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Abstract

There is a well established connection between one parameter Lie groups of transfor-

mations and conservation laws for differential equations. In this thesis, we construct

conservation laws via the invariance and multiplier approach based on the well-

known result that the Euler-Lagrange operator annihilates total divergences. This

technique will be applied to some plasma physics models. We show that the recently

developed notion of the association between Lie point symmetry generators and con-

servation laws lead to double reductions of the underlying equation and ultimately

to exact/invariant solutions for higher-order nonlinear partial differential equations

viz., some classes of Schrödinger and KdV equations.
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Introduction

The study and analysis of differential equations through the realm of group theory is

associated with the great mathematician Sophus Lie [59]. Some effective Lie group

methods such as the classical Lie group approach [17, 42, 73], the non-classical Lie

group approach [15, 57, 72] and the Clarkson and Kruskal direct method [19, 20]

have been implemented successfully in finding symmetries, symmetry groups, sym-

metry reductions and constructions of group invariant solutions of nonlinear partial

differential equations (PDEs). They have been used to construct new exact solu-

tions for numerous physically important nonlinear PDEs arising from mathematics

and physics (see [22, 31, 41, 47, 58, 60, 62, 65, 81, 84, 96] and references therein).

There are a number of reasons to compute conserved densities and fluxes of PDEs.

Some conservation laws are fundamental laws of physics (e.g., conservation of mo-

mentum, mass and energy) while others facilitate the analysis of the PDE. They

assist in obtaining reductions and solutions of PDEs. The existence of a large num-

ber of conservation laws is a predictor of complete integrability [38]. Without these

conserved vectors (integrals of motion), an understanding of the problem would be

incomplete [33]. The role of ‘multipliers’ has been shown to play a significant role in

the construction of conservation laws and in determining hierarchies [28]. In short,

knowledge of a multiplier, by formula, leads to a conserved flow.
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The theory of double reduction of a PDE (and systems of PDEs) is well-known

for the association of conservation laws with Noether symmetries [16, 73]. The

association of conservation laws with Lie-Bäcklund symmetries [49] and non-local

symmetries [85, 86] was then analysed. This lead to the expansion of the theory

of double reduction for PDEs with two independent variables which do not possess

a Lagrangian formulation, i.e., do not possess Noether symmetries [87]. Most of

the previous analyses of nonlinear PDEs are based on the ‘travelling wave’ type

solutions via some well-known substitutions. This method shows that the travelling

wave method by the underlying symmetries of the equation is recovered and how

solutions are obtained via a double reduction following an association of a Lie point

symmetry with conservation laws of the equation. Such an association exists for a

range of symmetries, e.g., scaling and rotational symmetries. In this thesis, we apply

the fundamental theorem of double reduction for classes of higher-order nonlinear

PDEs and systems of PDEs with two independent variables.

This thesis is structured as follows.

In the first chapter, we state the definitions and theorems of the fundamental con-

cepts that will be used to perform the calculations.

In the second chapter, we perform the double reduction procedure as discussed

above for a second-order system of PDEs, by analysing the Gross-Pitaevskii equation

(section 2.2) and the parametrically damped-driven Schrödinger equation (section

2.3).

In the third chapter, we construct conserved vectors via the invariance and multiplier

approach as discussed above and apply the double reduction procedure for a third-

order scalar Hunter-Saxton type equation (section 3.2), then we apply the double

reduction procedure for a version of the third-order standard Korteweg-de Vries

2



(KdV) equation (section 3.3) and for a third-order system of PDEs related to the

Drinfeld-Sokolov-Wilson equation (section 3.4).

In the fourth chapter, we calculate conserved quantities via the invariance and mul-

tiplier approach for a second-order system of PDEs related to generalized Zakharov

equations (section 4.2) and for a fourth-order wave equation related to compres-

sional dispersive Alfvén waves (section 4.3). We also calculate conserved vectors via

Noether’s theorem and apply the double reduction procedure in section 4.3.

In the fifth chapter, we analyse a fourth-order system of PDEs based on a model

of fluid mechanics related to unsteady hydromagnetic flows of an Oldroyd-B fluid

under the influence of hall currents (section 5.2).
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Chapter 1

Preliminaries

1.1 Introduction

In this chapter, we present the following definitions and theorems of the fundamental

concepts that will be used throughout this thesis.

1.2 Fundamental Concepts

A function f(x, u, u(1), . . . , u(k)) of a finite number of variables is called a differential

function of order k.

u(1), u(2), . . . , u(k) denotes the collections of all first, second, . . . , kth order partial

derivatives, that is, uαi = Di(u
α), uαij = DjDi(u

α), . . . respectively, with the total
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differentiation operator with respect to xi given by

Di =
∂

∂xi
+ uαi

∂

∂uα
+ uαij

∂

∂uαj
+ · · · (1.1)

where i represents the independent variables.

The summation convention for an index appearing twice in a term is adopted

throughout this thesis.

It will be denoted that A is the universal vector space of differential functions, thus

consider a kth order system of PDEs of n independent variables x = (x1, x2, . . . , xn)

and m dependent variables u = (u1, u2, . . . , um)

Gµ(x, u, u(1), . . . , u(k)) = 0, µ = 1, . . . , m̃. (1.2)

The Lie-Bäcklund or generalized operator is given by

X = ξi
∂

∂xi
+ ηα

∂

∂uα
, ξi, ηα ∈ A. (1.3)

The operator (1.3) is an abbreviated form of the infinite formal sum

X = ξi
∂

∂xi
+ ηα

∂

∂uα
+
∑
s≥1

ζαi1i2...is
∂

∂uαi1i2...is
, (1.4)

where the additional coefficients are determined uniquely by the prolongation for-

mulae

ζαi = Di(W
α) + ξjuαij,

ζαi1...is = Di1 . . . Dis(W
α) + ξjuαji1...is , s > 1. (1.5)

In (1.5), Wα is the Lie characteristic function

Wα = ηα − ξjuαj . (1.6)
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A Lie-Bäcklund operator X is said to be a Noether symmetry corresponding to a

Lagrangian L ∈ A, if there exists a vector Bi = (B1, . . . , Bn), Bi ∈ A, such that

X(L) + LDi(ξ
i) = Di(B

i). (1.7)

If Bi = 0, i = 1, . . . , n, then X is referred to as a strict Noether symmetry corre-

sponding to a Lagrangian L ∈ A.

A current T i = (T 1, . . . , T n), T i ∈ A is conserved if it satisfies

DiT
i = 0 (1.8)

along the solutions of (1.2).

It can be shown that every admitted conservation law arises from multipliers

Qµ ∈ A such that

QµG
µ = DiT

i (1.9)

holds identically (i.e., off the solution space) everywhere, not just on solutions for

some current T i.

Definition 1.1 [49] A Lie-Bäcklund symmetry generator X of the form (1.4) is

associated with a conserved vector T of the system (1.2) if X and T satisfy the

relations

X(T i) + T iDk(ξ
k)− T kDk(ξ

i) = 0, i = 1, . . . , n. (1.10)

Definition 1.2 [38] The Euler-Lagrange operator, for each α, is defined by

δ

δuα
=

∂

∂uα
+
∑
s≥1

(−1)sDi1 · · ·Dis

∂

∂uαi1···is
, α = 1, . . . ,m. (1.11)

Theorem 1.3 [48, 50] Suppose that X is any Lie-Bäcklund symmetry of (1.2) and

T i, i = 1, . . . , n are the components of the conserved vector of (1.2). Then

T ∗i = [T i, X] = X(T i) + T iDkξ
k − T kDkξ

i, i = 1, . . . , n (1.12)
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constitute the components of a conserved vector of (1.2), i.e., DiT
∗i |(1.2)= 0.

Theorem 1.4 [18] Suppose that DiT
i = 0 is a conservation law of the PDE system

(1.2). Then under a contact transformation, there exists functions T̃ i such that

J DiT
i = D̃iT̃

i, where T̃ i is given as

T̃ 1

T̃ 2

...

T̃ n

 = J(A−1)T



T 1

T 2

...

T n

 , J



T 1

T 2

...

T n

 = AT



T̃ 1

T̃ 2

...

T̃ n

 (1.13)

in which

A =



D̃1x1 D̃1x2 · · · D̃1xn

D̃2x1 D̃2x2 · · · D̃2xn
...

...
...

...

D̃nx1 D̃nx2 · · · D̃nxn

 , A−1 =



D1x̃1 D1x̃2 · · · D1x̃n

D2x̃1 D2x̃2 · · · D2x̃n
...

...
...

...

Dnx̃1 Dnx̃2 · · · Dnx̃n


(1.14)

and J = det(A).

Theorem 1.5 [18] (fundamental theorem on double reduction)

Suppose that DiT
i = 0 is a conservation law of the PDE system (1.2). Then under

a similarity transformation of a symmetry X of the form (1.4) for the PDE, there

exist functions T̃ i such that X is still a symmetry for the PDE satisfying D̃iT̃
i = 0

and 

XT̃ 1

XT̃ 2

...

XT̃ n

 = J(A−1)T



[T 1, X]

[T 2, X]
...

[T n, X]

 , (1.15)
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where

A =



D̃1x1 D̃1x2 · · · D̃1xn

D̃2x1 D̃2x2 · · · D̃2xn
...

...
...

...

D̃nx1 D̃nx2 · · · D̃nxn

 , A−1 =



D1x̃1 D1x̃2 · · · D1x̃n

D2x̃1 D2x̃2 · · · D2x̃n
...

...
...

...

Dnx̃1 Dnx̃2 · · · Dnx̃n


(1.16)

and J = det(A).

The original system of PDEs (1.2) is equivalent to

sysj =

 qj
1G1 + qj

2G2 + qj
3G3 + . . . = 0,

qj
1G1 − qj2G2 − qj3G3 − . . . = 0.

(1.17)

The system (1.17) can be rewritten as

D1Tj
1 +D2Tj

2 + . . .+DnTj
n = 0,

qj
1G1 − qj2G2 − qj3G3 − . . . = 0, (1.18)

where Tj = (T 1
j , . . . , T

n
j ) and Qj = (q1j , q

2
j , q

3
j , . . .) for i = 1, . . . , n and j = 1, 2, . . .

Theorem 1.6 [73] (Noether’s theorem)

For any Noether symmetry X corresponding to a given Lagrangian L ∈ A, there

exists a corresponding vector T i = (T 1, . . . , T n), T i ∈ A, defined by

T i = Bi −N i(L), i = 1, . . . , n (1.19)

which is a conserved current of the Euler-Lagrange equations
δL

δuα
= 0, α = 1, . . . ,m

and the Noether operator associated with a Lie-Bäcklund operator X is given by

N i = ξi +Wα δ

δuαi
+
∑
s≥1

Di1 · · ·Dis(W
α)

δ

δuαii1···is
, i = 1, . . . , n (1.20)
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in which the Euler-Lagrange operators with respect to derivatives of uα are obtained

from (1.11) by replacing uα by the corresponding derivatives, e.g.,

δ

δuαi
=

∂

∂uαi
+
∑
s≥1

(−1)sDj1 · · ·Djs

∂

∂uαij1···js
, i = 1, . . . , n, α = 1, . . . ,m. (1.21)

The double reduction theory results in two reductions, the first being a reduction in

the number of independent variables and the second being a reduction in the order

of the PDE by at least one to an ordinary differential equation (ODE) [18, 87].

When the PDE system is variational, multipliers are variational symmetries. There

is a determining system for finding multipliers and hence conservation laws for any

given PDE system. We resort to the invariance and multiplier approach based on

the well-known result that the Euler-Lagrange operator annihilates total divergences,

i.e., the defining equation is given by

δ

δuα
[QµG

µ] = 0. (1.22)

To calculate the conserved flows for each corresponding multiplier, this requires

the integration (by parts) of an expression in multi-dimensions involving arbitrary

functions and its derivatives, which is a difficult and cumbersome task. We apply

the homotopy operator [5, 38, 51, 74], which is a powerful algorithmic tool (explicit

formula) that originates from homological algebra and variational bi-complexes. It

reduces the inversion of the total divergence operator to a standard integration of

one auxiliary variable and is calculated via calculus based formulas that involve

higher-order Euler-Lagrange operators [38].
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Chapter 2

Reductions and Exact Solutions of

some Nonlinear Schrödinger

Equations

2.1 Introduction and background

Bose-Einstein condensate (BEC) [76, 77] emerged in 1995 as an example of a cold

fifth state of matter called a superfluid. The particles in BEC have the coldest

temperature possible, viz., zero degrees Kelvin, or absolute zero. Atoms in this

state display unique characteristics. The initial idea dates back to 1924, when

the physicists Bose and Einstein theorized that this other state of matter must be

possible. Einstein expanded on Bose’s ideas about the behaviour of light when

acting as waves and particles. He applied the statistics which described how light

can coalesce into a single entity (now known as a laser) and considered its impact
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on particles with mass. The underlying equation that describes this phenomenon

is a form of a nonlinear Schrödinger equation known as the Gross-Pitaevskii (GP)

equation, whose derivation is now widely available (see [9, 12, 27]).

