

A GENERIC FRAMEWORK FOR THE MATCHING OF

SIMILAR NAMES

Warren Marc Schay

Supervisor: Prof. B. Dwolatzky

A dissertation submitted to the Faculty of Engineering and the Built Environment,

University of the Witwatersrand, in fulfilment of the requirements for the degree of

Master of Science in Engineering

Johannesburg, 2011

 i

Contents

DECLARATION IV

ABSTRACT V

ACKNOWLEDGEMENTS VI

TEST DATA PRIVACY ISSUES VII

LIST OF FIGURES VIII

LIST OF TABLES IX

GLOSSARY X

1 INTRODUCTION 1

1.1 OVERVIEW 3

2 LITERATURE REVIEW 4

2.1 CAUSES OF VARIATION IN WORDS 4
2.1.1 Causes of Variation within Names 6

2.2 FUZZY MATCHING ALGORITHMS 8
2.2.1 Orthographic Models 10
2.2.2 Phonetic Models 23
2.2.3 Hybrid Techniques 32
2.2.4 Probabilistic Models 34
2.2.5 Commonality between Fuzzy Matching Algorithms 36

2.3 PRE-SEARCH DATA PARTITIONING 37
2.3.1 First Letter 38
2.3.2 Word Length 39
2.3.3 Word Halves 39
2.3.4 N-Grams 40
2.3.5 Bloom Filter 40
2.3.6 External Criteria 42

2.4 FRAMEWORKS 42
2.4.1 Framework Fundamentals 42
2.4.2 Advantages of a Framework 48
2.4.3 Disadvantages of a Framework 48
2.4.4 Fuzzy Matching Frameworks 50

3 RESEARCH QUESTION AND METHODOLOGY EMPLOYED 51

3.1 RESEARCH QUESTION 51
3.2 METHODOLOGY EMPLOYED 51

4 DESIGN REQUIREMENTS 53

4.1 MULTIPLE RELATED SEARCHES 53
4.2 MULTIPLE FUZZY MATCHING ALGORITHMS 54
4.3 ABSTRACT THE FUZZY MATCHING PROCESS 55
4.4 USER DEFINED FUZZY MATCHING PROCESS 55
4.4.1 Exclusion List 55
4.4.2 Substitution List 56

4.5 EXTERNAL APPLICATION ABSTRACTION FROM THE FUZZY MATCHING PROCESS 56
4.6 PERFORMANCE REQUIREMENTS 56
4.6.1 High Speed 57
4.6.2 Non-Excessive Memory and Processor Utilisation 57

 ii

5 SOLUTION OVERVIEW 59

5.1 DESIGN DECISIONS 59
5.1.1 Performance Trade-off for Generic Behaviour 59
5.1.2 Greybox Framework 60
5.1.3 Interfaces 61
5.1.4 C# Language and .Net Framework 64
5.1.5 Dynamically Loaded DLL’s 65
5.1.6 Use of a Relational Database 66
5.1.7 Maintain All Search Names within an Internal Database 67
5.1.8 Abstraction of the Database away from the Third Party Developer 68

5.2 DESIGN OVERVIEW 68
5.2.1 Name Pre-Processing 70
5.2.2 Database Searching 71
5.2.3 Match Scoring 72
5.2.4 Database Storage 75

5.3 INITIAL DESIGN (VERSION 1) 76
5.3.1 Database 76
5.3.2 Initialisation 81
5.3.3 Database Maintenance 81
5.3.4 Search Input 82
5.3.5 Search Initialisation 83
5.3.6 Pre-processing 85
5.3.7 Storage 87
5.3.8 Search 88
5.3.9 Word Set Component Scoring 92
5.3.10 Search Set Score Aggregation 94
5.3.11 Match Evaluation 94
5.3.12 Search Output 98

5.4 DESIGN STRENGTHS 99
5.4.1 Support of multiple Fuzzy Matching Paradigms 99
5.4.2 All logic is supplied by the Third Party Developer 99
5.4.3 Abstraction of the Fuzzy Matching Process 99
5.4.4 Runtime Implementation of Third Party Logic 100
5.4.5 Generic 101
5.4.6 Capable of Maintaining Relationships 101
5.4.7 Capable of Serving Multiple Applications 102

5.5 DESIGN SHORTCOMINGS 103
5.5.1 Expensive Database Search 103
5.5.2 Unable to Pre-Filter based upon Non-Name Related Requirements 103
5.5.3 Main Reliance on Triggers to update the BaseWord table 104
5.5.4 Caching of Rules Table 104
5.5.5 Unintuitive 104
5.5.6 Inflexible Interfaces 105
5.5.7 Latency due to the Loading of DLL’s at Runtime 105

5.6 IMPROVEMENTS TO THE ORIGINAL DESIGN (VERSION 2) 106
5.6.1 Pre-Search Filter 106
5.6.2 Separation of the single Pre-Processing Component into Storage Pre-Processing and

Search Pre-Processing Sub-Components 111
5.6.3 In Memory Database Caching 112
5.6.4 Delegate to Access Contents of the Rules Table 116
5.6.5 Pre-Search Filter In-Memory Database Caching 119

6 SOLUTION TESTING 123

 iii

6.1 TEST OBJECTIVES 123
6.2 TEST DATA 125
6.2.1 Test Data Set Properties. 127

6.3 TEST CASES 127
6.3.1 Test Case 1 - Basic Framework Search 128
6.3.2 Test Case 2 - Related Searches 128
6.3.3 Test Case 3 - Flexibility 129
6.3.4 Test Case 4 - Speed 129
6.3.5 Test Case 5 - High-Load Testing 130

6.4 TEST RESULTS AND DISCUSSION 131
6.4.1 Test Case 1 - Basic Framework Search 131
6.4.2 Test Case 2 - Related Searches 132
6.4.3 Test Case 3 – Flexibility 133
6.4.4 Test Case 4 – Speed 135
6.4.5 Test Case 5 - High-Load Testing 142

6.5 SOLUTION DEPLOYMENT 144

7 ANALYSIS AND CONCLUSION 147

7.1 CRITICAL ANALYSIS 147
7.2 RECOMMENDATIONS AND FUTURE DEVELOPMENTS 149
7.3 CONCLUSION 152

REFERENCES 156

APPENDIX A EDIT DISTANCE VARIANTS 161

1 WEIGHTED EDIT DISTANCE 161
2 EDIT DISTANCE WITH UPPERBOUND AND CUT-OFF CRITERION 161
3 NORMALISED EDIT DISTANCE (NED) 162
4 DISCRETISED EDIT DISTANCE (DED) 163
5 EXPONENTIAL EDIT DISTANCE (EED) 163
6 EDIT DISTANCE WITH A TRIE 163
REFERENCES 166

APPENDIX B DATABASE MODEL 167

APPENDIX C SEARCH INPUT XML SCHEMA 168

APPENDIX D FRAMEWORK DEFINED INTERFACES FOR THIRD PARTY CODE 171

APPENDIX E SEARCH OUTPUT XML SCHEMA 175

APPENDIX F OUTWARD FACING PRE-FILTER FUNCTIONALITY CHANGES 178

APPENDIX G DELEGATE ACCESS TO THE CONTENTS OF THE RULES TABLE 180

APPENDIX H ANALYSIS OF TEST DATA SET 182

1 COMMON FIRST NAME PREFIXES 182
2 COMMON SURNAME PREFIXES 191
3 PHONETIC PROPERTIES OF TEST DATA SET 200

 iv

Declaration
I declare that this dissertation is my own unaided work. It is being submitted to the

Degree of Master of Science to the University of the Witwatersrand, Johannesburg. It

has not been submitted before for any degree or examination to any other University.

This work has been performed while employed by Synthesis Software Technologies

(Pty) Ltd, who provided the necessary facilities.

(Warren Marc Schay – 0303537F)

_____ day of ____________ year ________

 v

Abstract

Name matching is a common requirement in modern business systems, wherein fuzzy

matching techniques are employed to overcome variations between names. The

purpose of this dissertation was the development of a framework, which is capable of

implementing various fuzzy matching algorithms, while abstracting the name

matching process away from external business systems. Through a study of existing

fuzzy matching algorithms and frameworks, several design requirements were

identified; the maintaining of name relationships, non-algorithm specific logic,

abstraction of the matching process, user configured matching logic, consistent

external interface and performance considerations. The deployment to a production

environment and a series of tests, demonstrated that the framework fulfilled all but

one of its design requirements, as certain algorithm implementations yielded

excessive search times. The cause and remedy of this shortcoming were identified.

Finally, based on an evaluation of the design‟s strengths and weaknesses,

recommendations for future developments were suggested.

 vi

Acknowledgements
The author would like to thank his employer Synthesis Software Technologies

(especially Dr. Jack Cohen) for the financial, academic and technical support, without

which the dissertation would not have been possible. The author would also like to

acknowledge his supervisor Prof. Barry Dwolatzky from the School of Electrical and

Information Engineering at the University of the Witwatersrand for the invaluable

insight and guidance that allowed the submission of this dissertation to come to

fruition. Additional thanks are extended to the author‟s parents and wife for all their

support and encouragement throughout the course of this dissertation, despite at times

it appearing to be unending.

 vii

Test Data Privacy Issues
The data used for the test cases was collected from three sources, namely:

 Who‟s Who of Southern Africa (Media24, 2009).

 1990 US Census (U.S. Census Bureau, 2009).

 A scramble list of employee first names and surnames from a company.

Who‟s Who of Southern Africa consists of person information that is already

contained within the public domain and / or information which people have agreed to

be placed within the public domain. The terms of conditions of the website allows the

website to distribute content without limitation (Media24, 2009). The US Census

Bureau states that it is committed to the making of all documents on its internet

server accessible to all (U.S. Census Bureau, 2009). Furthermore, since the site

provides the frequency of occurrence of various first names and surnames and not the

actual first name – surname pairs, it is assumed that no privacy issues were violated.

The names utilised from the above mentioned company were provided to the author

on condition that the first names and surname combinations were scrambled.

 viii

List of Figures
Figure 2.1: Fuzzy Matching Algorithms investigated within Literature Review 9
Figure 2.2: Guth Algorithm Comparison Steps (Lait & Randell, 1993) 10

Figure 2.3: Example of Guth Algorithm Name Matching (Lait & Randell, 1993) 11
Figure 2.4: Calculating the minimum edit distance between Filips and Phillips (Du,

2005) 15
Figure 2.5: Soundex Code Look-Up Table (Du, 2005) 24

Figure 2.6: Phonix Code Look Up Table (Du, 2005) 28
Figure 2.7: Editex Letter Groups (Zobel & Dart, 1996) 33

Figure 2.8: A search performed against a partition of the search database 38
Figure 2.9: A Fuzzy Matching Framework 50

Figure 4.1: Searching multiple related names 54
Figure 5.1: High Level Diagram depicting the Fuzzy Matching Process 69

Figure 5.2: High Level Diagram depicting the Upkeep of the Fuzzy Matching

Database Process 70

Figure 5.3: Example of the Assembly configuration section in the Framework‟s

Configuration file 85

Figure 5.4: Search Input for name John Mark Smith 90
Figure 5.5: Generated SQL query for search name John Mark Smith 91

Figure 6.1: Results of the profiling of the Framework Soundex Implementation 138
Figure 6.2: Results of the profiling of the Framework Levenshtein Distance

Implementation 140
Figure 6.3: Results of the profiling of the Framework N-Gram Similarity

Implementation 141

Figure A.1: A trie built using the names filips, fillips, phan, phillip and phillips (Du,

2005) 164
Figure A.2: Construction of the Dynamic Programming Matrices using the Trie 165

Figure B.1: Framework Database Model 167
Figure H.1: The hamming distance between nine on the most common 5 character

first name prefixes and their corresponding names 190
Figure H.2: The hamming distance between nine on the most common 5 character

surname prefixes and their corresponding names 199
Figure H.3: Three of the most commonly occurring Soundex codes, the

corresponding first names and the number of occurrences of each first

name 201

Figure H.4: Two of the most commonly occurring Soundex codes, the corresponding

surnames and the number of occurrences of each first name 202

 ix

List of Tables
Table 5.1: Example Inputs and Output for Wildcard search

SetDatabaseSearchCondition method 89

Table 5.2: List of Search Results input in Match Evaluation Component 96
Table 5.3: Ordered List of Search Results 96

Table 5.4: List of Match Scores input into the Third Party Developer method 97
Table 5.5: Index list of results returned by the third party developer method 97

Table 5.6: Search Result List return by the Match Evaluation Components 97
Table 6.1: Sub-Objective to high level objective mapping 125

Table 6.2: Test Data Set Properties 127
Table 6.3: Test Case 1 Results 131

Table 6.4: Test Case 2 Results 132
Table 6.5: First Name Search Results 132

Table 6.6: Surname Search Results 132
Table 6.7: Soundex Search Results 134

Table 6.8: Levenshtein Search Results 134
Table 6.9: N-Gram Similarity Search Results 135

Table 6.10: Soundex Search Times 136
Table 6.11: Levenshtein Search Times 136

Table 6.12: N-Gram Similarity Search Times 136
Table 6.13: Batch Process Details 142

Table 6.14: Results of Simultaneous Search Requests Test Case 144

Table H.1: Prefix length of 1 182

Table H.2: Prefix length of 2 182
Table H.3: Prefix length of 3 184

Table H.4: Prefix length of 4 184
Table H.5: Prefix length of 5 186

Table H.6: Prefix length of 6 186
Table H.7: Prefix length of 7 188

Table H.8: Prefix length of 8 188
Table H.9: Prefix length of 1 191

Table H.10: Prefix length of 2 191
Table H.11: Prefix length of 3 193

Table H.12: Prefix length of 4 193
Table H.13: Prefix length of 5 195

Table H.14: Prefix length of 6 195
Table H.15: Prefix length of 7 197

Table H.16: Prefix length of 8 197

 x

Glossary

.Net See .Net Framework.

.Net Framework The .Net Framework is the Microsoft platform for the building

of applications. It consists of a Common Language Runtime

(CLR) that provides an abstraction layer over the operating

system, base class libraries that provide pre-built code for

common low-level programming tasks and various

development frameworks and technologies (Microsoft, 2009).

API An Application Programming Interface (API) “is a boundary

across which application software uses facilities of

programming languages to invoke services. These facilities

may include procedures or operations, shared data objects and

resolution of identifiers” (ISO/IEC JTC 1, 2007).

C C is a general-purpose computer programming language

developed between 1969 and 1973 (Giannini, 2004).

C++ C++ is a general-purpose programming language, which

supports data abstraction and object-orientated and generic

programming. It was developed by Bjarne Stroustrup as an

enhancement to the C language and was originally named “C

with Classes” (Stroustrup, 1997).

C# C# is a modern, general-purpose, object-oriented programming

language developed by Microsoft, which uses similar syntax to

C and C++. The language has been designed with support for

software engineering principles such as strong type checking,

 xi

array bounds checking, detection of attempts to use

uninitialized variables and automatic garbage collection (Ecma

International, 2006).

CLR The Common Language Runtime (CLR) is the runtime

environment, in which all languages within the .Net framework

run their code. This runtime automatically handles object

layout and manages references to objects, releasing them when

they are no longer being used (thereby providing the garbage

collection capabilities of the .Net framework). The use of the

common CLR allows the interoperability of all .Net languages

(MSDN Library, 2011a).

DLL “A dynamic-link library (DLL) is an executable file that acts as

a shared library of functions... Dynamic linking differs from

static linking in that it allows an executable module (either a

.dll or .exe file) to include only the information needed at run

time to locate the executable code for a DLL function. (MSDN

Library, 2011b)”

Garbage Collection Garbage Collection is the process in which an application‟s

memory space is scanned for unused objects and their space

reclaimed, thereby freeing the memory to be used by other

objects. Furthermore, this process aids in the prevention of

memory corruption (Bacon, 2007).

Java The Java programming language is a general-purpose,

concurrent, class-based, object-oriented language. Though

related to C and C++, it is organised differently, with a number

of aspects of C and C++ omitted and aspects from other

 xii

languages included. The language is strongly typed and

includes automatic garbage collection (Sun Microsystems, Inc,

2000).

JVM The Java Virtual Machine (JVM) is an abstract computing

machine, which executes instruction sets and manipulates

various memory areas at run time. The particular instruction set

executed by the JVM is called bytecode and is generated by the

Java compiler. The JVM is the component of the Java

technology responsible for the hardware- and operating

system- independence of Java (Sun Microsystems, Inc, 1999).

MS SQL Microsoft SQL Server (MS SQL) is a database management

and analysis system produced by Microsoft (Microsoft, 2011).

Oracle Oracle Database (Oracle) is an object-relational database

management system produced by the Oracle Corporation

(Oracle Corporation, 2010).

SQL The Structured Query Language (SQL) is a standardised

language for defining and manipulating data in a relational

database (IBM, 2006).

Trigger Database triggers are programs that implicitly start (are “fired”

off) when an INSERT, UPDATE, or DELETE statement is

executed on a table. A trigger can contain several SQL

statements (SAP Library, 2009).

Python Python is an interpreted, object-oriented, high-level

programming language, which is often used for Rapid

 xiii

Application Development. In addition it is often used as a

scripting or glue language to connect existing components

together (Python Software Foundation, 2007).

Python Script A Python script is a series of Python commands that are saved

in a file and can be retrieved and executed at a later stage.

(Python Software Foundation, 2004)

XML The Extensible Markup Language (XML) is a set of rules for

the encoding of documents for distribution (across the

internet). The design goals of XML include simplicity,

generality, usability and human readability (W3C, 2008).

XSD The XML Schema Definition Language (XSD) is used to

define the structure of XML documents (W3C, 2004).

 1

1 Introduction

The need to perform name matching has become a common requirement in today‟s

business systems. At the heart of name matching is the simple objective of

determining whether two or more names are the same. Examples of such business

processes are client / customer (entity) searches (i.e. whether the searched entity

exists within a particular system), comparisons of two or more entities (i.e. to

determine whether the two compared entities are the same person / company), the

lookup of entities against external lists (i.e. to determine whether a particular person /

company exists on a list of entities external to the searching system), etc.

Names unlike ordinary words present unique challenges in their comparison as two

names which are not identical may both represent the same person or company. This

is due to the particular characteristics inherent within names which allow a name to

have several valid variations. Two examples of these characteristics are:

 alternate spellings

 nicknames or abbreviations

To this end, as the title of this dissertation suggests, name matching involves the

process of matching similar names.

Computers are easily able to determine whether or not two compared names are an

exact match to one another, i.e. verify whether or not both names are identical. The

problem is, as highlighted previously, that this approach within a name matching

context is inadequate. Through a combination of experience and knowledge of

language constructs, humans are capable of overcoming the variations in names to

determine whether or not two non-identical names match to one another. Computers

are able to mimic this ability through the implementation of fuzzy matching

algorithms. Although fuzzy matching algorithms have been developed to match non-

 2

identical words, names are a subset of general words and therefore these algorithms

can be utilised to overcome the variations between two similar names.

In performing fuzzy matching one must be aware that there is no single fuzzy

matching algorithm that can wholly duplicate the human ability to match similar

names. Rather there is a host of algorithms, each of which has its own strengths and

weaknesses and therefore has a particular scenario where it performs best. Therefore,

when implementing name matching within a business context it is imperative that an

algorithm be chosen that best suits the business‟s needs and provides a level of

fuzziness with which the business is most comfortable. One must be aware that one

of the inherent drawbacks of fuzzy matching is the concept of false positives, where

an algorithm determines that two words / names are a match where in reality they are

not. Again, when choosing a fuzzy matching algorithm, the tolerable number of

generated false positives must be considered.

As mentioned previously, since there is no “perfect” fuzzy matching algorithm, it

might occur that over time as business rules change, the fuzzy matching algorithm

used to perform a particular name matching task is found to be no longer adequate

and is required to be replaced. This process can occur regularly within a system‟s

lifecycle, especially within the development of a new system. The above mentioned

scenario demonstrates the need for a platform upon which fuzzy matching algorithms

can be run but also allows for these algorithms to be easily replaced when there are

changing requirements. This platform can be achieved through the use of a generic

framework, which abstracts the end user away from the fuzzy matching algorithms

and in turn abstracts the algorithms away from the underlying database. Furthermore

this framework can be designed to cater for the specific characteristic inherent within

names.

The objective of this dissertation was therefore the design of a generic framework for

the matching of similar names. Beyond the requirements of this dissertation, the

 3

development of the framework was necessitated by the name matching requirements

of a real world business application. The framework was successfully deployed and

has been operational for over a year.

1.1 Overview

In Section 2 an in-depth literature review is performed in order to clarify the nature of

fuzzy name matching. This includes an analysis of the causes of variation in both

general words and in names. Thereafter, an analysis of existing fuzzy matching

algorithms and search methodologies is performed. Finally, both general and fuzzy

matching frameworks are investigated. Having explored the subject background,

Section 3 defines the problem at hand and thereafter proposes a methodology through

which a solution is to be developed. Section 4 outlines the requirements that the

proposed solution must fulfil. The solution design is documented in Section 5 and the

remainder of the section evaluates the design and discusses the improvements made

to the design to overcome several of the design‟s shortcomings. Section 6 discusses

the testing performed against the design implementation to verify whether it fulfils

the requirements defined in Sections 3 and 4. This section also includes an analysis of

the test case results. Section 7 critically analyses the solution, proposes avenues for

future developments and improvements and finally presents a conclusion.

 4

2 Literature Review

A review of the literature relevant to the topic, the Design of a Generic Framework

for the Matching of Similar Names, was necessary in order to understand the subject

and to define the research question. In particular, the literature review investigates the

following sub-topics:

 The causes of variation within general words and names

 Fuzzy matching algorithms and data-partitioning techniques

 Frameworks in general and fuzzy matching frameworks

2.1 Causes of Variation in Words

The need for fuzzy matching arises from the fact that words that should be identical

to one another could have a variation in their spellings. Through investigations of the

causes of these variations, several fuzzy matching algorithms have been developed in

an attempt to overcome these discrepancies.

One of the major causes of variation in words is spelling error. Spelling errors in

words can be divided into three categories, namely (Christen, 2006; Du, 2005):

 Typographical Errors – This type of error occurs when the data capturer

knows the correct spelling of the word but makes a typing mistake (i.e.

erroneously pushes the wrong button). An example of this would be the

typing of the word “teh” when the intention was to write “the”.

 Cognitive Errors – This type of error is caused when the person writing/typing

the word either has a misconception or a lack of knowledge regarding the

correct spelling of the word. An example of such a case would be that the

person spells the word “receive” as “recieve".

 Phonetic Errors – This type of error occurs when a person substitutes a

phonetically equivalent sequence of letters as opposed to spelling the intended

word correctly, i.e. the person replaces several letters within a word with other

letters that sound the same. An instance of this would be the word “naturally”

 5

being spelled as “nacherly”. It has been found the phonetic errors tend to

distort spellings more so than typographic and cognitive errors.

Another source of error that cannot be ignored is the medium by which the words are

transmitted and submitted. “A human ear might misinterpret similar sounding letters

(e.g. d–t, m–n)” (Du, 2005). This could be further exacerbated if the word has been

repeated by a series of people, some of whom do not communicate the word correctly

(Zobel & Dart, 1996). The use of automated technology for the input of a word can

also cause errors, for example, an optical character recogniser (OCR) might confuse

letters that look similar. An example of such letters is the confusing of the letter „u‟

with the letter „v‟ (Du, 2005).

Several studies, investigating spelling errors in general words, have found that single

character errors account for the majority
1
 of errors. A single character error is caused

by the insertion, deletion or substitution of a single character into the correct spelling

of a word.

A study investigating patient names within various hospital databases revealed that

personal names presented different types and distributions of errors as compared to

general words. The insertion of an additional name, initial or title was found to be a

common error within this study as it accounted for 36% of errors. Of even greater

interest, is that single character errors (which normally cause a large majority of

errors in general words), only accounted for 39% of errors (Christen, 2006). Thus, the

characteristics of personal names (as compared to general words), have resulted in

their having unique causes of variation in addition to those that affect general words.

1 One study in particular found that up to 80% of errors are single character errors (Christen, 2006).

 6

2.1.1 Causes of Variation within Names

Names
2
 have several characteristics that cause additional complexity, when matching

two or more names. The following is an explanation of these characteristics

 Personal names can have multiple valid spelling and character variations.

Unlike normal words, which generally only have one correct spelling,

personal names can have multiple valid spellings. For example the name

„Gail‟, „Gale‟ and / or „Gayle‟ (Christen, 2006).

 Names can have multiple variations in the characters that constitute the name.

Several types of variations are presented below (Snae, 2007):

o Capitalisation, e.g. brown and Brown; SMITH and Smith

o Punctuation, e.g. WILL SMITH and WILL-SMITH; SMIT and

S.M.I.T; B.Z. Smith and BZ Smith

o Spacing, e.g. YOUNGSMITH and YOUNG SMITH

 Nicknames, Abbreviations, Middle Names and Suffixes

Often, people do not necessarily go by their full first names, rather they make

use of nicknames or abbreviations of their names. A nickname could have

originated from variations of a person‟s first name or surname (like „Vesty‟

for „Vest‟) or might relate to some life event, character sketch or physical

characteristics of that person. An abbreviation is merely a shortened form of

that person‟s name for example “Bob” for „Robert‟, or “Liz” for „Elizabeth‟

(Christen, 2006).

Similarly, people may use their first name in some situations, whereas in other

situations, they might go by the first and middle names. People might also on

2 Though personal names are generally the first type of names that comes to mind when discussing

name matching, one may not ignore corporate names as they possess characteristics that make them

more complex to match than ordinary strings.

 7

occasion specify their name with a suffix, for example Jr or II (Bell & Sethi,

2001).

 Married Names.

It is common for Western women to change their surnames to that of their

husbands‟ when they get married. Thus a person can potentially have two

separate unrelated surnames, to which they are associated; depending on when

their name was captured into a particular database (i.e. prior to or post their

wedding) (Christen, 2006).

 Transcription

When transcribing a name that was originally written in one alphabet into

another (e.g. from the Arabic alphabet to the Latin alphabet), one

approximates the phonemes of the source alphabet to those in the destination

alphabet. Due to their often being several letters / letter sequences that sound

the same (e.g “c” and “k”, f and “ph”, etc), there can be a variety of ways in

that the original name can be transcribed. Therefore, there may be several

legitimate spelling or phonetic variations of the original name (Du, 2005).

 Cultural Differences

Various cultures have different ways in which names are presented. This

introduces further complexity when comparing names as it may not be

assumed that standard naming conventions apply to other cultures. For

example, in “Asian names, the surname traditionally appears before the given

name, and frequently a Western given name is added. Hispanic names can

contain two surnames, while Arabic names are often made of several

components and contain various affixes (Christen, 2006)”. Similarly, in

several European countries it is common for people to have compound names

for example “Hans-Peter” or “Jean-Pierre” (Christen, 2006).

 8

2.2 Fuzzy Matching Algorithms

Fuzzy matching algorithms can be divided into two high level categories, namely

Orthographic and Phonetic matching. Within these two broad categories, there are

two types of metrics, which are used to determine the degree of a match between two

strings. One can either determine the distance between the two strings (how different

the two strings are) or one can determine the similarity between the two strings. Thus

the lower the distance between two strings, the higher the similarity and therefore the

more alike they are (Kolatch et al., 2004).

The majority of string matching algorithms have been developed for general word

matching and not specifically for name matching.

This literature review focuses only on well-known, well documented algorithms.

Many of the newer algorithms are built upon (or are adaptations of) the classical

algorithms, whereas a few use completely new ideas (for example syllable

alignment). The reason only well documented algorithms have been reviewed is due

to the fact that there is very little literature and analysis available on the newer

algorithms. In addition, since the majority of algorithms are built upon older research,

an analysis of classical fuzzy matching algorithms is sufficient to show the varying

requirements and computation strategies required to be supported by a framework.

Figure 2.1 below provides a roadmap of the various Orthographic, Phonetic and

Hybrid (see §2.2.3) fuzzy matching algorithms that are investigated within this

literature review. The figure demonstrates the relationships between the various

algorithms and in particular highlights how one or more algorithms are extended to a

form a new algorithm.

 9

Fuzzy Matching

Orthographic Phonetic

Guth Algorithm

Bag Distance

Edit Distance
Smith Waterman

Distance

Damerau-

Levenshtein

Distance

Common

Characters

Longest Common

Substring
Jaro

Winkler

N-Grams

N-Gram Count

Q-Grams N-Gram Distance

Positional Q-

Grams

Skip Grams

Compression

Soundex

Phonex

Phonix

NYSIIS

Metaphone

Double

Metaphone

Editex

Syllable Alignment

Distance

Legend

Algorithm Category

Algorithm

Figure 2.1: Fuzzy Matching Algorithms investigated within Literature Review

 10

2.2.1 Orthographic Models

Orthographic models calculate the similarity or distance between two strings based on

the number of steps required to transform one into the other or the number of

characters they have in common (Kolatch et al., 2004).

Guth Algorithm

The Guth Algorithm is an alphabetic method, which is independent of language as it

performs letter by letter comparisons (Lait & Randell, 1993; Snae, 2007).

Algorithm Implementation

The initial step in the algorithm implementation is a check to determine whether the

two compared names are identical (Lait & Randell, 1993). Upon this step failing, the

algorithm proceeds to compare the words letter-by-letter. When the algorithm

“encounters different letters in the same position it then searches for matching letters

in other positions (Lait & Randell, 1993)”. The algorithm implementation is

explained in Figure 2.2 below:

Figure 2.2: Guth Algorithm Comparison Steps (Lait & Randell, 1993)

 11

If none of the above mentioned “tests” pass, the two words that are being compared

are declared to be different.

Using the “tests” shown in Figure 2.2, Figure 2.3 explains how the Guth Algorithm

would match the names Glavin and Glawyn.

Figure 2.3: Example of Guth Algorithm Name Matching (Lait & Randell, 1993)

Algorithm Discussion

The algorithm is claimed to have four main advantages over other Fuzzy Matching

algorithms (Lait & Randell, 1993):

1. It is not dependent on prior generation of a key, which is required by certain

phonetic algorithms (See §2.2.2).

2. Since it requires no knowledge of the phonetics or the context in which the

name is used, it is data independent and could be adapted easily to different

types of data or linkage requirements.

3. The algorithm does not alter the input records in any way.

4. Alternative spellings of the same word are identified by the position of the

letters in the word and not by phonetic equivalency.

 12

A further strength of the algorithm is due to its use of character references (character

comparisons) as opposed to a generated key and therefore the matching of two names

requires little additional computing. (Lait & Randell, 1993)

Since the algorithm only compares the letters that are present in the two compared

names, it would not be capable of matching a name to the same name when it is in the

form of double name. (Lait & Randell, 1993) A further weakness of the algorithm is

due to it “hunting” for letters in the compared name, which can cause incorrect

matches between names that bear little visual resemblance to one another (causing to

match names “liberally”). (Lait & Randell, 1993) This problem is exacerbated when

comparing short names where one or two common vowels can produce a mismatch

(Lait & Randell, 1993; Snae, 2007).

Edit Distance (Levenshtein Distance)

One of the most common Orthographic measures is that of the string edit distance.

The Edit Distance provides a measure of the minimum number of edit operations

(insertions, deletions and substitutions) required to convert one string (name) into

another (Christen, 2006; Hsiung et al., 2005). The edit distance utilises an algorithm

paradigm called Dynamic Programming to perform the calculation (Christen, 2006).

Dynamic Programming

Dynamic Programming is an algorithm design paradigm used to solve optimisation

problems. This paradigm makes use of the following three components to solve a

problem (Atallah, 1999):

 Principle of Optimality

 Sub-problem solutions

 Caching

 13

Atalah defines the Principle of Optimality as “the observation, in some optimization

problems, that components of a globally optimum solution must themselves be

globally optimum (Atallah, 1999)”. Therefore, one is able to find the optimum

solution to a problem though breaking it up into smaller sub-problems and finding the

optimal solution to each. Using the solution of the smaller components, one is

capable of finding the solution of the problem as a whole.

Following from the “Principle of Optimality”, it would become necessary to break

the problem up into multiple sub-problems and find their solutions.

Often the solution of one sub-problem is dependent on the solutions of previous sub-

problems. Instead of re-performing all the calculations for each of the sub-problems,

as a solution for a sub-problem is calculated it is cached (stored) to be utilised by

subsequent sub-problems. Through caching, the dynamic programming saves both

time and additional computation.

