetch process was then also executed individually
an u;lder tcls éscartam the effect of the schedulmg ovethead.
. Resu

The times taken to carry out the Searches are shown in Tabar- 6.15, usmg the fol~

lowing notation :
d - = bucket dimension -*-loggB
B - bucketsige 00 =2d
-8 = sizeof TS =4B (ie 4bucketspernode)

| Base ~ time taken to search the TS given that the match process is the anIy pro-

cessnmmngonthe'rmnsputw

oom
CLA
’ -.-...‘.)) - .

LT | RS

6 ~ Analysis of Efficiensy

. following headmgs (the Table numbers identify

aauck%;__-__ Sizenfi8] — ﬂ;jm_a — 1

B 8 ¢ LXLinda(1) | Bese(2) (142 |

6| 64 . 258 1344 - 960| 1.4000]

§| 286 . fo24] | - se32 3804 1.4426

16] 1024 24096 ~ po7%0 1s808] 1.4372]
: ' Avg . 1,43

Table 6. 15 TS Search Time

_Appiying Hnear mgressmn with rcspect m $ and Time ylelds the followmg relation-.

- ps - |-..
 XLinda -1 Yime=Sx557-74.67
: Base _

; Timansxi’ia? 42.8?

6.7.2 COMMENT

The time to search TS imearly is naturally O(size of TS) ~ obmously, a linear

~ search is not an optimal way of locating a specific tiple, It is worth noting that,
- given an empty TS, the overhead of tuple or template addition includes this extra
_expénse, Notice too that the scheduling overhead increases the search time by a
" factou of apprmumatcly 1 4 ~ie. aagmﬂcant amcunt, S

6.8 REVIEW |
- To get some overall feel for the overheads exposed in this secnon, it is useful to
- collectively review the results; and, in particular, examine the best and worst case

figures, This review is concerned only with communication overteads, and the re-
sults portaining to other aspects (such as CPU utilization and the effects of network:

- traffic) are not dealt with here. The figures of interest are those that reflect the

magnitude of the respective overheads relative to the base experiments (i.e. ob--

.. tained by dividing the results of the X-Linda experiments by those obtained in the

base tests), The best and worst case results are presented in Table 6.16, under the

the source of the infom'xatzon)
Qut | - ‘Table 6.3 (average of Rowoandaowsi-a)
Rd o -—Tableﬁﬁ '
oo = TableﬁS(X-L!nda)andTablcﬁﬁ(Base)
Data Exchange (1) -~ Table §:12 -
Data Exchange (2) — Table 6.13 -
- 8lnk- ~ Table 6.14
: | Best | Worst]
out B 152] 811
{Rd _ - BJAS| 1884
in___ - 220! 27.08
[Data Exchange {1 '
. .g © 23] . 11.8)
n ol 22| 158
[Data E.xchan ¢ - '
o lad g (21 - 8.04] 1438
R N S e 1812} 2330
ELTE T i
Rd o 24 a7ey - .
I 1.48] 21.08

Table 6,16 ; Besrand Wmm {ase Bverheads

 These '“results are pmsented gmplﬂcally in Figure 6.5. (Out, in and Rd) and F: ure
6.6 {Data Exchanga and Sink) g

6 — Analysis of Efficency

30 -
W Bost
‘B Warst
. g '20_
; -
I8
i 10 =
» - ' il
ou R
Figure 6.5 : Graph of Best/Worst Case Overnead (1)
50 =
i _ g Worst
20 ~
E
3
1 104
Rd I Rd'ln Rd h
- Exch.(1) Bxch.(®) Sk

| Figure 6.6 : Graph of BesyWorst Case Overhiead (3)
The implications of these results are discussed below,
6.9 DISCUSSION = |

This section has given a great deal of insight into X-Linda’s inherent communica-
tion pverheads and inefficiency, although it is difficult 1o make a conclysive state-
ment regavdicg the severity of these overheads. From Table 6,16 and Figures 6.5
and 6,8, it is obvious that the worst case communication overheads (generally as-
sociated witly the transmission of “small” tuples) are indeed excessive. However,
the overheads pertaining to larger tuples (i.e. the best case analysis) are not nearly
as severe, Without doubt, X-Linda does impose a significant amount of overhead
~ on the processing of tuple space operations (at best, the rd and in operations are -
more than twice as slow as the base experiments, and the out is approximately 1.5
tirges slower). However, given the fact that, according to the Linda philosophy, it

73

6 ~ Analysis of Efficiency

is .ac.cebtablc to trade some processing performance against the gains provided by
the programming paradigm [Ahuja ef al. 1988}, it can be argued that the cofumuni-
cation overheads (at least, in the best case situations) are reasonable. This is not to

say that X-Linda is the answer to programming Transputer networks, Apart from
thg communication overheads, there are a host of other overheads associated with -

the implementation. The process scheduling overhead and inefficiency of TS search

~ have already been discussed, and the synchronization constraints and “set-up”

overheads are dealt with in sections 6.9.1 and 6.9.2 respectively. -
To conclude this seéti‘on, comment is given onthe

1. weaknesses inherent in the implementation and this evaluation
2. “set-up” overheads induced by the structore of the X-Linda node

-3, severity of the respective overheads

4. ease of implementation of the experiments tsed in the above analysis.

6.9.1 WEAKNESSES OF THE IMPLEMENTATION AND EVALUATION
In general, the weaknesses of the system (i.e. the way in which TS and the primi- .

- tive operations have been implemented) and consequently the ways in which it can

be improved are discussed in section 8 in the context of future research. However,
it is worth pointing out here that a fundamental weakness concerning the efficiency

- of the implementation lies in the synchronization of all the processes residing on the
. X-Linda node, By.way of example, consider s TS primitive process (i.e, In, Out or

~ Rd) wishing to lock & particular eniry in TS, In general, a request is sent to the

Cueue process to perform the operation, and the process invoking the commsand is

blocked until an ackiowledgement is received from the Queue process indicating

that the operation has been compieted. Wow, to sonie extent, this form of blocking
synchronization is essential for ensuring atomicity of operations ~ however, it is

- felt that this aspect bas been cacried too far in X-Linda, Retuming to the above sce-

nério, consider what happens when the Queue process is busy, adding a wple to

‘TS for example. Access to the Queue process is restricted by a first-come-first-
‘served policy to ensure that the contents of TS are not accessed in parallel. Hence,

the process wishing to lock 4 tuple space entry must wait until the corrent operation
is complete (i.¢. the addition of the tuple and the matchin%;gainst the template
quene) and also until its own command has beeh processed before it can continue,

-, 'This small example is representative of a whole host of other such synchronization
~ issues that have a similar effect on the prrformance of individual processes, 1t is not

immediately obvious specifically how the synchronization constraints can be re-
duced. However, an in-depth investigation of the process interaction would un-

. doubtedly reveal a number of unnecessary constraints.

1t i also possible to direct some criticism at the method of evaluating the system

- (L.e. the way in which the overheads have been ascertained). The analysis has been -

suceessful in that it has illnstrated the overall overheads and inefficiencies of the

system. However, it has told us very little of the specifics of these overheads ~ e,
~ the precise overheads attributable to scheduling,

i _ & need to transmit the extra in-
formantion required 1o support the system, the ronting sirategies, the overly restric-

~ tive synchronization constraints, etc. (an intuitive idea of the severity of these re~

spective overheads is given in section 6.9.3), There is also some uncertainty re-

- garding the applicability of the base test experiments. Bxactly what should the

overheads of X-Linda be measured relative to ? The answer to this question is not

- clear; the best method of evaluating, for example, the efficiency of ihe In operation

is not obvious. Finally, it should be re-emphasized that the results of the base ex-
. periments pertaining to the transmission of small amonnats of data are prone to

“error, and can at best be regarded as an approximation,

4

= SRyl WP Laflitrliehihe)y -

6.9.2 STRUCTURE CQF THE X-LINDA NODE

As was discussed at some length in a previous section (5.2.3.1), the X-Linda node
has been jmplemented with adherence to the principles of good occam 2 program-
‘ming style - i.e. the extensive use of concurrent, self-contained, communicating
processes. This, however, is the cause of what has been in this section referred to
as “set-up” overhead. Recall from section 5.2.2 that the X-1inda node comprises 7
“major™ processes (Computation, In, Out, Rd, Interface, Queue and Chailengs Man-
ager). Now, take the example of an out operation, Quts are'invoked from applica-
tion programs within the Computation process, The tuple is passed from the appli-
- cation program to-a sub-process within Computation that handles out operations.
From here, it is sent {0 the Out process, and then to the Queus process for addition
- to TS, Finally, the tuple is sent to the Interface process where it travels via a number -
. of internal sub-processes to the Transputer’s physical links along which it is ulti-

- -nately transmitted to the out-set. This traversal of the internal software processes

- may appear insignificant, However, these processes are ther-selves time-slicing

. between various sub-processes, and a significant delay may »- incurred between

~ the time that the operation is invoked and when it finally reacht. the physical links.

Hence, there is evidence of some “set-up” overhead — and this overhead is associ-

-~ ated not only with the out operation, but also with the issuing and satisfaction of
. Irequests, ete, ' _ B '

6.9.3 SIGNIFICANCE OF RESPECTIVE OVERHEADS _

~ At this poiat, i is appropriate 10 pass comment on what are believed to be the most
~ serious of the system overheads. The specific overheads that have been revealed in
. this section are those of communicgtion, process scheduling, TS search, synchro-

. nization and set-up, With respect to the comsnication overhead (e, the overhead .
“ involved in processing the out, in and rd operations), it is fairly obvious that the
greatest cause of inefficiency les in the blocking of the node invoking the out until
the tuple has traversed the ont-set, In Table 6.2, it is shown that this causes the
addition of the tuple to the out-set to take almost 11 times longer than simply adding
it to Jocal TS. Conversely, the implementation of the in and rd primitives is very ef-

ficient (this is especially so with regard 1o the the in, whereby a single waversal of -

the out-set is required to-claitn and delets a specific tuple). . B :

Evaluating the severity of each of the respective overheads is obviously not easy,
However, based partially on the resuits presented in this section and those pertain-
ing to the execution of the example programs given the next (section 7) — but rely-
- ing more heavily on intuition - the magnitude of the individual overheads (i.e. in
terms of their effect on the efficiency of the system) are estimated to assume the
following ranking : o o _ -
1. TS sedrch
2. comummnication
3. synchronization
4, process scheduling
5. set-up - : o o
The inefficiency of TS search is probably the most significant of these overheads,
and it is reasonable to assume that, together, TS search and communication are re-
- sponsible for the vast majority of the overall overhead. Notice, however, that the
- value in isolating the respective overheads is questionable since the overheads are
~generally all closely inter-related, For example, the overhieads attributable to pro-
= gesasa scheduling and synchronization have a direct influence on all of the other over-
eads. - - S : :

5

6 — ANALYELS O SLUCLENCY

Ease of Implementation of Experimenis R

As 4 side issue, it is worth noting the fechnique employed in obtaining the majority
“of the test results presented in this section. Control of the testing and the collection
of the reievant results were done using a Linda-like methodology, and, in further

- support of the claim that Linda simplifies paralle] programming (refer section 2.3),

- this methodology will be briefly discussed here. It is cozamon in the analysis of

distributed systems that each node in the system should carry out a specific test

- procedure, and that these tests should not run concurrently (to avoid the effects of
the individual tests interfering with each other). Furthetrore; there must be some
way of, at the conclusion of all the tests, accessing the resnits obtained at the
-nodes. Using conventional parallel programming methodologies, this can be a non- -

- trivial exereise — under X-Linda, the process was simple. Assuming again that each

- node in the system has a-anique identity, Processor, I, in the range 0..k-1, each

node executes the following piece of code: - A :

* Define intagar array Tuple_Data :
in (Praseseor 10, Tuple_Data) -
~ »» Pardorm Tost B
- Tuple_Data [Procassot_ID] <~ result oftest -
out {Procassor_JD + 1, Tuple_Data)

This algorithm is simple, powerfiil and elegant, The testing process is invoked by
placing the tuple (0, Tuple_Data) in TS. Node 0 ins this tuple, performs its test,
writes the result to the 0th elément of Tuple_Data, and outs the tuple (1,Tuple_Data) -
—now Node 1 can initiate its test. This sequence sontinues unotil all the nodes have,
1in ‘turn, performed their tests, Finally, there will be left in TS the tuple
(k. Tuple_Datg), where Tuple_Data {ff contains the test result pertaining to Nods i, As
1indicated previously, this synchronization of processors and subsequent ¢collection

- of results would not tiearly be 5o siraight forward on a native Transputer system,

and this simple example highlights the power and elegance of the Linda apptoach,

- As is discussed in the conclusions to this document (section 9), it is maintained
 that, despite the inefficiency and overhends exposed, the X-Linda approach re-
quires a great deal more investigation, Possible ways of enhancing the efficiency
- -are addressed in section 8, and there is great potential for future research in this
- ghea. The following section ties all of the results presented in this section together
by evaluating the efficiency of application programs running under X-Linda - i.e.
by illustrating the severity of the overall effect of these overheads on the perfor-
- mange of the system. _ S o ' :

%

7 - Oxample Programs

SECTION 7

7.0 EXAMPLE PROGRAMS -

‘This section desails a selection of example programs that were implemented under

X-Linda in order to ' : .

1. test and verify the system (obviously, the verification was not based purely on
the results of these example programs — g wide range of algorithms were run -
through the System in order to verify the maintenance of TS consistency under
various conditions and circumstances) _

2. observe the efficiency (or, as it tumed out, the Jack thereof) of the system.

Specifically, algorithms to perform numerical integration, matrix multiplication and
sorting were designed and implemented, These algorithms (with the exception of
the sort) are presented and evaluated in some detail below, Although the desctiption
and analysis of the problems is not directly within the scope of this research, it is
maintained that they have great value in illustrating : §
» that “real” problems can be solved vsing X-Linda _ o
» how the X-Linda programming methodology differs from conventional Linda -
approaches o L : ' '
~« certain aspects of the model that are the cause of vast inefficiency.
- 'The above points are sufficient motivation for including the algorithms here. Fur-
thermore, it is believed that the introduction of some degree of “practicality” into the
_research is of iterest and importance, It must be noted at the putset of this section
that, unlike the experiments conducted in the previous section, the overhead of TS
search has a direct influence on the execution of these programs. The algorithms
require a certain amount of TS storage, and the inefficiency associated with
searching this space linearly (discussed in section 6.7) obviously has an effect on -
the overall efficiency of the execation, =~ : . o

' Host Process

In all of the X-Linda algoritams illustrated below, it should be noted that one spe-
cific node in the mesh was chosen to perform a double function ~ i.e. that of the
host and of a worker process. This is because the host Transputer in the system is
itself not equipped to perform X-Linda operations (this is discvssed in detail in sec-
tion 8.2.5). Selecting 2 specific node to perform this double function was some-
what arbitrary — with the restriction that the node chosen should not exist within the
top row of the mesh (i.e. should not suffer the extra overhead of communicating

 through the host Transputer). For consistency, the first node in the second row of

the mesh (i.e, the node with identity equal to the dimerxision of the mesh) was

chosen throughout to act both as the host and as a worker process. -

 'The algorithms are evaluated with respect to their execution time and the petcentage
- CPU utilization. This analysis highlights aspects of interest with regard to the effi-

~clency of the system. To conclude this section, some observations are mads regard-

ing L

-+ the canse of the system’s apparent inefficiency B

» the gase of design and implementation of the algorithms

« - general program behavionr. _ .
The full code listings for these examples are located in Appendix. 6,

7

7 ~ Example Programs

.1 NUMERICAL INTE GRATION : .
Numerical integration is the type of problem that must surely be a favomte with
marketers of distributed systems as a means of iilustrating the efficiency of their
particular system. The parallelization of this algorithm gives rise to an implementa-

- tion that features massive computation with minimal communication requirements.

Hence, any distributed system can be expected to give impressive resuits for this
pmblem. The example is included here since

. itis a good example nf a ‘pcrfect” pwallehzable algorithm that is sure to show
- impressive speed-up -
- 2, itillustrates the implementation of a “real” pmb.‘.ern under X-Linda,

7.1.1 ALGORITHM
- Tt was decided to implement nummcal mheg!'auon usmg she 'n*apezoﬂai Rule, since
th:s method is exceptionally simple.

_ Trapezmda! Rule :
- The following definition of the ‘I‘rapezmdai Rule has its source in Spiegel [197 4]
'I‘a evaluate the integral -

J’t(x} dx

sub-divide the mtmaltc,, b] into n equal parts of length &= (b-a)m
Denotef(a-bkzkxj af(xk) byys k=01, 2. Then -

Jf(x)cb, - (dxfz)x{yq+2y1+2y2+ +2Yn-1+Yn}

The parallelization of this algorithm is straight forward. Each worker is simply
~ given a sub-range of the integral to compute, and the intcgral is then caloulated as -
- the sum of these sub-resulis. .

- XeLinda Algqnthm

- The algorithm, as unplamcnted using X-Lmda, is gwen below —afull code hsting

- for this example is given in Appendix 6. Given that the mesh comprises k nodes,

then each processor is uniquely assigned an identity, Processor_|D, in the range

© 0.k-1, The host process, which, as mentioned previously, is 1mplememaed ona

?0 orker node, outs the hmns of the sub-ranges that éach worker will be responsnble
r Ll

definan, a, b
daltg_x <~ (b8}
-sub_jntarval < ok
] I-D FORk
interval_start <~i* sub_i interval
BN It:;put {1, 13, delta_x, sub_interval, interval_stan]}

; ’I'he wotkers receive the sub-ranges corrcspandm to their Processor_ IDs erform-

the calculation, and out the sub-result. Recall from section 2.1.1 that a “?“ preced-
© ing 4 variable name indicates afom:al paramster, which is assigned the valve of the
corresponding actual parameter in the requested tuple. 'I‘he ope.rauens carriedout by
the workers are specxﬁed as follows : _

78

7 - Example Programs

In {Pracessci_D, [7a, 7delta_x, Psub_interval, ?intarval_star])

result <10

DO k = inforval_start FOR sub mtarval
result < rasult + 2f(a + k.delta_x)-
aﬂkuo raplace 21{...) by (...

