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Introduction

1 Introduction

The holographic principle states that the description of a quantum gravity in a volume of space
can be encoded in a quantum field theory defined on the boundary of the region. This prin-
ciple is evident in the study of black holes, where the maximal entropy scales like area and
not volume. This means information relevant to the interior of the black hole is stored on the
surface. The most successful realisation of the holographic principle is the AdS/CFT corre-
spondence, motivated by the study of D branes. This holographic duality is an example of an
equivalence between a theory with quantum gravity in a (d + 1) dimensional spacetime and a
non-gravitational system on its boundary defined in d dimensions.

Holography has led to a huge paradigm shift in the search for a consistent theory of quan-
tum gravity. Gauge/gravity dualities have posed an interesting field of study as they facilitate
a novel and useful way to study string theories but, at the same time, they unearth some
deeper questions about fundamental theories of nature. Understanding these dualities and
testing them is of chief concern in this thesis and we review the relevant background needed to
do so in Chapter 2.

In general, the mechanism we take is to probe beyond what is known and to extend that
understanding to more general cases if possible. In particular, the planar limit of AdS/CFT
is integrable and so it is natural to investigate whether this integrability persists beyond the
planar limit and, if not, in what settings integrability breaks down. To go beyond the planar
limit, we must consider operators with dimensions that scale with N in the large N limit.
These limits are necessary to understand the AdS/CFT correspondence since operators whose
dimensions scale like N are dual to giant graviton branes and operators whose dimensions scale
like N2 are dual to new geometries in supergravity.

In particular, in Chapter 4 we study string excitations of new geometries. This is done in
allusion to the single trace correlators of planar N = 4 super Yang-Mills (SYM) which can be
mapped to an integrable spin chain, leading to S-matrix calculations which affirm the duality.
Such a mapping will naively be spoiled in the non-planar limit but we find a subset of excita-
tions which can be identified with excitations of the vacuum, making use of the restricted Schur
polynomial basis which is orthogonal. We consider planar excitations to facilitate comparison
between correlators in the planar and non-planar sectors.

Carrying out the large N expansion for most matrix models is still beyond our current ca-
pabilities. A class of models for which the expansion is possible is the complex matrix model
for a single matrix. In these cases, calculations can be reduced to the study eigenvalue dy-
namics which facilitates a huge reduction in the degrees of freedom. The physics of the planar
limit can be formulated by using the density of eigenvalues as a dynamical variable and the
resulting collective field theory has found application in descriptions of LLM geometries. These
are supergravity geometries dual to the 1

2
-BPS states of N = 4 SYM.

Supergravity is a low energy limit of the string theory. At scales much lower than the string
energy scale we find this theory decouples from the string theory. An interesting question arises
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Introduction

here in light of what AdS/CFT has taught us and motivated by the single matrix case: is there
a similar decoupling in the field theory? Can we match states in supergravity with operators
of a certain class in the CFT? Understanding how this works and attempting to answer these
questions is an important goal of this thesis and one of the ways we will attempt to explore
holography in these settings. In Chapter 3 we extend the relationship between eigenvalue dy-
namics and supergravity to the two matrix model. This involves constructing an eigenvalue
picture for the model and motivating an AdS/CFT interpretation.

Collective field theory descriptions have been insightful to our understanding of holography.
It is not clear why a fundamental theory of gravity should be dual to an effective theory
without gravity or how gravity manifests from a strongly coupled gauge theory, despite our un-
derstanding of the mapping between CFT operators and supergravity geometries. It has been
shown that by reorganising a field theory in terms of the gauge invariant observables, the same
expansion parameter emerges that we have when studying gravity at strong coupling. This
gives some insight into how to treat the CFT, which naturally has the field theory coupling as
the loop expansion parameter.

A collective field theory approach to the study of N = 4 SYM is particularly difficult be-
cause the space of gauge invariants is large and we do not expect to be able to construct the
dynamics of these invariants. However, vector models are much simpler than matrix models
and their collective dynamics can be built explicitly. The vector field description has been
useful to the study of the SYK model, a model which may be a simple solvable example of
holography. The large N physics of SYK is identical to a tensor model. Tensor models are
easier to work with than vector models, and possibly have a richer space of gauge invariants
than vector models. For these reasons, we aim to construct the gauge invariants of bosonic and
fermionic tensor models in Chapter 5, in the hope that they are simpler to manage than those
of matrix models.

The research appearing in chapters 3 through 5 is novel and can be found published as fol-
lows. Chapter 3 is based on work in the article “Eigenvalue Dynamics for Multimatrix Models”
which is published in Physical Review D, Volume 96:026011 in 2017. Chapter 4 is based on work
appearing in the article “Exciting LLM Geometries” published in the Journal of High Energy
Physics, Volume 1807:146 in 2018. Chapter 5 is based on work appearing in the article “Gauge
Invariants, Correlators and Holography in Bosonic and Fermionic Tensor models” published in
the Journal of High Energy Physics, Volume 1709:011 in 2017.

The findings of this research is summarised in Chapter 6 which concludes the findings of this
thesis. Additional technical information related to the background and research chapters can
be found in the appendices.
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Background

2 Background

This chapter documents the necessary concepts and details needed to tackle the novel research
presented in chapters 3 through 5. This should familiarise the reader with the field of interest
by marrying literature review with standard concepts which have been learned through the
course of this PhD and that are relevant to said research.

It is presently understood that physics can be described by four forces: gravity, the weak
force, the strong force and electromagnetism. We understand how the latter three forces induce
dynamics on matter, that is we can write down a Lagrangian for them but we only understand
gravity partially. Gravity on large length scales is well described by Einstein’s theory of general
relativity, but not on the much smaller scales where physics is described by quantum theories
of mechanics and fields. We know how to include quantum effects into gravity but we cannot
go beyond the Planck length. In the language of quantum field theory, gravity is not renormal-
isable. In the language of general relativity, we cannot trust the theory in regions where the
spacetime becomes singular.

Quantum field theories are written in terms of bare parameters. These are not physical. We
don’t measure these in the lab. In a perturbative study of quantum field theory, divergences
appear in diagrams that contain loops. Virtual particles with any momentum allowed by mo-
mentum conservation run in these loops, so that sums over all allowed virtual particle states
becomes integrals over particle 4-momenta. These integrals are often divergent. In renormalised
perturbation theory, we split our parameters into a sum of a physical parameter (which is mea-
sured) and a bare parameter (which isn’t). The bare parameters appear in our counter terms
and these are seen to remove the divergences in our theory so that the physical parameters are
finite. The BPHZ theorem (for Bogoliubov, Parasiuk, Hepp and Zimmermann) states that all
divergences in a general quantum field theory are removed by counter terms to all orders in
the perturbation, so long as the theory is renormalisable [1],[2],[3]. This tries to treat quantum
field theory.

Generally, we can also think about quantum field theories as effective theories and we can
introduce a momentum cut-off, Λ, such that integrating over momentum when calculating
Feynman diagrams does not give us arbitrarily large values. It was Wilson’s insight, however,
that any quantum field theory (QFT) is intrinsically defined with a cutoff Λ that is physically
significant. His insight was that QFT is not a fundamental theory. It is an effective theory
with energy scale defined by the length-scale of what we are observing. For example, friction is
not understood by considering all the interactions of the atoms of two objects that are moving
against each other. We need only understand it macroscopically to make sense of it. The length
scales of atoms is simply too small and we instead imagine a collection of atoms and study the
effective interaction of that collection. Similarly, QFT breaks down at length scales that are
very small:

Λ =
~
l

where l is the shortest length scale. New physics is needed to describe what happens beyond
this scale.
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So QFTs that are understood as fundamental theories of nature need to be renormalisable.
We are interested in quantum gravity, and so we can ask whether we can write down a renor-
malisable QFT that couples to gravity. To this end, consider the Einstein-Hilbert action.

SEH =
1

16πGN

∫
ddx
√
−gR

where GN is our coupling to gravity, R is the Ricci scalar and g is the metric determinant.
Metric components are unitless. We can see this by considering

ds2 = gµνdx
µdxν

The left hand side of the equality has dimensions of L2 and each dxµ has dimension L. Thus we
see that gµν has dimension L0 so it is dimensionless. The Ricci scalar is built out of derivatives
and products of Christoffel symbols. For the purpose of dimensional analysis, we only note
that these are proportional to the derivative, ∂µ, squared. Thus, R has dimensions L−2. We
integrate over ddx which has dimension Ld. The action is dimensionless giving us that

[GN ] = L−∆GN

where ∆GN = d − 2. If d > 2, then ∆GN > 0. This tells us that GN is irrelevant. Relevant
and marginal operators, Oi, have dimension ∆Oi ≤ 0. Relevant operators grow as we integrate
out small distance – high energy – modes (Wilson’s idea). Irrelevant operators do not do this.
They flow to zero at larger distances – low energy. Thus, Wilson’s renormalisation group flow
explains why all low energy theories describing nature are renormalisable theories.

The problem with non-renormalisable field theories is that they cannot be continued to high
energies without encountering some difficulties. Renormalisable theories require a finite num-
ber of fixed parameters to be predictive at every energy because there are a finite number of
divergent loop integrals. The loss of predictive power in non-renormalisable theories means that
there are many theories with different behaviours at high-energy whose low-energy behaviours
can be described by the same theory. If we consider an expansion of the effective Lagrangian
of a theory in inverse powers of the momentum cut-off, the terms with the non-renormalisable
operators are suppressed at low-energy. The point is that the renormalisable part does not
depend on the cut-off. To study a fundamental theory of nature, we need to probe the high-
energy scale. This means we have to consider an infinite number of parameters to deal with the
UV divergences, which implies that the theory has no predictive power. The fact that quantum
gravity is non-renormalisable means that we cannot feasibly study it at high-energy using an
effective field theory approach. Thus QFT is not the correct framework to describe quantum
gravity.

String theory is a theory of quantum gravity. The AdS/CFT correspondence as proposed
in [4] is a duality between type IIB string theory on an AdS5 × S5 background and N = 4
Super Yang-Mills (SYM) which is a gauge theory that lives on the boundary. This is an ex-
act equivalence between the two theories which implies we can translate between the theories.
Since field theories are much better understood, it is often practical to study the field theory
and relate that to the string theory. This thesis aims to explore this holographic duality in
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different settings. The holographic principle, which tells us that a quantum theory of gravity
must be describable by a boundary theory which does not include gravity, is non-trivial. The
gauge/ gravity correspondence itself is interesting because it provides a way to study string
theory and thereby learn about quantum gravity. More than that, the holographic nature of
this correspondence is intriguing and may ultimately furnish a cornerstone for our understand-
ing of nature.

The space AdS5 has an SO(2, 4) isometry, which is the conformal group in four dimensions.
AdS5 has negative curvature and can be described by embedding a hyperboloid into R4,2. This
can be parametrised using global AdS coordinates and conformally compactified such that the
induced metric has boundary R × S3. This boundary is equal to the conformal compactifi-
cation of R3,1 which is related to four dimensional Euclidean space through a Wick rotation.
The state-operator correspondence of the CFT has important consequences when interpreted
in terms of the AdS/CFT duality. By the state-operator correspondence, states of the theory
on R × S3 are in one-to-one correspondence with operators in R4: the Hilbert space of states
is isomorphic to the Hilbert space of operators. In the radial quantisation of the CFT, we can
insert an operator at the origin. This defines a specific CFT state inserted at the infinite past.
Evolving this state to finite time corresponds to evolving a Hilbert space defined on a sphere
of radius r 6= 0 in the CFT. Each constant r slice in the CFT defines a Hilbert space of states.
Identifying the R×S3 spaces on each side of the duality allows us to identify the gauge theory
operators with the string theory states.

In the following sections of this chapter we will be looking at better understanding some of
the ingredients we need to talk about and understand the AdS/CFT correspondence. There-
after we will be able to tackle some concrete questions which is the main motivation of this
thesis.
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Background Matrix Models

2.1 Matrix Models

Matrix models in 0 dimensions are a good toy model for non-Abelian gauge theories like N = 4
SYM, whose 6 scalar fields are matrices. They allow us to learn enough about the theory so
that we can start to look at more realistic problems. The quantum (scalar) fields of N = 4
SYM are N×N matrices. By taking the trace of products of these fields we get observables. In
the planar limit, where the number of fields are fixed or grow at most like

√
N as N →∞, the

theory simplifies. ’t Hooft [5] proposed that gauge theories in the large N limit are equivalent to
string theories. By studying matrix models at large N , we learn something about the dynamics
of strings and gravitons. We can explore matrix models in detail to get a feel for the machinery
used to describe the planar limit. Beyond the planar limit, there are too many Feynman graphs
to sum and so we need more advanced machinery to study these limits.

2.1.1 Ribbon Graphs

The Feynman graphs of a matrix model must keep track of the matrix indices. As we will
see, this leads to propagators represented by double lines – ribbons. We will be using the
path integral formalism and will develop our discussion in 0 dimensions. The simplification of
working in 0 dimensions is that the universe has only a single event and so our field assigns a
single value to this one event. The path integral reduces to an ordinary integral. The generating
functional of a correlation function for a scalar field theory in 0 dimensions is

Z[j] = N
∫ ∞
−∞

dφ e−S+jφ (2.1.1.1)

where N is the normalisation and S is the action for the theory. The reason for introducing this
generating functional is that it allows us to calculate correlation functions by taking derivatives
of Z[j]. The correlation function looks like

〈φn〉 =

∫ ∞
−∞

dφ e−Sφn (2.1.1.2)

In a 3 + 1 dimensional QFT, our generating functional looks like

Z[J ] =

∫
[Dφ] eiS+

∫
d4x φ(x)J(x) (2.1.1.3)

and the correlation functions are

〈φ(x1) . . . φ(xn)〉 =

∫
[Dφ] φ(x1) . . . φ(xn)eiS

=
δ

δJ(x1)
. . .

δ

δJ(xn)
Z[J ]

∣∣∣∣
J=0

(2.1.1.4)

We can analytically continue t→ it taking us to Euclidean space. This results in iS → −S so
that the path integral measure starts to resemble the 0 dimensional calculation. We will also

6



Background Matrix Models

replace our scalar fields with matrix valued fields so that we study fields, M , living in the Lie
algebra of U(N). Finally, moving to 0 dimensions gives us

Z[J ] =

∫
[dM ] e−

1
2
Tr(M2)+Tr(JM) (2.1.1.5)

Let’s study M in more detail. It lives in the Lie algebra of U(N) so it is an N ×N hermitian
matrix. This tells us the diagonal elements, Mii, are real. The elements in the upper triangle
are the complex conjugate of the elements in the lower triangle: Mkl = M∗

lk; k < l. Then
the measure, [dM ], requires us to integrate over the N diagonal elements, plus the 1

2
N(N − 1)

real parts of the elements above the diagonal (M r
kl) plus the 1

2
N(N − 1) imaginary parts of

the elements above the diagonal (M i
kl). This is a total of N2 real integrals. Our correlation

function looks like

〈. . . 〉 ≡ N
∫

[dM ] e−
ω
2
Tr(M2) . . .

= N
N∏
i=1

∫ ∞
−∞

dMii

N∏
k,l=1
k>l

∫ ∞
−∞

dM r
kl

∫ ∞
−∞

dM i
kl . . . (2.1.1.6)

We normalise the expectation value of 1 to be 1 so that

N
∫

[dM ] e−
1
2
ωTr(M2) = 1 (2.1.1.7)

For arbitrary N ,

N =

(
1√
2

)N (√
ω

π

)N2

Now we are in a position to check whether we can use our generating functional to determine
correlators. Consider

〈MijMkl〉 =

∫
[dM ] e−

ω
2MijMkl (2.1.1.8)

Taking derivatives of Z with respect to J should replace the MijMkl in our correlator.

d

dJji
eTr(JM) = eTr(JM)Mklδjlδik = eTr(JM)Mij

=⇒ d

dJji

d

dJlk
Z[J ]

∣∣∣∣
J=0

= 〈MijMkl〉 (2.1.1.9)

Now that we know we can use our Z to compute correlation functions, we can turn to evaluating
Z[J ]. Consider

−ω
2
Tr(M2) + Tr(JM) = −ω

2
Tr

(
M2 − 2

JM

ω

)
= −ω

2
Tr

[(
M − J

ω

)2

−
(
J

ω

)2
]

= −ω
2
Tr

(
M − J

ω

)2

+
1

2ω
Tr(J2) (2.1.1.10)
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Background Matrix Models

where we have completed the square in the second line. We can change variables now so that
M ′ = M − J and use the fact that J is not dependent on M (we fix J to be some matrix with
elements of fixed value as we integrate over M). Then [dM ] = [dM ′]. This leaves us with

Z[J ] = e
1
2
Tr(J2) (2.1.1.11)

Now let’s calculate the correlator (2.1.1.8).

〈MijMkl〉 =
d

dJji

d

dJlk
Z[J ]

∣∣∣∣
J=0

=
1

2ω

d

dJij
(2Jlk)Z[J ]

∣∣∣∣
J=0

=
1

ω
δilδjk (2.1.1.12)

These calculations can get cumbersome when we want to consider more complicated correla-
tors. Feynman diagrams provide a convenient language for discussing perturbative quantum
field theories. This language is common when talking about scalar fields. It turns out there is
a Feynman diagram language for matrix model theories and we can draw diagrams for these
correlators. In this case, they are called ribbon graphs. Our rules for drawing Feynman dia-
grams in this theory are first stated and then detailed:

Each ribbon comes with a factor 1
ω

.
Each edge has a Kronecker delta.

Ribbons are lines that join indices. Ribbon lines of a single ribbon do not cross. We join
indices that are the same. Edges refer to the edge of the ribbon. We count edges going from
point to point. In this case, points correspond to the indices of our Kronecker deltas.

We can try reproduce our result for 〈MijMkl〉 using the ribbon graph method. We start by
drawing a horizontal line. On the line we have four points, one for each index. We label them
as they appear in our correlator (i then j then k then l). We start at the leftmost point, i. We
cannot join it to j as ij appear on the same field. We can only join i to l and j to k if we want
uncrossed ribbon lines. Our graph looks like

Figure 1: The ribbon graph for 〈MijMkl〉

There is only one ribbon, so we acquire a factor 1
ω

. The outer edge joins i and l so we ac-
quire δil and a δjk for the inner edge. Thus

〈MijMkl〉 =
1

ω
δilδjk

8
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as before.

The physical observables in a non-Abelian gauge theory are invariant under the local gauge
symmetry. In our 0 dimensional toy model, we call

M → UMU † (2.1.1.13)

a gauge symmetry. If this transformation leaves our theory invariant, then M ′ ≡ UMU † and
M generate equivalent U(N) representations and share the same eigenvalues). If M is diago-
nalisable, then Tr(Mn) can be written as the sum over i of λni where λi are the eigenvalues of
M . Our gauge invariant observables are traces of products of M .

For example, consider

〈Tr(M2)〉 = 〈MijMji〉 =
1

ω
δiiδjj =

N2

ω
(2.1.1.14)

Our indices run from 1 . . . N hence the N2. Notice that the answer for our correlator is just a
polynomial. This suggests that we can modify our ribbon graph notation to exclude indices.
Here are our new rules with this insight:

Link points that are labelled by the same index.
Replace index pairs by a solid line, indicating which indices are summed.
Acquire an N for each closed loop.
Acquire a 1

ω
for each ribbon.

For 〈MijMji〉, we start by drawing four points. Our convention will be to connect points that
have the same indices with lines on the bottom of our graph. We must connect the outer points
and the inner points. This replaces labelling the points with indices which will be cumber-
some for larger calculations. We join lines at the top as usual: lines of the same ribbon mustn’t
cross, otherwise we join however we can until all ribbons in all possible combinations are drawn.

Figure 2: The ribbon graph for 〈Tr(M2)〉

The green line in Figure 2 shows one closed loop and the blue line shows another closed loop.
These give us a factor N2. The points that are coloured in the same are just to reinforce that
they represent repeated indices. At the top we have a ribbon, so we gain 1

ω
.

Consider 〈Tr(M4)〉. Now we will have four pairs of points that need joining. We have only one

9



Background Matrix Models

way to indicate summed indices but we have multiple ways of connecting ribbons. For example,
our first ribbon (on the leftmost side) could be connected to the next pair of dots, or the third
pair or the fourth. Once that is connected, the second ribbon can only connect in one way.
So we can connect in 3×1 = 3!! ways. In general, for 〈Tr(M2n)〉 we will have (2n−1)!! diagrams.

Figure 3: A ribbon graph for 〈Tr(M4)〉

Here are some examples:

〈Tr(M2)〉 =
N2

ω

〈Tr(M4)〉 =
1

ω2
(2N3 +N)

〈Tr(M2)Tr(M2)〉 =
1

ω2
(N4 + 2N2)

〈Tr(M2)Tr(M4)〉 =
1

ω3
(2N5 + 9N3 + 4N) (2.1.1.15)

We see something interesting in the limit where we take N →∞.

〈Tr(M2)〉 =
N2

ω

〈Tr(M4)〉 =
2N3

ω2

(
1 +

1

2N2

)
→ 2N3

ω2

〈Tr(M2)Tr(M2)〉 =
N4

ω2

(
1 +

2

N2

)
→ N4

ω2

〈Tr(M2)Tr(M4)〉 =
2N5

ω3

(
1 +

9

2N2
+

4

N4

)
→ 2N5

ω3
(2.1.1.16)

Remarkably, in this limit, the expectation value of products of our gauge invariant observables
are products of their expectation values. That is

〈Tr(M2)〉〈Tr(M2)〉 = 〈Tr(M2)Tr(M2)〉
〈Tr(M2)〉〈Tr(M4)〉 = 〈Tr(M2)Tr(M4)〉 (2.1.1.17)

This is called factorisation. The fact that it holds tells us that taking N → ∞, which was ’t
Hooft’s idea [5], is taking a classical limit of the theory. See Section 2.3.1 for a more detailed
explanation of factorisation and its implications for our theory.

10
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Up till this point we have only considered the free field theory. We will now consider adding
an interaction term. The concepts are the same as the scalar field theory (which we are more
familiar with), and we add a coupling term of strength g to the exponential. Now correlators
are given by

〈. . . 〉 = N
∫

[dM ]e−
ω
2

Tr(M2)−gTr(M4) . . . (2.1.1.18)

We can complete the square in the exponent, as before, to obtain a Gaussian integral which we
know how to do. We keep the same normalisation as before. The difference now comes in with
the interaction term which we expand using a Taylor series. Our generating functional is

Z[J ] =
∞∑
q=0

(
−g d

dJba

d

dJcb

d

dJdc

d

dJad

)q N
q!

∫
[dM ]e

ω
2

Tr(M2)+ 1
2ω

Tr(J2)

=
∞∑
q=0

1

q!

(
−g d

dJba

d

dJcb

d

dJdc

d

dJad

)q
e

1
2ω

Tr(J2) (2.1.1.19)

where we have used the earlier result that

d

dJij
↔Mji

We can see that we will have many more terms than we did for the free theory. In fact, due
to the interaction vertex, we have 15 diagrams for 〈Tr(M2)〉 at order g whereas we only had
1 diagram for the same correlator in the free theory. In the scalar field theory, we know that
adding loops comes with factors of ~. The more loops we have, the further we move away from
the classical limit. As we add interaction vertices, i.e.: increase the allowed orders of g, we form
an increasing number of loops. Often it is sufficient to say the coupling is weak and neglect
these higher order terms.

Consider 〈Tr(M2)〉. The method outlined above gives us

〈Tr(M2)〉 =

[
1− g

(
2N3

ω2
+
N

ω2

)]
N2

ω
− g8N3

ω3
− g4N

ω3
(2.1.1.20)

The vacuum diagrams are the diagrams which do not connect the pair of dots representing our
matrix elements with the interaction vertex and are written in parenthesis above. Normalis-
ing our partition function for the interacting theory will naturally remove these vacuum graphs.

Before we had normalised Z[g = 0, J = 0] = 1. We will now use Z ′[g, J ] = (Z[g, J =
0])−1Z[g, J ]. Call the normalised partition function Z[g, J ] instead of Z ′[g, J ] for convenience.
So if we want to work out correlators in the interacting theory that are normalised to exclude
vacuum graphs, then we work out the non-normalised correlators and divide by the partition
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function of the non-normalised theory at J = 0. For example

〈Tr(M2)〉 =
d

dJji

d

dJij
Z(J)

∣∣∣∣
J=0

=
1

Z ′(J = 0)

d

dJji

d

dJij
Z ′(J)

∣∣∣∣
J=0

=
1

ω3

N2[ω2 − g(2N3 +N)]− 8gN3 − 4gN
ω2−g(2N3+N)

ω2

(2.1.1.21)

Here we have only gone up to first order in g. To be more explicit for the denominator, recall
that

Z ′[J ] =
∞∑
q=0

1

q!

(
−g d

dJba

d

dJcb

d

dJdc

d

dJad

)q
N
∫

[dM ]e
ω
2

Tr(M2) (2.1.1.22)

When q = 0 the only term we have is

N
∫

[dM ]e
ω
2

Tr(M2) = 1 (2.1.1.23)

from our original definition of N . When q = 1 we have the above term plus

− g〈MabMbcMcdMda〉 = −g〈Tr(M4)〉 = −g(2N3 +N)
1

ω2
(2.1.1.24)

Thus, our normalised correlator, (2.1.1.21), is

〈Tr(M2)〉 =
1

ω3

{
N2[ω2 − g(2N3 +N)]− 8gN3 − 4gN

}{
1 +

g(2N3 +N)

ω2
−O(g2)

}
=

1

ω3

{
[ω2 + g(2N3 +N)− g(2N3 +N)]− 8gN3 − 4gN

}
+O(g2)

=
N2

ω
− g

ω3
(8N3 + 4N) (2.1.1.25)

Comparing this with (2.1.1.20) we see the vacuum diagrams have indeed been removed.

For the free theory, we saw that we could take N → ∞ and treat 1
N

as a small parameter
to get the classical limit: factorisation held. In scalar field theories, we usually consider the
coupling to be weak and this is why higher order terms are less relevant. In light of this idea,
we choose to assume g is small and take N → ∞. To this end, we consider 〈Tr(M2)〉 again,
but this time up to order g2.

〈Tr(M2)〉 =
N2

ω
− g

ω3
(8N3 + 4N) +

g2

ω5
(144N4 + 224N2)

≈ N2

ω
− gN3

ω3

(
8 +

4

N2

)
+
g2N4

ω5

(
144 +

224

N2

)
(2.1.1.26)

There does not appear to be a good and consistent way of taking N →∞ since the term with
the highest power in N is a term with the highest power in g. Even if we consider the coupling to
be weak, we can’t seem to make sense of the large powers of N . We don’t have a good concept of

12
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what it means to be weakly coupled here. That is, we must now ask whether 1
g

or N dominates.

We proceed by introducing a double scaling limit. We take N → ∞ and g → 0. We know
that “0 ·∞” is an indeterminate form so we define our scaling to go such that λ = gN is fixed.
Further, we choose λ to be small. Now we have

〈Tr(M2)〉 =
N2

ω
− N2

ω3

(
8λ+

4λ

N2

)
+
N2

ω5

(
144λ2 +

224λ2

N2

)
≈ N2

ω
− 8λN2

ω3
+

144λ2N2

ω5
(2.1.1.27)

In the first line we can see that the leading term is of order N2 and that holds for each term in
the perturbation series (for each power of λ).

λ is called the ’t Hooft coupling. We can do an expansion in this coupling since each term
looks like some function of λ. In general, for an observable O,

〈O〉 =
∞∑
n=0

fn(λ)N2−2n (2.1.1.28)

We can see from the correlator we calculated that fn(λ) is not a trivial function, especially at
higher orders of λ. This choice of coupling has not reduced the complexity of our calculation.
We also have preserved the structure of terms so, like the free theory, we have terms that go
like 1

N2 that will fall away at large N . This is interesting because it introduces 1
N2 as a new

coupling constant. See Section 2.3.1 for more detail.

2.1.2 The N Dependence of a Diagram

We have seen that organising our counting in terms of N is important because at large N
only the leading terms survive at fixed ’t Hooft coupling. To reduce our work, it is useful to
determine the N dependence of each diagram so that we can omit counting the diagrams which
are subleading in N . We start by rescaling our matrix fields and determining the rescaled
partition function.

M =
√
NM ′

=⇒ ω

2
Tr(M2) =

Nω

2
Tr(M ′2)

=⇒ gTr(M4) = gN2Tr(M ′4) = NλTr(M ′4) ∵ λ = gN

=⇒
∫

[dM ′]e−
Nω
2

Tr(M ′2)

∞∑
q=0

(
−NλTr(M ′4)

)q 1

q!
= Z[0] (2.1.2.1)

It looks like we have made the transformation ω → Nω. Correlators transform as

〈MijMkl〉 =
δijδkl
ω
→ δijδkl

Nω

13
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Usually we would assign a factor −g for each vertex. Now we assign a −λN to each vertex.
We can expand the sum in the partition function, Z[0], to get

Z[0] =

∫
[dM ′]e−

Nω
2

Tr(M ′2)

(
1− λNTr(M ′4) +

λ2N2

2
(Tr(M ′4))2 +O(λ3)

)
(2.1.2.2)

The first order in λ gives us three diagrams. Two of them have three closed loops, one vertex
and two ribbons. So these two diagrams each contribute a factor(

1

Nω

)2

(−λN)N3

according to our Feynman rules. We introduce some new terminology here. Each loop encloses/
borders a surface. We call these surfaces faces. We count ribbons by starting and ending on a
vertex (we know how to count ribbons in the free theory already). We call ribbons the edges
of the faces. Vertices do not get a name change. In the new terminology we get an N for each
face, a 1

Nω
for each edge and a −λN for each vertex. In general, a diagram will contribute a

factor (
1

Nω

)E
(−λN)V (N)F (2.1.2.3)

to the sum. We are now in a position to state the N dependence of a graph with E edges, F
faces and V vertices. It is NF+V−E. The quantity F + V − E is a topological invariant called
the Euler characteristic. To better understand this topological interpretation, see Section 2.3.2.

2.1.3 Complex Matrix Model

Up to now we have studied matrix models in 0 dimensions where our operators were Hermitian.
This was a toy model for a non-Abelian gauge theory like N = 4 SYM. Whilst this taught us
most of the intuition we need, we need to modify the model in order to account for the fact that
operators in N = 4 SYM are built from complex fields. In particular, the half BPS operators1

are built from a single complex matrix. In this discussion, we will call this matrix Z. The
methodology is very similar to what we have had before and so this discussion is less detailed.

Consider the Hermitian matrices M1 and M2. Define

Z =
M1 + iM2√

2
Z† =

M1 − iM2√
2

(2.1.3.1)

Our new correlation function is

〈. . . 〉 =

∫
[dZdZ†] e−ωTr(ZZ†) . . .

=

∫
[dM1][dM2] e−

ω
2

[Tr(M2
1 )+Tr(M2

2 )] . . . (2.1.3.2)

1To be half BPS means the operators are invariant under half the supersymmetries of the theory. In this
theory, the four types of supercharges (hence N = 4) generate the superymmetry. Half BPS means that half
of these supercharges commute with the fields. A consequence of this is that two and three point correlation
functions are given exactly by their free field limits.
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where 〈1〉 = 1. We introduce the generating function

Z[J1, J2] =

∫
[dM1][dM2] e−

ω
2

[Tr(M2
1 )+Tr(M2

2 )]+Tr(J1M1)+Tr(J2M2) (2.1.3.3)

We know from previous sections that

〈(Ma)ij(Mb)kl〉 =
d

d(Ja)ji

d

d(Jb)lk
Z[J ]

∣∣∣∣
J=0

where a and b run over 1 and 2. Like before, we complete the square in the numerator of our
partition function but for both M1 and M2 separately. We then shift the measure of our integral
and use our normalisation condition to obtain

Z[J1, J2] = e
1

2ω
[Tr(J2

1 )+Tr(J2
2 )] (2.1.3.4)

We are now in a position to calculate the two point function. Using Zij = (M1)ij + i(M2)ij and

Z†kl = (M1)kl − i(M2)kl we get the following results:

〈ZijZ†kl〉 =
1

ω
δijδkl

〈ZijZkl〉 = 0 = 〈Z†ijZ
†
kl〉 (2.1.3.5)

This tells us that we must add a new rule when drawing our Feynman diagrams. We must
differentiate between which pairs of dots represent the indices of Z and which pair of dots
represent the indices of Z†. Ribbons that start on dots for the Zs must end on dots for the
Z†s. This reduces the allowed combinations we can have and so the number of graphs we have
for this model is less than in an Hermitian matrix model. Recall that physical observables are
given by expectation values of traces of operators. In general,

〈Tr(ZJ)Tr(Z†J)〉 = a sum of J ! graphs

The leading term plus first two correction terms for the above correlator is

〈Tr(ZJ)Tr(Z†J)〉 = JNJ +
J4NJ−2

6
+
J5NJ−2

24
(2.1.3.6)

This is the genus 0 (sphere), genus 1 (torus) and genus 2 (double torus) contribution to the sum.
If we hold the scale dimension of our operators fixed at O(1), then we can neglect the higher
genus contributions as we take N →∞. If the number of fields in each trace grows as we take
N →∞ then we can no longer ignore terms corresponding to the higher genus ribbon graphs.
We make this transition precisely when we let J grow like

√
N , i.e.: this is the transition point

between the planar and non-planar limit of the theory. We can see this by looking at (2.1.3.6)
and noticing that when J = O(N), the genus 1 and genus 0 contributions are of the same order
in N .

Ultimately, we want to study the non-planar limit of the theory as this is where new physics is
emergent. We learn from the above discussion that the non-planar limit is a much more difficult
problem to study than the planar limit. In fact, when we study the non-planar limit, different
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trace structures mix. The operators Z,Z† have scaling dimension 1.2 Now we can define the
normalised operator as follows:

On ≡
1√
nNn

Tr(Zn) (2.1.3.7)

Correlators then look like

〈OnO
†
m〉 = δnm

(
1 +O

(
1

N2

))
(2.1.3.8)

A multitrace correlator would look as follows in this notation:

〈OnOmO
†
n+m〉 =

√
nm(n+m)

N

(
1 +O

(
1

N2

))
(2.1.3.9)

If the dimensions of our operators scale like O(1), then the above correlator goes to zero as
N → ∞. This tells us that different multitrace structures do not mix in the planar limit and
so we only have to study single trace operators. When our operators have scale dimension of
O(N) then the above correlator cannot be neglected so we must consider all possible multitrace
structures.

To get around the problem of summing such a large number of diagrams, we use an alter-
native method to sum ribbon graphs. This method involves finding a basis of operators that
diagonalise the two point function, the restricted Schur polynomial basis, and we see that this
is equivalent to finding a set of projectors on the vector space V ⊗nN (where Z⊗n lives). This
allows us to replace a question in quantum field theory by one in group theory. This basis is
introduced in Appendix C and it is the primary tool we use to study physics beyond the planar
limit and conduct the investigation into holography presented in this thesis.

2If you look at the kinetic term in a dimensionless (c = ~ = 1) action then these fields must have dimension
L−1.
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2.2 CFTs

Not only is N = 4 SYM a matrix model, it has vanishing β function and is therefore a con-
formal field theory at the quantum level. Usually classical scale invariance is broken when we
renormalise but theories with vanishing β function are counter examples because they are either
at fixed points of the renormalisation group or there is no RG flow. The latter is the case for
N = 4 SYM because the β function is zero for arbitrary coupling.

CFTs have a range of interesting properties, one of which is that any CFT can be specified by
what is called the CFT data. The conformal symmetry constrains the system to the extent
that only the conformal dimensions of the operators and the OPE coefficients are needed to
completely specify all correlators. We will elucidate this in this section and build an intuition
for what it means to be a CFT. These properties not only help us understand one side of the
AdS/CFT correspondence, but we will use them directly in Chapter 4.

Another goal of this section is to illustrate how the the state-operator correspondence arises
from using the conformal symmetry of a CFT. This is applied to the AdS/CFT mapping be-
tween states, discussed in Section 2.4, and is what allows us to map operators in the field theory
to states in the string theory. In particular, the Schur polynomials with O(N) scaling dimen-
sions are dual to giant gravitons and the Schur polynomials with O(N2) scaling dimensions are
dual to new geometries.

2.2.1 Conformal Symmetry

Conformal field theories are theories that have a conformal symmetry. These are interesting
theories to study because they have the most symmetry possible without being trivial, so there
is much that we can potentially learn from them. We will see later in the section that CFTs are
specified by two lists of numbers. This is very different to what we are used to, which is writing
down a Lagrangian to specify the theory. When we study CFTs, we can compute correlators
without ever looking at a Lagrangian.

Conformal transformations preserve angles. This requires the metric to transform with the
factor gµν → Ω2gµν . This means the spacetime interval only transforms by the overall factor Ω2

so the null intervals are preserved as well as the timelike/ spacelike character of the separation
between points i.e.: we preserve the causal structure. The infinitesimal parameter in these
types of transformations is the conformal Killing vector, ξµ, which obeys the conformal Killing
equation ∇µξν +∇νξµ = 2

d
∇τξ

τgµν where we consider the infinitesimal scaling Ω(x) = 1+ω(x).

The generators for this symmetry group include the Poincaré generators (Lorentz, Mµν , and
spacetime translations, Pµ), the generator for scaling, D, and the special conformal generators,

Kµ. In total we have d(d−1)
2

+d+1+d = (d+2)(d+1)
2

independent conformal transformations. This
is the number of independent components of an antisymmetric matrix that is (d+ 2)× (d+ 2).
Indeed, we can define the algebra as Lorentzian in d + 2 dimensions which we know has an-
tisymmetric generators. Of the two new classes of generators we have introduced, scaling is
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the easiest to understand. Special conformal transformations are a little more complicated.
They are composed of successive transformation: inversion then translation the inversion. As
such the generator of infinitesimal special conformal transformation looks more elaborate. The
algebra obeyed by these generators is as follows:

[Pα,Mµν ] = iηαµPν − iηανPµ
[Kα,Mµν ] = iηαµKν − iηανKµ

[Mαβ,Mµν ] = iηαµMνβ − iηανMµβ + iηβµMαν − iηβµMαµ

[D,Pµ] = iPµ

[D,Kµ] = −iKµ

[Pµ, Kµ] = 2iηµνD + 2iMµν

[D,Mµν ] = 0 (2.2.1.1)

Dimensional analysis of the above tells us what dimensions these generators should have. For
example, we know spacetime translations are generated by linear momentum which has di-
mension L−1. This is all we need to know and can infer from the first the commutator that
Lorentz generators are dimensionless and so on. The commutator of the vector generators with
D looks like the oscillator algebra with Pµ the creation operator and Kµ the annihilation oper-
ator. These operators have different length dimension though. We ask ourselves at this point
in what regime could they be related by daggering? Dimensional analysis hints that in this
regime daggering has to be related to inversion. The last commutation relation tells us that
we can simultaneously diagonalise D and Mµν . An easier way to write the above algebra is as
follows. We identify the generators with components of new generators LAB where Lµν = Mµν ,
Ld,d+1 = D, Lµd = 1

2
(Pµ+Kµ) and Lµd+1 = 1

2
(Pµ = Kµ). Then the LAB obey the algebra of the

Lorentz generators but generalised to the d+ 2 dimensional space and the algebra is so(2, d).

2.2.2 State-Operator Correspondence

For the AdS/CFT correspondence, we study N = 4 SYM on R×S3. To get from M4 to R×S3

we perform a Wick rotation and a conformal transformation, identifying the radius in E4 with
time slices on the cylinder: r = eτ . At each time, so at each S3 slice of the cylinder, we have a
Hilbert space of states. This means that we need to know the fields everywhere along the S3 to
specify a state. In E4, at each radius there is a surface with a Hilbert space. The Hilbert space
at the origin is conformally related to the Hilbert space of the S3 at time τ = −∞, which is on
the boundary of the cylinder. Usually when we quantise, different Hilbert spaces are related
by a unitary transformation with the time evolution operator. The type of scheme described
above is called radial quantisation. Different spheres/ Hilbert spaces are now related by scaling
which is a conformal transformation.

In Euclidean space, unitary operators become operators with reflection positivity. This im-
plies daggering is related to inversions since we have r = eτ =⇒ r† = e−τ = r−1. This is
necessary to keep us in the same Hilbert space. But P †µ = IPµI = Kµ so we can identify these
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as ladder operators in this scheme as suggested in the previous section. This is also why we
label states by their scaling dimension and spin. There is an operator of lowest dimensions
called the primary operator. This means that if we act with Kµ on this operator, we will get
zero. We can organise the irreps of a CFT into the primary fields and their descendants, which
are obtained by acting on the primary field with Pµ.

States are distributed over space but operators are localised. Naturally, the origin is localised
because it is a point. We can insert an operator with dimension ∆ at the origin on the vacuum
state. Then O∆(x = 0)|0〉 = |∆〉, since D|∆〉 = i∆|∆〉. If we insert the operator elsewhere we
have

O∆(x)|0〉 = eiP ·xO∆(x = 0)e−iP ·x|0〉 =
∞∑
n=0

(−1)n

n!
(P · x)nO∆(x = 0)|0〉

since the vacuum is invariant under all conformal transformations. We see we have a superpo-
sition of states with different eigenvalues. If we insert a primary operator at the origin, we will
get a state that is annihilated by Kµ and vice versa. These operators and states are in a 1-1
correspondence and this is the state-operator correspondence.

2.2.3 The CFT Data

We now briefly outline some properties of CFT which we will use in Chapter 4. Recall that
the Maldacena-Zhiboedov theorem [6] says that conformal symmetry is the most amount of
symmetry we can hope to put into a theory without having something trivial. This conformal
invariance completely determines the two and three point functions up to the spectrum of
primary operators (labelled by dimension and spin) and the OPE coefficients. This means
we can figure out what these correlators look like by requiring they are invariant under the
symmetries. By doing this, we find the following general forms. The two point function for a
scalar field looks like

〈O∆1(x1)O∆2(x2)〉 =
Cδ∆1∆2

|x1 − x2|∆1+∆2
(2.2.3.1)

where C is some constant which we can tune to 1 by appropriate choice of basis. The three
point function is

〈O∆1(x1)O∆2(x2)O∆3(x3)〉 =
λO∆1

O∆2
O∆3

|x1 − x2|∆1+∆2−∆3 |x2 − x3|∆2+∆3−∆1|x1 − x3|∆1+∆3−∆2
(2.2.3.2)

When we try to compute the four point function in this manner, we learn that we can include
arbitrary functions of conformal cross ratios. These ratios are invariant under the symmetries,
so we can only determine the correlator up to some arbitrary function of these ratios. Thus,
the four point functions are highly non-trivial.

Operator product expansions take a product of two nearby operators, O∆1(x)O∆2(0) and ex-
presses them as a sum of local operators.

O∆1(x)O∆2(0) =
∑

primaries Oi

λO∆1
O∆2

OiCOi(x, ∂y)Oi(y)
∣∣
y=0

(2.2.3.3)
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where the COi(x, ∂y) are determined by conformal invariance. The operator product expansion
thus allows us to turn n-point correlation functions into a sum of n− 1-point correlation func-
tions. The idea is that we approximate two nearby local operators with a sum of operators at
one of the points. Proceeding in this way, we can express any CFT n-point function in terms
of 3-point functions which are highly constrained, as reviewed above.

To summarise, we have illustrated that all correlation functions in a CFT depend only on
the OPE coefficients and the spectrum of the primary operators. This is all the data we need
to completely determine the CFT. This is useful for when we come across a theory which we
don’t have access to the action but we wish to identify, as we will see in Chapter 4.
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2.3 Large N and the Duality

2.3.1 Factorisation

Consider some quantum system. This system may be in a number of different states, labelled
by i. Suppose we want to perform a measurement. The value of an observable OI in the
state i is OI(i). The probability to be in this state is µi with

∑
i µi = 1 (normalisation) and

µi ≥ 0 ∀i. Then the expected value of OI (or the average value) is
∑

i µiOI(i). Factorisation is
the statement that

〈OI1 , . . . , OIn〉 = 〈OI1〉 . . . 〈OIn〉 (2.3.1.1)

for any observables OI . We know what the probability to be in the state i is so we can rewrite
the left hand side as

〈OI1 , . . . , OIn〉 =
∑
i

µiOI1(i)OI2(i) . . . OIn(i) (2.3.1.2)

We can rewrite the right hand side of (2.3.1.1) as

〈OI1〉 . . . 〈OIn〉 =
∑
i1

µi1OI1(i1) ·
∑
i2

µi2OI2(i2) · · ·
∑
in

µinOIn(in) (2.3.1.3)

We see that the left hand side of (2.3.1.1) involves a sum over i, which is a sum over the states
of the system. The right hand side, however, involves a sum over i for each expectation value.
The only way to achieve equality is if we only have one state participating in the sum. That
is, µi = 1 for i = i∗ and µi = 0 for i 6= i∗. Now both sides give

OI1(i∗)OI2(i∗) . . . OIn(i∗) (2.3.1.4)

We can only be in one state: this is the classical limit. That is, for factorisation to hold our
system must be in a classical limit.

