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Abstract

We study matrix models as a toy model for N = 4 Super Yang-Mills (SYM) theory which is a
quantum field theory. In particular we are interested in the gauge/gravity duality which conjectures
an equivalence between N = 4 SYM and IIB string theory on AdS5×S5. We discuss the planar
’t Hooft limit where we fix λ = g2

YMN while taking N → ∞. In this limit we find 1/N2 in the
matrix model is equivalent to ~ of the string theory. When we study the N dependence of ribbon
graphs, we find that the 1

N
expansion in the gauge theory can be interpreted as a sum over surfaces

suggestive of the perturbation expansion of a closed string theory. We then consider a non-planar
but large N limit, allowing us to discuss the giant graviton. We find that the group representation
theory of the symmetric group and unitary group organizes the physics of giant gravitons. We
compute two, three and multi point functions of giant graviton operators. The large N expansion
of giant graviton correlators is considered. Giant gravitons are described using operators with a
bare dimension of order N . In this case the usual 1/N expansion is not applicable and there are
contributions to the correlator that are non-perturbative in character. The machinery needed to
determine the non-pertubative physics form the pertubative contributions is the origin of the term
resurgence. By writing the (square of the) correlators in terms of the hypergeometric function

2F1(a, b; c; 1), we clarify the structure of the 1/N expansion.
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1. Introduction

Pertubation theory is a systematic technique to explore the weak coupling limit of a quantum field
theory. When the coupling is small enough, it gives accurate results. It makes the assumption
that the observable being studied admits a power series expansion in the coupling constant of the
theory. Although this assumption leads to a useful practical calculational scheme, it is usually
wrong. Most obervables recieve non-pertubative contributions, which can’t be expanded as a
power series in the coupling. A remarkable recent discovery, called resurgence, provides a deep
and unexpected link between pertubative and non-pertubative contributions [1]. Indeed, the
non-pertubative contributions are completely determined by the pertubation series.

In many quantum field theories, the sources of the non-pertubative contributions can be identified.
An important example is provided by instanton contributions [2]. These are non-trivial saddle
points of the Euclidean action that play a crucial role in determining the vacuum structure of
the theory. For theories of quantum gravity, where we do not have a complete description in
terms of an action, determing these non-pertubative contributions may seem like a hopeless task.
The goal of this MSc is to show that, by using the ideas and framework of resurgence, these
non-pertubative contributions can be identified.

The setting for our study is the 1
2

BPS sector of N = 4 super Yang-Mills theory. This sector of
the theory preserves one half of the supersymmetry of the theory and, as a result, the correlation
functions of the theory do not recieve any ~ corrections. This implies that it is possible to
compute these correlators exactly [3, 4], expand them and then study the features of the resulting
expansion. The dual description of this sector of the theory is also well understood making it the
ideal setting in which to explore holography.

N = 4 super Yang-Mills theory is holographically dual to string theory on asymptotically AdS5×S5

spacetime [5, 6, 7]. This implies that all excitations appearing in the spectrum of string theory
must appear in the CFT Hilbert space. The usual perturbative spectrum (which consists of
supergravity excitations, as well as closed strings) is captured by the planar limit of the dual
CFT [8]. There are also many non-perturbative objects, including branes[9, 10, 11, 12] and LLM
spacetime geometries [13], an interesting example being spacetimes containing black holes, that
must be found in the CFT Hilbert space [14, 15]. These non-perturbative configurations are dual
to operators with a bare dimension that grows parametrically with N (∼ N for branes or ∼ N2

for new spacetime geometries). To explain how this works, we consider the half-BPS sector where
a useful basis for the operators of the theory is given by the Schur polynomials. Consider a Schur
polynomial labeled by a Young diagram consisting of a single column, χ(1J )(Z) of J boxes. For
J ∼ O(1) the operator is dual to a collection of (point like) KK-gravitons. As J is increased to
J ∼ O(

√
N) long single trace operators dual to stringy states start to participate. Increasing J

further to O(N) we obtain a giant graviton brane. Thus, the dual to the single CFT operator
χ(1J )(Z) transitions through different physical descriptions (particles, strings and branes) as the
parameter J is varied. It is natural to ask how these different partial representations are combined
into a single coherent description.

The character of the large N expansion changes in transition between these different partial
representations. For J �

√
N we can take the usual ’t Hooft limit and the large N theory is just
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the planar limit. As N goes to infinity and J �
√
N one must sum much more than just the

planar diagrams (see [9, 16] for clear and relevant discussions). For this reason we will refer to
these limits as large N but non-planar limits. In large N but non-planar limits one does not have
the usual 1/N expansion. The ribbon graph expansion is not of much help because enormous
combinatorial factors imply that the usual higher genus suppression is overwhelmed by the sheer
number of diagrams of a given topology[9]. Different trace structures do mix and it is not at all
clear how the large N expansion can usefully be organized. This is a key question that we wish to
address, albeit in the limited setting of a specific example. A nice class of correlators that we will
use to explore this issue are three point functions of 1

2
-BPS operators as well as extremal n-point

functions of 1
2
-BPS operators. There are rigorous non-renormalization theorems[18] that prove

that these correlators do not receive ’t Hooft coupling corrections. Thus, they can be computed
exactly, in the free field theory limit. Even this problem is one of considerable complexity, due to
the very large dimensions of the operators. Fortunately, using group representation theory, this
problem has been solved exactly, as we briefly review in Section 3 and Section 5. Our goal here
is to explain the structure of the 1/N expansion for some correlation functions of giant graviton
branes. In this way we will take a small first step towards defining the structure of the 1/N
expansion in large N but non-planar limits.

Since ~ of the dual gravitational system is 1/N , the different large N limits that can be taken lead
to different classical configurations of the gravitational theory [6]. This is inline with conventional
wisdom: when performing a path integral quantization there are many possible saddle points
so that typically a quantum system has many perturbative series, each associated to a different
classical configuration. These series are the basic building block in many computations. Although
summing a few terms gives a good approximation, these series are almost always divergent.
One needs a theory that can organize these different series into a coherent description of the
quantum system. This is precisely what the theory of resurgence does. The first step entails
converting the divergent series into meaningful objects by Borel resummation in the perturbation
parameter. Typically one considers a loop expansion and the small parameter is ~. The second
step entails exhibiting a relation between the different series, which is manifested through the
Stokes phenomenon1. This relation implies that, given a specific series, the discontinuities of its
Borel transform encode the information about other series in the problem. In this way, one can
(for example) synthesize the usual perturbative expansion, together with the expansions in the
(typically many) different instanton sectors, to recover exact results. From this point of view,
the Stokes lines of the perturbative expansion simply demarcate where contributions from other
saddle points become dominant.

Given this discussion, it seems that resurgence has a crucial role to play in understanding the
large N limit of Yang-Mills theories. Specifically, resurgence should be relevant to understand
how the different representations (i.e. the different possible large N limits) fit together to provide
a complete and coherent description. If the ideas of resurgence are relevant, there should be a
Stokes phenomenon present as the parameter J (and not ~) is varied. As a first step in exploring
this possibility, we will look for and exhibit this Stokes phenomenon in this dissertation. To
approach this problem we use the exact WKB method[19]. The different perturbative series

1The Stokes phenomenon is the basic fact that, in general, Borel resummations are discontinuous along rays
in the complex plane. These rays are the Stokes and anti-Stokes lines.
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that appear are the WKB series around different classical trajectories. The basic objects are the
(Borel resummed) perturbative series in ~. The series can be characterized by two types of data:
their classical limit and their discontinuity structure [19, 20, 21], which is encoded in the action
of the so-called Stokes automorphisms. A simple characterization of the Stokes discontinuities
is in terms of Voros symbols, which are simply the exponent of the WKB series. Our analysis
starts with the observation that the (square of the) correlators we compute can be expressed in
terms of the hypergeometric 2F1(a, b, c, x) function. This is a useful observation because the
differential equation obeyed by the hypergeometric function is easily mapped into a Schrödinger
equation, which can be approached using an exact WKB analysis. The relevant Schrödinger
equation has 1/N playing the role of ~ so that the WKB expansion of the wave function of
this Schrödinger equation gives the 1/N expansion of our correlator. Fortunately, the relevant
Schrödinger equation has been studied in detail in [22, 23, 24, 25, 26]. In particular, the Voros
symbols have been studied and their singularity structure in the WKB plane is well understood.
The relevant WKB solutions have been proved to be Borel summable[27]. The solutions do
exhibit Stokes phenomena in the parameter J and this has been studied in detail: the Stokes
lines and Stokes regions for this equation can be described quite explicitly and connection formulas
relating solutions in different Stokes domains are known. This implies that the singularities of the
Borel transforms of the WKB solutions are well understood and that the Alien calculus for this
problem is completely worked out[22, 23, 24, 25, 26]. These are the only ingredients needed to
give the trans-series expansion for the hypergeometric function and hence of our giant graviton
correlators. In Section 7 the exact WKB method is applied to unravel the structure of the large
N expansion of the giant graviton correlation functions.

A key result of this project is the expansion of extremal n-point correlation functions of normalized
Schur polynomial operators OJ , labeled either by a single column or a single row containing J
boxes with J of order N . It is useful to introduce the parameters j ≡ J

N
which are held fixed as

we take N →∞. The expansion is of the form

〈OJ1 · · ·OJkO
†
J1+···+Jk〉 =

eαN√
N

∞∑
n=k−1

cnN
−n (1.1)

The coefficients α and cn are functions of the fixed parameters j1, j2, · · · jk. We find that α
can be both positive and negative. The series (1.1) is an asymptotic series. For the special
case of three point functions we discuss the Borel summation of the series and gives the Stokes
region in which the resummation converges. The details of the Stokes regions depend on the
parameters (functions of the jis) appearing in the Schrödinger equation, so that we can dissect
the (complex) parameter space into regions with the topology of the Stokes graph constant in
each region. The boundary of the region relevant for the three giant graviton correlator has a
transparent physical interpretation and corresponds to points at which a giant shrinks to zero
size or expands to maximal size. These are exactly the limits of the giant graviton description,
so that this parametric Stokes phenomenon does indeed seem to be connected to the transition
from one physical representation to another. Identifying the coupling gs = N−1 we see that
(1.1) is a particularly simply transeries with a single nonperturbative term parameter eαN = e

α
gs .

These non-perturbative contributions have been identified[28] with instantons in the tiny graviton
matrix model[29] description of giant gravitons. Finally in Section 8 we discuss our results and
suggest some possible directions for further study.
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2. The Planar Limit of Matrix Models as
a Free String Theory

In this chapter, the techniques needed to study the planar limit of matrix models are reviewed.
Our goal is to demonstrate the equivalence of the planar limit of a matrix model and a free string
theory. Firstly, we will study the free theory by defining the model and the generating function of
interest. After a thorough study of the free theory, the more complicated case of an interacting
theory is examined, in the next section. This amounts to adding an interaction term to the free
theory and studying its effect perturbatively. We will introduce the Feyman diagram expansion.
The Feynman diagrams for the matrix model are called ribbon graphs. Using ribbon graphs to
study correlation functions of the trace operators, we will show that the large N limit simplifies
dramatically. The key to this simplification is factorization, which implies that the theory is in a
classical limit. We also define the ’t Hooft limit and use it to define the genus expansion.

2.1 Free field theory

The elementary field of the theory is a Hermitian matrix M . Recall that Hermitian matrices have
the following defining properties:

• There are N diagonal elements which are all real.

• The elements below the diagonal are the complex conjugates of the elements above the
diagonal. There are a total of N2 matrix elements in M . There are N elements on the
diagonal and N2−N elements off the diagonal. The off diagonal elements are all complex
numbers. Thus, there are N2−N real numbers needed to specify the off diagonal elements.
In conclusion, M is specified by a total of N2 real numbers.

We define the model that we will study as follows〈
Mij....Mkl

〉
0

= N
∫

[dM ]e−
ω
2
Tr(M2)Mij..Mkl. (2.1)

The subscript 0 reminds us that this is a free theory. M is an N × N complex Hermitian matrix,
N is a normalization factor and ω is a number. [dM ] is the measure of the field and

∫
[dM ] is

defined as: ∫
[dM ]··· = N

N∏
i=1

∫ ∞
−∞

dMii

N∏
k,l=1k>l

∫ ∞
−∞

dM r
kl

∫ ∞
−∞

dM i
kl... (2.2)

The normalization of the measure is fixed by requiring∫
[dM ]e−

ω
2
Tr(M2) =< 1 >0= 1. (2.3)
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To study the correlators defined in (2.1) it is useful to introduce the following generating function

Z0[J ] = N
∫

[dM ]e−
ω
2
Tr(M2)+Tr(JM) (2.4)

where Tr(JM) = JijMji and repeated indices are summed over. We will now summarize a few
identities that will prove to be very useful when we compute correlators.

∂Mij

∂Mkl

= δikδjl. (2.5)

d

dMij

Tr(JM) =
d

dMij

(JklMlk)

= Jkl
dMlk

dMij

= Jklδliδkj

= Jji. (2.6)

d

dJij
eTr(JM) = eTr(JM) d

dJij
Tr(JM)

= eTr(JM) d

dJij
(JklMlk)

= eTr(JM)Mlkδkiδlj

= eTr(JM)Mji. (2.7)

d

dJij

d

dJkl
e−

ω
2
Tr(M2)+Tr(JM)

∣∣∣∣
J=0

= e−
ω
2
Tr(M2) d

dJij

d

dJkl
eTr(JM)

∣∣∣∣
J=0

= e−
ω
2
Tr(M2) d

dJij

(
eTr(JM)Mlk

)∣∣∣∣
J=0

= e−
ω
2
Tr(M2)eTr(JM)MjiMlk

∣∣∣
J=0

= e−
ω
2
Tr(M2)MjiMlk. (2.8)

In the second and third lines of the last identity derived above, we used (2.7). To evaluate Z0[J ]
we need to evaluate a Gaussian integral. This is most easily done by completing the square in
the exponent of (2.4)

−ω
2

Tr(M2) + Tr(JM) = −ω
2

[
Tr(M2)− 2

ω
Tr(JM)

]
= −ω

2

[
Tr(M2 − 2

ω
JM)

]
= −ω

2

[
Tr

(
M − J

ω

2)2

− Tr

(
J2

ω2

)]
= −ω

2
Tr

(
M − J

ω

)2

+
1

2ω
Tr(J2). (2.9)
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(2.4) now reduces to

Z0[J ] = N
∫

[dM ]e−
ω
2
Tr((M− J

ω
)2)+ 1

2ω
Tr(J2). (2.10)

To perform the Gaussian integral it is useful carry out the following change of variables

M ′ = M − J

ω
⇒ dM ′ = dM and then [dM ] = [dM ′]. (2.11)

When performing this change of variables, it is important to keep in mind that J is a fixed
constant matrix which does not depend on M . After this change of variables, we find

Z0[J ] = N
∫

[dM ′]e−
ω
2
Tr(M ′2)+ 1

2ω
Tr(J2)

= e
1

2ω
Tr(J2) (2.12)

where we have used ∫
[dM ′]e−

ω
2
Tr(M ′2) = 1. (2.13)

This equation defines our measure. The two point function can be obtained by taking derivatives
of the generating function, as usual〈

MijMkl

〉
0

=
d

dJji

d

dJlk
Z0[J ]

∣∣∣∣
J=0

. (2.14)

We now use eqn.(2.12) to rewrite this as〈
MijMkl

〉
0

=
d

dJij

d

dJkl
e

1
2ω
tr(J2)

∣∣∣∣
J=0

=
d

dJij

[
1

2ω
e

1
2ω

Tr(J2) d

dJkl
Tr(J2)

]
J=0

. (2.15)

To complete this computation, note that

d

dJkl
Tr(J2) =

d

dJkl
(JijJji)

= Jij
d

dJkl
Jji + Jji

d

dJkl
Jij

= Jijδjkδil + Jjiδikδjl
d

dJkl
Tr(J2) = 2Jlk. (2.16)

Using eqn.(2.16) in (2.15) we find〈
MijMkl

〉
0

=
d

dJji

[
Jkl
ω
e

1
2ω

Tr(J2)

]
J=0

=

[
1

ω

d

dJji
Jkl +

Jkl
2ω

d

dJji
Tr(J2)

]
e

1
2ω
tr(J2)

∣∣∣∣
J=0

=

[
δilδjk
ω

+
JklJji
ω

]
J=0〈

MijMkl

〉
0

=
1

ω
δilδjk. (2.17)
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This result is the propagator of the matrix model. This propagator is one of the building blocks
of the Feynman rules for the matrix model. We represent the propagator using the following
ribbon diagram

Figure 2.1: The propagator for
〈
MjiMlk

〉
0
.

where the indices of each matrix are placed in pairs in order on a line. Pairs of indices are
connected by a ribbon which is then translated into Kronecker delta symbols. In the ribbon graph
shown, the index ”i” is connected to index ”l”, which is translated into the Kronecker delta δij
and the index ”j” is connected to ”k” which translates into the Kronecker delta δjk. For each
ribbon we include a factor of 1

ω
.

