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2.5 Small Amplitude Vibration of Sagged Ca-

2.5.1 Stationary Sagged Cables

[

levine and Caughey[L974], Irvine[193]] trace the historical development of
sagged cables, and eonclude that by the early 1800 correct solutions had
heen achieved for the limiting cases of catenartes, namnely taut strings and
vertically hanging cables. However, the intermediate vondition had not been
aglved. The symmetric modes of flat sagged cahles where the sag Lo span ratio
wzul neither z-'EI‘D nor iafinitc was analysed mitially by Rohrs{ 1851{1851] and

Routh(1868)[1884]. Both authots assumed inextensible cable behaviour, thus

solving the wave equation subject to a constrainl condition, The: resulting 3o-

Iutions applied essentially to situatiomherﬁh:rmtwsﬁﬁﬁeam&&aatedi
with its geometrie profile is low compared to the axial stiffness of the cable
alament  Although solutions for the limiting conditions of the cable were os-
N s ribe the transition contiouously between
deep sag ;1hle behaviour and the limiting case of the taut string. Specifically,
the modal characteristies of the symmetric modes of fiat sag and deep rag

TR N N PR

cables were at that stage known lo be governed by ihe roots of tne ireguency
eqguationa, cited regpectively as:

cos( 381} = 0

il

k2 —

Iem[%ﬁfj =

Where § = (muw'/H }Jr‘. The roots of the above equalions are vastly dilferent,

. o
[ B6r reapectively. Thix difference
where the Grat oot of each equation 18 7 and 2.36 pectively

reflacts the fact that in the limiting condition of a Nat sag cable, Lhe La:ut 5_‘r,['u15,
the odamental mode is symmetric with respect 1o the midspan, whilst in the

casc of the deep sag cable, the fundamental i3 antisymnimetric with reapect to the

midspan. Irvine and Caughey[[974] note that the asgmption of imextensible
cable behaviour is unrealistic wheno cﬂﬂﬂlde'lms & cab_le whete the sag L“l'd"
ia 2ero, since any deformation wonld necessitate clastic stretch. By allowing

. : rated that a consistent

for elashic =kretch, - o
theory could be developed describing the Lranaition frum deep sag to taut

string behaviour.
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‘I'he aeradynamic failure of Tacoma Narrows bridge 0 1940 prompted fur-
ther research into cable dynemics. Pugsley{1949], Saxon and Cahn[1933].
Coodey[1961], developed the deep sag inextensible cable theory fucther. How-

cver, it waa only when cable elasticity was aceounted [we that the dynamic
behaviour of a cable could adequately be described in the transition region be-

e Py i T.:-ag_ﬂn&n[]ﬁﬁﬁ'l 5"!1!.'1

tween that of the taut flat string to the desp sag prohic. La 1059] a

later Soler[1970] preschted an anaiyss whereby cable elasticity was acconnted
{or, and identified & dimensionless parameter, which levine and Canghey Y[1974]
later tarmed the cable parameter, 32 Irvine and Caughey [1974] detmonstrated
that this single parameter was aufficient to describe Lhe transition between
taut string and desp sag cable behaviour. A brief development ol the theory

perlaining to the dynamic characteristics of small amplitnde sagged cables ia
presented below.

Irvine and Caughey [1974] demonstrated that by considering small Mt_‘lplitutliﬂ
i only

oacillations _ .
for firat order terms, the in-plane cquation of motion of & shallow szg cable

reduced to:

Fw 0Pz ¥ T
=R e T (25)

Where m represents the maa-a per unit length, and h represcnts the additional

cornponent of the horigontal tension generated during the motion, which iz

given to first order as

hi, mg (2.6)
=T e

[t is pertinent to note that the term %{ in equation (2.5) represents to first

& in ita equilibrium configuration, Employing
order the curvature of the cabl q configucation, TP o 10g

the argmnent introduced previously, equation {E-.ﬁ} comiirms that 16 400100
tensiun (8 generated in the cable dunng the cacillation, if thle mode shape, ur
displacement w from the equilibrium profile is antisymmetric about the mid-

plane of the uation of motion {2.5] reduces

to thal of the wave equaticn for antisymmetric modes, and conseguently, to
firat order the curvature of the cable does not influence the natural frequency.

vine and Congh=y{1874], howewer

ALaapanen s [PA6] rest
the |atter formulated the problem bn &
little refereoce ia mada Lo Laasonao,

more phyaicsl senss, which perhapn explaing why s
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Conversely, symmetric mode shapes introduce tension changes due to geomet-
ric adjustment during the oscillation, and consequentiy cable curvature can
significantly affect the natural frequency of symmetric modes.

Nce tne cavieée pronie was 4 [T1€Q0 [1d OW dll ADDroximate quadratic a
profile for z may be utilised and substituted into equation (2.5). In this in-
stance the curvature is constant, and the equation of motion may be solved to
obtain w as a function of h. Substituting the solution for w into equation (2.6),
results in a transcendental characteristic equation, the roots of which represent
the linear natural frequencies of the cable, spanning all configurations from a

n a r‘non ceaa r:nl-\lns
U G ULTpY vaxn Vawiv .

5 T 4D '
tan;- = 3’- — ;\—2(%’)3 (2.7)

Where @ = wl/(H/m)%, and ) = (mgl/H)*l/(HL./EA). The dependence of
the characteristic equation on the cable parameter A? is clearly demonstrated.
The limiting configurations of A% = 0,00 represent the taut string and dee

andane f tha na ||rnl ;rnnnnnn:nn nn \2 Q
Ucii VMV Jivvuir s lLb\iubllblBﬂ Vil AN o

vy o _at_..1.. Tha Adan V-YeY
sag cabDle respeciively. 1uc ucpell e Gl

illustrated in figure 2.3.

]
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w: o' 1 0 v 0 ot
3.3 General dimensionless curves for the first four natural frequencies of a
flat-sag suspended cable: (a) first symmetric in-plane mode, (b) first
antisymmetric in-plane mode, (c) second symmetric in-plane mode, (d)
second sntisymmetric in-plane mode.

Figure 2.3: Irvine (1981): In-plane natural frequencies of a cable.
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independent of A, and equivalent to those of a taut string. The symmetric
modes however change significantly as A increases with increasing sag or cable

5This frequency equation is identical to that derived by Laasonen {1959} —
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ctervature, resulting in & modal cross-over or mode reversion, after which the

antisymmetric mode becomes the fundamental in-plane mode of a deap sag
cabie ITVine alar conaidered Lhe case o i . S e
the horizontal plane, and concluded that if the cable parameter were inndified

to account for the angle of inclination, A = (mglcost FY* {{H L,/ £ A}, then
the reaults pmsente{l in ﬁgurg 2.3 would apply. This result 4 not atricklv
correct, since the asymmetry of the mode shapes associated with inclined cables

causes [requency veering as opposcd to modal eross-over.