END DO
out (Pragessor_ID + 1000, result)
- = nota naming convention - to distinguish data tuplas trom rasult tuples

The host then callects and sums the tuples with name "Processor_ID+1000":

© reslt <=0
DOi=0FORK -
in {i + 1000, Tsub_result)
- tecall’; rasult uples are named % + 1000
" . result «-- result -+ sub_resuit
END DO .

Tt st alsu cnmputae and add Ve and multtply the total by Ax/2,

7.1.2 EVALUATION W _
- 'The efficiency of the wlggiithm runnmg under X-Linda is evaluated below with re-
. spect to execution time ahid CPU utlhzatlon.

71,31 Esxecution Time

The algorithm was testedfor a speciﬁc example, where
f(x) - gg 2131 .

a : : N2 = 221 .
b = 302 = 38221 L

‘Motice thﬂt exceedingly large values for n, a and tl were chosen to maximize com-
- putation. Using 4 processors, each node must €valuate the function 22 times,
- whereas using 16 processors, the function is computed 2t times. The algonthm
was implexnented in a variety of enviromments :
Sequential ~ Sequential occam 2 implementation on a clugle T8U0
Simulated ~— 4x4 X-Linda mesh — simulated on a single T800
-2x2 . — 2x2 X-Linda mesh - physically distribated E4 Processors)

4x4 -~ 4x4 X-Linda mesh — physically distributed (16 pmcessors)

Table 7.1 shows the time taken {in mlcrosecands) for these algoritams to execute.
- The relative speed- uis (obtained by dividing the figures corresponding to the top
fow of the Table by those duwn the Ieft-hand side) are also shown. : :

Tirps ' ' ' Spe g—gp -
- SRR Se_guentiai Simuiaied 2x2 4x4
Saquanﬂal 8745152_0 : B | _ -
- Simuteted | “sott3zse] - . oe8] 4]
(2x2 - | 12785645 - 293 463 1
Axd | do7smid|) 7E3] . 11.88] . 257) i
&ncludmdmelnduw Moatioe Scrsm :

Table T 1 » Nomerical Integraﬂnn - Bxecut:on 'I'imes and Speed—Up

-7 — Exampla Programs

Some interesting information can be drawn from these results ¢ _
1. Simuiated is 1.6 times slower than Sequential. Even disregarding the extra time
taken to write to the screen, this still indicates some inherent inefficiency
2. 2x2 is 2.9 times faster than Sequential. Calculating the efficiency [Quinn 1987]
of the algorithms as Time {Sequential) x 100 '
' 4 x Time {2x2) _ - ’
we see that the algorithm is 3% efficient _
3. 4x4 is 7.5 times faster than Sequential, and 2.6 times faster than 2x2. Notice,
however, that the efiiciency (relative to Sequential) is, in this case, only 47%.

The fact that some significant speed-up was attained for this alzorithm is no great
cause for celebration. The nature of the example chosen suggests that speed-up is
inevitable —i.e, something would have to be seriously wrong for speed-up not to
occur, Conversely, notice that the efficiency of 4x4 is a poor 47% — this, with the
results that are presented with the next example (matrix nmltiplication) illustrates the
model’s inherent {ack of efficiency. Factors contributing to this lack of efficiency
are discussed in 7.4.1. _

7.1.2.2 CPU Utilization) - :

It is of interest to exarmine the percentage CPU utilization assotiated with the exe-

-cAution of tl:xaz)s algorithm (the derivation of the CPU utilization figures is explained in
ppendix 3). . | - . :

16 Processors (4x4 mesh) S S
Table 7.2 shows the percentage CPU utilization for 16 processors (i.e. 4x4 mesh).
Notice that the structure of the Table reflects the mesh itself ~ the identity of the

node appears above the CPU uitiization figure. -

s Column__
N T O

Fow [0] [G0] 01 62 63
"1 | o] 90| 99| o8
ARE 0‘; ' QE 06 Uag
. 8 9 92
—2-4' RN TARTYEE
) =0 | 821 76) 74 |
3 121 13] 14| 18
' 78 | 89 | 87 | 64 '

Tawle 7.2 : Numeriezs Intogralion — Processor Utilization (4x4 mesh)

In this case, the host process was resident on Node 4 — ie. this node was also re-
sponsibie for putting the interval iformation into TS and collecting the results.
Notice that the utilization figure for Node 4 applies only to the worker process.
This figure would be significanily lower if the execution of the host process was
__ﬁso t%ken into account. Some iateresting observations ¢an be made with regard to
-thesenigureg: - - . L .

1, The percentage CPU utilization progressively decreases over the processors in
- the mesh. The reason for this is obvious —xecall that the host process outs the
- sub-intervals sequentially; i.e. starfing with the information for Node 0 and
- ending with Node 15, Hence, Node 0 can start its computation almost imnedi-
- ately, whereas Node 15 has to wait for a reasonable amount of time before its in-

- formation becomes available, ‘
2. The utilization on Row 1 (Nodes 4, 5, 6 and 7) is relatively high. These nodes
retrieve tuples that are stored locally, and therefore do not have to wait for the in-
formation to be sent from external sources. The (relatively) iow utilization on
Node 4 is inexplicable. It has been stated already that the execution of the host

T — Bxample Programs

process was disregarded, and the niilization was measured only with respect to
the worker. When the worker was invoked, it should have found its requested
information locally, and immediately started computation — i.e. one would ex-
pect a higher degree of CPU utilization, _

3, The utilization in Colurrn 0, excluding Node 4 (i.e. Nodes 0, 8 and 12) is rela-
tively high. There is a good reason for this. The templates issued frem these
nodes are sent to the in-set, which, for these nodes, includes Node 4 (the host
process), Hence, as soon as the mqueswd tuples are outed by the heat, they are
matched against pending templates in the local (i.e. Node 4’s) request queue and
satisfied immediately. Therefore, there is no delay in waiting for the tuple to tra-
verse the nodes in the out-set before finding a match.

4 Processors (2x2 mesh) :

In the case of the 2X2 mesh, all 4 processors measured 100 % CPU utilization (1).
This reflects the effect of the communication overheads, For meshes of larger di-
mension, the communication overhead increases significantly, and processors
spend more time waiting for information (i.e, idle).

7.2 MATRIX MULTIPLICATION :

Matrix multiplication is an example that is frequently cited in the literature (e.g.

[Abuja er al. 1986 and 1988], [Carriero et al. 1986] and [Wentworth 1989]) as a

means of illustrating how a “real” algorithm can be impiemented using Linda. In-

deed, it has come to be regarded as a “classic” Linda problers. It was decided to in-

cluded this example here since : - _

1. as indicated above, it is well-known and understood in the context of Liada-
based implementations

2, like the previous example, it sexrves to illustrate the implementation of a “real”
problem on the X-Linda system,

7.2.1 ALGORITHM

The standard, or classic approach to this problem is simple to describe —hence, al-
though this is not direcily relevant, it is cutlined briefly below. As will be seen
later, it is of interest to compare the “classic” approach wiih the X-Linda equivalent.

“Classic” Algorithm _

This algorithm is based on those presented by Ahuja er al. [1988] and Wentworth
[1989]. Assume that two nxn matrices, A and B, are to be multiplied together to
create a resultanit nxn mairix, C. The host process outs the rows of A and columns
of B into TS as follows :

DO 1= 0FORN

out (A" i, <ith row of A»)
~out {*B" |, <ith column of Ba)
END DO

It also outs “instructions” telling the worker processes that inner-product operations
must be performed on these rows and columns :

DOi=QFORN
DOIHtO(‘FQOQIHnl P LD
oL mpuia IP%, |,
END DO

ENDDO

81

7 - Example Programs

he workers loop forever, reading in the rows and columns, computing inner-
products, and outing the correspondirg results ; ' '

DO foraver
In {"compute IP*, 7, 7))
rd (*A", I, PA_now)
rd ("B",], 7B_col)
Ip «—~ inner_Product (A_row, B_col)
out ("result”, i, j, 1p)
END DO

To collect in the results of the cdmputations, the host mméillg Ins all of the "result"
tupics (irrespective of the order in which they become available) :

DO K = 0 FOR {nxn
in ("result®, 7, 7], 7ip)
Glif <-lp

g <
END DO

X-Linda Algorithm

Since X-Linda tuples comprise only 2 fields (refer section 4.3.1.2), viz. an integer
name and an array of integer data, it is obvious that the algorithm as described
above could not be directly implemented, The problem had to be modified to fit the
constraints of the tuple structure, The algorithm is nutlined below, and the full code
listing may be fonnd in Appendix 6. Notice that, once again, one worker node must
double as the host, As in the classic approach, the host process outs the rows of A
and the columns of B ;

DOI=0FCRn
out (i, <ith row of Ax)
out {4 n, <ith column of B} _
ENE Dugs "+ n" 1o distingulsh between the nams of tuples pertainingto Aand B

The strategy at each worker is as follows. The workers rd the entire B matrix, and
then, for each selected row of A, compute and out ar entire row of the result
mattix. Although this differs vastly from the classic approach, it is probably the
most logical and efficient method available given the tuple structare constraints. The
strategy for determining which row of A should be accessed by a specific worker is
not complicated. Initially, each worker ins the row that corresponds to its processor
identity (as in the previous example, assurne that the mesh comprise k nodes, where
each processor is nniquely assigned an identity, Processor_lD, in the range 0.k-1).
After each computation, sach worker simply adds k to the index that identifies the
row to be accessed. Hence, the workers are guaranteed that they will aceess distinct
rows of the A matrix. This is expressed by the following :

7 = Example Programs

-~ read entire B matrix
DOl=x0FORn .

wd {i + n, B [i]) ~ recall : ith column of B Is named “{ + n”
END DO _

- comptiation

A_index <~ Pracassar 1D

DO WHILE A [ndox <n

© rd (A_Index, 7A_row)
DOi=0FOR R _

C_row [i] <~ inner_Product (A, row, B [1)

END DO
out (Zn + A_Index, C_row) - ith row of C is named "2n +
A_Jndex < A_index + k

END DO

To collect in the results (i.e. the rows of the C), the host ins the tuples with the
name "2n +1":

DO{=0FORN
in (20 41, 2CG TN
END DO

Comparing this (i.e. X-Linda) algorithm with the classic approach, we see that, In
essence, they are similar. The classic approach, however, exhibits a far finer grain
‘of paralielism, and the storage requirements of the X-Linda solution are far higher,

7.2.2 EVALUATION B .
The efficiency of the algorithm running under X-Linda is discussed below, again
with respect to execution time and CPU atilization. :

7.2,.2.1 Execution Time

As will be seen in this section, the efficiency of the system is appalling — the algo-
rithm takes longer to execute as more processors are added ! A specific example
was used as a test case — the multiplication of two 32x32 matrices — on meshes of 4
and 16 processors. From the description of the algorithin given earlier, it should be
obvious that, in the 4 processor case, each worker computes 8 rows of the result
matrix and, in the 16 processor case, each worker is responsible for only 2 rows.
This algorithm was also implemented sequentially on 2 TR00 Transputer, and on &
2x2 X-Linda mesh simulated on a single T800. As for the previous example, the
following notation is used to define to various algorithms

Sequential — Sequential occam 2 implementation on a singls T8CY

Simulated - 2x2 X-Linda mesh - simulated on a single T800

2x2 . — 2x2 X-Linda mesh — physically distributed (4 processors)

4x4 -~ 4x4 X-Linda mesh - physically distributed (16 processors).

Table 7.3 shows the time taken (in.microseconds) for these algorithms to execute.
The relative “speed-ups” (obtained by dividing the figures corresponding to the top
row of the Table by those down the left-hand side} are also shown.

83

- Emple Programs

Tima Spead-Up
Sequential [Simulated | 2x2 _4xd
Sequential 345728 1
Simulated “1505984 0.23 1
2x2 566379 0.61 2.66 1
4x4 1487526 0.23 1.01 0.38 1
* Includes time to deaw Monitor Soween '

Table 7.3 : Matrix Multiplication — Execution Times and Speed-Up

The inefficiency of the system is self-evident —~ the results of Table 7.3 can be re-

stated as follows :

1. Simulated is 4.4 times slower than Sequential. Although the time taken to write
to the screen mmust be taken into consideration, this still gives an indication of the
inefficiency of the model running on a single processor

. 2x2 is 1.6 times slower than Sequentiai and 2.6 times faster than 4x4

. 4x41s _

« 4.3 times slower than Sequential
+ approximately the same as Simulated
+ 2.6 times slower than 2x2.
Pactors contributing to these poor results are outlined in section 7.4.1.

7.2.2.2 CPU Utilization
Some interesting observations can be made with regard to the respective CPU uti-
lization of the processors for this example,

L b

16 Processors (4x4 mesh) _
Table 7.4 shows the percentage CPU utilization for 16 prucessors (i.¢. 4x4 mesh).

Column

0o { 1 1] 2.1 83

-Row 1 0 [00 61l a2 03
m 88 | 46 | 46 | 46

1 D41 05 06 07
[74] 744 T4 1 T4
2 08 | 098§ 16| 11 |

- 40 | 48 | 48 | 48

3 12| 13 141 158

a9 | 47 | A7 | 47

Table 7.4 ; Matrix Muitiplication ~ Pracessor Ulilization (4x4 mesh)

As in the previous example, the host process was resident on Node 4. There are 3

important observations that can be made regarding these figures :

1. The utilization of the nodes in Row 1 of the Table (i.e. Nodes 4, 5, 6 and 7) is
far higher than for any of the other rows, This is because these nodes are able to
access the matrix information in TS locally — they do not have to wait for the re-
quested tuples to be sent from other nodes in the mesh.

2. The utilization of the nodes in Column 0, excluding Node 4 (i.e. Nodes 0, 8 and

12) is significantly less than any of the other utilization figures. It is suspected
that this is because the templates issued from these nodes travel through Node 4,
and, since Node 4 is the busiest node in the mesh, these requests take longer to
be satisfied.
Note : in the previous example, Nodes 0, 8 and 12 exhibited relatively high uti-
lization, This is a prime example of how different program behaviour can have a
dramatic effeet on processor efficiency. In the previous example, the host did
very little work (i.e. outed a relatively small number of small tuples); in this ex-
ample, it does far more. _

7 — Example Programs

3. Row 0 (Nodes 0, 1, 2 and 3) has the lowest CPU utilization. Although the dif-
ference is not significant, the fact that this row also comprises a (slow) host
T414 Transputer and therefore suffers the extra communication overhead obvi-
ously has some effect.

4 Processors (2x2 mesh)
Consider now the case of the 2x2 mesh. Table 7.5 shows the percentage processor
utilization : '

Column

o | 1

Row |0 0o | o9
| 42 1 B3

1 02 | 03

75 a5

Table 7.5 : Matrix Multiplication — Processor Utilization (2x2 mesh)

Here, the host processor was implemented on Node 2. The trend of the figures is
similar to those for the 4x4 mesh and will not be re-analyzed. It is important, how-
ever, to note that these figures are proporiionally higher than those for the 4x4
mcsrl;{ T(lllis is significant, and is again indicative of the system’s communication
overneads.

7.3 SORTING

A sort algorithm, based on a distributed dimensional collapse [Faasen 1987], was
also implemented using X-Linda. The algorithm had previously been implemented
on a native Transputer network in occam 2, and showed significant speed-up as
more processors were utilized, Little would be gained by presenting the algorithm
and analyzing the result of the execution under X-Linda here. Suffice to say that, as
for the matxix multiplication example, the execution time increased with the size of
the mesh. Observations regarding the implementation and efficiency of the example
programs are given below,

7.4 OBSERVATIONS _ ' _

Some factors contributing to the inefficiency of the algorithms executing under X-
Linda are presented below, and general note regarding the design and implementa-
tion of the problems is given, A short discugsion on general Linda program be-
havigur is given in conclusion,

7.4.1 FACTORS CONTRIBUTING TO INEFFICIENCY

The following issues are all related to the general lack of efficiency exhibited in ex-
ecution of the algorithms. It is important to note these factors, since they highlight
general sources of inefficiency within the system as a whole.

1. Tunle Matching

- It was indicated at the outset of this section that the execution of these algorithms is
influenced by the inefficiency of the tuple matching process. It is not unreasonable
to assume that the utilization of TS partitioning (as featured in, among others, the
Rhoda implementation discussed in section 3.3.4) would have a significant effect
on the overall efficiency of the system.

2. Host Processor

As has been described at length in various places throughout this document, the top
row of the X-Linda mesh incorporates an extra processor — a (slow) T414. Hence,
communication through this row incurs extra overhead,

7 —~ Example Programs

3. Host Process

In all the examples described, the host process is implemented on a worker node —

i,e. this node performs a double function, This is gnaranteed to affect the efficiency

of the system.

4, Using ins instead of rds :

The in operation is slower than the rd (refer section 6.4.1). In the interests of effi-

ciency, rds could, in most instances, have been used instead of ins. This was not

done in order to conserve some of the tue “fHavour” of Linda programming. Fur-

thermore, ins *clean up” T8 — had rds been used instead of Ins, a tremendous

amount of extra TS storage would have been necessary.