Implementation of the Edit Distance

The edit distance (edit) is calculated by iterating through and then comparing each of

the letters in the two words that are being compared. Each set of letters that are

compared are compared using the function d(i,j). The minimum edit distance for the

entire word is calculated by determining d(|x|,|y|) (where |x| is the length of word x

and |y| is the length of word y). See Equation 1 (Zobel & Dart, 1996).

 14

),()1,1(

,1)1,(

,1),1(

min),(

ji yxcjid

jid

jid

jid (1)

where:

)5(
1

0
),(

)4(),0(

)3()0,(

)2(0)0,0(

ii

ii

ii
yxif

yxif
yxc

jjd

iid

d

 x, y are the two words being compared

 xi is the i
th
 letter of the word x

 yj is the j
th
 letter of the word y

The need for the min function in Equation 1 is in order to determine which edit

operation has been performed between the two letters and how much it cost. The first

expression takes into account insertion, the second expression takes into account

deletion whilst the third takes into account substitution (Du, 2005).

In order to calculate the edit distance for the entire word (finding the edit distance

between the final letters of the two words), the algorithm is required to recursively

determine the edit distance for each of the previous letters until it has reached the

beginning of both of the two words. This would cause the algorithm to evaluate the

distance between a set of two letters several times and thus make the algorithm highly

computationally expensive. The computational complexity is reduced through the use

of Dynamic Programming, where the edit distance between each of the letter sets is

calculated and stored within a zero-indexed matrix of dimensions (|x|+1)(|y|+1). In

this manner, the algorithm is able to start in the upper left-hand corner of the matrix,

and determine the distance of each cell, having used the distances that are stored in

the adjacent three cells (the cell above, the cell diagonally above and to the left and

the cell to the left). The value contained in the bottom right-hand corner cell is the

 15

minimum edit distance for the two words. Figure 2.4 displays the evaluation of the

Edit Distance through the use of a Dynamic Programming matrix (Du, 2005).

Figure 2.4: Calculating the minimum edit distance between Filips and Phillips (Du, 2005)

Algorithm Discussion

Using the Dynamic Programming approach, the complexity of the edit distance

algorithm is O(|x||y|). The algorithm can only evaluate the edit distance between two

words at a single time and if one were required to compare a search name to an entire

dictionary
1
, the whole dictionary would have to be processed, as it would be required

that every name in the dictionary be compared against the search name. This

effectively makes the edit distance algorithm very slow when comparing against large

dictionaries (Du, 2005).

Damerau-Levenshtein Distance

The Damerau-Levenshtein Distance differs from the basic Edit Distance, in that the

transposition of two letters (characters) is considered to be a single operation as

opposed to being two operations in the basic algorithm (Christen, 2006). The

implementation of the Damerau-Levenshtein algorithm extends the basic Edit

Distance algorithm (as is shown in Figure 2.1) through the addition of an expression

to the basic Edit-Distance function. The expression takes into account the

1 A dictionary is a list of words (names), against which one compares a search word. A Lexicon is a

synonym for the word dictionary.

 16

transposition of characters. The Damerau-Levenshtein Distance is shown in Equation

6 (Du, 2005).

 1),(),()2,2(

),,()1,1(

,1)1,(

,1),1(

min),(

11 jiji

ji

yxcyxcjid

yxcjid

jid

jid

jid (6)

The internal expressions of Equation 6 are described in Equations 2 – 5 above.

Further derivatives of the Edit Distance algorithm can be found in Appendix A.

Bag Distance

A bag is defined as a multi-set of letters within a string (i.e. a substring). The Bag

Distance is considered to be a cheap approximation of the edit distance and is always

smaller and equal to the corresponding edit distance (Christen, 2006). The reason it is

considered a cheap approximation of the edit distance is due to it not requiring further

processing of the strings (that are being compared) and is very fast to compute

(Bartolini et al., 2002).

Implementation

The Bag Distance is implemented through the following equation (Bartolini et al.,

2002):

 XYYXyxdbag ,max),((7)

where:

x, y are the two words being compared

)9()()(

)8()()(

ymsymultisetY

xmsxmultisetX

 17

The following example explains how the bag distance between “spire” and “fare” is

found (Bartolini et al., 2002).

 32,3max

,max)"","("

 XYYXfarespiredbag

where:

 srpeispiremsX ,,,,)"("

 rfeafaremsY ,,,)"("

 spirfeasrpeiYX ,,,,,,,,,

 fasrpeirfeaXY ,,,,,,,,

 3,, spiYX

 2, faXY

The difference between two multi-sets is found by taking all the elements in first set

and removing all the elements that are common to both the first and second set

(Bartolini et al., 2002). For example: X-Y = all elements of X, which are not elements

of Y.

Agrep

Agrep is a utility which allows for the rapid identification of strings that contain

substrings, which match either the query string or variations thereof. These variations

of the query string can contain up to a user specified number of insertions, deletions

or substitutions. Unlike other algorithms, Agrep does not rank any of the results. It

must be noted that Agrep was not designed to be used as a name matching tool but

rather for the fast searching of large files (Zobel & Dart, 1996).

 18

Smith Waterman Distance

The Smith-Waterman Algorithm was developed to compute the edit distance between

two sequences, typically that of either DNA or protein, using a dynamic

programming approach (Christen, 2006; Pang, 2007). Since this algorithm relates to a

very specific field within string matching it will not be investigated further in this

literary review. The relationship between this algorithm and the edit distance

algorithm is demonstrated in Figure 2.1.

Common Characters

Longest Common Substring (LCS)

The LCS determines the longest substring that is common to both the words that are

being compared (Christen, 2006)

Jaro

The Jaro algorithm calculates a similarity measure between two strings by

determining the number of common characters shared between the two strings and

also the number of transpositions that would be required to convert the one string into

the other (Christen, 2006; Yancey, 2005).

Before discussing the formula used within the algorithm calculation it is necessary to

define several terms; especially the context in which they are used within this

particular algorithm.

 A common character is defined as a character that is common to both of the

compared strings and is found within half the length of the longer string

(Yancey, 2005). i.e. if the length of the longest string is x then for a character

to be considered common between the two strings the same character must be

 19

found within a distance of x/2 from the position in which it was found in the

first string.

 “The definition of transposition is that the character from one string is out of

order with the corresponding common character from the other string”

(Yancey, 2005).

The Jaro similarity measure is described in Equation 10 below (Yancey, 2005).

)10()(
3

1
),(

C

TCC
j

N

N

y

N

x

N
yx

where

 Φj(x,y) is the Jaro similarity function between two strings x and y

 NC is the number of common characters between strings x and y as per the

 above mentioned definition

 NT is calculated by subtracting NC from the number of transpositions. The

 number of transpositions is calculated by dividing the number of out-

 of-order common character pairs by 2 and thereafter rounding down

 the result to the nearest whole integer (Yancey, 2005).

Winkler (Jaro-Winkler)

The Winkler algorithm utilises the results of a study that found that there are typically

fewer errors at the beginning of names and increases the Jaro Similarity measure

when there are up to four characters that match at the beginning of two names

(Christen, 2006)

The Winkler algorithm is calculated through the use of equation 11 (Yancey, 2005).

 20

)11(
10

)),(1(
),(),(

yxp
yxyx

j

jw

where:

p is the length of the common prefix (shared by both strings x and y). p can

have a maximum value of 4

N-Grams

An N-gram is a substring contained within a word of length n (Navarro, 2001). The

advantage of using n-gram analysis is that it is language independent as it only

involves the comparison of letters; furthermore since n-gram analysis utilises unique

combinations of letters (as opposed to individual letters) the effective “alphabet” used

to compare two or more words is expanded, allowing algorithms to be more sensitive

to the similarity between the compared word (Du, 2005; Salmela et al., 2007).

The subsequent sections deal with various variations of N-Grams. Please refer to

Figure 2.1 for an overview of the various N-Gram algorithms.

N-gram Count

This is the simplest of the n-gram algorithms and is simply a count of the number of

n-grams that the two words (that are being compared) have in common. The formula

for this calculation is displayed in equation 12 (Du, 2005).

21 NNcountgram (12)

where: N1 and N2 are the sets of n-grams in the two words respectively

The main weakness of the N-gram count algorithm is that it does not take into

account the lengths of the two compared words and could give inaccurate results for

two words that have very different lengths (Zobel & Dart, 1996).

 21

N-Grams (Q-Grams)

This algorithm calculates a similarity measure between two strings. This is achieved

through the determining of the number of substrings of length n (or length q) that are

common to both the compared words and then dividing that total by the aggregated

number of n-grams between both the words. There are several variations to this

algorithm, where the aggregated number is the minimum number
2
, the average

number
3
 or the maximum number

4
 of n-grams between the two words (Christen,

2006).

Another variation is the gram-coefficient, where the denominator consists of the total

number of n-grams in both the words and the numerator is the N-Gram count between

both words (Du, 2005). The gram-coefficient is also referred to as the Jaccard

similarity (Veronica & Li, 2009). This is shown in Equation 13 (Du, 2005).

21

21

NN

NN
tcoefficiengram

 (13)

N-gram Distance

As the name states the n-gram distance measure calculates the distance between two

words as opposed to the similarity between them (as has been calculated in the

previous n-gram methods). The formula for the n-gram distance is specified in

Equation 14 (Du, 2005).

2121 2 NNNNdistgram (14)

2
 The minimum number of n-grams is the minimum number of n-grams that are contained in either one

of the two words that are being compared.
3 This is the average number of n-grams contained in both the words that are being compared.
4 This is the maximum number of n-grams contained in either of the words that are being compared.

 22

Variations to Traditional N-Gram Analysis

Positional Q-Grams

Positional Q-Grams are an extension of the basic q-gram (n-gram). The positional q-

gram differs from basic n-gram in that it also contains positional information about

the various n-grams (i.e. the position of the n-gram within the word). A positional q-

gram is defined by the following equation (Yang et al., 2008):

 (15)

where:

 PQ(i,s) is the positional q-gram at position i in string s, with q-gram length of

q

 s[i,j] is the substring of string s from position i to position j

The set of positional q-grams in a word is defined as follows:

 (16)

The following example demonstrates the set of positional q-grams associated with the

word “bitingin”, when using a q-gram length 2 (Yang et al., 2008):

Unlike traditional q-grams, two positional q-grams are only considered to be a match,

when they are within a specified distance from one another (Christen, 2006; Piskorski

et al., 2007). This aids in an algorithm‟s accuracy as it does not blindly match

common q-grams but rather uses their positions to verify that the two q-grams are

applicable to one another.

 23

Skip Grams

Skip grams extend basic n-grams by not only utilising bigrams
5
 or trigrams

6
, which

consist of adjacent characters (from the original strings) but rather utilise n-grams

which are composed of non-adjacent letters (Christen, 2006; Piskorski et al., 2007).

This type of analysis can assist in the matching of words that have transposition

errors caused by typos.

Compression

It has been proposed that data compression be used as a similarity measure, in that

one can derive a measure of similarity between two compressed strings (that have

been compressed using the same compression algorithm) by comparing their lengths

(Christen, 2006).

2.2.2 Phonetic Models

Phonetic models utilise rules on how words / names are pronounced to perform name

matching and are therefore often referred to as “sound alike” algorithms (Du, 2005).

One class of phonetic models is Phonetic Encoding. “Phonetic encoding techniques

convert a name string into a code” (Christen, 2006) according to how it is

pronounced. Once the code has been produced one is able to compare the codes of

two strings. One can either perform an exact match or use some other form of

approximate string matching to determine whether there is a match between the two

names. Due to the nature of the pronunciation of the various letters and syllables

within a name, phonetic encoding algorithms are generally language dependent

(Christen, 2006).

5 A bigram is an n-gram which is two characters long.
6 A trigram is an n-gram which is three characters long.

 24

Soundex (Russel Soundex)

Soundex is one of the oldest (having been patented in 1918) and most well known

phonetic algorithm (Zobel & Dart, 1996). Due to this reason many modern phonetic

algorithms extend from Soundex (refer to Figure 2.1) and use it as a performance

benchmark.

Soundex converts each name into a four-character code, based on the sound of each

letter. The code is generated by maintaining the first letter of the name and then

converting the rest of the letters to numeric codes (Christen, 2006; Du, 2005). The

conversion of the various letters to numbers is achieved through the use of a look-up

table, which is shown in Figure 2.5.

Figure 2.5: Soundex Code Look-Up Table (Du, 2005)

Implementation

As stated previously, in converting the name to a code, the algorithm begins by

copying the first letter of the name. Thereafter, each letter in the name is converted to

its Soundex equivalent code and added to the name‟s full Soundex code. However,

any letter whose mapping code is identical to the one of the preceding letter is

ignored. Having coded the entire name, the algorithm thereafter removes all zeroes

 25

from the code. Finally, the code is either truncated or padded with zeroes to ensure

that it is four characters long (Du, 2005).

The following is an example of how the word Pfister is converted to a Soundex Code:

“Pfister → P102306 → P02306 (since f has the same Soundex digit as its preceding

letter p) → P236” (Du, 2005).

Discussion

Due to the fact that Soundex maintains the first letter of the original word, two names

with the same pronunciation but different initial letters will have different Soundex

codes, for example, the name Karlsson and Carlson result in the following codes,

K642 amd C642 (Du, 2005). Furthermore, the truncating to four characters, though

improving indexing, causes the algorithm to lose some of the original word‟s

phonetic data (Zobel & Dart, 1996).

In addition Soundex is only capable of determining whether two strings are or are not

similar and is not able to perform ranking of various strings for a particular search

string (Zobel & Dart, 1996).

It must be however noted that compared to other algorithms, Soundex-like algorithms

are relatively computationally inexpensive (Christen, 2006).

Phonex Algorithm

In an attempt to improve on the Soundex algorithm, the Phonex algorithm pre-

processes the name according to its English pronunciation (Christen, 2006). Though

the Phonex algorithm also converts the name into a four-character code (namely a

letter followed by three digits), the produced code is not compatible or comparable to

an equivalent code that would be produced for the same word by the Soundex

algorithm (Lait & Randell, 1993). Thereafter, as performed in the Soundex algorithm

 26

the codes of the two compared names are compared. If the codes are the same then

the two names are considered to be similar.

Implementation

The Phonex algorithm consists of two sets of rules. The first set of rules deals with

the pre-processing of the name, thereafter a second set of rules is implemented on the

already processed name (Lait & Randell, 1993).

The following rules are applied to pre-process the name (Lait & Randell, 1993):

1. All trailing „S‟ characters are removed from the end of the name.

2. Certain leading letter-pairs are converted to an equivalent single letter, as

follows:

a. KN → N

b. WR → R

c. PH → F

3. Certain leading single letters are converted to an equivalent letter, as follows:

a. E, I, O, U, Y → A

b. K, Q → C

c. P → B

d. J → G

e. V → F

f. Z → S

4. The leading letter of the name is removed if it is an „H‟

Once pre-processed, the following rules are applied to the name to generate the

equivalent Phonex code (Lait & Randell, 1993):

1. The first letter of the name is retained, while any subsequent occurrences of

A, E, H, I, O, U, W, Y are dropped.

 27

2. All letters, barring the first one, of the name are converted to a numeric code.

The mappings are as follows:

a. B, F, P, V → 1

b. C, G, J, K, Q, S, X, Z → 2

c. D, T → 3 If followed by C, ignore the current

letter

d. L → 4 If the letter is followed by a vowel or is

at the end of name

e. M, N → 5 If the next letter is either a D or G,

ignore it.

f. R → 6 If the letter is followed by a vowel or is

at the end of name

3. If the generated code contains any repeated consecutive numeric codes, the

repeated number is dropped.

4. The produced code is either truncated or padded with zeroes to ensure that it

is four characters long.

Discussion

As in the case of Soundex, since the code is truncated to four characters, the

algorithm will lose some of the phonetic information contained in longer names and

could therefore cause false-positive matches. Furthermore, the algorithm‟s initial pre-

processing step adds further complexity to the algorithm, causing it to be more

computationally expensive than Soundex.

Phonix

Phonix attempts to improve on both Soundex and Phonex, through the application of

transformation rules on groups of letters (in total there are 160 transformations (Du,

2005)). The rules vary depending on the position of the letter / group of letters within

 28

the word (Christen, 2006). Once the transformation rules have been applied, the

transformed name is mapped to an equivalent code (Du, 2005).

Implemenation

Phonix can be broken into six distinct steps as listed below (Du, 2005):

1. Phonetic transformations are performed on the name where certain letter

groups are replaced with other letter groups. An example of such is that gn,

ghn and gne are replaced with the letter n.

2. If the initial letter is either a vowel or the letter y, it must be replaced with the

letter v.

3. The ending sound (suffix) is separated from the name. (This is roughly the

substring from last vowel or last y to the end of the word).

4. All the remaining vowels, the consonants h, w and y and all repeated

characters are removed.

5. Using the Phonix table (shown in Figure 2.6) all the letters in the name

(without the suffex) barring the initial letter, are replaced with their equivalent

digits to form the Phonix code.

6. Step 5 is repeated on the suffix that was removed from the word in step 3.

Figure 2.6: Phonix Code Look Up Table (Du, 2005)

 29

As in the case of Soundex, Phonix codes also have maximum length, however in the

case of Phonix, the length is eight characters (Du, 2005).

Discussion

Phonix is much more complex than Soundex and is therefore slower. However, since

Phonix breaks the word into two codes, it allows for greater versatility when

attempting to match names as both the main name code and the suffix code can be

utilised to determine the degree of similarity between two names. The use of the

suffix code allows the algorithm to maintain the phonetic information that is lost in

other algorithms.s

New York State Identification Intelligence System (NYSIIS)

NYSIIS is another Soundex-like algorithm, which uses a series of transformation

rules to convert letters / groups of letters to a phonetically similar letter or group of

letters. Therefore, unlike Soundex and the other Soundex-like equvalents, NYSIIS

converts the words (names) into alphabetic codes and not numeric / alphanumeric

codes (Christen, 2006). Originally the NYSIIS algorithm converted words / names

into a six character code, however modern variations of the algorithm produce codes

of differing lengths (Rajković & Janković, 2007).

 30

Implementation

The NYSIIS algorithm consists of seven discreet steps (Taft, 1970):

1 If certain letter combinations are found at the beginning of a name, they are

replaced with algorithm defined phonetically similar letter combinations. The

mappings are as follows:

a. MAC → MCC

b. KN → N

c. K → C

d. PH → FF

e. PF → FF

f. SCH → SSS

2 If certain letter combinations are found at the end of a name, they are replaced

with algorithm defined phonetically similar letter combinations. The

mappings are as follows:

a. EE → Y

b. IE → Y

c. DT, RT, RD, NT, ND → D

3 The first character of the name is copied, to form the first character of the

algorithm produced key.

4 The remaining characters (after the first character) are mapped to algorithm

defined letter combinations as per the following mapping rules:

a. EV → AF else A, E, I, O, U → A

b. Q → G

c. Z → S

d. M → N

e. KN → N else K → C

f. SCH → SSS

g. PH → FF

h. H → If the previous or next character is a consonant, the previous

character is used.

 31

i. W → If the previous character is a vowel, the previous character is

used.

j. If the current character is not same as the last character added to the

key, the current character is added to the key.

5 If the last the character is an S, it is removed.

6 If the last characters are AY, they are replaced with the letter Y.

7 If last character is A, it is removed.

Discussion

It has been found that the NYSIIS algorithm offers a 2.7% improvement on the

Soundex algorithm (Rajković & Janković, 2007).

Metaphone / Double Metaphone

Metaphone and Double Metaphone have been designed in order to accommodate

non-English words. Being Soundex-like algorithms, they use a series of rules to

transform letters and groups of letters to a phonetically equivalent letter, ultimately

transforming the entire name / word into an equivalent code (Christen, 2006).

Metaphone reduces the alphabet to sixteen consonant sounds and retains vowels only

when they occur as the initial letter of the name (Du, 2005). Metaphone and Double

Metaphone attempt to better Soundex by taking into account the following (Christen,

2006):

 The position of the particular letter/s in question

 The letters that both proceed and follow the letter/s in question.

Double Metaphone was designed as an enhancement on the original Metaphone

algorithm as it improves on some of the letter encodings (mappings). Furthermore,

Double Metaphone attempts to account for the different pronunciations of the input

 32

name / word through the output of multiple encodings (namely a primary and

secondary encoding) for each input string (Elmagarmid et al., 2007).

Discussion

When compared to the Soundex algorithm, the Metaphone and Double Metaphone

algorithms are found to be more computationally expensive as more processing is

required. It has been found that Double Metaphone‟s generation of additional

encodings greatly improves the algorithm‟s matching performance, while adding little

overhead to the algorithm (Elmagarmid et al., 2007).

2.2.3 Hybrid Techniques

These techniques combine both alphabetic (orthographic) and phonetic approaches in

order to perform the fuzzy matching (Snae, 2007). Figure 2.1 demonstrates how both

the Editex and Syllable Allignment algorithms (discussed below) are extended from

existing orthographic and phonetic algorithms.

Editex

The Editex algorithm combines the letter grouping techniques of the Soundex and

Phonix algorithms with Edit Distance methods. Editex works by assigning a cost of 0

if two letters (being compared between the two words) are the same, 1 if they are in

the same letter group (see Soundex and Phonix letter transformation tables) and a cost

of 2 if the two letters are neither the same nor in the same group (Christen, 2006). See

Equations 17 to 22 and Figure 2.7 respectively (Zobel & Dart, 1996).

 33

),()1,1(

),,()1,(

),,(),1(

min),(1

1

ji

jj

ii

tsrjiedit

ttdjiedit

ssdjiedit

jiedit (17)

where:

)22(

2

)''''(1

1

0

),(

)21(

2

1

0

),(

)20(),()1,0(),0(

)19(),()0,1()0,(

)18(0)0,0(

1

1

ba

ba

ba

ba

jj

ii

groupgroupandba

baandwaorha

groupgroup

ba

bad

groupgroupandba

groupgroup

ba

bar

ttdjeditjedit

ssdieditiedit

edit

Figure 2.7: Editex Letter Groups (Zobel & Dart, 1996)

Syllable Alignment Distance

The Syllable Alignment Distance matches two names on the basis of comparing their

syllables as opposed to individual letters. Initial pre-processing is achieved through

the use of the Phonix transformations. Thereafter, the distance between two strings of

syllables is calculated for each set of syllables. This distance is calculated by using

Edit Distance methods. The beginning of each syllable is found through the

implementation of a series of rules (Christen, 2006).

 34

2.2.4 Probabilistic Models

Probabilistic models use other information (beyond that of the superficial analysis)

known about the two names to determine if there is a match. This type of information

is applied through the use of probabilities as one is able to determine the likelyhood

of a specific feature occurring based on previous experience.

Dot Product (DP)

The DP calculates a measure of the degree of relation between two names / words.

The DP does not make use of any orthographic nor phonetic features of the names but

rather utilises the occurrences of both of the two names in various sources. It is

calculated by summing together the product of the number of occurrences of each

string in each particular source as is shown in Equation 23 (Hsiung et al., 2005).

N

i

ii yOxOyxDP
1

)()(),((23)

where: O(k)i is the occurrence of string k in source i

 N is the number of sources in which the two strings are

 mentioned

 35

Normalised Dot Product (NDP)

The NDP is implemented in a similar manner to the DP, however the number of

occurrences of each string within a single source is normalised before the DP is

calculated. This is achieved by dividing the number of occurrences of the string in a

single source by dividing by the total number of occurrences of the string throughout

all the sources (Hsiung et al., 2005). See Equation 24 for the implementation thereof.

N

i T

i

T

i

yO

yO

xO

xO
yxNDP

1)(

)(

)(

)(
),((24)

where: O(k)T is the occurrence of string k throughout all the sources

Common Friends (CF)

CF is simply a count of the number of sources (friends) that contain both the two

names that are being compared (Hsiung et al., 2005).

KL Distance (KL)

The KL is calculated through the use of the normalised number of occurrences of

each string per source. It must be noted that one must use “add-one smoothing”
7

(Hsiung et al., 2005) to allow for the inclusion of sources that have no occurrences of

either one / both of the strings (Hsiung et al., 2005). The formula for the calculation

of the KL is given in equation 25 (Hsiung et al., 2005).

7 Add-one smoothing is achieved by adding one to the number of occurrences (of the string) in a single

source before one divides by the total number of occurrences (of the string) found throughout all the

sources (Hsiung et al., 2005).

 36

N

i i

i
i

i

i
i

xO

yO
yO

yO

xO
xOyxKL

1)('

)('
log)('

)('

)('
log)('),((25)

where:
T

i

i
kO

kO
kO

)(

)(
)(' (26)

 k is a string that is being compared

2.2.5 Commonality between Fuzzy Matching Algorithms

Having completed a thorough analysis of various fuzzy matching algorithms, it has

become apparent that Orthographic and Phonetic algorithms contain common

elements, which can be implemented through a series of generic processes. The

nature and implementation of Probabilistic algorithms prevent them from being

incorporated within generic fuzzy matching processes.

Unlike the other types of fuzzy matching algorithms, Probabilistic algorithms attempt

to determine whether two words are related, as opposed to determining whether they

are similar. This is further elaborated by stating that these algorithms do not perform

inexact matching as they do not generate a metric of how similar or different the two

compared words are. Secondly the main problem that hinders the incorporation of

these algorithms into a generic process is their implementation requirements; these

algorithms require that multiple sources of information be parsed to determine the

number of occurrences of a particular search word or name. This attribute is not

shared with any of the other discussed algorithm types.

Commonality between Orthographic and Phonetic Algorithms

The common aspects between Orthographic and Phonetic algorithms can generally be

broken into three high level processes:

1. Input processing – this step is performed prior to the search of the input

word to ensure that both the input word and the words against which it is

 37

to be searched, conform to one another. This step could either be an

inherent aspect of the algorithm, for example where both the input word

and the words against which the input word is to be searched, are to be

converted into a code (e.g. the Soundex algorithm) and/or is used to

ensure that all the words are in an optimum form for a search, i.e. the

words are all capitalised and punctuation has been removed.

2. Match searching – this step is core to any matching algorithm (even

beyond fuzzy matching), in which potential matches to the input word are

retrieved. This could be achieved through a database search, an in-

memory search (the word list could be stored in several different

structures) or simply the potential match is a comparison word that was

input with the original search word.

3. Match evaluation – the final step requires the degree of the match between

the input word and each of the words returned from the previous step to be

determined. This step is intuitive for algorithms that calculate a metric

(either a distance or a similarity) through the direct comparison between

the search word and the potential matches. In the case of algorithms,

which have already evaluated the fuzzy matches to the search word

through the match searching step, this step can be used to quantify an

exact degree of the match.

2.3 Pre-Search Data Partitioning

“When matching personal names, the size of the name list can be extensive. It is

therefore important to avoid exhaustive searches of the list every time a new name

needs to be matched. A partitioning method can be used to retrieve the part of the list

which is most likely to be interesting. Then an approximate name matching algorithm

is used on this partition to find the relevant matches (Du, 2005)”. As Figure 2.8

demonstrates, the advantage of searching against a partition of the search database (as

opposed to the whole database), is that one is able to search against a smaller subset.

 38

This in turn improves search times as there is less data to search against and also

reduces the number of false-positive matches as the data against which one is

searching has been optimised for that particular search.

Search List

Search Partition

Search Algorithm

Figure 2.8: A search performed against a partition of the search database

The remainder of this section discusses the various partitioning methods.

2.3.1 First Letter

A simple means of partitioning the list of names is to partition the list by the first

letter of each of the names (Du, 2005).

This method, however, is problematic when one attempts to match names that do not

have the same initial letter (Du, 2005).

 39

2.3.2 Word Length

Another means of partitioning a list of names, is to partition the list based on the

length of the various names. When attempting to match a name, one searches through

the portioned list for all names that have a word length within the specified tolerance

(Du, 2005).

Du (2005) suggests that this type of partitioning technique may not significantly

decrease search time because the length of the majority of names within a list does

not vary much.

2.3.3 Word Halves

A list of words can be partitioned by indexing both the first and the second half of

each word. The reason for splitting up the words into two halves is that if two words

differ by only a single error then there must be an exact match on either the first or

second half of the word (Du, 2005).

The indices for the two halves can be implemented through the use of two trees,

namely a prefix tree and a suffix tree (See Appendix A for the implementation of

such) (Du, 2005). It is assumed that the prefix tree is produced in the same manner as

in Appendix A, starting at the beginning of the word and building up the tree letter by

letter until the end of the word is reached. It is assumed that the suffix tree is built by

starting at the end of the word and working one‟s way to the beginning of the word.

Matches to the search word are found by dividing the search word into two halves.

The prefix of the word is searched against the prefix tree and the suffix of the word is

searched against the suffix tree. Therefore, all words that require further searching are

the words that have further branches below the matched prefix (in the prefix tree) and

the matched suffix (in the suffix tree) (Du, 2005).

 40

2.3.4 N-Grams

N-Grams can be used as another means to partition a list of names. This is achieved

through the use of an “inverted index of n-grams” (Du, 2005). Each name in the list is

given a unique number. Thereafter, for every possible n-gram, a list of numbers

corresponding to the numbers of the words that contain that specific n-gram is

generated. All potential matches to a search word are found by retrieving all the

words that are associated with each n-gram contained within the search word. This is

achieved through the use of the constructed word number lists associated with each n-

gram (Du, 2005).

2.3.5 Bloom Filter

A Bloom Filter can be used as a further tool to pre-partition a list of names.

Explanation of Bloom Filter

A Bloom Filter is a particular type of hash table, in which all entries are either 1 or 0.

The Bloom Filter hash table is constructed such that every single word in a list

contains a corresponding entry in the table. In order to determine if a word is within

the list, it is hashed repeatedly with multiple hash functions. If all the hash entries are

equal to one, then the word is contained within the list. However, if any of the entries

are equal to zero, the word is not contained within the list (Du, 2005).

The problem with using hash functions is that there is a chance that a word that is not

part of the originally hashed list, could appear to be in the list (a false-positive). This

could occur if the word has the same hash signature as one of the words contained

within the list. Due to this possibility of false-positives there is an error probability

associated with the use of a Bloom Filter (Du, 2005). See Equations 27 and 28 for the

calculation of the error probability (Du, 2005).

 41

N

M

N

M

M
N

k

 69.02ln

)
1

1ln(

2ln
 (27)

kkf 2)((28)

where:

 k is the number of hash functions

 N is the size of the list of words

 M is the chosen size of the hash table

 f(k) is the error probability

Use of a Bloom Filter to Pre-Partition Search Data

One of the ways that a Bloom Filter can be used to partition a list is through the use

of “Damerau‟s reverse edit distance algorithm (Du, 2005).” This algorithm generates

all the possible words which are a single error apart from the original search word and

then uses the Bloom Filter to determine if any of these words are contained within the

list of names (Du, 2005).

The maximum number of words checked (when using the Damerau reverse edit

distance algorithm) is always l(2n + 1) + n – 1 where l is the size of the alphabet and

n is the length of the original word. This number is independent on the size of the

word list (Du, 2005). Furthermore, one can easily insert new words to a list but if a

word is deleted, the entire Bloom Filter is required to be rebuilt (Du, 2005).

 42

2.3.6 External Criteria

Another method by which one can partition the list of words prior to a fuzzy search,

is through filtering the list using external, non-fuzzy matching related criteria. An

example of this would be the pre-filtering of a search list based on a particular birth

date. This ensures that one only searches for names that are relevant, instead of

returning a larger list of names where most of the names will be later rejected as they

do not conform to the external requirements.

2.4 Frameworks

Markiewicz and de Lucena (2001) state that “frameworks are application generators

that are directly related to a specific domain, i.e., a family of related problems.” “A

framework is a model of a particular domain or an important aspect thereof. A

framework may model any domain, be it a technical domain like distribution or

garbage collection, or an application domain like banking or insurance (Riele, 2000).”

2.4.1 Framework Fundamentals

Object Oriented Software Architecture

The object oriented paradigm was born and developed throughout the 1970‟s and

1980‟s. However, only in the 1990‟s was the paradigm absorbed and accepted by the

software development community at large (Capretz, 2003).

Karne (1995) states that the fundamental difference between object-oriented

programming (OOP) versus conventional programming is as follows: “In

conventional programming, the data and control are separated and there is a no easy

way to associate and derive data from control. In OOP, the data and control are

merged together to form an object, the interface to the object is clearly specified, and

in addition, the access to the object can also be controlled by the creator of the

object”. The object‟s data and behaviour is defined by means of a class (the object

 43

itself is the instantiation of the class) (Korson & McGregor, 1990). The above is

further elaborated through the key concepts of object-oriented programming, namely

(Cohen, 1984; Karne, 1995; Korson & McGregor, 1990):

Encapsulation: Encapsulation allows OOP to integrate control and data into an

object and thus hides all the details of the object within the

object itself. While the data is encapsulated in the object,

access to the data is governed by the object‟s methods or

control mechanisms. The benefits of encapsulation are both a

reduction in complexity and an additional level of security. The

reason for such is that the manipulation of the object‟s data can

only be performed internally or through specified methods.

