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Abstract

The modern approach to complex services has some shortcomings which overcom-

plicate the implementation of application servers supporting service logic and also

the actual structure of these services. Modern service development environments

rely heavily on bearer network call/session signalling for the transport of service

messages to remote terminals and manipulating bearer streams in the network.

This research report looks at the overheads which occur when the bearer network is

used as the main transport for distributed service logic and then goes on to propose

application layer focused service development as a replacement for this. Service

logic developed in the application layer should be constrained to the application

layer so as to avoid leaky abstractions and make service development more intuitive

to programmers who do not have deep knowledge of telecommunications technologies

since the details of the bearer network do not play a part in the application layer.

Application layer signalling is introduced as a concept very important to keeping

service logic in the application layer, by allowing service messages to bypass the

bearer network. In this way, service sessions are started and maintained in the

application layer and lower-layer functionality is only called on when bearer network

streams are required by a service.

A framework is developed to support application layer focused service development.

This framework acts as support for decoupled service logic by allowing easy ab-

stracted use of application layer signalling and bearer network functionality. It also

provides a simplified means for managing service logic. Reusability is also built

in in the form of reusable building blocks which abstract out various functionality

including that of the bearer network.

Using example services designed to be supported within the framework, the ideas

of application layer focused service development are proved to simplify service

development and offer robust support to services. Whilst this research report does

not attempt to standardise the technologies used to constrain service logic in the
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application layer, it does put forward important concepts which, when implemented,

would enhance service development environments by providing a strong platform on

which to develop services.
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Chapter 1

Introduction

1.1 The Current State of Telecommunications Services

The modern telecommunications (telecoms) infrastructure places great emphasis

on value-added services (or simply, “services”). The number and complexity of

services are increasing beyond those first proposed by the Intelligent Network (IN)

standards. These enhanced services include presence, instant messaging, push-to-

talk and video-on-demand and require an infrastructure to support more complex

media formats (such as video) and greater flexibility in service design. In response to

these improved services, telecoms operators (telcos) are restructuring their networks

at administrative and technical levels and equipment vendors are upgrading the

capability of the hardware they are marketing to telcos and end-users. These changes

follow on from the move towards the Next Generation Network (NGN).

For the service developer there are two facets to these enhancements. The first

is that of the service development environment. Where in the past they were

constrained to developing services at a low-level using the C programming language,

telecoms service programmers now have a large inventory of programming languages,

platforms, application programming interfaces (API) and application server (AS)

implementations at their disposal. All of these tools cater for the development

of more complex services by providing reusable components and abstracting the

programmer from less significant service detail thus making for a more intuitive

service development process. The other facet of these enhancements is that of the

final products of service development. Due to simpler service development and

more powerful terminal and server hardware it can be expected by the end-user that

services will be adequately complex to cater for the various forms of multimedia
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1. INTRODUCTION

used by the modern technology user. The functionality and quality of new services

should at least match those of the distributed applications which are in common

use, such as those found in the Internet, like social networking, online gaming and

file sharing.

Modern telecoms standardisation is attempting to incorporate this modern stance

towards services: at the service layer, the NGN calls for the integration of services

with complex functionalities into the service environment [1]. Similarly, the IP

Multimedia Subsystem (IMS), which is the current main contender for the complete

packet-switched telecoms network core, has been created to allow

“public land mobile network (PLMN) operators to offer their subscribers

multimedia services based on and built upon Internet applications, ser-

vices and protocols.” [2]

It is possible to view the current telecoms service environment as a halfway point

between the legacy IN which is controlled, limited and more robust and the Internet

which is very open but lacks any service guarantees such as quality of service (QoS)

control. Various examples illustrate. Firstly, we see that individual Internet services

have to implement their own forms of authentication, authorisation and accounting

(AAA) or use what is provided by other 3rd-party developers, whilst modern telecoms

services can rely on the underlying network for these functions. Further, we see

that the Internet has no central body which enforces quality control, whilst telcos

can ensure quality control on the software which makes up a complex service – a

necessity, since customers will direct complaints about, or technical support requests

for a 3rd-party developed service to the telco itself. From the reverse perspective,

the IN has only basic benchmark services, all oriented towards two party or very

basic multiparty voices calls. The benchmark services for the modern telco services

include advanced multiparty voice call control converged with multimedia services

such as instant messaging and video calling. This integration of telco and Internet

mentalities has already been considered in the overall IMS perspective [3].

