
5.0  MODELLING OF DEFORMATION BEHAVIOR OF LOW ALLOY 
STEEL 

 
5.1 Introduction 

 

Generally, the study of ferrous metals is complicated by two 

crystallographic and magnetic phase changes. Each allotropic change 

results in a change of properties of the material.  The properties depend 

on the thermo-mechanical treatment and become important for creep 

resistant low alloy ferritic steels. These alloys derive most of their strength 

from precipitate hardening; small changes in thermo-mechanical 

behaviour has large effects on  mechanical behaviour. 

In low alloy steels the major mechanism responsible for microstructure 

degradation is coarsening of the carbide precipitates. The mechanism of 

solute hardening presents some problems. An  extension  of the 

precipitation  hardening  model to individual  solute   atoms  may, at best, 

apply  to very  dilute  solutions when only  interstitial  solutes cause any 

appreciable  strengthening. Randomly dispersed substitution solute  

atoms  do not  act  as  discrete  obstacles when  they  are  in 

concentrated  solution, but interact  with dislocations cooperatively. 

The mechanism of forest dislocation cutting exhibits the usual 

complexities.  Forest  dislocations can  interact with glide  dislocation to 

form  attractive  junctions  where  small  nodal  segments  of dislocations  

can form  to significantly  lower  the local  energy  of the two intersecting  

dislocations, making  a thermally  assisted  intersection  possible. In work  

hardened  crystals  not only  are  the points  of intersection  of forest  

dislocations  with slip  plane  nearly  always  clustered  into  cell walls  

giving  a distinctly  non random  distribution, but  they  can also  be 

displaced  significantly by   the forces exerted  by impinging  glide  

dislocations as a collection  of fixed  and randomly  distributed  point 

obstacles. 
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Much attention has been paid to the   high temperature creep and fracture   

behavior of low alloy steels78,81. Considerable variations in creep   

responses have been noted and this has led to several different creep 

mechanisms being proposed to explain this behavior. These variations 

are due to the widely differing microstructure which can be produced in 

the alloy. The creep properties of low alloy ferritic steels are very 

dependent on heat treatment. Baird et al78 studied  the behavior  of 1 pct 

Mo and 2 ¼ pct Cr-1pct Mo ferritic steels in various micro structural forms  

and found  that creep  was  recovery controlled only under certain  

conditions of composition, initial structure  and testing  conditions. Thus 

recovery  control  was related  to the presence  of Mo2C and Mo2N  

particles  in the matrix,  whilst  a  solid solution mechanism  was 

suggested  as being  important  for non-recovery   controlled creep. 

To date there have been several suggestions for the rationalization of 

creep data100. These proposals have often evolved from empirical 

equations for the stress dependence   of the secondary steady state creep 

rate of the form:- 

( )RTQExpA c
n

s −= σε    5.1  

where in pure  metals and single  alloys  n is  often found to  be in the 

range of 4-5, Qc  it is close to the activation energy  for self diffusion. A is 

a structure sensitive parameter; R is the gas constant, and T the creep 

temperature.   

The creep behavior of complex  engineering  alloys  such as γ ′  hardened 

super alloys and other  particle  strengthened  materials , deviates  from 

this general pattern in two  main  respects. First, a well  established  

steady state  creep regime  is rarely observed; rather, after  a small  

primary  creep  regime, the creep  rate progressively  increases  from a 

minimum value until  fracture occurs.  Typical creep curves for low alloy 

ferritic steels illustrate dominance of tertiary creep. When minimum creep 
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rates are analyzed in terms of equation (5.1), unrealistically high values of 

n and Q are obtained68 

Several attempts have been made to enhanced creep data correlation. 

For example, Mclean and Hale69 demonstrated  that  the creep  rate for 

pure metals could be  brought  closer together  by dividing  stress  by  the 

modulus  of the material  at the  appropriate temperature. Because of the 

equivalent between the activation energy of diffusion and that of self 

diffusion, Sherby103extended the approach by dividing   the creep rate   by 

the  diffusion coefficient, D.   In addition, it  was shown that  an  improved  

correlation  could result  if the stacking  fault  energy  of the  metal was  

also taken into account. The resultant   expression101 had the form:65 

( )ns
s

GAD
σγε 53−′=&      5.2 

with A a constant and G  the shear modulus. More recently Mukherjee, 

Bird and Dorn102  have criticized  this equation  not only   on the ground  

that  it is dimensionally unbalanced  but  also   because   they  consider  

that  the activation  energy  term   should  be  stress dependent.  Instead 

they proposed the equation: 

( )ns GADGbKT σε ′′=/&      5.3 

where A is  probably a function  of  K
s
,γ  is the Boltzmann  constant, and 

b is the burgers vector.  When equation (5.3) was used  on data  for pure  

metals the scatter  band  in terms of  the maximum  to minimum  ratio of  

G
σ   was ≈ 6 for  constant  DGbKTs /ε& 100. It was suggested that a closer 

correlation could be achieved if the dependence of A ′′  on 
s

γ were known. 