Inheritance: Inheritance is the ability to derive new classes from other

classes. The newly derived classes inherit the properties of the

parent classes but can have additional properties beyond those

of the parent class. In addition to a reduction in code (as

different classes can share a common code base), inheritance

allows one to create a general parent class and derive more

specialised child classes from the parent.

Abstraction: Abstraction follows on directly from inheritance. Abstraction

allows one to define a particular pattern for classes. Thereafter,

objects can be declared to be of that particular pattern and

inherit all the pattern‟s attributes. This is achieved through the

objects being derived from the abstract class. The abstract

class, itself may only provide structure for the pattern but does

not implement any of the functionality.

 44

Polymorphism: Polymorphism allows a single method to have many forms and

also allows the method invocation to be postponed to Runtime.

Thus parent objects are able to invoke derived child object's

methods selectively at Runtime. This is due to the fact that all

child objects are derived from the parent objects and thus

contain (all) the parent‟s defined methods. Though, the child

objects have the same defined functionality as the parent, the

implementation of this functionality can differ between various

child classes. The ability to bind the appropriate child methods

(even though, only the parent object was defined at compile

time) at Runtime is integral to polymorphism and is called

Dynamic Binding. Dynamic Binding provides polymorphism

with its flexibility.

Extensibility: Through the use of abstraction, object oriented programming

allows one to extend an existing application through the

creation of new classes which are derived from an abstract

parent class. This allows one to provide new functionality but

still ensures that the newly defined classes conform to the

existing framework.

Modularity: Since a class contains both a collection of data and a set of

allowable operations (that can be performed on the data), if

designed properly, classes should be self-sufficient. The

inherent properties of a modular system are weak coupling and

strong cohesion. Classes should have weakly coupling, in that

they have limited dependencies on each other but should have

strong cohesion, in that each class is designed to perform a

single function (without multiple classes have overlapping

functionality). Through modularity, object oriented

 45

programming allows one to easily change one‟s code when

there is a change in functionality, without impacting on other

parts of the application‟s code.

Framework Design

An Object Orientated Framework is built upon a class model, which describes how

several classes interact in order to represent the domain that is being modelled. The

inherent nature of a framework, dictates that it is outward facing. It is not intended to

be used as a standalone application but rather be a stepping stone on which other

applications can be used or be built upon. It is therefore imperative to discuss the

framework‟s classes that interact with the external “world”. Before continuing

further, it is of the utmost importance to state that the internal framework classes

cannot be neglected and must be designed thoroughly as these classes provide the

core functionality of the framework. Failing to properly design these classes would

mean that the designed framework would be useless.

One can group the sets of classes used to interact with the outside world into three

class set types, namely (Riele, 2000):

 The free role type set of a framework, are the framework classes that are

instantiated by the client classes (these are classes of an external application

that is utilising the framework).

 The built-on class set of a framework are external classes (from other class

models, frameworks, or framework extensions) upon which the framework

itself is built. In essence the built-on-class set is the framework‟s

dependencies.

 The extension-point class set of a framework are classes that must be inherited

in order to implement application specific functionality. These classes provide

“hooks” to provide specific functionality in the abstract domain describing

framework.

 46

Framework Use

Following from the previous section, the various types of interfacing classes define

how frameworks are to be utilised. There are two types of framework clients, namely

use-clients and extension clients (Riele, 2000).

A use-client instantiates one or more of the framework‟s classes and uses these

objects for its own purposes. This is achieved through the use of the framework‟s free

role type set of objects. This type of framework is called a black-box framework as

the framework can be used as is. The external application developer need not know

nor understand the workings of the utilised framework (Riele, 2000).

The advantage of using a framework in such way is that through the instantiation of

the framework‟s own classes (free role type set classes); the framework is able to

ensure that the external application‟s objects behave in a specified manner and thus

prevents framework misuse (Riele, 2000).

An extension client creates subclasses which are inherited from the framework‟s

extension-point classes. These subclasses allow the extension client to adapt the

framework classes according to its specific application needs (Riele, 2000). “A

framework that can be extended using sub-classing is called a white-box framework”.

(Riele, 2000) A framework that utilises this type of client requires that the client‟s

developer be intimately aware and understand the framework‟s inner workings.

It is necessary to further elaborate on the manner in which a framework utilises its

extension-point classes. There are two ways in which a framework can make use of

(is coupled to) extension-point classes (Riele, 2000):

 Coupling using concept specialization: In this situation, when the framework

is required to make use of a particular extension point class, it attempts to

 47

invoke application specific subclasses of the required extension-point class.

However, if no such subclass exists, the framework invokes the original

extension-point class to implement the required task. The program flow is not

affected by the use of either the original extension point class or the inherited

subclass.

 Coupling using callback interface: When implementing this type of coupling,

the framework defines a callback interface through the use of an interface or

an abstract class. When the particular extension point class is required to be

instantiated (during the course of normal program flow), the framework hands

over control to the application specific subclass (which is an implementation

of the callback interface) to perform the necessary task. When using this type

of coupling, the framework is completely dependent on the client to have

instantiated a subclass of the callback interface as the framework itself does

not possess the required functionality. Unlike in the case of coupling using

concept specialization, program flow is halted if there are no subclasses

implemented.

It must be noted that often frameworks cannot be considered as either blackbox or a

whitebox only framework but rather these frameworks consist of a combination of

both blackbox and whitebox components. These types of frameworks are called

greybox frameworks (Riele, 2000).

 48

2.4.2 Advantages of a Framework

The solving of a domain problem is the key advantage of a framework as it allows for

both design and code reuse. There are several reasons why design and code reuse is

beneficial (Riele, 2000):

 It allows for developers to be more productive and also for a shorter time to

market for a new application as core functionality has already been developed.

All that is required is for the custom application logic to be implemented.

 Applications that are built upon frameworks tend to have fewer bugs. The

reason for such is that the underlying framework is generally a mature

technology. Since a framework can be utilised by multiple applications, it is

more thoroughly tested as it is exposed to very different scenarios. This

exposure leads to a more robust system.

 The use of a single underlying framework allows for a more homogenous end-

user experience when using a suite of related applications.

 Furthermore, a framework localises all domain knowledge into a single

location and therefore allows applications to be more maintainable.

2.4.3 Disadvantages of a Framework

Though the domain centric (as opposed to problem-centric) approach of a framework

is one of its major advantages, it is also one of its greatest disadvantages. There are

several reasons for this:

 The development time for a framework is generally far greater and more

costly than that of a custom made application. The reason for this is that more

analysis is required to cover an entire domain. Additionally, it is far more

difficult to design and implement the generic aspects of the framework.

Furthermore, the framework must be designed to be extensible so that it is

able to cater for future domain requirements (Markiewicz & de Lucena,

2001).

 49

 Frameworks are built for flexibility and generality, at the expense of

performance and efficiency (Markiewicz & de Lucena, 2001).

 There is a steep learning curve for third-party developers before they are able

to utilise a framework. Time is required to understand the framework, its

implementation and its utilisation (Markiewicz & de Lucena, 2001).

 Since a framework is intended to be used by third-party developers (people

who were not involved in the framework design and development), there is

strong chance that it can be misused. Incorrect usage of the framework could

(in the worst case) cause the framework to be utterly useless as it is incapable

of performing its specified functionality (Markiewicz & de Lucena, 2001).

 Framework maintenance and upkeep is much more difficult than a custom-

built application as (Markiewicz & de Lucena, 2001):

o A framework is inherently complex (more complex than a stand-alone

application) due to its generic nature.

o Several applications are dependent on the framework. A change in the

framework may affect the dependant applications and they too may be

required to have some development to cater for framework changes.

Though not a disadvantage in itself, framework documentation is crucial as it informs

third party users how to utilise the framework (it is generally not viable for one to be

able to contact one of the framework‟s developers directly). Without the

documentation a framework is very difficult to understand and use, if not completely

useless. This dependency on up-to-date, highly detailed documentation is the

disadvantage of a framework. Further it is of utmost importance that both current and

intended framework changes are documented and communicated (Markiewicz & de

Lucena, 2001).

 50

2.4.4 Fuzzy Matching Frameworks

The literature review has demonstrated that there are multiple algorithms to address

fuzzy matching problems. However, each of these has its own strengths and

weaknesses, aimed at solving a particular sub-problem within the greater fuzzy

matching domain. As with most concepts within software development, there is no

“silver bullet” catch-all algorithm that would be able to duplicate the human ability of

fuzzy matching. A more achievable solution is the use of a fuzzy matching

framework, in which one is able to swap and change fuzzy matching algorithms as

needs arise and change (as is shown in Figure 2.9 below).

Database

Algorithm 3

Framework

Algorithm 1 Algorithm 2

Search User

OR OR

Figure 2.9: A Fuzzy Matching Framework

Furthermore, it has become apparent (through the literature review) that a framework

that is capable of implementing the above mentioned functionality does not exist. The

remainder of the dissertation discusses the design, implementation and testing of such

a framework.

 51

3 Research Question and Methodology Employed

Having completed the literature review it is now possible to contextualise the

objective of this dissertation within a research question. Thereafter the methodology

employed in the achievement of this objective is described.

3.1 Research Question

The nature of the research topic necessitates that the objectives be defined within a

series of research questions:

1. Do the majority of Fuzzy Matching algorithms contain one or more common

high level processes that can be integrated into a single generic framework?

2. Is it possible for this generic framework to cater for the requirements of the

matching of various combinations of names?

3. Can this framework provide a mechanism for the implementation of custom

logic for the common processes?

3.2 Methodology Employed

The following methodology was followed in order to achieve the objectives defined

by the research question:

 A literature a review is performed to define the research requirements and to

investigate any existing solutions. The following areas are included within the

research:

o Causes of Error in strings and names

o Fuzzy Matching Algorithms

o Frameworks

o Fuzzy Matching Frameworks

 Based on the requirements defined by the literature review, an initial version

of the framework is designed and implemented.

 The developed framework is tested through the use of two test methodologies:

 52

o The framework is subjected to specifically designed test cases. This

test methodology verifies whether the framework conforms to the

objectives defined the literature review.

o The framework is deployed as a production system. The deploying of

the framework to a real-world business environment moves it out of

the realm a proof of concept and forces it to be un-objectively tested,

where shortcomings cannot be ignored. Furthermore, this testing

methodology exposes the framework to high load, time critical

situations.

 The test results are analysed and the reasons for shortcomings are

investigated.

 A revised version of the framework that overcomes the weaknesses exposed

by the test analysis is designed and implemented.

 The research, design and testing are documented.

 53

4 Design Requirements

Following from the literature review, it has been identified that a generic framework

for the matching of similar names has the following high level design requirements:

4.1 Multiple Related Searches

The main aspect that differentiates the fuzzy matching of names from the fuzzy

matching of general words is the fact that several names can be related (despite that,

they may be each searched against a different set of names) and therefore a search

that takes multiple names as an input must be cognisant of this. For example, when

searching for a person, one may input the person‟s first name, middle name and

surname. The search would thereafter be required to perform three separate sub-

searches where the first name, middle name and surname are searched independently.

However, before a result is returned to the user, the search is required to ensure that

the results returned by all of the sub searches correspond to the same person and

therefore, any results from the three sub searches that do not correspond to the same

person may not be returned as a valid result. This example is illustrated in Figure 4.1,

where the returned search matches are represented by the area (highlighted in yellow)

at the intersection of the three sub searches. It must be noted that the search

methodology explained in the example is not necessarily the optimal manner to

implement this requirement but is rather used to provide a conceptual understanding

of the requirement.

 54

People with

matching First

Names

People with

matching

Surnames

People with

matching Middle

Names

Returned Search

Matches

Figure 4.1: Searching multiple related names

4.2 Multiple Fuzzy Matching Algorithms

As discussed previously, many algorithms have been designed in order to cater for

different aspects within the Fuzzy Matching domain. The framework must be capable

of accommodating the majority of the well-known, well documented algorithms.

Ultimately, the framework is required to be generic – not subscribing to a single

algorithm and thus independent of the application domain.

In catering for the various types of algorithms, the framework must be capable of

accommodating the various requirements of each of the algorithms. This includes the

ability to pre-process search names, access a database, post-process a set of matching

words and aggregate multiple matches. In doing this, the framework should be

capable of implementing future algorithms (assuming that they are implemented in

similar manner to the investigated algorithms).

 55

4.3 Abstract the Fuzzy Matching Process

The process of matching two names often requires more than just “plugging” in the

two names and then receiving a degree of similarity. Often both pre- and post-

processing is required before the degree of the match can be found. (This is discussed

in later sections) The framework must ensure that the user need only concentrate and

concern himself with key aspects of the name matching process (e.g. algorithm

implementation, scoring, aggregation, etc), whereas the framework manages the

fuzzy matching process, calling the user implemented aspects and maintaining the

data flow.

4.4 User Defined Fuzzy Matching Process

Following from the previous requirement, though the user is only required to

implement key aspects of the fuzzy matching process, the user must be able to

configure exactly each step in the fuzzy matching process.

Similarly, although the framework is required to be generic, the framework must be

capable of implementing domain-specific rules and/or algorithms. For example a user

may wish to utilise an exclusion list and/or a substitution list.

4.4.1 Exclusion List

An exclusion list is a list of words, phrases and characters that are to be excluded

from a search. The reason for the use of such a list is to remove common words

which may not add to the effectiveness of a search but would rather yield false

positive matches. For example, words like “and”, “company” and “limited” could

cause false positive matches as the only common part of the two names are the above

mentioned words. Ignoring words like those mentioned above would yield more

accurate results.

 56

4.4.2 Substitution List

The substitution list is a list of words that, when found in a name, are to be

substituted with the equivalent word from the list. An example of a substitution is: If

a name contains the word Ltd, the word Ltd is to be substituted with the word

Limited. A substitution list enables the framework to remove the variations that can

be found in different names and ensure that all names have a consistent formatting,

despite the manner in which they were initially input into the system. Furthermore,

the substitution list allows the framework to cater for abbreviations and acronyms.

4.5 External Application Abstraction from the Fuzzy Matching Process

The framework must ensure that any application that utilises it must be completely

removed from the fuzzy matching process. To achieve this, the framework must

maintain a consistent interface to the outside application regardless of the underlying

fuzzy matching process. Furthermore, the fuzzy matching algorithm (and process)

should be capable of being changed within the framework without any impact on the

external application. This requirement is from a coding / method call perspective as

the changing of an algorithm / process could cause the number of returned matches

for the same set of search names to vary.

4.6 Performance Requirements

Unlike exact matching, fuzzy matching can potentially be computationally expensive

as often one cannot use the search name as is; one may be required to pre-process the

search name and the names against which the search name is to be compared, before

the search is performed. Furthermore, when performing a fuzzy search, depending on

how fuzzy the search is, the returned result set could potentially be very large. As

fuzzy matching allows for varying degrees of a match (unlike in exact matching

where the name either does or does not match the search name), the framework would

 57

be required to calculate the degree of the match. This process of scoring is one of

most computationally expensive aspects of the search as the framework must:

1. Calculate the match score, which is not required for exact matching

2. Repeat this process for a potentially very large result set

Thus, in addition to the functional requirements, the framework has the following

performance requirements:

4.6.1 High Speed

Though the framework is to be generic, in order for it to be viable, the time required

to perform a fuzzy match using the framework must be comparable to that required

for native
8
 implementation of the same algorithm. One must bear in mind that the

framework may be used to do bulk matches and therefore, even if the time required to

perform a single match is acceptable by human measures, the cumulative effect of the

batch process could lead to the process being prohibitively long. An acceptable time

is deemed to be within one order of magnitude above the time required to perform the

corresponding native algorithm match.

4.6.2 Non-Excessive Memory and Processor Utilisation

It would be naive to think that the framework would have low memory and processor

utilisation as the fuzzy matching process is inherently memory and processor

intensive. However, while the framework is in use, the framework must not

monopolise the system resources. Therefore, the framework must contain

mechanisms to ensure that only the crucial processes are performed at match time (at

the time when search word is being matched against the database), while the majority

8 The native implementation of an algorithm is considered to be an application that only implements a

single fuzzy matching algorithm, unlike the framework which is designed to cater for multiple

algorithms.

 58

of the processing is done before hand. In essence the search word should be matched

against a pre-processed fuzzy database.

In summary, from the expanded research question (defined in §3.1), six high level

requirements for the design of a fuzzy matching framework have been identified,

namely:

1. The ability to perform searches on multiple related names.

2. The ability to implement a variety of fuzzy matching algorithms.

3. The abstraction of the fuzzy matching process “plumbing” from the third

party user (i.e. the abstraction of common tasks that are required within a

fuzzy search but do not add to the matching logic).

4. The ability for the definition and implementation of a custom fuzzy matching

process.

5. Abstraction of the fuzzy matching process from external applications.

6. Performance considerations.

With these requirements in mind, the following section describes the design of the

fuzzy matching framework.

 59

5 Solution Overview

This section outlines the details of the design of the solution to the research question.

Prior to the proposal of a solution, the various decisions that are inherent to the design

are discussed, leading to a discussion of the resultant solution. Following from the in-

depth description of the solution design, the strengths and shortcomings of the

designed fuzzy matching framework are discussed. Finally, a revised version of the

design that improves on the identified shortcomings is detailed.

5.1 Design Decisions

It must be stressed that this dissertation does not intend to provide a new fuzzy

matching algorithm but rather to provide a platform upon which new (or old)

algorithms can be tested and implemented. Thus the core focus of the framework is

its usability and accessibility.

5.1.1 Performance Trade-off for Generic Behaviour

As discussed within §2.4, the inherent nature of the framework is that performance is

sacrificed in order to provide flexibility and generality. Rather than being optimised

for a particular fuzzy matching algorithm, the framework was designed such that it

would support a variety of algorithms.

The process of name matching is often not as simple as matching a single name

against a collection of single names but rather there can be several permutations

within the input set of search names. Generally, when searching for a person‟s name

both the person‟s first name and surname are input as the search names and it is

required that the returned result matches to both the first name and surname.

However, when searching a juristic entity there is only a single name. Furthermore, in

some situations, it may be required that a series of names are input and the results are

ORed together; i.e. the union of all of the matches relating to all the search words is

returned. Ultimately, the framework is to be capable of enforcing the relationships

 60

between the search words (e.g. the first name search name and the surname search

name are related to one another) and therefore, the returned matches that correspond

to each of the search words, themselves must be related. However, since there can be

any variety of related words, the framework‟s database cannot enforce a particular

structure but rather have a generic structure with the ability to map relationships.

When performing a fuzzy search on a particular name, it may be required that that

name be searched against multiple datasets as opposed to just one. For example, one

may wish to search against a set containing people‟s names and a set which contains

their aliases. It has been decided that the framework is to allow a user to specify a

dataset, against which each input name is to be searched.

All things considered the framework is required to be as flexible as possible (as

opposed to supplying a single matching mechanism, to which the user must

subscribe) in order that a user can utilise the framework according to an application‟s

needs. As is shown in later sections, the resulting framework design utilises more

general data structures and a simple, segmented workflow to achieve this design

decision.

5.1.2 Greybox Framework

It has become apparent that the crux of the fuzzy matching framework is that it is

flexible enough to be able to implement application specific code but still be capable

of abstracting the fuzzy matching process away from the user. Thus it has been

decided that the framework is to be implemented as a Greybox framework as

described in §2.4.1.

 61

5.1.3 Interfaces

Following from the previous sections, it is important that the user is able to utilise the

framework such that it fulfils his / her particular needs. This is achieved through the

user implementing the application requirements himself (as it is impossible for the

domain specific framework to cater for this). The problem however, is that the

framework must be capable of “plugging in” the user code despite the fact the

framework is completely unaware of the content of the user code nor was the user

code included at the time that the framework was originally built. It is therefore

apparent that there must be a generic contract between the framework and the custom

user code such that:

1. The custom code is aware of what parameters will be supplied by the

framework.

2. The framework is aware of what will be returned by the custom code.

The above mentioned conditions can be achieved through the use of an interface. An

interface is used to define a set of behaviours that can be implemented by any class.

However, unlike a class, an interface cannot have instance data members nor does it

implement any method. Only through being implemented by a class can an interface‟s

methods be implemented (Hu, 2006).

A well designed interface provides a contract (as mentioned above) that has identified

the various sets of requirements of the problem domain (large family of abstractions)

but is still restrictive enough to ensure concrete realisations of the various

applications specific implementations (Hu, 2006). Furthermore, both the method

calling the interface and the method implementing the interface are written against

the interface and not against each other (in fact neither of the two methods is aware of

the other). Thus the method calling the interface is unaffected by any changes that are

made to the method implementing the interface (Hu, 2006; Schmolitzky, 2004).

 62

At first glance it appears that the same functionality can be achieved through the use

of an abstract class. An abstract class defines but does not necessarily implement a set

of methods. Rather, it is the prerogative of the subclasses (that inherit from the

abstract class) to implement the functionality defined by the abstract class.

Furthermore, any members that are defined by the abstract class will also be inherited

by the subclasses (Hu, 2006). The framework and user implemented code can

therefore utilise an abstract class in the following manner:

 The framework defines an abstract class.

 The user implemented code inherits from the framework defined abstract

class.

 The framework, itself, only knows about the abstract class but through the use

of polymorphism, the framework is able to instantiate the user implemented

class at Runtime. Thereafter it is able to call unique implementations of the

methods that were specified by the abstract class but are implemented in the

user implemented subclass.

Although either an abstract class or an interface can be used to enable the framework

to implement custom user code, due to the fundamental differences between the two,

it has been decided that interfaces are to be used. The rationale is as follows:

The commonality between an abstract class and its subclasses is due to their being

related, in that the subclasses are a refinement / specialisation of the original abstract

class. For example the abstract class might be an Employee class whereas the

subclasses might be an HourlyEmployee class and a SalariedEmployee class. Both the

two subclasses are related to the abstract class as they are inherently a type of

employee (Hu, 2006).

An interface, however, is used to capture “similarities among unrelated classes

without artificially forcing a class relationship (Hu, 2006)”. Unlike an abstract class

(and its subclasses), classes that implement the same interface need not be similar in

 63

role nor in overall functionality; an interface allows them to provide their own

implementation to a well defined common set of functionality (behaviour). One can

further elaborate this point, in that interfaces allow polymorphic implementations of a

specified behaviour between disparate classes. For example the classes Lawyer,

Doctor and Student all inherit from the interface IWorkable. Despite that the

functionality of the classes are completely different, they all have a common task – in

that they work. The manner, however, in which they work, is completely different.

Though, a lawyer and a doctor work to earn money, the way in which they work is

fundamentally different. Furthermore, unlike a lawyer and a doctor, a student does

not even work for money but rather to pass a course.

Since the various fuzzy matching algorithms have completely different mechanisms

in which they achieve a fuzzy match it would be highly difficult (and impractical) to

force them to all inherit from a single abstract class in order that the framework could

utilise the polymorphic behaviour. A more pragmatic approach is rather to specify the

interface to which the framework subscribes and allow the various fuzzy matching

classes to implement that interface. Thus these classes will provide the framework‟s

specified functionality but are not hindered in any other way in which they implement

their desired functionality.

In this way, the fuzzy matching framework is capable of implementing a large variety

of fuzzy matching algorithms despite their internal matching mechanisms being

completely different.

Another option that was investigated but later decided against is the concept of a

delegate.

A delegate (found in the .Net framework) performs a similar task to a function pointer

(which is found in C and C++), in that it enables one to pass methods as if they were

parameters. A delegate defines a method signature by specifying both input

 64

parameters and a return type (Naugler, 2004). A delegate was considered as a

potential mechanism to allow the user to implement custom code as the framework

could define the delegate and thereafter utilise the delegate when the user code is

required to be run. Whereas, the user code would be required to implement the

method signature defined by the delegate.

The problem with a delegate however, is that it is very difficult to enforce that the

custom user code has implemented the delegate. If a class does not implement a

defined delegate, it will still be compiled perfectly and the lack of delegate

implementation will only be determined at Runtime when the delegate cannot be

found. Furthermore, since the delegate defines a method signature and not the actual

method name, it could be quite difficult to determine which method actually

conforms to the delegate (at Runtime). However, if a class implements an interface

and it does not contain the methods defined by the interface, there will be an error at

compile time – alerting the user that the custom code is inadequate.

5.1.4 C# Language and .Net Framework

Before discussing the choice of programming language, it is important to mention

that the focus of this dissertation is the design of a fuzzy matching framework and not

the implementation thereof, i.e. this dissertation serves as a proof of concept. With the

previous statement in mind, the choice of language is not overtly critical and is

largely a matter of personal taste. However, there are several reasons for the choice of

using the C# language and hence the .Net framework upon which C# runs.

From the previous discussion, it is imperative that the framework give the user as

much flexibility as possible when implementing the custom fuzzy matching logic.

The .Net platform supports several languages (namely, C#, C++, VB.Net, J#, etc)

which all share the same API (application programming interface) and are all

compiled to the same Intermediate Language (IL), which in turn is run through the

 65

Common Language Runtime (CLR) (Chappell, 2002; Kachru & Gehringer, 2004).

Compared to the .Net framework, the Java Virtual Machine (JVM) is only capable of

running the byte-code instructions generated by the Java compiler i.e. only the Java

language can be utilised (Kachru & Gehringer, 2004).

The JVM is platform independent as it can run on Windows, Unix, MacOS and

Linux, whereas the .Net framework has been designed to run solely on the Windows

operating system. However, it must be mentioned that there have been several

attempts to allow .Net to have cross-platform implementations; Mono is an open-

source implementation of the .Net Framework for the Unix operating system and

Microsoft (with Intel and HP) have submitted C# and a subset of the CLR to be

standardised under Ecma International (Chappell, 2002; Kachru & Gehringer, 2004).

Ecma International is an industry association that is dedicated to the standardisation

of Information and Communication Technology and Consumer Electronics (Ecma

International, 2009).

Since all .Net languages are compiled to the same IL, they all provide the same

functionality and thus, the main difference between them is their syntax. Due to the

author‟s C++ background, the framework itself is written in C# as it has similar

syntax to C++ (Chappell, 2002).

5.1.5 Dynamically Loaded DLL’s

Though it has been decided that the framework is to be completely flexible to the

user‟s needs and that the user is to implement application specific code through the

implementation of the framework‟s specified interfaces, there is a need to abstract the

framework‟s core logic away from the user. The reason for this decision is that it is

not necessary for the user to be able to alter the internal framework code as it controls

the greater fuzzy matching process. However, since the core of the framework has

 66

essentially been “locked” away from the user, there is a requirement for some type of

mechanism which can implement the user‟s application specific code base.

This is achieved by dynamically loading the user‟s application specific DLL‟s at

runtime. In this way the user‟s code can be implemented without the core framework

needing to be rebuilt / compiled.

Also, through the dynamic loading of DLL‟s the framework‟s flexibility is increased

as the implemented fuzzy matching algorithm can be changed at runtime in order to

accommodate changing fuzzy matching requirements.

5.1.6 Use of a Relational Database

Relational databases have become the de facto standard for the storage and retrieval

of data for almost every custom business application over the past three decades

(Haigh, 2006; Seltzer, 2005).

Compared to previous database models, relational databases have shifted the

responsibility of specifying the relationships between data from design time to

Runtime; this is achieved through the use of database queries. Furthermore, they are

well suited for systems where the content is well defined. An example of such is a

payroll administrative system, where every record consists of the same fields,

namely: years of service, hourly rate, overtime status, etc. Conversely, relational

databases do not fare well for the searching and storing of less rigidly formatted data,

such as a full-text record (Haigh, 2006). A full-text query performs linguistic searches

against a body of text by operating on words and/or phrases based on the rules of a

particular language, for example English or Japanese (MSDN Library, 2009b).

It was concluded that a relational database would be more than adequate for use

within the framework, as the content of the framework is well defined; the framework

 67

is to store names and is not to be used to store large bodies of undefined text. Though

the framework‟s database is a relational database, it is assumed that the calling

application‟s database is also a relational database.

5.1.7 Maintain All Search Names within an Internal Database

It was initially considered that the framework would utilise the database of the

external application, for which the framework is providing the fuzzy matching

functionality. This is advantageous in that the application‟s database already

maintains the relationship between the related fields. For example, a person‟s first

names and surname are two different columns within a single table entry (row).

This type of database configuration poses a problem in that different applications

have different database structures and thus it would prove difficult to enable the

framework to satisfy the search requirements of various databases; i.e. different fields

(within different tables) are required to be searched within different databases.

It was ultimately decided that the framework must maintain its own database, which

contains all the search names. The advantage of this type of database configuration is

that the framework is able to maintain all the search names in a consistent format,

despite the differing search fields and requirements of each application. This in turn

allows the framework further flexibility as the names are stored in a generic database

and are thus not limited to the relationships imposed by the calling application. This

design allows multiple applications to make use of a single instance of the framework

as opposed to the implementation of multiple instances of the framework, where each

framework instance is dedicated to a single application.

Furthermore, by the framework maintaining its own copy of the search names, there

is no threat of the original entries (in the calling database) being modified when the

framework processes the names for the fuzzy matching. This ensures data integrity.

 68

5.1.8 Abstraction of the Database away from the Third Party

Developer

The core focus of the third party developer is the development/implementation of the

fuzzy matching algorithm. The developer need not be concerned with the inner

workings of the framework as the framework provides a platform upon which the

algorithm is to be run. Therefore, there is no need whatsoever for the developer to

have access to the framework‟s database as this is the lowest level of the framework.

Any aspects that the developer may require from the database must be provided

through framework supplied interfaces.

5.2 Design Overview

As mentioned previously, it has been deduced that the majority of fuzzy matching

algorithms consist of at least one or more of the following three common high level

processes - Pre-processing, Database Searching and Match Scoring. With this in

mind, the fuzzy matching framework consists of four main components.

Combinations of these components are used, in order to perform the framework‟s two

main tasks, namely: fuzzy matching and upkeep of the fuzzy matching database. The

components are as follows:

 Name Pre-processing

 Database Storage

 Database Searching

 Match Scoring.

Though the various framework components are themselves distinct, through the use

of its own embedded code, the framework is able to seamlessly connect the various

combinations of the components in order to achieve the above-mentioned two tasks.

The key to the framework‟s design is its ability (and hence its flexibility) to integrate

 69

third party developer specific implementations to form the core logic of each

component. This is achieved through each component providing an interface against

which the developer can develop his own custom logic.

Through the use of the Name Pre-processing, Database Searching and Match Scoring

components, the framework performs a fuzzy match. Similarly, through the use of the

Name Pre-processing and Database Storage components, the framework is able to

add new names into the fuzzy matching database. The two figures below display the

above mentioned processes.

Framework Database

Search Input Search Output
Name

Pre-processing

Database

Searching

Match

Scoring

Framework

Figure 5.1: High Level Diagram depicting the Fuzzy Matching Process

 70

Framework Database

Database Input
Name

Pre-processing

Database

Storage

Framework

Figure 5.2: High Level Diagram depicting the Upkeep of the Fuzzy Matching Database Process

5.2.1 Name Pre-Processing

The Name Pre-Processing component allows for the input name to be processed in

order that it can be converted into the optimum form for the subsequent database

search or for database insertion. As discussed previously, the manner in which the

input name is processed is dependent on the logic contained within the third party

developer code as the framework itself is incapable of performing any processing

operations on the input name.

The framework itself manages the pre-processing process by doing the following

tasks:

 Locating and loading the specified custom pre-processing operations. The

framework has been designed to accommodate multiple custom operations for

a particular component as it may be required that several operations are to be

performed on the name before the flow of control can be passed on to the next

framework component. Each loaded operation must conform to the

framework‟s defined pre-processing interface.

 71

 Running each of the operations in the user specified order and thus ensuring

that the output of a former operation is used as the input for the subsequent

operation.

Examples of operations that could be performed within the pre-processing component

are:

 The division of a multi-worded name into the various components that form

the name.

 Capitalisation of a search name.

 Exclusion of various components from a search name.

 Substitution of certain words within a name to other words that are defined

within a substitution list.

 The conversion of a name into the equivalent phonetic code (if one were to be

using a phonetic algorithm).