The limit as N →∞ is a classical limit because factorisation holds. In particular, the large N
limit of N = 4 SYM is given by the classical limit of type IIB string theory on AdS5 × S5.

It is natural to ask what the other terms are that fall away when we take N to be large.
If we look back at (2.1.1.16), then we see that the first order correction to this stringy classical
limit goes like 1

N2 . In quantum field theory, the first order quantum correction comes with an
~. If we relate these ideas then 1

N2 ≡ ~string. So with strings, just like with field theory, we have
quantum corrections or string corrections. It turns out that this is not the only uncertainty we
have in string theory.

We are used to having the coupling constant as being a source of fundamental uncertainty
and it is related to ~. For every order in the perturbation (or each vertex in our Feynman
diagrams) we introduce an ~. This is related to an uncertainty in the string theory – the string
tension. The fact that we have strings replacing points introduces these new uncertainty be-
cause we cannot resolve points in spacetime. The string tension is inversely related to the size
of the string and this gives us new uncertainty.
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Our theory has gauge group U(N) so our observables are built out of N×N Hermitian matrices.
We know that 1

N2 appears as a new source of fundamental uncertainty (in the free and inter-
acting theory), and that the size of our matrices in the field theory controls this uncertainty.

2.3.2 Triangulating a Surface

In Section 2.1.2, we saw that the N dependence of a diagram was given by a number called
the Euler characteristic which is a topological invariant. We will now motivate this observa-
tion and discuss its implications for the duality between N = 4 SYM and string theory on an
asymptotically AdS5 × S5 background.

Imagine two loops of ribbon tied to each other. The knot is the vertex. We can arrange
these loops onto a sphere so that edges of the ribbon do not cross. This is one of the terms we
would get from order λ in the above correlator. It triangulates a 2 dimensional surface, as can
be seen in Figure 4. The ribbon divides the surface into patches. These patches are the faces
we have introduced above.

Figure 4: A representation of an O(λ) ribbon graph triangulating a sphere. The ribbons are
shown as black lines.

We can imagine more intricate triangulations. Consider some such triangulation. It has four
faces when viewed from one side. We can stretch this object horizontally as shown in Figure
5, creating an extra face in the middle. This stretching does not change the topology of the
triangulation so the Euler characteristic should be invariant. We want to explicitly verify this.

Notice that, for this section of the triangulation, we started with four faces, five edges and
two vertices. After the stretch we have five faces, eight edges and four vertices. Relating
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Figure 5: Stretching a piece of the ribbon configuration on one side of a sphere

quantities before and after (indicated with the primed variables) the stretch we have

F ′ = F + 1

E ′ = E + 3

V ′ = V + 2

Thus,
F ′ − E ′ + V ′ = F − E + V

We could also shrink an edge to nothing. In this case we again find

F ′′ − E ′′ + V ′′ = F − E + V

and the Euler characteristic is unchanged by the shrinking.

These deformations are all homeomorphisms. They preserve the topological properties of a
space. This is why the Euler characteristic is a topological invariant: it does not change under
a homeomorphism. This is not only true for the sphere example we have considered above.
Some ribbon graphs might triangulate a torus or a pretzel. Intuitively, the more ribbons we
have, the harder it becomes to triangulate a surface like a sphere (remember that our ribbons
cannot cross on the surface). We see that we need surfaces like a torus, which is a sphere with
a handle on it, to give us new ways to place ribbons so that they do not cross.

We do not need the triangulation to calculate what the Euler characteristic is; it can be com-
puted directly from the topology of the surface. Every two dimensional oriented surface is
topologically equivalent to a sphere with some handles stuck onto it or some holes cut out of
it. So we can think of the torus as being a sphere with a handle on it. By stretching and
shrinking our surface in various places, we can imagine moulding this sphere with a handle into
a torus shape. The Euler characteristic for a surface has a definition in terms of the number of
handles, H, and holes, h: χ = 2 − 2H − h. For a sphere, there are no holes or handles. This
gives an Euler characteristic of two. We can check this against the triangulation in Figure 4:
χ = F − E + V = 3 − 2 + 1 = 2. A torus has one handle, so it has an Euler characteristic of
zero. A pretzel is a sphere with two handles, so it has an Euler characteristic of negative two.
Each time we add a handle, our Euler characteristic decreases by two.

Recall that Euler characteristic gives us the N dependence of each ribbon graph. For the
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ribbon graph triangulating the sphere in Figure 4, the N dependence is two. The ribbon graph
that triangulates a torus is shown in Figure 6. There is only one face (or one closed loop) in
this diagram and the N dependence is zero. The surface that has an Euler characteristic of
zero is the torus, so this diagram must triangulate the torus. It is remarkable that the topology
of the surfaces these ribbon graphs triangulate determine the graphs’ N dependence.

Figure 6: An O(λ) ribbon graph that triangulates a torus

When we study a perturbative quantum field theory, we use Feynman diagrams as a tool
to sum terms in the perturbation series. The fact that the N dependence is related to the
topology of a surface suggests that summing ribbon graphs has something to do with summing
over surfaces. For a non-matrix model theory, like the scalar particle, we perform a path inte-
gral quantisation of the theory by summing over all possible worldlines. Similarly for a string
theory, we must sum over all possible worldsheets the string can follow in spacetime 3. The fact
that a string traces out a surface as it moves through spacetime draws a link between a matrix
model theory, where summing over ribbon graphs is related to summing over surfaces, and a
string theory. In particular, N = 4 SYM is a matrix model theory. So we see here further
motivation in claiming a duality between N = 4 SYM and a string theory which is realised
by the AdS/CFT correspondence. This correspondence is a precise guess for the string theory
that is dual to a particular matrix model (type IIB strings on an asymptotically AdS5 × S5

background geometry dual to N = 4 SYM).

Looking back at 2.1.1.16, we see that the first correction to the leading order term in our
correlation functions went like 1

N2 . This is a quantum correction to the classical limit (obtained
by taking N →∞) which is related to ~string. The Euler characteristic showed us that when the
N dependence of our graphs decreased by two, we needed to a glue a handle onto our sphere.
This implies that for each ~string we have for the string, we need a higher genus correction. So
the genus of our surface tells us the order of the quantum correction. This suggests that we are
summing over surfaces and that there is a duality between a matrix model theory and a string
theory.

3As a particle moves through spacetime, it traces out a line (worldline). A string is one-dimensional, and so
it traces out a surface as it moves through spacetime (worldsheet).
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2.4 AdS5 × S5 in Brief

This section introduces AdS5 × S5 and motivates the mapping of states here with states in
N = 4 SYM. The state-operator correspondence of the CFT, discussed earlier, then allows us
to identify operators in the CFT with states in the gravity. This is important to the goals of
this thesis because by matching field theory operators with their string theory duals we are able
to say concrete things about holography. We start by looking at the metric for Schwarzschild
spacetime to develop our intuition.

2.4.1 Deriving the Metric

The Schwarzschild metric is a solution to the Einstein field equations in the simplest setting
(uncharged, non-rotating black holes and a zero cosmological constant).

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2
2 (2.4.1.1)

This describes a black hole at the origin. The event horizon is at r = 2GM , which we can see
because at this radius g00 = 0. The action is

S = m

∫
ds = m

√
−gµν ẋµẋνdτ =

∫
Ldt (2.4.1.2)

Here we use an Affine parametrisation

−gµν ẋµẋν = 1

We work out the equations of motion using the Euler-Lagrange equation.

∂L

∂ẋα
= − m√

−gµν ẋµẋν
gαµẋ

µ

=⇒ d

dt

∂L

∂ẋα
= − m√

−gµν ẋµẋν

(
∂gαµ
∂xβ

ẋβẋµ + gαµẍ
µ

)
dL

dxα
=

m

2
√
−gµν ẋµẋν

(
−∂gµν
∂xα

ẋµẋν
)

=⇒ 1

2

∂gµν
∂xα

ẋµẋν =
∂gαµ
∂xβ

ẋβẋα + gαµẍ
µ (2.4.1.3)

where we used the Affine parametrisation to get the last equality. In nearly flat space and in
the non-relativistic limit,

− gµν ẋµẋν = (ẋ0)2 − ~x · ~x = 1 (2.4.1.4)
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If we set the speed of light, c, to 1 then ẋ0 ≈ 1 and ẋi ≈ 0. Consider now α = i in (2.4.1.3).

1

2

∂gµν
∂xi

ẋµẋν =
∂gii
∂xβ

ẋβẋi + giiẍ
i

=⇒ giiẍ
i =

1

2

∂g00

∂xi
ẋ0ẋ0

=⇒ ẍi =
1

2

∂g00

∂xi
= − ∂

∂xi
ΦN (2.4.1.5)

So the Newtonian potential, ΦN , is −1
2
g00. In terms of our Schwarzschild metric, ΦN =

1
2

(
1− 2GM

r

)
.

~F = −∇ΦN = −
(
∂

∂r
r̂ +

1

r

∂

∂θ
θ̂ +

1

r sin θ

∂

∂φ
φ̂

)
ΦN = −GM

r2
r̂ (2.4.1.6)

This tells us that M in the metric is indeed the mass of the black hole. To summarise, we
have shown that the g00 component of the metric becomes the gravitational potential in the
non-relativistic limit and the limit of an almost flat spacetime. This insight is important for
the other spacetime metrics we will consider.

Consider a metric on a 10 dimensional spacetime of the form

ds2 = −dt
2 − d~x · d~x√

1 + C
r4

+

√
1 +

C

r4
(dr2 + r2dΩ2

5) (2.4.1.7)

C is some constant and d~x · d~x = (dx1)2 + (dx2)2 + (dx3)2. We see as r gets large, the space
begins to look flat and we expect to recover Newtonian physics (so as r →∞ our space starts
to look like M10). Thus, in this limit, we can calculate what the Newtonian potential for this
space is.

ΦN = −1

2
g00 =

1

2

(
1 +

C

r4

)− 1
2

≈ 1

2

(
1− C

2r4

)
=

1

2
− C

4r4
(2.4.1.8)

Our approximation holds since we are at large r so
1

r4
is small. For the 4-dimensional Schwarzschild

metric, the gravitational potential falls off as
1

r2
or

1

rd−2
. The potential for this 10-dimensional

spacetime does not fall of like
1

r8
as expected. Instead it looks like we are in 6 dimensions. We

can interpret this as the metric telling us we are filling 3+1 dimensions (from the (dt)2−d~x ·d~x
terms) so that we have 6 transverse dimensions. The geometry in this limit includes a 5-sphere,
S5, which has an SO(6) rotational invariance. These are rotations in the transverse dimen-
sions. Think of an infinite rod in 3 spatial dimensions. It completely occupies one of the
dimensions, so there are only two directions the field can spread in. As a result the electric
field sourced by the rod falls off as 1

r
and not as 1

r2 . This is analogous to what we have here.
It only makes sense to talk about the gravitational potential in the space that isn’t already filled.

Looking at our metric, we see that g00 = 0 at r = 0, so there is a horizon at the origin.
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This metric describes a black 3-brane. We can probe the metric more by making a few con-
venient adjustments. For the physics close to the brane we are concerned with small r so we
can drop the +1 term under the square roots since the term that goes like 1

r4 dominates the
behaviour. We rename our constant C to C2. The latter adjustment is perfectly reasonable
since C was arbitrary to begin with. Now we have

ds2 = −r
2

C
(dt2 − d~x · d~x) +

C

r2
dr2 + CdΩ2

5 (2.4.1.9)

This is the metric of AdS5 × S5 which is a solution to the Einstein equations with a negative
cosmological constant. We can study the potential after this change. We use the relation we
derived earlier

Φ ≡ −1

2
g00 =

r2

2C
(2.4.1.10)

This is quadratic, just like the potential for the harmonic oscillator. What this means is that,
for small r, any object launched radially outward from the brane (at r = 0) will ultimately
return to the brane. So geodesics on AdS5 × S5 will go away from the origin and then come
back, just like with the harmonic oscillator.

We make the coordinate transformation

t→ αt, ~x→ α~x, r → r

α

so that our metric is unchanged. In order to leave the metric invariant, we had to have r scaling
inversely with ~x, so it looks like r is scaling like an energy.

We are interested in studying AdS5 × S5, the space in which the type IIB string theory we
are interested in lives. A metric on this space is (2.4.1.9), with C = 1 and the coordinate
transformation z = 1

r
.

ds2 =
1

z2
(−dt2 + d~x · d~x+ dz2) + dΩ2

5 (2.4.1.11)

This is the metric in the Poincaré patch of AdS5. We have a horizon as z → ∞ and the
boundary of the spacetime is at z = 0. This metric is defined to cover a patch of AdS5 only and
not the whole spacetime. We have a choice which patch we want to cover, each with its own
metric. Our discussion will only consider the above metric and we will see later what portion
of the space it covers.

We will explore how this metric can be obtained by embedding AdS5 into flat space and then
we will see how to obtain a metric which describes the whole of the space. We are embed-
ding our curved manifold into a flat space. In curved spaces, the geometry we are used to
using in flat space (Euclidean geometry) no longer holds. In particular, the way we measure
distances between points is different. We can figure out what the metric in this curved space
is if we can figure out how to measure distances between points. That is, we are figuring out
how to measure distances between points on the curved space by using the rule (essentially the
Pythagoras theorem) that tells us how to measure the distance between points on the flat space.

The AdSp+2 geometry has constant negative curvature and its metric describes a hyperbolic
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geometry. We want to induce the metric on our manifold by embedding into flat space. Our
manifold is a surface in embedding space. Just like we have the equation of a sphere in (p+ 2)
dimensions,

∑p+1
i=0 (X i)2 = R2, we have a negative curvature analogue which describes a hyper-

boloid

(X0)2 + (Xp+2)2 −
p+1∑
i=1

(X i)2 = R2 (2.4.1.12)

where R is the radius of curvature. Note that when we embed a hyperbolic space into a flat
space we appear to gain a timelike dimension: this is required to represent the isometry of the
hyperbolic space with the flat embedding space. That is, our embedding space is a (p+ 3) flat
spacetime with two timelike coordinates. Our metric is

ds2 = −(dX0)2 − (dXp+2)2 +

p+1∑
i=1

(dX i)2 (2.4.1.13)

Note that we are ignoring the sphere part and looking only at AdSp+2 spacetime. To get the
Poincaré patch, we choose the following coordinates, which satisfy the defining equation for our
embedding space (2.4.1.12).

X0 =
R2

2r

(
1 +

r2

R4
(R2 + ~x · ~x− t2)

)
X i =

r

R
xi i = 1, . . . , p

Xp+2 =
r

R
t

Xp+1 =
R2

2r

(
1− r2

R4
(R2 − ~x · ~x+ t2)

)
(2.4.1.14)

We can work out the differentials and plug this into (2.4.1.13) to obtain

ds2 = − r
2

R2
dt2 +

R2

r2
dr2 +

r2

R2
d~x2 (2.4.1.15)

We set R2 = 1 and z = 1
r

to obtain the AdS part of (2.4.1.11). Our coordinate maps become

X0 =
z

2

(
1 +

1 + ~x · ~x− t2

z2

)
X i =

xi

z
i = 1, . . . , p

Xp+2 =
t

z

Xp+1 =
z

2

(
1− 1− ~x · ~x+ t2

z2

)
(2.4.1.16)

Then
1

z
=
X0 −Xp+2

2
(2.4.1.17)

The left hand side describes a hyperbola with asymptote along the line z = 0. This splits our
space up into two regions: X0 > Xp+2 and X0 < Xp+2. We have to choose which region we
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are in by specifying the range of r = 1
z
. This is what we mean by having a patch on the space

and this makes it clear that we are choosing which patch to cover. It is most natural to choose
r = 1

z
≥ 0 as this looks like a radial coordinate.4

We can identify global coordinates, also satisfying (2.4.1.12), that describe the entire AdSp+2

space. We use

X0 = R cosh ρ cos τ

X i = R sinh ρ ηi

Xp+2 = R cosh ρ sin τ (2.4.1.18)

It is convenient to make a coordinate choice where the ηi parametrise a unit sphere. In our
case, this sphere is a p-sphere. For example, the unit sphere in 3 dimensions is given by the
coordinate transformation η1 = cos θ sinφ, η2 = sin θ sinφ, η3 = cosφ. This gives the metric
ds2 = −dt2 + dφ2 + sinφdθ2. Similarly in AdS5 where our metric has two timelike coordinates,
we make a coordinate transformation to spherical coordinates on the X i for i = 1 . . . p+1. Now
we see that the X i describe a p-sphere with radius R sinh ρ. The components ηi look like

η1 = cos(θ1)

η2 = sin(θ1) cos(θ2)

η3 = sin(θ1) sin(θ2) cos(θ3)

...

ηp = sin(θ1) sin(θ2) . . . sin(θp−1) cos(θp)

ηp+1 = sin(θ1) sin(θ2) . . . sin(θp−1) sin(θp) (2.4.1.19)

Here θ1, . . . , θp−1 ∈ [0, π] and θp ∈ [0, 2π]. Note that ηiηi = 1 =⇒ dηiηi = ηidηi = 0.

Now we have everything we need to calculate the induced metric for these coordinates. The
result is

ds2
global = R2(− cosh2 ρdτ 2 + dρ2 + sinh2 ρdΩ2

p) (2.4.1.20)

Let’s examine whether we really cover the whole space. First, consider that X0 and Xp+2 to-
gether describe a circle of fixed radius, for ρ constant. As we vary τ we move around the circle
and varying ρ changes the radius of the circle with no restriction on how big this radius can be.
Now consider X i. The vector component ensures that we can point in any direction, no matter
which value we fix ρ to be. So we truly can get to any point in the space using these coordinates.

We are interested in what happens at the boundary of our space5. Looking at our metric,
we can examine what happens as ρ gets large. We could do the same for τ but we know cos τ
and sin τ are periodic, so we won’t learn anything new.

4Recall that the horizon is at r = 0 and we reach the boundary of the spacetime as r →∞
5The AdS/ CFT duality conjectures that the CFT lives on the boundary of our space. So we can think of

AdS as living inside a box (like the harmonic oscillator): that is where our string theory is. The CFT lives on
the surface of that box.
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Figure 7: Circles of radius fixed by ρ

For large ρ,

cosh ρ =
eρ + e−ρ

2
≈ eρ ≈ eρ − e−ρ

2
= sinh ρ

and so our metric becomes

ds2 =

(
Reρ

2

)2 (
−dτ 2 + dΩ2

p + 4e−2ρdρ2
)

(2.4.1.21)

The boundary of our manifold is at large ρ. Here any coordinate difference ∆xµ leads to a
vanishingly small contribution to the proper distance from the ρ coordinate. This can be seen
by noticing that ∆s2 is some number multiplied by (−∆τ 2 + ∆Ω2

p + 4e−2ρ∆ρ2). The coefficient
of ∆ρ2 is exponentially decreasing with increasing ρ and scales this term to be very small at
large ρ compared with the other terms. It is thus negligible and our metric at the boundary
simplifies.

ds2
boundary =

(
Reρ

2

)2 (
−dτ 2 + dΩ2

p

)
(2.4.1.22)

We see that this metric has the form R × Sp. So the boundary of our space, AdSp+2, is
∂AdSp+2 = R× Sp. For AdS5 the boundary is R× S3 which what we use for radial quantisa-
tion of a 4d CFT. So the boundary of AdS5 is the same space on which the 4d CFT is defined.
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2.4.2 Operator-State Mapping

N = 4 SYM lives on the boundary of the AdS5 spacetime, which is R× S3. We usually define
the field theory on Minkowski space, R1,3, and not R×S3. However, R1,3 and R×S3 are related
by a conformal transformation (detailed below). N = 4 SYM is a conformal field theory and
any CFT is invariant under conformal transformations. This means that we can define N = 4
SYM on both R1,3 and R× S3.

To show that Minkowski spacetime and R × S3 are related by a conformal transformation,
we can Wick rotate to get the Euclidean signature for the CFT metric.

ds2 = −dt2 + d~x · d~x→ dt2E + d~x · d~x = ds2
E (2.4.2.1)

By a change of coordinates we can obtain

ds2
E = dr2 + r2dΩ2

3 (2.4.2.2)

We change variables so that r = eτ =⇒ dr = eτdτ and then we perform a scale transformation
to absorb the eτ . N = 4 SYM is a CFT and so the above conformal transformation will leave
all physical predictions invariant. The metric we obtain

ds2
E = dτ 2 + dΩ2

3 (2.4.2.3)

is R× S3. We see that our time coordinate corresponds to R. There is a symmetry for trans-
lating in R in R × S3, and rotational invariance associated to the 3-sphere. We can try and
match this symmetry in the field theory with one in the string theory. We know that energy is
conserved when we have a symmetry in time translations. We have associated the time coordi-
nate in the string theory with the radius in the field theory.

Consider the time translation τ → τ + a. We defined r = eτ . Under this translation,
r → eaeτ = ear. This is a scale transformation so our conserved quantity is a dimension. If we
scale our coordinate x by λ, then our operator scales by a factor λ−D i.e.: O(λx) = λ−DO(x).
So time translations in the string theory correspond to scaling in the field theory (dilatations).
This makes sense because in radial quantisation, different Hilbert spaces are related by scaling.
Usually for non-CFTs they are related by time translations, implemented by the Hamiltonian.
We see that we are matching the Hilbert spaces and this is a concrete example of the AdS/CFT
correspondence.

In N = 4 SYM we have R-symmetry which is SO(6) and rotates the supercharges. We have
6 scalar fields, φ1, . . . , φ6. We build our complex fields by taking Z = φ1 + iφ2, for example.
We have conservation of R-charge in the QFT. The space S5, in AdS5 × S5, enjoys an SO(6)
isometry given by the group of rotations. We know the conserved quantity associated with
rotations is angular momentum. We match these conserved quantities since they both come
from the SO(6) symmetry of each theory. Thus, angular momentum in the string theory can
be identified with R-charge in the field theory.

We have seen, in Section 2.1, that physical observables are traces of complex fields, Z and

31



Background AdS5 × S5 in Brief

Z†, which are gauge invariant. If we set c = ~ = 1, then the action is dimensionless and the
kinetic term gives us

S =

∫
d4x Tr(∂µZ∂

µZ†)

Dimensional analysis tells us [Z] = [Z†] = L−1. However, observables may take the form of
something like Tr(Z2)Tr(Z3). This will have dimension D = 5. When we start looking at
quantum corrections, D will include the anomalous dimensions.

The 1
2

BPS operators have scaling dimension that is equal to their R-charge and their two-
point correlation functions are protected meaning that they have no anomalous dimensions.
This is a consequence of supersymmetry. These operators are built out of a single scalar field.
Since their dimension is equal to their R-charge the dual state in the string theory has its
energy equal to is angular momentum. In Section 2.5.3 we see how the geometric interpretation
of these 1

2
-BPS operators can be identified with gravitons, strings or giant gravitons, depending

on their angular momentum. The dual field theory operator for such a state living on the S5

can be matched with the 1
2
-BPS operators when we identify angular momentum with R-charge.

2.4.3 Connection with Young Diagrams

In [7], Schur polynomials composed of O(N) fields were proposed as the natural gauge the-
ory duals to 1

2
-BPS giant gravitons. See Appendix C for a review of Schur polynomials. The

Schur polynomial operators allow for a natural identification of operators in the gauge theory
corresponding to giant gravitons and new background geometries in the string theory side of
the AdS/CFT correspondence. In particular, each LLM geometry (which are regular 1/2 BPS
solutions to type IIB supergravity that are asymptotically AdS5×S5) corresponds to a specific
1/2 BPS operator. Young diagrams which label Schur polynomials dual to new geometries have
O(N2) boxes.

Young diagrams that label representations of U(N), which is the gauge group of N = 4 SYM,
have a restriction on the length of their columns (no more than N boxes). The fully antisym-
metric representation corresponds to a single column of N rows and corresponds to a giant
graviton embedded in the Sn part of the AdSm × Sn background. We can identify boxes with
discrete lumps of angular momenta. This means we have a maximum angular momentum al-
lowed which corresponds to a maximum size of our graviton. In this way, the Young diagram
prescription encodes the stringy exclusion principle as we will see in Section 2.5.3.

We can consider also a Young diagram consisting of a single single row of N boxes. This
corresponds to a giant graviton expanded in the AdSm part of the AdSm × Sn background.
This is the fully symmetric representation. This time, a limit is placed on the number of AdS
giants we can have and not the size of the giants. This is because there is no restriction placed
on the length of rows by working in a representation of U(N). We can have at most N rows
since these representations can have at most N boxes in a column. Thus there are at most N
AdS giants.
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Young diagrams label representations of the symmetric group (see Appendix B). Since they
are composed from a discrete number of boxes, they discretise the geometry of the membrane.
This discretisation removes many modes and therefore infinities from the worldvolume theory.
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2.5 Objects in the String Theory

The AdS/CFT correspondence is a duality between N = 4 SYM and type IIB string theory
on an AdS5 × S5 background. This section gives some background on the string theory and
D branes which have been instrumental to AdS/CFT. In particular we discuss the giant gravi-
tons, which are D3 branes that are dual to operators with large R-charge. Type II superstring
theories are defined in D = 10 dimensions and are maximally supersymmetric with N = 2
supersymmetry corresponding to 32 supercharges. Type IIB string theory has massless bosonic
fields, the spin-2 Gµν , the 2-form Bµν , the dilaton Φ and Ramond-Ramond gauge fields, C, Cµν
and Cµνρσ.

2.5.1 The Relativistic String

Toy Model: relativistic point particle

Before we can develop intuition for understanding the relativistic string, we need to revise
our understanding of the relativistic point particle. The key ideas in this treatment extend to
the two dimensional counterpart of the point particle: the string. The starting place for writing
down the action for the relativistic string comes from our knowledge of special relativity where
actions are Lorentz invariant. The action for a relativistic point particle is

S = −m
∫
WL

ds (2.5.1.1)

This action is invariant under reparametrisation of the worldline. We can rewrite the action
using a parameter, λ, which labels points along the worldline. Spacetime coordinates are a
function of λ. Then

ds =

√
−gµν

dxµ

dλ

dxν

dλ
dλ (2.5.1.2)

Usually we treat our time coordinate as a parameter and the position coordinates as dynamical
degrees of freedom.

Extending the analogy

Strings sweep out a worldsheet in spacetime. This generalises the worldline to two dimen-
sions. Thus we need two parameters. For branes in higher dimensions, we would need to
introduce more parameters depending on the dimension of the worldvolume. We usually iden-
tify one parameter with a timelike coordinate (like proper time) and the rest with spacelike
coordinates on the worldsheet. For closed strings the spacelike coordinate is periodic. For open
strings, we need to specify the endpoints of the string with boundary conditions. The key idea
for the relativistic point particle action was that it was reparametrisation invariant. If we pick
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a new parameter τ̃ = τ̃(τ), where τ is the old parameter, then the integrand becomes√
−gµν

dxµ

dτ

dxν

dτ
dτ =

√
−gµν

dxµ

dτ̃

dτ̃

dτ

dxν

dτ̃

dτ̃

dτ
dτ

=

√
−gµν

dxµ

dτ̃

dxν

dτ̃
dτ̃ (2.5.1.3)

where we have used the chain rule in the first line. To generalise this result, define γab =
∂xµ

∂σa
∂xν

∂σb
gµν where σa = (τ, σ) are worldsheet coordinates. For an action proportional to the area

of the worldsheet (as opposed to the length of the worldline), use the determinant of γab to
define the action

S = −T
∫
d2σ
√
−detγ (2.5.1.4)

This action is the Nambu-Goto action for the relativistic string and the constant of proportion-
ality, T (= 1

2πα′
), is the tension of the string.

2.5.2 D-branes

Open string endpoints are characterised by boundary conditions. Dirichlet boundary conditions
give rise to open strings whose endpoints end on objects called Dp-branes (where p is the number
of spatial dimensions) which are solitons. D branes are hypersurfaces within the spacetime.
The string is free to move in the remaining coordinates. The D brane itself fluctuates within
the spacetime. The Nambu-Goto action generalises for branes in higher dimensions. It tells us
about fluctuations on the brane. To study dynamics of the brane, we use the Dirac-Born-Infeld
action

SDBI = −Tp
∫
dp+1σ

√
−det(γab + 2πα′Fab) (2.5.2.1)

Closed strings are excitations of empty space. Since open strings end on the branes, we can
understand them as excitations of the branes. We can study branes by studying open strings.
The end points of the string source gauge fields on the brane. When we quantise open strings,
there are two massless modes that arise. The first are oscillators longitudinal to the brane which
are spin 1 particles. There is a gauge field on the brane associated with these gauge bosons.
The second type are oscillators transverse to the brane. They are scalars which we associate
with fluctuations transverse to the brane.

In type IIB string theory, only branes with p odd are stable and these are charged under a
Ramond-Ramond field. The open strings attached to a single Dp brane have gauge group U(1).
A stack of N Dp branes gives rise to gauge group U(N). The U(1) component decouples from
the SU(N) fields so that a stack of N Dp branes realises an SU(N) gauge theory in p + 1 di-
mensions. In particular, D3 branes in type IIB string theory have a 4 dimensional worldvolume
and 6 scalar fields. This worldvolume gauge theory has a low energy limit that is N = 4 SYM.
Note that there are 32 supercharges in type IIB string theory. Dp branes that are flat and infi-
nite are invariant under half these supersymmetries and are thus BPS states. The low-energy
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worldvolume dynamics of Dp branes is given by superymmetric versions of Yang-Mills theories
which are invariant under 16 supersymmetries.

Operators that are dual to D branes in the field theory have scaling dimensions that grow
like N at large N . Operators dual to strings have dimensions that grow like

√
N and are

present in the planar theory. If we want to probe the non-planar limit, and we do, then we
study D branes and new geometries which are dual to operators with dimension that grow like
N2.

2.5.3 Giant Gravitons in AdS

A graviton is a point particle that would mediate the gravitational force on the quantum scale.
The graviton corresponds to operators in the gauge theory obtained by taking the trace of a
product of complex adjoint scalar fields. The gravitons that we get when we take order N fields
have the topology of S3 when we study the AdS5×S5 background and are macroscopic in size.
In fact, they have a size of the order of one unit of the spacetime radius. Hence, we call them
giant gravitons.

These giant gravitons were discovered in [8] and those findings are reviewed here.

Dipole Analogy

Consider the Lagrangian

L =
m

2
(ẋi1ẋ1i + ẋj2ẋ2j) +

B

2
εij(ẋ

i
1x

j
1 − ẋi2x

j
2)− k

2
(x1 − x2)2 (2.5.3.1)

This describes two point particles in a magnetic field, ~B. They are connected by a spring with
spring constant, k. They have the same mass and equal but opposite charge which we’ve scaled
to 1 for simplicity. Suppose that the magnetic field points in the ẑ direction. We can then
consider the motion of the particles in the x-y plane. Classically, we expect the particles to feel
a force (Lorentz force) proportional to the magnetic field and their speed (as well as the size of
the charge). Let’s forget the spring term for the moment and consider the resultant equations
of motion. They are:

d

dt

(
∂L
∂ẋk1

)
=

∂L
∂xk1

=⇒ d

dt

(
mẋ1k +

B

2
εkjx

j
1

)
=
B

2
εikẋ

i
1

=⇒ mẍ1k = Bεikẋ1
i (2.5.3.2)

Similarly,
mẍ2k = −Bεikẋi2 (2.5.3.3)
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This confirms that these charges, when put in a magnetic field and given some momentum,
will feel an equal Lorentz force but in opposite directions (positive and negative charges). The
Lorentz force is perpendicular to the velocity of the charge and perpendicular to the magnetic
field. The more momentum the dipole has, the stronger the Lorentz force that each charge feels.
This results in a movement of the two charges away from each other (but perpendicular to the
momentum of dipole) so that the dipole is stretched. We know that the particles are coupled
by the spring. The spring will limit the ability of the dipole to stretch due to the Lorentz force.

Now send the mass to zero and focus on the magnetic field and spring terms in the Lagrangian.
We find that the magnitude of the centre of mass momentum, |P | is proportional to the mag-
nitude of the separation, ∆ = x1−x2

2
6. Allowing the dipole to move along the surface of a

sphere of radius, R, and magnetic flux, N , we see that when the dipole is the size of the sphere
(R = ∆), the momentum of the dipole will be at 2BR and the angular momentum, L = PR,
will be at a maximum. It is at a maximum because we are assuming a fixed magnetic field and
the largest chord we can draw in a sphere is the diameter. Of course, since Gauss’ law tells
us the magnetic flux through a closed surface is zero, and we clearly have identified the sphere
with having a non-zero magnetic flux, then we must conclude there is a magnetic monopole at
the centre of the sphere with strength 2πN = Ω2BR

2 7. So the maximum angular momentum
is of the order N .

We can make the same argument much more precisely and the steps that follow are based
largely on [8].

Since we are working on a sphere, it is natural to work in spherical coordinates. We are
on the surface of a 2-sphere so we need to specify two angles (2 coordinates) to specify our
position. We need an azimuthal angle, θ, and we have φ measuring angular distance from
the equator (θ ∈ [0, 2π] and φ ∈ [−π

2
, π

2
]). We choose to have only the Aθ component of the

vector potential nonzero. We want to couple the velocity of the dipole to the magnetic field.
Consider the state that has each charge a pole of the sphere. Then they have the same coor-
dinates but with opposite sign for φ. This applies whenever the charges are at antipodal points.

Consider ~B = Br̂8. We know that

∇× ~A = ~B

=⇒ ∇× (Axx̂+ Ayŷ + Az ẑ) = B

(
∂Az
∂y
− ∂Ay

∂z

)
x̂+

(
∂Ax
∂z
− ∂Az

∂x

)
ŷ +

(
∂Ay
∂x
− ∂Ax

∂y

)
ẑ

= B cos θ sinφx̂+B sin θ sinφŷ +B cosφẑ (2.5.3.4)

We also have that

~E = −∇φ− ∂ ~A

∂t
=⇒ ∇φ+ ~E = −∂

~A

∂t
(2.5.3.5)

6Make a change of coordinates to X = x1+x2

2 and ∆ as above. We find that Ẋi∆j = 1
4 (ẋi1x

j
1 − ẋi2x

j
2). Using

this, the term in the Lagrangian coupling to the magnetic field becomes 2BεijẊ
i∆j . The canonical momentum

is ∂L
∂Ẋi

which we can see is proportional to ∆.
7We want a uniform magnetic field on the surface of the sphere. This is achieved by a monopole located at

the centre.
8We have a magnetic monopole at the centre of the sphere so the field lines point radially outwards
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The electromagnetic portion of the Lagrangian is given by

LB = −q( ~A ·~̇x− φ) = −q(Axẋ+ Ayẏ + Az ż − φ) (2.5.3.6)

which comes from the action

SB = q

∫
Aµdx

µ = q

∫
(φdt− ~Ad~x) = q

∫ (
φdt− ~A

d~x

dt
dt

)
= q

∫
(φ− ~A · ~̇x)dt (2.5.3.7)

Here we have chosen the convention that q describes a negative test charge. This sign choice
should be reflected in our resulting equations of motion.

We are considering charges of mass m with a kinetic energy of 1
2
m~̇x2 so we need to add another

term to the Lagrangian: the kinetic term. The Lagrangian describing the system is

L = LB + LT = −q(Axẋ+ Ayẏ + Az ż − φ) +
1

2
m~̇x2 (2.5.3.8)

We can check this is indeed the correct Lagrangian by checking if we get the correct equations
of motion.

d

dt

∂L
∂ẋ

= −qȦx +mẍ =
∂L
∂x

= q

(
∂φ

∂x
− ∂Ax

∂x
ẋ− ∂Ay

∂x

˙
y − ∂Az

∂x
ż

)
(2.5.3.9)

d

dt

∂L
∂ẏ

= −qȦy +mÿ =
∂L
∂y

= q

(
∂φ

∂y
− ∂Ax

∂y
ẋ− ∂Ay

∂y
ẏ − ∂Az

∂y
ż

)
(2.5.3.10)

d

dt

∂L
∂ż

= −qȦz +mz̈ =
∂L
∂z

= q

(
∂φ

∂z
− ∂Ax

∂z
ẋ− ∂Ay

∂z
ẏ − ∂Az

∂z
ż

)
(2.5.3.11)

=⇒
3∑
i=1

d

dt

∂L
∂ẋi

= −q ~̇A+m~̈x

= q∇φ− qẋ
(
∂Ax
∂x

+
∂Ax
∂y

+
∂Ax
∂z

)
− qẏ

(
∂Ay
∂x

+
∂Ay
∂y

+
∂Ay
∂z

)
− qż

(
∂Az
∂x

+
∂Az
∂y

+
∂Az
∂z

)
(2.5.3.12)

Now we make note of the following:

~̇x× (∇× ~A) = ∇(̇~x · ~A)− ~A(∇~̇x)

= ẋ

(
∂Ax
∂x

+
∂Ax
∂y

+
∂Ax
∂z

)
+ ẏ

(
∂Ay
∂x

+
∂Ay
∂y

+
∂Ay
∂z

)
+ ż

(
∂Az
∂x

+
∂Az
∂y

+
∂Az
∂z

)
(2.5.3.13)

Using this, (2.5.3.12) and (2.5.3.5) we obtain

− q ~̇A+m~̈x = q∇φ+ q ~E +m~̈x = q∇φ− q∇(~̇x · ~A)

=⇒ m~̈x = −q(~̇x×∇× ~A)− q ~E = −q(~̇x× ~B)− q ~E (2.5.3.14)
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which are our equations of motion. They describe the motion of a negative test charge in a
magnetic field. Note that the Lorentz force is conventionally written in terms of a positive test
charge: the result is simply a sign change.

We repeat the argument for spherical coordinates. We have that(
1

r

∂Aφ
∂θ
− 1

r sin θ

∂Aθ
∂φ

)
r̂ +

(
1

r sin θ

∂Ar
∂φ
− ∂Aφ

∂r

)
θ̂ +

(
∂Aθ
∂r
− 1

r

∂Ar
∂θ

)
φ̂ = Br̂ (2.5.3.15)

Here ~B = Br̂ as before. We’ll denote the scalar potential as φ̃ so as not to confuse this with
our coordinate φ. In this choice of coordinates our position and velocity vectors are

~r = rr̂

~̇r = ṙr̂ + rθ̇θ̂ + r sin θφ̇φ̂

We get the second line as follows. First, we note that the transformation from Cartesian to
spherical coordinates is

x = r cosφ sin θ

y = r sinφ cos θ

z = r cosφ

In spherical coordinates, ~r is our position vector; θ and φ are angles. Only the coordinate
r = |~r| has dimensions of length.

~r = xx̂+ yŷ + zẑ = r cosφ sin θx̂+ r sinφ sin θŷ + r cos θẑ (2.5.3.16)

We look at how a small change in one of our coordinates will affect our position vector, ~r, in
terms of Cartesian coordinates and then we divide by that magnitude to get our unit vector.
That is

r̂ =
∂~r
∂r∣∣∂~r
∂r

∣∣ = cosφ sin θx̂+ sinφ sin θŷ + cos θẑ

θ̂ =
∂~r
∂θ∣∣∂~r
∂θ

∣∣ =
r cosφ cos θx̂+ r sinφ cos θŷ − r sin θẑ√

r2(cos2 θ + sin2 θ)
= cosφ cos θx̂+ sinφ cos θŷ − sin θẑ

φ̂ =

∂~r
∂φ∣∣ ∂~r
∂φ

∣∣ =
−r sinφ sin θx̂+ r cosφ sin θŷ√

r2 sin2 θ
= − sinφx̂+ cosφŷ (2.5.3.17)

This notation is useful to calculate the velocity vector, ~̇r, because we know how to treat Carte-
sian unit vectors under operations like differentiation.

~̇r = (ṙ cosφ sin θ − r sinφ sin θφ̇+ r cosφ cos θθ̇)x̂+ (ṙ sinφ sin θ + r cosφ sin θφ̇+ r sinφ cos θθ̇)ŷ + (ṙ cos θ − r sin θθ̇)ẑ

= ṙr̂ + rθ̇θ̂ + r sin θφ̇φ̂ (2.5.3.18)
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We will make use of

~̇r × (∇× ~A) = ∇(~̇r · ~A) =

(
∂

∂r
r̂ +

1

r

∂

∂θ
θ̂ +

1

r sin θ

∂

∂φ
φ̂

)(
ṙAr + rθ̇Aθ + rφ̇ sin θAφ

)
=

(
ṙ
∂Ar
∂r

+ r
∂Aθ
∂r

θ̇ + Aθθ̇ + sin θAφφ̇+ r sin θ
∂Aφ
∂r

φ̇

)
r̂

+

(
ṙ

r

∂Ar
∂θ

+
∂Aθ
∂θ

θ̇ + sin θ
∂Aφ
∂θ

φ̇+ cos θAφφ̇

)
θ̂

+

(
ṙ

r sin θ

∂Ar
∂φ

+
1

sin θ

∂Aθ
∂φ

θ̇ +
∂Aφ
∂φ

φ̇

)
φ̂ (2.5.3.19)

Now equations of motion can be calculated as before:

d

dt

(
∂L
∂~̇r

)
=
∂L
∂~r

(2.5.3.20)

Our kinetic term in the Lagrangian is LT = 1
2
m~̇r2.

Using the Euler-Lagrange equation we get

d

dt

(
∂L
∂ṙ

)
= qȦr +mr̈ =

∂L
∂r

= q

(
Aθθ̇ +

∂Aθ
∂r

θ̇ + sin θAφφ̇+ r sin θ
∂Aφ
∂r

φ̇+
∂Ar
∂r

ṙ − ∂φ̃

∂r

)
d

dt

(
1

r

∂L
∂θ̇

)
= qȦθ =

1

r

∂L
∂θ

= q

(
∂Aθ
∂θ

θ̇ + cos θAφφ̇+ sin θ
∂Aφ
∂θ

φ̇+
1

r

∂Ar
∂θ

ṙ − 1

r

∂φ̃

∂θ

)
d

dt

(
1

r sin θ

∂L
∂φ̇

)
= qȦφ =

1

r sin θ

∂L
∂φ

= q

(
1

sin θ

∂Aθ
∂φ

θ̇ +
∂Aφ
∂φ

φ̇+
1

r sin θ

∂Ar
∂φ

ṙ − 1

r sin θ

∂φ̃

∂φ

)
=⇒ q ~̇A+m~̈r = q(~̇r × (∇× ~A))− q∇φ̃ = q(~̇r × ~B)− q∇φ̃
=⇒ q~̇r × ~B + q ~E = m~̈r (2.5.3.21)

Here we have used the convention that we are working with a positive test charge and so our
equations of motion describe a positive test charge moving in a magnetic field.

Assuming only Aθ is non-zero9, our Lagrangian is

L = Aθrθ̇ = AθR cosφθ̇ (2.5.3.22)

We have dropped the kinetic term since it is small compared to the coupling to the magnetic
field i.e.: we can send the mass to zero.

We choose

Aθ = N
1− sinφ

2R cosφ
(2.5.3.23)

9We fix our gauge so that Aθ is the only non-zero component of the vector potential. This is possible since
our field is uniform on the sphere.
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We can check that this is reasonable by noting that r = R cosφ (see Figure[8]) and is a max-
imum, i.e.: r = R, when φ = 0 + 2kπ, k ∈ Z. Using this, we can take the curl of our vector
potential and check that we recover the expression for the flux, which we do.