This equation, including an external potential V (r), is given by

iFt = (k∇2 + V (r) + g|F |2)F, (2.1)

where k and g are arbitrary real constants and F is the condensate wave function of

a complex order parameter. We analyse (2.1) for the one-dimensional case. Without

loss of generality, we choose k = g = 1, so that (2.1) becomes

iFt = Fxx + V (x)F + |F |2F. (2.2)

We assume F to be of the form F = u + iv, so that separating (2.2) into real and

imaginary parts results in the system of PDEs

ut − vxx − V (x)v − (u2 + v2)v = 0,

vt + uxx + V (x)u+ (u2 + v2)u = 0, (2.3)

which is the version we will consider for our analysis.

We perform the double reduction procedure on (2.3) for two cases of the potential

V (x).

The second Schrödinger related problem we will consider is as follows.

A model that describes phenomena such as nonlinear Faraday resonance in a verti-

cally oscillating water trough [55], propagation of magnetization waves in an easy-

plane ferromagnet [21], and phase-sensitive amplification of light pulses in optical

fibres [24] is governed by the parametrically damped-driven nonlinear Schrödinger
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equation. These types of equations arise if the dissipation coefficient and the driving

strength are weak, where the driving frequency is just below the phonon band in a

soliton bearing system. They exhibit localized solutions with a variety of temporal

behaviours that range from stationary to periodic and chaotic [10, 11, 79].

This equation is given by [11]

iFt + Fxx + 2|F |2F − F = hF̄ − iγF, (2.4)

where γ ≥ 0 is the damping coefficient, h is the amplitude of the parametric driver

(which can be assumed to be positive) and F is a wave function of a complex order

parameter.

We assume F to be of the form F = u + iv, so that separating (2.4) into real and

imaginary parts results in the system of PDEs

ut + vxx + 2(u2 + v2)v + (h− 1)v + γu = 0,

−vt + uxx + 2(u2 + v2)u+ (h− 1)u− γv = 0, (2.5)

which is the version we will consider for our analysis.

We perform the double reduction procedure on (2.5) for two cases based on the

relationship of the parameters γ and h.

The results for the damped-driven Schrödinger equation appear in [14].

12



2.2 The Gross-Pitaevskii equation

We analyse the following system of PDEs

G1 = ut − vxx − V (x)v − (u2 + v2)v = 0,

G2 = vt + uxx + V (x)u+ (u2 + v2)u = 0, (2.6)

where G1 and G2 are functions satisfying (1.2).

Case 1: V (x) = A(x)

Equation (2.6) admits the following two Lie point symmetries

X1 =
∂

∂t
,

X2 = v
∂

∂u
− u ∂

∂v
, (2.7)

and the following two conserved vectors

T1 = [u2 + v2, 2(uxv − 2vxu)],

T2 = [(u2 + v2)
2

+ 2(u2 + v2)A(x)− 2(u2x + v2x), 4(uxut + vxvt)], (2.8)

with corresponding multipliers

Q1 = [2u, 2v],

Q2 = [−4vt, 4ut]. (2.9)

13



2.2.1 A double reduction of (2.6) by < X1, X2 >

We first show that X1 and X2 are associated with T2 using (1.12) for i = 1, 2, which

is given by

T ∗ = X

(
T t

T x

)
−

 Dtξ
t Dxξ

t

Dtξ
x Dxξ

x

(T t
T x

)
+ (Dtξ

t +Dxξ
x)

(
T t

T x

)
. (2.10)

We have

(
T ∗t2
T ∗x2

)
= X

[1]
1

(
T t2
T x2

)
−

 0 0

0 0

(T t2
T x2

)
+ (0)

(
T t2
T x2

)
=

(
U1

U2

)

where

U1 =
∂

∂t
[(u2 + v2)

2
+ 2(u2 + v2)A(x)− 2(u2x + v2x)]

and

U2 =
∂

∂t
[4(uxut + vxvt)].

This computation shows that

U1 = 0 = U2,

where the prolongation of X1 from (1.4) and (1.5) is given by

X
[1]
1 =

∂

∂t
.

Therefore X1 is associated with T2.

Similarly for X2,

(
T ∗t2
T ∗x2

)
= X

[1]
2

(
T t2
T x2

)
−

 0 0

0 0

(T t3
T x3

)
+ (0)

(
T t3
T x3

)
=

(
U1

U2

)

14



where

U1 = 4uv(u2 + v2) + 4uvA(x)− 4uv(u2 + v2)− 4uvA(x)− 4uxvx + 4uxvx

and

U2 = 4uxvt + 4utvx − 4utvx − 4uxvt.

This shows that

U1 = 0 = U2,

where the prolongation of X2 from (1.4) and (1.5) is given by

X
[1]
2 = v

∂

∂u
− u ∂

∂v
+ vt

∂

∂ut
+ vx

∂

∂ux
− ut

∂

∂vt
− ux

∂

∂vx
.

Therefore X2 is also associated with T2.

We can get a reduced conserved form for the first equation of (1.17) for j = 2, since

X1 and X2 are both associated symmetries of T2.

We now consider a linear combination of X1 and X2, i.e., of the form X = X1+cX2 (c

is an arbitrary constant) and transform this generator to its canonical form Y = ∂
∂s

,

where this generator is of the form Y = 0 ∂
∂r

+ ∂
∂s

+ 0 ∂
∂w

+ 0 ∂
∂p

.

From X(r) = 0, X(s) = 1, X(w) = 0 and X(p) = 0, we have

dt

1
=
dx

0
=
du

cv
=

dv

−cu
=
dr

0
=
ds

1
=
dw

0
=
dp

0
. (2.11)

Equation (2.11) is solved using the well-known method of invariance.

The invariants of X from (2.11) are given by
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b1 = x,

b2 = u2 + v2,

b3 = arctan
(
u

v

)
− ct,

b4 = r,

b5 = s− t,

b6 = w,

b7 = p, (2.12)

where b4, b5, b6 and b7 are arbitrary functions all dependent on b1, b2 and b3.

By choosing b4 = b1, b5 = 0, b6 =
√
b2 and b7 = b3, we obtain the canonical

coordinates

r = x,

s = t,

w =
√
u2 + v2,

p = arctan
(
u

v

)
− ct. (2.13)

We note that w = w(r) and p = p(r).

The inverse canonical coordinates from (2.13) are given by

t = s,

x = r,

u = w sin (p+ cs),

v = w cos (p+ cs). (2.14)
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The computation of A and (A−1)T from (1.14) and (2.14) is given by

A =

 Drt Drx

Dst Dsx

 =

 0 1

1 0


and

A−1 =

 Dtr Dts

Dxr Dxs

 =

 0 1

1 0

 = (A−1)T ,

where J = det(A) = −1.

The partial derivatives of u and v from (2.14) are given by

ut = cw cos(p+ cs),

ux = wr sin (p+ cs) + wpr cos (p+ cs),

vt = −cw sin (p+ cs),

vx = wr cos (p+ cs)− wpr sin (p+ cs),

uxx = (2wrpr + wprr) cos (p+ cs) + (wrr − wp2r) sin (p+ cs),

vxx = (−2wrpr − wprr) sin (p+ cs) + (wrr − wp2r) cos (p+ cs). (2.15)

We now apply the formula (1.13) for i = 1, 2, which is given by(
T rj
T sj

)
= J(A−1)T

(
T tj
T xj

)
. (2.16)

Equation (2.16) also satisfies

DrT
r
j = 0. (2.17)

We note that (2.17) is independent of s, since Y = ∂
∂s

.
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By substituting (2.14) and (2.15) into (2.16) for j = 2, we obtain

T r2 = −4cw2pr,

T s2 = −[w4 + 2(Aw2 − w2
r − w2p2r)]. (2.18)

The next step of this procedure is to combine (2.17) with (2.18), which results in

w2pr = k, (2.19)

or equivalently

p = k
∫ 1

w2
dx+m, (2.20)

where k and m are integration constants.

Differentiating (2.19) implicitly with respect to r and then taking out a common

factor of w results in

2wrpr + wprr = 0. (2.21)

The second equation of (1.17) for j = 2 in simplified form is given by

−2utvt − utuxx + vtvxx + A(vvt − uut) + (u2 + v2)(vvt − uut) = 0. (2.22)

After transforming (2.22) using (2.14) and (2.15), and then taking out a common

factor of cw, we obtain[
2(c− A)w + 2wp2r − 2(wrr + w3)

]
cos(p+ cs) sin(p+ cs)

− 2(2wrpr + wprr) cos 2(p+ cs) = 0.

(2.23)

Then substituting (2.19) and (2.21) into (2.23), and dividing both sides by 2, this

results in the nonlinear ODE

k2 = w3wrr + (c− A)w4 − w6. (2.24)
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Combining (2.14) and (2.20), we obtain the final solution to our original equation

(2.6) as

u = f(x) sin

(
ct+ k

∫ 1

f(x)2
dx+m

)
,

v = f(x) cos

(
ct+ k

∫ 1

f(x)2
dx+m

)
, (2.25)

where w = f(x) is a solution of the nonlinear ODE

k2 = f(x)3
(
d2

dx2
f(x)

)
+ (c− A(x))f(x)4 − f(x)6. (2.26)

Case 2: V (x) = x2

In this case, (2.6) admits the following four Lie point symmetries

X1 =
∂

∂t
,

X2 = v
∂

∂u
− u ∂

∂v
,

X3 = e2t
∂

∂x
+ xe2tv

∂

∂u
− xe2tu ∂

∂v
,

X4 = e−2t
∂

∂x
− xe−2tv ∂

∂u
+ xe−2tu

∂

∂v
, (2.27)

and the following four conserved vectors

T1 =
[
u2 + v2, 2(uxv − vxu)

]
,

T2 =
[
(u2 + v2)

2
+ 2(u2 + v2)A(x)− 2(u2x + v2x), 4(uxut + vxvt)

]
,

T3 =
[
4e2t(xv2 + xu2 − uxv + vxu),−4e2t

(
u4 + v4

2
+ (x2 + v2)u2 + (2xvx + vt)u

+ x2v2 − (2xux + ut)v + u2x + v2x

)]
,
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T4 =
[
4e−2t(xv2 + xu2 + uxv − vxu), 4e−2t

(
u4 + v4

2
+ (x2 + v2)u2 + (−2xvx + vt)u

+ x2v2 + (2xux − ut)v + u2x + v2x

)]
, (2.28)

with corresponding multipliers

Q1 = [2u, 2v],

Q2 = [−4vt, 4ut],

Q3 =
[
8e2t(xu+ vx), 8e

2t(xv − ux)
]
,

Q4 =
[
8e−2t(xu− vx), 8e2t(xv + ux)

]
. (2.29)

2.2.2 A reduction of (2.6) by < X4 >

We show that X4 is associated with T1 using (2.10).

We have(
T ∗t1
T ∗x1

)
= X

[1]
4

(
T t1
T x1

)
−

 0 0

−2e−2t 0

(T t1
T x1

)
+ (0)

(
T t1
T x1

)
=

(
U1

U2

)

where

U1 = −2xe−2tuv + 2xe−2tuv

and

U2 = 2xe−2tvvx + 2xe−2tuux−2e−2tv(v+xvx)−2e−2tu(u+xux) + 2e−2tu2 + 2e−2tv2.

Thus

U1 = 0 = U2,

where

X
[1]
4 = e−2t

∂

∂x
− xe−2tv ∂

∂u
+ xe−2tu

∂

∂v
− e−2t(v + xvx)

∂

∂ux
+ e−2t(u+ xux)

∂

∂vx
.
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Therefore X4 is associated with T1.

We can get a reduced conserved form for the first equation of (1.17) for j = 1, since

X4 is an associated symmetry of T1.

We transform the generator X4 to its canonical form Y = ∂
∂s

.

