
I N F L U E N C E M O D E L L I N G A N D L E A R N I N G B E T W E E N
D Y N A M I C B AY E S I A N N E T W O R K S U S I N G S C O R E - B A S E D

S T R U C T U R E L E A R N I N G

ritesh ajoodha

A Ph.D. thesis submitted to the Faculty of Science, University of the Witwatersrand,
in fulfillment of the requirements for the degree of Doctor of Philosophy in Computer

Science.

Doctor of Philosophy
Supervised by Dr. Benjamin Rosman

School of Computer Science and Applied Mathematics
The University of the Witwatersrand

May 24, 2018

Ritesh Ajoodha: Influence Modelling and Learning between Dynamic Bayesian Networks
using Score-based Structure Learning, Doctor of Philosophy.

A Ph.D. thesis submitted to the Faculty of Science, University of the Witwatersrand, in
fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science.

supervisor:
Dr. Benjamin Rosman

location:
Johannesburg, South Africa

To Mrs. Soonpathee Ajoodha [1929-2016]

Mrs. Soonpathee Ajoodha was born in Putnispruit, South Africa, in 1929 on the 12th of
January. She was 8 years old when she lost her mother. In 1947 she married Mr. Bhoodan

Ajoodha and lived on 56 Croesus Avenue in Newclare. In 1960 she leased her farm in
Lenasia (95 Nirvana Avenue) and, together with her husband, she bought the first house in

Lenasia and had 12 children (6 sons and 6 daughters), 35 grand-children, 43
great-grand-children, and 3 great-great-grand-children. As one of her 93 descendents, I am
proud to have shared some of her stories and experiences. She was the first Indian woman to

travel on board the Concorde1, crossing two international time-lines. At the age of 87 she
lived a fruitful and memorable life, leaving behind an impressive legacy.

(a) (b) (c)

Figure 1: (a) Mr. and Mrs. Ajoodha abord the Concorde; (b) Mr. and Mrs. Ajoodha at their
home, the first house in Lenasia; (c) Mrs. Ajoodha celebrating my 2nd Birthday.

1 The Concorde was a British-French turbojet-powered supersonic passenger jet.

A B S T R A C T

Although partially observable stochastic processes are ubiquitous in many fields of science,
little work has been devoted to discovering and analysing the means by which several such

processes may interact to influence each other. In this thesis we extend probabilistic structure
learning between random variables to the context of temporal models which represent

partially observable stochastic processes. Learning an influence structure and distribution
between processes can be useful for density estimation and knowledge discovery.

A common approach to structure learning, in observable data, is score-based structure
learning, where we search for the most suitable structure by using a scoring metric to value
structural configurations relative to the data. Most popular structure scores are variations on
the likelihood score which calculates the probability of the data given a potential structure.

In observable data, the decomposability of the likelihood score, which is the ability to
represent the score as a sum of family scores, allows for efficient learning procedures and

significant computational saving. However, in incomplete data (either by latent variables or
missing samples), the likelihood score is not decomposable and we have to perform

inference to evaluate it. This forces us to use non-linear optimisation techniques to optimise
the likelihood function. Furthermore, local changes to the network can affect other parts of

the network, which makes learning with incomplete data all the more difficult.

We define two general types of influence scenarios: direct influence and delayed influence
which can be used to define influence around richly structured spaces; consisting of

multiple processes that are interrelated in various ways. We will see that although it is
possible to capture both types of influence in a single complex model by using a setting of
the parameters, complex representations run into fragmentation issues. This is handled by

extending the language of dynamic Bayesian networks to allow us to construct single
compact models that capture the properties of a system’s dynamics, and produce influence

distributions dynamically.

The novelty and intuition of our approach is to learn the optimal influence structure in
layers. We firstly learn a set of independent temporal models, and thereafter, optimise a

structure score over possible structural configurations between these temporal models. Since
the search for the optimal structure is done using complete data we can take advantage of

efficient learning procedures from the structure learning literature. We provide the
following contributions: we (a) introduce the notion of influence between temporal models;
(b) extend traditional structure scores for random variables to structure scores for temporal

models; (c) provide a complete algorithm to recover the influence structure between
temporal models; (d) provide a notion of structural assembles to relate temporal models for

types of influence; and finally, (e) provide empirical evidence for the effectiveness of our
method with respect to generative ground-truth distributions.

The presented results emphasise the trade-off between likelihood of an influence structure to
the ground-truth and the computational complexity to express it. Depending on the

availability of samples we might choose different learning methods to express influence
relations between processes. On one hand, when given too few samples, we may choose to

learn a sparse structure using tree-based structure learning or even using no influence
structure at all. On the other hand, when given an abundant number of samples, we can use

penalty-based procedures that achieve rich meaningful representations using local search
techniques.

v

Once we consider high-level representations of dynamic influence between temporal models,
we open the door to very rich and expressive representations which emphasise the
importance of knowledge discovery and density estimation in the temporal setting.

vi

R E L AT E D W O R K

Some of the work in this thesis appears in the following peer reviewed publications:

[Ajoodha and Rosman 2018] Ritesh Ajoodha and Benjamin Rosman. Advanc-
ing Intelligent Systems by Learning the Influence Structure between Partially Observed
Stochastic Processes using IoT Sensor Data. AAAI SmartIoT: AI Enhanced IoT Data
Processing for Intelligent Applications, New Orleans Riverside, New Orleans, Lou-
siana, USA. February 2018.

[Ajoodha and Rosman 2017] Ritesh Ajoodha and Benjamin Rosman. Tracking
Influence between Naïve Bayes Models using Score-Based Structure Learning. PRASA-
RobMech. December 2017.

vii

A C K N O W L E D G M E N T S

I would like to thank my supervisor, Dr. Benjamin Rosman, for supporting me over
the five years that we have been working together, and for giving me the freedom
and tools to explore and discover new areas of probabilistic AI. Dr. Rosman has
been a hugh inspiration to me and our weekly meetings have been my best learning
experiences at WITS.

My other colleagues, teachers, and mentors have also been very supportive to my
research. Including (Dr.) Richard Klein; (Prof.) Turgay Celik; Kgomotso Monyepote;
(Miss.) Diane Coutts; (Dr.) Nishana Parsard; Andrew Francis; (Dr.) Pravesh Ranchod;
Mike Mchunu; (Dr.) Hima Vadapalli; (Dr.) Hairong Bau; (Prof.) Michael Sears; (Prof.)
Montaz Ali; (Prof.) Clint Van Alten; (Prof.) Sigrid Ewert; (Prof.) Ebrahim Momoniat;
(Prof.) Joel Moitsheki; and (Prof.) Charis Harley.

I would also like to thank the members of the Robotics, Autonomous Intelligence
and Learning (RAIL) Laboratory for their support; constructive criticisms; and sug-
gestions. Namely Ofir Marom; Steve James; Phumlani Khoza; Richard Fisher; Logan
Dunbar; Ashley Kleinhans; Beatrice van Eden; Benjamin van Niekerk; (Dr.) Andrew
Saxe; Adam Earle; and Jason Perlow.

It would have significantly harder for me to complete the background of this re-
search had it not been for (Prof.) Daphne Koller and (Prof.) Andrew Ng who provided
the world with Coursera2. By making free quality education available to the world,
these authors have enabled many students the opportunity to learn about the pure
sciences from world renowned researchers, despite their location and financial back-
grounds. In particular, I would like to thank (Prof.) Daphne Koller and (Prof.) Judea
Pearl for providing relevant and useful educational lectures which are available on
YouTube.

Thank you to the NIPS; AISTATS; PRASA; Ph.D. panel members ((Dr.) Pravesh Ran-
chod, (Prof.) Michael Sears, and (Prof.) Montaz Ali); the participants at the Bayesian
Inference Summer School in Battys Bay (namely Prof. Udo von Toussaint, Prof. Kevin
H Knuth, and Prof. John Skilling); my anonymous Ph.D. examination panel; and var-
ious other anonymous reviewers for feedback and suggestions to strengthen our re-
search tools and clarity of mathematical descriptions. I appreciate the time and effort
spent to review my research papers and thesis. I would like to extend this gratitude to
the representatives at the Deep Learning Indaba 2017

3, which took place at WITS this
year, and Dr. Asad Mahmood who provided a useful discussion and review before
the final submission of this work.

2 https://www.coursera.org/
3 http://www.deeplearningindaba.com

ix

https://www.coursera.org/
http://www.deeplearningindaba.com

I would like to thank the members of the Stack-overflow community who helped
me through the development of the tools necessary to implement and experiment on
these ideas. I greatly appreciate your dedication and commitment to strengthening
the programming community by being the most user-friendly trouble-shooting tool.

I would formally like to acknowledge the following funding awarded during my
doctoral studies, without which this research would not have been possible: the
Teaching Development Grant Collaborative Project funded by the Department of
Higher Education, South Africa (Ref. APP-TDG-0020/21); the WITS Staff Bursary
(Ref. A0034695); the NRF Scarce Skills Doctoral Scholarship (Ref. SFH14072479869);
and the Doctoral Postgraduate Merit Award Scholarship (Ref. 468045). A full list of
funding and awards can be found on my website4.

My parents’ tireless efforts to provide a quality education and a loving living envi-
ronment for my brothers and I will always be appreciated. I cherish all of our family
bonding times and know that I would have not been able to complete this research
without them.

I would like to thank my brothers, Ravish and Rushil, and sister-in-law, Meera,
for all their support and tolerance in having to listening to me prattle-on about my
research. I thank my Nanie for making me all those delicious study-treats when I
battled through the development of this project.

4 ritesh.ajoodha.co.za

x

ritesh.ajoodha.co.za

D E C L A R AT I O N

I, Ritesh Ajoodha (student number: 468045), hereby declare the contents of this Ph.D.
thesis to be my own work. This thesis is submitted for the degree of Doctor of Philos-
ophy in Computer Science at the University of the Witwatersrand. This work has not
been submitted to any other university, or for any other degree.

Johannesburg, South Africa

Ritesh Ajoodha, May 24, 2018

C O N T E N T S

1 introduction 1

1.1 Introduction 1

1.2 Problem Statement 2

1.3 Overview of Literature 3

1.4 Overview of Method 4

1.5 Novelty and Contribution 5

1.6 Thesis Structure 6

2 background 7

2.1 Introduction 7

2.2 Bayesian Networks: Representation 8

2.2.1 Bayesian Networks 8

2.2.1.1 What is a Bayesian Network? 9

2.2.1.2 I-maps and I-equivalence 11

2.2.1.3 Naïve Bayes Model 12

2.2.2 Dynamic Bayesian Models 13

2.2.2.1 Markov Systems 14

2.2.2.2 Time Invariance 14

2.2.2.3 What is a Dynamic Bayesian Network? 15

2.2.2.4 Hierarchical Bayesian Networks 16

2.3 Bayesian Networks: Learning 19

2.3.1 Parameter Estimation 19

2.3.1.1 Maximum Likelihood Estimation 20

2.3.1.2 Bayesian Learning 23

2.3.1.3 Learning Latent Variables 27

3 related work 33

3.1 Introduction 33

3.2 The Likelihood Score 34

3.3 The Bayesian Information Criterion 35

3.4 The Bayesian Score 36

3.5 Learning Tree-structured Networks 38

3.6 Learning General Graph-structured Networks 39

3.7 Structure Learning Complexity 44

4 the representation of dynamic influence 47

4.1 Introduction 47

4.2 Influence Networks 48

4.2.1 Influence Structure 48

4.2.2 Independency Maps 50

4.2.3 Factorisation of Influence Networks 50

4.2.4 Influence Networks 50

4.2.5 Independency Equivalence 51

4.3 Dynamic Influence Networks 52

4.3.1 Context 52

4.3.2 Assumptions 53

4.3.2.1 Time Granularity 53

xiii

xiv contents

4.3.2.2 The Markov Assumption 54

4.3.2.3 The Time-Invariance Assumption 55

4.3.3 Dynamic Influence Networks 55

4.4 Inference on Influence Networks 58

4.5 Importance of Influence Structures 59

5 structure scores and assembles 63

5.1 Introduction 63

5.2 Structure Scores 64

5.2.1 The Likelihood Score 64

5.2.1.1 Scoring Influence Models 65

5.2.1.2 Scoring Dynamic Bayesian Networks 68

5.2.1.3 Influence between Hierarchical Dynamic Bayesian Net-
works 69

5.2.2 The Dynamic Bayesian Information Criterion (d-BIC) 73

5.3 Structure Assembles 75

5.3.1 The Direct Assemble Subgroup 76

5.3.2 The Delayed Assemble Subgroup 81

5.3.3 Empirical Analysis of Structure Assembles 85

6 influence structure search 87

6.1 Introduction 87

6.2 Influence Structure Selection 88

6.3 Learning Mutually Independent Models 89

6.3.1 Expectation Maximisation 90

6.4 Learning Tree-structured Influence Networks 91

6.5 Learning Graph-structured Influence Networks 93

6.5.1 The Search Space 94

6.5.2 Local Search Procedure 95

6.5.3 Computational Complexity and Savings 96

7 experimental results 97

7.1 Introduction 97

7.2 Learning in the Non-Dynamic Case 99

7.3 Learning Influence Between HMMs 102

7.3.1 Learning Direct Influence Between HMMs 103

7.3.2 Learning Delayed Influence between HMMs 105

7.4 Learning General Hierarchical Dynamic Bayesian Networks 107

7.5 Discussion of Results 111

7.5.1 Ability to Recover the Ground-truth 111

7.5.2 Execution Time to Recover the Ground-truth 112

7.5.3 Availability of Data 112

7.5.4 Domain Knowledge 113

7.5.5 Penalty Scores 113

7.5.6 Learning Latent Parameters 114

7.5.7 Generalisation of Learning Tasks 114

8 conclusion 117

8.1 Summary 117

8.2 Learning a DIN for Knowledge Discovery and Density Estimation 119

8.3 Major Contributions 119

8.4 Future Work 120

contents xv

i appendix 121

a algorithms 123

a.1 Example of data 127

bibliography 131

1
I N T R O D U C T I O N

1.1 introduction

S
tochastic processes are commonly used for describing the evolution of variables

over time. Despite this, the question of how several of these processes may in-
fluence each other has received little attention in the literature. One may choose

to represent these influence structures as a dynamic probability distribution which
models the likelihood of the influence relations, between observable and partially
observable multi-dimensional processes, relative to the data.

In the observable case, modelling the influence between multi-dimensional pro-
cesses requires establishing a hypothesis test to assess if influence relations exist
between these sets of processes. One would have to assess exactly the extent to which
the sets of processes influence each other and move towards establishing an algorithm
to capture them. Even the most optimistic computational complexity approximation
suggests a search space that is super-exponential given the length and number of
multi-dimensional processes involved.

Modelling the influence structure between a set of partially observable multiple di-
mensional processes is significantly harder. Partially observable processes have miss-
ing data which causes the likelihood of the processes to the data, even modeled
independently, to have multiple optima. This leaves us with an intractable problem
in establishing a hypothesis test to relate these sets of multi-dimensional processes
for recovering their influence relation.

As an example, suppose we want to learn the influence distribution of traffic on
a road network. We may have a set of features that describes each road over time
(e.g. light level; number of cars, weather, number of collisions, etc.). These temporal
observations may tell us about latent features such as the traffic condition on each
road over a period of time. Our task is to then learn the influence of traffic between
all of the roads over time.

In this thesis, we assess this problem. We devise a complete algorithm to recover the
influence relations between a set of partially observable multi-dimensional stochastic
processes by using score-based structure learning. In score-based structure learning
we search for the most suitable structure by using a scoring metric to value structural
configurations relative to the data. We also provide empirical results to demonstrate
the effectiveness of our approach.

This introductory section is structured as follows. Section 1.2 provides a detailed
assessment of the problem of learning influence between partially observed multi-
dimensional processes; Section 1.3 provides an overview of the literature of structure
learning as a viable solution to this problem; Section 1.4 provides an overview of the
framework used to solve this problem; Section 1.5 outlines our major contributions;
and finally, Section 1.6 provides an outline of the structure for the remainder of this
thesis.

1

2 introduction

1.2 problem statement

Processes interact in various ways (eg. the stock market or traffic conditions of roads
etc.). Understanding how the structure of interactions manifest between families of
processes is useful for knowledge discovery (eg. learning the structure of the influ-
ence of traffic over time) and general density estimation (eg. estimating the distribu-
tion of traffic over a period of time). However, we often only observe the consequence
of the interaction between several processes (since aspects of them are latent) and do
not actually get to observe and therefore study the process directly (eg. inferring the
latent variable traffic condition using observable features, since we do not have access
to the variable traffic condition directly).

This leaves the task of being given a set of observable features (the data), that
describe a set of latent processes, and recovering the underlying structure of the
influence relations between these processes. More precisely, consider Figure 2 which
shows an example of a set of partially observed processes each given by 3 features (A,
B, and C). Our task is to deduce the probability distribution that most likely resembles
the model which generated the data. That is, we need to learn some structure between
processes and parameter setting (which describe the probability of data values) that
is capable to describe this temporal distribution. The structure of influence in this
case is given by the black bold solid arrows.

Figure 2: An influence structure between multi-dimensional processes. The colored solid ar-
rows indicate features which describe processes and the black bold solid arrows
indicate the influence between these processes.

A closer inspection of this problem reveals another learning task to identify the
probability distribution for each individual multi-dimensional process with respect
to the given set of observations. However, often we need to aggregate observable
temporal features to tell us about high-level features which we can use to better
describe each multi-dimensional process.

In this task we are only given the temporal features as data and are asked to deduce
the dynamic probability distribution which explains the interaction between these

1.3 overview of literature 3

processes as illustrated by Figure 2. In scenarios where we have complete data we
often resort to maximum likelihood estimation (MLE), which optimises the likelihood
function for a set of parameters that describes the processes with respect to the data.
Unfortunately, in this case we are not given complete data and instead are given a
set of partially observable processes, each with a set of temporal observations, that
we want to discover the probabilistic structure of influence between. In this case the
likelihood function has multiple optima which we can not optimise by just using the
derivative of the likelihood function [Koller and Friedman 2009].

Recovering the influence structure from temporal incomplete data, that is induced
by a set of temporal observations, appears in most practical applications where we
wish to perform density estimation to given observations; or learn the latent charac-
teristics of an environment, which changes over time, for knowledge discovery (e.g.
learning how traffic on roads in an area influence each other over time, or how the
protein composition of a cell changes as its conditions change). In the next section
we provide a brief overview of current practices in structure learning to address this
problem.

1.3 overview of literature

As far as we know this particular problem has not been solved in current literature,
however, several foundational learning practices can make our task simpler. In score-
based structure learning we want to optimise a scoring function over different net-
work configurations [Friedman et al. 1999]. That is, we use a structure score to search
for the most suitable structure relative to the data. Most popular structure scores are
variations on the likelihood score which calculates the probability of the data given a
potential structure [Liu et al. 1996].

In observable data, the decomposability of the likelihood score [Carvalho et al.
2011], which is the ability to represent the score as a sum of variable family scores,
allows for efficient learning procedures and significant computational saving [Koller
and Friedman 2009]. Figure 3 shows an example of how score-based structure learn-
ing can be used to select a network which makes the data of X1, X2, X3, and X4 as
likely as possible. The likelihood to the data is given by the score beneath each struc-
ture. The structure with the highest score is selected since it has the highest likelihood
relative to the training data.

In incomplete data, the likelihood score is not decomposable and we have to per-
form inference to evaluate it [Tanner and Wong 1987]. This forces us to use non-linear
optimisation techniques, such as expectation maximization or gradient ascent [Binder
et al. 1997], which are methods used to optimise the likelihood function with multiple
optima [Dempster et al. 1977]. Furthermore, local changes to the network can affect
other parts of the network, which makes learning with incomplete data all the more
difficult [Jordan 1998]. Score-based structure learning provides a way to select an op-
timal network for observable data but still leaves learning the latent aspects of the
network open.

In this thesis we propose a score-based structure learning approach as being suited
to the task of learning influence between partially observable processes since it can (a)

4 introduction

• • •

X1

X2 X3

X4

30

X1

X2 X3

X4

20

• • •

X1

X2 X3

X4

8

Figure 3: An example of how score-based structure learning selects the best network struc-
ture with respect to the data. The figure shows three structures each with a structure
score below it. The shaded nodes represent observable variables. The highest struc-
ture score is selected (circled in red) and the corresponding structure is used.

consider the complete influence structure between processes as a state in the search
space; (b) preserve basic score properties allowing for feasible computations; and (c)
provide a clear indication of the independence assertions between temporal models
relative to the data. A complete literature review is provided in Chapter 3. In the next
section we discuss on overview of the proposed method to recover influence between
processes.

1.4 overview of method

We note the major difficulty of this problem lies in the representation of the la-
tent components of the influence network. In this thesis we develop an algorithm
which learns the probability distribution that describes interactions between pro-
cesses which manifest in the temporal observations that describe each process.

The high-level architecture of the proposed algorithm is given by Figure 4. The
general algorithm is as follows. We (i) input the processes; (ii) learn each stochastic
process independently as a temporal model; (iii) relearn the parameters for an influ-
ence network (with the new independence assertions) by maximising the likelihood
function for the hidden variables between the temporal models which represent each
stochastic process; (iv) compute the structure score of the dynamic influence network;
(v) check whether the condition to terminate the algorithm is met, either by conver-
gence, some threshold, or if there is no way to improve the dynamic influence net-
work relative to the data; (vi) slightly change the influence structure which encodes
the distribution with the best possible change and continue with steps (iii), (iv), and
(v). In (vii) we select the best candidate dynamic influence network.

Our method extends concepts in score-based structure learning for the domain of
tracking influence between stochastic processes. We first factorise the distributions
presented as stochastic processes into a set of temporal models. We then define an
assemble and a scoring function to evaluate the quality of candidate influence networks
(Chapter 5). At this point we have a combinatorial optimisation problem which re-
quires us to traverse the search space for the optimal influence network, which we
return as the goal structure that best fits the training data (Chapter 6). In the next
section we discuss the novelty and contribution of the proposed method.

1.5 novelty and contribution 5

(i) Processes

(ii) Learn inde-

pendent networks

(iii) Learn latent variables

and score in�uence network

(iv) present candidate network

(v) Terminate?

(vi) Slightly change in-

�uence network structure

(vii) candidate network

Yes

No

Figure 4: An overview of the proposed algorithm to recover influence between stochastic
processes represented as temporal networks.

1.5 novelty and contribution

The novelty and intuition of our approach is to learn the influence structure in layers.
We firstly learn a set of independent temporal models, and thereafter, optimise a
structure score over possible structural influence configurations. Since the search for
the optimal structure is done using complete data we can take advantage of efficient
learning procedures and significant computational saving from the structure learning
literature [Koller and Friedman 2009].

We provide the following high-level contributions:

1. The notion of influence between processes. This includes the formulations of
direct and delayed influence (Chapter 4).

2. Several scoring function for dynamic influence networks by extending and
adapting traditional scores for random variables along with their key properties
(Chapter 5).

3. The notion of a structural assemble to relate temporal models for dynamic in-
fluence tasks (Chapter 5).

4. A learning procedure to recover the influence structure between temporal mod-
els with latent variables. We further extend the local search procedures to use
assembles that link temporal models meaningfully while preserving decompos-
ability and score-equivalence required for a manageable search (Chapter 6).

6 introduction

5. We provide empirical evidence for the effectiveness of our method with respect
to a generative ground-truth distribution (Chapter 7).

1.6 thesis structure

This thesis is structured as follows. Chapter 2 provides the background work on
Bayesian networks and parameter estimation necessary to understand this thesis;
Chapter 3 provides relevant related work which served as the foundation for most
of the algorithms presented in this thesis. Chapter 4 defines influence between pro-
cesses and how to represent it using dynamic influence networks. Chapter 5 provides
the structure scores necessary to evaluate the worth of dynamic influence networks
and introduces the notion of a structural assemble to relate temporal models. Chap-
ter 6 provides learning and evaluation procedures that traverse the search space and
evaluate the learned model with respect to the ground truth generative model. Chap-
ter 7 provides the results and discussion of this research. Finally, Chapter 8 presents
concluding remarks and future directions.

2
B A C K G R O U N D

2.1 introduction

O
ur primary objective, in this thesis, is to track influence between stochastic

processes. Stochastic processes are trajectories of complex statistical depen-
dence that evolve over time and space [Doob 1953; Karlin 2014]. Common

examples of stochastic processes include the exchange rate fluctuations [Bates 1996],
the stock market [Gardiner 1985], temperature [Van Kampen 1992], speech signals
[Rabiner and Juang 1986], audio signals [Kim 2000], video signals [Moore and Essa
2002], etc. Figure 5 shows an example of the monthly price of brent spot crude oil as
a stochastic process [Cong et al. 2008].

Figure 5: Monthly price of brent spot crude oil, January 1995 to February 2016. Adapted
from Independent Statistics & Analysis, U.S. Energy Information Administration
(EIA) (Petroleum & Other Liquids) [Cong et al. 2008].

Stochastic processes can be modelled by relating random variables to each other
over adjacent time-steps in dynamic Bayesian networks [Press 1989]. Dynamic Bayesian
networks can expressively represent probabilistic dependencies between random vari-
ables over time, however, they present their own learning and representation prob-
lems [Schweppe 1973]. We explore the learning and representation of dynamic Bayesian
networks in this chapter.

This chapter reviews the ground-work required to understand the content pre-
sented in this thesis. All of the concepts outlined here are traditional probabilistic

7

8 background

graphical frameworks that have been developed and refined over many years [Mur-
phy and Russell 2002; Bishop 2006; Koller and Friedman 2009]. The intention of this
chapter is to simply provide the reader with some context necessary to understand
the developments of procedures presented in this thesis and are not intended to pro-
vide a tour of the practices of probabilistic graphical models.

Additional readings for understanding the representation, inference, and reason-
ing of probabilistic graphical models can be found in Koller and Friedman [2009];
Murphy and Russell [2002]; Pearl [1988]. In Section 2.2, we explore the representa-
tion of several Bayesian networks; and in Section 2.3, we present the fundamental
practices to learning Bayesian networks.

2.2 bayesian networks : representation

Suppose that we are given a stochastic process that is parameterised by a set of random
variables: X = {X1, . . . ,Xn}. Our goal is to represent a joint distribution P over X. Rep-
resenting this joint distribution is both technically and computationally demanding
[Bailey 1990; Sakamoto and Ghanem 2002]. This is because controlling a distribution
parameterised over such an extensive space would take a large amount of computer
memory and would require a super-exponential amount of prior information elicited
by an expert.

The exploration of independence properties and alternative parameterisation has
allowed us to express sparse compact representations that we use to explore complex
joint distributions. We begin with a useful tool, called Bayesian networks, that uses
independence assertions to compactly express a joint distribution [Pearl 2011].

Section 2.2.1 establishes the representation of a Bayesian network along with suit-
able applications and groupings; and Section 2.2.2 expands the Bayesian network
representation into a template class of models that can describe complex statistical
relationships over time.

2.2.1 Bayesian Networks

Representing probability distributions by graphical models has been explored before
[Wright 1921 1934]. During these early innovations the joint probability distribution
was described as influence between random variables encoded as a directed acyclic
graphical structure which represented independence assertions [Smith 1989; Howard
and Matheson 1984].

These developments gave raise to the notion of a Bayesian network which embeds
independence assertions into a graphical structure together with a probability distri-
bution. Pearl (and his colleagues) proposed the Bayesian network [Verma and Pearl
2013; Geiger and Pearl 2013; Geiger et al. 2013 1990]. We ascribe this preliminary work
on Bayesian networks to the work laid out by Pearl [1988].

Section 2.2.1.1 begins by defining the Bayesian network and discuses some reason-
ing patterns performed on Bayesian networks; Section 2.2.1.2 introduces the notion

2.2 bayesian networks : representation 9

of I-maps and I-equivalence; and finally, Section 2.2.1.3 presents the simplest version
of a Bayesian network called a naïve Bayes model, showcases various applications of
Bayesian networks, and presents the problem of eliciting the structure of a Bayesian
network manually by an expert.

2.2.1.1 What is a Bayesian Network?

A Bayesian network is a directed acyclic graph (DAG) whose nodes represent random
variables and whose edges represent the influence of one variable over another [Pearl
2011]. A Bayesian network structure is often established as a set of conditional inde-
pendence assertions between these random variables that encode a joint distribution
in a compact way [Pearl 1988; Koller and Friedman 2009]. Two random variables X
and Y are said to be conditionally independent given a set Z, denoted (X ⊥⊥ Y | Z), if
once we know Z, then knowing X does not give us any information about Y. We will
use this notion of conditional independence to define the Bayesian network structure.

Definition 2.1. A Bayesian network structure, GB, is a DAG whose nodes repre-
sent random variables X1, . . . ,Xn. Let PaG

B

Xi
denote the parents of Xi in GB, and

NonDescendantsXi denote the variables in the graph that are not descendants of Xi
in GB. Then GB encodes the following set of conditional independence assumptions,
called local independencies, denoted by Il(G

B):

∀Xi: (Xi ⊥⊥ NonDescendantsXi |Pa
GB

Xi
),

where ⊥⊥ denotes independence.

Figure 6 provides an example of a Bayesian network structure. The graph in Fig-
ure 6 is a DAG with six random variables represented as nodes. Four of these are
directly observed (observable, shaded) and two of these are not directly observed (la-
tent, non-shaded). The influence between variables are represented as edges between
them and are encoded as conditional independence assumptions.

X1

X2

X3

X4 X5

X6

Figure 6: A Bayesian network with six random variables. Variables X1 and X2 are latent (not
directly observed) and variables X3, X4, X5, and X6 are observed. The shaded nodes
are called observable variables and non-shaded nodes are called latent variables.

Entries in the joint distribution in Bayesian networks can be expressed as a product
of factors [Jensen 1996]. A factor encodes the conditional probability distribution
(CPD) of a random variable and is constructed with respect to its parent variable(s)

10 background

[Pepe and Mori 1993]. Figure 7 provides an example of a Bayesian network which is
used to predict the probability of the grass being wet given a set of variables [Pearl
2014]. Figure 7 explicitly presents each factor associated to each random variable.
We note that each factor presented has an associated dependency with respect to
the network structure [Pearl 2014]. The variable for wet grass is dependent on the
variables Rain and Sprinkler. Each factor is represented by a Bernoulli distribution
[Hilbe 2011] with values true (T) or false (F). We can condition on certain columns of
the factor for Wet grass to give us more information about the distribution described.

Figure 7: A Bayesian network showing the relationship between four random variables
adapted from Pearl [2014]. Each node in the graph is a variable which is expressed
by a table called a factor. The factor for a variable contains all the possible values
for that variable assigned to a probability, this is called a parameter. The product of
all factors must be a legal probability distribution.

The ability to represent the joint distribution in terms of a factorisation in Bayesian
networks, as shown in Figure 7, is a important contribution [Charniak 1991]. We
present the following factorisation known as the chain rule for Bayesian networks
[Pearl 1988].

Definition 2.2. Let GB be a Bayesian network structure over the variables X1, . . . ,Xn.
We say that a probability distribution PB over the same space factorises according to
GB if PB can be expressed as a product

PB(X1, . . . ,Xn) =
n∏
i=1

P(Xi|Pa
GB

Xi
).

A Bayesian network is then just the conditional independences described by the
Bayesian network structure and the distribution which is described by each variable’s
factor [Pearl 1988].

Definition 2.3. A Bayesian network is a pair B = (GB,PB) where the distribution PB
factorises over the independence assumptions in GB.

Having defined a Bayesian network, we might consider performing reasoning or
inference [Jensen 1996; Zou and Feng 2009; Cooper 1990]. Wellman [1990] crystallised

2.2 bayesian networks : representation 11

the three fundamental types of reasoning patterns in Bayesian networks: causal rea-
soning, evidential reasoning, and inter-causal reasoning. These patterns can be used
to promote knowledge elicitation and learning [Renooij and van der Gaag 2002;
Hartemink et al. 2002] as well as the development of intuition to inference tasks
[Druzdzel 1993]. The importance of reasoning patterns are emphasised by Pearl
[1988]. In the next section we will see how two Bayesian network structures can
decompose as the same set of independence assumptions.

2.2.1.2 I-maps and I-equivalence

Recall that our Bayesian network structure, GB, encodes a set of independence asser-
tions, I(GB). Let us define these assertions more carefully:

Definition 2.4. Let P be a distribution over a set of random variables X. The set of
independence assertions, denoted I(P), is a set of statements of the form (X ⊥⊥ Y | Z).
These statements all hold in P.

GB is said to be an I-map of P since P satisfies the local independence assertions
associated with the Bayesian network structure GB. We denote this as I(GB) ⊂ I(P).
More generally,

Definition 2.5. Let G be a graph structure and I(G) be its set of independence asser-
tions. G is said to be an I-map for a set of independences I if I(G) ⊆ I.

Intuitively we view an I-map, G, as an incomplete indication about the set of inde-
pendence assumptions that must hold in P [Koski and Noble 2011]. However, P may
contain additional independence statements that do not hold in G.

An important observation is that I(GB) provides an abstraction from the specific
graphical structure to a set of independence assertions. This set stands to represent
GB as a specification of independence statements, which suggests that although two
graphical structures, GB

1 and GB
2 , may be semantically different, they could encode

exactly the same set of conditionally independence assumptions, that is I(GB
1) =

I(GB
2) [Koller and Friedman 2009]. More formally,

Definition 2.6. Two Bayesian network structures, GB
1 and GB

2 , over the same set of
random variables X are said to be I-equivalent if I(GB

1) = I(GB
2).

It can be further stated that every possible configuration over the random variables
X can be partitioned into sets of mutually exclusive I-equivalence classes as defined
in Definition 2.6. Figure 8 shows an example of three graphical models that encode
exactly the same independence assumption: (A ⊥⊥ C | B). Notice that although the
independence assumption is the same in all three networks, the edges can be oriented
in different ways.

I-equivalence was defined by Verma and Pearl [1992]; Judea Pearl [1991]. The con-
tribution by Chickering [1995]; Verma and Pearl [1992]; Judea Pearl [1991] provide
powerful tools to prove properties of I-equivalent graphical structures.

12 background

(a) B

A C

(b) B

A C

(c) B

A C

Figure 8: An illustration of three graphical models that encode the independence assumption:
(A ⊥⊥ C | B).

I-equivalence is undoubtedly an important concept when recovering influence re-
lations since the true structure of a Bayesian network is seen as not identifiable from
members of the I-equivalence class given observable data alone [Murphy 2012; Koller
and Friedman 2009; Pearl 2011]. However, there are algorithms that can reconstruct
the I-equivalence class given the observable distribution, such as those by Pearl and
Verma [1995]; Verma and Pearl [1992]; Spirtes et al. [2000]; Meek [1995].

In the next section we explore the simplest kind of Bayesian network structure and
probability distribution, called the naïve Bayes model.

2.2.1.3 Naïve Bayes Model

Perhaps the simplest example of a Bayesian network is the naïve Bayes model [Mc-
Callum and Nigam 1998] which has been used successfully by many expert systems
[De Dombal et al. 1972; Gorry and Barnett 1968; Warner et al. 1961].

The naïve Bayes model predefines a finite set of mutually exclusive classes [Rish
2001]. Each instance (set of observations) can fall into one and only one of these
classes, which is represented as a latent class variable. The model also poses some
observed set of features X1, . . . ,Xn. The assumption is that all of the features are
conditionally independent given the class label of each instance [Murphy 2012]. That
is,

∀i(Xi ⊥⊥ Xi ′ | C), where Xi ′ = {X1, . . . ,Xn}− {Xi}.

Figure 9 presents the Bayesian network representation of the naïve Bayes model. The
joint distribution of the naïve Bayes model factorises compactly as a prior probability
of an instance belonging to a class, P(C), and a set of CPDs which indicate the proba-
bility of a feature given the class [Koller and Friedman 2009], P(Xi | C). We can state
this distribution more formally as

P(C,X1, . . . ,Xn) = P(C)
n∏
i=1

P(Xi|C).

The naïve Bayes model remains a simple, yet highly effective, compact, and high-
dimensional probability distribution that is often used for classification problems
[Shinde and Prasad 2017; Lewis 1998; Duda and Hart 1973]. The main limitation of
the naïve Bayes model is the assumption that all features are conditionally indepen-
dent given the class variable.

2.2 bayesian networks : representation 13

Class

X1 . . . Xn

Figure 9: A graphical illustration of the naïve Bayes model.

The use of Bayesian networks span a range of applications including general diag-
nostic systems [Andreassen et al. 1987; Heckerman et al. 2016; Breese et al. 1992]; event
forecasting [Abramson 1994; Gu et al. 1994; West 1996; Sun et al. 2006]; assessment of
short free-text responses [Klein et al. 2011]; machine vision [Levitt et al. 2013; Binford
et al. 2013; Buxton 1997]; manufacturing [Nadi et al. 1991; Wolbrecht et al. 2000; Weber
and Jouffe 2003], and emergency evacuation [Wang et al. 2008] to name a few.

We have seen that the Bayesian network is an important tool for describing high-
dimensional complex probability distributions and have outlined several successful
applications. However, manually eliciting the conditional probability distribution
(CPD) and network structure is a complex task that has plagued decision analysis
for many years [Chesley 1978; Spetzler and Stael von Holstein 1975]. This difficult
process is subject to many biases [Tversky and Kahneman 1975; Daneshkhah 2004]
and although some contributing methods can be used to obtain the network structure
and parametrisation from an expert [Schachter and Heckerman 1987], this remains a
difficult processes.

In this subsection we explored the Bayesian network representation as a powerful
tool to describe environments for numerous applications. In the next section we will
extend this descriptive language for the temporal setting.

2.2.2 Dynamic Bayesian Models

Bayesian networks can be used to model a joint distribution over a set of random
variables [Koski and Noble 2011]. In temporal settings, however, we wish to model
distributions over trajectories (systems that change over time) [Murphy and Russell
2002].

For example, suppose we are interested in capturing the traffic condition of a road
over time [Jayakrishnan et al. 1994]. Then we would be interested in building a distri-
bution of features over different time-slices with respect to some time granularity to
capture the distribution of traffic over time [Papageorgiou 1990].

In such cases it is often useful to construct a template model which unrolls as
the trajectory evolves over time [Conati et al. 2002]. In this section we explore the
rich and expressive language of dynamic Bayesian networks which can be used to
describe distributions over trajectories [Pavlovic et al. 1999; Dojer et al. 2006].

Section 2.2.2.1 and Section 2.2.2.2 explore two common assumptions that are made
when dealing with dynamic Bayesian networks; Section 2.2.2.3 introduces the lan-
guage of dynamic Bayesian networks and explores some notable applications and
practices of dynamic Bayesian networks; and finally, Section 2.2.2.4 presents a partic-
ular class of dynamic Bayesian networks which organises its random variables as a
hierarchy.

14 background

2.2.2.1 Markov Systems

In this section we will consider dynamic Bayesian networks to represent systems that
evolve over time. The dynamic Bayesian network is a temporal model represented
by a set of template variables, denoted X. We will denote the values of the template
variables Xi at time t as X(t)

i .

A stochastic process can be viewed as a trajectory over a set of discrete time steps
specified by a time granularity. Over this time granularity, we can model the relation-
ship between these time-slices using the chain rule for probabilities (Definition 2.2)
[Koller and Friedman 2009] as,

P(X(0:T)) = P(X(0))

T−1∏
t=0

P(X(t+1) | X(0:t)).

As T increases, P(X(0:T)) exponentially increases the number of independence as-
sumptions over the trajectory length. Thus, a simplifying assumption is to model the
next state as conditionally independent of the past given the present. We present the
notion of a Markov system.

Definition 2.7. A dynamic system is said to be Markov, over the set of template
variables X, if for all t > 0,

(X(t+1) ⊥⊥ X(0:(t−1)) | X(t)).

We note that use of the Markov assumption is a reasonable approximation if we
use a rich description of the system state [Koller and Friedman 2009; Murphy and
Russell 2002]. That is, increasing the number of variables which describe each time-
slice might allow us to describe influences which persist through time.

2.2.2.2 Time Invariance

The Markov assumption simplifies the distribution over time, however, we need to
make one more simplifying assumption about the general representation of the tem-
poral model [Koller and Friedman 2009; Murphy and Russell 2002].

Definition 2.8. A Markov system is said to be time invariant if P(X(t+1) | X(t)) is the
same ∀t. That is ∀t > 0, we describe the process as the transition model P(X ′|X) as

P(X(t+1) = ξ ′ | Xt = ξ) = P(X ′ = ξ ′ | X = ξ),

where ξ ′ is the next data instance and ξ is the current data instance.

With these assumptions in hand we can define a dynamic Bayesian network in the
next section.

2.2 bayesian networks : representation 15

2.2.2.3 What is a Dynamic Bayesian Network?

The assumptions made in the previous section allow us to compactly represent a
trajectory over time [Murphy and Russell 2002]. It is compact since we need to only
specify a 2-time-slice Bayesian network that consists of the initial distribution and
a transition model, P(X ′|X) [Koller and Friedman 2009]. The transition model can
then be unrolled using the Markov and time invariance assumptions into a dynamic
Bayesian network. We begin by defining the 2-time-slice Bayesian network.

Definition 2.9. A 2-time-slice Bayesian network for a process over the set of template
variables X is a Bayesian network over X ′ given XI, where XI ⊆ X is a set of interface
variables.