5.2.2 Database Searching

Throughout this dissertation it has been discussed that at the heart of the framework‟s

design is the abstraction of the third party developer away from the general aspects of

fuzzy matching and allowing him/her to focus on the core logic required for a

particular type of fuzzy matching algorithm / process. With this in mind, the actual

database search is completely encapsulated within the framework and thus there is no

need for the third party developer to be aware or to understand the underlying

framework database.

Though the framework manages the database search, the framework still provides an

interface through which the third party developer is able to specify the database

search condition. Due to the nature of this component (database orientated) the

interface itself is designed to be closely aligned to SQL syntax. Through the

 72

implementation of this component‟s interface, the third party developer is able to

specify the following:

 An Exact Match (SQL syntax: =)

 A wild card search (SQL syntax: LIKE %)

 Return all name (SQL syntax: IS NOT NULL)

 Return no names (SQL syntax: IS NULL)

The rationale behind allowing the third party developer code to define the SQL

“WHERE” clause, is to allow the framework to cater for the requirements of the

various fuzzy matching algorithms. Phonetic and exact match algorithms generally

pre-process the name in advance and thereafter attempt to find an exact match to the

processed word in the database.

Algorithms such as the edit distance and n-grams require the direct comparison of

two words (in order to score the degree of match) and therefore the crux of the

algorithm implementation is only post the database search. In this situation, the

database search component is only used as a mechanism to collate the database names

against which the search word will be later scored. Depending on the requirements,

the database search could be used as a mechanism to pull out all names from the

database or it could be used as a filter. For example one could use the database search

to return all names that start with the same letter as the search name (through the use

of the SQL wildcard search).

5.2.3 Match Scoring

Though the previous component returns a list of names that match the search criteria,

some names are a better match to the search name than others. The Match Scoring

component provides a mechanism by which the third party developer is able to

implement scoring logic to enable the framework to evaluate the degree of the match

 73

between the matched name/s and the original search name. Through the

implementation of this component the third party developer provides the framework

with the quasi human intelligence whereby a person is able to identify the best match

between multiple non-identical words.

In order to achieve the above high-level functionality, the Match Scoring component

is divided into three sub-components, namely:

 Individual Name Match Scoring

 DataSet Aggregation

 Evaluation of Returned Matches

Before discussing the various sub-components, it is necessary to further elaborate on

the role of the match scoring component. In §5.2.2, it was discussed that for certain

fuzzy matching algorithms, database searching is inadequate for the returning of

potential matches but is rather used as a filter. Due to the nature of these algorithms,

in that they return a score to describe the degree of the match, the match scoring

component provides the ideal place for their implementation.

Individual Name Match Scoring

The Name Match Scoring sub-component provides a mechanism to quantify the

degree of the match of a potentially matched name to the original search name. This

component is only capable of comparing two names in each operation and hence this

operation is required to be called repeatedly for each of the names returned from the

database search.

As with previous components, the framework has defined an interface against which

a third party developer is able to implement the custom scoring logic.

 74

Search Set Aggregation

A dataset provides a means by which the framework is able to differentiate all the

names in the database into logical search sets. For example, through the use of

datasets, the framework is able to identify which names (in the database) are first

names and which names are surname. (Please refer to §5.3.1 as it discusses datasets in

further detail).

Often a fuzzy search is not limited to a single search word as it may be required that

one would search on two or more related words within a single search. For example

one would search both a first name and a surname in a single search. Furthermore,

due to the relationship between the multiple search names from different datasets, it

would be inaccurate for the framework to only evaluate each match to each search

name in isolation, rather the framework is to evaluate the degree of all potential

matches to the search set as a whole. Whereas the previous sub-component scored

individual search names and their corresponding potential matches, this sub-

component is required to aggregate all the individual search name scores into a single

score that represents the entire search set.

It has been found that often some datasets may be considered more important than

others. For example, people have several variations on their first names (multiple

names, nicknames), whereas there is little room for variation on their surname,

therefore it may be required that the surname score be considered more important

than the first names score. The framework caters for this through the use of dataset

weightings (see §5.3.4).

As with previous components, the framework provides an interface against which the

third party developer is able to develop custom aggregation logic.

 75

Evaluation of Returned Matches

Once all the match sets have been scored, the framework by default orders the list of

matches in descending order. However, depending on both the search name and the

names in the database, the number of matches that are returned by the framework

could vary from no matches to thousands of matches (and potentially even more).

Generally, it is not viable that a search can return an almost unlimited number of

matches.

The framework provides an interface against which a third party developer can

implement logic to evaluate the number of matches that are returned by the

framework as the results of the search. This for example could be all the matches

whose score is above a specified threshold or could be the top (specified) number of

matches.

5.2.4 Database Storage

The database storage component stores both new names and updates existing ones.

Like the Database Searching component this component is only run after the input

names have been pre-processed by the Name Pre-Processing Component. Unlike, the

other framework components, this component does not implement any custom logic

and therefore does not define any interface. The reason for this, as discussed in

§5.2.2, is to abstract the third party developer away from the database.

Since the focus of the framework is to provide a platform upon which various fuzzy

matching algorithms are to be implemented, it is irrelevant (to the third party

developer, who is actually implementing the algorithms) the manner in which the

names are stored, so long that the framework provides a mechanism to accessed them

when they are required. This is provided by the Database Search component.

 76

5.3 Initial Design (Version 1)

Following from the above mentioned design decisions, an initial framework design

(version 1) is discussed in the following sections.

5.3.1 Database

Please refer to Appendix B for the database model.

High Level Explanation

At the core of the database is the BaseWord table. This table maintains a local

version (for the framework) of all the names that are to be searched against.

Furthermore, as described §5.1.7, all names contained within this table are stored in a

single column in order that the database (and therefore the framework) be as generic

as possible. Due to the framework being required to interact with an external

application and be capable of returning meaningful results; the BaseWord table

stores, in addition to the name itself, references to the table, column and row from

which the name originated.

Since many search words could have originated from the same table (in an external

database) and more particularly the same column, the names of the external database

table and column are grouped together to form a dataset. All datasets are stored in the

Dataset table. Returning to the discussion of the fields contained in the

BaseWord table, the table stores the search name, a reference to the search name‟s

corresponding dataset and the row number of the search name in the originating table

within the external application database.

Datasets (as introduced in §5.2.3) fulfil three important roles within the framework:

 They provide a generic means to differentiate names into different search sets.

This is achieved through each dataset containing a table name and column

name relating to a particular search set within the external application‟s

 77

database. It must be noted, however, that a dataset cannot store the row

number from which the name originated as this is specific to that word

whereas the table name and column name are common to the entire search set.

 They provide a generic means to enforce relationships between two or more

fields that originated from the same table in the external application‟s

database. This is achieved through all the related datasets, which are

referenced by the BaseWord entries, referencing the same table name.

Therefore by matching on both the table name and the row number (contained

within the BaseWord entry), the framework is able to determine whether two

search names are related entries that originated from the same record in the

originating database. An example of such fields would be person‟s first name

and surname. Both entries would correspond to different datasets, as the fields

from which they originated are different, but their specified table name and

row number would be the same as they originated from the same record.

 They provide a means to maintain relationships between different tables in the

external application‟s database. This enables one to search for information

that is related to a root name, without searching the name itself and still be

able to return the root name. For example one may want to search a person‟s

alias; however, this alias is contained in a different table to that in which the

person‟s original name (root name) is stored. The relationship between the

alias and the person‟s name is therefore maintained by a reference in the alias

table to the person‟s original name. Through the use of the dataset, the

framework is able to return the reference to the original person‟s name, when

a match has been found on the person‟s alias. This is achieved by the

BaseWord table containing a field called the “CoreTableRowNumber”

and the DataSet table containing a reference to a table group. The table

group is the core search table, in which one is interested, and the

CoreTableRowNumber is the corresponding row in the core search table.

As in the case of the example, the CoreTableRowNumber field of alias

 78

name entry in the BaseWord table would store the row, in which the

corresponding originating name is contained. Furthermore, the dataset

referenced by the alias name entry in the BaseWord table would contain a

reference to the name of the table in which the person‟s original name is to be

found.

As has been discussed previously, it is often required that names be pre-processed

before they can be searched against (i.e. provide a meaningful result from a fuzzy

search). To this end the database contains a second table (called the EditedWord

table) that stores the processed names and is the table against which the framework

performs its database searches. Each entry in the table consists of a processed name

and a reference to its original entry in the BaseWord table. It must be noted that

multiple entries in the EditedWord table can reference the same BaseWord. There

could be several reasons for this:

 The original name consists of multiple components and has been separated

out in order that the search algorithm can easily search on each of these

components. For example, the entry in the BaseWord table is the “The Bank

of England”, whereas the EditedWord table consists of four entries that

reference the original name, namely: “The”, “Bank”, “of” and “England”.

 The pre-processing component has been configured to return multiple

variations of a name in order to provide more potential matches to a search

name. For example, the pre-processing component may break up a name into

its various components, capitalise each of the components and then store all

the capitalised components. Thereafter, each of the components are converted

into their phonetic equivalent code (e.g. the Soundex algorithm is being

implemented) and these codes are in turn stored. When a search is performed

against the database, the framework is able to perform both an exact match

search and phonetic search.

 79

In order to cater for substitution and exclusion lists (and any other types of similar

lists), the database contains a Rules table. Each entry in this table contains the

following entries:

 A reference to the action (operation) that is to be performed i.e. is a word

substitution or exclusion to be performed.

 The search word. If this word is found in a name, the above mentioned action

is to be performed.

 The replacement word - If the entry belongs to a substitution list, the

replacement word is the word that is to replace the found instance of the

search word.

 A penalty. Since the use of an exclusion or substitution list, alters the original

name (i.e. the name could be inadvertently changed to an unrelated but similar

name), the user may wish to penalise the search for the performing of such

operations.

Triggers

Several mechanisms for the input of search names from the external application into

the framework‟s database were investigated. One of the mechanisms that was tried

and implemented is an exposed framework method that can be called by the external

application. Through the calling of this method the application is able to pass a name

from its own database to the framework. In turn, the framework processes this name

and places it into its own database, thereby including the name in future searches.

However, this method was found to be cumbersome when the calling application

contains thousands of names that are updated daily.

It was realised that it would be more efficient for the insertion, updating and deletion

of names in the framework database to be managed at a database level; therefore

when the external application‟s searched name table is modified (i.e. an insertion,

update or deletion), the framework‟s BaseWord is correspondingly modified. In the

 80

prototype, this was achieved through the use of triggers as both the external

application and the framework shared the same database. The maintenance of the

search names in prototype framework‟s database is achieved in the following manner:

 Upon insertion of a name into a “search” table in the external application‟s

database, the associated insert trigger for that table, then inserts that name and

its corresponding details (namely, DataSet, “RowNumber” and

“CoreTableRowNumber”) into the framework‟s BaseWord table.

However, an additional field in the BaseWord table is also populated – the

WordChangeType reference. This reference specifies what operation has

been performed on the name entry (i.e. the word has been newly inserted into

the BaseWord table), enabling the framework to perform the necessary

maintenance (see §5.3.3). Therefore, in the case of an insertion into the

BaseWord table, the WordChangeType references an insert operation.

 Upon the updating of a name in a “search” table in the external application‟s

database, the associated update trigger for the table, searches for an entry in

the BaseWord table that has the same row number and dataset as the name

that has just been updated. If the name is found in the BaseWord table, the

actual name itself (i.e. the name field) is updated to the new Name value and

the WordChangeType reference is set to update.

 Upon the deletion of a name in a “search” table in the external application‟s

database, the associated delete trigger for the table, searches for an entry in the

BaseWord table that has the same row number and dataset as the name that

has just been deleted. If the name is found in the BaseWord table the

WordChangeType reference for the name is set to delete.

 81

5.3.2 Initialisation

Upon the framework start-up, the Rules table (i.e. the Exclusion and Substitution

lists) is imported into memory. The reason these values are kept in memory as

opposed to their being retrieved from the database when they are required is twofold:

 One of the design decisions is that the third party developer may not have

access to the database; therefore the framework must provide these lists in

case they are required in a particular fuzzy matching solution.

 Once configured, these lists generally remain quite stagnant, therefore, it

would be a waste of time and system resources if each fuzzy search performed

by the framework, would re-retrieve the same lists from the database.

These in-memory lists can be distributed for use by any third party developer‟s code.

5.3.3 Database Maintenance

§5.3.1 discussed how triggers are used in the prototype to import names into the

framework‟s database, however it is not adequate for names to be merely imported

into the BaseWord table as this is not the table used for fuzzy searches. These names

are required to be placed into the EditedWord table. It is however required that all

the names in the EditedWord table are processed in order that they can be searched

against. The framework maintains both the BaseWord and EditedWord tables

through a process that is repeatedly run every minute or so
9
. The following tasks are

performed as part of the database maintenance process:

 Any entries in the BaseWord table that have a WordChangeType

associated with them are retrieved.

 The process then iterates through each name retrieved in the previous step.

o If the WordChangeType reference is an insert, the name contained

within the BaseWord entry is input into the Pre-Processing

9 This time period can be pre-configured by the framework administrator

 82

framework component (§5.3.6) and the output of this component is

then stored in the EditedWord table. The WordChangeType

reference associated with the BaseWord is now removed.

o If the WordChangeType reference is an update, all the entries in the

EditedWord table, associated with the BaseWord entry are

removed. Thereafter, the same steps are performed as those performed

when a new name is inserted into the database.

o If the WordChangeType reference is a delete, all the entries in the

EditedWord table, associated with the BaseWord entry are

removed. Thereafter, the entry in the BaseWord table is also

removed.

5.3.4 Search Input

The search input has been designed in order that one can perform multiple unrelated

searches by making a single call to the framework. Furthermore, the search input also

allows one to group related names into a single search, for example one would

logically group together a person‟s first name and surname. These names can be

grouped together despite that each name would be searched against a different

datasets.

The rest of this section describes and explains the input XML packet (the xml schema

for the input packet can be found in Appendix C).

At the highest level, the search input consists of one or more Search Sets. Each search

set represents a distinct search and the results of each are logically ORed together. As

discussed previously, one may require the searching of two or more names that are

related but are to be searched against different search sets. This is accommodated by

each search sets consisting of one or more Word Set Components. Each Word Set

Component consists of a single name that is to be searched within the framework.

 83

The results of all the Word Set Components within a single Search Set are logically

ANDed together as they are related to one another.

A Word Set Component provides the framework with both the search name and the

corresponding search instructions for that particular name. A Word Set Component

consists of the following:

 The search name

 The dataset (in the database) against which the name is to be searched.

 A weighting for that name. This is used when calculating the overall score for

a particular Search Set
10

, as the weighting provides a mechanism for the user

to assign levels of importance to the various names within a search. For

example one may feel that the results returned for a person‟s surname are to

be considered more important than those returned for that person‟s first name.

5.3.5 Search Initialisation

Prior to a search being performed, the framework reads in the list of user defined

assemblies (DLL‟s) and (if specified) particular classes within these assemblies from

the framework‟s configuration file.

The framework‟s configuration file contains multiple sections in which the custom

user code for each of the framework‟s components is specified. At the very least a

user must supply the path of an assembly file that contains at least one

implementation of the interface defined for that framework component. In turn, when

the framework runs the user code, it searches for all the classes that implement the

interface that is defined for the particular framework component. If the user however,

10 Since a Search Set corresponds to a set of related names, it is inaccurate for one to return several

match scores for each of the Word Set Components within the Search Set, as this does not take into

account the relationships between the various Word Set Components (one of the word set components

could return a high scoring match that does not relate to any of the results returned by the other word

set components). Rather, only a single score may be returned for each search set, which takes into

account all the scores of the constituting Word Set Components.

 84

wants to run a particular class within that assembly, that class must be specified in the

configuration file. If the user requires multiple classes from an assembly to be

implemented, the user must specify a comma delimited list of the class names. It must

be noted that if the user specifies exactly which classes are to be run, the framework

will implement (and hence instantiate) the classes in the order that they are specified,

however if the user just defines an assembly and no classes within that assembly, one

cannot be sure in which order the classes contained within that assembly will be run.

In Figure 5.3 an example of the assembly configuration section within the

framework‟s configuration file is provided. If one looks at the

“DataTransformConfig” section (the section that relates the configuration

information for the framework‟s Pre-Processing component), one is able to see an

example of how both an assembly and list of specified classes would be configured.

The “SearchParameterConfig” section, however, displays how one may

supply the assembly name, without specifying particular classes.

 85

 <AssemblyConfig>

 <DataTransformConfig>

 <AssemblyFile>Z:\FuzzyMatching.dll</AssemblyFile>

 <ClassName>StripPunctuation;SeparateNames;Capitalise;StripSingleLetters;

ExclusionListImplementation</ClassName>

 </DataTransformConfig>

 <SearchParameterConfig>

 <AssemblyFile>Z:\FuzzyMatching.dll</AssemblyFile>

 <ClassName></ClassName>

 </SearchParameterConfig>

 <SearchResultScoringConfig>

 <SearchResultScoringSteps>

 <AssemblyFile>Z:\FuzzyMatching.dll</AssemblyFile>

 <ClassName>SingleScoreCalculationMethodNoPhonetic</ClassName>

 </SearchResultScoringSteps>

 </SearchResultScoringConfig>

 <DataSetScoreAggregationConfig>

 <AssemblyFile>Z:\FuzzyMatching.dll</AssemblyFile>

 <ClassName></ClassName>

 </DataSetScoreAggregationConfig>

 <MatchEvaluationConfig>

 <AssemblyFile>Z:\FuzzyMatching.dll</AssemblyFile>

 <ClassName></ClassName>

 </MatchEvaluationConfig>

 </AssemblyConfig>

Figure 5.3: Example of the Assembly configuration section in the Framework‟s Configuration file

5.3.6 Pre-processing

This component deals with the processing and manipulation of a name before it is

either queried against the database or is stored within it. The nature of pre-processing

is to ensure that the name is in its optimum form before any further work is

performed on it. Some of the reasons why this is performed is in order to ensure that

the name is converted to the format required by the fuzzy matching algorithm (e.g.

conversion to codes for phonetic matching), that the name is altered in order that it

can return more matches to the search phase (e.g. the use of exclusion and

substitution lists) and that all names conform to a uniform format (e.g. substitution

list).

 86

As has been discussed at length, the framework itself contains no fuzzy matching

specific logic; rather it provides a platform upon which the custom third party code is

implemented. The pre-processing component applies each of the pre-processing

operations that are supplied in the DataTransformConfig section of the

framework‟s configuration file to each of the input search names (these operations

were read into the framework within the search initialisation step - §5.3.5). These

operations are run sequentially
11

 in order that the output of the first specified pre-

processing operation becomes the input for the following specified operation. This

enables a previous operation to affect a subsequent operation. For example, a user

may have defined two operations; one operation that removes all excluded words

from a name and second one that capitalises all entries in the name
12

.

If no tasks have been configured for the pre-processing component, the framework

will utilise the input names “as is” in the subsequent component.

IDataTransformationInterface Interface

All the third party developer classes that are specified within the

DataTransformConfig section of the configuration file must implement the

IDataTransformationInterface interface (the interface definitions have

been supplied in Appendix D). This interface defines the

TransformedInputData method, which takes in a SearchWordClass packet

and a list of DataSetID’s as input parameters and returns a SearchWordClass

packet. The Search Word Class packet contains both the original input search name

11 No need could be found to provide a means to allow two or more pre-processing operations to be run

in parallel.
12 The intention of this design is for the third party developer to construct a library of common

functions that can be used in multiple fuzzy matching algorithms. This would be implemented through

the “chopping and changing” of these various library components to form the various configurations

required for each of the various fuzzy matching algorithms. This type of development model enforces

code reuse and hence greater flexibility as the developer has many tools at his/her disposal and is able

to adjust quickly to changes in requirements, without having to redevelop any code.

 87

and a list of processed names. The items in this list serve as the search names for the

Database Search component.

The reason the Search Word Class contains a list of names as opposed to just a single

database search name, is to provide the user with the ability to convert the search

name into multiple forms. An example explaining this requirement is as follows: the

search name is the “The Bank of England” and the required fuzzy matching algorithm

logic is that the framework is to search on each of the components of the name.

Therefore, after the implementation of the custom third party pre-processing code, the

input search name would be transformed into the following list of processed names –

“The”, “Bank”, “of” and “England”. Thereafter, each name in the list can be searched

independently. Another example would be that the algorithm implementer requires

that the framework search on the search name in both its original form and also in its

phonetic equivalent (its phonetic code). Therefore, the output of the pre-processing

component is a list containing both the original word and the phonetic equivalent (for

each of the input search names).

The list of DataSetID’s that is passed to this method is the list that was supplied

with the originally input Word Set Component. The inclusion of the DataSetID’s

into the TransformedInputData method enables the third party developer to

perform dataset specific processing.

5.3.7 Storage

This component is utilised when new names are submitted to the framework to be

inserted into the framework‟s database or when existing names in the framework‟s

database are required to be updated. The previous component is utilised in order to

transform the input name into the optimum form to be searched against. Each item

that was return in the list from the pre-processing component is stored by the

 88

Framework as a new entry in the “EditedWord” table. In addition to the processed

name, a reference to the original unedited word in the BaseWord table is also stored.

This component has no associated interfaces as the manner in which the framework

persists the search names is immaterial to the third party user and hence there is no

need for user involvement.

5.3.8 Search

The search component is similar to the storage component in that it takes in the

output list from the pre-processing component and uses it to interact with the

framework‟s database. Unlike the Storage component, the Search component

attempts to find matches in the database that correspond to each of the words in the

edited name list.

Through the use of the ISearchParameterInterface Interface, the third party

developer is able to specify the database search criteria (please refer to §5.2.2) for

each of the members in the edited word list. The

ISearchParameterInterface defines the

SetDatabaseSearchCondition method; as the name describes, this method is

used to specify the SQL-like search conditions to be used in the database search. Both

the Search Word and the list of Data Sets against which the word is to be searched are

input into this method, while a DatabaseSearchParameters object is returned.

The DatabaseSearchParameters consists of the search term, a SQL clause

enumerated type and the list of Data Sets against which the word is to be searched.

An example of the use of this method is as follows, the user wishes to perform a

wildcard search, which searches for all names that start with the letter “B”. In the pre-

processing component, the search name would have processed in order that all that is

to be search is the letter “B”. However, it is the responsibility of the

 89

SetDatabaseSearchCondition method to enforce the wildcard search.

Example inputs and output for this method are demonstrated in Table 5.1.

Table 5.1: Example Inputs and Output for Wildcard search SetDatabaseSearchCondition method

Inputs
Output

(DatabaseSearchParameters object)

SearchWord: “B” Search Term: “B%”

DataSetID: 1 SQL Clause: like

DataSet: 1

The main complexity of this component is the actual database search itself. The

framework is required to maintain the relationships specified by each of the various

Search Sets within the search input while it searches against a generic database. As

described in §5.3.1, in order to ensure that the database is generic, all the search

names (the processed names against which the framework searches) are contained in

a single column in the EditedWord table and the relationships are persisted through

the use of the associated datasets and core-table row numbers. Furthermore, the

framework allows for the input of an unlimited number of word set components to be

included within each search set and therefore must be capable of dynamically

enforcing all of these “and” relationships within the database search.

Since, at design time, one does not know how many “and” relationships will be

specified within each of the framework‟s search requests, the framework‟s search

query is designed that it is constructed at run-time by taking account of all of the

word set components in each of the search sets. In order to achieve this functionality,

the framework builds multiple sub-queries corresponding to each of the word set

components within the input search set. These sub-queries define the database search

specific to the corresponding word set component. Thereafter, the database search

query is composed, through the concatenation of all of the previously built up sub-

 90

queries. The joins between these sub-queries are enforced by ensuring that both the

table group and core table search row are the same for each of the sub-queries.

The example below demonstrates the query that would be generated for an input

search name of “John Mark Smith”, where the pre-processed name components are

capitalised and converted into their equivalent Soundex Codes.

<SearchSets>

 <WordSetComponents>

 <Word>John</Word>

 <DataSetID IdString = "1"/>

 <WordWeighting>100</WordWeighting>

 </WordSetComponents>

 <WordSetComponents>

 <Word>Mark</Word>

 <DataSetID IdString = "2"/>

 <WordWeighting>100</WordWeighting>

 </WordSetComponents>

 <WordSetComponents>

 <Word>Smith</Word>

 <DataSetID IdString = "3"/>

 <WordWeighting>100</WordWeighting>

 </WordSetComponents>

</SearchSets>

Figure 5.4: Search Input for name John Mark Smith

 91

select q1.word as Word1, q1.datasetid as DataSetID1,

q2.word as Word2, q2.datasetid as DataSetID2,

 q3.word as Word3, q3.datasetid as DataSetID3,

 q1.coresearchtablename, q1.coretablerownumber

from

(

select b.word, b.datasetid, b.coretablerownumber, d.tablegroupid,

g.coresearchtablename

 from fmf_editedword e

 join fmf_baseword b on e.basewordid = b.basewordid

 join fmf_dataset d on d.datasetid = b.datasetid

 join fmf_tablegroup g on g.tablegroupid = d.tablegroupid

 where 1 = 1

 and b.DataSetID = 1 and (e.text = 'JOHN' or e.text = 'J500')

) q1,

(

select b.word, b.datasetid, b.coretablerownumber, d.tablegroupid,

g.coresearchtablename

 from fmf_editedword e

 join fmf_baseword b on e.basewordid = b.basewordid

 join fmf_dataset d on d.datasetid = b.datasetid

 join fmf_tablegroup g on g.tablegroupid = d.tablegroupid

 where 1 = 1

 and b.DataSetID = 2 and (e.text = 'MARK' or e.text = 'M620')

) q2,

(

select b.word, b.datasetid, b.coretablerownumber, d.tablegroupid,

g.coresearchtablename

 from fmf_editedword e

 join fmf_baseword b on e.basewordid = b.basewordid

 join fmf_dataset d on d.datasetid = b.datasetid

 join fmf_tablegroup g on g.tablegroupid = d.tablegroupid

 where 1 = 1

 and b.DataSetID = 3 and (e.text = 'SMITH' or e.text = 'S530')

) q3

where 1=1

and q1.tablegroupid = q2.tablegroupid and q1.coretablerownumber =

q2.coretablerownumber

and q2.tablegroupid = q3.tablegroupid and q3.coretablerownumber =

q3.coretablerownumber

Figure 5.5: Generated SQL query for search name John Mark Smith

 92

The results of the search are thereafter organised, in order that each Search Set is

associated with a list of corresponding matches. The matches themselves are

organised to ensure that each match consists of a list of the matches to the individual

Word Set Components, i.e. the first entry in the match list corresponds to the Search

Set‟s first Word Set Component, the second entry in the match list corresponds to the

Search Set‟s second Word Set Component, etc.

5.3.9 Word Set Component Scoring

This component, like some of the other framework components, contains no inherent

logic within the framework but rather depends on its execution of the third party

developer code to perform the match scoring. As discussed in §5.2.3, this component

handles the scoring on a Word Set Component level. In order to achieve this, the

framework iterates through each of the matches (returned from the Search

Component). Furthermore, within each of the matches the framework iterates through

each of the Word Set Components. At this point, the framework calls the third party

developer code to evaluate the degree of the match between the original search Word

Set Component and the corresponding match returned from the database search. The

degree of the match is quantified by a score.

The list of third party assemblies and classes called by this component is stored

within the SearchResultScoringConfig section of the framework‟s

configuration file. This component is designed in order that if more than one scoring

method is defined in the configuration file, it will call each of the scoring methods

sequentially.

The ISearchResultScoringInterface, which the third party developer code

implements, contains the ScoreMatchResult method. The method is defined in

that it is both passed and returns a MatchScoring packet (the MatchScoring

packet consists of the search name, the database match name, the dataset from which

 93

the match name originates and the match score). The reason that the method does not

define just the returning of a score but rather the whole packet is to allow both the

processing performed and the calculated score from a previous scoring method to

affect the subsequent scoring methods
13

. With this in mind the framework passes the

MatchScoring packet that was returned from the previous scoring method as an

input parameter to the subsequent scoring method. The MatchScoring component

that is passed into the first scoring method consists of the original unedited search

name, the database match name, the match‟s dataset and a score of zero. As is in the

case of previous components, the reason the dataset is provided to the

ScoreMatchResult method is to enable it to perform, if required, dataset specific

processing.

An example explaining the design of the scoring component is as follows:

The user may wish to evaluate the degree of the match by calculating the percentage

of the number of common words between the original search name and the database

match, however, it is also required that all words within the exclusion be stripped out

of the name and the score be penalised for each word that is removed. This can be

achieved through the implementation of two scoring methods, one method that

removes the excluded words from both the search name and the match name, and

then applies a penalty to the score for each word that is removed. The second method

then determines the percentage of common words between the edited search and

match names (both these names have been stripped of the words that are contained

within the exclusion list) and adds its calculated score to the already penalised score.

13

 As in the case of the Pre-Processing component, through the manner in which the framework

implements the third party developer code, it is hoped that the developer constructs a library of

common functions that can be “chopped and changed” depending on the fuzzy matching algorithm‟s

requirements.

 94

5.3.10 Search Set Score Aggregation

As has been discussed at length, the function of the search set score aggregation

component, is to provide a single score that is representative of the entire search set

by taking into account each of the individual scores of the search set‟s Word Set

Components. The framework itself does not contain any of this logic and is again

reliant on the implementation of the third party developer code.

This component is only capable of implementing one third party developer method.

The reason for this design decision is that there is no need for multiple successively-

called methods – a single method should be more than adequate to collate the results

of the individual Word Set Components. This method is specified in the

DataSetScoreAggregationConfig section of the framework‟s configuration

file.

The component‟s interface (the IDataSetScoreAggregationInterface)

defines the AggregateScores method which takes in a list of match scoring

information packets and returns a double (the score). The list of match scoring

information packets contains the scoring information for each of the word set

components contained within a search set. The scoring information contained in a

match scoring information packet is as follows:

 The score (for that Word Set Component)

 The dataset of the Word Set Component (in order to implement dataset

specific logic)

 The weighting of that word set component (refer to §5.3.2)

5.3.11 Match Evaluation

The Match Evaluation component dictates which of the search results are actually

returned by the framework to the external application. As the framework leaves all of

the fuzzy matching logic to be implemented by the third party developer code, the

 95

framework contains no inherent logic within this component. It is however assumed

that since it is often not feasible to return all the results of the search, one would only

return the top number of matches and therefore, prior to framework‟s instantiation of

the third party developer code, the framework orders the search results in descending

according to their scores.

Like the Search Set Score Aggregation component, the framework has been designed

to only instantiate a single third party developer method, as there is no need for a

cumulative effect on the final result (as is required in the PreProcessing and Word Set

Component Scoring components).

The IMatchEvaluationInterface interface (the interface used by the Match

Evaluation component) defines the EvaluateReturnList method. This

method‟s input parameter is a list of all the search results‟ scores. The method returns

a list of the indices of the matches that are to be returned by the framework. The input

list of search results is not the entire match list but rather a separate list of the match‟s

scores where each entry in the score list corresponds to actual match in the match list.

Once the third party developer method has been executed, the framework selects only

the matches whose indices were specified by the third party developer‟s method and

adds them to the framework‟s matches return list.

 96

Below is an example of how the Match Evaluation component would process the list

of search results, when the third party developer method is designed to only return the

matches that have a score of 70 or more:

The Match Evaluation component is input the following list search results list.

Table 5.2: List of Search Results input in Match Evaluation Component

Match

Match 1 (Score 65)

Match 2 (Score 70)

Match 3 (Score 69)

Match 4 (Score 80)

Match 5 (Score 90)

Prior to the calling of the third party developer method, the search results are ordered

in descending order of score.

Table 5.3: Ordered List of Search Results

Match

Match 5 (Score 90)

Match 4 (Score 80)

Match 2 (Score 70)

Match 3 (Score 69)

Match 1 (Score 65)

 97

The scoring list that is input into the third party developer method is:

Table 5.4: List of Match Scores input into the Third Party Developer method

Score

90

80

70

69

65

The third party developer method returns the following index list.

Table 5.5: Index list of results returned by the third party developer method

Index

0

1

2

The final output of the Match Evaluation component is the following:

Table 5.6: Search Result List return by the Match Evaluation Components

Match

Match 5 (Score 90)

Match 4 (Score 80)

Match 2 (Score 70)

 98

5.3.12 Search Output

After the evaluation of the search results, the fuzzy search is complete and the

framework returns the results.

The response of the framework‟s search method is an array of ResultSets (please

refer to Appendix E regarding the output XML schema). The output Result Sets

correspond directly to the input Search Sets, where each Result Set contains the

search result for the original Search Set. It is assumed that there will always be at

least one input Search Set and therefore there will always be a minimum of one

Result Set returned by the framework.