Unfortunately, reliable 
s

γ  values  are  available  only for a limited  number  

of metals and  then rarely  at  the appropriate  creep  temperature100.  
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5.2 PROPOSED MODEL 

In describing plastic deformation behavior, both empirical and semi- 

empirical relations have been considered. The most popular approaches 

have been the use of non-linear viscoplastic theories and the power law, 

which are purely empirical, or the use of the semi- empirical kinetic flow 

equations. Viscoplastic theories describe deformation behavior in terms of 

combinations of mechanical components such as springs, dashpots and 

friction elements from which differential equations describing flow may be 

derived. In the power law description the relation between applied stress 

amplitude and plastic strain amplitude is expressed as:  

n
pa kεσ =        5.4 

where k and n are constants that are determined from experimental data 

fit. In the case of the semi-empirical kinetic equations flow is  

considered to be thermally activated, and the relationship between applied 

stress σ, and strain rate ε&is expressed in the form 2,,87 

( ) ( )
⎥⎦
⎤

⎢⎣
⎡ Δ−

=
kT

sGsf ,exp, σσε&      5.5 

where s is a structural parameter of the material, k is Boltzmann’s  

 constant, T is the absolute temperature, and ΔG is the change in free 

energy, which depends on the mechanism of flow. With s constant in the 

exponential term and the pre-exponential term being independent of s, 

equation (5.10) has the form used to describe steady state flow where 

deformation is controlled by dislocation glide through obstacle fields such 

as forest dislocations or precipitates 2,,87   

Although purely empirical models may describe the observed behavior 

with some degree of accuracy, they fail to address the internal state 

variables of the material. For instance, the use of the power law relation of 

the form of equation (5.4) implies that a log-log plot should give a straight-

line relation. However, for some metals, e.g. polycrystalline copper, the 



 88

double-log plot is not linear87.  This is probably due to the inability of the 

power law empirical relation to account for the internal state variable(s) of 

the material. Therefore for such materials, and also for materials 

development purposes, a model that accounts for the internal state 

variables and their evolution during deformation may give a more accurate 

description of behavior. Such a model is made possible by means of 

constitutive equations. 

A common approach to establishing a constitutive relation is to find an 

equation describing the mechanical response at a fixed structure, as 

specified by a certain state, or by structural parameters. Such equation is 

referred to as a kinetic equation, and is complemented with evolutionary 

equations for these structure parameters. In general, the kinetic model 

may be governed by more than one structural parameter evolving with 

different rates towards the respective steady state values.  

At low temperatures, plasticity (both plastic deformation and creep) is 

glide-controlled and a suitable kinetic equation that governs the flow  

behavior is given by2 :- 
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where, pγ& is the plastic shear strain rate, v0 is a frequency term, sσ  is 

applied shear stress, ∆F is the activation energy required to overcome 

obstacles; k is Boltzmann constant; T is the absolute temperature; τ  is 

the athermal flow strength of the material, (i.e. shear stress in the absence 

of thermal energy); p and q (0≤p≥1, 1≤q≥2) are constants, and represent 

the obstacle shape. 

The single- parameter model, although capable of describing the static 

creep and monotonic loading behavior in a satisfactory manner is limited 

in scope.  The limitation of the one-parameter approach is due to the 

neglect of other state parameters whose fast relaxation may be 



 89

responsible for transient behavior. Due to the possibility of more than one 

structural parameter governing flow, Estrin and Kubin10 consider mobile 

and forest dislocations as two structural parameters that govern flow, but 

studies were limited to the case of monotonic loading. 

Both plastic deformation and creep occur as a result of the applied shear 

stress exerting forces on defects such as dislocations in the material, 

causing them to move. Thus, at the same temperature it is expected that 

both plastic deformation and creep can be controlled by the same 

mechanisms and differ only in the boundary condition. Therefore, 

realistically, a model that describes plastic deformation should describe 

creep as well. 

A major objective of this work is to develop mathematical relations that are 

capable of describing the correlation between tensile and softening 

responses of the material, in this case low alloy steel. Two types of 

mechanism were observed. Low temperatures and high stresses were 

characterized by jerky glide whilst    high temperature and low stress were 

characterized by some form of power creep phenomenon.  

 

This section discuses a unified model that has the potential of describing   

monotonic work hardening and static creep behavior. The  model 

considers low temperature deformation situations where flow is  

thermally activated and controlled by the glide motion of dislocations in 

the presence of microscopic obstacles, and is consistent with the 

mechanism of dislocation blocking and subsequent re-mobilization (at 

least partially) on stress reversal.    