The conditional Bayesian network described only has parents and hence CPDs
for X ′. Interface variables refer to those variable that persist through the temporal
aspect of the model (e.g. high-level changes in the process). Using our simplifying
assumptions, the distribution defined can be described as

P(X ′|X) = P(X ′|XI) =
n∏
i=1

P(X ′i|PaX ′i). (1)

Consequently for every template variable we will have a template factor (Sec-
tion 2.2.1.1) which will be initialised as the model unfolds. There are generally two
types of edges defined in these models [Koller and Friedman 2009; Murphy and
Russell 2002]:

• Inter-time-slice edges, which describe dependencies between time-slices. Inter-
time-slice edges that are between copies of the same template variables are
called persistent edges. We refer to variables with persistent edges as persistent
variables.

• Intra-time-slice edges describe dependencies within each time-slice.

We now provide a definition of the unrolled dynamic Bayesian network which uses
the notion of a 2-time-slice model.

Definition 2.10. A dynamic Bayesian network (DBN) is a pair 〈B0,B→〉, where B0 is
a Bayesian network over X(0), representing the initial distribution over states and B→
is a 2-time-slice Bayesian network for the process. For any desired time span T > 0,
the distribution over X(0:T) is defined as an unrolled Bayesian network, where, for
any i = 1, . . . ,n:

• the structure and CPDs of X(0)
i are the same as those for Xi in B0,

• the structure and CPDs of X(t)
i for t > 0 are the same as those for X

′
i in B→.

16 background

X1

X2

X3

X4 X5

X6

B0

X1

X2

X3

X4 X5

X6

B→

X1

X2

X3

X4 X5

X6

B→

Figure 10: A dynamic Bayesian network with six template variables. Both X1 and X2 are per-
sistent variables connected by dotted intra-time-slice persistent edges. The shaded
template variables are observable and not a part of the interface set. The network
is unrolled over three time-slices. Below each time-slice there is an indication from
which model in the 2TBN it is derived from.

Figure 10 shows an example of an unrolled dynamic Bayesian network. Temporal
models over trajectories have been discussed for many years, such models include
hidden Markov models (HMMs) [Rabiner and Juang 1986; Rabiner 1989], Kalman
filters [Kalman 1960], and possibly the first formal occurrence of dynamic Bayesian
networks (DBNs) in Dean and Kanazawa [1989]. The connections between HMMs
and DBNs have also been explored [Smyth et al. 1997]. Murphy and Russell [2002];
Koller and Friedman [2009]; Murphy [2012] provide an overview of temporal repre-
sentations and DBNs.

DBNs have been used for dependability, risk analysis, and maintenance [Weber et
al. 2012]; speech recognition [Zweig and Russell 1998]; recognising office activities
[Oliver and Horvitz 2005]; vehicle classification in video [Kafai and Bhanu 2012]; the
analysis of football matches [Huang et al. 2006]; and even in genetics, where DBNs
capture temporal expression data to uncover gene interaction in cellular systems1

[Friedman et al. 2000].

2.2.2.4 Hierarchical Bayesian Networks

DBNs are able to model trajectories of complex statistical dependences that evolve
over time [Murphy and Russell 2002]. These are modelled by relating variables to
each other over adjacent time-steps [Murphy and Russell 2002]. DBNs expressively
represent probabilistic dependencies between variables but can be redefined to ex-
press dependencies between composite variables, which are mixtures of other vari-
ables [Peelen et al. 2010]. This is useful in situations when we wish to learn abstrac-
tions of a subset of observations for a process. We extend the definition of DBNs

1 This is done using DNA hybridization arrays which estimate the expression levels of thousands of
genes to describe the transcription level within a cell [Friedman et al. 2000].

2.2 bayesian networks : representation 17

into hierarchical dynamic Bayesian networks (HDBNs) which expresses composite
variables naturally in temporal models.

Hierarchical Bayesian networks (HBNs) are used extensively for reasoning under
uncertainty with structured data [Gelman et al. 2014]. In this section we extend the
HBN to one which expresses uncertainty over structured data over time. The major
contribution of HBNs lies in their expressive power to aggregate random variables as
composite structures of other variables [Gelman et al. 2014; Peelen et al. 2010; Murphy
and Russell 2002]. We begin by defining a composite variable.

Definition 2.11. A variable, X, is said to be a composite variable if it has a component
set {X1, . . . ,Xn} of variables.

These composite variables can be expressed recursively to construct complex hier-
archical tree (h-tree) structures.

Definition 2.12. A hierarchical tree (h-tree) structure of a composite variable X, de-
noted hX, is a directed tree structure rooted at X, with each of the elements in X’s
component set being children of X expanding along with each of the component’s
respective h-trees.

Gyftodimos and Flach [2002] provide an overview of hierarchical models using
composite types. Figure 11 shows an example of a simple hierarchical structure for
11 composite variables. Each composite variable, alongside its factor that describes
a distribution, also contains a set of composite variables which are dependent on it
given the hierarchical structure. Leaf nodes have empty composite variable sets since
they are at the lowest level of the hierarchy. These are usually observable. We now
formally define a HBN structure using this notion of a h-tree.

Definition 2.13. A hierarchical Bayesian network structure of a composite variable X
with corresponding h-tree structure is a set HX = {hX1 , . . . ,hXn}, where hXi is the
corresponding h-tree for the ith component of X.

A hierarchical Bayesian network is simply a distribution which factorises over this
hierarchical structure. More formally,

Definition 2.14. A hierarchical Bayesian network is pair H = (HX,PHX
) where PH

factorises over HX.

18 background

X1
{X2,X3}

X2{X4,X5} X3 {X6,X7,X8}

X4

{}

X5

{}

X6

{}

X7{X9,X10,X11} X8

{}

X9

{}

X10

{}

X11

{}

Figure 11: A hierarchical Bayesian network structure for 11 random variables. Each variable
is a data-structure made up of a factor and a set of composite variables. The factor
describes the conditional probability distributions (CPDs) and the set of composite
variables contain the child variables relative to the structure.

An inherited property of hierarchical Bayesian network structure from standard
Bayesian network structures is outlined in Definition 2.1. We now naturally extend
this definition for hierarchical dynamic Bayesian networks (HDBNs) for structured
time-series data.

Definition 2.15. A 2-time-slice hierarchical Bayesian network (2-THBN) for a process
over a set of composite variables X is a hierarchical Bayesian network over X given
XI, where XI ⊆ X is a set of interface variables.

We can now adopt the Markov and time invariance simplifying assumptions to
define the hierarchical dynamic Bayesian network (HDBN).

Definition 2.16. A hierarchical dynamic Bayesian network (HDBN) is a pair HDB =

〈H0,H→〉, where H0 is a hierarchical Bayesian network over X(0), representing the
initial distribution over states and H→ is a 2-THBN for the process. For any desired
time span T > 0, the distribution over X(0:T) is defined as a unrolled hierarchical
Bayesian network, where, for any i = 1, . . . ,n:

• the structure and CPDs of X(0)
i are the same as those for Xi in H0,

• the structure and CPDs of X(t)
i for t > 0 are the same as those for X

′
i in H→.

Figure 12 illustrates an example of a HDBN with 3 time-slices and 7 template vari-
ables. Some inter-time-slice edges are persistent and some persist to other variables.
The main strength of HDBNs is its ability to represent uncertainty in structured data
by aggregating variables in high-level features, this allows us to describe a rich prob-
ability distribution through the abstraction of observations even in the presence of
incomplete data.

2.3 bayesian networks : learning 19

X
(1)
1

X
(1)
2

X
(1)
3

X
(1)
4

X
(1)
5

X
(1)
6

X
(1)
7

X
(2)
1

X
(2)
2

X
(2)
3

X
(2)
4

X
(2)
5

X
(2)
6

X
(2)
7

X
(3)
1

X
(3)
2

X
(3)
3

X
(3)
4

X
(3)
5

X
(3)
6

X
(3)
7

Figure 12: A hierarchical dynamic Bayesian network with three time-slices and seven vari-
ables per time-slice (3 latent and 4 observable). The inter-time-slice edges (dashed
lines) are sometimes non-persistent which can enrich the distribution. The intra-
time-slice edges (solid lines) describe the hierarchical structure which is captured
in these models.

2.3 bayesian networks : learning

In this section we explore the task of learning Bayesian networks from data. Fig-
ure 13 shows the context of the learning process. Suppose we observe (or partially
observe) a true distribution (P∗) as shown in Figure 13. We may also assume that the
true distribution, P∗, is generated from a true network structure (G∗). That is, a set of
independence assumptions from which the true distribution is an I-map. From the
true distribution we are able to obtain a set of samples. We might also have access to
domain expertise which together with the samples generated will allow us to learn a
network. Domain knowledge can come in the form of information about the structure
between variables or possibly the general structure of a distribution of the involved
variables. Hastie et al. [2001]; Bishop [2007] provide an overview of basic learning
problems and algorithms in Bayesian networks.

The motivation behind learning Bayesian networks is primarily for density estima-
tion [John and Langley 1995; Fraley and Raftery 2002], to make predictions over new
instances, and as a framework for knowledge discovery [Fayyad et al. 1996; Hecker-
man 1996], that is, learning how variables may interact.

There are four different contexts of learning in Bayesian networks [Koller and Fried-
man 2009]: we may have (a) a known structure with complete data; (b) unknown
structure with complete data; (c) known structure with incomplete data; or (d) un-
known structure with incomplete data. We begin by discussing the learning problems
(a) and (c) in Section 2.3.1, and leave structure learning problems (b) and (d) to be
discussed with the related work in the next chapter.

2.3.1 Parameter Estimation

In this section we explore various parameter estimation learning algorithms. We be-
gin be discussing maximum likelihood estimation (MLE) [Scholz 1985; Johansen and

20 background

Figure 13: An illustration of the process of learning a Bayesian network from domain exper-
tise and samples that are generated from a true distribution. Adapted from Koller
and Friedman [2009].

Juselius 1990] in Section 2.3.1.1, which optimises the likelihood function for complete
data. MLE is perhaps the most commonly used parameter estimation tool available
[Lehn 2017; Scholz 1985; Enders and Bandalos 2001]. We then explore Bayesian es-
timation in Section 2.3.1.2, which is based on the Bayesian paradigm which states
that anything we have uncertainty over should be expressed as a distribution [Shafer
1976].

We also address the problem of learning the parameters of DBNs which are used to
express a distribution over trajectories [Koller and Friedman 2009; Murphy and Rus-
sell 2002]. We will see that temporal models are extensions of Bayesian learning due
to the simplifying assumptions (Section 2.2.2.1 and 2.2.2.2). Finally, in Section 2.3.1.3,
we address learning with incomplete data, which is a much harder problem.

2.3.1.1 Maximum Likelihood Estimation

Perhaps the simplest parameter learning problem is maximum likelihood estimation
(MLE) from a set of observations [Scholz 1985]. MLE is foundational to many param-
eter learning problems and much work has been dedicated to its development [DeG-
root and Schervish 2012; Schervish 2012; Hastie et al. 2001; Bishop 2007; Bernardo and
Smith 2001]. Howard [1970] provides a tutorial on maximum likelihood estimation.

Suppose we are given a set of observations in the form of a dataset D = {ξ1, . . . , ξM}

sampled independently and identically distributed (IID) from P∗. That is, the in-
stances are independent of each other and sampled from P∗ [Hoadley 1971; Gänssler
and Stute 1979]. Our goal is to find the set of parameters, Θ, that predicts D. In order
to address this we often look at the likelihood of the parameters with respect to the
data [Scholz 1985; Hastie et al. 2001; Bernardo and Smith 2001]. For example, suppose

2.3 bayesian networks : learning 21

that our data consists of a single observation, x, per instance, ξ, then the likelihood
of the parameters relative to the data is given by

L(θ : D) = P(D|θ) =

M∏
m=1

P(x[m]|θ). (2)

The likelihood which is assigned to a particular parameter can be calculated by
using the notion of a sufficient statistic [Koller and Friedman 2009].

Definition 2.17. A function s(D) is a sufficient statistic from instances to a vector in
RK, where K is the total number of values for X, if for any two datasets D and D ′

and any θ ∈ Θ we have∑
x[i]∈D

s(x[i]) =
∑

x[i]∈D ′
s(x[i]) =⇒ L(θ : D) = L(θ : D ′).

In other words for any two datasets D and D ′, and any parameter θ, we have that
if the sum of all of the sufficient statistics over all the instances in both datasets are
the same, then their likelihood functions are the same [Koller and Friedman 2009].
We can express the likelihood of the parameters relative to the data as

L(θ : D) =

k∏
i=1

θMi

i , (3)

where θi is the parameter for x = x[i] and Mi is the sufficient statistic of observation
x[i]. This distribution in the above equation is for a multinomial distribution. To
choose the MLE for the parameter, θ, we simply find the optimum, θ̂, which yields

θ̂i =
Mi∑m
i=1Mi

. (4)

Note that Equation 4 is just the fraction of the value xi in the data represented by its
respective sufficient statistic.

MLE is considered a simple way to select a parameter that predicts D. The pa-
rameter is constructed by using sufficient statistics which represent the key statistical
properties of the dataset D with computational efficiency and provides a closed form
solution. Heckerman [1998]; Buntine [1996 1994] provide several tutorials on this
foundational concept.

Although learning the parameters of independent events could be easily done us-
ing MLE, Bayesian networks seem to present a significantly more difficult parameter
learning problem. In Bayesian network parameter learning we are interested in mod-
elling complex conditional distributions. As it turns out learning parameters for a
Bayesian network is not significantly harder than learning the parameters for inde-
pendent variables since the likelihood function is decomposable with respect to the
network’s independence assumptions.

22 background

More specifically, Equation 2 presents the likelihood over a single variable. Sup-
pose we extend this formula for the likelihood of all variables in a network given
its particular structure. We can express the likelihood of all of the variables, given D

using the chain rule for Bayesian networks as in Definition 2.2,

L(Θ : D) =
∏
m

∏
i

P(xi[m]|Ui[m] : Θi),

where Ui is the set of parent values for xi with respect to the structure (i indicates
the variable number and m indicates the instance number). We can now switch the
order of the products from a product over variables to a product over data instances
[Koller and Friedman 2009],

L(Θ : D) =
∏
i

∏
m

P(xi[m]|Ui[m] : Θi).

Therefore the likelihood of the parameters relative to the data is

L(Θ : D) =
∏
i

Li(D : Θi),

which yields the likelihood of each family of variables individually. The decompos-
ability of the likelihood function can be further exploited by using table CPDs (which
is omitted here. For further reading on the decomposability of the likelihood term for
Bayesian networks please consult Murphy and Russell [2002]; Bishop [2006]; Koller
and Friedman [2009]).

We can also use MLE when dealing with temporal models. Suppose we are given
the following Markov chain [Kemeny and Snell 1960; Gilks et al. 1995] as shown in
Figure 14.

Figure 14: A Markov chain over four time-slices. The parameter for each variable is explicitly
shown by the blue node. Adapted from Conati [2002].

Given the time invariance assumption (Definition 2.8), we can describe the tem-
poral process as a transition model P(X ′|X). Thus we can describe the likelihood
function as

L(θ : X0:T) =

T∏
t=1

P(X(t)|X(t−1) : θ).

If we consider how the temporal model decomposes over pairs of states Xi and Xj,
then we can reformulate the product as

L(θ : X0:T) =
∏
i,j

∏
t:X(t)=Xi,X(t+1)=Xj

P(X(t+1)|X(t) : θX ′|X).

2.3 bayesian networks : learning 23

In this case we are considering the probability over each transition Xi to Xj. Given
the time invariance assumption we note that the parameters for the model are the
same regardless of which time point we consider. Therefore, can rewrite the likeli-
hood function as a product over pairs of time-slices given the particular sufficient
statistic. That is, for X a multinomial random variable and θ ∈ R,

L(Θ : X0:T) =
∏
i,j

∏
t:X(t)=Xi,X(t+1)=Xj

θXi→Xj =
∏
i,j

θ
M[Xi→Xj]
Xi→Xj .

Similarly, we can extend this to the context of HMMs [Eddy 1996], such as the one
in Figure 15. The likelihood function for the HMM decomposes as

L(Θ : X0:T ,O0:T) =
∏
i,j

θ
M[Xi→Xj]
Xi→Xj

∏
i,k

θ
M[Xi,Ok]
Ok|Xi

, (5)

where X and O are multinomial random variables, θ ∈ R, with the additional pa-
rameters which correspond to the observation k in the state i exponentiated by the
number of times we observe both Xi and Ok [Blunsom 2004].

X(0) X(1)

O(1)

X(2)

O(2)

X(3)

O(3)

Figure 15: An illustration of a hidden Markov model with 4 time-slices. The dotted lines
indicate the inter-time-slice edges for the persistent variable X(t). The solid line
indicate the intra-time-slice edges for each respective time-slice.

To summarise, MLE provides a mechanism to select a parameter which makes the
data as probable as possible. The convenience lies in its decomposability into local
likelihood functions per observable family variable.

When optimising the likelihood function one must be careful of fragmentation,
which states that as the number of parents increase, the number of possible assign-
ments for each variable increases exponentially. This concept leads to poor parameter
estimates in the severe cases. In such cases we might be able to perform better at den-
sity estimation by considering simpler structures even if they may be incorrect [Koller
and Friedman 2009; Murphy and Russell 2002; Bishop 2006]. In the next section we
explore an extension to MLE which provides a Bayesian alternative.

2.3.1.2 Bayesian Learning

An alternative to MLE for learning the parameters of variables in a Bayesian network
is Bayesian estimation [John and Langley 1995; Heckerman 1998]. Bayesian estimation
follows the Bayesian paradigm which views any event which has uncertainty as a
random variable with a distribution over it [Shafer 1976].

The naïve Bayes model, illustrated in Figure 9, for classification is an early applica-
tion for Bayesian estimation [Duda et al. 1979]. Unlike in MLE, where we attempted

24 background

to estimate the most likely parameter θ relative to the data, in Bayesian estimation we
view the parameter θ as a continuous random variable (θ ∈ [0, 1]). Each instance, ξ, is
viewed as conditionally independent given θ. However, since θ is not known (what
we are trying to learn), the instances are not marginally independent and information
about every instance should tell us something about θ. Figure 16 illustrates how the
dataset is dependent on the parameter θ which updates its values as more data is
acquired over time.

θ

ξ[1] . . . ξ[M]

Figure 16: A graphical depiction of Bayesian estimation which views the parameter θ as a
random variable. All the data instances are dependent on θ.

As an example consider Figure 17 which shows a simple Bayesian network with
two random variables G and R. Here we see that the parameter values θG and θC|G

are expressed explicitly as random variables in the model. Buntine [1994]; Gilks et al.
[1994] were the first to introduce Bayesian estimation for temporal models in terms
of the template model representations.

Figure 17: An example of a Bayesian network with variable parameters explicitly indicated as
continuous random variables (blue nodes). The observable variables are indicated
by the white nodes and the blue nodes explicitly indicate the parameters. Adapted
from Wang et al. [2008].

Suppose each instance ξ contains only one observation x, then we can express the
joint distribution of each observation by using the chain rule for Bayesian networks
(Definition 2.2) and the dependencies specified in Figure 16 as

P(x[1], . . . , x[M], θ) = P(x[1], . . . , x[M]|θ)P(θ).

Which gives us the prior over θ and the probability of each instance given θ,

P(x[1], . . . , x[M], θ) = P(θ)
M∏
i=1

P(x[i]|θ).

2.3 bayesian networks : learning 25

We note some similarities to MLE in Equation 2 with the addition of the prior prob-
ability over θ. The prior distribution allows us to express the posterior of this prior
given the data using Bayes rule:

P(θ|x[1], . . . , x[M]) =
P(x[1], . . . , x[M]|θ)P(θ)

P(x[1], . . . , x[M])
.

There are many choices for a prior distribution. One common choice is the Dirichlet
prior which is characterised by a set of hyper-parameters (α1, . . . ,αk). The Dirichlet
prior for Bayesian networks was defined by Heckerman et al. [1995a]. The Dirichlet
probability distribution is described as a density function over θ which has the form

P(θ) =
1

Z

k∏
i=1

θαi−1i , where Z =

∏k
i=1 Γ(αi)

Γ(
∑k
i=1 αi)

, Γ(x) =
∫∞
0

tx−1etdt. (6)

Figure 18 shows several examples of a special case of the Dirichlet distribution
with two hyper-parameters α and β (also called a beta distribution). We note that as
we increase the hyper-parameter values while α = β, we get a peak at the center of
the x-axis. This corresponds to a stronger belief that the parameters are positioned
around the center (e.g. when α and β are both 2).

Figure 18: Examples of various Dirichlet Priors. Adapted from Horas [2014].

Let us now consider how the Dirichlet prior updates as we receive more evidence
for a particular event. The Dirichlet prior, in Equation 6, and the likelihood function,
in Equation 3, have the same form and so multiplying them gives us

k∏
i=1

θMi+αi−1
i .

Therefore the posterior distribution is simply Dir(α1 +M1, . . . ,αk +Mk), where Mi

is the sufficient statistics for the value xi. In this particular case, the prior had the

26 background

same form as the posterior, we refer to prior of this form as a conjugate prior. The
Dirichlet distribution is a conjugate prior for the multinomial since it and the multi-
nomial likelihood provide a Dirichlet posterior, which allows us to maintain a proba-
bility distribution in a closed form.

Figure 19: A Bayesian network which presents a distribution over medical knowledge
adapted from Lauritzen and Spiegelhalter [1988]. Shortness of breath (dyspnoea)
could be caused by tuberculosis, bronchitis, or lung-cancer. Visiting Asia increases
ones changes of tuberculosis. Smoking could course bronchitis or lung cancer. X-
ray results and indications of dyspnoea do not give us more information about
whether the patient has lung cancer or tuberculosis.

Let us now consider the effect of using priors in Bayesian network learning. Fig-
ure 19 presents a Bayesian network used to calculate the probability of a patient
having lung cancer [Lauritzen and Spiegelhalter 1988]. To measure the effect of pri-
ors on Bayesian learning we will sample instances from the network in Figure 19 and
using these to relearn the parameters of the network with different priors. We will
then measure the distance between the learned network and the true network using
a probability distance measure called relative entropy as we increase the number of
samples.

Figure 20 shows the results of using maximum likelihood estimation; and uniform
Dirichlet priors. We used different imaginary sample counts of 50, 200, and, 5000 on
the network in Figure 19. The samples illustrated here are all independent and iden-
tically distributed (IID) from the network in Figure 19. The x-axis shows the number
of samples and the y-axis is the relative entropy which is the distance between the
learned and the ground-truth distribution.

The blue line corresponds to MLE. We see that the blue line is jagged and starts off
being higher than all the other learning cases. Although MLE does continue to get
lower as we increase the number of samples, it remains relatively uncertain what the
true parameters should be.

The orange, gray, and red lines represent Bayesian estimation, where we make use
of a prior. All of these examples make use of a uniform prior but different equivalent

2.3 bayesian networks : learning 27

Figure 20: The results of using maximum likelihood estimation; and uniform Dirichlet pri-
ors of 50, 200, and, 5000 on the network in Figure 19. The x-axis represents the
number of samples and the y-axis represents the relative entropy to the ground-
truth distribution. The samples illustrated here are all independent and identically
distributed (IID) from the network in Figure 19.

sample sizes. For α = 50 (the orange line) and α = 200 (the gray line), entropy values
are almost overlapping.

As we increase the prior strength to α = 5000 (the red line), that is, have stronger
confidence that we expect a uniform distribution over factors in the model in Fig-
ure 20, we become too ambitious about the expected distribution described. Since
the model in Figure 20 is not uniform over its factors the relative entropy increases
indicating that the learned model is getting further away from the true model, thus
decreasing the performance of the learned model. Thus with a large parameter prior
we are more firm about our beliefs about the parameter setting even if we notice a
strong signal of evidence in the data to do so.

In Section 2.3.1.1 we described MLE for temporal models. We note that although
we represented the parameters using random variables in the provided examples, our
discussions on Bayesian estimation should now also fit into the context of temporal
models. We therefore omit the discussion of Bayesian estimation in the context of
temporal models. In the next section we will discuss how to learn parameters when
we have missing or incomplete data.

2.3.1.3 Learning Latent Variables

We have thus far explored various representations of Bayesian models and the prob-
lem of parameter estimation. We now consider a much more difficult problem of
learning from missing or incomplete data. This occurs when values from data are
missing or when variables are latent. We often consider latent variables because they

28 background

provide a sparse parameterisation of a distribution and can assist in aggregating other
variables.

Consider Figure 21 which presents two network configurations. Network (a) shows
a configuration without a latent variable and network (b) shows a network configu-
ration with a latent variable L. If we assume that the network parametrisation is a
Bernoulli distribution then network (a) can be expressed with 232 parameters (i.e.
(2× 4) + 25 + (26 × 3)), whereas network (b) can be expressed with 56 parameters
(i.e. (2× 4) + 25 + (22 × 4)). Therefore, although learning latent variables may be dif-
ficult it may be worth considering since it provides a sparser representation of the
distribution.

Estimating missing data is a well defined problem in statistics presented by [Rubin
1976]. Little and Rubin [2014]; Little [1976] develop the notion as well as explain how
to handle missing data at random and deliberately missing data values. Casella and
Berger [2002]; Tanner [1991] address whether missing data values are identifiable, and
Settimi and Smith [1998]; Garcia [2004] position the problem of missing parameters
into the context of Bayesian networks.

(a) X1

X2

X3

X4

X5

X6

X7

X8

(b) X1

X2

X3

X4

L

X5

X6

X7

X8

Figure 21: Using a latent variable to provide a sparse independency representation and pa-
rameterization between observable variables.

The main issue with partially observed data is its effect on the likelihood func-
tion. The likelihood function, for partially observed data, is multi-modal [Koller and
Friedman 2009] and can not be easily optimised as we did with complete data in
Section 2.3.1.1. The gradient of such multi-modal likelihood functions is explored by
Buntine [1994]. Binder et al. [1997]; Thiesson [1995]; Greiner et al. [2005] propose a
gradient ascent method to learning missing values in Bayesian networks.

Another common strategy to optimise the likelihood function is Expectation Max-
imisation (EM) which attempts to learn both the missing data and the parameters
simultaneously. The EM algorithm was proposed by Dempster et al. [1977] who gen-
eralised several algorithms including the Baum-Welch algorithm for leaning HMMs
[Rabiner and Juang 1986]. The general algorithm of EM is outlined in Algorithm 1.
Several variants of the EM algorithm are listed by McLachlan and Krishnan [2007].
The discussion of EM in this background follows Neal and Hinton [1998]; Koller and
Friedman [2009].

Algorithm 1 Expectation Maximisation

1: procedure Expectation-Maximisation(A BN with latent variables/data)
2: Pick a starting point for the parameters.

2.3 bayesian networks : learning 29

3: for until convergence do
4: Complete the data using the current parameters
5: Estimate the parameters relative to data completion

return Data and parameters;

Line 4 in Algorithm 1 is called the E-step. In this step we perform Bayesian infer-
ence to infer the data given the parameters. That is for each instance ξ[m] and each
family X, U, where U is the parent set of X, we compute

P(X, U|ξ[m], θt),

where θt is the current setting of the parameters at iteration t. This is known as a soft
completion of the data. We now can compute the expected sufficient statistics, M̂, for
each combination of values (x, u) per family, where u is a possible assignment of the
parent set to x. We can express the sufficient statistics as

M̂θt [x, u] =
M∑
m=1

P(x, u|ξ[m], θt).

Line 5 in Algorithm 1 is called the M-step. In the M-step we treat the expected
sufficient statistics, M̂, as real sufficient statistics and use MLE (as in Section 2.3.1.1)
or Bayesian estimation (as in Section 2.3.1.2). The EM algorithm is guaranteed to
monotonically improve the likelihood of the parameters relative to the data at each
iteration [Neal and Hinton 1998; Koller and Friedman 2009].

EM is commonly used in the naïve Bayesian model to learn the parameters of the
latent class variable, see Figure 9. In this situation we are interested in learning the
class labels for the observable features presented in the data.

Let us consider the behaviour of EM with a baseline Bayesian network called the
ICU alarm network. Figure 22 depicts the ICU alarm network which is a 37 variable
network, by Beinlich et al. [1989]. The ICU alarm network is considered a baseline for
many Bayesian learning problems.

EM is a local search procedure that approximates the likelihood function, or the
log-likelihood in practice. Figure 23(a) depicts the behaviour of EM as a function
over the number of iterations for the ICU alarm network as adapted from Koller and
Friedman [2009]. The x-axis represents the number of iterations and the y-axis shows
the log-likelihood of the average training instance. We notice that, as expected, the
log-likelihood increases monotonically over the number of iterations.

In Figure 23(a), the log-likelihood function seems to converge at 10 iterations. Fig-
ure 23(b) shows the parameter values over the number of iterations for the same
ICU Alarm network (Figure 22). In Figure 23(b), it is not clear that the system has
converged at 10 iterations. Therefore, the convergence over the likelihood space is
not the same as the parameter space and it might be better to judge convergence
over the parameter space [Koller and Friedman 2009]. Accelerating the performance
and convergence of EM has been investigated [Bauer et al. 1997; Ortiz and Kaelbling

30 background

Figure 22: An illustration of the 37 variable ICU alarm network. Adapted from Beinlich et al.
[1989]; Koller and Friedman [2009].

1999]. The earliest applications and theoretical developments of the EM algorithm in-
clude Cheeseman et al. [1988 1993]; Ghahramani and Jordan [1994]. Lauritzen [1995]
proposed using EM for general probabilistic models.

Let us now consider how we can learn a set of latent variables constructed as a
hierarchy which aggregates observations. Figure 24 shows an example of learning
the latent variables melody, dynamics, and tone from Mozart’s Symphony No. 41 in
C major. This example sums up our discussion of learning a hierarchical structure of
latent variables from observations. The observations magnitude flux, relative differ-
ence, and low energy tell us something about the music’s dynamics; and the strongest
frequency Fourier max; compactness, and general strongest frequency give us infor-
mation about the tone [Ajoodha et al. 2015]. Finally, the dynamics and tone describe
the general melody [Ajoodha 2014; Ajoodha et al. 2014]. Details of the observable fea-
tures used can be found in Ajoodha et al. [2015]. This hierarchical structure allows us
to aggregate observations into meaningful abstractions using h-trees. The figure also
shows the effects of using various priors to learn the parameters of the network.

In this chapter we summarised important contributions and advancements made to
the development of representing and learning Bayesian networks. In the next chapter
we explore the relevant structure learning literature to aid in extending the language
of DBNs for tracking influence between temporal processes.

2.3 bayesian networks : learning 31

Figure 23: An illustration of the likelihood function improving over EM iterations (a) and
the change in parameters (b). This figure was adapted from Koller and Friedman
[2009] which is based on the ICU alarm network they presented.

Figure 24: An illustration of effect of parameter priors when learning a hierarchical Bayesian
network with latent variables on Mozart’s 41st Symphony in Cmajor. There are six
observable features (blue) and three latent variables including dynamics (maroon),
tone (maroon), and melody (green).

3
R E L AT E D W O R K

3.1 introduction

I
nfluence relations, in observational data, are mainly deduced though statistical

methods [Hatfield et al. 2006; Opgen-Rhein and Strimmer 2007; Grinthal and
Berkeley Heights 2015; Commenges and Gégout-Petit 2009]. Discovering influ-

ence between stochastic processes using statistical methods has been explored with
regard to Bayesian network structure learning between random variables which is of
great importance to many sciences [Bunge 2017; Salmon 1984; Koller and Friedman
2009].

We may not always be given the structure of a Bayesian network in advance, and
might want to learn the Bayesian network structure for either knowledge discovery
or density estimation [Heckerman et al. 1995a; Mohammadi and Wit 2015; Madsen et
al. 2017; Fan et al. 2014]. On the one hand, if we learn fewer edges than those in the
true network structure, there is no possible setting of the parameters that will give us
the joint distribution specified in the true network [Koller and Friedman 2009]. On
the other hand, if we learn more edges than those in the true network, we might be
able to capture the true distribution, but risk fragmentation given more edges than
necessary [Koller and Friedman 2009]. Considering the pressures that fragmentation
imposes on parameter estimation [D’Elia et al. 2003], it might be better to generalise
the true distribution with a sparser structure even though we might not completely
capture the true distribution [Koller and Friedman 2009]. There are two common
approaches to structure learning in Bayesian networks: constraint-based structure
learning [Colombo and Maathuis 2014] and score-based structure learning [Koller
and Friedman 2009; Campos and Ji 2011].

In constraint-based structure learning [Campos and Ji 2011] we view the Bayesian
network structure as a set of independence assumptions, for which we can discover
a perfect map by performing multiple hypothesis tests for conditional independence
between variables [Lehmann and Romano 2006; Cheng et al. 1997]. Statistical tests
often can be wrong about certain independence assertions [Kanji 2006]. When learn-
ing the distribution of influence between processes we are required to test a large
number of hypotheses (given the length of the processes involved). If we are wrong
about certain hypotheses, this error could grow which reduces our ability to recover
the true Bayesian network structure regardless of the tests significance level [Koller
and Friedman 2009]. Thus declaring independence assertions which are incorrect
will bias the learning procedure to an incorrect structure [Koller and Friedman 2009]
which reduces our ability to recover the true set of independence assumptions. This
is since every choice of adding an independence assumption restricts the type of as-
sumptions which can be added in future. Therefore, constraint-based approaches are
best suited to networks with a small amount of variables; a large amount of samples

33

34 related work

with strong presence of dependencies; and is efficient to finding the true structure
when faced with a structure which as already quite close to it [Koller and Friedman
2009]. Constrant-based approaches are therefore unsuitable for our task of tracking
influence between partially observed multi-dimensional processes. Another promis-
ing approach, called score-based structure learning [Bouchaala et al. 2010], resolves
these restrictions by considering the complete structure as a state in the search space.

Score-based structure learning requires the definition of a hypothesis space of poten-
tial network structures; defines a scoring function which gauges how well the model
fits the observed training data; and finally, attempts to find the highest scoring net-
work structure as an optimisation problem [Kok and Domingos 2005; Tenenbaum
et al. 2011; Tsamardinos et al. 2006; Lee et al. 2007]. However, given that the search
space is super-exponential in size (given the number of possible DAGs with respect
to the number of variables considered), this proposes an NP-hard problem which we
attempt to solve using heuristic techniques [Chickering et al. 1994; Chickering 1996;
Chickering et al. 2004; Suzuki 2017].

Score-based structure learning is best suited to the task of learning influence net-
works since it (a) considers the complete influence structure as a state in the search
space (Section 3.6); (b) preserves basic score properties to allow for feasible com-
putations (Section 3.2 and Section 3.7); and (c) it provides a clear indication of the
independence assertions between the concerned networks relative to the data (Sec-
tion 3.6) [Koller and Friedman 2009; Campos and Ji 2011; Ellis and Wong 2008]. In
this section we review related traditional score-based structure learning practices.

This chapter is structured as follows. In Section 3.2 we explore a score which pro-
vides the likelihood of a proposed structure relative to the data. In Section 3.3 we in-
troduce an extension to the likelihood score called the Bayesian information criterion
(BIC) which makes use of a penalty to manage structural complexity. In Section 3.4
we discuss the Bayesian score which uses the Bayesian paradigm. In Section 3.5 we
review related structure search techniques to recover tree structures. In Section 3.6 we
present practices that recover graph structures which is a much more difficult prob-
lem than recovering tree structures. Finally, in Section 3.7 we present the complexity
of the general structure learning task.

3.2 the likelihood score

Recall that score-based structure learning requires the definition of a scoring function
which gauges how well the model fits the training data. There are several choices of
scoring functions geared at evaluating the likelihood of a particular structure given
the fit to data [Drton and Maathuis 2017]. A well-known choice is that of the like-
lihood score which maximises the likelihood (or log-likelihood in practice) of the
structure to the data [Beretta et al. 2017]. We can express this using the maximum
likelihood estimate, θ̂, given a particular graph structure, G, relative to the data, D.
Thus we denote the likelihood score more formally as,

scoreL = `((θ̂,G) : D). (7)

3.3 the bayesian information criterion 35

In other words, if we are presented with a particular graph structure we find the MLE
of that graph with respect to the data. This can be expressed more generally as the
relative cost of adding an edge between two variables in an empty graph structure.
More formally, we can define the likelihood score as follows:

Proposition 3.1. The likelihood score decomposes as the number of instances in the
data multiplied by the mutual information, IP̂, between each family of variables mi-
nus the entropy of each variable considered in isolation (i.e. independent of the struc-
ture). More formally,

scoreL(G,D) =M

n∑
i=1

IP̂(Xi; PaGXi) −M
n∑
i=1

HP̂(Xi),

where

IP̂(X; Y) =
∑
x,y

P(x,y) log
P(x,y)
P(x)P(y)

,

and

HP̂(X) = −
∑
x

P(x) logP(x).

Intuitively, the mutual information informs us of the average cost of adding an
edge between X and Y (ie. P(x,y)), over modelling these as mutually independent (ie.
P(x)P(y)) [Koller and Friedman 2009]. Since the entropy term is independent of the
graph structure, it is often ignored.

Proposition 3.1 intuitively tells us that the score will be higher if there is evidence
in D which supports a high correlation of variables with their respective parents [Dr-
ton and Maathuis 2017; Liu et al. 1996]. However, the likelihood score has a strenuous
consequence: maximising the likelihood score will always prefer the most connected
network given that more edges always give more information about correlations be-
tween variables [Lee et al. 2007; Koller and Friedman 2009]. This is true unless vari-
ables are truly empirically independent, which is never the case in most datasets
given statistical noise [Koller and Friedman 2009].

The fact that the most complicated network is always preferred poses a significant
over-fitting problem. This is usually overcome by regularising the hypothesis space
or penalizing structural complexity [Koller and Friedman 2009; Campos and Ji 2011].
In the next section we discuss a structure score which addresses this problem.

3.3 the bayesian information criterion

The Bayesian information criterion (BIC), developed by Schwarz and others [1978],
is a popular choice for trading off model complexity and fit to data. The BIC score
consists of two terms: the first describes the fit of the hypothesised structure to the

36 related work

data, usually the likelihood function in Equation 7; and the second is a penalty term
for complex networks. More formally the BIC score is given as

scoreBIC = `(θ̂G : D) −
logM
2

DIM[G], (8)

where M is the number of training instances and the DIM[G] is the number of inde-
pendent parameters in the network. We note that the negation of this score is referred
to as the minimal description length (MDL) score [Bouckaert 1993; Lam and Bacchus
1993; Suzuki 1993; Kullback 1997; Chow and Liu 1968].

Upon further investigation, we note that the entropy component (ie. HP̂(X)) of the
likelihood term in Equation 8 is negligible since it does not depend on the selected
structure. This observation allows us to rewrite the BIC score as

scoreBIC =M

n∑
i=1

IP̂(Xi; PaGXi) −
logM
2

DIM[G]. (9)

As we increase the number of samples (ie.M) in Equation 9 the emphasis moves from
model complexity to the fit to data [Chen and Gopalakrishnan 1998]. In other words,
as we obtain more data we are more likely to consider more complicated structures
[Tamura et al. 1991]. This property is referred to as consistency. More formally [Koller
and Friedman 2009],

Definition 3.2. A scoring function is said to be consistent if, as the amount of data
provided increases to infinity, the true structure will maximise the score; and all
structures that are not I-equivalent (Definition 2.6) to the true structure will have a
strictly lower score.

Alongside the definition of consistency (Definition 3.2) is the notion of score equiv-
alence which states that I-equivalent structures have the same structure score. More
formally,

Definition 3.3. A scoring function is said to be score equivalent if for all I-equivalent
networks G and G ′ we have that score(G : D) = score(G ′ : D) for all datasets D.

Schwarz and others [1978]; Rissanen [1987]; Barron et al. [1998] provided much de-
velopment to the basic properties of the BIC score in addition to establishing its con-
sistency and score equivalence which are used for efficient and manageable searches
[Geiger et al. 2001; Rusakov and Geiger 2005; Settimi and Smith 1998]. In the next
section we explore the Bayesian score which considers the Bayesian paradigm.

3.4 the bayesian score

The last score that we discuss in detail is the Bayesian score. The Bayesian score, with
a Dirichlet prior, was introduced by Buntine [1991]; Cooper and Herskovits [1992];
Spiegelhalter et al. [1993]; Heckerman et al. [1995a]. The Bayesian score operates un-
der the Bayesian paradigm which states that anything we have uncertainty over we

3.4 the bayesian score 37

must maintain a probability distribution over. In this case we have uncertainty over
parameters as well as network structure. More specifically,

P(G|D) =
P(D|G)P(G)

P(D)
, (10)

where P(D|G) is the marginal likelihood (not the maximum likelihood); P(G) is the
prior over structures; and finally, P(D) is a constant term which describes the prior
over datasets. P(D) gives us no information about the structure of the graph and
can be ignored when being used to compare different structures. We can rewrite
Equation 10 using a sum of logs as

scoreB(G : D) = logP(D|G) + logP(G). (11)

The marginal likelihood term expands as follows

P(D|G) =

∫
ΘG

P(D|θG,G)P(θG|G)dθG,

where P(D|θG,G) is the likelihood for data given the structure and parameters; and
P(θG|G) is the prior over the parameters. We note that the marginal likelihood inte-
grates over all possible settings of the parameters (not just the maximum likelihood
θ̂). Therefore in this case θG is a setting of the parameters for a structure G.

The idea of using the marginal likelihood, as an alternative to the maximum like-
lihood, significantly reduces over-fitting since it makes a prediction over an unseen
instance given the previous instances. It is useful to think about marginal likelihood
as a type of cross validation process for each new instance, which is opposed to
maximum likelihood estimation which considers all the instances together.