5. uverheads incurred by the size of the Mesh '

Increasing the dimension of the mesh (for example, from 2x2 to 4x4) causes

= the length of the in- and out-sets to be increased. Hence, the times taken to per-
form a;l out operation and to locate and retrieve specific tuples are increased ac-
cordingly

+ the amount of local tuple space on each node (and, consequenty, the gmount of
search time required to locaie a tuple) to be increased. This is especially relevant
with regard to the matrix multiplication example. For this specific example (i.e.
multiplying two 32x32 matrices), each node maintains a local tuple bucket of
128 entries. Recall from section 4.3.1.1 that local tuple space is subdivided into
k buckets, where Yk is the number of nodes in a particular out-set. A node’s
local TS for a 2x2 mesh therefore comprises 256 tuples, where nodes in 4x4
mesh maintain 512 entries. Hence, the worst case search time in the 4%X4 case is
double that of the 2x2 case.

7.4.2 EASE OF IMPLEMENTATION
Disregarding the efficiency issues, it is worth making the point that the actfual de-
sign and-implementation of the algorithms under X-Linda was extremely easy. Per-
sonal experience with distributed systems, and, in particular, Transputer-based
systems has shown that the issues of processor synchronization and communica-
tion add a large degree of corapiexity to algorithm design. The experience of pro-
gramming under X-Linda has, without doubt, verified the clain (refer section: 2.3)
_ that Linda, in general, eases the burden of writing parallel programs, and provides
an easy and natural approach to parallel algorithm design and implementation,

7.4.3 PROGRAM BEHAVIOUR ' :
The behaviour of Linda application programs on a given system is a field of study
on its own, and has much valuable research potential, A thorough understanding of
program behaviour would give important insight into system design. Merely
touching on the surface of this issue, it is of interest to compare the percentage
CPU utilization figures for the numerical integration example (Table 7.2) with those
for the matrix multiplication example (Table 7.4), The two algorithms are some-
what similar in that the host outs information, the workers receive this data, per-
form some computation and out a result, and the host collects the sub-results, The
percentage CPU utilization figures associated with the two algorithms are signifi-
cantly different —i.e. they are behaving in fundamentally different ways. The whole
issue of program behaviour is of great importance, and it is believed that this area
will feature prominently in future Linda-orientad research (this topic is addressed
bricily at the end of the next section in the context of future research).

S—Enhmmenmeum:aResamh

SECTION 8

8.0 ENHANCEMENTS AND FUTURE RESEARCH

There is a good deal of potential for futnre research with regard to the X-Linda

project. In this section, a number of ways of enhancing the system and its perfor-

mance are discussed; these enhancements obviousty fall into the scope of future re-
search. The proposals for improviang the system are presented under two broad cat-
egories :

1. enhancing the performance of general distributed-memory Linda implementa-
tions — obviously, these approaches are by default applicable to the X-Linda
system itself ' '

2. enhancements specific to the X-Linda implementation — here, approaches to gen-
erally improving the system as well enhancing its performance are discussed.
Finally, a short discussion regarding future research in the area of analyzing pro-

gram behaviour is given.

8.1 GENERAL ENHANCEMENTS

There are two obvious ways of enhancing the system performance in general —

1. using dedicated processors to handle communications and tuple space manage-
ment

2. speeding up the matching process {(obviously, this issue is applicable to any
Linda implementation — not specifically distributed-memory systerns),

These issues dre discussed in more detail below. _

8.1.1 DEDICATED HARDWARE SUPPORT

It is evident that the primary sources of X-Linda’s inefficiency are the overheads of
communication and the matching process, and it is reasonable to assume that these
problems are common to the majority of disttibuted-memory implementations, A
technique that can be employed to speed up matching is discussed in section 8.1.2,
However, the greatest gain in efficiency would necessitate the utilization of dedi-
cated processors to handle ¢communication and TS management, The Linda Ma-
chine (refer section 3.2) makes use of dedicated processing power — and this ap-
proach has been addressed in connection with a proposed Transputer-based imple-
mentation (section 3.3.2). Adopting the philosophy related to the latter proposal
(i.e. that Transputers are cheap and easily available), the approach is certainly fea-
sible. It is envisaged that each node in the mesh would actually comprise 2 proces-
5018 — one dedicated to communicating with the in- and out-sets, and one on which
TS and TS management would be implemented (or, going a step further, imple-
menting & large TS over a number of processors). This would greatly reduce the
overheads of communication and of the matching process. It is maintained that this
approach must receive further investigation. The benefits of the programming
model, it is believed, far outweigh the extra cost of providing processing power.

8.1.2 SPEEDING UP THE MATCHING PROCESS

In section 2.1.4, the fact that TS search may inherently seem to be a source of great
inefficiency was briefly mentioned, There are, however, ways of speeding up this
process. Leler [1990] describes such a method; that of dividing TS inio sub-sets. A
Linda preprocessor can be built in order to identify the usage of tples in a particn-
lar program. Tuples with similar characteristics can be grouped together in mem-
ory, hence reducing the amount of TS searching at run-time. This technique of ef-
fectively dividing the TS into subsets is utilized in the Rhoda implementation (refer
section 3.3.4). Preprocessors can not, however, be used in conjunction with inter-

87

s-mmmnumnm '

preted languages, nor with compiled languages where the programs that manipulate
the TS are compiled independenty.

8.2 ENHANCING X-LINDA

The scope for providing enhancements to the X-Linda implementation is vast,
Some obvious ways in which the system could be improved (besides the general
strategies covered above) are discussed below and it is hoped that these proposals
will be addressed in the course of future research, The issues discussed below re-
- late both to improving the efficiency of the system, and to providing a more useable
system,

8.2.1 REDUCING STORAGE AND COMMUNICATION

The storage and communication requirements of the system are huge. A detailed
analysis of these requirements is needed in order to ascertain what information is
actually necessary (i.e. opposed to extra or redundant inforrnation that is present as
aresult of ease of implementation or oversight). Take, for example, the storage and
communication requirements pertaining to a single tuple. The extra information re-
quired to store a tuple is shown in Table 5.1, and Table 6.1 details the extra infor-
mation that is needed in the transmission of a tuple. Some of this exira information
can, undoubtedly, be discarded. For example, storing the identity of the node issu-
ing the tuple is redundant since this can be computed from the tuple’s location in
tuple space. This is just one small example of how the amount of extra information
can be reduced. No doubt a re-write of X-Linda would expose many more such in-
stances. o

8.2.2 UNBLOCKING THE QUT OPERATION _

In section 5,1.1.1 the technique of blocking the processor invoking an out opera-
tion until the associated tuple had traversed the ont-set was discussed. This was
done to prevent network saturation and subsequent deadlock. This has a dramatic
effect of the efficiency of the out operation. It is difficult to eliminate the need for
blocking altogether — however, it is certainly possible to reduce it, One possible
way of doing this would be to provide network buffering for a reasonable number
of outed tuples. Then the consecutive outing of tuples up to this limit would be un-
hindered (i.e. the processor would not block). Only once this limit was reached
(and if the previous tuples had not yet bHeen through the entire out-set) would
blocking be enforced to prevent saturation. This would have a significant effect on
the overhead of the out operation, Aliematively, S. Hazelhurst [personal communi-
cation, Jan, 19917 suggests a scheme whereby the node invoking the out would be
allowed to continue processing, and only biock when attempting to perform a sub-
sequent out operation.

8.2.3 REDUCING THE LENGTH OF THE TEMPLATE QUEUE

It was seen in section 5.2.3.2 that the length of the template quene on any given
node is defined to be of the same length as the tuple quene. This is obviously not
necessary, and much of the system’s efficiency is lost through the searching of this
overly-long list. The number of requests that can be pending within the system at
any given tme is bounded by a function of the number of nodes. Hence, the tem-
plate queue could be greatly shortened. This would consequently reduce the over-
head of the matching process, as well as the overall storage requirements.

8.2.4 PIPELINING TRANSMISSION _

When passing messages of significant length between Transputers, it is possible to,
instead of sending and receiving the entire message in its entirety, break up the
message into segments, or packets. This is of great importance with regard to
pipelined configurations, where a message must be passed consecutively along the

38

8 — Enhancements and Future Regearch

processors in the pipe, By breaking up the message into smaller segments, it is
nossible for a Transputer to concurrently receive and transmit packets on its hard-
ware links. Lakier [1989b] illustrates that this has a tremendous effect on the
overall rate of communication throngh a pipeline of processors. This techrtique has
an obvious application in X-Linda. The effect of using the approach in the trans-

“raission of tuples over the out-set and in returning tuples to requesting nodes over
the in-set would be of great interest, -

8.2.5 INVOKING TS OPERATIONS FROM THE HOST

The host Transputer is not capable of invoking Linda primitive operations. As de-

scribed at length at section 5.2.1, its primary funetion is to act as an intermediate

- node and provide a link between the first and last processors in the top row of the
-mesh. For the sake of clarity, this is depicted again in Figure 8.1. S

Lnkew Column __ Links to Column

N

' " e~ =] | i
L Host >l | 00 f— - > 1024

Links to Calunsn Links to Columi
Figure 8.1 : Intermediate Host Transputer

Since the host processor is not part of any inverse bearn (i.e. column of the mesh),
it is not possible to invoke in or rd operations from this node. However, it 13 pro-
posed that the systera could be enhanced by having Node 0 carry out these opera-
tions on the host’s behalf. Templates would then be sent from the host to Node 0
and processed in the normal fashion. Tuples returned to Node 0 as a result of a re-
quest from the host being satisfied would then be passed back accordingly. Al-
though this scheme would necessitate Node (handling more TS operailons and
network traffic, it should psove to be more advantageous than the current scheme
whereby the implementation of applications that exhibit typical master / slave be-
haviour necessitates one processor in the mesh functioning both as the hostand as a
worker. Apart from providing greater efficiency, this feature would also provide a
more effective user interface. Currently, the results »f a computation can only be
observed by inspecting the TS of the node on which the host process is imple-
znted (TS inspection is performed via & monitoring routine ~ refer section
5.2.1.1). By incorporating the host Transputer into the system, the user wonld
have the means to both provide input to and directly observe the output from a par-
ticular application program. Ny : '

Aside - Configuring the Host out of the Mesh

Conversely, it is also feacible to consider dynamically configuring the host Trans-
puter out of the X-Linda mesh [C, Mueller, personal communication, Dec. 1990].
The presence of this extra processor in the top row of the mesh doss have an effect
on the efficiency of the system. Consetqhuenﬂy, it may be desirable to load the appli-
cation programs from the host onto the network, and then dynamically connect
Processor 0 to Processor 1024, effectively blocking the host out, Once the pro-
grams have terminated, the link froru Processor 0 to the host could be re-estab-
lished in order to access the results of the computation, This approach, although
pi::tentially beneficial to the overall efficiency of the system, is unfortunately rather
clumsy.

§ — Enhancemenis end Foture Research

8.2.6 USING ARBITRARY NUMBERS OF NODES
This idea is closely related to that of invoking TS operationg from the host proces-
. 507, The system has been designed for use on & Yk by Yk mesh of processors,
Obviously, this is an ideal grid dimension since it allows the tuple and inverse
beams to be of equal length. However, it would be useful if the system could still
- operate on configurations where the number of processors available was not neces-
sarily a perfect square. This could be achieved in a fashion similar to that described
above, Take, for example, a configuration comprising only 5 noies. These nodes
could be configured as shown in Figure 8.2. ‘

et {00 [} 01:-~m--'02_'--_-} |

et | O3 -| | 04
Figure 8.2 ¢ 5 Node Configuration

Templates invoked from Node 2 would now be passed to Node 1 and processed
- there, and tuples saﬁsfying these requests would then be redirected accerdingly.

. Inherent in both of the schemes described (l.e, nvoking TS operations from the

~ host processor and catering for configurations of arbitrary size) is the problem that
specific nodes would incur extra storage and communication overheads, The effect
of these overheads is difficult to estimate, and would require implementation anal:
ysis to be accurately determined, ' L

$.2,7 MULTIPLE APPLICATION PROGRAMS
- X-Linda permits only a single application process to be sctive on a processor atany
ornie time, It should by now be obvious that the Transputer supporis concturent pro-
_eess execution, and, as described in Appendix 1, task switching is controlled by
microcode (i.e. is extremely fast), Hence, it is feasible to envisage multiple applica-
tion programs mnning ox the same processor. Although Ahuja et al, [1986] main-
 tain that an sdvantage of the replicated worker model (refer section 2,2.1) lies in the
fact that each processor executes a single process, elintinating thie need for context
switching, it is felt that Transputers are an exceptional case. As described in section
3.2.2.1, application programs are executed from within a Computation process, and
the Linda primitives invoked from here are transmitted tp and handled by dedicated
processes (i.e, the In, Out and Rd processes). This is illustrated in Figure 8.3,

90

_S-Enhmmtsmd.&ml{mmh o

~ In, Out & Rd

Flgure 8.3 : Single Application Program
An extension to the system would be to permit multiple application processes to be
inveked concurrently on each node. This would allow the programmer to take ad-
vantage of occam’s process model of concurrengy, and therefore provide greater
freedom in providing a more powerful means for expressing problems Tt is envis-
aged that these multiple programs counld then be multiplexed throngh a - ingle con-

- trolling process in order to communicate with the n, Out and Rd processes, as
. shown in Figure 8.4. - : . :

In, Cut & Bd
Procasses

 Figure 8.4 : Multple Application Programs
A tremendous amount of modification to the system would not be needed to imple-
ment multiple agplication programs. One obvious consideration that does come to
mind, however, is the fact that every template would need to have associated with it

- the identity of the sub-process that invoked it, so that satisfied tuple requests could
be retumned to the appropriate requesting processes, : :

- 8.2.8 THE TUPLE CHALLENGE PROCESS ' _
Alternative strategies for determining which node should win a tuple “challenge”
(i.e. when two nodes simultaneously attempt to satisfy in requests on the same
tuple) were discussed in section 5.1.3.2. This topic has obvious potential for future

tesearch, and should receive further investigation.

8.2.9 LINK DIRECTIONS _

It was shown in section 4.3.1.4 that the tuple space requests and operations are
transmitted bi-directionally {e.g. templates are sent up the in-sets; tuples returned in
response to request satisfaction are passed down the in-sets), It was also pointed
out that, on average, she number of links traversed is identical irrespective of
whether one- or two-way communication is utilized. Nevertheless, it would be of

91

2 =~ ENDANCEMSTILS BNd FUDIXE IS 85e-arcit

Interest to test nther du*ecnonai strategies and ascertain what effect @f any) these.
would have on the efﬁmency of the system, _ _

8.3 DI “‘USSIGN K o
‘The scope for enhancing X-Lmdaand the puss1bﬂ1ues for future research are vast,
- As is discussed in the next section at some length, it is felt that, despite the ineffi-
ciencies and overheads of the system, the potential | for development and irprove-
-ment should not be neglected. The future research directions considered in this sec-
tion have focussed on enhancing or improving the implementation. However, a

- further direction that is important, even critical, to future Linda research in general

 is that of program behaviour. This issue has been touched on in sections 6.2.3 and . -
7.4.3, and it is worth re-emphasizing the importance of this area, It is felt tha: cur-
re.ntly not enough is known abont the behaviour of Linda programs in general, An
intensive investigation into this topic would prove invaluable in foreseemg the im-

o | piementation requirements of any propased system.

~ SECTION 9

© 9.0 CONCLUSIONS

In corcitsion, it is worthwhile 1o re-examine the motivation and objective of this

. resgarch. It is indicated in this report that although occam does provide an elegant

and efficient means of programming Transputer networks, the software formalism

- is very closely coupled to the bardware. This causes thie underlying processor

wpology to become an integral part of the design and implementation of paralle] al-

gorithms. On the other hand, Linda is & conceptually simple, topology independent

prog) g model; and, more than this, Linda programs are portable, It is ihere-

fore ¢laimed that thers is much that can be gained by the implementation of the

- Linda model on Transputer networks. The_ob_Lect_ive of this research is to investi-

- gate the communication overheads imposed by a specific tuple space model on

'- --mn%um meshes, and hence evaluate the feasibility of such an implementation.,

The X-Linda system was created to conduct the investigation, and the research is

- ultimately concerned with ascertaining the communication overheads inberent in X-
- Linda, Below, a review of the report 15 conducted, and observations regarding the

findings of the research given, = - - -

91 REVIEW

- Toplace the document in parspective, it is useful to briefly review the contunt up to
- this point. The intention has been 1o lead gradually into the crux of the research, in-
. troducing Linda and tuple space methodologies, then déscribing the design and
implementation of X-Linda and, finally, delving into the analysis and evaluation of

the system. To start with, section 2 describes the Linda paradigm, illustrating the

concepts of tuples and TS, and describing the primitive operations that may be used
-, totanipulate TS. This section is in &self useful, as it collates information located
- -across 2 broad range of reference material and presests a readable overview of the
- relevant issues, Importantly, it is shown that Linda processes have no direct inter-
-actioh with each other. Instead, process synchronization and communication sre
- -achieved via tuple space operations, providing an entirely new, conceptually simple
- -approach to paralle] programming. The benefits of the style of programming are in- -
trodnced, and the advantages of the paradigm discussed. It is concluded in this ses-
tion that although there is no one programming model that can offer a complets
solution tr the comiléexities and problems icherent in parallel programming, Linda
- does addvess many key issees in the area, _ .