The general correlator is computed as follows

〈
Mij...Mkl

〉
0

=
d

dJji
· · · d

dJlk
Z0[J ]

∣∣∣∣
J=0

. (2.18)

The gauge theory has a local gauge invariance. The physical observables in the theory are gauge
invariant operators. The matrix model represents local gauge symmetry as a U(N) symmetry
under which we have M → U †MU . Since we have declared that this is a gauge symmetry, the
physical observables of the theory should be invariant under this symmetry. The trace of any
power of M is invariant under the global symmetry and traces of powers of M generate the
complete set of physical observables of the model. With this motivation in mind, we will now
study correlators of traces of powers of M . One of the simplest correlators we might consider is
given by 〈

Tr(M2)
〉

0
=
〈
MijMji

〉
=

1

ω
δiiδjj

=
1

ω
N2. (2.19)

All indices are repeated and hence summed. Thus, the result for this correlator is not a tensor,
but rather it is a polynomial in N . This is in fact generally true: any correlator of traces of
powers of M is given by a polynomial in N . This strongly motivates us to improve our ribbon
graph rules. The indices of any gauge invariant quantities are all summed. Indicate these sums
by solid lines

7



Figure 2.2: The ribbon graph notation for
〈

Tr(M2)
〉

0
.

In this figure each closed loop is a sum over a Kronecker delta and hence contributes a factor of
N , while each ribbon contributes 1

ω
as usual. Since we have two closed loops and one ribbon, we

obtain the result 〈
Tr(M2)

〉
0

=
N2

ω
. (2.20)

The above discussion suggests that when computing correlators of gauge invariant operators, it
is useful to specialize the Feyman rules for these correlators as follows

• Draw two dots for each pair of indices on the operators.

• In the gauge invariant operator, all indices are contracted. Connect the contracted indices
with a line.

• Wick’s theorem tells us that any correlator is computed by replacing pairs of fields by the
propagator of the matrix model. We carry this step out by connecting pairs of indices with
ribbons. Every possible way of performing these connections gives a different graph that
must be summed.

• Each ribbon contributes a factor of 1
ω

.

• Each closed loop contributes a factor of N .

Using these rules, the computation of 〈Tr(M3)〉0 is not possible since in the new streamlined
notation we link dots that are labeled by the same index with a solid line (as shown in the
figure 2.2) and repeated indices are summed, they do not take a value. Indeed, 〈Tr(M3)〉0 =〈
MijMklMmn

〉
. The computation of 〈Tr(M4)〉0 is as follows:

Figure 2.3: The propagator for
〈

Tr(M4)
〉

0
.

In figure 2.3, the second diagram and last diagram are planar diagrams while the first one is a
non-planar diagram. The planar diagrams have more closed loops and hence they dominate the

8



large N limit. Our discussion up to this point has been concerned with the free theory. In the
next section, we will add terms to the free theory which will allow the fields to interact with each
other. It is in this more general setting that we will develop the connection to string theory.

2.2 Interacting theory

We now consider an interacting matrix model. To obtain an interacting theory, add a term quartic
in M . The generating function for the interacting theory is then given by

Z[J ] = N
∫

[dM ]e−
ω
2
Tr(M2)−gTr(M4)+Tr(JM). (2.21)

In order to derive the correlators in the interacting theory, we will first compute the generating
function. It is useful to use the above normalization condition, so Z[J = 0] = 1 when g = 0. We
will start this calculation by expanding e−gTr(M

4) which appears in the above expression. Then
we change the M’s into derivatives with respect to J.

e−gTr(M
4) =

∞∑
k=0

(−gTr(M4))k

k!

=
∞∑
k=0

(−g)k

k!
(Tr(M4))k (2.22)

∫
[dM ]e−

ω
2
Tr(M2)−gTr(M4)+Tr(JM) −→

∞∑
k=0

(−g)k

k!

(
d

dJji

d

dJkj

d

dJlk

d

dJil

)k ∫
[dM ]e−

ω
2
Tr(M2)+Tr(JM)

(2.23)

Using this in (2.21) yields

Z[J ] =
∞∑
k=0

(−g)k

k!

(
d

dJji

d

dJkj

d

dJlk

d

dJil

)k
N
∫

[dM ]e−
ω
2
Tr(M2)+Tr(JM)

=
∞∑
k=0

(−g)k

k!

(
d

dJji

d

dJkj

d

dJlk

d

dJil

)k
e

1
2ω

Tr(J2). (2.24)

Note that we can also write

Z[J = 0] =
∞∑
k=0

(−g)k

k!

〈
Tr(M4)k

〉
0
. (2.25)

The correlators in the interacting theory are again given by〈
Mij · · ·Mkl

〉
0

=
d

dJij
...

d

dJkl
Z[J ]

∣∣∣∣
J=0

. (2.26)

The interaction is represented diagrammatically with a 4-point vertex as follows

9



Figure 2.4: Diagram for the interaction vertex.

The rules for the diagrams of the interacting theory associate a factor of −g with each vertex.
The four legs of the vertex represents each of the fields in the interaction term, which is a trace of
M to the power of 4. We can now compute the correlators in a perturbative expansion, treating
g as a small parameter. For example Tr(M2) is computed as follows:

〈
Tr(M2)

〉
=

d

dJnm

d

dJmn
Z[J = 0]

=
d

dJnm

d

dJmn

∞∑
k=0

[
−g
k!

d

dJij

d

dJkj

d

dJlk

d

dJil

]k
e

1
2ω

Tr(J2)

∣∣∣∣∣
J=0

=
d

dJnm

d

dJmn
− g d

dJnm

d

dJmn

d

dJij

d

dJkj

d

dJlk

d

dJil
e

1
2ω

Tr(J2)

∣∣∣∣
J=0

+O(g2)

=
〈

Tr(M2)
〉

0
− g
〈

Tr(M2)Tr(M4)
〉

0
+O(g2)〈

Tr(M2)
〉

=
N2

ω
− g

ω3

(
2N5 + 9N3 + 4N

)
+O(g2). (2.27)

In the second line we have used (2.25) and in the third line we have written out the sum over
k. In the fourth line we have again replaced the d

dJ
’s by M ’s. We can easily check that this

correlator is reproduced by summing the following diagrams

Figure 2.5: Diagram for
〈

Tr(M2)
〉

to order g2 in the interacting theory.
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From this diagram we have〈
Tr(M2)

〉
=
N2

ω
− g

ω3

(
2N5 +N3 + 4(N3 +N +N3)

)
+O(g2)

=
N2

ω
− g

ω3

(
2N5 + 9N3 + 4N

)
+O(g2). (2.28)

This reproduce (2.27). If we normalize the generating function of correlation functions to 1
when J = 0, for any value of g, we find that correlators are given by dropping vacuum graph
contributions. As an example, consider the computation of the two point function in the new
normalization〈

Tr(M2)
〉
nn

=

〈
Tr(M2)

〉∑∞
k=0

(−g)k
k!

〈
Tr(M4)k

〉
0

=

N2

ω
− g

ω3

(
2N5 + 9N3 + 4N

)
+O(g2)

1− g
ω2

(
2N3 + 2N

)
+ g2

2ω4

(
4N6 + 40N4 + 61N2)

)
+O(g3)

(2.29)

where the subscript nn stands for new normalisation. Assuming that g is a small parameter,
expand this expression to first order in g to obtain〈

Tr(M2)
〉
nn
'
(
N2

ω
− g

ω3
(2N5 + 9N3 + 4N) +O(g2)

)(
1 +

g

ω2
(2N3 +N) +O(g3)

)
〈

Tr(M2)
〉
nn
' N2

ω
− g

ω3

(
8N3 + 4N

)
+O(g2). (2.30)

It is not difficult to check that this result is reproduced by removing all vacuum contributions.
We have now developed enough background that we could consider the large N limit of the
interacting theory, so we need not pursue this further. In the next section we will describe a
significant simplification present in the large N limit, known as factorization. Factorization is one
of the main motivations for the gauge / gravity duality.

2.3 Factorization

Factorization is a property of the large N theory. It represents a profound simplification of the
theory. To explain what factorization is, in the simplest possible setting, we consider a statistical
description of our system. The system can be in any one of a set of states, labelled by an integer
i. The probability for the system to be in state i is given by µi, with∑

i

µi = 1 where µi ≥ 0 ∀ i. (2.31)

The system has a set of observables OI . The value of observable OI in state i is denoted by
OI(i). As usual in statistical mechanics, the expectation value of OI is

< OI >=
∑
i

µiOI(i). (2.32)
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Using the ribbon graph formalism we have developed above, it is straight forward to check that,
in the large N limit, the expectation value of a product of the observables is equal to the product
of the expectation values of the individual observables. In equations, we have

< OI1OI2 ...OIn >=< OI1 >< OI2 > ... < OIn > . (2.33)

Using (2.32) and (2.33) we find the following∑
i

µiOI1(i)OI2(i)...OIn(i) =
∑
i1

µi1OI1(i1)
∑
i2

µi2OI2(i2)...
∑
in

µinOIn(in). (2.34)

The above expression forces us to conclude that the system is in a definite state i∗ so that

µi =

{
1 i = i∗

0 i 6= i∗.
(2.35)

The interpretation of this conclusion is not difficult. When computing the path integral, we
sum over all possible states the system can occupy. In the limit that ~ → 0 we find that the
contribution to the integral is peaked more and more sharply around a single state. This makes
sense because as we send ~ → 0 we obtain classical physics and classically the system is in a
definite state. Thus, factorization is telling us that the large N limit is a classical limit. In this
limit we can simplify the computation of correlators.

To conclude this discussion we will give two examples which illustrate factorization in the large
N limit of the free theory. Note that 〈

Tr(M2)
〉

=
N2

ω
(2.36)

〈
Tr(M4)

〉
=

1

ω2
(2N3 +N). (2.37)

At the leading order for large N we have〈
Tr(M2)Tr(M2)

〉
=
N4

ω2
+O(N2)

=< Tr(M2) >< Tr(M2) > +O(N2) (2.38)

and 〈
Tr(M2)Tr(M4)

〉
=

2

ω3
N5 +O(N3)

=< Tr(M2) >< Tr(M4) > +O(N3). (2.39)

2.4 1/N expansion

A naive approach to the study of the large N limit quickly runs into difficulties. Indeed, consider
the correlator (2.30) up to second order in g〈

Tr(M2)
〉
nn

=
N2

ω
− g

ω3

(
8N3 + 4N

)
+
g2

ω5

(
144N4 + 224N2

)
+O(g3). (2.40)
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Notice that at highers order in perturbation theory in the small parameter g, we find ever increasing
powers of N . In this case the large N limit simply does not make sense. To obtain a sensible
limit, we must use a double scaling limit, as suggested by ’t Hooft [30], in which the coupling is
taken to zero as we take N to infinity. Concretely, in this double scaling limit we take N →∞,
while holding λ = gN fixed and small. The new parameter λ is called the ’t Hooft coupling.
Expressing the above expansion of the correlator in terms of λ, we find

〈
Tr(M2)

〉
nn

=
N2

ω
− gN3

ω3

(
8 +

4

N2

)
+
g2N4

ω5

(
144 +

224

N2

)
+O(g3)

=
N2

ω
− N2λ

ω3

(
8 +

4

N2

)
+
N2λ2

ω5

(
144 +

224

N2

)
+O(λ3). (2.41)

In the last line we see an expansion in two small quantities λ and 1
N2 . In QFT, λ is equivalent

to ~ (Planck’s constant) and 1
N2 is ~ in the dual string theory. Thus 1

N2 ≡ ~ → 0 at large N.
Therefore the large N theory emerges as a classical limit of a string theory.

From the expansion in (2.41), it is now clear that there is a well defined leading term at large N
given by N2. Further, there are small corrections to this leading result, controlled by two small
parameters: 1

N2 and λ. It is now sensible to ask what the physical interpretation of this expansion

is. Towards this end, we use the rescaled variable M =
√
NM ′. The ”action” of the theory now

becomes

− ω

2
Tr(M2)− gTr(M4) = −ωN

2
Tr(M ′2)−NλTr(M ′4). (2.42)

Using (2.21) and the above expression we find

Z[0] = N
∫

[dM ]e−
ωN
2

Tr(M ′2)−NλTr(M ′4). (2.43)

The rescaling has produced the following change in our Feyman rules: each ribbon (i.e. each
propagator) now comes with a factor of 1

ωN
and each vertex now comes with −λN . Each closed

loop in the ribbon graph continues to contribute a factor of N . In order to interpret the N
dependencies of a ribbon graph, we denote by E, F and V the number of edges, faces and
vertices respectively, in the diagram. The N dependence of any graph is then given by NF−E+V .
Thinking of the ribbon graph as a triangulation of a surface, the number F−E+V is a topological
invariant of the underlying surface, called the Euler characteristic. To show this, we will consider a
triangulation and argue that F −E+V is invariant under smooth deformations of the underlying
surface. First, consider stretching an edge so that it creates a new face
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Figure 2.6: A side of the triangulation is stretched to produce a new face.

Before we perform the stretch we have F faces, E edges and V vertices. After stretching the
edge into a face we have a new triangulation with F ′ = F + 1, V ′ = V + 2 and E ′ = E + 3, so
that F ′ −E ′ + V ′ = F −E + V . This shows that the Euler characteristic is invariant under the
deformation considered. Another deformation we could consider is to shrink an edge to nothing.

Figure 2.7: An edge of the triangulation is shrunk to nothing.

Before we shrink the edge to nothing we have F faces, E edges and V vertices. After the
deformation we have F ′ = F faces, E ′ = E − 1 edges and V ′ = V − 1 vertices. Thus,
F ′ − E ′ + V ′ = F − E + V . This again shows that F − E + V is a topological invariant.

Now we will consider consider a deformation that changes the topology of the surface. We wish
to cut two holes in the surface and glue the edges of the holes together. In this way we add a
handle to the surface.
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Figure 2.8: The first step in adding a handle entails cutting two holes as shown.

In the process of cutting two holes and then gluing, we lose 4 edges, 2 faces and 4 vertices
so that E ′ = E − 4, F ′ = F − 2 and V ′ = V − 4. Thus, we find that F ′ − E ′ + V ′ =
(F − 2)− (E − 4) + V − 4 = F −E + V − 2. This means that adding a handle to the surface
reduces the Euler characteristic by 2. For example, adding a handle to a sphere produces a torus
and adding a handle to a torus creates a pretzel.

Figure 2.9: The figure shows a sphere (of genus 0), a torus (of genus 1) and a pretzel (of genus
2). The Euler characteristic is given by 2− 2g where g is the genus.

Every closed orientable two dimensional surface is topologically equivalent to a sphere with some
number of handles attached. The number of handles is called the genus of the surface. Our
Feynman diagram expansion can be understood as an expansion in the genus of the surface. This
expansion in terms of the genus of the surface strongly suggests a link to string theory, upon
identifying the surface triangulated by the ribbon graph with the worldsheet of a string. In the
string picture, quantum corrections are encoded by summing worldsheets of higher genus. The
one loop contribution corresponds to the genus 1 worldsheet, the two loop contribution to a
genus 2 worldsheet and so on.

15



Figure 2.10: Loop expansion of the two point function in string theory.

This completes our discussion of the usual motivation for the connection between the planar limit
of a matrix model and string theory. We would now like to consider large N but non-planar limits
of the theory. Towards this end, in the next chapter we will review some background maths useful
to accomplish this goal.
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3. Background Mathematics

This chapter develops the tools and techniques we need to explore the physics of giant gravitons.
This requires the use of group representation theory of the symmetric and unitary group. We will
provide a dictionary between half-BPS representations in the N = 4 super Yang Mills theory with
gauge group U(N) and giant graviton states in the dual gravity description. It turns out that the
space of Schur polynomials of U(N), which are labeled by Young diagrams with no more than
N rows, can be mapped to the space of half-BPS representations [3].

3.1 Half-BPS Operators

The N = 4 super Yang-Mills theory can be written in terms of an N = 1 vector multiplet and
three chiral multiplets. The scalars of the chiral multiplets are three complex scalar fields, given
as linear combinations of the six hermittian scalars as follows

Z = X1 + iX4, X = X2 + iX5, Y = X3 + iX6 (3.1)

where all the fields takes values in the adjoint of U(N).