Inyengar and Rm[msa] presented abudy of the natural frequencies of a sagged
cablc under & constant lateral load. [n this case the equilibtium profile s non-
planar, and hence corvature caupling exists between the in- and out-of-plane
equations of motion. The stability of the cable due Lo an additional periodic
lateral load was considered. The emphasis of this analyuis was clearly directed
at power transniission lines. Rao and fyengac|i391] extended this analysia to
examine the response of a shallow sag cable in its first symmetric in-plane and
put-of-plane mode, due to forced harmonic excitation im the in-plane and a

el adabier lnad im Fha ouloalonlane directiong. A soecka] rase of LuTiane was
TINLIOTTI SLAALE IUFaDy 0l waiir 5w o 7L0e” pradilete SAea e 2025554 r g L

CHosen 3uc|rﬁ1ﬁt—tﬁg—ﬁmtajmetﬁﬁﬁpﬁﬁﬁmﬁdf%&ﬂtd4m%ﬁfﬁl
symmetric out-of-plane maode, and hence an intetnal resonance of 2:1 existed,
counling the responze between the in-plane and out-of-plane symmetric motdes,
Simultaneously an in-plane external resonance was induced. The tuning of
the internal resonance was dependent on the cable curvature, and hence the

guadratic nonlinearities present in the system. By companng the reaponse of
the system due to an external resonance, wiih and without internal resonance,
it was concluded that cable curvature and hence the quadratic nonlinearity

has a significant effect en the system response, The stahility analysis of the

—ijmﬁ;ﬁmmwwmgmwm: did

not exiat,

In & similar fashion to the analyses of Lubkin and Stokec{i943], Tagata[1977,
1983], Takahashi[1991] examninetd the slability of Aat-sag cables to periodic

axial excitation. The sag to span ralio was varied to span the first modal
cross-over region. [t was demonstrated that the widths of Lhe unstable regions
were affected by the sag Lo span ratio in the regions of modal crosa-over, and
that combination parametric resonances arose, Perkina[1992b| showed that the
equalions of moticn applied by Takahaakhij1991] were incopsistent, leading
tey arroneous conclusions. Perkins{1992b] showed that such a coofiguration

resulted in parametric as well 2z external excitation, and that combination

parametric resonances did nat arise.
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2.5.2 Travelling Sagged Cables

Sitnpwon|1972] inveatigated the in-plane {ree vibration of a horizontal travel-
Iing elastic catenary. The equat.iﬂns of motion were derived by gcncralising

P, N N ¥y 1 ] P D

ll'.I'E.‘ BC[LIﬂL].'E_I'IIS UI d SHI-I-IC CﬂBE’I’Iﬂ-ﬁ-’ CI'ITHPBDI'-I [ -.“ -E-j ﬂﬂﬂ-l}"ll‘l- rUHﬂjﬂBl’BD A Cabe-

nary with a sag Lo sapan rabio of 1720 mmugn d pPrOCESS of Imnansatmn ot
the nonlinear equations of motion, Simpson [1972] confitmed previouy resunlts
pertaining to flat travelling strings, and demanstrated the inHuence of cable
curvature on the natural [requenciea. Simpson's [1972] cesulls indicated that
frequency coalescence between modes may occur, a3 well as mode reversion,
whereby a higher order mede reverts to the shape of a lower order mmode for

certain axial velocibies.

ily |n|:]1n|:d eyelets, ['nanr..ifyllnu[lﬂﬂﬁ'f ]'bl"l':"-‘l'-“'lltfd an ana-h."sla whlch conmdered
the rase of amall sag and large sag translating cables. His analysis confirmed
the Tesults of Simpson[1972]. and provided further explanation to the occur

rence of mode teversion and frequency coalescence. The results indicated that
for small sag horizontal cables, the phenomenan of mede reversion and ire-
quency CDEL-L'SCE‘I'IE-E ol;curn:u, WieIeas when the cable was i.ﬁ'i:lllll:l.l VTELJUETICY
coalracence was replaced by [requency avoidance or veering, where the fre-
quenciea approach closely but are distinct. Also, only partial mode reversion
orcurs, where the mode shapes become hybrid cambinations of symmetric and
antisymmetric modes, Perking and Mote [1987] derived the three dimensional
equaticna of motion for an arbitrarily sagged tranalating cable based on a fnite

strain approach and conservation of ceble mass. Gn lincarising the equations

of motion, t.hgy demonstrated that the phenomenon of frequéncy coalescence

i conditiongl on the symimeiry of the mode shapes, and thus frequency veer-
am nunoesd bo coalsscance pocurs for both translating cables and inclined

u.lﬁ THY b pfprpril s e e e -ll.Fick

cables, as the mode shapes become asymmetrical. The results of the anal-
yais were compared with those of Simpson [1972] for a horzontal small sag
translating cable, and with those of Irvine and Caughey |19?4] for station-
ary cahbles, [t was demonatrated that the results confirmed those of Simpson
[1972), except that frequency crossings were roptaced by veerings, and those

ol Irvine and {Jmﬁhg_-,-[lgﬂ] except at cxtreme values :}f the cable parameter
& |

L

&% The large
interaction of longitudinal modes with lateral modes, nat accommodated by

Irvine and Caughey's|1974] derivation which assumed guasi-static atretch in

the longitudinal direction. The divergence ol the behaviour was accentuated

hy varying the cable elanticity, thus in practice with steel wire ropes, this be-
haviour is associated with higher transverse inodrea, where longitudinal f lateral
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modal interartion is more significant. Perkina and Mote [19B7] noted in this
study that a second stable equilibrium profile could exist, after the divergence

- '
[1] rpunw g1 e Sttt it A T i CHECUS Ercdne i =i AR

speed. Thia am:ept. was developed further, Perkins and Mote[198Y), and con-
firmed experimentally, Durges and ‘Triantafyllou[1958] investigated the aspect
of longitudinal and lateral modal interaction further, They exanuoed sta-

tipnary small sag horizontal and inclined cables, Maodal interaction between
the First elastic or longitudina]l mode and the higher (18-22) transverse modes
was considered. Tt was demonstrated ihat lengitudinal interaction prometed
the phenormena of frequency coalescence and avoidance in the horizoatal case,
whereas ooly aveidance occurted in the inclined case.

