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Abstract—In this letter, the performance of digital communica-
tions systems overα-κ-µ fading channels is analyzed in terms of
outage probability, average channel capacity, and average error
rate (AER) for a variety of modulation formats. To this end,
novel and exact expressions for the aforementioned performance
metrics are derived, based on which an asymptotic analysis is
carried out. The derived expressions are valid for arbitrary
values of the fading parameters, namelyα, κ, and µ, and their
accuracies are validated through Monte Carlo simulations.

Index Terms—α-κ-µ fading model, average channel capacity,
bit error rate, outage probability.

I. I NTRODUCTION

M OBILE communications are characterized by some
phenomena including shadowing and multipath fading.

Particularly, shadowing is relatively slow and gives rise to
long-term signal variations, while multipath fading is due
to constructive and destructive interferences as a result of
delayed, scattered, diffracted and reflected signal components,
and encompasses small-scale fading, i.e., Rayleigh, Weibull,
Rician, and Nakagami-m [1]. In recent years, generalized
fading models such asα-µ, κ-µ, η-µ, α-η-µ, α-κ-µ, andα-η-
κ-µ have attracted a lot of interest due to their versatility and
wide applicability in practical scenarios [2]–[6].

Owing to this fact, several research studies have been
devoted to the performance analysis of wireless communica-
tion systems over generalized fading models [7]–[15]. In [7],
novel closed-form expressions for the average channel capacity
and bit-error rate (BER) were obtained. In [8], the outage
performance of maximal-ratio combining (MRC) receivers
in η-µ fading channels was studied. Novel expressions for
the average channel capacity overη-µ and κ-µ fading were
derived in [9], while the moment generating function (MGF)
and average error rate (AER) were obtained in [10]. Similarly,
studies were presented for theα-µ fading model in [11]. The
work in [12] presented a comprehensive performance analysis
for digital communication systems over generalizedα-η-µ
fading distribution. In [13],α-η-µ andα-κ-µ fading models
were investigated in which more emphasis was given to the
former model, with theα-κ-µ model being briefly examined.
In that work, neither the exact outage probability (OP) was
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investigated nor an asymptotic analysis for the AER was
carried out. Moreover, the derived metrics obtained were only
valid for integer values of the fading parameterα. In [14], an
analysis of the channel capacity of wireless communications
that operate in the complex fading model, i.e.,α-η-κ-µ fading
model, was investigated. Although [14] provides a thorough
analysis of the channel capacity of the generalizedα-η-κ-µ
fading channels, other metrics such as OP and AER were
not studied. In contrast to [13] and [14], the work of [15]
is twofold: (i) to show that theα-η-κ-µ fading model is the
best fit for signal propagation in millimiter wave (mmWave)
communications; (ii) to derive some higher-order statistics.

As aforementioned, theα-κ-µ fading models have recently
gained in popularity since they can model a variety of realistic
channel models. In light of this, it is important to provide in-
depth studies under such fading conditions. Motivated by the
above-cited limitations, a comprehensive and general perfor-
mance analysis of digital communication systems overα-κ-µ
fading channels is provided and we believe it will constitute
an advancement and will be useful to future readers. Exact
analytical expressions for the OP, average channel capacity,
and AER of coherent modulation schemes, are obtained and
are valid for arbitrary fading parameters values in contrast
to [13]. Our derived expressions include single infinite series
which converge rapidly and steadily after a few terms to
ensure acceptable truncation that yields accurate results. To
this end, simple closed-form bounds for the truncation error
of the derived series representations are obtained. In addition,
an asymptotic analysis is carried out and new insights related
to the system diversity/array gains are highlighted. Finally,
representative numerical examples are provided and verified
through Monte Carlo simulations. To the best of the authors’
knowledge, the results achieved in this work have not been
reported in the literature yet.