The operators in N = 4 SYM theory built from a single complex matrix Z are half BPS operators.
This means these operators are invariant under half of the super symmetry of the theory. InN = 4
SYM, the half-BPS operators are constructed from traceless symmetric S0(6) tensor combinations
of the six hermittian scalars. We will focus on the half BPS operators that are invariant under an
S0(4) subgroup of the S0(6) symmetry. They include both single trace operators and multi-trace
operators. For a fixed R charge n, there is a distinct operator for each partition of n of the form∏

li,ki

[Tr(Z li)]ki (3.2)

where the integers li, ki define a partition of n as described below

n =
m∑
i=1

liki. (3.3)

We have then a one to one correspondence between half-BPS representations of charge n and
partitions of n. The Schur polynomials of degree n, for the unitary group U(N), gives a useful
basis in the space of local operators constructed using n fields. A Schur polynomial in the complex
matrix Z will be associated to each short representation. We can consider the calculation of
correlators of holomorphic Schur polynomials and their conjugates. These correlators enjoy a
non-renormalization theorem. Consequently weak coupling computations can be trusted in the
strongly coupled limit of the theory.
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3.2 Free Field Combinatorics

The basic two point function is obtained using the free field correlator

< Zij(x)Z∗kl(y) >=
δikδjl

(x− y)2
. (3.4)

We will focus on the dependence of the correlators on the rank N of the U(N) gauge group. The
space time dependence of the correlator is determined by conformal symmetry and is trivial, so
we will often suppress this dependence. Evaluating the free field contractions in U(N) frequently
involves evaluating sums of the form ∑

i1,i2...in

δi1iσ(1)
δi2iσ(2)

...δiniσ(n)
(3.5)

where i1, ..., in run from 1 to N and σ ∈ Sn is a permutation. If σ is the identity, iσ(j) = ij and
the above sum produces Nn. Notice that the identity is a product of n one-cycles. Next consider
a permutation σ with one cycle of length 2 and the remaining cycles of length 1. For example,
consider σ = (12)(3)(4)(5).....(n). It is clear that we have σ(1) = 2, σ(2) = 1 and σ(k) = k for
k = 3, ..., n. The above sum now gives∑

i1,i2...in

δi1i2δ
i2
i1
δi3i3δ

i4
i4
...δinin = Nn−1 (3.6)

since the first two Kronecker deltas are only non zero when i1 = i2. Notice that σ has n − 1
cycles, which is again equal to the power of N we obtain upon performing the sum. In general,
the sum in (3.5) is ∑

i1,i2...in

δi1iσ(1)
δi2iσ(2)

...δiniσ(n)
= NC(σ). (3.7)

In the last formula, C(σ) denotes the number of cycles in σ. We can improve our notation by
denoting a collection of n indices i1, i2, ..., in with a multi-index notation I(n). Further, we use
I(σ(n)) to denote the same collection of n indices after their labels are shuffled by a permutation
σ. In this notation (3.7) becomes ∑

I

(δ)
I(n)
I(σ(n)) = NC(σ). (3.8)

3.3 Symmetric groups

The symmetric group Sn is isomorphic to the group of permutations of the integers {1, ..., n}.
To develop the representation theory of the symmetric group it is useful to introduce the group
algebra. To obtain the group algebra, we consider formal sums over symmetric group elements.
The product on this algebra is the usual composition law for permutations. An interesting function
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on the group algebra is the delta function, which is 1 when the argument is the identity and 0
otherwise. The expansion of this function in group characters of Sn is

δ(ρ) =
1

n!

∑
R

dRχR(ρ) (3.9)

where the sum is over the irreducible representations R of Sn. The label R can be associated
with a Young diagram constructed using n boxes. χR(ρ) is the character of group element ρ in
the representation R. The character of the group element is given by the trace of the matrix
representing the group element. Finally, dR is the dimension of representation R.

In any irreducible representation R, the product of an element C of the group algebra, which
commutes with every element of the group, can be factorised into a product of characters as
follows

χR(Cσ) =
χR(C)χR(σ)

dR
. (3.10)

The element C is constructed out of averages over the symmetric group of the form
∑

ρ g(ρ)ρ
where g(ρ) is a class function. A class function is a function that takes the same value for all
elements in a conjugacy class. Now, we consider the operator∑

σ

χR(σ−1)DS(σ) (3.11)

where DS(σ) is the matrix representing σ in the irreducible representation S. We will see that
this operator defines a projection operator. The matrix written down in (3.11) commutes with
any permutation τ acting in the representation S. So, by Schur’s Lemma, it must be a constant
multiple of the unit matrix, i.e ∑

σ

χR(σ−1)DS(σ) = cI (3.12)

where c is a constant. Thus,∑
σ

χR(σ−1)DS(σα) =
∑
σ

χR(σ−1)
χR(σ)

dR
DS(α) (3.13)

where we have used the result explained in eqn.(3.10). The orthogonality relation for characters
is ∑

σ

χR(σ−1)χS(σ) = δRS n!. (3.14)

From eqns.(3.13) and (3.14) one can easily establish that∑
σ

χR(σ−1)DS(σα) =
δRS n!

dS
DS(α). (3.15)

where dS is the dimension of representation S of Sn. Finally, we take a trace to find∑
σ

χR(σ−1)χS(σα) =
δRS n!

dS
χS(α). (3.16)
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3.4 The Schur polynomial

The symmetric group Sn is a group of finite order n! while the unitary group U(N) has an
infinite number of elements. The connection between the symmetric group and the unitary group
is known as Schur-Weyl duality. Let V be the fundamental representation of U(N). The space
Sym(V ⊗n) is also a representation of U(N). It admits a commuting action of the symmetric
group Sn. We can then organize the actions of the symmetric group and the unitary group into
collections of states which are irreducible representations of both. This is the reason why Young
diagrams can be used to label both U(N) and Sn representations. We will develop some results
following from this connection.

The Schur polynomials can be defined as the characters of the unitary group in their irreducible
representations

χR(U) =
1

n!

∑
σ∈Sn

χR(σ)Tr(σU) (3.17)

where χR(σ) is the character of σ ∈ Sn in representation R. The trace which appears in this
equation is given by

Tr(σU) =
∑

i1,i2,..,in

U i1
iσ(1)

U i2
iσ(2)

...U in
iσ(n)

. (3.18)

By taking U = 1 we find Tr(σ) = NC(σ). Therefore

χR(1) = DimN(R) =
1

n!

∑
σ∈Sn

χR(σ)NC(σ) (3.19)

where DimN(R) is the dimension of representation R of the unitary group U(N). In the context
of this dissertation it is convenient to consider the extension of the Schur polynomials from unitary
to complex matrices

χR(Z) =
1

n!

∑
σ∈Sn

χR(σ)Tr(σZ) (3.20)

where the representation R of Sn can be labelled by Young Diagrams with n boxes and Tr(σZ)
is given by

Tr(σZ) =
∑

i1,i2,..,in

Zi1
iσ(1)

Zi2
iσ(2)

...Zin
iσ(n)

(3.21)

=
∑
I

Z

(
I(n)

I(σ(n))

)
(3.22)

where we used the compact notation introduced in section 3.1.2. We can also consider the fusion
coefficients of U(N). We denote these coefficients by g(R1, R2;S). They give the multiplicity
of the representation S in the tensor product of the representation R1 ⊗ R2. Consequently, we
have the character decomposition

χS(σ1 o σ2) =
∑

R1∈Rep

∑
R2∈Rep

g(R1, R2;S)χR1(σ1)χR2(σ2). (3.23)
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This coefficient can also be computed using the Littlewood-Richardson rule which counts the
numbers of times the representation S appears in the tensor product of R1 and R2. The coefficient
g(R1, R2;S) can be written in terms of a U(N) group integral as follows

g(R1, R2;S) =

∫
dUχR1(U)χR2(U)χS(U †). (3.24)

In general we have

g(R1, R2, ...Rn;S) =

∫
dUχR1(U)χR2(U)....χRn(U)χS(U †)

=

∫
dU(

n∏
i=1

χRi(U))χS(U †). (3.25)

The product of Schur polynomials of irreducible representations R1 and R2 can be written as

χR1(U)χR2(U) =
∑
S

g(R1, R2;S)χS(U). (3.26)

Repeated use of this expansion in the integral (3.25) gives

g(R1, R2, ...Rn;S) =
∑

S1,S2,...,Sn−2

g(R1, R2;S)g(S1, R3;S2), ...g(Sn−2, Rn;S). (3.27)

This concludes our quick review of the representation theory of the symmetric and unitary groups.
In the next section we turn to consider relevant mathematical tools from the theory of resurgence.
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4. Resurgence

In this chapter we will develop mathematical tools that allow us to recover non-perturbative
contributions given the pertubative contribution to the quantity of interest. The tools we will
review are collectively refered to as methods of resurgence. Resurgence is a collection of ideas in
mathematics which show that the coefficients of an asymptotic series contain information about
nonperturbative contributions. Our goal is to develop these ideas for the 1

2
-BPS sector of N = 4

super Yang-Mills theory. We begin by introducing the Borel transform and resummation methods
of asymptotic series to see how to associate values to (factorially) divergent sums [1].

4.1 Borel Resummation

To simplify the discussion, we will use a concrete toy model to develop the ideas and methods
motivating resurgence. For the toy model, we consider evaluating the integral

I(g) =

∫ ∞
−∞

dφe
−φ2

2
−gφ4

. (4.1)

We can study I(g) using pertubation theory. This amounts to expanding the integrand as a
power series in g

I(g) =

∫ ∞
−∞

dφe
−φ2

2

∞∑
n=0

(−g)nφ4n

n!

=
∞∑
n=0

(−g)n

n!

∫ ∞
∞

dφφ4ne
−φ2

2

=
√

2π
∞∑
n=0

(−1)n(4n− 1)!!

n!
gn

≡
√

2π
∞∑
n=0

ang
n. (4.2)

Truncating the sum, we find the following approximation to I(g) at nth order in pertubation
theory

In =
√

2π
n∑
i=0

ang
n. (4.3)

It is easy to verify that, for example, when g = 0.1 and n = 6 we find a very good agreement
with the exact answer. Proceeding to higher order, we find that the accuracy becomes worse
and worse and In starts to diverge. See figures 4.1 and 4.2 which illustrate numerically obtained
results. The plots show In(g) versus n. Clearly, the pertubation expansion defines an asymptotic
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expansion. To really prove this is the case, we shall study the behaviour of the coefficients an for
large values of n.

Figure 4.1: In(g) versus n for g = 0.01.

Figure 4.2: In(g) versus n for g = 0.01.

It is easy to see that the accuracy becomes worse as we increase the order in pertubation theory.

To prove that the pertubation series is an asymptotic expansion, we need to consider the behaviour
of the coefficients an as n → ∞. Towards this end we will employ Stirling’s approximation.
Rewrite an as follows

an =
(−1)n(4n)!

22nn!(2n)!
. (4.4)

Using Stirling’s approximation we have

n! ∼
√

2πn

(
n

e

)n
(4.5)

(2n)! ∼
√

4πn

(
2n

e

)2n

(4.6)

(4n)! ∼
√

8πn

(
4n

e

)4n

. (4.7)
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Thus,

an ∼
(−1)n(4n

e
)4n

√
πn22n(n

e
)n(2n

e
)2n

∼ (−4n)n. (4.8)

Equation (4.8) is obtained after a little computation using Stirling approximation. For the per-
tubation series to converge, we need 4ng < 1. But 4ng becomes arbitrarly large for n large
enough, no matter how small g is. Thus, the series expansion for I(g) does not converge. The
pertubation theory fails to give a good approximation for I(g) since the sum on the RHS of (4.2)
diverges for every value of g. This proves that this pertubation series is indeed an asymptotic
expansion. The Borel transform of the formal power series is given by

IB(s) =
∞∑
m=0

Im
m!
sm. (4.9)

From the Borel transform we can, under favorable circumstances, get I(g) by Borel resummation.
Borel resummation is a way to construct a function that has a given asymptotic expansion.

Denote C[[z−1]] the set of all the formal power series in z−1. Consider a formal power series
F (z) for z ∼ ∞ defined by

F (z) =
∞∑
n=0

anz
n−1. (4.10)

The Borel transform of F (z) is defined by

B[F ](ζ) =
∞∑
n=0

anζ
n

n!
. (4.11)

We will now spend some time developing the mathematics of the Borel transform. Given two
formal power series F1(z) and F2(z), the product F1(z)F2(z) is a formal power series of the form

F1(z)F2(z) =

(
∞∑
n=0

bnz
n−1

)(
∞∑
n=0

cnz
n−1

)
(4.12)

=
∞∑
n=0

dnz
n−1 (4.13)

where

dn =
∑

p+q=n−1

bpcq n ≥ 1. (4.14)

When we pass to the Borel transform, the natural multiplication of formal power series becomes
a convolution (∗) in C[ζ]. Indeed, the Borel transform of this product is given by
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(B[F1] ∗B[F2])(ζ) =
∑
n,m≥0

bncm
n!m!

∫ ζ

0

dζ1ζ
n
1 (ζ − ζ1)m (4.15)

To prove this we need to make use of the formula for the beta function

B(n+ 1,m+ 1) =

∫ 1

0

dζ1ζ
n
1 (1− ζ1)m =

n!m!

(n+m+ 1)!
. (4.16)

which implies ∫ ζ

0

dζ1ζ
n
1 (ζ − ζ1)m = B(n+ 1,m+ 1)ζn+m+1. (4.17)

Thus, (4.15) becomes

(B[F1] ∗B[F2])(ζ) =
∑
n,m≥0

bncm
n!m!

B(n+ 1,m+ 1)ζn+m+1 (4.18)

=
∑
n,m≥0

bncm
n!m!

n!m!

(n+m+ 1)
ζn+m+1

=
∑
n,m≥0

bncm
(n+m+ 1)!

ζn+m+1

=
∑
n≥1

dn
n!
ζn. (4.19)

Note that the Borel transform (4.11) has a finite radius of convergence if and only if F (z) is
of Gevrey-1 type. A formal power series F (z) =

∑∞
n=0 anz

−n−1 is of Gevrey-1 type if there
exists somes constants A,α such that |an| ≤ αAnn!. When the formal power series F (z) =∑∞

n=0 anz
−n−1 is of Gevrey order- 1

m
there exist somes constants A,α such that |an| ≤ αAn(n!)m.

In what follows, we will assume that F is of Gevrey-1 type and its Borel transform B[F ] defines
a convergent expansion about the origin. After having improved the convergence of the original
formal series F −→ B[F ], we need an operator that can be used to define the analytic extension
of the original formal power series, that is the Laplace transform along θ,

Sθ[F ](z) =

∫ eiθ∞

0

dζe−zζF (z) (4.20)

We can compute the Laplace transform S on the real positive line in the direction θ = 0 using
the usual Laplace transform as follows:

S0[ζα] =

∫ ∞
0

dζe−zζζα (4.21)

Changing variable to v = zζ in (4.21) gives

S0[ζα] =
1

zα+1

∫ ∞
0

dve−vvα

=
Γ(α + 1)

zα+1
. (4.22)
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The inverse Laplace transform of this is

(S0)−1[z−α−1] =
ζα

Γ(α + 1)
. (4.23)

We want to compute the Laplace tranform along direction θ of the formal power series

F (z) =
∞∑
n=0

(−n)nn!z−n−1. (4.24)

This will give the analytic continuation to the half-plane Re(z) > 0. The Borel transform of
(4.24) is

B[F ](ζ) =
∞∑
n=0

(−1)nζn =
1

1 + ζ
, |ζ| < 1. (4.25)

The Laplace transform along θ = 0 is

S0[F ](z) =

∫ ∞
0

dζe−zζ
1

1 + ζ
. (4.26)

Change variables from ζ to u = 1 + ζ to get

S0[F ](z) = ez
∫ ∞

0

due−zu
1

u
. (4.27)

Again change variables to zu = t to find

S0[F ](z) = ez
∫ ∞
z

dte−tt−1 = ezΓ(0, z) (4.28)

where Γ(0, z) is the incomplete gamma function. The last expression above gives the analytic
contiuation to the half-plane Re(z) > 0.

When computing the Laplace transform in direction θ, we might run into singular points. Since we
cannot integrate through the singular point we must deform the contour to dodge the singularity
points. A suitable method to achieve this uses the Stokes automorphism.

4.2 Stokes automorphism and Alien Derivatives

To avoid singular points along a direction θ we will relate two Borel transforms in the directions
θ+ and θ−. This allows us to understand how the resummed series jumps across a Stokes lines
(see the figure below).
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Figure 4.3: Lateral Borel summation along θ.

Considering this lateral Borel summation, the Stokes automorphism
∑

θ can be defined as follows

Sθ−F = Sθ+ ◦
∑
θ

F (4.29)

The Stokes automorphism can also be written as

Sθ+ = Sθ− ◦
∑
θ

= Sθ− ◦ (Id−Discθ) (4.30)

Sθ+ − Sθ− = −Sθ− ◦Discθ (4.31)

where Discθ encodes the full discontinuity across θ. If there is no singularity we have Sθ+ = Sθ−
and this leads to

∑
θ B[F ] = B[F ] where Discθ = 0. F is called a resurgence constant and

the Borel transform of F has no singularity along θ. This gives a convergent power series. The
difference between the θ+ and θ− transforms is nothing but a sum over contours around each
singular point and the discontinuity of S across θ is given as an infinite sum of contributions
coming from each one of the singular points.

The logarithm of the Stokes automorphism defines the Alien derivative ∆ω as follows∑
θ

= exp

(∑
ω∈Ω

e−ωz∆ω

)
(4.32)

where Ω is the set of singularities in the complex plane along the θ direction. Using (4.32) we
can rewrite (4.30) as follows

Sθ+B[F ](z) = Sθ−B[F ](z) + Sθ− exp(
∑
ω∈Ω

e−ωz∆ω)B[F ](z)

= Sθ−B[F ](z) +
∞∑
l=1

∑
m1···ml≥1

e(ωm1+···+ωml )Sθ−(∆ωm1
· · ·∆ωml

B[F ](z)) (4.33)

To understand how the Alien derivative works, we will construct some examples. Consider a
formal power series

F (z) =
α

2πi(z − ω)
+

1

2πi
G(z − ω) log(z − ω) (4.34)
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The Borel transform of this is

BF (ζ) =
α

2πi(ζ − ω)
+

1

2πi
BG(ζ − ω) log(ζ − ω) (4.35)

where at ζ = ω there is a simple singularity. Perform a contour integral along a closed path Cω
around ω. This contour integral is equal to the sum of the integrals going from 0 to ∞eiθ

−
and

from 0 to ∞eiθ
+

plus the integral over a path that closes these paths at infinity. We have

∮
Cω

dζe−zζBF (ζ) =

∫ ∞eiθ−
0

dζe−zζBF (ζ) +

∫ 0

∞eiθ
+
dζe−zζBF (ζ) +

∫ ∞eiθ+
∞eiθ

−
dζe−zζBF (ζ)

= Sθ−F (z)− Sθ+F (z) (4.36)

Choose Cω to be small and use (4.35) to obtain∮
Cω

dζe−zζ
[

α

2πi(ζ − ω)
+

1

2πi
BG(ζ − ω) log(ζ − ω)

]
= Sθ−F (z)− Sθ+F (z) (4.37)

Let’s change the variable to ζ = u + ω such that Cω will change into a path C0 that encloses
the origin in the u-plane. Thus,

Sθ−F (z)− Sθ+F (z) =

∮
C0

due−z(u+ω) α

2πiu
+

∮
C0

du
1

2πi
BG(u) log(u)

=
αe−zω

2πi

∮
C0

du
e−zu

u
+ e−zω

∫ ∞
0

due−zuBG(u)

= αe−zω + e−zωG(z) (4.38)

Now use (4.37) to obtain

(Sθ+ − Sθ−)F (z) = e−zωSθ−(∆ωF (z)) (4.39)

From this we see that when the Alien derivative act on a simple resurgent function of the form
(4.33) we have

S∆ωF (z) = α + SG(z) (4.40)

where the Borel transform has a simple singularity and the difference between the two Borel sums
from integrating across the singular point gives the Alien derivative ∆ω. Note that ∆ω is a linear
operator such that ∆ω = 0 if the Borel transform of F has no singularity and ∆ω 6= 0 if the Borel
transform of F has a singularity or a pole.