The electromagnetic term in the Lagrangian looks like

LB = AθR cosφθ̇ + AθR cos(−φ)θ̇ = −N sinφθ̇ (2.5.3.24)

Figure 8: An arc of a great circle cutting the poles of the sphere

The spring coupling term is

LS = −k
2
R2 sin2 φ (2.5.3.25)

Here we have used the chord length instead of arc length for the purpose of simplification. ∂LB
∂θ̇

gives us the angular momentum. This leads to

|Lmax| = N sin(π/2) = N (2.5.3.26)

Embedding in S4: AdS7 × S4

Before considering D3 brane giant gravitons, we will review the case of M2 brane giant gravi-
tons. Consider a relativistic spherical membrane10 moving in S4. The membrane has no net
charge but it does have a dipole moment. There is a background 4-form field strength which it

10This membrane is the giant graviton.
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couples to. We can parametrise S4 such that

X1 = R cos θ1

X2 = R sin θ1 cos θ2

X3 = R sin θ1 sin θ2 cos θ3

X4 = R sin θ1 sin θ2 sin θ3 cos θ4

X5 = R sin θ1 sin θ2 sin θ3 sin θ4 (2.5.3.27)

Here θ4 is the azimuthal angle and goes from 0 to 2π while the other angles go from 0 to π. It
is simple to verify that

∑5
i=1 X

2
i = R2. Now we embed a spherical membrane into this S4. We

can parametrise this membrane using the azimuthal angle, θ4, and another angle, choose θ3.
By (2.5.3.27) we see that this means the membrane (or brane) can only move in the X1 −X2

plane (the only coordinates left that are not involved in our parametrisation of the sphere). It
is natural to define r = R sin θ1 sin θ2 which leaves the 2-sphere

X3 = r cos θ3

X4 = r sin θ3 cos θ4

X5 = r sin θ3 sin θ4 (2.5.3.28)

The size of the brane (with radius r) depends on its location in the X1 − X2 plane (since r
depends on θ1 and θ2, as does X1 and X2. We also have X2

3 +X2
4 +X2

5 = r2 =⇒ X2
1 +X2

2 =
R2−r2. That is, r is radius of the brane whilst

√
R2 − r2 is the radius of the circle on which the

brane orbits. So circles in this plane describe branes of fixed size. In terms of our embedding
coordinates,

X1 =
√
R2 − r2 cosφ

X2 =
√
R2 − r2 sinφ (2.5.3.29)

The metric on the 4-sphere (embedded into 5 dimensional Euclidean space) is

ds2 = dX2
1 + dX2

2 + dX2
3 + dX2

4 + dX2
5 (2.5.3.30)

where (assuming only φ is time-dependent)

dX1 =
−r√
R2 − r2

cosφdr −
√
R2 − r2 sinφdφ−

√
R2 − r2 sinφφ̇dt

dX2 =
−r√
R2 − r2

sinφdr +
√
R2 − r2 cosφdφ+

√
R2 − r2 cosφφ̇dt

dX3 = cos θ3dr − r sin θ3dθ3

dX4 = sin θ3 cos θ4dr + r cos θ3 cos θ4dθ3 − r sin θ3 sin θ4dθ4

dX5 = sin θ3 sin θ4dr + r cos θ3 sin θ4dθ3 + r sin θ3 cos θ4dθ4 (2.5.3.31)

This gives us almost all the terms we need to compute the induced metric. That is, we want
the metric on the worldvolume from the metric on the spacetime. We compute the elements by

gij =
∂XM

∂ξi
∂XN

∂ξj
GMN (2.5.3.32)
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where GMN is the metric on the spacetime and gij is the metric induced on the worldvolume.
We already have the transformations for r, θ3, θ4 and φ. The induced metric is

gtt =

(
∂X1

∂t

)2

GX1X1 +

(
∂X2

∂t

)2

GX2X2 + · · ·+
(
∂X5

∂t

)2

GX5X5 +

(
∂τ

∂t

)2

Gττ (2.5.3.33)

Our brane must be positioned in the full 11 dimensional space. We choose to put it at the
origin of AdS7 which leads to the simplification Gττ = −1. Thus gtt = −1+(R2−r2) sin2 φφ̇2 +
(R2 − r2) cos2 φφ̇2. The induced metric is

ds2 =
R2

R2 − r2
dr2 + (R2 − r2)dφ2 + r2dθ2

3 + r2 sin2 θ3dθ
2
4 + (−1 + (R2 − r2)φ̇2)dt2 (2.5.3.34)

=⇒
√
−g = Rr2 sin θ3

√
1− (R2 − r2)φ̇2 (2.5.3.35)

We can now compute the kinetic-like term of the action, which is given by the Dirac-Born-Infeld
action.

SDBI = −T
∫
r2

√
1− (R2 − r2)φ̇2dtdθ3dθ4

= −TΩ2

∫
r2

√
1− (R2 − r2)φ̇2dt (2.5.3.36)

where T is the tension of the membrane and is given by T = 1
4π2l3p

.

The term that couples to the background field is called the Chern-Simons coupling. Each
orbit, the brane sweeps out a 3-dimensional surface in S4 (the worldvolume of the brane after
1 orbit). This surface forms a boundary of a 4-manifold, call it Σ. If we integrate the flux over
this surface, then we obtain the contribution of the 4-form field strength to the action of the
brane per orbit. The background flux, F ≡ dC, is the constant flux density, B, multiplied by
the infinitesimal volume element on S4. This gives us

SB =

∮
wv

C =

∫
Σ

F = Bvol(Σ) (2.5.3.37)

This volume is given by

vol(Σ) = RΩ2

∫ 2π

0

dφ

∫ r

0

r′2dr′ =
8π2

3
Rr3 (2.5.3.38)

We make the ansatz that φ = ω0t so that ω0 = φ̇. If T is the period of the orbit of the
brane, then ω0T = 2π.

LB =
φ̇

2π
BΩ4Rr

3 (2.5.3.39)
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We can see check if we get the correct action back.

SB = B
8π2

3
Rr3 = BΩ4Rr

3

=

∫ tfinal

tinitial

dtL

=

∫ tfinal

tinitial

φ̇

2π
BΩ4Rr

3 =

∫ T

0

d(ω0t)

dt

BΩ4Rr
2

2π
dt

=
ω0T

2π
SB = SB (2.5.3.40)

Here we have integrated over one period of the orbit of the brane. We can do this because
we calculated the Chern-Simons term in the action by using Stoke’s theorem. Stoke’s theorem
required us to integrate over a closed path which is the boundary of some surface. In our case,
this surface was precisely the orbit of the brane.

Quantisation of the flux requires that

Ω4BR
4 = 2πN =⇒ B =

2πN

R4Ω4

=⇒ LB = φ̇N
r3

R3
(2.5.3.41)

Defining m = Ω2Tr
2 we have the full Lagrangian

L = −m
√

1− φ̇2(R2 − r2) +N
r3

R3
φ̇ (2.5.3.42)

The angular momentum is

L =
∂L
∂φ̇

=
mφ̇(R2 − r2)√
1− φ̇2(R2 − r2)

+mr (2.5.3.43)

where the definition of the membrane tension and R = lp(πN)
1
3 give N

R3 = TΩ2. This function
is strictly increasing for r > 0 so it is clear that the angular momentum has a minimum at
r = 0 (the smallest the membrane can be) and a maximum at r = R (the maximum size the
membrane can be). This gives us that Lmax = N , just like in the dipole case. This fact, and the
behaviour of L(r) in general, implies that the angular momentum of the membrane is greater
at larger r or, rather, that the membrane size increases with increasing angular momentum.
The membrane must fit in S4 and so it cannot be bigger than R.

This cut-off on the angular momentum is the stringy exclusion principle. Some states that
we would expect are missing due to this upper bound placed on the momentum. Since there is
a largest momentum, there is also a smallest distance such that we can no longer resolve points
on the sphere.

For the energy, we get

E = φ̇L− L =

√(
Nr2

R3

)2

+
(L−Nr3/R3)2

R2 − r2
(2.5.3.44)
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We can examine what happens to the energy as r → R and at L = N . The second term inside
the square root is an indeterminate form in this limit but we see the r3 term in the numerator
increases to R more rapidly then the quadratic r2 in the denominator. So the numerator tends
to zero faster than the denominator and that whole term is zero in the above limit. This leaves
us with

E|r=R =
N

R
(2.5.3.45)

This is in agreement with the energy of a Kaluza-Klein graviton with angular momentum L.
We also note that the Kaluza-Klein graviton has a maximum angular momentum in accordance
with the stringy exclusion principle.11

The extension to AdS5 × S5 follows quite similarly and the angular momentum in this case
is given by

L =
mφ̇(R2 − r2)√
1− φ̇2(R2 − r2)

+N
r4

R4
(2.5.3.46)

where m = TΩ3r
3. The behaviour of this function is in complete agreement with the previous

case, with angular momentum increasing the size of our graviton to the maximum value R.

11We have compactified on the sphere. Our single field in the full spacetime has reduced to many fields in the
reduced spacetime, without losing dependence on the quantum numbers of the full space. This is Kaluza-Klein
reduction.
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2.6 Supergravity

The research presented in this PhD studies the large N limit in non-planar settings. We saw
in Section 2.3.1 that quantum fluctuations for matrix theories go like 1

N2 and these are dual to
~ corrections in the quantum gravity. When N is large, the fluctuations are suppressed so that
the large N limit of N = 4 SYM is dual to classical type IIB string theory on an AdS5 × S5

background. Recall that the ’t Hooft coupling is λ = g2
YMN . This is related to the string

coupling

λ = gsN =
1

4π

(
R

ls

)4

so that strong coupling in the field theory at large N means weak coupling for the string. The
second equality tells us that for weak coupling in the string theory, the radius of curvature of
the bulk space is much larger than the string length. This means the string is not sensitive to
the curvature of the space i.e.: spacetime looks flat. This twofold simplification of the string
theory in this limit is known as the low energy limit of the gravity and open and closed strings
decouple from each other in this limit.

In the following sections we describe supergravity in general using supersymmetry as a starting
point, instead of starting with the string theory, to illuminate how gravity naturally arises in
these settings. We show how studying the low energy theory motivated by the AdS/CFT cor-
respondence leads us to the 1

2
-BPS states. We then go on to talk about the LLM geometries,

which are a specific supergravity solution that maps the 1
2
-BPS states of a single matrix model

to the supergravity solution. This mapping is used in Chapter 4 and motivates the study in
Chapter 3.

2.6.1 Basics of Supersymmetry and Gravity

String theory does not have the non-renormalisation issues that quantising classical gravity
has. SUGRA, a supersymmetric theory of gravity, has some of the UV divergences cancelled
by supersymmetry. Since SUGRA is a low energy theory of strings, we can think of it as an
effective string theory.

Gravity is a local theory. What this means is that at each point in spacetime the curvature may
vary. This is because heavy objects curve the spacetime, and so the curvature must depend on
where these objects are. We know, also, that local symmetries are gauge symmetries. Global
symmetries and local symmetries differ by how the transformation is implemented. A global
transformation is implemented the same way at every point in the spacetime, whereas a local
symmetry is implemented depending on the spacetime point. Global symmetries correspond to
conservation laws (Noether’s theorem). These symmetry transformations map solutions to the
equations of motion of the theory into another solution: the action changes by a surface term
which leaves the equations of motion invariant. These are important for physics to make sense:
the actual laws of physics do not change under translations or rotations. They are symmetries
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of the laws of nature.

What about local gauge symmetries? These are not symmetries at all. They do not change
the state of the system i.e.: they do not map solutions of the equations of motion into other
solutions of the equations of motion. It is a statement about the redundancy of our description:
we capture the same physical state many times. Electromagnetism has the gauge symmetry

Aµ → Aµ + ∂µχ (2.6.1.1)

This transformation does not change the electric and magnetic fields.

~E = −~∇φ− ∂t ~A → −~∇(φ+ ∂tχ)− ∂t( ~A− ~∇χ)

= −~∇φ− ∂t ~A− ~∇∂tχ+ ∂t~∇χ
= ~E

~B = ~∇× ~A → ~∇× ( ~A− ~∇χ)

= ~∇× ~A

= ~B

One might wonder at this point why gauge symmetry is there at all. It is a redundant de-
scription. However, gauge symmetry plays an important role in rectifying the tension between
special relativity and quantum mechanics that comes about when one tries to quantise classical
electromagnetism. When one quantises using canonical quantisation, a mode expansion of the
field (Aµ(x) for electromagnetism) is performed.

Aµ(x) =

∫
d3k

(2π)32ω~k
(e−ik·xαµ(k) + eik·xα†µ(k)) (2.6.1.2)

This gives the creation and annihilation operators which are specified with a commutator.

[αµ(k), α†ν(p)] = ±(2π)32ωkδ(~k − ~p)ηµν (2.6.1.3)

Lorentz invariance forces the appearance of the metric. But the metric has at least one negative
component. This means we can build states (using the creation operator) that will have nega-
tive norm. This ruins quantum mechanics. If we want all states to have positive norm then we
must replace ηµν with δµν which is not invariant under a Lorentz transformation. So we must
choose between quantum mechanics and special relativity. Nature is undoubtedly Lorentz in-
variant, so instead we must try to reason how we can get rid of these states with negative norm.

Gauge invariance means that the same physical state can be represented by a (gauge) trans-
formation. We don’t have a new physical state, just a redundant fluctuation. At the quantum
level, certain states are not physical. These are the states with negative norm. It appears that
gauge invariance is making a statement about these fields. There are a number of approaches
we can take when quantising a theory with a local symmetry. For the case of electromagnetism
we learn that only the transverse modes of Aµ are non-zero. This is precisely why we observe
photons to have only transverse (2) polarisations. By appropriate gauge fixing, we pick out
the physical states (with positive norm). So gauge invariance is extremely important when we
quantise as it allows us to remove the unphysical (negative norm) states from our theory. If we
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want to make a global symmetry local, we need to define a covariant derivative, which is the
usual derivative plus a term containing the gauge field (∂µ − iAµ), so that our action will be
invariant under the transformation. We also promote the field to be dynamical (respecting the
gauge symmetry) to get a consistent theory.

We can think of gravity as being a gauge theory. We have a metric, gµν(x), which tells us
how to measure lengths in the space we are working in. The line element

ds2 = gµν(x)dxµdxν (2.6.1.4)

is Lorentz invariant. It is physical. We know physics is coordinate invariant, and so the line
element must also be invariant under a coordinate transformation. This means that

ds2 = gµν(x)dxµdxν = ds′2 = g′µν(x
′)dx′µdx′ν (2.6.1.5)

so that the metric changes under a coordinate transformation. Thus, different metrics can de-
scribe the same space. This is hinting towards the fact that we have a redundant description.
By changing the metric via a coordinate transformation, we have not moved to a new space.
Locally, we can always make a coordinate transformation to Minkowski space (gµν → ηµν) so
the metric is not a good indication of curvature around a point. In curved spaces, we replace
the usual derivative with the covariant derivative. This is defined in terms of the Christoffel
symbols: ∂µgρσ − Γνρµgνσ − Γνσµgνρ. Comparing this with the gauge theory case, it is clear that
the Christoffel symbols are playing the role of the gauge field. These symbols are not unique
and can locally be put to zero by an appropriate coordinate transformation. This has to be the
case by the equivalence principle.

When we make a global transformation local, the covariant derivative must be used in or-
der to leave the action invariant under the transformation. The Christoffel symbols appear
above because, in a curved space, we cannot follow Euclidean geometry intuition in adding
or translating vectors and we need to account for the change in coordinate basis around each
point. We can think about the covariant derivative acting on different fields, which will bring
us back to local transformations.

We know the line element is a Lorentz scalar, so it is invariant under a global Lorentz trans-
formation. What happens when we make this transformation local? We can always transform
locally to flat space. We can rewrite the metric as

gµν(x) = εaµ(x)εbν(x)ηab (2.6.1.6)

Here flat space indices, a and b, are contracted so that locally we have a Lorentz scalar. The
new vector we have introduced is called the vielbein. It looks like we have performed a change
of coordinates

dξa =
∂ξa

∂xµ
dxµ ≡ εaµ(x)dxµ

dxµ =
∂xµ

∂ξa
dξa ≡ εµa(x)dξa (2.6.1.7)
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however we cannot go from a curved space to Minkowski space by changing coordinates. There
is no way to integrate this so that it makes sense globally. Studying the above equations, we
note

ds′2 = ηabdξ
adξb = ηabε

a
µ(x)εbν(x)dxµdxν = gµν(x)dxµdxν = ds2 (2.6.1.8)

From (2.6.1.7) we also see that

εaµε
µ
b = δab εaµε

ν
a = gνµ (2.6.1.9)

To ensure we have local Lorentz invariance under an arbitrary choice of vielbein, we must
introduce a gauge field (as usual) to define the covariant derivative [9]. The gauge field for the
Lorentz group is called the spin connection. For a Lorentz transformation, the transformation
parameter is ωab which contracts with the Lorentz generator Mab. Gauge fields have an extra
index µ (recall that the gauge field for the scalar field is Aµ). Thus the gauge field we must
introduce is (ωµ)ab. For translations, the parameter is εa which contracts with the generator
of translations Pa so that the gauge field for translations is (εµ)a which is the vielbein. For a
vector in curved space, the covariant derivative would look like

DµV
α = ∂µV

α + ΓαµνV
ν (2.6.1.10)

where the Christoffel symbol is the usual gravity gauge field and V α is an arbitrary vector.
We want local Lorentz invariance (in the space labelled by lower case Roman letters) so the
vectors/ tensors the covariant derivative will act upon will have free indices in the flat frame
indices. We can use the vielbein to transform a vector in the curved space, V ν , to a vector in
the flat space, εaνV

ν . Recall that the spin connection is a gauge field so that

Dµ(εaνV
ν) = ∂µ(εaνV

ν) + (ωµ)ab (ε
b
νV

ν) (2.6.1.11)

In order to obtain a consistent form of the covariant derivative, we must satisfy

Dµ(εaνV
ν) = εaνDµV

ν (2.6.1.12)

so that the covariant derivative of the vielbein is zero (by the product rule). Since the vielbein
has two indices, we need a gauge field (connection term) for each index. We have used the
spin connection to transform the flat space indices, and the Christoffel symbol, as usual, will
be used for the curved space index. Then

Dµε
a
ν = ∂µε

a
ν − Γαµνε

a
α + ωaµbε

b
ν (2.6.1.13)

The minus sign in front of the Christoffel symbol appears because the derivative is acting on
the dual vector. By requiring that the above equation is zero, we can actually solve for the spin
connection in terms of the vielbein. We use a metric compatible covariant derivative so that
Dαgµν = 0 =⇒ Dαε

a
µ = 0.

Dµε
a
ν(x) = 0

=⇒ ωacµ = εaαΓαµνε
νc − ενc∂µεaν

=
εaα
2

[
εαb∂νεbµ + εαa ε

aσεbµ∂νε
b
σ + εαb∂µεbν + εαa ε

aσεbν∂µε
b
σ − εαa εaσεbµ∂σεbν − εαa εaσεbν∂σεbµ

]
ενc

− ενc∂µεaν

=
1

2

[
ενc(∂νε

a
µ − ∂µεaν) + εaσ(∂µε

c
σ − ∂σεcµ) + εaσενc(∂νε

b
σ − ∂σεbν)εbµ

]
(2.6.1.14)
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The covariant derivative acting on a spinor looks a little different, and that is because we need
to contract the free flat indices with the generator of Lorentz transformations for spinors. This
is 1

2
Sab = 1

4
[γa, γb]. Then

Dµ(ψ) = ∂µψ +
1

4
ωabµ Sabψ (2.6.1.15)

We have seen how to go from a global to a local Lorentz symmetry. We can do something
similar for supersymmetry, First, we will recap a few things about supersymmetry.

We are comfortable defining our theory by the Lie algebra of our generators. In supersym-
metry, the generators close a graded Lie algebra: some of the usual commutation relations are
replaced by the anticommutator brackets. This change is necessary to generalise the Poincaré
symmetry (Lorentz and translations) of spacetime. The Coleman-Mandula theorem forbade
this generalisation on the assumption the generators will close the usual Lie algebra (not the
graded Lie algebra). The generators of the supersymmetry algebra are Qi

α, and the commutator
between them, {Qi

α, Q
j
β}, will give the other generators (Mab for Lorentz, Pa for translations

and Tr for internal symmetries). Since we have an anticommutator, it is natural to identify
these new generators with spinors, with α a spinor index and i labelling the generator. We say
these Qi

α are odd, and the other generators are even. Then the algebra is an anti-commutation
relation for the odd generators and the usual commutator for any other combination of gen-
erators. We know that an odd number times an odd number will give us an even number, so
{Qi

α, Q
j
β} will give us an even generator. Following that logic, only commutator of this type

[Pa, Q
i
α], [Mab, Q

i
α] and [Tr, Q

i
α] will give us back the supersymmetry generators.

Since [Mab, Q
i
α] 6= 0, supersymmetry generators are in a representative of the Lorentz group. A

boson field multiplied with a spinor field gives a spinor field. So the supersymmetry generators
transform bosons into fermions (spinors) and vice versa, which is where the even-odd grading
comes from. For example, consider two supersymmetry (SUSY) transformations. B denotes
a boson field and F denotes a fermion field. Indices are not displayed for simplicity but ε
represents the SUSY transformation εiα.

δ1B = ε̄1F δ2 = ε2∂B (2.6.1.16)

The derivative appears for dimensional correctness. In mass units, [B] = 1, [F ] = 3
2

and [∂] = 1.
The above then gives us that [ε] = −1

2
. This then tells us that

[δ1, δ2] ∝ ∂µB (2.6.1.17)

Thus
{Q, Q̄} ∝ Pµ (2.6.1.18)

If we make our transformations local and in particular the translation generator, Pµ, local then
we have coordinate invariance: any local translation is a symmetry of the theory. But coordi-
nate invariance is a property of general relativity, so this local SUSY means we have included
gravity so that local SUSY is supergravity. By studying the symmetry locally, we must auto-
matically include gravity.

We can implement this local SUSY transformation explicitly as follows. The parameter of
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the infinitesimal global supersymmetry transformation is εiα. It is a spinor. If we make the
transformation local, then we will have to introduce a gauge field and define a covariant deriva-
tive. The gauge field must carry a spinor index, since we are dealing with spinors, and also a
Lorentz index for the curved space. This gauge field is denoted by ψµα (α is the spinor index)
and is called the gravitino, since we are dealing with gravity.

Fermions and bosons are related by supersymmetry. We can ask what a supersymmetry trans-
formation does to the gravitino. Since we have a local theory (gravity) then we must match
the gravitino to the fields we previously considered when studying local Lorentz invariance in
a curved space. The vielbein has one curved index and so it emerges as the correct candidate.
Thus we have

δψµα =
1

k
∂µεα (2.6.1.19)

where k appears to get the correct dimensions. To make a gauge theory of supersymmetry, we
need a covariant derivative and we need to promote the gravitino to a dynamical field. Consider
the following Lagrangian

L = −(∂µφ∗)(∂µφ)− 1

2
ψ̄γµ∂µψ (2.6.1.20)

This is invariant under a global SUSY transformation with the fields transforming as

δφ = εψ δψ = −iσµε̄∂µφ (2.6.1.21)

If we promote the transformation parameter ε to ε(x), then the Lagrangian is not invariant
under the local transformation. Using the covariant derivative and adding the dynamical term
for the gravitino, −k(∂µφ

∗ψα + 1
2
ψβ(σµσ̄

ν)αβ∂νφ
∗)ψµα, we find that [10]

δL′ = ikψ̄µγνεψ̄γ
µ∂νψ (2.6.1.22)

where
iψ̄γµ∂νψ = T µν (2.6.1.23)

which is the energy momentum tensor. So we need to add one more term to get an invariant
action. This term is −gµνT µν with the metric transforming as δgµν = kψ̄µγνε. The fact that
the metric transforms tells us this is a theory of gravity. Thus we have explicitly shown that a
locally supersymmetric theory must include gravity and we call this theory supergravity.

2.6.2 Supergravity and the Duality

Recall that in string theory, closed and open strings are the fundamental objects. Open strings
have endpoints on objects called D-branes, while closed strings are independent of the branes.
A D-brane generalises the concept of a point particle to higher dimensions. A D0 brane is a
point particle, a D1 brane looks like a line (i.e.: a string), a D2 brane12 looks like a 2 dimen-
sional object (i.e.: a membrane) and so forth.

12D3 branes feature in Type IIB string theory and will play an important role in what follows.
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The low energy effective action of a closed string describes gravitons. For the open string,
the action describes a spin 1 gauge theory. If we think about how this relates to our D-branes,
then we see that the theory that describes the physics on the brane is a gauge theory. We can
turn questions we have about these branes into questions about strings. For example, if we
want to know how two branes interact then we can consider a string exchanged between the two
branes. We might wonder if the brane has mass. Then we can think about a string interacting
with the brane. This must be a gravitational interaction – the strength of which we can relate
to mass. In this way, any question we have about the D-brane can be phrased as a question
about strings and answered using string theory. In order to do brane physics, we do not need
to add new degrees of freedom.

In the supergravity, we have objects called p-branes, where p is the dimension of the object.
They are like black holes but they are infinitely long cylinders or planes or hyperplanes with a
horizon. The event horizon in a spacetime is where the metric component g00 is zero. So while
an observer will measure time passing, the proper time is frozen (g00(dx0)2 = dτ 2). A 3-brane
is a 3 dimensional object surrounded by a horizon.

In the low energy theory (supergravity), we have small momenta and therefore long wave-
lengths. Rayleigh’s criterion places a limit on the resolution ability of any imaging process to
be on the order of the wavelength of the wave used to measure it. This is best understood in
the case of single slit diffraction. Diffraction imposes a limit on our ability to resolve images.
The defining equation for the first minimum in a diffraction pattern is given by

sin θm =
λ

a0

where λ is the wavelength of the source and a0 is the size of the aperture. This equation tells
us that we will see a diffraction pattern when λ < a0 and that when λ = a0 the first minimum
is at π

2
. This tells us that, for long wavelength waves, the wave is spread out so much that we

cannot resolve maxima and minima and so we cannot say where the source of the wave is.

Thus the long wavelengths in the supergravity mean that the supergravity modes don’t see
the modes on the D-brane and so the branes do not interact with the closed strings. The low
energy Lagrangian density is thus split into a gravitational part on M10 and a gauge theory
part (Supersymmetric Yang-Mills), with no interactions mixing them.

The same can be said about interactions in the p-brane description at low-energy. However, the
geometry in this description is not flat. Far away from the p-branes, the space looks flat and
we have supergravity on M10. Near to the p-branes, the gravitational potential is a deep well
(it looks like an attractive force) and so the energies of our string modes are red-shifted. This
means that all the modes are at a low energy, so we have to retain a complete description of
the string – not just the supergravity modes. The Lagrangian density is thus split into gravity
on M10 and into type IIB strings on AdS5 × S5.

If D-branes are the same as p-branes then the above two descriptions must agree (we iden-
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tify 10d supergavity in both descriptions) and

LN=4SYM
≡ LIIB strings

AdS5×S5 (2.6.2.1)

This claims an equivalence between N = 4 SYM and a string theory on AdS5 × S5. The left
hand side is a flat space theory of particles. It has the gauge group U(N). The right hand side
is a string theory in higher dimensions, so it has many more degrees of freedom arising from
these extra dimensions. We can try to build a dictionary that maps quantities in either theory
to each other. In particular, we are interested in finding the low energy limit of the field theory
which is equivalent to supergravity: the low energy limit of string theory.

When we study the field theory at large (’t Hooft) coupling, then the curvature is small on
the string side13. It is difficult to study a theory with strong coupling because we cannot study
it perturbatively. The beauty of supersymmetry is that it protects some quantities from correc-
tions. This means we can study them at weak coupling and assume that they will remain the
same at strong coupling. These are the BPS states whose conformal dimensions is equal to their
R charge. To be in the 1

2
-BPS sector means that half of the supersymmetries are preserved

and it is the most amount of supersymmetry we have after the vacuum. These 1
2
-BPS states

are supergravity states.

13g2YMN = λ = R4

l4s
where λ is the ’t Hooft coupling, R is the radius of AdS5 and ls is the string length.
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3 Eigenvalue Dynamics for Multimatrix Models

This chapter is based on the work presented in [11]. Motivated primarily by the work done
in [12], we attempt to extend a supergravity interpretation of eigenvalue dynamics in the two
matrix sector of the field theory. We perform explicit computations for operators belonging
to the SU(2) sector and match them with correlators computed with our proposed eigenvalue
prescription. We recover the supergravity boundary condition by showing the eigenvalues con-
dense on the surface that defines a wall between two boundary conditions.

3.1 Introduction

The large N expansion continues to be a promising approach towards the strong coupling
dynamics of quantum field theories. For example, ’t Hooft’s proposal that the large N ex-
pansions of Yang-Mills theories are equivalent to the usual perturbation expansion in terms
of topologies of worldsheets in string theory[5] has been realized concretely in the AdS/CFT
correspondence[4]. Besides the usual planar limit where classical operator dimensions are held
fixed as we takeN →∞, there are non-planar largeN limits of the theory [13] defined by consid-
ering operators with a bare dimension that is allowed to scale with N as we take N →∞. These
limits are also relevant for the AdS/CFT correspondence. Indeed, operators with a dimension
that scales as N include operators relevant for the description of giant graviton branes[8, 14, 15]
while operators with a dimension of order N2 include operators that correspond to new geome-
tries in supergravity[12, 7, 16]. Despite these convincing motivations carrying out the large N
expansion for most matrix models is still beyond our current capabilities.

One class of models for which the large N expansion can be computed are the singlet sector of
matrix quantum mechanics of a single hermitian matrix[17]. We can also consider a complex
matrix model as long as we restrict ourselves to potentials that are analytic in Z (summed with
the dagger of this which needs to be added to get a real potential) and observables constructed
out of traces of a product of Zs or out of a product of Z†s[18]. In these situations we can
reduce the problem to eigenvalue dynamics. This is a huge reduction in degrees of freedom
since we have reduced from O(N2) degrees of freedom, associated to the matrix itself, to O(N)
eigenvalue degrees of freedom. Studying saddle points of the original matrix action does not
reproduce the large N values of observables. This is a consequence of the large number of
degrees of freedom: we expect fluctuations to be suppressed by 1/N2 so that if N2 variables
in total are fluctuating, then we can have fluctuations of size 1/N2 × N2 ∼ 1 which are not
suppressed as N → ∞. In terms of eigenvalues there are only N variables fluctuating so that
fluctuations are bounded by N × 1/N2 ∼ 1/N which vanishes as N → ∞. Thus, classical
eigenvalue dynamics captures the large N limit. For example, one can formulate the physics of
the planar limit by using the density of eigenvalues as a dynamical variable. The resulting col-
lective field theory defines a field theory that explicitly has 1/N as a coupling constant[19, 20].
It has found both application in the context of the c = 1 string[21, 22, 23] and in descriptions
of the LLM geometries[24].
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Standard arguments show that eigenvalue dynamics corresponds to a familiar system: non-
interacting fermions in an external potential[17]. This makes the description extremely conve-
nient because the fermion dynamics is rather simple. This eigenvalue dynamics is also a very
natural description of the large N but non-planar limits discussed above. Giant graviton branes
which have expanded into the AdS5 of the spacetime correspond to highly excited fermions or,
equivalently, to single highly excited eigenvalues: the giant graviton is an eigenvalue[14, 16].
Giant graviton branes which have expanded into the S5 of the spacetime correspond to holes in
the Fermi sea, and hence to collective excitations of the eigenvalues where many eigenvalues are
excited[16]. Half-BPS geometries also have a natural interpretation in terms of the eigenvalue
dynamics: every fermion state can be identified with a particular supergravity geometry[7, 16].
The map between the two descriptions was discovered by Lin, Lunin and Maldacena in [12].
The fermion state can be specified by stating which states in phase space are occupied by a
fermion, so we can divide phase space up into occupied and unoccupied states. By requiring
regularity of the corresponding supergravity solution exactly the same structure arises: the
complete set of regular solutions are specified by boundary conditions obtained by dividing a
certain plane into black (identified with occupied states in the fermion phase space) and white
(unoccupied states) regions. See [12] for the details.

Our main goal in this chapter is to ask if a similar eigenvalue description can be constructed
for a two matrix model. Further, if such a construction exists, does it have a natural AdS/CFT
interpretation? Work with a similar motivation but focusing on a different set of questions
has appeared in[25, 26, 27, 28, 29]. We will consider the dynamics of two complex matrices,
corresponding to the SU(2) sector of N = 4 super Yang-Mills theory. Further we consider the
theory on R× S3 and expand all fields in spherical harmonics of the S3. We will consider only
the lowest s-wave components of these expansions so that the matrices are constant on the
S3. The reduction to the s-wave will be motivated below. In this way we find a matrix model
quantum mechanics of two complex matrices. Expectation values are computed as follows

〈· · · 〉 =

∫
[dZdZ†dY dY †]e−S · · · (3.1.1)

At first sight it appears that any attempts to reduce (3.1.1) to an eigenvalue description are
doomed to fail: the integral in (3.1.1) runs over two independent complex matrices Z and Y
which will almost never be simultaneously diagonalizable. However, perhaps there is a class of
questions, generalizing the singlet sector of a single hermitian matrix model, that can be studied
using eigenvalue dynamics. To explore this possibility, let’s review the arguments that lead to
eigenvalue dynamics for a single complex matrix Z. We can use the Schur decomposition[18,
30, 31],

Z = U †DU (3.1.2)

with U a unitary matrix and D is an upper triangular matrix, to explicitly change variables.
Since we only consider observables that depend on the eigenvalues (the diagonal elements of
D) we can integrate U and the off diagonal elements of D out of the model, leaving only the
eigenvalues. The result of the integrations over U and the off diagonal elements of D is a
non trivial Jacobian. Denoting the eigenvalues of Z by zi, those of Z† are given by complex
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conjugation, z̄i. The resulting Jacobian is[18]

J = ∆(z)∆(z̄) (3.1.3)

where

∆(z) =

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
z1 z2 · · · zN
...

...
...

...
...

...
zN−1

1 zN−1
2 · · · zN−1

N

∣∣∣∣∣∣∣∣∣
=

N∏
j>k

(zj − zk) (3.1.4)

is the usual Van der Monde determinant. A standard argument now maps this into non-
interacting fermion dynamics[17]. Trying to apply a very direct change of variables argument
to the two matrix model problem appears difficult. There is however an approach which both
agrees with the above non-interacting fermion dynamics and can be generalized to the two
matrix model. The idea is to construct a basis of operators that diagonalizes the inner product
of the free theory. The construction of an orthogonal basis, given by the Schur polynomials, was
achieved in [7]. Each Schur polynomial χR(Z) is labelled by a Young diagram R with no more
than N rows. In [7] the exact (to all order in 1/N) two point function of Schur polynomials
was constructed. The result is

〈χR(Z)χS(Z†)〉 = fRδRS (3.1.5)

where all spacetime dependence in the correlator has been suppressed. This dependence is
trivial as it is completely determined by conformal invariance. The notation fR denotes the
product of the factors of Young diagram R. Remarkably there is an immediate and direct
connection to non-interacting fermions: the fermion wave function can be written as

ψR({zi, z̄i}) = χR(Z)∆(z)e−
1
2

∑
i ziz̄i (3.1.6)

This relation can be understood as a combination of the state operator correspondence (we
associate a Schur polynomial operator on R4 to a wave function on R× S3) and the reduction
to eigenvalues (which is responsible for the ∆(z) factor)[16]. In this map the number of boxes
in each row of R determines the amount by which each fermion is excited. In this way, each
row in the Young diagram corresponds to a fermion and hence to an eigenvalue. Having one
very long row corresponds to exciting a single fermion by a large amount, which corresponds to
a single large (highly excited) eigenvalue. In the dual AdS gravity, a single long row is a giant
graviton brane that has expanded in the AdS5 space. Having one very long column corresponds
to exciting many fermions by a single quantum, which corresponds to many eigenvalues excited
by a small amount. In the dual AdS gravity, a single long column is a giant graviton brane
that has expanded in the S5 space.

The first questions we should tackle when approaching the two matrix problem should in-
volve operators built using many Z fields and only a few Y fields. In this case at least a rough
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Figure 9: An example of a graph labeling an operator with a definite scaling dimension. Each
node corresponds to an eigenvalue. Edges connect the different nodes so that the eigenvalues
are interacting.

outline of the one matrix physics should be visible, and experience with the one matrix model
will prove to be valuable.
For the case of two matrices we can again construct a basis of operators that again diagonalizes
the free field two point function. These operators χR,(r,s)ab(Z, Y ) are a generalization of the
Schur polynomials, called restricted Schur polynomials[32, 33, 34]. They are labelled by three
Young diagrams (R, r, s) and two multiplicity labels (a, b). For an operator constructed using
n Zs and m Y s, R ` n + m, r ` n and s ` m. The multiplicity labels distinguish between
different copies of the (r, s) irreducible representation of Sn × Sm that arise when we restrict
the irreducible representation R of Sn+m to the Sn × Sm subgroup. The two point function is

〈χR,(r,s)ab(Z, Y )χT,(t,u)cd(Z
†, Y †)〉 = fR

hooksR
hooksrhookss

δRT δrtδsuδacδbd (3.1.7)

where fR was defined after (3.1.5) and hooksa denotes the product of the hook lengths associated
to Young diagram a. These operators do not have a definite dimension. However, they only
mix weakly under the action of the dilatation operator and they form a convenient basis in
which to study the spectrum of anomalous dimensions[35]. This action has been diagonalized
in a limit in which R has order 1 rows (or columns), m� n and n is of order N . Operators of
a definite dimension are labelled by graphs composed of nodes that are traversed by oriented
edges[36, 37]. There is one node for each row, so that each node corresponds to an eigenvalue.
The directed edges start and end on the nodes. There is one edge for each Y field and the
number of oriented edges ending on a node must equal the number of oriented edges emanating
from a node. See figure 1 for an example of a graph labeling an operator. This picture,
derived in the Yang-Mills theory, has an immediate and compelling interpretation in the dual
gravity: each node corresponds to a giant graviton brane and the directed edges are open string
excitations of these branes. The constraint that the number of edges ending on a node equals
the number of edges emanating from the node is simply encoding the Gauss law on the brane
world volume, which is topologically an S3. For this reason the graphs labeling the operators
are called Gauss graphs. If we are to obtain a system of non-interacting eigenvalues, we should
only consider Gauss graphs that have no directed edges stretching between nodes. See figure
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2 for an example. In fact, these all correspond to BPS operators. We thus arrive at a very
concrete proposal:

Figure 10: An example of a graph labeling a BPS operator. Each node corresponds to an
eigenvalue. There are no edges connecting the different nodes so that these eigenvalues are not
interacting.

If there is a free fermion description arising from the eigenvalue dynamics of the
two matrix model, it will describe the BPS operators of the SU(2) sector.

The BPS operators are associated to supergravity solutions of string theory. Indeed, the only
one-particle states saturating the BPS bound in gravity are associated to massless particles and
lie in the supergravity multiplet. Thus, eigenvalue dynamics will reproduce the supergravity
dynamics of the gravity dual.

The BPS operators are all constructed from the s-wave of the spherical harmonic expansion on
S3[16]. This is our motivation for only considering operators constructed using the s-wave of
the fields Y and Z. One further comment is that it is usually not consistent to simply restrict
to a subset of the dynamical degrees of freedom. Indeed, this is only possible if the subset of
degrees of freedom dynamically decouples from the rest of the theory. In the case that we are
considering this is guaranteed to be the case, in the large N limit, because the Chan-Paton
indices of the directed edges are frozen at large N [36].

We should mention that eigenvalue dynamics as dual to supergravity has also been advocated
by Berenstein and his collaborators[38, 39, 40, 41, 42, 43, 44]. See also [45, 46, 47, 48] for related
studies. Using a combination of numerical and physical arguments, which are rather different
to the route we have followed, compelling evidence for this proposal has already been found.
The basic idea is that at strong coupling the commutator squared term in the action forces the
Higgs fields to commute and hence, at strong coupling, the Higgs fields of the theory should be
simultaneously diagonalizable. In this case, an eigenvalue description is possible. Notice that
our argument is a weak coupling argument, based on diagonalization of the one loop dilatation
operator, that comes to precisely the same conclusion. In this chapter we will make some exact
analytic statements that agree with and, in our opinion, refine some of the physical picture of
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the above studies. For example, we will start to make precise statements about what eigenvalue
dynamics does and does not correctly reproduce.

3.2 AdS5 × S5 Background

To motivate our proposal for eigenvalue dynamics, we will review the 1
2
-BPS sector stressing

the logic that we will subsequently use. The way in which a direct change of variables is used to
derive the eigenvalue dynamics can be motivated by considering a correlation function of some
arbitrary observables · · · that are functions only of the eigenvalues. Because we are considering
BPS operators, correlators computed in the free field theory agree with the same computations
at strong coupling[49], so that we now work in the free field theory. Performing the change of
variables we find

〈· · · 〉 =

∫
[dZdZ†]e−TrZZ† · · ·

=

∫ N∏
i=1

dzidz̄ie
−
∑
k zz z̄k∆(z)∆(z̄) · · ·

=

∫ N∏
i=1

dzidz̄i|ψgs({zi, z̄i})|2 · · ·

where the groundstate wave function is given by

ψgs({zi, z̄i}) = ∆(z)e−
1
2

∑
i ziz̄i (3.2.1)

We will shortly qualify the adjective “groundstate”. Under the state-operator correspondence,
this wave function is the state corresponding to the identity operator. The above transformation
is equivalent to the identification

[dZ]e−
1
2

Tr(ZZ†) ↔ c
N∏
i=1

dzi ψgs({zi, z̄i}) (3.2.2)

where c is a constant that arises from integrating over U,U † and the off diagonal elements of
D in (3.1.2). The role of each of the elements of the wave function is now clear:

1. Under the state operator correspondence, dimensions of operators map to energies of
states. The dimensions of BPS operators are not corrected, i.e. they take their free field
values. This implies an evenly spaced spectrum and hence a harmonic oscillator wave
function. This explains the e−

1
2

∑
i ziz̄i factor. It also suggests that the wavefunction will

be a polynomial times this Gaussian factor.

2. There is a gauge symmetry Z → UZU † that is able to permute the eigenvalues. Conse-
quently we are discussing identical particles. Two matrices drawn at random from the
complex Gaussian ensemble will not have degenerate eigenvalues, so we choose the parti-
cles to be fermions. This matches the fact that the wave function is a Slater determinant.
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3. Under the transformation Z → eiθZ, dZ transforms with charge N2. Since
∏

i dzi has
charge N , cψgs({zi, z̄i}) must have charge N(N − 1). The constant c is obtained by
integrating over the off diagonal elements of D in (3.1.2). Thus, c has charge 1

2
N(N − 1)

and ψgs({zi, z̄i}) itself has the same charge14.

4. If we assign the dimension
[
Z
]

= L it is clear that both ψgs({zi, z̄i}) and c must have
dimension 1

2
N(N − 1).

The wave function (3.2.1) satisfies these properties. Further, if we require that the wavefunc-

tion is a polynomial in the eigenvalues zi times the exponential e−
1
2

∑
i ziz̄i , then (3.2.1) is the

state of lowest energy (we did not write down a Hamiltonian, but any other wave function has
more nodes and hence a higher energy) so it deserves to be called the ground state. The wave
function (3.2.1) is the state corresponding to the AdS5×S5 spacetime in the 1

2
-BPS sector.

The above discussion can be generalized to write down a wave function corresponding to the
AdS5×S5 spacetime in the SU(2) sector. The equation (3.2.2) is generalized to

[dZdY ]e−
1
2

Tr(ZZ†)− 1
2

Tr(Y Y †) → c
N∏
i=1

dzidyi Ψgs({zi, z̄i, yi, ȳi}) (3.2.3)

where c is again a constant coming from integrating the non-eigenvalue variables out. The wave
function must obey the following properties:

1. Our wave functions again describe states that correspond to BPS operators. The di-
mensions of the BPS operators take their free field values, implying an evenly spaced
spectrum and hence a harmonic oscillator wave function. This suggests the wave function
is a polynomial times the Gaussian factor e−

1
2

∑
i ziz̄i−

1
2

∑
i yiȳi factor.

2. There is a gauge symmetry Z → UZU † and Y → UY U † that is able to permute the
eigenvalues. Consequently we are discussing N identical particles. Matrices drawn at
random will not have degenerate eigenvalues, so we choose the particles to be fermions.
Thus we expect the wave function is a Slater determinant.