II. T HE α-κ-µ FADING MODEL

The α-κ-µ is a generalized fading model which includes
some well-known fading distributions, such as Rayleigh,
Nakagami-m, Weibull, one-sided Gaussian, Rician andκ-µ,
as special cases. By denotingγ as the instantaneous signal-
to-noise ratio (SNR), and applying probability theory and [16,
Eq. (8.445.1)] in [4, Eq. (6)], the probability density function
(PDF) of γ can be written in its infinite series representation
as

fγ(x) =

∞
∑

j=0

αµµ+2jκj (1 + κ)µ+j

2Γ(µ+ j)j!eκµγ̄
α
2 (µ+j)

x
α
2 (µ+j)−1e

−µ(1+κ)

γ̄
α
2

x
α
2

,

(1)
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whereα > 0 is the parameter describing the nonlinearity of
the medium,κ > 0 is the ratio between the total power of
the dominant components and the total power of the scattered
waves,µ > 0 denotes the total number of multipath clusters,
and γ̄ is the average SNR. Such a fading distribution includes
the generalκ-µ, Rayleigh, Nakagami-m, Rice, Weibull and
one-sided Gaussian distributions. By settingα = 2, the κ-µ
distribution can be obtained. From theκ-µ distribution, the
Nakagami-m, Rayleigh and one-sided Gaussian distributions
can be obtained by lettingκ → 0 and varying the parameter
µ = m, µ = 1, andµ = 1

2 , respectively. The Rice distribution
can be obtained from theκ-µ distribution by settingκ = k

andµ = 1, while the Weibull distribution stems from theκ-µ
one by settingκ → 0 andµ = 1.

III. O UTAGE PROBABILITY

A. Exact OP

From (1), the OP can be formulated asPout =
∫ γth

0 fγ(x)dx,
whereγth = 2Rth − 1 denotes the SNR threshold andRth is
the corresponding target transmission rate. With the aid of [16,
Eq. (3.381.8)] and after some manipulations, the exact OP can
be derived as

Pout =

∞
∑

j=0

µjκj

j!Γ(µ+ j)eκµ
Υ

(

µ+ j,
µ(1 + κ)

γ̄
α
2

γ
α
2

th

)

, (2)

whereΥ(·, ·) denotes the lower incomplete Gamma function
[16, Eq. (8.354.1)].

B. Asymptotic OP

In order to gain further insights from (2), an asymptotic
expression (i.e., at high-SNR regime) for the OP is now
derived. Firstly, note that for large values ofγ̄, the term
j = 0 of the infinite series dominates. In addition, using the
following approximationΥ(a, x) ≈ xa

a
for sufficiently low

values ofx, and after performing some manipulations, (2) can
be asymptotically approximated by

P∞
out ≃

µµ−1(1 + κ)µγ
αµ

2

th

Γ(µ)eκµ
γ̄−αµ

2 . (3)

Interestingly, it is noteworthy that the diversity gain only
depends on the nonlinearity parameterα and the number of
multipath clustersµ (i.e., it does not depend onκ), whereas
the array gain is dependent on all the fading parameters.

IV. ERROR RATE ANALYSIS

A. Exact AER

Assuming coherent modulation schemes, the AER can be
formulated as

P̄e = A

∫ ∞

0

erfc
(√

Bx
)

fγ(x)dx, (4)

where A and B are constant values depending on the
modulation scheme, and erfc(·) denotes the complemen-

tary error function. From (1), knowing that erfc
(√

Bx
)

=

1√
π
G

2,0
1,2

(

Bx
∣

∣

∣

1
0, 12

)

, whereGm,n
p,q

(

·
∣

∣

·
·
)

stands for the Meijer’s
G-function [16, Eq. (9.301)], relying on [17, Eq. (8.4.3.1)], af-
ter some manipulations, and with the aid of [18], an analytical

expression for̄Pe can be derived as (5), shown at the top of the
next page, whereHm,n

p,q

(

·
∣

∣

·
·
)

is the FoxH-function defined
in [17, Eq. (8.3.1)]1. It is worthwhile to say that, although (5)
is written in terms of an infinite sum, it converges quickly,
requiring therefore in practice the evaluation of few number
of terms to get an accuracy of10−5.