Consider now the series expansion, as an example,

F (z) =
∞∑
g=0

g!

g + 1

1

Agzg+1
(4.41)
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The Borel transform of this series is

BF (ζ) =
∞∑
g=0

1

g + 1

(
ζ

A

)g
= −A

ζ
log(1− ζ

A
) (4.42)

We have singularities at ζ = {0, A} where ζ = 0 is a pole and ζ = A a branch point. Motivated
by this example we will now introduce a few more ideas.

A holomorphism function BF (ζ) in an open disc D ⊂ C has a simple singularity at ω if there
exists α ∈ C and two germs of analytic functions at the origin such that

BF (ζ) =
α

2π(ζ − ω)
+

1

2πi
BG(ζ − ω) log(ζ − ω) + reg(ζ − ω) (4.43)

For α = 0 we have

BG(s− A)

2πi
= −A

s
⇒ BG(s− A) = −2πiA

s
(4.44)

From this,

BG(s) = − 2πi

1 + s
A

− 2πi
∞∑
g=0

(
−1)g(

s

A

)g
,
∣∣∣ s
A

∣∣∣ < 1 (4.45)

and the formal series is

G(z) = −2πi
∞∑
g=0

g!
1

(−A)g
1

zg+1
(4.46)

Using (4.40) and the fact that the singularity at ω = A is on the real axis, together with α = 0,
we find that the Borel sums give us back the asymptotic expansion

∆ωF = G(z) = −2πi
∞∑
g=0

g!
1

(−A)g
1

zg+1
. (4.47)

4.3 Transseries

In this section we will introduce some basic concepts regarding the transseries expansion. We
start by defining a log-free transseries as a formal power series

T =
∑
j

Cjgj (4.48)

where the coefficients Cj are real and gj are log-free trans-monomials which are a symbol of the
form

g = zaeT (4.49)
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with a ∈ R. The height of a trans-monomial is defined as the number of times we compose the
formal exponential symbol, i.e zee

z
+ z has height 2.

Transseries inherits almost all the standard properties of usual power series when treated as formal
sums. For example, differentiation of a trans-series is defined by the standard differentiation of
the trans-monomials

g′ = (zaeT )′ = aza−1eT + zaT ′eT , (4.50)

T ′ = (
∑
j

Cjgj)
′ =
∑
j

Cjg
′
j (4.51)

A general transseries is obtained by using the symbol logm z such that

logm z = log ◦ · · · ◦ log z (4.52)

where we composed the logarithm m ∈ N times and the integer m is called depth of the
transseries. Note that finite depth transseries arise naturally when we are dealing with instanton
contributions to physical observables. The question we should ask now is how we can obtain a
consistent formal solution to our physical problem since the perturbative power series expansion
is usually insuficient to recover the solution. We know from the study of the analytic properties of
the Borel transform of the pertubative series that the non-perturbative terms have to be included
to obtain a consistent solution. Therefore we consider a transseries of the form

F (z, σ) =
∞∑
n=0

σnF (n)(z) (4.53)

where F (n)(z) are n-instanton contributions defined as

F (n)(z) = e−nAzΦn(z) (4.54)

A is the instanton action, σ is a complex parameter to keep track of the resurgence symbols
e−Az and Φn(z) is a formal asymptotic power series. The problem we want to solve in the next
section is how to compute the Alien derivative of the transseries (4.53). We will relate the Alien
derivative to the standard derivation through a bridge equation.

4.4 Bridge equation

The Alien derivatives can be constructed using the bridge equation, which is obtained from the
commutation relation of the dotted Alien derivatives and the partial derivative of the transeries
F (z, σ). The dotted Alien derivative is defined as ∆̇ω = e−ωx∆ω. Note that the dotted Alien
derivatives ∆̇lAF (z, σ) and the partial derivative of the transseries ∂σF (z, σ) are proportional
since they satisfy the same differential equation

∆̇lAF (z, σ) = Sl(σ)∂σF (z, σ) (4.55)
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where Sl(σ) is the proportionality factor which depends on σ. The name “bridge” comes from
the fact that this equation relates the alien calculus with the ordinary calculus. To determine the
proportionality factor Sl(σ) apply the dotted alien derivative to the transseries F (z, σ)

∆̇lAF (z, σ) =
∞∑
n=0

σne−(l+n)Az∆lAΦn(z) (4.56)

The ordinary derivative of F (z, σ) is

∂σF (z, σ) =
∞∑
n=0

nσn−1e−nAzΦn(z) (4.57)

To match these two equations term by term we expect that Sl(σ) has the form

Sl(σ) =
∞∑
k=0

S
(k)
l σk, S

(k)
l ∈ C (4.58)

Now we can determine S
(k)
l by computing the RHS for a simple resurgent function of the form

(4.55), using (4.57) and (4.58)

Sl(σ)∂σF (z, σ) =
∞∑
n=0

∞∑
k=0

nS
(k)
l σn+k−1e−nAzΦn(z) (4.59)

Comparing this equation with (4.56) we find that k = 1− l and this leads to

S
(k)
l =

{
0 if l > 1

Sl(σ) = Slσ
1−l if l < 1

Using the last equation above in (4.59) we obtain

Sl(σ)∂σF (z, σ) =
∞∑
n=1

nSlσ
n−le−nAzΦn(z) (4.60)

Let’s change the variable to p = n− l

Sl(σ)∂σF (z, σ) =
∞∑

p=1−l

(p+ l)Slσ
pe−(l+p)AzΦl+p(z), l ≤ 1 (4.61)

Comparing this equation with (4.56) we find

∆lAΦn(z) =

{
0 if l > 1

Sl(n+ l)Φn+l(z) if l ≤ 1
(4.62)

For a simple resurgent function Φn(z) with a singularity at ω = lA, by making use of (4.40) and
(4.43), the Borel transform of this function Φn is

BΦn(ζ) =
1

2πi
BΦn+l(ζ − lA)Sl(l + n) log(ζ − ω) (4.63)
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Note from this that the singular behaviour of the Borel transform BΦn(ζ) close to ω = lA is
entirely governed by BΦn+k(ζ). It is important to note that the bridge equation not only allow
us to reconstruct the entire behaviour of our transseries close to a singular point but also makes
manifest the appearance of the Stokes phenomenon along the singular lines θ = 0 and θ = π.
To understand this, let us go back to the expression for the Stokes automorphism in term of the
alien derivative (4.32) ∑

θ

= exp

(∑
ω∈Ω

e−ωz∆ω

)
(4.64)

where Ω is the set of singularities in the complex plane along the θ direction. Let us specialise it
to the singular direction θ = 0. Since the singular behaviour of our Borel transform BΦn(ζ) is
close to ω = lA we can rewrite the last expression above as∑

0

= exp

(
∞∑
l=1

e−lAz∆lA

)
(4.65)

We know from (4.62) that ∆lAΦn(z) = 0 for all n if l > 1. Using this, the above equation
simplifies to ∑

0

Φn(z) = (1 + e−Az∆A +
1

2!
e−2Az + · · · )Φn(z)

=
∞∑
l=0

1

l!
∆l
AΦn(z) (4.66)

We can also use the second part of equation (4.62) to conclude

∆AΦn(z) = S1(n+ 1)Φn+1(z) (4.67)

and this leads to

∆l
S0

Φn(z) = Sl1(n)lΦn+l(z) (4.68)

where we use the Pochhammer symbol (n)l =
∏l

i=1(n+ i). Therefore∑
0

Φn(z) =
∞∑
l=0

Cn
n+lS

l
1(n)e−lAzΦn+l(z) (4.69)

where Cn
n+l = n!

l!(n−l)! . We can now use (4.66) and (4.69) in (4.30) to obtain

S0+F (z, σ) = S0− ◦
∑

0

F (z, σ)

=
(
1 + e−Az∆A + · · ·

)( ∞∑
n=0

Cn
n+le

−nAzΦn+l(z)

)

= S0− ◦

(
∞∑
n=0

∞∑
l=0

Cn
n+lS

l
1σ

ne−(n+l)AzΦn+l(z)

)
(4.70)
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Changing the variable (n+ l) to m we have

S0+F (z, σ) = S0−

(
∞∑
m=0

e−mAzΦn(σ + S1)m

)
(4.71)

Now use (4.53) to conclude

F (z, σ + S1) =
∞∑
m=0

e−mAzΦm(σ + S1)m (4.72)

Plug this back into (4.71) to obtain

S0+F (z, σ) = S0−F (z, σ + S1) (4.73)

We obtain the same results using the following Bridge equation

∆̇lAF (z, σ) = Slσ
1−l∂σF (z, σ), l ≤ 1 (4.74)

Therefore the Stokes automorphism along θ = 0 is∑
0

F (z, σ) = exp(e−Az∆A) = F (z, σ + S1) (4.75)

where the singularity is at l = 1. Now consider the Stokes automorphism along the direction
θ = π. Let us again go back to the definition for Stokes automorphism in term of alien derivative
and apply this to θ = π. We have,

∑
π

= exp

(
∞∑
l=1

elAz∆−lA

)
(4.76)

Here the singular points are {−A,−2A,−3A, · · · ,−lA, · · · } so that the Stokes automorphism
is ∑

π

= 1 + eAz∆−A + e2Az∆−2A + · · · (4.77)

Note that the contributions to each resurgent symbol elAz in
∑

π come from

∆−l1A · · ·∆−lNAΦn(z) (4.78)

Using (4.62) and the Pochhammer symbol we have

∆−l1A(∆−l2AΦn(z)) = ∆−l1A(S−l2(n− l2)Φn−l2)

= S−l2(n− l2)S−l1(n− l2 − l1Φn−l2 − l1) (4.79)

and

∆−l2A(∆−l1AΦn(z)) = ∆−l2A(S−l1(n− l1)Φn−l1)

= S−l1(n− l1)S−l2(n− l1 − l2Φn−l1 − l2) (4.80)
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where we use the fact that the alien derivatives at different points do not commute, i.e,

[∆−l1A,∆−l2A]Φn(z) = S−l1S−l2(l1 − l2)(n− l1 − l2)Φn−l1−l2 (4.81)

Therefore, the multiple alien derivatives can be written as

∆−l1A · · ·∆−lNAΦn =
N∏
i=1

S−li

N∏
i=1

(n−
i∑

j=1

kj)Φn−
∑
i ki

(4.82)

Note that this expression vanishes as soon as
∑N

i=1 li ≥ n. The Stokes automorphism along the
direction θ = π on the transseries F (z, σ) is then given by

∑
π

F (z, σ) = exp

(
∞∑
l=1

elAz∆−lA

)
F (z, σ) (4.83)

where we use (4.76). Using (4.74) we can rewrite this equation as

∑
π

F (z, σ) = exp

(
∞∑
l=1

S−lσ
1+l∂σF (z, σ)

)
(4.84)

Assuming that all the Stokes constants vanish except S−l 6= 0, the Stokes automorphism along
the direction θ = π is simply given by∑

π

F (z, σ) = exp
(
S−lσ

1+l∂σF (z, σ)
)

=
∞∑
n=0

Sn−l
σ(1+l)n

n!
∂nσF (z, σ) (4.85)

with

∂nσF (z, σ) =
∞∑
i=0

i(i− 1) · · · (i− k + 1)σi−ke−iAzΦi(z) (4.86)

Finally the Stokes automorphism along the direction θ = π is

∑
π

F (z, σ) =
∞∑
i=0

i∑
k=0

Ck
i (S−lσ

1+l)kσi−ke−iAzΦi(z)

=
∞∑
i=0

(σ + S−lσ
1+l)ie−iAzΦi(z)

= F (z, σ + S−lσ
1+l) (4.87)

where Ck
i = i!

k!(i−k)!
. This concludes our discussion of resurgence. In the next section we will

introduce the correlators of most importance in this dissertation.

34



5. CFT Correlators

The contents of this section, as well as the sections 6, 7 and 8 have been reported in [17].

The space of half-BPS representations can be mapped to the space of Schur polynomials of
U(N), that is, to the space of Young diagrams characterizing representations of U(N)[3].There
are rigorous theorems[18] that imply that extremal correlation functions of Schur polynomials do
not receive any ’t Hooft coupling corrections and hence they are given exactly by their values in
free field theory. The Schur polynomials that correspond to giant graviton branes have a single
column with order N boxes, while those corresponding to dual giant graviton branes have a single
row with order N boxes[3]. Computing correlators of these operators is still a highly non-trivial
task, even in the free field theory limit, because the number of fields in each operator is going to
infinity as we take N →∞. Fortunately, using techniques based on group representation theory,
this problem has been completely solved in[3, 31] for operators constructed using a single field
(say Z) and in[32] for operators constructed using more than one matrix (see also [33, 34, 35]).
We give a quick review of these results in this section and then use them to explore different
possible behaviors of these correlators at large N .

Let V denote the N dimensional vector space carrying the fundamental representation of U(N).
The space Sym(V ⊗n) is also a representation of U(N) but it carries in addition a commuting
action of Sn. These actions can be simultaneously diagonalized leading naturally to the operators
of interest to us, the Schur polynomials. After diagonalizing, the representations of both groups
can be labeled by a Young diagram that has n boxes. A further consequence is that the two
point function is also diagonalized. The simplest way to achieve the diagonalization is by using
a projection operator. The Schur polynomials are given by

χR(Z) = Tr(PRZ
⊗n) (5.1)

where PR is a projection operator

PR =
1

n!

∑
σ∈Sn

χR(σ)σ (5.2)

It is rather natural to study operators with a two point function normalized to 1. The Schur
polynomial has two point function

χR(X)χ†S(Y ) =
δRSfR
|X − Y |2n

(5.3)

where R is a Young diagram with n boxes and fR is the product of the factors of the boxes in
R. Recall that a box in row i and column j has factor N − i+ j. The normalized version of the
Schur polynomial is given by

OR(x) =
χR(x)√
fR

(5.4)

The normalized three point correlator is given by

〈OR(Z)(x1)OS(Z)(x2)OT (Z†)(x3)〉 =

√
fT
fRfS

gRST
|x1 − x3|2nR |x2 − x3|2nS

(5.5)
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Recall that g(R, S;T ) is called a Littlewood-Richardson coefficient. It was introduced in equation
(3.24). Young diagrams R and S have nR and nS boxes respectively. These are the correlators
we will study in this article. In what follows the spatial dependence plays no role and consequently
from now on we omit it. This dependence is easily reinstated using simple dimensional analysis.
Use AJ to denote the antisymmetric representation with J boxes (i.e. the Young diagram AJ
has a single column) and SJ to denote the symmetric representation with J boxes (i.e. SJ has
a single row). It is straight forward to see that

〈OAJ1
OAJ2

OAJ 〉 =

√
(N − J1)!(N − J2)!

(N − J)!N !
(5.6)

where J = J1 + J2. We stress that this expression is the exact answer, valid for any values of J1

and J2. For operators in the planar limit we would hold J1, J2 fixed as we take N →∞ in which
case expanding the correlator leads to a well behaved power series in N−1. To make this point
we can consider J1 = J2 = 2 in which case

〈OA2OA2O4〉 =

√
(N − 2)(N − 3)

(N − 1)N

=

√(
1− 2 1

N

) (
1− 3 1

N

)
1− 1

N

= 1− 2
1

N
− 1

N2
− 1

N3
− 3

2

1

N4
− 3

1

N5
− 7

1

N6
+O

(
N−7

)
(5.7)

This expansion in 1/N converges absolutely in the range 0 ≤ 1
N
< 1

3
, that is, for N > 3. This

planar limit is the regime in which we study perturbative string theory, so it is perhaps not too
surprising that we can perform a 1/N expansion. This result is however, better than we may have
expected: most perturbative expansions are only asymptotic expansions. If we were to increase
J1 and J2 the radius of converges would shrink further.

We could also consider the case that J1 = O(N) with J1

N
fixed and much less than 1. The result

(5.6) is exact, so it continues to hold in this limit. Since J1 is order N , OAJ1
is a giant graviton.

We can then take J2 = 2n = O(1), so that OAJ2
is some collection of point gravitons. The

correlator (5.6) then describes the emission or absorption of gravitons by a giant graviton. In this
case we find

〈OAJ1
OAJ2

OAJ 〉 '
(

1− J1

N

)n
+O(N−1) (5.8)

and there is again no obstacle to carrying out a 1/N expansion. A simple case study is provided
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by taking J2 = 2 in which case we have

〈OAJ1
OAJ2

OAJ 〉 =

√
(N − J1)!(N − 2)!