 

The overall plastic behaviour of a metal can conveniently be modelled in 

terms of a pair of coupled differential equations. One of these describes 

the strain rate in terms of the externally imposed testing conditions, 

together with an internal structure variable. The other should describe the 

evolution of the internal structure term and include any hardening or 

softening processes. Softening processes in low alloy steels are expected 
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to be due to recovery of dislocation forest structures and/or precipitate 

growth. Previous work has suggested that the former controls softening 

during creep5 and this is assumed to be the dominant effect in the material 

and over the test conditions studied during this investigation. Thus creep 

behaviour was modelled in terms of an equation describing plastic 

deformation together with one describing recovery. 

 

It also considers that the total dislocation density consists of mobile and 

obstacle (forest) components: the generation and glide motion of mobile 

dislocations are responsible for plastic flow and occur as a result of the 

applied shear stress while the build-up of forest dislocations causes 

hardening through the structure parameter. Conversely, the 

immobilization and/or loss of mobile dislocations enhance hardening while 

the breakdown of cell structures promotes softening.  

 

The mobile and forest dislocation densities ρm and ρt are related to the  

applied shear stress scσ  and obstacle strength tτ , respectively as2  
 

2/1
msc bραμσ =      5.7a 

2/1
ft bραμτ =       5.7b 

 

The subscripts, c and f attached to the shear stress and athermal strength 

serve to indicate that equation (5.7), is applicable to both monotonic and 

cyclic deformation and that the athermal strength is due to the forest 

dislocation density. The mobile dislocation density and hence the applied 

shear stress evolve with strain as:- 

 

γ
ρραμ

γ
σ

d
db

d
d m

m
sc 2/15.0 −=    5.8  

 

Similarly, the evolution of the tτ  with strain is given as:  
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γ
ρ

ραμ
γ
τ

d
d

bc
d
d f

f
t 2/1

25.0 −=     5.9 

 

In general, the evolution rate of each of these dislocation densities can be 

expressed as the algebraic sum of the rate of its production (or build-up) 

and the rate of its loss.  That is 

 

( ) ( ) ( )...,,...., .... mmfmd
d

d
d hgF fm ρρρργ

ρ
γ

ρ −=   5.10 

 

The first term at the right of equation (5.10) represents the rate of buildup 

of dislocation densities while the second term represents the rate of loss. 

In this model the evolution of dislocation densities is given by16,102:  

 

2/1
2

2/1
1 fmm

m kk
d
d ρρρ
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ρ

−=     5.11a 

ff
f kk

d
d

ρρ
γ
ρ

4
2/1

3 −=      5.11b 

where k1, k2, k3 and k4 are rate constants. The first terms of equation 

(5.11) are derived from the work of Kocks et al103 , who gave a general 

description of dislocation generation as:  

 

b
s

t

Ydt
d νρ
ρ

=       5.12 

 

Where, i = m or f, indicates the dislocation species  

sρ = the density of dislocation source  

ν  = mean dislocation velocity and  

Yb = average distance between emitted dislocations.  

 

According to Orowan104  plastic shear strain rate pγ& , due to mobile 

dislocations of density ρm. and Burgers vector b, moving with an average 

velocity v, is given by:  
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νρ
γ

b
dt

d
m

p =       5.13 

Substituting 
mbρ

γν
&

= , in equation (5.13) gives 

bY mb

s

ρ
γρ

ρ
&

& ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=      5.14 

 

Several possibilities exist for sρ  and Yb
2,44,104 depending on which species 

of dislocation production is considered. For i = m, it is considered that 

sρ is proportional to mobile dislocation density ρm. and Yb is  proportional 

to the mean free path, i.e., 2/1−
mby αρ . Thus, the rate of generation of 

mobile dislocation density according to equation (5.14) becomes:  

 

( ) γραρ ρρ
ργ && 2/1

12/1 mm kb
mm

m =′ −   5.15 

 

which implies that 2/1
1 m

m k
d

d
ρ

γ
ρ

= . For i = f, mobile dislocations are 

assumed to act as sources for the generation of forest dislocations, with 

the mean distance between them being inversely proportional to its 

density. That is, ms ρρ = and 2/1−
fbY αρ . In this case, equation (5.14) 

becomes:-  
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And which yields 2/1
3 f

m k
d
d ρ
γ
ρ

=  

The second term of equation (5.11a) which represents the loss of mobile 

dislocation density is due to immobilization of mobile dislocation density 

and occurs by one or the other of two main processes: either as a result of 

interaction between mobile-mobile dislocations or, as a result of 

interaction between mobile-forest dislocations. These two processes are 
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considered to act cooperatively and so, differ from that of other schemes 
10,44,105  where immobilization by these dislocation species is assumed to 

occur independently and in an additive manner.  For any given strain rate 

the immobilization due to mobile - mobile dislocation interactions is 

proportional to the mobile dislocation density ρm while that due to mobile-

forest dislocations is inversely proportional to the mean distance between 

obstacles which, in the case of forest dislocations, is proportional to 2/1
fρ . 