From X4(r) = 0, X4(s) = 1, X4(w) = 0 and X4(p) = 0, we have

dt

0
=

dx

e−2t
=

du

−xe−2tv
=

dv

xe−2tu
=
dr

0
=
ds

1
=
dw

0
=
dp

0
. (2.30)

The invariants of X4 from (2.30) are given by

b1 = t,

b2 = u2 + v2,

b3 = arctan
(
v

u

)
− x2

2
,

b4 = r,

b5 = s− xe2t,

b6 = w,

b7 = p, (2.31)

where b4, b5, b6 and b7 are arbitrary functions all dependent on b1, b2 and b3.

By choosing b4 = b1, b5 = 0, b6 =
√
b2 and b7 = b3, we obtain the canonical

coordinates

r = t,

s = xe2t,

w =
√
u2 + v2,
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p = arctan
(
v

u

)
− x2

2
. (2.32)

The inverse canonical coordinates from (2.32) are given by

t = r,

x = se−2r,

u = w cos
(
p+

s2e−4r

2

)
,

v = w sin
(
p+

s2e−4r

2

)
. (2.33)

The computation of A and (A−1)T is given by

A =

 1 −2se−2r

0 e−2r


and

(A−1)T =

 1 0

2s e2r


where J = e−2r.

The partial derivatives of u and v from (2.33) are given by

ut = wr cos
(
p+

s2e−4r

2

)
− wpr sin

(
p+

s2e−4r

2

)
,

ux = −se−2rw sin
(
p+

s2e−4r

2

)
,

vt = wr sin
(
p+

s2e−4r

2

)
+ wpr cos

(
p+

s2e−4r

2

)
,

vx = se−2rw cos
(
p+

s2e−4r

2

)
,

uxx = −w sin
(
p+

s2e−4r

2

)
− s2e−4rw cos

(
p+

s2e−4r

2

)
,

vxx = w cos
(
p+

s2e−4r

2

)
− s2e−4rw sin

(
p+

s2e−4r

2

)
. (2.34)

22



By substituting (2.33) and (2.34) into (2.16) for j = 1, we obtain

T r1 = e−2rw2,

T s1 = 0. (2.35)

Solving (2.17) and (2.35) simultaneously results in

e−2rw2 = k, (2.36)

or equivalently

w =
√
ker, (2.37)

where k is an integration constant.

Differentiating (2.36) implicitly with respect to r and then taking out a common

factor of −2e−2rw results in

w − wr = 0. (2.38)

The second equation of (1.17) for j = 1 in simplified form is given by

uut − vvt − uvxx + vuxx − 2uv(x2 + u2 + v2) = 0. (2.39)

After transforming (2.39) using (2.33) and (2.34), and then taking out a common

factor of w, we obtain

−2w(pr + w2) sin
(
p+

s2e−4r

2

)
cos

(
p+

s2e−4r

2

)
+ w − wr = 0. (2.40)

We now substitute (2.36) and (2.38) into (2.40).

This results in the ODE

pr + ke2r = 0. (2.41)
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After integrating (2.41) with respect to r, we obtain

p = −k
2
e2r +m, (2.42)

where m is an integration constant.

Combining (2.33), (2.37) and (2.42), we obtain the final solution to our original

equation (2.6) as

u =
√
ket cos

(
−k

2
e2t +m+

x2

2

)
,

v =
√
ket sin

(
−k

2
e2t +m+

x2

2

)
. (2.43)

2.3 The parametrically damped-driven Schrödinger

equation

In this section, we analyse the following system of PDEs

G1 = ut + vxx + 2(u2 + v2)v + (h− 1)v + γu = 0,

G2 = −vt + uxx + 2(u2 + v2)u+ (h− 1)u− γv = 0. (2.44)

Case 1: γ 6= 0, h 6= 0

Equation (2.44) admits a four-dimensional Lie point symmetry algebra spanned by

X1 = −v ∂
∂u

+ u
∂

∂v
,

X2 =
∂

∂t
− (h− 1)v

∂

∂u
+ (h− 1)u

∂

∂v
,
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X3 =
∂

∂x
,

X4 = 2t
∂

∂x
− xv ∂

∂u
+ xu

∂

∂v
, (2.45)

and only one conserved vector

T1 =

[
1

2
e2γt(uvx − vux),

1

2
e2γt((u2 + v2)2 + (h− 1)(u2 + v2)

+ vut − uvt + u2x + v2x)

]
, (2.46)

with corresponding multiplier

Q1 = [e2γtvx, e
2γtux]. (2.47)

2.3.1 A reduction of (2.44) by < X1, X3 >

We show that X1 and X3 are associated with T1.

We have

(
T ∗t1
T ∗x1

)
= X

[1]
1

(
T t1
T x1

)
−

 0 0

0 0

(T t1
T x1

)
+ (0)

(
T t1
T x1

)
=

(
U1

U2

)

where

U1 =
1

2
e2γt(−vvx − uux + vvx + uux)

and

U2 =
1

2
e2γt[−4uv(u2 + v2)− 2(h− 1)uv + vvt + 4uv(u2 + v2) + 2(h− 1)uv

+ uut − vvt − 2uxvx − uut + 2uxvx].
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Thus

U1 = 0 = U2,

where

X
[1]
1 = −v ∂

∂u
+ u

∂

∂v
− vt

∂

∂ut
− vx

∂

∂ux
+ ut

∂

∂vt
+ ux

∂

∂vx
.

Therefore X1 is associated with T1.

Similarly for X3,(
T ∗t1
T ∗x1

)
= X

[1]
3

(
T t1
T x1

)
−

 0 0

0 0

(T t1
T x1

)
+ (0)

(
T t1
T x1

)
=

(
U1

U2

)

where

U1 =
∂

∂x

[
1

2
e2γt(uvx − vux)

]
and

U2 =
∂

∂x

[
1

2
e2γt((u2 + v2)

2
+ (h− 1)(u2 + v2) + vut − uvt + u2x + v2x)

]
.

Thus

U1 = 0 = U2,

where

X
[1]
3 =

∂

∂x
.

Therefore X3 is also associated with T1.

We consider a linear combination of X1 and X3, i.e., of the form X = X3 + cX1 (c

is an arbitrary constant) and transform this generator to its canonical form Y = ∂
∂s

.

From X(r) = 0, X(s) = 1, X(w) = 0 and X(p) = 0, we have

dt

0
=
dx

1
=

du

−cv
=
dv

cu
=
dr

0
=
ds

1
=
dw

0
=
dp

0
. (2.48)
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The invariants of X from (2.48) are given by

b1 = t,

b2 = u2 + v2,

b3 = arctan
(
v

u

)
− cx,

b4 = r,

b5 = s− x,

b6 = w,

b7 = p, (2.49)

where b4, b5, b6 and b7 are arbitrary functions all dependent on b1, b2 and b3.

By choosing b4 = b1, b5 = 0, b6 =
√
b2 and b7 = b3, we obtain the canonical

coordinates

r = t,

s = x,

w =
√
u2 + v2,

p = arctan
(
v

u

)
− cs. (2.50)

The inverse canonical coordinates from (2.50) are given by

t = r,

x = s,

u = w cos (p+ cs),

v = w sin (p+ cs). (2.51)
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The computation of A and (A−1)T is given by

A =

 1 0

0 1


and

A−1 =

 1 0

0 1

 = (A−1)T ,

where J = 1.

The partial derivatives of u and v from (2.51) are given by

ut = wr cos (p+ cs)− wpr sin (p+ cs),

ux = −cw sin (p+ cs),

vt = wr sin (p+ cs) + wpr cos (p+ cs),

vx = cw cos (p+ cs),

uxx = −c2w cos (p+ cs),

vxx = −c2w sin (p+ cs). (2.52)

By substituting (2.51) and (2.52) into (2.16) for j = 1, we obtain

T r1 =
1

2
ce2γrw2,

T s1 =
1

2
e2γr[w4 + (h− 1)w2 − prw2 + c2w2]. (2.53)

Solving (2.17) and (2.53) simultaneously results in

e2γrw2 = k, (2.54)

or equivalently

w =
√
ke−γr, (2.55)
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where k is an integration constant.

Differentiating (2.54) implicitly with respect to r and then taking out a common

factor of 2e2γrw results in

γw + wr = 0. (2.56)

The second equation of (1.17) for j = 1 is given by

e2γtvx
[
ut + vxx + 2(u2 + v2)v + (h− 1)v + γu

]
− e2γtux

[
− vt + uxx + 2(u2 + v2)u+ (h− 1)u− γv

]
= 0. (2.57)

After transforming (2.57) using (2.51) and (2.52), we obtain

−2ce2γrw2
[
pr + c2 − 2w2 − (h− 1)

]
cos (p+ cs) sin (p+ cs)

+ ce2γrw(γw + wr) cos 2(p+ cs) = 0.
(2.58)

We now substitute (2.54) and (2.56) into (2.58), then dividing both sides by −2ck,

this results in the ODE

pr = 2w2 + h− 1− c2. (2.59)

Substituting (2.55) into (2.59), and then integrating with respect to r results in

p =
−k
γ
e−2γr + (h− 1− c2)r +m, (2.60)

where m is an integration constant.

Combining (2.51), (2.55) and (2.60), we obtain the final solution to our original

equation (2.44) as

u =
√
ke−γt cos

(
−k
γ
e−2γt + (h− 1− c2)t+m+ cx

)
,

v =
√
ke−γt sin

(
−k
γ
e−2γt + (h− 1− c2)t+m+ cx

)
. (2.61)
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Case 2: γ 6= 0, h = 0

In this case, (2.44) admits a four-dimensional Lie point symmetry algebra spanned

by

X1 = −v ∂
∂u

+ u
∂

∂v
,

X2 =
∂

∂t
+ v

∂

∂u
− u ∂

∂v
,

X3 =
∂

∂x
,

X4 = 2t
∂

∂x
− xv ∂

∂u
+ xu

∂

∂v
, (2.62)

and the following two conserved vectors

T1 =

[
− 1

2
e2γt(x(u2 + v2) + 2t(vux − uvx)),

e2γt(tu4 − tv2 + tv4 + tu2(−1 + 2v2) + v(tut + xux))

− u(tvt + xvx) + t(u2x + v2x)

]
,

T2 =

[
1

2
e2γt(u2 + v2), e2γt(−vux + uvx)

]
, (2.63)

with corresponding multipliers

Q1 =
[
−xue2γtvx + 2te2γtvx, xve

2γt + 2te2γtux
]
,

Q2 =
[
e2γtu,−e2γtv

]
. (2.64)

2.3.2 A reduction of (2.44) by < X4 >

We show that X4 is associated with T2.
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We have (
T ∗t2
T ∗x2

)
= X

[1]
4

(
T t2
T x2

)
−

 0 0

2 0

(T t2
T x2

)
+ (0)

(
T t2
T x2

)
=

(
U1

U2

)

where

U1 =
1

2
e2γt(−2xuv + 2xuv)

and

U2 = e2γt(− xvvx − xuux + xvvx + v2 + xuux + u2 − u2 − v2).

Thus

U1 = 0 = U2,

where

X
[1]
4 = 2t

∂

∂x
− xv ∂

∂u
+ xu

∂

∂v
− (xvt + 2ux)

∂

∂ut
− (xvx + v)

∂

∂ux

+ (xut − 2vx)
∂

∂vt
+ (xux + u)

∂

∂vx
.

Therefore X4 is associated with T2.

We transform the generator X4 to its canonical form Y = ∂
∂s

.

From X4(r) = 0, X4(s) = 1, X4(w) = 0 and X4(p) = 0, we have

dt

0
=
dx

2t
=

du

−xv
=
dv

xu
=
dr

0
=
ds

1
=
dw

0
=
dp

0
. (2.65)

The invariants of X4 from (2.65) are given by

b1 = t,

b2 = u2 + v2,

b3 = arctan
(
v

u

)
− x2

4t
,
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b4 = r,

b5 = s− x

2t
,

b6 = w,

b7 = p, (2.66)

where b4, b5, b6 and b7 are arbitrary functions all dependent on b1, b2 and b3.

By choosing b4 = b1, b5 = 0, b6 =
√
b2 and b7 = b3, we obtain the canonical

coordinates

r = t,

s =
x

2t
,

w =
√
u2 + v2,

p = arctan
(
v

u

)
− x2

4t
. (2.67)

The inverse canonical coordinates from (2.67) are given by

t = r,

x = 2rs,

u = w cos (p+ rs2),

v = w sin (p+ rs2). (2.68)

The computation of A and (A−1)T is given by

A =

 1 2s

0 2r


and

(A−1)T =

 1 0

−s
r

1

2r


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where J = 2r.