3. Under the transformation Z → eiθZ and Y → Y the measure dZdY transforms with
charge N2. Since

∏
i dzidyi has charge N and c has charge 1

2
N(N − 1), the wave function

Ψgs({zi, z̄i, yi, ȳi}) must have charge 1
2
N(N − 1). Similarly, under the transformation

Z → Z and Y → eiθY the measure dZdY transforms with charge N2. Since
∏

i dzidyi
has charge N and again c has charge 1

2
N(N − 1), the wave function Ψgs({zi, z̄i, yi, ȳi})

should have charge 1
2
N(N − 1).

4. If we assign the dimension
[
Z
]

= L =
[
Y
]

it is clear that both Ψgs({zi, z̄i, yi, ȳi}) and c
must have dimension N(N − 1).

5. The probability density associated to a single particle ρgs(z1, z̄1, y1, ȳ1) must have an SO(4)
symmetry, i.e. it should be a function of |zi|2 + |yi|2.

14We are assuming that any non-trivial measure depends only on the eigenvalues. This is a guess and we do
not know a proof of this. We will make this assumption for the two matrix model as well.
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The single particle probability density referred to in point 5 above is given, for any state
Ψ({zi, z̄i, yi, ȳi}) as usual, by

ρ(z1, z̄1, y1, ȳ1) =

∫ N∏
i=2

dzidz̄idyidȳi|Ψ({zi, z̄i, yi, ȳi})|2 (3.2.4)

There is a good reason why the single particle probability density is an interesting quantity to
look at: at short distances the eigenvalues feel a repulsion from the Slater determinant, which
vanishes when two eigenvalues are equal. At long distances the confining harmonic oscillator
potential dominates, ensuring the eigenvalues are clumped together in some finite region and do
not wander off to infinity. In the end we expect that at large N the locus where the eigenvalues
lie defines a specific surface, generalizing the idea of a density of eigenvalues for the single ma-
trix model. This large N surface is captured by ρ(z1, z̄1, y1, ȳ1). We will make this connection
more explicit in a later section.

There appears to be a unique wave function singled out by the above requirements. It is
given by

Ψgs({zi, z̄i, yi, ȳi}) = N∆(z, y)e−
1
2

∑
k zz z̄k−

1
2

∑
k yz ȳk (3.2.5)

where

∆(z, y) =

∣∣∣∣∣∣∣∣∣∣∣

yN−1
1 yN−1

2 · · · yN−1
N

z1y
N−2
1 z2y

N−2
2 · · · zNy

N−2
N

...
...

...
...

...
...

zN−2
1 y1 zN−2

2 y2 · · · zN−2
N yN

zN−1
1 zN−1

2 · · · zN−1
N

∣∣∣∣∣∣∣∣∣∣∣
=

N∏
j>k

(zjyk − yjzk) (3.2.6)

generalizes the usual Van der Monde determinant and N is fixed by normalizing the wave
function. Normalizing the wave function in the state picture corresponds to choosing a normal-
ization in the original matrix model so that the expectation value of 1 is 1.

We can provide detailed tests of this wave function by using the equation∫
[dY dZdY †dZ†]e−Tr(ZZ†)−Tr(Y Y †) · · · =

∫ N∏
i=1

dzidz̄idyidȳi|Ψgs({zi, z̄i, yi, ȳi})|2 · · · (3.2.7)

to compute correlators of observables (denoted by · · · above) that depend only on the eigen-
values. We have already argued above that we expect that these observables are the BPS
operators of the CFT. As a first example, consider correlators of traces OJ = Tr(ZJ). These
can be computed exactly in the matrix model, using a variety of different techniques - see for
example [18, 50, 30]. The result is

〈Tr(ZJ)Tr(Z†J)〉 =
1

J + 1

[(J +N)!

(N − 1)!
− N !

(N − J − 1)!

]
(3.2.8)

61



Eigenvalue Dynamics for Multimatrix Models AdS5 × S5 Background

if J < N and

〈Tr(ZJ)Tr(Z†J)〉 =
1

J + 1

(J +N)!

(N − 1)!
(3.2.9)

if J ≥ N . These expressions could easily be expanded to generate the 1/N expansion if we
wanted to do that. We would now like to consider the eigenvalue computation. It is useful to
write the wave function as

Ψgs({zi, z̄i, yi, ȳi}) =
π−N√
N !
εa1a2···an z0

a1
yN−1
a1√

0!(N − 1)!
· · ·

zk−1
ak

yN−kak√
(k − 1)!(N − k)!

· · ·

· · ·
zN−1
aN

y0
aN√

(N − 1)!0!
e−

1
2

∑
q zq z̄q−

1
2

∑
q yq ȳq (3.2.10)

The gauge invariant observable in this case is given by

Tr(ZJ)Tr(Z†J) =
N∑
i=1

zi

N∑
j=1

z̄j (3.2.11)

It is now straightforward to find∫ N∏
i=1

dzidz̄idyidȳi|Ψ({zi, z̄i, yi, ȳi})|2
∑
i

zJi
∑
j

z̄Jj =
1

J + 1

(J +N)!

(N − 1)!
(3.2.12)

When evaluating the above integral, only the terms with i = j contribute. From this result we
see that we have not reproduced traces with J < N correctly - we don’t even get the leading
large N behavior right. We have, however, correctly reproduced the exact answer (to all orders
in 1/N) of the two point function for all single traces of dimension N or greater. For J > N
there are trace relations of the form

Tr(ZJ) =
∑
i,j,...,k

cij...kTr(Zi)Tr(Zj) · · ·Tr(Zk) (3.2.13)

i, j, ..., k ≤ N and i + j + · · · + k = J . The fact that we reproduce two point correlators of
traces with J > N exactly implies that we also start to reproduce sums of products of traces
of less than N fields. This suggests that the important thing is not the trace structure of the
operator, but rather the dimension of the state.

The fact that we only reproduce observables that have a large enough dimension is not too
surprising. Indeed, supergravity can’t be expected to correctly describe the back reaction of a
single graviton or a single string. To produce a state in the CFT dual to a geometry that is
different from the AdS vacuum one needs to allow a number of AdS giant gravitons (eigenval-
ues) to condense. The eigenvalue dynamics is correctly reproducing the two point function of
traces when their energy is greater than that required to blow up into an AdS giant graviton.

With a very simple extension of the above argument we can argue that we also correctly repro-
duce the correlator 〈Tr(Y J)Tr(Y †J)〉 with J ≥ N . A much more interesting class of observables
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to consider are mixed traces, which contain both Y and Z fields. To build BPS operators
using both Y and Z fields we need to construct symmetrized traces. A very convenient way to
perform this construction is as follows

OJ,K =
J !

(J +K)!
Tr

(
Y
∂

∂Z

)K
Tr(ZJ+K) (3.2.14)

The normalization up front is just the inverse of the number of terms that appear. With
this normalization, the translation between the matrix model observable and an eigenvalue
observable is

OJ,K ↔
∑
i

zJi y
K
i (3.2.15)

Since we could not find this computation in the literature, we will now explain how to evaluate
the matrix model two point function exactly, in the free field theory limit. Since the dimension of
BPS operators are not corrected, this answer is in fact exact. To start, perform the contraction
over the Y, Y † fields

〈OJ,KO†J,K〉 =

(
J !

(J +K)!

)2

〈Tr

(
Y
∂

∂Z

)K
Tr(ZJ+K)Tr

(
Y †

∂

∂Z†

)K
Tr(Z† J+K)〉

=

(
J !

(J +K)!

)2

K!〈Tr

(
∂

∂Z

∂

∂Z†

)K
Tr(ZJ+K)Tr(Z† J+K)〉 (3.2.16)

Given the form of the matrix model two point function

〈ZijZ†kl〉 = δilδjk (3.2.17)

we know that we can write any free field theory correlator as

〈· · · 〉 = eTr( ∂
∂Z

∂

∂Z† ) · · ·
∣∣∣
Z=Z†=0

(3.2.18)

Using this identity we now find

〈OJ,KO†J,K〉 =

(
J !

(J +K)!

)2

K!
(J +K)!

J !
〈Tr(ZJ+K)Tr(Z† J+K)〉 (3.2.19)

Thus, the result of the matrix model computation is

〈OJ,KO†J,K〉 =
J !K!

(J +K + 1)!

[
(J +K +N)!

(N − 1)!
− N !

(N − J −K − 1)!

]
(3.2.20)

if J +K < N and

〈OJ,KO†J,K〉 =
J !K!

(J +K + 1)!

(J +K +N)!

(N − 1)!
(3.2.21)

if J +K ≥ N . Notice that for these two matrix observables we again get a change in the form
of the correlator as the dimension of the trace passes N .
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Next, consider the eigenvalue computation. We need to perform the integral

〈OJ,KO†J,K〉 =

∫ N∏
i=1

dzidz̄idyidȳi|Ψgs({zi, z̄i, yi, ȳi})|2
N∑
k=1

zJk y
K
k

N∑
j=1

z̄Jj ȳ
K
j (3.2.22)

After some straightforward manipulations we have

〈OJ,KO†J,K〉 = π−2N

∫ N∏
i=1

dzidz̄idyidȳi
|z1|0|y1|2N−2

0!(N − 1)!
· · · |zk|

2k−2|yk|2N−2k

(k − 1)!(N − k)!
· · ·

|zN |2N−2|yN |0

(N − 1)!0!
× e−

∑
q zq z̄q−

∑
q yq ȳq

N∑
k,j=1

zJk y
K
k z̄

J
j ȳ

K
j (3.2.23)

Only terms with k = j contribute so that

〈OJ,KO†J,K〉 =
N∑
k=1

(N − k +K)!

(N − k)!

(J + k − 1)!

(k − 1)!
=

K!J !

(K + J + 1)!

(J +K +N)!

(N − 1)!
(3.2.24)

Thus, we again correctly reproduce the exact (to all orders in 1/N) answer for the two point
function of single trace operators of dimension N or greater.

It is also interesting to consider multi trace correlators. We will start with the correlator
between a double trace and a single trace and we will again start with the matrix model com-
putation

〈OJ1,K1OJ2,K2O
†
J1+J2,K1+K2

〉 =
J1!

(J1 +K1)!

J2!

(J2 +K2)!

(J1 + J2)!

(J1 +K1 + J2 +K2)!
×

〈Tr

(
Y
∂

∂Z

)K1

Tr(ZJ1+K1)Tr

(
Y
∂

∂Z

)K2

Tr(ZJ2+K2)Tr

(
Y †

∂

∂Z†

)K1+K2

Tr(Z†J1+K1J2+K2)〉

(3.2.25)

We could easily set K1 = K2 = 0 and obtain traces involving only a single matrix. Begin by
contracting all Y, Y † fields to obtain

〈OJ1,K1OJ2,K2O
†
J1+J2,K1+K2

〉 =
J1!

(J1 +K1)!

J2!

(J2 +K2)!

(J1 + J2)!

(J1 +K1 + J2 +K2)!
(K1 +K2)!×

〈 ∂

∂Zi1j1
· · · ∂

∂ZiK1
jK1

Tr(ZJ1+K1)
∂

∂ZiK1+1jK1+1

· · · ∂

∂ZiK1+K2
jK1+K2

Tr(ZJ2+K2)

∂

∂Z†j1i1
· · · ∂

∂Z†jK1+K2
iK1+K2

Tr(Z†J1+K1+J2+K2)〉

(3.2.26)

It is now useful to integrate by parts with respect to Z†, using the identity

〈 ∂

∂Zij
f(Z) g(Z)

∂

∂Z†ji
h(Z†)〉 = nf〈f(Z) g(Z)h(Z†)〉 (3.2.27)
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where f(Z) is of degree nf in Z. Repeatedly using this identity, we find

〈OJ1,K1OJ2,K2O
†
J1+J2,K1+K2

〉 =
J1!

(J1 +K1)!

J2!

(J2 +K2)!

(J1 + J2)!

(J1 +K1 + J2 +K2)!
(K1 +K2)!×

(J1 +K1)!

J1!

(J2 +K2)!

J2!
〈Tr(ZJ1+K1)Tr(ZJ2+K2)Tr(Z†J1+K1+J2+K2)〉

=
(J1 + J2)!(K1 +K2)!

(J1 +K1 + J2 +K2)!
〈Tr(ZJ1+K1)Tr(ZJ2+K2)Tr(Z†J1+K1+J2+K2)〉

(3.2.28)

This last correlator is easily computed. For example, if J1 +K1 < N and J2 +K2 < N we have

〈OJ1,K1OJ2,K2O
†
J1+J2,K1+K2

〉 =
(J1 + J2)!(K1 +K2)!

(J1 +K1 + J2 +K2 + 1)!

[(J1 +K1 + J2 +K2 +N)!

(N − 1)!

+
N !

(N − J1 −K1 − J2 −K2 − 1)!
− (N + J1 +K1)!

(N − J2 −K2 − 1)!

− (N + J2 +K2)!

(N − J1 −K1 − 1)!

]
(3.2.29)

and if J1 +K1 ≥ N and J2 +K2 ≥ N we have

〈OJ1,K1OJ2,K2O
†
J1+J2,K1+K2

〉 =
(J1 + J2)!(K1 +K2)!

(J1 +K1 + J2 +K2 + 1)!

(J1 +K1 + J2 +K2 +N)!

(N − 1)!
(3.2.30)

It is a simple exercise to check that, in terms of eigenvalues, we have

〈OJ1,K1OJ2,K2O
†
J1+J2,K1+K2

〉 =

∫ N∏
i=1

dzidz̄idyidȳi|Ψgs({zi, z̄i, yi, ȳi})|2

×
N∑
k=1

zJ1
k y

K1
k

N∑
l=1

zJ2
l y

K2
l

N∑
j=1

z̄J1+J2
j ȳK1+K2

j

=
(J1 + J2)!(K1 +K2)!

(J1 +K1 + J2 +K2 + 1)!

(J1 +K1 + J2 +K2 +N)!

(N − 1)!
(3.2.31)

so that once again we have reproduced the exact answer as long as the dimension of each trace
is not less than N . The agreement that we have observed for multi trace correlators continues
as follows: as long as the dimension of each trace is greater than N − 1 the matrix model and
the eigenvalue descriptions agree and both give

〈OJ1,K1OJ2,K2 · · ·OJn,KnO
†
J,K〉 =

J !K!

(J +K + 1)!

(J +K +N)!

(N − 1)!
δJ1+···+Jn,JδK1+···+Kn,K

(3.2.32)

for the exact value of this correlator. We have limited our selves to a single daggered observable
in the above expression for purely technical reasons: it is only in this case that we can compute
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the matrix model correlator using the identity (3.2.27). It would be interesting to develop
analytic methods that allow more general computations.

Finally, we can also test multi trace correlators with a dimension of order N2. A particu-
larly simple operator is the Schur polynomial labelled by a Young diagram R with N rows and
M columns. For this R we have

χR(Z) = (detZ)M = zM1 z
M
2 · · · zMN (3.2.33)

χR(Z†) = (detZ†)M = z̄M1 z̄
M
2 · · · z̄MN (3.2.34)

The dual LLM geometry is labelled by an annulus boundary condition that has an inner radius
of
√
M and an outer radius of

√
M +N . The two point correlator of this Schur polynomial is

〈χR(Z)χR(Z†)〉 =

∫ N∏
i=1

dzidz̄idyidȳiχR(Z)χR(Z†)|Ψgs({zi, z̄i, yi, ȳi})|2

= π−2N

∫ N∏
i=1

dzidz̄idyidȳi
|z1|0+2M |y1|2N−2

0!(N − 1)!
· · · |zk|

2k−2+2M |yk|2N−2k

(k − 1)!(N − k)!

× · · · |zN |
2N−2+2M |yN |0

(N − 1)!0!
× e−

∑
q zq z̄q−

∑
q yq ȳq

=
N∏
i=1

(i− 1 +M)!

(i− 1)!
(3.2.35)

which is again the exact answer for this correlator.

After this warm up example we will now make a few comments that are relevant for the
general case. The details are much more messy, so we will not manage to make very precise
statements. We have however included this discussion as it does provide a guide as to when
eigenvalue dynamics is applicable. A Schur polynomial labelled with a Young diagram R that
has row lengths ri is given in terms of eigenvalues as (our labeling of the rows is defined by
r1 ≥ r2 ≥ · · · ≥ rN)

χR(Z) =
εa1a2···aN z

N−1+r1
a1

zN−2+r2
a2

· · · zrNaN
εb1b2···bN z

N−1
b1

zN−2
b2
· · · zbN−1

(3.2.36)

Using this expression, we can easily write the exact two point function as follows

〈χR(Z)χR(Z†)〉 =
1

N !πN

∫ N∏
i=1

dzidz̄iεa1a2···aN z
N−1+r1
a1

zN−2+r2
a2

· · · zrNaN

×εb1b2···bN z̄
N−1+r1
b1

z̄N−2+r2
b2

· · · z̄rNbN e
−
∑
k zk z̄k

=
N−1∏
j=0

(j + rN−j)!

j!
= fR (3.2.37)
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Using our wave function we can compute the two point function of Schur polynomials. The
result is

〈χR(Z)χR(Z†)〉 =

∫ N∏
i=1

dzidz̄idyidȳiχR(Z)χR(Z†)|Ψgs({zi, z̄i, yi, ȳi})|2

=
1

N !πN

∫ N∏
i=1

dzidz̄iεa1a2···aN |za1|2N−2|za2|2N−4 · · · |zaN−1
|2

×
εb1b2···bN z

N−1+r1
b1

zN−2+r2
b2

· · · zrNbN
εc1c2···cN z

N−1
c1

zN−2
c2
· · · zaN−1

×
εd1d2···dN z̄

N−1+r1
d1

z̄N−2+r2
d2

· · · z̄rNdN
εe1e2···eN z̄

N−1
e1

z̄N−2
e2
· · · z̄eN−1

e−
∑
k zk z̄k (3.2.38)

When the integration over the angles θi associated to zi = rie
iθi are performed, a non-zero result

is only obtained if powers of the zi match the powers of the z̄i. The difference between the
above expression and the exact answer is simply that in the eigenvalue expression these powers
are separately set to be equal in the measure and in the product of Schur polynomials - there
are two matchings, while in the exact answer the power of zi arising from the product of the
measure and the product of Schur polynomials is matched to the power of z̄i from the product
of the measure and the product of Schur polynomials - there is a single matching happening.
Thus, the eigenvalue computation may miss some terms that are present in the exact answer15.
For Young diagrams with a few corners and O(N2) boxes (the annulus above is a good example)
the eigenvalues clump into groupings, with each grouping collecting eigenvalues of a similar size
corresponding to rows with a similar row length[48]. This happens because the product of the
Gaussian fall off e−zz̄ and a polynomial of fixed degree |z2|n is sharply peaked at |z| = n. Thus,
for example if ri ≈ M1 for i = 1, 2, · · · , N

2
and ri ≈ M2 for i = 1 + N

2
, 2 + N

2
, · · · , N with M1

and M2 well separated (M1 −M2 ≥ O(N)), under the integral we can replace

εb1b2···bN z
N−1+r1
b1

zN−2+r2
b2

· · · zrNbN
εc1c2···cN z

N−1
c1

zN−2
c2
· · · zaN−1

→
N
2∏
i=1

zM1
ai
zM2
a
i+N

2

(3.2.39)

After making a replacement of this type, we recover the exact answer. This replacement is
not exact - we need to appeal to large N to justify it. It would be very interesting to explore
this point further and to quantify in general (if possible) what the corrections to the above
replacement are. For Young diagrams with many corners, row lengths are not well separated
and there is no similar grouping that occurs, so that the eigenvalue description will not agree
with the exact result, even at large N . A good example of a geometry with many corners is the
superstar[51]. The corresponding LLM boundary condition is a number of very thin concentric
annuli, so that we effectively obtain a gray disk, signaling a singular supergravity geometry. It
is then perhaps not surprising that the eigenvalue dynamics does not correctly reproduce this
two point correlator.

Having discussed the two point function of Schur polynomials in detail, the product rule

χR(Z)χS(Z) =
∑
T

fRSTχT (Z) (3.2.40)

15This is the reason why (3.2.12) only captures one of the terms present in the two point function for J < N .
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with fRST a Littlewood-Richardson coefficient, implies that there is no need to consider corre-
lation functions of products of Schur polynomials.

3.3 Other Backgrounds

In the 1
2

BPS sector there is a wave function corresponding to every LLM geometry. The
(not normalized) wave function has already been given in (3.1.6). In this section we consider
the problem of writing eigenvalue wave functions that correspond to geometries other than
AdS5×S5. The simplest geometry we can consider is the annulus geometry considered in the
previous section, where we argued that the eigenvalue dynamics reproduces the exact correlator
of the Schur polynomials dual to this geometry. Our proposal for the state that corresponds to
this LLM spacetime is

ΨLLM({zi, z̄i, yi, ȳi}) =
π−N√
N !
εa1a2···an zMa1

yN−1
a1√

M !(N − 1)!
· · ·

zk−1+M
ak

yN−kak√
(k − 1 +M)!(N − k)!

· · ·
zN−1+M
aN

y0
aN√

(N − 1 +M)!0!
e−

1
2

∑
q zq z̄q−

1
2

∑
q yq ȳq (3.3.1)

This is simply obtained by multiplying the ground state wave function by the relevant Schur
polynomial and normalizing the resulting state. The connection between matrix model corre-
lators and expectation values computed using the above wave function is the following16

〈 · · · 〉LLM =
〈 · · · χR(Z)χR(Z†)〉
〈χR(Z)χR(Z†)〉

=

∫ N∏
i=1

dzidz̄idyidȳi|ΨLLM({zi, z̄i, yi, ȳi})|2 · · · (3.3.2)

We can use this wave function to compute correlators that we are interested in. Traces involving
only Zs for example lead to

〈Tr(ZJ)Tr(Z†J)〉LLM =

∫ N∏
i=1

dzidz̄idyidȳi|ΨLLM({zi, z̄i, yi, ȳi})|2
N∑
k=1

zJk

N∑
l=1

z̄Jl

=
N−1∑
k=0

(J + k +M)!

(k +M)!

=
1

J + 1

[
(J +M +N)!

(M +N − 1)!
− (J +M)!

(M − 1)!

]
(3.3.3)

which agrees with the exact result, as long as J > N − 1. Thus, in this background, eigen-
value dynamics is correctly reproducing the same set of correlators as in the original AdS5×S5

16The new normalization for matrix model correlators is needed to ensure that the identity operator has
expectation value 1. This matches the normalization adopted in the eigenvalue description.
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background. Traces involving only Y fields are also correctly reproduced

〈Tr(Y J)Tr(Y †J)〉LLM =

∫ N∏
i=1

dzidz̄idyidȳi|ΨLLM({zi, z̄i, yi, ȳi})|2
N∑
k=1

yJk

N∑
l=1

ȳJl

=
1

J + 1

(J +N)!

(N − 1)!
(3.3.4)

where J ≥ N . Notice that these results are again exact, i.e. we reproduce the matrix model
correlators to all orders in 1/N . Finally, let’s consider the most interesting case of traces
involving both matrices. The LLM wave function we have proposed does not reproduce the
exact matrix model computation. The matrix model computation gives

〈OJ,KO†J,K〉LLM =

(
J !

(J +K)!

)2

〈Tr

(
Y
∂

∂Z

)K
Tr(ZJ+K)Tr

(
Y †

∂

∂Z†

)K
Tr(Z† J+K)〉LLM

=

(
J !

(J +K)!

)2

K!〈Tr

(
∂

∂Z

∂

∂Z†

)K
Tr(ZJ+K)Tr(Z† J+K)〉LLM

=

(
J !

(J +K)!

)2

K!
(J +K)!

J !
〈Tr(ZJ+K)Tr(Z† J+K)〉LLM

=
J !K!

(J +K + 1)!

[
(J +K +M +N)!

(M +N − 1)!
− (J +K +M)!

(M − 1)!

]
(3.3.5)

if J +K ≥ N . Next, consider the eigenvalue computation. We need to perform the integral

〈OJ,KO†J,K〉LLM,eigen =

∫ N∏
i=1

dzidz̄idyidȳi|ΨLLM({zi, z̄i, yi, ȳi})|2
N∑
k=1

zJk y
K
k

N∑
j=1

z̄Jj ȳ
K
j

=
N∑
k=1

(N − k +K)!

(N − k)!

(J +M + k − 1)!

(M + k − 1)!
(3.3.6)

It is not completely trivial to compare (3.3.5) and (3.3.6), but it is already clear that they do
not reproduce exactly the same answer. To simplify the discussion, let’s consider the case that
M = O(

√
N). In this case, in the large N limit, we can drop the second term in (3.3.5) to

obtain

〈OJ,KO†J,K〉LLM =
J !K!

(J +K + 1)!

(J +K +M +N)!

(M +N − 1)!
(1 + · · · ) (3.3.7)

where · · · stand for terms that vanish as N → ∞. In the sum appearing in (3.3.6), change
variables from k to k′ −M and again appeal to large N to write

〈OJ,KO†J,K〉LLM,eigen =
M+N∑
k′=M+1

(N +M − k′ +K)!

(N +M − k′)!
(J + k′ − 1)!

(k′ − 1)!

=
M+N∑
k′=1

(N +M − k′ +K)!

(N +M − k′)!
(J + k′ − 1)!

(k′ − 1)!
(1 + · · · )

=
J !K!

(J +K + 1)!

(J +K +M +N)!

(M +N − 1)!
(1 + · · · ) (3.3.8)
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In the last two lines above · · · again stands for terms that vanish as N → ∞. Thus, we find
agreement between (3.3.5) and (3.3.6). It is again convincing to see genuine multi matrix ob-
servables reproduced by the eigenvalue dynamics. Notice that in this case the agreement is not
exact, but rather is realized to the large N limit. This is what we expect for the generic situa-
tion - the AdS5×S5 case is highly symmetric and the fact that eigenvalue dynamics reproduces
so many observables exactly is a consequence of this symmetry. We only expect eigenvalue
dynamics to reproduce classical gravity, which should emerge from the CFT at N =∞.

Much of our intuition came from thinking about the Gauss graph operators constructed in
[36, 37]. It is natural to ask if we can write down wave functions dual to the Gauss graph
operators. The simplest possibility is to consider a Gauss graph operator obtained by exciting
a single eigenvalue by J levels, and then attaching a total of K Y strings to it. The extreme
simplicity of this case follows because we can write the (normalized) Gauss graph operator in
terms of a familiar Schur polynomial as

Ô =

√
J !K!

(J +K)!

(N − 1)!

(N + J +K − 1)!
Tr

(
Y
∂

∂Z

)K
χ(J+K)(Z) (3.3.9)

where we have used the notation (n) to denote a Young diagram with a single row of n boxes.
Consider the correlator

〈ÔTr(Y †)KTr(Z†J)〉 = 〈Tr

(
∂

∂Y

)K
ÔTr(Z†J)〉

=

√
J !K!

(J +K)!

(N + J +K − 1)!

(N − 1)!
(3.3.10)

This answer is exact, in the free field theory. In what limit should we compare this answer
to eigenvalue dynamics? Our intuition is coming from the 1

2
- BPS sector where we know that

rows of Schur polynomials correspond to eigenvalues and we know exactly how to write the
corresponding wave function. If we only want small perturbations of this picture, we should
keep K � J . In this case we should simplify

J !K!

(J +K)!
→ 1

JK

(N + J +K − 1)!

(N − 1)!
=

(N + J +K − 1)!

(N + J − 1)!

(N + J − 1)!

(N − 1)!

→ (N + J − 1)K
(N + J − 1)!

(N − 1)!
(3.3.11)

How should we scale J as we take N →∞? The Schur polynomials are a sum over all possible
matrix trace structures. We want these sums to be dominated by traces with a large number of
matrices (N or more) in each trace. To accomplish this we will scale J = O(N1+ε) with ε > 0.
In this case, at large N , we can replace

1

JK
(N + J − 1)K → 1 (3.3.12)
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and hence, the result that should be reproduced by the eigenvalue dynamics is given by

〈ÔTr(Y †)KTr(Z†J)〉 =

√
K!

(N + J − 1)!

(N − 1)!
(3.3.13)

In the eigenvalue computation, we will use the wave function of the ground state and the wave
function of the Gauss graph operator (ΨGG({zi, z̄i, yi, ȳi})) to compute the amplitude∫ N∏

i=1

dzidz̄idyidȳiΨ
∗
gs({zi, z̄i, yi, ȳi})(

∑
i

ȳi)
K
∑
j

z̄Jj ΨGG({zi, z̄i, yi, ȳi}) (3.3.14)

We expect the amplitude (3.3.14) to reproduce (3.3.13). Our proposal for the wave function
corresponding to the above Gauss graph operator is

ΨGG({zi, z̄i, yi, ȳi}) =
π−N√
N !
εa1a2···an z0

a1
yN−1
a1√

0!(N − 1)!
· · ·

zk−1
ak

yN−kak√
(k − 1)!(N − k)!

· · ·

· · ·
zN−2
aN−1

yaN−1√
(N − 2)!1!

zJ+N−1
aN

yKaN√
(J +N − 1)!K!

e−
1
2

∑
q zq z̄q−

1
2

∑
q yq ȳq (3.3.15)

The eigenvalue with the largest power of z (i.e. zaN ) was the fermion at the very top of the
Fermi sea. It has been excited by J powers of z and K powers of y. It is now trivial to verify
that (3.3.14) does indeed reproduce (3.3.13).

Finally, the state with three eigenvalues excited by J1 > J2 > J3 and with K1 > K2 > K3

strings attached to each eigenvalue is given by

ΨGG({zi, z̄i, yi, ȳi}) =
π−N√
N !
εa1a2···an z0

a1
yN−1
a1√

0!(N − 1)!
· · ·

zk−1
ak

yN−kak√
(k − 1)!(N − k)!

· · ·

· · ·
zN−4
aN−3

y3
aN−3√

(N − 4)!3!

zJ3+N−3
aN−2

y2+K3
aN−2√

(J3 +N − 3)!(2 +K3)!

zJ2+N−2
aN−1

yK2+1
aN−1√

(J2 +N − 2)!(K2 + 1)!

×
zJ1+N−1
aN

yK1
aN√

(J1 +N − 1)!K1!
e−

1
2

∑
q zq z̄q−

1
2

∑
q yq ȳq (3.3.16)

The generalization to any Gauss graph operator is now clear.

3.4 Connection to Supergravity

In this section we would like to explore the possibility that the eigenvalue dynamics of the
SU(2) sector has a natural interpretation in supergravity. The relevant supergravity solutions
have been considered in [52, 53, 54, 55].
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There are 6 adjoint scalars in the N = 4 super Yang-Mills theory that can be assembled
into the following three complex combinations

Z = φ1 + iφ2 Y = φ3 + iφ4 X = φ5 + iφ6 (3.4.1)

The operators we consider are constructed using only Z and Y so that they are invariant under
the U(1) which rotates φ5 and φ6. Further, since our operators are BPS they are built only
from the s-wave spherical harmonic components of Y and Z, so that they are invariant under
the SO(4) symmetry which acts on the S3 of the R×S3 spacetime on which the CFT is defined.
Local supersymmetric geometries with SO(4)× U(1) isometries have the form[52, 55]

ds2
10 = −h−2(dt+ ω)2 + h2

[ 2

Z + 1
2

∂a∂̄bKdz
adz̄b + dy2

]
+ y(eGdΩ2

3 + e−Gdψ2) (3.4.2)

dω =
i

y

(
∂a∂̄b∂yKdz

adz̄b − ∂aZdzady + ∂̄aZdz̄ady
)

(3.4.3)

Here z1 and z2 is a pair of complex coordinates and K is a Kahler potential which may depend
on y, za and z̄a. y2 is the product of warp factors for S3 and S1. Thus we must be careful
and impose the correct boundary conditions at the y = 0 hypersurface if we are to avoid sin-
gularities. The y = 0 hypersurface includes the four dimensional space with coordinates given
by the za. These boundary conditions require that when the S3 contracts to zero, we need
Z = −1

2
and when the ψ-circle collapses we need Z = 1

2
[52, 55]. There is a surface separating

these two regions, and hence, defining the supergravity solution. So far the discussion given
closely matches what is found for the 1

2
-BPS supergravity solutions. In that case the y = 0

hypersurface includes a two dimensional space which is similarly divided into two regions, giv-
ing the black droplets on a white plane. The edges of the droplets are completely arbitrary,
which is an important difference from the case we are considering. The surface defining local
supersymmetric geometries with SO(4) × U(1) isometries is not completely arbitrary - it too
has to satisfy some additional constraints as spelled out in [55]. It is natural to ask if the surface
defining the supergravity solution is visible in the eigenvalue dynamics?

To answer this question we will now review how the surface defining the local supersymmetric
geometries with SO(4)× U(1) isometries corresponding to the 1

2
-BPS LLM geometries is con-

structed. According to [55], the boundary condition for these geometries have walls between
the two boundary conditions determined by the equation17

z2z̄2 = e−2D̂(z1,z̄1) (3.4.4)

where D̂(z1, z̄1) is determined by expanding the function D as follows (it is the y coordinate
that we set to zero to get the LLM plane)

D = log(y) + D̂(z, z̄) +O(x) (3.4.5)

The function D is determined by the equations

y∂yD =
1

2
− Z V = −i(dz∂z − dz̄∂z̄)D (3.4.6)

17This next equation is (6.35) of [55]. We will relate z1 and z2 to zi (the eigenvalues of Z) and yi (the
eigenvalues of Y ) when we make the correspondence to eigenvalues.
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where Z(y, z1, z̄1) is the function obeying Laplace’s equation that determines the LLM solution
and V (y, z1, z̄1) is the one form appearing in the combination (dt+ V )2 in the LLM metric.

Consider an annulus that has an outer edge at radius M +N and an inner edge at a radius M .
This solution has (these solutions were constructed in the original LLM paper [12])

Z(y, z1, z̄1) = −1

2

(
|z1|2 + y2 −M + 1√

(|z1|2 + y2 +M − 1)2 − 4|z1|2(M − 1)

+
|z1|2 + y2 −M −N√

(|z1|2 + y2 +M +N)2 − 4|z1|2(M +N)

)

V (y, z1, z̄1) =
dφ

2

(
|z1|2 + y2 +M − 1√

(|z1|2 + y2 +M − 1)2 − 4|z1|2(M − 1)

+
|z1|2 + y2 +M +N√

(|z1|2 + y2 +M +N)2 − 4|z1|2(M +N)

)
Evaluating at y = 0, the second of (3.4.6) says

V = −i(dz∂z − dz̄∂z̄)D̂ (3.4.7)

Setting z1 = re−iφ and assuming that D̂ depends only on r we find

r
∂D̂

∂r
= − M +N

r2 −M −N
+

M − 1

r2 −M + 1
(3.4.8)

which is solved by

D̂ =
1

2
log
|z1z̄1 −M + 1|
|z1z̄1 −M −N |

(3.4.9)

Thus, the wall between the two boundary conditions is given by

|z2|2 =
M +N − 1− z1z̄1

z1z̄1 −M + 1
(3.4.10)

The same analysis applied to the AdS5×S5 solution gives

|z1|2 + |z2|2 = N − 1 (3.4.11)

For the pair of geometries described above, we know the wave function in the eigenvalue de-
scription. We will now return to the eigenvalue description and see how these surfaces are
related to the eigenvalue wave functions.

At large N , since fluctuations are controlled by 1/N2, we expect a definite eigenvalue dis-
tribution. These eigenvalues will trace out a surface specified by the support of the single
fermion probability density

ρ(z1, z̄1, y1, ȳ1) =

∫ N∏
i=2

dzidz̄idyidȳi|Ψ({zi, z̄i, yi, ȳi})|2 (3.4.12)
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Denote the points lying on this surface using coordinates z, y.

Using the wave function Ψgs({zi, z̄i, yi, ȳi}) corresponding to the AdS5×S5 spacetime, the prob-
ability density for a single eigenvalue is

ρ(z, z̄, y, ȳ) =
1

Nπ2

N−1∑
i=0

(zz̄)i

i!

(yȳ)N−i−1

(N − i− 1)!
e−zz̄−yȳ (3.4.13)

As y and z vary, the dominant contribution comes from a term with a specific value for i. When
the ith term dominates the sum, the value of the eigenvalue coordinate is given by

(zz̄)i

i!
= 1 |z|2i = i! ≈ ii

(yȳ)N−i−1

(N − i− 1)!
= 1 |y|2(N−i−1) = (N − i− 1)! ≈ (N − i− 1)N−i−1 (3.4.14)

This leads to the following points

|z(i)|2 = i |y(i)|2 = N − i− 1 i = 0, 1, 2, ..., N − 1 (3.4.15)

Thus, if we identify the points z(i), y(i) and the supergravity coordinate z1, z2 as follows

z2 = y(i) z1 = z(i) (3.4.16)

we find

|z1|2 + |z2|2 = i+ (N − i− 1) = N − 1 (3.4.17)

so that the eigenvalues condense on the surface that defines the wall between the two boundary
conditions.

Let’s now compute the positions of our eigenvalues, using ΨLLM({zi, z̄i, yi, ȳi}). The proba-
bility density for a single eigenvalue is easily obtained by computing the following integral

ρ(z1, z̄1, y1, ȳ1) =

∫ N∏
i=2

dzidz̄idyidȳi|ΨLLM({zi, z̄i, yi, ȳi})|2

=
1

Nπ2

N−1∑
i=0

(z1z̄1)M+i

(M + i)!

(y1ȳ1)N−i−1

(N − i− 1)!
e−z1z̄1−y1ȳ1 (3.4.18)

Following the analysis we performed above, we find that the complete set of points on the
eigenvalue surface is given by

|z(i)|2 = (M + i) |y(i)|2 = N − i− 1 i = 0, 1, 2, ..., N − 1 (3.4.19)

Thus, if we identify the points z(i), y(i) and the supergravity coordinate z1, z2 as follows

z2 =
y(i)√

|z(i)|2 −M + 1
z1 = z(i) (3.4.20)

74



Eigenvalue Dynamics for Multimatrix Models Summary and Outlook

we find that (3.4.10) gives

|y(i)|2

i+ 1
=
M +N − 1− |z(i)|2

|z(i)|2 −M + 1
(3.4.21)

in complete agreement with where our wave function is localised. This again shows that the
eigenvalues are collecting on the surface that defines the wall between the two boundary condi-
tions. Although these examples are rather simple, they teach us something important: the map
between the eigenvalues and the supergravity coordinates depends on the specific geometry we
consider.

The fact that eigenvalues condense on the surface that defines the wall between the two bound-
ary conditions is something that was already anticipated by Berenstein and Cotta in [40]. The
proposal of [40] identifies the support of the eigenvalue distribution with the degeneration locus
of the three sphere in the full ten dimensional metric. Our results appear to be in perfect accord
with this proposal.

3.5 Summary and Outlook

There are a number of definite conclusions resulting from our study. One of our key results is
that we have found substantial evidence for the proposal that there is a sector of the two matrix
model that is described (sometimes exactly) by eigenvalue dynamics. This is rather non-trivial
since, as we have already noted, it is simply not true that the two matrices can be simultaneously
diagonalized. The fact that we have reproduced correlators of operators that involve products of
both matrices in a single trace is convincing evidence that we are reproducing genuine two ma-
trix observables. The observables we can reproduce correspond to BPS operators. In the dual
gravity these operators map to supergravity states corresponding to classical geometries. The
local supersymmetric geometries with SO(4)×U(1) isometries are determined by a surface that
defines the boundary conditions needed to obtain a non-singular supergravity solution. At large
N where we expect classical geometry, the eigenvalues condense on this surface. In this way the
supergravity boundary conditions appear to match the large N eigenvalue description perfectly.

The eigenvalue dynamics appears to provide some sort of a coarse grained description. Cor-
relators of operators dual to states with a very small energy are not reproduced correctly:
for example the energy of states dual to single traces has to be above some threshold (N)
before they are correctly reproduced. For complicated operators with a detailed multi trace
structure we would thus expect to get the gross features correct, but we may miss certain
finer details - see the discussion after (3.2.38). Developing this point of view, perhaps using
the ideas outlined in [45], may provide a deeper understanding of the eigenvalue wave functions.

The eigenvalue description we have developed here is explicit enough that we could formu-
late the dynamics in terms of the density of eigenvalues. This would provide a field theory
that has 1/N appearing explicitly as a coupling. It would be very interesting to work out, for
example, what the generalization of the Das-Jevicki Hamiltonian[56] is.
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The picture of eigenvalue dynamics that we are finding here is almost identical to the pro-
posal discussed by Berenstein and his collaborators[38, 39, 40, 41, 42, 43, 44], developed using
numerical methods and clever heuristic arguments. The idea of these works is that the eigenval-
ues represent microscopic degrees of freedom. At large N one can move to collective degrees of
freedom that represent the 10 dimensional geometry of the dual gravitational description. This
is indeed what we are seeing. They have also considered cases with reduced supersymmetry
and orbifold geometries[57, 58, 59]. These are natural examples to consider using the ideas and
methods we have developed in this thesis. Developing other examples of eigenvalue dynamics
will allow us to further test the proposals for wave functions and the large N distributions of
eigenvalues put forward in this thesis.

An important question that should be tackled is to ask how one could derive (and not guess)
the wave functions we have described. Progress with this question is likley to give some insights
into how it is even possible to have a consistent eigenvalue dynamics. One would like to know
when an eigenvalue description is relevant and to what classes of observables it is applicable.

Another important question is to consider the extension to more matrices, including gauge
and fermion degrees of freedom. The Gauss graph labeling of operators continues to work
when we include gauge fields and fermions[60, 61], so that our argument goes through without
modification and we again expect that eigenvalue dynamics in these more general settings will
be an effective approach to compute these more general correlators of BPS operators. Another
important extension is to consider the eigenvalue dynamics, perturbed by off diagonal elements,
which should allow one to start including stringy degrees of freedom. Can this be done in a
controlled systematic fashion? In this context, the studies carried out in [62, 63, 64], will be
relevant.
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4 Exciting LLM Geometries

This chapter is based on work in [65]. We are looking to find new integrable subsectors of the
CFT. We show how to construct operators that represent excitations of LLM geometries. The
Young diagram labelling we use proves especially useful. At low energy, the excitations give
rise to an emergent Yang-Mills theory localised at a corner of the Young diagram. This shows
the emergent theory is decoupled at large N which is important to demonstrate integrability.
In the planar limit, we are able to show that these gauge theories are N = 4 SYM.

4.1 Introduction

The map between the planar limit of N = 4 super Yang-Mills theory and an integrable spin
chain[66] has been a surprisingly rich idea. Single trace operators in the conformal field theory
(CFT) are identified with states of the spin chain, and the dilatation operator of the CFT with
the Hamiltonian of the spin chain. This allows the exact computation of anomalous dimensions
and hence precision tests[67, 68] of the duality with string theory on AdS5×S5[4, 69, 70]. Ex-
citations of the closed string are identified as magnons. The magnons are visible in the dual
string theory description[71, 72]. After projecting the closed string solution to a plane (the so
called bubbling plane [12]) and using coordinates suited to 1/2 BPS supergravity geometries,
the string worldsheet traces out a polygon[72]. The sides of the polygon are the magnons.
Geometrical properties of these sides (their length and orientation) determine the conserved
charges (momentum and energy) labeling the magnon. The S-matrix for magnon scattering
is determined up to a single overall phase simply by kinematics[73]. Integrability then fixes
this phase. The S-matrix computed in string theory is in exact agreement with the S-matrix
computed in the CFT.

How much, if anything, of this story survives for string excitations of new geometries? The
geometries that we have in mind are the LLM geometries[12]. An LLM geometry is dual to an
operator with a dimension that grows as N2 in the large N limit. Consequently, correlators of
operators with dimensions of order N2 encode the physics of excitations of these geometries.
For operators with such a large dimension the planar approximation is not justified[13]. Conse-
quently, mixing between different trace structures is not suppressed. The identification between
single trace operators in the CFT and spin chain states is spoiled and it seems that the link to
an integrable spin chain is lost. In this introduction we will give some physical arguments which
suggest that, at least for a subset of excitations, this is not the case. The rest of the chap-
ter then carries out detailed CFT computations that confirm the details of this physical picture.