Hence, the overall rate of immobilization becomes 2/1
2 fmk ρρ .  An 

increase in mobile dislocation density will enhance mobile-mobile 

interactions while an increase in forest dislocation density will reduce the 

inter-obstacle spacing (i.e. reduce the mean free path) and enhance 

interactions between mobile and forest dislocations depending on the 

initial state of the material. The dislocation species with higher density will 

dominate the immobilization process, with the other complementing them. 

In the case of equation (5.11b), the second term representing the rate of 

loss  of  forest dislocation density with strain may be due to dynamic 

recovery processes such as rearrangement of and or breakdown of 

dislocation cell substructures, cross-slip and annihilation of screw 

dislocations. All these processes, which are assumed to act co-operatively 

and complementary to each other, are proportional to the instantaneous 

forest dislocation density.  .fρ  

 

Equation (5.11) becomes zero either at peak conditions and or the 

saturation stage. It is important to note that peak point is not necessarily a 

saturation stage, as is the case in cyclic loading, where steady state 

cycling precedes the saturation stage, or steady-state creep. Also, in 

strain-amplitude cycling, where cyclic hardening/softening occurs, peak 

stresses again precede the saturation stage. It is only in the case of 

monotonic loading behaviour that the peak stress may reach the 

saturation point.  

 

Let the mobile dislocation density at the peak point be mpρ  then at this  
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stage equation (5.16a) becomes zero, that is  
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So that 
2

1

k
k  in equation (5.11a) yields 
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But at the peak condition all the mobile dislocations are fully blocked as 

far as the loading direction is concerned. They may be able, however, to 

move in the opposite direction during unloading or reverse loading. In this 

fully blocked condition, the peak mobile dislocations are equivalent to 

peak forest dislocations with dislocation density given as fmp Rρρ = , where 

R is a numerical constant less than unity. Substituting fmp Rρρ =  in 

equation (5.18) we have:- 
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R may be a constant or may vary with peak stress, Assuming that R is a 

constant, then it may be determined at the steady stage when 

fsfmsm ρρρρ ===  and 0=
γ
ρ
d
d m .  Thus, 

2/1

/1 ⎟⎟
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⎜⎜
⎝

⎛
=

ms

fsR
ρ
ρ

. Equations 

(5.11b) and (5.19) together completely describe the deformation 

behaviour in terms of the dislocation densities. The behaviour may also be 

expressed in terms of stress by substituting equations (5.19) and (5.11b) 

into equations (5.9) and (5.8), respectively, and combining them with 

equations (5.7) and (5.11b) as: 
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⎥
⎦
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where 11θ  = 15.0 bkαμ , is the initial slope of the stress-strain curve, 
2/1/1 RCo = , 35.0 bko αμθ =  is the initial slope of the athermal flow stress- 

strain curve; and 
4

3

k
bk

fs
αμτ =  is the saturation value of the athermal flow 

strength.  Equation (5.20a) shows that the slope of the stress-strain curve 

depends not only on the applied stress but rather, on the ratio of applied 

stress-to-internal flow stress and, that, this slope vanishes whenever the 

ratio reaches a value of 1/C0. Also equation (5.20b) is similar to equation 

(5.7), due to Kocks14 except that fsτ  replaces maxτ  in the Kocks’s 

equation, since saturation does not necessarily occur at the maximum 

forest (or obstacle) dislocation density, maxfρ  but can also occur at an 

obstacle dislocation density less than maxfρ .  It is only in the case of 

monotonic loading that fρ  may reach maxfρ . Thus, equation (5.21b)  

accommodates both monotonic and cyclic cases.  

 

For a polycrystalline material, μθ =11 , the temperature-compensated 

shear modulus of elasticity of the material, thus k ( ) 1
1 2 −= bk α 1.  Work on 

fcc metals10,14,103 indicates that the initial hardening rate θo for monotonic 

loading behaviour has a value between 0.02-0.06μ. The value of oC   is 

also determined, from monotonic behaviour at saturation or steady state, 

as the ratio between the athermal flow strength at saturation fsτ , and 

saturation applied shear stress scsσ . Hence we have
scs

fs
oC

σ
τ

= .  In terms of 

time equations (5.20) becomes;-  
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Using modified versions of the above equations with relevant programmes 

like Microsoft Excel, Matlab / SIMULINK programmes; plastic deformation 

and creep under monotonic loading conditions can be described. What 

follows below is the case for polycrystalline low alloy steel. 

 

5.2.1 Calculation of Plastic Deformation 
 

In many approaches, descriptions of plastic deformation are based on the 

Norton creep law in which the axial plastic strain rate ε can be written in 

terms of the applied stress σ  as: 

 
m

o
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

σ
σεε 0&        5.22 

 

Where m is a constant with the temperature dependence contained in 0ε  

and oσ   is the value of the stress to produce an arbitrarily chosen strain 

rate of 0ε . In many instances results are relatively insensitive to the value 

of  0ε   in which case it may be taken to be constant representing elastic 

collapse of the structure.   