Although the Bayesian score might seem complicated, if we consider multinomial
table CPDs and no structure in P(θG|G), then the marginal likelihood can be provided
in closed form as

P(D|G) =
∏
i

∏
ui∈Val(PaG

Xi
)

Γ(αG
Xi|ui

)

Γ(αG
Xi|ui

+M[ui])

∏
x
j
i∈Val(Xi)

Γ(αG

x
j
i|ui

+M[xji, ui])

Γ(αG

x
j
i|ui

)
,

where M is a sufficient statistic (Definition 2.17) and the gamma function is given by

Γ(x) = x.Γ(x− 1).

It is important to recognise that the above expression allows us to express the
log marginal likelihood as a sum over Bayesian family scores. Turning our attention
to the structure prior in Equation 11, the most common choice is a uniform struc-
ture prior. Other structure priors include priors that are non-uniform over Bayesian
network structures [Buntine 1991] or deviations between prospective networks and
recommended networks [Heckerman et al. 1995b]. Another score closely related to
the Bayesian score is the BDe score. The BDe score was proposed by Heckerman et
al. [1995a], and the authors showed that it possesses basic properties such as score-
equivalence and local parameter independence. For a more detailed empirical analy-
sis of these scores see Dawid [1984]; Kass and Raftery [1995].

38 related work

A derivation of the BIC score is the AIC score [Akaike 1974] which only considers
the dimension of the graph structure (ie. the number of independent parameters) as
a penalty term. More specifically,

scoreAIC =M

n∑
i=1

IP̂(Xi; PaGXi) −DIM[G].

Practically, the major difference between the AIC and BIC scores is the size of the
penalty term. The BIC score penalizes complex structures more heavily, thus the AIC
score may capture more independence assumptions which hypothesically provides a
better likeness to the data.

In summary, the Bayesian score avoids over fitting by averaging over all possible
network parameterisations and is asymptotically equivalent to the BIC score [Koller
and Friedman 2009].

3.5 learning tree-structured networks

Learning a tree structured network is perhaps the simplest structure learning prob-
lem. The first application of learning tree structured networks was proposed by Chow
and Liu [1968]. Having selected a structure score, we turn our attention to an op-
timisation problem which attempts to maximise the selected score over potential
structures. Decomposability of the score turns out to be an important property for
computational savings in the structure search procedure. More specifically, decom-
posability is the property that the complete network score can be written as equal to
the sum of family scores. For example, in Preposition 3.1 we see that the likelihood
score decomposes as a sum of family scores (for every variable and its parent-set).

There are two important reasons why one would want to learn a tree structured
network over a graph structured network. Firstly, there already exists powerful al-
gorithms for efficient optimisation over high-dimensional tree structured networks;
and secondly, trees provide sparse networks with manageable generalised parame-
terisation which reduces over-fitting. In summary, trees can be constructed by using
polynomial time algorithms which summarise the most important dependencies that
allow for better approximations [Koller and Friedman 2009; Bunge 2017]. Trees can
also offer a suitable prior which can be used to learn more descriptive graph struc-
tures relative to the data [Koller and Friedman 2009].

In order to learn tree structures we need to calculate the score between different
variables. If our score is decomposable we can express the weight between a variable,
j, and its parent, i, as

wi→j = score(Xj|Xi) − score(Xj). (12)

In the case of the likelihood score the expression of wi→j in Equation 12 becomes

wi→j =M
∑
xi,xj

P(xi, xj) log
P(xi, xj)
P(xi)P(xj)

. (13)

3.6 learning general graph-structured networks 39

Intuitively, the weight between two variables is the average over the relative error of
modelling the joint distribution between the variables and the product of them being
marginally independent.

Now that we have a way to measure the score of two variables we can define an
algorithm to obtain a tree structured network. A general algorithm to obtain a tree
structured network is to compute the score of every pair of variables and then find
the maximum weighted spanning tree (MWST) or forest between all of the variables.
One could use any standard MWST algorithm such as Prim or Kruskal in O(n2)

[Greenberg 1998; Huang et al. 2009], where n is the number of variables.

There are two important observations to note from Equation 13. The first is that the
mutual information term can never be negative. However, in the BIC or BDe scores we
could have a penalty term which causes wi→j to be negative. If we use the likelihood
score for wi→j then the score between the two variables will be positive. Thus using
the likelihood score with a MWST algorithm will result in a tree structured network
as opposed to obtaining a forest when using penalty-based scores such as the AIC
or BIC scores. This is the case since a penalty based score could a negative weight
with is ignored by MWST algorithms such as in Prim and Kruskal [Greenberg 1998;
Huang et al. 2009].

Secondly, score equivalent networks have the same score for wi→j and wj→i, this
implies that we will get a undirected tree or forest structure which we can then im-
pose an orientation on the edges. It is important to note that in practical situations
the mutual information term between various variable groupings often remain un-
informative, this can severely limit the utility of the pair-wise approach mentioned
here which is why we later consider using groups of variables in graph structures.

Once the score of all pairs of variables are found, one can use an arbitrary orien-
tation on the edges, as long as the resulting graph is a DAG. In the next section we
turn our attention to the much more difficult problem of learning graph structured
networks.

3.6 learning general graph-structured networks

In the case of learning general graph-structures the problem complexity increases
greatly. More specifically [Koller and Friedman 2009],

Theorem 3.4. For any dataset, D, and decomposable structure score, score, the problem of
finding the maximum scoring network, that is,

G∗ = arg max
G∈Gd

score(G : D),

is NP-Hard for any d > 2, where Gd = {G : ∀i, |PaG
Xi
| 6 d}.

In other words, finding the maximal scoring network structure with at most d
parents for each variable is NP-hard for any d greater than or equal to 2 [Chickering
et al. 1994; Chickering 1996; Chickering et al. 2004; Suzuki 2017]. This is because of the
super-exponential search space that one has to traverse to obtain the maximal scoring

40 related work

network. Koivisto and Sood [2004]; Singh and Moore [2005]; Silander and Myllymaki
[2012] provide a detailed description and proof of NP-Hardness of this combinatorial
problem.

There has been much work to further explore the repercussions of the result in
Theorem 3.4. More specifically, learning a general graph structure is NP-hard for a
bounded in-degree less than or equal to d for the Bayesian score [Chickering 1996;
Chickering et al. 2004]; polytrees (graphs with underlying tree structures) [Dasgupta
1999]; finding a path in a graphical model [Meek 2001]; and even when certain prop-
erties of the problem are known (eg. perfect independence, generative, inference, or
information oracle) [Chickering et al. 2004].

The result in Theorem 3.4 might be discouraging. However, due to the develop-
ments of local search procedures we are able to provide a solution using a heuristic
hill-climbing search.

Chickering et al. [1995]; Buntine [1991] proposed a local search over graph struc-
tures. The intuition of the heuristic local search procedure is as follows. Suppose we
have a arbitrary candidate network as depicted at the center of Figure 25 labeled (a).
We can decide to perform local perturbations in an attempt to improve the network
structure relative to the data and a particular score. Suppose that we are given the
following options: to reverse the edge X2 → X5 obtaining network (b) which gives
us a score of 75; to delete the edge X6 → X5 obtaining network (c) which gives us a
score of 90; to add an edge X4 → X2 obtaining network (d) which gives us a score
of 50; or to reverse the edge X5 → X3 obtaining network (e) which results in a cyclic
network.

Obviously we do not consider network (e) since this is not a legal Bayesian network.
The most favorable transition would be to delete the edge X6 → X5. This option im-
proves the current network score from 70 to 90. It is not clear whether this transition
will be favorable in the long term, however, it does provide a better network structure
from a single transition.

There are two main design choices that one needs to make when performing a
local structure search: the choice of search operators and search procedure. Firstly,
we must select a set of operators which are local steps to traverse the search space.
Common choices for local search operators are edge addition, reversal and deletion.

The edge reversal search operator might seem counter intuitive since it can be
achieved by a simple edge deletion and edge addition. When optimising that struc-
ture score over the search space, deleting an edge with the intention to perform a
edge reversal would lower the overall structure score for the next step. Therefore,
having an edge reversal transition allows us to explore the option of reversing edges
without encountering this issue.

There are several other search spaces one could consider such as moving a variable
to a new position in the network [Moore and Wong 2003]; searching over ordering
and bounded in-degrees [Teyssier and Koller 2012]; or perturbing the data out of
local optimum [Elidan et al. 2002]. Although methods which take larger steps in the
search space may be expensive, they are empirically faster and more resistant to local
optimum [Chickering 1996 2002; Elidan et al. 2002; Teyssier and Koller 2012].

3.6 learning general graph-structured networks 41

(b) X1

X2

X3

X4 X5

X6

(c) X1

X2

X3

X4 X5

X6

(d) X1

X2

X3

X4 X5

X6

(e) X1

X2

X3

X4 X5

X6

(a) X1

X2

X3

X4 X5

X6

Add X4 → X2

SCORE: 50
SCORE: 70

Reverse X2 → X5

SCORE: 75

Delete X6 → X5

SCORE: 90

Reverse X5 → X3

NOT LEGAL

Figure 25: An illustration of the heuristic search procedure between different candidate
Bayesian network models. This figure shows local perturbations in an attempt to
improve the network structure relative to the data and a particular score. Network
(a) provides the current network structure. Network (b) reverses the edge X2 → X5
which increases the network score by 5. Network (c) deletes the edge X6 → X5
which increases the score by 20. Network (d) adds an edge X4 → X2 which de-
creases the score by 20. Finally, network (e) reverses the edge X5 → X3 obtaining
an illegal network structure.

The second design choice is to select a search technique that traverses the search
space. Some choices include greedy hill-climbing, best first search, or simulated an-
nealing. The most common choice is greedy hill-climbing (GESS) which starts with
a prior network. The prior network could be an empty network; a best tree obtained
from the procedure mentioned in Section 3.5; a random network; or one elicited by an
expert. From this prior network we iteratively try to improve the network by utilising
search operators. In greedy hill-climbing we always apply the change that improves
the score until no improvement can be made. A comparison was done on various
local search procedures by Chickering et al. [1995], such procedures included the K2
algorithm, local search, and simulated annealing. Chickering et al. [1995] note that
local search provides the best time-accuracy trade-off to all other methods compared.
Cooper and Herskovits [1992] were perhaps the first authors to propose a general

42 related work

graph search called the K2 algorithm. The K2 algorithm used an ordering over vari-
ables which would permit families of variables to specify an orientation.

There are two major issues with the greedy local search procedure. The resulting
network structure can be interpreted as a local optimum for which no operator can
improve the network score. Suppose we started the local search procedure at position
C in Figure 26. We might unfortunately arrive at a poor local maximum, position A,
relative to the global maximum, position B, which is considerably better.

Figure 26: An illustration of a local search procedure which takes small steps in the search
space and arrives at a local optimum [Tompkins and Lawley 2009].

The second problem arises when we encounter a plateau in the search space. Con-
sider Figure 27, at position B where if we look around the current structure there may
be a variety of possible network transitions which give the same score. In this case
there is no way to know which direction to proceed towards.

Figure 27: An illustration of a state space with many plateaux [Tompkins and Lawley 2013].

This occurs frequently in Bayesian network structure learning because of I-equivalent
network structures yielding the same score given a score-equivalent structure score
(eg. those in Figure 8). In order to avoid these issues in practice we augment greedy
hill-climbing with two search techniques: random restarts and tabu lists.

random restarts : In random restarts, when we reach a local optimum we take
k random steps and then continue traversing the search space using the search proce-
dure. The intuition is that if we are at a local maximum that is shallow then k random
steps will set us up in a better position to explore a better optimum.

3.6 learning general graph-structured networks 43

tabu lists : In tabu lists we try to avoid treading the same path over and over
again by maintaining a list of the most recent k steps taken by the search procedure.
Glover and Laguna [2013] provide a detailed discussion on the effects of tabu lists on
structure search procedures.

Figure 28 presents the effects of learning parameters only and learning both pa-
rameters and structure on the ICU alarm network presented in Figure 22 [Koller and
Friedman 2009]. The x-axis shows the number of samples (M) and the y-axis shows
the distance measured as K-L divergence [Minka 2005] between the learned and true
distribution. The solid line in the figure indicate both structure learning and parame-
ter estimation and the dotted line indicates learning only parameters given the true
structure.

The result in Figure 28 suggests that the structure learning problem is not intrin-
sically more difficult than the parameter estimation problem given observable data.
However, learning from synthetic data has a much stronger signal for the correlation
between variables than in real data where their exists statistical noise.

Figure 28: The performance of two learning tasks for Bayesian networks. Adapted from
Koller and Friedman [2009]. The dotted line represents parameter estimation given
the true structure, and the solid line represents structure and parameter learning.

Other examples of related work using local search procedures and traversal algo-
rithms include a search over I-equivalent classes [Chickering 1996 2002]; and constraint-
based algorithms which guarantee obtaining the correct network at a large sample
limit, such as the SGS [Spirtes et al. 2000] and KES [Nielsen et al. 2002] algorithms.
Höffgen [1993] attempted to assess the rate of learning over the number of samples
for Bayesian network structures with bounded in-degree. Höffgen [1993] presents
that relative entropy of the ground truth grows logarithmically with the number of
samples. Similar work also explores the effects of using structure scores with penal-
ties [Friedman and Yakhini 1996]. Abbeel et al. [2006] present a polynomial-time al-
gorithm to learn a low-degree maximum-likelihood Bayesian network. Learning the
structure for dynamic Bayesian networks [Friedman et al. 1998] and object-relational
models [Friedman et al. 1999; Getoor et al. 2002] have also been proposed.

44 related work

In the context of learning the structure of a dynamic Bayesian network, the prob-
lem is considered in the complete and incomplete data cases. On the one hand, in
learning the dynamic Bayesian network structure for complete data, we simply learn
the initial and unrolled states using algorithms to recover a static Bayesian network
structure. Such algorithms include Cooper and Herskovits [1992]; Heckerman et al.
[1995a]. On the other hand, in the case of incomplete data, we may consider learning
the position of latent variables or knowing the internal structure of each dynamic
Bayesian network and learning their missing values. Discovering the structure of
latent values has been addressed by Friedman and others [1997]; Friedman [1998]
using the Structural Expectation Maximization (EM) algorithm. The Structural EM al-
gorithm perturbs the structure and parameters of the model iteratively. This method
is proven to be effective to recover the structure of dynamic Bayesian networks when
we do not know the position of the latent variables. Furthermore, since the Structural
EM algorithm uses score-based structure learning, it is readily adaptable to using reg-
ularization techniques such as the BIC or BDe scores to control structural complexity
[Schwarz and others 1978; Heckerman et al. 1995a]. Friedman et al. [1998] analyse the
algorithmic complexity of this learning problem and present some literature which
attempts to reduce the computational burden of local search procedures by a clever
use of data structures. In this research we will assume that each individual process
is represented by a dynamic Bayesian network with a known structure and some
variables with missing values.

3.7 structure learning complexity

Learning the structure of a Bayesian network can be viewed as a combinatorial opti-
misation problem where we attempt to select a structure through a search procedure
using a scoring function over a search space. In this section we explore several tech-
niques to reduce the total structure search complexity by taking advantage of score
decomposability.

Recall Figure 25 where we evaluate several transitions from an initial network struc-
ture using various search operators. The computational cost of this structure search
procedure is as follows. Suppose we have a Bayesian network with n nodes, then
there exists n(n− 1) possible edges. Each edge is either present in the network or
absent. Edges which are present can be deleted or modified using edge removal or
reversal, and edges which are absent can be added using an edge addition. Therefore,
there are asymptotically O(n2) total operators which we consider at each search step.

To evaluate the score of a network with respect to a selected scoring function we
need to calculate the score of n families in the network. For each family we need
to calculate the sufficient statistics for the scoring function which takes a traversal
through the training data, D = {ξ[1], . . . , ξ[M]}. This traversal will take O(M) steps.
Therefore, it would take O(nM) to evaluate the score of a candidate network.

In order to avoid illegal networks during searching, such as network (e) in Fig-
ure 25, we need to perform an acyclicity check on every potential transition network
structure. This can be achieved with a simple breadth-first search which requires
O(E), where E is the number of edges in the network.

3.7 structure learning complexity 45

Therefore in total, we require O(Kn2(Mn + E)) to perform the structure search
algorithm, where K is the total number of steps to the local optimum structure. For
even moderately sized networks (eg. 30 to 60 variables) the computation becomes
unmanageable.

The above presents a significant problem in terms of the general complexity of the
structure search algorithm. However, we can exploit the decomposability property of
the score function for significant computational savings.

Consider the transition from network (a) to (d) in Figure 25. Recall Proposition 3.1
which illustrates the decomposability of the likelihood score. The score of network
(a) can be expressed using the score decomposability property as

Score(X1,X2,X3,X4,X5,X6) = Score(X1|X3)

+ Score(X2)

+ Score(X3)

+ Score(X4|X1)

+ Score(X5|X2,X3,X6)

+ Score(X6|X4).

The score for network (d) in Figure 25, decomposes as

Score(X1,X2,X3,X4,X5,X6) = Score(X1|X3)

+ Score(X2|X4)

+ Score(X3)

+ Score(X4|X1)

+ Score(X5|X2,X3,X6)

+ Score(X6|X4).

The scores of networks (a) and (d) are exactly the same except for variables X2’s
family. In network (a) we have Score(X2) and in network (d) we have Score(X2|X4).
Thus we need only recalculate the family score for X2. Thus, each transition in the
search space can be further expressed in terms of a 4score between each respective
network given the search operators. This notion of a 4score can also be extended for
edge reversal and deletion.

Exploiting the decomposability property allows us to compute one or two family
scores at each transition, as opposed to recalculating every family score. Recall that
to calculate a family score we need to calculate sufficient statistics for each variable
in the family. This would take O(nM) as opposed to O(n3M). Other methods that
attempt to reduce the computational burden in structure learning literature include
caching sufficient statistics and the use of data structures such as priority queues
[Moore and Lee 1998; Deng and Moore 1995; Moore 2000; Komarek and Moore 2000;
Indyk 2004].

In this chapter we reviewed various structure scores; a method to learn a tree-
structured network; and local search techniques to recover graph structures. We also
explored methods for computational saving given the intractability of the search pro-
cedure to traverse the search space. In the next chapter we use the contributions in

46 related work

this and the previous chapter to introduce influence between stochastic processes. We
then begin to develop procedures to recover influence relations between them.

4
T H E R E P R E S E N TAT I O N O F D Y N A M I C I N F L U E N C E

4.1 introduction

B
efore developing algorithms to infer influence between stochastic processes,

one needs to precisely define and specify the conditions of influence. In this
chapter we will specify what is meant by influence in terms of its representa-

tion, distribution, and applicable inference. We leave the tasks of scoring and search-
ing for influence networks to Chapter 5 and Chapter 6 respectively.

There are many practical applications where we can make use of influence net-
works, such as for knowledge discovery or density estimation. That is, to discover
the structure of how influence flows from one process to another, or to estimate the
probability of a process respectively. These learning tasks are useful for many applica-
tions such as for navigation systems [Papageorgiou 1990], where temporal influence
between traffic conditions might flow between roads; predicting stock market trends
[Cong et al. 2008], where temporal influence flows between market characteristics
such as risk, volatility, selection, liquidity, regulation (etc.); and even for describing
how the quantity of proteins in a cell influence each other as the cell’s conditions may
change [Sachs et al. 2005; Perriere and Thioulouse 2003; Durbin et al. 1998].

Temporal influence between processes can be modelled using a single dynamic
Bayesian network (DBN), where the influence between processes flow in every time-
slice in the DBN. However, overloading the representation of influence between pro-
cesses, within a single temporal model, can significantly simplify our structure learn-
ing task if we model influence relations between processes as making use of con-
ditional independence assumptions. This is especially useful since we can explicitly
manage the extent of interactions between ensembles of processes by encoding it
within the structure for knowledge discovery. Furthermore, this allows us to separate
the structure of influence between processes from the structure of variables within
each description of a process.

Therefore, we define a dynamic influence networks (DINs) as a DBN of a set of
DBNs with an imposed high-level influence structure. By extending the representa-
tion of a DBN, rather then replacing it, we allow for the conservation of essential
properties and learning algorithms such as independence maps (Section 2.2.1.2), I-
equivalence classes, MLE (Section 2.3.1.1), and Bayesian estimation (Section 2.3.1.2)
which we make use of when recovering influence structures between processes in
later chapters.

The major contributions of this chapter are as follows:

1. the definition and properties of influence networks which include indepen-
dency maps, the influence network factorisation, independency equivalence,
and encoding the distribution of influence through a structure;

47

48 the representation of dynamic influence

2. the definition of dynamic influence networks (DINs) in terms of two underlying
assumptions (Markov and time-invariance), as well as its factorisation;

3. an algorithm to perform approximate particle-based inference on DINs;

4. and finally, an empirical analysis of using a set of independence assumptions
between processes in DINs for modelling influence.

This chapter is structured as follows. In Section 4.2 we define an influence network
between Bayesian networks; Section 4.3 defines DINs, which is a DBN that represents
the distribution of interactions between processes; Section 4.4 discusses particle-based
inference for influence networks; and finally, Section 4.5 provides a brief empirical
justification for using DINs over modelling this problem using the general product
rule over variables in a DBN.

4.2 influence networks

Our primary contribution in this thesis is the notion of influence between processes
and ways of recovering it from data. Recall that influence between processes is a set
of independence assumptions (encoded as a structure) and a probability distribution.
Intuitively, influence between processes means that the values that certain processes
take in the observable data may effect the values that other processes take in the
observable data.

We begin this chapter by discussing the non-dynamic case of influence. In this
problem we are interested in modelling the influence between environments which
are described by observable and latent variables in Bayesian networks [Ajoodha and
Rosman 2017]. Intuitively, we are interested in recovering how variables in one envi-
ronment can potentially effect the values of variables in other environments.

This section is structured as follows. Section 4.2.1 defines the structure of the influ-
ence network between Bayesian networks; Section 4.2.2 explores the use of I-maps for
distributions; Section 4.2.3 explores how influence networks factorise as a probability
distribution; Section 4.2.4 defines influence networks; and finally, Section 4.2.5 shows
how the same set of independence assumptions can be represented by different struc-
tures.

4.2.1 Influence Structure

We begin by formally defining the semantics of an influence structure.

Definition 4.1. An influence graph structure, GI, is a directed acyclic graph whose
nodes represent Bayesian networks, B = {B1, . . . ,BR}, where R is the number of net-
works. Each Bayesian network in B encodes the same set of independence assump-
tions GB, but a different set of variables. Let PaG

I

Bi denote a set of parent Bayesian
networks for Bi with respect to the structure GI, and NonDescsBi denote the set
of Bayesian networks that are not descendants of Bi in GI. Then GI encodes the
following set of conditional independence assumptions, called local independencies,
denoted by I(GI),

4.2 influence networks 49

∀ Bi ∈ B: (Bi ⊥⊥ NonDescs
Bi|PaG

I

Bi
).

In Definition 4.1 we encode in the local independency set I(GI) that any Bayesian
network in this influence structure is conditionally independent of its non-decendents
given its parents. The assignment of the dependency set can be based on relating
latent variables, aggregating observations, or even a total assignment of all variables
from one network to another. We will defer the discussion of how the assignment of
the dependency set in GI is encoded as conditional independence assumptions to our
discussion on structural assembles for influence networks in Chapter 5.

Figure 29 illustrates an example of an influence network structure, GI , with four
Bayesian networks, B = {A,B,C,D}, that encode the same set of independence as-
sumptions GB. Examples of members of the set I(GI) include (C ⊥⊥ B | A) and
(D ⊥⊥ A | B,C).

B B1

B2

B3

B4 B5

B6

C C1

C2

C3

C4 C5

C6

A A1

A2

A3

A4 A5

A6

D D1

D2

D3

D4 D5

D6

Figure 29: An illustration of an example of an influence network structure, GI, with four
Bayesian networks, B = {A,B,C,D}, that encode the same set of independence
assumptions GB (thin solid lines). The thick solid lines indicate the structure GI.
More specifically, the thick solid lines indicate independence assumptions between
variables in different Bayesian networks. E.g. P(Ci |Ai), where i ∈ {1, 2, 3, 4, 5, 6}
(since there can only be 6 variables in each network).

The set of independence assertions for the influence structure in Definition 4.1 can
be equivalently expressed as a distribution, P, over independence assumptions. More
specifically, as in the case of Bayesian networks, a distribution P satisfies I(GI) if and
only if P can be represented as a set of CPDs with respect to GI. In the next section we
develop this idea to reveal interesting properties and recognisable difficulties which
present themselves when learning influence networks from data.

50 the representation of dynamic influence

4.2.2 Independency Maps

The compact representation of the influence network structure, GI, exploits the un-
derlying independence assumptions for the distribution modelled, P. We write these
assumptions in the set I(P) in the form (X ⊥⊥ Y | Z), where X, Y and Z are Bayesian
networks which encode their respective distributions. This allows us to precisely state
that GI is an I-map for the distribution P since it is satisfied by the local independence
assumptions for the influence network structure I(GI). We denote this as I(GI) ⊆ I(P).

The main intuition behind the idea of an I-map is that an I-map does not misguide
us about the independencies in P. That is, every independence assumption that GI

holds must also hold in P. However, P may have additional independence assump-
tions that do not hold in GI.

4.2.3 Factorisation of Influence Networks

The compact factored representation of the influence structure relies on producing a
subset of independence assumptions specified in P. Furthermore, this factored repre-
sentation allows us to compute entries of the joint distribution by a product of factors
over each Bayesian network structure, GB, and the influence graph structure, GI. The
same can be said for any I-map for the distribution P. More formally,

Definition 4.2. Let GI be an influence network structure over the Bayesian networks
B = {B1, . . . ,BR}, where R is the number of networks. Each Bayesian network in B
factorises according to GB. We say that a distribution P, over the same space, factorises
according to GI if P can be expressed as a product

P(B1, . . . ,BR) =
R∏
i=1

N∏
j=1

P(XBi
j |PaG

I∪GB

X
Bi
j

),

where XBi
j is the jth variable in Bi , GI ∪ GB is the union of the two structure inde-

pendence assumption sets; and N is the number of variables for network Bi.

This result is an extension of the chain rule for Bayesian networks with respect to
the structure imposed by the influence network. We will see later in Chapter 5 that
the structure imposed depends on the application of the influence network.

4.2.4 Influence Networks

We are now ready to define an influence network.

Definition 4.3. Suppose you have a set of Bayesian networks B = {B1, . . . ,BR}, where
each Bayesian network in B factorises according to GB. Further assume that you have
a set of independence assumptions between these Bayesian networks, GI. Then an
Influence network is a pair I = (G,PI), where G = GI ∪ GB, and PI factorises over
I(G) = I(GI ∪ GB).

4.2 influence networks 51

In the next section we explore independency equivalence which suggests that recov-
ering the influence structure is a difficult problem given the ambiguity of structures
which can be deduced from training data.

4.2.5 Independency Equivalence

We have discussed influence networks as a specification of conditional independence
assumptions, I(GI), associated with a graph GI, for a distribution, P. The members
from I(GI) provide a sufficient specification of the independence properties of P (pro-
vided that I(GI) ⊆ I(P)). Thus we can ignore the graph structure and just consider
I(GI) to reconstruct P.

This observation has an important consequence since different graph structures can
be constructed from the same set of local independence assumptions. This means that
different influence structures can be equivalent if they are constructed from exactly
the same conditional independence assertions. More formally:

Definition 4.4. Two influence network structures G1 and G2 over a set of variables X

are I-equivalent if I(G1) = I(G2).

Definition 4.4 has an important implication that the set of all influence network
structures (over a set of random variables X) is partitioned into a complete set of
mutually exclusive I-equivalence classes.

Figure 30 shows an example of three influence structures that encode the same
independence assumptions. Each node represents a Bayesian network and an edge
represents the flow of influence between each respective network. Note that for the
case where A → B ← C (not shown in the figure), and we know that B is given/ob-
served, then influence can flow from A to C (i.e. inter-causal reasoning). That is, in
the case of two causes that have a joint effect (also known as a v-structure), influence
can not flow between the two causes.

(a) B

A C

(b) B

A C

(c) B

A C

Figure 30: An example of an I-equivalent class encoded by the independence assertion:
(A ⊥⊥ C | B). Each node in the diagram represents a Bayesian network and edges
represent the influence between them.

We will later see in Chapter 5 that I-equivalence plays an important role when se-
lecting an influence network structure because of the following important restriction:
There is no innate property of the distribution P which relates it to one network struc-
ture rather than another from the same I-equivalence class. Thus we can not decide
on how to orient the direction of edges in an influence network.

More specifically, suppose we establish that two Bayesian networks B1 and B2 are
correlated with respect to some set of observations. There is no information from the

52 the representation of dynamic influence

observations that can determine whether the structure that gave raise to the ground
truth was B1 → B2 or B1 ← B2. We will revisit this essential implication when we
discuss learning influence networks in Chapter 6. In the next section we will further
develop this notion of influence for temporal models.

4.3 dynamic influence networks

An influence network specifies a joint distribution over a finite set of Bayesian net-
works. In many temporal domains, however, we require a probabilistic understanding
of interactions between trajectories, which relate to a much more complex space then
can be recorded as a finite set of Bayesian networks. Therefore, in temporal settings,
we wish to represent a distribution of influence over systems whose states evolve
over time. An influence state refers to the distribution of influence between a set of
processes at a point in time.

Example 4.5 (Influence between proteins in a cell). We may wish to model the rela-
tionship between quantities of proteins in a cell as its conditions change over time.
In this setting we are given only feature information between several proteins at var-
ious times and we are expected to recover the inferred temporal influence relations
between the proteins. The characteristic of each protein can be defined as observable
and latent variables which is encoded by a local structure GB that persists through
time. The structure of influence between each protein can be described as GI which
also persists through time.

Example 4.6 (Influence between roads over time). In road networks we may be given
a set of observations for specific roads (e.g. light; number of cars, wind speed, temper-
ature, number of collisions, e.t.c.) for which we may want to learn abstractions (e.g.
traffic condition, weather, or the probability of an accident), these observable and
latent features give us GB which persists though time. We then can infer influence
between traffic activity on several roads by learning GI over time.

In Example 4.5 and 4.6 we may want to construct a single compact model that
provides a template for the entire class of distributions from the same type, i.e. trajec-
tories of traffic conditions or protein quantity over time.

In this section we extend the language of influence networks from the previous sec-
tion to dynamic influence networks (DINs) which allow us to model influence between
partially observed processes with an associated set of temporal observations. We be-
gin by defining the context of temporal models as influence networks in Section 4.3.1;
state the assumptions necessary for a compact and simplified representation in Sec-
tion 4.3.2; and finally, delve into the definitions of DINs in Section 4.3.3.

4.3.1 Context

In a temporal setting we are mainly concerned with learning and reasoning about the
influence states in a particular domain as it changes over time. Our main goal, in this
section, is to describe influence between processes in a way which allows us to learn

4.3 dynamic influence networks 53

the structure of influence networks effectively. Learning the structure of influence
networks is addressed in Chapter 6, however, the way we define influence networks
is critical to how we learn them.

The influence state, at time t, is modelled as an influence network which consists
of several Bayesian networks (connected with a particular configuration - Chapter 5),
such that, at a particular time we model the relationships between these Bayesian
networks at time-point t as an influence network.

We assume that the influence state (at time t) is represented as an assignment of
values (taken by random variables) to some set of Bayesian networks B = {B1, . . . ,BR}.
We denote B

(t)
i to be a Bayesian network Bi at time-point t. It is important to note

that B(t)
i is a template network whose structure may recur across time. The template

network structure is initialised, at various time-points t, where each template network
encodes the same set of factors and discrete values Val(Bi).

Our probability distribution between environments (from Section 4.2.4) is now a
trajectory, that is, the distribution between environments is an assignment of network
values for a particular time-point t. In this section we will present a DIN which is a
joint distribution of influence over a set of processes.

Learning a joint distribution over processes presents a complex probability space.
This complex probability space is discussed in the next section along with some
simplifying assumptions to reduce its complexity.

4.3.2 Assumptions

In this section we present three assumptions used when learning DINs. The first is the
discretisation of the continuous observations (Section 4.3.2.1); the second models fu-
ture influence states as independent of the past given the present (Section 4.3.2.2); and
finally, the third assumes that the system dynamics do not change (Section 4.3.2.3).

4.3.2.1 Time Granularity

Selecting a time-granularity, 4, to partition continuous observations of the system
into time-slices at various intervals is essential to managing the space of observations.
The selection of a time-granularity allows us to simplify the number of influence
states that describe the trajectory to t4, where t is the number of time-slices.

With this assumption we can (a) generalise aspects of the joint distribution that de-
scribes a trajectory over influence states, as well as, (b) simplify the distribution from
a continuous system to one sampled from discrete intervals making the distribution
more tractable. In the next subsection we discuss the Markov assumption.

54 the representation of dynamic influence

4.3.2.2 The Markov Assumption

Suppose we have a distribution over a set of processes for t = 0, . . . , T . That is
P(B(0), . . . , B(T)) = P(B(0:T)) where B is a set of template Bayesian networks (as
discussed in Section 4.3.1. Each B(t) is referred to as an influence state). Then by the
chain rule for probabilities (in the direction of time) we have that

P(B(0:T)) = P(B(0))

T−1∏
t=0

P(B(t+1)|B(0:t)).

That is, the joint probability distribution over a set of processes is a product over
all conditional distributions. This means that in order to calculate the probability of
a single influence state we will need to calculate the product over all previous states.
This is too expensive and discourages the use of lengthy processes.

Thus we would like to simplify the expression for trajectories using the Markov
assumption (Section 2.2.2.1) in order to produce a more manageable distribution.
The Markov assumption is a conditional independence assumption which models
the next influence state as independent of past influence states given the present one.
More formally,

Definition 4.7. A dynamic influence system over the template Bayesian networks,
B = {B1, . . . ,BR}, satisfies the Markov assumption if, for all t > 0,

(B(t+1) ⊥⊥ B(0:(t−1))|B(t)).

More specifically, independence in this case hold if and only if every variable in
B(t+1) is independent to every variable in B(0:(t−1)) given all variables from B(t)

(this is all relative to the arrangement of edges between these three Bayesian net-
works). The Markov assumption allows us to express that variables in the networks
at influence states B(t+1) are independent to influence states B(0:(t−1)) if we know
the influence state B(t). Thus we can now express the conditional distribution using
the Markov assumption as

P(B(0), . . . , B(T)) = P(B(0))

T−1∏
t=0

P(B(t+1)|B(t)).

The Markov assumption allows a compact representation of a joint distribution
over a trajectory, however, the assumption might not always be practical in terms
of the application. For example, there might be temporal dependencies which are
left out due to being more than 2 influence states away from the any time t. In the
case providing an all inclusive description of the world state will make the Markov
assumption more reasonable [Koller and Friedman 2009].

In practical applications, where we are concerned with approximating a joint distri-
bution, the Markov assumption is extensively used to simplify the distribution over
trajectories. In influence networks, however, since the description of the world state
depends on the temporal models which describe the processes, we rely on a rich

4.3 dynamic influence networks 55

description of the state of the trajectory by the underlying temporal models for the
assumption to be useful in the dynamic case of influence. In the next section we
discuss the time-invariance assumption.

4.3.2.3 The Time-Invariance Assumption

The final simplifying assumption for dynamic influence systems is the time-invariance
assumption where we assume that the system dynamics do not change. Since there
is no limit to the length that a trajectory can take, it is useful for a template network
to be used to describe influence states as t increases. More formally,

Definition 4.8. Suppose a dynamic influence system is Markovian. The dynamic in-
fluence system is said to be time invariant if P(B(t+1) | B(t)) is the same ∀t. In this
case we can represent the process using a transition model P(B ′ | B), so that, for any
t > 0,

P(B(t+1) = ξ ′ | B(t) = ξ) = P(B ′ = ξ ′ | B = ξ),

where ξ ′ is the next sample, ξ is the current sample, B ′ is the next Bayesian network,
and B is the current Bayesian network.

With these simplifying assumptions we can now move on to define DINs in the
next subsection.

4.3.3 Dynamic Influence Networks

Dynamic influence networks (DINs) are meant to represent dynamic influence be-
tween temporal models. The Markov (Section 4.3.2.2) and time-invariance (Section 4.3.2.3)
assumptions allow us to model a joint distribution over a trajectory compactly since
we only require a template influence network (Section 4.2.4) which recurs over time.

More specifically, we need to define a transition model, P(I(t) | I(t−1)), and initial
state, P(I(0)). The initial influence network is simply the pair I(0) = (G,PI), where PI

is a distribution which factorises over I(G) = I(GI ∪ GB) and G is any graph structure
which is a perfect-map of I(G).

The transition model can be a 2-time-slice influence network. In a 2-time-slice in-
fluence network, the transition model can only have dependencies from the initial
influence network. We refer to networks that are persistent through time as interface
networks, denoted BI. Therefore, only interface networks can be parents of other
network in the transition model. The observations are not interface variables. More
formally, the transition model is a 2-time-slice influence network which is as follows:

Definition 4.9. A 2-time-slice influence network for a trajectory over a set of Bayesian
networks B is a conditional influence network over B ′ given BI , where BI ⊂ B is a
set of interface networks.

56 the representation of dynamic influence

A1

A2

A3

A4

A5

A6

A7

A1

A2

A3

A4

A5

A6

A7

t

B1

B2

B3

B4

B5

B6

B7

B1

B2

B3

B4

B5

B6

B7

t

C1

C2

C3

C4

C5

C6

C7

C1

C2

C3

C4

C5

C6

C7

t

D1

D2

D3

D4

D5

D6

D7

D1

D2

D3

D4

D5

D6

D7

t

Figure 31: An illustration of a dynamic influence network between four hierarchical models.
The initial influence states are omitted but follow the same structure as the first
time-slice of the 2-time-slice influence networks in the image.

Figure 31 provides an example of an influence network between four temporal
models. The unrolled networks are given in Figure 57 in Appendix A.

More specifically, the 2-time-slice influence network presents the following condi-
tional distribution:

P(B ′ | B) = P(B ′ | BI) =
R∏
i=1

P(B
′
i | PaB ′i

),

where R is the number of Bayesian networks.

Each template network, Bi, contains a set of template variables X whose CPD
values combine into a template factor, P(X

′
j|PaX ′j

) for all j = {1, ,N}, where N is the

number of variables in each Bayesian network. These factors are initialised many
times as the influence network unrolls over time. The dependencies of these factors
span from the previous influence state.

In a 2-time-slice influence network the inter-time-slice edges are between time-
slices (dotted lines in Figure 31) and the intra-time-slice edges are between template

4.3 dynamic influence networks 57

networks and their respective variables (thick and thin solid lines in Figure 31). Fig-
ure 31 also shows many examples of persistent variables and edges between variables
in a DIN, which persist over time (Section 2.2.2.3).

Unrolling the transition model over any number of states allows us to define any
trajectory size with the same dependency structure between variables (provided by
the independency assumptions of each temporal networks internal structure for each
process description).

The choice of how temporal networks relate, as well as the variables inside their
time-slices, depends on how tightly coupled they are with respect to the data. That
is, whether the exists strong statistical correlations between variables in the data. On
the one hand, if the influence between networks is immediate (i.e shorter than the se-
lected time granularity) then the effect between networks (and hence variables) will
be indicated within the same time-slice using conditional dependence assumptions.
On the other hand, if the influence between networks is gradual, then the effect be-
tween networks can be imposed between time-slices. We finally present the definition
of a DIN.

Definition 4.10. A dynamic influence network (DIN) is a pair 〈I0, I→〉, where I0

is a influence network over the set of Bayesian networks, B(0) = {B1, . . . ,BR}, rep-
resenting the initial distribution and I→ is a 2-time-slice influence network for the
remainder of the influence process (P(B ′ | BI) =

∏R
i=1 P(B

′
i | PaB ′i

)). For any desired

time span T > 0, the joint distribution over B(0:T) is defined as an unrolled influence
network, where, for any i = 1, . . . ,n:

• the structure and CPDs of B(0)
i are the same as those for Bi in I0,

• the structure and CPD of B(t)
i for t > 0 are the same as those for B

′
i in I→.

Thus, we can view a DIN as a compact representation of dynamic influence be-
tween processes from which we can generate an infinite set of influence states (one
for every T > 0) by unrolling the DIN. On the one hand, since each processes is
modelled using the same temporal structure, we have the convenience of using a
single template structure for each processes since we don’t have to specify different
structures for each processes. On the other hand, we are in danger of using a non-
representative temporal structure for a domain specified by the stochastic process.

The important difference between a DBN and DIN is that a DBN models a collec-
tion of variables over time, whereas DINs model groups of dynamic networks which
describe processes. Each dynamic network that the DIN describes is made using a
template dynamic network. Thus we assume that the description of all processes are
the same. More specifically, we use the same features (ie. X); dependencies between
features (ie. GB); and number of time-slices to describe each process.

In the next section we explore a simple algorithm to sample data from this dynamic
model and finally analyse the difference between the DBN and DIN representations
to model dynamic influence relations.

58 the representation of dynamic influence

4.4 inference on influence networks

A DIN encodes independence assumptions and a distribution which we can generate
samples from by using standard Bayesian sampling techniques. We can provide a
good representation of the overall probability distribution of a DIN by using particle-
based sampling methods. The simplest approach to generating samples is forward
sampling (or ancestral sampling) [Murphy 1998], which we can use to generate sam-
ples, {ξ[1], ..., ξ[M]}, from the distribution 〈I0, I→〉. That is, every ξ is a vector of values
from every random variables in the DIN.