The LLM geometries are dual to a 1/2 BPS sector of the CFT. This 1/2 BPS sector con-
tains all gauge invariant operators built from a single complex matrix Z. Since we study single
matrix dynamics, there is a simple free fermion description, obtained by working in terms of
the eigenvalues of Z[74, 7]. There is also a closely related description which employs Schur
polynomials in Z[7, 16]. We mainly use this second description as we know how to generalize
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it when including more matrices[33, 34]. This is needed when studying small fluctuations of
the LLM geometries. A Schur polynomial dual to an LLM geometry is labelled by a Young
diagram with order N2 boxes[12]. An operator dual to a smooth supergravity geometry has a
Young diagram with O(1) corners and the distance between any two adjacent corners (that is,
the number of rows or columns ending on the side between the two corners) is order N . The
string theory understanding of this geometry is that it is the state obtained from back reaction
of condensed giant gravitons[8, 14, 15]. The translation between the CFT and string theory
descriptions is direct: we read the rows of the Young diagram as dual giant gravitons or the
columns as giant gravitons[7].

To excite the geometry in the CFT description, add boxes at a particular corner of the Young
diagram describing the LLM geometry[48, 75, 76]. In string theory we understand this as ex-
citing the giants that condensed to produce the geometry. The description of worldvolume
excitations of these D3 brane giant gravitons is in terms of some open string field theory whose
low energy limit gives rise to a new emergent Yang-Mills theory[77, 32]. Relative to the original
Yang-Mills theory we started with, the space of the giant’s worldvolume is an emergent space.
The new emergent Yang-Mills theory may itself have a holographic description so we might
have new holographic dualities in this large charge limit[77].

The intuitive picture sketched above suggests that excitations arising from any particular corner
give rise to a distinct super Yang-Mills theory. We will study the planar limit of these emergent
gauge theories, to provide detailed support for this intuition. To restrict to the planar limit
consider excitations with a bare dimension of at most O(

√
N), i.e. add at most O(

√
N) boxes

to any given corner. Concretely we will demonstrate three things

1. An isomorphism between the planar Hilbert space of the original N = 4 super Yang-Mills
theory and the planar Hilbert space of the emergent gauge theory arising at a corner.
When restricted to the 1/2 BPS sector, these Hilbert spaces are in fact a generalization
of the code subspaces constructed by [78] (see also [79, 80, 81]).

2. Three point functions of operators in the planar emergent gauge theory vanish. We
demonstrate this in the free field theory. In the planar limit of matrix models the vanishing
follows because to mix three single traces we have to break some index loops which costs
(at least) a factor of N . This is a general conclusion true for both free and interacting
matrix models. Consequently we conjecture that our free field theory result holds after
interactions are turned on. Since operator product expansion (OPE) coefficients can
be read from the three point functions, this implies the OPE coefficients of the planar
emergent gauge theory vanish.

3. The correct spectrum of planar anomalous dimensions of the emergent gauge theory. We
know the planar spectrum of anomalous dimensions of N = 4 super Yang-Mills theory.
We find the same spectrum for the emergent gauge theory. This demonstrates integrability
for the emergent gauge theories.

Notice that since any CFT is determined by its spectrum of anomalous dimensions and OPE
coefficients, and that in the strict planar limit all OPE coefficients vanish, this demonstrates
that the planar limit of the emergent gauge theories are planar N = 4 super Yang-Mills theory.
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We will see that although these different emergent gauge theories all share the same coupling
constant (which is expected since this coupling is equal to the string coupling constant of the
original string theory on AdS5×S5), they generically have distinct gauge groups U(Neff). The
rank of the gauge group Neff receives contributions both from the flux of the original N D3
branes that gives rise to the N = 4 super Yang-Mills theory we start with and from the giants
which have condensed. By considering a large charge state, its possible to have an emergent
gauge theory with gauge group that has rank larger than N .

What we are finding is that a subset of the excitations of large charge states of the N = 4 super
Yang-Mills theory are equivalent to excitations of the vacuum. There are of course excitations
that go beyond the planar limit of the emergent gauge theory. The excitation is constructed
by adding boxes to the Young diagram describing the LLM geometry. We might add so many
boxes that we reach beyond two corners of the Young diagram defining the LLM geometry. The
excitation is “too big” to sit on the Young diagram and in this way we can detect features of the
background Young diagram. These excitations are obtained by adding ∼ N boxes and hence
do not belong to the planar limit of the emergent gauge theory - they are giant graviton like
operators of the emergent theory. There are also excitations constructed by adding order

√
N

boxes, with the boxes added at different corners[82, 75, 76]. These (delocalised) states can be
described as strings with magnon excitations that stretch between two corners. We will show
that at large N these states are decoupled from (localised) states in the planar Hilbert space
of the emergent gauge theory, so that if we start from a state in the planar Hilbert space, the
large N dynamics will not take us out of this space. This is an important point to demonstrate
since the coupling of the planar Hilbert space of the emergent gauge theory to other degrees of
freedom will almost certainly ruin integrability.

The free fermion description of the system is a powerful description because of its simplic-
ity. The large charge state corresponds to exciting the fermions as illustrated in Fig 11. The
idea that a subset of the excitations of large charge states of the CFT are equivalent to excita-
tions of the vacuum has a natural interpretation in this free fermion language. We are saying
that exciting any edge of the blocks appearing in the excited state is equivalent to exciting the
edge of the original Fermi sea. The only difference between the different blocks is their extent.
By restricting to the planar limit we consider excitations that are not able to detect that the
Fermi sea is not infinite, so the extent of each block is irrelevant.

We will be using group representation theory methods to approach the problem of computing
correlators of operators with a bare dimension of order N2. This approach has been devel-
oped in a series of articles[7],[62]-[83],[33],[34], which has developed a number of bases for the
local operators of the theory. These bases diagonalize the two point function of the free the-
ory to all orders in 1/N , and they mix weakly at weak coupling[63, 35, 84]. They therefore
provide a very convenient tool with which to tackle the large N but non-planar limit of the CFT.

The representation theory methods sum the complete set of ribbon graphs. In this approach,
operators are constructed using projection operators18 of the symmetric group so that the gauge

18These operators are actually intertwiners since they map between different copies of the representations
involved. For simplicity though the reader may think of them as projectors which are more familiar.
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Figure 11: The free fermion description of a state labelled by a Young diagram. On the left
we have the Fermi sea corresponding to the AdS5×S5 geometry. The states are simply filled
from the lowest to highest energy with no unoccupied states. On the right, the Young diagram
corresponding to a particular LLM geometry is shown. Each vertical edge of the Young diagram
maps into occupied states while the horizontal edges map into unoccupied states. The number
of fermions that were not excited at all is equal to the number of rows with no boxes. Thus,
the excited state has broken the Fermi sea up into a series of occupied blocks.

invariant operators are labelled with irreducible representations of the group. Summing the rib-
bon diagrams of the free theory becomes multiplying these projectors and then taking a trace.
At loop level, we evaluate the dilatation operator D. Evaluating matrix elements of D amounts
to computing the trace of the product of commutators of elements of the symmetric group with
projection operators. The central technical achievement is that in the end computing corre-
lators, i.e. summing the ribbon graphs, is reduced to well defined (but technically involved)
problems in group representation theory. A helpful point of view in making sense of the de-
tails, which we introduce and develop in this thesis, entails classifying the various ingredients
of the computation as background independent or background dependent. By something that
is background independent, we mean something that would take the same value on any inward
pointing corner of any Young diagram dual to an LLM geometry, or even in the absence of a
background, i.e. in the planar limit of the original CFT. These are quantities that take the
same value regardless of which collection of branes we excite, and this is what we signify in
the terminology “background independent”. A quantity that is background dependent does
depend on the collection of branes we excite. As we discuss in section 4.2, after making this
distinction it is clear that the Hilbert spaces of the planar limit of the emergent gauge theory
at any corner are isomorphic to each other and to the planar Hilbert space of the theory in the
absence of a background.

One of the original motivations for this study are the results [75, 76, 85] which suggest the
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existence of new integrable subsectors of the CFT. We want to explore (and further establish)
the existence of these integrable subsectors. As discussed above, a key issue is to understand if
the integrable sectors are decoupled from the nonintegrable sectors. It is useful to bear in mind
that integrability in the planar limit also depends on a decoupling between different subspaces:
it makes use of the fact that different trace structures don’t mix. Thanks to this decoupling,
it is consistent to focus on the space of single trace operators and it is in this subspace that its
possible to construct a bijection between operators and the states of an integrable spin chain.
The statement of this decoupling is coded into the planar correlation functions: correlators of
operators with different trace structures vanish as N → ∞. Motivated with this insight we
focus on correlation functions of the large N but non-planar limits to establish the decoupling
between integrable and non-integrable subsectors. This is discussed in section 2, where we ob-
tain a simple formula for the correlators in the planar limit of the free emergent gauge theory in
terms of correlators of the free planar CFT without background. Consequently the decoupling
we establish is closely related to the absence of mixing between different trace structures in the
planar limit.

We extend these results to the weakly interacting CFT in section 3, giving arguments that
the spectrum of planar anomalous dimensions of the emergent gauge theory match the spec-
trum of planar anomalous dimensions of the original N = 4 super Yang-Mills theory. We
revisit the issue of coupling between integrable and non-integrable subsectors, arriving at the
conclusion that the two are decoupled even after interactions are turned on.

In section 4 we consider the strongly coupled CFT, using the dual string description. We
explain why the excitations considered should be understood as open string excitations lo-
calised on the world volume of giant graviton branes. We also suggest how to describe closed
string excitations of the large charge state we consider. In section 5 we summarize and discuss
a number of promising directions in which to extend this work.

4.2 Free CFT

Our basic goal is to organize and study excitations of an LLM background, using the dual
N = 4 super Yang-Mills theory. Any LLM geometry is specified by a boundary condition,
given by coloring the bubbling plane into black and white regions[12]. The LLM backgrounds
we consider have boundary conditions given by concentric annuli, possibly with a central black
disk. The LLM geometry is described by a CFT operator with a bare dimension of order N2.
Concretely, it is a Schur polynomial[7] labelled by a Young diagram with O(N2) boxes and
O(1) corners. Large N correlators of these operators are not captured by summing only planar
diagrams, so we talk about the large N but non-planar limit of the theory. The excitation is
described by adding J boxes to the background, with J2 � N . Consequently, we can ignore
back reaction of the excitation on the LLM geometry.

The CFT operators corresponding to the background and excitation are given by restricted
Schur polynomials[33, 34]. Construction of these operators and their correlators becomes an
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exercise in group representation theory. In section 4.2.1 we discuss elements of this description,
placing an emphasis on if the quantity being considered depends on or is independent of the
collection of branes being excited. This distinction will clarify general patterns in the CFT
computations that follow.

We begin our study in the free field theory. The Hilbert space of possible excitations can
be written as a direct sum of subspaces. There are subspaces that collect the excitations lo-
calised at the outer or inner edge of a given annulus, or at the outer edge of the central disk.
The excitations are obtained by adding boxes to the Young diagram describing the background,
at a specific location. They are also localised in the dual gravitational description, at a specific
radius on the bubbling plane[75, 76]. Each localised Hilbert space is labelled by the edge at
which it is localised. There are also delocalised excitations, where the description of the exci-
tation involves adding boxes at different locations on the background Young diagram[75, 76].
We will not have much to say about delocalised excitations.

The excitations belonging to the localised Hilbert spaces play a central role in our study. These
are the Hilbert spaces of the emergent gauge theories. We give a bijection between the states
belonging to the planar Hilbert space of an emergent gauge theory, and the states of the planar
limit of the original CFT without background. To show that the bijection takes on a physical
meaning, we argue that correlation functions of operators that are in bijection are related in
a particularly simple way, in the large N limit. This result is significant because the basic ob-
servables of any quantum field theory are its correlation functions and many properties of the
theory can be phrased as statements about correlation functions. Thanks to the map between
correlation functions, any statement about the planar limit that can be phrased in terms of
correlators, immediately becomes a statement about the planar emergent gauge theories that
arise in the large N but non-planar limits we consider.

4.2.1 Background Dependence

Irreducible representations of the symmetric group Sn are labelled by Young diagrams with n
boxes. States in the carrier space of the representation are labelled by standard tableau, in
which we populate the boxes with numbers {1, 2, ..., n} such that the numbers are decreasing
along the rows (from left to right) and along the columns (from top to bottom). A representation
for Sn is given by specifying the action of any element σ ∈ Sn on the standard tableau. We
will use Young’s orthogonal representation. For example, here is the action of the two cycle
σ = (12) ∈ S4 on a specific tableau

(12) 4 3 1
2

=
1

3
4 3 1
2

+

√
1−

(
1

3

)2
4 3 2
1

(4.2.1.1)

The number 1
3

that appears in the above equation is counting the number of boxes in the
shortest path from the box labelled 1 to the box labelled 2. The only thing that matters is
the relative position of boxes 1 and 2. Consequently, σ has the same action on all three states
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shown below.

4 3 1
2

4 3 1
2

4 3 1
2

(4.2.1.2)

For example

(12)

4 3 1
2

=
1

3
4 3 1
2

+

√
1−

(
1

3

)2

4 3 2
1

(4.2.1.3)

This demonstrates that the action of the symmetric group on the boxes belonging to the exci-
tation is background independent. In what follows we will use R (or r) to denote the Young
diagram describing the excitation and +R (or +r) to denote the Young diagram after it has
been placed at an inward pointing corner of the Young diagram for the LLM geometry.

When our excitation has more than one type of field, the gauge invariant operator is con-
structed by restricting to the subgroup that permutes fields of a specific type. For example, if
we have n Z fields and m Y fields, we would start with an irreducible representation R ` n+m
of Sn+m and restrict to some representation (r, s), r ` n, s ` m, of the Sn×Sm subgroup. Upon
restricting (r, s) may appear more than once, so we need a multiplicity label α to distinguish the
different copies. Since we use only the action of the symmetric group to perform the restrictions,
the multiplicity labels are also background independent. To diagonalize the one loop dilatation
operator [36, 37] traded the multiplicity labels for directed graphs recording how open strings
are connected between giant gravitons. These graphs summarize basic physics coming from the
Gauss Law on the brane worldvolume that is true for any collection of compact branes. This
is why the multiplicity labels are background independent.

There is a potential fly in the ointment that deserves discussion. In the absence of the back-
ground, R is used to put the Zs and Y s together while r is used to organize the Zs and s
the Y s. In the presence of the background, constructed using Zs, we must replace R → +R
and r → +r, while s is unchanged. The first m boxes labelled in the standard tableau made
by filling R are Y fields, and are among the impurity boxes added to the background Young
diagram. The remaining boxes are then labelled in all possible ways to give the states of the

83



Exciting LLM Geometries Free CFT

subspace. Imagine that n = m = 2. Two possible labeling are as follows

4 3 1
2

4

3 1
2

(4.2.1.4)

On the left we have the usual action of the symmetric group on the added boxes. For the
state on the right, we find a different answer. At large N , when the number of boxes in the
shortest path linking distant box 4 to any local labelled box (where the excitation was added)
is of order N , any permutation swapping box 4 with another box, will just swap the two labels.
This is orthogonal to the state before the swap. We will always land up taking a trace over
group elements of the subgroup that permutes excitation boxes. For the traces we need only
states on the left contribute. As a consequence, although the action of the symmetric group
on impurities is not background independent traces over these elements are19. Notice that the
problem of resolving multiplicities is phrased entirely in terms of the subgroup acting on Y
fields i.e. we can set the problem up so that the multiplicities are associated to representation
s. For this reason the above potential spanner in the works doesn’t threaten our conclusion
that multiplicity labels are background independent.

The operators which generalize the Schur polynomials when more than one type of field is
present are called restricted Schur polynomials[62, 33]. The Schur polynomial is constructed
using characters of the symmetric group. The restricted Schur polynomial is constructed using
a restricted character χR,(r,s),αβ(σ) [62]. Recall that the character χR(σ) is given as a trace over
the matrix ΓR(σ) representing σ in irreducible representation R. For the restricted character
we restrict the trace to the subspace carrying the representation of the subgroup (r, s). Because
there are different copies of (r, s) in the game, there are many ways to do this. The restricted
character χR,(r,s)αβ(σ) is given by summing the row index of ΓR(σ) over the α copy of (r, s)
and the column label over the β copy of (r, s). This can be accomplished by making use of an
intertwining map PR,(r,s)αβ which maps from the α copy of (r, s) to the β copy of (r, s). This
map can be constructed using only elements of the symmetric group that act on the impurities.
In terms of PR,(r,s)αβ we have

χR,(r,s)αβ(σ) = Tr
(
PR,(r,s)αβ ΓR(σ)

)
(4.2.1.5)

In the presence of the background this becomes

χ+R,(+r,s)αβ(σ) = Tr
(
P+R,(+r,s)αβ Γ+R(σ)

)
(4.2.1.6)

where σ is the same permutation as in (4.2.1.5). It is clear that the restricted character is
background independent, up to the remark of footnote 2.

19This is of course up to a factor which is determined by the dimension of the irreducible representation of
the background. This factor is from summing over all the possible standard tableau obtained by filling boxes
associated to the background.
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The operators of the planar limit are dual to strings and gravitons in the AdS5×S5 geometry.
Since the restricted Schur polynomials provide a basis, any such operator can be expressed as
a linear combination of restricted Schurs. For simplicity we will discuss operators constructed
from two complex matrices Z and Y , but it will be clear that our conclusions generalize for an
arbitrary local operator. The definition of the restricted Schur polynomial is[33]

χR,(r,s)αβ(Z, Y ) =
1

n!m!

∑
σ∈Sn+m

χR,(r,s),αβ(σ)Y i1
iσ(1)
· · ·Y im

iσ(m)
Z
im+1

iσ(m+1)
· · ·Zin+m

iσ(n+m)
. (4.2.1.7)

An arbitrary operator OA can be expanded in the basis of restricted Schur polynomials as
follows[34]

OA =
∑

R,r,s,α,β

a
(A)
R,(r,s),α,βχR,(r,s)αβ(Z, Y,X, · · · ) (4.2.1.8)

We will argue that the expansion coefficients a
(A)
R,(r,s),α,β are background independent. Imagine

that OA is the operator in the planar Hilbert space corresponding to some specific state, labelled
by its dimension, R-charge and whatever other labels we need to specify it completely. The
operator in the planar Hilbert space of the emergent gauge theory, dual to the state that shares
the same labels, is given by

O+A =
∑

R,r,s,α,β

a
(A)
R,(r,s),α,βχ+R,(+r,s)αβ(Z, Y,X, · · · ) (4.2.1.9)

It is in this sense that the expansion coefficients are background independent. We will argue
for (4.2.1.9) below by demonstrating that with this rule the correlation functions of the set of
operators {O+A} are given in terms of those of {OA}, essentially by replacing N → Neff . The
two operators should then represent the same physical state since the physical interpretation
of any operator is coded into its correlation functions.

We now consider quantities that are background dependent. The two point function of re-
stricted Schur polynomials includes a product of the factors of the Young diagram. A box in
row i and column j of a Young diagram has factor N − i + j. This quantity clearly depends
sensitively on where you are located within the Young diagram and is not simply a function
of the relative position of two boxes. The factors of the boxes added at different corners will
depend on the corner and on the details of the shape of the Young diagram. We will see in
what follows that all of the N dependence of the correlators comes from factors, so that moving
between different corners shifts N → Neff , which changes the rank of the emergent gauge group.
The only difference between the planar limit of the emergent gauge theories at each corner is
this shift in N .

A second ingredient in the two point function of restricted Schur polynomials, is a ratio of
the product of the hook lengths of the Young diagram. Assume that we have a total of C
outward pointing corners and further that our localised excitation is stacked in the ith corner.
In the Appendix E we prove the following result

hooks+R

hooks+r

=
hooksR
hooksr

(ηB)|R|−|r|
(

1 +O

(
1

N

))
(4.2.1.10)
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where |R| stands for the number of boxes in the Young diagram R and

ηB =
i∏

j=1

L(j, i)

L(j, i)−Nj

C∏
l=i+1

L(i+ 1, l)

L(c+ 1, l)−Ml

(4.2.1.11)

L(a, b) =
b∑

k=a

(Nk +Mk) (4.2.1.12)

The notation in the above formulas is defined in Figure 12. Formula (4.2.1.10) is telling us
that although hooks+R/hooks+r depends on the background this dependence is a simple multi-
plicative factor that is sensitive to the shape of the Young diagram for the LLM geometry and
the number of fields in the excitation that are not Z fields. Its dependence on R and r nicely
matches hooksR/hooksr. Note that (4.2.1.10) is not exact - it receives 1

N
corrections.

Our discussion in this section has focused on operators constructed using only 2 fields, Z
and Y . The generalization is straight forward. For k different species of fields (which may
include additional scalars, fermions or covariant derivatives), with nk fields of each species, we
consider a subgroup Sn1×Sn2×· · ·×Snk of Sn1+n2+···+nk . By including enough different species
we can describe any operator in the planar limit of the CFT. It is again clear that although
the action of the symmetric group on impurities is not background independent, traces over
these elements are and that multiplicity labels and expansion coefficients are again background
independent.

4.2.2 Excitations of AdS5×S5

Start in the simplest setting in which no giant graviton branes have condensed and consider
excitations that are dual to operators with a bare dimension of order J with J2 � N . This
corresponds to the planar limit of the N = 4 super Yang-Mills. In this limit there are important
simplifications. First, different trace structures don’t mix20. This is phrased as a statement
about correlation functions. To see this, consider loops constructed from a single complex
adjoint matrix Z. In terms of the normalized traces OJ ≡ Tr(ZJ)/

√
JNJ we have

〈O†J(x1)OJ(x2)〉 =
1

|x1 − x2|2J
+O

(
J2

N

)

〈O†J1+J2
(x1)OJ1(x2)OJ2(x2)〉 =

√
J1J2(J1 + J2)

N |x1 − x2|2J1+2J2
+ ...

→ 0 as N →∞ (4.2.2.1)

The two point function of single traces is of order 1, while the two point function of a double
trace with a single trace operator goes to zero. We have considered mixing between single

20For a careful study of this point see [86].
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and double traces, but the conclusion is general: to mix different trace structures, we break
color index loops to match traces structures and every time we break an index loop it costs
a factor of N . The fact that different trace structures do not mix in the planar limit is an
important result, ultimately responsible for the existence of the spin chain language. Indeed,
the absence of mixing implies it is consistent to restrict to single trace operators and each sin-
gle trace operator can be identified with a specific spin chain state. We will derive a formula
for the correlation functions of certain excitations of a (heavy) operator with an enormous
∼ N2 dimension in terms of the correlation functions of the planar limit. As a consequence of
this formula, we will see that simplifications of the planar limit encoded in correlation functions
are then automatically present in correlation functions of certain excitations of the background.

We will make extensive use of the two point function of the restricted Schur polynomial, given
by[33]

〈χR,(r,s)αβ(Z, Y )χT,(t,u)δγ(Z, Y )†〉 = δRSδrtδsuδαδδβγ
fRhooksR

hooksrhookss
(4.2.2.2)

In the above formula fR stands for the product of factors of Young diagram R, while hooksR
stands for the product of hook lengths of Young diagram R. This result is exact for the free
field theory, i.e. all ribbon diagrams have been summed. Thus, the above formula is reliable
for correlators of operators regardless of their dimension. This is why its useful to express
our computations in the restricted Schur polynomial language: we can tackle both the planar
correlators (with dimension ≤ O(

√
N)) and correlators in the background of a heavy operator

(with dimension of O(N2)) using a single formalism.

The computation of correlation functions most useful for our goals, starts by expressing the
operators of interest as linear combinations of restricted Schur polynomials. This is always
possible because the restricted Schur polynomials furnish a basis for the local gauge invariant
operators of the theory. An arbitrary operator OA

OA = Tr(σY ⊗m ⊗ Z⊗n) = Y i1
iσ(1)
· · ·Y im

iσ(m)
Z
im+1

iσ(m+1)
· · ·Zin+m

iσ(n+m)
(4.2.2.3)

can be written as a linear combination of restricted Schur polynomials as follows

OA =
∑

R,r,s,α,β

a
(A)
R,(r,s),α,βχR,(r,s)αβ(Z, Y,X, · · · ) (4.2.2.4)

By changing the permutation σ appearing in (4.2.2.3) we can obtain any desired multi trace
structure. Taking linear combinations of these terms, we can easily construct, for example, the
operators that would map into the states of the spin chain. Explicit formulas for the coefficients
are known

Tr(σZ⊗nY ⊗m) =
∑

T,(t,u)αβ

dTn!m!

dtdu(n+m)!
χT,(t,u)αβ(σ−1)χT,(t,u)βα(Z, Y ) (4.2.2.5)

We will not however need the precise values of the a
(A)
R,{r},α. Formula (4.2.2.5) does however make

it clear that these coefficients are symmetric group data and consequently, they are independent
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of N . Using the known two point function for the restricted Schur polynomial, we find in the
free field theory, that

〈OA(x1)OB(x2)†〉 =
∑
R,r,s,α

a
(A)
R,(r,s),α,βa

(B)∗
R,(r,s),α,βhooksRfR

hooksrhookss

1

|x1 − x2|2J
(4.2.2.6)

The above result is exact and its an ingredient in the proof of the identity relating planar corre-
lation functions of N = 4 super Yang-Mills theory to the correlations functions of the emergent
gauge theories that arise in large N but non-planar limits. The planar approximation to the
correlation function in free field theory is obtained by truncating the above exact result to its
leading term in a large N expansion.

Up to now we have focused on operators constructed using only the Z and Y fields. The
most general operator will be constructed from adjoint scalars, adjoint fermions or covariant
derivatives of these fields. The construction of restricted Schur polynomials with an arbitrary
number of species of adjoint scalars and an arbitrary number of species of adjoint fermions
was given in [61]. The construction of restricted Schur polynomials using covariant derivatives
has been described in [60]. Each power of the covariant derivative Dp

µZ must be treated as
a new species of field. If the operator we consider is constructed using a total of k species
of fields, then the restricted Schur polynomial becomes χR,{r},αβ, with {r} a collection of k
Young diagrams, one for each species. If we use ni fields of species i the corresponding Young
diagram ri has ni boxes. Young diagram r1 corresponds to the Z field. Young diagram R has
n1 + n2 + ... + nk boxes. The additional labels contained in α and β are again discrete labels
distinguishing operators that carry the same R, {r} labels. The formulas we have given above
now generalize as follows

〈χR,{r}αβ(Z, Y )χT,{t}δγ(Z, Y )†〉 = δRSδ{r},{t}δαδδβγ
fRhooksR∏
r hooksr

(4.2.2.7)

OA =
∑

R,r,s,α,β

a
(A)
R,{r1,r2,··· },α,βχR,{r1,r2,··· }αβ(Z, Y,X, · · · ) (4.2.2.8)

and

〈OA(x1)OB(x2)†〉 =
∑
R,r,s,α

a
(A)
R,{r},α,βa

(B)∗
R,{r},α,βhooksRfR∏
r hooksr

1

|x1 − x2|2J
(4.2.2.9)

In the above formulas, δ{r},{t} is 1 if the complete ordered sets of Young diagrams {r} and {t}
are equal, and it is zero otherwise. The planar approximation is again obtained by truncating
to the leading term in a large N expansion. This completes our discussion of the planar corre-
lation functions.
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4.2.3 Exitations of an LLM Geometry

The LLM geometries that we consider are described by Schur polynomials χB(Z) of the complex
matrix Z labelled by a Young diagram B with O(N2) boxes and O(1) outward pointing corners.
An example of a possible Young diagram B, with 5 outward pointing corners is shown in Figure
12.

Figure 12: A possible label B for a Schur polynomial describing an LLM background. Note
that

∑6
i=1Ni = N .

All of the horizontal edges Mi, and vertical edges Ni have a length of O(N). Excitations are
obtained by adding J = O(

√
N) boxes to B. These new boxes could be stacked at any of

the inward pointing corners, below or to the right21 of B. The possible locations for the new
boxes are labelled 0 to 5 in Figure 12. We will distinguish between excitations constructed by
adding all extra boxes at a single inward pointing corner (localised excitations) and excitations
constructed by adding extra boxes at more than one corner (delocalised excitations). In the free
field theory, thanks to the fact that the two point function of the restricted Schur polynomial is
diagonal in all of its labels, the local and delocalised excitations are orthogonal22. Denote the

21We could also create excitations by eroding the outward pointing corners. We will not study these excitations
here.

22When we make this comment we have the operator/state correspondence of the CFT in mind. According to
the correspondence, the inner product of two states is related to the correlators of the corresponding operators.
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Hilbert space of small fluctuations about the LLM geometry by HCFT;LLM. This Hilbert space
can be decomposed as a direct sum as follows

HCFT;LLM = HCFT;Local

⊕
HCFT;Delocalized (4.2.3.1)

Our study will focus on the local excitations. The Hilbert space of local excitations can further
be refined as a direct sum of subspaces, one for each corner of the background Young diagram

HCFT;Local =
⊕
i

H(i)
CFT (4.2.3.2)

where i runs over inward pointing corners with the understanding that below or to the right23

of B count as corners. Each factor H(i)
CFT in the above sum is the Hilbert space of an emergent

gauge theory and is isomorphic to the space of local operators in the planar limit of the original
CFT, as we now explain. We do this by giving the bijection between operators of dimension J
with J2 � N and operators in H(i)

CFT. The bijection maps the operator given in (4.2.2.8) above
into

O
(B)
A =

∑
R,r,s,α,β

a
(A)
R,{r1,r2,··· },α,βχ+R,{+r1,r2,··· }αβ(Z, Y,X, · · · ) (4.2.3.3)

The coefficients of the expansion appearing in (4.2.2.8) are identical to the coefficients appearing
in (4.2.3.3). It is only the R and r1 labels in the restricted Schur polynomials in (4.2.2.8) and
(4.2.3.3) that have changed. The Young diagram +R is obtained by stacking R at the ith
corner of B and similarly, the Young diagram +r is obtained by stacking r at the ith corner of
B. For an example of how this works, see Figure 13.

Figure 13: To obtain +R from R we stack R at one of the inward pointing corners of B.

This mapping is a bijection. Operators with distinct labels are orthogonal. Operators with
distinct labels before the map have distinct labels after the map. Thus, the mapping is injec-
tive. Any operator with a bare dimension J and J2 � N can be mapped to an excitation of
the background B. What is important here is that, since each edge of the Young diagram has

23The locations labelled 0 and 5 in Figure 12.
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a length of order N , there is no danger that when we stack R it will not fit onto the corner.
Of course, the converse is also true: any excitation of the background can be mapped to an
operator of dimension J by deleting the boxes in +R and +r1 which belong to B. Thus, the
map is surjective. This demonstrates that our mapping is a bijection.

In the remainder of this section we will argue that the correlation functions of operators that
are in bijection are related in a particularly simple way, in the large N limit. We would like to
normalize our correlators so that

〈1〉B = 1 (4.2.3.4)

We know that 1 maps into χB(Z) and that

〈χB(Z)χB(Z)†〉 = fB
1

|x1 − x2|2|B|
(4.2.3.5)

where |B| is the free field dimension of χB(Z). Consequently we will include an extra factor of
|x1 − x2|2|B|f−1

B to ensure that our correlators are correctly normalized

〈· · · 〉B =
〈· · · 〉
fB
|x1 − x2|2|B| (4.2.3.6)

Using the two point function of the restricted Schur polynomial, we obtain the following result

〈O(B)
A (x1)O

(B)
B (x2)†〉B =

∑
R,r,s,α

a
(A)
R,(r,s),α,β a

(B)∗
R,(r,s),α,β hooks+R f+R

fB hooks+r1

∏
i>2 hooksri

1

|x1 − x2|2J
(4.2.3.7)

Assume that we have a total of C outward pointing corners and further that our localised
excitation is stacked in the ith corner. Applying the identity (4.2.1.10) we find

〈O(B)
A (x1)O

(B)
B (x2)†〉B = (ηB)nI

∑
R,r,s,α

a
(A)
R,(r,s),α,β a

(B)∗
R,(r,s),α,β hooksR∏
i hooksri

f+R

fB

1

|x1 − x2|2J

(
1 +O

(
1

N

))
(4.2.3.8)

(4.2.1.10) is not exact - it includes 1
N

corrections and this is the only source of 1
N

corrections in
our final result. We have assumed24 that every term in the sum has the same total number of
fields and the same number of Z fields, i.e. that each term has the same value for |R|−|r1| ≡ nI .
The subscript I on nI stands for “impurity” since its common to refer to fields in our excitation
that are not Z fields as impurities. We would now like to compare this to the result that we
obtained for the planar correlators, which is

〈OA(x1)OB(x2)†〉 =
∑
R,r,s,α

a
(A)
R,(r,s),α,βa

(B)∗
R,(r,s),α,βhooksRfR

hooksrhookss

1

|x1 − x2|2J

24This assumption is not necessary. By rescaling each impurity field by
√
ηB we could remove the ηB depen-

dence in these formulas.
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≡ FAB(N)
1

|x1 − x2|2J
(4.2.3.9)

The two results are nearly identical. The only difference, apart from the overall factor (ηB)nI ,
is that fR in the planar result is replaced by f+R

fB
in the emergent gauge theory result. Now,

recall that fR is the product of factors in Young diagram R and that a box in row j and column
k has factor N − j + k. Consequently

fR(N) =
∏

(j,k)∈R

(N − j + k) (4.2.3.10)

In the ratio f+R

fB
factors of boxes that are common to +R and B cancel. After performing these

cancellations we find

f+R

fB
= fR(Neff) =

∏
(j,k)∈R

(Neff − j + k) (4.2.3.11)

where

Neff = N −
i∑

a=1

Na +
C∑

b=i+1

Mb (4.2.3.12)

This last formula is explained in Figure 12 and Appendix F. Neff is the factor of the first
excitation box added to the background Young diagram. Finally, recalling that the only source
of N dependence is in fR (for the planar correlators) or f+R

fB
(for the emergent gauge theory

correlators) we finally obtain

〈OA(x1)OB(x2)†〉 = FAB(N)
1

|x1 − x2|2J

〈OA(x1)OB(x2)†〉B = FAB(Neff)
(ηB)nI

|x1 − x2|2J

(
1 +O

(
1

N

))
(4.2.3.13)

This demonstrates a remarkable relationship between correlators in the planar and non-planar
limits.

This result has a number of immediate applications. As we have stressed above, the fact
that operators with different trace structures don’t mix in the planar limit is a statement about
correlators. This no-mixing result allows focus on the single trace operators which is needed
to develop the spin chain connection for the planar CFT. Our result (4.2.3.13) immediately
implies that operators that are the image of operators with different trace structures, will not
mix. Thus, we too can focus on the image of single trace operators and then develop a spin
chain description of the planar limit of the emergent gauge theory. States of the spin chain that
were identified with a given operator in the planar limit will now be identified with the image
of the same operator.

Three point functions of single trace operators are suppressed in the planar limit of the original
CFT. Is there a similar statement for three point functions of single trace operators in the emer-
gent gauge theory? In any Poincare invariant CFT the spacetime dependence of the three point
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function is fixed by conformal invariance. We can thus simply factor this dependence out and
consider the problem of the combinatorics of the Wick contractions. This is also a complicated
problem, but for some well chosen examples it can be solved. Consider the following correlator

〈Tr (Zn1Y n2 · · · )Tr (Zm1Y m2 · · · )Tr (Z†p1Y †p2 · · · )〉 (4.2.3.14)

The Wick contractions are all between the first trace and the third trace, and between the
second trace and the third trace. In particular, there are no contractions between the first
and second traces. For the combinatorics of the Wick contractions, we can treat the double
trace Tr (Zn1Y n2 · · · )Tr (Zm1Y m2 · · · ) as a single operator and apply the bijection and treat
Tr (Z†p1Y †p2 · · · ) as a single operator and apply the bijection. Thus, we have reduced the com-
putation to a two point function. This two point correlator correctly sums the contractions
between the three traces with each other and with the background. The result (4.2.3.13) then
implies that this correlator, which is giving the three point function, is suppressed in the planar
limit of the emergent gauge theory. Since OPE coefficients are read from three point functions,
the OPE coefficients vanish in the planar limit of both N = 4 super Yang-Mills and the emer-
gent gauge theory. We have proved this in the free field theory, for a specific class of correlators.
We conjecture that it holds quite generally and continues to hold when interactions are turned
on. The usual suppression holds because we need to break index loops (which costs N−1 for
each loop we break) to find a non-zero correlator between three single traces. This does not
rely on any detailed structure of the interaction and is quite generally true for a matrix model.
Of course, this is one point in our analysis that could be improved.

Our argument in this section considers only the local operators. One might wonder if mix-
ing between different trace structures of delocalised operators is also suppressed or not. In this
case the argument is more involved. It is unlikely that there is a simple relationship between
correlators of delocalised operator and correlators computed in the planar limit. Explicit com-
putations using concrete examples support the conclusion that again, different trace structures
don’t mix. See Appendix G for a discussion of this point.

To summarize, we have arrived at a rather detailed picture of the structure of the Hilbert
space. We have decomposed the Hilbert space of excitations of the LLM geometry into a direct
sum

HCFT;LLM =

(⊕
i

H(i)
CFT

)⊕
HCFT;Delocalized (4.2.3.15)

Restricted Schur polynomials are orthogonal if their labels don’t match. This immediately im-
plies that in the free field theory operators belonging to different Hilbert spaces in the above sum
have vanishing two point functions and hence that the corresponding subspaces are orthogonal.
We have further argued that each subspace can be decomposed into a direct sum of orthogonal
components, with each component collecting operators of a definite “trace structure”. Here the
trace structure is read from the preimage of the operator under the bijection (4.2.3.3). At large
N these different trace structures do not mix.

Our study has focused on the free field theory. Of course, the bijection we have defined holds for
any coupling. The free field limit has been used to obtain the relationship between correlators
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of operators and correlators of their images. It is this discussion that we will extend to weak
coupling in the next section.

4.3 Weak Coupling CFT

We expect that the gravitational physics dual to the CFT is coded into the large N correlators.
Consequently, it is attractive if we can find relationships between correlators of the planar limit
and correlators in the background of a heavy operator. In the previous section we have exhib-
ited relationships of this type, all in the free limit of the CFT. We expect the dual gravitational
description is simplest when the CFT is strongly coupled. It is natural to ask if the simple
relations between correlation functions exhibited in the free theory survive when interactions
are added. Answering this question is the goal of the current section. We start with a careful
discussion of the one loop dilatation operator, which develops the relation between correlators
at one loop. This argument also gives insight into why the relationship we have uncovered
between correlators holds even when higher loop corrections are included.

The article [75] argued that matrix elements of the planar dilation operator are identical to
matrix elements of the dilatation operator computed using local excitations, localised at cor-
ner25 i of the Young diagram for the LLM geometry, after replacing λ = g2

YMN by λeff = g2
YMNeff

where Neff is the factor of the first box added to corner i. This again amounts to replacing
N → Neff so it is the rule we derived in Section 4.2.3. We will revisit this argument below
adding two new improvements

1. By carefully tracking what is background independent and what is not we will develop a
much simpler technical analysis.

2. We will phrase the result using the bijection we developed in Section 4.2.3. The advantage
of the rephrasing is that it supports the conclusion that the planar limit of the emergent
gauge theory is planar N = 4 super Yang-Mills.

The final result is remarkable: in the large N but non-planar limit we need to sum a huge set of
Feynman diagrams. The net effect of summing the huge set of non-planar diagrams, is a simple
rescaling of the ’t Hooft coupling. This is in complete harmony with the physical argument we
developed in the introduction.

The fact that we simply need to rescale the ’t Hooft coupling has far reaching consequences:
since the dilatation operator in the planar CFT matches the Hamiltonian of an integrable spin
chain, we know that the dilatation operator describing the anomalous dimensions of the emer-
gent gauge theory will also match the integrable spin chain. As long as the dilatation operator
does not mix operators that belong to the Hilbert space H(i)

CFT with operators that don’t belong
to this space, we conclude that there are integrable subsectors in the large N but non-planar
limit we consider. Demonstrating the absence of this mixing is one of the main goals of this

25These operators belong to H(i)
CFT
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section.

Before turning to a detailed technical analysis we will briefly review the evidence support-
ing the above result. It implies that the anomalous dimensions of the operators of the planar
emergent gauge theory are determined in terms of the corresponding dimensions computed in
the planar CFT. Explicit computations of anomalous dimensions of the emergent CFT, when
developed in a perturbative expansion, confirm this prediction both in the weak coupling CFT
and at strong coupling using the dual string theory[82, 75]. Using the su(2|2) symmetry enjoyed
by the su(3|2) subspace of local excitations, the two magnon S-matrix has been determined and
it agrees up to two loops with a weak coupling computation performed in the CFT[76]. The
first finite size corrections to both the magnon and the dyonic magnon have been computed by
constructing solutions to the Nambu-Goto action that carry finite angular momentum. These
computations[76] again show that the net affect of the background is a scaling of the ’t Hooft
coupling. This constitutes strong coupling evidence for our result. Since these corrections are
sensitive to the overall phase of the S-matrix, which is not determined by kinematics (i.e. the
su(2|2)2 symmetry of the theory), this is a non-trivial test. Finally, strings spinning on the
three sphere that belongs to AdS5 have been considered in [85]. These strings are dual to
operators belonging to the SL(2) sector of the gauge theory. Once again, the net affect of the
background is a scaling of the ’t Hooft coupling as predicted[85].

In the subsection that follows we revisit the analysis of [75], phrasing things in terms of the
bijection of section 4.2.3 and paying attention the background dependence of the various in-
gredients in the analysis. This significantly simplifies the original analysis. We pay careful
attention to operator mixing, to give evidence supporting the conclusion that the integrable
subsectors are decoupled at large N . This closes an important hole in the analysis of [75].
Finally, we consider how the one loop discussion generalizes when we include higher loops.

4.3.1 One Loop Mixing of Local Operators

From now on we normalize the two point function of our operators to 1. To simplify the
discussion again focus on operators constructed using only Z and Y fields. It is a simple
generalization to include more fields. Consider the mixing between two restricted Schur poly-
nomials, O+R,(+r,s)µ1µ2(Z, Y ) and O+T,(+t,u)ν1ν2(Z, Y ). The capital letter O for the restricted
Schur polynomial instead of the χ stresses the fact we are considering normalized operators

〈O+R,(+r,s)µ1µ2(Z, Y )†O+T,(+t,u)ν1ν2(Z, Y )〉 = δ+R,+T δ+r,+tδsuδµ1ν1δµ2ν2 (4.3.1.1)

These operators are the image under the bijection of OR,(r,s)µ1µ2(Z, Y ) and OT,(t,u)ν1ν2(Z, Y ).

The operators O+R,(+r,s)µ1µ2(Z, Y ) provide a basis for H(i)
CFT. The starting point of our analysis

is the one loop dilatation operator in this basis[35]

DO+R,(+r,s)µ1µ2(Z, Y ) =
∑

T,(t,u)ν1ν2

N+R,(+r,s)µ1µ2;+T,(+t,u)ν1ν2O+T,(+t,u)ν1ν2(Z, Y ) (4.3.1.2)

95



Exciting LLM Geometries Weak Coupling CFT

where

N+R,(+r,s)µ1µ2;+T,(+t,u)ν1ν2 = −g
2
YM

8π2

∑
+R′

c+R,+R′d+Tnm

d+R′d+tdu(n+m)

√
f+Thooks+Thooks+rhookss
f+Rhooks+Rhooks+thooksu

Tr
([

(1,m+ 1), P+R,(+r,s)µ1µ2

]
I+R′+T ′

[
(1,m+ 1), P+T,(+t,u)ν2ν1

]
I+T ′+R′

)
(4.3.1.3)

In the above expression Young diagram +R′ is obtained by dropping one box from +R and
c+R,+R′ is the factor of the box that is dropped. Also, dr is the dimension of symmetric group
irreducible representation r. Use n to denote the total number of Z fields in O+R,(+r,s)µ1µ2 and
nB to denote the number of Z fields in the background. Also, nZ denotes the number of Z
fields in OR,(r,s)µ1µ2 and m denotes the number of Y fields. We have n = nB + nZ . The above
result (4.3.1.2),(4.3.1.3) was derived using the convention that the Y fields occupy slots 1 to
m exactly as shown in (4.2.1.7). In the standard tableau labeling of the states in +R, the Y ’s
would be associated to the boxes labelled 1 to m. This result is the exact one loop result - we
have not made use of any of the simplifications that come from taking N → ∞. Notice that
the N dependence of the matrix elements appears in c+R,+R′ , f+R or f+T . This immediately
implies that we will again have a dependence on Neff and not on N .