(N − J1 − 2)!N !

=

√
(N − J1)(N − J1 − 1)

N(N − 1)

= (1− j1)− j1

2N
+

j1(3j1 − 4)

(8− 8j1)N2
+O

(
N−3

)
(5.9)

where j1 = J1

N
. This is again an absolutely convergent expansion for 1

N
< 1− j1.

To obtain giant graviton correlators we should set Ji = Nji and hold ji fixed as we take N →
∞. Giant gravitons are spherical D3-brane states which are not part of the perturbative string
spectrum[10, 11, 12], so we might expect that this correlator does not have a 1/N expansion. In
this limit the normalized correlator behaves as[36]

〈OAJ1
OAJ2

OAJ 〉 =

√
(N − J1)!(N − J2)!

(N − J)!N !
' e−Nj1j2 (5.10)

The exponential on the right hand side of the above correlator does not admit a 1
N

expansion
and it therefore constitutes a genuine non-perturbative contribution. The corresponding result
for the dual giant graviton correlator is

〈OSJ1
OSJ2

OSJ 〉 =

√
(N + J1 − 1)!(N + J2 − 1)!

(N + J − 1)!(N − 1)!
' eNj1j2 (5.11)

which is again a non-perturbative contribution. One of the main results of this article is the
trans-series expansion of (the square of) these giant graviton correlators. The starting point for
this analysis uses Gauss’ Hypergeometric Theorem, which says

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

(5.12)

Clearly then, we can write(
〈OAJ1

OAJ2
OAJ 〉

)2
= 2F1(−J1, J2;N − J1 + 1; 1) (5.13)

(
〈OSJ1

OSJ2
OSJ 〉

)2
= 2F1(J1,−J2;N + J1; 1) (5.14)

It is possible to transform the hypergeometric differential equation into the Schrödinger equation
and then use any of the techniques developed for quantum mechanics. To explore the structure
of the 1/N expansion of the giant graviton correlators, we will use known results for the exact
WKB expansion for the hypergeometric function.

The language of Schur polynomials generalizes to the case of multi matrix models. The Schur
polynomials are replaced by restricted Schur polynomials. For concreteness focus on restricted
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Schur polynomials constructed from two complex matrices Z and Y . These restricted Schur
polynomials are labeled by three Young diagrams1 χR,(r,s)(Z, Y ). For an operator constructed
using n Z fields and m Y fields, the Young diagram r has n boxes, s has m boxes and R has
n + m boxes[32]. A giant graviton operator would be given by the restricted Schur polynomial
χAn+m,(An,Am)(Z, Y ), while a dual giant graviton operator is given by χSn+m,(Sn,Sm)(Z, Y ). The
normalized correlator of three giant gravitons is given by[37]

〈χAn1+m1 ,(An1 ,Am1 )χAn2+m2 ,(An2 ,Am2 )χ
†
An12+m12 ,(An12 ,Am12 )〉

=

√
(N − n1 −m1)!(N − n2 −m2)!

N !(N − n12 −m12)!

√
n12!m12!(n1 +m1)!(n2 +m2)!

n1!n2!m1!m2!(n12 +m12)!
(5.15)

where n12 = n1 + n2 and m12 = m1 + m2. This result is a product of two square root factors.
The first factor has the same form as the one matrix result. The second factor is always ≤ 1. To
see this, consider the binomial expansion of

(1 + x)m =
m∑
k=0

(mk )xk, where (mk ) =
m!

k!(m− k)!

By comparing the coefficient of xr+s coming from the expansion of (1 +x)m times the expansion
of (1 + x)n to the coefficient of xr+s coming from the expansion of (1 + x)m+n, we learn that

(mr ) (ns ) + non negative integers =
(
m+n
r+s

)
.

Thus
(mr ) (ns )(
m+n
r+s

) ≤ 1,

which proves that the second factor is ≤ 1. Notice that when m1 = m2 = 0, the second factor
is identically equal to 1 so that our result correctly reduces to the one matrix result we discussed
above. It is equally easy to compute the correlation function for three dual giant gravitons. The
result is[37]

〈χSn1+m1 ,(Sn1 ,Sm1 )χ(Sn2+m2 ,(Sn2 ,Sm2 )χ
†
Sn12+m12 ,(Sn12 ,Sm12 )〉

=

√
(N + n12 +m12 − 1)!(N − 1)!

(N +m1 + n1 − 1)!(N + n2 +m2 − 1)!

√
n12!m12!(n1 +m1)!(n2 +m2)!

n1!n2!m1!m2!(n12 +m12)!
(5.16)

It is again easy to verify that if we set m1 = 0 = m2, we recover the correct one matrix result.

There are again a number of physical processes described by our correlators (5.15) and (5.16): a
three point correlators of point like graviton or of string states, a three point function involving
two giant gravitons and one string or point like graviton or a three point correlator involving only

1In general we also need some extra multiplicity labels. These labels however will not be needed for the giant
graviton correlators we study so they will be omitted from our discussion for simplicity.
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giant gravitons. We will only quote the result for a correlator involving three giant gravitons.
Setting n1 = n2 = n = Nn and m1 = m2 = Nm we find

〈χAn+m,(An,Am)χAn+m,(An,Am)χ
†
A2n+2m,(A2n,A2m)〉 ∼ e−2N(n+m)

√
2(n + m)

πNnm
(5.17)

〈χSn+m,(Sn,Sm)χ(Sn+m,(Sn,Sm)χ
†
S2n+2m,(S2n,S2m)〉 ∼ e2N(n+m)

√
2(n + m)

πNnm
(5.18)

Both of these correlators again are quantities that can not be expanded in a power series in N−1.

It is also interesting to consider extremal n-point functions since these are also protected. The
result is

〈OR1OR2 · · ·ORkO
†
T 〉 = gR1R2···RkT

√
fT

fR1fR2 · · · fRk
(5.19)

where gR1R2···RkT counts how many times T appears in R1 ⊗ R2 ⊗ · · · ⊗ Rk. We will see, in
explicit examples considered later, that these correlators also exhibit interesting behavior that is
non-perturbative with respect to the 1/N expansion.
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6. Review of Exact WKB

In this section we will review the exact WKB solution to the Schrödinger equation[19]. This
is useful because as we review in the next section, the hypergeometric differential equation can
be mapped into the Schrödinger equation with a specific potential. The exact WKB method
starts from the usual WKB expansion to write the wave function as an infinite series. The Borel
sums of these WKB solutions exhibit parametric Stokes phenomena[24] (see summary of the
first two chapters in appendix B), which is a Stokes phenomena in the asymptotic behavior of
WKB solutions with a change in the parameters of the problem1. The space of parameters can be
partitioned into regions by the Stokes graph. The vertices of the Stokes graphs are singular points
as well as turning points associated to the Schrödinger equation. The Borel sum of the WKB
solutions converge within each face of the Stokes graph, but are discontinuous across the Stokes
lines. This parametric Stokes phenomena is nicely captured in Voros coefficients, which describe
the relative normalization of wave functions normalized2 at well chosen distinct points. The whole
analysis can be phrased in terms of Stokes’ automorphims and Alien derivatives, introduced by
Ecalle[38] in his theory of resurgence. This analysis explicates the singularities of the Borel sum
and these are the seeds of the non-perturbative contribution to the wave function.

6.1 Orientation

Broadly speaking the collection of ideas that we are drawing on go under the name of resurgence.
Since much of the background maybe a little unfamiliar, in this section we will give a very
brief overview of the relevant ideas. For very helpful background reading, aimed at theoretical
physicists, we suggest the reader consults [1, 39, 40, 41].

Use g to denote the coupling constant. The perturbative expansion of an interesting observable
O will take the form

O =
∞∑
n=0

cng
n (6.1)

Typically the coefficients cn grow as n! so that this series does not converge, but rather it defines
an asymtotic expansion. In this situation, we would typically carry out a Borel resummation.
This is a two step process, in which we first perform a Borel transform of the sum and then we
perform a Laplace transform. The Borel transform of a given term B[gn+1](s) = sn

Γ(n+1)
so that

B[O](s) =
∞∑
n=0

cn
Γ(n)

sn−1 (6.2)

1One could also consider Stokes phenomenon arising as a consequence of changing ~. This is typically
considered when analyzing the Borel resummation of WKB solutions and it is not what we are considering here.

2By a wave function normalized at a point x0, we mean the overall amplitude of the wave function ψ(x) is
chosen so that ψ(x0) = 1.
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This sum is much better behaved that the original sum and, if it converges in some region it
can be used to define a function analytic in s, except possibly at a few singular points in the
complex s plane. We can then perform an inverse map of the Borel transform (which is the
Laplace transform) to complete the resummation

SθO =

∫ eiθ∞

0

B[O](s)e−
s
g ds (6.3)

This Laplace transform is not well defined if singularities of the Borel sum lie on the contour of
the s integration. Indeed, the result of the transform becomes ambiguous since it will depend
on whether we go above or below the singularity. By slowly increasing θ so that the contour of
integration moves past a singularity, we find a jump in the value of the Borel resummed observable.
This is nothing but the familiar Stokes phenomenon, signaling a change in the behaviour of the

asymptotics of the observable O. A pole in B[O](s) would produce a jump proportional to e−
A
g

where A sets the location of the pole. The form of the jump is reminiscent of an instanton
contribution and indeed, it can be reproduced in this way. One finds that A is the classical action
of an instanton. This is a rather remarkable claim: by Borel resumming the perturbative series we
can learn about non-perturbative phenomena in the problem3. Further, it explains how to make
sense of the full non-perturbative structure of the problem: the usual perturbative series should
be replaced by a trans-series, which takes the form

O =
∞∑
n=0

σnO(n)(g) (6.4)

where O(n)(g) is the contribution of the n-instanton sector. It takes the form

O(n) = e−
nA
g

∞∑
m=0

c(n)
m gm (6.5)

These sums are themselves asymptotic and need to be resummed. However the trans-series
restores uniqueness to the Laplace transform: although each of the individual sums O(n) jump
as we pass a singularity, the complete sum O does not. The parameter σ is called a trans-series
parameter and its role is to track instanton number.

Our goal is to determine the trans-series expansion for the giant graviton correlators we wrote
down in the previous section. This will explain the structure of the large N expansion for these
correlators and it will make it clear what the non-perturbative contributions to the correlator are.

3This is a result with a lot of history[2, 42, 43, 44, 45, 46] that has recently been understood in a remarkable
way [53].
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6.2 WKB Solutions

We study the Schrödinger problem(
− d2

dx2
+N2Q

)
ψ = 0 (6.6)

where

Q =
∑
j=0

N−jQj(x) Q0(x) =
F (x)

G(x)
(6.7)

We assume that G(x)Qj(x) are polynomials in x. The small parameter N−1 plays the role of ~.
As usual, a turning point of the classical motion is given by a zero of Q0(x). A simple turning
point is a simple zero of Q0(x). The poles of Q0(x) are singular points of the differential equation
(6.6). In the exact WKB analysis the poles and zeros of Q0(x) will play an important role. The
usual WKB ansatz

ψ(x) = e
∫ x dx′S(x′,N) (6.8)

leads to a solution of the Schrödinger equation as long as S solves the Riccati equation

dS

dx
+ S2 = N2Q (6.9)

To solve (6.9), plug the ansatz

S(x,N) =
∞∑

j=−1

N−jSj(x) (6.10)

into (6.9) and equate each power of N to zero (see appendix (B.2) for the computation). This
process yields

S2
−1 = Q0 (6.11)

as well as the following recursion relation

Sj+1 = − 1

2S−1

(
dSj
dx

+

j∑
k=0

Sj−kSk −Qj+2

)
j = −1, 0, 1, 2, . . . (6.12)

There are two possible solutions for S−1

S
(±)
−1 = ±

√
Q0(x) (6.13)

and hence there are two possible formal series solutions to the Riccati equation

S(±)(x,N) =
∞∑

j=−1

N−jS
(±)
j (x) (6.14)
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Here “formal series” means formal Laurent series in N−1. These functions are multivalued and
holomorphic on the complex plane once the zeros and poles of Q0(x) are removed. It is known
that the series (6.14) is divergent in general. In the framework of the exact WKB analysis, the
Borel resummation of the WKB solution is used to arrive at exact results. It is useful to introduce

Sodd(x,N) =
1

2

(
S(+) − S(−)

)
=

∞∑
j=−1

N−jSodd,j(x)

Seven(x,N) =
1

2

(
S(+) + S(−)

)
=
∞∑
j=0

N−jSeven,j(x) (6.15)

An identity that we will use below is

−1

2

d

dx
logSodd = Seven (6.16)

All that is needed to prove this identity is a simple application of (6.9). Our two possible solutions
are S = S(±) = Seven ± Sodd. If we use (6.16) we can simplify our solution as follows

ψ±(x) = e
∫ x
x0
dx′(Seven(x′,N)±Sodd(x′,N))

= e
∫ x
x0
dx′(− 1

2
d
dx′ logSodd(x′,N)±Sodd(x′,N))

=

√
Sodd(x0, N)

Sodd(x,N)
e
±

∫ x
x0
dx′Sodd(x′,N) (6.17)

Since we can always multiply or divide ψ by a constant4 we can equally well take

ψ±(x) =
1√

Sodd(x,N)
e
±

∫ x
x0
dx′Sodd(x′,N) (6.18)

Recall that since

Sodd = N
√
Q0(x) +O(1) (6.19)

the WKB wave function ψ(x) blows up at the simple zeroes of Q0(x). This is nothing but the
familiar breakdown of the WKB approximation at the turning points of the classical motion.

The Borel sum of the WKB solutions ψ(x) have been studied in [27]. Consider the complex
plane of parameters Cp of the Schrödinger equation. The asymptotic behavior of the solutions to
the Schrödinger equation (in x-space) depends on where the parameters take their values on the
complex Cp plane, hence the name “parametric” Stokes phenomenon. These regions are bounded
in x-space by Stokes lines. The Stokes line is the integral curve of Im(

√
Q0)dx = 0, emanating

from a turning point. Each Stokes line can either end on a singular point or on a turning point.
The complex x-plane is dissected into Stokes regions, each of which is bounded by Stokes curves.
The graph formed by taking the singular points and turning points as vertices and the Stokes

4This is because (6.6) does not fix the normalization of ψ.
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lines as edges is called a Stokes graph. If every edge of the Stokes graph starts on a turning point
and ends on a singular point, we say that the graph is non-degenerate. The singularities of the
Borel sum (which is our main interest) will lie on these Stokes curves, so it is useful to consider
them in detail. Three Stoke’s lines meet at each simple turning point. To see this, note that
close to a simple turning point at x = a0 we have√

Q0 =
√
x− a0R0(x) (6.20)

with R0(x) a polynomial. At the turning point imagine that R0(x = a0) = A0e
iφ0 . Change

variables as follows: (x− a0) = reiφ, hold φ fixed and let r vary. In this case

dx = dreiφ (6.21)

and thus √
Q0dx = A

3
2
0 e

iφ0+i 3
2
φdr (6.22)

The condition for the Stokes line Im(
√
Q0)dx = 0 becomes

φ =
2

3
(πn− φ0) (6.23)

There are 3 distinct directions (for n = 0, 1, 2) and hence there are 3 Stokes lines meeting at each
turning point. We will assume that all of the singular points are poles of order 2 (this is indeed
the case of interest to us as we will see in the next section). In this case, an analysis which is
very similar to what we just did above, leads to the conclusion that two Stokes lines end on each
singular point. To proceed further we should specify the potential which would determine the
number of singular points and turning points and hence the details of the Stokes graph. Following
this logic, we will characterize the Stokes graph for our problem in Section 7. To complete our
review of the exact WKB method, in the next subsection we will describe the jumps in the WKB
solution as we pass through a Stokes line.

6.3 Borel Resummation and Voros Coefficients

Under some conditions (that we will spell out below) a suitably normalized WKB solution is Borel
summable in each Stoke’s region. There are singularities on the edge of each Stoke’s region that
we would like to identify. This can be accomplished by studying the Stokes phenomena of the
WKB resummed solutions across the Stokes curves, since the singularities are the origin of the
Stokes phenomenon. If we take a solution to (6.6) and continue it along non-trivial paths in the
space of parameters, we find that the solutions transform under a non-trivial monodromy group,
which is another way to describe the Stokes phenomenon. One can introduce Voros coefficients,
which relate WKB solutions normalized at a turning point to WKB solutions normalized at
a singular point. The importance of the Voros coefficients follows because they capture this
non-trivial monodromy group, and consequently they provide a complete characterization of the
singularities of the Borel sum. Denote the Borel sum of ψ in region D by ΨD. Consider ψ± with
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x0 chosen to be a simple turning point x0 = a0. Consider the solutions ΨI
± and ΨII

± which are

the Borel sums of ψ± in two distinct regions I and II. If Re
(∫ x

a0

√
Q0dx

)
> 0 on the boundary

Stokes curve between regions I and II, then we have[19]

ΨI
+ = ΨII

+ + iΨII
−

ΨI
− = ΨII

− (6.24)

We say that ψ+ is dominant and ψ− is recessive on the Stokes curve. The above formulas
are called connection formulas and they clearly exhibit the Stokes phenomenon for the dominant
solution. The recessive WKB solution does not have Stokes phenomena across the Stokes curves.