The remainder of this section discusses the structure of the Result Sets.

Each Result Set contains a DataSet Number and the list of Data Set Search Results. A

DataSet Number must not be confused with a DataSet, rather it is merely a number,

used to define the Search Set to which the Result Set corresponds. Each Data Set

Search Result contains information relating to a match that was found by the

framework when performing the fuzzy search for a particular Search Set.

The following is contained in each Data Set Search Result:

 The Word Set Components that compromise the matched name, which consist

of the combination of matches to each of the input Word Set Components

Each output Word Set Component consists of the following:

o The Name

o The dataset to which it is associated

 The match‟s score (the degree of match to the input Search Set).

 The following two items are used to locate the match within the external

database (from which the name originated):

o The Table Name

 99

o The Row Number. This is the primary key of the row within the

previously mentioned table, where the match entry is to be found.

5.4 Design Strengths

5.4.1 Support of multiple Fuzzy Matching Paradigms

Due to the compartmentalised framework design, each of the framework‟s

components performs one of the identified common tasks required by fuzzy matching

algorithms. Furthermore, as discussed in the subsequent section, the framework

contains no logic itself; rather it relies on the third party developer code to supply all

algorithmic logic. In this way, if a particular fuzzy matching algorithm requires no

functionality to be performed within a specific component, the framework inherently

does not enforce any logic. In this situation, all that is required by the third party

developer is to implement placeholder code that does not implement any logic but

rather conforms to the framework‟s interfaces. To this end, the framework is capable

of implementing almost any algorithm.

5.4.2 All logic is supplied by the Third Party Developer

The framework does not dictate an algorithm‟s logic and therefore any logic that is

contained within a fuzzy matching search has been implemented by a third party

developer. Through this characteristic, the framework is capable of implementing

multiple different algorithms (as discussed in the previous section).

5.4.3 Abstraction of the Fuzzy Matching Process

Through the framework‟s design, the onus of maintaining the fuzzy matching

database and the management of both the search name/s and match name/s during the

fuzzy matching process is removed away from the external third party developer. As

has been discussed constantly throughout this dissertation, the abstraction of the nuts

 100

and bolts of the framework enables the third party developer to focus solely on the

fuzzy matching algorithm logic, without needing to focus on the aspects of the fuzzy

matching process. In addition, abstraction limits the amount of “meddling” that can

be done by external parties and enables the framework to be more robust as it entry

points are well defined.

5.4.4 Runtime Implementation of Third Party Logic

The framework‟s ability to incorporate the user logic at Runtime, allows the third

party developer to “chop and change” fuzzy matching algorithms at will without

having to recompile the framework. This enables the framework to be highly flexible

because it can easily adapt to changing requirements. It can facilitate the testing of

various fuzzy matching algorithms or the determination of the optimum algorithm for

a particular requirement set.

There are two advantages to the framework not needing to be recompiled when the

third party fuzzy matching logic is changed:

1. Development lead time is minimised, especially when the fuzzy matching

algorithm requirements are frequently changing as one needs only to

concentrate on the development of the required fuzzy matching logic.

2. Distribution and deployment of the framework is easier. Since the

framework, does not need to be recompiled, one can simply deploy the

framework‟s binary, which in turn shields the third party user from having

to struggle with the building and compilation of the framework (please see

the previous section).

 101

5.4.5 Generic

The framework‟s flexibility is due to its generic nature. There are several aspects to

the framework‟s design that enables to it to be generic:

 The framework does not dictate the number of names that are to be searched

simultaneously within a single search; rather it is the third party developer‟s

prerogative to define what names are to be input simultaneously.

 The framework also does not dictate the relationship between the input search

words, i.e. the framework does not specify that one must input both a first

name and surname in every search. Rather (as explained in §5.3.4) the

framework utilises the relationships specified (by the calling the application)

in the search input. The framework‟s generic outlook on relationships is

further reiterated in the design of its database. As been explained previously,

all names are stored in a single database field and relationships are defined by

common table names and table row numbers. The upkeep of datasets (where

the various table names are defined) is maintained by the framework

administrator.

 Though already discussed in depth, the framework‟s lack of subscription to a

particular fuzzy matching algorithm further testifies to its generic nature.

5.4.6 Capable of Maintaining Relationships

Despite the generic nature of the framework, it is able to maintain the relationships

between the various names as defined by the external applications from which the

names originate. This is achieved through both the design of the framework‟s search

input (as all names that compose a search set are ANDed together) and the use of

datasets.

 102

5.4.7 Capable of Serving Multiple Applications

Through the use of the different datasets, the framework is capable of serving

multiple applications simultaneously. Datasets enable the framework to logically

separate the data from the various external applications and furthermore ensure that

the different search data does not get “mixed up” (despite the database‟s storing of

the names in a single field). Another advantage in using datasets is that the

framework is capable of maintaining the relationships between the different types of

names, which is inherent to the source application. The framework‟s design enables it

to “support” new applications without the need to be rebuilt; rather the newly

supported application must be configured in the framework‟s database, through the

following:

 Set up of the application‟s Data Sets.

 Import and processing of the application‟s search data.

 Set up an update mechanism (programmatically or through database triggers)

to ensure that the framework‟s version of the search data is in line with

application‟s search data.

Another aspect of the framework‟s design that has not yet been discussed as it is not

relevant within the context of the specified design requirements (§4), is that the

framework has been implemented as a web service. A Web service is a self-

contained, modular business application that has a published interface that can be

invoked across the Internet. It interacts and integrates with other loosely coupled,

distributed applications through the exchange of XML-based messages exchanged via

Internet-based protocols (Alonso et al., 2004). This enables the framework to serve

multiple remote applications simultaneously.

 103

5.5 Design Shortcomings

5.5.1 Expensive Database Search

Despite the framework‟s generic nature being one of its core strengths, it is also one

of its main shortcomings. Unfortunately, in achieving a generic solution, optimisation

and speed is lost as the framework must be able to cater for the various different types

of fuzzy searches. This trade-off between performance and flexibility is particularly

highlighted within the database search. Since the database stores all names in a single

column (as discussed in §5.3.1), the database search (see §5.3.8) creates and performs

a sub-query for each input search name and only once the results of all the sub-

queries are returned are the relationships between the various datasets enforced. This

search mechanism is highly inefficient as generally the majority of the returned sub-

query results will be discarded as they do not have corresponding entries across all of

the sub-queries. Ultimately this results in the retrieval of a large number of irrelevant

names for each fuzzy search.

5.5.2 Unable to Pre-Filter based upon Non-Name Related

Requirements

Due to the very nature of Fuzzy Matching (the searches are “Fuzzy”); the database

search can return potentially thousands of results. The effects of this are twofold:

each of the potential matches thereafter is required to be scored, which greatly

increases the fuzzy matches‟ processing time and the framework could potentially

return a large number of matches. Though the probability of false positives remains

the same despite the size of the returned list, the increased size of a large result set

causes a larger number of false positive matches. It is therefore a requirement that the

framework be able to pre-filter the potential matches in order that the framework

search is performed against a smaller search set. Furthermore, it may be required that

the potential matches be pre-filtered based on a non-name related requirement, for

example the date when the name was submitted into the database.

 104

5.5.3 Main Reliance on Triggers to update the BaseWord table

Though the framework does supply methods (as discussed §5.3.1), which the

application can call to insert / update/ delete entries in the BaseWord table, triggers

are the preferred mechanism to edit the BaseWord table. The use of triggers has

several complications:

1. An external user is required to understand the framework‟s database – at

the very least the BaseWord table and all other tables that it references

must be understood.

2. It is complex to trigger an action in one database from an event in another

database. It is even more difficult to utilise triggers between databases that

utilise different database management systems – for example, triggering

an action in a MS SQL database based on an event in an Oracle database.

5.5.4 Caching of Rules Table

Upon the framework‟s initialisation, the contents of the Rules Table are loaded into

the domain cache. The rationale behind this decision is to provide the framework with

the ability to supply the third party developer code the contents of the Rules Table

but still abstracting the framework‟s database away from the code. The problem,

however, is that over time the contents of domain cache are overwritten with other

content, effectively removing the Rules Table from memory.

5.5.5 Unintuitive

Due to requirement of supporting multiple fuzzy matching algorithms, the framework

has been divided up into multiple components. Though, this may make the

framework more flexible, it may be unintuitive for the third party developer to break

 105

up his / her fuzzy matching algorithm to fit into the constraints of the framework‟s

components.

5.5.6 Inflexible Interfaces

The intention of the various interface designs is that they provide the external code

sufficient information to perform the required task but also ensure that unnecessary

information is abstracted away from the external code. The problem with defined

interfaces is that when one is developing the external code, it may become apparent

that the information being supplied to the interface is inadequate. In this situation, it

would be highly difficult (if not impossible) for the third party developer to acquire

the desired information. The only way that the framework would be able to cater for

such requirements is through the redesign of the interfaces.

5.5.7 Latency due to the Loading of DLL’s at Runtime

Though the loading of the third party developer code at Runtime may add more

flexibility, it also adds an additional delay to the Fuzzy Matching search, as each of

the specified DLL‟s have to be loaded into memory when one of their contained

methods are required to be run. In addition since the assembly was not known at

compile time, the framework can not explicitly call the required method but rather the

method is required to be invoked, which in itself can cause additional overhead.

Furthermore, a DLL may contain multiple methods that are required within a

particular fuzzy matching algorithm configuration. In this situation, the same DLL is

loaded and unloaded each time a method within it is required. Though, the time

required to load to DLL‟s into memory at runtime may be negligible, when

performing a batch search (of thousands of names) this delay could cause a

significant increase in the overall time.

 106

5.6 Improvements to the Original Design (Version 2)

Having completed a thorough analysis of the framework design, a second version of

the framework was designed and implemented in order to overcome some of the

initial version‟s shortcomings.

5.6.1 Pre-Search Filter

Due to the shortcoming expressed in §5.5.2, it was necessary to build pre-filter

functionality into the framework to enable it to pre-filter the search data through the

use of fields in the external application‟s database (non-framework related search

criteria). Thereafter, the framework makes use of the filtered search data subset

(contained within the framework‟s database) to perform the fuzzy search.

The pre-search filter functionality is achieved through the inclusion of an additional

interface (ISearchFilterInterface) to the existing list of framework defined

interfaces and also through the addition of an element into the search input XML

request packet (please see Appendix F for the changes). Since both the criteria and

filter methodology (for non-Framework related filtering) can differ between different

applications, it would be inadequate for the framework itself to provide the pre-search

filter logic and therefore, an interface is defined to enable custom pre-search filter

implementations.

Implementation of Pre-Search Filter

As with all the other of the framework‟s interfaces, the custom third party classes are

defined in the PreSearchFilterConfig section of the framework‟s

configuration file. Prior to the fuzzy search, the framework calls each of the

PreFilterSearch methods that are contained within each of the defined pre-

search filter classes. It is intended that the PreFilterSearch method be used to

supply the framework with the filter query and not to perform the query itself.

 107

The PreFilterSearch method is input a set of arguments that are later used as

search parameters; these arguments are input into the framework through the

PreSearchFilterArguments input element (within the InputSetDef

structure). The method returns a SearchFilter object, which contains the

following fields:

 CoreSearchTableName – the name of the table (in the external

application‟s database) which the results of the Pre-Search Filter will filter.

Through the specifying of this table, the framework is able to verify that the

user specified pre-search filter corresponds to the search dataset as both

should reference the same external table.

 Search Query – the query that will be queried against the external

application‟s database. The results of this query form the sub-set against

which the fuzzy search is performed. This query must return a list of primary

keys (row numbers) in the core search table, which fulfil the filter‟s criteria.

 Argument List – Though the search arguments are provided to the

PreFilterSearch method, the method itself is also required to return a

list of search parameters. The reasons for this are twofold:

a. To enable the method to perform any pre-processing on the search

arguments.

b. To enable the framework to pass parameters itself when the actual

query is performed. This is intended to prevent a SQL injection attack.

If the method returns a null object, the framework assumes that no pre-filtering is to

be performed.

Once all the defined PreFilterSearch methods have been run, the framework

continues with fuzzy search through the construction of the search query. While

constructing each of WordSetComponent sub-queries (refer to §5.3.8), the

 108

framework iterates through each of the SearchFilter objects (returned from the

various user defined PreFilterSearch methods), appending the object‟s Search

Query to the end of the sub-query‟s WHERE clause. The SearchFilter object‟s

Search Query is appended to the WordSetComponent’s sub-query, through the

addition of the following statement: and b.coretablerownumber in (SearchFilter defined

Search Query). At this point the framework adds the Search Filter object‟s argument

list to the query‟s list of parameters.

The following example demonstrates how the pre-search filter is incorporated into the

main fuzzy search query. The example extends from the example in §5.3.8, by

filtering the search on employees who are over 45 years of age.

<SearchSets>

 <WordSetComponents>

 <Word>John</Word>

 <DataSetID IdString = "1"/>

 <WordWeighting>100</WordWeighting>

 </WordSetComponents>

 <WordSetComponents>

 <Word>Mark</Word>

 <DataSetID IdString = "2"/>

 <WordWeighting>100</WordWeighting>

 </WordSetComponents>

 <WordSetComponents>

 <Word>Smith</Word>

 <DataSetID IdString = "3"/>

 <WordWeighting>100</WordWeighting>

 </WordSetComponents>

<PreSearchFilterArguments>45</PreSearchFilterArguments>

</SearchSets>

 109

select q1.word as Word1, q1.datasetid as DataSetID1,

q2.word as Word2, q2.datasetid as DataSetID2,

 q3.word as Word3, q3.datasetid as DataSetID3,

 q1.coresearchtablename, q1.coretablerownumber

from

(

select b.word, b.datasetid, b.coretablerownumber, d.tablegroupid,

g.coresearchtablename

 from fmf_editedword e

 join fmf_baseword b on e.basewordid = b.basewordid

 join fmf_dataset d on d.datasetid = b.datasetid

 join fmf_tablegroup g on g.tablegroupid = d.tablegroupid

 where 1 = 1

 and b.DataSetID = 1

 and b.coretablerownumber in

 (select EmployeeID

 from Employee

 where age > 45)

and (e.text = 'JOHN' or e.text = 'J500')

) q1,

(

select b.word, b.datasetid, b.coretablerownumber, d.tablegroupid,

g.coresearchtablename

 from fmf_editedword e

 join fmf_baseword b on e.basewordid = b.basewordid

 join fmf_dataset d on d.datasetid = b.datasetid

 join fmf_tablegroup g on g.tablegroupid = d.tablegroupid

 where 1 = 1

 and b.DataSetID = 2

 and b.coretablerownumber in

 (select EmployeeID

 from Employee

 where age > 45)

and (e.text = 'MARK' or e.text = 'M620')

) q2,

(

select b.word, b.datasetid, b.coretablerownumber, d.tablegroupid,

g.coresearchtablename

 from fmf_editedword e

 join fmf_baseword b on e.basewordid = b.basewordid

 join fmf_dataset d on d.datasetid = b.datasetid

 join fmf_tablegroup g on g.tablegroupid = d.tablegroupid

 where 1 = 1

 and b.DataSetID = 3

 110

 and b.coretablerownumber in

 (select EmployeeID

 from Employee

 where age > 45)

and (e.text = 'SMITH' or e.text = 'S530')

) q3

where 1=1

and q1.tablegroupid = q2.tablegroupid and q1.coretablerownumber =

q2.coretablerownumber

and q2.tablegroupid = q3.tablegroupid and q3.coretablerownumber =

q3.coretablerownumber

Weaknesses in Pre-Search Filter Design

There are two inherent weaknesses in the Pre-Search Filter design.

The main weakness is the assumption that both the framework and the external

application run on the same database. This assumption is required in order to perform

a single query that queries both framework and non-framework tables and fields.

Furthermore, this design requires that the database user, under which the framework

runs, is allowed to access non-framework tables. This design flaw inhibits the

framework‟s independence from external applications and also limits the number of

applications that the framework can serve as it may not be possible for all the

applications to run on a single database.

The second weakness is that the pre-search filter query is repeated for every

WordSetComponent. This is highly inefficient as the same results are returned

multiple times, which in turn adds additional load to an already expensive query.

 111

5.6.2 Separation of the single Pre-Processing Component into

Storage Pre-Processing and Search Pre-Processing Sub-

Components

It was found that in certain situations, the processing required to prepare a name for

insertion into the database is different to that required to prepare a name for a search.

Since the framework is designed to be as flexible as possible, in that the search

algorithm can be quickly and easily changed (which includes the search pre-

processing), it is preferable that the database be able to cater for these changes. This

is achieved through the insertion of various permutations of an input name
14

 into the

database, whereas not all of the permutations are necessarily used in the processing of

a search name. Through the insertion of the different permutations, one need not re-

process all the names in the database, when the search algorithm changes.

The separating of the PreProcessing component into a Storage PreProcessing

Component and a Search PreProcessing Component resulted in very few changes to

the framework‟s logic. The following changes were made:

 The DataTransformConfig section in the framework‟s configuration

files was replaced with two new sections, namely the

PreStorageDataTransformConfig section and the

PreSearchDataTransformConfig section.

 Both the two new pre-processing components utilise the

IDataTransformationInterface in the same manner as was done

previously, however, the Storage PreProcessing Component is only used prior

to the insertion of names into the database and the Search PreProcessing

Component is only used prior to the searching of a name against the database.

The two pre-processing components cannot be used interchangeably (as was

done previously with the single pre-processing component)

14 One subjects the name to multiple processing techniques.

 112

5.6.3 In Memory Database Caching

When the framework was deployed to a real-world business environment, the

shortcoming expressed in §5.5.1 became obvious. The framework was incorporated

within a nightly batch process that performs in excess of 300 000 searches per night

and due to the inefficient (fuzzy) database search the process exceeded the allocated

processing time and ran into business hours. This was obviously not acceptable. The

devised solution was to move the fuzzy search from a database search to an in-

memory search. This was achieved through the use of hash tables.

A hash table stores a list of key–value pairs, where the hash value of the key (the

result of placing the key into a hashing function) denotes the address in memory

where the associated record (value) is stored (Maurer & Lewis, 1975). There are

several reasons why a hash table was chosen:

 A record can be found almost immediately, “without any repeated comparison

with other items (Maurer & Lewis, 1975)”

 “With a hash table, we can search a file of n records in a time which is, for all

practical purposes, independent of n. Thus, when n is large, a hash table

method is faster than a linear search method, for which the search time is

proportional to n, or a binary search method, whose timing is proportional to

log2n. (Maurer & Lewis, 1975)”

 Since a hash table uses the hash of the key to find the address of the

associated data, the hash table is easily able to determine if a potential key

belongs to the hash table – a key that does not exist in the hash table, would

hash to an empty address.

Building Up of the In-Memory Database Structure

At start up the framework loads the entire contents of the EditedWord table

(including the associated BaseWord and DataSet) from the database into

memory. The structure, in which the names are stored in memory, has been designed

 113

to aid in the easy retrieval of the base word (and therefore the core search row

number) from a search name.

The structure of the database entries in memory is structured as:

Dictionary<int, Dictionary<string, Dictionary<string, List<BaseWordObject>>>>

The remainder of this section is devoted to the explanation of this structure:

At the highest level the data is organised as dictionary with the various dataset ID‟s

forming the keys and the fuzzy search data (associated with each of the datasets)

forming the dictionary values. A dictionary is a .Net implementation of hash table

that has strongly typed keys and values (MSDN Library, 2009a).

The fuzzy search data is organised as another dictionary, where the various unique

edited names (ie the contents of the EditedWord table) form the keys. The values

associated with the various edited names are the sets of Base Word data
15

. Through

this structure, the system is quickly able to determine whether the processed search

name matches any of the edited names in the database. If it does, the system is

quickly able to access the associated base word data.

The Base Word data is stored by means of a further dictionary, where the unique base

words form the dictionary keys and a list of Base Word objects form the associated

dictionary values. A Base Word Object consists of the following fields:

 BaseWordID

 TableRowNumber

 CoreTableRowNumber

15

 A dictionary does not store duplicate keys, therefore, if there are multiple entries in the edited word

table that have the same text but reference different Base Words, they are all stored (in memory)

through the same key. The unique Base Words that the different edited words reference are stored

within the Base Word data structure that is associated with the edited word (key).

 114

Entries in the Base Word table that share the same word but different

BaseWordID’s, TableRowNumbers and/or CoreTableRowNumber are all

referenced by the same key in the above mentioned dictionary but each have a unique

entry in the associated BaseWordObject list.

Searching of the In-Memory Database Structure

The framework “searches” for fuzzy matches to a search name through the following

steps:

1. Using the search name‟s dataset as the key, the framework accesses the

appropriate edited word dictionary (associated with the search dataset).

2. Having retrieved the appropriate list of edited name entries, the framework

is able to determine:

a. Whether the edited search name
16

 exists in the database (i.e. does the

edited search name exist as a key in the edited word dictionary)

b. If the name does exist, the framework is then able to retrieve the list of

Base Words with which the edited search name is associated. This is

achieved through the lookup of the list of Base Words that are

associated with the edited search name key.

In-Memory Database Maintenance

By moving the database search out of the database and into memory, the framework

is required to keep both the database and in-memory versions of the data in sync at all

times. This is achieved through the modification of the database maintenance

functionality (see §5.3.3). An additional step has been added to the database

maintenance process, in that once the necessary additions/modifications/deletions (of

both the BaseWord and EditedWord tables) have been performed on the

database, these changes are applied to the in-memory structure.

16 One of the entries in the list of edited names returned by Search Pre-Processing component

 115

Multiple edited words can be associated with a single base, therefore by taking

advantage of C#‟s referencing of objects through pointers, all edited words that

reference the same BaseWord (in the database) point to the same list of Base Word

Objects. In addition, all the entries in the base word table that have the same base

word, all point to the same in-memory list of Base Word Objects. This ability to have

several different objects referencing the same single object aids in the maintenance of

the in-memory database structure as one is quickly able to locate and update the in-

memory structure.

Ternary Search Tree

As discussed previously in this chapter, the use of dictionaries provide considerable

improvements in the framework‟s search time, however, the limitation of using

dictionaries is their reliance on keys and more importantly strict requirement of

“exact” matching of keys. Through the implementation of dictionaries as search

structures, the framework‟s designed search flexibility is undermined as dictionaries

are incapable of performing a wildcard search that is possible through the use of

SQL‟s “LIKE” clause. It was found that through the modification of the Ternary

Search Tree (TST) algorithm (Bentley & Sedgewick, 1997), a “dictionary” with

wildcard search functionality could be achieved. The implementation of the modified

TST algorithm provided the framework with the above-mention functionality. An

example of this functionality is that the framework is now capable of searching for all

BaseWords that begin with the letter “B”.

It was decided to make use of TST structure for the following reasons:

 TST‟s provide an implementation of symbol tables
17

 with Partial Matching

functionality (Bentley & Sedgewick, 1997; Siegel, 1999). As discussed

17 A symbol table is another name for a dictionary (Siegel, 1999).

 116

previously this was the primary reason for the change from a dictionary to

TST.

 TST‟s are a derivative of Radix Search Trees. Unlike traditional trees, where

each node represent the entire key, each node in a Radix Search Tree

corresponds to a part of the whole key, where the complete key is specified by

a path through the tree (Siegel, 1999). This sub-key structure lends itself

particularly well to the use of strings as keys, which enable TST‟s to provide

an efficient implementation of string symbol tables (Bentley & Sedgewick,

1997).

5.6.4 Delegate to Access Contents of the Rules Table

In order to address the problem discussed in §5.5.4, a new mechanism to supply the

third party application code with the contents of the Rules table was developed. It

was identified that rather than caching the contents of the Rules Table, it would be

best to supply the user with a mechanism for direct access to the database (i.e. the

Rules Table) while still providing a level of abstraction away from the database itself.

A delegate provides the ideal mechanism to achieve the above mentioned

functionality as a delegate (in C#) “encapsulates both an object instance and a method

(Jagger et al., 2007)”.

Through the use of a delegate one is able to pass an internal Framework method to

the external code (i.e. the Third Party developer‟s code) as if it were a parameter.

Furthermore, since the delegate points to an instance of a Framework object (within

which the method belongs), the delegate is able to use the object‟s private data

members to connect to the database and retrieve the necessary information.

This enables the framework to internally instantiate an object with the database

connection. The class, from which the above mentioned object is instantiated,

contains a method that retrieves the contents of the Rules Table and returns the data

 117

structured into a dictionary. This method has the same method signature as that

defined by a delegate. By defining the delegate in the same library that defines the

framework‟s interfaces, the external third party code is also aware of the delegates.

When the framework calls a particular implementation of an interface, it also passes

through the name of the method (that implements the defined delegate) and through

the use of this passed method, the external code is able to access items from the Rules

Table, without any knowledge of neither the database nor its connection strings.

Implementation of Rules Table Access

Though the previous section discussed how a delegate could be used within the

framework‟s interfaces, the manner in which it was actually implemented is slightly

different as it is intended to make the access to the Rules Table more intuitive.

Since delegates are not well known, it would be more intuitive to wrap the delegate

within a defined class (called the FMFRules class) and then pass the instantiated

object to the third party code. The FMFRules class is defined as follows (Refer to

Appendix G for the implementation of the FMFRules class):

 The class defines a delegate called LoadRuleTableDelegate. The

LoadRuleTableDelegate has no input parameters but returns a

dictionary.

o The returned structure is composed of two dictionaries; one within the

other.

 Each of the Action Types (e.g. exclude, substitute, etc), defined

within the FMF_ActionType table, forms a unique key

within the outer dictionary. The associated values (with each of

the keys) correspond to the entries in the Rules Table that

implement the various action types. Each of these values

themselves is stored as a dictionary structure.

 118

 The Inner Dictionary‟s keys consist of the unique Search

Phrases in the FMF_Rules table that correspond to the action

type defined by the outer dictionary key. The values

corresponding to each of these keys consist of the list of entries

in the Rules Table that reference both the Search Phrase,

defined by the inner dictionary key, and the action type defined

by the outer dictionary key.

 The reason each key (in the inner dictionary) maps to a list of

entries, rather than mapping to a single entry, is to cater for the

possibility that there might be more than one entry in the Rules

Table that has both the same search phrase and action type.

 Each entry in the above mentioned list is composed of a

RulesTable object. The RulesTable class contains the

properties stored in each entry in the Rules Table, i.e.

ActionTypeID, ActionType, SearchPhrase,

ReplacePhrase and Penalty

 A private method called LoadRulesTable calls the

LoadRuleTableDelegate, thereby populating the internal

_RulesTable dictionary.

 The constructor is input the LoadRuleTableDelegate and then calls the

LoadRulesTable method.

 A public method called getRulesList which is passed an ActionType

(as an input parameter) and returns the entries in the Rules Table that

implement the specified action type.

This design appears to be counter-intuitive as due to the way in which the

FMFRules class is implemented, the same functionality can be achieved more

simply without the use of a delegate. This design, however, must be viewed rather as

a proof of concept.

 119

Currently, the contents of the Rules Table are loaded into an internal dictionary,

when the object is instantiated. Since the object is instantiated within the framework‟s

code, the use of a delegate is actually redundant as the third party code receives the

FMFRules object with an already populated dictionary and has no ability to call the

delegate (that is wrapped within the class).

However, through the implementation of this class, it has been demonstrated that

delegates can achieve the specified objectives. In the future, the FMFRules class

LoadRuleTable method can be changed from a private to a public method. This

will enable the third party code to refresh the FMFRules dictionary, enabling the

latest contents of the FMFRules table to be retrieved from the database.

5.6.5 Pre-Search Filter In-Memory Database Caching

When the database search was moved from the database to memory, it was initially

assumed that there was no need to re-implement the pre-search filter functionality as

due to the speed of the memory search, the larger search set would make a negligible

difference. This assumption was proved to be wrong due to the following two factors:

 The need to be able to filter the search set with non-framework related

information still remained.

 Though there was a negligible difference in the time required to perform the

in-memory search (on the non-pre-filtered search set), it was found that the

time required to process the validity of the returned entries was excessive. The

underlying reason that caused the bottleneck is the search process requirement

that the viability of the returned search results must be computed one entry at

a time and therefore, the more entries returned by the “database”, the more

post-processing time is required.

 120

Due to the above mentioned reasons, the pre-search filter was re-implemented in

order that it could be utilised with the in-memory database search.

Implementation of Revised Search Pre-Filter

Prior to the database search, the framework pre-filters the Base Word ID‟s, against

which the database search will later be performed. This is achieved by the framework

sequentially calling each of the user defined PreFilterSearch methods (please

see 0, regarding the ISearchFilterInterface and the implementation

thereof). After running each PreFilterSearch method, the framework queries

the database to determine which BaseWordID’s conform to the query described in

the method. The results of the query are then added to the list
18

 of pre-filtered

BaseWordID’s.

Having completed the processing of the defined PreFilterSearch methods, the

framework continues with the existing search process; the only difference being the

inclusion of an additional step to the database search. Once the framework has

determined that a particular edited search name exists in the database, the framework

then checks whether the BaseWordID, corresponding to the database match, is

contained within the list of pre-filtered BaseWordID’s. Only if the BaseWordID

is contained within the filtered list, will the matched database entry be added to the

search result set. If no pre-filter arguments were supplied to the search, the

framework will omit this step and will immediately add the matching entry to the

result list.

18 This list contains only unique Base Word ID‟s.

 121

Caching of Previous Pre-Search Filter Results In-Memory

Through the implementing of the pre-search filter, the framework is again required to

query the database when performing a search. The moving of the database search into

memory, however, was intended to do away with the requirement of performing

actual database queries. In addition, the queries that run as part of the pre-search filter

may be unoptimised, potentially causing searches to be slower.

When performing single (non-batch) searches, the user will generally tolerate a

slightly longer search time. Though the duration of individual fuzzy matching

searches may be acceptable, when performed as part of a batch process, the

cumulative effect of the multiple database queries (for each of the pre-search filter

queries) results in the batch process taking a prohibitively long amount of time. Often

batch processes involve the lumping together of similar entries. For example, one

would search for people whose entries have been updated after a certain date.

Another example is the searching for all people born in the same month. This results

in the same pre-search filter argument often being passed to the framework across

many different searches.

One is able to monopolise on this characteristic to speed up batch searches, through

the caching of the pre-search filter results after each search. In caching the pre-search

filter results, the framework also stores the corresponding pre-search filter arguments.

The pre-search filter process is modified in that prior to the database search being

performed, the framework first checks whether the same pre-filter arguments, as

those that were passed for the previous search, have again been specified. If so, the

framework will not run the database query but rather use the previous pre-search filter

results.

 122

Weakness in Pre-Search Filter Caching Design

The biggest weakness in this design is that the cached results remain stagnant and can

become stale over time as the results of the original pre-search filter query may have

changed. One way to overcome this is to attach a timestamp to the cached results and

after a configurable time period has elapsed the query is rerun and the cached results

are refreshed. Another option is for the framework to provide a mechanism by which

the user can force the refreshing of the pre-search filter results; effectively clearing

out the cached results and rerunning the query.

The design, implementation, review and revision process of a generic fuzzy name

matching framework has been documented through the course of this section. As has

been discussed, the framework has been designed to address the requirements

specified in §4. The subsequent section (§6) defines and describes the testing process

used to verify whether the designed framework conforms to outlined requirements.

 123

6 Solution Testing

Having completed several iterations of the framework, it was necessary to evaluate its

design and implementation through a series of test cases. This section details the

testing process and outcomes through the defining of the test objectives and

corresponding test cases and the analysis of the results thereof.

6.1 Test Objectives

Prior to the outlying of the test objectives, it is necessary to review the dissertation‟s

research questions to ensure that the various test objectives and therefore test cases

are compliant with research objectives of the dissertation.

In reviewing the first research question
19

, it is apparent that by virtue of the

framework‟s design, this question has been answered. If no common processes could

be found between the various fuzzy matching algorithms, no framework could be

designed and therefore, it would be impossible to continue this dissertation beyond

the literature review.

The subsequent two research questions
20

 have been refined in the form of the

following two high level test objectives:

1. To verify whether the framework is a viable alternative to algorithm

specific implementations of various fuzzy matching algorithms within a

name matching context. This high level objective relates to research

question 2.

2. To verify whether the framework can be utilised as a black-box search

tool, in which an external application supplies search parameters to the

19 Do the majority of Fuzzy Matching algorithms contain one or more common high level processes

that can be integrated into a single generic framework? (found in §3.1)
20 Is it possible for this generic framework to cater for the requirements of the matching of various

combinations of names? And can this framework provide a mechanism for the implementation of

custom logic for the common processes? (both found in §3.1)

 124

framework and the framework then returns a result. This high level

objective relates to research question 3.