Issues pertaining to the implementation of TS on distributed-memory systems are
' considered in section 3, and two specific approaches (hashing and uniform distri-
~bution) presented. Much emphasis i¢ given to'intermediate uniform distribusion, il-
lustrating that it is an elegant and conceptually simple approach (and hence its use in
- the X-Linda implementation), The Linda Machine, a distributed-memory system
designed specifically to support intermediate uniformly distributed tuple space, is -
described, illusirating the advantages of using custotn-built hardware. The design.
of the Linda Machine js particulatly relevant, since it has, to a large extent, influ-
~ enced the design of X-Linda, This influence is appdrent in various places through-
- out the document. Existing Transputer-based Linda iipleraentutions are also exam-
* ined, illustrating that sach implementations are feasible and, by its absence, the
uniqueness of the X.Linda approach. A further point raised within the context of
- these Transputer-based implementations is the applicability of dedicated hardware:
" tosupportLinda. - . ST

2

B

L . e e By e R et T i -

9 = Coriclusions _

The X-Linda implementation is introduced in section 4, motivating the project in
terms of a desire for 4 new programming methadology. X-Linda's implementation
environment (i.e. computing platform and development system) ig described, em-
phasizing the complications imposed by communication between the host Trans-
puter and the network. The fundamental design and specification of the system are
-~ outlined in this section, motivating the choice of tuple space modsl by virtue of its
simplicity and elegance, and its uniqueness within the sphere of existing Trans-
puter-based Linda implementations. A major influence of the Linda Machine is
shown in the storyge of tuples and templates under X-Linda (i.e. the use of identi-
cal TS locations across the in- and out-sets). The design of the individual nodes -
within the system is described with reference to the design of the Linda Machine,
and it is shown that, essentially, the X-Linda node is a software nrplementation of
the Linda node. The applicability of occara 2 in the design and implementation of
the X-Linda node is discussed, emphasizing the value of a natural and elegant
means of expressing the required process interaction. The section also deals with
the &v.tmcmre of tuples wndse X-Linda, illustrating the influence of the research
needs.

Section 5 delves deeper into the design specification, examining the actual imple-
mentation o< the TS primitive operations (i.e. in, out and rd). Varicus problematic
issues and design considerations are addressed. The importance of detailing these
considerations lies in the fact that they have a direct irpact on the overall efficiency
of the system, and, furthermore, they illustrate the maintenance of TS consistency
~ in the processing of the primitives, It is also important to note that the very exis-
tence of a substantial design effort can be regarded as an indication of the unsuit-
ability of the specific tuple space model on Transputers. This section also examines
the overall design and structure of the system at the process levs], illustrating the
function and interaction of the individual processes that, collectively, comprise X-
Linda. The design of the system is addressed with regard to the Hest process and
the X-Linda node by means of an overview of the operation of the various modules
within the system. A discussion on two fundamentally important aspects of the de-
sign (L.e. the provision of buffering and atomicity) is given, and the applicability of
occam 2 to the overall design is readdressed. It is maintained that the decision to
model the X-Linda implamentation on the Linda Machine is well justified, and that
the design objective (i.e. to provide a software iﬂ':gementation of the Linda
- Machine) has been achieved, In addition, it is claimeu that tha objective has been at-

tained in an elegant fashion, To conclude the section, the programming methodol-
ogy applied in the construction of X-Linda is briefly overviewed, illustrating an
agl);erenc._ ¢ to “good” occam programming style, Finally, the (excessive) storage re-
quirements of the system and the causes thereof are detatled. :

The actual purpose of the résearch — to ascertain the communication overheads as-
sociated with X-Linda ~ is covered in section 6, X-Linda is analyzed by means of a
comprehensive series of tests and experiments designed to measure the communi-
cation overheads of the modet (relative to message passing performance on native
Transputer networks). The overheads specific to the TS primitive operations are
evaluated, and experiments are conducted to measure the overhead of data exchange
between progessors and of a sink algorithm, In addition, the process scheduling
overhead and the inefficiency of the tuple matching process are discussed. It is
shown in this section that, in general, the communication overheads of the imple-
mentation are significant and that, in addition, the collective influence of all of the
associated system overheads is excessive, The following section, 7, describes and
evaluates two example programs implemented under X-Linda. The results pre-
sented here complement those detailed in the previous section in that they illustrate
the collective influence of the various overheads on the overall efficiency of the

9--Conclnsions.

system —i.¢. emphasizing the extreme nature of the overheads and the resultant in-
efficiency of the system. Section 7 also gives some interesting insight into the
causes of this inefficiency. It is worth re¢stating here that the implementation of the
experiments in section 6 and the example programs in section 7 was extremely easy
under X-Linda, supporting the claim in section 2.3 that Linda, by virtue of its
power and expressiveness, simplifies parallel programming.

- The final section in this document, 8, deals with the future research potential of X-
Linda and discusses means of enhancing the syster and its perforraance, It is ap-
parent that X-Linda has vast scope for future research and it is maintuined that
much can be gained in pursuing the ideas dealt with here.

9.2 OBSERVATIONS '
It has been shown that the X-Linda implementation suffers significant communica-
tion overheads and that the system, as it stands, is too inefficient to be of practical
nse. However, it is important to keep in mind that X-Linda is not intended tobe a
fully-fledged Linda system, but was created to provide & means of investigating the
commiunication overheads pertaining to & specific TS model. This is especially rele-
vant with regard to the 'T'S search strategy, the inefficiency of which is illustrated in
section 6.7, It is not unreasonable to assume that a redesign of the system, given
~ the knowledge acquired in the course of this research and taking into account the
enhancements discussed in section 8 (particularly the schemes for speeding up the
matching process), may yield “acceptable” performance, Of conrse, it would never
be possible to achieve performance equal to that provided by native Transputer
networks, However, the e:aphasis of Linda is on ease of programming (i.e. it is
acceptable to trade some performance off against the gains of the programming
paradigm [Ahuja et al. 1988]). With regard to scalability, the approach does not,
however, hold promise. Given a mesh of 21¢ processors, each in- and out-set
- would comprise 32 nodes, and the corresponding amount of communication neces-
sary to transmit tuples and templates across the respective sets would be significant.

It is concinded that the communication capabilities of the Transputer are not well
snited to the efficient implementation of in- and out-sets {of course, this statement
will need to be re-addressed with the introduction of the H1 Transputer described in
Appendix 1). The fact that 2 massive design effort, with a great deal of additional
modification, was required to successfully implement the TS primitive operations is
iramediately indicative of this unsuitability, and the extent of the overheads icherent
in the imkplementaﬁon illustrates this point in a more obvious way. The overall effi-
ciency of the system is appalling, indicating the cumulative effect of all the associ-
ated overheads (i.e. communication, TS search, synchronization, process
scheduling and set-up). This, however, does not mean that the approach must be
discarded, It was shown that the communication overheads are not necessarily pro-
hibitive and it is felt that by addressing the othier overhieads listed above, it is pos-
sible to develop a usable system. More than this, as indicated in section 6.9,1, there
are various weaknesses in the design and implementation of the system, Iy is, there-
fore, maintained that, although the tuple space model is not well suited to
Transputer networks, the X-Linda approach requires further exploration in order to
exhanst its full research potential.

Finally, comment must be made on one aspect of the o:iiectiva of this research that
has been previously stated, but not yet addressed; to evaluate the feasibility of a full
Linda implementation based on the X-Linda approach. In favour of this evaluation,
there is the elegance of 3 design that is modelled on the successful Linda Machine
project, and the fact that, as a result of this research, it is known that the design can

: '_95

| 9 - Conelusioms -

'_ | -g]e;pplied to Transputer networks. Wor!_ﬁng against these advantages are the facts

1. the poiit-to-point communication links of the Transputer are not ideally suited to
the implementation of in- ang out-sets, and L

2. apart from the resultant communication overheads, there are other inherent over-

“heads that have a significant effect on performance. _ _

" Therefore, is a full Linda implementation feasible 7 The answer t this question is

reservedly affinmative. The system undoubiedly has the potential for development

into an efficient and usable product; however, extensive effort would be required to

- achieve this. Personal opintion favours further development of (he system, and, in
- particolar, investigating the use of dedicated hardware support in this regard,

Y

- _Appmd_ix'l_

 APPENDIX 1

Al THE TRANSPUTER AND OCCAM |

For those unfamiliar with the Transputer and its native language, occam, 2 brief in-
troduction is given below. The information is based primazily on an overview given
by Faasen [1990a] and is non-technical in nature, S

- The Transputeris a microcomputer developed a the mid-1980s by INMOS Lim-
- {CPU), fast Jocal memory and high-speed communication Yinks that point-

damental componernts of the Transputer are a 16 or 32-bit processor

to-point connections between Transputers; all of these components reside on a sin-
ﬁﬁa chip and can operaie concumrently. The IMS T414 Transputer is an example of

is basic model - other special purpose members of the Transputer family feature
additional circuitry, microcode and interfaces that support a specific task (2.g. disk
and memory conirollers), The IMS T800! Transputer includes an on-chig floating-

~ point unit (FPU). The CPUJ, memory, communication links and FPU (in the case

of the IMS T800) all share a 32-bit data / address bus, An external memury intes-

- faceis rs.wmvided to allow access to additional, off-chip memory. A block diagram of
the IMS T R

. Lo

[800 architecture is given in Figure ALL,

&

" Min this Appendix, me_mmmabyﬂemﬁ&réfmﬁmamm'pmessm Wheranecassary,the

nptation 7800-207 and T800-30 is used 1o distinguish between processers running at 20 and 30
MHz respectively - o _ ' S o

Tor

 Appendix 1

Fioating Point Unit

Systam
Servicas

~ Figure ALI : IMS T800 Architecture

Parallel applications invariably involve a high degree of communication and tas”
switching. The Transputer utilizes microcods to control these aspeets of concus-
rency, The result is exceptionally fast context switching (the IMS T800-20 can
switch between tasks in less than 950 nanoseconds). Consequently, it is possible to
achieve real-time multi-tasking performance. Transputers can be utilized as high-
speed stand-alone processors; alternatively, they can be easily networked together
to provide paralle] computing surfaces. The process model of concurrency is sup-
ported by both the hardware and the programming model. Problems are described
using the software formalism, and, since the there is a close relationship between
this formalism and the physical architecture, the implementation in hardware on a
mal;ﬁdgmam that best meets the processing requirements is relatively straight-for-
w .

All PERFORMANCE _ . : :

The Transputeris a fas[t}gfocessor. The IMS T414, released in 1985, is capable of
10 MIPS. The IMS T800-20, annoarded in 1986, delivers 1.5 MELOPS of 32-bit
IEEE standard arithmetic, and the IMS T800-30 is capable of 2.25 MFLOPS. With
regard to fioating—poiméspm'formance, these impressive results are largely due to the
fact that the FPU and CPU reside on the same chip and can operate in parallel -

.Appm:dixl_.

* which means that the figures quoted reprosent sustained as opposed to peak per-
formance, . _ .

AlL2 COMMUNICATION _ o

- The Transputer has 4 high-speed serial links that provide full-duplex point-to-point
communication with other Transputers, Each link has an input and an output
channel, A connection between two. Transputers is implentented by connecting
tﬁ? channels together via a pair of uni-directional signal lines, as shown in Figure

]

_ 'ﬁigure ALZ: Transpﬁte.r Interconnection -

1]

Data that are sent along a link’s -out{Jsut channel are acknowledged on the input
channel and process synchronization is provided by a handshaking technique, The
IMS TBOO allows messages to be pre-acknowledged and each of the links are ca-
pable of transmitting data at a rate of 20 Mbits/second, which corresponds to
roughly 2.3 Mbytes/second of real data (i.e. cxcludintﬁ control information), The
fact that each link has its own DMA controller means that any specific link can op-
erate independently and in parallel with the other three links, the CPU and, in the -
case of the IMS TR00, the FPU. Communication, therefore, does not involve pro-
cessor overhead, The fact that the speed of the processor is so much faster than that
of the links does, however, mean that communication is the bottle-neck in any
Transputer-based system and is the limiring factor in efforts to achieve speed-up
and processor efficiency. Networks of Transputers can be configured via the com-
' n:ng;mation finks to specific topologies — for example, a pipe, ring, mesh or hyper-
~ cube, : _

Qccam is the programming model for the Transputer and was developed concur-
rently with the hardware. Qceam is based on the CSP model [Heare 1978], and
was originally intended as a low-level compiler target for Transputers, However,
the language has been successively developed into its current form, occam 2, which -
is a fully-fiedged general purpose g(;gramming language with built-in support for
concurrency and compnuaication. Occam provides a simple and natural way of de-
scribing paraliel systems. The model supports concurrent processes and inter-pro-
cess comunication via channsls. These mss&s are used to model Transputers,
and the channels to simmlate the physical links. Consequently, it is possible to de-
velop and test application programs on a single Transputer and then physically dis-
tribute the programs on neiworks of Transputers.

* Further details regarding the hardware specifications can be found in [INMOS -
19884 and 1989], and INMOS [1988b], Pountain [1989] and Jones and Goldsmith
- [1988]1 cover the specification and nsage of occam 2, '

99 -

Appmdixi _

Al4 LOOKING AHEAD — THE Hi TRANSPUTER o
INMOS have announced a new generation of Transputet, the H1, which is due for
release in 1991, The following details have their source Pountain [1990] and

Rabagliati [1990b]. The H1 will feature enhanced hardware with more powerful

operating system facilities to provide a faster and more usable computing platform.
The chip itself will mun at 50 MHz, and will be capable of 100-150 MIPS and 20
MFLOPS, Again, only 4 communication links will be O?mwded - however, each of
- the links will be capable of a data transmission rate of 100 Mbits/second (about 5

times faster than at present). On-chip memory will be expanded to 16 Kbytes, and

- itis significant to note that this memory will be cached
. Peshaps the most radical Teature of the H1 is the introduction of virual channels. A -

separate on-chip communications controller is provided to multiplex any number of
logical channels onto the 4 physical links —i.e. the hard links will be shared trans-
parently. A dedicated routing chip, the C104, is aiso under development for use
with the H1, The C104 is a high-performance 32x32 packet-switching exchange
‘which will provide a fransparent connection between any two Transputers in a net-
work. The H1 and C104 will ease the burden associated with occam programming,
perhaps most significantly in that there will no longer be a need to “PLACE”
‘communication channels at physical link addresses. The programmer may, instead,
specify us many channels as necessary which the routing mechanism will
- interconnect as reqquired. ' - _ _

-

N

100

g

~ APPENDIX 2

‘A2 BASE FIGURE EXPERIMENTS

Details regarding rates of inter-processor data transmission using occam 2 on native
Transputer networks are presented in this Appendix. The values obtained from the
* experiments described below are the base figures against which the X-Linda mea-

surement were compared in order to ascertain the communication overheads of the

model (tefer section 6). Notice that : . :

1, All the tests were conducted on the Parsytec SuperCluster described in section
4,2.1, Recall that the link speeds of the processors within the SuperCluster are
set at 10 Mbits/second -

- 2. All the experiments are based on the transmission of sized arcays of 32-bit inte-

. pers o _ o ' .

3. The experiments were run a number of times, and the results averaged out to

- 4, The following notation is used throughout: o

N - %engtNh of array (i.e. nutober of 32-bit integers in message)

m - log o _ N

Time - Time in microseconds - : _

* PBate ~ Transmission rate = Byles/ Tire = Nx 4/ Time)

- 5Tn Tgeaeral, transmission rates are listed for messages of length between 219 and
- 27 integers, and an overall average rate is cited, It was often the case that the
times pertaining to the transmission of small messages (e.g, 24 integers) were

. too low to be religble (l.e. times of the order of a few internal clock ticks).
Althoug? it is realized that the rate of transmission of small messages is different
to that fur very large messages, it was considered more practical to use the val-
ues pertaining to “stabilized” rates (for messages of length 2! words and up,

. the rates of teansmission are very sirnilar) T :

6. The technique of breaking up messages into smaller packets, and receiving and
sending on these gackets concurrently was not employed (this technique can be
uggg to gngix;ce e speed of transmission through a pipe of processors — refer

8 on 8.4.4), B . ’ .

7. The gﬁ_&ﬁments_detaﬂed below exhibit some degree of replication (for example,

two ditferent experiments ate conducted to investigate one--and two-way com-
munication between processors). Althongh these sorts of results may have been
inferred from other experiments, in the interests of acouracy it was not consid-
exed prudent 1o do this. R : : '

A2.1 EXPERIMENT 1 - L :
{NE WAY COMMUNICATION BETWEEN PROCESSORS

This exneriment, based on that performed by Lakier [19894], was designed to eval-
uate the speed of transmitting data frorn one processor to another. Furthermore, it
was desired to compare the rate of communication from a T414 processor to a T800
- with that betren two T800s (this is of particular significance since the top row of

: gze %’-L{nda mesh incorporates a T414 host Transputer). s
The configuration shown in Figure A2,1 was uged for this experiment.

IS

_ AME__

Taia] | Teoo | | T800
Host| f&— | @0 {1 o

~Tigure A2.1 : Expeziment 1 ~ Configuration

The experiment was run in two phases — it was necessary to measure the time taken

to transtrit a message from

1. T414 Host to T800 (0}

2. 'TBOO (0) to TB0O (1),

- In both cases, the time was obtamad as follaws, where Link, Out is the name of the
_lmk botween the source and destination Transputers

-chack 7 start _
Link.Out | array, size taray
cloek 7 finlsh
“time_takan 1w (finish MINUS start) * 64 — microseconds

3. Results
The communication times and omrespondmg ﬁ'ahsnnssmn rates for this expenmcnt
- are shown in Table A2.1.

Messans Len ' 1‘414 TE000E] Tsoomi Tﬂoom
m I N | [“Time | Rata | Tme | Rats |
90 1024] - [7360| 0.5865| | 5696| 0.7191)
[2048 14720{ o05866] | 11488} 0,715%;

121 4088 20440) 0.88658] | 22012 0.715%

18 8192 58044 05858 | 45888 07141
14 16384 1170621 -0.8558] | 917i2| 07148}

15} . 32788 | 235840] o.5958 1834381 0.7143

16| @5536 -471744{ 06,5557 'B86976| 0.7148

171 181072 _943618] 0.5556' 734016] 0.7143

“Avg | 05560 Avg | 07151

Table- Az 1: Expanmant 1- Results _

4. Observations '
1. The rate of transmission between two T800s is 129 fimes that of the rate from
t’li‘:l;-144tg % T800, Factors contribunting to this phenomenon are discussed in sec-
n .
2. The rates of transmission can be more meaningfully stated as _
v T414~T800 (0) 543 Kbytes/second '
-» 'TB00 (0)~T8OO(1) : 698 Khytes{second this result correlates those ab-
tained by Lak:er [1989a] _

A22 EXPERIMENT 2)
' _Two WAY COMMUNICATION BEI‘WEEN PRocEssozs (1)

1. Objective . ' '
The objective of this experiment was to evaluate the time taken 1o transmxt a mes-
sage from & source to a destination Transputer, and then back again, Measurements
were required for transmission between adjacent processors, and also for the vase
where communication occurs through intermediate nodes.