Consider WKB solutions normalized at a regular singular point, located at x = r. In this case, Q0

has a double pole at x = r and, to simplify the analysis that follows, we assume that (x− r)2Qj

for j > 0 are holomorphic at x = r. With this assumption it follows that Sodd has a simple pole
at x = r. To define the WKB solution at the regular singular point, we subtract this pole from
Sodd and handle it analytically on its own. To do this it is useful to introduce the expansion

ρ = ρ0 +N−1ρ1 +N−2ρ2 + . . . (6.25)

of the function

ρ = Resx=r

√
Q where Q =

∑
j=0

N−jQj (6.26)

Proposition 3.6 of [25] computes the residue (this formula assumes that ρ is an even function of
N as explained in Appendix A)

Resx=r Sodd = σN (6.27)

where

σ = ρ

√
1 +

1

4ρ2N2
(6.28)

The WKB solutions normalized at the regular singular point x = r are given by

ψ
(r)
± =

(x− r)±σN√
Sodd

e±
∫ x
r (Sodd− σN

x−r )dx (6.29)

The integrand in the above exponential is free of singularities throughout the integration domain
because we have subtracted the pole at x = r from Sodd. The factor (x− r)±σN upfront comes
from an analytic treatment of the pole contribution. This manipulation is performed so that the
integrand Sodd − σN

x−r is regular at the singular point, ensuring that the formula (6.29) is well
defined.

We will now consider the recessive WKB solution at the regular singular point x = r. Assume that
Re(ρ0) > 0. Then ψ

(r)
+ is recessive on any Stokes curve flowing into x = r. By the connection

formula, (6.24), the recessive WKB solution does not have Stoke’s phenomena on the Stokes
curves. We now quote a Theorem from [22]
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Theorem 1: Set ψ̃
(r)
+ = (x− r)− 1

2
−σNψ

(r)
+ . There is a neighborhood U of x = r such that ψ̃

(r)
+

is Borel summable in U −{r} and x = r is a removable singularity of the Borel sum Ψ̃
(r)
+ . Hence

it is holomorphic in U × {N ; Re(N)� 0}. Moreover

Ψ̃
(r)
+ (r,N) = ψ̃

(r)
+ (r,N) = (σN)−

1
2 (6.30)

holds.

The significance of this theorem is easy to appreciate: the factor (x − r) 1
2

+σN does not admit
an expansion in 1/N . The above theorem implies that this factor appears in the WKB solution

ψ
(r)
+ , but this is the only non-perturbative contribution and it appears as a multiplicative factor.

Indeed, as soon as it is removed (to obtain ψ̃
(r)
+ ) the result is Borel summable. If Re(ρ0) < 0 we

have to exchange + and −.

We are now ready to introduce the Voros coefficient[19] which will play an important role in
the next section. The Voros coefficient Vj describes the discrepancy between WKB solutions
normalized at a turning point a (denoted ψ±) and those normalized at a singular point bj (denoted

ψ
(bj)
± ) where j specifies which singular point we consider. The definition is

ψ
(bj)
± = e±Vjψ± (6.31)

This completes our review of the exact WKB solutions. In the next section we apply the method
to the hypergeometric differential equation.
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7. Application of Exact WKB to Giant
Graviton Correlators

We have seen in Section 5 that the normalized three point function of giant graviton correlators
can be expressed in terms of the hypergeometric function 2F1(a, b; c; 1). In this section we will
map the hypergeometric differential equation into a Schrödinger equation. We can then apply
the results of the previous section to perform an exact WKB analysis. Under the mapping to the
Schrödinger equation, 1/N maps to ~ so that the semi-classical expansion for the Schrödinger
equation is the 1/N expansion of our correlators. This implies that through this map we are able
to understand the structure of the 1

N
expansion in this large N but non-planar limit.

7.1 Mapping to the Schrödinger Equation

The hypergeometric differential equation is

x(1− x)
d2w

dx2
+ (c− (a+ b+ 1)x)

dw

dx
− abw = 0 (7.1)

Notice that it has regular singular points at b0 = 0, b1 = 1 and b2 =∞. The parameters of the
hypergeometric function are

a =
1

2
+ αN b =

1

2
+ βN c = 1 + γN (7.2)

where N is taken to be large. This particular parametrization of a, b, c follows [22] and will
simplify many of the formulas that follow. Introduce the wave function ψ as follows

ψ = x
1
2

(1+γN)(1− x)
1
2

(1+(α+β−γ)N)w (7.3)

Plugging this into (7.1) we find that ψ obeys the following Schrödinger equation(
− 1

N2

d2

dx2
+Q(x)

)
ψ = 0 (7.4)

where

Q(x) = Q0(x) +N−2Q2(x) (7.5)

Q0(x) =
(α− β)2x2 + 2(2αβ − αγ − βγ)x+ γ2

4x2(x− 1)2
(7.6)

Q2(x) = − x2 − x+ 1

4x2(x− 1)2
(7.7)
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An important and non-trivial feature of this mapping is that we see that 1
N

plays the role of ~.
This is in complete agreement with the usual holographic dictionary between CFT parameters
and the parameters of the dual gravity, so one may wonder if this Schrödinger equation has a
natural gravitational origin. We will not explore this possibility in this article. Since Q0(x) is
quadratic, there are two turning points {a0, a1}, given by the zeros of the numerator of (7.7).

To properly define the coefficient S−1 =
√
Q0 of the WKB solution, we need to explain what

branch of
√
Q0 we use. The branch cut runs between the two turning points avoiding the singular

points bk. The branch we use is specified by choosing√
Q0 ∼

γ

2x
at x = 0 (7.8)√

Q0 ∼
α + β − γ
2(x− 1)

at x = 1 (7.9)√
Q0 ∼

β − α
2x

at x =∞ (7.10)

7.2 Stokes Graph

The (complexified) position space with coordinate x on which the wave function is defined is
divided up into regions by the Stokes graph. The Stokes graph of (7.1) is the graph drawn on the
sphere with vertices given by the turning points {a0, a1} and the regular singular points {b0, b1, b2}
and edges given by Stokes lines. The WKB solutions jump discontinuously across the Stokes lines,
which is the usual Stokes phenomenon. The Stokes graph of (7.1) is well understood[26]. Since
this will be needed in what follows, we review the relevant results of [26] in this section.

The topology of the Stokes graph can change depending on the values of the parameters appearing
in the potential. We imagine that the parameters α, β and γ are arbitrary complex numbers taking
values on the Riemann sphere Cp. We can divide this space up into regions, such that the topology
of the Stokes graph is fixed in each region. Towards this end, introduce the following three sets

E0 = {(α, β, γ) ∈ C3|αβγ(α− β)(α− γ)(β − γ)(α + β − γ) = 0}

E1 = {(α, β, γ) ∈ C3|Re(α)Re(β)Re(γ − α)Re(γ − β) = 0}

E2 = {(α, β, γ) ∈ C3|Re(α− β)Re(α + β − γ)Re(γ) = 0} (7.11)

To get some insight into the definition of the above open sets, note that

αβγ(α− β)(α− γ)(β − γ)(α + β − γ) 6= 0 (7.12)

is the condition that there are two distinct turning points and further that neither turning points
coincides with a singular point. The conditions

Re(α)Re(β)Re(γ − α)Re(γ − β) 6= 0 6= Re(α− β)Re(α + β − γ)Re(γ) (7.13)
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ensure that there is no Stokes curve connecting distinct turning points (the first condition) or the
same turning point (the second condition). If turning points are connected by a Stokes curve,
the Stokes geometry is said to be degenerate. The conditions under which the Stokes graph is
degenerate is summarized in the following theorem

Theorem 2: Assume that (α, β, γ) is not contained in E0. (i) If two distinct turning points a0

and a1 are connected by a Stokes curve, then (α, β, γ) belong to E1. Conversely, if (α, β, γ)
is contained in E1 − E2, the Stokes geometry of (7.1) has a Stokes curve which connects two
distinct turning points a0 and a1. (ii) If a Stokes curve forms a closed curve with a single turning
point as the base point, then (α, β, γ) belongs to E2. Conversely if (α, β, γ) is contained in
E2 − E1, the Stokes geometry of (7.1) has a Stokes curve which forms a closed path with a
turning point as the base point.

To proceed further we need to define the following sets of parameters

ω1 = {(α, β, γ) ∈ C3|0 < Re(α) < Re(γ) < Re(β)}

ω2 = {(α, β, γ) ∈ C3|0 < Re(α) < Re(β) < Re(γ) < Re(α) + Re(β)}

ω3 = {(α, β, γ) ∈ C3|0 < Re(γ) < Re(α) < Re(β)}

ω4 = {(α, β, γ) ∈ C3|0 < Re(γ) < Re(α) + Re(β) < Re(β)} (7.14)

as well as the involutions

ι0 : (α, β, γ)→ (−α,−β,−γ)

ι1 : (α, β, γ)→ (γ − β, γ − α, γ)

ι2 : (α, β, γ)→ (β, α, γ) (7.15)

The relevance of these involutions follows because they are symmetries of the potential Q(x), so
parameters related by the involution give the same solution. Let G be the group generated by ιj
j = 0, 1, 2. G is then a discrete group of symmetries of Q. Define the open subsets

Πh =
⋃
r∈G

r(ωh) h = 1, 2, 3, 4 (7.16)

The union of the Πh covers most of C3:

4⋃
h=1

Πh = C3 − U (7.17)
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where

U = {(α, β, γ)|Re(α)Re(β)Re(γ)

× Re(γ − α)Re(γ − β)Re(α− β)Re(α + β − γ) = 0} (7.18)

The topological structure of the Stokes graph can be summarized by the triple of integers
(n0, n1, n2) where nj counts how many Stokes curves flow into the regular singular point bj.
The topological structure of the Stokes graph is summarized in the following theorem

Theorem 3: Let n̂ = (n0, n1, n2) denote the order sequences of the Stokes graph with parameters
(α, β, γ). If (α, β, γ) ∈ Π1 then n̂ = (2, 2, 2). If (α, β, γ) ∈ Π2 then n̂ = (4, 1, 1). If (α, β, γ) ∈
Π3 then n̂ = (1, 4, 1). If (α, β, γ) ∈ Π4 then n̂ = (1, 1, 4).

7.3 Voros Coefficients

From the discussion in Section 6.3, it is straightforwards to see that the Voros coefficient ac-
counting for the discrepancy between the WKB solutions normalized at turning point a and those
normalized at singular point bk are given by

Vk(α, β, γ) =

∫ a

bk

(Sodd −NS−1)dx (7.19)

The residues of Sodd and NS−1 at the singular points coincide which implies that the Vk(α, β, γ)
are well defined and that we can develop a formal power series in N−1. The explicit power series
are[23]

V0 = −1

2

∞∑
n=2

BnN
1−n

n(n− 1)

[
(1− 21−n)

(
1

αn−1
+

1

βn−1
+

1

(γ − α)n−1
+

1

(γ − β)n−1

)
+

2

γn−1

]
V1 =

1

2

∞∑
n=2

BnN
1−n

n(n− 1)

[
(1− 21−n)

(
1

αn−1
+

1

βn−1
− 1

(γ − α)n−1
− 1

(γ − β)n−1

)
+

2

(α + β − γ)n−1

]
V2 =

1

2

∞∑
n=2

BnN
1−n

n(n− 1)

[
(1− 21−n)

(
1

αn−1
− 1

βn−1
− 1

(γ − α)n−1
+

1

(γ − β)n−1

)
− 2

(β − α)n−1

]
(7.20)

where Bn are the Bernoulli numbers defined by

tet

et − 1
=
∞∑
n=0

Bn

n!
tn (7.21)

Noting the asymptotic growth of the Bernoulli numbers

B2k ∼ 4

(
k

πe

)2k√
πk (7.22)
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it is clear that the series expansions given above are asymptotic series. The Borel transforms of
the above series are well defined and are given by[26]

B[V0](y) = −1

4
[g1(α; y) + g1(β; y) + g1(γ − α; y) + g1(γ − β; y)] + g0(γ; y)

B[V1](y) =
1

4
[−g1(α; y)− g1(β; y) + g1(γ − α; y) + g1(γ − β; y)] + g0(α + β − γ; y)

B[V2](y) =
1

4
[−g1(α; y) + g1(β; y) + g1(γ − α; y)− g1(γ − β; y)]− g0(β − α; y) (7.23)

where

g0(t; y) =
1

y

(
1

e
y
t − 1

+
1

2
− t

y

)
(7.24)

g1(t; y) =
1

e
y
2t − 1

+
1

e
y
2t + 1

− 2t

y
(7.25)

These functions have singularities which signals both the Stokes phenomenon of the asymptotic
series and non-perturbative behaviour in the field theory. Both functions have simple poles at
y = 2tmπi with m any nonzero integer. The residues of these poles are

Res
y=2tmπi

g0(t; y) =
1

2πmi
Res

y=2tmπi
g1(t; y) =

(−1)m

πmi
(7.26)

The results can be used to compute alien derivatives and the Stokes automorphims for the WKB
solutions. The interested reader can find a clear readable account in [26].

7.4 Trans-series Expansion of Giant Graviton Three Point
Function

Our primary goal in this section is to relate the Borel sum of the WKB solution to 2F1(a, b; c;x)
near x = 1. Our approach is based on the study [22] which established the relationship between
the Borel sum of the WKB solution to 2F1(a, b; c;x) near x = 0. Specifically we will study the
leading contribution to the WKB solution and show that it reproduces the leading behavior of the
correlator, which is non-perturbative in 1/N . The relation between the hypergeometric function
and the WKB solution normalized at x = 0 is[22]

F (
1

2
+ αN,

1

2
+ βN, 1 + γN ;x) =

√
γ

2
N1/2e−Nh0x−

1
2

(1+γN)(1− x)−
1
2
−α+β−γ

2
N

× 1√
Sodd

exp

[
N

∫ x

0

S−1dx+

∫ x

0

(Sodd −NS−1)dx

]
(7.27)

Note that we have normalized the wave function using the value of the hypergeometric function
at x = 0, i.e. F (a, b; c;x = 0) = 1. For the leading order at large N, we only need the first
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other contexts too. In the recent article [47] non–perturbative interpolating functions to probe the
physics of the cusp and twist-two anomalous dimensions were constructed. Finite N N = 4 SYM
is expected to be S-duality invariant. To probe this physics, [47] accounts for both non–planar
and instanton contributions by constructing modular invariant interpolating functions. At the two
ends the anomalous dimensions scale as ∼

√
λ or ∼ λ

1
4 . The cusp anomalous dimension emerges

in the large spin limit while the twist two operators are considered in the small spin limit. The
two descriptions are long spinning “spiky” strings versus small circular strings. It again seems
natural to guess there is a Stokes line separating these distinct saddles that must be crossed as
the spin varies.

In the usual planar limit, the 1/N expansion has a compelling physical interpretation [30]. The
Feynman diagram expansion is in terms of ribbon graphs. The small parameter of the expansion
is 1

N2 and the power of N multiplying a given term has a nice interpretation as the genus of the
worldsheet corresponding to the ribbon graph. Is there an interpretation for the series multiplying
the non-perturbative term in (8.1)? An approach towards this problem is suggested by recalling
that the giant gravitons are spherical D3 branes and their excitations can be described in terms
of open strings. The non-perturbative factor in (8.1) is naturally associated to the spherical D3
brane1, while the series multiplying this factor is naturally associated to the open string theory
living on the giant graviton. From this point of view, powers of N would be associated to
the genus of world sheets for the open strings. This provides a natural explanation of why the
perturbative factor is a series in 1

N
and not 1

N2 . We hope to further develop this point of view.

The mapping to the Schrödinger equation has allowed us to find the form of the 1
N

expansion and
to argue that the asymptotic series coming from the 1

N
expansion of giant graviton correlators is

Borel summable. If all that we are interested in is the form of the 1
N

expansion, then because
our correlators are ratios of Γ(·) functions, we can simply use the known asymptotic expansion

Γ(z) = e−zzz−
1
2

√
2π

(
1 +

1

12z
+

1

288z2
+ · · ·

)
(8.2)

Plugging this into the giant graviton correlators we easily recover the form we obtained from the
WKB analysis. Repeating this logic, we find the following form for the expansion of the general
giant and dual giant extremal correlators

〈OAJ1
· · ·OAJk

O†AJ1+J2+···+Ak
〉 = e−N

∑k−1
i>j=1 jiji

∞∑
n=0

cnN
−n+k−1 (8.3)

〈OSJ1
· · ·OSJk

O†SJ1+J2+···+Ak
〉 = eN

∑k−1
i>j=1 jiji

∞∑
n=0

cnN
−n+k−1 (8.4)

Given our experience with the three point functions, we conjecture that these series will be Borel
summable in the physically allowed range of parameters, which is ji > 0 for i = 1, 2, · · · , k and
j1 + · · · jk ≤ 1 for the giant gravitons. It would be interesting to explicitly prove this.

1It is naturally interpreted as the exponential of the D3 brane action. The D3 action is multiplied by the
tension of a D-brane which behaves like ∼ 1

gs
∼ N since gs ∼ 1

N .
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We have considered general extremal correlators between giant gravitons and between dual giant
gravitons. The complete class of extremal correlation functions of Schur polynomials is much more
general. It would also be interesting to study correlators involving operators with a dimension
of order N2. These would have a gravitational interpretation in terms of physics in an LLM
geometry[13], so that one is probing a back reacted version of the AdS5×S5 spacetime. It is
interesting to ask what the structure of the large N expansion in this case is? Once again the
extremal correlation functions can be evaluated exactly. In simple examples [48] for well chosen
backgrounds, the only effect on the extremal correlators is a renormalization N → Neff . The
perturbative expansion in this LLM background becomes an expansion in 1

N2
eff

, which suggests

that the closed string coupling constant gs has been renormalized. This same effect has also been
observed beyond the half-BPS sector [49, 50, 51, 52]. Does this renormalization of N persist when
non-perturbative corrections are considered? This could be probed by studying giant graviton
correlators in the LLM background. If the closed string coupling is renormalized, then the tension
of the D3-brane ∼ 1

gs
should be renormalized and we do expect the renormalization of N to

persist.