B. Asymptotic AER

In order to gain further insights into system parameters at
high-SNR regime, an asymptotic analysis for the AER is car-
ried out. By settinḡγ → ∞, the termj = 0 dominates in (1).
Then, making use of the following approximatione−

1
x ≈ 1− 1

x

asx → ∞ in (1), and replacing the resulting expression in (4),
the AER can be asymptotically approximated by

P̄∞
e ≃ αAµµ (1 + κ)

µ

2Γ(µ)eκµγ̄
αµ
2 −1

∫ ∞

0

erfc
(√

Bx
)

x
α
2 −1dx. (6)

To evaluate the integral in (6), the following identity is used:
erfc(

√
Bx) = Γ

(

1
2 , Bx

)

. Therefore, the resulting expression
can be evaluated with the help of [16, Eq. (6.455.1)] and
2F1(a, b, c; 0) = 1, and the resulting asymptotic expression
for the AER can be attained as

P̄∞
e ≈ Aµµ−1(1 + κ)µΓ

(

1
2 (α+ µ)

)

√
πΓ(µ)eκµB

αµ

2

γ̄−αµ

2 , (7)

which shows a similar diversity gain as previously obtained
for the outage probability. As well-known, for binary phase-
shift keying (BPSK) modulation scheme, we have thatA = 1

2
and B = 1. Then, by substituting these values into (7) and
considering Rayleigh fading (i.e.,α = 2, κ → 0 andµ = 1),
the asymptotic AER reduces tōP∞

e ≈ 1
4γ̄ [20, p. 818].

V. NORMALIZED AVERAGE CAPACITY

The normalized average channel capacityC̄ can be mathe-
matically formulated as

C̄ =
1

ln 2

∫ ∞

0

ln(1 + x)fγ(x)dx. (8)

By substituting (1) in (8) yields an integrand which is a com-
bination of a logarithm function and an exponential function
having a more complicated argument, and therefore cannot be
easily evaluated. To solve this inconvenience, we express both
logarithm and exponential functions in terms of the Meijer’s
G-function by using [17, Eq. (8.4.6.5)] and [17, Eq. (8.4.3.1)],
respectively. The resulting expression can be written as

C̄ =
α

(2 ln 2)eκµ

∞
∑

j=0

µµ+2jκj(1 + κ)µ+j

j!Γ(µ+ j)γ̄
α
2 (µ+j)

∫ ∞

0

x
α
2 (µ+j)−1

× G
1,2
2,2

(

x

∣

∣

∣

∣

1, 1

1, 0

)

G
1,0
0,1

(

µ(1 + κ)

γ̄
α
2

x
α
2

∣

∣

∣

∣

−
0

)

dx,

(9)

in which the required integral can be evaluated by using [18]
as (10), shown at the top of the next page. Again it is worth

1The FoxH-function is a generalized function that has become popular in
performance analysis of wireless communication systems. Such a function is
not readily available in software computation packages (e.g., MATHEMAT-
ICA or Matlab), but [19] has proposed an efficient and accurate approach in
MATHEMATICA.
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C̄ =
α

2(ln 2)eκµ
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noting that although the derived analytical expression is given
in terms of an infinite series, it converges rapidly and steadily
after a few terms for a desired accuracy.

VI. CLOSED-FORM BOUND FOR THETRUNCATION ERROR

The expressions of the above-mentioned performance met-
rics are given in terms of infinite series. As aforementioned,
they converge rapidly to accurate results after a few terms
which depend on the value of the involved parameters to
ensure acceptable truncation. In what follows, closed-form
bounds for the truncation error of the derived series repre-
sentations are provided.