. 102

Appendix 2

2. UVesign
The cunfiguration shown in Figure A2.2 was used for this experiment.

_ -"raoo-. — | [TE00
Host | =X | |RE= 2 | @

Figure A2.2: .E;pariment 2 ~ Configuration -

The time taken for a message to-trave: from T800 {0) to each of T800 {1}, (2) and (3}
and back again was measured. Notice that communication from the host is not mea-
~ sured in thig experiment, It therefore does not matter whether this is a T4l4 ora
- TR0 processor, - '

3. Resulis _

Table A2.2 shows the communication times and corresponding rates of transmis-
sion for this experiment. Notice that these transmission rates correspond to the
entire ransmission of the message {from source to destination and back again).

Message Lon Teod(0) - T800(1) | | T800{0)-T800(2) | [TEbo(0) - T800 (3)

m N Time Rate | Time Rate Time Rate
10 1024 10713] 0.3823 21452} 0,1909 92638 0.1285
11 2048 21388| 0.3830 42873| o.1911 65222| 0.1256
121 4088 427521 0.3882 - 856081 0.1812 130368; 0.1257
13 8192 ' 85504! 0,3832 171328 0.1913 260872 0.1257
“14] 16384 170944 0.3834 $ 342686¢ 0.1913 621254 0.1257
18| 82768 | . 341888} 0,3834 685222 0.1818 1042438) 0.1257
18| - 65536 683750| 0.3834| | 1370400 0.,1913 2084800; 0.1257
17] 181072 1367468 03834 2740793| 0.1913} | 4168538 0.1257
_Avg 0.3832 Avy 0.1812 Avg - | 0.1257]

~ Table A2.2 : Experimont 2 — Results

4. Observations ' ' ‘

1. The rate pertaining to T800 (0) — T800 (1) is slightly more (i.e. about 7%) than
half the rate of a one-way communication (refer previous experirient - Table
A2.1), The reason for this is unclear.

2. The rates shown above in Table A2.2 appear reasonably scalable as more pro-
cessors ar¢ added (i.e. there is an approximately linear relationship between the
ates and the number of links traversed),

A2.3 EXPERIMENT 3 _
TWo WAY COMMUNICATION BETWEEN PROCESSORS (2)

1. Objective _ -
As in the previous experiment, the objective here was to evaluate the time taken to
transtnit 4 message fromi g source to a destination Transputer, and then back again,
However, in order to implement a base test against which the in and rd operations
could be compared (Sections 6.3 and 6,4), the above experiment had o be amended
slightly. The message from the source 1o the host, instead of consisting of an array
of integers, now simply comprised a single integer; the return message, however,
consisted of an integer array, as before, S '
2. Design : R . -
Refer to Experiment 2 and Figure A2.2. The experiments are identical except for
the fact that, here, only & single integer is sent from source to destination.

Appendix 2

3. Results
Table A2.3 shows the communication times and corresponding rates of tran.mis-
sion for this experiment.

Maséage Len _TA00{0) - T200(1)_| TEOO!O!—TSO_O@I T800({0) — TBOO (3)
mi{ N Time Rate Time Hate __Tims Rate
10 1024 | ' 5382| 0.7611[11138} 0.3878 16889 0.2452
12 4086 © 21459 0.7635 44418| 0.3689 67379| 0.2432
14| 16384 85760} 0.7842 177542) 0.3891 .260350| 0.2433
18] 65538 343091 0.7641 7101058] 0.3692 107712681 0.24284

o " Avg | 0.7632 Avg | 0.9688 Avg 0.24148

Table A2.3 ; Experiment 3 ~ Rasuits

4. Observations _
As expected, the rates shown above are approximately half those obtained in the
. previous experiment (Table A2,2).

 A2.4 EXPERIMENT 4
COMMUNICATIONS THROUGH A RING OF PROCESSORS

- 1, Objective _
This te']st was designed specifically for comparison with X-Linda’s out operation
(section 6.2). Communication times were required for the transmission of mes-
sages around rings of various dimension, and it was also desired to observe the ef-
i_z‘ect ﬁi including the host T414 Transputer within the ring. - '
. Design .
* The experiment was tested on rings comprising 2, 3 and 4 Transputers — each case
- was tested with and without the additional host Transputer. The configuration used
is shown in Figure A2.3 below, where k represents the number of T800s in the
- ring, _ _ _ '

Ll

T414 | bo—f [TBOO] [— . T800
tost | 21 [@ P e

“Figure AZ.3 ¢ Experiment 4 — Configuration

The message was transmitted from T800 {0), and time taken for that message to tra-
verse the ring was measired, Two specific test cases wers nused, where the ring
1. did not include the Host —i.e, it comprised only T800 (0) through TB0O (k-1)
2. included the Host —~ i,e. the message had to go from T806 (k-1) through the Host
to get back to T800 (0),
-~ 3. Resuits
The results for the various configurations are given in Tables A2.4 — A2.6, For
-each Table, the number (k) of T800s in the ring is given, and figures are quoted for
-1, NoHost —notincluding the T414
. 2. WithHost —including the T414 in the ring.
Notice that the transmission rates quoted correspond to the transmission of the
message over the entire ring.

104

_. Appmd.ixz'

K=2
Message Len L No Host With Host
m_ N Time Rate Time Rate |
10 1024 11136(0.3878 22976(0.1783
13 2048 22336| 0,3668 459521 0.1783
12 4006 - 44872] 0.9668 9184c| 0.1784
13 81982 89230 0.3670 1836801 0,1784
14| 16384 178560| 0.3670 367360 € 1784
15| 32768 as7i84; 0.3670 784720 0.1784
16| 65538 714368} 0.3670 1469440 0.1784
§7] 181072 1428672 0.2870 2038880 0.1784
_ - Avy 0.3671 Avy 0.1784
Table A2.4 : Experiment 4 — Results (k = 2}
; — k=3
Message Len No Host With Host
_m N Time Rate | Time _Rate
10 1024 16832| 0.2433 28672| 0,1420
11 2048 33664 0.2433 | 57280 0.1430
"9 4008 57328 0.2433 114860 0.1430
ia 8192 134656 0.2433 228120] 0.1430
"4 163841 269312] 0.2423 4582401 0.1430
15| 32788 . 53ge24| 0.2433 9164801 0.1430
16| 655386 - 1077248(0.2433 1832832| 0.1430
17| 181072 _ 2154432 0.2434| = | 8665792[0.1430
Avg _0.2433 Avg _0.1430
- Table A2.5 ; Bxperiment 4 — Resulis (k= 3)
o _ ' ' k=4 '
- | Moasage Len ' - _NoHost __With Hast
™ N Tims Rate Time Rate
10 1024 | 22582 0.1813 24176 0,119%
1 . 2048 45184% 0.1813 . GB288| 0.1200
12 4008 : 20304 0.1844 1836576 0.1200
13 8192 180608 0.1814 2731521 0.1200
14] 16384 : 361216 0.1814; 548240 0.1200
15| 32768 722368(0.1814 1082418 0,1200
16{ 68538 1444800 0.1814 2184960| 0.1200
17] 181072 2780588/ 0.1814 4389820| 0.1200]
___Avg 0.1814 _Avg | 0.1200]

Table A2.5 : Experiment 4 — Rosults (k = 4)

4, QObservation _

Transmitting the messages through the host T414 has a dramatic effect on trans-
mission times. Ideaily, the rate of transmission through ring of size k+1 without the
host should be same as that for a ring of size k with the host. Table A2.7 shows
that this is definitely not the case :

i = —

k Ry Rp Ri{+1)Rz(k) -
Rate — No Host | Rata — With Host

2 0.3671 04784 . 1.8

3 0.2433 0.1430 1.27

4 0.1814 . 0.1200 -

Table A2.7 ; Experiment 4 - Observations

105

Appendix 2

A2.5 EXPERIMENT 5§ _

INFORMATION EXCHANGE ON A MESH CONFIGURATION (1)

The experiment described below constitutes the one of the base tests against which

the X-Linda implemensation of data exchange between two processors was com-

pared (section 6.5.1).

1. Objective

To replicate the data transmission required to effect the exchange under X-Linda —

lLe. to perform and measure the identical amount of message u'ansrmssmn using

occam 2,

2. Design

The total number of tuple transmissions necessary to perform an information inter

change between a source node and any destination node coinprises the following :

Xmit (1) ~ Transmission from the source node along iis out-set to the column
tontaining the destination node

Xmit{2) ~ Transmission along the column to the destination node

Xmit(3) — Transraission from the destination node alonyg its out-set to the caiumn
containing the source node

Xmit (4) ~ Transmission along the column back to the source node

Notice that the transinission of teruplates has been neglected. This is because, due
to the nature of the X-Linda algorithm (refer section 6.5), it is possible to assume
that a template will be in place (i.e.resident on & specific node) before the matching
maglg e;‘icaches that node. Hence, the time taken to tvansmit a template can be disre~
g _

The calculation of the total number of transmissions is best illustrated by means of
an example. Given that Node 4 is the sousce node (as was done for the X-Linda
implementation), assume that data exchange is to occur between it and Node 11 (the
destination node). Figure A2.4 shows the sequence of transmissions necessary to
complete the exchange under X-Linda (recall from section 4.3.1.4 that tuples are
outed to the right, and are returned downwards).

5 % 08 |

3| 08 08 10
i .
| 12 13 14 15
Bl { i {

Figure A2.4 : Experiment 5 - Roating Example

166

Appmdixz_

From Figure A2.4, we can deduce that the total number of data transmissions
needed to exchange data between Nodes 4 and (1is:

Xk | Xk @ | Xmi@ | XmE@) Total
3 1 1 3 8

3. Results

In Experiment 2 it was shown that the overall rate of transmission over 4 links is
47800 integers/microsecond (refer Table A2.2). Hence, we can, with justification,
deduce the rate over 8 links to be half of this ~ i.e. 23900 integers/microsecond
(this is claimed “with justification” since the results pertaining to different number
of links appear to be scalable). Using these results, it is possible to deduce the
times taken to perform the data exchange with respect to each of the nodes in the
mesh for tuples of various dimension — these are shown in Table A2.8.

_ Time____

Node | | Xmit (1) | Xmit 2 | Xmit (2} | Xmit(3) | Total N=18 | N=256 | N=1024 |
) 0 3 0 i 4 "~ 935| 5356] 21428
1 1 3 3 1 8 870 10712| 42848
2 2 3 2 1 8 670] 10712] 42848
3 a 3 1 1 g 870] 10712{ 42846
4 0 0 0 0 0 : - .

5 1 0 a 0 4 335 5356 21423
8 2 0 2 0 4 335| 5358 21423
7 3 0 1 0 4 _a35(53856] 21428
8 0 1 0 3 Z 335] 5356] 21428
9 1 1 3 3 8 870 10712] 42848

10 2 1 2 3 8 870| 10712] 42346
11 a 1 1 3 8 670 _10712| 42846
12 0 2 0 2 | 4 835] 5356] 21423
13 1 2 3 2 8 870| 10712| 42846
14 2 2 2 2 8 670| 10712} 42846
15 3 2 1 2 8 670] 10712 42846

Table A2.8: Efperiment 5 — Results

4. Observations

From the communication patterns, it is obvious that the first node in every row (i.e.
nodes 0, 8 and 12) of the mesh will have the same communication times — which is
the same as that for all the nodes in the second row (nodes 5, 6 and 7). Similarly,
the rest of the nodes all have the same communication times.

A2.6 EXPERIMENT 6

INFORMATION EXCHANGE ON A MESH CONFIGURATION (2)

The experiment described below constitutes the second base test against which the
X-Linda implementation of data exchange between two processors was compared
(section 6.3.2),

1. Objective

To evaluate the rate of data transmission between two processors residing on a
mesh configuration over the shortest pussible path. Notice that the data transmis-
sion is two-way —i.e. an exchange of infnrmation.

2, Design

A single node, processor 4, was selected to act as the “controller”. Arrays of inte-
gers were transmitted from this node to every other node and back again, over the

107

Appendixz

shortest possible path, Figure A2.5 shows the paths that were used for the experi-
ment, Notice that, although the routes depicted in the Figure are optimal, they are
not unique; there are a variety of shortest possible paths using a mesh configura-
tion. The routes shown below were chosen simply because they seem to the most
logical.

I_ Host . '
Tat | 01 | i § 02 03 6—J

n] [08 | boiaf [00 { L | 10 | 11'&-—
[12 | el | 19 [bedmf | 14 |15 l-a—

i i i i
_— :
Figure A2.5 { Experiment 6 - Shortest Paths

Notice that Node 3’5 communication occurs through the host T414, Gbviously, this
route could have been specified differently. However, to retain some form of con-
sistency with the X-Linda configuration (where communication does occur through
the host Transputer), it was decided to use the above route. Hence, the rate of
tsransRmissicin to and from this processor can be expected to be relatively slow.

. Resulis
The only way that this experiment can be meaningfully with the X-Linda equivalent
is to consider average data transmission rates; the results pertaining to specific
nodes are, on their own, meaningless. Hence, the times taken for the transmission
of messages from Node 4 to all the destination nodes and back again have been
summed, and an average rate of communication calculated from this, These rates
are shown in Table A2.9 for the transmission of integer arrays of varions dimen-
sion, using the following notation ;
Total Time — Total of individual transmission times
Avg Time ~ Total Time /15 (ie. excluding Node 4)

Rate . — Nx4/Avg Time (i.e. bytes / microsecond)
Massags Len Tima | Rate
m N Total Hime | __Avg Time
10 1024 877984 25188.93 0.1625
12| 4095 1508160 100544.00 0.1630
14} 16384 © 8029058 401987.06 0.1631
16] 65586| | 24112448| 1607497.53 0.1631
Avg 0.1629

Table A2.9 ;: Experiment 6 — Results

108

Appendix 2

A2.7 EXPEPIMENT 7

IMPLEMENTATION OF A SINK ON A MESH CONFIGURATION

This experiment is the base test against which the X-Linda implementation of a sink

is compared in section 6.6.

1. Objective

To evaluate the time taken for the al. nodes within a mesh configuration to send in-

formation to a single requesting node (the sink),

2. Design _

The experiment is almost identical to the previous one (Experimient 6). Node 4 was

selected to send a zequest to all the nodes in the mesh, and these nodes then re-

turned information to this node. The paths over which the processors communi-

cated are identical to those shown in Figure A2.5. The single difference between

this ex t and the previous one is that, here, Node 4 sends out a request for

data, as opposed to an entire integer array. Ideally, this request shonld take the

form of a single integer. In practice, 3 integers were required to carry routing in-

formation {obviously, using 3 integers instead of 1 has a negligible effect on the

overall rate of transmission). The time taken for Node 4 to transmit all of its data

requests and to receive messages (i.¢. integer arrays) from all the other nodes in the

mesh was measured.

3. Results

As in the previous experiment, the results are presented under the headmgs of:

Total Time — Time taken for all the nodes to receive a request from, and return in-
formation to, Node 4

AvgTime - Total Time /15 (i.e. excluding Node 4)
Rate - N X 4/ Avg Time (i.e. bytes / mlctoseoond)
The results ing to the transmission of arrays of various dimension are shown
in Table A2.10. _
Message Len | | Time Rate
M N Total Time | Avg Time -
10 1024 180760(= 12650,67 0.3238
12 4006 7539201 50261.33 0,3260
14 16384 B068612] 200667.47 0.3268
16| 65536 12028096 | 801873.07] - 0.3268 |
' Avg 0.3259

4. Observations

Table A2.10 ; Bxperiment 7 — Resuis

As expected, the average rate of transmission for this experiment is almost exactly
double that obtained in the previous experiment,

109

Appendix 3

APPENDIX 3

A3 ASCERTAINING CPU UTILIZATION

The percentage CPU utilization figures used throughout this document have been of
great value in the analysis and evaluation of the system (refer section 6}, and have

- provided useful insight into the general behaviour of application programs running
under X-Linda, This Appendix describes the derivation of the utilization figures
used in the analysis, and, for the Transputer enthusiast, an assembly langnage rou-
tine for ascertaining these figures is also given. A comparison of these figares is
conducted, and they are shown to perform identically,

A3.1 OccAM 2 SUPERVISOR PROCESS .

The method of evaluation used in the X-Linda analysis is based on that developed

by Rabagliati [1990a], with some modification. Rabagliati’s appronzh involves a

Supervisor process which is run in parallel with the rest of the processes on the

Transputer. This process operates in 2 phases, both of which are invoked by

sending input via a channel into the procedure ; _

- 1. Calibration ~ this phase evaluates the speed of the scheduling mechanism, It
simply increments a counter over a specified time period, and returns the final count
valuc. The calibration phase must be run when the rest of the processes are idle
(i.e. waiting) in cxder to obtain a true calibration value.

2. Timing — when this phase is it.voked, the counter is reset and then incremented
- until the command to end the timing is received, The amount of CPU utilization is
obtained by comparing the new count value with the one obtained in the calibration
phase — in effect, the procedure actually measures how idle the processor is. The
percentage CPU utilization is calculated as follows:
Let Maxidle be the maximum value of the counter attainable during the timing
phase (i.e. based on the value obtained in,the Calibration phase and on the pe-
viod of time that the Timing phase was active).
Let thlaalldle be the actual value of the counter that was obtained during the Tim-
ing phase.
Then the percentage CPU utilization, is calculated to be ;

-~ {(Maxidle - Realidie) / Maxldle) x 100 |

This value is then remrned to the process invoking the Supervisor yrocedure,

The process described above was slightly modified in order to obtain a more accu-
rate calibration value, The calibration phase wis taken out of the procedure, and run
on its own — the resultant calibration figure was then “hard-coded” back into the
Supervisor process. The Callbrate and Supervisor procedures are presented below,
Both processes run two code segments in parallel - one process increments the
counter, and the other is the “controller” that is responsible for resetting and return-
ing the count value, The idle counter segment, common to both procedures, is de-
fined as follows : :

... ldia cotinter
INT new, than ;
SECGH

ldle =0

w Sat Initial ‘then!