The results oblained by Perkins and Mote are presented in fgure 2.4, and
figure 2.5., where a comparison between those of Irvine and Caughey[1974] for

mnal

a stationary sagged cable, and those of Simpson[i#72] for a iranajating cabie

with a sag lo span ratio of 1:20, {3 presented respectively,




43

I 104 IR ]
Mam = iduirrl ot cabie 01uT i, M atiipit
Flgum & Comparisea wiih [rdne's iveary for (b it o] = 5, Ikas piiuhis sm nicoduced from refenonce
(8] &nd veported o the whits mased in rafarenees | 1,8) The st modd shapa s shawn For a¥ = { and 1000, —,
Catle model, ~ -, Imviner

Figure 2.4: Perkine and Mote {1987): In-plane natural frequencies of & cable -
Comparison with [rvine's theory.
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2.6 Large Amplitude Vibration of Sagged Ca-
bles

Lungnu? Rega and 1"1‘:5“&115[19321 defined a simplified two degru: of lreedom

!F'I]"hl'l_ 1 Iy o d TR NN (111 44 LISILIdI NS L) L1! L) S s H 1)

purpose of the study was te demonstrate menofrequent in-nlane and out-of-
plane oacillation. As defined by Lucgne ol al[1982], monolreguent oscillations
occutr when one of the normal displacernent co-ovdinates prevalls over the oth-
ers, and all points move with a frequency thatl is equal to or & multiple of
the nonlinear frequency of that co-ordirate. Thus mobofrequent oacillations

cndiine b b Aol —nallladiarmn ~F b |Temaue wirubmren 5o Fhe aroelimmarebs unm
TEAUCE VO LI INGOOE OBCIILER WD WL LIRS LILF-UR SFILeiily Wwr il JIvAnLiduaingy YRl
ishes, This providea a convenient baais for ascertaining the influence of systom
parameters on the nonlinear frequency ampiitude relationship. The equations

of motion developed contained both quadratic and cabie nonlinearities, associ-

ated with the curvature and streteh of the cable reapectively, The mnitial con-
ditions required to induce in-plane {extensional) and out-of-plane {pendulum

type] monofrequent oscillations were determined. It was shown that in-plane

or extensional monofrequent cecillations could be indueed for any taming of the
in- and out-of-plane modes, conversely out-of-plane monolrequent ascillations
could only be induced in the absence of internal resonance. With regard Lo
the in-plane motion, it was demonsztrated Lhat the nonlinearities, and the am-
plitude of the induced maotion strongly influenced the ronlinear ltequencior of
the cable. Drift of the midpoint of the in-plane oscillations occurred due to the
fuadratic nature of the nonlinearity related to cable curvature. The variation
of the nonlinear frequency from the linear (requency depended strongly on the

mable cocsanatars whers a softening behaviour was observed as the cable cur-
LORLILT: PRIl Nl ERLEULAS R = . )

vature increased, whilst hardening behaviour occurred as R S
a taut atring. The importance of internal resonance was demonsirated with
respect to the cut-cf-plane or pendulum type tnopofrequent oscillations, which
de;-hended strongly on the degree of tuning between the symmetric in- and
out-of-plane modes, The internal rezonance condition {where the first sym-
metric in-plane mode tunes to iwice the firat symmetric out-of-plane mode
at a modal cross-over as defined by [rvine and Caughey[1974] } divided the
syatem behaviour between a hardening or softening type.

H_es&.l.[e.st;gni_md_aﬂ]ﬂdﬂtliniflgﬂlﬂ, cxamined the planar response of a sapged

cable with sag to span ratios of less than 1/3, where the amplitude of response
was sufficiently large to necessitate the inclusion of higher order nonlinearities.
The apatial variable was eliminated from the partial differeniial equaiions of

mation by using the linear eigenfunclions of a shallow sag cable, and apply-
ing an integeal foemulation. The resulting cqualions af roation reflected both
ic and cobie nontinearities; the quadratic nonlinearity is induced by
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the cable curvature and thus the ability of the cable wo absorh additional ten-
aion by m_!f_lme.r.._r.ic n;.diustmem. af the profile, The culic nonlinearity reflects

terms ate rela.ted L:J the hrst and sr:cun:l integral on the right haru:l side of
equation 2.2, The equation pertinent to the temporal domain was Lthus cast in
the form:

§+ ¢ + 6 + Cag” =gt
T h - T L

Since the quadratic coefficient is a conscquence of the cables abilily to absorb
additional tension through genmeiric adjustment of ihe profile, which vanishes
with reapect to the antisymmetric modes of a suspended cahle, the antisym-
metric modes exhibit hardening behaviour only, Quadratic nealinearities do
results, as demonstrated by Luogno et ai [1932], depending on the cable pa-
rameters. The nonlinear frequency amplitude relationship was developed amid
indicated that the peint of modal cross-over where the first symanetric and
antisymmetric mades coaleace became dependent on the amplitude of mation,
Al-Noury and Aly1985] presented a similar analysis, focnesing on cables with

amal! gar to span rating 'T'hpu- ql'nrlu Iﬂi_‘]lldrlri TIH- k- n'r-n1nnn ro-nrdinate in
&F S0 7pan ratlod. ag1r atn JUaan the anl-nl-niang co-orainatn: %

the equations of motion. This ﬂludj.f coneentrated on dtscrlbmg the resulting
nonlinear behaviour due to execitation in the horizontal plane, excitation in the
vertical plane, and excitation in the horizontal plane auch that primary res-
pnance occurred, when the transverse and vertical linear natural frequencies
are Elgmly spaced. Similar observations were made mncr:rnlng the depen-

P | I - h.ﬂl‘!ntrlﬁ11l’l m bha oo M..:.I'.nll.u Lo Tnak
r.“'.']'.l.l.'ﬂ UI. l-].l.t-' H‘""E““'I'E’ HAT LI.I_II.JLIG OSNRYIOUD O s08 C&0) l\.- n wmilinvtia, 4 LT JOSs

case atudied indicated the presence of strong coupling between the in-plane

and out-of-plane mades, and the polential complexity of the casuing response.
‘I'akahashi and Konishi[1987a] examined this problem further, and extended
the soalysis to include the three dimensional behaviour of arbitrarily inclined
cables with arbitrary sag to span ratios. A Galerkin approach was adopted for
the spatial domain, whilst the method of harmonic halance acceunted for the
t-&ﬂ'me'ﬂl doemain, The ana.lys:s nw:augateﬂ the ires Tesponae ol Lhe cab[e, and
hence defined the nonlinear requency of vibration as a function of the ampli-
vude of i in- plﬂ.ue aad out- ol- Iamc initial dEfurmatmnu I ke analysis confirmed

mftgmﬂs beha'-'lnul.' cnuld he u,.chmved dependmg on the sysl.em pnaramet.ers
Cue to the noniinear coupiing between the in-plane and out-of-plane equaticns
of motion, where in-plane terms behave as coclficients in the out-of-plane equa-
Lion of motien, out of pta.n-e respoRac due to an in-plane excilation wonld result

feom bifurcation or parametric inatability. Conversely, out-vl-plane terms oc-

o lano ﬂﬂ11='1n.r‘| n.'F rngtl‘r_.ln 'l‘lllﬂ nemiding dieant
1 IS PIOYIAIGE ISy

cur Inuepc:uuuuuy in the in- pralis eguaiie
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excitation of the in-plane response due to out-of-plant excitation. This is con-
firmed by the analysis of Luagno et al [1982], where vut-ol-plane monofrequent
plane excitation of a 1:]:||f: resnults in three ditnensional motion, and thus the
nonlinear out of plane behaviour is inffuenced by the in-piane responze, ln the
second part of the atudy, Takahashi and Konishi[ l987b|, the stability of tie

ﬂut-ﬂf—p]ﬂ_nn TEspOnge due to in-plane excitalion was exanuned. It was demon-
atrated that the stability regions associated with the out-ol-plauc vibrations,
occurted due to parametric eacitation via the nonlinear coupling termus, "[hus
this analysia examined the parametric stability of the out-of-piane motion and
roncluded that in the general case both simple and aumn typr combination para-
metric resonances ocoureed®. The exirtence of the stability regions was shown
to be d_epcndent on the cable parametern, and ma the symmetey of the excita-
tion, which dictates the symmetry of the respense and hence the importance