In Algorithm 2, we sample the nodes in the same order consistent with the partial
order of the influence network, so that by the time we sample any node, we already
have the values of its parents. Intuitively, we sample topologically such that for every
directed edge a → b, a will be sampled before b. This is since we need the value of
a in order to index the correct parameter in b’s corresponding factor.

Algorithm 2 Forward sampling in an influence network

1: procedure Forward-Sample(〈I0, I→〉)
2: Let B = {B1, . . . ,Bn} be the topological ordering according to I(G) = I(GI ∪

GB).
3: for all timeslices do
4: for i = 1, . . . ,n do
5: Let X1, . . . ,Xk be the topological ordering according to I(Bi)

6: for j = 1, . . . ,k do
7: uk ← x〈Paxk〉 . Assignment to Paxk in x1, . . . , xk−1
8: Sample xk from P(Xk|uk)

return (x1, . . . , xk) ∀ Bi;

Using basic convergence bounds (a method to select the correct choice of M), we
know that from a set of samples, D = {ξ[1], . . . , ξ[M]}, generated by this sampling
process, we can estimate the expectation of any function f as [Koller and Friedman
2009]:

ÊD =
1

M

M∑
m=1

f(ξ[m]).

This convergence bound may serve as a useful guide to select the number of sam-
ples to train DINs.

Since a (dynamic) influence network is a Bayesian network, there are several in-
ference algorithms available to the user of these influence networks. Such inference
algorithms include the Sum-product message passing, where inference is performed
by calculating the marginal distribution on each unobserved node conditioned on all
observed nodes [Kschischang et al. 2001]; expectation propagation, which iteratively
leverages the factorization structure of the target distribution [Minka 2001]; or varia-
tional inference, where one approximates probability densities through optimization

4.5 importance of influence structures 59

[Wainwright et al. 2008]. In the next section we will motivate empirically why know-
ing the influence network structure is better than modelling this problem of influence
between processes using the general product rule.

4.5 importance of influence structures

In this chapter we explored representing set of processes as a DIN. A DIN is defined
as a structure (G = GI ∪ GB) and a distribution. GI is induced by a set of local inde-
pendence assumption I(GI). We now demonstrate that knowing I(GI) enables us to
learn the true dynamic influence structure better than structuring the processes us-
ing the general product rule [Schum 1994; Klugh 2013]. Learning I(GI) is especially
useful when learning for knowledge discovery since it explicitly outlines the flow of
influence between temporal models.

Our definition of the DINs exploits the use of these independence assumptions by
using it to decompose the joint distribution. We will use the general product rule as a
baseline to demonstrate the effectiveness of knowing I(GI) when recovering influence
between temporal models.

Suppose we have a set of DBNs D = {〈B10,B1→〉, . . . , 〈BR0 ,BR→〉}. We could model
the joint distribution between temporal models using the general product rule. That
is, P(D) = P(〈BR0 ,BR→〉|〈BR−10 ,BR−1→ 〉, . . . , 〈B10,B1→〉)× . . .× P(〈BR−10 ,BR−1→ 〉|〈BR−20 ,
BR−2→ 〉, . . . , 〈B10,B1→〉). More generally,

P(D) = P(

R⋂
r=1

〈Br0,Br→〉) =
R∏
r=1

P(〈Br0,Br→〉 |
r−1⋂
j=1

〈Bj0,Bj→〉). (14)

Decomposing the joint distribution using the general product rule allows us to
consider simpler distributions by its factorization. This is perhaps the simplest case
of attempting to capture an influence distribution between these temporal models.

In DINs we model the joint distribution (P(D)) as decomposed into a product of
factors with respect to the independence assumptions presented in I(G) = I(GI ∪ GB).
I(GI) encodes the independence assumption which can take the form of several I-
equivalent graph structures. We now compare the ability to recover a ground-truth
distribution by using these two approaches to factorise the joint distribution between
temporal models.

Figure 32 emphasises the importance of using DINs (blue line) with the true local
independence assumptions, I(GI), rather than modelling the processes using the gen-
eral product rule in dynamic Bayesian networks (red line) as the number of samples
increase. The y-axis shows the relative entropy to the ground truth distribution and
the x-axis shows the increase in the number of samples.

In Figure 32, two dynamic influence parameter estimation tasks are shown. Each
influence network models influence between 10 processes represented by HMMs with
5 time-slices. The form of the hidden Markov model is specified in Figure 15 and the

60 the representation of dynamic influence

0 200 400 600 800 1,000 1,200 1,400 1,600

10−31

10−30

Number of samples

R
el
at
iv
e
E
n
tr
o
p
y

Legend

General Product Rule
True Structure

Figure 32: The average performance of modelling processes using the general product rule in
a DBN (red) (p-value of 0.0059) and using a DIN (blue) (p-value of 0.0129) as the
number of data samples increase. 10 processes were modelled using HMMs with
5 time-slices. The form of the hidden Markov model is specified in Figure 15 and
the joint density function is given in Equation 5. The latent variables were learned
using 50 EM iterations. The shaded regions represent the standard deviation as
error bars over 10 trials.

joint density function is given in Equation 5. Latent variables were learned using 50
EM iterations (the EM algorithm is presented in Algorithm 1). The reason why the
difference between the true structure and the ground truth distribution is because we
are recovering the true parameters from the samples (indicated by the x-axis).

The first influence network was a standard DBN structure (red line) which mod-
elled the HMMs using the general product rule as shown in Equation 14. The second
influence network decomposed the joint distribution of all the HMMs using the inde-
pendence assumptions presented in I(G) = I(GI ∪ GB). The generative ground truth
distribution used an arbitrary graph structure induced by I(G). The shaded regions in
Figure 32 represent the standard deviation as error bars over 10 trials. We notice that
the variance shrinks as the numbers of samples grows for both influence modelling
methods.

In Figure 32, we note that as the number of samples increase (generated from the
ground-truth distribution using the sampling algorithm presented in Section 4.4), the
DIN provides a smaller distance to the ground-truth distribution than modelling the
set of variables using the general product rule. This is because of two reasons:

1. Using the local independence assumptions in I(G) allows us to learn the param-
eters of the ground-truth distribution, even if we do not know what the correct
graph structure was (the one used by the ground-truth). Whereas, modelling the
processes using the general product rule might restrict certain independence as-
sumptions which limits our ability to learn the ground-truth distribution.

2. For a large number of processes, R, the general product rule offers a complete
graph solution, since the first term will always be dependent on R− 1 processes,
the second on R−2 processes, and so on. Whereas, knowing I(G) offers a sparser
structure which generalises better, translating to better performance for a small
number of samples when compared to the general product rule.

4.5 importance of influence structures 61

We conclude this chapter by emphasising the importance of knowing the indepen-
dence assumptions I(GI) when learning influence relations. Thus, in Chapter 6, we
attempt to reconstruct I(GI) by only observing the data. We also demonstrate that
not only is using DINs useful to model the influence between processes for knowl-
edge discovery, but it also allows for efficient learning procedures when recovering
influence relations for density estimation due to the convenience of its representation.

In the next chapter we present a tool used to value DINs with respect to the data.
We further present mechanisms to relate temporal models which are able to capture
influence around richly structured spaces that consist of multiple processes which
are interrelated in various ways. We continue to show that although it is possible to
capture many types of influence in a single construction by using a setting of the
parameters, complex influence constructions run into fragmentation issues.

5
S T R U C T U R E S C O R E S A N D A S S E M B L E S

5.1 introduction

W
e attempt to track influence between stochastic processes which are repre-

sented as dynamic Bayesian networks (DBNs). Tracking influence between
DBNs, using score-based structure learning, involves evaluating different

structural configurations of influence which can be expressed by them. We have seen
in the previous chapter that influence between DBNs can be expressed using dy-
namic influence network (DINs). Traditional scoring functions are equipped to evalu-
ate structure over variables in a Bayesian network, and not structure between multiple
unrolled temporal models as in a DIN. Evaluating the score between DINs involve
the assessment of the data for each variables as the network unrolls over time. The
machinery we provide in this chapter will enable us to measure the worth of a DIN
which will assist in a pursuit to select an optimal one relative to the temporal training
data.

Being able to evaluate the score of a DIN will enable us to select more appropri-
ate networks relative to the training data by comparing scores between networks.
In capturing the score of a network in the non-dynamic setting we can use scoring
functions like the likelihood score (Section 3.2) and BIC score (Section 3.3) which ig-
nore the temporal aspects of the data. However, in order to capture the score of a
network in the dynamic setting we have to resort to approximating these measures
over trajectories which are described by various DBNs. Aside from the scalability of
structure scores to consider the temporal aspects of the data, we will see that another
challenge arises when dealing with influence between dynamic models, like describ-
ing influence relations between them. We remedy this by introducing the notion of a
structural assemble to encode influence relations between DBNs.

We make the following contributions in this chapter:

1. a formal generalisation of the log-likelihood score for influence and dynamic
influence networks;

2. the notion of direct and delayed influence between temporal models;

3. the notion of a structural assemble to encode influence between sets of DBNs;

4. a generalisation of the BIC score for influence networks with respect to the
proposed underlying structures (called the d-BIC);

5. proof of score decomposability in the proposed d-BIC score;

6. and empirical evidence showing the worth of using structural assembles to
describe influence between multiple temporal models.

63

64 structure scores and assembles

In Section 5.2, we explore structural scores in the context of influence models; and in
Section 5.3, we declare structure scoring functions for influence networks using the
notion of a structural assemble which assists in explaining influence between temporal
models.

5.2 structure scores

Recall in Section 3.6, that learning the structure of a Bayesian network can be viewed
as an optimisation problem where we define a search space; a structure score; and a
search procedure. The search space is a set of structural configurations; and the search
procedure is an algorithm to traverse the search space in order to find a structure that
maximises the structure score.

Evaluating the worth of a candidate structural configuration requires a mapping
from the parameterisation of the Bayesian network to the likelihood of the training
data. There have been several scores to enable such a mapping, these include the like-
lihood [Koller and Friedman 2009] and Bayesian information criterion (BIC) scores
[Schwarz and others 1978]. However, in the context of influence structures in the tem-
poral domain, which is the subject of this thesis, we are interested in measuring the
capability of a structural configuration between temporal models to fit the training
data. This poses the following major functional extension which scores that evaluate
DINs need to adopt: A scoring function for DINs should be able to evaluate the score
of a graphical structure between families of temporal models rather than families of
random variables relative to the data.

This functional extension complicates traditional structure scoring functions since
they need to be adjusted and extended to deal with this case. In Section 5.2.1 and
Section 5.2.2, we explore and extend the capabilities of traditional scoring functions
to handle this functional extension for DINs. Perhaps the simplest structure score is
the likelihood score which relates the structure of a Bayesian network with the fit to
data. We will begin by stating this score in the context of DINs.

5.2.1 The Likelihood Score

In this section we explore structural scoring functions for influence networks as de-
fined in Chapter 4. The most natural way to approach this is from the perspective
of measuring the likelihood of the structure relative to the training data. This section
is structured as follows: Section 5.2.1.1 presents the simplest example of extending
the traditional likelihood structure score between two naïve Bayes models; and then,
Section 5.2.1.2 generalises the likelihood score for describing families of dynamic
Bayesian networks.

5.2 structure scores 65

5.2.1.1 Scoring Influence Models

Intuitively we would like to measure that if a relation that describes influence be-
tween two Bayesian networks is preferred by the data, then we would get more infor-
mation about the general distribution from having this relation than without having
it. Consider Figure 33 which illustrates two scenarios between two Bayesian networks,
B0 = (GB0 ,PB0) and B1 = (GB1 ,PB1). B0 involves the variables {X1,X2,X3} ∈ X and
encodes the local independence assumption I(GB0) = {X2 ⊥⊥ X3| X1}; while B1 in-
volves the variables {Y1, Y2, Y3} ∈ Y and encodes the local independence assumption
I(GB1) = {Y2 ⊥⊥ Y3| Y1}. As illustrated in Figure 33 the shaded variables X2, X3, Y2,
and Y3 are observed and the non-shaded variables X1 and Y1 are latent.

I0

B0 B1

X1 Y1

X2 X3 Y2 Y3

I1

B0 B1

X1 Y1

X2 X3 Y2 Y3

Figure 33: Two influence structures between two naïve Bayes networks (Section 2.2.1.3). B0
involves the variables {X1,X2,X3} ∈ X while B1 involves the variables {Y1, Y2, Y3} ∈
Y. The shaded variables are observable and the non-shaded variables are latent.
The left scenario has no dependence between the Bayesian networks, and the right
scenario encodes a dependence between the networks.

More formally, using Definition 4.3, each of these scenarios in Figure 33 can be
described as an influence network, denoted I0 = (G0,PI0) and I1 = (G1,PI1) respec-
tively, where Gi denotes the structure of the influence network Ii with probability
distribution PIi .

Intuitively, in scenario I0, both naïve Bayes structure B0 and B1 are independent.
That is, the values of each of the models do not influence each other to any extent.
in scenario I1, the values of the distribution in naïve Bayes model B0 can change the
values of B1 given the dependency from X1 to Y1.

We assume that influence between networks, which may describe events, flows
at a level of abstractions composed by observable variables. Thus the interaction of
influence are not directly from the observations themselves (since the observations
are dependent on the time granularity). Therefore we will adopt the hierarchical
network structure described in Section 2.2.2.4 and represent influence as flowing
between hierarchical models through latent variables.

Selecting an influence network, either I0 or I1, will require us to establish which
structure, either G0 or G1, gives us a stronger likelihood to the data. Let us express the
preferability of a particular structure more formally. The log-likelihood of G0 relative
to the data can be expressed as:

scoreL(G0 : D) =

M∑
m=1

(log θ̂x1[m] + log θ̂x2[m]|x1[m] + log θ̂x3[m]|x1[m]

+ log θ̂y1[m] + log θ̂y2[m]|y1[m] + log θ̂y3[m]|y1[m]),

(15)

66 structure scores and assembles

and the log-likelihood score of G1 relative to the data can be expressed as:

scoreL(G1 : D) =

M∑
m=1

(log θ̂x1[m] + log θ̂x2[m]|x1[m] + log θ̂x3[m]|x1[m]

+ log θ̂y1[m]|x1[m] + log θ̂y2[m]|y1[m] + log θ̂y3[m]|y1[m]),

(16)

where θ̂xi is the maximum likelihood estimate for P(xi) and θ̂yj|xi is the maximum
likelihood estimate for P(yj|xi).

To intuitively express the trade-off of using one influence structure, between these
naïve Bayes models, over the other, we would like to find which influence structure
maximises the likelihood to the data. We can express this as the difference between
the log-likelihood score of each model relative to the data as follows:

• if we have scoreL(G1 : D) − scoreL(G0 : D) > 0, then we would prefer the
structure G1;

• if scoreL(G1 : D) − scoreL(G0 : D) < 0, then we would prefer the structure G0;

• finally, if scoreL(G1 : D) − scoreL(G0 : D) = 0, then either structure will do since
both give us the same likelihood relative to the data.

By subtracting Equation 15 from Equation 16 we can express the difference of
computing the log-likelihood scores for either influence structure over the two naïve
Bayes models as

scoreL(G1 : D) − scoreL(G0 : D) =

M∑
m=1

(log θ̂y1[m]|x1[m] − log θ̂y1[m]). (17)

Recall the notion of a sufficient statistic from Definition 2.17. We can convert the
summation, in Equation 17, to summing over values rather than over data instances.
Thus we can represent each term by its respective sufficient statistic to obtain

scoreL(G1 : D)− scoreL(G0 : D) =
∑
x1,y1

M[x1,y1] log θ̂y1|x1 −
∑
y1

M[y1] log θ̂y1 . (18)

The first summation in Equation 18 expresses the summation over all parameters of
values Val(Y1) given Val(X1) multiplied by the number of times these values occur in
the data. We can more clearly express this as an empirical distribution P̂(x1,y1) which
is expressed in the training data D. The sufficient statistic M[x1,y1] is equal to the
number of data instances multiplied by the empirical joint distribution, MP̂(x1,y1).
Similarly we can state that M[y1] =MP̂(y1); θ̂y1|x1 = P̂(y1|x1); and θ̂y1 = P̂(y1).

If we express Equation 18 in terms of the empirical distribution then the difference
in the score becomes

scoreL(G1 : D)− scoreL(G0 : D) =
∑
x1,y1

MP̂(x1,y1) log P̂(y1|x1)−
∑
y1

MP̂(y1) log P̂(y1).

(19)

5.2 structure scores 67

Both summations in Equation 19 contain the number of samples M which is inde-
pendent of the type of values found in the data and thus M can be pulled out of the
summation.

Both summations could have been condensed into one if they were summed over
the same values. We can artificially insert the sum over x1 in the second summation of
Equation 19 since

∑
x1
P̂(x1,y1) = P̂(y1). Thus pulling outM and artificially inserting

a summation over x1 we get

scoreL(G1 : D)− scoreL(G0 : D) =M(
∑
x1,y1

P̂(x1,y1) log P̂(y1|x1)−
∑
x1,y1

P̂(x1,y1) log P̂(y1)).

(20)

There are two more manipulations that we can exploit in Equation 20 to condense
the difference of the scores further. Firstly, the term P̂(y1|x1) can be rewritten as
P̂(x1,y1)
P̂(x1)

using Bayes Law; and secondly, both summations in Equation 20 are of the

same form and the term P̂(x1,y1) is common in each summation. Therefore, using
the subtraction rule for logarithms we can condense the difference of the two scores
as

scoreL(G1 : D) − scoreL(G0 : D) =M
∑
x1,y1

P̂(x1,y1) log
P̂(y1, x1)
P̂(y1)P̂(x1)

. (21)

The summation in Equation 21 is called the mutual information of B0 and B1 since
it measures the average distance between the joint distribution, of B0 and B1, relative
to if their distribution was a product of marginally independent models. We denote
the mutual information of the two Bayesian networks as IP̂(B0;B1). More formally,
we can express the difference between the two scores using the mutual information
as:

scoreL(G1 : D) − scoreL(G0 : D) =M.IP̂(B0;B1).

Note the difference between the traditional mutual information in Preposition 3.1
and the mutual information between Bayesian networks in Equation 21. The main
difference is that the one is between variables and the other is between Bayesian net-
works. Practically, this difference allows us to evaluate influence networks (see Defi-
nition 4.3) which have a constrain on the edges described by GI ∪ GB. This constrain
on the influence network lets us describe the flow of influence between models. By
flow of influence, we are referring to the chain effect of influence between variables
(see Section 2.2.1).

In this example the score over variables and Bayesian networks may seem fairly
similar but depending on the number of latent variables in the model, and the struc-
tural properties which are expressed in the model (ie. GI ∪ GB), the mutual informa-
tion over models aggregates structural correlations and similarities over all of the
variables in each Bayesian network relative to the data.

68 structure scores and assembles

5.2.1.2 Scoring Dynamic Bayesian Networks

We can now generalise this result for the log-likelihood score for DBNs. This small
extension follows the same structural changes as in the previous section but spans
the dynamic states as the Bayesian networks unroll with respect the Markov and time
invariance assumptions (Section 2.2.2.1 and Section 2.2.2.2).

Proposition 5.1. Let T be the number of time-slices, then the log-likelihood score for
a DBN decomposes as

scoreL(G : D) =

T∑
t=0

(M

n∑
i=1

IP̂(X
(t)
i ;PaG

X
(t)
i

) −M

n∑
i=1

HP̂(X
(t)
i)),

where HP̂(X
(t)
i) is the entropy of each variable Xi at time-slice t.

Proof. By the chain rule for Bayesian networks we can write the log-likelihood for
DBNs as

scoreL(G : D) =

T∑
t=0

(

n∑
i=1

(
1

M

∑
ui∈Val(PaG

X
(t)
i

)

∑
x
(t)
i

M[x
(t)
i , ui] log θ̂

x
(t)
i |ui

)),

=

T∑
t=0

(

n∑
i=1

(
∑

ui∈Val(PaG

X
(t)
i

)

∑
x
(t)
i

P̂(x
(t)
i , ui) log P̂(x(t)i |ui))),

=

T∑
t=0

(

n∑
i=1

(
∑

ui∈Val(PaG

X
(t)
i

)

∑
x
(t)
i

P̂(x
(t)
i , ui) log(

P̂(x
(t)
i , ui)P̂(xi)
P̂(ui)P̂(xi)

))),

=

T∑
t=0

(

n∑
i=1

(
∑

ui∈Val(PaG

X
(t)
i

)

∑
x
(t)
i

P̂(x
(t)
i , ui) log(

P̂(x
(t)
i , ui)

P̂(ui)P̂(xi)
)

+
∑
x
(t)
i

(
∑

ui∈Val(PaG

X
(t)
i

)

P̂(x
(t)
i , ui)) log P̂(xi))),

=

T∑
t=0

(

n∑
i=1

(IP̂(X
(t)
i ;PaG

X
(t)
i

) −
∑
x
(t)
i

P̂(x
(t)
i) log

1

P̂(x
(t)
i)

)),

=

T∑
t=0

(

n∑
i=1

(IP̂(X
(t)
i ;PaG

X
(t)
i

) − HP̂(X
(t)
i))).

We notice firstly that an entropy value per variable arises as HP̂(X
(t)
i). Secondly,

the log-likelihood score decomposes as a sum over family scores. That is, the mutual
information of each variable, Xi, is based on a set of parent variables PaG

X
(t)
i

. The set,

PaG
X

(t)
i

, is not explicitly defined in this context, neither is it defined in Figure 57 which

shows an example of influence between unrolled DBNs. The selection of this parent

5.2 structure scores 69

set is the basis of the discussion on assembles which we explore later in Section 5.3.
For now we can assume that the parent set is derived from the internal structure of
the DBN.

In the next section we continue to develop and analyse the log-likelihood score for
temporal models by looking at scoring DINs. In particular we consider hierarchical
dynamic Bayesian networks (HDBNs) to more explicitly express the aggregation over
variables.

5.2.1.3 Influence between Hierarchical Dynamic Bayesian Networks

In the previous sections we investigated how influence between two Bayesian net-
works could be expressed using mutual information and how the structure score
decomposes over DBNs. As an example consider Figure 57, which shows an influ-
ence model between four DBNs where we could use the score in Proposition 5.1 to
calculate the log-likelihood of the DBN relative to some dataset.

Recall that we approach the goal of discovering dynamic influence between tem-
poral models as an optimisation problem, where we define a scoring function that
can evaluate each candidate DIN structure with respect to some dataset, D. We then
search for the highest scoring structure.

There have been many contributions to the establishment and development of
scores alongside key properties. These include the likelihood score and the Bayesian
information criterion score (BIC) [Schwarz and others 1978]. In this section we ex-
tend the likelihood score to one specifically geared to evaluating dynamic influence
for DINs relative to temporal data, while being mindful of over-fitting. We further
show that the derived score is decomposable for DINs.

We develop the likelihood score for temporal models by considering a hierarchical
dynamic Bayesian network (HDBN). We intend that scoring functions and search
procedures described here extend to all types of DBNs, however we consider an
HDBN to be a special case of a DBN.

This discussion on HDBNs is inspired by Blei et al. [2003]; Blei and Lafferty [2006]
who developed dynamic topic models. Dynamic topic models are the model of choice
for document classification [Mcauliffe and Blei 2008]; semantic analysis on social
media [Zhao et al. 2011]; and activity mining [Varadarajan et al. 2010].

Consider Figure 34 which presents an adaptation of a dynamic topic model, which
we refer to as an HDBN, since we note that many layers can be added to this model
to describe more high-level features.

70 structure scores and assembles

A1

A2

A3

Q

R

S

A1

A2

A3

Q

R

S

T

αA

βA

γA

Figure 34: An illustration of a hierarchical dynamic Bayesian network (HDBN).

The model makes use of the following notation (refer to Chapter 2 for definition
and descriptions):

• A1,A2 and A3 are template variables;

• the parameters are explicitly indicated as the variables αA,βA and γA, and
dependencies between parameters are indicated by solid lines;

• the template variable A1 is a persistent latent variable, with a persistent edge
between the initial state and the unrolled state encased in plate S;

• the template variable A2 is a persistent latent variable, with a persistent edge
between the initial state and the unrolled state encased in plate R;

• the template variable A3 is an observable variable and encased in plate Q;

• persistent edges are indicated by dotted lines;

• the unrolled network is encased in a plate labelled T .

The joint density of the hierarchical dynamic Bayesian network (HDBN) graphical
shown in Figure 34, denoted H, is as follows:

P(H) = P(Aqrs3 |Ars2)P(Aqrs2 |Ars1)P(Ars1)P(Aq
′r ′s ′
3 |Ar

′s ′
2)P(Aq

′r ′s ′
2 |A

qrs
2 Ar

′s ′
1)P(Ar

′s ′
1 |Ars1)

The ability to consider a generalised and descriptive probability distribution be-
tween temporal models is a major advantage of the DIN representation (defined in
Definition 4.10). Figure 35 expresses the DIN between four HDBNs using plate nota-
tion, dependencies between models are indicated by bold solid arrows.

5.2 structure scores 71

A1

A2

A3

Q

R

S

A1

A2

A3

Q

R

S

T

αA

βA

γA

B1

B2

B3

Q

R

S

B1

B2

B3

Q

R

S

T

αB

βB

γB

C1

C2

C3

Q

R

S

C1

C2

C3

Q

R

S

T

αC

βC

γC

D1

D2

D3

Q

R

S

D1

D2

D3

Q

R

S

T

αD

βD

γD

Figure 35: An illustration of a DIN between four HDBNs using plate notation. The thick
lines in the figure correspond to the type of assemble related used discussed in
Section 5.3.

Since a DIN is a dynamic Bayesian network with a restriction over its edges, we
can compactly represent the joint distribution over HDBN networks (as shown in
Figure 35) using conditional independence assumptions derived from the chain rule
for Bayesian networks (Definition 2.2). This factorization simplifies the DIN between
HDBNs significantly.

In order to search for an appropriate influence structure it is necessary to evalu-
ate different DINs. Therefore, to extend these ideas for expressing general influence
between multiple HDBNs we present the following proposition.

72 structure scores and assembles

Proposition 5.2. The log-likelihood score of an influence structure G which consists
of an HDBN, 〈H0,H→〉, and a set of dependencies for 〈H0,H→〉, Pa = {〈H1,H→〉,
. . . , 〈Hk,H→〉}, decomposes as:

scorel(G : DT) =M

K∑
k=1

(

T∑
t=1

(

N∑
i=1

(IP̂(X
〈Hk

0 ,Hk
→〉(t)

i ; PaG
X
〈Hk
0

,Hk→〉(t)
i

) − HP̂(X
〈Hk

0 ,Hk
→〉(t)

i)))),

where M is the number of instances in DT ; K is the number of parent HDBNs, each
HDBN is denoted as 〈Hk0 ,Hk→〉; T is the number of time-slices in each HDBN; N is

the number of variables in each HDBN’s time-slice; X〈H
k
0 ,Hk

→〉(t)
i is the variable Xi

in model 〈Hk0 ,Hk→〉 in time-slice t; and finally, PaG
X
〈Hk
0

,Hk→〉(t)
i

is the set of all parent

variables of Xi in model 〈Hk0 ,Hk→〉 in time-slice t. The specification of PaG
X
〈Hk
0

,Hk→〉(t)
i

will be discussed in Section 5.3.

Proof. Using the chain rule for Bayesian networks we get

scorel(G : D) =

K∑
k=1

(

T∑
t=1

(

N∑
i=1

(

M∑
m=1

(log θ̂
x
〈Hk
0

,Hk→〉(t)
i [m]|Pa

〈Hk
0

,Hk→〉(t)
xi

[m]
))))

By introducing sufficient statistics as parameter values we get

=

K∑
k=1

(

T∑
t=1

(

N∑
i=1

(
∑

Pa
〈Hk
0

,Hk→〉(t)
xi

∈Val(Pa
X
〈Hk
0

,Hk→〉(t)
i

)

∑
x
〈Hk
0

,Hk→〉(t)
i

M[x
〈Hk

0 ,Hk
→〉(t)

i , Pa〈H
k
0 ,Hk

→〉(t)
xi]

log θ̂
x
〈Hk
0

,Hk→〉(t)
i |Pa

〈Hk
0

,Hk→〉(t)
xi

))))

By introducing the empirical distribution (P̂) we get

=M

K∑
k=1

(

T∑
t=1

(

N∑
i=1

(
∑

Pa
〈Hk
0

,Hk→〉(t)
xi

∈Val(Pa
X
〈Hk
0

,Hk→〉(t)
i

)

∑
x
〈Hk
0

,Hk→〉(t)
i

P̂(x
〈Hk

0 ,Hk
→〉(t)

i , Pa〈H
k
0 ,Hk

→〉(t)
xi)

log P̂(x〈H
k
0 ,Hk

→〉(t)
i |Pa〈H

k
0 ,Hk

→〉(t)
xi)))))

Artificially inserting P̂(x〈H
k
0 ,Hk

→〉(t)
i) to simplify the expression we get

=M

K∑
k=1

(

T∑
t=1

(

N∑
i=1

(
∑

Pa
〈Hk
0

,Hk→〉(t)
xi

∈Val(Pa
X
〈Hk
0

,Hk→〉(t)
i

)

∑
x
〈Hk
0

,Hk→〉(t)
i

P̂(x
〈Hk

0 ,Hk
→〉(t)

i , Pa〈H
k
0 ,Hk

→〉(t)
xi)

log
P̂(x
〈Hk

0 ,Hk
→〉(t)

i , Pa〈H
k
0 ,Hk

→〉(t)
xi)P̂(x

〈Hk
0 ,Hk

→〉(t)
i)

P̂(Pa〈H
k
0 ,Hk→〉(t)

xi)P̂(x
〈Hk

0 ,Hk→〉(t)
i)

))))

5.2 structure scores 73

By separating terms into modelling the relative error and entropy of a temporal dis-
tribution we get

=M

K∑
k=1

(

T∑
t=1

(

N∑
i=1

(
∑

Pa
〈Hk
0

,Hk→〉(t)
xi

∈Val(Pa
X
〈Hk
0

,Hk→〉(t)
i

)

∑
x
〈Hk
0

,Hk→〉(t)
i

P̂(x
〈Hk

0 ,Hk
→〉(t)

i , Pa〈H
k
0 ,Hk

→〉(t)
xi)

log
P̂(x
〈Hk

0 ,Hk
→〉(t)

i , Pa〈H
k
0 ,Hk

→〉(t)
xi)

P̂(Pa〈H
k
0 ,Hk→〉(t)

xi)P̂(x
〈Hk

0 ,Hk→〉(t)
i)

+
∑

x
〈Hk
0

,Hk→〉(t)
i

∑
Pa
〈Hk
0

,Hk→〉(t)
xi

∈Val(Pa
X
〈Hk
0

,Hk→〉(t)
i

)

P̂(x
〈Hk

0 ,Hk
→〉(t)

i , Pa〈H
k
0 ,Hk

→〉(t)
xi)

log P̂(x〈H
k
0 ,Hk

→〉(t)
i))))

The first summation is called the mutual information (denoted IP̂),

=M

K∑
k=1

(

T∑
t=1

(

N∑
i=1

(IP̂(X
〈Hk

0 ,Hk
→〉(t)

i ; PaG
X
〈Hk
0

,Hk→〉(t)
i

)

−
∑

x
〈Hk
0

,Hk→〉(t)
i

P̂(x
〈Hk

0 ,Hk
→〉(t)

i) log
1

P̂(x
〈Hk

0 ,Hk→〉(t)
i)

)))

The second summation is called the entropy (denoted HP̂) for each variable

=M

K∑
k=1

(

T∑
t=1

(

N∑
i=1

(IP̂(X
〈Hk

0 ,Hk
→〉(t)

i ; PaG
X
〈Hk
0

,Hk→〉(t)
i

) − HP̂(X
〈Hk

0 ,Hk
→〉(t)

i))))

Now that we have developed a likelihood score for influence between HDBN fam-
ilies and so we can use this as a starting point to develop more sophisticated scores
to evaluate DIN structures.

5.2.2 The Dynamic Bayesian Information Criterion (d-BIC)

Based on the preceding analysis, we see that the dynamic likelihood score measures

the average distance between the joint distribution, P̂(x〈H
k
0 ,Hk

→〉(t)
i , Pa〈H

k
0 ,Hk

→〉(t)
xi), rel-

ative to the product of marginals, P̂(Pa〈H
k
0 ,Hk

→〉(t)
xi)P̂(x

〈Hk
0 ,Hk

→〉(t)
i), which links the set

I(G) to D. However, unless two HDBNs are truly independent in D, the dynamic like-
lihood score never prefers the simpler network over the more complicated one (i.e.
one with more edges), since scorel(G〈H1

0 ,H1→〉→〈H0
0 ,H0→〉 : D) > scorel(G∅ : D). Which

suggests that the dynamic likelihood score does not generalise well to instances from
the true distribution (i.e P∗). This presents a significant over-fitting problem.

We therefore adopt an extension of the dynamic likelihood score called the dy-
namic Bayesian information criterion (d-BIC). The d-BIC score is a derivation of the

74 structure scores and assembles

dynamic likelihood score that is biased to prefer simpler structures, but as it acquires
more data it can prefer more complex structures to describe the distribution. In other
words, it trades-off fit to data with model complexity, thereby reducing over-fitting.
We therefore present the following extension of the dynamic likelihood score for in-
fluence networks in terms of the BIC score:

scoreBIC(H0 : D) =M

K∑
k=1

(

T∑
t=1

(

N∑
i=1

(IP̂(X
〈Hk

0 ,Hk
→〉(t)

i ; PaG
X
〈Hk
0

,Hk→〉(t)
i

)))−
logM
c

DIM[G],

(22)

where M is the number of samples; K is the number of dependency models; T is the
number of time-slices for any dependency model; N is the number of variables in
each time-slice; IP̂ is the mutual information in terms of the empirical distribution
defined in Preposition 5.2; and DIM[G] is the number of independent parameters in
the entire influence network.

Equation 22 is simply the likelihood score in Preposition 5.2 with an added penalty
term, and the following two observations:

• firstly the entropy term, HP̂, does not influence the choice of structure and is
ignored;

• secondly, the d-BIC score for HDBNs tends to trade-off the fit to D with model
complexity. The mutual information term, IP̂, grows linearly with the number
of samples in D, and the complexity term, logM

c DIM[G], grows logarithmically
with the size of D.

Therefore, the larger the amount of data the more compelled the score will be to fit D
and thus, with enough data, prefers the set I(G∗). This property is called consistency.

In this section we introduced the dynamic likelihood and d-BIC score for DINs
which intuitively weighted an influence network based on empirical correlations be-
tween temporal models which manifest in the data. Each variable in these temporal
models was paired with a parent set whose members could span multiple temporal
models in addition to variables in its own network. In the next section we introduce
a mechanism to select this parent set.

5.3 structure assembles 75

5.3 structure assembles

The selection of the parent set for variables in a DIN introduces the notion of a struc-
tural assemble. A structural assemble is a configuration which connects temporal
models and partly defines the parent sets for variables necessary to construct an in-
fluence network (’partly’, since we may have variables as parents in the temporal
model itself (ie. according to GB) and in external models (ie. according to GI)).

Consider Figure 36, which unrolls two HDBNs, 〈A0,A→〉 and 〈B0,B→〉, as repre-
sented in Figure 34 with Q = 2 (number of models); R = 2 (Bernoulli distribution
per variable); and T = 3 (time-slices). One way to represent a structural assemble for
the dependency assertion P(〈B0,B→〉 | 〈A0,A→〉) is to connect every latent variable
in 〈A0,A→〉 to all latent variables in 〈B0,B→〉. We call this the mesh assemble. The
mesh assemble is a suitable representation mainly for two reasons:

1. we can express any parameterisation to capture the joint distribution given the
knowledge about the model dependency;

2. and the edges between time-slices make us indifferent about the application of
the model (ie. if influence moves quickly or slowly across time) since it precisely
explains arbitrary interrelations between various time-slices.

〈A0,A→〉: A11

A12

A13

A14

A15

A16

A17

A21

A22

A23

A24

A25

A26

A27

A31

A32

A33

A34

A35

A36

A37

〈B0,B→〉: B11

B12

B13

B14

B15

B16

B17

B21

B22

B23

B24

B25

B26

B27

B31

B32

B33

B34

B35

B36

B37

Figure 36: Two unrolled HDBNs, 〈A0,A→〉 and 〈B0,B→〉, as represented in Figure 34 with
Q = 2; R = 2; and T = 3. The temporal models are connected with a mesh assemble.

The mesh assemble provides a complete graphical network with an expensive rep-
resentation. Even taking advantage of the various independence assumptions within

76 structure scores and assembles

the dynamic Bayesian network, we will be required to learn over 9 000 parameters1

using table CPD factors just to describe a Bernoulli distribution between the two
temporal models in Figure 36.

Of course, in practical application where we require DINs structures (such as for
those in Example 4.5 and 4.6) we will require many dependencies per model which
will increase the number of parameters super-exponentially, quickly making the rep-
resentation unmanageable and parameterisation of this assemble intractable. Further-
more, this network may pose redundant interconnections between nodes since tem-
poral processes move forward with time but some of these edges backtrack.

In this section we explore the space and capabilities of several alternative structural
assembles which can be broken up into two main subgroups: direct (Section 5.3.1) and
delayed (Section 5.3.2) assembles. Each of these assembles advocate various intuitive
suitabilities for influence networks in different applications.

5.3.1 The Direct Assemble Subgroup

Direct influence between two stochastic processes, denoted A→ and B→, is defined by
a proportional relationship between them. By proportional we mean that if we change
a value at the time t1 in A→ this will affect the value at exactly time t1 in B→.

As a simple example of direct influence consider the illustration in Figure 37 of
a pie chart representing five stochastic processes evolving by influencing each other
over time. Each slice in the pie chart, denoted by the letter ’A’ to ’E’, represents the
presence of a stochastic processes A→ to E→.

Although each stochastic process can be described by several features. In this exam-
ple, we only wish to illustrate the extent to which processes can influence each other.
We will explore richer temporal representations of processes later in this subsection.

Figure 37: A simple example of direct influence between processes represented as a slice in a
pie chart which represents the quantity of the processes as it evolves over time.

1 78 parameters for 〈A0,A→〉 (30 latent parameters and 48 observable parameters); and 9 264 parame-
ters for 〈B0,B→〉 (9 216 latent parameters and 48 observable parameters). Therefore, a total of 9 342
parameters.

5.3 structure assembles 77

Figure 37 shows that as the time elapses the presence of process B→ and C→ in-
creases which influences process A→ to decrease, where process A→ began with a
large presence in t0. ProcessesD→ and E→ appear to be less influenced by the growth
of B→ and C→, and shrinkage of process A→.

Perhaps the most obvious and intuitive way to arrange a direct assemble, using
independence assertions between two HDBNs, is by adding a directed edge from
every latent variable in 〈A0,A→〉 to every latent variable in 〈B0,B→〉, if we know
that influence flows in this way. This is illustrated in Figure 38 which unrolls two
HDBNs, 〈A0,A→〉 and 〈B0,B→〉, using the direct assemble with Q = 2; R = 2; and
T = 3.

〈A0,A→〉: A11

A12

A13

A14

A15

A16

A17

A21

A22

A23

A24

A25

A26

A27

A31

A32

A33

A34

A35

A36

A37

〈B0,B→〉: B11

B12

B13

B14

B15

B16

B17

B21

B22

B23

B24

B25

B26

B27

B31

B32

B33

B34

B35

B36

B37

Figure 38: A direct dynamic influence network (DiDIN) modelling two unrolled HDBNs,
〈A0,A→〉 and 〈B0,B→〉, as represented in Figure 34 with Q = 2; R = 2; and
T = 3. The temporal models are connected with a direct assemble. Since the ob-
servations are relatively instantaneous (tightly coupled in the data) compared to
our time granularity we represent them as intra-time-slices represented as solid
lines; the persistent inter-time-slice edges are given by the broken lines; and finally,
edges induced by the assemble are given by the dotted lines.

More generally, we now provide a definition of the direct influence assemble for a
family of temporal models in Definition 5.3.

Definition 5.3. Consider a family of HDBNs, where 〈H00,H0→〉 represents the child
with the parent set PaG〈H0

0 ,H0→〉
= {〈H10,H1→〉, . . . , 〈Hk0 ,Hk→〉}. Further assume that

I(〈Hj0,Hj→〉) is the same for all j = 0, . . . ,k. Then the direct dynamic influence net-
work (DiDIN), denoted as a DIN 〈A0,A→〉, satisfies all the independence assump-
tions I(〈Hi0,Hi→〉) ∀ i = 0, . . . ,k. In addition, ∀ j and ∀ t, 〈A0,A→〉(t) also satisfies the
following independence assumptions for each latent variable denoted Li:

78 structure scores and assembles

∀ L〈H
0
0 ,H0

→〉(t)
i : (L〈H

0
0 ,H0

→〉(t)
i ⊥⊥ NonDescendants

L
〈H0
0

,H0→〉(t)
i

|L
〈Hk

0 ,Hk
→〉(t)

i ,Pa〈H
0
0 ,H0

→〉(t)
Li

).