TIME ? then

110

Appendix 3

SKip

" LGP fOraver -
WHILE TRUE
SEQ

w Got ‘now’

PRI PAR
TIMER TIME :
TIME ? now
SKip

« Incremant Idle

F =t ... [ass than a carain number of Ticks - 20 ssems

(now MINUS then) < 20 -- about right - SUPERVISOR must be the only process
Idle '= Mdie + 1 -- actlive®

than = now

The Calibrate procedure launches the idle counter process and its controlling code in
parallel. The controller resets the counter, and then delays for one second (during
which time the counter is incremented by the counting process). It then returns the
new count value to the process that invoked it. The listing for this procedure is
given below :

PROC Callb.Proc {CHAN OF INT start, result)

. Declarations

VAL pariod IS 15625 : ~ one second

INT Idle, Calibrate ; - Idle is accassed in parallel - hence, usage checking must be off
FAR '

{l
« Idle counter

- Contraller
WHILE TRUE
SEQ
start ? Callbrata

.. Delay whila ldle is Incremented
INT now ;
TIMER TIME :
SEQ
Idla = 0
« Delay
TIME 7 now
TIME ? AFTER now PLUS perlod
Calibrata 1= Idle

result | Calibrate

L]

The Calibrate procedurs was executed a number of dmes, and an average count
value obtained. This value (157487) was then defined in the Supervisor procedure

111

~

_ _Appendixs

to be the maximum count value attainable in one second (i.e. given that the no other
processes are running on the Transputer), The Supervisor also launches the count
ss and a controlling process in parailel. The controller is invoked by the re-

ceipt of a ‘0’ on the input channel. It resets the counter, and on receipt of a ‘1°, ac-

* cesses the new count value (that was, in the interim, incremented by the count pro-
cess). The percentage CPU utilization is then computed as described eariier, and
%tumed to the requesting process. The listing of the Supervisor process is given

ow ; : . .

- This Proc writtan by Andy Rabagliati (INMOS)
~ Amended : Cralg Faasen - Oct. 1980

PROC Supatvlsor (CHAN OF INT command, rasuit)

w Declarations

. Dofing start, read

VAL start {S0:;
‘YAl read 1S81:

... Calibration

VAL tima.period 1S 15625.0 (REALS2) : -onesecond

VAl callbrate IS 157487.0 (REAL32) : -~ Oblained using Callbrate procedure
VAL count.rate IS calibrate /time.petiod ! :

INT Idle : ~ idie is accassed in parailel - hence, usage checking must ba off
PAR

H{ Idle counter

n-

i con‘lrolll‘l'
BEQ :

... Vars
INT begir
TIMER TIME :

« Loop foraver

WHILE TRUE :
INT signal ; .
SEQ

%ummand 7 signal

L1l Start .
signal = start
SEQ
. de=0
TIME ? bagin

ive rﬁad
signal = road

e Vam
INT finish ; -
REAL32 Raal,jdle, Max.[dle, CPU,util ;
SEQ _
Real,ldle := REALS2 ROUND. ldla
TIME ? finlsh

 Caloulate maximum possible sount vajue

112

Appendix 3

VAL ﬁEALBZ’ elapsed 1S REAL32 ROUND (finlsh MINUS begin) :
Max.ldls 5= alapsed * countrate
CPULLtll 1= 0.0 (REAL3Z)

v Calculate parcantage ulflization
F

Max.ldle < 0.0 (REAL32) _
CPU.utt 1= ({(Max.idle - Real.ldle) * 100.0 (REAL22Y) ¢ Max.idle
m%ilp '

reauit | INT ROUND OPU.uti

.
.

A3.2 ASSEMBLY LANGUAGE ROUTINE .

Mitchell et gi, [1990] present a Tr-nsputer assembly language routine for estimating
progessor utilization. This appro. ch, although identical in principle to that dis-
cnssed above, is the more sophisticated of the two. The fundamental difference
between the two methodolesies is in the irdplementation of the idle counter process.
Here, an assembly languagy .. . ‘ire is used for this purpose, and the idle counter is
incremented if the low priot. , process queue is empty. In effect, this criterion is
identical to that nsed in the occam 2 Supervisor approach — however, unlike occam
2, assembly language permits access to the scheduling registers. The idle counter
process, ldieTime, is listed below :

. SC IdiaTIme

. COMMENT

This PROC axtrected from :

- "Ingide The Transputer”, D, Mitchel ~ ',
Blackweil Sclentlile, Oxford, 1980 -

PHOGvIdlaTtma (INT ldlaCourt, E.... . :unt, Semapharg)
am am

INT L.ldleCourt, L ExtraCount ;

INT Back.Low.Ptr, FrontLowb iy ©

el
w Inftialize
‘DG o -« Initiallze counters
STL L.idleCount
DG o
STL L.ExtraCount

« Repaat .. _

REPEAT

LDL Semaphore ~ taad Semaphore

G) .END : - [t zaro terminate
léil’:’PEEmmLothr -+ rerad [ow priotlly queve registers

kt?l\!l'_l‘meLathr -- and compara front one with Minint
D¥F _

¢ JINCIC - If queue ampty Inc idle count
hgléli;ﬁxtracount ~ otharwise ing extra count

STL L.ExtraCount
J PASS

we Inétament Idle Count

" INCIC '
LDL L.ldleCount - ing idle count
ADC

113

Appendix 3

STL L.[dlaCaunt

« Schedullng

PASS ~ Biid 10 end of low priorty
LbC2 _ -- active queus

LDLP-0 :

STARTP

STOPP -- dascheduie this process
J REPEAT

. Raturn Counts

END

LOL LdlaCount - return counts and finlsh
STL ldlaCourit '

LDL. L.ExtraCount

ST ExtraCount

"This procedure is nsed in very much the same way as the idle counter process is
used by the Supervisor. As shown below, ldleTime is launched in parallel with the
rest of the processes on the Transputer, On terminating (by setting Semaphore to
0}, the procedure returns the value of the idle counter (IdieCount), and also an indi-
 cation of the time taken up by the execution of the procedure itself (ExtraCount),

u. Inftinlize

Semephore =1
ldiaCount el
ExtraCount =0

PAR
SEQ -
.. Processes 1o ba evaivaied
Semaphore 10 -- terminate idieTime {)

IdieTime {dleCount, ExiraCount, Semaphore)

As for the Supervisor process, it is necessary to establish a calibration vatue relative
to which the notual IdlaCount value can be measured. Again, this is done by running
idleTime by itself for a specified amount of time and hardcoding the resultant count
values back into the evalvation procedure.

A3.3 COMPARISON .

Both of the approaches were tested using the following evaluation process, where
the values of Idie Limit and Busy Uimit were varied in order to produce a range of
processor utilization figures. _

w Walt / Busy
clook 7 time
" elock ? AFTER time PLUS Idle.Limit

' SEQ i =0 FOR Busy.Limit
sk

The utilization figures returned using both the Supervisor and IdleTime procedures
were exactly the same — i.e. the approaches perform identicaliy. The reason for us-
ing the Suparvisor in the analysis of X-Linda is simply that the author was exposed

114

2 e e e e

Apprmdixé

10 this approach first, Forme sake of interast, the results of the. evaluanon are hsted
in Figure A3,1 under the following headings :
Ide - ldie Limit x 1000

-Busy — Busy Limit x 1000
% - %OPU Utilzation

{_ldle. " Busy % | dle | Busy| % ddle { Busy | %
{— o] fooo] 100] [0] 1000 &0 O 1000 100
- 1.25| 4875 88 10| 876] 47] | 1.28] 1000 89
250F 7501 7B 0 750 A3 { 260 1000 804
- 8.75]| 625 83 10]- 825] - - 3.75| 1000 73
5.00] 500 501 10! 500 84} | &.00f 1000| 67
8251 878 88y | 10/ 375; 23} { 625 1000 62
7.50) 250 25 10p 250 20 7.50| 3000 88|
- BTE| 125 13 101 - 126 1y 8.761 1000{ &4
10, 00 0 o 10} 2 ol | 10.00] 1000l &g

Table A3.1 ¢ CPU Upilization

Y
s \\\'\

115

. Appendix 4

N APPENDIX 4

" A4 X-LINDA PROGRAM STRUCTURE

In section 5.2.3.1, it was indicated that there are two versions of X-Linda in exis-
tence — a simulated system sunning on a single Transpwer and the physically dis-
tributed versioh. It was also noted that both of these versions run identical code

~ since.the X-Linda modules are simply attached 1o harnesses that, for the simulated .- -

‘system, launch the X-Linda nodes concurrently on on;gmoessor (these nodes
commupicate via sofiware channels) and, in the distributed case, physically place

~ the nodes and associated communication channels on separate processors. This
Appendix shows the overail structure of the s:mulawd and dism‘buwd systems

A4 SIMULATED SYSTEM
~ This system launches the Host process and the X-I..mda nodcs ona smgle Trans-
‘puter— Le. the entire mesh of processors is samulated on o:w processor. -

w EXE X.Ll’n‘da.&lmulaled
.. Hard.Channel.Protacals

.~ SC Ho&l.Progess .
Hard Channel.PrOiaeals :

PHOG!-k:st Pmceas(CHAN OF INT kayboaid,
CHAR OF ANY streen,
- Natwoi Links)

w 8¢ NW Connaction .
- 5C Ma_niwr

PAR. : _
= Launch Moritor o v

16

.

' AM# :

. SC 18 X.Linda.Noda

h PRQG Linda.Nods { VAL INT Proc.ld

S --.SCT\BDIJt ’

.+ Hard. channel Protacols

Input / Output Links)

. Processes .
" o SC T8 intetface
LI sc Ta Oueua

w BCTE I
T sc TB Hd :
w 3G T8 Computation '
~8CT8 Challenga.Managar h
--PAH
. Laum:h Pmassses
!ntéﬂaca o
o UBLG

* PAR - taunch all pmmssas cuneurrantty on asingle procassor

© o baunch H rocess
§ Launch Ll:{if Nodes (0. k-‘n
i

A4 DISTRIBUTED SL..J‘EM

In this version, the Host process is Iauached bn the Host pmces.s'or, and the X-
Lindg nodes are laynched on independent Transputers within the network. Notice

 that the Host process and X—Lmda nodes in this vers:on are identical 1o those inthe

smnulated vcrsmn.

EXE 'X.Llnda.l'lb'st
- Hal'd.ctlannEI.Pmmls

e BC H&st-Prueass-
- Hard.channal Protocols .

PROG HostProcass { CHAN OF INT keyboard.
~ CHAN OF ANY screen,
e NB’IWOI’R L]I'IRS) ’

.. 5G NW.Connection
w SC Monitor
PAR
.« Launch NW,Connection
" L@tnch Mo_nitur

L=

... Links to Netwerk

~ e MO8t <oen Processor G-

« Host <> Processor 1024

sE@
« Launch Host Process

0

11‘?_

.\ PHOGHAM Llnda.Netwark
« Hard,Channel.Profognls

e BC 'ra X.Llnda.Noda
.« Hard.Channal. Pmtcculs

_ PROC Linda.NOde{ VAL INT Proc.id,

on Input/ Outpu I..inks.) |

Prwessas_ :
. SC T8 Interdaca -
« SCTE Quaue - .
'll‘ sc m Out :

~SGT8In AR

: T scTs Hd .
. SC T8 Computation
«» 8C T8 Challenga.Manager -

. Lavnch Progesses .
L)]mﬂl’fm .
- Uusue
ey Qul :
e Rd
. wil

e Compl utatbn _

challanga Managar '

Loy Nw.cmﬂguratlon

PLACED PAR - physically blace the nndaa and links nn separata pmcassors

o Pmcessars {0..1{-1}

 Appendind

118

® -..

e

R,

Appmdixs_l"

© APPENDIX 5

~ A5 LOW-LEVEL PROCESS, DESIGN

In section 5,2.2, the function and operation of the processes that comprise the X'-
Linda node (i.e. Computation, Out, Rd, In, Chalisnge Manager, Queus and interface)

- were briefly described. This Appendix. shows the diagraminatic interaction of these
" processes, and of the sub-processes resident within each. The intention here is not
8o much to give the réader ¢ clear and concise understanding of the workings of the

- X-Linda nude, but more to illustrate the manner in which the overall design has
_ been based on low-level process interaction. It is desired that the following illustra-
tions emphasize the fact that the system has been designed with adherence to the

. principlBS of gOOd occam progra m..ming'Pmmdure, and also the suitability of the
' oteam programming forthisrole, - L

The following identification scheme is used in presenting the process design :

Charie! cehnmeting
to"Malo Proceas

Channel sonneting
"t Inermsl Procesé

{"Major~ Process|

A5 COMPUTATION PROCESS.

ot

FU L gonson b Recsive |
_ (;and.out i I oV

- Pracess -

i “}:“'“‘":':%:;r-._ﬁ?igm PR “fmcesg - §mﬁ}a and Intevaction

2]

A - R . - . .
’ > 1o o . . ’ L. : ’
: C .“k . R 1.

*A5.2 OUT PROCESS

Computation

| cuewe

" Figure A5.2 ; Out Process ~ Struekn and Interaction

A5.3 Ry PROCESS

;q_(':nm_pulatiun '

imarsco{ef

‘Queus | ' ' o,

Flgu.re A5.31 Rd Process — Structure énd lnteraction

12

A5.3 IN PROCESS

Interiace

- .ea.mputailo.n

A

" { . InBuffer

Process

. Challenge

Ghallengs
Manager

Figairé ASA 1 In Process — Structure and Interaction

m_.

A5.5 CHALLENGE MANAGER PROCESS

 Appendix 5

Interface

Figu_re AS.5 ; Challenge Manager Process — Interaction

A5.6 QUEUE PROCESS

QUEUE
. Fd Process
- Qui

Interface . }

Challenge |
Manager

' Figure AS.6 : Queus Process — Interaction

123

AS.7 INTERFACE PROCESS

| ‘

Uuauaﬂequest

(.
. 'S_end- S

| Receve |

| unka

F:gure A5 ¢ Interiaca Pmcess Strcture.

~In Flgure As7, the céntral conponent; actually comprises mdmdual sub-processes
- the OutRequest, InRequest, AdRequest, QueusRaquest.and ChallengeRequest

- sub-processes interact with the Out, In, Rd, Queus and Challenge Manager pro-
cesses respecuvely The ﬂlustrauon has been presented i in the above form for sim-

124

Appendix 6

" APPENDIX 6

A6 EXAMPLE PROGRAMS — CODE LISTINGS

- ‘The listings of the example programs (i.e, numerical integration and matrix multi-

‘plication) covered in section 7 are given below. This is done largely for the sake of
interest — they give some idea of the “feel and flavour” of programming under X-
Linda, Furthermore, they illustrate ¢ methodology the must surely be a rarity in the
wotld of programmmg the use of Linda pnmmvcs embedded in occam 2 pro-
grams.