 

More recently, this  purely empirical  relationship  was modified  so as  to 

describe  plasticity  due  to dislocation  glide  at lower  temperatures and 

higher  stresses and power  law creep due to  dislocation  climb at lower  

stresses and higher  temperatures.  Results are interpreted depending on 

the deformation mechanism been considered.  
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In describing plasticity due to glide, oσ is replaced by σ̂  which is 

interpreted as a variable representing the internal structural state of the 

material (known here as the “material state stress”) and the constant m 

taken to be temperature dependent with:-38  

 

kT
Cm =        5.23 

 

where C is a constant, T, the absolute temperature and k is Boltmanns’s 

constant.  In recent developments5, 12, m    is given by:-  

 

kTVm σ=        5.24 

Where V is the activation energy with σ, k and T retaining their usual 

meanings. 

 

For many applications involving power law creep, the Dorn equation is 

frequently used.  Equation (5.22) has a form similar to the Dorn Equation 

for power law creep with m being constant.     
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D is lattice diffusion and is temperature dependent.  It can be represented 

as:-  
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DD fexp0       5.26 

where R is the universal gas constant and fQ  is the activation energy for 

flow.  In describing power law creep caused by dislocation climb using   

the Dorn equation, the stress is normalized with respect to the 

temperature dependent elastic modulus in some approaches.2   Here, the 

temperature dependence is being contained in a term including the 

diffusion coefficient, since at high temperatures climb is generally lattice 
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diffusion controlled.  The velocity, cV at which an edge dislocation climbs 

under local normal stress acting parallel to its burgers vector, is:- 

 

bkT
DV nc

c
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Combining equation (5.27) and expressions  bvmρε =&  and ⎟
⎠
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Where Ω  is approximated by 3b  and A is a dimensionless constant 

represented all constants.  

 

Measurement of the activation energy in power law breakdown regime 

often gives values exceeding that of self diffusion.  This is sometimes 

taken to indicate that the recovery process differs from that of climb 

controlled creep.  Some of the difference, however, may simply reflect the 

temperature-dependence of the shear modulus, which has a greater effect 

when the stress-dependence is greater.   An alternative relationship that 

reduces to the Dorn equation at lower stresses but is often  better than  

equation  (5.28) for describing transition  region between  plasticity and 

power law creep, which is known  as power law breakdown is:-2 
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A’ and α are constants with m having the same value as in equation 

(5.27).  Only steady state creep at constant structure can be described in 

either case. Neither equations (5.27) and (5.28) can adequately describe 

the creep curve behavior.  To analyze results equation (5.29) was re-

written as105:- 
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The effects of structure evolution are of importance in  this investigation 

so it has been assumed that this can be introduced into  the power  law 

creep  equation  by normalizing  the applied stress ( )aσ   with respect  to 

the material  state stress ( )oσ
) . This differs from many other approaches in 

which the effect of an internal stress ( )oσ  is represented by a term 

subtracted from the applied stress in the power law creep equation7 or like 

Miller82 we have ⎟
⎠
⎞

⎜
⎝
⎛ −

G
a 0σσ .  The advantage of this approach is that the 

creep rate could be brought closer together at the relevant temperature.  

The modulus of elasticity, as is stipulated above, is temperature 

dependent with a functional relationship between internal stress and the 

activation energy. In models utilizing the internal stress concept, it is 

generally recognized that the internal stress is unstable, varying with 

temperature, stress, time and the heterogeneity of the microstructure as 

has been noted 71-74.     

 

Normalizing stress with respect to material state stress in this study has a 

possible advantage in that both plasticity and power law creep have the 

same form of the Norton equation.  Furthermore, it has been 

demonstrated by some researchers that normalizing stress with some 

material parameter provides better correlation of data. For example, 

Evans et al83 observed that creep data for all materials superimpose when 

the effective stress is normalized by the proof or yield stress, 
n

y

B ⎟
⎟
⎠

⎞
⎜
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⎝

⎛ −
=

0

"
σ
σσε& ; a considerable improvement for the maximum to 

minimum ratio of ⎟
⎠
⎞

⎜
⎝
⎛ −

G
a 0σσ  obtained by other approaches97.  

Furthermore, when flow stresses at different temperatures and strain rates 
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are plotted in terms of  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

o

kT
ε
ε&log  against stress, should there be any 

changes in deformation mechanisms, these should be readily identifiable 

by discontinuities in the curve, prompting further analysis. With this 

approach it was possible to correlate tensile and creep data. Relevant 

parameters intrinsic to the material are determined and adjustment 

effected. The rational was to use parameters obtained from the tensile 

data to determine creep properties of the low alloy steel.  This would not 

have been possible had we used the approach been used that normalizes 

the stress to the modulus, which depends on temperature. This would 

have required making adjustment for changes in temperature in the 

model. 