A. Outage Probability

Using (2), the truncation of the outage probability afterp−1
terms results to the following truncation error

ǫPout =

∞
∑

j=p

µjκj

j!Γ(µ+ j)eκµ
Υ

(

µ+ j,
µ(1 + κ)

γ̄
α
2

γ
α
2

th

)

. (11)

By changing the summation index ton = j − p in (11),
and noting thatΥ(a, x) < Υ(a + 1, x) followed by the use
of the identities(n + p)! = p!(p + 1)n, (1)n = n!, the
definition 1F2(a1; b1, b2; z) =

∑∞
n=0

(a1)n
(b1)n(b2)n

zn

n! , and some
manipulations, the bound can be expressed as

ǫPout >
µpκp

1F2 (1; 1 + p, µ+ p; 1)

Γ(µ+ p)p!eκµ
Υ

(

µ+ p,
µ(1 + κ)

γ̄
α
2

γ
α
2

th

)

,

(12)
where 1F2

(

; ;
)

is the generalized Hypergeometric function
defined in [16, Eq. (9.14.1)] and(a)b = Γ(a+b)

Γ(b) is the
Pochhammer symbol.

B. AER and Normalized Average Capacity

Using a similar approach, closed-form upper bounds for the
truncation error of (5) and (10) are given by (13) and (14),
respectively, shown at the top of this page, where0F1

(

; ;
)

is
defined in [16, Eq. (9.14.1)].
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Fig. 1: Outage probability versus average SNRγ̄ for several values ofα, κ
andµ.

VII. N UMERICAL RESULTS AND DISCUSSIONS

In this section, some representative numerical examples are
presented to evaluate the effect of the fading parameters on
the performance of the proposed system and channel models.
Without loss of generality, we assume:Rth = 1 bit/s/Hz, and
A = 1

2 and B = 1 for BPSK modulation.
Fig. 1 shows the OP performance versus the average SNR

for various values of the fading parametersα, κ andµ. It is
evident that the exact curves, from (2), are in perfect agreement
with the Monte Carlo simulations. In addition, it can be
noted that the asymptotic curves accurately approximate the
exact curves at high SNR. The asymptotic curves provide the
diversity order of the underlying system. According to (3), the
diversity order increases with eitherα, µ or both, which results
in the decrease of the outage performance as illustrated in Fig.
1. This is further corroborated by noting that for fixed values
of κ = {0, 2, 5}, the diversity gain changes when eitherα or
µ varies, or when both vary.

Fig. 2 plots the average BER of the coherent BPSK mod-
ulation versus the average SNR for different values ofα, κ
andµ. Again, note the good match between the exact curves
and the Monte Carlo simulations. Moreover, the curves for the
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of α, κ andµ. The markers represent Monte Carlo simulations.

approximate BER are tight over the entire SNR regime, while
the asymptotic curves well approximate the exact ones in the
high SNR regime. As can be seen, the average BER decreases
for an increase in the fading parameterµ (see the cases where
µ = 1 and µ = 2 whenα = 1 and κ = 1). It can also be
implied that this will be the case for an increase in the fading
parameterα as attested by the diversity gain.

In Fig. 3, Monte Carlo simulations and theoretical results
from (10) for the normalized average capacity are compared,
and it is attested that both are in good agreement over the
entire SNR regime. Also, it can be observed that for fixedα

andκ values, the normalized average capacity varies with an
increase in the fading parameterµ. Fig. 4 shows the relative
errors with bound and truncation (pertaining toPout) versus
the number of termsp whenα = 1, κ = 2, µ = 2 and for
various values of the average SNR. The relative error with
the bound is given byǫPout

exact, while the one due to truncation
can be expressed as|exact−truncated|

exact , where the exact value is
calculated via numerical integration and the truncated value
is computed for various values ofp using (2). Forγ̄ = 10
dB and γ̄ = 20 dB, it can be noted that the relative errors
with truncation and with bound are less than10−5 for p ≥ 8,
which shows the tightness of the derived error bound after a
few terms. Due to space limitation, the relative errors with
truncation and bound for the AER and normalized average
capacity are not presented.

VIII. C ONCLUSION

In this letter, a comprehensive analytical framework for the
performance evaluation of digital communication systems over
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Fig. 4: Relative error versus the number of termsp for various average SNR
values.

α-κ-µ fading channels has been presented in terms of OP,
normalized average capacity and AER (valid for all coherent
modulations). All the attained analytical results can definitely
be used as a benchmark for future studies consideringα-
κ-µ fading model, in which a deeper performance analysis
investigation is still in its infancy.
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