The service environment of the NGN has the advantage of being able to incorporate

the best aspects of services in the Internet and legacy telecoms, whilst ensuring that

it does not suffer from their shortcomings. However, the current trends in services

demonstrate that the telecoms world has still not properly integrated the advantages

of the Internet and legacy IN paradigms.

2
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Figure 1.1: The use of call/session signalling in a modern service infrastructure.

The dotted line indicates the path that all messages take when travelling between

end-points during a service session.

1.2 Problems of Modern Telecoms Services

Whilst the end-user is perceiving improvements to modern telecoms services with

enhanced user interfaces and flexibility, it is in the development and protocol imple-

mentation of the services where problems have arisen. Certain legacy approaches to

service infrastructure have become entrenched in modern service technologies. These

approaches may have been applicable to much simpler services and necessary for a

closed service development environment, but for the complex multimedia services

which consumers require today these approaches can be seen as shortcomings in

development and performance. Descriptions of the weaknesses of current NGN

service architectures, such as IMS, follow.

1.2.1 Call/Session Service Signalling

The modern service environment makes heavy use of call/session (CS) signalling.

The issues with this are twofold. The first problem relates to services’ direct use of

CS signalling protocols to interface with the underlying network, where an abstracted

API would be more suitable. The second problem relates to the use of CS signalling

between the end-points of a service, for which it is unsuitable. These problems are

detailed below.

3



1. INTRODUCTION

Programming and Interfacing with The Network

In the legacy IN, the service control function (SCF) resided in the network core,

as part of the bearer network, and contained the logic for services. The logic was

triggered at detection points according to the Basic Call State Model (BCSM) [4]

and would execute on physical entities controlled by the telco. Service signalling was

implemented using the Signalling System no. 7 (SS7), an infrastructure and set of

protocols orientated towards call setup and tear down, which provided an adequate

and robust service infrastructure for the benchmark services of the time. Since

the capabilities of these services were a lot simpler, SS7 was designed for a closed

development environment where services were vertically integrated into the rest of

the network. However, due to SS7’s being made up of very low-level transport-

oriented protocols, implementing services required an intimate knowledge of both

the details of the host network and of telecoms technologies. Despite the prospect of

building services quickly, which was touted for the IN, the timescale for developing

a single service was in the order of a year, if not more [5, pp 23].

The modern stance towards services promotes horizontal integration: services can

be hosted and developed by both a telco itself and by 3rd-party providers. This

means that the telco must give outside service programmers access to the resources

provided by the network and also provide simplified and abstracted interfaces into

these resources. Ideally, utilisation of the access provided to outside developers

should not require intimate knowledge of the technical, administrative and business

workings of the network. At the same time, the manner in which access is granted

should give assurance that the services developed by a 3rd-party will fully meet the

high quality specifications set by the telco. To achieve this, telcos need to make

a lot of decisions on behalf of the programmer, meaning that high abstraction is

required. This is due to the inherent complexity of telco infrastructures and the

distributed nature of services. Following on from this, one would consider it bad

practice for a telco to provide an interface which would require direct manipulation

of CS signalling protocols like ISDN User Part (ISUP) or Session Initiation Protocol

(SIP). Yet, IMS makes heavy use of SIP and as such its native AS, the SIP AS,

hosts and executes multimedia applications which interface with the network using

SIP directly [6, pp 33] as shown by the vertical arrows in figure 1.1. This means that

programmers developing services which will be deployed in an IMS context have to

be knowledgeable in the usage of SIP. Some do not view this as problematic [7],

however it is a lot more intuitive to use an abstracted interface into the network.