'A6,1 NUMERICAL INTEGRATIGN |
The code listing below corresponds to the example deseribed in secuon 7 1-ie.

the integration of the function f(x) = (x/21%) « 1 over the interval -22 to 3x2%, using.
the Trapezoidal Rule with 222 steps. Recall that, given there are k processors in the

. System, the worker processes reside on k-1 of the processars; the kth processor
ﬁmctmns as both thc host and & worhar pmcess _ :

- '-wu_. tuple.fongth IS 4 :

Trapezbldal.ﬁurksr
PROG Trapezoidal.Werker{} :

o m%umm(w\umx}

VALOF
Fosult s (x/ §1 02) - 1
RESUI resuit

~Vers _ o
iNT B, daita-.x, worker.resuft, sub.intarval, start ©
ttup_la.leng_th] INT Tuple.0ata:

- SEQ

.. i sub-range information
in (Froc.ld, Tuple,Data)
: = Tuple,Data {a]
' daltaux = Tuple.Data [1]
subinterval = Tuple,Data{2)
start i Tupla, Data{3]

- Gnmpute Intogral over sub-range

wotkerestlt e 0

SEQ k « start FOR sub,interval
\Iu;AL INTag IS{a + (k- * daha.x)} :

- k=0
- worker. rasult -worksr.reault-i- f arq

warker.result = worker.tesult + {2 * { {atgh)

Send ouf resuly
Tuple Data [0] ;= worker.rasult
VAL index IS Proc,!d + 1000 :
- paming convention for sub-results
out (lndax. Tupla, Data)

125

e e P & i o e

Appendix 6'

. Trapazoidal.Host
PROC Trapezonda[.Host O

T f () _ _
INT FUNGTION £ (VAL INT %}
INT resuit
VALOF '

result ' (x/ 8192} - 1

REBULT result

 Consts _
VALn . - 1§1«ci2:

" VAL g 1S-{n72):
VALb I8(@*n)/2:
VALdetax = IS{-a)/n:=2"
VAL subs,interval 1S i/ nio.of.nodes

' [tup{e {ength] NY Tupia.Dats;

I&Tm t1 12, llrne.takan :
INT resut ?
VAL tIma.tuple IS -89 1 <- name of tuple that holds resuit & time

sea |
.. Obitain tima o access clock
docktt

clock 712
10 =12 MINUS 11
« Initlalize Tuple.Data
- Tuple.Data ﬂ:‘n a
- Tuple.Data [1) := deltax
© Tuple.Data [2] 1= sub.interval

Cm Distribute sub-ntervals
* Yirtaken = 0 :
clock 714
SEQ EEEIO FOR no.of.nodes

‘Tuple.Data [3] =1 * subintorval
aut {l, Tuple.Data)

. Launch Worler {noda dcub]as as Host & Wcrkar)
TrapezoidalL.Worker ()

.. Recelve sub-resutis
Tesult 1w 0
SEQ | = 0 FOR no,bt.nodes
VAL Index IS 14 1000 ;
g élgming. convantion for sub-results

in {index, Tuple.Data}
* regult = resuilt + Tupla Data [0]
' - Parlorm final oomputaﬂon
result = result +f {a + (n * daltax))
restilt = rasult * (delta.x f2)

cock 712
fime.taken = time. taken + {12 MINUS {li MINUS o))

126

Appendit 6

e Send out result & time taken
Tuple.Data {0} r= rasult
Tuple.Data (1] = tima.taken * 64
Tuple.Data [2] = -1

Tuple.Data [3] 1= -1

out {time.luple, Tupla,Datg)

sEqQ -
F

... Lastnch Host & Workar processes

... Prog,ld = mesh.dim - Worker doubles as Host

(Proc.ld = miosh.dim)
~ Note ; must not he on tha row with the Host Transputer
- I8, the host shauld not be slowed dewn by extra communication
Trapazoidat.iost ()

.. Otheiwise, Worker
TRUE .
Trapezoldal.Workar ()

A6.2 M.TRIX MULTIPLICATION |

Sectian 7.2 examined the multiplication of two matrices under X-Linda, and the
code listing for this example is shown below, As for the previous algorithm (i.e.
numerical integration), the workers reside on k-1 of the processors, while the last

. processor doubles as a worker and a host process, -

VAL array_.dltﬁ is3z2:

PROG MatrixWorker

» Innee.Product () : _
INT FUNGTION Inner.Product (VAL {array.dim] INT Arow, B.col)

INY Result.Prod :

" VALOF
SEQ :
© PResilt.Prod =0
- BEQi~0FOR array.dim

- Result.Prod := Result.Prod + (Arow [1] * B.col {Il)

RESULT Result.Frad

o Vlrs '
bk A-I‘OW. G-I‘OW X
farray.dim] INT Arow, C.row :
w Bemattix
~ [orray.dimfarray.dim} INT B.cot |
INT Adndex - |

SEQ '

‘. Rlead al B rows

SEQ | = 0 FOR array.dim

VAL INT B.index iS artay.dim 4 i ¢

-~ naming convention for B-columns
rd (B.index, B.col [iJ}

127

Appendix 6

A.index ;= Prac.id

. Computation Loop
WHILE Alndex < array.dim
SEQ

o Iy A-rOw
in (Aindex, A.row)

- inner Product
SEQ = 0 FOR amay.dim
C.row [[] := Inner.Product (A.row, B.col [{])

ws Ut C-row .

VAL C.lnlex IS {2 * amay.dim) + A.ndex :
-- naming converdtion for result rows

ot (C.index, C.row)

A.ndex = A.index + no.of.nodes

PROG Matrix.Host)

- Varg
TIMER clocic
INT t0, 1, 12, time.taken :

e 'M.airines
[a‘rray.dim_][array.dirrl'-_ : AdCi-A'B=C

wr Arrow, B-column
fareay.dim} INT A,row, B.cal :

VAL time.tuple IS -89 : - name of tha tuple that holds "time taken®
SEQ

« Qbtaln timea to dccass clock
clock 711

dock 712

10 = 12 MINUS t1

« Inftialize Matrix
SEQ i =0FOR amay.dim
~ 8EQj=0FOR array.dim
VAL KIS (i * array.dim)+]:
SEQ
Al =k
Bl ek

- Distribute rows and columns
clock ?t1
SEQ =0 FOR array.dim
VAL Bindex IS array.dim + | :
-S- gca]ming convention for B-columns

w lth row of A
Axow = All]

w fthcolof B

SEQ j - 0 FOR aray.dim
B.col [i] = 8 {j{il

128

out {, A.row}
out (B index, B. «col)

.. Launch Worker (this Node deubles as a host and a worker)
Matrlx Worker)

... Receive results

SEQ = 0FOR array.dim
VAL C.index IS (2 * array.dim) +i ;
=~ naming conventlon for rasulf rows
in {C.Index, C i)

clock 712
time.takeon = 12 MINUS {tf MINUS10)

.. Out time taken

- Asrow [0] := time,taken * 64 - microsectnds.
out (ttme.tuple, Ajow}

e

« Leaunch Host & Worker processes
SEt:l;é

.. Proc.id = mash.dim - Werlkar doubles as Host
(Pmc.ld = mash,dim)
- Note : must not ba on the row with the Hest Transputer
- .8, the host should not be slowed dows by extra communication
Matrix.Host {)

- Ctharwlse, Worker
TRUE
Matrlx.Worker ()

Appendix 6

129

Appendix 7

APPENDIX 7

A7 ORDER OF TS ADDITION

In secrion 5.1.1.1, the issue of the order in which tuples are added to TS was
briefly mentioned. This issue is re-examined here, where we consider the question
of whether tuples must be added to TS in the order in which they are outed. This
question {Initially raised by Faasen [1990c]) is discussed purely in the context of an
interesting side-issue — it has no bearing on the X-Linda implementation (where
tuples are added to TS in the order in which they are outed). However, the issue
does raise some interesting points regarding the semantics of Linda, and, as such,
is worthy of deeper investigation.

The specific case that is of interest here is that where it is not possible to distinguish
between tuples —1i.e. they have the same names (but different data fields). Mote that
the wrm tuple name, although prominent in early Linda literature, has little meaning
in many current Linda implementations. In this Appendix, the term is used in its
broadest sense, and the specification that two tuples have the same names simply
indicates that the tuples have the necessary characteristics for a single template to
successfully match both of them. Under these conditions, it is obvious that the or-
der in which tuples are added to TS may have a significant effect on the on the re-
sults produced by an application program. However, as shown below, it is claimed
that, semantically, this order is irrelevant,

A7.1 AN EXAMPLE SCENARIOQ
The question of tuple ordering can be expressed by mears of a simple example.
Consider the following sets of statements :

(1) out("A" 1) {2} out ("A", 2)
out {"A", 2) out ("A®, 1)

The execution of (1) or (2} has the same effect on TS ~ i.e. two tuples, {“A", 1} and
{("A", 2), are added to TS. Now, if the statement in {“A", ?Int i) is invoked, the order in
which the tuples were inserted into the TS is irrelevant. Linda’s semantics specify
that the tuple request will succeed on there being a matching tuple in the TS, and, if
there are more than one such tuples, one of these is selected arbitrarily. Conse-
quently, (1) is semantically cg_uivalent to {2) —i.e. the order in which tuples are in-
serted into TS is not a semantic consideration.

Notice that the above argument assumes that a request was issued gfter the addition
of the tuples to TS. Obviously, it is possible that the request could have be~ in-
_ voked prior to the insertion of the tuples. However, as shown by Haze, . st
[1990] the semantics of the in operation are the same whether the In request pre-
cedes or succeeds the insertion of the tuples into TS. Hence, in this instance, (1)
and (2) are also equivalent,

A7.2 DISCUSSION : .

Linda’s semantics do not guarantee tuple ordering — this aspect remains the respon-
sibility of the programmer. The order in whic! :he tuples are inserted into TS will
obviously have some effect on the execution of the program, as shown in the ex-
ample below. Assume that (*A*" 1} and {"A",2) are present in the TS, and the follow-
ing segment of code is executed :

130

Appendix 7

In “A", Tint3)
in ("A", ?int)
Ke—iv]

Depending on the order in which the tuples are added to the TS, k may the assume
the values -1 or 1. Linda’s semantics allow either result — it is up to the programmer
to provide more explicit sequencing if required. '

It is interesting to note that Jerry Leichter {personal communication, May 1990]
states that, with regard to his own Linda implementation {Leichter 1989], and that
of Nicholas Carriero’s [Carriero 1987], the order in which requested tupies are re-
turned is usually the reverse of that in which they were outed. Conversely, the Co-
genlt Research XTM system [Cogent 1990] guarantees the order of requested of
mp es‘

131

Refersnces

REFERENCES

S, Ahuja, N, Carriers and D, Gelernter {1986]
Linda and Friends, IEEE Computer, 19 (8), August, 26-34

S. Ahnja, N, Carriero, D, Gelemter and V. Krishnaswamy [1988]
Matching Laniguage and Hardware for Parallel Computation in the Linda Machine, Trans.
Computers, 37 (8), Angust, 921-929

H. Bal, J. Steinor and A. Tanenbaum [1989)
Programming Languages for Distributed Computing Systems, ACM Computing Surveys, 21 (3),
September, 261-322)

R. Bjornson, M. Carriero, D. Gelerater and I, Leichier [1987]
Linda, The Portable Purallel, Yale Univ. Dept. of Computer Science Research Report 520,
Febrnary

L. Borrmiann and M. Herdieckerhoff [1989]
Parallel Processing Performance in a Linda Sysiem, Proc. 1989 Tnt. Conf, Parallel Processing
(August 8-12, Penn State University), Vol. I, 151-158

N. Carriero [1987]
Implementing Tuple Space Machines, Yale Univ. Dept. of Computer Science Research Report
567, Derember (also a 1987 Yale Univ, Ph.D Thesis)

N. Carriero and D. Gelernter [1986]
The S/Net's Linda Xernel, ACM Trans, Comp, Sys., 4 (2), May, 110-129

N. Carricrd and D. Gelemter [198%a
Applications Experience with Lincg, in Proc, ACM SIGPLAN PPEALS, ACM SIGFLAN No-
tices, 23 (9), September, 173-187

N. Carriero and D. Gelernter [1988b)
How to write Parallel Programs : A Guide to the Perplexed, Yale Univ. Dept. of Computer Sci-
ence Research Report 628, November

N. Carrie 0 and D. Gelernter [19893
Linda in Context, Comm. ACM, 32 (4), April, 444-458

N. Carriero, D. Gelerater and J, Leichter [19885]
Distributed Daia Siructures in Linda, Proc. ACM Symp, Princ, Prog, Lang., (January 13-15, St.
Petersburg, Fla.), 236-242

Chorus [1989a]
Linda-C Documentation, Chorus Supercomputer Inc, New York,

Chorus [1989b) -
The ComputeServer : Developer's Introduction, Chorus Supercomputer Inc, New York,

P. Clayton, P. Wentworth, G. Wells and F. de-Heer-Menlah [1990]

An Implementation of Lindn Tuple Space under the Helios Operating System, Rhodes Univ, Dept,
of Computer Science Technical Document PPG 90/8, October

Cogent [1989] o '
XTM Product Specification, Cogent Research Inc., Beaverton, Oregon

Cogent [1990] _ .
Kernel Linda Specification - Version 4.0, Cogent Research Inc, Technical Note 89.17, June

132

References

C. Davidson {1989] | | |
Technical Correspondence on "Linda in Context”, Comm. ACM, 32 (10), October, 1249-1252

C, Faasen [1987]

Sorting on Transputer Arrays, Research report submmed in partial fulfilment of the requirements
for the degree of BSc Honours, Dept. of Computer Science, Univ. of the Witwatersrand,
November

C. Faasen [19894]
Automatic Generation of Occam Configuration Commands, Univ. of the Witwatersrand, Dept. of
Computer Science Technical Report 1989-03, September

C. Faasen [1989b]

Linda - An Alternative Approach to Parallel Programming, Tzchnical report submitted in partial
fulfilment of the requirements for lhe degree of MSc, Dept. of Computer Science, Univ. of the
Witwatersrand, November

C. Faasen [1990a]
An Introduction to Tmusputers. Univ. of the W itwatersrand Computer Cenire Communique, 165,
Antumn, 1-5

C. Faasen [1990b]
Subject : Out-Set Prejocoel, Linda Users Group Bulletin Board, 11 May

C. Faasen [1990¢]
Subject : Re ! Linda Semantics Quenes. Linda Users Group Bullstin Board, 26 May

C. Fansen [1990d]

Linda — An Overview and Propo:d Transpuer-Based Implementation, Proc. Fifth National MSc
and Ph,Id Computer Science Students Conference, Port Elizabeth, Aungust, 100-116 (also appeared
as Univ. of the Witwatersrand Dept, of Computer Science Technical Report 1990-03, June)

C.J. Fleckenstein and D. Hemmendinger [1989] _
Using a Global Name Spuce for Parallel Exccution of UNIX Tools, Comm. ACM, 32 (9),
September, 1085-1090

D. Jelemter {1985]
Generative Cornmunication in Linda, ACM Trans, Prog. Lang Syst., 7 (1), Tanuary, 80-112

D. Gelernter [1988) :
Geiting the Job Donez, BYTE, 13 (12), Navember, 301-309

D, Gelemnter {1989a]
Multiple Tuple Spaces in Linda, Yale Univ, Dept. Computer Science Rosearch Report, Janvary
(also appeared as Elastic Computing Envelopes and their Operators (Linda 3))

D, Gelemter {1989b)
Information Management in Linda, Proc. Al and Communicating Process Architectures (London),
July, to appear

F. Hayes [1988]
The Crossbar Connection, BYTE, 13 (12), November, 278-279

5. Hazelhurst [1990]
A Proposal for the Fermal Specification of the Semantics of Linda, Univ. of the Witwatersrand
Dept. of Computer Science Technical Report 1990-14, Cctober

C. Hoare [1978]
Communicating Sequential Processes, Comm. ACM, 21 (8), August, 666-677

133

References

INMOS {19884}
The Transputer Databook, INMOS Limited

INMOS [1988b]
On..% 2 Reference Manual, INMOS Limited, Prentice Hall, London

INMOS [1989]
Transputer Handbook, INMOS Limited

G. Jones and M. Goldsmith {1988]
Programming in Occam 2, G. Jones and M. Goldsmith, Prentice Hall, London

K. Kahn and M. Miller [1989]
Technical Correspondence on “Linda in Context” , Comm, ACM, 32 (10), October, 1253-1255

T. King and J. Powell {1990]
The Helios Distributed Operating System — Fundamenicls, Perihelion Software Limited

D, Lakier [1989a]
Message Transmission Times on the INMOS T800-20 Transputer, Univ. of the Witwatersrand,
Dept, of Camputer Science Technical Report 1989-06, Octoher

D, Lakier [1989b])
Performance of Pipelining Messages Through a Transputer Network, Univ. of the Witwatersrand,
Dept. of Computer Science Technical Report 1989-07, November

J, Leichter {1989] _
Shared Tuple Memories, Shared Memories, Buses and LANs - Linda Implementations Across the
Spectrum of Connectivity, Yale Univ. Dept, of Computer Science Research Report 714, Juiy

J. Leichter {1990]
Subject : re : Linda Semantics Question, Linda Users Group Bulletiz Board, 18 May

W. Leler {1990
Linda Meets Unix, Compuler 23 (2), ¥ebruary, 43-45

D. Mitchell, J. Thompson, G. Mansoni and G. Brookes {19903
Inside The Transputer, Blackwell Scientific, Oxford, 76-80

NTSC 11990]
A Guide to Oceam Programming Style and Software Documentation, National Transputer Support
Centre, Sheffield; appeared in SERC/DTI Transputer Initintive Mailshot, May, 37-52

Parsytec [1985a] _
SuperCluster Series Hardware Doctunentation, Parsytec GmbH

Parsytec [1989b]
MultiTool 5,0 Technical Documentation, Parsytec GmbH

D. Pountain [1989]
Oceam 2, BYTE, October, 279-284

D, Pountain [1990]
Virtual Channels : The Next Generation of Transputers, BYTE, April, 3-12

'M. Quinn {1987}
Designing Eﬁ“menr Algorithms for Parailel Computers, McGraw-Hill, New York. 43

134

Refersnces

A, Rahaghau {1990a}
Subject ; How busy is your Transputer, North American 'I'ransputer User’s Group Bulletin Board,
23 QOctober

A, Rabagliati [1990b]
- Subject ; New Etecrramcs Article, Sept 1990, North Amenean Transputer User's Group Bulletin
Board, 23 October

Scienﬁﬁc [1989]
Linda-C Product Swnmary, Scientific Cumputing Associates Inc., New Haven, CT

E. Shapiro [1989]
- Fechnival Correspondence on "'Lmda in Context”, Comm, ACM, 32 (10), Oct. 1989, 1244-1249

M, Spiegel [1974]
Advanced Calculus, McGraw-Hill, London, 84-85

J. Torsing [1989]
A Linda Implementation for Transputers, Report submitted in partial fulfifment of the degree of
BSc (Elec. Eng.), Univ. of Pretoria, October

D. Ushijima {1989]
Sharing Supercomputing Power, MacWorld, June, 83-85

G. Wells [1990]
An Implementation of Linda, Proc, Fifth National MSc and Ph.D Computer Science Students
Conference, Port Elizabeth, August, 302-307

P. Wentworth [1989]
Pro:ozypmg a Linda System, Proc, Concurrent Computing 89 (5 September, CSIR, Prewnn)

P, Wentworth [1990)
Parallelism via Linda - A n-anspurer Imfemeurarmn fStaru.s Report), SACLA Conf,, Bloem-
fontein, June _ N

I, Williams, 5. Bogoch and L Bason [1989]
Supercomputing on the Cheap : MPW C-Linda and the Chorus CompuseServer, MacTech Quar-
terly, Autumn, 60-67

S. Zenith [1990a] :
Subject : Concise description of Linda operations (The Simplicity of Linda), Linda Users Group
Bulletin Board, 19 April

8. Zenith [1990b]
Linda Coordination Language; Subsystem Kernel Architecture (on Transputers), Yale Univ, Dept.
of Computer Science Research Report 794, May

8. Zenith [1990c]

Programming with Ease ; Semiotic Definition of the Language, Yale Univ. -Dept, of Computer
Science Research ReportB 9, July