To proceed further, begin by discussing the intertwining map P+R,(+r,s)µ1µ2 . Our goal is to
give a careful argument concluding that P+R,(+r,s)µ1µ2 is background independent. This map
acts within a direct sum of the carrier space of +T and the carrier space of +R. It gives zero
on +T and projects the row and column labels of the +R subspace to an (r, s) irreducible
representation of Sn× Sm. Our convention is that the first boxes removed are associated to Y .
This projection operator simply has to assemble these boxes into an irreducible representation
s of Sm. The remaining boxes are already in +r. Thus, the projection operator is

P+R,(+r,s) =
1

m!

∑
σ∈Sm

χs(σ)Γ+R(σ) (4.3.1.4)

In writing the above projection operator it is understood that we are acting in the subspace of
+R in which states are labelled by standard tableau such that labels 1,...,m only fill boxes that
belong to +R and not to +r. This is the subspace in which the remaining boxes are already in
+r. To get the intertwining map, restrict the above row and column labels. The key point is
that the projection operator acts only on boxes associated to the Y fields. Restricting indices
to get the intertwining map will not change this so that the intertwining map P+R,(+r,s)αβ only
has a nontrivial action on the Y boxes, that is, on the boxes that are removed from +R to
get +r. With the discussion of Section 4.2.1 in mind, its clear that P+R,(+r,s)αβ is background
independent.

To evaluate the matrix elements of the dilatation operator, we need to perform the follow-
ing trace

Tr
([

(1,m+ 1), P+R,(+r,s)µ1µ2

]
I+R′+T ′

[
(1,m+ 1), P+T,(+t,u)ν2ν1

]
I+T ′+R′

)
(4.3.1.5)

The intertwining maps I+R′+T ′ and I+T ′+R′ map from the subspace +R′ obtained by dropping
a single box from +R, to the subspace +T ′ obtained by dropping a single box from +T . As a
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result, these maps act only on the box in the standard tableau labelled 1 which is associated to
a Y and hence these maps are background independent. The results of Section 4.2.1 imply that
the above trace is background independent. Lets pursue this further in our current example.
The intertwining maps P+R,(+r,s)µ1µ2 and P+T,(+t,u)ν2ν1 act only on the boxes labelled 1 to m -
all Y boxes, and the permutation (1,m + 1) acts only on boxes labelled 1 or m + 1. One is
a Y box, one is a Z box and both belong to the excitation. Consequently, in the above trace
the very vast majority of boxes - those with labels > m + 1 and there are O(N2) of them -
are simply spectators and can be traced over. Recall that we are focusing on operators that
belong to a given emergent gauge theory. The non-trivial structure of the matrix elements is
determined by the Young diagrams R, r and s and it will agree with the non-trivial structure of
the planar matrix elements - this is the background independence. The only difference between
the planar result for the trace and what we consider above, is that the sum over the inert boxes
produces a factor d+r′i

where +r′i is obtained by dropping a box from row i of r in +r while
in the planar case we get a factor of dr′i . If we now consider mixing with operators outside
of the emergent gauge theory, in principle we could drop a box from +r at any location -
even a corner that is distinct from where our excitation is located. These matrix elements
arise when there is mixing with states that don’t belong to the integrable subsector. We will
consider these corrections in detail in the next section. Our conclusion is that these matrix
elements vanish at large N . Using this result, we can restrict to mixing between operators
that belong to the planar limit of the emergent gauge theory. Consequently, the bijection of
section 4.2.3 relates these operators to two operators, OR,(r,s)µ1µ2(Z, Y ) and OT,(t,u)ν1ν2(Z, Y )
defined in the planar CFT. We will now derive a relationship between the matrix elements for
mixing O+R,(+r,s)µ1µ2(Z, Y ) and O+T,(+t,u)ν1ν2(Z, Y ) and those for mixing OR,(r,s)µ1µ2(Z, Y ) and
OT,(t,u)ν1ν2(Z, Y ). This extends the free field theory relationship between correlators obtained
in Section 4.2.3, to one loop. The argument is26

−g
2
YM

8π2

∑
+R′

c+R,+R′d+Tnm

d+R′d+tdu(n+m)

√
f+Thooks+Thooks+rhookss
f+Rhooks+Rhooks+thooksu

Tr
([

(1,m+ 1), P+R,(+r,s)µ1µ2

]
I+R′+T ′

[
(1,m+ 1), P+T,(+t,u)ν2ν1

]
I+T ′+R′

)
= −g

2
YM

8π2

∑
+R′

∑
i

c+R,+R′m

du

√
hooks+rhooks+t

hooks+r′i

hooks+R′√
hooks+Thooks+R

√
f+Thookss
f+Rhooksu

Tr+i

([
(1,m+ 1), P+R,(+r,s)µ1µ2

]
I+R′+T ′

[
(1,m+ 1), P+T,(+t,u)ν2ν1

]
I+T ′+R′

)
= −g

2
YM

8π2

∑
+R′

∑
i

c+R,+R′m

du

√
hooksrhookst

hooksr′i

hooksR′√
hooksThooksR

√
f+Thookss
f+Rhooksu

Tri
([

(1,m+ 1), P+R,(+r,s)µ1µ2

]
I+R′+T ′

[
(1,m+ 1), P+T,(+t,u)ν2ν1

]
I+T ′+R′

)
= −g

2
YM

8π2

∑
+R′

∑
i

c+R,+R′m

du

√
hooksrhookst

hooksr′i

hooksR′√
hooksThooksR

√
f+Thookss
f+Rhooksu

Tri
([

(1,m+ 1), PR,(r,s)µ1µ2

]
IR′T ′

[
(1,m+ 1), PT,(t,u)ν2ν1

]
IT ′R′

)
26Recall that dr = n!/hooksr for any irrep r of Sn. In what follows Tri indicates that we have traced over ri

and Tr+i indicates that we have traced over +ri.
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= −g
2
YM

8π2

∑
R′

c+R,+R′dTnZm

dR′dtdu(nZ +m)

√
f+ThooksThooksrhookss
f+RhooksRhooksthooksu

Tr
([

(1,m+ 1), PR,(r,s)µ1µ2

]
IR′T ′

[
(1,m+ 1), PT,(t,u)ν2ν1

]
IT ′R′

)
(4.3.1.6)

In moving to the third line above we have used the formula (4.2.1.10) proved in Appendix E.
This is the only step in the above computation that is not exact, but relies on the large N
limit. Notice that the only difference between the last line above and the matrix elements of
the dilatation operator in the planar limit is that N is replaced with Neff . This is then a simple
proof that at large N , the matrix elements of the one loop dilatation operator with respect to
states of the emergent gauge theory are given by replacing N → Neff in the matrix elements of
the planar dilatation operator, taken with respect to the preimages of these states.

How does this generalize to higher loops? The two loop dilatation operator has been con-
sidered in [87] and from that analysis it is clear what the general results are. The structure
of the matrix elements are very similar to the form shown in (4.3.1.3). One again lands up
computing a trace. The same intertwining maps P+R,(+r,s)µ1µ2 and P+T,(+t,u)ν1ν2 appear in the
trace. The maps IR′T ′ , IT ′R′ are replaced at L loops by maps which map from a representation
R(L) obtained by dropping L boxes from R to a representation T (L) obtained by dropping L
boxes from T . There are also again permutations that act on the boxes associated to the exci-
tation. Finally, the trace is multiplied by the square root of the factors of the boxes dropped
from R and T . Arguing as we did above, its clear that the trace is background independent
and the product of factors implies that the simple rule N → Neff again applies. These observa-
tions imply that our one loop conclusion goes through when higher loop corrections are included.

To summarize, we have found integrable subsectors in the large N but non-planar limit that
we are considering. Each integrable subsector is an emergent gauge theory, with its own gauge
group U(Neff). To complete this discussion, in the next section we will consider the mixing
between the integrable and non-integrable subsectors.

4.3.2 Mixing with delocalised Operators

The operators that belong to the planar limit of a given emergent gauge theory are localised at
a given corner and define an integrable subsector of the theory. There are operators that are not
localised at one corner - they straddle two or more corners. If these delocalised operators mix
with the localised operators they will almost certainly ruin integrability of the emergent gauge
theory. In this section we consider the mixing between localised and delocalised operators. Our
main result is that

〈φ|D|ψ〉 = 0 |φ〉 ∈ HCFT;Local |ψ〉 ∈ HCFT;Delocalized (4.3.2.1)

at large N .

We make extensive of two basic observations. First, in computing the matrix element (4.3.1.3),
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it is clear that the reason why two different states can have a non-zero matrix element, is be-
cause the permutation group element (1,m + 1) acts to change the identity of the state. It is
thus important to have a good understanding of the action of this permutation on a standard
tableau. Since we are computing a trace which has the same value in any equivalent representa-
tion, we can carry this computation out in any convenient representation. In what follows, we
will use Young’s orthogonal representation. This representation is specified by giving the action
of adjacent swaps which are two cycles of the form (i, i + 1). Given the matrices representing
the complete set of adjacent swaps, it is easy to generate the rest of the group. Let |ψ〉 denote
a valid standard tableau and let |ψ〉i↔i+1 denote the state obtained from |ψ〉 by swapping i and
i + 1. The content of the box labelled i, denoted c(i) is given by b − a if the box is in row a
and column b. Our convention for the standard tableau labeling is spelled out in the following
example

5 4 3 2 1 (4.3.2.2)

The rule specifying the matrix representing the adjacent swap is

(i, i+ 1)|ψ〉 =
1

c(i)− c(i+ 1)
|ψ〉+

√
1− 1

(c(i)− c(i+ 1))2
|ψ〉i↔i+1 (4.3.2.3)

If boxes i and i+1 are located at different corners, the first term above is of order N−1 and can be
neglected in the large N limit while the coefficient of the second term is 1, to the same accuracy.

The second observation is a relationship between the loop order and the number of boxes
that can differ in the Young diagram labels of the operators that are mixing. To add loop ef-
fects, we consider Feynman diagrams with a certain number of vertices included in the diagram.
Contracting two fields in a restricted Schur polynomial with a vertex has the effect of setting
the indices of two different fields equal. This Kronecker delta function restricts the sum over
permutations in (4.2.1.7) from Sn+m to Sn+m−1. Two operators which begin as distinct repre-
sentations of Sn+m may well produce the same representation of Sn+m−1. For this to happen,
their Young diagram labels must differ in the placement of at most one box. This is mani-
fest in the matrix element (4.3.1.3), because the maps IT ′R′ which appear are only non-zero
if T ′ (obtained by dropping one box from T ) has the same shape as R′ (obtained by drop-
ping one box from R). At L loops we have added L vertices which lands up restricting the sum
in (4.2.1.7) from Sn+m to Sn+m−L. In this case operators that differ by at most L boxes will mix.

As a warm up example, consider the mixing of localised operators that belong to different
corners

〈φ|D|ψ〉 = 0 |φ〉 ∈ H(i)
CFT |ψ〉 ∈ H(j)

CFT (4.3.2.4)

with j 6= i. This represents a mixing between states of two different planar emergent gauge
theories, i.e. two distinct integrable subsectors. For concreteness imagine that these two oper-
ators are the images of R(r, s)αβ and T (t, u)γδ under the bijection described in section 4.2.3.
These two operators disagree in the placement of J ∼ O(

√
N) boxes, since the excitation which

has J boxes is located at corner i for state |φ〉 and at corner j for state |ψ〉. Thus, these
two operators will start to mix at the J loop order. Further, for a non-zero intertwining map
IR(J),T (J) we need to drop the boxes that disagree between the two operators27. This implies

27We use R(J) to denote a Young diagram obtained by dropping J boxes from R and similarly for T (J).
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that, after expressing permutations that appear in the dilatation operator in terms of adjacent
swaps, only the first term on the right hand side of (4.3.2.3) contributes. We need to swap all
of the distant and local boxes which leads to a suppression of O(N−1), for every box in the
excitation. Consequently this mixing is completely suppressed at large N and (4.3.2.4) holds.

We are now ready to tackle (4.3.2.1). Consider a localised excitation, located at corner i.
We study the mixing of this localised excitation with a delocalised excitation, that has k boxes
at corner j 6= i and is otherwise located at corner i. These two operators disagree in the place-
ment of at least k boxes and so the first time they can possibly mix is at k loops. To get a
non-zero answer, for the interwining map, we need to drop the boxes that don’t agree and this
means that we must keep terms in which distant boxes remain distant. This again amounts to
retaining the first term on the right hand side of (4.3.2.3) and hence a suppression of O(N−1),
for every distant box. Consequently this mixing is suppressed as ∼ N−k at large N . This
demonstrates that (4.3.2.1) holds at large N .

We will end this section with a simple example illustrating the above argument. The oper-
ators which mix are labelled by the Young diagrams shown in (4.3.2.5). They have a total of 2
Y fields and many Z fields.

A =

∗
∗ Y

∗
Y

B =

∗ Y

∗ Y

∗

(4.3.2.5)

A and B are the Young diagrams for the excitations in the background. They both have O(N2)
boxes. The boxes labelled with a Y correspond to Y fields and they may be labelled 1. The
boxes with a ∗ are Z fields and may be labelled with m + 1 = 3. For a non-zero answer, the
states in A which contribute have the bottom Y labelled with a 1. Only in this case can we
match the shape of B, after one box - the upper Y box - is dropped. Using Dirac notation, the
structure of the terms contributing to (4.3.1.5) are∑

i,j

〈A′, i|P+R,(+r,s)µ1µ2(1,m+ 1)|A′, j〉〈B′, j|P+T,(+t,u)ν1ν2(1,m+ 1)|B′, i〉 (4.3.2.6)

It is clear that the only way that 〈A′, i|P+R,(+r,s)µ1µ2(1,m + 1)|A′, j〉 can be non-zero is if we
keep the first term in (4.3.2.3) when the permutation acts. Since the only boxes labelled with
m+ 1 (the starred boxes) are distant from the bottom Y box in A, this is suppressed as 1

N
.

4.4 Strong Coupling CFT

In this section we want to explore the string theory interpretation of our results, adding to the
discussion of the introduction. The excitations we have considered in the CFT are all dual to
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excitations of the D3-brane giant gravitons that condensed to produce the geometry. These are
all open string excitations and we have demonstrated that they lead to emergent gauge theo-
ries. In this section we will motivate why adding boxes to the Young diagrams give excitations
that are localised to the brane, that is, why they are open strings. There are also closed string
excitations in the dual string theory. We will give an example of a closed string excitation. For
relevant earlier literature see [47, 88, 89, 90].

Why does adding extra boxes to a Young diagram as we have done above, lead to open strings
excitations? We can also phrase this question as: Why does adding extra boxes to a Young
diagram lead to excitations localised on the branes? Recall that there is an intimate connection
between the entanglement of the underlying degrees of freedom and the geometry of spacetime.
This is manifested in the Ryu-Takayanagi formula for entanglement entropy in terms of the
area of a minimal surface[91]. Further, Van Raamsdonk has conjectured that the amount of
entanglement between two regions is related to the distance between them: the more the en-
tanglement the less the distance between the two regions[92]. For a recent relevant discussion
see [81]. To apply this to our set up, recall that the Young diagram is an instruction for how
an operator composed of many fields is to be constructed. Each box corresponds to a distinct
field and the indices of fields in the same row are to be symmetrized, while the indices of fields
in the same column are to be antisymmetrized. This will in the end produce a highly entangled
state, with fields corresponding to boxes that are nearby on the Young diagram being more
entangled than boxes that are more distant. The Young diagram becomes a convenient way
to visualize the entanglement so that boxes that are nearby on the Young diagram, are nearby
in spacetime. To make these comments more precise we would need a better understanding of
entanglement for multi part quantum systems.

If this interpretation is correct, then to produce a closed string excitation (which is not lo-
calised on the brane), we should construct an operator whose indices are not symmetrized or
antisymmetrized with indices of the fields making up the background. An example of such an
operator is given by O{k} = Tr (Y k1Xk2Y k3 · · · ). Since this is a closed string state, we expect
that the mixing of this operator with the background will correspond to closed string absorp-
tion by a brane. Intuition from a single brane suggests that this is highly suppressed because
gs ∼ O(N−1) at large N . However, we are dealing with O(N) branes so that we can’t neglect
mixing of O{k} with the background. If this mixing were suppressed, we would be dealing with
an SU(2) sector of the planar Yang-Mills theory which is integrable. We will explore this issue
at strong coupling using string theory.

The state dual to O{k} should be a closed string moving in an LLM geometry. The general
LLM geometry is described by the metric[12] (i, j = 1, 2)

ds2 = −y(eG + e−G)(dt+ Vidx
i)2 +

1

y(eG + e−G)
(dy2 + dxidxi) + yeGdΩ3 + ye−GdΩ̃3(4.4.0.1)

where

z = z̃ +
1

2
=

1

2
tanh(G) y∂yVi = εij∂j z̃ y(∂iVj − ∂jVi) = εij∂yz̃ (4.4.0.2)
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The metric is determined by the function z which depends on the three coordinates y, x1 and
x2 and is obtained by solving Laplace’s equation

∂i∂iz + y∂y
∂yz

y
= 0. (4.4.0.3)

In what follows we often trade x1, x2 for a radius and an angle, r and ϕ. Our focus is on
geometries given by concentric black annuli on the bubbling plane. For a set of rings with a
total of E edges with radii Rl l = 1, 2, ..., E the geometry is determined by the functions[12]

z̃ =
E∑
l=1

(−1)E−l

2

(
r2 + y2 −R2

l√
(r2 + y2 +R2

l )
2 − 4r2R2

l

− 1

)
, (4.4.0.4)

Vϕ(x1, x2, y) =
E∑
l=1

(−1)E−l+1

2

(
r2 + y2 +R2

l√
(r2 + y2 +R2

l )
2 − 4r2R2

l

− 1

)
. (4.4.0.5)

We need the y = 0 limit of the metric, which is given by

ds2 = −1

b
(dt+ Vϕdϕ)2 + b(dy2 + y2dΩ̃2

3) + b(dr2 + r2dϕ2) +
1

b

(
sin2 ψdβ2 + dψ2 + cos2 ψdα2

)
(4.4.0.6)

with

b(r) =

√√√√ E∑
l=1

(−1)E−l
R2
l

(R2
l − r2)2

(4.4.0.7)

We look for classical string solutions to the equations of motion following from the Nambu-Goto
action

SNG =

√
λ

2π

∫
dτLNG =

√
λ

2π

∫
dσ

∫
dτ

√
(Ẋ ·X ′)2 − Ẋ2X ′2 (4.4.0.8)

The ansatz

t = τ ψ = ψ(τ, σ) α = α(τ, σ) y = 0 r = 0 (4.4.0.9)

with θ̃, ϕ̃, ψ̃, ϕ, β constant leads to a solution. After inserting this into the equations of motion,
the resulting equations describe a string moving on

ds2 =
1

b(0)

(
−dt2 + dψ2 + cos2 ψdα2

)
(4.4.0.10)

This is string theory on R × S2 which is integrable. The single magnon solution is given by
t = τ , α = τ + σ and

cosψ =
cosψ0

cosσ
− ψ0 ≤ σ ≤ ψ0 (4.4.0.11)
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The energy of this solution is given by

E =

√
λ

2π

∫ ψ0

−ψ0

dσ
∂LNG

∂ṫ

=

√
λ

π

1

b(0)
cosψ0 (4.4.0.12)

This is the energy of a single magnon with N → Neff where

Neff =
N1(M +N1)(M +N1 +N2)

M2 +N2
1 +M(2N1 +N2)

(4.4.0.13)

and N1 + N2 = N . In writing this formula we specialized to a geometry with a central black
disk of area N1, a white ring of area M and a black ring of area N2. If we take N2 = O(1) = M
at large N we find Neff = N1 = N(1+O(N−1)). This is exactly as expected since this boundary
condition corresponds to exciting so few giant gravitons that backreaction can be neglected and
we must recover the AdS5×S5 result as we have done. The above result shows that the closed
string is exploring the geometry at r = 0 in the bubbling plane. This region simply can’t be
explored by adding boxes to any corner of the background Young diagram. The result depends
in a nontrivial way on the details of the background, as we might expect for an excitation that
is not localised on a specific set of branes. This supports our argument that this is a closed
string excitation. For this closed string excitation once again the only change as compared to
the planar limit is the replacement N → Neff . This is probably only a property of the strong
coupling limit. Indeed, in the free theory the correlator of the closed string excitation and the
background factorizes

〈χ)B(Z)χB(Z)†O{k}O
†
{k}〉 = 〈χ)B(Z)χB(Z)†〉〈O{k}O†{k}〉 (4.4.0.14)

which is not consistent with a simple N → Neff replacement.

4.5 Summary and Outlook

In this thesis we have considered excitations of LLM geometries. The excitations are con-
structed by adding boxes (representing the excitation) to a Young diagram with O(N2) boxes
(representing the LLM geometry). Adding a box to a row of a Young diagram implies that
the indices of the added operator will be symmetrized or antisymmetrized with the indices of
adjacent boxes, so that the fields associated to the boxes added are highly entangled with the
fields associated to adjacent boxes. Two objects that are entangled are nearby in spacetime, so
that we produce excitations that are localised to the brane worldvolume. These excitations are
open strings and hence give rise to an emergent gauge theory. We have constructed a bijection
between operators in the Hilbert space of planar N = 4 super Yang-Mills and operators in the
planar Hilbert space of the emergent gauge theory. Free field correlators of operators that are
in bijection are related in a very simple way. This immediately implies that since three point
functions of single trace operators are suppressed in the planar limit of the original free CFT,
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they are also suppressed in the planar limit of the free emergent gauge theory. Since OPE
coefficients are read from three point functions, the OPE coefficients vanish in the planar limit
of both free N = 4 super Yang-Mills and the free emergent gauge theory. We have conjectured
that this continues to be the case when interactions are turned on. By considering the weak
coupling CFT we have also given arguments concluding that the anomalous dimensions match
the dimensions of an N = 4 super Yang-Mills with gauge group U(Neff), where Neff is read
from the factor of the boxes associated to the excitations. Since any CFT is determined by its
OPE coefficients and spectrum of anomalous dimensions, this strongly suggests that the planar
limit of the emergent gauge theories are planar N = 4 super Yang-Mills theories.

We have been careful to stress that the planar limit of the emergent gauge theory agrees
with planar N = 4 super Yang-Mills. The stronger statement, that the emergent gauge theory
is N = 4 super Yang-Mills is not true: there are important differences between the two theories
that are only apparent when going beyond the planar limit. The emergent gauge theory has
gauge group U(Neff). If this gauge theory really is N=4 super Yang-Mills theory we expect a
stringy exclusion principle cutting off the angular momentum of the giant graviton at momen-
tum Neff . In actual fact, the maximum angular momentum for a giant graviton is in general
below this and it is set by the shape of the background Young diagram. Similarly, dual giant
gravitons can usually have an arbitrarily large angular momentum. In the emergent gauge
theory, the dual giant must fit inside the corner at which the emergent gauge theory is located,
so there are no dual giant excitations with arbitrarily large momentum. These discrepancies
arise because the giant graviton excitations detect the structure of the bubbling plane. They
can probe the difference between a black disk in a sea of white or just one ring among many
or something else. So even in the large N limit, the emergent gauge theory and N = 4 super
Yang-Mills theory are different. They do however share the same planar limit.

An interesting technical result that has been achieved is the description of states when some
of the rows of the Young diagram describing the giant graviton branes are equal in length.
Previous studies [93, 36, 37] have considered the displaced corners approximation in which the
length between any two rows (for a system of dual giant gravitons) scales as N in the large
N limit. In this situation, the action of the symmetric group simplifies and explicit formulas
for the restricted characters can be developed[93, 36]. Here we have the case that many row
lengths are of comparable size. Progress is achieved by uncovering the relationship between the
relevant restricted Schur computations and those of the planar limit. We also allowed some Z
fields in the excitation which includes the case that the row lengths are similar but not identical.

There are a number of interesting directions that could be pursued. First, perhaps there are
new holographic dualities: each emergent gauge theory might itself be dual to an AdS5×S5

geometry, in a suitable limit. There maybe a limit of the geometry that zooms in on the edge
of the black regions in the bubbling plane to give an AdS5×S5 geometry with Neff units of
five form flux. Restricting to excitations that belong to H(i)

CFT is how we restrict to the inte-
grable subsector in the CFT. The limit that isolates an AdS5×S5 geometry would restrict us
to the integrable subsector in the string theory. This is currently under active investigation [94].

There are a number of questions we could pursue to further explore the dynamics of the emer-
gent gauge theory. As we have mentioned, the worldvolume of the giant gravitons is a distinct
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space from the space on which the original CFT is defined. How is locality in this emergent
space of the emergent gauge theory realized? This may provide a simple testing ground for ideas
addressing the emergence of spacetime. We have argued that there are integrable subsectors in
large N but non-planar limits of N = 4 super Yang-Mills. Can we find further evidence for the
integrability of these subsectors? Even more important, how can this integrability be exploited
to explore the physics of emergent gauge theories in interesting and non-trivial ways? For other
promising indications of integrability beyond the planar limit see [95, 96, 97]. Besides the local
observables we have considered, the emergent gauge theory will have Wilson loops. It maybe
interesting to explore these non-local observables.

The emergent gauge theory that we have explored in this thesis is only a decoupled sector
at large N . What are the first corrections which couple the emergent gauge theory to the rest
of the theory? Presumably these corrections correspond to closed string absorption/emission
by branes. This is something concrete that can be evaluated.

Finally, decoupling limits for gauge theory living on the intersections of giant gravitons have
been considered in [98, 99, 100, 101, 102]. It would be interesting to see if the methods devel-
oped in this thesis can be used to clarify the emergent gauge theories arising in these cases,
which may shed light on the microstates of near-extremal black holes in AdS5×S5.

105



Gauge Invariants in Tensor Models Introduction

5 Gauge Invariants in Tensor Models

This chapter is based on work that appears in [103]. Reorganising a field theory in terms of
gauge invariant parameters has been insightful in how to treat the CFT so as to better under-
stand how gravity manifests itself from a strongly coupled gauge theory. The space of gauge
invariants in N = 4 is huge, however. The SYK model has been a promising candidate for a
simple solvable example of holography. Motivated by the close connection between tensor mod-
els and SYK, and in the hope the space of gauge invariants will be easier to work with than for
a matrix model, we construct the gauge invariants of bosonic and fermionic tendor models. We
compute the correlation functions exactly in the free theory and construct the collective theory
for the bosonic model. In this way we hope to take a step closer to understanding holography.

5.1 Introduction

The SYK model[104, 105] may provide a simple solvable example of holography[4], realized as
an AdS/CFT duality - see [106, 107, 108, 109]. This expectation is motivated by the fact that
the model develops an approximate conformal symmetry in the infrared. Exact conformal sym-
metry is spontaneously and explicitly broken, leading to a pseudo-Goldstone mode. This mode
is responsible for the exponential growth of out of time ordered correlators, which saturates the
chaos bound[110]. Saturating the bound is a strong hint that the model is dual to something
close to Einstein gravity. Much of the progress to date is possible because the large N limit is
dominated by a simple class of diagrams. It is because these diagrams can be summed that the
model is solvable, even at strong coupling.

The SYK model describes fermions interacting with all-to-all random interactions. However,
the large N physics of the SYK model is identical to a tensor model, that has a conven-
tional large N limit[111]. The large N limit of the tensor models is dominated by melonic
graphs[112, 113, 114, 115], which can be summed. For interesting related work on holographic
tensor models see [116]-[117]. Earlier work on tensor models includes [118]-[119].

The mechanism by which gravitational physics is manifested from a strongly coupled gauge
theory remains elusive. The original CFT description has the field theory coupling as the loop
expansion parameter. On the other hand, the gravitational description that emerges at strong
coupling, must have 1/N as the loop counting parameter. This is a highly non-trivial hint into
the structure of the holographic reorganization of the CFT. The collective field theory of Jevicki
and Sakita[120, 121] achieves exactly this: by formulating the theory in terms of gauge invariant
variables, the resulting field theory explicitly has 1/N as the loop expansion parameter. The
reorganization of the dynamics is highly non-trivial, with non-linear collective dynamics being
induced by the Jacobian of the change of variables[120, 121].

It would be very attractive to apply the collective field theory method to CFTs and explore
the resulting field theory. In the case of a single matrix, this leads to a string field theory for
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the c = 1 string[56]. This is a beautiful example of how a quantum mechanical system can
develop an extra dimension. In the much more interesting example of N = 4 super Yang-Mills
theory[4] (or even QCD) the construction of collective field theory is frustrated by the fact that
the space of gauge invariants (loop space) is enormous and an explicit construction of the dy-
namics of gauge invariants looks hopeless. It turns out that representation theory can provide
a systematic approach towards the structure of loop space. Indeed, the use of representation
theory in the half-BPS sector[122, 123] leads to a clear connection to free fermions[122, 123, 16]
and ultimately to a rather complete understanding of the mapping between the CFT operators
and supergravity geometries[12]. This has been extended to more general bosonic sectors[32]
-[83] and even for fermions and gauge fields[60, 61]. These bases allow the computations of
anomalous dimensions of heavy operators in N = 4 super Yang-Mills[36, 93, 124, 37] (in a
large N but non planar limit[13]) that are dual to excited giant gravitons[62]-[82]. Up to now
however, even with this improved understanding, it is not obvious how to build the collective
field theory of these invariant variables.

Vector models are much simpler. The space of invariants is spanned by a bilocal field and
one can explicitly build the collective dynamics[125]. In [126] the idea that the bilocal fields
provide a reconstruction of the bulk fields of the dual higher spin gravity[127] was put for-
wards. Using essentially kinematics [128]-[129] developed a map between the space of bilo-
cals and the dual gravity. The bilocal description has also proved to be very useful for the
SYK model itself[107, 109, 130], as well as for descriptions of supersymmetric versions of
SYK[131, 132, 133, 134], in which case an elegant bilocal superspace formulation has been
developed in [135].

One might hope that the case of tensor models is, in a sense, intermediate between the vector
and matrix models. It is possible that the space of gauge invariants is richer than that of vec-
tors, but still not as complex as that of matrices. If this is the case, this may provide a useful
lesson towards managing the loop space of multi-matrix models. We explore this possibility in
the present chapter.

Our basic goal is to construct the gauge invariants of both bosonic and fermionic tensor mod-
els. For bosonic tensor (colored as well as non-colored) models, the paper [136] counted the
gauge invariants uncovering a relationship with counting problems of branched covers of the
2-sphere. The rank d of the tensor is related to a number of branch points. Further, formulas
for correlators of the tensor model invariants in a permutation basis were obtained. Correlators
in the permutation basis have been related to the (Hurwitz) character calculus in [137] (see
also [138]). A dual representation theory basis was developed in [139]. Our starting point re-
considers the representation theory basis for the bosonic tensor models, in a way that naturally
allows an extension to fermionic tensor models. The basic ideas are explained in the next sec-
tion, where we obtain counting formulas for the number of gauge invariant operators in bosonic
and fermionic tensor models. The counting results for the bosons agree with results presented
in [136, 139, 140]. The counting formulas for the fermions are new. In section 3 we consider
both the computations of the vacuum expectation values of our gauge invariant operators, as
well as two point functions of normal ordered gauge invariant operators. These computations
are performed exactly (i.e. to all orders in 1/N), in the free theory. In section 4 we describe
the algebraic structure of the gauge invariants: they form a ring. In section 5, we construct a
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collective field theory in terms of a subset of the gauge invariant variables in analogy to the
construction for a single matrix model. We exhibit an emergent dimension and show that the
Hamiltonian is local in this new dimension. We reproduce large N correlators of the tensor
model quantum mechanics from the classical collective field theory. Finally, in section 6 we
conclude and mention some possible directions for further investigation.

5.2 Construction of Gauge Invariant Operators

In this section we simply want to count the number of gauge invariant operators that can be
constructed, for both bosonic and fermionic tensor models. Once we have understood how to
count the number of gauge invariants, a natural construction formula will be evident.

The fields that we consider are tensors, of rank r. We will denote the bosonic tensors by
φb1b2···br and the fermionic tensors by ψf1f2···fr . These fields transform in the fundamental of
G = U(N1)× U(N2)× · · · × U(Nr).

Let Vk denote the vector space carrying a copy of the fundamental representation of U(Nk).
Fields transforming in the fundamental of G = U(N1) × U(N2) × · · · × U(Nr) belong to
V ≡ V1 × V2 × · · · × Vr. To build gauge invariants we will also need fields that transform
in the anti-fundamental, denoted φ̄b1b2···br and ψ̄f1f2···fr . Gauge invariants are then given by
contracting corresponding upper and lower indices. The valid gauge invariants, built using two
fields, are given by

φ̄b1b2···brφb1b2···br ψ̄f1f2···frψf1f2···fr (5.2.0.1)

The operators that follow are not observables because they are not gauge invariant

φ̄b1b2···brφb2b1···br ψ̄f1f2f3···frψf1f3f2···fr (5.2.0.2)

A valid gauge invariant operator is only obtained if we contract corresponding indices of the
tensors, since the position of an index signifies which gauge group it belongs to. To simplify
the arguments that follow, we now specialize to rank 3 tensors φijk or ψijk with i = 1, ..., N1,
j = 1, ..., N2 and k = 1, ..., N3. The generalization to higher rank tensors is completely clear. A
comment is in order: the symmetry U(N)×U(N)×U(N) can not be realized in any interacting
theory, whose large N expansion is dominated by melonic diagrams. The maximal symmetry
in this case is only U(N)× U(N)×O(N).

We will want to consider products of tensors to build the general gauge invariant operator.
Here is an example

φi1j1k1φi2j2k2 · · ·φinjnkn (5.2.0.3)

This notation will quickly get out of hand, as the number of indices rapidly proliferates. To
avoid this, we will now use the notation first introduced in [122, 123]. The sleek notation uses
a capital Roman letter to collect all of the little Roman letter indices, for example I stands for
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i1, i2, · · · , in. We will also use a capital Greek letter to collect the tensors. Thus, for example,
we write

ΦIJK = φi1j1k1φi2j2k2 · · ·φinjnkn (5.2.0.4)

Similarly

ΨIJK = ψi1j1k1ψi2j2k2 · · ·ψinjnkn (5.2.0.5)

These fields belong to V⊗n. There is a natural action of Sn on V⊗n defined as follows: For any
σ ∈ Sn we have

σ · ΦIJK → Φσ(I)σ(J)σ(K) = φiσ(1)jσ(1)kσ(1)
φiσ(2)jσ(2)kσ(2)

· · ·φiσ(n)jσ(n)kσ(n)
(5.2.0.6)

We will sometimes call this the diagonal action of Sn since each type of index, i, j or k is
permuted in exactly the same way. We could also define an action of Sn × Sn × Sn that acts
independently on these three indices. The notation distinguishing these two actions is

σ · ΦIJK → Φσ(I)σ(J)σ(K) σ ∈ Sn (5.2.0.7)

versus

σ1 ◦ σ2 ◦ σ3 · ΦIJK → Φσ1(I)σ2(J)σ3(K) σ1 ◦ σ2 ◦ σ3 ∈ Sn × Sn × Sn (5.2.0.8)

Since the diagonal action swaps the tensors we have

σ · ΦIJK = Φσ(I)σ(J)σ(K) = ΦIJK (5.2.0.9)

σ ·ΨIJK = Ψσ(I)σ(J)σ(K) = sgn(σ)ΨIJK (5.2.0.10)

We know that swapping fermions costs a sign which is what the above equation captures. In the
last formula above sgn(σ) denotes the signature of the permutation σ. For example, if n = 2
and σ = (12) we have

(12)ψi1j1k1ψi2j2k2 = ψi2j2k2ψi1j1k1

= −ψi1j1k1ψi2j2k2

= sgn ( (12) )ψi1j1k1ψi2j2k2 (5.2.0.11)

since the fermions are described using Grassman numbers. The equations (5.2.0.9),(5.2.0.10)
will be important in the next section.

5.2.1 Counting and construction for bosonic tensors

Our goal in this section is to count the number of gauge invariant operators that can be
constructed from the bosonic tensors introduced above. To construct gauge invariants we
need to completely contract the indices of ΦIJK with the indices of Φ̄IJK . In general, this
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is accomplished using three permutations σ1, σ2, σ3 ∈ Sn (or equivalently, one permutation
σ1 ◦ σ2 ◦ σ3 ∈ Sn × Sn × Sn) as follows

Φ̄ · σ1 ◦ σ2 ◦ σ3 · Φ = Φ̄IJKΦσ1(I)σ2(J)σ3(K) (5.2.1.1)

The invariants given in equation (5.2.1.1) are over complete: the φ’s and φ̄’s are bosons, so we
have the symmetry given in (5.2.0.9) which must be accounted for. Let β1 ∈ Sn be an arbitrary
permutation of the φ’s and let β2 ∈ Sn be an arbitrary permutation of the φ̄’s. Then (we act
to the right if we act on lower indices and to the left if we act on upper indices)

Φ̄ · σ1 ◦ σ2 ◦ σ3 · Φ = (Φ̄ · β2) · σ1 ◦ σ2 ◦ σ3 · (β1 · Φ) (5.2.1.2)

Manipulating this a little, we have28

Φσ1(I)σ2(J)σ3(K)Φ̄
IJK = Φσ1(β1(I))σ2(β1(J))σ3(β1(K))Φ̄

β2(I)β2(J)β2(K)

= Φβ−1
2 (σ1(β1(I)))β−1

2 (σ2(β1(J)))β−1
2 (σ3(β1(K)))Φ̄

IJK (5.2.1.3)

Thus, (σ1, σ2, σ3) and (β1σ1β2, β1σ2β2, β1σ3β2) define the same gauge invariant operator. This
implies that we have one gauge invariant operator for each element in the double coset

Sn \ Sn × Sn × Sn / Sn (5.2.1.4)

This understanding of the structure of the space of gauge invariant observables was first achieved
in [136]. The generalization to other ranks is obvious. For example, rank 5 tensors would be
elements of the coset

Sn \ Sn × Sn × Sn × Sn × Sn / Sn (5.2.1.5)

The number of elements in a double coset |H1 \G/H2| is given, by Burnside’s Lemma, as

|H1 \G/H2| =
1

|H1||H2|
∑
h1∈H1

∑
h2∈H2

∑
g∈G

δ(h1gh2g
−1) (5.2.1.6)

Thus, for example, the number N3 of rank 3 tensors built using n fields is given by

N3 =
1

(n!)2

∑
σ1,σ2,σ3∈Sn

∑
β1,β2∈Sn

δ(β1σ1β2σ
−1
1 )δ(β1σ2β2σ

−1
2 )δ(β1σ3β2σ

−1
3 ) (5.2.1.7)

To make sure the generalization is clear, we simply quote the count for the number of rank q
tensors built using n fields

Nq =
1

(n!)2

∑
σ1,··· ,σq∈Sn

∑
β1,β2∈Sn

q∏
i=1

δ(β1σiβ2σ
−1
i ) (5.2.1.8)

The arguments we have just outlined are not the most natural when we generalize to fermionic
tensors. To perform the counting in a way that will generalize nicely to the fermionic case, we
will change basis. The operators

O(σ1, σ2, σ3) = Φ̄ · σ1 ◦ σ2 ◦ σ3 · Φ (5.2.1.9)

28A useful identity to keep in mind is the following: Φ̄γ
−1(K)ΦK = Φ̄KΦγ(K). This follows very simply by

using the explicit representation (σ)IJ = δi1jσ(1) · · · δ
in
jσ(n)

.
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define the “permutation basis”. We will Fourier transform to the representation theory basis
as follows

(Or1,r2,r3)α1α2α3,β1β2β3 =∑
σ1,σ2,σ2

O(σ1, σ2, σ3)Γr1α1β1(σ1)Γr2α2β2(σ2)Γr3α3β3(σ3) (5.2.1.10)

All of the representations above are irreducible representations of Sn, i.e. ri ` n, i = 1, 2, 3. We
again have to deal with the symmetry present as a consequence of (5.2.0.9). The simplest way
to do this is to couple the row indices to the trivial irreducible representation and to couple the
column indices to the trivial irreducible representation of the diagonal Sn. The tensor product
of the irreducible representations involved is

Vr1 ⊗ Vr2 ⊗ Vr3 =
⊕
r

gr1 r2 r3 rVr (5.2.1.11)

The Kronecker coefficients gr1 r2 r3 r are non-negative integers that count how many times irre-
ducible representation r appears in the tensor product r1 ⊗ r2 ⊗ r3. To perform the projection
to the trivial, introduce the branching coefficients Bγ

α1α2α3
defined by

1

n!

∑
σ∈Sn

Γr1α1β1(σ)Γr2α2β2(σ)Γr3α3β3(σ) =
∑
γ

Bγ
α1α2α3

Bγ
β1β2β3

(5.2.1.12)

The branching coefficients provide an orthonormal basis for the subspace of r1 ⊗ r2 ⊗ r3 that
carries the trivial representation, i.e.

Bγ1
α1α2α3

Bγ2
α1α2α3

= δγ1γ2 (5.2.1.13)

and where we employ the usual convention that repeated indices are summed. The gauge
invariant operators are now given by

Oγ1γ2
r1,r2,r3

= Bγ1
α1α2α3

(Or1,r2,r3)α1α2α3,β1β2β3B
γ2

β1β2β3
(5.2.1.14)

We will also write this as

Oγ1γ2
r1,r2,r3

=
∑
σ1∈Sn

∑
σ2∈Sn

∑
σ3∈Sn

Cγ1γ2
r1,r2,r3

(σ1, σ2, σ3)O(σ1, σ2, σ3) (5.2.1.15)

where

Cγ1γ2
r1,r2,r3

(σ1, σ2, σ3) = Bγ1
α1α2α3

Γr1α1β1(σ1)Γr2α2β2(σ2)Γr3α3β3(σ3)Bγ2

β1β2β3
(5.2.1.16)

is in fact a restricted character, in the language introduced in [62],[141]. Thus, (5.2.1.15) pro-
vides the restricted Schur polynomial basis for the gauge invariant operators of the bosonic
tensor model.

Since each multiplicity runs from 1 to gr1 r2 r3 1 and each operator is labeled by a pair of mul-
tiplicity labels, this second construction shows that the number of gauge invariant operators,
constructed using n φ’s and n φ̄’s, is given by∑

ri`n l(ri)≤Ni

g2
r1 r2 r3 1 (5.2.1.17)
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where we have used 1 to denote the rep labeled by a Young diagram with a single row of n
boxes. This is in complete agreement with [140], as already pointed out in [139]. A standard
result which follows from the orthogonality of characters is

gr1 r2 r3 1 =
1

n!

∑
σ∈Sn

χr1(σ)χr2(σ)χr3(σ) = gr1 r2 r3 (5.2.1.18)

Some checks of the counting formula (5.2.1.17) are given in Appendix J.

5.2.2 Counting and construction for fermionic tensors

Our goal in this section is to count the number of gauge invariant operators that can be
constructed from the fermionic tensors introduced above. To construct gauge invariants we need
to completely contract the indices of ΨIJK with the indices of Ψ̄IJK . In general, this is again
accomplished using three permutations σ1, σ2, σ3 ∈ Sn (or equivalently σ1◦σ2◦σ3 ∈ Sn×Sn×Sn)
as follows

Ψ̄ · σ1 ◦ σ2 ◦ σ3 · Ψ = Ψ̄IJKΨσ1(I)σ2(J)σ3(K) (5.2.2.1)

The invariants given in equation (5.2.2.1) are again over complete: the ψ’s and ψ̄’s are fermions,
so we have the symmetry given in (5.2.0.10) which must be accounted for. Following our
discussion for the bosons, let β1 ∈ Sn be an arbitrary permutation of the ψ’s and let β2 ∈ Sn be
an arbitrary permutation of the ψ̄’s. Then (exactly as for bosonic tensors, we act to the right
if we act on lower indices and to the left, if we act on upper indices)

Ψ̄ · σ1 ◦ σ2 ◦ σ3 · Ψ = sgn(β1)sgn(β2)(Ψ̄ · β2) · σ1 ◦ σ2 ◦ σ3 · (β1 ·Ψ) (5.2.2.2)

Manipulating this a little, we have

Ψσ1(I)σ2(J)σ3(K)Ψ̄
IJK = sgn(β1)sgn(β2)Ψσ1(β1(I))σ2(β1(J))σ3(β1(K))Ψ̄

β2(I)β2(J)β2(K)

= sgn(β1)sgn(β2)Ψβ−1
2 (σ1(β1(I)))β−1

2 (σ2(β1(J)))β−1
2 (σ3(β1(K)))Ψ̄

IJK

(5.2.2.3)

We will still have to account for this symmetry. To do this, it again proves useful to change
basis. The operators

P(σ1, σ2, σ3) = Ψ̄ · σ1 ◦ σ2 ◦ σ3 · Ψ (5.2.2.4)

define the “permutation basis”. Again, Fourier transform to the representation theory basis as
follows

(Pr1,r2,r3)α1α2α3,β1β2β3 =∑
σ1,σ2,σ2

P(σ1, σ2, σ3)Γr1α1β1(σ1)Γr2α2β2(σ2)Γr3α3β3(σ3) (5.2.2.5)

112



Gauge Invariants in Tensor Models Correlators of Gauge Invariant Operators

We now have to deal with the symmetry present as a consequence of (5.2.0.10). The simplest
way to do this is to couple the row indices to the antisymmetric irreducible representation and
to couple the column indices to the antisymmetric irreducible representation of the diagonal
Sn. By the antisymmetric irreducible representation, (denoted (1n)) we mean the irreducible
representation labeled by a Young diagram that has a single column of n boxes. This is a one
dimensional representation defined by

Γ(1n)(σ) = sgn(σ) (5.2.2.6)

To perform the projection to the antisymmetric irreducible representation, we again introduce
branching coefficients

1

n!