The following is a detailed list of the test case objectives:

1. To verify that the framework is capable of loading third party code and

integrating into its own search, in order to implement a particular fuzzy

matching algorithm

2. To verify that the framework provides a high level abstracted search

process

a. In particular, the aim of this objective is to determine whether the

framework is capable of managing both the internal search flow and

the database maintenance with limited input from the third party

developer. The only third party developer input, should be the actual

implementation of the fuzzy matching algorithm logic.

b. This objective also aims to verify that the framework presents a single

start and end point to an external application

3. To verify whether the framework is able to search on two or more related

names (e.g. first name and surname) and ensure that the individual search

results are all resolved to single entities whose names each match each of

the input search names

4. To verify whether the framework is generic and does not subscribe to a

single fuzzy matching algorithm

a. Furthermore, to verify whether the framework can implement different

types of algorithms

5. To verify whether the framework‟s search times are comparable to

algorithm specific implementations of the various fuzzy matching

algorithms

6. To verify that the framework is capable of serving batch processes

7. To verify that the framework is capable of simultaneously serving

multiple applications

 125

Table 6.1 illustrates under which high level objectives, the sub-objectives fall.

Table 6.1: Sub-Objective to high level objective mapping

Objective High Level Objective

1 1,2

2 2

3 1

4 1

5 2

6 1,2

7 2

Using the various test objectives (defined above), a series of test cases was

developed.

6.2 Test Data

When performing the literature review, it was found that there is no standard database

of names, against which all fuzzy matching algorithms are tested and hence there is

no standard metric. Each paper used a different a source for its test data; the

following is a list of several of these sources:

 A U.S. District Court database containing records for cases assigned to

various judges (Branting, 2003)

 Customer and employee lists of travel agencies accessed through Amadeus‟

systems (Du, 2005)

 Online onomastikon (dictionary of names) (Du, 2005)

 A dictionary distributed with the ispell interactive spelling checker (Zobel &

Dart, 1995)

 A set of distinct personal names compiled from student records and a

bibliographic database (Zobel & Dart, 1995)

 Confidential datasets through commercial work (Zobel & Dart, 1996)

 126

 A Dictionary of English Surnames (Snae, 2007)

 Given- and surnames extracted from a midwives database (Christen, 2006)

It must be noted that the lack of standard fuzzy matching dataset will not hinder the

above mentioned test cases. A standard database of test data is important when one

has developed a new fuzzy matching algorithm and is required to compare its

performance to existing algorithms. The testing required for this dissertation,

however, aims to compare the performance of different implementations of a

particular fuzzy matching algorithm (i.e. comparing the performance of an algorithm

specific implementation to the performance of the same algorithm having been

implemented within the framework) and therefore a standard dataset is less important.

The test data set was constructed from three sources:

1. A list of high profile Southern African individuals (5847 entries)

(Media24, 2009).

2. A generated
21

 list of surnames and first names using the most common

surnames and first names found in the 1990 US Census (20 163 entries)

(U.S. Census Bureau, 2009)

3. A scrambled list of employee first names and surnames (491 entries) from

a company. This company did not wish to be named.

21 The source provided lists of the frequency of occurrence of the most common surnames, male first

names and female first names. Each list of names was downloaded individually. Since the framework

testing requires first name – surname pairs, first name - surname pairs were generated through the

combining of the separate lists. This was achieved by combining the most common surnames with the

most common male and female first names.

 127

6.2.1 Test Data Set Properties.

The main properties of the test data set are described in Table 6.2.

Table 6.2: Test Data Set Properties

Property Metric

Total Number of Entries 26481

Total Number of Unique Entries 26431

Total Number of Unique Surnames 5656

Total Number of Unique First Names 3335

Average Surname Length 6.820 characters

Average First Name Length 7.194 characters

Please refer to Appendix H for a more detailed analysis of the test data set.

6.3 Test Cases

The test cases have been developed to verify whether the framework conforms to

original design requirements.

Generally most tests involve the comparison of the framework‟s performance to an

algorithm specific implementation of a particular fuzzy matching algorithm. In an

algorithm specific implementation the fuzzy matching algorithm is “hard coded”

within the compiled code and therefore the application is not capable of

implementing a different type of algorithm without being rewritten and recompiled.

Unless otherwise specified, all tests are performed against the same database. This

database is composed of the test data set that has been described above.

 128

6.3.1 Test Case 1 - Basic Framework Search

This test demonstrates objectives 1 and 2.

The test is performed through the implementation of the same fuzzy matching

algorithm in both an algorithm specific implementation and within the framework.

The same search name is input into both algorithm implementations and the results

are compared.

Success is defined by both implementations of the algorithm returning the same

results.

6.3.2 Test Case 2 - Related Searches

This test demonstrates objective 3.

The test is performed through the implementation of a fuzzy matching algorithm

within the framework (The fuzzy matching algorithm that is implemented for this test

is immaterial). A person‟s first name and a surname are both input into the framework

and the results are then evaluated.

Three criteria are required to be fulfilled for the test to be considered a success:

1. Each first name-surname pair returned by the framework corresponds to

the same TestCaseID (the primary key of the test data set table) in the

database

2. When investigating the TestCaseID within the external database, one

must ensure that the first names and surname corresponding to the

TestCaseID, must be an identical match to the ones returned by the

framework‟s search

3. Both the returned first names and surname must each be a fuzzy match to

the input first names and surname

 129

6.3.3 Test Case 3 - Flexibility

This test demonstrates objective 4.

The test methodology is the same as that of Test Case 1 (see §6.3.1). This test,

however, is repeated three times. The first time the algorithm used is a Phonetic

Encoding algorithm, the second time an Edit Distance algorithm is used and finally

the third time an N-Gram algorithm is used.

One is able to consider the test a success if the results of both the framework

implementation and the specific algorithm implementation of each of the three

different fuzzy matching algorithm types are the same.

6.3.4 Test Case 4 - Speed

This test demonstrates objective 5.

The test methodology is the same as that of Test Case 3 (see §6.3.3). However,

instead of comparing the search results, the search times are compared.

Unlike previous tests, where success was defined on the return of matching results,

this test is considered to be successful if the time required to perform a search within

the framework‟s implementation of an algorithm is within 5% of the time required to

perform the same search within the algorithm specific implementation. This applies

to the implementations of all three algorithm types.

 130

6.3.5 Test Case 5 - High-Load Testing

Batch Processes

This test demonstrates objectives 6.

The test is performed by making a large number of search requests to the framework

over an extended amount of time. The overall duration and the number of searches

performed is then determined. One must note the metrics used within this test:

 Number of Searches ≈ 120 000

 Search Database Size ≈ 200 000 entries

 Process Duration ≈ 12 hours

Success is defined as whether the framework is capable of being responsive

throughout the entire time period and thus servicing all search requests.

Simultaneous Search Requests

This test demonstrates objective 7.

A small test application, which is capable of spinning multiple threads, is to be

developed. Each of the application‟s individual threads is to request multiple searches

from the framework. The intention of this test is to simulate the load of multiple

applications simultaneously accessing the framework.

This test is considered to be successful if the framework is capable of successfully

responding to each of the search requests.

 131

6.4 Test Results and Discussion

The subsequent sections describe and discuss the results of the various test cases. In

situations where test case failed an explanation is provided.

6.4.1 Test Case 1 - Basic Framework Search

The Soundex algorithm was implemented as both a Soundex specific implementation

(Birkby, 2002) and within the framework. Thereafter, the search name “Frank” was

input into both the Soundex implementations and the outputted results were recorded.

The results of the two searches are displayed in Table 6.3. The results were identical

between the two implementations.

Table 6.3: Test Case 1 Results

As can be seen in the above table, both implementations returned exactly the same

results and therefore test case 1 is considered to be successful.

Search Name Soundex Specific Implementation Framework Implementation

FARANAAZ (1 Entries) FARANAAZ (1 Entries)

FRANCES (24 Entries) FRANCES (24 Entries)

FRANCESCO (1 Entries) FRANCESCO (1 Entries)

FRANCINE-ANNE (1 Entries) FRANCINE-ANNE (1 Entries)

FRANCIS (45 Entries) FRANCIS (45 Entries)

FRANCIS KWAME (1 Entries) FRANCIS KWAME (1 Entries)

FRANCISCO (20 Entries) FRANCISCO (20 Entries)

FRANCISCUS (1 Entries) FRANCISCUS (1 Entries)

FRANCKI (1 Entries) FRANCKI (1 Entries)

FRANCO (2 Entries) FRANCO (2 Entries)

FRANCOIS (14 Entries) FRANCOIS (14 Entries)

FRANK (35 Entries) FRANK (35 Entries)

FRANK REGINALD (1 Entries) FRANK REGINALD (1 Entries)

FRANKIE (20 Entries) FRANKIE (20 Entries)

FRANKLIN (22 Entries) FRANKLIN (22 Entries)

FRANKLYN (1 Entries) FRANKLYN (1 Entries)

FRANS (4 Entries) FRANS (4 Entries)

FRANZ (3 Entries) FRANZ (3 Entries)

Frank

 132

6.4.2 Test Case 2 - Related Searches

In order to perform this test case the framework was configured to implement the

Soundex algorithm. The first name “Lora” and the surname “Schroeder” were then

input as the search criteria. Though the input first name was configured to search

against a dataset of first names and the input surname was configured to search

against a dataset of surnames, both datasets corresponded to the same table group.

This informed the framework that the results of the first name search and the surname

search must resolve to the same row in the search table (i.e. the table containing the

test case names). Table 6.4 below displays the results of the search, while Table 6.5

and Table 6.6 verify the validity of each of the individual searches.

Table 6.4: Test Case 2 Results

Table 6.5: First Name Search Results

Table 6.6: Surname Search Results

Table 6.4 displays that the search names “Lora” and “Schroeder” returned three

matches, however, it was required that these results be verified before the test case

could be considered successful. The following was performed to verify the validity of

the search results:

1. The original test case name table was queried to verify that the Match

Row Number that was returned by the framework does actually reference

both the first name and surname that were returned by the framework. The

results of the query are displayed in the “Does Correspond to DB” column

in Table 6.4.

Search First Name Search Surname Match First Name Match Surname Match Row Number Does Correspond to DB Are Both First Name and Surname viable fuzzy matches

LORA SCHROEDER 458 Yes Yes

LEROY SCHNEIDER 17756 Yes Yes

LORI STARR 23817 Yes Yes

Lora Schroeder

Search First Name Unique First Name Matches

LARRY

LARRY

LAURA

LAURIE

LEROY

LERUO

LORA

LORI

Lora

Search Surname Unique Surname Matches

SCHNEIDER

SCHNEIDER

SCHREUDER

SCHROEDER

STARR

STEAR

STORE

STOREY

STORY

STUHLER

Schroeder

 133

2. Both the first name and surname were independently searched to ensure

that results returned by the test case search are actually fuzzy matches to

both the input first name and surname. The results of the individual

searches are displayed in Table 6.5 and Table 6.6 respectively.

Through the verification of the search results, it has been shown that the framework is

capable of performing searches on related names and therefore Test Case 2 can be

considered as a success.

6.4.3 Test Case 3 – Flexibility

In order to test the framework‟s flexibility, three different fuzzy matching algorithms

were implemented as algorithm specific implementations and as framework

implementations. These three implemented algorithms were the Soundex,

Levenshtein Distance (Foidl, 2009) and N-Gram Similarity (Dao, 2005) algorithms. It

was necessary that the same search name, “Carl”, be used across all the searches to

ensure standard test conditions; these searches included the three algorithm specific

implementations and the three framework implementations.

The three above mentioned algorithms were chosen as it has been identified that the

most commonly used algorithms can be divided into three main groups, namely

Phonetic, Edit Distance and N-Gram‟s. Each of the chosen algorithms is

representative of a particular fuzzy matching algorithm group, which enables the test

case to provide coverage over a large array of algorithms. Furthermore, the chosen

algorithms demonstrate two considerably different search approaches:

 The Soundex algorithm pre-processes the name prior to the search, converting

it into an appropriate code. Thereafter, the algorithm searches for all other

names that have the same Soundex code, i.e. since all the entries in the

database have already been processed and the corresponding Soundex codes

stored, the algorithm is required to find all Soundex entries in the database

 134

that have an exact match to the search Soundex code. As a result, the

algorithm only retrieves entries from the database that are matches.

 Both the Levenshtein Distance and N-Gram Similarity algorithms require a

direct comparison between the search name and the database entry to compute

a score. Hence, the algorithm blindly pulls out entries from the database,

unaware whether the entry will or will not be a match (the degree of match is

only determined after a score has been computed) and therefore potentially

very few of the database returned entries will be a match.

The results of the various searches are displayed in Table 6.7, Table 6.8 and Table 6.9

below. The results of all three of the algorithm specific implementations and their

framework equivalents were identical.

Table 6.7: Soundex Search Results

Table 6.8: Levenshtein Search Results

Algorithm Specific Implementation Framework Implementation

CAREL (7 Entries) CAREL (7 Entries)

CARL (29 Entries) CARL (29 Entries)

CARLA (21 Entries) CARLA (21 Entries)

CARLO (2 Entries) CARLO (2 Entries)

CAROL (28 Entries) CAROL (28 Entries)

CAROLE (23 Entries) CAROLE (23 Entries)

CARROL (1 Entries) CARROL (1 Entries)

CARROLL (20 Entries) CARROLL (20 Entries)

CHARL (6 Entries) CHARL (6 Entries)

CHARLIE (20 Entries) CHARLIE (20 Entries)

CHERYL (26 Entries) CHERYL (26 Entries)

CYRIL (4 Entries) CYRIL (4 Entries)

CYRILLE (1 Entries) CYRILLE (1 Entries)

Soundex

Algorithm Specific Implementation Framework Implementation

CAREL (7 Entries) CAREL (7 Entries)

CARL (29 Entries) CARL (29 Entries)

CARLA (21 Entries) CARLA (21 Entries)

CARLO (2 Entries) CARLO (2 Entries)

CAROL (28 Entries) CAROL (28 Entries)

CARY (20 Entries) CARY (20 Entries)

CHARL (6 Entries) CHARL (6 Entries)

EARL (22 Entries) EARL (22 Entries)

KARL (25 Entries) KARL (25 Entries)

Levenshtein

 135

Table 6.9: N-Gram Similarity Search Results

All three of the above tables verify that the framework is capable of implementing

multiple different fuzzy matching algorithms as the framework returned the same

results as the algorithm specific implementation for each of the algorithms. It can be

concluded that Test Case 3 fulfilled its success criteria.

6.4.4 Test Case 4 – Speed

The same test conditions that were implemented for Test Case 3 were also used for

this test case and the same search name, “Carl”, was also used. Since this test case

involves the measurement of the search times, it was not adequate to simply perform

the search once for each of the different algorithm implementations; rather the same

search was repeated ten times for each of the six different algorithm implementations

(i.e. three algorithm specific implementations and three framework implementations).

The average search time was thereafter calculated. The results are shown in Table

6.10, Table 6.11 and Table 6.12.

Algorithm Specific Implementation Framework Implmementation

CAREL (7 Entries) CAREL (7 Entries)

CARL (29 Entries) CARL (29 Entries)

CARLA (21 Entries) CARLA (21 Entries)

CARLO (2 Entries) CARLO (2 Entries)

CARLOS (22 Entries) CARLOS (22 Entries)

CARLTON (20 Entries) CARLTON (20 Entries)

CAROL (28 Entries) CAROL (28 Entries)

CARROL (1 Entries) CARROL (1 Entries)

CARROLL (20 Entries) CARROLL (20 Entries)

CARY (20 Entries) CARY (20 Entries)

CHARL (6 Entries) CHARL (6 Entries)

EARL (21 Entries) EARL (21 Entries)

N-Gram Similarity

 136

Table 6.10: Soundex Search Times

Table 6.11: Levenshtein Search Times

Table 6.12: N-Gram Similarity Search Times

Upon reviewing the above tables, it is evident that the framework‟s search times are

not comparable to those of the algorithm specific implementations. Before an in depth

explanation of the search times of each of the algorithm implementations is provided,

it must be considered that although ultimately one is only concerned with the results

returned from each of the algorithm implementations, the functionality provided by

Algorithm Specific Implementation Framework Implementation

< 0.00001 ms 62.4984 ms

< 0.00001 ms 46.8738 ms

< 0.00001 ms 46.8738 ms

< 0.00001 ms 46.8738 ms

< 0.00001 ms 46.8738 ms

< 0.00001 ms 46.8738 ms

< 0.00001 ms 46.8738 ms

< 0.00001 ms 62.4984 ms

< 0.00001 ms 46.8738 ms

< 0.00001 ms 46.8738 ms

Average Search Time < 0.00001 ms 49.99872 ms

Individual Search Times

Soundex

Algorithm Specific Implementation Framework Implementation

171.897 ms 6859.1994 ms

156.27 ms 6874.824 ms

125.016 ms 6749.8272 ms

125.016 ms 6765.4518 ms

125.016 ms 6796.701 ms

140.643 ms 6765.4518 ms

125.016 ms 6765.4518 ms

125.016 ms 6921.6978 ms

125.016 ms 6968.5716 ms

125.016 ms 6781.0764 ms

Average Search Time 134.3922 ms 6824.82528 ms

Individual Search Times

Levenshtein

Algorithm Specific Implementation Framework Implmementation

296.883 ms 6874.824 ms

218.7598 ms 6827.9502 ms

218.7598 ms 6827.9502 ms

203.1341 ms 6937.3224 ms

218.7598 ms 6890.4486 ms

218.7598 ms 6874.824 ms

203.1341 ms 6843.5748 ms

218.7598 ms 6827.9502 ms

234.3855 ms 6874.824 ms

218.7598 ms 7062.3192 ms

Average Search Time 225.00955 ms 6884.19876 ms

N-Gram Similarity

Individual Search Times

 137

the algorithm specific implementations is not equivalent to that provided by the

framework and therefore a direct comparison cannot be considered.

Explanation of the Test Case Results

The algorithm specific implementations have the following high level process:

1. A text file of names is read into memory

a. In the case of the Soundex implementation, each of the names is

processed and the equivalent code is generated.

2. A search name is input into the application

3. Matches to the search name are found and added to the result set

a. In the case of the Levenshtein and N-Gram implementations, only

matches that have a score above the specified threshold are added to

the result set

4. The results are displayed

The following aspects within the framework‟s functionality cause additional

overhead:

1. The framework has been developed as a web service and therefore the

time required to do the necessary routing must be considered.

2. The framework validates the search inputs; in particular the framework

verifies that the specified datasets are valid and in the case of a set of

related names the framework evaluates whether all the specified datasets

belong to the same table group.

3. The framework is generic and measures are required to determine which

logic is to be implemented to which datasets.

4. The framework manages it own database of search names against which

all input names are searched.

The remainder of the section discusses the individual algorithm implementations.

 138

Soundex

Two aspects within the framework‟s implementation of the Soundex algorithm

caused the excessive search times, namely:

 A check within the user defined code to determine whether the Soundex

processed datasets have been specified, which accounted for more than 96%

of the search time. This check was necessary as the framework had been

configured that the Soundex, Levenshtein or N-Gram search could be

performed depending on which dataset was input to the search and therefore

some logic was required to select the correct fuzzy matching process. If only a

Soundex implementation had been configured, there would be no need for this

check.

 The framework‟s validation of the input dataset accounted for more than 3%

of the search time.

Figure 6.1 below shows the results of performance profiling performed on the

framework, during its Soundex search. The times displayed in the performance

profile should not be considered as the profiling process retards the performance of

the profiled code. Rather one should consider the percentage duration of each of the

methods.

Figure 6.1: Results of the profiling of the Framework Soundex Implementation

As can be seen from the figure above, if one were not to consider the above

mentioned issues which themselves are not implemented in the Soundex algorithm

 139

specific implementation, the framework‟s search time would be almost identical to

that of the algorithm specific implementation.

Levenshtein Distance and N-Gram Similarity

Both the Levenshtein Distance and the N-Gram Similarity algorithms are adversely

affected by the same framework implementation issues. As discussed previously,

both these algorithms are only able to determine the degree of the match of a name to

a search name subsequent to the database search and therefore a large number (if not

all) of the database entries is generally retrieved. This in turn, results in the

framework performing numerous scoring operations.

The reason for the excessive search times is due to the manner in which the scoring

has been implemented. Every time the framework is required to compute the score,

which is done for every entry retrieved from the database, the framework invokes a

user defined method
22

. After an investigation it was found that the manner in which

the framework invokes this method is particularly slow. In order to simplify the

accessing of the run-time loaded classes, the framework wraps each of the user

defined classes within its own classes. These wrapper classes then handle the

invocation of the underlying class‟ methods. This is achieved through the wrapping

of the method invocation within a method that shares the same name as the invoked

method. Prior to the invocation of the method, a stack trace is performed to determine

the invoked method‟s name and therefore through the retrieval of the wrapping

method‟s name, the framework is able to invoke the correct method. It was

discovered that this performing of a stack trace is inefficient. In the case of the test

cases, every search resulted in a stack trace being performed over 28 000 times,

which accounted for between 55% and 90% of the overall search time.

22 As discussed previously, this method is only loaded into memory at runtime.

 140

This problem can be easily addressed by explicitly specifying the name of the method

to be invoked instead of the framework attempting to determine the name from the

wrapping method.

Further reasons for the slower search times between the algorithm specific

implementations and the framework implementations are as follows:

 The framework processes all the entries that are retrieved from the database

regardless of whether their scores are above the defined threshold, whereas in

the algorithm specific implementations, the algorithm immediately assesses if

the entry‟s score is above the defined threshold and only processes

conforming entries.

 As discussed as an issue for the Soundex implementation, the framework had

been configured to use the input datasets to determine which fuzzy matching

algorithm should be used (the AreDataSetsValid method).

 The framework sorts all the results according to their scores.

Figure 6.2 and Figure 6.3 below show the results of performance profiling performed

on the framework, during the Levenshtein Distance and N-Gram Similarity searches.

Again one should only consider the percentage duration and not the times specified.

Figure 6.2: Results of the profiling of the Framework Levenshtein Distance Implementation

 141

Figure 6.3: Results of the profiling of the Framework N-Gram Similarity Implementation

Through the analysis of this test case it has been identified that the framework‟s

inferior performance is due to the following factors:

1. Some aspects of the framework implementation are inefficient and cause

unnecessary delay. These are issues that can be easily addressed and

resolved in future versions of the framework.

2. The generic nature of the framework requires that it makes provision for

the different algorithm requirements. Generally, this will always be less

efficient than the algorithm specific implementation.

3. The framework does not only provide search functionality but is rather an

entire fuzzy matching solution, which has been designed to respond to

XML requests, return meaningful results
23

 to calling applications and

maintain its own fuzzy matching database. All of these aspects provide

additional overhead, which would is not found in a simple algorithm

specific implementation.

Following from the above discussions it can be concluded the framework is capable

of achieving equivalent search times for algorithms that are able to pin-point fuzzy

23 These results have context within the calling application and are not just a list of matching names

 142

matches from the database, without the need to evaluate the fuzzy matches

subsequent to the database search (e.g. the Soundex algorithm). In summary the

framework is comparable for algorithms that retrieve a minimum amount of entries

from the database and therefore do not require large numbers of scoring operations to

be performed. To conclude, it can be considered that the objective of Test Case 4 has

been partially achieved.

6.4.5 Test Case 5 - High-Load Testing

Batch Processes

Unlike the previous test cases, which were performed against the Test Data set on an

ad-hoc basis, this test case involved the use of an instance of the framework that has

been deployed within industry. This deployed framework instance serves an external

application that runs a batch search process every night. Please refer to §6.5 regarding

the details of the framework deployment.

Since this is an ongoing process, no special changes were made to implement this

particular test case. Rather, the existing batch process was monitored and the results

of which were analysed. One of the main tools used to analyse the batch process is

the framework‟s logs, which store the request and response of every search call made

to the framework. Through the use of a Python script, the logs were parsed and the

high level details of the batch process extracted. These details are shown in Table

6.13.

Table 6.13: Batch Process Details

Process Time Period 12:05:27 Hours

Total Number of Searches 118223

Total Search Time 59.97 Minutes

Average Search Time 30.44 ms

Longest Search Time 14.063 s

Shortest Search Time 0 s

 143

As is displayed in the above table the framework performed over a hundred thousand

searches over a twelve hour period, furthermore through the analysis of the logs it

was found that searches were performed at regular intervals throughout the process

time. Following from the previous test case, an average search time of 30ms is

considered to be acceptable. The most interesting result of the test case is that of the

total duration of the process (12 hours) the framework searches only account for an

hour, which corresponds to about 3% of the total time. This clearly indicates that the

framework did not cause any bottleneck within the process.

It is therefore evident that this test case achieved its objectives as the framework was

capable of responding to search requests throughout an extended period of high load.

Regarding the high level objective of this test case, it was proved that the framework

can be integrated with another system and not inhibit its operations.

Simultaneous Search Requests

This test case was performed through the implementing of the Soundex algorithm

within the framework and the developing of a test application, which creates twenty

threads. Each of the threads, in the application, requests the framework to search an

arbitrary name at arbitrary intervals over a five minute period. The results of each the

threads‟ searches are tabulated below.

 144

Table 6.14: Results of Simultaneous Search Requests Test Case

Table 6.14 clearly indicates that the framework was able to respond to every search as

the total number of failed search requests is zero. It can therefore be concluded that

the test case objectives were achieved and the framework is capable of serving

multiple applications simultaneously.

6.5 Solution Deployment

The framework has been deployed to a well-known bank to fulfil the client search

requirements of an internal application and has been operational since mid July 2008.

In addition to performing ad-hoc real time searches (as per a user initiated search), the

framework is utilised within nightly batch searches. As was described in Test Case 5

(§6.3.5 and §6.4.5), the framework is requested to perform on average 120 000

searches against a database of about 200 000 entries every night.

Due to the framework‟s design, it has been possible to make rapid changes to the

search methodology to fall in line with changing business requirements. On average,

changes to the fuzzy matching logic can be completed and implemented within three

hours. The reason that changes can be implemented so quickly is mainly due to the

framework‟s requirement for the loading of its fuzzy matching logic at Runtime. This

Thread Number Passes Number Fails Average Search Time (ms) Longest Search Time (ms) Shortest Search Time (ms)

1 107 0 234.375 1265.625 109.375

2 109 0 221.9036697 1250 93.75

3 113 0 238.9380531 1578.125 109.375

4 106 0 229.8054245 1265.625 93.75

5 114 0 230.2631579 1328.125 93.75

6 107 0 249.853972 1546.875 93.75

7 110 0 269.1761364 2484.375 93.75

8 106 0 233.490566 1562.5 93.75

9 106 0 215.5070755 921.875 109.375

10 112 0 248.4654018 1453.125 93.75

11 100 0 242.03125 1000 93.75

12 113 0 223.5896018 1359.375 93.75

13 109 0 222.6204128 968.75 109.375

14 108 0 255.931713 1421.875 93.75

15 101 0 245.8230198 1421.875 109.375

16 107 0 235.5432243 1421.875 93.75

17 108 0 222.2222222 921.875 109.375

18 106 0 244.2511792 1609.375 93.75

19 103 0 237.1055825 1343.75 109.375

20 115 0 237.2282609 1687.5 93.75

Total: 2160 0 236.9062462 2484.375 93.75

 145

requirement forces the fuzzy matching logic to be contained within separate DLL‟s

(to both the application and the framework). Generally, the sole focus of these DLL‟s

is the implementation of fuzzy matching logic and therefore changes can be made

quickly and easily. Furthermore, since the changes are not made to the framework

itself, the framework does not need to be recompiled; only the custom logic DLL

needs to be. Finally, since the framework runs as a separate application, the risk, to

the application, caused by a bug being introduced into the fuzzy matching logic when

it is being altered, is negligible as it will cause the framework‟s search to fail and this

will have no further impact on the calling application as it is a separate application.

This aids in the business‟s change control process as only the framework can be

affected by errors in the fuzzy matching logic.

In conclusion, five test cases were developed in order to verify whether the following

objectives within the framework‟s design had been achieved, namely:

 The ability to integrate third party code in order to implement a particular

fuzzy matching algorithm.

 The abstraction of the search process.

 The resolution of the results of individual searches of several names in a series

of related names into a single common result set.

 The capability of implementing multiple fuzzy matching algorithms.

 The provision of comparable search times to those of equivalent algorithm

specific implementations of various fuzzy matching algorithms.

 The support of batch processes.

 The simultaneous serving of multiple applications.

In all but one of the test cases it was found that the framework achieved the defined

objectives. As documented within this section, it was demonstrated that the

framework did not provide equivalent search times to the algorithm specific

implementations for all fuzzy matching algorithms. An investigation into the

underlying issue identified that this shortcoming is limited to fuzzy matching

 146

algorithms that only evaluate the fuzzy match subsequent to the database search and

that the inefficient code can be easily corrected.

The following section provides the analysis of the framework and a conclusion to the

dissertation.

 147

7 Analysis and Conclusion

The final section critically analyses the framework design, provides future

recommendations for the framework design based on the analysis and finally

concludes this dissertation.

7.1 Critical Analysis

Throughout this dissertation various aspects of the framework‟s strengths and

weaknesses have been discussed; however these discussions are found sporadically

throughout the course of the dissertation. This section collates the various analyses

and provides a summary thereof.

The following strengths have been identified within the framework‟s design:

 The framework is capable of implementing a variety of Fuzzy Matching

algorithms (§5.4.1)

 The framework itself contains no Fuzzy Matching logic and rather relies on a

third party to supply the logic. This aids in the framework‟s flexibility

(§5.4.2)

 The framework has been constructed as a complete fuzzy matching solution

and therefore the entire fuzzy matching process is abstracted away from the

third party developer. This allows the developer to focus on fuzzy matching

algorithm logic rather than the various housekeeping required to maintain a

fuzzy matching system (§5.4.3)

 The framework incorporates the custom fuzzy matching logic at runtime,

which enables it to adapt quickly to changing fuzzy matching logic

requirements without the need to be recompiled (§5.4.4)

 The framework‟s generic design goes beyond its support for a variety of fuzzy

matching algorithms, in that it does not limit the number of related names that

are input into a single search nor does it limit the number of simultaneous

searches that can be specified within a single search request (§5.4.5)

 148

 Following from the previous strength the framework is capable of maintaining

the relationships between two or more search names as is defined by the

external application and hence is able to return meaningful results (§5.4.6)

 Through the use of the concept of data sets and the implementation of the

framework as a web service, the framework is capable of serving multiple

applications simultaneously, whilst still catering for each application‟s

individual requirements (§5.4.7)

The following weaknesses have been identified within the framework‟s design:

 In order to allow the framework to be generic, the various aspects of fuzzy

matching algorithms had to be broken down into functional components.

Within each of these functional components, the framework has supplied an

interface through which the corresponding custom logic can be implemented.

The process of breaking a fuzzy matching algorithm into these components

can be unintuitive and complex (§5.5.5)

 The framework‟s interfaces have been designed in order that they supply the

developer with the necessary data. In the situation where the developer may

require data that is not supplied by the interface, it would be very difficult for

him / her to acquire this information, if at all possible (§5.5.6)

 As Test Case 4 demonstrated, the framework‟s requirement of runtime

loading of DLL‟s and the invocation of previously unknown methods cause

additional overhead to the search performance (§5.5.6)

 The implementation of the framework‟s pre-search filter requires that the

framework run queries directly against the external application‟s database,

which practically forces both the framework and the calling application to run

on the same database. This inhibits the framework‟s ability to serve remote

applications (§5.6.1)

 The framework‟s caching of the Pre-Search Filter results provides no

mechanism to update the results and therefore over time these results could

become stale and hence in invalid (§5.6.5)

 149

 During the course of the framework‟s testing, a previously un-discussed

weakness was found. The framework makes no provision for different

conditional logic i.e. different data sets may require different fuzzy matching

logic; rather at each interface point, the framework blindly invokes the

specified custom methods without regard to the current data set. If the third

party developer requires that different data sets are to have different logic

applied to them, he/she needs to create validations within the custom code to

ensure that it is only applied to the particular data sets. The implementation of

the custom code in this manner forces the framework search to be less

efficient as the framework still invokes every single configured method;

despite it being that some of the methods will not be applicable for the current

data set and will exit early. Furthermore, there is no workaround to this issue

when one requires applying different logic to the same data set in different

situations.