135

Linda Bibliography

LINDA BIBLIOGRAPHY

The following is a comprehensive list of Linda-related literature. The information
has been gathered from a variety of sources, with much of the input received in re-
sponse to requiests posted to the Linda User’s Group Bulletin Board. The source of
the literature has, where possible, been verified — however, in some cases, this was
not p)ossible (and in infrequent cases, details have by necessity been left incom-
plete). :

S. Ahuja, N, Carriero and D. Gelernter, Linda and Friends, IEEE Computer, 12 (8), Ang. 1986,
26-34 -

S. Ahuja, N. Casriero, D. Gelernter and V. Krishnaswamy, Progress Towards a Linda Machise,
Proc. Tnt. Conf. Comput. Design, Oct. 1986, 97-101 - -

8. Ahuja, N. Carricro, D, Gelernter and V., Krishnaswamy, Mafchiug Language and Hardware for
Paraliel Computation in the Linda Machine, IEEE Trans. Computers, 37 (8), Ang. 1988, 921.
029

V. Ambriola, P, Ciancarini and M. Danelutto, Design and Distributed Implementatior: 'qf the Par-
allel Logic Language Sharved Prolog, Proc. ACM/SIGPLAN Practice and Principies of Parallel
Programiming, 23 (9), 1990, 40-49 '

z;‘ Bercovitz, TupleScope User's Guide, Yale Univ, Dept. of Compater Science, further details un-
own :

P. Bercovitz and N, Carriero, TupleScope : A Graphical Monitor and Debugger for Linda-Baéed
Parallgl Frograms, Yale Univ, Dept. of Computer Science Research Repart 782, April 1990

D. Berndt, C-Linda Reference Manual (DRAFT} Beta Verston 2. 0, Scientific Compating Associ-
ates Tnc,, New Haven, Jan. 1086

R. Bjornson, A Linda User's Manual, Scientific Computing Associates Inc., New Haven, June
1987 :

R. Bjomson, Experience with Linda on ihe iPSCI2, Yale Univ. Dept, of Computer Science Re-
search Report 698, March 1989 :

R, Bjomson, N. Carriero, D, Gelernter and J. Leichter, Linda, The Portable Parallel, Yale Univ,
Dept. of Computer Science Research Report 520, Feb. 1987

R. Bjomson, N. Carriero and D. Gelernter, Linda on Distributed Memory Systems, Proc. 1983
Workshop on Hypercube Multiptocessors, further details unknown

R. Bjomson, N. Cartiero and D, Gelernter, The Implementation and Performance of Hypercube
Linda, Proc. Fourth Conf, Hypercube Concwrrent Computers and Applications, March 1989 (also
appeared as Yale Univ. Dept. of Computer Science Research Report 690)

S. Bognéh_ et al., Supercomputers Get Personal, BYTE, May 1990

L. Bormann and M, Herdieckerhoff, Parallel Processing Performance in @ Linda System, Proc.
1989 Int. Conf. Parallel Processing (Aug. 8-12, Penn State Univ.), Vol. 1, 1989, 151-158

L. Boirmann and M. Herdieckerhoff and A. Klein, Tuple Space integrated into Modula-2, Imple-

‘mentation of the Linda Concept on a Hierarchical Multiprocessor, Proc. CONPAR '88
(Manchester, U.K.), Cambridge Univ. Press, 1988

136

Linda Bibliogesphy

. M. Braner, Brenda - A Tool for Parallel Programming, Comell Theory Centre,fhrrher detalls
unknown

P. Buosalacchi, Linda on a Transpmer-Based PC. Proc. Australian Transputer and Occam User
Group, July 1589

N, Carriero, Implementing Tuple Space Machines, Yale Umv Dept. of Computar Science Re-
search Repoxt 567, Dec. 1987 (also & 1987 Yale Univ, Ph.D Thesis)

?\Ig.scsame{;o ggd D. Gelernter, The S/Net's Linda Kernel, ACM Trans Comput. Syst., 4 (2), May
1 110-1 :

_ I: i::arm:rg5 and D. Gelernter, Linda on Pypercube Multicomputers, Hypercube Multlprocessors
IAM, 19

N. Carriero and D, Gelemter, How fo write Parallel Programs : A Guidg to the Perplexed, Yale
Univ, Dept. of Computer Science Reseamh Report 628, Nov, 1988

N. Carriero and D. Gelernter, Applications Experience’ with Lirda, Proc. ACM SIGPLAN
. PPEALS, ACM SIGPLAN Notices, 23 (9), Sept, 1988, 173-187

N. Carriero and D, Gelerntet, Integrating Multiple Tuple Spaces, the File System and Process
Management ina Lma'a-Based Operating System, Yale Univ. Dept, of Computer Science Research
Report, Feb. 1988

N. Carxiero and D, Gelernter, How to Write Parallel Programs: A Survey of the Three Main Tech-
nigues, Yale Univ, Dept. of Computer Science Technical Memo, Ang. 1988

N. Carriero and D. Gelornter, Linda s Context, Comm. ACM, 32 (4), April 1989, 444-458

N. Carriero and D, Gelerntst, Technical Correspondence on "Linda in Contexy”, Comm, ACM, 32
(10), Oct. 1989, 1255.1258

N. Carrierc and D. Gelemter, Tuple Analysis and Partial Evaluation Strategies in the Linda Pre-
compiler, Second Workshop on Languages and Compilers for Parallelism, MIT Press, Aug, 1989

N, Carriero and D. Gelemter, Coordination Languages and their Significance, Yale Univ, Dept, of
Compater Science Research Report 176, further details unknown

N. Camiero, D. Gelemter and I. Leichter, Disiributed Data Structures in Linda, Proc. ACM Symp,
Principles of Programming Languages, Jan. 13-15, St. Petersburg, Florida, 1986, 236-242

Chorus Supercomputer Inc., New York, Linda-C Documentation, 1989

ghoﬁ gsslgpercomputex Inc., New York, The ComputeServer ; Developer’ s Introduction, New
ork,

P. Clayton, P, Wentworth, G. Wells and F, de-Heer-Menlah, An Implementation of Linda Tuple
Space under the Hellos Operating Sysiem, Rhndes Univ.. Dept. of Computar Science Tethnical
Document PEG 90/8, Oct. 1990

Cpgent Research Inc., Beaverton, XTM Product Specification, 1989

Cogent Research Inc., Beaverton, Process creation in QIX, Technical Note 89, 3, i963

Cogent Research Inc,, Beaverton, Kernel Linda Specification ~ Version 4. 0, Tec!uucal Notz 89.
17, June 1990

C. Davidson, Tecknica! Correspondence on "Linda in Context”, Comm, ACM, 32 (10), Oct,
1989, 1249-1252

137

Linda Biblogiephy

F. de-Heer-Menlah, Analyzing Communication Fiow and Process Placement in Linda Programs
on Transputers, Proc. Fifth National MS~ and Ph.D Computer Science Students Conference, Port
Elizabeth, Aug. 1990, 3945 (also appeared as Rhodes Univ. Dept. of Compnter Science Technical
Dozuoment 90/4, 1990)

C. Faasen, Linda - An Overview and Proposed Transputer-Eased Jmplementation, Proc. Fifth Na-
tional MSc and Ph,D Computer Science Students Conference, Port Elizabeth, Aug. 1990, 100-
116 (also appeared as Univ, of the Witwatersrand Dept, of Computaer Stience Technical Report
1990-03, Yune 1990) _

- A. Factor and D. Gelernter, The Parallel Process Lattice as an Jrganizing Scheme for Real-time
Krnowledge Daemns. Yale Univ, Dept. of Computer Science Technical Memo, March 1988

C. Fleckenstem and D. Hemmendinger, Using a Global Name Space for Parallel Execution of
UNIX Tools, Comm, ACM, 32 (9), Sept. 1989, 1085-1090

D. Gelernter and A. Bernstein, Distributed Communications via Global Buffer, ACM SIGACT-
SIGOPS Symp. Principles of Distributed Computing, Ottawa, Canada, Aug, 1982, 10-18

D, Gelemier, An Integrated Microcomputer Network for Experiments in Disiributed Programming,
Ph.D. Dissertaion, SUNY, Stony Brook, Dept. Comp. Sci, 1983

D. Gelemier, Dynanmiic Global Name Spaces on Network Computers, Proc. 1984 Int, Conf. Paral-
1el Processing, Aug. 1984, 25-31

D, Gelatmer, Generative Communication in Linda, ACM Trans. Prog. L, 1. Syst., 7 (1), Jan.
1985, 80-112

D. Gelemter, N, Carriéro, 8. Chandran, S, Chang, Paraﬂef Programming in Linda, Proc. Int.
Conf. Parallel Processing, Aug, 1985, 255-263

D, Gelernter, Domesticating Parallelism, Computer, 19 (8), Aug. 1986, 12-16

?5 Geleruter, Programming for Advanced Comping, Scientific Amencan. 257 {4), Oct. 1987,
65-11

D, Gelernter, S, Jaganathan and T. London, Environmenis as First Clasy Ob;ects, Proc. ACM
Symp. Principles of Programming Laugusges, Jan, 1987

D. Gelemtar, Getting the Job Done, BY'TE, 13 (12), Nov, 1988, 301-309

D, Gelernter, Multiple Tuple Spaces in Linda, Yalg Univ. Dept. Computar Science Research Re-
port, Jan, 1989 (aleo appeared as Elastic Coniputing Envelopes and their Operators (Linda 2)}

D. Gelemter, Information Management in Linda, Proc. Al and Communicating Process Architec-
tures (London), July 1989

D, Gelemter, The Metamorphosls of Information Management, Scientific American, 261 (2), _

D, Gelernter, N Carriero and C. Ashcraft, I's Explicit Porallelism Natural ? Hybrid DB Search and
Sparse LDLT Facramarian using Linda, Yale Univ, Dept. of Computer Science research report,
Jan, 1989

D. Gelornier and I, Philbin, Spending Your Free Time, Byte, May 1990, 213219

D, Gelernter, Ada-Linda : Motivation, Informal Description and Exampfes, Yale University Tech-
nical Report, further delails unknown

F. Hayes, The Crossbar Connection, BY'TE, 13 (12}, Nov. 1988, 278-279

- 138

Linda Bibliogtaphy _

8. I-Iazelhm'st. A Proposal for the Formal Specification of the Semantics of Linda, Univ. of the
- Witwaterszand De.pt. of Computer Science Techmcalkepmt 1990-14 Oct. 1990 -

S. Bupfer, Melinda : Linda with Multiple Tuple Spaces, Yale Univ. Dept, of Compater Science
~Ressarch Report‘?ﬁti 1950

S. Iaganathnn, Semantics and Analysis of First-Class Tuple Spaces, Yale Univ. Dept. of Com- -
puter Science Research Report 783, April 1990

R. Jellinghaus, E‘g‘ﬂ"el Linda : An Object Oriented Linda Dialeet, Yale Univ, Dept. of Computer
Secience Undergraduate Thesis, 1990 {also to appear in SIGPLAN NOTICES)

M. Frans Keashoek, H. Bal and A, Tanenbaum, Experiences with the Dwmbu:ed Data Structure
Paradigm in Linda, Workshop on Bxperiencoy with Distributed and Multiprocessor Systems
(WEBDMS), Usenix Association, Ft, Lundecdsle, FL, Oct. 1989, 175-191 '

‘K. Kahn and M, Miller, Technical Correspendence on "Linda in Context”, Comnt, ACM, 32
{10, Oct. 1989, 1253-1255

L. Kale, Technical Correspondence on "Linda in Context”, Comm, ACM, 32 (10), Oct. 1989,
12521253

V Krishtaswany, 8, Ahu_]a, N, Carrierc, and D. Gclemte;, Arcfutemwe qf a Linda Capraces.s'ar,
. Pmc 15th Annuai Int, Symp. Con\pul. Archi., 1988

L I..eichmr. The VAX Lmda-C User's Guide, Yale Univ, Dept. of Computar Science Research Re-
port 615, March 1588

1. Lgichier, Shared Tuple Memories, Shared Membries, Buses and LANS — Linds rmpzemema;tm'
Across the Spectrum of Connectivity, Yale Univ. Dept. of Computer Science Research Repmt :
704, July 1989

'W. Lolex, PIX, the latest NeWS, IEEE Computer Science Conference (COMPCON), March 1988
W. Leler, Linda Meets Unix, Computer, 23 (), Feb, 1990, 4345

W. Leler, A Systen-Level Standard Based on Linda, 1990 NATUG Conference, Santa Claca

W. Leler, Topalogy—fndependenr ngramnung with Linda, 1990 Workshop on Standards for
- MIMD Computers, Abingdon, U. X. .

S, Lucco, A Hevristic Linda Kernel for Hypercube Mcdupracessars, Proc 1986 Workshop Hyper
cube Multiprocessors, Sept, 1986 :

M. Manthey, H. Pedersen and G, Gunniaugsson, ARTADNE — A Lindg Kernel for .'l"ram' uer
Networks, Univ. of Aalborg (Denmark) Dept. of Mal:hemaucs and Computer Scnence Technicat

Report, 1990

S. Matsuoka, Tuple Space Communicetion in Distrtbuted Ob,zect-Oriemed Computing, Ph D the-
sis, Dept. of Information Science, Univ. of Tokyo, further details unknown

§$. Matsuoka and S, Kawai, Using Tuple Space Commumcmm in Distributed Objeé:-bﬂenred
Language.r, OOPSLA *88 Proczedings, ACM SIGPLAN Nmiecs. 23 (11), Nov, 1988 173-187

1. Narem, DB: A Parallel News Database in Linda, Yale Umv. Dept of Computer Smenoe Tech-
nicat Me.mo, Aug 1988 -

K -Obﬂmmer._ Side. by Side, BYTE, 13_(12), Nov. 1088, 275:283

1T

' Linds Bibliogrephy

. Scientific Compnnng Assoma!es Ins,, New anen. Lmda-CProdxmt Smmmry 1989
~ . Stempie et al,, Functional Addressing in Gutenberg : Inter-process Communicarion Wimom
_Processidmades IEEE Trans, Software Eng., 11, Nov. 1986

E Shaplm Teckrum! Correspondeuce on “Linda in Canuxt” Comm ACM. 32 (10), Oct. 1989,

12441249.

G Singh and A, Rangarmnu_;an, An Eﬁczm Linda Imp!amntmon ina Dtsmbmd Memmy Sys-

- tem, Compumtional Mechmues Institute, Souﬂ:mpton UK, Sept. 1950

Q. Suwliffe.l Pingkis and N. I.ewms.Pm’og—Lmda - An Embedding aflmda in muPra!og, o
Univ, of Westem Avstralig, Dept. of Compmer Science 'mchmcalkspmt 89714, 1989 _

). Tonsing, A Linda fmplementation for Transputers, Report submitied in pan‘.ml fulfilmen of the .
degmcnfBSc(Elec Etls).Umv of Pretoria, Oct. 1989 :

| _.D. Ushu:ma, Sham:g Sw wcompurmg Power, MacWorld. Iune 1989, 83-85

: a. Wells. An Imlanenfwon of Linda, Proc. Fifilh National MSc and Ph.D Cumputer Science
. _Smdmtsme,mnmmabeth Aug. 1990, 302-307

. Wen;warﬂu. Protoxypz‘ng a Lmda Systcm, Proc Concm'mnt Compnﬁng 89 (5 Sept.. CSIR.
~ Pretoria), J

P, Wentworth, Parallelism via Linda - A mpmr Im;:]emntaﬂan (Stasus Repm). SACLA

" Cont,, Bioemfoutsi, fume 1990

D ‘Wesmn.ﬁaudam Seqxwmiaf?mgmm taPam!M,EecmmnDcslan March 1990

'R. Whiteside and J, Leichter, Using Linda for Supercompuiing on a Local Area Network, Proc.
Supek-conmputing '88, Nov. 1988 {also Yele Univ, Dept. of Computer Science Teclmical Report

638, Tune 1988)

" 1, Williams, 5. Bogoch and . Bason, Supercomputing on the Chéap : mw C-Linda and the
Chorus CmnpmSemr, MzcTech Quamly Antymn 1989 6063

A, Xu, A Fault Tolerant Network Kernel for Linda, Technical Report 424, Massschusents Institute
_ of Technology Labomory of Computer Smuce, Aug. 1988 (also a 1988 MIT Master’s lhe.s:s)

A ¥uand B, L:skw A Fault Tolerant, Dwmburedfmplemnmﬂon q"Lm;fa Techmcal Report,
Massachuseus Instimte of Technology Laboratory of Compuﬁar Science, Aug. 1988

A. Xuand B. Iaslmv. A Design for a Fault Tolerant, Distributed Implementation Q’Liuda. Proc. -
Ninewonth Int. Symp. on Fault Tolsrant Computing, IEER, Jane 1989, to appear (also published
a8 Massachusstts Instituts of Technology I..abomo:y of Cumpmcr Science ngmmming Method-
ology Group Mema 65)

. 8. Zenith, Linda Coordinasion Language : Subsystem Kernel Architecrm fon Tmnsputer.g). Yale |
- Univ, Dept. of Computer Science Reseatch Report 794, May 1990

8. Zemlh.ngmmugwukEase Semiotic Definition of the uage, Yale Univ. Dept.of
_ ComputerScienceResenrchReportsm.Julylm : f Fanguage

‘°.1.

A

g

A

"

-

Author: Faasen Craig Richard.
Name of thesis: Implementing Tuple Space On Transputer Meshes.

PUBLISHER:
University of the Witwatersrand, Johannesburg
©2015

LEGALNOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website
are protected by South African copyright law and may not be distributed, transmitted, displayed or otherwise published
in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you
may download material {(one machine readable copy and one print copy per page)for your personal and/or
educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any
and all liability for any errors in or omissions from the information on the Library website.