We note that 〈A0,A→〉(t) denotes the influence network at time-slice t. Defini-
tion 5.3 describes direct influence between families of dynamic Bayesian networks.
The main benefits of the described direct influence assemble are the following:

1. unlike in the mesh assemble, the direct assemble provides model sparsity which
means learning a much smaller set of parameters per model;

2. sparsity in the model also empirically provides better generalisation for density
estimation [Koller and Friedman 2009; Krishnapuram et al. 2005; Friedman et al.
1999];

3. the assemble provides a representation for applications which require a direct
influence between processes (since it ignores most inter-time-slice influences).

Implementing the direct influence assemble (defined in Definition 5.3) requires the
partition of several conditional independence assumptions between variables in the
DIN. This partitioning leads to the notion of internal and external dependencies with
respect to a model 〈H00,H0→〉 and its parent set PaG〈H0

0 ,H0→〉
= {〈H10,H1→〉, . . . , 〈Hk0 ,Hk→〉}.

Using a decomposable score function defined in Section 5.2, we can evaluate the
complete structure score by computing the sum of family scores in a model. However,
calculating even a single family score requires its compact compilation of conditional
independence assumptions and efficient construction of its parametrisation for each in-
volved factor. We describe these activities as the following:

compact independence assumptions : Our goal is to decompose the struc-
ture of a DIN with respect to G = GI ∪ GB. Each family of variables in a DIN is
constructed with an assemble (direct or delayed encoded as GI) which requires a spec-
ification of independence assumptions for that family. Dependencies for variables can
span multiple models and (in the case of delayed influence) multiple time-slices. We
identify those dependencies which exist within the model to be internal dependencies
(ie. those of GB), and those which span external models or time-slices to be external
dependencies (ie. those of GI). In order to determine the configuration of dependencies
for a family within a network, one needs to partition the families of the model by the
internal and external dependencies.

efficient parametrisation : Alongside the compact specification of conditional
independence assumption of each family in the model, we need to learn the parametri-
sation of each factor with respect to the data. This can be done using Bayesian esti-
mation as described in Section 2.3.1.2 with corresponding priors.

Consider Algorithm 3 which attempts to evaluate a family score (ie. score of a
variable with respect to its parents) of a network using any decomposable score found
in Section 5.2.

On Line 1, we declare that the procedure takes in a family which consists of an
HDBN, 〈H00,H0→〉, and the parent set for this model, denoted PaG〈H0

0 ,H0→〉
. On Line

5.3 structure assembles 79

2 we initialise the real value score to zero since we will accumulate the score as
the algorithm proceeds. On Line 4 and Line 5 we traverse all of the variables in every
time-slice of model 〈H00,H0→〉. For each variable we consider whether it is latent (Line
6) or observable (Line 13).

There are several scenarios that we need to explore. On the one hand, if the variable
is latent then we know that the direct assemble has affected the variable and we may
have an external dependency, however we may not have an internal dependencies if
the variable is at the highest level of the hierarchy (Line 11). On the other hand, the
variable may be observable, where it has to have an internal dependency, given the
definition of an HDBN (Line 14), and there will not be any external dependency for
this case. However, we reserve the case for general dynamic models where we may
not have a dependency for observable variables (Line 18). Line 19 to 26 handle the
remaining case where 〈H00,H0→〉 has no model dependencies to begin with.

Once we have identified each of these cases, we construct PaG〈H0
0 ,H0→〉

to be a con-
junction of the external and internal dependencies. This constructed parent set is
used to score the family relative to the data as scores are tallied at each iteration
of the for loop. Algorithm 3 provides a much more detailed implementation of the
direct assemble construction.

Algorithm 3 The direct influence assemble

1: procedure FamilyScore(〈H00,H0→〉, PaG〈H0
0 ,H0→〉

)
2: score = 0
3: if !isEmpty(PaG〈H0

0 ,H0→〉
) then

4: for each timeslice, t, in 〈H00,H0→〉 do
5: for each variable, Xi, in 〈H00,H0→〉(t) do

6: if isLatent(X〈H
0
0 ,H0

→〉(t)
i) then

7: PaG
X
〈H0
0

,H0→〉(t)
i

= {} . No members in parent set

8: if hasIntDep(X〈H
0
0 ,H0

→〉(t)
i) then

9: PaG
X
〈H0
0

,H0→〉(t)
i

= {IntDep(X〈H
0
0 ,H0

→〉(t)
i), ExtDep(X〈H

0
0 ,H0

→〉(t)
i)}

10: else
11: PaG

X
〈H0
0

,H0→〉(t)
i

= {ExtDep(X〈H
0
0 ,H0

→〉(t)
i)}

12: score += score(X〈H
0
0 ,H0

→〉(t)
i , PaG

X
〈H0
0

,H0→〉(t)
i

)

13: else if isObs(X〈H
0
0 ,H0

→〉(t)
i) then

14: if hasIntDep(X〈H
0
0 ,H0

→〉(t)
i) then

15: PaG
X
〈H0
0

,H0→〉(t)
i

= {IntDep(X〈H
0
0 ,H0

→〉(t)
i)}

16: score += score(X〈H
0
0 ,H0

→〉(t)
i , PaG

X
〈H0
0

,H0→〉(t)
i

)

17: else
18: score += score(X〈H

0
0 ,H0

→〉(t)
i , {})

19: else
20: for each timeslice, t, in 〈H00,H0→〉 do

80 structure scores and assembles

21: for each variable, Xi, in 〈H00,H0→〉(t) do

22: if hasIntDep(X〈H
0
0 ,H0

→〉(t)
i) then

23: PaG
X
〈H0
0

,H0→〉(t)
i

= {IntDep(X〈H
0
0 ,H0

→〉(t)
i)}

24: score += score(X〈H
0
0 ,H0

→〉(t)
i , PaG

X
〈H0
0

,H0→〉(t)
i

)

25: else
26: score += score(X〈H

0
0 ,H0

→〉(t)
i , {})

the penalty term : The penalty term, the second part of the summation in Equa-
tion 22, is expressed using the dimension (see Section 3.3) of the influence model. We
can also calculate this component using decomposability since we are counting the
number of independent parameters in the model. This can be practically achieved by
replacing Lines 12, 16, 18, 24, and 26 in Algorithm 3 with Equation 23.

DIM[G]+ = DIM[X
〈H0

0 ,H0
→〉(t)

i , PaG
X
〈H0
0

,H0→〉(t)
i

]. (23)

The procedure for calculating the model dimension is provided in Algorithm 4. No-
tice that although the algorithm takes a family as input (ie. X, PaGX), it only returns
the number of independent parameters for a variable X and not for the whole family.

Algorithm 4 Model Dimension

1: procedure DIM(X, PaGX)
2: d = NumCPDs(X) − 1;
3: for all Yi in PaGX do
4: d ∗= NumCPDs(Yi) − 1;

return d;

complexity analysis : We outline the rough computational analysis of scoring
a DIN relative to the provided training data. In order to provide an intuition for
our analysis, suppose we have the DIN illustrated in Figure 39, where each node
represents a HDBN. Suppose that all the parameters in each model have been learned
and we need only evaluate its score. We can traverse the HDBNs in the DIN in any
order and evaluate the score of each family of nodes using Algorithm 3. That is, for
every modelH; for every time-slice T in a modelH; and for every variable X (in a time-
slice T in a model H) we arrange a conjunction with its parent set (using Algorithm
3), which consists of I internal variables according to GB and 1 external variable
according to GI and Definition 5.3, to form a family. For each family we compute the
sufficient statistics by scanning though instances in the data D = {ξ1, . . . , ξM}, which
takes M units of time. We use the parameters to compute the score. A score with
a penalty term, such as the d-BIC score, will use the same procedure to calculate
the model dimension. Therefore asymptotically, our grand total time complexity is
O(HTXIM).

In summary, the direct assemble learns influence in a straightforward implemen-
tation between temporal models and provides a sparse representation for DINs. Al-
though the computational complexity seems expensive, the direct assemble provides

5.3 structure assembles 81

〈H10,H1→〉

〈H20,H2→〉

〈H30,H3→〉

〈H40,H4→〉

〈H50,H5→〉

〈H60,H6→〉

Figure 39: A DIN whose nodes represent six HDBNs. Each HDBN is denoted 〈Hi0,Hi→〉,
where Hi0 is the initial network and Hi→ is the unrolled network. The double
edges between each network represent the direct assemble used.

an intuitive representation of the expected flow of direct influence between various
time-slices.

We now generalise the direct influence assemble for applications that require our
model to explain influence between time-slices, since there can be a delay in the
communication of information between variables. We call this phenomenon delayed
influence where the choice of time granularity (Section 4.3.2) provides a trade-off
between generalised and circumstantial applications of influence.

5.3.2 The Delayed Assemble Subgroup

Delayed influence between two stochastic processes, A→ and B→, is defined in contrast
to direct influence where a change of a variable in process A→ at time t1 will only
result in a change in the variables at or after t1 in B→.

As a simple example of delayed influence consider the illustration in Figure 40

which shows a modified map of Braamfontein outside the University of the Witwa-
tersrand. Many motorists traverse the roads of Braamfontein from the star on Jorissen
St to the Wits Theatre Complex on Bertha St. They can traverse the roads in Braam-
fontein either via De Korte St or Juta St.

Suppose that many motorists were to cross over from Jorissen St to the Wits Theatre
Complex. Some motorists would travel via De Korte St and some would use Juta
St creating a distribution of road usage which will translate to a particular traffic
condition on each road in the network. Now suppose that there is an accident on
De Korte St at time t1 which causes bumper-to-bumper congestion resulting in no
motorists being able to cross De Korte St. The influence of this event will force the

82 structure scores and assembles

other motorists to use Juta St at time t2 which will increase the number of cars on
Juta thereby increasing congestion on Juta St.

In this example there was a delay from the time of the accident, t1, to the time
the conditions of De Korte St influenced the condition on Juta St, t2. If we depict
temporal models to describe the events of traffic conditions of each road over time
we could not use the direct assemble since it ignores dependencies which could span
multiple time-slices over multiple models. The need now arises for assembles that
capture rich structure between time-slices from various temporal models.

Figure 40: A modified map depicting a network of roads in Braamfontein outside the Univer-
sity of the Witwatersrand.

To intuitively capture this influence structure between temporal models we need to
insert dependencies between different time-points that span various models. How far
back the dependency between time-slices go depends on the influence structure of the
distribution. Figure 41 depicts an example of delayed influence where we insert de-
pendencies between two unrolled HDBNs, that is, from 〈A0,A→〉 to 〈B0,B→〉, where
Q = 2; R = 2; and T = 3. In this example of influence, each time slice of 〈B0,B→〉 has
dependencies from the corresponding and previous time-slice in 〈A0,A→〉.

5.3 structure assembles 83

〈A0,A→〉: A11

A12

A13

A14

A15

A16

A17

A21

A22

A23

A24

A25

A26

A27

A31

A32

A33

A34

A35

A36

A37

〈B0,B→〉: B11

B12

B13

B14

B15

B16

B17

B21

B22

B23

B24

B25

B26

B27

B31

B32

B33

B34

B35

B36

B37

Figure 41: Two unrolled HDBNs, 〈A0,A→〉 and 〈B0,B→〉, as represented in Figure 34 with
Q = 2; R = 2; and T = 3. The temporal models are connected with a delayed
assemble. Since the observations are relatively instantaneous compared to our time
granularity we represent them as intra-time-slices represented as solid lines; the
persistent inter-time-slice edges are given by the broken lines; and finally, edges
induced by the assemble are given by the dotted lines.

In Figure 41, we captured delayed influence by inserting dependencies between
previous time-slices. More generally in Definition 5.4, we describe delayed influence
with respect to α many previous time-slices for a family of temporal models.

Definition 5.4. Consider a family of HDBNs, where 〈H00,H0→〉 represents the child
with the parent set PaG〈H0

0 ,H0→〉
= {〈H10,H1→〉, . . . , 〈Hk0 ,Hk→〉}. Further assume that

I(〈Hj0,Hj→〉) is the same for all j = 0, . . . ,k. Then the delayed dynamic influence
network (DeDIN, denoted as a DIN 〈A0,A→〉, satisfies all the independence assump-
tions I(〈Hi0,Hi→〉) ∀ i = 0, . . . ,k. In addition, ∀ j and ∀ t, 〈A0,A→〉(t) also satisfies the
following independence assumptions for each latent variable denoted Li and some
t > α ∈ Z+:

∀ L〈H
0
0 ,H0

→〉(t)
i : (L〈H

0
0 ,H0

→〉(t)
i ⊥⊥

NonDescendants
L
〈H0
0

,H0→〉(t)
i

|L
〈Hk

0 ,Hk
→〉(t)

i ,L〈H
k
0 ,Hk

→〉(t)−1
i , . . . ,L〈H

k
0 ,Hk

→〉(t)−α
i ,Pa〈H

0
0 ,H0

→〉(t)
Li

).

The generalisation in Definition 5.4, which describes delayed influence between
families of dynamic Bayesian networks, submits that direct influence (Definition 5.3)
is a special case where α = 0. This generalisation provides the following position:

1. delayed influence offers a less dense ensemble of dependencies than the mesh
assemble since it prohibits the edges from later time-slices to previous ones;

84 structure scores and assembles

2. the delayed assemble provides more sparse structure as α approaches 0;

3. large values of α may capture a richer distribution but sparsity in the model
also empirically provides a better generalisation for density estimation (see Fig-
ure 42);

4. the assemble provides a representation for applications which require delayed
influence between processes (since it utilises information between time-slices
from different models).

Similarly to direct influence, implementing the delayed influence assemble (as de-
fined in Definition 5.4) requires the partition of several conditional independence
assumptions between variables as discussed in the previous section. We can also use
a decomposable score to evaluate the complete structure score by computing the sum
of family scores in a model. Specifying the compact independence assumptions for
each family in delayed influence requires traversing α ∗K ∗ T time-slices to construct
the parent set of a temporal model and learned parameters for each parent factor.

This means that although we can use Algorithm 3 to compute the score of a DIN
using a delayed assemble, constructing the parent set using ExtDep() may require an
extraction of factors from various time-slices in all temporal models included in the
parent set.

Perhaps the most compelling way to demonstrate the increase in factor sizes for
delayed influence with a selection of α, is by realising the potential of the penalty term
to exponentially increase as a function of the number of independent parameters.

complexity analysis : The computational complexity is much like in Section 5.3.1,
however we must incorporate α as a principal feature in the computation of the
penalty term. For every model H; for every time-slice T in a model H; and for every
variable X (in a time-slice T in a model H) we arrange a conjunction with its parent
set, which consists of internal (I) and external (E) variables, to form a family. The
number of external variables depends on the value for α. This is because large values
of α may cause a large number of external dependencies which cause the number
of parameters to express a variables to increase exponentially. For each family we
compute the sufficient statistics by scanning though instances/samples in the data
D = {ξ1, . . . , ξM}, which takes M units of time. Therefore asymptotically, our total
time complexity is O(HTX(I+αE)M).

In summary, although the delayed assemble defines a rich and expressive repre-
sentation, it also offers a strong risk of fragmentation; a larger computational burden
to deduce a score; and a less sparse representation than direct influence. It however
extends and maintains our intuitive understanding of influence between temporal
processes and is able to handle more complex distributions between processes.

In the next section we will empirically show the effect of selecting different assem-
bles to describe influence in a DIN.

5.3 structure assembles 85

5.3.3 Empirical Analysis of Structure Assembles

In this section we empirically demonstrate the effects of using different structural
assembles to reconstruct a ground-truth DIN. Figure 42 shows five learning tasks
of several assembles to reconstruct a ground-truth DIN structure over 10 trials. The
ground-truth was constructed using a delayed assemble with 10 HDBN models with
5 time-slices each; 1 latent layer; 3 observations per latent variable; 4 bins per variable
(i.e. each variable has a distribution over four values); a Dirichlet prior of 5; α = 3;
and 10 EM iterations to learn each latent variable. Each of the learning tasks were
given the true structure of influence between HDBNs.

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

7.3

7.4

7.5

7.6

7.7
·10−65

Number of samples

R
el
at
iv
e
E
n
tr
op

y

Legend

Non-dynamic
α = 0
α = 1
α = 2
α = 3

Figure 42: The average performance of five learning tasks to reconstruct a ground-truth DIN
over 10 trials. The DIN consists of 10 HDBN models (which takes the form de-
scribed in Figure 34), with 5 time-slices each; 1 latent layer; 3 observations per
latent variable; 4 bins per variable; a Dirichlet prior of 5 (i.e. a uniform prior with
5 imaginary samples); and 10 EM iterations to learn each latent variable.

The five learning tasks are as follows: "Non-dynamic" (red) models influence be-
tween HDBNs without any assemble, this means that the temporal aspect of the data
was ignored; "α = 0" where the direct influence is modelled to describe influence
between HDBNs; and "α = 1, 2, 3", which models delayed influence with different
values of α as defined in Definition 5.4.

In Figure 42, as indicated by the red line, modelling dynamic influence using a
non-dynamic model moves further away from the ground-truth DIN. This is because
samples from the ground-truth DIN are generated from adjacent time-steps which
can not be captured in a non-dynamic parametrization. Thus the probability of new
data instances/samples become less likely.

Using an assemble relation over the HDBN models seems to cope better with de-
scribing the influence relations between models than in the non-dynamic case. We
also note that although the higher values of α start off in a worse position relative
to the other learning tasks due to having more parameters to learn, they cope bet-
ter by generalising to the true distribution given more data. Therefore, higher values
of α are better when we have more data, and lower values provide a sparser repre-
sentation to generalise better with fewer samples. In the next chapter we explore an
algorithm to recover the structure for DINs.

6
I N F L U E N C E S T R U C T U R E S E A R C H

6.1 introduction

T
he previous chapter analysed various scores and assembles to evaluate the

quality of influence networks with respect to some dataset. These scores in-
cluded the dynamic likelihood and the d-BIC scores; and the assembles in-

cluded the mesh, direct, and delayed assemble. In this chapter we focus on finding
the highest scoring influence network given a set of candidate structures.

More formally, we have a well-defined optimisation problem where our input to a
search procedure is as follows:

1. A training set D〈I0,I→〉G = {D〈H1
0 ,H1→〉, . . . ,D〈Hk

0 ,Hk→〉}, where D〈Hi
0,Hi→〉 = {ξ1, . . . , ξM}

is a set of M instances from a ground-truth DBN 〈Hi0,Hi→〉;

2. scoring function, score(〈I0, I→〉 : D〈I0,I→〉G);

3. and a set of distinct candidate structures, G = {G1, . . . ,GL}, where L is the num-
ber of candidate structures and each structure Gl encodes a unique set of local
independence assumptions I(G) = I(GI ∪ GB).

The output of the search procedure is the highest scoring influence network. In this
chapter, we ignore the choice of structure score and assemble. However, we do rec-
ommend that the score is decomposable and score equivalent so as to take advantage
of special search properties for computational savings (eg. reducing the number of
computations to calculate a structure score, see Section 6.5.3).

Note that the scoring function and candidate structures can incorporate any neces-
sary prior knowledge. This prior knowledge can be elicited as high-level structures or
as distributions over parameters. The ability to include prior knowledge easily is an
advantage of using probabilistic graphical models in our representation of influence.

Traditional search techniques traverse a set of structures between variables rather
than structures between multiple temporal models. The machinery we provide in this
chapter will enable us to pursue an optimal influence network by traversing a set of
candidate DINs. The main contributions of this chapter are as follows:

• a complete algorithm to recover influence between temporal models with latent
variables. This is an extension of the greedy structure search algorithm to select
an optimal influence network;

• an adaptation of the EM algorithm to learn missing parameters in influence
networks;

87

88 influence structure search

• several techniques for computational saving in recovering influence distribu-
tions.

The theoretical developments on dynamic structure scores (Section 5.2) in the pre-
vious chapter and as well as the search procedure provided in this chapter is empiri-
cally evaluated in Chapter 7.

In the next section we provide an algorithm to perform a structure search for DINs.
Section 6.2 outlines the general algorithm to recover influence between temporal mod-
els; Section 6.3 discusses learning mutually independent temporal models; Section 6.4
discusses learning tree-structured DINs; and finally, Section 6.5 discusses learning
general graph-structured DINs.

6.2 influence structure selection

Our high-level algorithm to learn influence between stochastic processes are as fol-
lows. We firstly describe each process separately by a temporal model, and secondly,
try to infer influence between these temporal models. The high-level algorithm is
presented in Algorithm 5, where S = {S1→, . . . , SP→} is a set of stochastic processes;
assemble, is a choice for an assemble; and score, is any scoring function.

Algorithm 5 Influence structure search

1: procedure StrucSearch(S = {S1→, . . . , SP→}, assemble, score)
2: Learn a temporal model for each stochastic process (H = {〈H10,H1→〉, . . . ,
〈HP0 ,HP→〉)

3: Generate a search space over the models in H (ie. G = {G1, . . . ,Gn})
4: Search for the structure Gi which maximises score in G w.r.t. assemble
5: return Gi

In this section we outline the general algorithm to recover influence between tem-
poral processes. We assume that the data generated from the ground-truth influ-
ence structure has the following form: D〈I0,I→〉G = {D〈H1

0 ,H1→〉, . . . ,D〈Hk
0 ,Hk→〉}, where

D〈Hi
0,Hi→〉 = {ξ1, . . . , ξM} is a set of M instances from HDBN 〈Hi0,Hi→〉. Each ξm

is a vector containing N features. All of the data in D〈I0,I→〉G are all generated IID
(Section 2.3.1.1) over time from an underlying temporal distribution, P∗(〈I0, I→〉G),
where I0 is an initial network and I→ is an unrolled network with respect to structure
G.

〈I0, I→〉G contains a distribution between a set of HDBN models, 〈H10,H1→〉 , . . . ,
〈Hk0 ,Hk→〉, with the independence assumptions specified by I(〈I0, I→〉G). We further
assume that P∗(〈I0, I→〉G) is induced by another model, G∗(〈I0, I→〉G), which we
refer to as the ground-truth structure. We evaluate our model by attempting to recover
the local independence assertions in G∗(〈I0, I→〉G), denoted I(G∗(〈I0, I→〉G)), by only
observing D〈I0,I→〉G .

The architecture of the proposed algorithm is given by Figure 43. We (ii) learn an
HDBN for each process independently (using Expectation Maximisation (EM)); (iii)

6.3 learning mutually independent models 89

(i) Partially observed data,

D〈I0,I→〉G from P∗(〈I0, I→〉G)

(ii) Learn indepen-

dent networks, H =
{〈H10,H1→〉, . . . , 〈Hk0 ,Hk→〉}

(iii) Learn a network with

I(G) = I(GI ∪ GB) and H

(iv) Perform Expec-

tation Maximisation,

EM(H, I(I(G)))

(v) Score structure,

score(G, I(G),assemble(α))

(vi) (l > L)

(vii) Apply operator,

modify(I(GI))

(viii) I(G)

Yes

No

Figure 43: A more detailed architecture of the proposed algorithm to recover influence be-
tween stochastic processes represented as temporal networks.

set the independence assumptions with respect to each temporal model (ie. induce a
model from I(G) = I(GI ∪GB)) and learn the resulting dynamic influence network; (v)
compute the structure score of the model (using a scoring function and an assemble
(Section 5.3) for influence networks); (vi) see if we converge or if the number of
iterations (l) exceeds the iteration threshold (i.e. the number of iterations, denoted
by L); (vii) apply the operator which results in best improvement of the score with
respect to the data. Steps (iii), (iv), (v), and (vii) are repeated until we can not improve
the score for the structure with respect to the data or if we exceed the specified
number of iterations. We then select the best network (viii). This algorithm is referred
to as the greedy structure search algorithm (GESS).

We separate our goal objective into (a) learning mutually independent dynamic
Bayesian models (Section 6.3) and then (b) learning the structure between these pro-
cesses (Section 6.4 and Section 6.5).

6.3 learning mutually independent models

Suppose that we learn a stochastic process, S→, using a hierarchical dynamic Bayesian
network, 〈H0,H→〉. Then we must learn the latent variables at leach level of the hier-
archy for 〈H0,H→〉. For example, in Figure 44, we need to learn the latent variables

90 influence structure search

H
(t)
1 , H(t)

2 , and H(t)
3 for all time-slices t. In Section 6.3.1 we extend the traditional EM

algorithm to learn the latent variables in DINs.

H0

H
(1)
1

H
(1)
2

H
(1)
3

H
(1)
4

H
(1)
5

H
(1)
6

H
(1)
7

H→

H
(t)
1

H
(t)
2

H
(t)
3

H
(t)
4

H
(t)
5

H
(t)
6

H
(t)
7

t

Figure 44: A HDBN for a stochastic process illustrated using plate notation. Each variable is
denoted H(t)

i , where Hi is the template variable in time-slice t.

6.3.1 Expectation Maximisation

The latent variables in Figure 44 can be learned using Expectation Maximisation
(EM) outlined in Algorithm 1. The EM algorithm attempts to learn both the missing
data and the parameters simultaneously [Rabiner and Juang 1986]. We provide an
adaptation of the EM algorithm for DINs. The proposed EM algorithms takes in
seven arguments outlined in Table 1.

O = (O1, . . . ,Oj) Set of observable variables

L = (L1, . . . ,Lk) Set of latent variables

Var = (O1, . . . ,Oj,L1, . . . ,Lk) Set of all variables

I(H) Independence assertions for
H

EMit The number of EM iterations

Dir(α) Array specifying the Dirich-
let prior used for each vari-
able corresponding to Var

NumBins Array specifying the number
of bins used for each variable
corresponding to Var.

Table 1: Argument definition for EM algorithm

We present the general adaptation of the EM algorithm in Algorithm 6. The pro-
cedure outlines an implementation of EM for DINs and returns a set of factors with
the learned parametrisation given seven input arguments. Line 2 initialises our latent
dataset, denoted DL, with random values. These random values will be replaced
with new data values at each iteration of the EM procedure. At each iteration the
likelihood of the parameters to the generated data monotonically increases [Minka
and Lafferty 2002; Caffo et al. 2005].

6.4 learning tree-structured influence networks 91

There are O.length instances in this dataset, each consisting of L.length values
for all latent variable in L. Line 3 initialises a set of factors, [FO1 , . . . ,FLj] using the
M-step0, which corresponds to the set of variables, Var. Each factor F contains all
possible combinations of values that a variable can take with an probability value.
Each factor is a probability distribution which means that each probability is positive
and all probabilities in the factor sum to 1. This step serves to initialise the parameters
as independent factors. Lines 5 and 6 perform the E-step and M-step iteratively until
convergence. A detailed description of the E-step and M-step is given in the appendix
of this document (Appendix A).

The M-step0, on Line 2 of Algorithm 6, initialises the set of factors [FO1 , . . . ,FLj].
Algorithm 10 provides a high-level procedure to initialise this set of factors.

Algorithm 6 Expectation Maximisation for influence Networks

1: procedure ExpectationMaximisation(NumBins, O = (O1, . . . ,Oj), L = (L1, . . . ,Lk),
Var = (O1, . . . ,Oj,L1, . . . ,Lk), I(H), EMit, ¸)

2: DL = Rand(O.length,L.length)
3: [FO1 , . . . ,FLj] = M-step0(DL,DO,L,O, Var, I(H), ¸, NumBins)
4: for i = 0 to EMit do
5: DL = E-step([FO1 , . . . ,FLj], DO, O, L, I(H), Var, NumBins)
6: [FO1 , . . . ,FLj] = M-step(DL, DO, O, L, Var, I(H), ¸, [FO1 , . . . ,FLj])

return [FO1, . . . ,FLj]

There are two ways of implementing the EM algorithm for learning latent pa-
rameters: the soft-assignment and hard-assignment. The relationship between soft-
assignment and hard-assignment EM was discussed by Kearns et al. [1998]. We use
the hard-assignment EM, which traverses the likelihood discretely, to learn the initial
temporal model. This is discrete since the hard-assignment EM uses the most likely
assignment to the data (ie. MAP estimate). The hard-assignment EM is considered
less accurate but converges faster than the soft-assignment EM [Kearns et al. 1998].
We use the soft EM, which traverses the likelihood continuously (ie. samples data
instances using the complete distribution over all factors), to learn the complete DIN
structure. We use soft-assignment EM to learn the complete model. Even though
the soft-assignment EM takes longer to converge, it produces generally better results
since it traverses the data continuously [Kearns et al. 1998; Koller and Friedman 2009].

Leaning temporal models for processes individually does not tell us anything about
the influence between them. It does, however, provide us with a representation for
each process to make meaningful comparisons with other processes. In the next sec-
tion we use these temporal models to build tree structured DINs.

6.4 learning tree-structured influence networks

Learning a tree structured network is perhaps the simplest structure learning prob-
lem. Most tree structure learning procedures require a computation complexity with
is usually polynomial [Chow and Liu 1968]. There are several reasons that one would

92 influence structure search

learn tree structured networks. Firstly, there already exists powerful algorithms for
efficient optimisation over high-dimensional tree structured networks; and secondly,
trees provide sparse networks which reduces over-fitting to data.

After selecting a dynamic structure score, we turn our attention to an optimisation
problem which attempts to maximise the selected score over potential tree DIN struc-
tures. Decomposability of the score, that is the complete structure score of a DIN is
equal to a sum of family scores, turns out to be an important property for decreasing
the computational burden in the structure search procedure. Suppose we want to cal-
culate the score over a particular network structure. If our score is decomposable we
can express the weight between a variable, j, and its parent, i, as the improvement to
the likelihood that a dependency between variable j and i yields, over not having the
dependency.

More formally,

wi→j = score(Xj|Xi) − score(Xj). (24)

The second term (score(Xj)) does not depend on the influence structure and can be
ignored. In the case of the likelihood score the expressions of wi→j in Equation 12

becomes

wi→j =M
∑
xi,xj

P(xi, xj) log
P(xi, xj)
P(xi)P(xj)

.

The sumation is called the mutual information (see Equation 21). Although the mu-
tual information can never be negative, when using other scores, such as the d-BIC
score, we may have a penalty term which causes the resulting score to be negative.
This implies that using the likelihood score will result in a tree structure as opposed
to obtaining a forest when using the d-BIC score. This usually happens when there
is no set of positively weighted edges which span every temporal model (ie. a path
from every temporal model to every other temporal model).

A second important observation is that score equivalent networks, those that satisfy
Definition 3.3, have the same dynamic likelihood score for wi→j and wj→i. This is
because of the symmetry of the mutual information term which consequently results
in a undirected tree structure. The consequence of this symmetry results in there
being no way to determine the orientation between two variables from the observable
data alone.

A general algorithm to obtain a tree/forest structured network is to compute the
score of every pair of variables. Each score between every pair of variables will be
a weight from one variable to another resulting in a undirected graph. We then use
an algorithm to find the maximum weighted spanning tree (MWST) or forest. One
could use any standard MWST algorithm such as Prim or Kruskal in O(n2), where
n is the number of temporal models. Finally, we impose an acyclic orientation of the
edges between variables in the DIN using any method of choice.

6.5 learning graph-structured influence networks 93

6.5 learning graph-structured influence networks

In Chapter 5, we discussed several dynamic scores and structural assembles that can
be used to evaluate the quality of DINs for a set of temporal processes. We now con-
sider the task of searching through different DIN structures and selecting one that
optimises the given dynamic score through some given structural assemble. There
are many notable structure search procedures, these include attempts to recover tree-
structured networks [Chow and Liu 1968] and Bayesian network structures [Cooper
and Herskovits 1992]. Local search procedures over general networks have also re-
ceived much attention [Chickering et al. 1995; Buntine 1991]. However, no search
procedure has been proposed to optimise a dynamic structure score over networks
with latent variables.

Decomposability is an important aspect of a dynamic score for our structure search
procedures, meaning that we can write the complete dynamic score as a sum of
family dynamic scores. Another property is that of score-equivalence which states
that I-equivalent structures will have the same dynamic score.

As stated in Theorem 3.4 learning the graph structure for a Bayesian network is NP-
hard for any restriction on the in-degree greater than or equal to 2. We can similarly
state an extension of this theorem as learning an influence graph structure between
temporal models is NP-hard for any restriction on the in-degree greater than or equal
to 2. In the case of learning general graphical structures, the problem’s complexity
increases. More formally, for any dataset, D; decomposable structure score score; and
any structural assemble, the problem of finding the maximum scoring network, that
is,

G∗ = arg max
G∈Gd

score(G : D), (25)

is NP-Hard for any d > 2, where Gd = {G : ∀ i, k, t, |PaG
X
〈Hk
0

,Hk→〉(t)
i

| 6 d}.

In other words, finding the maximal scoring influence structure with at most d
parents for each variable in any temporal model, k, at any time-slice, t, is NP-hard
for any d greater than or equal to 2. This is because of the super-exponential search
space [Pólya 1937] that one has to traverse to obtain the maximal network. Thus, we
resort to approximating the DIN for indegrees greater than or equal to 2. We are
faced with a combinatorial optimisation problem to detect the optimal DIN. We solve
this problem by utilising a local search procedure.

More formally, we define a search space which defines: the set of candidate net-
work structures; a dynamic scoring function, that we aim to maximise over DINs; the
structure assemble, which associates our temporal models; and finally, a search pro-
cedure which explores the search space of possible DINs. We have already discussed
the dynamic structure score and structural assemble in Chapter 5, which leaves us to
discuss the search space in Section 6.5.1; the search procedure in Section 6.5.2; and
complexity of our proposed algorithm in Section 6.5.3.

94 influence structure search

6.5.1 The Search Space

Equation 25 suggests that exploring all possible DIN structures is computationally
futile for a large amount of processes, and so we develop a heuristic solution to solve
this problem. We present a heuristic solution in the form of a greedy hill-climbing
search.

(b)
〈H10,H1→〉

〈H20,H2→〉

〈H30,H3→〉

〈H40,H4→〉

〈H50,H5→〉

〈H60,H6→〉

(c)
〈H10,H1→〉

〈H20,H2→〉

〈H30,H3→〉

〈H40,H4→〉

〈H50,H5→〉

〈H60,H6→〉

(d)
〈H10,H1→〉

〈H20,H2→〉

〈H30,H3→〉

〈H40,H4→〉

〈H50,H5→〉

〈H60,H6→〉

(e)
〈H10,H1→〉

〈H20,H2→〉

〈H30,H3→〉

〈H40,H4→〉

〈H50,H5→〉

〈H60,H6→〉

(a) 〈H10,H1→〉

〈H20,H2→〉

〈H30,H3→〉

〈H40,H4→〉

〈H50,H5→〉

〈H60,H6→〉

Add 〈H40,H4→〉 =⇒ 〈H20,H2→〉

SCORE: 35
SCORE: 45

Reverse 〈H20,H2→〉 =⇒ 〈H50,H5→〉

SCORE: 80

Delete 〈H60,H6→〉 =⇒ 〈H50,H5→〉

SCORE: 120

Reverse 〈H50,H5→〉 =⇒ 〈H30,H3→〉

NOT LEGAL

Figure 45: An illustration of possible transitions from a candidate influence networks. This
figure shows local perturbations in an attempt to improve the network struc-
ture relative to the data, a particular score, and an assemble. Each node rep-
resents a temporal model and double arrow edges represent an assemble. Net-
work (a) provides the current network structure. Network (b) reverses the edge
〈H20,H2→〉 =⇒ 〈H50,H5→〉 which increases the network score by 35. Network (c)
deletes the edge 〈H60,H6→〉 =⇒ 〈H50,H5→〉 which increases score by 75. Network
(d) adds an edge 〈H40,H4→〉 =⇒ 〈H20,H2→〉) which decreases the score by 10. Fi-
nally, network (e) reverses the edge 〈H50,H5→〉 =⇒ 〈H30,H3→〉 obtaining an illegal
network structure.

Suppose that we have an arbitrary candidate network as depicted at the center of
Figure 45 labeled (a). We may perform local perturbations in an attempt to improve
the network structure relative to the data and selected dynamic score with respect
to an assemble. We consider the common choices for local search operators with

6.5 learning graph-structured influence networks 95

respect to the selected assemble. Such operators include the edge addition, reversal,
and edge deletion. These computationally cheap operators ensure that the diameter
of the search space is small (K2, where K is the number of models) and manageable
(ie. can be explored, unlike in the case when we had to define a super-exponential
number of networks). Suppose that we are given the following options:

1. to reverse the edge 〈H20,H2→〉 =⇒ 〈H50,H5→〉 obtaining network (b) which gives
us a score of 80;

2. to delete the edge 〈H60,H6→〉 =⇒ 〈H50,H5→〉 obtaining network (c) which gives
us a score of 120;

3. to add an edge 〈H40,H4→〉 =⇒ 〈H20,H2→〉 obtaining network (d) which gives us
a score of 35;

4. or to reverse the edge 〈H50,H5→〉 =⇒ 〈H30,H3→〉 obtaining network (e) which
results in a cyclic network. The edge reversal search operator is necessary since
deleting an edge, with the intention to perform a edge reversal, might lower
the overall structural score for the next step. Thus, having an edge reversal
transition allows us to explore the option of reversing edges in one search step.

We do not consider selecting the operation which leads to an illegal DIN structure
and so we do not consider option (e). The most favorable transition would be to
delete the edge 〈H60,H6→〉 =⇒ 〈H50,H5→〉. This option improves the current network
score from 45 to 120, perhaps because the dynamic scoring function prefers more
sparse networks (this might not necessarily mean that the selected graph is closer to
the ground-truth).

In local search procedure it is not clear whether transitions are favorable in the long
term, however, it does provide a better candidate networks from a local perspective.
Several search techniques (eg. random restarts and tabu lists) are discussed later
which assist the local search procedure to consider more suitable networks.

6.5.2 Local Search Procedure

The second design choice is to select a search technique to traverse the search space.
Chickering et al. [1995] compared various search procedures to learn the structure for
Bayesian networks, including the K2 algorithm, local search procedures, and simu-
lated annealing. Since a DIN is a Bayesian network with a restriction on the edges,
we expect that the comparisons made by Chickering et al. [1995] are relevant to our
task of learning the structure of a DIN. Chickering et al. [1995] show that for learning
Bayesian networks, local search procedures offers the best time-accuracy trade-off. We
therefore employ a greedy hill-climbing local search procedure to discover influence
between temporal processes. The technique follows the following general algorithm:

1. pick an initial starting point G (or prior network) and compute its score using
the assemble.

2. consider all neighbours of G which are possible transitions given the search
operators, and compute their scores.

3. apply the change which leads to the best improvement of the score.

96 influence structure search

prior structures The prior network could be an empty network; a best tree
obtained from the procedure mentioned in Section 3.5; a random network; or one
elicited from an expert. From this prior network we iteratively try to improve the
network by utilising search operators. In greedy hill-climbing we always apply the
change that improves the score until no improvement can be made.

The returned structure from the greedy hill-climbing local search procedure above
can either have reached a local optimum or a plateau. The resulting network structure
can be interpreted as a local optimum for which no operator can improve the network
score. The second problem arises when we encounter a plateau in the search space.
If we look around at candidate structures there may be a verity of possible DINs
transitions which give the same score. In this case we have no information to tell us
in which direction to proceed.

This occurs frequently in Bayesian network structure learning due to I-equivalent
networks. Since some scores are also score-equivalent we get the same score for
any network in the same I-equivalence class (eg. those in Figure 8). To increase our
chances of escaping local optima and avoiding plateaus we use random restarts and
tabu lists.

random restarts : In random restarts, when we reach a local optimum we take
n random steps and then continue traversing the search space using the search proce-
dure. The intuition is that if we are at a local optimum then perhaps n random steps
will set us up in a better position to explore the search space for a better optimum.

tabu lists : In Tabu lists we try to avoid treading the same path over and over
again by maintaining a list of the most recent n steps taken by the search procedure.
Glover and Laguna [2013] provide a detailed discussion on the effects of Tabu lists
on local structure searches.

6.5.3 Computational Complexity and Savings

We outline the rough computational analysis of our algorithm to recover dynamic in-
fluence between processes. We perform Bayesian estimation and EM for each HDBN
prior to the structure learning task which takes O(TNM)-time. Suppose we have e
operators and K HDBN networks, if we take D steps before convergence then we
perform O(DK2) operators. Each applied operator involves an acyclicity check (O(K),
or O(dK) if we know the in-degree d of the DIN). To evaluate an acyclic network
we calculate the score which takes O(KTNM) plus the cost to perform EM with i
iterations. This gives us a total complexity of O(DK2(KTNM+ dK)). To provide sig-
nificant computational saving we use a score cache to store our sufficient statistics
for speedy score computations; and we use a priority queue to manage candidate
structures and their respective scores.

In the next chapter we demonstrate the performance of our complete learning
algorithm with respect to several baselines.

7
E X P E R I M E N TA L R E S U LT S

7.1 introduction

I
n this chapter we provide an empirical evaluation of several learning methods

to recover a ground-truth dynamic influence network (DIN). More specifically,
we learn the structure and parameters of a probability distribution that describes

the influence between a set of multi-dimensional partially observable stochastic pro-
cesses. In order to achieve this, we separate our goal into (a) learning the structure
of non-dynamic influence networks between latent variables; (b) learning the struc-
ture of direct dynamic influence networks (DiDINs) and delayed dynamic influence
networks (DeDINs) between hidden Markov models (HMMs); (c) learning DeDINs
between hierarchical dynamic Bayesian networks (HDBNs); and (d) demonstrating
the scalability of our structure learning methods as we increase the difficulty of this
structure learning problem.

In (a) we attempt to learn the non-dynamic influence between a set of latent vari-
ables which describe a set of observable features. We describe the relationship be-
tween the latent and observable variables using naïve Bayes models (NBMs). The
purpose of this experiment is to demonstrate the capability of our greedy structure
search (GESS) method to recover the structure of non-dynamic influence between la-
tent variables subject to the accuracy of recovering the latent class labels compared
to several baselines.