The true power of resurgence only comes into play when we have many non-perturbative sectors
as well as a perturbative sector. Resurgence then relates the series in these different sectors (see
[53] for recent results and references). Extremal giant graviton and dual giant graviton correlators
have only a single sector. Further, the form of our extremal correlators makes it likely that we
need to go beyond the half-BPS sector for correlators that have more than a single sector.

Finally, it maybe worth rexamining the “analytic bootstrap” for the exact WKB method, formu-
lated in [19]. The method considers WKB periods, which are (Borel resummed) perturbative series
in ~. These periods are determined by their classical limit and their discontinuity structure, which
is encoded in the Stokes automorphisms. This data defines a Riemann-Hilbert problem, which
can be solved in terms of a TBA-like system, uncovering a remarkable correspondence between
ordinary differential equations and integrable models[54, 55]. It would be interesting to revisit the
analytic bootstrap, considering the role of discontinuities associated with the parametric Stokes
phenomenon.
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AppendixA. Residue of Sodd
To determine the WKB solution normalized at the regular simgular point x = 1, we need to
evaluate the resdiue of Sodd at x = 1. This has been carried out in detail in [25] - see Proposition
3.6. Here we will give a quick summary of the argument, both to make the paper self contained
and to stress the differences between our case and the case of [25]. We will make use of the
Ricatti equation (6.9) which we repeat for convenience

dS

dx
+ S2 = N2Q (A.1)

First, note that √
Q(x) =

√
F (x)

2x(x− 1)
(A.2)

with

F (x) = (α− β)2x2 + 2(2αβ − αγ − βγ)x+ γ2 −N−2
(
x2 − x+ 1

)
(A.3)

It is trivial to see that

Resx=1

√
Q(x) =

√
(α− β)2 + 2(2αβ − αγ − βγ) + γ2 −N−2

2
≡ ρ(N) (A.4)

The formal solution to the Riccati equation is given by a power sum

S(x,N) =
∞∑

j=−1

Sj(x)N−j (A.5)

Plugging this sum into the Riccati equation leads to (6.11) and (6.12). From (6.11) we see that
S−1(x) has a pole of order 1 at x = 1, while from (6.12) we see that Sj(x) with j ≥ 0 has a
pole at x = 1. Consequently, for all j we have the Laurent expansions

Sj(x) =
fj,−1

x− 1
+
∑
n≥0

fj,n(x− 1)n (A.6)

Thus, the residue of S(x,N) at x = 1 is given by

Resx=1 S(x,N) =
∞∑

j=−1

fj,−1N
−j (A.7)

To perform the sum on the right hand side, plug (A.6) into (A.5), and then plug (A.5) into the
Riccati equation. Equating the coefficient of (x− 1)−2 to zero, we find

−
∞∑

j=−1

fj,−1N
−j +

(
∞∑

j=−1

fj,−1N
−j

)2

= N2ρ(N)2 (A.8)
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This quadratic equation is easily solved to obtain

∞∑
j=−1

fj,−1N
−j =

1

2
+Nρ(N)

√
1 +

1

4N2ρ(N)2
= Resx=1 S(x,N) (A.9)

For the residue of Sodd we need to extract the odd powers of N which gives

Resx=1 Sodd(x,N) =
1

2

(
Nρ(N)

√
1 +

1

4N2ρ(N)2
+Nρ(−N)

√
1 +

1

4N2ρ(−N)2

)
(A.10)

For even ρ(N) we recover the result of [25] which says

Resx=1 Sodd(x,N) = Nρ(N)

√
1 +

1

4N2ρ(N)2
(A.11)
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AppendixB. Parametric Stokes
phenomena of the Gauss hypergeometric
differential equation with a large
parameter

B.1 Introduction

In this Appendix we will review some of the relevant ideas and results of the paper [24]. The
main idea of this paper is to exhibit parametric Stokes phenomena of the Gauss hypergeometric
differential equation with a large parameter, in terms of a WKB analysis. The hypergeometric
differential equation can be mapped into the Schrödinger equation with a specific potential. The
Borel sums of these WKB solutions exhibit parametric Stokes phenomenon, which is a Stokes
phenomena in the asymptotic behaviour of WKB solutions with a change in the parameters. The
space of parameters are bounded by Stokes lines. To analyse the Stokes phenomena of WKB
solutions with respect to parameters in differential equations, the notion of Voros coefficients
have been introduced. Differents forms of Voros coefficients for the Weber equations have been
computed by Shen and Silverstone[56] and Takei[57].

The paper show that Voros coefficients can be defined for the Gauss hypergeometric equation
[57, 58] with somes modifications. The system of difference equations that characterise these
coefficients was computed. This system can be solved using the method of formal differential
operators of infinite order (Candelpergher, Coppo and Delabaere, [59]). One finds that Voros co-
efficients undertake such Stokes phenomena as exhibited through the Borel resummation method.
To analyze Stoke phenomena of Voros coeffients, it is also important to know how the Stokes
graphs depends on the parameters. For the equation we study it is possible to give a characteri-
sation of the types of Stokes graph in terms of the parameters.

B.2 The Gauss hypergeometric differential equation with
a large parameter

Consider the following Schrodinger-type equation(
− d2

dx2
+N2Q

)
Ψ = 0 (B.1)

Here N is a large parameter and α, β and γ are complex parameters,

Q(x) = Q0(x) +N−2Q1(x) (B.2)
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with

Q0(x) =
(α− β)2x2 + 2(2αβ − αγ − βγ)x+ γ2

4x2(x− 1)2
(B.3)

and

Q1(x) =
−x2 − x+ 1

4x2(x− 1)2
(B.4)

Consider the hypergeometric differential equation

x(1− x)
d2ω

dx2
+ [c− (a+ b+ 1)x]

dω

dx
− abω = 0 (B.5)

where a, b and c are complex parameters. Introduce a large parameter N by setting a = 1
2

+Nα,
b = 1

2
+Nβ and c = 1 +Nγ where α, β and γ are complex parameters. We obtain

x(1− x)
d2ω

dx2
+ [1 + γn− ((α + β)N + 2)x]

dω

dx
−
(

1

2
+Nα

)(
1

2
+Nβ

)
ω = 0 (B.6)

Next we eliminate the first-order term of (B.6) by taking the unknown function

Ψ = x(1+γη)/2(1− x)(1+(α+β−γ)η)/2ω (B.7)

Then we have (B.1). The WKB solutions of (B.1) is

Ψ = exp

(∫ x

x0

S(x,N)dx

)
(B.8)

where S solves the Riccati equation

S2 +
dS

dx
= N2Q(x) (B.9)

associated with (B.1). Let
S = Sodd + Seven (B.10)

where

Sodd =
∞∑
k=0

N−2k+1S2k−1(x) (B.11)

= S−1N
1 + S1N

−1 + S3N
−3 + · · · (B.12)

and

Seven =
∞∑
k=0

N−2kS2k(x) (B.13)

= S0 + S2N
−2 + S4N

−4 + · · · (B.14)
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Then (B.9) implies

(Sodd + Seven)
2 +

d

dx
(Sodd + Seven) = N2Q(x) (B.15)

S2
odd + S2

even + 2SoddSeven
d

dx
(Sodd + Seven) = N2Q(x) (B.16)

Using the terms of odd powers of N−1 from both sides, we find

2SoddSeven +
d

dx
Sodd = 0 (B.17)

Thus,

Seven =
− d
dx
Sodd

2Sodd
(B.18)

= −1

2

d

dx
logSodd (B.19)

Using (B.10) the two possible solutions are

S = S± = Seven ± Sodd (B.20)

Substituting (B.18) in (B.20) yields

S = S± = −1

2

d

dx
logSodd ± Sodd (B.21)

Using (B.21) the WKB solutions ((B.8)) can be rewritten as

Ψ± = exp

{∫ x

x0

(
− 1

2

d

dx
logSodd ± Sodd

)
dx

}
= exp

{
− 1

2
logSodd(x, η)

∣∣∣∣x
x0

±
∫ x

x0

Sodddx

}
= exp

{
logSodd(x0, η)1/2 − logSodd(x, η)1/2 ±

∫ x

x0

Sodddx

}
= exp log

√
Sodd(x0, η)

Sodd(x, η)
× exp

(
±
∫ x

x0

Sodddx

)
(B.22)

Then the WKB solution of (B.1) can be expressed as

Ψ± =

√
Sodd(x0, N)

Sodd(x,N)
× exp

(
±
∫ x

x0

Sodddx

)
(B.23)

By dividing Ψ± by
√
Sodd(x0, N), we end up with

Ψ± =
1√

Sodd(x,N)
exp

(
±
∫ x

x0

Sodddx

)
(B.24)
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where x0 is a fixed point. Note that each S is holomorphic except at a zero point (which is called
a turning point of (B.1)) and a singular point of Q0. A Stokes curve emanating from the turning
point ah(h = 0, 1) is a curve defined by

Im

∫ x

ah

√
Q0dx = 0 (B.25)

A Stokes curve flows into a singular point or a turning point. We say that the Stokes geometry
of (B.1) is non-degenerate if any Stokes curve does not flow into a turning point. A Stokes graph
of (B.1) can be defined as a two-colored sphere graph consisting of all Stokes curves (emanating
from a0 and a1) as edges, {a0, a1} as vertices of the first color and {b0, b1, b2} as vertices of the
second color [65] where b0 = 0 , b1 = 1 and b2 =∞ are the singular points of (B.1).

Let us define the sets Ej(j = 0, 1, 2) of the parameters α, β, γ as follows:

E0 = {(α, β, γ) ∈ C3\α · β · γ · (α− β) · (α− γ) · (β − γ) · (α + β − γ) = 0} (B.26)

E1 = {(α, β, γ) ∈ C3\Reα ·Reβ ·Re(γ − α) · (γ − β) = 0}, (B.27)

E2 = {(α, β, γ) ∈ C3\Re(α− β) ·Re(α + β − γ) ·Reγ = 0} (B.28)

If (α, β, γ) is not contained in E0, the two distinct turning points a0, a1 and the singular points are
mutualy distinct. If (α, β, γ) is contained in the set E1 ∪E2, the Stokes geometry is degenerate.
Assume that (α, β, γ) is not contained in the sets E0 ∪E1 ∪E2. The topological type of Stokes
graph is characterized by its order sequence n̂ = (n0, n1, n2) , where nj are the number of Stokes
curves that flow into 0, 1 and ∞ respectively. For the equation we consider n0 + n1 + n2 = 6.

B.3 Voros Coefficients

Here we assume that (α, β, γ) is not contained in the set E0 ∪ E1 ∪ E2 and choose a closed
path Cj(j = 0, 1, 2) going around a turning point a with the base point bj(j = 0, 1,∞) in a
counterclockwise direction . The following integrals, which are called Voros coefficients can be
defined:

V0 = V0(α, β, γ;N) :=
1

2

∫ a

0

(Sodd −NS−1)dx (B.29)

V1 = V1(α, β, γ;N) :=
1

2

∫ a

1

(Sodd −NS−1)dx (B.30)

V2 = V2(α, β, γ;N) :=
1

2

∫ a

∞
(Sodd −NS−1)dx (B.31)

These integrals are well-defined for every homotopy class of the path of integration since the
residues of Sodd and NS−1 coincide [25]. Note that V0, V1 and V2 are independent of the choice
of the turning point a. We can then define a Voros coefficient as a formal power series of N−1

defined by the following integral

Vl = Vl(α, β, γ; η) :=
1

2

∫ a

l

(Sodd − ηS−1)dx (B.32)

64



where l is a singular point of (B.1) and a its turning point. Let

Ψ
(j)
± =

1√
Sodd

exp

(
±
∫ x

bj

(Sodd − ηS−1)dx± η
∫ x

a

S−1dx

)
(B.33)

be the WKB solutions normalized at the singular point bj. For j = 0, 1 and 2, Vj(α, β, γ;N)
describe the discrepency between WKB solutions normalized at a and those normalized at singular
points b0 = 0, b1 = 1 and b2 =∞ respectively, that is, when we set

Ψ± =
1√
Sodd

exp

(
±
∫ x

a

Sodddx

)
(B.34)

and

Ψ
(j)
± =

1√
Sodd

exp

(
±
∫ x

bj

(Sodd − ηS−1)dx± η
∫ x

a

S−1dx

)
(B.35)

we have
Ψ

(j)
± = exp(±Vj)Ψ± ⇒ Ψ± = exp(∓Vj)Ψ(j)

± (B.36)

Next, we need the explicit forms of Vj. For this purpose, we need to specify the branch of
S−1(x) =

√
Q0 precisely. Consider the case where (α, β, γ) is contained in the set ω where ω is

as follows:
ω = {(α, β, γ) ∈ C3\0 < Reα < Reβ < Reγ < Reα +Reβ} (B.37)

We consider

Q0(0.5, 1, 1;x) =
(x− 2)2

(4x(x− 1))2
(B.38)

where we take
(α, β, γ) = (0.5 + δ′i, 1− ε− δi, 1) (B.39)

in ω2 (δ′, ε and δ are small positive numbers). The branch of
√
Q0 is chosen by taking a segment

connecting the turning points as branch cut for
√
Q0 so that√

Q0 ∼
β − α

2x
(B.40)

as x→∞. In this case, near 0 and 1,
√
Q0 takes the form√

Q0 ∼
γ

2x
(B.41)

and √
Q0 ∼

α + β − γ
2(x− 1)

(B.42)

respectively. Using the above choice of the branch of
√
Q0, we can write the explicit forms of

the Voros coefficients as follows:
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Theorem The Voros coefficients Vj have the following forms:

V0(α, β, γ;N) =
1

2

∞∑
n=2

BnN
1−n

n(n− 1)

×
[
(1− 21−n)

(
1

αn−1
+

1

βn−1
+

1

(γ − α)n−1
+

1

(γ − β)n−1

)
+

2

γn−1

]
(B.43)

V1(α, β, γ;N) = −1

2

∞∑
n=2

BnN
1−n

n(n− 1)

×
[
(1− 21−n)

(
1

αn−1
+

1

βn−1
− 1

(γ − α)n−1
− 1

(γ − β)n−1

)
+

2

(α + β − γ)n−1

]
(B.44)

V2(α, β, γ;N) =
1

2

∞∑
n=2

BnN
1−n

n(n− 1)

×
[
(1− 21−n)

(
1

αn−1
− 1

βn−1
− 1

(γ − α)n−1
+

1

(γ − β)n−1

)
− 2

(β − α)n−1

]
(B.45)

where Bn are the Bernoulli numbers defined by

tet

et − 1
=
∞∑
n=0

Bn

n!
tn (B.46)

In what follows we will derive (B.43). Apply the ladder operator for the hypergeometric differential
equation in (B.5):

H1(a, b, c) = x
d

dx
+ a : S(a, b, c)→ S(a+ 1, b, c) (B.47)

H2(a, b, c) = x
d

dx
+ b : S(a, b, c)→ S(a, b+ 1, c) (B.48)

B3(a, b, c) = x
d

dx
+ c : S(a, b, c+ 1)→ S(a, b, c) (B.49)

where S(a, b, c) denotes the solution space of (B.5). These operators yields the following differ-
ence equations:

S(α + η−1, β, γ;x, η)− S(α, β, γ;x, η)

= − 1

2(1− x)
+

d

dx
log

{
− 1

2
γη +

x

2(1− x)
(1 + (α + β − γ)η) + xS(α, β, γ;x, η) + αη

}
(B.50)
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S(α, β +N−1, γ;x,N)− S(α, β, γ;x,N)

= − 1

2(1− x)
+

d

dx
log

{
− 1

2
γN +

x

2(1− x)
(1 + (α + β − γ)N) + xS(α, β, γ;x,N) + βN

}
(B.51)

S(α, β, γ +N−1;x,N)− S(α, β, γ;x,N)

=
1

2(1− x)
+

1

2x
− d

dx
log

{
1

2
γN +

x

2(1− x)
(α + β − γ)N + xS(α, β, γ;x,N)} (B.52)

Now, we will prove (B.50). Using the change of variable a = 1
2
+Nα, b = 1

2
+Nβ and c = 1+Nγ

in (B.6) we obtain

H1

(
1

2
+Nα,

1

2
+Nβ, 1 +Nγ

)
= x

d

dx
+

1

2
+Nα : S(α, β, γ;N)→ S(α +N−1, β, γ;N)

(B.53)

Let τ(α, β, γ;x,N) be a solution of the Riccati equation (B.9). Then we have

x(1− x)

(
dτ

dx
+ τ 2

)
+ [1 + γN − ((α+ β)N + 2)x]τ −

(
1

2
+Nα

)(
1

2
+Nβ

)
ω = 0 (B.54)

Let τ̂ be the logarithmic derivative of(
x
d

dx
+ αN +

1

2

)
e
∫
τdx =

(
xτ + αN +

1

2

)
e
∫
τdx (B.55)

where

τ̂ = τ +
d

dx
log

(
xτ + αN +

1

2

)
(B.56)