∑
σ∈Sn

Γr1α1β1(σ)Γr2α2β2(σ)Γr3α3β3(σ)sgn(σ) =
∑
γ

B̃γ
α1α2α3

B̃γ
β1β2β3

(5.2.2.7)

We are using a tilde to distinguish the branching coefficients defined using the antisymmet-
ric irreducible representation, from those relevant for the bosons which are defined using the
symmetric representation. The branching coefficients again define an orthonormal basis

B̃γ1
α1α2α3

B̃γ2
α1α2α3

= δγ1γ2 (5.2.2.8)

The gauge invariant operators are now given by

Pγ1γ2
r1,r2,r3

= B̃γ1
α1α2α3

(Pr1,r2,r3)α1α2α3,β1β2β3B̃
γ2

β1β2β3
(5.2.2.9)

Once again, we can write this as

Pγ1γ2
r1,r2,r3

=
∑
σ1∈Sn

∑
σ2∈Sn

∑
σ3∈Sn

C̃γ1γ2
r1,r2,r3

(σ1, σ2, σ3)P(σ1, σ2, σ3) (5.2.2.10)

where

C̃γ1γ2
r1,r2,r3

(σ1, σ2, σ3) = B̃γ1
α1α2α3

Γr1α1β1(σ1)Γr2α2β2(σ2)Γr3α3β3(σ3)B̃γ2

β1β2β3
(5.2.2.11)

is again a restricted character. Thus, (5.2.2.10) provides the restricted Schur polynomial basis
for the gauge invariant operators of the fermionic tensor model.

This construction shows that the number of gauge invariant operators is given by∑
ri`n l(ri)≤Ni

g2
r1 r2 r3 (1n) (5.2.2.12)

A standard result which follows from the orthogonality of characters is

gr1 r2 r3 (1n) =
1

n!

∑
σ∈Sn

χr1(σ)χr2(σ)χr3(σ)sgn(σ) (5.2.2.13)

Some checks of this counting formula are given in Appendix J.
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5.3 Correlators of Gauge Invariant Operators

In this section we will compute the correlation functions of the operators defined in the pre-
vious section. Since these operators are neutral under the gauge symmetry they can develop
a nonzero vacuum expectation value. It is interesting to compute these values as their large
N limit must be reproduced by the classical equations of motion of collective field theory. We
also compute the two point functions of normal ordered gauge invariant operators. The large
N limit of these two point functions must be reproduced by considering quadratic fluctuations
about the classical collective configuration.

5.3.1 Bosonic Correlators

The free field two point function is

〈φ̄ijkφlmn〉 = δilδ
j
mδ

k
n (5.3.1.1)

This is valid both as a formula in a zero dimensional random tensor model, or as an equal time
two point function in the tensor model quantum mechanics. Wick’s theorem can be written as

〈Φ̄IJKΦLMN〉 =
∑
σ∈Sn

n∏
a=1

δialσ(a)
δjamσ(a)

δkanσ(a)

=
∑
σ∈Sn

(σ)IL(σ)JM(σ)KN (5.3.1.2)

There are two interesting correlators to consider: first we could consider the one point functions
〈Oγ1γ2

r1,r2,r3
〉; second we could consider the two point function of normal ordered operators 〈:

Oγ1γ2
r1r2r3

: : Oγ3γ4
s1s2s3

:〉.

One point functions: We will use the fact that

TrVj(σ) = δi1iσ(1)
· · · δiniσ(n)

= N
C(σ)
j (5.3.1.3)

where C(σ) denotes the number of cycles in the permutation σ. In addition, we will use the
orthogonality relation

dr
n!

∑
σ∈Sn

Γr(σ)abΓs(σ
−1)cd = δrsδbcδad (5.3.1.4)

to obtain

dr
n!

∑
s`n

∑
σ1∈Sn

Γr(σ1)cdχs(σσ
−1
1 ) = Γr(σ)cd (5.3.1.5)

Finally, we will use the relation, valid for Schur polynomials

Tr(σZ) =
∑
R

χR(σ)χR(Z) (5.3.1.6)
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evaluated at Z = 1 to find

Tr(σ) =
1

n!

∑
R`n

dRχR(σ)fR(N) (5.3.1.7)

fR(N) is the product of the factors of Young diagram R understood as a representation of
U(N). Recall that the factor of a box in row i and column j is N − i + j. We use χR(σ) to
denote a character of the symmetric group and χR(Z) to denote a Schur polynomial. The two
are distinguished only by their argument, which is either an element of the symmetric group
σ ∈ Sn or an N ×N matrix Z. We are now ready to compute the one point function

〈Oγ1γ2
r1r2r3

〉 =
∑
σi∈Sn

〈Φ̄ · σ1 ◦ σ2 ◦ σ3 · Φ〉Bγ1Γr1(σ1)Γr2(σ2)Γr3(σ3)Bγ2

=
∑

σ,σi∈Sn

N
C(σσ1)
1 N

C(σσ2)
2 N

C(σσ3)
3 Bγ1Γr1(σ1)Γr2(σ2)Γr3(σ3)Bγ2

=
∑

σ,σi∈Sn

∑
si`n

(
1

n!

)3

ds1χs1(σσ−1
1 )fs1(N1)ds2χs2(σσ−1

2 )fs2(N2)

ds3χs3(σσ−1
3 )fs3(N3)Bγ1Γr1(σ1)Γr2(σ2)Γr3(σ3)Bγ2

=
∑
σ∈Sn

fr1(N1)fr2(N2)fr3(N3)Bγ1Γr1(σ)Γr2(σ)Γr3(σ)Bγ2

= n!fr1(N1)fr2(N2)fr3(N3)δγ1γ2 (5.3.1.8)

See Appendix K for some checks of this formula.

Two point functions of normal ordered operators: Using the identities given above, it
is straightforward to compute

〈: Oγ1γ2
r1r2r3

: : Oγ3γ4
s1s2s3

:〉 =
∑
σ∈Sn

∑
ρ∈Sn

∑
σi∈Sn

∑
τi∈Sn

Tr(σ1στ1ρ)Tr(σ2στ2ρ)Tr(σ3στ3ρ)

×Bγ1Γr1(σ1)Γr2(σ2)Γr3(σ3)Bγ2 Bγ3Γs1(τ1)Γs2(τ2)Γs3(τ3)Bγ4

=
∑
σρσiτi

NC(σ1στ1ρ)NC(σ2στ2ρ)N (σ3στ3ρ)

×Bγ1Γr1(σ1)Γr2(σ2)Γr3(σ3)Bγ2 Bγ3Γs1(τ1)Γs2(τ2)Γs3(τ3)Bγ4

=
∑
σρσiτi

∑
ti`n

(
1

n!

)3

dt1χt1(σ1στ1ρ)ft1(N1)dt2χt2(σ2στ2ρ)ft2(N2)dt3χt3(σ3στ3ρ)ft3(N3)

×Bγ1Γr1(σ1)Γr2(σ2)Γr3(σ3)Bγ2 Bγ3Γs1(τ1)Γs2(τ2)Γs3(τ3)Bγ4

= (n!)2δr1s1δr2s2δr3s3fr1(N1)fr2(N2)fr3(N3)
n!

dr1

n!

dr2

n!

dr3
δγ1γ4δγ2γ3 (5.3.1.9)

Some checks of this formula are given in Appendix K.
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5.3.2 Fermionic Correlators

The relevant two point function for the fermionic tensor model is

〈ψ̄ijkψlmn〉 = δilδ
j
mδ

k
n (5.3.2.1)

This is valid, as for the bosons, both as a formula in a zero dimensional random tensor model,
or as an equal time two point function in the tensor model quantum mechanics. Since the
fermionic fields anticommute, it is important to spell out the ordering of the fields. Order the
fields in the following way

Ψ̄IJKΨLMN = ψ̄i1j1k1ψ̄i2j2k2 · · · ψ̄injnknψlnmnnn · · ·ψl2m2n2ψl1m1n1 (5.3.2.2)

With this ordering spelled out, a simple application of Wick’s theorem now gives

〈ψ̄IJKψLMN〉 =
∑
σ∈Sn

sgn(σ)σILσ
J
Mσ

K
N (5.3.2.3)

One point functions: A simple computation shows that

〈Pγ1γ2
r1r2r3

〉 =
∑
σi∈Sn

〈Ψ̄ · σ1 ◦ σ2 ◦ σ3 ·Ψ〉B̃γ1Γr1(σ1)Γr2(σ2)Γr3(σ3)B̃γ2

=
∑

σ,σi∈Sn

sgn(σ)N
C(σσ1)
1 N

C(σσ2)
2 N

C(σσ3)
3 B̃γ1Γr1(σ1)Γr2(σ2)Γr3(σ3)B̃γ2

=
∑
σ∈Sn

sgn(σ)fr1(N1)fr2(N2)fr3(N3)B̃γ1Γr1(σ)Γr2(σ)Γr3(σ)B̃γ2

= n!fr1(N1)fr2(N2)fr3(N3)δγ1γ2 (5.3.2.4)

See Appendix K for examples and checks of this formula.

Two point functions of normal ordered operators: Using the identities given above

〈: Pγ1γ2
r1r2r3

: : Pγ3γ4
s1s2s3

:〉 =
∑
σ∈Sn

∑
ρ∈Sn

∑
σi∈Sn

∑
τi∈Sn

sgn(σ)sgn(ρ)Tr(σ1στ1ρ)Tr(σ2στ2ρ)Tr(σ3στ3ρ)

×B̃γ1Γr1(σ1)Γr2(σ2)Γr3(σ3)B̃γ2 B̃γ3Γs1(τ1)Γs2(τ2)Γs3(τ3)B̃γ4

=
∑
σρσiτi

sgn(σ)sgn(ρ)NC(σ1στ1ρ)NC(σ2στ2ρ)N (σ3στ3ρ)

×B̃γ1Γr1(σ1)Γr2(σ2)Γr3(σ3)B̃γ2 B̃γ3Γs1(τ1)Γs2(τ2)Γs3(τ3)B̃γ4

= (n!)2δr1s1δr2s2δr3s3fr1(N1)fr2(N2)fr3(N3)
n!

dr1

n!

dr2

n!

dr3
δγ1γ4δγ2γ3 (5.3.2.5)

Appendix K illustrates and checks this formula in some simple cases.
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5.4 Algebra of the Gauge Invariant Operators

The gauge invariant operators that we have introduced above close an interesting algebra: we
will argue that the gauge invariant operators have a ring structure. Algebras of gauge invariant
operators have also been considered in [142]. To develop the algebra for our tensor model, we
will need to develop some properties of the restricted character. We can always assume that
we work in an orthogonal representation of the symmetric group. In this case the restricted
characters obey

Cγ1γ2
r1r2r3

(σ1, σ2, σ3) = Cγ2γ1
r1r2r3

(σ−1
1 , σ−1

2 , σ−1
3 )

C̃γ1γ2
r1r2r3

(σ1, σ2, σ3) = C̃γ2γ1
r1r2r3

(σ−1
1 , σ−1

2 , σ−1
3 ) (5.4.1)

They also enjoy a “completeness identity” given by∑
σ1∈Sn

∑
σ2∈Sn

∑
σ3∈Sn

Cγ1γ2
r1r2r3

(σ1, σ2, σ3)Cγ3γ4
s1s2s3

(σ1, σ2, σ3) =
n!

dr1

n!

dr2

n!

dr3
δr1s1δr2s2δr3s3δ

γ1γ3δγ2γ4

∑
σ1∈Sn

∑
σ2∈Sn

∑
σ3∈Sn

C̃γ1γ2
r1r2r3

(σ1, σ2, σ3)C̃γ3γ4
s1s2s3

(σ1, σ2, σ3) =
n!

dr1

n!

dr2

n!

dr3
δr1s1δr2s2δr3s3δ

γ1γ3δγ2γ4 (5.4.2)

Using these formulas, we find the following interesting Fourier transform pairs

Oγ1γ2
r1r2r3

=
∑
σ1∈Sn

∑
σ2∈Sn

∑
σ3∈Sn

Cγ1γ2
r1r2r3

(σ1, σ2, σ3)O(σ1, σ2, σ3) (5.4.3)

O(σ1, σ2, σ3) =
∑
s1`n

∑
s2`n

∑
s3`n

∑
γ1,γ2

ds1
n!

ds2
n!

ds3
n!
Cγ1γ2
s1s2s3

(σ1, σ2, σ3)Oγ1γ2
s1s2s3

(5.4.4)

Pγ1γ2
r1r2r3

=
∑
σ1∈Sn

∑
σ2∈Sn

∑
σ3∈Sn

C̃γ1γ2
r1r2r3

(σ1, σ2, σ3)P(σ1, σ2, σ3) (5.4.5)

P(σ1, σ2, σ3) =
∑
s1`n

∑
s2`n

∑
s3`n

∑
γ1,γ2

ds1
n!

ds2
n!

ds3
n!
C̃γ1γ2
s1s2s3

(σ1, σ2, σ3)Pγ1γ2
s1s2s3

(5.4.6)

These formulas provide the clearest way to understand the relation between the permutation
and representation theory bases.

Now, in the permutation basis the gauge invariant operators close the following algebra

O(σ1, σ2, σ3)O(ρ1, ρ2, ρ3) = O(σ1 ◦ ρ1, σ2 ◦ ρ2, σ3 ◦ ρ3) (5.4.7)

P(σ1, σ2, σ3)P(ρ1, ρ2, ρ3) = P(σ1 ◦ ρ1, σ2 ◦ ρ2, σ3 ◦ ρ3) (5.4.8)

where σi ∈ Sn and ρi ∈ Sm for i = 1, 2, 3. Note that thanks to the way that we have ordered
the fermions there are no −1 factors in this second equation.
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We can now work out the details of this algebra in the representation basis. A straightfor-
ward computation shows

Oγ1γ2
r1r2r3

Oγ3γ4
s1s2s3

=
∑

t1`n+m

∑
t2`n+m

∑
t3`n+m

∑
γ5γ6

f t1t2t3;γ1γ2γ3γ4
r1r2r3s1s2s3;γ5γ6

Oγ5γ6
t1t2t3 (5.4.9)

where ri ` n and si ` m for i = 1, 2, 3. The structure constants for this algebra are given by

f t1t2t3;γ1γ2γ3γ4
r1r2r3s1s2s3;γ5γ6

=
dt1

(n+m)!

dt2
(n+m)!

dt3
(n+m)!

∑
σ1∈Sn

∑
σ2∈Sn

∑
σ3∈Sn

∑
ρ1∈Sm

∑
ρ2∈Sm

∑
ρ3∈Sm

Cγ1γ2
r1r2r3

(σ1, σ2, σ3)Cγ3γ4
s1s2s3

(ρ1, ρ2, ρ3)Cγ5γ6
t1t2t3(σ1 ◦ ρ1, σ2 ◦ ρ2, σ3 ◦ ρ2)

=
dt1n!m!

(n+m)!dr1ds1

dt2n!m!

(n+m)!dr2ds2

dt3n!m!

(n+m)!dr3ds3
Bγ1
a ◦B

γ3

b B
γ5

ab Bγ6

cdB
γ2
c ◦B

γ4

d

(5.4.10)

To get to the last line above, we have simply performed the sum over the σi and the ρi using
the orthogonality relation (5.3.1.4). Remarkably, the structure constants are simply related to
overlaps between branching coefficients! Computing these overlaps is a well defined problem in
the representation theory of the symmetric group. Notice also that the structure constant, up
to an overall factor, factorizes into a product of two overlaps of branching coefficients.

There is a similar algebra for the fermionic operators

Pγ1γ2
r1r2r3

Pγ3γ4
s1s2s3

=
∑

t1`n+m

∑
t2`n+m

∑
t3`n+m

∑
γ5γ6

gt1t2t3;γ1γ2γ3γ4
r1r2r3s1s2s3;γ5γ6

Pγ5γ6
t1t2t3 (5.4.11)

where the structure constants for this algebra are given by

gt1t2t3;γ1γ2γ3γ4
r1r2r3s1s2s3;γ5γ6

=
dt1

(n+m)!

dt2
(n+m)!

dt3
(n+m)!

∑
σ1∈Sn

∑
σ2∈Sn

∑
σ3∈Sn

∑
ρ1∈Sm

∑
ρ2∈Sm

∑
ρ3∈Sm

C̃γ1γ2
r1r2r3

(σ1, σ2, σ3)C̃γ3γ4
s1s2s3

(ρ1, ρ2, ρ3)C̃γ5γ6
t1t2t3(σ1 ◦ ρ1, σ2 ◦ ρ2, σ3 ◦ ρ2)

=
dt1n!m!

(n+m)!dr1ds1

dt2n!m!

(n+m)!dr2ds2

dt3n!m!

(n+m)!dr3ds3
B̃γ1
a ◦ B̃

γ3

b B̃
γ5

ab B̃γ6

cd B̃
γ2
c ◦ B̃

γ4

d

(5.4.12)

Again, the structure constants are simply related to overlaps between branching coefficients.

The existence of an algebraic structure for the gauge invariant operators has a remarkable
consequence: we are able to solve the free theory exactly. To make this point, write the alge-
braic structure in a condensed notation as follows

OAOB = fABC OC (5.4.13)

with repeated indices summed. At the risk of being pedantic, A stands for two multiplicity
labels (γ1, γ2 say) and three Young diagrams (r1, r2, r3 say). Using this product repeatedly we
find

〈OA1OA2OA3 · · · OAn〉 = fA1A2
C1

fC1A3
C2

· · · fCn−2An
Cn−1

〈OCn−1〉 (5.4.14)
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so that the computation of an n-point correlation function is reduced to the computation of
a one point function. We have already computed the most general one point function in the
previous section. Of course, the structure constants of the algebra need to be evaluated and
this is non-trivial. However, it does mean that the problem of solving the free tensor model has
been reduced entirely to a problem in Sn representation theory. This simplification is highly
non-trivial. There is a completely parallel argument for the fermionic tensor model.

5.5 Collective Field Theory

We have now constructed the complete set of gauge invariant variables and an algebra that
these gauge invariants close. In this section we would like to construct a (collective) field the-
ory governing the dynamics of these variables. Our discussion is guided by the dynamics of
a single hermitian matrix X = X† and we will review some relevant background before we
consider the collective field theory relevant for the tensor model.

A complete set of gauge invariant variables for the one matrix model is provided by the Schur
polynomials[143]

χR(X) =
1

n!

∑
σ∈Sn

χR(σ)Tr(σX) (5.5.1)

These variables again close an interesting algebra, given by

χR(X)χS(X) =
∑
T

gRSTχT (X) (5.5.2)

where gRST are the Littlewood-Richardson coefficients. If we tried to quantize the Schur poly-
nomial variables, it would be a mistake to treat them as independent, as the above algebra
proves. In the case of a single matrix it is clear how we should proceed: one can select a smaller
set of variables that are independent

φn = Tr(Xn) (5.5.3)

where we should restrict n ≤ N . The complete set of gauge invariant variables, the Schur
polynomials, are polynomials in the φn. This is an important point: the φn are the set of
variables that are independent and by considering polynomials in these variables, we recover
the complete set of gauge invariant operators. In the large N limit, it is sensible to simply
ignore the constraint n ≤ N [120, 121]. We can then consider the field

φk = Tr(eikX) (5.5.4)

or its Fourier transform, φ(x). The dynamics of this field, which is local in the emergent di-
mension x, is captured in the Das-Jevicki-Sakita Hamiltonian[120, 121, 56].
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We now want to explore the possibility that there is a similar description possible for ten-
sor models. Our first task is to identify the smaller set of independent variables which are
independent and which we will quantize. Further, by considering polynomials in these vari-
ables, we should reconstruct the complete set of gauge invariant operators.

It proves convenient to work in the permutation basis

Φ̄ · σ1 ◦ σ2 ◦ σ3 · Φ = Φ̄IJKΦσ1(I)σ2(J)σ3(K) (5.5.5)

These invariants were first counted by Geloun and Ramgoolam in [136]. They have identified
the number of invariants with the series A110143 on the OEIS website. This sequence counts
the number of orbits obtained when Sn acts on Sn × Sn via conjugacy, i.e. for g ∈ Sn and
(x, y) ∈ Sn × Sn we have g(x, y) = (gxg−1, gyg−1). The number of invariants grows extremely
rapidly

1, 4, 11, 43, 161, 901, 5579, 43206, 378360, 3742738, ... (5.5.6)

A useful way to label the invariants, following [136], is by bipartite cubic graphs with edges
labeled by the gauge group the corresponding index belongs to.

Figure 14: The above figures label gauge invariant operators in the tensor model gauge theory.
Black dots correspond to φ̄ijk’s and white dots to φijks. A line labeled by i is a gauge index for
U(Ni). The operator on the left corresponds to φ̄i1j1k1φi2j1k1φ̄

i2j2k2φi3j2k2φ̄
i3j3k3φi4j3k3φ̄

i4j4k4φi1j4k4

and the operator on the right corresponds to φ̄ijkφijk.

In the language of graphs it is easy to identify the smaller set of independent variables: they
are the variables that correspond to connected graphs. The number of connected graphs can be
counted using the plethystic logarithm and is identified with the series A057005 on the OEIS
website[136]. The number of independent variables still grows extremely rapidly

1, 3, 7, 26, 97, 624, 4163, 34470, 314493, 3202839, 35704007, 433460014, ... (5.5.7)

This growth seems to be too rapid to manage. We will now argue that we can restrict the
dynamics to an even smaller set of variables. To describe the smaller set of variables, it is
useful to consider

T i1 i2 = φ̄i1jkφi2jk (5.5.8)
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T is a matrix on the vector space that carries the fundamental of U(N1). It thus makes sense
to take powers of T

(T n)i1 i2 = T i1jT
j
k · · ·T li2 (5.5.9)

The smaller set of gauge invariants that we consider is given by

φn = Tr(T n) (5.5.10)

The Hamiltonian of the tensor model quantum mechanics we consider is given by

H = − ∂

∂φ̄ijk
∂

∂φijk
+

1

4
φ̄ijkφijk (5.5.11)

The coefficient of the second term has been chosen to ensure that the equal time two point
function is given by (5.3.1.1). The kinetic terms of the Hamiltonian, when rewritten in terms
of the new (collective) variables are

− ∂

∂φ̄ijk
∂

∂φijk
= −

∑
n,m

Ω(n,m)
∂

∂φn

∂

∂φm
+
∑
n

ω(n)
∂

∂φn
(5.5.12)

where29

Ω(n,m) =
∂φn
∂φ̄ijk

∂φm
∂φijk

= nmφn+m−1 (5.5.13)

ω(n) = − ∂

∂φ̄ijk

(
∂φn
∂φijk

)
= −

n−2∑
r=0

φrφn−r−1 −N2N3mφm−1 (5.5.14)

It is nontrivial that Ω(n,m) and ω(n) can be expressed in terms of the φn. This implies that
the Hamiltonian itself can be expressed in terms of this smaller set of variables, and hence that
it is consistent with the dynamics to restrict to this smaller set of variables. When written in
terms of the new variables, the Hamiltonian

H = −
∑
n,m

Ω(n,m)
∂

∂φn

∂

∂φm
+
∑
n

ω(n)
∂

∂φn
+

1

4
φ1 (5.5.15)

is not hermitian. This simply reflects the fact that in the new variables the inner product is
accompanied by a non-trivial Jacobian J [φ]. Performing a similarity transformation to trivialize
the measure, we arrive at a manifestly hermitian Hamiltonian[120, 121, 56]

H = ΠΩΠ +
1

4

(
ω +

∂Ω

∂φ

)
Ω−1

(
ω +

∂Ω

∂φ

)
+ φ1 −

1

2

∂ω

∂φ
− 1

2

∂2Ω

∂φ∂φ
(5.5.16)

where we have used an obvious matrix notation and have introduced the momentum Π(n)
conjugate to φn

Πn = −i ∂

∂φn
(5.5.17)

29Note that these expressions are almost identical to the answers for the Hermitian one matrix model which
are Ω(n,m) = nmφn+m−2 and ω(n) = −

∑n−2
r=0 φrφn−r−2.
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As we have commented above, the variables φn that we have employed in the description so far
are a natural generalization of the variables (5.5.3) used in the matrix model. The variables
(5.5.3) are essentially the eigenvalues of the matrix model, so that it is natural to interpret
the gauge invariant variables constructed out of T ij as providing an eigenvalue like description
of the tensor model. Just as in the matrix case, the quantum mechanical system develops an
extra dimension. To see how this happens, we can explore the range of the eigenvalues of T .
In the case of a single matrix, the change to eigenvalues induces a Van der Monde determinant
which produces a repulsion between the eigenvalues ensuring they spread out to produce a
macroscopic emergent geometry at large N . To get some insight into what is happening in the
case of the tensor model, we compute the one point functions

〈Tr(T k)〉 = 〈Φ̄ · (k) ◦ 1 ◦ 1 · Φ〉 =
∑
σ∈Sk

N
C((k)σ)
1 N

C(σ)
2 N

C(σ)
3 (5.5.18)

In the above (k) is a k-cycle which, for concreteness, we take to be (123 · · · k). Lets study the
limit that Ni →∞ holding N2

N3
fixed and taking α = N2N3

N1
fixed. In this large Ni limit the above

sum is then dominated by a nontrivial class of diagrams. For example

〈Tr(T )〉 = N1N2N3 = αN2
1

〈Tr(T 2)〉 = N2
1N2N3 +N1N

2
2N

2
3 = (α + α2)N3

1

〈Tr(T 3)〉 = N3
1N2N3 + 3N2

1N
2
2N

2
3 +N1N

3
2N

3
3 +N1N2N3

= (α + 3α2 + α3 +
α

N2
1

)N4
1

〈Tr(T 4)〉 = N4
1N2N3 + 6N3

1N
2
2N

2
3 + 6N2

1N
3
2N

3
3 +N1N

4
2N

4
3 + 5N2

1N2N3 + 5N1N
2
2N

2
3

= N5
1

(
α + 6α2 + 6α3 + α4 +

5α

N2
+

5α2

N2

)
〈Tr(T 5)〉 = N5

1N2N3 + 10N4
1N

2
2N

2
3 + 20N3

1N
3
2N

3
3 + 10N2

1N
4
2N

4
3 +N1N

5
2N

5
3

+15N3
1N2N3 + 40N2

1N
2
2N

2
3 + 15N1N

3
2N

3
3 + 8N1N2N3

= N6
1

(
α + 10α2 + 20α3 + 10α4 + α5 +

15α + 40α2 + 15α3

N2
1

+ 8
α

N4
1

)
〈Tr(T k)〉 ∼ Nk+1

1 (5.5.19)

The growth with k as Nk+1
1 is a clear indication that the eigenvalues of T are spreading out and

are potentially able to generate a new dimension. To construct the field theory in this extra
dimension, it is useful to introduce the field

φ(x) =

∫
dk

2π
e−ikx φk φk = Tr(eikT ) (5.5.20)

Notice that φ(x) is nothing but the density of eigenvalues of the T matrix and consequently

Tr(T n) =

∫
dxφ(x)xn (5.5.21)

The momentum dual to φ(x) is π(x) = 1
i

δ
δφ(x)

and similarly πk = 1
i
δ
δφk

. To perform the change
of variables, note that the kinetic terms in the tensor model Hamiltonian can be written as

− ∂

∂φ̄ijk
∂

∂φijk
= −T il

∂

∂T j l

∂

∂T ij
−N2N3

∂

∂T ii
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= −
∫
dk

∫
dk′ Ωk,k′ πk πk′ +

∫
dk ωk πk (5.5.22)

where

Ωk,k′ = T il
∂φk
∂T j l

∂φk′

∂T ij
= −kk′Tr(T ei(k+k′)T )

= ikk′
∂

∂k
φk+k′ (5.5.23)

and

ωk = −T il
∂

∂T j l

(
∂φk
∂T ij

)
−N2N3

∂φk
∂T ii

= k

∫ 1

0

dτ φτki
∂

∂τ
φ(1−τ)k − ikN2N3φk (5.5.24)

To obtain these results, we have used the formula

∂

∂M i
j

(e−ikM)kl = (−ik)

∫ 1

0

dτ(e−iτkM)ki(e
−i(1−τ)kM)j l (5.5.25)

In position space we obtain

Ω(x, x′) =
∂

∂x

∂

∂x′
(xφ(x)δ(x− x′)) (5.5.26)

and

ω(x) = 2
∂

∂x
−
∫
dy φ(x)φ(y)

x

x− y
+ (N2N3 −N1)

∂φ(x)

∂x
(5.5.27)

It is interesting to note that the formula for Ω(x, x′) is identical to the formula obtained from
the radial sector of multi matrix models, and that the formula for ω(x) is very similar - see
[25, 27, 28, 29]. This easily leads to the following Hamiltonian (we have dropped constant
terms)

H =

∫
dx

[
∂π

∂x
xφ(x)

∂π

∂x
+
φ(x)

4x

(
−
∫
dy

2xφ(y)

x− y

)2

+
(N2N3 −N1)2

4x
φ(x) +

x

4
φ(x)

]
−µ
∫
dx φ(x) (5.5.28)

where the last term above enforces the constraint
∫
dxφ(x) = N1. To get this result, we used∫

dx−
∫
dy φ(x)φ(y)

x+ y

x− y
= 0 (5.5.29)

As we explain in Appendix L, the Hamiltonian can be written as

H =

∫
dx
∂π

∂x
xφ(x)

∂π

∂x
+ Veff (5.5.30)
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where the effective potential is

Veff =

∫
dx

[
π2x

3
φ3 +

(α− 1)2N2
1

4x
φ(x) +

x

4
φ(x)− µφ(x)

]
(5.5.31)

The classical field should minimize the effective potential, which leads to the following classical
collective equation of motion

0 =
δVeff

δφ(x)
= π2xφ2 +

(1− α)2N2
1

4x
+
x

4
− µ

⇒ φ(x) =
1

π

√
µ

x
− 1

4
− (1− α)2N2

1

4x2
(5.5.32)

The chemical potential µ should be fixed by requiring that∫ x+

x−

dxφ(x) = N1 (5.5.33)

where the limits of integration are

x± = 2µ±
√

4µ2 −N2
1 (1− α)2 (5.5.34)

As a test of this classical solution, we would like to show that it reproduces the correct large N1

correlators. To simplify the analysis that follows, we will set α = 1. In this case, after solving
for µ we have the density

φ(x) =
1

π

√
N1

x
− 1

4
x+ = 4N1 x− = 0 (5.5.35)

A simple computation now gives∫ N1
4

0

xφ(x)dx = N2
1

∫ N1
4

0

x2φ(x)dx = 2N3
1∫ N1

4

0

x3φ(x)dx = 5N4
1

∫ N1
4

0

x4φ(x)dx = 14N5
1

∫ N1
4

0

x5φ(x)dx = 42N6
1 (5.5.36)

in complete agreement with (5.5.19). This provides a nice test of classical collective solution.

5.6 Summary and Outlook

Motivated by the close connection of tensor models to the SYK model, we have considered
the problem of counting and then constructing the gauge invariant operators of tensor models.
Bosonic tensor models have already been considered in the literature, and the results we have
obtained are consistent with what is already known. Our results for fermionic vector models are
novel. Using the operators that have been constructed, we have exhibited an interesting algebra
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underlying the gauge invariant operators of the tensor model: the gauge invariant operators
define a ring. We have written closed formulas for the structure constants of this ring. As
we have explained, this algebraic structure allows us to express arbitrary correlation functions
as one point functions, which we have computed explicitly. Consequently, once the structure
constants of the algebra are known, the free theory has been solved exactly. We have expressed
these structure constants as overlaps of branching coefficients so that their computation is now
a well defined problem in the representation theory of the symmetric group.

To study the large N dynamics of tensor model quantum mechanics we have identified a smaller
set of gauge invariant operators that has lead to an eigenvalue like description. The system
admits a collective field theory description which is similar but not identical to the collective
field theory of a singe hermitian matrix. Our collective description shares all the good features
of previous collective descriptions. Two such features are

1. The collective description manifests the fact that the tensor model quantum mechanics
has emergent dimensions. Further, it is very attractive and highly non-trivial that the
collective dynamics in this emergent dimension is local.

2. The loop expansion parameter of the collective field theory is not ~ of the quantum
mechanics, but rather it is 1

N1
with N1 set by the tensor model gauge group. Consequently

the classical equations of motion of the collective field theory yield the answer obtained
by summing the complete set of Feynman diagrams that contribute at large N1. For our
tensor model example we have explicitly demonstrated this.

The above two features are highly suggestive of holography, which claims that a local (at large
N1) higher dimensional classical system is dual to the large N limit of the gauge theory.

There are a number of future directions that should be pursued. The fermionic tensor model
rather than the bosonic tensor model appears to be more relevant to the problem of understand-
ing holography. It would be interesting to develop the collective field theory of the fermionic
model. Specifically, it would be fascinating if such a description could be developed for the
Witten-Gurau model, which is of most relevance for SYK. Perhaps the most interesting ques-
tion to ask is if we can enlarge the space of gauge invariants to get a genuinely larger space
than the loop space of a single matrix model, such that the enlarged space is still manageable?
It seems that tensor models maybe good toy models with which to explore holography.
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6 Conclusions

We have studied holography in a number of different settings. We looked at understanding the
link between eigenvalue dynamics and supergravity in Chapter 3, focusing on the SU(2) sector
of N = 4 SYM. We looked for new integrable subsectors of the CFT in Chapter 4 by attaching
open string to LLM geometries and studying the emergent gauge theory. Lastly we looked at
improving our understanding of the relationship between gravity and a strongly coupled CFT
by studying the gauge invariants in tensor models in Chapter 5.

One of our primary goals in Chapter 3 was to show we could successfully describe a sector
of the two matrix model with eigenvalue dynamics. The observables in this sector were the
BPS operators. We found we were able to reproduce genuine multimatrix correlators, a non-
trivial test that our eigenvalue prescription works. We studied the dual BPS geometries and
attempted to extend the results of [12], who showed that the eigenvalues of the single matrix
model condense on a surface that defines the boundary conditions for non-singular solutions.
We were able to do this at large N . One of the key ideas used the restricted Schur polynomials
to construct a free fermion wave function. The reduction to eigenvalues required the use of
a non-trivial Jacobian. This wavefunction was essentially an educated guess and it would be
insightful if we could derive this in future work. This would make the link between eigenvalue
dynamics and supergravity geometries more complete.

In Chapter 4 we were looking to find new integrable subsectors of the CFT. We studied ex-
citations of LLM geometries. Young diagrams were an important tool as they label the CFT
operators but also have a natural identification in the dual theory. Excitations are Young dia-
grams added to a background Young diagram representing the LLM geometry. We argue these
excitations are localised on the brane worldvolume and that they are open strings. This gives
rise to an emergent gauge theory which is N = 4 SYM with gauge group U(Neff ) in the pla-
nar limit. We showed this by matching the anomalous dimensions and OPE coefficients which
vanish in the planar limit. An interesting question arises from this study which is whether the
emergent gauge theory is dual to an AdS5 × S5 geometry in some limit. This would provide
evidence that there are new holographic dualities.

In Chapter 5 we tasked ourselves with the construction of the complete set of gauge invari-
ant operators for fermionic and bosonic tensor models. The construction of these operators
is important for our understanding of holography and tensor models themselves have found
application in holography via the SYK model. The results we obtained for the bosonic model
is consistent with the literature and is a good indication of the reliability of our results for the
fermionic model. We were able to compute correlation functions by exploiting the algebraic
structure of the operators. This means we can solve the free theory once we know the structure
constants. At large N we constructed a collective description which has two features promising
for holography. These were the fact that the emergent dimensions in the tensor model quantum
mechanics became manifest and the dynamics there is local. Secondly, we showed that the loop
expansion parameter is 1

N1
and not ~ which is what we have when we study gravity at strong

coupling. This is originally what motivated studies of gauge invariant observables in a collective
field theory.
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A persistent theme in this thesis has been the identification of ways to simplify complicated
questions. In doing so, we have been able to make definite statements and find compelling evi-
dence to motivate further study. For example, our goal to find integrability beyond the planar
limit by studying excitations of new geometries found traction in the organisation of operators
in terms of background dependent and independent terms, which allowed us to treat certain
excitations of new geometries as if they were excitations of the vacuum. This is unexpected:
new geometry backgrounds should be much more complicated than the vacuum yet we are able
to relate them. Another example was identifying a class of operators of the two matrix model
whose correlation functions could be replicated with eigenvalue dynamics. Lastly, we studied
tensor models instead of matrix models to further our understanding of gauge invariants and
holography. The implications of such simplifications are not only technical. They pose deep
questions about our understanding of holography.

These types of questions are as important as our results. Beyond a specialised research ques-
tion, our goal is to understand quantum gravity which means we must understand holography.
This is a long term project and so our research must bridge what we know with what we can
learn. What we have seen is that there are many ways to approach the gauge/gravity duality.
This thesis primarily develops the picture at large N in the CFT and uses the fact that the
mapping between CFT operators and supergravity geometries is well understood. For future
work it would strengthen our results and improve our understanding to construct the dual
gravity argument for the work in Chapter 4: we could study new integrable subsectors in the
gravity. The work in Chapter 3 supports the connection between eigenvalue dynamics and
supergravity and motivates a study of more supergravity backgrounds to support the results
and deepen our understanding. The results of Chapter 5 are highly suggestive of holography
since the gravitational description that emerges at strong coupling for a CFT had 1

N
as a loop

counting parameter. It would be interesting to look at formulating the dynamics of the eigen-
value description in terms of the density of eigenvalues which would have 1

N
as a coupling. The

eigenvalue argument we have made is at weak coupling but work by Berenstein and collabora-
tors makes for compelling evidence at strong coupling. It is insightful to note that the results in
this thesis using eigenvalue dynamics is valid for correlators of operators dual to states of large
energy. In this sense we find a course grained description unlike the work achieved in Chap-
ter 4 which used excitations of low energy such that the planar limit of the emergent theory
agrees with N = 4 SYM. Finally this work looked at free, weak and strong coupling in the CFT.

The technical achievements of this thesis relied on the use of group representation theory.
This allowed us to simplify computations but it also had a natural interpretation in terms of
the gauge/gravity duality which comes from the Young diagram labelling. This is non-trivial
and it would be worthwhile to pursue studies in holography with this in mind.
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A Inequivalent, Irreducible Representations

For any group, there are a finite number of inequivalent irreducible representations (irreps).
These representations are the building blocks of the representation theory of the group and any
representation in the group can be built out of some combination of irreps. This is why they
are useful to study. In general, there are an infinite number of representations of any group, G,
and we cannot hope to list all of them.

A matrix representation of G is a map, ΓR(·), from G to the group of matrices GL(n,R)
or GL(n,C) such that, for ∀g1, g2 ∈ G, the following relation is satisfied.

ΓR(g1) · ΓR(g2) = ΓR(g1 · g2) (A.1)

This means that group composition is realised as matrix multiplication of the representations.
This ensures that multiplication of two or more group elements yields another element of the
group (by the group composition axiom, g1 · g2 ∈ G). When two representations are related by

Γ̃R(g) = M−1ΓR(g)M (A.2)

we say that they are equivalent representations, for all g ∈ G and M is any invertible matrix.
One can see that Γ̃R(g) is indeed a representation of the group by checking it obeys (A.1),
which it does. Since there are an infinite number of invertible matrices M , there are an infinite
number of representations equivalent to the representation ΓR(g). We can shorten this list by
considering only the inequivalent representations of a group. However, there are still an infinite
number of these.

Similar matrices have the same eigenvalues. We could use this to check to see whether two
representations are equivalent. However, finding the eigenvalues of a matrix is not a simple
problem, especially for large matrices. Computing the trace of a matrix is a much simpler
problem. However, two matrices having equal traces does not imply they have the same eigen-
values. What we can consider instead is ΓnR(g). If this representation is a d dimensional matrix
then

Tr(ΓnR(g)) =
d∑
i=1

λni

where the λi are the eigenvalues of ΓR(g). Now if Tr(ΓnR(g)) = Tr(Γ̃nR(g)) for all n, then ΓR(g)

and Γ̃R have the same eigenvalues. What we have shown is that if the set of matrices Ni (i

can be any number larger than 1) are equivalently related to Ñi by Ñi = M−1NiM , then they

satisfy the condition Tr(Nn
i ) = Tr(Ñn

i ) ∀n. However, the converse is not necessarily true. This
is because the invertible matrix M is arbitrary in this case (i.e.: can be a different invertible
matrix for each Ni). If we want the converse statement to be true then we need to strengthen
our condition for testing for equivalent matrices. Now we consider an arbitrary product of
matrices. For example

Tr([N1N2 . . . N8]n) = Tr([Ñ1Ñ2 . . . Ñ8]n)

This condition needsM to be the same for each of theNi equivalent to some Ñi. If these matrices
are representations of a group, then we can use the defining equation of a representation (A.1)
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to rewrite it in the more compact form

Tr(ΓR(g)) = Tr(Γ̃R(g)) (A.3)

This is the condition that tells us when two representations, ΓR(g) and Γ̃R(g), are equivalent.
The trace of the representation of a group is denoted by

Tr(ΓR(g)) ≡ χR(g)

and is called the character of group element g in representation R. Finally, we can say that two
representations are equivalent if they have the same character.

Two group elements, g1 and g2, have the same character when they obey the equivalence
relation

g1 = g−1g2g

We say these group elements are conjugate. This equivalence relation partitions the group into
conjugacy classes. All elements in the same conjugacy class then will have the same character.

We understand what it means for representations to be equivalent. Now we need to learn
what it means for a representation to be reducible. Recall that we are looking for the inequiv-
alent, irreducible representations as this list is finite. If a representation can be written as the
direct sum of two other representations, then it is reducible. Any representation that is equiv-
alent to a block diagonal representation is the direct sum of two other representations. Thus
any representation that is equivalent to a block diagonal representation is called a reducible
representation. This block diagonal representation has at least two invariant subspaces. Each
block in the diagonal will act in a different subspace such that the subspaces are not mixed
by the action of the group (so subspaces are invariant). An irreducible representation is one
which has no invariant subspaces under the action of the group. The number of inequivalent,
irreducible representations is equal to the number of conjugacy classes. This number is finite
for finite groups.
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B Symmetric group and Representation Theory

The symmetric group, Sn is a group of operations

Sn = {g1, g2, . . . gp}

such that each gi; i = 1, . . . p is a permutation of any number of objects between 1 and n.
The order of this group is p = n!. For example, the group S2 has 2! = 2 elements. There
are two objects we can permute: we say these objects are 1 and 2. This is standard notation
so whenever we talk about the symmetric group we are talking about permuting the numbers
1, . . . n. The kinds of permutations we can write down for S2 is the swap (12) (which is also its
inverse) and the identity, 1 = (1)(2) – no swap. This notation is called cycle notation and it is
spelled out for (12) as follows:

1→ 2 2→ 1

In cycle notation each object is followed by its image and the last object’s image in a cycle is
the first object. In S3 we have the group element (123). This permutes all three objects such
that

1→ 2 2→ 3 3→ 1

This a cycle of length three. We can decompose this into a product of 2 cycles, (··), as follows

(123) = (12)(23)

We consider the right action of the group so that we read the right hand side of the above
equation as (starting with 1)

1→ 2 2→ 3 3→ 2→ 1

Any k-cycle (a cycle of length k) can be decomposed into a product of 2-cycles (called trans-
positions) by noticing that

(g1g2 . . . gn−1gn) = (g1g2)(g2 . . . gngn−1) (B.1)

and repeatedly applying it. Further, we can decompose any cycle into the the product of ad-
jacent 2-cycles. This is a product of 2-cycles of the form (p − 1, p) where p ≤ n in Sn. For
example, we can write the identity in S2 as the product of an adjacent 2 cycle and its inverse
(12)(12) = 1. We can see statement holds by using (B.1) and noting that any 2-cycle can
be written as the product of adjacent transpositions. For example (13) = (12)(23)(12). Later
we will use this decomposition to form matrix representations of the action of group elements.
These adjacent transpositions are sufficient to build the representation of the whole group be-
cause we can form any element in the group by taking the relevant product of a number of
these adjacent transpositions.