4
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A well-engineered system uses abstractions to ensure that its users need not have an

understanding of its internal workings or in the case of a layered system, its lower

layers. If we view a service development environment as a layered system, then a

service programmer should be able to expect an adequately abstracted interface into

the functionality of the underlying network. This means that a programmer should

not have to manipulate directly or even have knowledge of CS signalling protocols’

messages and parameters. Whilst these protocols play a major role in determinining

a service architecture’s capabilities and robustness, their correct usage should remain

the responsibility of the telco. Should this not be the case and the abstraction

between the service development environment and the CS system have incomplete

separation of concerns, then the result is a leaky abstraction whose interface provides

an insufficiently complex model of the CS system [8, pp 83] – as is certainly the case

with the IMS and the SIP interface used by service logic in its ASs.

This point is emphasised further when protocols are compared with APIs. Whilst

both provide a degree of isolation between two logically different systems, their

purposes differ. An API allows an application to access the functionality and

resources of the underlying platform on which it is executed. The underlying

platform is presented as a model, which application logic can manipulate to achieve

a certain objective. The goal of (standard) protocols is to provide interoperability

between different distributed entities [5, pp 25]. If SIP (which is a protocol) is

used as an API, then the model of the underlying network which it presents is

unsuitable for service development, since it is incapable of describing the overall

logical functionality of the network and thus is not complex enough for abstracted

CS control. This is partly due to the fact that an AS in the IMS interacts only with

Serving Call Session Control Function (S-CSCF), considering only the messages and

parameters which have to get passed to it, and the error conditions generated by it

without considering the many other events (message passing and errors) that occur

amongst the other Call Session Control Functions (CSCF) and Home Subscriber

Systems (HSS). This means that the model that the IMS provides to the AS is too

simple as it views in isolation a small part of a much larger system.

A properly designed service development framework would use APIs like the Java

APIs for Integrated Networks (JAIN), the Java-based Telephony Applications Pro-

gramming Interface (JTAPI) and Parlay to ensure that a service does not require

the fine details of the resources and functionality of the underlying network, but

still be supplied with holistic and simplified control and an appropriately detailed

model of the network. Depending on the angle from which this is viewed, providing

such interfaces could be seen as following either the Façade or Bridge software
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design patterns. Looking from the bottom-up, the Façade design pattern is used

where software classes are required to simplify already existing complex underlying

subsystems [9, pp 185–193], such as providing a Parlay interface into the IN. From

the top-down, the Bridge design pattern is used “when an abstraction can have one

of several possible implementations” [9, pp 151–161]; this could mean that a current

implementation could vary, or a completely new implementation could be used,

whilst the Bridge remains the same – this could be seen as a reason for including the

Open Service Architecture (OSA) AS as a standard entity in the IMS. In whatever

way abstractions are analysed, they are a necessity for a modern service development

environment. Conversely, it can be said that interfacing without abstraction with

underlying CS signalling protocols when compared to interfacing via the call control

APIs mentioned, can be likened to programming in assembler where a high-level

programming language would be more applicable [5, pp 27].

Service Message Communication

Since the operation of services by their nature is distributed, message passing

between the entities involved in a session must be robust and easy to implement.

Ideally, for a modern service environment, a properly designed message passing

system oriented directly towards complex services should result in a simplified

development environment. This means that signalling should be designed to allow

terminals to signal directly to service entities, bypassing CS entities where they are

not required. Despite this being a seemingly intuitive design decision, current service

infrastructures rely on CS signalling protocols with messages traversing CS entities

for end-to-end service communication, as shown by the horizontal arrow in figure

1.1.