    

The two distinct types of behavior observed in section (5.1.1) may  

probably be linked to a change in a deformation mechanism occurring at a 

yield stress of about 550MPa. Values for the apparent activation volume, 

V, of 8.90 x 10-28 m3 were obtained, together with a value for the material 

state stress,σ̂ , of 1052 MPa in figure (5.2) for values corresponding to 

yield stresses greater than 550MPa,  which were analyzed in terms of  

glide  deformation kinetics as expressed by equations (5.22) and (5.25). 
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Figure 5.2: Strain rate plotted against tensile yield stress in terms of glide 

equation 5.27 and 5.30 from specimens tested at strain rates and 

temperatures having yield stress above  550MPa. Experimental results 

are shown as symbols and  the solid curve represents the best-fit straight 

line 

 

The results for yield stresses less than 550 MPa which were generally 

from tests at higher temperatures (above about 500°C) were analyzed 

using equation (5.22) and (5.30). To do this, a value of apparent activation 

energy was first found in a way that points on a log-log plot of 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
RT
Q

kT fexpε&   versus  σ lay on a straight line. Although such a value was 

found in the region of 400 kJ mol-1, points did not lie on a straight line. 

They tended toward linearity  at lower  stresses but lay  on a steeping  

curve  at higher stresses in much  the same  way  as these  results  

appear  in figure 5.1. It was surmised, therefore, that some of the results 

lay in the transition region between glide and climb processes referred to 

as power law breakdown2. An empirical relationship, equation (5.35)  that 

has been used to describe power law breakdown, which reduces to power 

law creep at lower stresses  is used to  plot  results as  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
RT
Q

kT fexpε&  
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versus ⎟
⎠
⎞

⎜
⎝
⎛ )

ˆ
sinh(

σ
σa , a value  for Qf was found in a way  that  points  lay on 

a single  curve  using  log-log axes, and a value  of  a  was found  which  

linearised the curve 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Strain rate plotted against tensile yield stress in terms of the 

power law breakdown, equation 5.6 from specimen tested at different 

strain rates and temperatures having yield stresses below 550MPa. 

Experimental results are shown as symbols and the solid curve 

represents the best-fit straight line. 

 

As shown on figure (5.3), the results appear to fit equation (5.30) 

reasonably well with values of Qf   = 450 kJ mol-1   and a =10. the value  of  

the apparent  activation  energy  for creep  is much  higher  than  that for  

self-diffusion in iron. However, it is reasonably close to values of about 

380 kJ mol-1   found for alloy steels 49. The results in figure (5.3) are not 

highly  sensitive  to the  value  chosen for Qf   so that taking  a lesser  

value  still  gives  a fairly good  fit  to  the results. From the slope and 

intercept of the curve, n was determined as 2.74 and A as 3.63 Js-1
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In its simplistic form, equation (5.29) is incapable of explaining certain 

experimental facts, notably an increase in the exponent and a drop in the 

activation energy for creep at lower temperatures. To do so it is  

necessary  to assume  that  the  transport  of matter via dislocation  core  

diffusion  contributes  significantly  to the overall  diffusion transport of 

matter and under certain circumstances- becomes  the dominant  

transport mechanism. 

 

The use of only two parameters n and α  to describe three quantities is 

itself not satisfactory; n describes the power law, α  prescribes the stress 

level at which the power law breakdown occurs, and n and  α  describe 

the strength of the exponential stress dependence. Lacking any physical 

model, it must be considered    fortuitous that any set of n and α  can 

correctly describe the behavior over a wide range of stresses. 

 

In analyzing the low stress results, the assumption has been made that 

the material state stress  σ̂  determined from the glide form of the 

deformation equations is the same as that used in the power law 

breakdown formulation, equation (5.30). Thus a value of   σ̂ = 1052 MPa 

was used to determine material parameters in equation (5.30). In view of 

the somewhat empirical nature of the two deformation equations, the 

assumptions cannot be regarded as necessarily valid and need to be 

justified by later results. However, if  as in the  case of the present work, 

tests  at room  temperature  are used to determine  σ̂  value  which  is  to 

be used  for  creep  results obtained  from conditions where  the 

deformation  mechanism is  different, some  sort of  relationship  between  

the two  quantities  is necessary. As is demonstrated below, a one to one 

correspondence seems to give satisfactory results for this material but it 

may not be the case for other types of alloy. 