_ L __ 4

of the cabie curvature. In this rogared, it was demenstraied that in the case of

a horizontally supperted sagged cable subjected Lo a symmetnic excitation |
yquadratic nenlinearities included }, as epposed Lo an antisymmetric excitation
ic nonlinearities excluded ), the stability chart could be sipnificantly

[y
'\. ‘-II-I.““‘“‘I'I-' [T e L]

'
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mndes do not arise. In the case of an inclined cahle, the asymmetry of the
profile resulted in the eccurrence of ai} Lypes n_f inul‘._ahil'lt}l' tegiony, irrcapective
of the forcing functinn. Benedettini and Hega[1087| presented a further study,
employing & perturbation methed, to investigate the planar behaviour of a hor-
izontal cable with initial sag to in-plane primary rescnance, It wea concluded
that the cable was most sensitive to cubic nonlinearitics when its parameters
conformed to those of a taut string, and thws hardening behaviour was ob-
srrved. with one unstable and two stable petiodic solutions. When a sagped

rrati jalysed, it was evident that the quadratic nonlinearities

lead to a seltening-hacdening behaviour, and consequently up to five periodic
soiutions may exist close Lo resonance. The sensitivity ol the aystem to ini-
tial conditions waa demanitrated by & numencal simutation of the equations
of motjon. Rega and Benedettini]1989a, 1083b|, pursued their study further,
hy examining the superharmonic and subharmeonic behaviour® of a cable to
o tae excitation. for cables with vatious sag to span ratios. The studies
IN-piAnE €XCINEi i, HF L g1 I

demonetrated that the second order superharmenic produced notably slronger

effects generally. This behaviour 13 accentnated by increased curvature or rnore

A himple paramctric Te8 RS OO A Ry R A R e
watieal frequency. & principal region is defined by n = 1, and secandary and Lertiary regione
follow r = 2.3 reapactively. A sum (ype combinalion reionance oeengd i the intervals

fU.' +w'rl|rﬂ| n= 1|!.‘-lr3| m

"In this context, sub

aubharmonic of the excitation fre . I
A mecand order and thizd order aubharnonic would ariee when response oceura b 1272 or

TN it Lo B} caneesents bhe sacitation frecency.
T30 reapeciively, WHETE if TEpTLSTh L
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dominant quadratic nonlinearity in the eguations of motton.

I'erkins| [ 0U3a] presents a study of the wonlinear modat fnteractiong i e sagged
cable when 1% 13 excited Langentially to the equilibrinm profile, at ene support.
This study cxamines the condition whereby the fist syrometec in-plane mode
_ junes to twice the fimt symmetric out of plane mode, and consequently an
internal resehance exista. The langitudinal excitation was tuned to excite a
principal parametric resonance of r.'l}al out-of-plane .muﬂ“‘. and, due to t!:u in-l
ternal Tesonance, this excitation could simultaneously excite pnmary external
resonance of the in-plane mode, Perkina[1992a] demonsirated that the cable

response was either planar or highly coupled. A twe dagree of fresdom madel

........ inel £6s myaryine the stabiliby of the planar and nonplanar motions?.
Rt ﬂ'FF“‘:"" Ll L RCAELEIEI= H4iE SRR Yy Wi wEsw t

The bifurcation condition governing planar stability indicated that the pres-
ertce of the internal resonance greatly reducen the planar stability and enhances
noaplanar reaponse, It was also found that the principal parametric resonance
disrupted the saturation phenomenon thet wuuld_narmally pecur in the case
of primary external reeanance alone, The theoretical inodel pfnv]ded a good
gualitative desctiption of the experitnental bebaviour ebﬁ;ewed in 2 laboratory
nxeccise. (L was demoddiid BITILIL & -
stantial out-of-plane motion. Perhaps it is pertinent Lo note that the mine
haist svstem lends itsell to combinations of tuning of a similar pature, with
;a.pec; b the longitudinal and lateral modes, and the excitation. ‘This aspect

will be elaborated furthet in later chaptera.

~ $Parkine notea Chat thig cordilion o : ‘ :
Lherefore he frat in-planc Symmebric and antisynumebric moded, and t_he. aecond uut-u-lf-
piane roode ocem st aneaaely, UE Wb syetem woe sxited to induse pewcipol. paramettie

_____ —F Faandren vl jwma 14 n ann!u_

FsADOLA0GE DE thm mg;j:eﬂ.l B Eruﬂfﬂtfﬂ‘ (X ] -'.Ill.'EI'EH Of UISCOOM Moot oWl not 2ppeyY
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2.7 Conclusion

The purpose of this chapter was to establish am overajl perspective ol war-

ious mapecta of the nonlinear dysamic nature of a susponded cable or Laut
i 1 snbj i

on reviewing the literaturee that g structural cable provides a remarkably good

vebicle for the study of nonlinear dynamics, Recent research [Moelteno [1980],

O'Reilly and Holmes | 1992 canhrms bhat ciactic moticn has Deen obsttved in

a Laut stationary Atring, and this will no doubt stimulate further research. The

partictlar studies reviewed were applied to 2 ralrle or string fixed at ita extrem-

4t aed fne thie ransnn the reculia aro nat directly apnlicable bo a mine hoist
JLLES y Nl ILFE LIFLS FCaFLAdl LERSe b r-rRsd e v ST I W e - ol o

system. Many other studies exist concerning aspects of taut string and cable
vibrations which are not considered perinent to this thesis. For inatance stud-

iva regarding the response of & taut string to travelling lnads | Rodernanjl97é],

Sagartz[1975], Schultz[1968]), or where the string or cuble_suppnrts a diacE’ete
mass [Rosenthal[1951], Smith[1964], Wickert[1938]). An interesting applica-
. )

Aving dbrino r-n-nu“ﬂr.l i a
LORE Medeell 1t &

. . o1 e S s rraimline A B
Lion regarmng LIl BTIRCE OF LUDLLLE AAEITLG W BTG, =

vibrating shring, being considered as & bmfﬁfhrdevﬁWulm
motjor sepsor [ Quick [196¢]), and consequently the consideration of nonlinear
offects and methods to quench these {Dimeif et al. [1966]).

lasure pertinent to the mine holat system, namely the polential importance
of cable curvature, transport velocity, nonlinear cable streteh and longitudinel

i = i S oo = _ - _ .
inettia, require assessment 1In light of the lterature reviewed.