Having recovered the influence between latent variables in naïve Bayes models in
(a), we turn our attention to solving this problem for the dynamic setting. In (b) we are
interested in assessing the recovery of a direct dynamic influence network (DiDIN)
between HMMs. The purpose of this experiment is to demonstrate that, as we in-
crease the number of samples, the use of our dynamic structure scores (Section 5.2),
paired with either the direct (Section 5.3.1) or delayed assemble, is empirically able
to recover the ground-truth direct and delayed dynamic influence network between
partially observable processes better than selected baselines.

In (c) we further attempt to empirically capture the DeDIN between HDBNs. In
HDBNs we may have more latent variables than in HMMs. Although we are still able
to recover the ground-truth DIN, we notice that the inability to recover the original
cluster assignments for the latent variables leads to poorer performance for a small
number of samples than in case (b). The purpose of this experiment is to demonstrate
empirically the limitations and capabilities to recover a DeDIN with a more descrip-
tive representation of each stochastic process. However, having more latent variables
complicates the problem substantially given the increased number of local optima in
the likelihood function to the data.

97

98 experimental results

Having established structure learning methods for the non-dynamic setting in (a);
extended the description of the structure learning problem for HMMs that describe
stochastic processes in (b); and demonstrated the effectiveness of our structure learn-
ing methods for influence with more descriptive temporal models (HDBNs) in (c);
we then attempt to demonstrate the scalability of our methods to recover the ground-
truth DeDIN for extended difficulty of the structure learning task in (d). These learn-
ing tasks include changing the number of time-slices that describe each stochastic
process; increasing the number of bins in the discrete description of the random vari-
ables; increasing the number of observations; and increasing the size of the ground-
truth DeDIN for dense and sparse graphs.

We present learning non-dynamic and dynamic influence structures aside several
baselines. The following five baseline structures are considered in this study: using
no structure; a random structure; learning with some prior knowledge of the ground-
truth structure; using a tree structure; and learning with complete knowledge of the
ground-truth structure.

empty structure : Learning with no structure assumes that all internal networks
(those that describe environments or processes) are mutually independent of each
other. In other words, the set GI is empty. Hypothetically, this could produce a good
approximation for new instances given fewer data since there would be less parame-
ters to learn.

random structure : Using a random structure could result in two scenarios for
large amounts of data. On the one hand, dense random influence structures could
potentially explain more of the correlations in the data between internal networks.
However, we may never be able to recover the ground-truth distribution since in-
creasing the number of independence assumptions between internal networks may
constrain our ability of capturing the ground-truth distribution. On the other hand,
sparser random influence structures may generalize better to new instances than us-
ing no structure since having at least one more dependency (rather than none) will
have a higher-likelihood to the data than having an empty influence structure.

domain knowledge : We also can learn using prior domain knowledge about
the influence graph structure. In particular, knowing the max in-degree of the ground-
truth structure and the number of edges used. Having this prior knowledge can allow
us to avoid over-fitting the likelihood of families of internal networks relative to the
data. We consider learning with prior knowledge as a penalty-based score. This is
implemented by using the likelihood score with an infinite penalty for networks with
a max in-degree and number of edges greater than that of the ground-truth structure.
Learning with this prior domain knowledge of the ground-truth is denoted as ‘GESS
with PK’.

tree structures : We may also decide to learn a tree structured network which
summarises the most important score-based dependencies between any two internal
networks. Trees provide a sparse influence structure which hypothetically generalises
better than using no structure since the most important dependencies between inter-
nal networks are preserved.

7.2 learning in the non-dynamic case 99

true structure : Finally, we may have the true influence structure. That is, the
influence structure which generated the data. In this case we would expect that know-
ing the true influence structure between internal networks should produce the high-
est likelihood to the data (since it generated it). However, we only have access to the
true structure, not the true parameters, which means we have to relearn the observ-
able and latent parameters manually from the observable data.

We provide the following contributions in this chapter: an empirical comparison
of several parameter and structure learning methods (alongside the aforementioned
baselines) for recovering the underlying influence network for:

1. latent variables learned from a set of observations in naïve Bayes models [Ajoodha
and Rosman 2017] (a);

2. direct influence between HMMs (b);

3. delayed influence between HMMs [Ajoodha and Rosman 2018] (b);

4. general influence between HDBNs (c);

5. changing the condition of influence, such as increasing the number of time-
slices, bin-values, observations, and the sizes of dense and sparse influence
structures (d).

We firstly present the results of the non-dynamic case of influence in Section 7.2,
where we attempt to learn the structure between latent variables; in Section 7.3 we
present the results of discovering direct and delayed influence between HMMs; in
Section 7.4 we present the results of learning general influence between HDBNs; and
finally, in Section 7.5, we interpret all the results presented based on various learning
criteria.

7.2 learning in the non-dynamic case

Current structure learning practices in Bayesian networks have been developed to
learn the structure between observable variables and learning latent parameters in-
dependently. However, no method has demonstrated learning the influence structure
(as defined in Definition 4.2) between latent variables that describe (or are learned
from) a number of observations. In this section we present a method that learns a
set of naïve Bayes models (NBMs) (Section 2.2.1) independently given a set of obser-
vations, and then attempts to track the high-level influence structure between every
NBM. The latent parameters of each model are then relearned to fine-tune the influ-
ence distribution between models for density estimation.

Applications of this method include knowledge discovery and density estimation
in situations where we do not fully observe characteristics of the environment. For
example, we may know the features which describe particular market characteristics
(eg. risk, volatility, selection, liquidity, regulation (etc.)) and may want to describe
how different markets influence each other.

Figure 46 illustrates an example of an influence structure (as defined in Defini-
tion 4.2) between several NBMs. The dotted lines between the models indicate the

100 experimental results

high-level influence between the latent variables. Our approach to recover the under-
lying distribution attempts to learn the optimal influence structure by firstly learning
a set of independent naïve Bayes models, and thereafter, optimising a structure score
over possible structural configurations of these models.

L1

O11
. . . O1K

L2

O21
. . . O2K

L3

O31
. . . O3K

L4

O41
. . . O4K

L5

O51
. . . O5K

L6

O61
. . . O6K

L7

O71
. . . O7K

L8

O81
. . . O8K

Figure 46: A graphical depiction of the influence structure between several NBMs. Each set
of observations for latent variable Li is denoted as Oi1, . . . ,OiK. The solid lines
indicate the conditional independence assumptions of each NBM, and the dotted
lines indicate the high-level structure of influence between each NBM.

Throughout the experiments in this chapter our sampled dataset D has been or-
ganised as follows: D = Dt, where t = 1, . . . , T and each Dt contains a training, test,
and validation set. The training-set contains 80% of the samples and is used to train
the DIN; the test-set contains 10% of the samples and is used to assess the predic-
tive performance; and finally, the validation-set contains 10% of the samples and is
used for selecting structure priors (eg. tree structures), parameter priors and hyper-
parameters (e.g. Dirichlet priors) where necessary. The recovered model cannot be
allowed to use the sampled latent values from the ground-truth generative network.
Thus we provide the set from Dt with only observable variables to our structure
learning methods.

Figure 47 shows the performance of four parameter or structure learning methods
to recover the underlying ground-truth distribution. The error bars show the standard
deviation of the relative entropy over 10 trials and are given by the shaded regions.
Relative entropy is a measure of how one probability distribution diverges from a
second probability distribution [Joyce 2011]. Intuitively, the larger the relative entropy
- the further apart the distribution are. The y-axis is the log-scale relative entropy to
the true distribution, P∗(IG), and the x-axis represents the increase in the number of
training samples.

The set-up of parameters for the ground-truth non-dynamic influence network was
as follows. Each influence ground-truth network had: 10 naïve Bayes models; 3 val-
ues per random variable; 15 edges in the influence structure; a max in-degree of 2
in the influence network structure; and 5 observable variables per latent variable. Ex-
amples of data from this ground-truth non-dynamic influence network is given in
Section A.1.

The four learning methods, in Figure 47, are: ‘random structure’, where a random
structure is generated and we learn the (latent and observable) parameters from the

7.2 learning in the non-dynamic case 101

observable data; ‘No structure’, where no conditional independence assertions are
present between models and we learn the (latent and observable) parameters from
the data; ‘Learned structure’, where we simultaneously estimate the (latent and ob-
servable) parameters and structure between models using the greedy structure search
(GESS) (Section 6.2) described in the previous chapter with the standard BIC score
(Section 3.3); and finally, ‘True structure’, where we are given the true structure be-
tween models and attempt to learn the (latent and observable) parameters. For repro-
ducibility, all of the parameters for each learning method are outlined in Table 2.

Selection Ran
dom

str
uctu

re

No str
uctu

re

GESS
with

BIC

Tru
e str

uctu
re

5 No. edges - - - 15

7 No. observable var 5 5 5 5

8 Dirichlet prior 5 5 5 5

9 Parameter threshold - - 2000 -
14 EM iterations 20 20 20 20

15 EM accuracy (µ%,σ) (70%, 9.3)
16 Likelihood score - - Log-Like -
17 Penalty score - - BIC-pen -
18 Search iterations - - 20 -
19 No. random restarts - - 5 -
20 Tabu-list length - - 5 -

Table 2: A summary of the parameters used by the parameters and structure learning meth-
ods for recovering the influence between naïve Bayes models.

0 50 100 150 200 250 300 350

10−21

10−20

10−19

Number of samples

R
el
at
iv
e
E
n
tr
op

yRelative Entropy

Random structure
No structure

GESS with BIC
True structure

Figure 47: The performance of parameter and structure learning methods to recover the in-
fluence structure between naïve Bayes models. The error bars show the standard
deviation of the relative entropy over 10 trials and are given by the shaded regions.

Figure 47 suggests that learning the (latent and observable) parameters of mutu-
ally independent models (orange) or using a random structure (red) with learned

102 experimental results

parameters performs worse on average when compared to learning the (latent and
observable) parameters of the true (green) or learned structure (black) using the stan-
dard BIC score with the GESS algorithm (Figure 43).

We can use a t-test to assess the significance of the difference between two sample
sets. When performing a t-test we calculate a t-value and p-value. The t-value is a
ratio of the difference between two sample sets and the difference within the sample
sets. The p-value is calculated from the t-value and is the probability that the results
of the sampled data used to calculate the t-value occurred by chance. For more infor-
mation about t-tests see Cohen [1992]. Generally a p-value less than or equal to 0.05
rejects the null hypothesis that the samples from the two distributions are not signif-
icantly different. We will use the t-test to demonstrate statistical significance within
our experiments.

Referring back to Figure 47, we find that using no structure performs significantly
worse (p-value of 0.028 < 0.05) than using GESS with BIC. This is since using no
structure provides no possible way to encode a parameterization in the influence
network which describes the relationships between the naïve Bayes models. Using a
random influence structure also performs significantly worse than using GESS with
BIC (p-value of 0.0018 < 0.05). This is because a random structure may not be able
to describe the ground-truth distribution since every incorrect independence asser-
tion constrains the networks possible parametrization. However, at early iterations
(5-70 samples), the relative entropy to the ground-truth distribution is similar for all
learning methods. As expected, knowing the true structure as the number of samples
increases learns the closest distribution to the ground-truth compared to the other
learning methods in Figure 47.

In this section we discussed the empirical results of learning the influence structure
between naïve Bayes models. For a large number of samples (> 300) our results show
that learning using the GESS with the standard BIC score recovers the ground-truth
structure better than using no influence structure or a random influence structure.
According to the presented results in this section, learning the structure using the
GESS algorithm provides a promising approach, in the remaining parts of this chap-
ter we explore parameter and structure learning in the dynamic setting using GESS.
In the next section, we firstly consider direct (Section 5.3.1) and delayed influence
(Section 5.3.2) in HMMs.

7.3 learning influence between hmms

In this section we attempt to recover the structure of influence between processes.
More specifically, we wish to reconstruct a probability distribution which describes
the influence between a set of processes, each represented as a hidden Markov model
(HMM). We firstly learn a set of independent HMMs to describe each process, and
thereafter, optimise a structure score over possible structural configurations between
these HMMs. The purpose of this section is to demonstrate empirically the recov-
ery of influence between processes with respect to the direct and delayed structural
assemble. Section 7.3.1 explores learning direct influence between HMMs, and Sec-
tion 7.3.2 explores learning delayed influence between HMMs.

7.3 learning influence between hmms 103

7.3.1 Learning Direct Influence Between HMMs

In Section 5.3.1, we described the implementation and applications of the direct influ-
ence assemble. We can implement the direct influence assemble between processes
using independence assertions between two HMMs by adding a directed edge from
every latent variable in 〈A0,A→〉 to every latent variable in 〈B0,B→〉, if the influence
flows in this way. This is illustrated in Figure 48 which unrolls two HMMs, 〈A0,A→〉
and 〈B0,B→〉, using the direct structural assemble from Definition 5.3.

〈A0,A→〉: A11

A14
. . . A16

A21

A24
. . . A26

A31

A34
. . . A36

〈B0,B→〉: B11

B14
. . . B16

B21

B24
. . . B26

B31

B34
. . . B36

Figure 48: Two unrolled HMMs, 〈A0,A→〉 and 〈B0,B→〉, as represented with 3 time-slices.
The HMMs are connected with a direct structural assemble (dotted lines); the intra-
time-slice edges are given by the solid lines; and the inter-time-slice edges are given
by the broken lines. The unshaded variables are latent and the shaded variables
are observable.

We present the performance of 6 direct dynamic influence networks (DiDIN) pa-
rameter and structure learning methods with respect to the generative ground-truth
DiDIN’s distribution. The performance is summarised in Figure 49, which shows the
relative entropy to the generative ground-truth DiDIN (log-scale) over the number of
training samples. The error bars show the standard deviation of the relative entropy
over 10 trials and are given by the shaded regions.

The set-up of parameters for the ground-truth dynamic influence network was as
follows. Each influence ground-truth network had: 10 hidden Markov models; 3 val-
ues per random variable; 5 time-slices per HMM; 15 edges in the influence structure;
a max in-degree of 2 in the influence network structure; 5 observable variables per
latent variable; and α = 1.

Figure 49 shows the performance of the following parameters and structure learn-
ing methods. ‘Random structure’, which used a randomly generated structure for a
DiDIN and learned the missing and observable parameters; ‘No structure’, which
modelled each HMM as mutually independent to others and learned parameters;
‘d-BIC with GESS’, which used the d-BIC score with GESS and learned missing
(using EM) and observable parameters (using MLE); ‘d-AIC with GESS’, which is
the dynamic likelihood minus the total model dimension using GESS; ‘GESS with
PK’, which used prior knowledge of the ground-truth distribution with GESS, this
includes knowledge about the max in-degree and number of edges in the ground-
truth; and finally, ‘True structure’, which used the ground-truth influence structure,

104 experimental results

0 200 400 600 800 1,000 1,200 1,400 1,600

10−6

10−5

10−4

Number of samples

R
el
at
iv
e
E
n
tr
o
p
yRelative Entropy

Random structure
No structure

GESS with PK
GESS with d-BIC
GESS with d-AIC
True structure

Figure 49: The performance of parameter and structure learning methods to recover direct in-
fluence between HMMs. The error bars show the standard deviation of the relative
entropy over 10 trials and are given by the shaded regions.

but relearned missing and observable parameters. The setup for these parameter and
structure learning methods are summarised in Table 3.

Selection Ran
dom

str
uctu

re

No str
uctu

re

GESS
with

PK

GESS
with

BIC

GESS
with

AIC

Tru
e str

uctu
re

1 α 1 1 1 1 1 1

5 No. edges - - 15 - - 15

6 Max in-degree 3 - 3 - - -
7 No. observable var 5 5 5 5 5 5

8 Dirichlet prior 5 5 5 5 5 5

9 Parameter threshold - - - 5000 5000 -
14 EM iterations 20 20 20 20 20 20

15 EM accuracy (µ%,σ) (78%, 7.3)
16 Likelihood score - - Log-Like Log-Like Log-Like -
17 Penalty score - - - BIC AIC -
18 Search iterations - - 50 50 50 -
19 No. random restarts - - 5 5 5 -
20 Tabu-list length - - 10 10 10 -

Table 3: A summary of the parameters used by the parameters and structure learning meth-
ods for recovering the direct influence between HMMs.

In Figure 49 modelling stochastic processes as mutually independent of all other
processes, that is using no influence structure, performs worse on average compared
to all other methods as the number of samples grows with respect to all other learn-
ing methods. This is caused by the inability to encode the influence between pro-
cesses due to no conditional independence assumptions between processes that are
expressed in each factor. Learning the parameters of a random structure performs
worse on average than learning with prior knowledge of the true structure. This is
intuitive since knowledge of the max in-degree and number of edges prevents us
from over-fitting correlations in the data between variables. Although knowing the
true structure generally performs better on average than all methods to recover the

7.3 learning influence between hmms 105

ground-truth distribution, the two penalty-based scores (d-BIC and d-AIC) are simi-
lar in performance to fit to the training data.

Our results suggest that learning with prior knowledge increases our chances than
learning with a random or no structure. Learning using the d-BIC and d-AIC perform
better on average compared to all other methods, except with learning with the true
structure. In the next subsection we explore delayed influence between HMMs.

7.3.2 Learning Delayed Influence between HMMs

A delayed assemble is a configuration which connects a family of temporal models
(Section 5.3.2). It partly defines the parent sets for variables necessary to construct
a delayed dynamic influence network (DeDIN). Recall from Definition 5.4, that in
order to capture delayed influence structure between temporal models we need to
insert dependencies between different time-points that span various models. How
far back the dependencies between time-slices go depends on the influence structure
of the distribution. More generally, we can describe delayed influence with respect to
α-many previous time-slices for a family of temporal models. As a simple example,
Figure 50 illustrates delayed influence between two unrolled HMMs, 〈A0,A→〉 and
〈B0,B→〉, with α = 1.

〈A0,A→〉: A11

A14
. . . A16

A21

A24
. . . A26

A31

A34
. . . A36

〈B0,B→〉: B11

B14
. . . B16

B21

B24
. . . B26

B31

B34
. . . B36

Figure 50: Two unrolled HMMs, 〈A0,A→〉 and 〈B0,B→〉, as represented with 3 time-slices.
The HMMs are connected with a structural assemble (α = 1) indicated by the
dotted lines; the inter-time-slice edges are given by the broken lines; and the intra-
time-slice edges are indicated by the solid lines. The unshaded variables are latent
and the shaded variables are observable.

In this section we demonstrate the effects of learning DeDINs using GESS. We will
show that the GESS algorithm can be used to learn the ground-truth distribution
better than several baselines. We will also explore the time taken by our structure
learning and parameter estimation methods.

Figure 51 shows the relative entropy to the generative ground-truth DeDIN (log-
scale) and execution times over the number of training samples. The left log-scale
y-axis shows the relative entropy to the ground-truth generative DeDIN; the x-axis
shows the increase in sample size; and the right log-scale y-axis shows the execution

106 experimental results

time of each learning method. The error bars show the standard deviation of the
relative entropy over 10 trials and are given by the shaded regions.

The set-up of parameters for the ground-truth dynamic influence network was as
follows. Each influence ground-truth network had: 10 hidden Markov models; 3 val-
ues per random variable; 5 time-slices per HMM; 15 edges in the influence structure;
a max in-degree of 2 in the influence network structure; 5 observable variables per
latent variable; and α = 2.

0 100 200 300 400 500 600 700
10−11

10−10

10−9

10−8

Number of samples

R
el
at
iv
e
E
n
tr
o
p
y

Relative Entropy

Random structure
No structure

Tree structures
GESS with PK

GESS with d-BIC
GESS with d-AIC
True structure

104

105

E
x
ec
u
ti
o
n
T
im

e
(m

il
li
se
co
n
d
s)

Execution Time

Random structure
No structure

Tree structures
GESS with PK

GESS with d-BIC
GESS with d-AIC
True structure

Figure 51: The performance of seven parameter and structure learning methods to learn de-
layed influence between HMMs.

Figure 51 presents the performance of seven DeDIN parameter and structure learn-
ing methods with respect to the generative ground-truth DeDIN’s distribution. The
seven learning methods are as follows: ‘Random structure’, which used a randomly
generated structure for a DeDIN and learned the missing and observable parame-
ters; ‘No structure’, which modelled each HMM as mutually independent to oth-
ers and learned parameters; ‘Tree structures’, which learns a tree structure between
the HMMs as well as learned missing (EM) and observable parameters; ‘GESS with
PK’, which used the dynamic likelihood score with prior knowledge of the ground-
truth structure (the max in-degree and number of edges in the ground-truth) and
also learned parameters (latent and observable); ‘d-BIC with GESS’, which used the
d-BIC score with GESS and learned both types of parameters; ‘d-AIC with GESS’,
which used the d-AIC score with GESS and learned both types of parameters; and
finally, ‘True structure’, which used the ground-truth structure, but relearned both
types of parameters. The second y-axis shows the execution times for each learning
method. The parameters of the seven learning methods are summarised in Table 4.

In Figure 51, with the exception of knowing the true structure, all learning proce-
dures have similar performance for a small number of samples (< 250 samples). This
is since with fewer samples the uniform Dirichlet prior strength is still unchanged in
each CPD value describing the model. For samples greater than 250, we note that us-
ing no structure (orange) yields the lowest performance on average since, no matter
how much of data is provided, the model does not include the conditional indepen-
dence assumptions which are capable of encoding the dynamic influence structure.

Using tree structures (blue) and random structures (red) have similar performance,
although we can guarantee that tree structures are sparse whereas random structure

7.4 learning general hierarchical dynamic bayesian networks 107

Selection Ran
dom

str
uctu

re

No str
uctu

re

Tre
e str

uctu
re

GESS
with

PK

GESS
with

BIC

GESS
with

AIC

Tru
e str

uctu
re

1 α 2 2 2 2 2 2 2

5 No. edges - - - 15 - - 15

6 Max in-degree 3 - - 3 - - -
7 No. observable var 5 5 5 5 5 5 5

8 Dirichlet prior 5 5 5 5 5 5 5

9 Parameter threshold - - - - 5000 5000 -
14 EM iterations 20 20 20 20 20 20 20

15 EM accuracy (µ%,σ) (75%, 6.7)
16 Likelihood score - - Log-Like Log-Like Log-Like Log-Like -
17 Penalty score - - - - BIC AIC -
18 Search iterations - - - 50 50 50 -
19 No. random restarts - - - 5 5 5 -
20 Tabu-list length - - - 10 10 10 -
23 α 2 2 2 2 2 2 2

Table 4: A summary of the parameters used by the parameters and structure learning meth-
ods for recovering the delayed influence between HMMs.

may be dense. After 400 samples, learning with prior knowledge of the true structure
from the ground-truth structure performs better than random, no structure and tree
structures. All the three penalty-based learning procedures (‘d-BIC with GESS’, ‘d-
AIC with GESS’, and ‘GESS with PK’) out-perform our baselines after 400 samples.
The d-AIC performs better on average than the d-BIC penalty score after 250 samples.

With regard to the execution time, all three penalty-based procedures provide the
highest computational burden, whereas, learning a tree-structure, selecting a random
structure, using no structure, or being given the true structure can be done in rela-
tively constant time. Learning with some knowledge of the ground-truth DIN can
be learned faster than using d-AIC or d-BIC, which relatively have the same average
execution time.

In this section we presented the results of learning the structure of DeDINs. We
noticed that although the penalty-based procedures provide better density to the
ground-truth distribution, these procedures take a longer average execution time than
the other methods tested. In the next section we move to generalise the performance
of these learning methods to recover general influence networks between HDBNs in
more difficult learning problems.

7.4 learning general hierarchical dynamic bayesian networks

We have thus-far demonstrated the effectiveness of the proposed GESS algorithm
compared to several baselines on HMMs. In some scenarios, we deal with complex
stochastic processes with more than one latent variable each described by a set of
observations. In these scenarios we need to consider a more suitable description for
each process. In this section we consider recovering influence between processes rep-
resented by hierarchical dynamic Bayesian networks (HDBNs).

108 experimental results

Recall from Chapter 5 that we can capture delayed influence between general
HDBNs. As a reminder, consider Figure 34 which depicts an example of general (de-
layed) influence where we insert dependencies between two unrolled HDBNs, that is,
from 〈A0,A→〉 to 〈B0,B→〉, where Q = 2; R = 2; and T = 3.

Figure 52 shows the relative entropy to the generative ground-truth DeDIN (log-
scale) and execution times over the number of training samples for recovering delayed
influence between HDBNs with two latent layers. The left log-scale y-axis shows the
relative entropy to the ground-truth generative DeDIN; the x-axis shows the increase
in sample size; and the right log-scale y-axis shows the execution time of each learn-
ing method. The error bars show the standard deviation of the relative entropy over
10 trials and are given by the shaded regions.

The set-up of parameters for the ground-truth dynamic influence network was as
follows. Each influence ground-truth network had: 10 hierarchical dynamic Bayesian
networks (HDBNs); 3 values per random variable; 5 time-slices per 2-layered HDBN;
15 edges in the influence structure; a max in-degree of 2 in the influence network
structure; and 5 observable variables per latent variable.

Figure 52 presents the performance of seven DeDIN parameter and structure learn-
ing methods with respect to the generative ground-truths DeDIN distribution. The
first three learning methods are as follows. ‘Random structure’, which used a ran-
domly generated structure for a DeDIN and learned the missing and observable
parameters; ‘No structure’, which modelled each HDBN as mutually independent to
others and learned parameters; and ‘Tree structures’, which learned a tree structure
between the HDBNs as well as learned missing (EM) and observable parameters (BE).

0 200 400 600 800 1,000 1,200 1,400
10−14

10−13

10−12

Number of samples

R
el
at
iv
e
E
n
tr
op

y

Relative Entropy

Random structure
No structure

Tree structures
GESS with PK

GESS with d-BIC
GESS with d-AIC
True structure

104

105

106

E
x
ec
u
ti
on

T
im

e
(m

il
li
se
co
n
d
s)

Execution Time

Random structure
No structure

Tree structures
GESS with PK

GESS with d-BIC
GESS with d-AIC
True structure

Figure 52: The performance of seven parameter and structure learning methods for hierarchi-
cal dynamic Bayesian networks.

The fourth learning method is ‘GESS with PK’, which used prior knowledge of the
ground-truth structures with learned latent and observable parameters. This method
used the dynamic likelihood score but restricted recovered structures with an in-
degree greater than 3 and more edges than the ground-truth. Figure 53 shows an
example of this structure learning scenario. The x-axis shows the structure search
iterations (i), and the y-axis shows the dynamic score value of the selected DIN at
each iteration. There are two variables in this learning scenario shown in the figure:

7.4 learning general hierarchical dynamic bayesian networks 109

the value of the ground-truth structure score (orange line) and the total score of the
current network at iteration i (just the dynamic likelihood relative to the data) is
given by the green line. The figure shows how after only 6 iterations, the dynamic
likelihood score has monotonically increased towards the ground-truth’s dynamic
likelihood score. From this result, we can observe how prior knowledge about a
the ground-truth structure allows us to learn a suitable structure. However, in the
figure we note that the learned structure does not have the same score as the ground-
truth structure. This is because the EM algorithm is not able to recover the complete
correct set of latent class labels for each data instance, which reduces the likelihood
of learned network relative to the test data.

The fifth learning task in Figure 52 is the ‘d-BIC with GESS’, which uses the d-BIC
score with GESS and learned both types of parameters. Figure 54 shows an example
of this structure learning scenario. The x-axis is the structure search iterations (i),
and the y-axis is the log-scale score value for the selected transition DIN. There are
four parameters in this learning model: the value of the ground-truth total structure
score (orange); the dynamic likelihood score of the recovered network at iteration i
(blue); the penalty-score of the recovered network at iteration i (red); and the total
sum of the dynamic likelihood and penalty scores for the recovered network at iter-
ation i (green). We note that the total score of the recovered network monotonically
increases before reaching a local optimum at iteration 10, it then performs a random
restart and continues to monotonically increase. It appears that up to iteration 22 the
structure score cannot improve, however, after one more restart it finds a better op-
timum at iteration 27. The recovered network appears to approach the ground-truth
network structure score. From these results we see that at every transition DIN the
d-BIC score increases, except when random restart are performed. Therefore, unlike
in Figure 53 (ie. when using some prior knowledge), the d-BIC is able to inform the
GESS algorithm about when a more complicated network structure is prefered with
respect to the fit to data (as suggested by the properties of d-BIC in Section 5.2.2).

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0.2

0.4

0.6

0.8

1

·106

Number of iterations

S
co
reRes-Ind Structure Search

Ground truth
Likelihood = Total score

Figure 53: The value of structure scores for the GESS with PK learning method. The y-axis is
the score value and the x-axis represents the increase in structure search iterations.

The sixth learning method in Figure 52 is the ‘d-AIC with GESS’ which used the
d-AIC score with GESS and learned both types of parameters. Finally, the seventh
learning method in Figure 52 is true structure with learned parameters, which used
the ground-truth structure but relearned both types of parameters. The parameters
of the seven learning methods are summarised in Table 5.

110 experimental results

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

1.2

1.4
·106

Number of iterations

S
co
red-BIC Structure Search

Ground truth
Likelihood
Penalty

Total score

Figure 54: The value of structure scores for the GESS with d-BIC learning method. The y-
axis is the score value and the x-axis represents the increase in structure search
iterations.

Selection Ran
dom

str
uctu

re

No str
uctu

re

Tre
e str

uctu
re

GESS
with

PK

GESS
with

BIC

GESS
with

AIC

Tru
e str

uctu
re

1 α 2 2 2 2 2 2 2

5 No. edges - - - 15 - - 15

6 Max in-degree 3 - - 3 - - -
7 No. observable var 5 5 5 5 5 5 5

8 Dirichlet prior 5 5 5 5 5 5 5

9 Parameter threshold - - - - 5000 5000 -
14 EM iterations 20 20 20 20 20 20 20

15 EM accuracy (µ%,σ) (76%, 10)
16 Likelihood score - - Log-Like Log-Like Log-Like Log-Like -
17 Penalty score - - - - BIC AIC -
18 Search iterations - - - 50 50 50 -
19 No. random restarts - - - 5 5 5 -
20 Tabu-list length - - - 10 10 10 -
23 α 2 2 2 2 2 2 2

Table 5: A summary of the parameters used by the parameters and structure learning tasks
for recovering the delayed influence between HDBNs.

In Figure 52 we note that using no structure (orange), tree structures (blue), random
structure (red), and learning with knowledge of the maximum order in-degree from
the ground-truth structure performs similarly with respect to their relative entropy to
the ground-truth distribution. In particular, the p-value from a t-test for using GESS
with PK and using a random structure is 0.796 > 0.05 which fails to reject the null
hypothesis. However, knowledge of the in-degree performs better on average then
these methods for a large number of samples (> 1000). Our penalty-based scores
perform better on average than all other learning methods, with the exception of
learning using the true structure. In particular, the p-value of learning using GESS
with d-BIC and using a random structure is statistically significantly 0.04 < 0.05. We
also note that the t-test for the d-BIC and d-AIC penalty based learning methods fail
to reject the null hypothesis (i.e. that their samples are not significantly different).

The second y-axis in Figure 52 is the execution times for each learning method. In
terms of execution time, all three penalty-based procedures (‘d-BIC with GESS’, ‘d-
AIC with GESS’, and ‘GESS with PK’) yield the highest computational time, whereas,

7.5 discussion of results 111

learning a tree-structure, selecting a random structure, using no structure, or being
given the true structure can be done in constant time. Learning with prior knowledge
can be done faster than using d-AIC or d-BIC, which have roughly the same execution
time.

Once again, our results suggest that using our penalty-based procedures with a
large amount of samples perform better on average than the other tested methods.
However, the main limitation of using these penalty-based procedure are their exe-
cution times. An overview of the complexity of these penalty-based procedures are
discussed in Section 6.5.3. In the next section we will discuss the high-level interpre-
tation of our results.

7.5 discussion of results

In this section we provide a high-level interpretation of the results from the pre-
vious section. This discussion section is structured as follows. In Section 7.5.1 we
discuss the ability of our learning procedures to recover the ground-truth structure;
Section 7.5.2 discusses the execution time of our learning procedures; Section 7.5.3
discusses which learning procedures are appropriate given the availability of training
data; Section 7.5.4 discusses learning influence models given domain knowledge; Sec-
tion 7.5.5 discusses the advantages of learning influence models with penalty-based
procedures; Section 7.5.6 discusses the consequences of learning with latent variables;
and finally, Section 7.5.7 discusses the scalability of our learning procedures to more
difficult influence learning methods.

7.5.1 Ability to Recover the Ground-truth

We see in all the provided results (Figure 47, 49, 51, and 52) that it is possible to
learn an influence structure and parameter setting which appears to resemble the
ground-truth DIN as we increase the number of samples. These results suggest that
the structure learning problem is not intrinsically more difficult than the parameter
estimation problem for influence networks of small sizes. Certainly, learning from
synthetic data has a much stronger signal for the correlation between variables than
in real data. However, the general performance of learning procedures, in Figure 47,
49, 51, and 52, are promising.

The three penalty-based learning procedures (‘d-BIC with GESS’, ‘d-AIC with
GESS’, and ‘GESS with PK’) generally perform better to recover the ground-truth net-
work in all the provided learning scenarios. In particular, Figure 49 shows how the
three penalty-based learning procedures generally perform better on average than
using a random and empty influence structure. In Figure 51, which is the delayed
case, the three penalty-based learning procedures maintain the ability to recover the
ground-truth distribution better than any of the other tested learning procedures. It
is not clear in Figure 51 whether the GESS with the d-AIC or the GESS with the d-BIC
score performs better. When using HBDNs in the delayed case, Figure 52 suggests
that both procedures give roughly the same likelihood with respect to the ground-
truth. This might be since we might lose information about the correlation between

112 experimental results

models in settings when we have more latent layers in the description of the HDBN
representing each stochastic process. As expected, knowing the true structure gives
us the most information and thus performs better on average than all the other meth-
ods as the number of observations increase.

7.5.2 Execution Time to Recover the Ground-truth

All of the figures provided on the execution time of our structure learning meth-
ods (Figure 47, 49, 51, and 52) are consistent in approximating the rate at which
the execution time grows with training samples. These results are also supported
by the theoretical complexities derived in Section 6.5.3. The GESS with d-AIC and
d-BIC scores grow exponentially given the number of training samples as predicted
in the theoretical section. Although, caching sufficient statistics does reduce the com-
putational burden, the proposed search procedure using these penalty-based scores
requires traversing and evaluating the scores of a large amount of DINs which need
to be relearned at every search step.

The learning procedures with approximately linear growth rates, evident in Fig-
ure 52, are selecting random structures, using no structure, learning tree-based struc-
ture, and given the true structure. Although the complexity of these methods are less
of a computational burden than the penalty-based methods, they all perform worse
on average when approximating the true distribution. The execution time taken to re-
cover the influence distribution for GESS with the restriction on the in-degree grows
slightly slower than the GESS with d-AIC and d-BIC. However, it performs worse on
average in terms of relative entropy to the ground-truth. This is because learning the
parameters for sparse representations (with the exception of the random structure
which could be dense) can be done relatively quickly due to minimised fragmenta-
tion.

Constructing a tree structure costs more time than using no structure. Learning a
true structure, no structure, or random structure are just parameter learning methods.
However, random graphs are denser than tree structures which are denser than no
influence structure. Given the number of dependences in the learning model, the
parameter learning task complexity increases due to fragmentation. Thus, from the
fastest to slowest learning procedures for these given structure learning methods we
have no structure, tree structure, and lastly random structure (or the respective true
structure).

7.5.3 Availability of Data

In non-dynamic models (Figure 47), the relative entropy of an I-equivalent structure
to I(G∗(IG)) can still recover the true distribution, P∗(IG). As we see, in Figure 47, the
d-AIC and d-BIC scores tends to correctly recover the distribution between each naïve
Bayes model (NBM) compared to random guesses and over mutually independent
models (no structure), except for when we have very little training instances.

7.5 discussion of results 113

In Figure 52, learning a tree network takes less time than learning a random struc-
ture and it provides a better generalisation of the ground-truth. This is because a
tree structure summarises the most important influence dependencies between any
two temporal networks due to learning the maximum weighted spanning tree. From
these results we see that when we have fewer samples (less than 250) we are better-off
not using any structure, since fewer parameters allow us to generalise better since we
have more data to learn each parameter than in cases where we have a large number
of parameters with little data. However, when we do have a sufficient amount of data,
then a random structure gives us more information than no structure, and thus the
random structure performs better.

7.5.4 Domain Knowledge

In most practical applications we do not know much about our domain. However, in
very few situations it might be the case where we obtain reliable information about
some domain knowledge. For example perhaps if we know that only a maximum of
2 processes can influence a process based on isolating and accessible environments in
the domain, then using a learning procedure that restricts the in-degree of influence
scenarios might provide a more efficient and time-effective solution. Using a heuristic
method with a restriction to the in-degree still might provide a better option given
that this problem is intractable.

The results of our presented experiments suggest that providing some domain
knowledge about the influence structure is useful since it can be learned quicker
than our d-BIC and d-AIC with GESS procedures, and it performs better on average
than a random and empty influence network.

7.5.5 Penalty Scores

The sensitivity of the d-BIC and d-AIC scores to judge when to restrict a structure
guides the selection of independence assumptions, with roughly the same execution
time, and performs better on average than all tested methods for a large number of
samples in Figure 52.

On the one hand, the d-BIC score considers both the number of samples and the
structural complexity, on the other hand, the d-AIC score only considers complex-
ity (or model dimension). The d-BIC score does not consider complicated structures
when given too little data, and thus the d-AIC score provides more edges which
gains a larger likelihood to the data. This is evident at later iterations in Figure 52

when we see that the d-BIC score (at roughly 700 samples) performs better on average
than the d-AIC score. Overall, both of these methods provide an excellent example of
the theoretical properties and effectiveness of the discussed penalty-based structure
scores.

Another effective property of using dynamic score-based penalties (e.g. the d-BIC
and d-AIC) as opposed to the hard restriction (e.g. restricting the in-degree) is also
seen in Figure 53, 58, and 54. Each of these graphs indicate scores at various search

114 experimental results

iterations. The restriction of the in-degree causes the search space to be small and in-
dependent of the data, whereas, the score-based penalties allow the data to persuade
and inform the learning procedure about structures which are worth considering (e.g.
Figure 58 at 25 iterations, and Figure 54 at 15 iterations).

restricting parameters A necessary penalty restriction to reduce the compu-
tational burden is to restrict the total number of parameters used to express a DIN.
Since the number of parameters when learning a DIN can grow exponentially as a
function of the number of parents per variable, it is necessary to restrict the learning
procedure to use the amount of memory available to the computer doing the com-
putation. This can be done by simply limiting the number of parameters that can be
used to express the DIN. Doing so results in a reliable termination of learning proce-
dures by providing a bound to the total time to learn a model. This bound is evident
in Figure 52 and Figure 51 (as well as in Figure 55(d) and Figure 55(e)), where the
execution time begins to plateau as the graph sizes of both dense and sparse graphs
increase.

7.5.6 Learning Latent Parameters

From the analysis done in Section 6.5.3, we see that using simple optimisation tech-
niques makes our search for the true structure more manageable. However, introduc-
ing latent variables dramatically increases the search space and thus the complexity
of the problem. This is because of the multiple optimum in the likelihood function
caused by missing data (Section 2.3.1.3).

The orange line in Figure 53, 58, and 54, indicates the ground-truth’s total score
with respect to the penalty-based score used. Since the EM algorithm used in our
experiments is never able to fully recover all of the latent class labels in the data,
we could never achieve this score in our procedures. However, even with this limita-
tion, we find that empirically as we increase the number of samples our recovered
structures resemble the ground-truth distribution.

Another difficulty arises when we increase the number of latent layers in the HDBN
models which describe each process. The more latent variables we have, the less likely
we are to recover the ground-truth distribution due to the accumulative error of our
EM algorithm as we recover the class labels of our latent variables.

7.5.7 Generalisation of Learning Tasks

We lastly discuss the scalability of our structure learning procedure to recover the
ground-truth distribution as we increase the difficulty of the learning problem. We
will demonstrate this by exploring the sensitivity of the initialization parameters. Fig-
ure 55 shows the performance of six learning methods as the environments of the
learning problem changes. Figure 55(a) shows the relative entropy to the ground-
truth distribution for several learning methods as the number of bins describing each

7.5 discussion of results 115

random variable increases. Figure 55(b) shows the relative entropy to the ground-
truth distribution for several learning methods as the number of time-slices in the
temporal model used to describe each trajectory increases. Figure 55(c) shows the
relative entropy to the ground-truth distribution for several learning methods as the
number of given observations describing the latent variables increases. Figure 55(d)
shows the relative entropy to the ground-truth distribution for several learning meth-
ods as the size of sparse influence graphs increases. Figure 55(e) shows the relative
entropy to the ground-truth distribution for several learning methods as the size of
dense influence graphs increases.

In all of the figures in Figure 55 we see that as the difficulty of the learning meth-
ods increases, the relative entropy exponentially decreases as the execution time ex-
ponentially increases. We also noted that (for our experiments) the general time used
to recover the model increases exponentially up until a point when it appears to in-
crease constantly. Examples of this can be seen in Figure 55(d) after sparse sizes of 12
and Figure 55(e) after dense sizes of 10.