 

In spite of these reservations, this approach gave a good description of 

the result. Values of n are prescribed by the power law, and the adjustable 

parameter isα . 
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5.2.2 Determination of Softening Kinetics  
 

Softening processes in low alloy steels are expected to be due to recovery 

of dislocation of forest structures and /or precipitate growth. Previous work 

has suggested that the former controls softening during creep12  and this  

is assumed  to be  the dominant effect in the  present work over the test 

conditions  investigated. The simplest kinetics equation describing 

dislocation recovery considers the annihilation of a pair of dislocations and 

can be written in terms of a simple second order process as45 

 

2ρβρ i

dt
d

−=        5.31 

 with ρ representing the dislocation density. The rate  constant B is 

expected  to be temperature  dependent through  a term  such  as 

⎟
⎠
⎞

⎜
⎝
⎛−=

RT
QkTBB rexp/1

0
1  where Qr is the activation energy for recovery  and 

oB1  is  a constant . From the relationship between stress and dislocation 

density  2/1ρασ b=  (b is the magnitude  of the burgers vector  and α is a 

constant ) and  assuming  that ρ refers  to the forest  dislocation  density,  

which,  in turn,  reflects  the value  of the material state stress, equation 

(5.31)  becomes. 

 

( )3ˆˆˆ
okT

B
dt
d σσσ

−−=       5.32 

 

where b and α are included in B. Here an additional assumption is made  

that there is a  minimum  value  of ρ and hence  a minimum  value  of the 

material  state stress, denoted by oσ̂ , which  is attributed  by recovery 

processes within  the range  of conditions  investigated.   
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Figure 5.4: Values of the material state stress, determined using  

Equations( 5.1) and (5.3) from specimens which had been aged in a  

Furnace for different times and temperatures. Solid curves were  

calculated using equation 5.8 and the material parameter values.   

 

Recovery of the material state stress at yield plotted against time at four 

furnace holding temperatures is shown in figure (5.4) . Since results were 

from tensile tests at room temperature, equations (5.22) and (5.25) were 

used to calculate values of σ̂ . Solids curves in figure 5.4 indicate values 

calculated from an integrated form of equation (5.32). The value of  Qr  

was assumed  to be  the same  as the activation  energy for self diffusion 

of iron, i.e 251kJ mol-1 . 
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Figure 5.5: Softening curves of the material state stress against time for 

specimens aged in a furnace and from interrupted creep tests 

 

A range of activation energies yielded reasonable results in figure (5.4) 

although not one as high as that found for deformation from figure (5.3).  

Values for 0σ
)  of the same order of magnitude as that found for stress 

responsible for the mechanism change in figure (5.1) appeared to give 

good results. Thus the same value, i.e., 550 MPa was used. The value of 

the constant B in equation (5.32) was found to be 1.5 x 10-17 M5N-1 s-1 .  

 

As noted previously12 alloy steels show enhanced softening when 

subjected to an applied load compared to static recovery at the same 

temperature. The material tested in this study also shows a similar effect, 

as illustrated   in figure (5.5) for yield stress measurements obtained from 

interrupted creep specimens tested at 603°C with an initial axial stress of 

79 MPa. These are true stress values making due allowance for creep 

deformation.  Equations (5.31) and (5.32) imply that the driving force for 

recovery is the material state stress as reflected by the dislocation 

density. It may therefore be assumed that this driving force is increased 

by some function of the applied stress when the material is operating 

under creep conditions. The simplest function is to increase the material 
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state stress by an amount equal to the applied stress. The lower solid 

curve in figure (5.5) shows the recovery calculated when the applied 

stress is added to σ̂  which, although showing reasonable agreement 

tends perhaps to underestimate the degree of softening. Assuming the 

effect to be additive, equation (5.32) could be modified to105:  

 

  ( )[ ]30ˆˆ
σσσσ )−+−=

kT
B

dt
d                                            5.33 

 

The condition may be expected to apply only to materials in which  the 

principal mechanism of softening is recovery of a dislocation forest 

structure. In materials where softening is dominated by precipitate growth,  

it is to be expected that an expression describing accelerated growth 

should replace it.           

 

5.2.3 Calculation of Creep Behavior  
 

The creep results were carried out  under conditions  in which the  

maximum  initial  stress was 211MPa, i.e., under conditions  where the 

deformation  mechanism  was  in the  power law/power law breakdown 

regime. Consequently equation (5.28) was used as the kinetic equation 

with equation (5.32) describing evolution. Material parameter values were 

as obtained from the tensile test programme with material parameters as 

listed above. Creep curves were calculated numerically using 

commercially available software. Figures (5.4 a-d) give the experimental 

and calculated results of creep curves obtained at different experimental  

temperatures.  
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(a )        (b) 

 

(c) (d) 

Figure 5.6: Experimental (symbols) and calculated (solid Curves) creep 

results for temperatures of (a) 564oC, (b) 582oC (c) 603oC and (d) 620oC. 

The stress values indicated are those at the start of each test. 