bha Klool Mice syatern, which is typical of many shafts in Songh,

m 4
LAMIFIGIINE

Ao Wﬁ&%@b&ﬂ%ﬁﬂﬂm ]'ll}l] and l'ﬁuﬂ. Wh'i!Et- th'e notl-
Alria,

dimensional cable stiffness parameter 1037 varies botween Az=dio .:'I.f a2 0.03
for an emply skip at shall head to a fu!l_'!.r_ la{J‘E:I skip a_.t 3]1.alt. hn?tur? re-
speciively, The small sag t0 3pan raliod Ly Moaly STCOUTILES on TIRe hoael
systems justifies Mankowski’s Lreatment of th{:.ﬁaleq ALy a5 B ]}ﬂrllmntﬂlly sup-
ported truncated catenary symtnetrical about ita mid point. This approxima-
lion will be applied in this thesis. In terms of the cable patarmneter, almi with
reference Lo lrvine's resulis [1981), the natural hE“_'“E'“W oh the firt 1_'"13'3'““’-’
mode at shaft head, with an empty skip will be in errar by approximately

145 whijst the higher (requencies will be unafected. Qo the ascending cycle,
b end, Uhis vstio is of the order of A* &: 0.3 and thus

the skip i3 at shaft h . |
when the akip ] of the cable wilt be well predicted by classical

the in-plane natural frequencies

mplcon{f] ohere A g the horizonusl compatent

*The sag tosph ¢
af tgngion, m the mass pat unil &
it Wine system paramecters ara ff =

=3 g = 59
o,

— i

length, ! the =pan lengeh, and & Lhe angle of inclingtion,
A0 — JAMEN, 70 = §.56g/m I = T £ =

P ' - - - I
izt A=104K
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laut string theory. Since the dominant lateral cxcitation i in the out-of-plane
direciion, aveidance of a dicect]y excited mode could be asscssed by consider-

g Lthe linear lateray natutal frequencies of the catenary, However, since cable
cutvature provides coupling between the in-plane &nd out-of-plane motion, as
Takahashi and Kooishi [1987a],[1987h],

demonstrated by Luognoe et al[1U82],

o

simlation.

With regard to the transport velovity of the cable, the effect on the [inear
matural frequencies is amall, causing frequency changes of less than 2%, Far
this rcason, it has been neglected in previous analyses {Dimitrion and Whillier
resi=wrl 37 ] L W, = L) TP N R, NG AU ApPre . W (1 gl S ) NN (R R R
IIHIJJ’ NMAnKDYHK| llﬂﬂﬁj'] UL JLILNLE SRR3R B Y SLELLID. FRLIB[ILLALL MLET J@LCLlcl WL LNl
{requencies of the catenary are not strangly infuenced by the Coricliz farce
developed, it is noted that if a real vormal mode methed s applied for the

ical ai ign, then a cealistic siraulation would dictate

the inclusion of this effect. This occurs since the acloal mode shapes associated
with a travelling medium are coraplex, and conseguently in the context of a
real hormal made solgtion, implies that ibe Coriolia force conuples and excites

the highes modes weniting in 2 noney neheandus brakapiaiie,

A number of the studies presented regarding rtrings and cables with pinned
end canditions tlcglucbﬂd the longitudinal inertia, due to the large difference
petween the oonpivadinal and Lateral wave speeds, In the confexy of the noine
hoist syster, the longitudinal wave gpeed ia _Far greater rihan the lateral wave
speed, however the longitudinal response is dictated hy the madal response of

the coupled system, and thus model interaction between the trapsverse and

LA Y LI R e Jﬁ_'l'iﬂ aarah o TS hl:i nﬂmmﬂ!lalﬂﬂ
].-L".lE,ll.-uu] TIGl SLILFLEL D LFL Lihis o porai-aia ATINF Ao T

Since the intention of this study is to examine the steady state stability of the
stationary avstem as well as to develop a numerical simulation to account for

the nonatationary sature of tha system, the equakions should be developed to
account for iransport velocity, catenary curvature and niflinear stretch of the

cable. These equations can then be simplified where appropriaic ag Lhe thesis
developa.




Chapter 3

3.1 Introduction

The purpose of this chapter is to develop the equations of motion of the coupled
system. The coupled system refers to the catenary, headsheave, conveyance,
and the coupling which exists between the catenary and the vertical rope.
Mankowski[1982] attempted a lumped parameter numerical simulation of the
mine hoist system by accounting for curvature and nonlinear rope stretch in
the catenary, and coupling the catenary motion inertiaily through the head-
sheave to longitudinal motion in the vertical rope. It is preferred to achieve
the descrlptlon of the system in a more theoretical manner, by applying a

apphed by Perkms and Mote[1987] In thls approa.ch the La.granglan func-
tion of the system is formulated, and Hamilton’s principle is applied to define
the nonlinear equations of motion of the system. Since the definition of the
Lagrangian function depends on the strain measure adopted, and the bound-
ary conditions assumed, simplifications introduced are clearly evident in the
theoretical development. This is considered to provide an advantage over a
purely numerical approach as developed by Mankowski[1982], as it allows for
an appreciation of the resulting equations of motion in terms of conventional
techniques applied in nonlinear dynamics. To facilitate the development, the
methodology applied by Perkins and Mote[1987] in deriving the equations of

motion applicable to a sa.gged travelling cable, is presented. This approach

astandad 4 tha min retem. where the annranriate boiinds v
S IMil Suill, wiiliT wiiC appropr 1aic uuuuua.xy

+L o o n X
lﬂ llllcll TALTIIUCTU VU vl YAVED S8V J
i . ion, consis-

tent with the strain measure adopted are presented, where further truncation
is applied as appropriate in later chapters.

50
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3.2 The Sagged Travelling Catenary

3.2.1 Equations of Motion

A sagged, travelling elastic cable passing between two fixed eyeletsis illustrated
in figure (3.1). The cable is treated as a one dimensional continuum, located in
the vertical X; — X, plane with gravity, g, aligned with the —¢, dlrechon_ The
cable passes from the static equilibrium configuratlon X' to a final configuration
x’ during the motion. The unstretched or natural state is defined by x°.The
cable has a cross sectional area and transport velocity of A° and ¢° in the
natural state x°, a modulus of elasticity E, and a mass density of p. The

equilibrium configuration is defined by the position vector R'(S*,¢) where S*

e tha are lonath co-ardinate referenced to f]"m eauilibrium conficuration. IInit
a. \1 Asa A AL NVINV AL J i1 v

.ED ViiC aiv l\allauu A/ T UViMABALAQUT ATATVAVaa vV A Vi Vaae qladaaSaiaaai NRraaa

€
and bi-normal directions respectively. The final configuration is defined by

RY(S%,t) = R'(S*,t)+U(S*,t) where U(S", ) represents the three dimensional
i nfiguration, with respect to the equilibrium profile. The
motion of a cable particle which includes the particle transport velocity c/¢/

is illustrated in figure 3.1. Thus:

xs(es) x,(g1)

Figure 3.1: Catenary configuration

of th
motion.

e equatlons descnbmg the equlhbrmm profile of the catena.ry from the equatlons of
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RI(S',t) = R(S',t) + U(S", 1) (3.1)

The motion U(S%,t) is defined in the tangential, normal and bi-normal direc-
tions of the equilibrium configuration as:

U(S',t) = ut’ +vn’ + wb’