Replace α by α +N−1 in (B.54):

x(1−x)

(
dτ

dx
+τ 2

)
+[1+γN−((α+N−1 +β)N+2)x]τ−

(
1

2
+N(α+N−1)

)(
1

2
+Nβ

)
ω = 0

(B.57)

Since τ is a solution of (B.54), τ̂ = τ + d
dx

log

(
xτ +αN + 1

2

)
is also a solution of (B.57). If S

is a formal solution of (B.9),

τ = S − 1 + γN

2x
+

1 + (α + β − γ)N

2(1− x)
(B.58)

is a formal solution of (B.54) and

Ŝ = τ̂ +
1 + γN

2x
− 1 + (α + β − γ)N

2(1− x)
(B.59)
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is a formal solution of the equation obtained from (B.9) after replacing α by α +N−1.. Then,

Ŝ = S(α +N−1, β, γ;x,N) (B.60)

Combining (B.59) and (B.60) we have

S(α +N−1, β, γ;x,N) = τ̂ +
1 + γN

2x
− 1 + (α + β − γ)N

2(1− x)
(B.61)

Thus,

S(α+N−1, β, γ;x,N)−S(α, β, γ;x,N) = τ̂ +
1 + γN

2x
− 1 + (α + β − γ)N

2(1− x)
−S(α, β, γ;x,N)

(B.62)
Inserting (B.56) into (B.62) yields

S(α + η−1, β, γ;x, η)− S(α, β, γ;x, η) =

τ +
d

dx
log

(
xτ + αη +

1

2

)
+

1 + γη

2x
− 1 + (α + β − γ)η

2(1− x)
− S(α, β, γ;x, η) (B.63)

Substituting (B.58) in the last equation above, we have

S(α + η−1, β, γ;x, η)− S(α, β, γ;x,N)

= S(α, β, γ;x,N)− 1 + γη

2x
+

1 + (α + β − γ)N

2(1− x)

+
d

dx
log

(
x(S − 1 + γN

2x
+

1 + (α + β − γ)N

2(1− x)
) + αN +

1

2

)
+

1 + γN

2x
− 1 + (α + β − γ)N

2(1− x)
− S(α, β, γ;x,N) (B.64)

= − 1

2(1− x)
+

d

dx
log

(
x(S − 1 + γN

2x
+

1 + (α + β − γ)N

2(1− x)
) + αN +

1

2

)
(B.65)

In what follows, we set

I(α, β, γ;x0, N) =
1

2

∫
γx0

(S(α +N−1, β, γ;x,N)− (S(α, β, γ;x,N))dx (B.66)

J(α, β, γ;x0, N) =
1

2

∫
γx0

(S(α, β +N−1, γ;x,N)− (S(α, β, γ;x,N))dx (B.67)

K(α, β, γ;x0, N) =
1

2

∫
γx0

(S(α, β, γ +N−1;x,N)− (S(α, β, γ;x,N))dx (B.68)

I−1(α, β, γ;x0, N) =
1

2

∫
γx0

(S−1(α +N−1, β, γ;x,N)− (S−1(α, β, γ;x,N))dx (B.69)

J−1(α, β, γ;x0, N) =
1

2

∫
γx0

(S−1(α, β +N−1, γ;x,N)− (S−1(α, β, γ;x,N))dx (B.70)
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K−1(α, β, γ;x0, N) =
1

2

∫
γx0

(S−1(α, β, γ +N−1;x,N)− (S−1(α, β, γ;x,N))dx (B.71)

Here γx0 is a path that runs from x0 for a sufficiently small number (very close to the singular
point b0 = 0), encircles a in a counterclockwise manner and returns to x0. The notation x̂0

is used to distinguish the two branch points (the branch of S−1 at the starting point of γx0 is
different from the branch at its end point). So x̂0 corresponds to the branch of S−1 at the starting
point of γx0 . Futhermore, since each coefficient of Seven = S − Sodd is single valued at x = a
and

Resx=aSeven = Resx=aS0 = −1

4
(B.72)

holds for (B.10), we have

1

2

∫
γx0

(Sodd −NS−1)dx =
1

2

∫
γx0

(S −NS−1 − S0) (B.73)

Using (B.43), (B.44) and (B.45) and S0 = 1
2(x−1)

we can rewrite (B.66), (B.67) and (B.68) as

69



follows

I(α, β, γ;x0, N) =
1

2

∫
γx0

d

dx

(
log

{
− 1

2
γN +

x

2(1− x)
(1 + (α + β − γ)N)+

xS(α, β, γ;x,N) + αN

})
dx (B.74)

=
1

2

∫
γx0

d

(
log

{
− 1

2
γN +

x

2(1− x)
(1 + (α + β − γ)N)+

xS(α, β, γ;x,N) + αN

})
(B.75)

=
1

2
log

{
− 1

2
γN +

x0

2(1− x0)
(1 + (α + β − γ)η)+

x0S(α, β, γ; x̂0, N) + αN

}
− 1

2
log

{
− 1

2
γN +

x

2(1− x)
(1 + (α + β − γ)N)+

x0S(α, β, γ;x0, N) + αN

}
(B.76)

J(α, β, γ;x0, N) =
1

2

∫
γx0

d

dx

(
log

{
− 1

2
γN +

x

2(1− x)
(1 + (α + β − γ)N)+

xS(α, β, γ;x, η) + βη

})
dx (B.77)

=
1

2

∫
γx0

d

(
log

{
− 1

2
γN +

x

2(1− x)
(1 + (α + β − γ)N)+

xS(α, β, γ;x,N) + βN

})
(B.78)

=
1

2
log

{
− 1

2
γN +

x0

2(1− x0)
(1 + (α + β − γ)N)+

x0S(α, β, γ; x̂0, N) + βN

}
− 1

2
log

{
− 1

2
γN +

x

2(1− x)
(1 + (α + β − γ)N)+

x0S(α, β, γ;x0, N) + βN

}
(B.79)
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K(α, β, γ;x0, N) =
1

2

∫
γx0

d

dx

(
log

{
1

2
γN +

x

2(1− x)
(α + β − γ)η+

xS(α, β, γ +N−1;x,N) + αη

})
dx (B.80)

=
1

2

∫
γx0

d

(
log

{
− 1

2
γN +

x

2(1− x)
(α + β − γ)N+

xS(α, β, γ +N−1;x,N)

})
(B.81)

=
1

2
log

{
− 1

2
γN +

x0

2(1− x0)
(α + β − γ)N+

x0S(α, β, γ +N−1; x̂0, N)

}
− 1

2
log

{
− 1

2
γN +

x

2(1− x)
(α + β − γ)N+

x0S(α, β, γ +N−1;x0, N)

}
(B.82)

Now, fix the semiaxis Re(x − 1) < 0 as a branch cut of the logarithmic function and use the
following conventions:

−α = e−πiα,

−β = eπiβ,

−γ = eπiγ′

α− γ = eπi(γ − α),

β − γ = e−πi(γ − β),

γ − α− γ = eπi(α + β − γ),

α− β = eπi(β − α)

(B.83)

The above conventions correspond to:

0 < argα ≤ π,

−π < arg β ≤ 0,

−π < arg γ ≤ 0,

−π < arg(γ − α) ≤ 0,

0 < arg(γ − β) ≤ π,

−π < arg(α + β − γ) ≤ 0

(B.84)

We will now compute the explicits forms of Vj(j = 0, 1, 2). For this purpose, let us compute the
leading terms and subleading terms of the Laurent series of S at x = b0 on the Riemann surface
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of Q0. Insert Eqn (B.11) into (B.10) to obtain the following recursion relations:

S2
−1 = Q0(x) (B.85)

2S−1S0 +
dS−1

dx
= 0 (B.86)

2S−1S1 + S2
0 +

dS0

dx
= Q1(x) (B.87)

2S−1Sn +
n−1∑
k=0

SkSn−k−1 +
dSn−1

dx
= 0 (B.88)

It follows from (B.85) that

S−1 =
√
Q0(x) =

γ

2x
(B.89)

From (B.86) we have

2S−1S0 = −dS−1

dx
(B.90)

=
γ

2x2
(B.91)

This gives

S0 =
1

2x
(B.92)

Substituting (B.89) and (B.92) back in (B.54) we find the leading term of S, that is,

1 + γN

2x
(B.93)

Following the same procedure, the subleading terms of S is

−2γ2N2 − 1

4(1 + γN)
(B.94)

Hence, near x = 0 on the first sheet we have:

x0S(α, β, γ, x0;N) = x0

{
1 + γN

2x0

− 2γ2N2 − 1

4(1 + γN)
+O(x0)

}
(B.95)

On the second sheet we have:

x0S(α, β, γ, x̂0;N) = x0

{
1− γN

2x0

− 2γ2N2 − 1

4(1− γN)
+O(x0)

}
(B.96)
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Using the last two equations above in (B.83) we obtain the asymptotic behaviour of I, J , K as
x0 → 0 as follows:

I(α, β, γ;N) =
1

2
log

γ − α− (N−1/2)

α + (N−1/2)
+

1

2
log x0 +O(x0) (B.97)

J(α, β, γ;N) =
1

2
log

γ − β − (N−1/2)

β + (N−1/2)
+

1

2
log x0 +O(x0) (B.98)

K(α, β, γ;N) =
1

2
log

γ(γ +N−1)

(γ − α + (N−1/2))(γ − β + (N−1/2))

− 1

2
log x0 +O(x0). (B.99)

Proposition: The Voros coefficient V0 satisfy the following system of difference equations as a
formal power series in η−1:

V0(α + η−1, β, γ; η) =
1

2
log

γ − α− (η−1/2)

α + (η−1/2)

− η

2

{
α logα− (α +N−1) log(α +N−1)

+ (γ − α) log(γ − α)− (γ − α−N−1) log(γ − α−N−1)

}
(B.100)

V0(α, β +N−1, γ;N) =
1

2
log

γ − β − (N−1/2)

β + (N−1/2)

− N

2

{
β log β − (β +N−1) log(β +N−1)

+ (γ − β) log(γ − β)− (γ − β −N−1) log(γ − α−N−1)

}
(B.101)

V0(α, β, γ +N−1;N) =
1

2
log

γ(γ +N−1)

(γ − α + (N−1/2))(γ − β + (N−1/2))

− N

2

{
(γ − α) log(γ − α)− (γ − α +N−1) log(γ − α +N−1)

+ (γ − β) log(γ − β)− (γ − β +N−1) log(γ − β +N−1)

− 2γ log γ + 2(γ +N−1) log(γ +N−1)

}
(B.102)

Let

w = u(α, β, γ;N) + v(α, β, γ;N) (B.103)

be the left hand side of (B.100). Then

u(α, β, γ;N) =
1

2
log

γ − α− (N−1/2)

α + (N−1/2)
(B.104)
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and

v(α, β, γ;N) = −N
2

{
α logα− (α +N−1) log(α +N−1) + (γ − α) log(γ − α)

− (γ − α−N−1) log(γ − α−N−1)

}
(B.105)

We can decompose (B.100) as follows:

V01(α +N−1, β, γ;N)− V01(α, β, γ;N) = u(α, β, γ;N) (B.106)

V11(α +N−1, β, γ;N)− V11(α, β, γ;N) = v(α, β, γ;N) (B.107)

If V01 and V02 exist and are the solutions of (B.100), then V0 = V01 + V02 is also a solution
(B.100). Hence,

V02(α, β, γ;N) =
N

2

{
α logα + (γ − α) log(γ − α)

}
(B.108)

To find the solution V01(α, β, γ;N) of (B.100) we use the method developed by Candelpergher-
Coppo-Delabaere in[59]:

V01(α +N−1, β, γ;N)− V01(α, β, γ;N) = (eN
−1∂α − 1)V01(α, β, γ;N) (B.109)

where the expansion of the inverse of (eN
−1∂α − 1) is given by:

(eN
−1∂α − 1)−1 = N

(
∂

∂α

)−1 ∞∑
n=0

(−1)nBn

n!
N−n

(
∂

∂α

)n
(B.110)

with Bn the n-th Bernoulli number and ∂−1
α is the indefinite integral operator. Using (B.109),

the solution V01(α, β, γ; η) of (B.100) can be written as:

V01(α, β, γ;N) = (eN
−1∂α − 1)−1u(α, β, γ;N) + g0(β, γ;N−1) (B.111)

where g0(β, γ; η−1) is an arbitrary formal power series in N−1 which is independent of α. The
following formulas are also useful:

∂α(eN
−1∂α − 1)−1 log

(
1 +

1

αN

)
=

1

α
(B.112)

∂α(eN
−1∂α/2 − 1)−1 log

(
1 +

1

2αN

)
=

1

α
. (B.113)

Equations (B.112) and (B.113) can be proved as follows:

∂

∂α
log

(
1 +

1

αN

)
=

1

α(Nα + 1)
(B.114)

= − 1

α
+

N

Nα + 1

=
1

α
+

1

α +N−1

∂

∂α
log

(
1 +

1

αN

)
= (eN

−1∂α − 1)
1

α
(B.115)
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Thus,

1

α
= ∂α(eN

−1∂α − 1)−1 log

(
1 +

1

αN

)
(B.116)

Similarly we have (B.113). Let us rewrite equation (B.111) using (B.104). We have

V01(α, β, γ;N) = (eN
−1∂α − 1)−1 1

2
log

(γ − α− (N−1/2))

α + (N−1/2)

= (eN
−1∂α − 1)−1 1

2

{
log(α +N−1/2)− log(γ − α−N−1/2)

}
(B.117)

Taking the α-derivative we obtain

∂α = −∂α(eN
−1∂α − 1)−1 1

2

{
log(α +N−1/2)− log(γ − α−N−1/2)

}
= −∂α

2
(eN

−1∂α − 1)−1 log

{
α

(
1 +

1

2αN

)}
∂α
2

(eN
−1∂α − 1)−1 log

{
(γ − α)

(
1− 1

2(γ − α)N

)}
=
∂α
2

(eN
−1∂α − 1)−1{log(γ − α)− logα}

+
∂α
2

(eN
−1∂α − 1)−1 log

{(
1− 1

2(γ − α)N

)
− log

{(
1− 1

2γN

)}
=
∂α
2

(eN
−1∂α − 1)−1{log(γ − α)− logα}+

∂α
2

[(e(1/2)N−1∂α − 1)−1 + (e(1/2)N−1∂α + 1)−1] log

{(
1− 1

2(γ − α)N

)
− log

{(
1− 1

2γN

)}
(B.118)

Rewrite the first term of this last equation above using the inverse operator defined in (B.110):

∂α
2

(eN
−1∂α − 1)−1{log(γ − α)− logα} =

N

2

(
∂

∂α

)−1 ∞∑
n=0

(−1)nBn

n!
N−n

(
∂

∂α

)n
{log(γ − α)− logα}

=
N

2
{log(γ − α)− logα}+

B1

2

(
1

γ − α
+

1

α

)
+

1

2

∞∑
n=2

Bn

n
n−n+1

(
1

(γ − α)n
+

1

αn

)
(B.119)

The following identity

(e(1/2)N−1∂α + 1)−1 = (e(1/2)N−1∂α − 1)−1 − 2(eN
−1∂α − 1)−1 (B.120)
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and the equations (B.112) and (B.113) are are useful to rewrite the second term of (B.118):

∂α
2

[(e(1/2)N−1∂α − 1)−1 + (e(1/2)N−1∂α + 1)−1] log

{(
1− 1

2(γ − α)N

)
− log

{(
1− 1

2γN

)}
=

1

2
(e(1/2)N−1∂α − 1)−1 − 2(eN

−1∂α − 1)−1

(
− 1

γ − α
− 1

α

)
=

1

2

∞∑
n=1

(−1)nBnn
1−n

n!
(21−n − 2)∂n−1

α

(
− 1

γ − α
− 1

α

)
=
B1

2

(
− 1

γ − α
− 1

α

)
+

1

2

∞∑
n=2

Bnn
1−n

n!
(21−n − 2)

(
1

(γ − α)n
+

1

αn

)
(B.121)

Combine (B.119) and (B.121) to obtain

∂αV01(α, β, γ;N) =
1

2
{N log(γ − α)− logα}+

∞∑
n=2

Bnn
1−n

n!
(21−n − 2)

(
1

(γ − α)n
+

1

αn

)
(B.122)

Using (B.108) and (B.116) together with the fact that V0 = V01 + V02 we have

V0(α, β, γ; η) =
1

2

∞∑
n=2

Bnn
1−n

n!
(21−n − 2)

(
1

(γ − α)n−1
+

1

αn−1
+

2

γn−1

)
+ g0(β, γ) (B.123)

Solving (B.101) and (B.102) by the same method as for (B.100) yields respectively:

V0(α, β, γ;N) =
1

2

∞∑
n=2

Bnn
1−n

n!
(21−n − 2)

(
1

(γ − β)n−1
+

1

βn−1
+

2

γn−1

)
+ g1(α, γ) (B.124)

V0(α, β, γ;N) =
1

2

∞∑
n=2

Bnn
1−n

n!
(21−n − 2)

(
1

(γ − α)n−1
+

1

(γ − β)n−1
+

2

γn−1

)
+ g2(α, β)

(B.125)

Combining (B.123), (B.124) and (B.125) we obtain (B.43).
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[39] Inês Aniceto, Gökçe Başar, and Ricardo Schiappa. A primer on resurgent transseries and
their asymptotics. arXiv preprint arXiv:1802.10441, 2018.
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