 

Most studies concerned with high temperature creep have discussed the 

stress dependence of the secondary creep rate in terms of a power law 
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representation95.  It was common to represent the logσ/log sε& relationship 

by means of a straight line segment of gradient, n.  With low alloy steel of 

the type used in this study, this approach would result in a decrease in n 

value. This decrease in n with increasing test duration has generally been 

interpreted in terms of changes in creep mechanism. Thus high  n value 

dislocations  are thought  to be able to bow  between  or cut  through the 

particles whereas, in the stress range when n is small, climb over  

particles or concentration of dislocation  activity  in the grain  boundary 

regions  is usually  considered important. In contrast n values very close 

to unity  are normally  assumed  to be  associated with deformation  taking 

place by stress-directed  flow  of vacancies without  dislocation  

movement. 

     

Micro- structural interaction occurring during plastic deformation is 

extremely complex and any models describing bulk phenomena such as 

creep curve and stress strain behavior are necessarily only 

approximations from empirical input. Many of the models proposed in the 

bulk of the literature differ considerably both in content and substance. In 

many approaches, the plastic behavior is conveniently  modeled  in terms 

of  a pair of coupled   differential  equations, one of which  describes the 

strain  rate  in terms of  the externally  imposed  testing  conditions and an 

internal structure variable  and  the other  describing  the evolution  of the 

internal  structure  term.  

 

5.3  INTERNAL STRESS MODELS RESULTS 
 

The concept of internal stress is  very useful  in the understanding of the 

creep behaviour of a wide range of precipitate hardened alloys, 

particularly so for the class of material used in this study3,82,73.  It can be 

used to asses the influence of a change in microstructure due to long term 

ageing on the creep properties in micro structurally   unstable   alloys such 

as ferritic steels, in which, in some cases damage is thought to occur by 

micro-structural effect rather than by the usual cavity formation. The major 

obstacle with the concept is that extrapolation for long ageing time is 
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unreliable because of the unstable nature of these alloys.  Models by 

Wilshire et al65-67, ( ) ⎟
⎠
⎞

⎜
⎝
⎛−−=

RT
QExpA n

0σσε& , D Miller82, 
n

G
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⎜
⎝
⎛ −

= 0σσε&  

and Evans et al73, 
n

y
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0

"
σ
σσε&  highlighted in chapter two are further 

analyzed and comparison made with  the present model adopted  in this 

study.  The above equations have been re-arranged for comparison with 

the modified Dorn’s equation used in this study:- 

 

Wilshire et al 
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Equation (5.34) and (5.35) compare favourably with (5.22). The value of n 

in each case is estimated as 3.5.  The creep rate and recovery have 

similar stress dependence with the stress and temperature dependence 

similar to that predicted by recovery theory. The value of n = 2.72 quoted 

for the model used in this study differs from that quoted for the above 

models. Thus stress dependence is less in the present study. Because of 

the complex and unstable nature of 0σ , the use of tensile data obtained in 

this study to determine 0σ  will  introduce many ambiguities. Firstly, 

approximating ,0
nσ  

n

G
⎟
⎠
⎞

⎜
⎝
⎛ 0σ and 

n

y
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ
σ 0  to some constant value is nearly 

impossible since the change of  0σ  with either G or yσ is not clear cut 

because 0σ  is controlled by a host of variables92.  it’s value depends on 

the applied stress, temperature and the heterogeneity of the material at 
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any given instance.  Furthermore, because it is raised to some power any 

slight increase in the friction stress would be significant. 

 

The data from the present study could be used in the internal stress 

technique if either measurement for the 0σ  could be obtained or 0σ  is 

approximated to 0σ
) .  Definitive relationship between internal stress and 

the applied stress does not always emerge, possibly because the 

behavior patterns displayed may vary depending on the material 

examined and on the precise stress-temperature conditions selected for 

investigation. The temperature and stress range used here generally 

conform to those used by many authors for this class of material. For this 

class of alloys, the ratio 
σ
σ i  may be constant or may increase with 

decreasing stress when tested at low stresses and or, iσ  may appear to 

be independent of stress when measurements are made at high stresses.  

Thus it would be safe to say that tensile data obtained at high stresses in 

this study would be expected to have little or no influence on the internal 

stress.  Furthermore, because of the short duration of test time, it would 

be safe to assume that significant micro structural changes did not take 

place to justify such measurement which in most cases is very difficult to 

perform particularly at low strain rate. Thus it would be safe to assume 

that changes in internal stress values as a result of micro-structural 

changes will have been very slight at high stresses, especially during the 

secondary creep rate when the internal stress would be expected to be 

nearly equal to the applied stress. Thus equation (5.40) could be 

approximated to reflect equation (5.27) and  0σ  could be expected to 

serve the same function as 0σ
) in such instances. Little should be read into 

the relative magnitude of oσ  since, in any material, it is dependent on 

temperature. Furtheremore, for this class of material, it is the tertiary 

creep that is extensive. Thus the above assumptions have the potential of 

rendering the approach of only limited use.    In this study measurement of 
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0σ  was not carried out and because of the reasons highlighted above, 

data from present work has not been used for comparative analysis.   

 