Based on this, there is a need to differentiate between protocols which are designed

for CS control and those which are designed for services. CS protocols enable

the setup, teardown and maintenance of bearer connections. This means that the

protocols ensure that there is a path (a circuit in a circuit-switched network or a

stream in a packet switched network) between the end-points involved in a call. The

signals made available by the protocol facilitate the location of a destination terminal

at the request of an originating terminal and the maintenance of a path throughout

the length of a call. As such, all signals represent the basic operations required for

these functions. For example, in discovering the path between the end-points in

a call, the IMS sends a series of SIP INVITE messages and SS7 sends ISUP IAM’s

(initial address message). Similarly for all other CS functionality these protocols
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have sets of message flows made up of simple messages which are fine-grained as

a consequence of the requirement that protocols offer a high level of flexibility to

allow telcos to differentiate their bearer connectivity offerings from other telcos (note

that in this research report, bearer connectivity is a generalisation of the concept of

a simple call in legacy telecoms and refers to any kind of multimedia connection

including two party or multiparty calls and voice and video streaming).

Service control protocols differ from CS protocols in that they facilitate terminals’

communication with services in ASs (or SCFs in the IN context). Further, while CS

protocols are designed to be used directly by the telco, service control protocols in the

modern, open service environment should ideally be designed to meet the needs of

the software programmers who will develop services. One cannot assume that these

programmers have knowledge of telecoms’ technologies or its concepts of sessions

or signalling. Instead, to cater for service software programmers who come from

an Information Technology (IT) background, it would be more applicable to have a

service development environment based on IT concepts. Since telecoms services are

distributed, we look to the IT concept of Service Oriented Architecture (SOA) which

is playing an important role in bringing the telecoms and IT worlds together [10, 11].

A SOA is a distributed system which exposes services which perform well-defined

operations and can be accessed by remote clients by means of message exchange [12].

Whilst coming from the IT world, a SOA can also support telecoms service control

protocols. Thus it is possible to implement service signalling using SOA tools such

as Common Object Request Broker Architecture (CORBA), Java Remote Method

Invocation (RMI) and the web service flavours of SOAP and Representational State

Transfer (REST).

An important aspect of SOA is that, logically, once the server which houses a

published service is discovered, the client using the service signals directly to the

server. This coupling is increased by having the client obtain a reference to a remote

object which represents the exposed service. Messages are then exchanged when

the client invokes a method on the remote object. This direct signalling means

there are no intermediate nodes which inspect or process the contents of messages

passed between the end points in the SOA communication. Service signalling based

on message passing between remote objects can therefore be computationally less

expensive than the use of CS signalling which is prevalent in modern networks, such

as those based on the IMS. Further, SOA is more familiar to IT software developers,

than is a CS protocols such as SIP.

The IMS makes heavy use of SIP for setting up sessions. It has been shown

7
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Figure 1.2: SIP signalling in the IMS implementation of presence, where both the

watcher and all presentities are in the same network. Two cases are shown: (A) a

watcher initially subscribing to the presence state of a list of presentities and (B) a

presentity updating its presence status to a watcher.

that within the context of a modern telco infrastructure this incurs unjustified

overhead and is overly complex – even for the setup of a simple two party call

[13]. The presence service of the IMS requires that besides for the main entities

participating in the service, messages must traverse multiple CSCF entities and the

HSS. Figure 1.2 is a Uniform Modelling Language (UML) sequence diagram (SD)

of certain aspects of the presence service within the IMS (adapted from [14] and

[6, ch 17]). The figure shows that this large number of entities along with the use

of SIP results in overly complex message sequences for seemingly simple cases of

the presence service. A more logical design, which is shown in figure 1.3 and fits

into the SOA approach, would firstly allow the terminal (in this case, acting as

either the watcher or presentity in the presence service) to signal directly to the

AS. Secondly, messages would be more logically named (corresponding to methods
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loop
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Figure 1.3: A more intuitive approach for presence signalling. Use cases (A) and

(B) are the same as for figure 1.2

of remote service objects), giving a better overview of the operation of the service,

thus simplifying implementation and debugging.

