The effect of creatine on the developing rat foetus

DECLARATION

I, Frans Hendrik Badenhorst, declare that this dissertation is my own work. It is being submitted for the degree of Master of Science in Medicine in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at this or any other University

FH Badenhorst

_____ day of _____ , 2005

To my father Frans, mother Annalie and brothers Mias, Francois, Darius and Andre, whose support and encouragement lifted me when times were hard.

And to Antonei, whose love carried me when I was tired and inspired me to be the best I can be.

<u>ABSTRACT</u>

Creatine is one of the most frequently or generally used ergogenic substances. It is used by professional and amateur athletes and the "man on the street". Creatine is involved in energy production and protein synthesis in muscle. Although studies have been carried out on the effect of creatine on adults, no study has yet determined whether creatine would have an influence on the developing rat foetus if taken by a female during pregnancy.

The aim of this study was thus to determine whether creatine had an effect on the developing foetus.

Dams were divided into two groups, which were injected between days 7-13 and on days 9 and 11 only of intra-uterine development respectively. Each group was subdivided into a control and two experimental groups. Experimental group one received a low dose of creatine (53.5mg/250g body weight); the other experimental group received a high dose of creatine (107mg/250g body weight). The control group received an equal volume (1ml) of the vehicle (saline) in which the creatine was constituted. Dams were sacrificed on day 20 of development. The foetuses were removed and their weight and length taken. Foetuses were examined for abnormalities. Two foetuses from each litter underwent skeletal staining. Tissue was excised from the remaining foetuses and processed for histology for histological investigation.

Creatine positively affected the growth of the foetuses of dams injected between days 7-13, while foetuses of dams injected only on days 9 and 11 in the B-group showed reduced growth. Creatine also had a slightly negative effect on the histological structure of the liver, but enhanced skeletal muscle growth, endocrine cell formation (pancreas) and skeletal formation.

From the results obtained it is hypothesized that creatine and insulin together may play a positive role from implantation to birth, while creatine given at certain stages of organogenesis delayed development of the foetus.

ACKNOWLEDGEMENTS

I would like to thank the people who helped me in this undertaking. Without their help, I would still be in the wilderness of science.

Professor B. Kramer, my supervisor, who supported me, encouraged me, and kept me on my toes. For long hours of reading, scratching in red pen and interesting conversations. My sincerest thanks to a formidable lady that was not just my mentor, but also became my friend.

The histology technical staff (Mrs. Mortimer, Rogers and York), who endured the long hours I spent in the histology laboratory, for their kind assistance and interesting talks when the going got tough.

Professor J.C. Allan, who made the intricacies of statistics so simple that even I could comprehend it.

The University of the Witwatersrand, and in particular the School of Anatomical Sciences, for the facilities provided and the opportunity to study for a higher degree at such a prestigious institution.

TABLE OF CONTENTS

	Page
DECLARATION	ii
DEDICATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	х
LIST OF TABLES	xiii
1.0 INTRODUCTION	1
2.0 SYNTHESIS AND METABOLIC FUNCTION OF CREATINE	4
2.1 Endogenous synthesis	4
2.2 Main production sites and transport of creatine in the body	5
2.3 Placental crossing of creatine	7
2.4 Metabolic functions	8
3.0 EFFECTS OF CREATINE SUPPLEMENTATION ON BODY MASS	
AND COMPOSITION	9
4.0 REPORTED SIDE EFFECTS	10
5.0 MEDICAL USES OF CREATINE	11
5.1 Heart disease	11
5.2 Tumour growth inhibition	12
5.3 Creatine synthesis deficiencies	13
6.0 AIM OF STUDY	13

vi

7.0 MATERIALS AND METHODS	14
7.1 Rationale for the use of Sprague-Dawley rats	14
7.2 Rat breeding and maintenance	15
7.3 Determination of pregnancy	15
7.4 Experimental groups	16
7.5 Dosage of creatine	17
7.5.1 Rationale for the dosages used	18
7.5.2 Route of administration	19
7.5.3 Organogenesis on selected days of rat embryo/foetus development	
with particular reference to specific organs and structures	20
7.6 Sacrificing of animals	20
7.7 Collection and processing of foetuses	20
7.7.1 Preparation of foetuses for light microscopy	21
7.7.2 Skeletal staining using Alizarin red S and Alcian Blue	23
7.7.3 Immunocytochemistry (ICC)	23
7.7.3.1 Immunocytochemical controls	26
7.8 Statistical methodology	26
7.9 Photography	27
8.0 RESULTS	28
8.1 General	28
8.2 Surviving foetuses vs. absorbed foetuses	28
8.3 Subcutaneous haemorrhaging and underdevelopment of	
foetuses	29
8.4 Macroscopic abnormalities in groups A and B	30
8.4.1 Control group A	30
8.4.2 Experimental group A1	31
8.4.3 Experimental group A2	31
8.4.4 Control group B	32
8.4.5 Experimental group B1	32
8.4.6 Experimental group B2	33