The partial derivatives of u and v from (2.68) are given by

ut = wr cos (p+ rs2)− wpr sin (p+ rs2) + s2w sin (p+ rs2),

ux = −swr sin (p+ rs2),

vt = wr sin (p+ rs2) + wpr cos (p+ rs2)− s2w cos (p+ rs2),

vx = sw cos (p+ rs2),

uxx = −w sin (p+ rs2)

2r
− s2w cos (p+ rs2),

vxx =
w cos (p+ rs2)

2r
− s2w sin (p+ rs2). (2.69)

By substituting (2.68) and (2.69) into (2.16) for j = 2, we obtain

T r2 = re2γrw2,

T s2 = 0. (2.70)

Solving (2.17) and (2.70) simultaneously results in

re2γrw2 = k, (2.71)

or equivalently

w =

√
k

r
e−γr, (2.72)

where k is an integration constant.

Differentiating (2.71) implicitly with respect to r and then taking out a common

factor of e2γrw results in

2rwr + (2γr + 1)w = 0, (2.73)
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or equivalently after dividing both sides by 2r

wr +
w

2r
+ γw = 0. (2.74)

The second equation of (1.17) for j = 2 is given by

e2γt
[
uut − vvt + uvxx + vuxx + 2uv(2(u2 + v2)− 1) + γ(u2 − v2)

]
= 0. (2.75)

After transforming (2.75) using (2.68) and (2.69), we obtain

e2γr(−2wpr + 4w3 − 2w) cos(p+ rs2) sin(p+ rs2)

+ e2γr
(
wr +

w

2r
+ γw

)
cos 2(p+ rs2) = 0. (2.76)

After multiplying both sides of (2.76) by −w
2

, and then substituting (2.72) and

(2.74) into (2.76), this results in the ODE

pr = 2w2 − 1. (2.77)

Substituting (2.72) into (2.77), and then integrating with respect to r results in

p = 2k
∫ e−2γr

r
dr − r. (2.78)

We note that
∫ e−2γr

r
dr = ln r +

∞∑
j=1

(−1)j(2γr)j

jj!
+ m, where m is an integration

constant.

Combining (2.68), (2.72) and (2.78), we obtain the final solution to our original

equation (2.44) as

u =

√
k

t
e−γt cos

(
p+

x2

4t

)
,

v =

√
k

t
e−γt sin

(
p+

x2

4t

)
, (2.79)
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where p = 2k
(

ln t+
∞∑
j=1

(−1)j(2γt)j

jj!
+m

)
− t.

2.4 Discussion and conclusion

We applied the double reduction procedure to the Gross-Pitaevskii equation for two

cases of the potential V (x). In the first case, we obtained a new exact solution that

can be given as a solution of the nonlinear ODE (2.26) for an arbitrary function

f(x). In the second case, we obtained a new exact solution which approximates to

et.

The same procedure was also applied to the parametrically damped-driven Schrödinger

equation for two cases on the relationship of the parameters γ and h. In the first

case, we obtained a new exact solution which approximates to e−γt and in the second

case, we obtained a new exact solution which approximates to
e−γt√
t

.
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Chapter 3

Some Classes of Third-order PDEs

Related to the KdV Equation

3.1 Introduction and background

The well-known KdV equation and its variations have been extensively studied and

analysed in many texts through different numerical and analytical approaches (see

[38, 74, 89, 93] and references therein). In order to study the dynamics of shallow

water waves, the general improved KdV equation models this phenomenon in detail.

This equation is given by [6, 35, 54]

ut + aunux + buxxt + cuxxx = 0, (3.1)

for n 6= 0,−1,−2.

The coefficients b and c of (3.1) relate to the dispersion terms, where b accounts
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for the improved KdV equation and a represents the power law nonlinearity. If

b = 0, then (3.1) reduces to the regular KdV equation. We analyse another class

of nonlinear wave equations related to (3.1) but with greater generality that studies

shallow water waves in lake or ocean shores [53].

The version we will consider is given by

aut − 2m(u)ux + utxx + 2uxuxx + uuxxx + kuxxx = 0, (3.2)

where m(u), a, k 6= 0.

In [53], the authors study various cases of (3.2) construing it as one that is “lying

‘mid-way’ between the periodic Hunter-Saxton and Camassa-Holm equations, and

which describes evolution of rotators in liquid crystals with external magnetic field

and self-interaction.”

We calculate the Lie point symmetries and apply the invariance and multiplier ap-

proach on (3.2) for two cases of the parameter a. When calculating the conservation

laws, we will also consider two choices of the function m(u). One case of the double

reduction procedure will be performed on (3.2) using a specific choice of m(u).

The results for the Hunter-Saxton type equation appear in [67].

We will consider a version of the well-known standard KdV equation given by

ut − uxxx − uux = 0. (3.3)

Since the travelling wave solution is well-known for (3.3), we do not perform the dou-

ble reduction for this case. Instead, we consider a reduction via a scaling symmetry

with some conserved vector.

A system of KdV type equations that we will consider is as follows.
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Drinfeld and Sokolov, followed by Wilson, constructed an equation involving affine

Lie algebras [25] and the affine Kac-Moody Lie algebra C
(1)
2 [95] called the Drinfeld-

Sokolov-Wilson (DSW) equation [4, 38, 74, 91]. The DSW equation is an extension

of the KdV equation and it is a member of the Kadomtsev-Petviashvili hierarchy,

which confirms its integrability [46]. The soliton structure and Painlevé analysis was

analysed for this equation in [39], while its recursive operator and bi-Hamiltonian

formulation was given in [34]. The solutions to this equation are very unusual which

are called static solitons; these are static solutions that interact with moving solitons

without deformations. The generalized DSW equation was recently analysed in [88].

We consider the version given by the system of PDEs [71]

ut + 2vvx = 0,

vt − avxxx + 3buxv + 3kuvx = 0, (3.4)

where a, b and k are arbitrary real constants.

In [52], the relationship between the Lie point symmetries and the multipliers of

(3.4) was investigated. In [71], the invariance and multiplier approach was used to

obtain additional conserved forms of (3.4) for special cases of the parameters, and

therefore possibilities for additional solutions may exist. We perform the double

reduction procedure based on this property of the special cases.

The results for the standard KdV and DSW equations appear in [68].
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3.2 The Hunter-Saxton type equation

We analyse the following scalar PDE

G = aut − 2m(u)ux + utxx + 2uxuxx + uuxxx + kuxxx = 0. (3.5)

Case 1: a 6= 0

By (1.3), we define X = τ ∂
∂t

+ξ ∂
∂x

+φ ∂
∂u

to be the Lie-Bäcklund operator that leaves

invariant (3.5), i.e.,

X [3](aut − 2m(u)ux + utxx + 2uxuxx + uuxxx + kuxxx) = 0, (3.6)

where τ = τ(t, x, u), ξ = ξ(t, x, u) and φ = φ(t, x, u).

The governing equations of (3.6) are obtained by using the computer algebra system

(CAS) package Mathematica for the separation of monomials and solving the over

determined system of PDEs.

The calculations reveal that the principal Lie algebra of Lie point symmetries of

(3.5) is given by
〈
∂

∂t
,
∂

∂x

〉
.

In the process of separating the monomials of (3.6), it turns out that the case m = u

admits an additional generator given by

Z =
(2 + a)

k
t
∂

∂t
+ 2t

∂

∂x
− [ak + (2 + a)u]

k

∂

∂u
. (3.7)

We determine the possible existence of higher-order multipliers and corresponding

conserved vectors via the invariance and multiplier approach.
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By (1.9), we require

qjG = DtT
t +DxT

x

so that

δ

δu
[qj(aut − 2m(u)ux + utxx + 2uxuxx + uuxxx + kuxxx)] = 0, (3.8)

since the Euler-Lagrange operator annihilates total divergences.

We assume the multiplier qj to be of second-order derivative dependence, i.e.,

qj = g(x, t, u, ut, ux, utt, uxt, uxx).

Equation (3.8) has to be satisfied for all functions u(x, t), not only the solutions of

(3.5).

The expansion of the left hand side of (3.8) is extensive and requires the use of the

CAS package Maple to enumerate, particularly in the separation of the monomials

and solving the over determined system of PDEs.

The calculations after expansion and separation by monomials of (3.8) reveals that

qj = a1 + a2u+ a3

[
1

2
(2uxt + 2uuxx + 2kuxx + u2x)− 2

∫
m(u)du

]
. (3.9)

To calculate the conservation laws, the conserved densities and fluxes are calculated

by using the homotopy operator [38].

The choice functions m = u and m = cosu are merely used for illustrative purposes

to demonstrate cases for the general function m(u).
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(a) q1 = 1

m = cosu

T t1 = au+
1

3
uxx,

T x1 = −2 sinu+
1

2
ux

2 +
2

3
uxt + kuxx + uuxx,

m = u

T t1 = au+
1

3
uxx,

T x1 = −u2 +
1

2
ux

2 +
2

3
uxt + kuxx + uuxx,

(b) q2 = u

m = cosu

T t2 =
1

6
(3au2 − ux2 + 2uuxx),

T x2 = 2− 2 cosu− 1

3
utux −

1

2
kux

2 + u2uxx + u
(
−2 sinu+

2

3
uxt + kuxx

)
,

m = u

T t2 =
1

6
(3au2 − ux2 + 2uuxx),

T x2 =
1

6
[−4u3 − ux(2ut + 3kux) + 6u2uxx + u(4uxt + 6kuxx)],
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(c) q3 =
1

2
(2uxt + 2uuxx + 2kuxx + u2x)− 2

∫
m(u)du

m = cosu

T t3 =
1

36u2

[
− 36(−1 + cosu)ux

2 − 36u(sinuux
2 − (−1 + cosu)uxx) + 3u2(3autux

+ 2ux
2(2 cosu+ uxx) + 2(12a(−1 + cosu) + (2 sinu+ uxt)uxx + kuxx

2)

+ ux(uxxt + kuxxx)) + 2u4(6auxx − uxxxx) + u3(6aux
2 + 9auxt + 18akuxx

− 4uxuxxx − 3uxxxt − 3kuxxxx)
]
,

T x3 =
1

72u2

[
72(−1 + cosu)utux + 72u(sinuutux − (−1 + cosu)uxt)

+ 3u2(6aut
2 + 3ux

4 + ux
2(−24 sinu+ 8uxt + 12kuxx)

+ 4(2uxt
2 + 3(−2 sinu+ kuxx)

2 + uxt(−14 sinu+ 5kuxx))− 4ux(uxtt

+ kuxxt) + 2ut((6ak − 4 cosu)ux + uxxt + kuxxx)) + 4u4(−6auxt + 9uxx
2 + uxxxt)

+ u3(−18autt + 8ut(3aux + uxxx) + 6(−6uxt(ak − 2uxx) + 6(−4 sinu+ ux
2)uxx

+ 12kuxx
2 + uxxtt + kuxxxt)

]
,

m = u

T t3 =
1

36

[
− 12au3 + 3(3autux + 2ux

2uxx + 2uxx(uxt + kuxx) + ux(uxxt + kuxxx))

+ 2u2(6auxx − uxxxx) + u(6aux
2 + 9auxt + 18akuxx − 4uxuxxx

− 3uxxxt − 3kuxxxx)
]
,

T x3 =
1

72

[
36u4 − 72u3uxx + 3(6aut

2 + 3ux
4 + 4ux

2(2uxt + 3kuxx) + 4(2uxt
2

+ 5kuxtuxx + 3k2uxx
2)− 4ux(uxtt + kuxxt) + 2ut(6akux + uxxt + kuxxx))

− 4u2(9ux
2 + 6(3 + a)uxt + 18kuxx − 9uxx

2 − uxxxt) + u(−18autt

+ 8ut(3aux + uxxx) + 6(−6uxt(ak − 2uxx) + 6ux
2uxx + 12kuxx

2 + uxxtt + kuxxxt)
]
.
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Case 2: a = 0

Equation (3.5) is reduced to

G = −2m(u)ux + utxx + 2uxuxx + uuxxx + kuxxx = 0. (3.10)

We now solve

X [3](−2m(u)ux + utxx + 2uxuxx + uuxxx + kuxxx) = 0. (3.11)

The calculations reveal that the principal Lie algebra of Lie point symmetries of

(3.10) is given by
〈
∂

∂t
,
∂

∂x

〉
.