1.2.2 Unstructured Service Development Environment

Over the years, service development has moved further and further out of the

network. Where in the IN, programmers worked directly with Service Control

Points (SCP), Service Data Points (SDP), Visitor Location Registers (VLR) and

Home Location Registers (HLR) which were found in the core network, it is now

possible to use abstracted APIs, such as Parlay, with well-established programming

languages, such as Java, to interface with the network. This opens the doors to

a wider audience of software programmers allowing for a more competitive service

environment.

To assist in removing service developers from the network, enabling technologies

and standards which assist in both structuring services and abstracting them from

the details of the underlying network have been developed. The JAIN Service Logic

Execution Environment (JSLEE) structures the application logic of services into
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reusable object-oriented (OO) components called service building blocks and uses

resource adapters (RA) to abstract out details of the CS signalling of the underlying

network [15]. Various vendors have their own service creation environments for

example, [16] and [17]. Further, the Open Mobile Alliance (OMA) publishes its OMA

Service Environment (OSE) specifications which formalises how services are built up

using enablers and how access by service applications to these enablers is controlled

using policy enforcers [18]. These technologies and standards all contribute to the

modern service development environment and share ideas of abstraction, reusability

and openness. However, with the various technologies available for abstracting

network resources there is still no global standardised agreement on the structure or

method of deployment of services which interact with the network. Moreover, even

though there are links between them, the above mentioned technologies are still sep-

arate and service developers will usually choose a single one to use for development.

Ideally, we would want to extract useful concepts from all of these technologies to

contribute towards a standardised service development environment which will cater

for a broad range of software programmers – whether their background be telecoms

or IT.

One common concept is that all these solutions for service development are struc-

tured as frameworks. From a software perspective, a framework is a “a set of

cooperating classes that make up a reusable design for a specific class of software”

which “dictates the architecture of your application” [9, pp 26–28]. The software

programmer develops the logic of the desired application using various abstractions

provided by the framework. Then to execute the application, the framework calls

on this logic. This is an inversion of control from the usual software approach

where the software developer has to write code for application initialisation. The

framework therefore constrains the structure of the program and decides when the

application logic should be invoked. This fits in well with a telecoms environment

by allowing the telco to still have some influence and control in the design of 3rd-

party developed services. Further, a telco can enforce policies on what framework

components are available to a service and when and by whom service functionality

can be accessed. Naturally, service development environments have been built up

as frameworks, however none explicitly identifies the framework concept as being a

key design aspect.

While frameworks are the high-level structure, OO is an IT concept which is a

very effective tool for the detailed structuring of software. Its use too has not been

standardised in modern service development. Most modern programming languages

support OO and good OO designs can be implemented in any of these languages.
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This generic nature of OO, supported by the technology-neutral UML, makes it

useful for the design of a service environment and the means of developing services

within it. It is also useful for the realisation of the abstraction which was covered in

section 1.2.1, since it is highly useful for describing systems from a high-level. The

importance and benefits of OO are explored further in section 3.2.1.

1.3 Proposal for a Modern Service Development Envir-

onment

Using the shortcomings of modern services and their development which were iden-

tified above, this research report proposes a novel approach to service signalling

and bearer connectivity abstraction as the basis for a robust platform for intuitive

service development. To realise this, focus is placed on the application layer of the

information and communication technologies (ICT) layering system presented in [8,

ch 2]. The purpose of this is to remove as much service logic from the bearer network

as possible, reducing the use of CS signalling and moving service logic computation

to ASs and terminals. This is reminiscent of the design of the Internet, where

complexity is kept at the edge of the network, and the network is used only for

transporting data from end-point to end-point. One benefit of this being that this

results in a reduction in the computational overhead which compounds when using

a service infrastructure in which service messages are inspected and processed by

multiple nodes in the network core. The other benefit being that service developers

gain the same flexibility in service design that the Internet provides its service

developers.