The cable is considered as a one dimensional continuum in the ¢* direction.
Second order deformation effects are accounted for by utilising the ' compo-
nent of the Green-Lagrange strain tensor. Luogno et al[1984], Perkins and
Mote[1987] define the Lagrangian strain in the final configuration as:

o (e}

J

I\’)I —
——1
QJ

where S° denotes the arc length of the unstressed cable configuration. The
Lagrangian strain in terms of the initial differential element dS° and the final

f 0
element dS’ is defined as e/ = [ﬁd—s—();%o)-ﬁs—ﬁ] Introducing an intermediate
equilibrium state, dS* results in the strain measure e/:

f dS‘\2
el =¢ "'\dqo

The Lagrangian strain resulting from a deformation from the equilibrium con-
ﬁgura.tlon x* to the final configuration x/ is defined as e: 2:

1 1
€E=u,— KV + E{uf, + v?, + w?,} + k{uv,, —vu, + iﬁ(uz + vz)}

2The following manipulation is required:

e = 4= 1 [{OS‘Q(S' t)} {ag,‘ U(st, t)} {aS‘U(S‘ t)}

T

. f} (dso )2

where: U(S*,t) = ut’ +vn’ + wb’

+ an i

and : gfr = xn’ a5s = Tt s (S 1) =t
> ; ] §

(5 1) = (u, — K0t + (v, +mu)n’ +w,sb
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in which (95 ), denotes partial differentiation with respect to S* and « refers
r

vature of the equilibrium configu 0

nﬁgl ration v

The Lagrangian strain may be formulated in a more direct manner by consid-
ering the deformation associated with a differential element in x/, referenced
to a differential element in x'. Figure 3.2 presents a differential element of the
cable in the u — w and u — v plane, with curvature «, deformed from the equi-
librium profile xi to the final profile x/. The differential length of the element

P A R TP T 2

lll bllt: uual Luuusuu:.bluu Caii bc \,albu}.atcd u_y \,uumdcuus uhc y;uJC\,tluu Uf

the element onto the three orthogonal cartesian planes defined by X;, X3, X3:

(dS7)? = [dS" + u4dS* — (v + v,,dS")dO)* + [v,,dS" + (u + u ,dS")dO)* + (w ,dS*)?

. dsfy?— 12
ince db R =32 (dS‘)

v ,dS'dl,u, dS‘d0 Wthh vanish in the hmlt dS' — 0, the Green- La.grange strain
€ can be derlved




3.2.2 Hamilton’s Principle

[ order (o apply Hamilton®s principle, the action integral is formulaied as a
rombination of the kinetic energy mi, the sirain encrgy =1, and the gravita-
tional potential energy -.::: of the swystem, The action integral is stated as:

. . { .
= Ilﬂ'{,.—*.'r;_—-?rjjm

rain enerey of the cable = in the final configuration ¥/ formulated
quilibrium strain energy =l of the rable in the equilibrinm

configuration x° is

ad? 1

ot | (P A Eepedd
o e de 2

where P represents the tension—im—the-eable inthe static equilibaum state
y'. This represeuts & reduced form applicd by Perkins and Mote[1987] to
the more complete derivation provided by Luogno et al[1584]. It implies that
j_g.i:, #= |, and thus the deformation of the cable froon ita unstretched lengih to
the static equilibrium profile is in-glastic. This assumption 19 well juatified for
practical cables as can be ascertained by cuna'tdelrgng th cnnz:titut.ive law lor
+ uniaxial cable: PP = E%¢, where ¢t = §[EEEZITE] £ = (14 2501

For practical cablea B% <« 1, and consequently the approximation ﬁ: =18

justified. Since conzervetion of momentum and mass requires that 4" = ¢°A°
and AigEi = A°dS®, it follows that by the same argumenl A" and &' may be

treated aa conatanta.

The kinetic energy of the cable in the final configuration ., referenced to the
equilibrium configurabion v, 18 formulated as:

I 1 i i
'I{r -=L E,&A E‘r 'E'idﬂ

The velocity of the cable ¥4 in the final confignration v/, may be obtained in
terms of the equilibrium configuration ¥, as follows:

YIS = %msﬂm + el
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.f___ Kis — ir o i
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- Ei' dS'
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The term 33 is defined by considering the conservation of mass and mormen-
1m ol & l"ﬂhh_ E'lE'ﬂ'lE‘Tlt-

Ads = Atdsf

Al = Al
_ g
asf  of

Thus the velocity of the cable, referenced to Lhe equilibrinm profile may be
formulated as:

. : ) : d
f y -t k ' + —_—
o YH(E, ) = O+ (St U(S,0)

The gravitational potential energy « f of the cable in its final mnﬁgura,tm n xf,
written in terme of the gravlr.au.m | putential E".ergy m; of the cable in the

equilibrium configuration x* 12

= +f (nly + vin) pg A4St

where {,, i, are the comnponents of the normal and tangentiai unit veciors pro-
jected en the vertical cartesian unit vector €3, 23 = I’ + f.ab .

The equatiumﬁpmﬁgnﬁ&dﬂemﬁned—byapplﬁﬂﬂmm‘s Principle,

which requires stationarity of the action integral for arbitrary variations 817(5", th,
vanishing at the limita £y, £y

§ {J:‘[w{, . w;]dc} =0 {3.2)
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On applying the condition of atationarity with respect to arbitrary variations
SEA(57 1), the above equation reduces to:

Y LB . BE B i
b= | | (=m0 — (=5 [4L) — o pelal)ldaal
Frp Jo B gy ot SLe 8

1 . -
pAVE W P+ %.}l'EE]e — pg At udy + vl

[ntegration by parts wit

leads Lo

g [t 80 @ 8L, @ 0L o0 E‘Eﬂrl"]

if the cable passes through hxed evelets, as in the snalysis of Perking and
Mote[1987], then SU|" vanishes at the eyelets amli mnﬁequmltl}r the Jaat t_erm
:n the above equation venishes, Thus the cquations al motion are obtaied
by satialying Hamilten's principle by setting the mtrﬂgrand :dent!cally to Zero,
Perking and Mote[1987] obtained the following equations of motico.

y EumEiHll

[[P" + .lir-]u1] - {(F“ + .'l'iSC:"ﬂd] - = [n-ﬂ'i(u,z 4 I:]] * 1?-1'-&'(“ 1+ ‘I“l:'ll. -paAt'n li.r + -'-'ﬂz]
N

L i.TimEnnllM-

[uﬂ' 4 .4.‘:-;:.;] +[iF' # .-'nu.:u,} -ginm [mdlies + ='-=5ﬁ|l‘ k [.P"""-":'-'.r +c'ag) " pAtsta 11-,. +
A

w Camposral
[{Fl + ,*l-tqfu;.j . - [""“':“.‘ ¥ Elqﬂ!.l + [._.u.':'l[u_. ¥ [lﬂa] .

mbana m) = k4w g =Y ,nglb..-}“u&u‘l‘.;.