In Figure 55 we provide the performance of our method in several learning envi-
ronments. In all of these learning environments we see that our learning methods
scale significantly well with respect to the learning problem. This tells us two things:

• at every increment of the learning problem becoming more difficult on the x-
axis, the relative entropy of the learning procedures decrease.

• as the joint assignment becomes larger with more terms, the value of the joint
distribution decreases.

Finally, Figure 55 suggests that as the learning problem’s difficulty increases, all
learning performance increases exponentially (be it parameter or structure learning
methods). In the next chapter we conclude this work by providing a summary of this
work, our main contributions, and future directions.

116 experimental results

2 2.5 3 3.5 4 4.5 5 5.5 6

10−19

10−16

10−13

10−10

10−7

Number of Bin Values
R
el
at
iv
e
E
n
tr
op

y

Relative Entropy

Random
No Structure

GESS with RId 3
GESS with BIC
GESS with AIC

TSLP

103

104

105

106

E
x
ec
u
ti
on

T
im

e
(m

il
li
se
co
n
d
s)

Execution Time

Random
No Structure

GESS with RId 3
GESS with BIC
GESS with AIC

TSLP

(a) The performance of parameter and structure learning tasks as the number of bin values increase.

1 2 3 4 5 6 7 8 9 10
10−33

10−27

10−21

10−15

10−9

10−3

Number of time-slices

R
el
a
ti
ve

E
n
tr
op

y

103

104

105

E
x
ec
u
ti
on

T
im

e
(m

il
li
se
co
n
d
s)

(b) The performance of parameter and structure learning
tasks as the time-slices increases.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
10−45

10−37

10−29

10−21

10−13

10−5

Number of Observations

R
el
at
iv
e
E
n
tr
op

y

103

104

105

E
x
ec
u
ti
on

T
im

e
(m

il
li
se
co
n
d
s)

(c) The performance of parameter and structure learning
tasks as the number of observations increase.

2 4 6 8 10 12 14 16
10−20

10−16

10−12

10−8

10−4

100

Number of Nodes (Sparse Graphs)

R
el
at
iv
e
E
n
tr
op

y

101

102

103

104

105

106

E
x
ec
u
ti
o
n
T
im

e
(m

il
li
se
co
n
d
s)

(d) The performance of parameter and structure learning
tasks as the sparse graph sizes increase.

2 3 4 5 6 7 8 9 10 11

10−14

10−12

10−10

10−8

10−6

10−4

10−2

Number of Nodes (Dense Graphs)

R
el
a
ti
ve

E
n
tr
o
p
y

103

104

105

106

E
x
ec
u
ti
o
n
T
im

e
(m

il
li
se
co
n
d
s)

(e) The performance of parameter and structure learning
tasks as the dense graphs sizes increase.

Figure 55: The performance of several learning procedures as the complexity of the learning
problem increases. (a) shows the relative entropy to the ground-truth distribution
for several learning methods as the number of bins describing each random vari-
able increases. (b) shows the relative entropy to the ground-truth distribution for
several learning methods as the number of timeslices in a temporal model used
to describe each trajectory increases. (c) shows the relative entropy to the ground-
truth distribution for several learning methods as the number of given observa-
tions describing the latent phenomenon increases. (d) shows the relative entropy
to the ground-truth distribution for several learning methods as the size of sparse
influence graphs increase. (e) shows the relative entropy to the ground-truth distri-
bution for several learning methods as the size of dense influence graphs increase.
The error bars show the standard deviation of the relative entropy over 10 trials
and are given by the shaded regions.

8
C O N C L U S I O N

I
n this thesis we provide the first score-based structure learning algorithm to

reconstruct a dynamic influence network (DIN) between a set of partially observable
stochastic processes. Alongside the mathematical development of models and

inference algorithms, we empirically demonstrated the effectiveness of our approach.

Learning a DIN is useful in situations when we are given temporal features as
data and asked to deduce the probability distribution which explains the interaction
between partially observed processes. Constructing an influence structure from tem-
poral incomplete data, that is induced by a set of temporal observations, appears in
practical applications where we wish to perform density estimation or knowledge
discovery.

This conclusion chapter is structured as follows: Section 8.1 provides an overview
of the thesis content and shows how all the major sections fit together; Section 8.2
discusses influence model selection for knowledge discovery and density estimation;
Section 8.3 provides a summary of the major contributions of this thesis; and finally,
Section 8.4 provides relevant future directions which can be explored to improve the
performance of the general algorithm to recover influence in the dynamic setting.

8.1 summary

Revising the high-level proposed architecture from Chapter 1 (the diagram is re-
peated), we can now give a more detailed perspective on the high-level learning
procedures that were developed throughout this thesis.

In (i), we input the processes to learn influence between; In (ii), we learn each
stochastic process independently as a temporal model using Bayesian estimation
(BE) and expectation maximisation (EM) to maximise the likelihood function for la-
tent variables (Section 6.3). We have explored two different representations of pro-
cesses, the hidden Markov model (HMM)(Section 2.2.2.3) and the hierarchical dy-
namic Bayesian network (HDBN) (Section 5.2.1.3). We have seen the effects of using
different latent layers in the representation of these models and how the abstrac-
tion of observations can be achieved (Section 7.5.6). Although the focus of this thesis
was on general structure learning between temporal models, describing the repre-
sentation for each stochastic processes before learning could produce better results
since different processes may have distinct structural dependencies between variables
which cannot be captured using a generic template network. The description of these
models may play an important role in the discovery of the ground-truth distribution.

In (iii), we compute the structure score of an influence network using a scoring
function. We have seen four examples of scoring functions for DINs (Section 5.2): the

117

118 conclusion

(i) Processes

(ii) Learn independent

networks (BE, EM)

(iii) Learn latent variables

(EM) and score in�u-

ence network (d-BIC)

(iv) candidate network

(v) Terminate?

(vi) Modify network

(vii) candidate network

Yes

No

Figure 56: An overview of the proposed algorithm to recover influence between stochastic
processes represented as temporal networks.

d-BIC, d-AIC, restricting the in-degree, and the standard dynamic likelihood score.
All of these scoring functions have properties which are effective in various domains.
For example, using the likelihood score alone can build a tree-based structure to sum-
marise the most important dependency relations between temporal models. These
scores have been compared empirically in Chapter 7 showcasing the precise value of
their properties in various contexts.

We note the major difficulty of this problem lies in the representation of the latent
components of the influence network. Therefore, we develop a learning procedure
that learns a probability distribution that describes interactions between processes
which manifest in the temporal observations that describe each process (Section 6.3.1).
By doing so we take advantage of significant computational savings (Section 6.5.3).
In (iii), we relearn the parameters for the model (with the new independence as-
sertions) which gives us the candidate network (iv). These candidate networks are
constructed using an influence assemble relation (Section 5.3) which connects fami-
lies of dynamic Bayesian networks. We constructed various influence structures (both
direct (Section 5.3.1) and delayed (Section 5.3.2)), and showed how the performance
of using sparse representations allowed for a better generalisation to the ground-truth
structure .

In (vi), we performed an operation, by changing the graph structure which encodes
the distribution, to improve the network fit to data (Section 6.5.1). Each operation was
a choice between an edge addition, removal, or deletion. All of these operations were
with respect to the selected influence assemble used. By using various operations we

8.2 learning a din for knowledge discovery and density estimation 119

performed greedy hill-climbing algorithms in-order to optimise the dynamic scoring
function with respect to the data (Section 6.5.2). We iteratively performed steps (ii),
(iii), (v) until we could not improve the dynamic score for the DIN structure. The
DIN structure with the best score was selected. We also provided ways to promote
computational saving for structure search procedures (Section 6.5.3).

8.2 learning a din for knowledge discovery and density estimation

The significance of learning a DIN structure depends on our learning objective. If one
is attempting to discover exactly the ground-truth network structure, which involves
stating precisely I(G∗(〈I0, I→〉G)), then we should concede that there exists many
perfect maps for P∗(〈I0, I→〉G) which can be recovered from D〈I0,I→〉G .

It is understood that recognising I(G∗(〈I0, I→〉G)) from G∗(〈I0, I→〉G)’s set of struc-
tures which give the same fit to the data is not identifiable from D〈I0,I→〉G since each
I-equivalent structure produces the same likelihood for D〈I0,I→〉G . This is evident in
the analysis from Section 4.2.5, where we see that the same set of independence as-
sumptions can give rise to different influence structures. Therefore, if our goal is
knowledge discovery, we should instead try to recover G∗’s I-equivalence class. This
is difficult as data sampled from P∗(〈I0, I→〉G) does not perfectly and uniquely re-
construct the independence assumptions of G∗(〈I0, I→〉G)).

Obviously, selecting a random structure is unlikely to tell us much about the
ground-truth structure. However, tree structure attempts to summarise the most im-
portant dependencies. General graph learning algorithms can help us develop an
I-equivalence class which we can use, along with more meta-data, to select a network
for knowledge discovery.

Alternatively, one could also attempt to learn a DIN for density estimation, i.e. to es-
timate a statistical model of the underlying distribution P∗(〈I0, I→〉G). Such a model
can be used to reason about new data instances.

On the one hand, if we capture more independence assertions than those speci-
fied in I(G∗(〈I0, I→〉G)), we could still capture P∗(〈I0, I→〉G using some setting of our
recovered DIN’s parameters. However, our selection of more independence assump-
tions, rather than fewer in I(G∗(〈I0, I→〉G)), could result in data fragmentation. On the
other hand, selecting too few edges will result in not capturing the true distribution
P∗(〈I0, I→〉G, but will however provide a sparse structure that avoids data fragmenta-
tion. Generally, the latter case is preferred in density estimation for Bayesian networks
since it provides better generalisation to new instances through a sparser representa-
tion [Koller and Friedman 2009]. In the next section we revise the major contributions
of this research.

8.3 major contributions

We provided the following contributions.

120 conclusion

1. The notion of influence between processes. This includes the formulations of
direct and delayed influence (Chapter 4).

2. Several scoring function for dynamic influence networks by extending and
adapting traditional scores for random variables along with their key properties
(Chapter 5).

3. The notion of a structural assemble to relate temporal models for dynamic in-
fluence tasks (Chapter 5).

4. A learning procedure to recover the influence structure between temporal mod-
els with latent variables. We further extend the local search procedures to use
assembles that link temporal models meaningfully while preserving decompos-
ability and score-equivalence required for a manageable search (Chapter 6).

5. We provide empirical evidence for the effectiveness of our method with respect
to a generative ground-truth distribution (Chapter 7).

8.4 future work

There are many future directions that can improve the performance of the high-level
algorithm presented in Figure 56. We can attempt to improve the description of each
stochastic process in step (ii). This can be done using HDBN or perhaps more sophis-
ticated dynamic Bayesian networks with a causal interpretation over the characteris-
tics of each process. An alternative option is to learn the structure of the dynamic
Bayesian network which best describes the temporal observations.

We may use more sensitive dynamic scoring functions in (iii) which incorporate
structural characteristics of the model or perhaps more emphasis on dynamic scoring
functions as our experiments indicated incoherence between available memory and
sensitivity of the score to training samples and number of independent parameters.
We may also improve the performance of the EM algorithm (iii) used to recover the
original cluster assignments. Perhaps the use of hard-EM or soft-EM could traverse
the search space differently in-order to ensure a better recovery of the original class
assignments.

Perhaps more computational power is necessary to allow for convergence by in-
creasing the number of structure search iterations (v). Also, with more computa-
tional power we can explore influence structures between more temporal networks.
Finally, one could improve the type of operators used by the learning procedure in
(vi). Perhaps operators which take larger steps in the search space will allow for faster
convergence by exploring search spaces faster.

Part I

A P P E N D I X

A
A L G O R I T H M S

Algorithm 7 Generate Independent Factors

1: procedure GenIndep(DL, DO, O = (O1, . . . ,Oj), L = (L1, . . . ,Lk),
Var = (O1, . . . ,Oj,L1, . . . ,Lk), ¸, NumBi)

2: [FO1 , . . . ,FLk]
′ = {}

3: for i = 1→ Var.Length do
4: if Var[i] ∈ O then
5: Dx =Extract(O.posOf(Var[i]),DO, 0,O.Length)
6: [FO1 , . . . ,FLk]

′.pos(i) = F(Dx,NumBi[i],Var[i],"OBSERVABLE",α[i])
7: else if Var[i] ∈ L then
8: Dx =Extract(L.posOf(Var[i]),DL, 0,DL.Length)
9: [FO1 , . . . ,FLk]

′.pos(i) = F(Dx,NumBi[i],Var[i],"LATENT",α[i])
return [FO1 , . . . ,FLk]

′

123

124 algorithms

A
(1)
1

A
(1)
2

A
(1)
3

A
(1)
4

A
(1)
5

A
(1)
6

A
(1)
7

A
(2)
1

A
(2)
2

A
(2)
3

A
(2)
4

A
(2)
5

A
(2)
6

A
(2)
7

A
(3)
1

A
(3)
2

A
(3)
3

A
(3)
4

A
(3)
5

A
(3)
6

A
(3)
7

B
(1)
1

B
(1)
2

B
(1)
3

B
(1)
4

B
(1)
5

B
(1)
6

B
(1)
7

B
(2)
1

B
(2)
2

B
(2)
3

B
(2)
4

B
(2)
5

B
(2)
6

B
(2)
7

B
(3)
1

B
(3)
2

B
(3)
3

B
(3)
4

B
(3)
5

B
(3)
6

B
(3)
7

C
(1)
1

C
(1)
2

C
(1)
3

C
(1)
4

C
(1)
5

C
(1)
6

C
(1)
7

C
(2)
1

C
(2)
2

C
(2)
3

C
(2)
4

C
(2)
5

C
(2)
6

C
(2)
7

C
(3)
1

C
(3)
2

C
(3)
3

C
(3)
4

C
(3)
5

C
(3)
6

C
(3)
7

D
(1)
1

D
(1)
2

D
(1)
3

D
(1)
4

D
(1)
5

D
(1)
6

D
(1)
7

D
(2)
1

D
(2)
2

D
(2)
3

D
(2)
4

D
(2)
5

D
(2)
6

D
(2)
7

D
(3)
1

D
(3)
2

D
(3)
3

D
(3)
4

D
(3)
5

D
(3)
6

D
(3)
7

Figure 57: An illustration of a dynamic influence network between four hierarchical models
with 3 timeslices.

Algorithm 8 Maximization

1: procedure M-step([DL, DO, O = (O1, . . . ,Oj), L = (L1, . . . ,Lk), Var, I`(H), ¸,
[FO1 , . . . ,FLk])

2: [FO1 , . . . ,FLk]
′ = []

3: for i = 0→ (j+ k) do
4: [FO1 , . . . ,FLk]

′[i] = [FO1 , . . . ,FLk][i]

5: for ∀a ∈ I`(H) do
6: x = getVar(a)

7: index = Var .posOf(x);
8: if ahasnodependencies then
9: Da = null;

10: if x ∈ O then
11: Da =Extract(O.posOf(x),DO, 0,DO.length);
12: else if x ∈ L then
13: Da =Extract(L.posOf(x),DL, 0,DL.length);

14: [FO1 , . . . ,FLk]
′[index] = F([FO1 , . . . ,FLk][index],Da,null, ¸[Var .posOf(x)]);

15: else

algorithms 125

16: Da = null

17: if x ∈ O then
18: Da =Extract(O.posOf(x),DO, 0,DO.length);
19: else if x ∈ L then
20: Da =Extract(L.posOf(x),DL, 0,DL.length);

21: dN = [getDep(a)]

22: m = dN.Length
23: Dd = {D[1], . . . ,D[m]}

24: for i = 1→ m do
25: if dN[i] ∈ O then
26: Dd[i] =Extract(O.posOf(dN[i]),DO, 0,DO.length);
27: else
28: Dd[i] =Extract(L.posOf(dN[i]),DL, 0,DL.length);

29: [FO1 , . . . ,FLk]
′[index] = F([FO1 , . . . ,FLk][index],Da,Dd, ¸[Var .posOf(x)])

return [FO1 , . . . ,FLk]
′

Algorithm 9 Expectation

1: procedure E-step([FO1 , . . . ,FLk], DO, O = (O1, . . . ,Oj), L = (L1, . . . ,Lk), I`(H),
Var, NumBi)

2: D ′L = [D1L, . . . ,DkL]
3: for r = 0→ D ′L.Length do
4: [FL1 , . . . ,FLk] = { }

5: arraysize = 1

6: List = []

7: for i = 1→ k do
8: [FL1 , . . . ,FLk][i] = F(getFactor(L[i], [FO1 , . . . ,FLk]))
9: arraysize ∗= NumBi[Var .posOf(L[i])]

10: List[i] = NumBi[Var .posOf(L[i])]

11: A-MAP = [A1, . . . ,Aarraysize] . Where each Ai is an array of size k
12: NumRep = []

13: for i = 1→ k do
14: prod = 1

15: for j = i+ 1→ k do
16: prod ∗= List[j]
17: NumRep[i] = prod

18: for j = 1→ k do
19: t = NumRep[j]

20: u = 0

21: count = t

22: ActualValue = 0

23: while u < arraysize do
24: if count == 0 then
25: ActualValue ++

26: count = t

27: if ActualValue > List[j] then
28: ActualValue = 0

29: Au[j] = ActualValue

126 algorithms

30: count −−

31: u ++

32: T = [T1, . . . ,Tk] . Where each Ti is an array of size getMax(List)
33: for i = 0→ k do
34: adder = (1/List[i])/2

35: for j = 0→ getMax(List) do
36: Ti[j] = adder

37: adder += 1/List[i]

38: ξ = {ξ[1], . . . , ξ[j+ k]}
39: for i = 0→ (j+ k) do
40: if Var[i] ∈ O then
41: ξ[i] = DO[r][O[Var[i]]]

42: M` = −∞
43: Mξ = [M1

ξ, . . . ,M(j+k)
ξ]

44: MC = [M1
C, . . . ,Mk

C]

45: C = [C1, . . . ,Ck]
46: for i = 1→ arraysize do
47: for j = 1→ k do
48: ξ[Var[L[j]]] = Tj[A-MAP[i][j]]
49: C[j] = Tj[A-MAP[i][j]]

50: if P(ξ|[FO1 , . . . ,FLk], I`(H)) >M` then
51: M` = P(ξ|[FO1 , . . . ,FLk], I`(H))

52: Mξ = ξ

53: MC = C

54: D ′L[r] = MC

return D ′L

Line 2 of Algorithm 10 initialises a set of mutually independent factors for each
variable. The full procedure of this initialisation of independent factors is given in
Algorithm 7 in Appendix A. Line 3 of Algorithm 10 makes a copy of the independent
factors. In this copy we later specify the conditional probability distribution for each
factor according to the independence assumptions in I`(G).

Line 4 to 28 states that for every independence assumption in I`(H) do the follow-
ing: (a) if there are no implied independence assertion then just copy the mutually in-
dependent factor (line 8); (b) otherwise, construct a new factor for the variable which
specifies all conditional dependencies for the table CPD (lines 9 to 28). A complete
detailed implementation of the M-step0 is given in Algorithm 10 in Appendix A.

Algorithm 10 Initial Maximization Algorithm

1: procedure M-step0(DL, DO, O = (O1, . . . ,Oj), L = (L1, . . . ,Lk),
Var = (O1, . . . ,Oj,L1, . . . ,Lk), I`(H), ¸, NumBi)

2: [FO1 , . . . ,FLj]
′ = GenIndep(Var,O,L,DO,DL, NumBi, ¸)

3: [FO1 , . . . ,FLj] = [FO1 , . . . ,FLj]
′

4: for ∀a ∈ I`(H) do
5: x =getVar(a)

6: index = Var.posOf(x)

A.1 example of data 127

7: if a has no dependencies then
8: [FO1 , . . . ,FLj][index] = [FO1 , . . . ,FLj]

′[index]
9: else

10: dN = [getDep(a)]

11: m = dN.Length
12: dF = [Fa1 , . . . ,Fam]

13: for i = 1→ m do
14: dIndex = Var.posOf(dN[i])

15: dF[i] = [FO1 , . . . ,FLj]
′[dIndex]

16: Da = {}

17: if x ∈ O then
18: Da =Extract(O[x],DO, 0,DO.length)
19: else if x ∈ L then
20: Da =Extract(L.posOf(x),DL, 0,DL.length)

21: Dd = {Dd[1], . . . ,Dd[m]}

22: for i = 1→ m do
23: if O.contains(dN[i]) then
24: Dd[i] =Extract(O.posOf(dN[i]),DO, 0,DO.length)
25: else
26: Dd[i] =Extract(L.posOf(dN[i]),DL, 0,DL.length)

27: [FO1 , . . . ,FLk][index] = . . .
28: F(x,dN,Da,Dd, [FO1 , . . . ,FLk]

′[index],dF, ¸[Var.posOf(x)])
return [FO1 , . . . ,FLk]

Figure 58 an example of this structure learning scenario. The x-axis is the struc-
ture search iterations (i), and the y-axis is the dynamic score value. There are four
parameters in this learning model similar to the d-AIC learning scenario in Figure 58:
the value of the ground-truth total structure score (orange); the dynamic likelihood
score of the recovered network at iteration i (blue); the dynamic penalty score of the
recovered network at iteration i (red); and the total sum of the dynamic likelihood
and penalty scores for the recovered network at iteration i (green).

We note that the total score of the recovered network monotonically increases be-
fore reaching a local optimum at iteration 9, it then performs a random restart and
continues to monotonically increase. It appears that up to iteration 15 the structure
score cannot improve, however, it finds a better optimum at iteration 20. The recov-
ered network appears to approach the ground-truth network structure score.

a.1 example of data

Here is an example of 3 instances of training data. I have separated each instance by
a new line. The feature set is also given below.

Feature List: [Variable 0 LatentTIMESLICE0, Variable 0 Observable 0TIMESLICE0,
Variable 0 Observable 1TIMESLICE0, Variable 1 LatentTIMESLICE0, Variable 1 Ob-
servable 0TIMESLICE0, Variable 1 Observable 1TIMESLICE0, Variable 2 LatentTIMES-
LICE0, Variable 2 Observable 0TIMESLICE0, Variable 2 Observable 1TIMESLICE0,

128 algorithms

0 5 10 15 20 25 30

0

0.5

1

1.5

2

2.5

·105

Number of iterations

S
co
red-AIC Structure Search

Ground truth
Likelihood
Penalty

Total score

Figure 58: The value of structure scores for the GESS with AIC learning task. The y-axis is
the score value and the x-axis represents the increase in structure search iterations

Variable 3 LatentTIMESLICE0, Variable 3 Observable 0TIMESLICE0, Variable 3 Ob-
servable 1TIMESLICE0, Variable 4 LatentTIMESLICE0, Variable 4 Observable 0TIMES-
LICE0, Variable 4 Observable 1TIMESLICE0, Variable 5 LatentTIMESLICE0, Variable
5 Observable 0TIMESLICE0, Variable 5 Observable 1TIMESLICE0, Variable 6 Latent-
TIMESLICE0, Variable 6 Observable 0TIMESLICE0, Variable 6 Observable 1TIMES-
LICE0, Variable 7 LatentTIMESLICE0, Variable 7 Observable 0TIMESLICE0, Variable
7 Observable 1TIMESLICE0, Variable 8 LatentTIMESLICE0, Variable 8 Observable
0TIMESLICE0, Variable 8 Observable 1TIMESLICE0, Variable 9 LatentTIMESLICE0,
Variable 9 Observable 0TIMESLICE0, Variable 9 Observable 1TIMESLICE0, Variable
0 LatentTIMESLICE1, Variable 0 Observable 0TIMESLICE1, Variable 0 Observable
1TIMESLICE1, Variable 1 LatentTIMESLICE1, Variable 1 Observable 0TIMESLICE1,
Variable 1 Observable 1TIMESLICE1, Variable 2 LatentTIMESLICE1, Variable 2 Ob-
servable 0TIMESLICE1, Variable 2 Observable 1TIMESLICE1, Variable 3 LatentTIMES-
LICE1, Variable 3 Observable 0TIMESLICE1, Variable 3 Observable 1TIMESLICE1,
Variable 4 LatentTIMESLICE1, Variable 4 Observable 0TIMESLICE1, Variable 4 Ob-
servable 1TIMESLICE1, Variable 5 LatentTIMESLICE1, Variable 5 Observable 0TIMES-
LICE1, Variable 5 Observable 1TIMESLICE1, Variable 6 LatentTIMESLICE1, Variable
6 Observable 0TIMESLICE1, Variable 6 Observable 1TIMESLICE1, Variable 7 Latent-
TIMESLICE1, Variable 7 Observable 0TIMESLICE1, Variable 7 Observable 1TIMES-
LICE1, Variable 8 LatentTIMESLICE1, Variable 8 Observable 0TIMESLICE1, Variable
8 Observable 1TIMESLICE1, Variable 9 LatentTIMESLICE1, Variable 9 Observable
0TIMESLICE1, Variable 9 Observable 1TIMESLICE1, Variable 0 LatentTIMESLICE2,
Variable 0 Observable 0TIMESLICE2, Variable 0 Observable 1TIMESLICE2, Variable
1 LatentTIMESLICE2, Variable 1 Observable 0TIMESLICE2, Variable 1 Observable
1TIMESLICE2, Variable 2 LatentTIMESLICE2, Variable 2 Observable 0TIMESLICE2,
Variable 2 Observable 1TIMESLICE2, Variable 3 LatentTIMESLICE2, Variable 3 Ob-
servable 0TIMESLICE2, Variable 3 Observable 1TIMESLICE2, Variable 4 LatentTIMES-
LICE2, Variable 4 Observable 0TIMESLICE2, Variable 4 Observable 1TIMESLICE2,
Variable 5 LatentTIMESLICE2, Variable 5 Observable 0TIMESLICE2, Variable 5 Ob-
servable 1TIMESLICE2, Variable 6 LatentTIMESLICE2, Variable 6 Observable 0TIMES-
LICE2, Variable 6 Observable 1TIMESLICE2, Variable 7 LatentTIMESLICE2, Variable
7 Observable 0TIMESLICE2, Variable 7 Observable 1TIMESLICE2, Variable 8 Latent-
TIMESLICE2, Variable 8 Observable 0TIMESLICE2, Variable 8 Observable 1TIMES-
LICE2, Variable 9 LatentTIMESLICE2, Variable 9 Observable 0TIMESLICE2, Variable
9 Observable 1TIMESLICE2]

A.1 example of data 129

Training Set:

0.0625 0.6875 0.4375 0.4375 0.5625 0.1875 0.8125 0.9375 0.5625 0.3125 0.8125

0.5625 0.1875 0.6875 0.9375 0.4375 0.6875 0.4375 0.3125 0.3125 0.4375 0.3125

0.6875 0.4375 0.5625 0.3125 0.9375 0.9375 0.4375 0.0625 0.8125 0.5625 0.0625

0.5625 0.3125 0.6875 0.6875 0.0625 0.4375 0.0625 0.0625 0.0625 0.8125 0.6875

0.4375 0.4375 0.4375 0.8125 0.0625 0.5625 0.9375 0.3125 0.1875 0.8125 0.4375

0.5625 0.6875 0.6875 0.9375 0.0625 0.3125 0.4375 0.3125 0.1875 0.0625 0.6875

0.0625 0.1875 0.9375 0.6875 0.4375 0.4375 0.6875 0.0625 0.0625 0.1875 0.8125

0.9375 0.5625 0.4375 0.9375 0.1875 0.3125 0.4375 0.3125 0.5625 0.8125 0.9375

0.9375 0.4375

0.8125 0.3125 0.5625 0.3125 0.8125 0.9375 0.1875 0.0625 0.3125 0.4375 0.3125

0.5625 0.5625 0.5625 0.5625 0.4375 0.6875 0.5625 0.8125 0.5625 0.4375 0.3125

0.5625 0.3125 0.9375 0.0625 0.1875 0.3125 0.4375 0.0625 0.6875 0.1875 0.3125

0.5625 0.0625 0.9375 0.8125 0.3125 0.9375 0.0625 0.6875 0.8125 0.9375 0.9375

0.9375 0.0625 0.5625 0.0625 0.6875 0.0625 0.0625 0.1875 0.5625 0.6875 0.5625

0.5625 0.8125 0.8125 0.1875 0.3125 0.4375 0.9375 0.1875 0.3125 0.3125 0.0625

0.4375 0.0625 0.1875 0.0625 0.3125 0.8125 0.4375 0.6875 0.0625 0.0625 0.3125

0.4375 0.8125 0.4375 0.4375 0.4375 0.9375 0.3125 0.9375 0.0625 0.1875 0.9375

0.6875 0.5625

0.9375 0.6875 0.8125 0.3125 0.3125 0.9375 0.1875 0.5625 0.6875 0.5625 0.4375

0.0625 0.6875 0.8125 0.5625 0.0625 0.5625 0.1875 0.0625 0.9375 0.0625 0.8125

0.0625 0.3125 0.8125 0.4375 0.3125 0.1875 0.6875 0.8125 0.5625 0.4375 0.5625

0.4375 0.5625 0.6875 0.3125 0.8125 0.4375 0.5625 0.0625 0.5625 0.6875 0.9375

0.8125 0.6875 0.5625 0.8125 0.1875 0.0625 0.8125 0.1875 0.9375 0.4375 0.8125

0.9375 0.1875 0.0625 0.8125 0.6875 0.1875 0.9375 0.1875 0.4375 0.1875 0.1875

0.6875 0.9375 0.5625 0.9375 0.9375 0.0625 0.8125 0.3125 0.4375 0.8125

B I B L I O G R A P H Y

[Abbeel et al. 2006] Pieter Abbeel, Daphne Koller, and Andrew Y Ng. Learning factor
graphs in polynomial time and sample complexity. Journal of Machine Learning
Research, 7(Aug):1743–1788, 2006.

[Abramson 1994] Bruce Abramson. The design of belief network-based systems for
price forecasting. Computers & Electrical Engineering, 20(2):163–180, 1994.

[Ajoodha and Rosman 2017] Ritesh Ajoodha and Benjamin Rosman. Tracking influ-
ence between naıve bayes models using score-based structure learning. In IEEE
proceedings, Pattern Recognition Association of South Africa and Robotics and Mecha-
tronics International Conference (PRASA-RobMech), 2017., Nov 2017.

[Ajoodha and Rosman 2018] Ritesh Ajoodha and Benjamin Rosman. Advancing in-
telligent systems by learning the influence structure between partially observed
stochastic processes using iot sensor data. In AAAI SmartIoT: AI Enhanced IoT
Data Processing for Intelligent Applications, New Orleans Riverside, New Orleans,
Lousiana, USA., 2018.

[Ajoodha et al. 2014] Ritesh Ajoodha, Richard Klein, and Marija Jakovljevic. Using
statistical models and evolutionary algorithms in algorithmic music composi-
tion. In Khosrow-Pour Mehdi, editor, The Encyclopedia of Information Science and
Technology. IGI Global, Hershey, Pennsylvania, United States, 3rd edition, 2014.

[Ajoodha et al. 2015] Ritesh Ajoodha, Richard Klein, and Benjamin Rosman. Single-
labelled music genre classification using content-based features. In IEEE proceed-
ings, Pattern Recognition Association of South Africa and Robotics and Mechatronics
International Conference (PRASA-RobMech), 2015, pages 66–71, Nov 2015.

[Ajoodha 2014] Ritesh Ajoodha. Automatic music genre classification. Master’s thesis,
2014.

[Akaike 1974] H Akaike. A new look at the statistical identification model. IEEE
Trans. Auto. Control, 19:716–723, 1974.

[Andreassen et al. 1987] Steen Andreassen, Marianne Woldbye, Björn Falck, and
Stig K Andersen. Munin: A causal probabilistic network for interpretation of
electromyographic findings. In Proceedings of the 10th international joint conference
on Artificial intelligence-Volume 1, pages 366–372. Morgan Kaufmann Publishers
Inc., 1987.

[Bailey 1990] Norman TJ Bailey. The elements of stochastic processes with applications to
the natural sciences, volume 25. John Wiley & Sons, 1990.

[Barron et al. 1998] Andrew Barron, Jorma Rissanen, and Bin Yu. The minimum de-
scription length principle in coding and modeling. IEEE Transactions on Informa-
tion Theory, 44(6):2743–2760, 1998.

131

132 bibliography

[Bates 1996] David S Bates. Jumps and stochastic volatility: Exchange rate processes
implicit in deutsche mark options. The Review of Financial Studies, 9(1):69–107,
1996.

[Bauer et al. 1997] Eric Bauer, Daphne Koller, and Yoram Singer. Update rules for
parameter estimation in bayesian networks. In Proceedings of the Thirteenth con-
ference on Uncertainty in artificial intelligence, pages 3–13. Morgan Kaufmann Pub-
lishers Inc., 1997.

[Beinlich et al. 1989] Ingo A Beinlich, Henri J Suermondt, R Martin Chavez, and Gre-
gory F Cooper. The ALARM monitoring system: A case study with two probabilistic
inference techniques for belief networks. Springer, 1989.

[Beretta et al. 2017] Stefano Beretta, Mauro Castelli, Ivo Goncalves, and Daniele Ra-
mazzotti. A quantitative assessment of the effect of different algorithmic
schemes to the task of learning the structure of bayesian networks. arXiv preprint
arXiv:1704.08676, 2017.

[Bernardo and Smith 2001] José M Bernardo and Adrian FM Smith. Bayesian theory,
2001.

[Binder et al. 1997] John Binder, Daphne Koller, Stuart Russell, and Keiji Kanazawa.
Adaptive probabilistic networks with hidden variables. Machine Learning,
29(2):213–244, 1997.

[Binford et al. 2013] Thomas O Binford, Tod S Levitt, and Wallace B Mann. Bayesian
inference in model-based machine vision. arXiv preprint arXiv:1304.2720, 2013.

[Bishop 2006] Christopher M Bishop. Pattern recognition and machine learning.
springer, 2006.

[Bishop 2007] C Bishop. Pattern recognition and machine learning (information sci-
ence and statistics), 1st edn. 2006. corr. 2nd printing edn. Springer, New York,
2007.

[Blei and Lafferty 2006] David M Blei and John D Lafferty. Dynamic topic models. In
Proceedings of the 23rd international conference on Machine learning, pages 113–120.
ACM, 2006.

[Blei et al. 2003] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet
allocation. Journal of machine Learning research, 3(Jan):993–1022, 2003.

[Blunsom 2004] Phil Blunsom. Hidden markov models. Lecture notes, August, 15:18–
19, 2004.

[Bouchaala et al. 2010] Lobna Bouchaala, Afif Masmoudi, Faiez Gargouri, and
Ahmed Rebai. Improving algorithms for structure learning in bayesian net-
works using a new implicit score. Expert Systems with Applications, 37(7):5470–
5475, 2010.

[Bouckaert 1993] Remco Bouckaert. Probabilistic network construction using the
minimum description length principle. Symbolic and quantitative approaches to
reasoning and uncertainty, pages 41–48, 1993.

bibliography 133

[Breese et al. 1992] JOHNS Breese, Eric Horvitz, MARKA Peot, Rodney Gay, and
GEORGEH Quentin. Automated decision-analytic diagnosis of thermal per-
formance in gas turbines. In Proceedings of the International Gas Turbine and Aero-
engine Congress and Exposition, Cologne, Germany, American Society of Mechanical
Engineers, 1992.

[Bunge 2017] Mario Bunge. Causality and modern science. Routledge, 2017.

[Buntine 1991] Wray Buntine. Theory refinement on bayesian networks. In Proceed-
ings of the Seventh conference on Uncertainty in Artificial Intelligence, pages 52–60.
Morgan Kaufmann Publishers Inc., 1991.

[Buntine 1994] Wray L. Buntine. Operations for learning with graphical models. JAIR,
2:159–225, 1994.

[Buntine 1996] Wray Buntine. A guide to the literature on learning probabilistic net-
works from data. IEEE Transactions on knowledge and data engineering, 8(2):195–
210, 1996.

[Buxton 1997] Hilary Buxton. Advanced visual surveillance using bayesian networks.
1997.

[Caffo et al. 2005] Brian S Caffo, Wolfgang Jank, and Galin L Jones. Ascent-based
monte carlo expectation–maximization. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 67(2):235–251, 2005.

[Campos and Ji 2011] Cassio P de Campos and Qiang Ji. Efficient structure learning
of bayesian networks using constraints. Journal of Machine Learning Research,
12(Mar):663–689, 2011.

[Carvalho et al. 2011] Alexandra M Carvalho, Teemu Roos, Arlindo L Oliveira, and
Petri Myllymäki. Discriminative learning of bayesian networks via factorized
conditional log-likelihood. Journal of machine learning research, 12(Jul):2181–2210,
2011.

[Casella and Berger 2002] George Casella and Roger L Berger. Statistical inference,
volume 2. Duxbury Pacific Grove, CA, 2002.

[Charniak 1991] Eugene Charniak. Bayesian networks without tears. AI magazine,
12(4):50, 1991.

[Cheeseman et al. 1988] Peter Cheeseman, Matthew Self, James Kelly, Will Taylor,
Don Freeman, and John C Stutz. Bayesian classification. In AAAI, volume 88,
pages 607–611, 1988.

[Cheeseman et al. 1993] Peter Cheeseman, James Kelly, Matthew Self, John Stutz, Will
Taylor, and Don Freeman. Autoclass: A bayesian classification system. In Read-
ings in knowledge acquisition and learning, pages 431–441. Morgan Kaufmann Pub-
lishers Inc., 1993.

[Chen and Gopalakrishnan 1998] Scott Chen and Ponani Gopalakrishnan. Speaker,
environment and channel change detection and clustering via the bayesian in-
formation criterion. In Proc. darpa broadcast news transcription and understanding
workshop, volume 8, pages 127–132. Virginia, USA, 1998.

134 bibliography

[Cheng et al. 1997] Jie Cheng, David A Bell, and Weiru Liu. Learning belief networks
from data: An information theory based approach. In Proceedings of the sixth
international conference on Information and knowledge management, pages 325–331.
ACM, 1997.

[Chesley 1978] GR Chesley. Subjective probability elicitation techniques: A perfor-
mance comparison. Journal of Accounting Research, pages 225–241, 1978.

[Chickering et al. 1994] David M Chickering, Dan Geiger, and David Heckerman.
Learning Bayesian networks is NP-hard. Technical report, Technical Report MSR-
TR-94-17, Microsoft Research, 1994.

[Chickering et al. 1995] Do Chickering, Dan Geiger, and David Heckerman. Learning
bayesian networks: Search methods and experimental results. In proceedings of
fifth conference on artificial intelligence and statistics, pages 112–128, 1995.

[Chickering et al. 2004] David Maxwell Chickering, David Heckerman, and Christo-
pher Meek. Large-sample learning of bayesian networks is np-hard. Journal of
Machine Learning Research, 5(Oct):1287–1330, 2004.

[Chickering 1995] David Maxwell Chickering. A transformational characterization of
equivalent bayesian network structures. In Proceedings of the Eleventh conference
on Uncertainty in artificial intelligence, pages 87–98. Morgan Kaufmann Publish-
ers Inc., 1995.

[Chickering 1996] David Maxwell Chickering. Learning bayesian networks is np-
complete. Learning from data: Artificial intelligence and statistics V, 112:121–130,
1996.

[Chickering 2002] David Maxwell Chickering. Learning equivalence classes of
bayesian-network structures. Journal of machine learning research, 2(Feb):445–498,
2002.

[Chow and Liu 1968] C Chow and Cong Liu. Approximating discrete probability
distributions with dependence trees. IEEE transactions on Information Theory,
14(3):462–467, 1968.

[Cohen 1992] Jacob Cohen. Statistical power analysis. Current directions in psychologi-
cal science, 1(3):98–101, 1992.

[Colombo and Maathuis 2014] Diego Colombo and Marloes H Maathuis. Order-
independent constraint-based causal structure learning. The Journal of Machine
Learning Research, 15(1):3741–3782, 2014.

[Commenges and Gégout-Petit 2009] Daniel Commenges and Anne Gégout-Petit. A
general dynamical statistical model with causal interpretation. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 71(3):719–736, 2009.

[Conati et al. 2002] Cristina Conati, Abigail Gertner, and Kurt Vanlehn. Using
bayesian networks to manage uncertainty in student modeling. User modeling
and user-adapted interaction, 12(4):371–417, 2002.

[Conati 2002] Cristina Conati. Probabilistic assessment of user’s emotions in educa-
tional games. Applied artificial intelligence, 16(7-8):555–575, 2002.

bibliography 135

[Cong et al. 2008] Rong-Gang Cong, Yi-Ming Wei, Jian-Lin Jiao, and Ying Fan. Re-
lationships between oil price shocks and stock market: An empirical analysis
from china. Energy Policy, 36(9):3544–3553, 2008.

[Cooper and Herskovits 1992] Gregory F Cooper and Edward Herskovits. A
bayesian method for the induction of probabilistic networks from data. Machine
learning, 9(4):309–347, 1992.

[Cooper 1990] Gregory F Cooper. The computational complexity of probabilistic in-
ference using bayesian belief networks. Artificial intelligence, 42(2-3):393–405,
1990.

[Daneshkhah 2004] AR Daneshkhah. Psychological aspects influencing elicitation of
subjective probability. BEEPâs report, 2004.

[Dasgupta 1999] Sanjoy Dasgupta. Learning polytrees. In Proceedings of the Fifteenth
conference on Uncertainty in artificial intelligence, pages 134–141. Morgan Kauf-
mann Publishers Inc., 1999.

[Dawid 1984] A Philip Dawid. Present position and potential developments: Some
personal views: Statistical theory: The prequential approach. Journal of the Royal
Statistical Society. Series A (General), pages 278–292, 1984.