In the process of separating the monomials of (3.11), it turns out that the general

function m(u) admits additional Lie point symmetries for the following choices of

m(u)

(i) m = u: X1 = −kt ∂
∂x
− t ∂

∂t
+ u

∂

∂u
,

(ii) m = uβ: X2 =

(
2kt

β − 1
+ x

)
∂

∂x
+

(1 + β)

(β − 1)
t
∂

∂t
− 2

β − 1
u
∂

∂u
,

(iii) m = eu: X3 = (−2t+ x)
∂

∂x
+ t

∂

∂t
− 2

∂

∂u
,

where in (ii), β 6= 0, 1.

We now solve

δ

δu
[qj(−2m(u)ux + utxx + 2uxuxx + uuxxx + kuxxx)] = 0, (3.12)
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where we also assume qj to be of second-order derivative dependence.

Equation (3.12) has to be satisfied for all functions u(x, t), not only the solutions of

(3.10).

The calculations after expansion and separation by monomials of (3.12) reveals that

qj = a1u+ F1(t) + F2

(
t,−

∫
2m(u)du+ uxt + uuxx + kuxx +

1

2
u2x

)
. (3.13)

We use the choice functions m = u and m = eu for illustrative purposes to demon-

strate cases for the general function m(u).

In (c), we just state the conserved densities.

(a) q1 = g(t)

m = u

T t1 =
1

3
g(t)uxx,

T x1 =
1

6

[
−2g′ux + g(t)(−6u2 + 3ux

2 + 4uxt + 6kuxx + 6uuxx)
]
,

m = eu

T t1 =
1

3
g(t)uxx,

T x1 = −1

3
g′ux + g(t)

(
2− 2eu +

1

2
ux

2 +
2

3
uxt + kuxx + uuxx

)
,
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(b) q2 = u

m = u

T t2 =
1

6
(−ux2 + 2uuxx),

T x2 =
1

6

[
−4u3 − ux(2ut + 3kux) + 6u2uxx + u(4uxt + 6kuxx)

]
,

m = eu

T t2 =
1

6
(−ux2 + 2uuxx),

T x2 = −2 + 2eu − 1

3
utux −

1

2
kux

2 + u2uxx + u
(
− 2eu +

2

3
uxt + kuxx

)
,

(c) q3 = −
∫

2m(u)du+ uxt + uuxx + kuxx +
1

2
u2x

m = u

T t3 =
1

36

[
6ux

2uxx + 6uxtuxx + 6kuxx
2 + ux(3uxxt + (3k − 4u)uxxx)

− 3uuxxxt − 3kuuxxxx − 2u2uxxxx
]
,

m = eu

T t3 =
1

36u2

[
6ux

2(6(−1 + eu)− 6euu+ u2(2eu + uxx)) + u2ux(3uxxt

+ (3k − 4u)uxxx)− u(− 6(6− 6eu + u(2eu + uxt))uxx

− 6kuuxx
2 + u2(3uxxxt + (3k + 2u)uxxxx))

]
.

3.2.1 A reduction of (3.10) by < X1 >

We perform the double reduction procedure for case (a) where m = u using X1.
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Without loss of generality, we choose g(t) = t.

We show that X1 is associated with T1.

We have

(
T ∗t1
T ∗x1

)
= X

[2]
1

(
T t1
T x1

)
−

 −1 0

−k 0

(T t1
T x1

)
−
(
T t1
T x1

)
=

(
U1

U2

)

where

U1 = −1

3
tuxx +

1

3
tuxx

and

U2 = tu2 − 1

2
tu2x −

2

3
tuxt − ktuxx − tuuxx − 2tu2 + tuuxx −

1

3
ux + tu2x + ktuxx + tuuxx

+
4

3
tuxt +

2

3
ktuxx +

1

3
ktuxx +

1

3
ux + tu2 − 1

2
tu2x −

2

3
tuxt − ktuxx − tuuxx.

Thus

U1 = 0 = U2,

where

X
[2]
1 = −t ∂

∂t
− kt ∂

∂x
+ u

∂

∂u
+ ux

∂

∂ux
+ uxx

∂

∂uxx
+ (2uxt + kuxx)

∂

∂uxt
.

Therefore X1 is associated with T1.

As in the second chapter, we transform the generator X1 to its canonical form

Y = ∂
∂s

, where this generator is of the form Y = 0 ∂
∂r

+ ∂
∂s

+ 0 ∂
∂w

.

From X1(r) = 0, X1(s) = 1 and X1(w) = 0, we have

dt

−t
=

dx

−kt
=
du

u
=
dr

0
=
ds

1
=
dw

0
. (3.14)
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The invariants of X1 from (3.14) are given by

b1 = kt− x,

b2 = tu,

b3 = r,

b4 = s+ ln t,

b5 = w, (3.15)

where b3, b4 and b5 are arbitrary functions all dependent on b1 and b2.

By choosing b3 = b1, b4 = 0 and b5 = b2, we obtain the canonical coordinates

r = kt− x,

s = − ln t,

w = tu. (3.16)

The inverse canonical coordinates from (3.16) are given by

t = e−s,

x = ke−s − r,

u = wes. (3.17)

The computation of A and (A−1)T is given by

A =

 0 −1

−e−s −ke−s


and

(A−1)T =

 k −1

−es 0


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where J = −e−s.

The partial derivatives of u from (3.17) are given by

ux = −wres,

uxt = es(−kwrr + wre
s),

uxx = wrre
s,

uxxt = es(kwrrr − wrres),

uxxx = −wrrres. (3.18)

By substituting (3.17) and (3.18) into (2.16) for j = 1, we obtain

T r1 = wr − w2 +
1

2
w2
r + wwrr,

T s1 =
1

3
wrr. (3.19)

Solving (2.17) and (3.19) simultaneously results in

wr − w2 +
1

2
w2
r + wwrr = n, (3.20)

where n is an integration constant.

We note that for scalar PDEs, when a multiplier is multiplied with the equation and

substituted in the differential consequence of the reduced conserved form, it tends

to zero.

We now analyse (3.20) for n = 0, i.e.,

wr − w2 +
1

2
w2
r + wwrr = 0. (3.21)
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Since ∂
∂r

is a Lie point symmetry of (3.21), we have the zero, first-order and second-

order invariants given by

α = w,

β = wr,

dβ

dα
=

wrr
wr

. (3.22)

Substituting (3.22) into (3.21) results in the first-order ODE

dβ

dα
=
α

β
− 1

α
+

β

2α
. (3.23)

Equation (3.23) can be solved using classical integration methods.

3.3 The standard KdV equation

We analyse the following scalar PDE

G = ut − uxxx − uux = 0. (3.24)

Equation (3.24) admits the following four Lie point symmetries

X1 =
∂

∂t
,

X2 = t
∂

∂t
+

1

3
x
∂

∂x
− 2

3
u
∂

∂u
,

X3 = −t ∂
∂x

+
∂

∂u
,

X4 =
∂

∂x
, (3.25)
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and the following three conserved vectors

T1 =

[
1

2
u2,−uuxx +

1

2
u2x −

1

3
u3
]
,

T2 =

[
1

2
tu2 + xu,−tuuxx − xuxx +

1

2
tu2x + ux −

1

3
tu3 − 1

2
xu2

]
,

T3 =

[
u,−uxx −

1

2
u2
]
, (3.26)

with corresponding multipliers

q1 = u,

q2 = x+ tu,

q3 = 1. (3.27)

3.3.1 A reduction of (3.24) by < X2 >

We show that X2 is associated with T2.

We have

(
T ∗t2
T ∗x2

)
= X

[2]
2

(
T t2
T x2

)
−

 1 0

0
1

3

(T t2
T x2

)
+
(

4

3

)(
T t2
T x2

)
=

(
U1

U2

)

where

U1 =
1

2
tu2 +

1

3
xu− 2

3
tu2 − 2

3
xu+

1

6
tu2 +

1

3
xu

and

U2 = −tuuxx +
1

2
tu2x −

1

3
tu3 − 1

3
xuxx −

1

6
xu2 +

2

3
tuuxx +

2

3
tu3 +

2

3
xu2 − tu2x

− ux +
4

3
tuuxx +

4

3
xuxx − tuuxx − xuxx +

1

2
tu2x + ux −

1

3
tu3 − 1

2
xu2.
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Thus

U1 = 0 = U2,

where

X
[2]
2 = t

∂

∂t
+

1

3
x
∂

∂x
− 2

3
u
∂

∂u
− ux

∂

∂ux
− 4

3

∂

∂uxx
.

Therefore X2 is associated with T2.

We transform the generator X2 to its canonical form Y = ∂
∂s

.

From X2(r) = 0, X2(s) = 1 and X2(w) = 0, we have

dt

t
=

3dx

x
=

3du

−2u
=
dr

0
=
ds

1
=
dw

0
. (3.28)

The invariants of X2 from (3.28) are given by

b1 =
x3

t
,

b2 = x2u,

b3 = r,

b4 = s− ln t,

b5 = w, (3.29)

where b3, b4 and b5 are arbitrary functions all dependent on b1 and b2.

By choosing b3 = b1, b4 = 0 and b5 = b2, we obtain the canonical coordinates

r =
x3

t
,

s = ln t,

w = x2u. (3.30)

The inverse canonical coordinates from (3.30) are given by
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t = es,

x = (res)
1
3 ,

u = w(res)−
2
3 . (3.31)

The computation of A and (A−1)T is given by

A =
1

3
e
s
3

 0 r−
2
3

3e
2s
3 r

1
3


and

(A−1)T = e−
s
3

 −re− 2s
3 3r

2
3

e−
2s
3 0


where J = −1

3

(
e4s

r2

) 1
3

.

The partial derivatives of u from (3.31) are given by

ut = −(re−5s)
1
3wr,

ux = e−s
(

3wr −
2w

r

)
,

uxx = 3 (res)
−4
3 (3r2wrr − 2rwr + 6w),

uxxx = 3 (res)
−5
3 (9r3wrrr + 8rwr − 8w). (3.32)

By substituting (3.31) and (3.32) into (2.16) for j = 2, we obtain

T r2 =
2w2

3r
+
w

3
+ 9wwrr +

4w2

r2
+ 9rwrr − 9wr +

8w

r
− 9w2

r

2
+
w3

3r2
,

T s2 = − w
2

6r2
− w

3r
. (3.33)

Solving (2.17) and (3.33) simultaneously results in

2w2

3r
+
w

3
+ 9wwrr +

4w2

r2
+ 9rwrr − 9wr +

8w

r
− 9w2

r

2
+
w3

3r2
= k, (3.34)
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or equivalently after multiplying both sides by 6r2

4rw2+2r2w+54r2wwrr+24w2+54r3wrr−54r2wr+48rw−27r2w2
r +2w3−6kr2 = 0,

(3.35)

where k is an integration constant.

Equation (3.35) is the second Painlevé transcendent. There are numerous and al-

ternative analytical or numerical approaches that can be adopted in solving (3.35).

We refer the reader to [43] for an extensive discussion.

3.4 The Drinfeld-Sokolov-Wilson equation

In this section, we analyse the following system of PDEs

G1 = ut + 2vvx = 0,

G2 = vt − avxxx + 3buxv + 3kuvx = 0. (3.36)

Equation (3.36) admits a three-dimensional Lie point symmetry algebra spanned by

X1 =
∂

∂t
,

X2 =
∂

∂x
,

X3 = 3t
∂

∂t
+ x

∂

∂x
− 2u

∂

∂u
− 2v

∂

∂v
. (3.37)

53



Case 1: b = k

In this case, (3.36) admits the following three conserved vectors

T1 = [u, v2],

T2 = [v,−avxx + 3buv],

T3 =

[
3b

4
u2 +

v2

2
, 3buv2 − avvxx +

a

2
v2x

]
, (3.38)

with corresponding multipliers

Q1 = [1, 0],

Q2 = [0, 1],

Q3 =
[
3b

2
u, v

]
. (3.39)

3.4.1 A reduction of (3.36) by < X1, X2 >

We show that X1 and X2 are associated with T3.

We have (
T ∗t3
T ∗x3

)
= X

[2]
1

(
T t3
T x3

)
−

 0 0

0 0

(T t3
T x3

)
+ (0)

(
T t3
T x3

)
=

(
U1

U2

)

where

U1 =
∂

∂t

(
3bu2

4
+
v2

2

)
and

U2 =
∂

∂t

(
3buv2 − avvxx +

av2x
2

)
.

Thus

U1 = 0 = U2,

54



where

X
[2]
1 =

∂

∂t
.

Therefore X1 is associated with T3.

Similarly for X2,

(
T ∗t3
T ∗x3

)
= X

[2]
2

(
T t3
T x3

)
−

 0 0

0 0

(T t3
T x3

)
+ (0)

(
T t3
T x3

)
=

(
U1

U2

)

where

U1 =
∂

∂x

(
3bu2

4
+
v2

2

)
and

U2 =
∂

∂x

(
3buv2 − avvxx +

av2x
2

)
.