The equations of static equilibrium are extracted by setting the time derivatives
and diaplacement components u, v bo zero. Thus the equations governing

Perkina and Mote[1087] show that by considering a momenium balance be-
bween the natural configuration x° and the equilibrium configuration ¥, when
the cable is stationary, a description of the equilibrium configuration results
bieh in iderntical to that of the inelastic catenary solution in clementary atat.

el o [ 1=]
FrLELWLL B0 IRk M LLadss W
Fadhld =mTm AT e * Iy 1 Lt le. AN

R ALE 3 ¥ LG

]

g, SN : 2 B
retaining only first order terms in the displacements, Perkins and Mote[1D87]

determined the natural frequencies of a shallow sag, inclined travelling cable.




3.3 The Mine Hoist System

In Lhe case of the mipe hoist system, the boundary conditions differ from
those applicd 1o cables pinned at each end, VFigure 3.3 rcpresents the model

of the mine hoist system analysed, In this Bgure, the catenary refers ta the

section of rope between the winder drom and sheave wheel. In practiee, the ——————————
static lengion in the catepary is high, and consequently the asymunetry due
to the rable inclination s small. ‘The catenary profile i= Mat and les close bo
the chord between the drum and sheave. The sag to span ratio at the mid
point of the chord, where the sag i3 measuted perpeadicular to the chord, is
of the order of 1:100 or lese. In this regard 1t is acceptable 1o ireal the cable
as a flat sag cable, by neglecting variations in the tension and treating the
cutvature a8 constant. This results in a symnmettic parabolic cable equilibrinm
ofle whepe the inclipation of the cahle is accounted for by modifying the

[.Il'lJJu!:_. W iCLT uwiis J LIV LI
Eravitalio ; :
of the chord from the horizontal axis?. Initially the equations of motion are

devoloped to account for 1he general case of an inclined sagged catenary as

_ ilustrated in Agure 3.3. Subsequent simplification of the equations of molion

is introduced, on the basis of amssuming constant teusion and curvature, leading
Lo the equilibrium profile of a fat sg parabolic cable,

| /\ | [_ fhava'ru
& A

AN N 4
™, I‘
L s AR

.-'L le

1:1 “_ Woder Drum | — M
B
:.'.n

Figure %.3: Mioe hoist configu ration

3Hmm,ﬁugaz]ruml¢uLMmpliﬁwﬁmjuuliﬁﬂl o Aha basia thal the vanation

in axial tengion dur (o the inclination of the cable is amall in comparieon 4o the static tenaion,
hence a symmeteic parabolic catenary Was employed io bis onnlyaia.
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The aysiem parameters are the catenary length 1., the total tope length 1,
the material density of the cable p, the linear masy density of the cable m,
the cross-seckional area of the cable A, the 2lastic modulus of the cable E, the

= 5
[ E !nn LT

heave whaal miaee moment Al ineckis | Fthe maue of the gl aned -
noave 182 mMoment o 1nertia fg atep and pew loan M

TaEn g bR o i 4 VaALw g4 e L u

N I e o ——
[ Luc u.n.nﬂ-puru Yz
The buunrjar}r condition at the dramn end is treated a3 pinned, Thug the windor
is ropaidered ns a perfect power source, and dynamic interaction between the
winder and hoist svstern i3 neglected®. The sheave end boundary condition

== el s = 4
o emoae mta thn Fimndamenstal diffevarco helwaen atudiss rorarding st einoe an
Icl_rlﬂ.;ll;.llllﬂ LIS CLLLLSACEE AR LD AP Sl Bl b B WA g ] = N By I.‘va"""‘-'""b IIIJJ.I.LLEI' Lhyd Il
T . Lt b maae T bt o B 4T o omean 1 o= Lada. .l e
CADQIEA and Lpe LN JIEL Sydrcinl, 1L LIS El'.l'._ll}' L1l ".-U”I_.l“.]l P WYESS L LITNED S dLir-
o

nary motion and the vertical rope is accommodated, To simplify the analysis,
it is agsumed that the catenary-sheave-vertical rope interface s arcounted for
by a rigid band passing over the sheave. ‘The catenary is attached to khis band,

T e

Wwﬁhﬁmﬁmﬂhﬁmﬁﬁ—
in Agure 3.4, This effectively couples the sheave nertially to the [ongitudinal
syaterm ruﬂ-_[:nnaes. Although lateral moveiment nf the vertical LOpE OCOUTS Ly
p}m:t,icg through autoparametrnic excitation due to the caterary mation, caly
Iongitudinal raoticn of the vertical rope is admitted. Thus the model proposed
is uitimately identical 1o that implemented numerically by Mankowskij1982],
T'he aspect of including lateral motion of the verlical topa iy viewed as a future

Tesearch nceptive,

The definilion of the dynamic reaponse of this mode| requires equations of
motion describing the three dimensional motion of the catenary, the motion of
the sheave wheel, and the ongitudinal motion of whe vertical rope and skip.
Figure 3.4 illusteates the variables u(s, £}, (3, ¢, w{5,¢) which represent Lhe
motien at & station alung the catenary in the tangential, norroal and bi-normal
direction of the equilibrium profile respectively, where a refers to the arc length
co-ordinate measured along the equilibrium configuration. The co-ordinates
uy, W8, L)tz tepreeent the tangential motion at the sheave, the Jongitudinal
motion of the vertical repe, and the motion at Lhe skip teapectively, Continuity
of ruotion across the sheave requires u(fs ) = u, = (i, 1},

AThis ¥ a significant aspymphion which woa iolrodiced €0 aimplily the analysis at s
siage of the rescarch. Katzmarczyk[1903] is considering the effect of including the clectirical

charactariabics of the windsr mnotot. .
Eippendiy M presants ao altarnhlive formulnation, where the kinematics of the cablg

sheave coptart ara defined through grometric coneidecntions, Tesalting in constraint reba-
tinnahips gevarning the motion of tha cable at Lhe sheave el
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3.3.1 Equations of Motion and Equilibrium

The equations of motion are developed for the system deacribed, by following
a similar development Lo that of Perkina and Mote[1987]. The kinetic, clastic
and gravitational potential energy of the system is defined in terms of the
rquilibriuim state of the system. The equations of motion are extracted via
Hamilton's principle. By setting displacements and time derivatives to zeto
the cquations defining the equilibrinm state of the system result,

[ this analysis the Lagrangian strain € defines the strain measure in the cate-
nary:

1
€=Ug— RUT %{“,ﬁ- + t"?- + w.]x} + wfun, —ve, + ._“—:lﬂ:l[l_-ld‘-i +v*)}

Since lateral motion i3 not permitled in the vertical rope, the strain measure
applied in the vertical rope € iz defined as:

E=T.,

The strain energy of the cable ! in the final configuration, formulated in tetrms
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of the equilibrium strain energy «! of the cable in the equilibrium configuration
i

. I | & i
f_ E g = il <
I = rF-’f-jg (P + ZAEE]EJH+J{E {(F+ z.ﬁE'E]-fnf.q

where £ F repreaent, the tension in the catenary and vertical rope in the
latic equilibrium state respectively.,

The kinetic energy ol the cable in the final configuration, referenced to the

1ile ..a.--l-n-. wadl e u Frrrries] ko an:
'sl;,illull.ull.llll. LUILIIE LurllidjL ¥ '-'H'l-ll'“llu“-l'\l

'U{"l't.]c.ﬂ.]. section I'E:B'PEET.WEhf, (tey+& ], {3 +r:'} reprosent the tangulha! velomtq.r
ar the sheave and skip respectively.