7.2 Recommendations and Future Developments

Having completed a thorough analysis of the framework design and implementation,

several recommendations aimed at overcoming some the specified weaknesses are

presented.

1. Instead of the framework invoking every single method specified in the

configuration file, the configuration file should consist of multiple search

configurations. These search configurations are used by the calling

application to specify the search logic that is to be utilised by the

framework in a particular search. This would be achieved through

specifying the search configuration within the search request. Each search

configuration is to specify the assemblies and methods that are to be used

by the framework within each of its components; in addition they are to

contain provision for parameters that are specific to a particular

 150

configuration. Through the use of the search configurations the framework

will only invoke methods that are necessary for a particular search. In

addition, the use of search configurations allows one to apply different

logic to the same data set in different situations.

2. Both the framework‟s implementation of the pre-search filter and the

corresponding defined interface can be altered in order that the framework

no longer performs the pre-search filter query itself but rather forces the

user defined code to perform the query and then return the subset list back

to the framework. This allows the framework to be more loosely coupled

to the application as it need not connect to its database; allowing the

framework and the external application to be run on separate databases.

3. The mechanism for the invocation of methods within external assemblies

should be altered (see §6.4.4); instead of framework traversing the frame

stack to determine the method‟s name (as currently both the wrapping

method and invoked the external assembly method share the same name),

the invoked method name must be explicitly supplied. This explicit

specifying of the method name should not cause any issues as the methods

that are being called are defined by the framework‟s interfaces and are

already known at compile time.

4. An assembly factory could be incorporated into the framework, into which

all configured assemblies are loaded at start-up. This would reduce

additional delay to the framework‟s search as there would be no lag due

the loading of assemblies into memory as they would already be there.

Alternatively, the framework could maintain the most recently used

assemblies in memory and only after a configured amount of time has

elapsed, are they unloaded.

5. The FMFRules class‟s LoadRulesTable method (which calls the delegate

that was passed to class) can be changed from being a private method to

being public one. This would provide the third party custom code with the

 151

ability to update the rules table itself to ensure that the in-memory rules

table does not become stale over time.

6. Currently the pre-search filter only caches the results for the most recent

pre-search filter argument. It would be useful if the framework would

cache the results of last few pre-search filter arguments. For example the

framework could store the results of the last ten unique arguments. This

could be stored in a First In First Out system.

7. Currently the framework maintains and processes all entries that have

been retrieved from the database, which in the case of Edit Distance and

N-Gram like algorithms, results in the framework processing an

excessively large, mostly irrelevant number of entries throughout the

majority of the search. It would be advantageous to apply the threshold

cut-off immediately after the match scoring has been performed, where

entries whose match scores fall below the threshold are immediately

removed from the list of potential matches
24

. This prevents the framework

from having to process a large list of entries where the majority of entries

are not relevant. In addition, this would reduce framework overheads, as

the sorting of entries (according to their respective score), which is an

already expensive operation, would be optimised as there are fewer entries

to sort.

8. The scoring of the returned database entries is one of the most

computationally expensive and longest operations performed by the

framework. This is due to the potentially large number of entries that are

required to be processed and the fact they are processed sequentially.

There is no need to process these entries sequentially as they are

independent of one another. It would be advantageous to perform this

process in parallel, where the framework can spin off multiple processing

threads and therefore evaluate the scores of multiple matches

simultaneously.

24 Currently the threshold evaluation is only performed at the end of the search process.

 152

9. An additional feature that could be added to the framework is the ability to

perform a comparison between two input names (as opposed to

performing a database search against a single input name), in which the

framework computes and returns the degree of the match between the two

names.

7.3 Conclusion

Through the analysis of the characteristics of personal and corporate names and those

of multiple fuzzy matching algorithms, a generic framework was developed that is

capable of performing custom name searches. The framework does not subscribe to

any fuzzy matching algorithm but rather, through the use of interfaces, provides a

platform through which custom fuzzy matching logic can be implemented.

Furthermore, the framework has been designed with the intention that fuzzy matching

logic can be quickly changed in order to conform to non-technical (business)

requirements. This has been achieved through the abstraction of the search and

maintenance processes away from the person developing the fuzzy matching logic.

An inherent aspect within name matching is that names do not exist in isolation but

rather a relationship can exist between multiple names. For example, a person‟s first

name, middle name and surname are all related as they all belong to the same person.

The framework has been designed to cater for this unique aspect of name matching

through the independent search of each of the individual names and thereafter the

collation of the search results into a single unique result set to ensure that the returned

result set maintains the relationships defined by the input search names.

Through a series of test cases and the deployment of an instance of the framework

into a corporate environment, the framework‟s design and implementation have been

thoroughly tested. The framework has been proven to be highly flexible in

implementing a variety of fuzzy matching algorithms that can be altered and

developed within a minimum amount of time. In addition, it has been shown that the

 153

framework is successfully capable of maintaining the relationships between the input

search names. The framework‟s main shortcoming, which was demonstrated by the

test cases, is its search times. When implementing algorithms that are able to search

the database for potential matches, the framework is comparable to the algorithm

specific implementation; however the framework has performed poorly when

implementing algorithms that are unable to perform pin-point database searches and

require that a large number of entries be retrieved from the database and their degree

of match is evaluated thereafter. It has been identified that there are three factors that

cause this undesirable performance, namely: limitations within the framework‟s

design (the requirement to perform a stack trace when invoking an external method),

the generic nature of the framework and the fact that the framework is an entire fuzzy

matching solution and not just a fuzzy matching implementation. Of the identified

factors, the limitations in the framework‟s design cause the majority of the latency;

however, the underlying problems and their resolutions have been discussed and the

necessary remedies can be easily implemented.

Through the course of this dissertation the three research questions have been

answered. It has been found that the majority of fuzzy matching algorithms can be

broken into the following series of high level logical components; namely input

processing, match searching and match evaluation. Based on these commonalities a

generic framework could be built to cater for a variety of algorithms, thereby

answering the first research question
25

. Furthermore, the characteristics of names

have been successfully incorporated within the framework in that the framework

enables a variety of different fuzzy matching algorithms to perform searches on

various combinations of names, whilst maintaining the relationships defined by the

input search names within the returned results. This functionality clearly

demonstrates that the framework can cater for the requirements of various

25 Do the majority of Fuzzy Matching algorithms contain one or more common high level processes

that can be integrated into a single generic framework? (found in §3.1)

 154

combinations of names and thus answers the second research question
26

. The third

research question
27

 is answered through the framework‟s use of interfaces. Through

the use of its defined interfaces, the framework is capable of incorporating custom

fuzzy matching logic.

It is important to mention that the scope of the dissertation has grown during the

course of its write-up. This can be attributed to two factors:

1. As further research was performed, it became evident that scope of the

original thesis would not be particularly useful.

2. The deployment of the framework within a real-world context caused the

framework to grow to fit with changing business requirements.

The framework was originally scoped to be used as a test harness to aid in the rapid

development of fuzzy matching algorithms. It was intended that the framework be

used as a mechanism where one could both implement and test changes to an

algorithm as the framework had been designed to load external assemblies at

Runtime. Through the course of this dissertation, the framework has grown into a

complete fuzzy matching solution, which is intended to provide custom fuzzy

matching functionality to external applications whilst abstracting the fuzzy matching

logic developer away from both the database maintenance and search process. To

summarise, the framework provides the following functionality:

 A fuzzy search, in which the returned results are application specific

 A self maintained system, in which the internal database is constantly

being maintained to ensure that it‟s up to date with external databases

and all the necessary processing has been performed

 The external developer has minimal interaction with the actual

mechanics of the framework‟s search. The developer need only

26

 Is it possible for this generic framework to cater for the requirements of the matching of various

combinations of names? (found in §3.1)
27 Can this framework provide a mechanism for the implementation of custom logic for the common

processes? (found in §3.1)

 155

concern himself / herself with the fuzzy matching algorithm‟s specific

issues, which is incorporated into the framework‟s search by means of

the defined interfaces

 The framework is geared towards the implementation of rapid changes

in business logic. This allows changes to be made quickly to the fuzzy

matching logic with minimal risk to the external application

(requesting the fuzzy search). As discussed at length, these changes

can be made without the need for either the external application or the

framework to be rebuilt

 156

References

Alonso, G., Casati, F., Kuno, H. & Machiraju, V. (2004) Web Services. In Alonso,

G., Casati, F., Kuno, H. & Machiraju, V. Web services: concepts, architectures and

applications. Berlin, Heidelberg, Germany: Springer-Verlag. Ch. 5. pp.124-32.

Atallah, M.J., ed. (1999) Algorithms and Theory of Computation Handbook. New

York, USA: CRC Press.

Bacon, D.F. (2007) Realtime Garbage Collection. ACM Queue, February. pp.40-49.

Bartolini, I., Ciaccia, P. & Patella, M. (2002) String Matching with Metric Trees

using an Approximate Distance. In SPIRE 2002: Proceedings of the 9th Symposium

on String Processing and Information Retrieval. Lisbon, Portugal, 2002. Springer-

Verlag.

Bell, G.B. & Sethi, A. (2001) Matching records in a national medical patient index.

Communications of the ACM, vol. 44, no 9, pp.83-88.

Bentley, J.L. & Sedgewick, R. (1997) Fast algorithms for sorting and searching

strings. In Proceedings of the eighth annual ACM-SIAM symposium on Discrete

algorithms. New Orleans, Louisiana, United States, 1997. ACM.

Birkby, R. (2002) A SoundEx implementation in.NET. [Internet]

http://www.codeproject.com/KB/recipes/soundex.aspx Accessed 8 November 2009.

Branting, L.K. (2003) A comparative evaluation of name-matching algorithms. In

Proceedings of the 9th international conference on Artificial intelligence and law.

Scotland, United Kingdom, 2003. ACM Press.

Capretz, L.F. (2003) A brief history of the object-oriented approach. ACM SIGSOFT

Software Engineering Notes, vol. 28, no 2, p.6.

Chappell, D. (2002).NET Languages. In Chappell, D. Understanding.NET: A

Tutorial and Analysis. Boston, USA: Pearson Education. Ch. 4. pp.119-66.

Christen, P. (2006) A Comparison of Personal Name Matching: Techniques and

Practical Issues. In ICDMW '06: Proceedings of the Sixth IEEE International

Conference on Data Mining - Workshops. Washington, DC, 2006. IEEE Computer

Society.

Cohen, A.T. (1984) Data abstraction, data encapsulation and object-oriented

programming. ACM SIGPLAN Notices, vol. 19, no 1, pp.31-35.

Dao, T. (2005) Term frequency/Inverse document frequency implementation in C#.

[Internet] http://www.codeproject.com/KB/cs/tfidf.aspx Accessed 9 November 2009.

 157

Du, M. (2005) Approximate Name Matching: Finding Similar Personal Names in

Large International Lists. Masters Thesis. Stockholm: Royal Institute of Technology.

Ecma International (2006) C# Language Specification. [Internet] Ecma International

(4) http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf

Accessed 6 July 2011.

Ecma International (2009) What is Ecma International. [Internet] http://www.ecma-

international.org/memento/index.html Accessed 7 February 2010.

Elmagarmid, A.K., Ipeirotis, P.G. & Verykios, V.S. (2007) Duplicate Record

Detection: A Survey. IEEE Transactions on Knowledge and Data Engineering,

January. pp.1-16.

Foidl, G. (2009) Fuzzy Search. [Internet]

http://www.codeproject.com/KB/recipes/fuzzysearch.aspx Accessed 8 November

2009.

Giannini, M. (2004) C/C++. In H. Bidgoli, ed. The Internet encyclopedia. Hoboken,

New Jersey: John Wiley & Sons. p.164.

Haigh, T. (2006) "A veritable bucket of facts" origins of the data base management

system. ACM SIGMOD Record, vol. 35, no 2, pp.33-49.

Hsiung, P., Moore, A., Neill, D. & Schneider, J. (2005) Alias Detection in Link Data

Sets. In Proceedings of the International Conference on Intelligence Analysis.

McLean, VA, 2005.

Hu, C. (2006) When to use an interface? ACM SIGSE Bulletin, vol. 38, no 2, pp.86-

90.

IBM (2006) Structured Query Language (SQL). [Internet]

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.db2.u

db.admin.doc/doc/c0004100.htm Accessed 17 July 2011.

ISO/IEC JTC 1 (2007) Annex J: Guidelines for API standardization. In ISO/IEC JTC

1 Directives. 3rd ed. New York, NY. p.146.

Jagger, J., Perry, N. & Sestoft, P. (2007) Delegates. In Jagger, J., Perry, N. & Sestoft,

P. Annotated C# Standard. Burlington, MA, USA: Morgan Kaufmann Publishers. Ch.

22. pp.604-11.

Kachru, S. & Gehringer, E.F. (2004) On the relative advantages of teaching Web

Services in J2EE vs..NET. In Educator's Symposium, OOPSLA 2004: object-oriented

languages. Vancouver, Canada, 2004.

 158

Karne, R.K. (1995) Object-oriented computer architectures for new generation of

applications. ACM SIGARCH Computer Architecture News, vol. 23, no 5, pp.8-19.

Kolatch, E., Toye, J. & Dorr, B. (2004) Look Alike / Sound Alike Algorithms for

Assessing Drug Name Similarities. McLean, Virginia: Project Performance

Corporation.

Korson, T. & McGregor, J.D. (1990) Understanding object-oriented: a unifying

paradigm. Communications of the ACM, vol. 33, no 9, pp.40-60.

Lait, A.J. & Randell, B. (1993) An assessment of name matching algorithms.

Technical Report. Newcastle upon Tyne: University of Newcastle upon Tyne.

Markiewicz, M.E. & de Lucena, C.J.P. (2001) Object oriented framework

development. Crossroads, Summer. pp.3-9.

Maurer, W.D. & Lewis, T.G. (1975) Hash Table Methods. ACM Computing Surveys

(CSUR), vol. 7, no 1, pp.5-19.

Media24 (2009) Who's Who of Southern Africa. [Internet]

http://www.whoswhosa.co.za Accessed 19 October 2009.

Microsoft (2009).NET Framework Overview. [Internet]

http://www.microsoft.com/net/overview.aspx Accessed 12 July 2011.

Microsoft (2011) Microsoft SQL Server. [Internet] http://technet.microsoft.com/en-

us/library/bb545450.aspx Accessed 20 July 2011.

MSDN Library (2009a) Dictionary <(Of <(TKey, TValue>)>) Class. [Internet]

http://msdn.microsoft.com/en-us/library/xfhwa508.aspx Accessed 6 September 2009.

MSDN Library (2009b) Full-Text Search Overview. [Internet]

http://msdn.microsoft.com/en-us/library/ms142547.aspx Accessed 17 December

2009.

MSDN Library (2011a) Common Language Runtime (CLR). [Internet]

http://msdn.microsoft.com/en-us/library/8bs2ecf4.aspx Accessed 17 July 2011.

MSDN Library (2011b) DLLs. [Internet] http://msdn.microsoft.com/en-

us/library/1ez7dh12.aspx Accessed 17 July 2011.

Naugler, D.R. (2004) Delegates and functional programming. In Proceedings of the

2nd annual conference on Mid-South College computing. Little Rock, Arkansas,

2004. Mid-South College Computing Conference.

 159

Navarro, G. (2001) A guided tour to approximate string matching. ACM Computing

Surveys (CSUR), vol. 33, no 1, pp.31-88.

Oracle Corporation (2010) Introduction to Oracle Database. [Internet]

http://download.oracle.com/docs/cd/E11882_01/server.112/e16508/intro.htm#autoId1

Accessed 20 July 2011.

Pang, A.Y. (2007) Implementation of the Smith-Waterman Algorithm on the FLEET

simulator. Master's Thesis. Vancouver, Canada: The University of British Columbia.

Piskorski, J., Sydow, M. & Kupść, A. (2007) Lemmatization of Polish person names.

In Proceedings of the Workshop on Balto-Slavonic Natural Language Processing:

Information Extraction and Enabling Technologies. Prague, Czech Republic, 2007.

Association for Computational Linguistics.

Python Software Foundation (2004) Writing a Python Script. [Internet]

http://docs.python.org/release/2.4/mac/IDEwrite.html Accessed 17 July 2011.

Python Software Foundation (2007) What is Python? Executive Summary. [Internet]

http://www.python.org/doc/essays/blurb/ Accessed 17 July 2011.

Rajković, P. & Janković, D. (2007) Adaptation and application of Daitch–Mokotoff

SoundEx algorithm on Serbian names. In XVII Conference on Applied Mathematics.

Novi Sad, Serbia, 2007.

Riele, D. (2000) No. 13509 Framework Design: A Role Modeling Approach. PhD

Thesis. Zurich: Swiss Federal Institute of Technology.

Salmela, L., Tarhio, J. & Kytöjoki, J. (2007) Multipattern string matching with q-

grams. Journal of Experimental Algorithmics (JEA), vol. 11, pp.1-19.

SAP Library (2009) Database Triggers. [Internet]

http://help.sap.com/saphelp_nw70/helpdata/en/08/db4940f0030272e10000000a15510

6/content.htm Accessed 20 July 2011.

Schmolitzky, A. (2004) "Objects first, interfaces next" or interfaces before

inheritance. In Conference on Object Oriented Programming Systems Languages and

Applications, Companion to the 19th annual ACM SIGPLAN conference on Object-

oriented programming systems, languages, and applications. Vancouver, BC,

Canada, 2004. ACM.

Seltzer, M. (2005) Beyond Relational Databases. Queue, vol. 3, no 3, pp.50-58.

Siegel, D.E. (1999) All searches are divided into three parts: string searches using

ternary trees. ACM SIGAPL APL Quote Quad, vol. 29, no 3, pp.57-68.

 160

Snae, C. (2007) A Comparison and Analysis of Name Matching. Transactions on

Engineering, Computing and Technology, vol. 19, pp.252-57.

Stroustrup, B. (1997) The C++ Programming Language. 3rd ed. Reading,

Massachusetts: Addison-Wesley.

Sun Microsystems, Inc (1999) The Java Virtual Machine Specification. [Internet]

http://java.sun.com/docs/books/jvms/second_edition/html/Introduction.doc.html

Accessed 17 June 2011.

Sun Microsystems, Inc (2000) Java Language Specification. [Internet]

http://java.sun.com/docs/books/jls/second_edition/html/intro.doc.html#237601

Accessed 17 July 2011.

Taft, R.L. (1970) Name search techniques. Special Report No. 1. Albany, New York:

New York State Identification and Intelligence System.

U.S. Census Bureau (2009) Frequently Occurring First Names and Surnames From

the 1990 Census. [Internet]

http://www.census.gov/genealogy/names/names_files.html Accessed 19 October

2009.

Veronica, R. & Li, C. (2009) Efficient top-k algorithms for fuzzy search in string

collection. In Proceedings of the First international Workshop on Keyword Search on

Structured Data. Providence, Rhode Island, 2009. ACM.

W3C (2004) XML Schema Part 0: Primer Second Edition. [Internet]

http://www.w3.org/TR/xmlschema-0/ Accessed 20 July 2011.

W3C (2008) Extensible Markup Language (XML) 1.0. [Internet]

http://www.w3.org/TR/REC-xml/ Accessed 20 Juy 2011.

Yancey, W.E. (2005) Statistics: 2005-05 Evaluating String Comparator Performance

for Record Linkage. Technical Report. Washington, DC: U.S. Census Bureau.

Yang, X., Wang, B. & Li, C. (2008) Cost-based variable-length-gram selection for

string collections to support approximate queries efficiently. In Proceedings of the

2008 ACM SIGMOD international conference on Management of data. Vancouver,

Canada, 2008. ACM.

Zobel, J. & Dart, P.W. (1995) Finding Approximate Matches in Large. Software -

Practice & Experience, vol. 25, no 3, pp.331-45.

Zobel, J. & Dart, P.W. (1996) Phonetic string matching: lessons from information

retrieval. In Proceedings of the 19th annual international ACM SIGIR conference on

Research and development in information retrieval. Zurich, 1996. ACM Press.

 161

Appendix A Edit Distance Variants

Several variants of the basic Edit Distance algorithm have been developed in order to

overcome particular obstacles that occur when matching strings.

1 Weighted Edit Distance

Some letters are more easily confused than others (due to “keyboard layout, similar

shapes or phonetic similarity” (Du, 2005)) and therefore it is obvious that common

errors should cost less than unusual errors. Bearing this in mind, the Weighted Edit

Distance, assigns different weightings to the different letter pairs, instead of the

standard unit cost (for unlike letters) as specified in the basic Edit Distance algorithm

(Du, 2005).

It must be noted that the various weightings for the various letter pairs are highly

statistical and depend on the means of input, the language used and the nature of the

text involved. The algorithm therefore requires that an additional table of size (l×l)
1
,

which maps the weightings of the various letter pairs. Furthermore, a one dimensional

matrix is required (of length l) in order to map the weightings for when a letter is

being compared to no letter (in the case of insertions and substitutions) (Du, 2005).

2 Edit Distance with Upperbound and Cut-Off Criterion

As discussed previously, one of the shortcomings of the Edit-Distance algorithm is

that every single entry within a dictionary needs to be processed in order to determine

if there are any matching words to the search word. The Edit Distance with

Upperbound and Cut-Off Criterion attempts to improve the search time by placing an

1 l is the size of the alphabet.

 162

error threshold within which matches can be found (Du, 2005). Equation 1 shows that

for two words to be a match they must have a maximum t edit distance (Du, 2005).

txytx (1)

where: t is the threshold error distance

In this manner, if during the calculation of the edit distance, the threshold is

exceeded, the calculation (for that particular word within the dictionary) is aborted

and the search continues with the next word (Du, 2005).

3 Normalised Edit Distance (NED)

The NED is calculated in exactly the same manner as the Edit Distance; however,

after the Edit Distance is computed, the computed value is divided by the length of

the longer of the two compared strings (Hsiung et al., 2005). See Equation 2 (Hsiung

et al., 2005).

),max(

),(
),(

yx

yxedit
yxNED (2)

where: x is the first string being compared

 y is the second string being compared

Normalising the edit distances allows one to be able to compare the edit distance of

various string pairs regardless of their different word lengths as all the results are

normalised and will therefore all have values between zero and one.

 163

4 Discretised Edit Distance (DED)

The DED forces the result of all string comparisons to be placed within the discrete

binary set of either one or zero. This is achieved by setting the result of a NED to one

if the value is above the specified threshold of 0.7 otherwise, the value is set to zero.

The threshold of 0.7 was determined purely by empirical observation (Hsiung et al.,

2005).

5 Exponential Edit Distance (EED)

The EED is calculated by passing the result of the basic Edit Distance through an

exponential function. See Equation 3 (Hsiung et al., 2005).

)),(exp(),(yxedityxEED (3)

6 Edit Distance with a Trie

The Edit Distance with a Trie algorithm attempts to improve on the Edit Distance

algorithm search speed when a large dictionary of names is required to be searched.

Using a trie, the algorithm is able to pre-store the results of the edit distance

calculations for a particular search word.

The trie used in this algorithm is a tree with labelled edges where every node

corresponds to a unique prefix that belongs to one or more words. The method in

which the trie is built is now discussed. The trie‟s root node corresponds to an empty

string, ε. When adding a new word to the trie, the algorithm iterates through each of

the letters contained within the word. For each letter, the algorithm checks if there are

any nodes at the same level as the letter that correspond to it, e.g. if it is the first letter

of the word, the algorithm looks at all nodes at the 1
st
 level (the first level of nodes

after the root node) of the trie. If a matching node is found, the algorithm traverses

the branch to the matching node. If no matches are found, a new edge is formed by

 164

branching away from the previous node. This process is repeated for every word the

dictionary. Due to the manner in which the trie is constructed, each leaf
2
 in the trie

corresponds to a unique word. It must be noted that non-leaf nodes can also

correspond to complete words (Du, 2005). Please refer to Figure A.1 as an example

of how a trie is built.

Figure A.1: A trie built using the names filips, fillips, phan, phillip and phillips (Du, 2005)

The names filips and fillips (in the above mentioned example) both have the same

prefix of “fil” and therefore share the same first four nodes. The trie thereafter splits

at the “i” in filips and the second “l” in fillips. The trie can now be searched to locate

the word in the dictionary that has the minimum edit distance to the search word.

The algorithm attempts to match the search word by traversing the trie depth first
3
.

For every node that is traversed, a new column of the Edit Distance dynamic

programming matrix is calculated. The first column that is populated corresponds to

the root node of the trie (the root node corresponds to an empty string, ε) and

therefore is the common prefix to all the strings in the dictionary (Du, 2005). “The

2
 A leaf is the end node of a tree, to which there are no further nodes attached.

3 A depth first search is performed by starting at the root of the trie and then explores as far down as

possible along each branch before backtracking. Backtracking is achieved by the algorithm returning

to the most recent node that it has not fully explored (Wikipedia, 2007).

 165

branches are then visited recursively. Children nodes generate their column from the

columns of their predecessors. As a result, two words having a common prefix will

also share the matrix columns up until the column corresponding to that prefix” (Du,

2005). When a node marked as the end of a specific word is reached, the last cell of

the newly computed column contains the minimum edit distance between that word

and the search word (Du, 2005). Through the searching of the trie in this manner,

repeated calculations of the edit distances for words that have common prefixes are

avoided. Figure A.2 (in conjunction with Figure A.1) describes the previously

explained logic.

Figure A.2: Construction of the Dynamic Programming Matrices using the Trie

 166

The figure above depicts the columns that have been pre-calculated from previous

matrices, through the use of a star (). A further advantage of the use of a trie, is that

if one has specified an error threshold, which the minimum edit distance must not

exceed, one is often able to determine if a branch has exceeded the threshold without

need to calculate the edit distance for the leaf node. This is due to the fact that once

the threshold has been reached; no further nodes along the branch will have a lower

edit distance. The matrices in Figure A.2 have an error threshold of 2. Once there is a

column in the matrix with all the cells above threshold, there is no further need to

calculate the remaining columns of the matrix. This can be seen by columns marked

with a cross () in Matrix 2 (Du, 2005).

References

Du, M. (2005) Approximate Name Matching: Finding Similar Personal Names in

Large International Lists. Masters Thesis. Stockholm: Royal Institute of Technology.

Hsiung, P., Moore, A., Neill, D. & Schneider, J. (2005) Alias Detection in Link Data

Sets. In Proceedings of the International Conference on Intelligence Analysis.

McLean, VA, 2005.

Wikipedia (2007) Depth-First Search. [Internet] Available at:

http://en.wikipedia.org/Depth_first_search Accessed 4 July 2007.

 167

Appendix B Database Model

Figure B.1: Framework Database Model

 168

Appendix C Search Input XML Schema

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:fmf="urn:synthesis-co-za:fmf"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="urn:synthesis-co-za:fmf"

elementFormDefault="unqualified">

 <xsd:complexType name="BaseIDDef" mixed="false">

 <xsd:attribute name="IdString" type="xsd:string">

 <xsd:annotation>

<xsd:appinfo>

Generic ID String, usually refers to the primary

key of the object

</xsd:appinfo>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="IdType" type="xsd:string" use="optional">

 <xsd:annotation>

 <xsd:appinfo>

Generic ID Type, refers to the type of field the

IdString is

</xsd:appinfo>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="IdSource" type="xsd:string" use="optional">

 <xsd:annotation>

 <xsd:appinfo>

Generic ID Source, refers to the source of the

IdString

</xsd:appinfo>

 </xsd:annotation>

 </xsd:attribute>

 </xsd:complexType>

 <xsd:complexType name="NamedIDDef" mixed="false">

 <xsd:complexContent mixed="false">

 <xsd:extension base="fmf:BaseIDDef">

 <xsd:sequence>

<xsd:element name="Name" type="xsd:string"

minOccurs="0">

 <xsd:annotation>

 <xsd:appinfo>

The name of this object.

 169

</xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <xsd:complexType name="InputWordDef" mixed="false">

 <xsd:sequence>

 <xsd:element name="Word" type="xsd:string">

 <xsd:annotation>

 <xsd:appinfo>

The word against which a search is to be

performed / The resultant word retrieved

from a search

</xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="DataSetID" type="fmf:NamedIDDef"

 maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:appinfo>

The dataset against which the search word

is to be searched / The dataset to which

the retrieved word belongs

</xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="InputDataSetWordDef" mixed="false">

 <xsd:complexContent mixed="false">

 <xsd:extension base="fmf:InputWordDef">

 <xsd:sequence>

 <xsd:element name="WordWeighting"

 type="xsd:double">

 <xsd:annotation>

 <xsd:appinfo>

The weighting of the word

when a match is found (for

scoring puposes). e.g. the

weighting associated with

finding a match on a

surname would be greater

 170

than finding a match on

the firstname

</xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <xsd:complexType name="InputSetDef" mixed="false">

 <xsd:sequence>

<xsd:element name="WordSetComponents"

type="fmf:InputDataSetWordDef" maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:appinfo>

This is a set of search words that are to

be 'anded' together in a search. Eg.

Firstname and Surname

</xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="dummy" type="xsd:string" />

 </xsd:complexType>

 <xsd:complexType name="PerformSearchRequest" mixed="false">

 <xsd:sequence>

<xsd:element name="SearchSets" type="InputSetDef"

maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:appinfo>

Each set represents a distinct search.