Thus

U1 = 0 = U2,

where

X
[2]
2 =

∂

∂x
.

Therefore X2 is also associated with T3.

We consider a linear combination of X1 and X2, i.e., of the form X = X1 + cX2 (c

is an arbitrary constant) and transform this generator to its canonical form Y = ∂
∂s

.

From X(r) = 0, X(s) = 1, X(w) = 0 and X(p) = 0, we have

dt

1
=
dx

c
=
du

0
=
dv

0
=
dr

0
=
ds

1
=
dw

0
=
dp

0
. (3.40)

The invariants of X from (3.40) are given by
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b1 = x− ct,

b2 = u,

b3 = v,

b4 = r,

b5 = s− t,

b6 = w,

b7 = p, (3.41)

where b4, b5, b6 and b7 are arbitrary functions all dependent on b1, b2 and b3.

By choosing b4 = b1, b5 = 0, b6 = b2 and b7 = b3, we obtain the canonical coordinates

r = x− ct,

s = t,

w = u,

p = v. (3.42)

The inverse canonical coordinates from (3.42) are given by

t = s,

x = r + cs,

u = w,

v = p. (3.43)

The computation of A and (A−1)T is given by

A =

 0 1

1 c


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and

A−1 =

 −c 1

1 0

 = (A−1)T ,

where J = −1.

The partial derivatives of u and v from (3.43) are given by

ut = −cwr,

ux = wr,

vt = −cpr,

vx = pr,

vxx = prr,

vxxx = prrr. (3.44)

By substituting (3.43) and (3.44) into (2.16) for j = 3, we obtain

T r3 =
3bcw2

4
+
cp2

2
− 3bwp2 + apprr −

ap2r
2
,

T s3 = −3bw2

4
− p2

2
. (3.45)

Solving (2.17) and (3.45) simultaneously results in

3bcw2

4
+
cp2

2
− 3bwp2 + apprr −

ap2r
2

= m, (3.46)

where m is an integration constant.

Differentiating (3.46) implicitly with respect to r results in

3bcwwr
2

+ cppr − 3bwrp
2 − 6bwppr + apprrr = 0. (3.47)
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The second equation of (1.17) for j = 3 is given by

3bu

2
(ut + 2vvx)− v[vt − avxxx + 3b(uxv + uvx)]. (3.48)

After transforming (3.48) using (3.43) and (3.44), we obtain

−3bcwwr
2

+ cppr + apprrr − 3bwrp
2 = 0. (3.49)

Substituting (3.47) into (3.49) and then taking out a common factor of −3bw yields

the first-order ODE

cwr − 2ppr = 0. (3.50)

Integrating (3.50) with respect to r results in

w =
1

c
(p2 + n), (3.51)

where n is an integration constant.

Substituting (3.51) into (3.46) and then multiplying both sides by 4c results in the

second-order ODE

2ac(2pprr − p2r)− 9bp4 − 2(3bn− c2)p2 = 4cm− 3bn2. (3.52)

We present a numerical simulation for (3.52) in the figure below, using Mathematica,

where the parameter values were chosen as a = c = m = n = 1 and b = −1, for

r ∈ [0, 20]. The initial conditions were given as p(0) = 1 and pr(0) = 0.
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Figure 3.1: Profile of solution for p(r)

This in turn imposes (3.51) with a travelling wave form for w(r). Other approaches

such as homotopy analysis and alternative numerical approaches can also be adopted

to extract the solutions of (3.51) and (3.52).

Case 2: 2b = k

In this case, (3.36) admits the following three conserved vectors

T4 =

[
1

2
v2,−avvxx +

1

2
av2x + 3buv2

]
,

T5 =

[
1

2
(tv2 − xu),−1

2
xv2 − at

(
vvxx −

1

2
v2x
)

+ 3btuv2
]
, (3.53)

and T1 from (3.38).

The corresponding multipliers are

Q4 = [0, 1],

Q5 =
[
− 1

2
x, tv

]
, (3.54)

and Q1 from (3.39).
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3.4.2 A reduction of (3.36) by < X3 >

We show that X3 is associated with T5.

We have

(
T ∗t5
T ∗x5

)
= X

[2]
3

(
T t5
T x5

)
−

 3 0

0 1

(T t5
T x5

)
+ (4)

(
T t5
T x5

)
=

(
U1

U2

)

where

U1 =
3

2
tv2 − 1

2
xu+ xu− 2tv2 +

1

2
tv2 − 1

2
xu

and

U2 = −3atvvxx +
3

2
atv2x + 9btuv2 − 1

2
xv2 − 6btuv2 + 2xv2 + 2atvvxx − 12btuv2

− 3atv2x + 4atvvxx −
3

2
xv2 − 3atvvxx +

3

2
atv2x + 9btuv2.

Thus

U1 = 0 = U2,

where

X
[2]
3 = 3t

∂

∂t
+ x

∂

∂x
− 2u

∂

∂u
− 2v

∂

∂v
− 3vx

∂

∂vx
− 4vxx

∂

∂vxx
.

Therefore X3 is associated with T5.

We transform the generator X3 to its canonical form Y = ∂
∂s

.

From X3(r) = 0, X3(s) = 1, X3(w) = 0 and X3(p) = 0, we have

dt

3t
=
dx

x
=

du

−2u
=

dv

−2v
=
dr

0
=
ds

1
=
dw

0
=
dp

0
. (3.55)

The invariants of X3 from (3.55) are given by
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b1 =
x3

t
,

b2 =
v

u
,

b3 = x2u,

b4 = r,

b5 = s− lnx,

b6 = w,

b7 = p, (3.56)

where b4, b5, b6 and b7 are arbitrary functions all dependent on b1, b2 and b3.

By choosing b4 = b1, b5 = 0, b6 = b2 and b7 = b3, we obtain the canonical coordinates

r =
x3

t
,

s = ln x,

w =
v

u
,

p = x2u. (3.57)

The inverse canonical coordinates from (3.57) are given by

t =
e3s

r
,

x = es,

u =
p

e2s
,

v =
pw

e2s
. (3.58)
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The computation of A and (A−1)T is given by

A = es

 − e2s

r2
0

3e2s

r
1


and

(A−1)T =
1

es

 − r
2

e2s
3r

0 1


where J = −e

4s

r2
.

The partial derivatives of u and v from (3.58) are given by

ut = −r
2pr
e5s

,

ux =
1

e3s
(3rpr − 2p),

vt = − r
2

e5s
(pwr + wpr),

vx =
1

e3s
[3r(pwr + wpr)− 2pw],

vxx = − 3

e4s
[2r(pwr + wpr)− 3r2(2prwr + pwrr + wprr)− 2pw],

vxxx =
3

e5s
[8r(pwr + wpr) + 27r3(prrwr + prwrr)

+ 9r3(pwrrr + wprrr)− 8pw]. (3.59)

By substituting (3.58) and (3.59) into (2.16) for j = 5, we obtain

T r5 =
2p2w2

r
− p

2
+ 27apw(prwr + pwrr + wprr) +

3p2w2

r2
(4a− 3bp)

− 27a

2
(p2w2

r + w2p2r),

T s5 =
p2w2

2r2
+

9apw

r
(prwr + pwrr + wprr) +

4ap2w2

r3
− 9a

2r
(p2w2

r + p2rw
2)

− 3bp3w2

r3
. (3.60)
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Solving (2.17) and (3.60) simultaneously results in

2p2w2

r
− p

2
+ 27apw(prwr + pwrr + wprr) +

3p2w2

r2
(4a− 3bp)

− 27a

2
(p2w2

r + w2p2r) = m,

(3.61)

where m is an integration constant.

Differentiating (3.61) implicitly with respect to r results in

4pw

r
(wpr + pwr)−

2p2w2

r2
− pr

2

+ 27apw(prrwr + 2prwrr + pwrrr + wrprr + wprrr)

+ 27a(wpr + pwr)(prwr + pwrr + wprr)

+
6pw

r3
[r(wpr + pwr)− pw](4a− 3bp)− 9bp2w2pr

r2

− 27a(pprw
2
r + p2wrwrr + wwrp

2
r + w2prprr) = 0. (3.62)

or equivalently after multiplying both sides by 2r3

8r2pw(wpr + pwr)− 4rp2w2 − r3pr + 162ar3pw(wrprr + prwrr)

+ 54ar3pw(pwrrr + wprrr) + 48arpw(wpr + pwr)− 48ap2w2

− 54brp2w2pr − 36brp3wwr + 36bp3w2 = 0. (3.63)

The second equation of (1.17) for j = 5 is given by

−x
2

(ut + 2vvx)− tv[vt − avxxx + 3b(uxv + uvx)]. (3.64)

After transforming (3.64) using (3.58) and (3.59), taking out a common factor of
1

e4s
and multiplying both sides by 2r, we obtain
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r3pr − 4r2pw(wpr + pwr) + 4rp2w2 + 48arpw(wpr + pwr)

+ 162ar3pw(wrprr + prwrr) + 54ar3pw(pwrrr + wprrr)− 48ap2w2

− 54brp2w2pr + 36bp3w2 − 36brp3wwr = 0. (3.65)

Substituting (3.63) into (3.65) and taking out a common factor of 2r results in the

first-order ODE

r2pr − 6rpw(pwr + wpr) + 4p2w2 = 0. (3.66)

Solving (3.66) and (3.61) simultaneously for w and p leads to a solution for u and v

to our original equation (3.36).

Case 3: 2b 6= k

In this case, (3.36) admits the following two conserved vectors

T6 =

[
3

4
(2b− k)u2 +

1

2
v2, 3buv2 − avvxx +

1

2
av2x

]
(3.67)

and T1 from (3.38).

The corresponding multipliers are

Q6 =
[
3

2
(2b− k)u, v

]
(3.68)

and Q1 from (3.39).

3.4.3 A reduction of (3.36) by < X1, X2 >

We show that X1 and X2 are associated with T6.
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We have (
T ∗t6
T ∗x6

)
= X

[2]
1

(
T t6
T x6

)
−

 0 0

0 0

(T t6
T x6

)
+ (0)

(
T t6
T x6

)
=

(
U1

U2

)

where

U1 =
∂

∂t

(
3

4
(2b− k)u2 +

v2

2

)
and

U2 =
∂

∂t

(
3buv2 − avvxx +

av2x
2

)
.

This shows that

U1 = 0 = U2,

where

X
[2]
1 =

∂

∂t
.

Therefore X1 is associated with T6.

Similarly for X2,

(
T ∗t6
T ∗x6

)
= X

[2]
2

(
T t6
T x6

)
−

 0 0

0 0

(T t6
T x6

)
+ (0)

(
T t6
T x6

)
=

(
U1

U2

)

where

U1 =
∂

∂x

(
3

4
(2b− k)u2 +

v2

2

)
and

U2 =
∂

∂x

(
3buv2 − avvxx +

av2x
2

)
.

Thus

U1 = 0 = U2,

where

X
[2]
2 =

∂

∂x
.
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Therefore X2 is also associated with T6.

We consider a linear combination of X1 and X2, i.e., of the form X = X1 + cX2 (c

is an arbitrary constant) and transform this generator to its canonical form Y = ∂
∂s

.

From X(r) = 0, X(s) = 1, X(w) = 0 and X(p) = 0, we have

dt

1
=
dx

c
=
du

0
=
dv

0
=
dr

0
=
ds

1
=
dw

0
=
dp

0
. (3.69)

The invariants of X from (3.69) are given by

b1 = x− ct,

b2 = u,

b3 = v,

b4 = r,

b5 = s− t,

b6 = w,

b7 = p, (3.70)

where b4, b5, b6 and b7 are arbitrary functions all dependent on b1, b2 and b3.

By choosing b4 = b1, b5 = 0, b6 = b2 and b7 = b3, we obtain the canonical coordinates

r = x− ct,

s = t,

w = u,

p = v. (3.71)
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The inverse canonical coordinates from (3.71) are given by

t = s,

x = r + cs,

u = w,

v = p. (3.72)

The computation of A and (A−1)T is given by

A =

 0 1

1 c


and

A−1 =

 −c 1

1 0

 = (A−1)T ,

where J = −1.