The veloeity of the eatenary ¥/ in the final configuration is obtained as:

Vo= [day +uat + {e'az +vudn' + {Fas + )

where: By = 1 4+ k. = &Y, g =1, + L3, 63 = w,,.

The velocity of the verical rope ¥ In
F/= (1 +8,) + 8

The gravitational potential energy ﬂ'-’ of the cable in the final configuration,

written in terms of the gravumwﬁbwwhhcﬁmﬂm—

equilibrium configuration i

e . 1
rf =i+ [ ul 4 vidpgd’ds - | pgd'Tds - Mgu,
1] c
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where 1, I, are the components of the normal and tangential unit vectors pro-
jected on the vertical cartesian unit vector ¢,, €; = Lt + Ln' .

The Lagrangian of the system is thus:

— ; G —\ -
L(s,t,uvv,w7ul1u2au,s,v,s,w,sau,sau,tav,hw,taul)u’?a gy —"n

e

®
1
Qe

i

The Lagrangian is split into discrete and continuous components for conve-

nience:

C(S, t, U, vV, W, U,s, Vs, W,y Uty Uty wt, H,U .nﬁ.t’ Uy, Uy, U, 'U,z) =

PId Bl B} tihad 1 0 ¥ w

+£2(31 t, E, 8 u t) + £3(t Uy, ul) + £4(t, Uz, Ug)

where:

fle,

=b!

»l. Y R | o— ]. PPEPSEEN —1 1
jl [} pAtKJ ) KJ _ (P' + §A'b€)€+ mgujas

11 iy2

£3 2 R? (ul +c

Ly = %M(d, + ')+ Mgu,

The equations of motion are determined by applying Hamilton’s principle,

which requires stationarity of the action integral for arbitrary variations in

the dependent co-ordinates, compatible with the boundary conditions, which

vanish at %,,%:.

o{[ “(xfy 7l —wl)dt} =0 (3.3)

0
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Applying the condition of stationarity with respect to arbitrary variations in
the co-ordinates SU(s, t),6a(s,t),6u1,6uz, leads to the requirement that:

al fle (9, O 0L, 0 0L oL,

_ 9%y _ 9 P2 syds + SH6U

/to [/0 {ag A TR Y i )} )
v (9L, 0 ,0L; 0 0L, _ oL,

ot R pdact ) P 92 u

+], {au 5t 5% as(r)}6”d3+ 5 00l
f0Ls B 0L\, | [0Ls 0 9Ll I,

£ - —(—

- — =\ quy T othal @ =0
T w8t ew 0 | dus 5t | ™

where:

UT (s,t) = {u(s, 1), v(s,2),w(s, 1)}

D
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§(ly, t) = bus

Applying these conditions, the equations of motion result as:

o0 " ailap) " dsou
oL, _3_(?_5_3)-_3_(“2) =0
Pu ot ou’ 0s 0w

L. 0 .0Ls, 0L, 0L _
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Pecforming the necessary manipulations resulta in a set of si¢ nonlinear differ-
ential equations defining the motion of the mine hoist sysiem.
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[tr + A'Bl]na]rl a [pating + e waf] Lt [,y v gl P
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The fiest three equations are identical to those derived by Perking and Mote{1987).
The fourth equetion describes the longitudinal mation of the vertical rope. The
fifth and sixth equations describe the inertial balance across the sheave, cou.

——

pli d the boundary condition reguired
to achieve dynamic equilibrium between the skip and the tail of the vertical

tope, respectively.

The equalions of static equilibrivm, for a constant velocity state cf‘ = 0, are
extracted by setting the time derivatives and displacement components Lo zero.

Thus the equations goversing the static equilibriovm profile are:

~l{pA'e)s + Pl = pgA (34}
—pAie(c) + &P = pgA'ly (4.5
(3.6)

Pl — F{l) = 0 {(3.7)
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Mg+ pA () = T {l} =0 (3.8]

:rlcma and Mote[1987] solved the equilibrium equations governing the profile
of a cable with arbitrary inclination and sag. This was accomplished by in-
troducing a momensum balance across a segment of arc length 57, extending

from the the lowest point oo the profile whote 1the tension 13 F,, to any obther
station along the arc len_glh where the tension i3 P Relerring to fgure 3.5,
Lhe momentum balance yields:

F1L1
f M
i
S| /
| .
~Be, | g c
‘ LP gh's'es

Figure 3.5: Control volume of segment, of cable.

[P = pAi"|ff = [Py — pAE Jer + pA'gS e

Since I = f22; + fiea, s fy can be defined. Together with the frst two equilib-
rium equations, the tension distribution and curvature can be defined as:

= [ - pAie” ) + (pg A ISP + Al
K51} = poAi{Fo— pAW[(Fy — 2 A + {pA'SY]

Integration of the cable curvature leads to:

Xi(XD) = Meosh( XM
ation A7 a1 AT and ® 2 of g inbroduced on the basis that &' EA® <= L.

ation A e

*The approxitt
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and the arc length co-ordinate:

i X dXi;z% — A2 i 2
5= [0+ (G X = Mlsinh(Xi/M?)

where M? = (P, — pA‘c’)/pgA’. The equation for the catenary profile X3(X})
and the arc length S* are used to define the tension P, and the position of the
catenary in the X7, X; plane, given ¢, and the initial cable length L'. Although
this approach accurately accounts for the tension and curvature distribution in
the equilibrium configuration, as noted previously, substantial simplification
can be made in the context of the mine hoist system by treating the catenary
as a flat sag cable.

3.3.2 Flat Sag Cable Approximéti(m

In the mine hoist system, the catenary is inclined. However, due to the high
tension in the catenary as a result of the payload and mass of the vertical
rope, the cable profile lies close to the chord between the drum and sheave.
Irvine[1981] derived the profile of a static inclined cable, under sufficient ten-
sion such that the profile lies close to the chord, as illustrated in figure 3.6.

The approximate profile with respect to the chord is defined as:

where z = z/(mgl?cos(6)/H), x = z/l, € = mglsin(0)/H; z represents the
perpendicular distance between the profile and the chord, x represents the
distance from the upper support along the chord length, and H represents
the component of the cable tension projected onto the chord at the upper
support.- This profile is asymmetric with respect to the mid span, where the
asymmetry is dictated by the magnitude of €. If e << 1, the variation of
the tension is considered to be negligible with respect to the static tension,
and the prohle i i :
to its mid span’. By assuming such a profile, Irvine[1981] suggests that the
natural frequencies of an inclined cable can be determined from the frequency

—eq_u.a,_tign_of_a,_ﬁat_mg horizontal cable, where the cable parameter is corrected

7The same solution is obtained by considering the cable to be supported at equal eleva-

tion, and correcting the gravitational constant to gcos(8).