[De Dombal et al. 1972] FT De Dombal, DJ Leaper, John R Staniland, AP McCann,
and Jane C Horrocks. Computer-aided diagnosis of acute abdominal pain. Br
Med J, 2(5804):9–13, 1972.

[Dean and Kanazawa 1989] Thomas Dean and Keiji Kanazawa. A model for reason-
ing about persistence and causation. Computational intelligence, 5(2):142–150,
1989.

[DeGroot and Schervish 2012] Morris H DeGroot and Mark J Schervish. Probability
and statistics. Addison-Wesley„ 2012.

[D’Elia et al. 2003] Ciro D’Elia, Giovanni Poggi, and Giuseppe Scarpa. A tree-
structured markov random field model for bayesian image segmentation. IEEE
Transactions on Image Processing, 12(10):1259–1273, 2003.

[Dempster et al. 1977] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maxi-
mum likelihood from incomplete data via the em algorithm. Journal of the royal
statistical society. Series B (methodological), pages 1–38, 1977.

[Deng and Moore 1995] Kan Deng and Andrew W Moore. Multiresolution instance-
based learning. In IJCAI, volume 95, pages 1233–1239, 1995.

[Dojer et al. 2006] Norbert Dojer, Anna Gambin, Andrzej Mizera, Bartek Wilczyński,
and Jerzy Tiuryn. Applying dynamic bayesian networks to perturbed gene
expression data. BMC bioinformatics, 7(1):249, 2006.

[Doob 1953] Joseph L Doob. Stochastic processes, volume 7. Wiley New York, 1953.

[Drton and Maathuis 2017] Mathias Drton and Marloes H Maathuis. Structure learn-
ing in graphical modeling. Annual Review of Statistics and Its Application, 4:365–
393, 2017.

136 bibliography

[Druzdzel 1993] Marek J Druzdzel. Probabilistic reasoning in decision support systems:
from computation to common sense. PhD thesis, Carnegie Mellon University, 1993.

[Duda and Hart 1973] Richard O Duda and Peter E Hart. Pattern recognition and scene
analysis, 1973.

[Duda et al. 1979] Richard Duda, John Gaschnig, and Peter Hart. Model design in
the prospector consultant system for mineral exploration. Expert systems in the
microelectronic age, 1234:153–167, 1979.

[Durbin et al. 1998] Richard Durbin, Sean R Eddy, Anders Krogh, and Graeme
Mitchison. Biological sequence analysis: probabilistic models of proteins and nucleic
acids. Cambridge university press, 1998.

[Eddy 1996] Sean R Eddy. Hidden markov models. Current opinion in structural
biology, 6(3):361–365, 1996.

[Elidan et al. 2002] Gal Elidan, Matan Ninio, Nir Friedman, and Dale Shuurmans.
Data perturbation for escaping local maxima in learning. In AAAI/IAAI, pages
132–139, 2002.

[Ellis and Wong 2008] Byron Ellis and Wing Hung Wong. Learning causal bayesian
network structures from experimental data. Journal of the American Statistical
Association, 103(482):778–789, 2008.

[Enders and Bandalos 2001] Craig K Enders and Deborah L Bandalos. The relative
performance of full information maximum likelihood estimation for missing
data in structural equation models. Structural equation modeling, 8(3):430–457,
2001.

[Fan et al. 2014] Xiannian Fan, Changhe Yuan, and Brandon M Malone. Tightening
bounds for bayesian network structure learning. In AAAI, pages 2439–2445,
2014.

[Fayyad et al. 1996] Usama M Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth,
and Ramasamy Uthurusamy. Advances in knowledge discovery and data mining,
volume 21. AAAI press Menlo Park, 1996.

[Fraley and Raftery 2002] Chris Fraley and Adrian E Raftery. Model-based clustering,
discriminant analysis, and density estimation. Journal of the American statistical
Association, 97(458):611–631, 2002.

[Friedman and others 1997] Nir Friedman et al. Learning belief networks in the pres-
ence of missing values and hidden variables. In ICML, volume 97, pages 125–
133, 1997.

[Friedman and Yakhini 1996] Nir Friedman and Zohar Yakhini. On the sample com-
plexity of learning bayesian networks. In Proceedings of the Twelfth international
conference on Uncertainty in artificial intelligence, pages 274–282. Morgan Kauf-
mann Publishers Inc., 1996.

[Friedman et al. 1998] Nir Friedman, Kevin Murphy, and Stuart Russell. Learning the
structure of dynamic probabilistic networks. In Proceedings of the Fourteenth con-
ference on Uncertainty in artificial intelligence, pages 139–147. Morgan Kaufmann
Publishers Inc., 1998.

bibliography 137

[Friedman et al. 1999] Nir Friedman, Iftach Nachman, and Dana Peér. Learning
bayesian network structure from massive datasets: the sparse candidate algo-
rithm. In Proceedings of the Fifteenth conference on Uncertainty in artificial intelli-
gence, pages 206–215. Morgan Kaufmann Publishers Inc., 1999.

[Friedman et al. 2000] Nir Friedman, Michal Linial, Iftach Nachman, and Dana Pe’er.
Using bayesian networks to analyze expression data. Journal of computational
biology, 7(3-4):601–620, 2000.

[Friedman 1998] Nir Friedman. The bayesian structural em algorithm. In Proceedings
of the Fourteenth conference on Uncertainty in artificial intelligence, pages 129–138.
Morgan Kaufmann Publishers Inc., 1998.

[Gänssler and Stute 1979] Peter Gänssler and Winfried Stute. Empirical processes: a
survey of results for independent and identically distributed random variables.
The Annals of Probability, pages 193–243, 1979.

[Garcia 2004] Luis David Garcia. Algebraic statistics in model selection. In Proceed-
ings of the 20th conference on Uncertainty in artificial intelligence, pages 177–184.
AUAI Press, 2004.

[Gardiner 1985] Crispin Gardiner. Stochastic methods. Springer Series in Synergetics
(Springer-Verlag, Berlin, 2009), 1985.

[Geiger and Pearl 2013] Dan Geiger and Judea Pearl. On the logic of causal models.
arXiv preprint arXiv:1304.2355, 2013.

[Geiger et al. 1990] Dan Geiger, Thomas Verma, and Judea Pearl. Identifying inde-
pendence in bayesian networks. Networks, 20(5):507–534, 1990.

[Geiger et al. 2001] Dan Geiger, David Heckerman, Henry King, and Christopher
Meek. Stratified exponential families: graphical models and model selection.
Annals of statistics, pages 505–529, 2001.

[Geiger et al. 2013] Dan Geiger, Tom S Verma, and Judea Pearl. d-separation: From
theorems to algorithms. arXiv preprint arXiv:1304.1505, 2013.

[Gelman et al. 2014] Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Ru-
bin. Bayesian data analysis, volume 2. Chapman & Hall/CRC Boca Raton, FL,
USA, 2014.

[Getoor et al. 2002] Lisa Getoor, Nir Friedman, Daphne Koller, and Benjamin Taskar.
Learning probabilistic models of link structure. Journal of Machine Learning Re-
search, 3(Dec):679–707, 2002.

[Ghahramani and Jordan 1994] Zoubin Ghahramani and Michael I Jordan. Super-
vised learning from incomplete data via an em approach. Advances in neural
information processing systems, pages 120–120, 1994.

[Gilks et al. 1994] Wally R Gilks, Andrew Thomas, and David J Spiegelhalter. A lan-
guage and program for complex bayesian modelling. The Statistician, pages
169–177, 1994.

[Gilks et al. 1995] Walter R Gilks, Sylvia Richardson, and David Spiegelhalter. Markov
chain Monte Carlo in practice. CRC press, 1995.

138 bibliography

[Glover and Laguna 2013] Fred Glover and Manuel Laguna. Tabu Searchâ. Springer,
2013.

[Gorry and Barnett 1968] G Anthony Gorry and G Octo Barnett. Experience with a
model of sequential diagnosis. Computers and Biomedical Research, 1(5):490–507,
1968.

[Greenberg 1998] Harvey J Greenberg. Greedy algorithms for minimum spanning
tree. University of Colorado at Denver, 1998.

[Greiner et al. 2005] Russell Greiner, Xiaoyuan Su, Bin Shen, and Wei Zhou. Struc-
tural extension to logistic regression: Discriminative parameter learning of be-
lief net classifiers. Machine Learning, 59(3):297–322, 2005.

[Grinthal and Berkeley Heights 2015] Ted Grinthal and NJ Berkeley Heights. Corre-
lation vs. causation. AMERICAN SCIENTIST, 103(2):84–84, 2015.

[Gu et al. 1994] Yiqun Gu, D Ramanee Peiris, John W Crawford, JW NcNicol, B Mar-
shall, and RA Jefferies. An application of belief networks to future crop pro-
duction. In Artificial Intelligence for Applications, 1994., Proceedings of the Tenth
Conference on, pages 305–309. IEEE, 1994.

[Gyftodimos and Flach 2002] Elias Gyftodimos and Peter A Flach. Hierarchical
bayesian networks: A probabilistic reasoning model for structured domains. In
Proceedings of the ICML-2002 Workshop on Development of Representations, pages
23–30. The university of New South Wales, 2002.

[Hartemink et al. 2002] Alexander J Hartemink, David K Gifford, Tommi S Jaakkola,
and Richard A Young. Bayesian methods for elucidating genetic regulatory
networks. IEEE Intelligent Systems, 17(2):37–43, 2002.

[Hastie et al. 2001] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The ele-
ments of statistical learning. 2001. NY Springer, 2001.

[Hatfield et al. 2006] Julie Hatfield, Gavin J Faunce, and RS Job. Avoiding confusion
surrounding the phrase âcorrelation does not imply causationâ. Teaching of
Psychology, 33(1):49–51, 2006.

[Heckerman et al. 1995a] David Heckerman, Dan Geiger, and David M Chickering.
Learning bayesian networks: The combination of knowledge and statistical data.
Machine learning, 20(3):197–243, 1995.

[Heckerman et al. 1995b] David Heckerman, Abe Mamdani, and Michael P Wellman.
Real-world applications of bayesian networks. Communications of the ACM,
38(3):24–26, 1995.

[Heckerman et al. 2016] David Heckerman, Eric Horvitz, and Bharat N Nathwani. To-
ward normative expert systems part i. Methods of information in medicine, 31,
2016.

[Heckerman 1996] David Heckerman. 1 1 bayesian networks for knowledge discov-
ery. 1996.

[Heckerman 1998] David et. al. Heckerman. A tutorial on learning with bayesian
networks. Nato Asi Series D Behavioural And Social Sciences, 89:301–354, 1998.

bibliography 139

[Hilbe 2011] Joseph M Hilbe. Logistic regression. In International Encyclopedia of Sta-
tistical Science, pages 755–758. Springer, 2011.

[Hoadley 1971] Bruce Hoadley. Asymptotic properties of maximum likelihood es-
timators for the independent not identically distributed case. The Annals of
mathematical statistics, pages 1977–1991, 1971.

[Höffgen 1993] Klaus-U Höffgen. Learning and robust learning of product distribu-
tions. In Proceedings of the sixth annual conference on Computational learning theory,
pages 77–83. ACM, 1993.

[Horas 2014] Horas. Beta distribution, based on the work of krishnavedala (own
work) [public domain], via wikimedia commons. 2014. Accessed: 2018-01-01.

[Howard and Matheson 1984] RA Howard and JE Matheson. Influence diagrams,
the principles and applications of decision analysis (vol. ii). Menlo Park, CA:
Strategic Decisions Group, 1984.

[Howard 1970] Ronald A Howard. Decision analysis: Perspectives on inference, de-
cision, and experimentation. Proceedings of the IEEE, 58(5):632–643, 1970.

[Huang et al. 2006] Chung-Lin Huang, Huang-Chia Shih, and Chung-Yuan Chao. Se-
mantic analysis of soccer video using dynamic bayesian network. IEEE Transac-
tions on Multimedia, 8(4):749–760, 2006.

[Huang et al. 2009] Feixue Huang, Pengfei Gao, and Yu Wang. Comparison of prim
and kruskal on shanghai and shenzhen 300 index hierarchical structure tree. In
Web Information Systems and Mining, 2009. WISM 2009. International Conference
on, pages 237–241. IEEE, 2009.

[Indyk 2004] Piotr Indyk. Nearest neighbors in high-dimensional spaces. 2004.

[Jayakrishnan et al. 1994] R Jayakrishnan, Hani S Mahmassani, and Ta-Yin Hu. An
evaluation tool for advanced traffic information and management systems in
urban networks. Transportation Research Part C: Emerging Technologies, 2(3):129–
147, 1994.

[Jensen 1996] Finn V Jensen. An introduction to Bayesian networks, volume 210. UCL
press London, 1996.

[Johansen and Juselius 1990] Søren Johansen and Katarina Juselius. Maximum like-
lihood estimation and inference on cointegrationâwith applications to the de-
mand for money. Oxford Bulletin of Economics and statistics, 52(2):169–210, 1990.

[John and Langley 1995] George H John and Pat Langley. Estimating continuous
distributions in bayesian classifiers. In Proceedings of the Eleventh conference on
Uncertainty in artificial intelligence, pages 338–345. Morgan Kaufmann Publishers
Inc., 1995.

[Jordan 1998] Michael Irwin Jordan. Learning in graphical models, volume 89. Springer
Science & Business Media, 1998.

[Joyce 2011] James M Joyce. Kullback-leibler divergence. In International Encyclopedia
of Statistical Science, pages 720–722. Springer, 2011.

140 bibliography

[Judea Pearl 1991] TS Vermal J Judea Pearl. Equivalence and synthesis of causal mod-
els. In Proceedings of Sixth Conference on Uncertainty in Artijicial Intelligence, pages
220–227, 1991.

[Kafai and Bhanu 2012] Mehran Kafai and Bir Bhanu. Dynamic bayesian networks
for vehicle classification in video. IEEE Transactions on Industrial Informatics,
8(1):100–109, 2012.

[Kalman 1960] Rudolph Emil et. al. Kalman. A new approach to linear filtering and
prediction problems. Journal of basic Engineering, 82(1):35–45, 1960.

[Kanji 2006] Gopal K Kanji. 100 statistical tests. Sage, 2006.

[Karlin 2014] Samuel Karlin. A first course in stochastic processes. Academic press,
2014.

[Kass and Raftery 1995] Robert E Kass and Adrian E Raftery. Bayes factors. Journal
of the american statistical association, 90(430):773–795, 1995.

[Kearns et al. 1998] Michael Kearns, Yishay Mansour, and Andrew Y Ng. An
information-theoretic analysis of hard and soft assignment methods for clus-
tering. In Learning in graphical models, pages 495–520. Springer, 1998.

[Kemeny and Snell 1960] John G Kemeny and James Laurie Snell. Finite markov
chains, volume 356. van Nostrand Princeton, NJ, 1960.

[Kim 2000] Hongseok Kim. Stochastic model based audio watermark and whitening
filter for improved detection. In Acoustics, Speech, and Signal Processing, 2000.
ICASSP’00. Proceedings. 2000 IEEE International Conference on, volume 4, pages
1971–1974. IEEE, 2000.

[Klein et al. 2011] Richard Klein, Angelo Kyrilov, and Mayya Tokman. Automated
assessment of short free-text responses in computer science using latent seman-
tic analysis. In Proceedings of the 16th annual joint conference on Innovation and
technology in computer science education, pages 158–162. ACM, 2011.

[Klugh 2013] Henry E Klugh. Statistics: The essentials for research. Psychology Press,
2013.

[Koivisto and Sood 2004] Mikko Koivisto and Kismat Sood. Exact bayesian struc-
ture discovery in bayesian networks. Journal of Machine Learning Research,
5(May):549–573, 2004.

[Kok and Domingos 2005] Stanley Kok and Pedro Domingos. Learning the structure
of markov logic networks. In Proceedings of the 22nd international conference on
Machine learning, pages 441–448. ACM, 2005.

[Koller and Friedman 2009] Daphne Koller and Nir Friedman. Probabilistic graphical
models: principles and techniques. (Chapter 16; 17; 18; and 19). MIT press, 2009.

[Komarek and Moore 2000] Paul Komarek and Andrew W Moore. A dynamic adap-
tation of ad-trees for efficient machine learning on large data sets. In ICML,
pages 495–502, 2000.

bibliography 141

[Koski and Noble 2011] Timo Koski and John Noble. Bayesian networks: an introduc-
tion, volume 924. John Wiley & Sons, 2011.

[Krishnapuram et al. 2005] Balaji Krishnapuram, Lawrence Carin, Mario AT
Figueiredo, and Alexander J Hartemink. Sparse multinomial logistic re-
gression: Fast algorithms and generalization bounds. IEEE transactions on
pattern analysis and machine intelligence, 27(6):957–968, 2005.

[Kschischang et al. 2001] Frank R Kschischang, Brendan J Frey, and H-A Loeliger.
Factor graphs and the sum-product algorithm. IEEE Transactions on information
theory, 47(2):498–519, 2001.

[Kullback 1997] Solomon Kullback. Information theory and statistics. Courier Corpora-
tion, 1997.

[Lam and Bacchus 1993] Wai Lam and Fahiem Bacchus. Using causal information
and local measures to learn bayesian networks. In Proceedings of the Ninth inter-
national conference on Uncertainty in artificial intelligence, pages 243–250. Morgan
Kaufmann Publishers Inc., 1993.

[Lauritzen and Spiegelhalter 1988] Steffen L Lauritzen and David J Spiegelhalter. Lo-
cal computations with probabilities on graphical structures and their applica-
tion to expert systems. Journal of the Royal Statistical Society. Series B (Methodolog-
ical), pages 157–224, 1988.

[Lauritzen 1995] Steffen L Lauritzen. The em algorithm for graphical association
models with missing data. Computational Statistics & Data Analysis, 19(2):191–
201, 1995.

[Lee et al. 2007] Su-In Lee, Varun Ganapathi, and Daphne Koller. Efficient structure
learning of markov networks using l_1-regularization. In Advances in neural
Information processing systems, pages 817–824, 2007.

[Lehmann and Romano 2006] Erich L Lehmann and Joseph P Romano. Testing statis-
tical hypotheses. Springer Science & Business Media, 2006.

[Lehn 2017] Christian Lehn. Maximum likelihood estimation. 2017.

[Levitt et al. 2013] Tod S Levitt, John Mark Agosta, and Thomas O Binford. Model-
based influence diagrams for machine vision. arXiv preprint arXiv:1304.1517,
2013.

[Lewis 1998] David D Lewis. Naive (bayes) at forty: The independence assumption
in information retrieval. In European conference on machine learning, pages 4–15.
Springer, 1998.

[Little and Rubin 2014] Roderick JA Little and Donald B Rubin. Statistical analysis
with missing data. John Wiley & Sons, 2014.

[Little 1976] Roderick JA Little. Inference about means from incomplete multivariate
data. Biometrika, 63(3):593–604, 1976.

[Liu et al. 1996] Chi-Shi Liu, Hsiao-Chuan Wang, and C Lee. Speaker verification
using normalized log-likelihood score. IEEE Transactions on speech and audio
processing, 4(1):56, 1996.

142 bibliography

[Madsen et al. 2017] Anders L Madsen, Frank Jensen, Antonio Salmerón, Helge
Langseth, and Thomas D Nielsen. A parallel algorithm for bayesian network
structure learning from large data sets. Knowledge-Based Systems, 117:46–55,
2017.

[Mcauliffe and Blei 2008] Jon D Mcauliffe and David M Blei. Supervised topic mod-
els. In Advances in neural information processing systems, pages 121–128, 2008.

[McCallum and Nigam 1998] Andrew McCallum and Kamal Nigam. A comparison
of event models for naive bayes text classification. In AAAI-98 workshop on
learning for text categorization, volume 752, pages 41–48. Madison, WI, 1998.

[McLachlan and Krishnan 2007] Geoffrey McLachlan and Thriyambakam Krishnan.
The EM algorithm and extensions, volume 382. John Wiley & Sons, 2007.

[Meek 1995] Christopher Meek. Causal inference and causal explanation with back-
ground knowledge. In Proceedings of the Eleventh conference on Uncertainty in
artificial intelligence, pages 403–410. Morgan Kaufmann Publishers Inc., 1995.

[Meek 2001] Christopher Meek. Finding a path is harder than finding a tree. J. Artif.
Intell. Res. (JAIR), 15:383–389, 2001.

[Minka and Lafferty 2002] Thomas Minka and John Lafferty. Expectation-
propagation for the generative aspect model. In Proceedings of the Eighteenth
conference on Uncertainty in artificial intelligence, pages 352–359. Morgan Kauf-
mann Publishers Inc., 2002.

[Minka 2001] Thomas P Minka. Expectation propagation for approximate bayesian
inference. In Proceedings of the Seventeenth conference on Uncertainty in artificial
intelligence, pages 362–369. Morgan Kaufmann Publishers Inc., 2001.

[Minka 2005] Tom Minka. Divergence measures and message passing. Technical report,
Technical report, Microsoft Research, 2005.

[Mohammadi and Wit 2015] Abdolreza Mohammadi and Ernst C Wit. Bayesian
structure learning in sparse gaussian graphical models. Bayesian Analysis,
10(1):109–138, 2015.

[Moore and Essa 2002] Darnell Moore and Irfan Essa. Recognizing multitasked ac-
tivities from video using stochastic context-free grammar. In AAAI/IAAI, pages
770–776, 2002.

[Moore and Lee 1998] AW Moore and Mary Soon Lee. Cached sufficient statistics
for efficient machine learning with large datasets. Journal of Artificial Intelligence
Research, 8(3):67–91, 1998.

[Moore and Wong 2003] Andrew Moore and Weng-Keen Wong. Optimal reinsertion:
A new search operator for accelerated and more accurate bayesian network
structure learning. In ICML, volume 3, pages 552–559, 2003.

[Moore 2000] Andrew W Moore. The anchors hierarchy: Using the triangle inequal-
ity to survive high dimensional data. In Proceedings of the Sixteenth conference on
Uncertainty in artificial intelligence, pages 397–405. Morgan Kaufmann Publishers
Inc., 2000.

bibliography 143

[Murphy and Russell 2002] Kevin Patrick Murphy and Stuart Russell. Dynamic
bayesian networks: representation, inference and learning. 2002.

[Murphy 1998] Kevin Murphy. A brief introduction to graphical models and
bayesian networks. 1998.

[Murphy 2012] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT
press, 2012.

[Nadi et al. 1991] Fariborz Nadi, Alice M Agogino, and David A Hodges. Use of
influence diagrams and neural networks in modeling semiconductor manufac-
turing processes. IEEE Transactions on Semiconductor Manufacturing, 4(1):52–58,
1991.

[Neal and Hinton 1998] Radford M Neal and Geoffrey E Hinton. A view of the em
algorithm that justifies incremental, sparse, and other variants. In Learning in
graphical models, pages 355–368. Springer, 1998.

[Nielsen et al. 2002] Jens D Nielsen, Tomáš Kočka, and Jose M Peña. On local optima
in learning bayesian networks. In Proceedings of the Nineteenth conference on Un-
certainty in Artificial Intelligence, pages 435–442. Morgan Kaufmann Publishers
Inc., 2002.

[Oliver and Horvitz 2005] Nuria Oliver and Eric Horvitz. A comparison of hmms
and dynamic bayesian networks for recognizing office activities. User Modeling
2005, pages 149–149, 2005.

[Opgen-Rhein and Strimmer 2007] Rainer Opgen-Rhein and Korbinian Strimmer.
From correlation to causation networks: a simple approximate learning algo-
rithm and its application to high-dimensional plant gene expression data. BMC
systems biology, 1(1):37, 2007.

[Ortiz and Kaelbling 1999] Luis E Ortiz and Leslie Pack Kaelbling. Accelerating em:
An empirical study. In Proceedings of the Fifteenth conference on Uncertainty in
artificial intelligence, pages 512–521. Morgan Kaufmann Publishers Inc., 1999.

[Papageorgiou 1990] Markos Papageorgiou. Dynamic modeling, assignment, and
route guidance in traffic networks. Transportation Research Part B: Methodological,
24(6):471–495, 1990.

[Pavlovic et al. 1999] Vladimir Pavlovic, James M Rehg, Tat-Jen Cham, and Kevin P
Murphy. A dynamic bayesian network approach to figure tracking using
learned dynamic models. In Computer Vision, 1999. The Proceedings of the Sev-
enth IEEE International Conference on, volume 1, pages 94–101. IEEE, 1999.

[Pearl and Verma 1995] Judea Pearl and Thomas S Verma. A theory of inferred cau-
sation. Studies in Logic and the Foundations of Mathematics, 134:789–811, 1995.

[Pearl 1988] Judea Pearl. Probabilistic reasoning in intelligent systems. palo alto. Mor-
gan Kaufmann. PEAT, J., VAN DEN BERG, R., & GREEN, W.(1994). Changing preva-
lence of asthma in australian children. British Medical Journal, 308:1591–1596, 1988.

[Pearl 2011] Judea Pearl. Bayesian networks. Department of Statistics, UCLA, 2011.

144 bibliography

[Pearl 2014] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausi-
ble inference. Morgan Kaufmann, 2014.

[Peelen et al. 2010] Linda Peelen, Nicolette F de Keizer, Evert de Jonge, Robert-Jan
Bosman, Ameen Abu-Hanna, and Niels Peek. Using hierarchical dynamic
bayesian networks to investigate dynamics of organ failure in patients in the
intensive care unit. Journal of biomedical informatics, 43(2):273–286, 2010.

[Pepe and Mori 1993] Margaret Sullivan Pepe and Motomi Mori. Kaplanâmeier,
marginal or conditional probability curves in summarizing competing risks fail-
ure time data? Statistics in medicine, 12(8):737–751, 1993.

[Perriere and Thioulouse 2003] Guy Perriere and Jean Thioulouse. Use of correspon-
dence discriminant analysis to predict the subcellular location of bacterial pro-
teins. Computer methods and programs in biomedicine, 70(2):99–105, 2003.

[Pólya 1937] George Pólya. Kombinatorische anzahlbestimmungen für gruppen,
graphen und chemische verbindungen. Acta mathematica, 68(1):145–254, 1937.

[Press 1989] S James Press. Bayesian statistics: principles, models, and applications, vol-
ume 210. John Wiley & Sons Inc, 1989.

[Rabiner and Juang 1986] Lawrence Rabiner and B Juang. An introduction to hidden
markov models. ieee assp magazine, 3(1):4–16, 1986.

[Rabiner 1989] Lawrence R Rabiner. A tutorial on hidden markov models and se-
lected applications in speech recognition. Proceedings of the IEEE, 77(2):257–286,
1989.

[Renooij and van der Gaag 2002] Silja Renooij and Linda C van der Gaag. From qual-
itative to quantitative probabilistic networks. In Proceedings of the Eighteenth con-
ference on Uncertainty in artificial intelligence, pages 422–429. Morgan Kaufmann
Publishers Inc., 2002.

[Rish 2001] Irina Rish. An empirical study of the naive bayes classifier. In IJCAI 2001
workshop on empirical methods in artificial intelligence, volume 3, pages 41–46. IBM,
2001.

[Rissanen 1987] Jorma Rissanen. Stochastic complexity. Journal of the Royal Statistical
Society. Series B (Methodological), pages 223–239, 1987.

[Rubin 1976] Donald B Rubin. Inference and missing data. Biometrika, pages 581–592,
1976.

[Rusakov and Geiger 2005] Dmitry Rusakov and Dan Geiger. Asymptotic model
selection for naive bayesian networks. Journal of Machine Learning Research,
6(Jan):1–35, 2005.

[Sachs et al. 2005] Karen Sachs, Omar Perez, Dana Pe’er, Douglas A Lauffenburger,
and Garry P Nolan. Causal protein-signaling networks derived from multipa-
rameter single-cell data. Science, 308(5721):523–529, 2005.

[Sakamoto and Ghanem 2002] Shigehiro Sakamoto and Roger Ghanem. Polynomial
chaos decomposition for the simulation of non-gaussian nonstationary stochas-
tic processes. Journal of engineering mechanics, 128(2):190–201, 2002.

bibliography 145

[Salmon 1984] Wesley Salmon. Scientific explanation and the causal structure of the
world. 1984.

[Schachter and Heckerman 1987] Ross D Schachter and David Heckerman. Thinking
backward for knowledge acquisition. AI magazine, 8(3):55, 1987.

[Schervish 2012] Mark J Schervish. Theory of statistics. Springer Science & Business
Media, 2012.

[Scholz 1985] FW Scholz. Maximum likelihood estimation. Encyclopedia of statistical
sciences, 1985.

[Schum 1994] David A Schum. The evidential foundations of probabilistic reasoning.
Northwestern University Press, 1994.

[Schwarz and others 1978] Gideon Schwarz et al. Estimating the dimension of a
model. The annals of statistics, 6(2):461–464, 1978.

[Schweppe 1973] Fred C Schweppe. Uncertain dynamic systems. Prentice Hall, 1973.

[Settimi and Smith 1998] Raffaella Settimi and Jim Q Smith. On the geometry of
bayesian graphical models with hidden variables. In Proceedings of the Four-
teenth conference on Uncertainty in artificial intelligence, pages 472–479. Morgan
Kaufmann Publishers Inc., 1998.

[Shafer 1976] Glenn et.al. Shafer. A mathematical theory of evidence, volume 1. Prince-
ton university press Princeton, 1976.

[Shinde and Prasad 2017] Tejaswinee A Shinde and Jayashree R Prasad. Iot based
animal health monitoring with naive bayes classification. IJETT, 1(2), 2017.

[Silander and Myllymaki 2012] Tomi Silander and Petri Myllymaki. A simple ap-
proach for finding the globally optimal bayesian network structure. arXiv
preprint arXiv:1206.6875, 2012.

[Singh and Moore 2005] Ajit P Singh and Andrew W Moore. Finding optimal
bayesian networks by dynamic programming. 2005.

[Smith 1989] JQ Smith. Influence diagrams for statistical modelling. The Annals of
Statistics, pages 654–672, 1989.

[Smyth et al. 1997] Padhraic Smyth, David Heckerman, and Michael I Jordan. Proba-
bilistic independence networks for hidden markov probability models. Neural
computation, 9(2):227–269, 1997.

[Spetzler and Stael von Holstein 1975] Carl S Spetzler and Carl-Axel S Stael von Hol-
stein. Exceptional paperâprobability encoding in decision analysis. Management
science, 22(3):340–358, 1975.

[Spiegelhalter et al. 1993] David J Spiegelhalter, A Philip Dawid, Steffen L Lauritzen,
and Robert G Cowell. Bayesian analysis in expert systems. Statistical science,
pages 219–247, 1993.

[Spirtes et al. 2000] Peter Spirtes, Clark N Glymour, and Richard Scheines. Causation,
prediction, and search. MIT press, 2000.

146 bibliography

[Sun et al. 2006] Shiliang Sun, Changshui Zhang, and Guoqiang Yu. A bayesian net-
work approach to traffic flow forecasting. IEEE Transactions on intelligent trans-
portation systems, 7(1):124–132, 2006.

[Suzuki 1993] Joe Suzuki. A construction of bayesian networks from databases based
on an mdl principle. In Proceedings of the Ninth international conference on Uncer-
tainty in artificial intelligence, pages 266–273. Morgan Kaufmann Publishers Inc.,
1993.

[Suzuki 2017] Joe Suzuki. An efficient bayesian network structure learning strategy.
New Generation Computing, 35(1):105–124, 2017.

[Tamura et al. 1991] Y Tamura, T Sato, M Ooe, and M Ishiguro. A procedure for tidal
analysis with a bayesian information criterion. Geophysical Journal International,
104(3):507–516, 1991.

[Tanner and Wong 1987] Martin A Tanner and Wing Hung Wong. The calculation of
posterior distributions by data augmentation. Journal of the American statistical
Association, 82(398):528–540, 1987.

[Tanner 1991] Martin A Tanner. Tools for statistical inference, volume 3. Springer, 1991.

[Tenenbaum et al. 2011] Joshua B Tenenbaum, Charles Kemp, Thomas L Griffiths,
and Noah D Goodman. How to grow a mind: Statistics, structure, and ab-
straction. science, 331(6022):1279–1285, 2011.

[Teyssier and Koller 2012] Marc Teyssier and Daphne Koller. Ordering-based search:
A simple and effective algorithm for learning bayesian networks. arXiv preprint
arXiv:1207.1429, 2012.

[Thiesson 1995] Bo Thiesson. Accelerated quantification of Bayesian networks with incom-
plete data. University of Aalborg, Institute for Electronic Systems, Department
of Mathematics and Computer Science, 1995.

[Tompkins and Lawley 2009] Penny Tompkins and James Lawley. Opinions on
global optimum. 2009. http://www.writeopinions.com/global-optimum. Ac-
cessed: 2010-09-30.

[Tompkins and Lawley 2013] Penny Tompkins and James Lawley. Applying
cross-domain thinking. 2013. http://www.cleanlanguage.co.uk/articles/

articles/337/1/Applying-Cross-Domain-Thinking/Page1.html. Accessed:
2010-09-30.

[Tsamardinos et al. 2006] Ioannis Tsamardinos, Laura E Brown, and Constantin F Al-
iferis. The max-min hill-climbing bayesian network structure learning algo-
rithm. Machine learning, 65(1):31–78, 2006.

[Tversky and Kahneman 1975] Amos Tversky and Daniel Kahneman. Judgment un-
der uncertainty: Heuristics and biases. In Utility, probability, and human decision
making, pages 141–162. Springer, 1975.

[Van Kampen 1992] Nicolaas Godfried Van Kampen. Stochastic processes in physics
and chemistry, volume 1. Elsevier, 1992.

http://www.writeopinions.com/global-optimum
http://www.cleanlanguage.co.uk/articles/articles/337/1/Applying-Cross-Domain-Thinking/Page1.html
http://www.cleanlanguage.co.uk/articles/articles/337/1/Applying-Cross-Domain-Thinking/Page1.html

bibliography 147

[Varadarajan et al. 2010] Jagan Varadarajan, Rémi Emonet, and Jean-Marc Odobez.
A sparsity constraint for topic models-application to temporal activity mining.
2010.

[Verma and Pearl 1992] Thomas Verma and Judea Pearl. An algorithm for deciding
if a set of observed independencies has a causal explanation. In Proceedings
of the Eighth international conference on uncertainty in artificial intelligence, pages
323–330. Morgan Kaufmann Publishers Inc., 1992.

[Verma and Pearl 2013] Tom S Verma and Judea Pearl. Causal networks: Semantics
and expressiveness. arXiv preprint arXiv:1304.2379, 2013.

[Wainwright et al. 2008] Martin J Wainwright, Michael I Jordan, et al. Graphical mod-
els, exponential families, and variational inference. Foundations and Trends R© in
Machine Learning, 1(1–2):1–305, 2008.

[Wang et al. 2008] Peng Wang, Peter B Luh, Shi-Chung Chang, and Jin Sun. Modeling
and optimization of crowd guidance for building emergency evacuation. In Au-
tomation Science and Engineering, 2008. CASE 2008. IEEE International Conference
on, pages 328–334. IEEE, 2008.

[Warner et al. 1961] Homer R Warner, Alan F Toronto, L George Veasey, and Robert
Stephenson. A mathematical approach to medical diagnosis: application to
congenital heart disease. Jama, 177(3):177–183, 1961.

[Weber and Jouffe 2003] Philippe Weber and Lionel Jouffe. Reliability modelling
with dynamic bayesian networks. IFAC Proceedings Volumes, 36(5):57–62, 2003.

[Weber et al. 2012] Philippe Weber, Gabriela Medina-Oliva, Christophe Simon, and
Benoît Iung. Overview on bayesian networks applications for dependability,
risk analysis and maintenance areas. Engineering Applications of Artificial Intelli-
gence, 25(4):671–682, 2012.

[Wellman 1990] Michael P Wellman. Fundamental concepts of qualitative probabilis-
tic networks. Artificial intelligence, 44(3):257–303, 1990.

[West 1996] Mike West. Bayesian forecasting. Wiley Online Library, 1996.

[Wolbrecht et al. 2000] Eric Wolbrecht, Bruce D’ambrosio, Robert Paasch, and Doug
Kirby. Monitoring and diagnosis of a multistage manufacturing process using
bayesian networks. Ai Edam, 14(1):53–67, 2000.

[Wright 1921] Sewall Wright. Correlation and causation. Journal of agricultural re-
search, 20(7):557–585, 1921.

[Wright 1934] Sewall Wright. The method of path coefficients. The annals of mathemat-
ical statistics, 5(3):161–215, 1934.

[Zhao et al. 2011] Wayne Xin Zhao, Jing Jiang, Jianshu Weng, Jing He, Ee-Peng Lim,
Hongfei Yan, and Xiaoming Li. Comparing twitter and traditional media using
topic models. In European Conference on Information Retrieval, pages 338–349.
Springer, 2011.

148 bibliography

[Zou and Feng 2009] Cunlu Zou and Jianfeng Feng. Granger causality vs. dynamic
bayesian network inference: a comparative study. BMC bioinformatics, 10(1):122,
2009.

[Zweig and Russell 1998] Geoffrey Zweig and Stuart Russell. Speech recognition
with dynamic bayesian networks. 1998.

colophon

This document was typeset using the typographical look-and-feel classicthesis de-
veloped by André Miede. The original code was reworked by the author of this thesis.
The style was inspired by Robert Bringhurst’s seminal book on typography “The Ele-
ments of Typographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to André Miede, a collec-
tion of postcards received so far is featured here:

http://postcards.miede.de/

http://code.google.com/p/classicthesis/
http://postcards.miede.de/

	Dedication
	Abstract
	Related Papers
	Acknowledgements
	Declaration
	Contents

	1 Introduction
	1.1 Introduction
	1.2 Problem Statement
	1.3 Overview of Literature
	1.4 Overview of Method
	1.5 Novelty and Contribution
	1.6 Thesis Structure

	2 Background
	2.1 Introduction
	2.2 Bayesian Networks: Representation
	2.2.1 Bayesian Networks
	2.2.1.1 What is a Bayesian Network?
	2.2.1.2 I-maps and I-equivalence
	2.2.1.3 Naïve Bayes Model

	2.2.2 Dynamic Bayesian Models
	2.2.2.1 Markov Systems
	2.2.2.2 Time Invariance
	2.2.2.3 What is a Dynamic Bayesian Network?
	2.2.2.4 Hierarchical Bayesian Networks

	2.3 Bayesian Networks: Learning
	2.3.1 Parameter Estimation
	2.3.1.1 Maximum Likelihood Estimation
	2.3.1.2 Bayesian Learning
	2.3.1.3 Learning Latent Variables

	3 Related Work
	3.1 Introduction
	3.2 The Likelihood Score
	3.3 The Bayesian Information Criterion
	3.4 The Bayesian Score
	3.5 Learning Tree-structured Networks
	3.6 Learning General Graph-structured Networks
	3.7 Structure Learning Complexity

	4 The Representation of Dynamic Influence
	4.1 Introduction
	4.2 Influence Networks
	4.2.1 Influence Structure
	4.2.2 Independency Maps
	4.2.3 Factorisation of Influence Networks
	4.2.4 Influence Networks
	4.2.5 Independency Equivalence

	4.3 Dynamic Influence Networks
	4.3.1 Context
	4.3.2 Assumptions
	4.3.2.1 Time Granularity
	4.3.2.2 The Markov Assumption
	4.3.2.3 The Time-Invariance Assumption

	4.3.3 Dynamic Influence Networks

	4.4 Inference on Influence Networks
	4.5 Importance of Influence Structures

	5 Structure Scores and Assembles
	5.1 Introduction
	5.2 Structure Scores
	5.2.1 The Likelihood Score
	5.2.1.1 Scoring Influence Models
	5.2.1.2 Scoring Dynamic Bayesian Networks
	5.2.1.3 Influence between Hierarchical Dynamic Bayesian Networks

	5.2.2 The Dynamic Bayesian Information Criterion (d-BIC)

	5.3 Structure Assembles
	5.3.1 The Direct Assemble Subgroup
	5.3.2 The Delayed Assemble Subgroup
	5.3.3 Empirical Analysis of Structure Assembles

	6 Influence Structure Search
	6.1 Introduction
	6.2 Influence Structure Selection
	6.3 Learning Mutually Independent Models
	6.3.1 Expectation Maximisation

	6.4 Learning Tree-structured Influence Networks
	6.5 Learning Graph-structured Influence Networks
	6.5.1 The Search Space
	6.5.2 Local Search Procedure
	6.5.3 Computational Complexity and Savings

	7 Experimental Results
	7.1 Introduction
	7.2 Learning in the Non-Dynamic Case
	7.3 Learning Influence Between HMMs
	7.3.1 Learning Direct Influence Between HMMs
	7.3.2 Learning Delayed Influence between HMMs

	7.4 Learning General Hierarchical Dynamic Bayesian Networks
	7.5 Discussion of Results
	7.5.1 Ability to Recover the Ground-truth
	7.5.2 Execution Time to Recover the Ground-truth
	7.5.3 Availability of Data
	7.5.4 Domain Knowledge
	7.5.5 Penalty Scores
	7.5.6 Learning Latent Parameters
	7.5.7 Generalisation of Learning Tasks

	8 Conclusion
	8.1 Summary
	8.2 Learning a DIN for Knowledge Discovery and Density Estimation
	8.3 Major Contributions
	8.4 Future Work

	Appendix
	A Algorithms
	A.1 Example of data

	Bibliography
	Colophon