The partial derivatives of u and v from (3.72) are given by

ut = −cwr,

ux = wr,

vt = −cpr,

vx = pr,

vxx = prr,

vxxx = prrr. (3.73)

By substituting (3.72) and (3.73) into (2.16) for j = 6, we obtain
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T r6 =
3c

4
(2b− k)w2 +

cp2

2
− 3bwp2 + apprr −

a

2
p2r,

T s6 = −3

4
(2b− k)w2 − p2

2
. (3.74)

Solving (2.17) and (3.74) simultaneously results in

3c

4
(2b− k)w2 +

cp2

2
− 3bwp2 + apprr −

a

2
p2r = m, (3.75)

where m is an integration constant.

Differentiating (3.75) implicitly with respect to r results in

3c

2
(2b− k)wwr + cppr − 3bwrp

2 − 6bwppr + apprrr = 0. (3.76)

The second equation of (1.17) for j = 6 is given by

3

2
(2b− k)u(ut + 2vvx)− v[vt − avxxx + 3b(uxv + uvx)]. (3.77)

After transforming (3.77) using (3.72) and (3.73), we obtain

−3c

2
(2b− k)wwr + 6bwppr − 6kwppr + cppr + apprrr − 3bwrp

2 = 0. (3.78)

After substituting (3.76) into (3.78) and then taking out a common factor of

−3(2b− k)w, we obtain (3.50) and consequently (3.51).

Substituting (3.51) into (3.75) and then multiplying both sides by 4c results in the

second-order ODE

2ac(2pprr − p2r)− 3(2b+ k)p4 − 2(3kn− c2)p2 = 4cm− 3(2b− k)n2. (3.79)

Similarly as in case 1, solving (3.79) for p leads to a solution for w in (3.51) and

hence a solution for u and v to our original equation (3.36).
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3.5 Discussion and conclusion

We obtained new conservation laws via the invariance and multiplier approach for

a class of KdV equations, specifically relating to a Hunter-Saxton type equation.

Second-order multipliers were calculated and thus new conserved quantities were

then obtained. One case of the double reduction procedure was applied to this

equation without the evolution term and this resulted in reductions to a first-order

ODE.

We showed how the interplay between underlying symmetries and conservation laws

lead to double reductions for a class of Drinfeld-Sokolov-Wilson equations. In all the

cases on the specific relationship of the parameters b and k, we obtained a reduction

to an ODE of order, at most, two. After performing the double reduction procedure

for one of the cases, we adopted a numerical approach via Mathematica to illustrate

the profile of the solution for one of the reduced ODEs.
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Chapter 4

Multipliers, Conservation Laws

and Reductions of Higher-order

PDEs Related to Plasma Physics

4.1 Introduction and background

One of the most fundamental and fascinating phenomena in plasma physics that was

analysed in the 1920’s is Langmuir turbulence. This turbulence consists only of high

frequency electron oscillations in a low amplitude range. However, the presence of

larger amplitude waves induces nonlinearities which couple the high frequency elec-

tron oscillations to low frequency ion oscillations. These nonlinearities lead to para-

metric instabilities. The strongly nonlinear state leads to the formation of solitons,

where these structures are stable in one dimension and can collapse catastrophically

in higher dimensions. Zakharov derived a set of equations to describe all of these
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physical phenomena. These equations are commonly referred to as the Zakharov

equations [99]. Generalized Zakharov equations (GZEs) are a universal model of

interaction between high and low frequency waves [13, 98, 100].

The dimensionless form of the GZE with power law nonlinearity is given by

iFt + aFxx + b|F |2nF = Fw,

wtt − k2wxx =
(
|F |2n

)
xx
, (4.1)

where F is a complex order parameter that represents a high frequency wave, w rep-

resents a real low frequency field, the coefficient of a is the group velocity dispersion

and b represents the power law nonlinearity. In the second equation of (4.1), the

left hand side represents the wave operator, where k is an arbitrary real constant.

When b = 0, (4.1) is reduced to the classical Zakharov equations.

Taking F to be of the form F = u + iv and separating the first equation of (4.1)

into real and imaginary parts results in the system of PDEs

ut + avxx + b(u2 + v2)nv − vw = 0,

−vt + auxx + b(u2 + v2)nu− uw = 0,

wtt − k2wxx − [(u2 + v2)n]xx = 0. (4.2)

The invariance and multiplier approach will be applied on (4.2) to extract conser-

vation laws for n = 1.

The results for the GZE appear in [69].

The second plasma physics model we will consider is based on Alfvén waves.

Alfvén suggested the existence of electromagnetic-hydromagnetic waves [2]. These

waves have been mainly investigated in the fields of astrophysics and plasma physics
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[23, 63, 90, 101]. The study of the amplitude modulation of compressional disper-

sive Alfvén (CDA) waves against quasi-stationary magnetic field pertubations in

a low-β plasma [82] and the study of a theory for large amplitude compressional

electromagnetic solitary pulses in a magnetized electron-positron plasma [83] was

conducted. It was shown in both of these articles how a system of three PDEs

relating to the nonlinear propagation of the waves, governed by the ion continuity

equation, the ion momentum equation (which used Ampere’s law) and Faraday’s

law of electromagnetic induction were linearized and combined.

This resulted in the fourth-order wave equation

utt − (3a2 + c2)uxx − δ2uxxxx − δ2uxxtt = 0, (4.3)

where a, c and δ are arbitrary real constants.

Since (4.3) admits a Lagrangian, we will determine conservation laws via the well-

known Noethers theorem [73]. We also apply the invariance and multiplier approach,

and the double reduction procedure on (4.3).

The results for the CDA wave equation appear in [70].

4.2 Generalized Zakharov equations

In this section, we analyse the system of PDEs given by

G1 = ut + avxx + b(u2 + v2)v − vw = 0,

G2 = −vt + auxx + b(u2 + v2)u− uw = 0,

G3 = wtt − k2wxx − [(u2 + v2)]xx = 0. (4.4)
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The multiplier Qj = (q1j , q
2
j , q

3
j ) satisfies the ‘joint’ Euler-Lagrange operator

δ

δ(u, v, w)
(q1jG

1 + q2jG
2 + q3jG

3) = 0. (4.5)

Equation (4.5) is a consequence of three dependent variables and is equivalent to

the action of the Euler-Lagrange operator on each dependent variable u, v and w,

given by
δ

δu
(q1jG

1 + q2jG
2 + q3jG

3) = 0,

δ

δv
(q1jG

1 + q2jG
2 + q3jG

3) = 0,

δ

δw
(q1jG

1 + q2jG
2 + q3jG

3) = 0.

(4.6)

Thus by (1.9), we require

q1jG
1 + q2jG

2 + q3jG
3 = DxΦ

x +DtΦ
t.

We assume the multiplier Qj = (q1j , q
2
j , q

3
j ) to be of first-order derivative dependence,

i.e.,

q1j = g1(x, t, u, v, ux, vx, ut, vt),

q2j = g2(x, t, u, v, ux, vx, ut, vt),

and

q3j = g3(x, t, u, v, ux, vx, ut, vt).

Equation (4.6) has to be satisfied for all functions u(x, t), v(x, t) and w(x, t), not

only the solutions of (4.4).

The calculations after expansion and separation by monomials of (4.6) reveals the

following multipliers and corresponding components of conserved vectors
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(a) Q1 = (u,−v, 1)

T t1 =
1

2
(u2 + v2 + 2wt),

T x1 = −2uux − avux + auvx − 2vvx − k2wx,

(b) Q2 = (u,−v, t)

T t2 =
1

2
(u2 + v2 − 2w + 2twt),

T x2 = −2tuux − avux + auvx − 2tvvx − tk2wx,

(c) Q3 =
(
−2tu, 2tv,

1

2
k2t2 +

1

2
x2
)

T t3 =
1

2
(−2tu2 − 2tv2 − 2tk2w + x2wt + t2k2wt),

T x3 =
1

2

[
2xu2 + 2xv2 − 2u((x2 + t2k2)ux + 2atvx)− v(−4atux + 2(x2 + t2k2)vx)

− k2(−2xw + (x2 + t2k2)wx)
]
,

(d) Q4 =
(
−t2u, t2v, 1

6
k2t3 +

1

2
tx2
)

T t4 =
1

6
(−3t2u2 − 3t2v2 − 3x2w − 3t2k2w + 3tx2wt + t3k2wt),

T x4 = −1

6
t
[
− 6xu2 − 6xv2 + 2u((3x2 + t2k2)ux + 3atvx) + v(−6atux + 2(3x2 + t2k2)vx)

+ k2(−6xw + (3x2 + t2k2)wx)
]
.

4.3 Compressional dispersive Alfvén waves

In this section, we analyse the scalar PDE given by

utt − (3a2 + c2)uxx − δ2uxxxx − δ2uxxtt = 0. (4.7)
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Equation (4.7) admits the Lagrangian

L = −1

2
u2t +

1

2
(3a2 + c2)u2x −

1

2
δ2u2xx −

1

2
δ2u2xt. (4.8)

The Noether symmetries from (1.7) for (Bx
j , B

t
j) = (0, 0), where j = 1, 2, 3 are

X1 =
∂

∂u
,

X2 =
∂

∂t
,

X3 =
∂

∂x
. (4.9)

The corresponding components of conserved vectors from (1.19) are given by

T t1 = ut −
1

2
δ2uxxt,

T x1 = −1

2
δ2uxtt − δ2uxxx − (3a2 + c2)ux,

T t2 = −1

2
u2t −

3

2
a2u2x −

1

2
c2u2x +

1

2
δ2u2xx +

1

2
δ2utuxxt,

T x2 = −1

2
δ2uttuxt − δ2uxtuxx +

1

2
δ2utuxtt + δ2utuxxx + (3a2 + c2)uxut,

and

T t3 = −1

2
δ2uxxuxt +

1

2
δ2uxuxxt − uxut,

T x3 =
1

2
u2t +

3

2
a2u2x +

1

2
c2u2x −

1

2
δ2u2xx +

1

2
δ2uxuxtt + δ2uxuxxx.

For non-zero gauge terms, the Noether symmetries and components of the gauge

vectors are

X4 = t
∂

∂u
, Bt

4 = −u, Bx
4 = 0,

X5 = x
∂

∂u
, Bt

5 = 0, Bx
5 = (c2 + 3a2)u, (4.10)
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from which the corresponding components of conserved vectors are given by

T t4 =
1

6

[
−6u+ 6tut + δ2(uxx − 3tuxxt)

]
,

T x4 =
1

6

[
−6t(c2 + 3a2)ux + δ2(2uxt − 3t(uxtt + 2uxxx))

]
,

and

T t5 = xut +
1

6
δ2(2uxt − 3xuxxt),

T x5 = (c2 + 3a2)u+
1

6
δ2utt − c2xux − 3a2xux −

1

2
xδ2uxtt + δ2uxx − xδ2uxxx.

We now solve

δ

δu

[
qj(utt − (3a2 + c2)uxx − δ2uxxxx − δ2uxxtt)

]
= 0, (4.11)

where we assume qj to be up to first-order in derivatives.

Equation (4.11) has to be satisfied for all functions u(x, t), not only the solutions of

(4.7).

The calculations after expansion and separation by monomials of (4.11) reveals the

following multipliers and corresponding components of conserved vectors

(a) q1 = cos
(√

c2+3a2

δ2
x
)

T t6 =
1

6

(6 + c2 + 3a2) cos

(√
c2 + 3a2

δ2
x

)
ut

− δ2
(

2

√
c2 + 3a2

δ2
sin

(√
c2 + 3a2

δ2
x

)
uxt + 3 cos

(√
c2 + 3a2

δ2
x

)
uxxt

) ,
T x6 = −1

6
δ2

√c2 + 3a2

δ2
sin

(√
c2 + 3a2

δ2
x

)
utt + 3 cos

(√
c2 + 3a2

δ2
x

)
uxtt

+ 6

√
c2 + 3a2

δ2
sin

(√
c2 + 3a2

δ2
x

)
uxx + 6 cos

(√
c2 + 3a2

δ2
x

)
uxxx

 .
76



(b) q2 = sin

(√
c2+3a2

δ2
x

)

T t7 =
1

6

(6 + c2 + 3a2) sin

(√
c2 + 3a2

δ2
x

)
ut

+ δ2
(

2

√
c2 + 3a2

δ2
cos

(√
c2 + 3a2

δ2
x

)
uxt − 3 sin

(√
c2 + 3a2

δ2
x

)
uxxt

) ,
T x7 =

1

6
δ2

√c2 + 3a2

δ2
cos

(√
c2 + 3a2

δ2
x

)
utt − 3 sin

(√
c2 + 3a2

δ2
x

)
uxtt

+ 6

√
c2 + 3a2

δ2
cos

(√
c2 + 3a2

δ2
x

)
uxx − 6 sin

(√
c2 + 3a2

δ2
x

)
uxxx

 .