8.5 Statistical analysis	33
8.5.1 Weight and length averages	33
8.5.2 Length statistics	34
8.5.3 Weight statistics	35
8.6 Histological study of particular organs	36
8.6.1 Kidney	36
8.6.2 Skeletal muscle	37
8.6.3 Pancreas	38
8.6.4 Liver	39
8.7 Skeletal development	40
8.7.1 Desmocranium of the rat foetus	40
8.7.2 Cartilage development in the nose	41
8.7.3 Presence and/or absence of cartilage	42
8.7.4 Vertebrae	43
8.7.5 Rudimentary ribs	44
9.0 DISCUSSION	62
9.1 Statistical analysis of length and weight of foetuses from the	
different control and experimental groups	62
9.1.1 Length	62
9.1.2 Weight	65
9.2 Surviving vs. absorbed embryos	69
9.3 Macroscopic abnormalities	72
9.3.1 Subcutaneous haemorrhaging	72
9.3.2 Underdeveloped foetuses	76
9.4 The effect of creatine on histological structures	77
9.4.1 Kidneys	77
9.4.2 Skeletal muscle	78
9.4.3 Pancreas	79
9.4.4 Liver	81

9.5 Skeletal development	82
10.0 CONCLUSION	87
11.0 REFERENCES	89
APPENDIX A	100
APPENDIX B	105
APPENDIX C	111
APPENDIX D	112
APPENDIX E	116

LIST OF FIGURES

Figure	Page
1. Biosynthesis of creatine	5
2. Number of surviving foetuses vs. absorbed foetuses in control and	
experimental groups	29
3. Control foetus (group A) displaying no subcutaneous haemorrhaging.	
Discolouration in abdominal region is due to normal development of	
the liver. Experimental foetus (group A2) displays haematoma covering	
most of the body	45
4 Subcutaneous haemorrhaging in percentage of foetuses from control	
and experimental groups	30
5. Excessive haemorrhaging in the cranial region of embryo from experi-	
mental group B1	45
6. Crystallike structures spread over dorsum and abdomen of foetus	
in control group A	45
7. Subcutaneous haemorrhaging in temporal region of foetus from	
experimental group A1	46
8. Comparison of subcutaneous haemorrhaging between foetuses from	
control group A and experimental group A2	46
9. Abnormal subcutaneous haemorrhaging in cranial region of foetus	
from experimental group A2	46
10. Crystal-like structures inside abdomen of foetus in A2 exp. group	46
11. Comparison of foetuses from control group B vs. experimental	
group B1	46
12. Abdominal and temporal subcutaneous haemorrhaging in foetus	
from experimental group B1	46
13. Underdeveloped foetus from experimental group B1 compared to	
foetus from control group at the same age	47
14. Absence of temporal artery in foetus from experimental group B2	47

15. Average weight of foetuses in experimental groups	34
16. Average length of foetuses in experimental groups	34
17a. Representative section of cortex and medulla of kidney from a	
foetus in control group A	47
17b. Representative section of kidney from foetus in exp. group A2	48
18. Representative section of skeletal muscle (control group A)	48
19. Representative section of skeletal muscle (control group B)	48
20. Representative section of skeletal muscle (exp. group A1)	49
21. Representative section of skeletal muscle (exp. group A2)	49
22. Representative section of skeletal muscle (exp. group B1)	50
23. Representative section of skeletal muscle (exp. group B2)	50
24. Representative section of pancreas from foetus in control group	
displaying absorption control	51
25. Representative section of pancreas (negative control) from foetus	
in control group A	51
26. Section of pancreas from adult female rat that was used as	
positive control	52
27. Section of pancreas from foetus in control group A showing immuno-	
localization of ? -cells	52
28. Immunolocalization of ? cells from section of pancreas (foetus) in	
control group A	52
29. ? cell localization in pancreas of foetus from experimental group A2	53
30. ? cell localization in pancreas of foetus from experimental group A2	53
31. ? -cell localization in pancreas of foetus from experimental group A2	
(lower magnification)	53
32. ? cell localization in pancreas of foetus from experimental group B1	54
33. ? cell localization in pancreas of foetus from experimental group B1	54
34. ? cell localization in pancreas of foetus from experimental group B2	54
35. ? cell localization in pancreas of foetus from experimental group B2	54
36. Representative section of liver (control group A)	55
37. Representative section of liver (experimental group A1)	55

38.	Representative section of liver (experimental group A2)	55
39.	Representative section of liver (experimental group B1)	56
40.	Representative section of liver (experimental group B2)	56
41.	Foetus from control group that displays typical less well developed	
	desmocranium	57
42.	Foetus from experimental group displaying well developed desmo-	
	cranium	57
43.	Foetus displaying immature bone development from experimental	
	group B1	57
44.	Foetus from A2 experimental group displaying prominent presence	
	of cartilage in the ribs	58
45.	Foetus from control group A displaying no cartilage	58
46.	Dorsal view of vertebral column of foetus in experimental group A2:	
	(vertebral pedicles almost fused)	59
47.	Dorsal view of vertebral column of foetus in control group A:	
	(vertebral pedicles widely separated)	59
48.	Osteogenic cell clusters developing at T14 level	60
49.	Foetus from A1 experimental group A1 developing rudimentary rib	
	(right) and extra rib (left)	60
50.	Foetus from A1 experimental group displaying derangement of ribs	61

The effect of creatine on the developing rat foetus

LIST OF TABLES

Table	Page
1. Groups in each column that were not statistically significant or were	
statistically significantly different pertaining to length	35
2. Groups in each column that were not statistically significant or were	
statistically significantly different pertaining to weight	36
3. Summary of bone and cartilage development in control and	
experimental foetuses	42