The sets are to be 'ored' together

</xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>

 171

Appendix D Framework Defined Interfaces for Third Party Code

using System;

using System.Collections.Generic;

using System.Text;

namespace FMFBaseComponents

{

 public enum SQLClauseEnum

 {

 like, equals, notEqual, notLike, isNull, isNotNull

 };

 public enum SQLOperatorEnum

 {

 wildcard, upper, lower

 };

 public class SearchWordClass

 {

 private string _word;

 private List<string> _searchWords;

 public string Word

 {

 get { return _word; }

 set { _word = value; }

 }

 public List<string> SearchWords

 {

 get { return _searchWords; }

 set { _searchWords = value; }

 }

 }

 172

 public class DatabaseSearchParameters

 {

 private string _searchWord;

 SQLClauseEnum _SQLClause;

 List<int> _dataSet;

 public string SearchWord

 {

 get { return _searchWord; }

 set { _searchWord = value; }

 }

 public SQLClauseEnum SQLClause

 {

 get { return _SQLClause; }

 set { _SQLClause = value; }

 }

 public List<int> DataSet

 {

 get { return _dataSet; }

 set { _dataSet = value; }

 }

 public DatabaseSearchParameters()

 {

 _SQLClause = SQLClauseEnum.equals;

 }

 public DatabaseSearchParameters(string SearchWord, List<int> Dataset)

 {

 _SQLClause = SQLClauseEnum.equals;

 _searchWord = SearchWord;

 _dataSet = Dataset;

 }

 }

 public class MatchScoring

 {

 private string _orginalWord;

 private string _matchWord;

 private int _dataSetID;

 private double _score;

 public string OriginalWord

 173

 {

 get { return _orginalWord; }

 set { _orginalWord = value; }

 }

 public string MatchWord

 {

 get { return _matchWord; }

 set { _matchWord = value; }

 }

 public int DataSetID

 {

 get { return _dataSetID; }

 set { _dataSetID = value; }

 }

 public double Score

 {

 get { return _score; }

 set { _score = value; }

 }

 public MatchScoring(string OriginalWord, string MatchWord, int DataSetID,

double Score)

 {

 _orginalWord = String.Copy(OriginalWord);

 _matchWord = String.Copy(MatchWord);

 _dataSetID = DataSetID;

 _score = Score;

 }

 }

 public class MatchScoringInformation

 {

 private double _score;

 private int _dataSetID;

 private double _wordWeighting;

 public double Score

 {

 get { return _score; }

 set { _score = value; }

 }

 174

 public int DataSetID

 {

 get {return _dataSetID;}

 set {_dataSetID = value;}

 }

 public double WordWeighting

 {

 get {return _wordWeighting;}

 set {_wordWeighting = value;}

 }

 }

 public interface IDataTransformationInterface

 {

 SearchWordClass TransformedInputData(SearchWordClass InputData, List<int>

DataSetID);

 }

 public interface ISearchParameterInterface

 {

 DatabaseSearchParameters SetDatabaseSearchCondition(String SearchWord,

List<int> DataSetID);

 }

 public interface ISearchResultScoringInterface

 {

 MatchScoring ScoreMatchResult(MatchScoring InputData);

 }

 public interface IDataSetScoreAggregationInterface

 {

 double AggregateScores(List<MatchScoringInformation> DataSetScores);

 }

 public interface IMatchEvaluationInterface

 {

 List<int> EvaluateReturnList(List<double> DataSetScores);

 }

}

 175

Appendix E Search Output XML Schema

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:fmf="urn:synthesis-co-za:fmf"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="urn:synthesis-co-za:fmf"

elementFormDefault="unqualified">

 <xsd:complexType name="BaseIDDef" mixed="false">

 <xsd:attribute name="IdString" type="xsd:string">

 <xsd:annotation>

<xsd:appinfo>Generic ID String, usually refers to the

primary key of the object</xsd:appinfo>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="IdType" type="xsd:string" use="optional">

 <xsd:annotation>

<xsd:appinfo>Generic ID Type, refers to the type of

field the IdString is</xsd:appinfo>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="IdSource" type="xsd:string" use="optional">

 <xsd:annotation>

<xsd:appinfo>Generic ID Source, refers to the source of

the IdString</xsd:appinfo>

 </xsd:annotation>

 </xsd:attribute>

 </xsd:complexType>

 <xsd:complexType name="NamedIDDef" mixed="false">

 <xsd:complexContent mixed="false">

 <xsd:extension base="fmf:BaseIDDef">

 <xsd:sequence>

<xsd:element name="Name" type="xsd:string"

minOccurs="0">

 <xsd:annotation>

<xsd:appinfo>The name of this

object.</xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 176

 <xsd:complexType name="OutputWordDef" mixed="false">

 <xsd:sequence>

 <xsd:element name="Word" type="xsd:string">

 <xsd:annotation>

<xsd:appinfo>The resultant word retrieved from a

search</xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="DataSetID" type="fmf:NamedIDDef">

 <xsd:annotation>

<xsd:appinfo>The dataset to which the retrieved

word belongs</xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="SearchResultDef" mixed="false">

 <xsd:sequence>

<xsd:element name="WordSetComponents" type="fmf:OutputWordDef"

maxOccurs="unbounded">

 <xsd:annotation>

<xsd:appinfo>The returned words</xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="Score" type="xsd:double">

 <xsd:annotation>

<xsd:appinfo>How good a match the result set

is</xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="TableName" type="xsd:string">

 <xsd:annotation>

<xsd:appinfo>The table to which the result data

set originates</xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="RowNumber" type="xsd:string">

 <xsd:annotation>

<xsd:appinfo>The row in which the data set can

be found (please note: that this value is not

numeric as the table's primary key may not be

numeric</xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 177

 </xsd:complexType>

 <xsd:complexType name="ResultSetDef" mixed="false">

 <xsd:sequence>

 <xsd:element name="DataSetNumber" type="xsd:integer">

 <xsd:annotation>

<xsd:appinfo>The orginal dataset to which the

search results match</xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="DataSetSearchResults"

 type="fmf:SearchResultDef" minOccurs="0" maxOccurs="unbounded">

 <xsd:annotation>

<xsd:appinfo>All the results corresponding to

the input dataset</xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="PerformSearchResponse" mixed="false">

 <xsd:sequence>

<xsd:element name="ResultSets" type="fmf:ResultSetDef"

maxOccurs="unbounded">

 <xsd:annotation>

<xsd:appinfo>Each set represents a set of

results corresponding to the input

set.</xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>

 178

Appendix F Outward Facing Pre-Filter Functionality Changes

Below is the definition of the interface used to integrate the custom third party pre-

search filter logic with the framework.

 public class SearchFilter

 {

 protected string _coreSearchTableName;

 protected string _searchQuery;

 protected object[] _args;

 public string CoreSearchTableName

 {

 get { return _coreSearchTableName; }

 set { _coreSearchTableName = value; }

 }

 public string SearchQuery

 {

 get { return _searchQuery; }

 set { _searchQuery = value; }

 }

 public object[] Args

 {

 get { return _args; }

 set { _args = value; }

 }

 }

 public interface ISearchFilterInterface

 // Would prefer the parameters to be of type object but there is a problem with

the xsd:anyType type as it is not supported by JAX-RPC.

 // Therefore all arguments are to be parsed as strings

 {

 SearchFilter PreFilterSearch(params string[] Parameters);

 }

 179

The InputSetDef structure (used as part of the search input, see Appendix C) has been

altered to accept search parameters for the pre-search filter. Please note the inclusion

of the PreSearchFilterArguments element.

<xsd:complexType name="InputSetDef" mixed="false">

 <xsd:sequence>

<xsd:element name="WordSetComponents" type="fmf:InputDataSetWordDef"

maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:appinfo>

This is a set of search words that are to be

'anded' together in a search. Eg. Firstname and

Surname

</xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

<xsd:element name="PreSearchFilterArguments" type="xsd:string"

minOccurs="0" maxOccurs="unbounded">

 <xsd:annotation>

<xsd:appinfo>

These are any arguments that need to be passed

to the SearchFilter Method. Should be of type

xsd:anyType instead of xsd:string but

xsd:anyType is not supported by JAX-RPC

</xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

<xsd:attribute name="dummy" type="xsd:string" />

</xsd:complexType>

 180

Appendix G Delegate Access to the Contents of the Rules Table

 public class RulesTable

 {

 int _ActionTypeID;

 string _ActionType;

 string _SearchPhrase;

 string _ReplacePhrase;

 double? _Penalty;

 public int ActionTypeID

 {

 get { return _ActionTypeID;}

 set { _ActionTypeID = value;}

 }

 public string ActionType

 {

 get { return _ActionType;}

 set { _ActionType = value;}

 }

 public string SearchPhrase

 {

 get { return _SearchPhrase;}

 set { _SearchPhrase = value;}

 }

 public string ReplacePhrase

 {

 get { return _ReplacePhrase;}

 set { _ReplacePhrase = value;}

 }

 public double? Penalty

 {

 get { return _Penalty;}

 set { _Penalty = value;}

 }

 }

 181

 public class FMFRules

 {

 private Dictionary<string, Dictionary<string, List<RulesTable>>> _RulesTable;

 private LoadRuleTableDelegate _LoadRulesTableMethod;

 public delegate

Dictionary<string, Dictionary<string, List<RulesTable>>>

LoadRuleTableDelegate();

 public const string RulesTable = "RulesTable";

 private void LoadRulesTable()

 {

 _RulesTable = _LoadRulesTableMethod();

 }

 public FMFRules(LoadRuleTableDelegate LoadRulesTableMethod)

 {

 _LoadRulesTableMethod = LoadRulesTableMethod;

 _RulesTable = new Dictionary<string, Dictionary<string,

List<RulesTable>>>();

 LoadRulesTable();

 }

 public Dictionary<string, List<RulesTable>> getRulesList(string ActionType)

 {

 if (String.IsNullOrEmpty(ActionType))

 throw new Exception("An ActionType must be supplied");

 if (!_RulesTable.ContainsKey(ActionType.ToUpper()))

throw new Exception(String.Format(@"The ActionType ({0}) does not exist

in the database", ActionType));

 return _RulesTable[ActionType.ToUpper()];

 }

 }

}

 182

Appendix H Analysis of Test Data Set

1 Common First Name Prefixes

The following tables describe the top 50 unique first name entries that share the same

prefix (i.e. share the same n number of initial characters). The length of the prefix

increases with each subsequent table.

Table H.1: Prefix length of 1 Table H.2: Prefix length of 2

Entry Count Prefix Entry Count Prefix

422 M 191 MA

282 S 72 TH

208 A 70 MO

193 J 65 JO

188 B 63 AN

185 D 60 SI

184 N 54 DA

177 T 54 JA

170 R 53 BE

168 L 52 RO

161 C 52 SA

127 E 51 RA

127 G 51 NO

120 P 49 LE

118 K 49 SH

106 H 48 AL

78 V 48 DE

77 F 45 CA

58 W 40 CH

58 Z 39 HE

51 I 37 NA

32 O 36 EL

19 Y 36 JE

 183

13 U 34 BR

6 Q 34 HA

6 X 33 SE

 33 KA

 31 PH

 31 PA

 31 MI

 31 LI

 30 KE

 30 CO

 30 BA

 29 FR

 28 VI

 28 DO

 27 BO

 27 LO

 27 NI

 27 LU

 26 DI

 26 ME

 26 JU

 26 ST

 25 WI

 25 TE

 23 GE

 23 RE

 22 LA

 184

Table H.3: Prefix length of 3 Table H.4: Prefix length of 4

Entry Count Prefix Entry Count Prefix

55 MAR 18 FRAN

32 THE 17 MARI

25 MAN 17 CHRI

24 SHA 13 ANDR

22 CAR 13 THEM

20 THA 11 BHEK

20 MAT 11 PHIL

19 SHE 10 JOSE

19 NOM 10 MAKH

18 FRA 10 KRIS

18 JOS 10 BONG

18 WIL 10 MAND

17 CHR 9 ANNE

17 BER 9 WILL

17 PHI 9 JEAN

16 ANN 9 BERN

16 JAN 9 LIND

16 BON 9 SHER

15 DAR 8 JULI

15 AND 8 THEO

15 STE 8 MICH

14 DAN 8 MART

14 NIC 8 CHAR

14 JOH 7 MOHA

14 HEN 7 THAN

13 JAC 7 TERR

13 GER 7 MARC

13 MAK 7 NKOS

13 SAN 7 THAB

13 CHA 7 DUMI

13 TER 7 DANI

12 LOR 7 JOHN

12 MON 7 JOHA

 185

11 DEL 7 CARO

11 LIN 7 ANTO

11 PAT 6 FRED

11 BHE 6 ANGE

11 ANT 6 PHUM

11 CLA 6 MATH

11 MIC 6 PATR

11 THO 6 BERT

10 HAR 6 NICO

10 ROS 6 LAUR

10 MAL 6 THUL

10 KRI 6 DAVI

10 BEN 6 HEND

10 HER 6 MATT

10 ELI 6 SIPH

10 SAL 5 CLAR

9 ALE 5 ALBE

 186

Table H.5: Prefix length of 5 Table H.6: Prefix length of 6

Entry Count Prefix Entry Count Prefix

17 CHRIS 16 CHRIST

13 THEMB 7 JOSEPH

10 ANDRE 6 DUMISA

10 FRANC 6 PATRIC

8 KRIST 5 JOHANN

7 JOSEP 5 ANNELI

7 JOHAN 5 THEMBA

7 CAROL 5 FRANCI

7 DUMIS 5 NICHOL

6 NKOSI 5 HENDRI

6 PATRI 5 THEMBI

6 ANTON 5 ALBERT

6 THAND 5 DAVID

6 DAVID 4 ROBERT

6 CHARL 4 THANDI

6 ANGEL 4 CONSTA

6 MARIA 4 STEFAN

6 HENDR 4 ERNEST

5 BONGI 4 MICHAE

5 NICOL 4 JACQUE

5 FRANK 4 KRISTI

5 GEORG 4 RICHAR

5 JACQU 4 ANTONI

5 MAKHO 4 THEODO

5 CECIL 3 GEORGE

5 WILLI 3 THERES

5 NICHO 3 PHILLI

5 ANNEL 3 MANDIS

5 ALBER 3 VICTOR

4 ROBER 3 MOHAME

4 MANDI 3 MARIA

4 PHILL 3 SIPHIW

4 THULA 3 JONATH

 187

4 BERNA 3 ZACHAR

4 MANDL 3 SIDNEY

4 STEFA 3 SIBUSI

4 DANIE 3 TRACEY

4 MICHA 3 STEPHA

4 ERNES 3 REGINA

4 MATTH 3 BONGIN

4 STEPH 3 MARGAR

4 BHEKI 3 NKOSIN

4 THABA 3 DANIEL

4 BRAND 3 JEROME

4 THOKO 3 ANDREW

4 CONST 3 COLLIN

4 LOREN 3 HERMAN

4 THEOD 3 SIBONG

4 JUSTI 3 ANGELI

4 RICHA 3 MANDLA

 188

Table H.7: Prefix length of 7 Table H.8: Prefix length of 8

Entry Count Prefix Entry Count Prefix

7 CHRISTO 4 DUMISANI

5 DUMISAN 3 THEMBINK

5 CHRISTI 3 BONGINKO

4 CONSTAN 3 MICHAEL

4 MICHAEL 3 SIBUSISO

4 FRANCIS 3 CHRISTOP

4 THEODOR 3 RICHARD

4 RICHARD 2 LAWRENCE

3 JOHANNE 2 JOHANNES

3 WILLIAM 2 HERSCHEL

3 MOHAMED 2 THAMSANQ

3 JOSEPH 2 EVANGELI

3 BONGINK 2 JONATHAN

3 NKOSINA 2 THEODORA

3 CORNELI 2 CHARMAIN

3 KRISTIN 2 MOHAMED

3 SIPHIWE 2 MBUKENI

3 STEPHAN 2 BHEKOKWA

3 NICHOLA 2 COENRAAD

3 SIBONGI 2 CHRISTOF

3 SIBUSIS 2 CONSTANT

3 THULANI 2 MBONGENI

3 PATRICK 2 CHRISTIA

3 THEMBA 2 CHRISTIN

3 JABULAN 2 PHUMELEL

3 THEMBIN 2 LEBOHANG

3 PHILLIP 2 SIBONGIL

2 MATTHEW 2 BHEKITHE

2 THAMSAN 2 NKOSINAT

2 COENRAA 2 SIKHUMBU

2 JONATHA 2 WILLIAM

2 ROSEMAR 2 STHEMBIS

2 VANESSA 2 SIMPHIWE

 189

2 EVANGEL 2 MKHANYIS

2 WELCOME 2 POOBALAN

2 ABRAHAM 2 ELIZABET

2 KENNETH 2 BERTRAND

2 GILBERT 2 PATRICK

2 ANTHONY 2 JABULANI

2 SINDISW 2 SAMANTHA

2 MAXWELL 2 SIPHIWE

2 LEBOHAN 2 FRANCISC

2 MLUNGIS 2 NICHOLAS

2 BHEKOKW 2 THULANI

2 CHRISTA 2 ZACHARIA

2 CAROLYN 2 MARGARET

2 MAKHOSA 2 JOSEPHUS

2 TIMOTHY 2 MARIMUTH

2 FRANCES 2 ANNA-MAR

2 ANDREW 2 ARUNAJAL

In addition, the variation between the first name prefixes and their corresponding

names was determined. This was achieved through the calculation of the hamming

distance between the two. Figure H.1 below displays nine of the most common 5

character prefixes and the corresponding first names to each of these prefixes.

 190

Figure H.1: The hamming distance between nine on the most common 5 character first name prefixes and their corresponding names

Hamming Distance between 5 character First Name Prefix and associated Names

0

0.5

1

1.5

2

2.5

3

3.5

A
N

D
R

E

A
N

D
R

E
A

A
N

D
R

E
A

S

A
N

D
R

E
N

A

A
N

D
R

E
S

A
N

D
R

E
W

A
N

D
R

E
Y

A
N

G
E

L

A
N

G
E

L
A

A
N

G
E

L
IC

A

A
N

G
E

L
IN

A

A
N

G
E

L
O

A
N

T
O

N

A
N

T
O

N
IA

A
N

T
O

N
IE

A
N

T
O

N
IO

A
N

T
O

N
Y

C
A

R
O

L

C
A

R
O

L
E

C
A

R
O

L
IN

A

C
A

R
O

L
IN

E

C
A

R
O

L
Y

N

C
H

A
R

L

C
H

A
R

L
E

N
E

C
H

A
R

L
E

S

C
H

A
R

L
IE

C
H

A
R

L
IZ

E

C
H

R
IS

C
H

R
IS

T
A

C
H

R
IS

T
E

R

C
H

R
IS

T
IE

C
H

R
IS

T
O

C
H

R
IS

T
O

F

C
H

R
IS

T
Y

F
R

A
N

C
E

S

F
R

A
N

C
IS

F
R

A
N

C
K

I

F
R

A
N

C
O

F
R

A
N

C
O

IS

J
O

H
A

N

J
O

H
A

N
A

J
O

H
A

N
N

J
O

H
A

N
N

A

J
O

H
A

N
N

E
S

K
R

IS
T

A

K
R

IS
T

E
N

K
R

IS
T

I

K
R

IS
T

IN

K
R

IS
T

IN
A

K
R

IS
T

IN
E

K
R

IS
T

Y

ANDRE ANGEL ANTON CAROL CHARL CHRIS FRANC JOHAN KRIST

3

2

1

0

 191

2 Common Surname Prefixes

The following tables describe the top 50 unique surname entries that share the same

prefix (i.e. share the same n number of initial characters). The length of the prefix

increases with each subsequent table.

Table H.9: Prefix length of 1 Table H.10: Prefix length of 2

Entry Count Prefix Entry Count Prefix

904 M 357 MA

532 S 189 MO

435 B 118 HA

382 C 111 CO

338 H 109 RA

301 D 92 BA

284 R 91 ST

281 G 89 CH

261 L 88 MC

247 K 85 VA

243 P 83 CA

230 N 80 BR

206 W 79 BO

177 T 79 HO

165 F 74 SH

159 V 74 DE

153 A 73 BE

95 J 73 LA

90 E 71 RO

68 O 70 HE

29 Z 69 GO

23 Y 68 SA

19 I 65 SE

12 U 65 PA

12 Q 63 LE

 192

9 X 60 DA

 59 GR

 57 GA

 55 ME

 53 WI

 53 SC

 53 WA

 51 LO

 48 SI

 48 DO

 48 KA

 47 DU

 47 MU

 46 BU

 44 KE

 41 CR

 41 JA

 40 PE

 39 DI

 38 WE

 38 RE

 38 TH

 37 LU

 37 KO

 36 FA

 193

Table H.11: Prefix length of 3 Table H.12: Prefix length of 4

Entry Count Prefix Entry Count Prefix

63 VAN 58 VAN

49 SCH 15 MATH

44 MAT 14 WHIT

42 MAR 14 MASH

39 RAM 13 GOLD

37 CHA 12 RAMA

37 DE 12 WOOD

37 MAS 11 SCHO

34 CAR 11 GREE

31 HAR 10 ABRA

29 MOR 10 MATS

28 MCC 10 VON

26 STA 10 MOLO

26 MAK 10 WILL

26 MAL 10 LANG

25 MAN 10 MADI

25 BAR 9 GOOD

24 HER 9 MOKG

23 MOK 9 DAVI

23 MOT 9 CONN

22 BRA 8 MAGA

22 MAD 8 MCCA

22 SHA 8 MABU

22 WIL 8 MAKH

22 SHE 8 HOLL

21 COR 8 FRAN

20 LAN 8 MOTS

20 CHI 7 MCCO

19 CON 7 SCHA

19 BER 7 CHAN

19 CRO 7 MONT

19 STE 7 MILL

19 MOL 7 MCCL

 194

19 GRE 7 SCHU

19 HAN 7 CHRI

19 STO 7 GILL

19 BUR 7 CHAM

18 MAC 7 DICK

18 HOL 7 LAND

18 MAG 7 HERR

18 MAB 7 HEND

18 BEN 7 RICH

17 GAR 7 JACO

17 SAN 7 MAHL

17 MAH 6 VILL

16 BLA 6 RAMO

16 MOS 6 MASE

16 PAR 6 BARR

16 LIN 6 SHER

16 STR 6 MAYE

 195

Table H.13: Prefix length of 5 Table H.14: Prefix length of 6

Entry Count Prefix Entry Count Prefix

31 VAN D 26 VAN DE

8 GREEN 7 CHRIST

7 CHRIS 5 JACOBS

7 MASHI 5 HENDRI

7 JACOB 5 MARTIN

6 HENDR 5 ABRAHA

6 MATHE 4 SCHWAR

6 BLACK 4 MANDEL

5 MARTI 4 NICHOL

5 MAKHA 4 WILLIA

5 MAHLA 3 HUTCHI

5 MOKGA 3 ALBERT

5 ABRAH 3 PETERS

5 WILLI 3 CONNEL

5 DAVID 3 EDMOND

5 VALEN 3 GOLDST

4 MANDE 3 RICHAR

4 VILLA 3 JANUAR

4 PICKE 3 VALENT

4 SCHLE 3 LAWSON

4 LANGE 3 PARSON

4 CONNO 3 CUMMIN

4 MOTLA 3 MADIKI

4 JOHNS 3 VAN WY

4 NICHO 3 GRIFFI

4 ABRAM 3 DLAMIN

4 THORN 3 DANIEL

4 WILKE 3 PIETER

4 VAN W 3 MADLAL

4 JANSE 3 MOKGAT

4 LEVIN 3 JANSEN

4 MOKGO 3 WASSER

4 FRANK 3 SCHOON

 196

4 SCHWA 2 MORGAN

4 GOLDS 2 BLACKM

4 HOLLI 2 JOSEPH

4 WHITE 2 ROBERT

4 CONNE 2 WATERS

3 STEIN 2 BUTLER

3 ROBER 2 DENNIS

3 WHITT 2 GOUNDE

3 WOODS 2 SPENCE

3 BRICK 2 FRIEDM

3 MATSE 2 MUELLE

3 RICHA 2 HIRSCH

3 VAN B 2 SCHREU

3 SCHOL 2 MASHEG

3 MODIS 2 MOHLAL

3 HARRI 2 MCCULL

3 ALBER 2 MCCLEL

 197

Table H.15: Prefix length of 7 Table H.16: Prefix length of 8

Entry Count Prefix Entry Count Prefix

19 VAN DER 19 VAN DER

5 ABRAHAM 4 VAN DEN

4 WILLIAM 3 WILLIAMS

4 CHRISTI 3 PIETERSE

4 VAN DEN 3 CHRISTIA

3 MADLALA 3 SCHWARTZ

3 HENDRIC 3 HENDRICK

3 PIETERS 3 ABRAHAMS

3 DLAMINI 2 NTOMBELA

3 CONNELL 2 PADAYACH

3 RICHARD 2 HUTCHINS

3 SCHWART 2 GRIFFITH

2 BURNETT 2 TSHABALA

2 MUELLER 2 RICHARDS

2 MAYENDE 2 JANSEN V

2 HAVENGA 2 GELDENHU

2 HANKINS 2 RODRIGUE

2 LAMBERT 2 STEPHENS

2 SCHREUD 2 FERNANDE

2 VAN DE 2 ESTERHUY

2 MCCLELL 2 KNOTT-CR

2 HOFFMAN 2 JANUARY-

2 METCALF 2 DA SILVA

2 VORSTER 2 VAN WYNG

2 SCHULTZ 2 VALENTIN

2 GILBERT 2 MADLALA-

2 CUMMING 2 PALMBOOM

2 MOTAUNG 2 DRUMMOND

2 HOLLAND 2 SCHREUDE

2 PARSONS 2 JOHNSTON

2 SANGWEN 2 CILLIERS

2 KNOTT-C 2 SANGWENI

2 MALULEK 2 NKABINDE

 198

2 MCCLAIN 2 FREDERIC

2 JANSEN 2 FRIEDMAN

2 SUBRAMO 2 SUBRAMON

2 MOKGATL 2 MCCLELLA

2 STEVENS

2 NTOMBEL

2 WASSERM

2 PRESTON

2 PADAYAC

2 HUTCHIN

2 FRIEDMA

2 COCHRAN

2 STEPHEN

2 FREDERI

2 GONZALE

2 EDMONDS

2 HERRING

In addition, the variation between the surname prefixes and their corresponding

names was determined. This was achieved through the calculation of the hamming

distance between the two. Figure H.2 below displays six of the most common 5

character prefixes and the corresponding surnames to each of these prefixes.

 199

Figure H.2: The hamming distance between nine on the most common 5 character surname prefixes and their corresponding names

Hamming Distance between 5 character Surname Prefix and associated Names

0

2

4

6

8

10

12

14

B
L
A

C
K

B
L
A

C
K

B
E

A
R

D

B
L
A

C
K

B
U

R
N

B
L
A

C
K

M
A

N

B
L
A

C
K

M
O

N

B
L
A

C
K

W
E

L
L

C
H

R
IS

T
E

N
S

E
N

C
H

R
IS

T
IA

N

C
H

R
IS

T
IA

N
S

C
H

R
IS

T
IA

N
S

E
N

C
H

R
IS

T
IE

C
H

R
IS

T
O

D
O

U
L
O

U

C
H

R
IS

T
O

P
H

E
R

G
R

E
E

N

G
R

E
E

N
B

E
R

G

G
R

E
E

N
E

G
R

E
E

N
H

IL
L

G
R

E
E

N
S

M
IT

H

G
R

E
E

N
S

T
E

IN

G
R

E
E

N
W

A
L
L

G
R

E
E

N
W

O
O

D

J
A

C
O

B

J
A

C
O

B
S

J
A

C
O

B
S

E
N

J
A

C
O

B
S

O
H

N

J
A

C
O

B
S

O
N

J
A

C
O

B
S

Z

J
A

C
O

B
U

S

M
A

S
H

IA
N

E

M
A

S
H

IA
T

S
H

ID
I

M
A

S
H

IG
O

M
A

S
H

IL
E

M
A

S
H

IL
E

-N
K

O
S

I

M
A

S
H

IN
IN

I

M
A

S
H

IS
H

I

V
A

N
 D

E
 M

E
R

W
E

V
A

N
 D

E
 R

U
IT

V
A

N
 D

E
N

 A
A

R
D

W
E

G

V
A

N
 D

E
N

 B
E

R
G

V
A

N
 D

E
N

 B
E

R
G

H

V
A

N
 D

E
N

 H
E

E
V

E
R

V
A

N
 D

E
R

 B
IJ

L

V
A

N
 D

E
R

 B
U

R
G

H

V
A

N
 D

E
R

 H
O

V
E

N

V
A

N
 D

E
R

 K
N

A
A

P

V
A

N
 D

E
R

 L
IN

D
E

V
A

N
 D

E
R

 L
IN

D
E

N

V
A

N
 D

E
R

 M
E

R
W

E

V
A

N
 D

E
R

 M
E

S
C

H
T

V
A

N
 D

E
R

 M
E

U
L
E

N

V
A

N
 D

E
R

 N
E

S
T

V
A

N
 D

E
R

 R
O

S
S

V
A

N
 D

E
R

 S
A

N
D

E

V
A

N
 D

E
R

 S
P

O
E

L

V
A

N
 D

E
R

 S
P

U
Y

V
A

N
 D

E
R

 W
A

L
T

V
A

N
 D

E
R

 W
A

T
H

V
A

N
 D

E
R

 W
A

T
T

V
A

N
 D

E
R

 W
E

S
T

H
U

IZ
E

N

V
A

N
 D

E
R

 W
E

S
T

H
U

Y
Z

E
N

V
A

N
 D

E
V

E
N

T
E

R

V
A

N
 D

O
R

P

V
A

N
 D

O
R

S
T

E
N

V
A

N
 D

R
U

T
E

N

V
A

N
 D

U
U

R
E

N

V
A

N
 D

Y
K

BLACK CHRIS GREEN JACOB MASHI VAN D

13

10

9

8

7

6

5

4

3

2

1

0

 200

3 Phonetic Properties of Test Data Set

In order to develop a better high level understanding of the phonetic properties of the

test data set, the Soundex code for each of the entries was determined. It must be

noted that this is a crude test as Soundex is one of the simpler phonetic algorithms.

As it is not viable to display all the results (owing to size of the data set), several of

the most commonly occurring Soundex codes, within the test data set, were selected.

These codes, their corresponding entries and the number of occurrences of these

entries are displayed in Figure H.3 and Figure H.4.

 201

Figure H.3: Three of the most commonly occurring Soundex codes, the corresponding first names and the number of occurrences of each first name

Common Soundex Codes of First Names and the number of occurences of each First Name

0

20

40

60

80

100

120

140

C
A

R
S

T
E

N
S

C
H

R
IS

T
A

C
H

R
IS

T
A

K
IS

C
H

R
IS

T
E

R
C

H
R

IS
T

IA
A

N
C

H
R

IS
T

IA
N

C
H

R
IS

T
IE

C
H

R
IS

T
IN

A
C

H
R

IS
T

IN
E

C
H

R
IS

T
O

C
H

R
IS

T
O

D
O

U
L

A
K

IS
C

H
R

IS
T

O
F

C
H

R
IS

T
O

F
F

E
L

C
H

R
IS

T
O

P
H

C
H

R
IS

T
O

P
H

E
R

C
H

R
IS

T
O

P
H

E
R

C
H

R
IS

T
Y

C
R

IS
T

IN
A

C
R

Y
S

T
A

L
F

A
R

A
N

A
A

Z
F

R
A

N
C

E
S

F
R

A
N

C
E

S
C

O
F

R
A

N
C

IN
E

-A
N

N
E

F
R

A
N

C
IS

F
R

A
N

C
IS

 K
W

A
M

E
F

R
A

N
C

IS
C

O
F

R
A

N
C

IS
C

U
S

F
R

A
N

C
K

I
F

R
A

N
C

O
F

R
A

N
C

O
IS

F
R

A
N

K
F

R
A

N
K

 R
E

G
IN

A
L

D
F

R
A

N
K

IE
F

R
A

N
K

L
IN

F
R

A
N

K
L

Y
N

F
R

A
N

S
F

R
A

N
Z

J
U

N
E

J
A

N
J
 M

J
A

IM
E

J
A

M
IE

J
A

N
A

J
A

N
E

J
A

N
IE

J
A

N
N

IE
J
E

A
N

J
E

A
N

IE
J
E

A
N

N
E

J
E

A
N

N
IE

J
E

N
A

J
E

N
E

J
E

N
N

A
J
E

N
N

IE
J
E

N
N

Y
J
IM

J
IM

I
J
IM

M
IE

J
IM

M
Y

J
O

A
N

J
O

A
N

N
J
O

-A
N

N
J
O

A
N

N
A

J
O

A
N

N
E

J
O

H
A

N
J
O

H
A

N
A

J
O

H
A

N
N

J
O

H
A

N
N

A
J
O

H
N

J
O

H
N

N
IE

J
O

H
N

N
Y

J
O

N
J
O

N
N

Y
J
U

A
N

J
U

A
N

A
J
U

H
A

N
N

C623 F652 J500

 202

Figure H.4: Two of the most commonly occurring Soundex codes, the corresponding surnames and the number of occurrences of each first name

Common Soundex Codes of Surnames and the number of occurences of each Surname

0

5

10

15

20

25

M
A

C
K

E
N

Z
IE

M
A

G
A

N
G

M
A

G
E

N
N

IS

M
A

K
U

N
IK

E

M
A

S
A

N
G

O

M
A

S
H

A
N

G
O

A
N

E

M
A

S
IN

G
A

M
A

S
W

A
N

G
A

N
Y

I

M
A

Z
A

M
IS

A

M
A

Z
A

N
S

K
Y

M
A

Z
IM

H
A

K
A

M
C

G
IN

N
IS

M
C

IN
E

K
A

M
C

IN
G

A
N

A

M
C

K
E

N
Z

IE

M
C

K
N

IG
H

T

M
K

H
O

N
Z

A

M
K

H
W

A
N

A
Z

I

M
K

W
A

N
A

Z
I

M
N

G
O

M
E

Z
U

L
U

M
O

IK
A

N
G

O
A

M
O

S
E

N
E

K
E

M
O

S
U

N
K

U
T

U

M
S

E
N

G
A

N
A

-N
D

L
E

L
A

V
A

N
 D

E
 R

U
IT

V
A

N
 D

E
R

 B
IJ

L

V
A

N
 D

E
R

 B
U

R
G

H

V
A

N
 D

E
R

 H
O

V
E

N

V
A

N
 D

E
R

 K
N

A
A

P

V
A

N
 D

E
R

 L
IN

D
E

V
A

N
 D

E
R

 L
IN

D
E

N

V
A

N
 D

E
R

 M
E

R
W

E

V
A

N
 D

E
R

 M
E

S
C

H
T

V
A

N
 D

E
R

 M
E

U
L
E

N

V
A

N
 D

E
R

 N
E

S
T

V
A

N
 D

E
R

 R
O

S
S

V
A

N
 D

E
R

 S
A

N
D

E

V
A

N
 D

E
R

 S
P

O
E

L

V
A

N
 D

E
R

 S
P

U
Y

V
A

N
 D

E
R

 W
A

L
T

V
A

N
 D

E
R

 W
A

T
H

V
A

N
 D

E
R

 W
A

T
T

V
A

N
 D

E
R

 W
E

S
T

H
U

IZ
E

N

V
A

N
 D

E
R

 W
E

S
T

H
U

Y
Z

E
N

V
A

N
 D

O
R

P

V
A

N
 D

O
R

S
T

E
N

V
A

N
 D

R
U

T
E

N

V
A

N
 D

U
U

R
E

N

V
A

N
'T

 R
IE

T

V
E

N
T

E
R

V
E

N
T

U
R

A

V
O

N
 W

ID
D

E
R

N

M252 V536

 203