4.3.1 A reduction of (4.7) by < X1, X2, X3 >

We note that X1, X2 and X3 are associated with their corresponding conserved

vectors T1, T2 and T3.

We consider a linear combination of X1, X2 and X3, i.e., of the form

X = k ∂
∂t

+m ∂
∂x

+ ∂
∂u

(k and m are arbitrary constants) and transform this generator

to its canonical form Y = ∂
∂s

.

From X(r) = 0, X(s) = 1 and X(w) = 0, we have

dt

k
=
dx

m
=
du

1
=
dr

0
=
ds

1
=
dw

0
. (4.12)

The invariants of X from (4.12) are given by

b1 = x− m

k
t,

b2 = u− x

m
,
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b3 = r,

b4 = s− t

k
,

b5 = w, (4.13)

where b3, b4 and b5 are arbitrary functions all dependent on b1 and b2.

By choosing b3 = b1, b4 = 0 and b5 = b2, we obtain the canonical coordinates

r = x− m

k
t,

s =
t

k
,

w = u− x

m
. (4.14)

The inverse canonical coordinates from (4.14) are given by

t = ks,

x = r +ms,

u = w + s+
r

m
. (4.15)

The computation of A and (A−1)T is given by

A =

 0 1

k m


and

(A−1)T =

 −m
k

1

1
k

0


where J = −k.
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The partial derivatives of u from (4.15) are given by

ut = −m
k
wr,

ux = wr +
1

m
,

utt =
m2

k2
wrr,

uxx = wrr,

uxt = −m
k
wrr,

uxtt =
m2

k2
wrrr,

uxxt = −m
k
wrrr,

uxxx = wrrr,

uxxtt =
m2

k2
wrrrr,

uxxxx = wrrrr. (4.16)

By substituting (4.15) and (4.16) into (2.16) for j = 2, we obtain

T r2 = −(3a2 + c2)

2m
+

(mk2(3a2 + c2)−m3)

2k2
w2
r −

mδ2(k2 +m2)

2k2
w2
rr

+
mδ2(m2 + k2)

k2
wrwrrr,

T s2 =
3a2 + c2

2m2
+

3a2 + c2

m
wr +

(k2(3a2 + c2) +m2)

2k2
w2
r −

1

2
δ2w2

rr

− δ2m2

2k2
wrwrrr. (4.17)

Solving (2.17) and (4.17) simultaneously results in

− (3a2 + c2)

2m
+

(mk2(3a2 + c2)−m3)

2k2
w2
r −

mδ2(k2 +m2)

2k2
w2
rr

+
mδ2(m2 + k2)

k2
wrwrrr = n1, (4.18)
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where n1 is an integration constant.

Differentiating (4.18) implicitly with respect to r results in

(m2 − k2(3a2 + c2))wrr − δ2(m2 + k2)wrrrr = 0. (4.19)

Integrating (4.19) with respect to r by applying D-operator methods results in

w = n2 cos


√√√√(m2 − k2(3a2 + c2))

−δ2(m2 + k2)
r

+ n3 sin


√√√√(m2 − k2(3a2 + c2))

−δ2(m2 + k2)
r


+

1

(m2 − k2(3a2 + c2))
(n4r + n5), (4.20)

where n2, n3, n4 and n5 are integration constants.

Combining (4.15) and (4.20), we obtain the final solution to our original equation

(4.7) as

u = n2 cos


√√√√(m2 − k2(3a2 + c2))

−δ2(m2 + k2)

(
x− m

k
t
)

+ n3 sin


√√√√(m2 − k2(3a2 + c2))

−δ2(m2 + k2)

(
x− m

k
t
)

+
1

(m2 − k2(3a2 + c2))

(
n4

(
x− m

k
t
)

+ n5

)
+
x

m
. (4.21)

4.4 Discussion and conclusion

We applied the Euler-Lagrange operator to extract multipliers and conserved quanti-

ties for a generalized Zakharov equation with power law nonlinearity. Four nontrivial

multipliers were determined and they were all derivative independent, from which

additional conserved vectors were obtained.
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The invariance and multiplier approach was adopted to an Alfvén wave equation,

and this generated two multipliers in the form of triangular periodic functions.

Noether symmetries were calculated from which conservation laws were extracted

by Noether’s theorem. The double reduction procedure was carried out via the as-

sociation of conserved vectors with a linear combination of Noether symmetries, in

which an exact/invariant solution was obtained.
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Chapter 5

Analysis of a Fourth-order System

of PDEs

5.1 Introduction and background

In recent years, the effectiveness of Lie group analysis has attracted several authors

working in fluid mechanics, particularly non-Newtonian fluids [3, 8, 26, 29, 30]. A

problem of unsteady hydromagnetic flows of an Oldroyd-B fluid under the influence

of Hall currents is not only helpful in establishing a relationship among the different

solutions, but it also has its own significance in various ways. The constitutive

relations of non-Newtonian fluids involve a number of complex parameters that give

rise to systems of higher-order PDEs which are more complicated to analyse as

compared to viscous fluids. Consequently, the additional terms due to rheological

parameters in the differential systems pose various interesting challenges. Due to the

complexity of the magnetohydrodynamic (MHD) rotating flows of non-Newtonian
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fluids, limited research is available [7, 36, 37, 56, 78]. To date, there has been no

symmetry analysis for the MHD rotating flow of an Oldroyd-B fluid, as well as for

the hydrodynamic situation.

In view of the constitutive equations used in the derivation of the governing equation

in [7] and after re-defining some of the constants, we present the equation(
1 + λ

∂

∂t

)(
∂2F

∂z∂t
+ 2iω

∂F

∂z

)
+

µ

1− im

(
1 + λ

∂

∂t

)
∂F

∂z
= ν

∂3F

∂z3
+ νγ

∂4F

∂z3∂t
, (5.1)

in which F is a complex order parameter of the form F = u+ iv, where u and v are

the velocity components in the x and y-directions, ω is the constant angular velocity,

λ and γ are the material time constants referred to as relaxation and retardation

times respectively, with the condition λ ≥ γ ≥ 0, ν = β
ρ

(where ρ is the density

and β is the dynamic viscosity) is the kinematic viscosity, µ =
σB2

0

ρ
(where B0 is the

applied magnetic field parallel to the z-axis and σ is the electrical conductivity) and

m is the Hall parameter.

Separating (5.1) into real and imaginary parts results in the system of PDEs

uzt − 2ωvz + λ(uztt − 2ωvzt) +
µ

1 +m2
(uz + λuzt)−

mµ

1 +m2
(vz + λvzt)

= νuzzz + νγuzzzt,

vzt + 2ωuz + λ(vztt + 2ωuzt) +
µ

1 +m2
(vz + λvzt) +

mµ

1 +m2
(uz + λuzt)

= νvzzz + νγvzzzt. (5.2)

The invariance and multiplier approach will be applied on (5.2) to extract conser-

vation laws.

The results of this work and an analysis of similarity solutions obtained via reduc-

tions through translation and rotational symmetries of (5.2) appear in [32].
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5.2 Conservation laws of the underlying model

In this section, we analyse the system of PDEs

G1 = uzt − 2ωvz + λ(uztt − 2ωvzt) +
µ

1 +m2
(uz + λuzt)−

mµ

1 +m2
(vz + λvzt)

− νuzzz − νγuzzzt = 0,

G2 = vzt + 2ωuz + λ(vztt + 2ωuzt) +
µ

1 +m2
(vz + λvzt) +

mµ

1 +m2
(uz + λuzt)

− νvzzz − νγvzzzt = 0. (5.3)

We require

q1jG
1 + q2jG

2 = DtT
t +DzT

z,

so that
δ

δ(u, v)
(q1jG

1 + q2jG
2) = 0. (5.4)

We assume the multiplier Qj = (q1j , q
2
j ) to be of second-order derivative dependence,

i.e.,

q1j = g1(x, t, u, v, ux, vx, uxx, vxx, uxt, vxt, utt, vtt)

and

q2j = g2(x, t, u, v, ux, vx, uxx, vxx, uxt, vxt, utt, vtt).

Equation (5.4) has to be satisfied for all functions u(x, t) and v(x, t), not only the

solutions of (5.3).

The calculations after expansion and separation by monomials of (5.4) results in
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q1j = f 1(z, t),

q2j = et/λf 2(z) + f 3(t) +
∫ 1

λ

((∫ 1

2ω + 2ωm2 +mµ

(
e

−t
λ

(
νγ(1 +m2)f 1

zzzt

+ λ(1 +m2)f 1
ztt + (−νm2 − ν)f 1

zzz + (−1− µλ−m2)f 1
zt + f 1

zµ
))
dt

)
e
t
λ

)
dz.

We note that not all of Qj lead to zero when we check (5.4).

A sample of Qj that do satisfy (5.4) are, with the corresponding conserved densities

(a) Q1 = (t, k), where k is an arbitrary constant

T t1 =
1

12(1 +m2)

[
2
(
3t(1 +m2 + λµ)− λ(2 + 3kmµ+ 6kω +m2(2 + 6kω))

)
uz

− 6(k(1 +m2 + λµ) + tλ(mµ+ 2ω + 2m2ω))vz

+ (1 +m2)(8tλuzt − 8kλvzt + 3γν(−tuzzz + kvzzz))
]
.

(b) Q2 = (t, zet/λ)

T t2 =
−1

12(1 +m2)

[
− 6et/λλ(mµ+ 2ω + 2m2ω)u+ 2et/λ(1 +m2 − 3λµ)v − 4et/λλvt

− 4et/λm2λvt − 6tuz − 6m2tuz + 4λuz + 4m2λuz − 6tλµuz + 6et/λmzλµuz

+ 12et/λzλωuz + 12et/λm2zλωuz + 2et/λzvz + 2et/λm2zvz + 6mtλµvz

+ 6et/λzλµvz + 12tλωvz + 12m2tλωvz − 8tλuzt − 8m2tλuzt + 8et/λzλvzt

+ 8et/λm2zλvzt + 3et/λγνvzz + 3et/λm2γνvzz + 3tγνuzzz + 3m2tγνuzzz

− 3et/λzγνvzzz − 3et/λm2zγνvzzz
]
.
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5.3 Discussion and conclusion

We obtained new conserved densities for an Oldroyd-B fluid by assuming the pos-

sible existence of higher-order multipliers. We listed a sample of two multipliers

determined by the Euler-Lagrange operator and they were derivative independent.

86



Conclusion

In this thesis, our main objective was to analyse the relationship between symme-

tries and conservation laws for higher-order nonlinear scalar PDEs and systems of

PDEs with two independent variables. This entailed performing the generalized

fundamental theorem of double reduction via the recently developed notion of an

association between Lie point symmetries and conservation laws. In this procedure,

conservation laws and their corresponding multipliers were used to construct equiv-

alent systems relating to the original ones. This lead to resulting equations in which

new exact/invariant solutions were obtained. In the case of scalar PDEs, it was

unnecessary to consider the multiplier multiplied by the PDE under consideration

because when this is substituted into the differential consequence of the reduced

conserved form, it tends to zero.

We note that when applying the method of invariance, the dependent invariants were

chosen conveniently in such a way that made the calculations of the transformed

variables easier to manage.

To calculate the conservation laws, we first determined the possible existence of

higher-order multipliers via the Euler-Lagrange operator acting on a total diver-

gence. The corresponding conserved quantities were then determined via the homo-
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topy operator. It was necessary to exclude the tedious calculations that gave rise

to the multipliers and corresponding conservation laws via the use of CAS packages

Maple and Mathematica, as they were very involved.

In the second chapter, we analysed two Schrödinger systems of PDEs. After per-

forming the double reduction procedure, we obtained new non-trivial exact/invariant

solutions.

In the third chapter, we applied the same approach to various classes of KdV equa-

tions. This resulted in reduced ODEs that can be solved via numerous numerical

and analytical approaches.

In the fourth chapter, we considered classes of higher-order PDEs related to plasma

physics. This chapter mainly focussed on the construction of multipliers and con-

servation laws.

In the fifth and final chapter, we extended the invariance and multiplier approach

for a fluid mechanics model that inherits a fourth-order system of PDEs.

The double reduction theory is a move away from the classical and standard ap-

proaches in which nonlinear PDEs are analysed. The generalization of this theory

to PDEs of higher dimensions and an increase in independent variables is still an

open problem for further investigations, for example, the Ito equation [94], the

Sawada-Kotera equation [80], the Benney-Luke equation [75] and other fluid me-

chanics models.
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