Now that we have understood what is meant by cycle structure, we can introduce some new no-
tation that will represent the cycle structure of group elements in Sn. These representations are
partitions of n. That is, a set of positive integers [n1, n2, . . . , nk] such that n1 ≥ n2 ≥ · · · ≥ nk
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and n1+n2+· · ·+nk = n. By representing group elements in this way (by their cycle structure),
we are partitioning the group and each partition has a finite number of group elements in it.
Partitions are often visualised by Young diagrams.

Young diagrams of shape R consist of n boxes arranged in rows and columns. We say R ` n.
The Young diagrams are left justified so that the number of boxes in each column is always
greater than the number of boxes in the column to the right. Similarly, the number of boxes
in each row is always greater than or equal to the number of boxes in the row beneath it. For
example

The first row has ni boxes. Since n1 + n2 + n3 + n4 = n we see that this Young diagram is rep-
resenting a partition of a group element in S10. So the number of boxes in the Young diagram
tells us to which group the particular element represented belongs to. The structure of the
Young diagram has a deeper interpretations as well. Each row represents a cycle in the group.
The above Young diagram represents the cycle (· · · ·)(· · ·)(· ·)(·). So Young diagrams partition
group elements according to their cycle structure. These partitions are called conjugacy classes.

Elements in the same conjugacy class (g1, g2) obey the equivalence relation

g1 = g−1g2g

for any g in the same group. In the previous section, we saw that two group elements that are
conjugate have the same character (χR(g) = Tr(ΓR(g)). Young diagrams label representations
of the symmetric group that are given by a set of matrices ΓR(g) that act on the vector space
V Sn
R . These representations are the inequivalent, irreducible representations of the group which

we can see since they partition the group elements into conjugacy classes. For example, S4 has
the following possible Young diagrams:

So S4 has five irreps or, equivalently, five conjugacy classes.

We can fill in the numbers 1, . . . , n into the empty boxes of a Young diagram. The convention
we use is that numbers in each row must decrease rightwards and numbers in each column
must decrease downwards. By filling in the numbers 1, . . . n into the empty boxes of a Young
diagram, we form what is called a Young tableaux. When these label elements of a (complete)
basis of V Sn

R , they are called Young-Yamanouchi symbols. The number of Young-Yamanouchi
states, |R〉, a representation, R, has is equal to the dimension of the Young diagram. In order
to calculate the dimension of a Young diagram, we need to know two things. The first is the
the number of boxes and the second is the hook lengths of each box. The hook length of a box
x is calculated by drawing a horizontal line going rightwards from the box and a vertical line
going downwards till the end of the Young diagram. The number of boxes these lines cross,
including the starting box is the hook length. We denote the product of the hook lengths in
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Young diagram R as
∏

x∈R hook(x) ≡ hooksR. The dimension of a Young diagram is defined as

dR =
n!

hooksR
(B.2)

For the Young diagram

the dimension is dR = 4!
4·2·1·1 = 3. This means this representation has three associated Young-

Yamanouchi states i.e.: we can fill the numbers 1, 2, 3 and 4 into the empty boxes in three
ways:

|1〉 =
4 3
2
1

, |2〉 =
4 2
3
1

, |3〉 =
4 1
3
2

(B.3)

We are almost ready to see how to calculate the matrix representations of elements in a group
in a particular irrep. We now introduce the content of a box in Young diagram R. Each box
x in row i and column j has content cx = j − i. For example, consider the following Young
diagram with contents filled in.

0 1 2 3

−1 0 1

−2 −1

−3

Earlier we said we wanted to consider permutations which were a product of adjacent 2-cycles.
We will consider the action of adjacent 2-cycles on our Young-Yamanouchi states. This sufficient
because representations satisfy ΓR(g1g2) = ΓR(g1)ΓR(g2) where g1 and g2 are elements of the
group. We will consider the action of ΓR(12) on the Young-Yamanouchi states given in (B.3).
We denote the Young diagram after a swap, (k, k+1), by R(k,k+1). Matrix elements of adjacent
transpositions are specified by

ΓR((k, k + 1))|R〉 =
1

ck − ck+1

|R〉+

√
1− 1

(ck − ck+1)2
|R(k,k+1)〉 (B.4)

Then

Γ ((12))|1〉 = −|1〉

Γ ((12))|2〉 = −1

3
|2〉+

√
8

3
|3〉

Γ ((12))|3〉 = |3〉+

√
8

3
|2〉

which yields the matrix representation

ΓR((12)) =

 −1 0 0

0 −1
3

√
8

3

0
√

8
3
−1

3


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C Schur Polynomials

In [7], the exact two point function of Schur polynomials in the free field limit was calculated
to be

〈χR(Z)χ†S(Z)〉 = δRSfR (C.1)

Since this correlator is diagonal in the Young diagram labels, it is only nonzero when R = S.
The fR denoted the products of weights in a Young diagram R. The weight of a box x is
N + j − i. This is the content of a box x plus N . The result in [7] was obtained by exploiting
the link between the symmetric group and the unitary group. The quantity fR appears in the
definition of the dimension of irreps of the unitary group:

DimR =
fR

hooksR

This insight reduces our computations of Section 2.1.3 drastically. For example

〈χ (Z)χ† (Z)〉 = N(N + 1)(N + 2) (C.2)

where

χ (Z) =
1

6

(
(Tr(Z))3 + 3(Tr(z))(Tr(Z2)) + 2Tr(Z3)

)
This demonstrates the effectiveness of this language to describe quantum gravity: it hints that
we can study non-perturbative physics by summing all the ribbon graphs. In this section we
define Schur polynomial labelled by Young diagram R and use it to reproduce (C.1).

We start off by making some comments about the unitary group, U(N) since the action of
our complex matrix model is invariant under the U(N) symmetry. The irreps of U(N) are
labelled by Young diagrams. Unlike the symmetric group, Sn, where the number of boxes was
restricted to n, the number of boxes in an irrep of U(N) can have any number of boxes but the
number of rows must be ≤ N . There are many connections between U(N) and Sn and these
form what is known as the Schur-Weyl or Frobenius-Schur duality. States of U(N) are labelled
by Gelfan-Tsetlin patterns. This labelling chooses basis states that are simultaneous eigenstates
of the matrix Jz. Thus, this basis is a natural choice for studying angular momentum. We will
not go into details about the construction of these states but we note that they are related to
Young diagrams in that they label states according to how they transform under a chain of
subgroups.

Consider the vector space V ⊗3
N . The dimension of this vector space is N3. There are three

possible Young diagrams we can draw:

, ,

The dimensions of each of these in the Sn representation is 1, 2, 1 respectively and N(N+1)(N+2)
6

,
N(N+1)(N−1)

3
, N(N−1)(N−2)

6
respectively. States are labelled by both the Young-Yamanouchi sym-

bols and the Gelfand-Tsetlin patterns such that the total number of states is

1× N(N + 1)(N + 2)

6
+ 2× N(N + 1)(N − 1)

3
+ 1× N(N − 1)(N − 2)

6
= N3
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as required. So the multiplicity of the U(N) representations we obtain is organised by irreps of
the symmetric group.
There are three operators we can construct for n = 3 and they are

Tr(Z3) Tr(Z2)Tr(Z) Tr(Z)3

These operators are related to the shape of the Young diagrams. That is, they are related
to the cycle structure of elements in Sn. For example, the 3-cycle is represented by and
corresponds to Tr(Z3). The 2-cycle is represented by and corresponds to Tr(Z2)Tr(Z).

The Schur polynomial is defined as follows.

χr(Z) ≡ 1

n!

∑
σ∈Sn

χR(σ)Zi1
iσ(1)

Zi2
iσ(2)

. . . Zin
iσ(n)

(C.3)

Here R is a Young diagram of n boxes (labels an irrep pf the symmetric group), and χR(σ) is
the character of σ ∈ Sn in irrep R. The Schur polynomial χR(U) is the character of an element
U ∈ SU(N) in irrep R.

We can construct a projection operator onto an irrep R. This projector is defined as

PR =
1

n!

∑
σ∈Sn

χR(σ)σ (C.4)

and Tr(PR) = DimR. We can rewrite our Schur polynomial in terms of this projection operator.

χR(Z) =
1

dR

(
dR
n!

∑
σ∈Sn

χR(σ)σZi1
iσ(1)

Zi2
iσ(2)

. . . Zin
iσ(n)

)

=
1

dR
Tr
(
PRZ

⊗n) (C.5)

One last insight we need is that summing over the Wick contractions in a correlation function
can be understood as the problem of summing over permutations. We have that

〈ZI
J(Z†)KL 〉 =

∑
σ∈Sn

σIL(σ−1)KJ (C.6)

This shorthand notation keeps track of the indices under matrix multiplication and can be
expanded as ZI

J = Zi1
j1
Zi2
j2
. . . ZiN

jn
and similarly for the other matrices.
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Now we are ready to show (C.1) holds.

〈χR(Z)χ†Z(Z)〉 =
1

dRdS
(PR)IJ(PS)KL 〈(Z⊗n)JI (Z†⊗n)LK〉

=
1

dRdS
(PR)IJ(PS)KL

∑
σ∈Sn

(σ−1)JK(σ)LI

=
1

dRdS

∑
σ∈Sn

Tr(PRσ
−1PSσ)

=
1

dRdS

∑
σ∈Sn

Tr(PRPS) ∵ PSσ = σPS

=
δRSn!

dRdS
Tr(PR) =

δRSn!

dRdS
DimR

= δRSfR (C.7)

where we have used the fact that the order of the group Sn is n! in the second last line and the
definitions of DimR and dR to get the last line.

For the restricted Schur polynomials, the relevant projection operator (for the two matrix
case) is

PR,(r,s) =
1

n!

1

m!

∑
σ1∈Sn

∑
σ2∈Sm

χr(σ1)χs(σ2)ΓR(σ1σ2) (C.8)

In terms of the projection operator we can write the restricted Schur polynomial as

χR,(r,s)~µ(Z⊗nY ⊗m) =
1

n!m!

∑
σ∈Sn+m

Tr(r,s)~µ(ΓR(σ))Tr(σY ⊗m⊗Z⊗n = Tr(PR,(r,s)~µZ
⊗nY ⊗m) (C.9)

We call it the restricted Schur polynomial because we replace the usual character of our irreps
with an object called the restricted character. This encodes the way we have partitioned the
Young diagram R into n + m, where r ` n and s ` m are subspaces of R. In each of these
subspaces we must consider Sn and Sm separately such that we study permutations in Sn×Sm.
This comes from the following logic.

We are working V ⊗n+m
N . In the single matrix model, the following action of the permutations

σ ∈ Sn left Z⊗n invariant.
(σ)IJZ

⊗n(σ−1)KL = (Z⊗n)IL (C.10)

When we consider two complex matrix models, we have the same invariance holding for the
product Z⊗nY ⊗m, but now σ ∈ Sn × Sm. This is because we cannot swap Zs and Y s without
changing the structure. Our permutations must act separately on each type of field so that we
restrict to the subgroup Sn × Sm. From (C.10) and using the cyclicity of the trace we obtain
the relation

Tr(ρZ⊗nY ⊗m) = Tr(σ−1ρσZ⊗nY ⊗m) (C.11)

This allows us to define a notion of restricted conjugate. Two elements g1 and g2 in Sn+m are
restricted conjugate to one another if they satisfy the relation

g1 = σ−1g2σ (C.12)
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for σ ∈ Sn × Sm. The is like the equivalence relation, conjugate to, which we used when clas-
sifying irreps in Appendix A but with the added restriction that σ is in the subgroup. When
studying single matrix models, we saw that the number of conjugacy classes was equal to the
number of irreps and that this was equal to the number of physical observables. Now, in our
multi matrix model, we have that the number of restricted conjugacy classes is equal to the
number of physical observables.

A complete set of functions on the restricted conjugacy class are given by taking a restricted
trace of the matrix irrep of the group element. The restricted trace is a trace over the subspace.
The restricted character is defined as the restricted trace of a group element.

χR,(r,s)~µ(σ) = TrR,(r,s)~µ(ΓR(σ)) (C.13)

We label multiplicities with ~µ. Row and column indices in the restricted trace are traced over
different subspaces (Sn and Sm). Note that the projectors here are not projection operators.
In general, ~µ 6= ~ν and we have that

PR,(r,s)µ1µ2PT,(t,u)ν1ν2 = AδRT δrtδsuδµ2ν1PR,(r,s)µ1ν2 (C.14)

where A is a number. The product of two projection operators is either zero, or one of the
projectors, PRPT = δRTPR, by definition of a projection operator. Multiplicities label different
copies of a representation. The projector on the right hand side of (C.14) has multiplicity labels
that are different to the projectors on the left hand side, hence these objects are all different.
However, if the multiplicity labels are the same, then these objects are projection operators.
In general, they are not and we call them intertwining maps as they map us between different
copies of the irrep. To illustrate:

Γ(r,s)µ1(σ)PR,(r,s)~µ = PR,(r,s)~µΓ(r,s)µ2(σ) (C.15)
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D Gauss Graph Operators

Gauss graph operators are labelled by graphs consisting of nodes and oriented edges which start
and end on nodes. The nodes correspond to rows of the Young diagram so that each eigenvalue
is represented by a node in the graph. The Y fields are represented by edges so that there is
one edge per field. The number of edges that start on a node must be equal to the number of
edges ending on a node. If an edge stretched between two different nodes, this would be an
interaction between the two eigenvalues. Since we are considering non-interacting fermions, we
can only have edges starting and ending on the same node (see figure 15).

Figure 15: Gauss graph with two nodes and 3 edges

These particular Gauss graphs correspond to BPS operators. Thus we see that a fermion de-
scription of the two matrix model will describe BPS operators.

When the dilatation operator acts on the restricted Schur polynomials in the displaced cor-
ners approximation (n >> m), it factors into a separate action on each of the symmetric group
labels: r ` n and s ` m which partition the Z and Y fields respectively. For the Gauss graph
operators, this action is diagonal on the Y fields. This problem was solved using a double coset
ansatz ([37]) which labelled the eigenoperators with Gauss graphs. The translation between the
Young diagram and the Gauss graphs is achieved by replacing rows with nodes and representing
the Y fields with oriented edges, with the condition that each graph has have the same num-
ber of outgoing and ingoing edges. BPS operators are labelled by graphs that have no edges
stretching between different nodes. In this way edges are excitations of the giant gravitons,
represented by nodes, with a number of ways to perform the excitation for a given m: we can
permute the edges on a given node. For each permutation σ our Gauss graph operator is

O ~m
R,r(σ) =

|H|√
m!

∑
j,k

∑
s`m

∑
µ1,µ2

√
dsΓ

(s)
jk (σ)Bs→1H

jµ1
Bs→1H
kµ2

OR,(r,s)µ1µ2 (D.1)

where H is the product of symmetric groups Sm1 × Sm2 × · · · × Smp and each mi counts the
number of Y fields in a row on the Young diagram or edges on a node. The normalised restricted
Schur polynomial appears on the right hand side and branching coefficients for irrep s ` m of
Sm to a copy (labelled by the multiplicity index) of the trivial irrep of H. BPS operators
correspond to the identity permutation because we cannot permute edges on the nodes to form
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a new, distinct graph. Thus

OBPS
R,r,~m =

|H|√
m!

∑
j,k

∑
s

∑
µ1µ2

√
dsδjkB

s→1H
jµ1

Bs→1H
kµ2

OR,(r,s)µ1µ2

=
|H|√
m!

∑
s

∑
µ

√
dsOR,(r,s)µµ

=
|H|√
m!

∑
s

∑
µ

√
m!

hookss

√
hooksshooksr
fRhooksR

1

n!m!

∑
σ∈Sn+m

Tr(PR,(r,s)µµΓ(R)(σ))Tr(σY ⊗mZ⊗n)

=
|H|
n!m!

√
hooksr

hooksRfR

∑
σ∈Sn+m

Tr(
∑
s

∑
µ

PR,(r,s)µµΓ(R)(σ))Tr(σY ⊗mZ⊗n) (D.2)

where Γ
(s)
jk (1) = δjk and the branching coefficients are orthogonal in the multiplicity index for

j = k.
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E Ratios of Hooks

The hook HR(i, j) of the box in row i and column j of R is the set of boxes (a, b) with a = i
and b ≥ j or a ≥ i and b = j. The hook-length hR(i, j) is the number of boxes in the hook
HR(i, j). To visualize the hook associated to a given box, imagine an elbow with its joint in
the box and one arm exiting R by moving to the right through the row of the box and one
arm exiting by moving down through the column. The hook length is the number of boxes the
elbow passes through. We use hooksR to denote the product of hook lengths for each box in
R. In this Appendix we want to derive a formula for the ratio

hooks+R

hooks+r

(E.1)

+r is obtained from +R by removing a total of |R| − |r| boxes. All of these boxes are located
close to corner i of Young diagram B.

Start by removing a single box from +R to obtain the Young diagram +R′. Consider the
ratio

hooks+R

hooks+R′
(E.2)

Imagine that the box that was removed comes from row a and column b of R. Denote the length
of row a by la and the length of column b by lb. The numbers a, b, la, lb are all much smaller
than

√
N . Most hook lengths in the numerator will equal the hook lengths in the denominator.

The only hook lengths that don’t match are lengths for hooks that enter or exit through the
box that is removed. After many cancellations we find

hooks+R

hooks+R′
=

i∏
j=1

L(j, i)− b+ lB
L(j, i)−Nj − b+ lb

C∏
l=i+1

L(i+ 1, l)− a+ la
L(c+ 1, l)−Ml − a+ la

hooksR
hooksR′

(E.3)

where

L(c, d) =
d∑
k=c

(Nk +Mk) (E.4)

and Nk and Mk are defined in Figure 12. These numbers specify the background Young diagram.
In the large N limit this result can be simplified to

hooks+R

hooks+R′
= ηB

hooksR
hooksR′

(
1 +O

(
1

N

))
(E.5)

where

ηB =
i∏

j=1

L(j, i)

L(j, i)−Nj

C∏
l=i+1

L(i+ 1, l)

L(c+ 1, l)−Ml

(E.6)

Notice that ηB is independent of a and b, at large N . If we have removed two boxes from +R
to obtain +R′′, we can use the above result to compute

hooks+R

hooks+R′′
=

hooks+R

hooks+R′

hooks+R′

hooks+R′′
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=

(
ηB

hooksR
hooksR′

)(
ηB

hooksR′

hooksR′′

)(
1 +O

(
1

N

))
= (ηB)2 hooksR

hooksR′′

(
1 +O

(
1

N

))
(E.7)

At large N , every time we remove a box from +R it results in a factor of ηB in the ratio of
hooks lengths. We have to remove |R| − |r| boxes from R to obtain r, so that we find

hooks+R

hooks+r

=
hooksR
hooksr

(ηB)|R|−|r|
(

1 +O

(
1

N

))
(E.8)

which is the identity (4.2.1.10) used in section 4.2.3.
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F Ratios of Factors

Recall that fR denotes the product of the factors of each box in R and that a box in row i and
column j has factor N − i + j. In this Appendix we will compute the ratio of the product of
factors for a Young diagram +R and Young diagram B. +R is obtained by attaching a smaller
Young diagram R to the Young diagram B. The argument is rather simple and most easily
illustrated with an explicit example.

Figure 16: An example showing Young diagrams R, B and +R. The Young diagram +R is
obtained by stacking R next to B.

Consider the Young diagrams shown in Figure 16 above. It is simple to see that

fR = N(N − 1)(N + 1) (F.1)

and

f+R

fB
= (N + δ)(N + δ − 1)(N + δ + 1) (F.2)

where δ = 1 = 5− 4. In general, if the top most and left most box of R is added to row a and
column b of B, we will have δ = b− a.
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G Delocalised Trace Structures are Preserved

In this appendix we compute correlation functions of delocalised operators. Our results suggest
that, in general, there is no simple relationship between correlation functions of delocalised
operators and correlation functions of operators in the planar limit, even in the free CFT. The
results of our computation do however provide evidence that mixing between different trace
structures is suppressed, even for the delocalised operators.

To keep the discussion simple consider operators constructed from a single field Z. This will
already probe aspects of the operator mixing issue. As a simple warm up example, consider de-
localised excitations constructed by starting with operators of the form Tr(σ1Z

⊗n1)Tr(σ2Z
⊗n2).

To construct a delocalised excitation, begin by writing

Tr(σ1Z
⊗n1) =

∑
R1`n1

χR1(σ1)χR1(Z)

Tr(σ2Z
⊗n2) =

∑
R2`n2

χR2(σ2)χR2(Z) (G.1)

The delocalised excitation is given by

O(B)(σ1, σ2) =
∑
R1,R2

χR1(σ1)χR2(σ2)χ+(R1,R2)(Z) (G.2)

The Young diagram +(R1, R2) is obtained by adding R1 at the ith inward pointing corner and
adding R2 at the jth inward pointing corner. This corresponds to localizing Tr(σ1Z

⊗n1) at the
ith corner and localizing Tr(σ2Z

⊗n2) at the jth corner. It is now rather simple to evaluate the
correlator

〈O(B)(σ1, σ2)(x1)O(B)(τ1, τ2)†(x2)〉B

=
∑

R1`n1,R2`n2

χR1(σ1)χR2(σ2)χR1(τ1)χR2(τ2)
f+(R1,R2)

fB|x1 − x2|2n1+2n2

=
∑
R1`n1

χR1(σ1)χR1(τ1)
fR1(Neff,1)

|x1 − x2|2n1

∑
R2`n2

χR2(σ2)χR2(τ2)
fR2(Neff,2)

|x1 − x2|2n2

= 〈Tr(σ1Z
⊗n1)(x1)Tr(τ1Z

⊗n1)(x2)〉N→Neff,1
〈Tr(σ2Z

⊗n2)(x1)Tr(τ2Z
⊗n2)(x2)〉N→Neff,2

(G.3)

In the above expression, fR(M) means the product of the factors of Young diagram R with
N replaced by M . Further Neff,1 is the factor of the first box added to corner i and Neff,2 is
the factor of the first box added to corner j. The above result implies that the delocalised
correlator has factorized into two factors, one for each corner on which the operator is located.
Each factor is a correlation function. The value of N is replaced by an effective value of N for
each corner. It is worth emphasizing that the expressions on the last line of (G.3) are exact.
This result implies that trace mixing is even more constrained for the delocalised excitation
than it is in the planar limit. Indeed, in the planar limit we will have mixing if the trace
structure of Tr(σ1Z

⊗n1)Tr(σ2Z
⊗n2) matches the trace structure of Tr(τ1Z

⊗n1)Tr(τ2Z
⊗n2). For
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the delocalised excitation we will only have mixing if the trace structure of Tr(σ1Z
⊗n1) matches

Tr(τ1Z
⊗n1) and the trace structure of Tr(σ2Z

⊗n2) matches Tr(τ2Z
⊗n2).

There is a second type of delocalised excitation we could consider: a single trace operator
that is itself delocalised. As an example, consider a single trace operator that is distributed
between corners i and j. To write such a loop we introduce the space time independent auxiliary
field X a

b , which has two point function

〈X a
b X c

d 〉 = δadδ
c
b (G.4)

Using this auxiliary field we can split any single trace operator into two traces, that reassemble
to give a single trace when the average over X is performed. For example, we can replace

Tr(Y 5) −→ Tr(Y 2X )Tr(Y 3X ) (G.5)

Performing the average over X , we recover our original loop

〈Tr(Y 2X )Tr(Y 3X )〉 = (Y 2)ba (Y 3)dc〈X a
b X c

d 〉 = Tr(Y 5) (G.6)

The advantage of splitting things in this way, is that we can now follow exactly the same logic
that we used for the first example above. We will take this to be the definition of the delocalised
single trace operator. For the general operator constructed from Y s, the resulting expression is
of the form30

OA(Y ) =
∑

R1,R2,r1,r2

a
(A)

R1,R2,r1,r2χR1,(r1, )(Y,X )χR2,(r2, )(Y,X ) (G.7)

The single extra box in the labels for the restricted Schur polynomial represents the auxiliary
X field. We can now, following the example we studied above, attach R1 and R2 to different
corners and in this way obtain the delocalised single trace operator. For operators that involve
more than two corners, we would need to introduce more than one auxiliary field. Concretely,
for the case we consider, we have

O
(B)
A =

∑
R1,R2,r1,r2

a
(A)

R1,R2,r1,r2 χ+(R1,R2),(+(r1
1 ,r

1
2), × )(Z, Y,X ) (G.8)

The notation × is just to reflect the fact that we have not organized the auxiliary fields into
representations of S2. We can now average over X in (G.8) to obtain an operator that does not
depend on the auxiliary fields. This averaging is easily performed using the methods developed
in [144]. It is straight forward, but tedious and messy, to check that mixing between different
trace structures of these delocalised excitations is also suppressed.

Lets illustrate the above construction with the simplest possible example: we consider two
delocalised operators. The first, OA, is given by placing Tr(Y ) at corner i and Tr(Y ) at corner
j. The second, OB, is obtained by distributing Tr(Y 2) between the two corners. When the
background is not present, the relevant correlators are

〈Tr(Y 2)(x1)Tr(Y †2)(x2)〉 =
2N2

|x1 − x2|4

30Imagine that our operator is constructed using n Zs. The restricted Schur polynomials needed for this com-
putation involve restricting Sn+1 to Sn. There is no need for multiplicity labels when studying this restriction.
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〈Tr(Y )2(x1)Tr(Y †)2(x2)〉 =
2N2

|x1 − x2|4

〈Tr(Y )2(x1)Tr(Y †2)(x2)〉 =
2N

|x1 − x2|4
(G.9)

It is clear that the last correlator, which mixes different trace structures, is down by a factor of
N . If we had normalized the two point functions to one, the last correlator above vanishes at
large N which shows that different trace structures don’t mix. The delocalised operator with
Tr(Y ) at corner i and Tr(Y ) at corner j is obtained by adding a single box at corner i of B
and a single box at corner j. Denote the factor of the box added at corner i by Neff,1 and the
factor of the box added at corner j by Neff,2. It is a simple matter to find

〈O(B)
A (x1)O

(B)
A (x2)†〉 = ηB η̃B

Neff,1Neff,2

|x1 − x2|4
(G.10)

in complete agreement with (G.3). The coefficient ηB η̃B is an order 1 number that arises from

computing the ratios of hooks. After averaging over the X fields we find that O
(B)
B (x2) is a sum

of two terms. One is clearly leading and has coefficient
√

1− 1
(Neff,1−Neff,2)2 . The subleading

term have coefficient 1
Neff,1−Neff,2

. The leading term involves a twisted character in the notation

of [62], while the subleading term is a normal restricted character. We find that both terms
contribute to the correlator

〈O(B)
B (x1)O

(B)
B (x2)†〉 = ηB η̃B

Neff,1Neff,2

|x1 − x2|4
(G.11)

while only the subleading term contributes to the mixed correlator

〈O(B)
A (x1)O

(B)
B (x2)†〉 = ηB η̃B

Neff,1Neff,2

(Neff,1 −Neff,2)|x1 − x2|4
(G.12)

Since Neff,1 − Neff,2 is of order N , this clearly demonstrates the suppression. Although there
is little doubt that mixing between different trace structures is suppressed for the general
delocalised excitations, at this point in time we do not have a simple general argument for this
conclusion.
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H Localised and Delocalised Mixing at One Loop

In this appendix we study a simple example of mixing between a localised and a delocalzied
operator at one loop. Since we don’t want a selection rule to prevent the operators from mixing,
we need to consider operators that differ in the placement of at most one box. To make the
computation as transparent as possible choose particularly simple operators. Our goal is to
show that this mixing is of order N−1. This is a simple illustration that the mixing between a
delocalised operator and a local operator, is suppressed at large N .

The local operator that we consider is O
+ ,(+ , )

(Z, Y ). The representation pro-

duces (+ , ) once upon restricting from S4 to S2×S2 so that there is no need for multiplicity
labels. Lets assume that this excitation is localised at corner i. For the delocalised operator,
we assume that we have ( , ( , )) at corner i and , (·, ) at corner j. For this example we
can evaluate the matrix element (4.3.1.3) exactly. The result is

N
+ ,(+ , );+

(
i
, j

)
,(+ i,( i, j))

=
λeff,i

4π

√
Neff,i

Neff,j

1

Neff,j −Neff,i

(
1 +O

(
1

N

))
(H.1)

where Neff,i is the factor of the first box added at corner i, Neff,j is the factor of the first box
added at corner j and λeff,i ≡ g2

YMNeff,i. The fact that this mixing is of order N−1 is in perfect
accord with the arguments of section 4.3.2.
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I Correcting the Planar Limit

The emergent gauge theory has ’t Hooft coupling g2
YMNeff with g2

YM the coupling of the original
CFT. It is natural to ask if (non-planar) higher genus corrections are suppressed by powers of
N or powers of Neff . This Appendix gives a discussion of the issue.

The article [145] studied excitation of the annulus LLM background, with boundary condi-
tion given by a single black annulus (of area N) with a central white disk (of area M). The
Young diagram describing this geometry has a total of N rows and M columns. A simple and
clean argument shows that the 1/2 BPS correlators, with excitations constructed using only
Z fields, admit an expansion with N−2

eff playing the role of the genus counting parameter[145].
In the 1/2 BPS sector, this result generalizes to multi ring geometries and again the genus
counting parameter is N−2

eff .

To go beyond the half BPS sector the result (4.2.3.13) can be used. After rescaling the fields
which are not Z fields, by a factor of 1/

√
ηB, we find a product of two terms

〈OA(x1)OB(x2)†〉B = FAB(Neff)
1

|x1 − x2|2J

(
1 +O

(
1

N

))
(I.1)

The first factor on the RHS above admits an expansion in N−1
eff . The second factor does not.

Thus, in general our amplitude can’t be developed as a series in the two small parameters λeff

and N−2
eff .
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J Check of Counting Formulas

In this section we will explore the counting formulas obtained in Section 5.2. First consider the
counting at infinite N . It is rather easy to use characters of the symmetric group to compute the
Kronecker coefficients and then sum the squares of the coefficients, to compute the number of
bosonic gauge invariant operators (Nb) and the number of fermionic gauge invariants operators
(Nf ). The results are shown in Table 1.

n 1 2 3 4 5 6

Nb 1 4 11 43 161 901
Nf 1 4 11 43 161 901

Table 1: The number of bosonic Nb or fermionic Nf gauge invariant tensors constructed using
n fields. This counting is for gauge group ranks N1 = N2 = N3 =∞.

Note that the number of fermionic gauge invariant operators is equal to the number of bosonic
gauge invariant operators. This fact is easily explained: every time we have a non-zero bosonic
Kronecker coefficient, there is a corresponding non-zero fermionic Kronecker coefficient. This
is easily proved using the well known property of characters of the symmetric group

χRT (σ) = sgn(σ)χR(σ) (J.1)

where RT is the transposed Young diagram, i.e. the Young diagram obtained from R by
swapping rows and columns. For example

R = ⇒ RT = (J.2)

Recall that 1n represents the Young diagram with a single column of n boxes. Use n to denote
the Young diagram that has a single row of n boxes. The proof is as follows

gr1,r2,r3,n =
1

n!

∑
σ∈Sn

χr1(σ)χr2(σ)χr3(σ)χn(σ)

=
1

n!

∑
σ∈Sn

χr1(σ)χr2(σ)χr3(σ)

=
1

n!

∑
σ∈Sn

χrT1 (σ)χrT2 (σ)χrT3 (σ)(sgn(σ))3

=
1

n!

∑
σ∈Sn

χrT1 (σ)χrT2 (σ)χrT3 (σ)sgn(σ)

=
1

n!

∑
σ∈Sn

χrT1 (σ)χrT2 (σ)χrT3 (σ)χ1n(σ)

= grT1 ,rT2 ,rT3 ,1n (J.3)
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Since the set of non-zero Kronecker coefficients are the same for the bosonic and the fermionic
tensor models, and the number of gauge invariant operators is equal to the sum of the squares
of these coefficients, this proves that the number of gauge invariant operators one can construct
in bosonic tensor models equals the number of gauge invariant operators one can construct in
fermionic tensor models.

The argument above has been for rank d = 3 tensors. It is clear that the above proof goes
through for rank d tensors with d odd, since in this case (sgn(σ))d = sgn(σ). For even d however,
the above proof does not go through: in this case (sgn(σ))d = 1. However, a simple variant of
the proof does work: for rank four for example, it is simple to prove that

gr1,r2,r3,r4,n = grT1 ,rT2 ,rT3 ,r4,1n (J.4)

We have verified this equality explicitly for n ≤ 6 and ranks d ≤ 8, which is a nice check of the
above arguments.

At finite N the number of fermionic and bosonic gauge invariant operators no longer matches.
Recall that for a general rank d tensor model the gauge group is U(N1)×U(N2)×· · ·×U(Nd).
As soon as n exceeds any of the Ni, it is possible to have Young diagrams r ` n whose number
of rows is greater than at least one of the Ni. In this case, the corresponding operator vanishes
and it is for this reason that we must put a cut off on the number of rows. For example, for
the bosons we have

Nb =
∑

ri`n l(ri)≤Ni

g2
r1 r2 r3 1 (J.5)

The proof breaks because we can have, for example, l(r1) < N1 and l(rT1 ) > N1. In Table 2 we
have given the finite N counting for rank 3 tensors with N1 = N2 = N3 = 5.

n 1 2 3 4 5 6

Nb 1 4 11 43 92 70
Nf 1 4 11 43 87 20

Table 2: The number of bosonic Nb or fermionic Nf gauge invariant tensors constructed using
n fields. Here N1 = N2 = N3 = 5.

Notice that there are more bosonic gauge invariant operators than there are fermionic gauge
invariant operators. This is in fact rather general: the Kronecker coefficients relevant for the
bosonic gauge invariants are mostly short and wide Young diagrams. On the other hand, the
Kronecker coefficients relevant for the fermionic gauge invariants are mostly tall and thin Young
diagrams. In fact, for the fermionic tensor model, there is some value of n beyond which there
are no new gauge invariants. In Table 3 we have shown the finite N counting for rank 3 tensors
with N1 = N2 = N3 = 3. For n ≥ 6 there are no gauge invariant operators.

For the first few values of n, it is possible to explicitly construct the gauge invariant operators.
For n = 1 there is a single bosonic and a single fermionic gauge invariant operator

φ̄ijkφijk ψ̄ijkψijk (J.6)
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n 1 2 3 4 5 6

Nb 1 4 11 12 151 18
Nf 1 4 11 8 41 0

Table 3: The number of bosonic Nb or fermionic Nf gauge invariant tensors constructed using
n fields. Here N1 = N2 = N3 = 3.

For n = 2 we have the following bosonic operators

φ̄i1j1k1φ̄i2j2k2φi1j1k1φi2j2k2 φ̄i2j1k1φ̄i1j2k2φi1j1k1φi2j2k2

φ̄i1j2k1φ̄i2j1k2φi1j1k1φi2j2k2 φ̄i1j1k2φ̄i2j2k1φi1j1k1φi2j2k2 (J.7)

which nicely matches the counting given above. There is an identical set of operators for the
fermions. For n = 3 we have the following bosonic operators

φ̄i1j1k1φ̄i2j2k2φ̄i3j3k3φi1j1k1φi2j2k2φi3j3k3 φ̄i1j1k1φ̄i2j2k3φ̄i3j3k2φi1j1k1φi2j2k2φi3j3k3

φ̄i1j1k1φ̄i2j3k2φ̄i3j3k2φi1j1k1φi2j2k2φi3j3k3 φ̄i1j1k1φ̄i2j3k3φ̄i3j2k2φi1j1k1φi2j2k2φi3j3k3

φ̄i1j1k2φ̄i2j2k3φ̄i3j3k1φi1j1k1φi2j2k2φi3j3k3 φ̄i1j1k2φ̄i2j3k1φ̄i3j2k3φi1j1k1φi2j2k2φi3j3k3

φ̄i1j1k2φ̄i2j3k3φ̄i3j2k1φi1j1k1φi2j2k2φi3j3k3 φ̄i1j2k1φ̄i2j3k2φ̄i3j1k3φi1j1k1φi2j2k2φi3j3k3

φ̄i1j2k1φ̄i2j3k3φ̄i3j1k2φi1j1k1φi2j2k2φi3j3k3 φ̄i1j2k2φ̄i2j3k3φ̄i3j1k1φi1j1k1φi2j2k2φi3j3k3

φ̄i1j2k3φ̄i2j3k1φ̄i3j1k2φi1j1k1φi2j2k2φi3j3k3

(J.8)

which matches the counting given above. The set of fermionic operators is again the same.
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K Examples of Operators and Correlators

In the previous Appendix we have written down some of the gauge invariant operators in the
permutation basis. In this Appendix we will write down some operators in the representation
theory basis. We will then explore correlators of gauge invariant operators, in both bases.

For n = 2 fields, there are no multiplicities, so these labels are dropped. There is a total
of four gauge invariant operators that can be defined. We will give the complete set of gauge
invariant operators, since this will allow us to test that they are indeed orthogonal and have
the correct two point function. The operators are given by

O , , = 2φ̄i1j1k1φ̄i2j2k2φi1j1k1φi2j2k2 + 2φ̄i2j1k1φ̄i1j2k2φi1j1k1φi2j2k2

+2φ̄i1j2k1φ̄i2j1k2φi1j1k1φi2j2k2 + 2φ̄i1j1k2φ̄i2j2k1φi1j1k1φi2j2k2 (K.1)

O
, ,

= 2φ̄i1j1k1φ̄i2j2k2φi1j1k1φi2j2k2 − 2φ̄i2j1k1φ̄i1j2k2φi1j1k1φi2j2k2

−2φ̄i1j2k1φ̄i2j1k2φi1j1k1φi2j2k2 + 2φ̄i1j1k2φ̄i2j2k1φi1j1k1φi2j2k2 (K.2)

O
, ,

= 2φ̄i1j1k1φ̄i2j2k2φi1j1k1φi2j2k2 − 2φ̄i2j1k1φ̄i1j2k2φi1j1k1φi2j2k2

+2φ̄i1j2k1φ̄i2j1k2φi1j1k1φi2j2k2 − 2φ̄i1j1k2φ̄i2j2k1φi1j1k1φi2j2k2 (K.3)

O
, ,

= 2φ̄i1j1k1φ̄i2j2k2φi1j1k1φi2j2k2 + 2φ̄i2j1k1φ̄i1j2k2φi1j1k1φi2j2k2

−2φ̄i1j2k1φ̄i2j1k2φi1j1k1φi2j2k2 − 2φ̄i1j1k2φ̄i2j2k1φi1j1k1φi2j2k2 (K.4)

A simple but tedious computation confirms (5.3.1.8) and (5.3.1.9). Some sample computations
are

〈O , , 〉 = 2N1(N1 + 1)N2(N2 + 1)N3(N3 + 1) (K.5)

〈O , , O , , 〉 = 32N1(N1 + 1)N2(N2 + 1)N3(N3 + 1) (K.6)

〈O , , O
, ,

〉 = 0 (K.7)

For n = 2, the complete set of fermionic operators in the representation basis is given by

P
, ,

= 2ψ̄i1j1k1ψ̄i2j2k2ψi2j2k2ψi1j1k1 − 2ψ̄i1j2k1ψ̄i2j1k2ψi2j2k2ψi1j1k1

−2ψ̄i1j1k2ψ̄i2j2k1ψi2j2k2ψi1j1k1 − 2ψ̄i2j1k1ψ̄i1j2k2ψi2j2k2ψi1j1k1 (K.8)

P
, ,

= 2ψ̄i1j1k1ψ̄i2j2k2ψi2j2k2ψi1j1k1 − 2ψ̄i2j1k1ψ̄i1j2k2ψi2j2k2ψi1j1k1

+2ψ̄i1j2k1ψ̄i2j1k2ψi2j2k2ψi1j1k1 + 2ψ̄i1j1k2ψ̄i2j2k1ψi2j2k2ψi1j1k1 (K.9)
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P
, ,

= 2ψ̄i1j1k1ψ̄i2j2k2ψi2j2k2ψi1j1k1 + 2ψ̄i2j1k1ψ̄i1j2k2ψi2j2k2ψi1j1k1

−2ψ̄i1j2k1ψ̄i2j1k2ψi2j2k2ψi1j1k1 + 2ψ̄i1j1k2ψ̄i2j2k1ψi2j2k2ψi1j1k1 (K.10)

P
, ,

= 2ψ̄i1j1k1ψ̄i2j2k2ψi2j2k2ψi1j1k1 + 2ψ̄i2j1k1ψ̄i1j2k2ψi2j2k2ψi1j1k1

+2ψ̄i1j2k1ψ̄i2j1k2ψi2j2k2ψi1j1k1 − 2ψ̄i1j1k2ψ̄i2j2k1ψi2j2k2ψi1j1k1 (K.11)

Some sample computations confirming (5.3.2.4) and (5.3.2.5) are

〈P
, ,
〉 = 2N1(N1 − 1)N2(N2 − 1)N3(N3 − 1) (K.12)

〈P
, ,
P

, ,
〉 = 32N1(N1 − 1)N2(N2 − 1)N3(N3 − 1) (K.13)

〈P
, ,
P

, ,
〉 = 0 (K.14)
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L Identities Needed to Derive the Collective Field The-

ory Hamiltonian

Using the identity

−
∫
dy
e−iky

x− y
= ε(k)πie−ikx (L.1)

we find

−
∫
dy

2x e−iky

y − x
= 2xε(k)πie−ikx (L.2)

Our main goal in this Appendix is to explain how to rewrite the term

T1 =

∫
dx
φ(x)

x
−
∫
dy1

2xφ(y1)

y1 − x
−
∫
dy2

2xφ(y2)

y2 − x
(L.3)

in a manifestly local form. This is the only term in the Hamiltonian that is not manifestly
local. Use the Fourier transform

φ(x) =

∫
dk

2π
e−ikxφk (L.4)

to write (this is the only non-local term in the Hamiltonian)

T1 =

∫
dk1

2π

∫
dk2

2π

∫
dk3

2π

∫
dxφk1φk2φk34xe−ik1x−

∫
dy1

e−ik2y1

y1 − x
−
∫
dy2

e−ik3y2

y2 − x
=

∫
dk1

2π

∫
dk2

2π

∫
dk3

2π

∫
dxφk1φk2φk34xe−ik1x

[
πiε(k2)e−ik2x

] [
πiε(k3)e−ik3x

]
= −4π2

∫
dk1

2π

∫
dk2

2π

∫
dk3

2π

∫
dxφk1φk2φk3xe

−i(k1+k2+k3)xε(k2)ε(k3) (L.5)

The expression on the last line can be manipulated, by renaming variables into

−4π2

3

∫
dk1

2π

∫
dk2

2π

∫
dk3

2π

∫
dxφk1φk2φk3xe

−i(k1+k2+k3)x(ε(k1)ε(k2) + ε(k1)ε(k3) + ε(k2)ε(k3))

=
4π2

3

∫
dk1

2π

∫
dk2

2π

∫
dk3

2π
φk1φk2φk3(i∂k1δ(k1 + k2 + k3))(ε(k1)ε(k2) + ε(k1)ε(k3) + ε(k2)ε(k3))

(L.6)

Because of the delta function, one or two of the ki’s must be positive so that

ε(k1)ε(k2) + ε(k1)ε(k3) + ε(k2)ε(k3) = −1 (L.7)

and we now find

T1 =
4π2

3

∫
dk1

2π

∫
dk2

2π

∫
dk3

2π
φk1φk2φk3(i∂k1δ(k1 + k2 + k3)) =

4π2

3

∫
dxxφ3(x) (L.8)

so that, remarkably, this term is local and it gives rise to a cubic interaction!
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