Application Layer Signalling (ALS), which is formally introduced in chapter 2, is

the defining feature of the proposed service environment. Its purpose is to support

the idea presented above, by providing the infrastructure over which terminals and

ASs communicate with each other without using CS signalling. At a technical level,

ALS is not new. The Internet has always operated using it in some form. However,

the Internet has no bearer connectivity infrastructure supporting it, so there is no

purpose in differentiating its ALS from any other type of signalling, as ALS is its

sole mechanism for signalling. In the telecoms world there is merit to differentiating

ALS from CS signalling as it allows us to make a clear distinction: ALS is for service

signalling, allowing application logic in distributed nodes to communicate with each

other; CS signalling for setting up bearer connections.

11
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With ALS providing the signalling mechanism for application layer focused service

development, a software framework needs to be developed to provide programmers

with an interface into ALS and also to support the simplified development of

service logic. We can specify that ALS is presented using remote objects, whereby

application logic in one end-point wishing to invoke some functionality of a second

end-point will do so by remotely calling a method on an object existing in the

second end-point. This then constrains the software development framework to

being built up using OO. All functions of the framework, including the setting up of

bearer connections, are presented as objects. Chapter 3 aims to build up a software

framework using OO to convey various aspects common to all service development

environments, such as reusable building blocks, user profiles and message passing

between terminals and ASs.

Besides the defining features of ALS and OO, the proposed framework also takes

a unique approach to the setup, maintenance and teardown of bearer connections

which is conceptually different in the proposed framework to that of the legacy

approach. A bearer connection is seen as secondary to service logic – not in

importance, but rather from the fact that a request for a bearer connection is always

made from a service. Even a simple two party call that requires no service logic,

is setup when a Two Party Call service requests that a call be setup between two

terminals. This idea was advanced in [19] and termed “3rd-party call initiation”

– the intention being that a terminal will make a request to an AS (the 3rd-party

in this case) to setup a call between itself and a second terminal. Thus the AS,

and not the originating terminal, makes the call initiation request to the bearer

network to setup the call. [19] also quantified the extent to which this kind of call

initiation overcomes the heavy signalling overhead which impedes the operation of

modern telecoms infrastructures. Whilst the aim of this report is not to quantify the

efficiency of the proposed service environment, it is important to note the benefits,

besides service development simplicity, which are gained in its implementation.

1.4 Conclusion

We have thus identified the shortcomings of the current service environment and

have outlined the crucial elements of the proposed service development environment

which attempts to correct these shortcomings. We close this introductory chapter by

summarising the main points which determine the features of the proposed service

development environment:
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1. The Internet does complex services better.

2. Telecoms does bearer connectivity better.

3. Current service platforms use the bearer network for relaying messages between

end-points. For example CSCF entities in the IMS bearer network inspect and

process all service messages and are involved in communication between ASs

and terminals.

4. Instead of this, rather use the Internet approach and move all service logic

complexity to the edge (i.e. no service message processing occurs in core

network).

5. Do not replace current bearer network connectivity infrastructures (such as is

done in the Internet with voice over IP (VoIP)). Telecoms is best at bearer

connectivity so we can continue to use its current infrastructure for bearer

connections. However, bearer connectivity becomes secondary to services in

that it gets called on by service logic (as opposed to vice versa).

6. Everything is therefore initiated in the application layer (even bearer connec-

tions).

The process of moving service development and operation into the application layer

is made up of three important steps. These steps are detailed throughout this

research report, not specifically in the order presented here:

1. Abstract out bearer network functionality from ASs since from the point of

view of services, bearer connectivity is secondary to service logic.

2. Remove processing of service messages from the bearer network. Replace this

with ALS to ensure that service logic is only executed in ASs and terminals.

3. Develop a standardised and generic software framework to support application

layer focused service development.

These steps are not performed in isolation. We look to existing technologies to

support the framework. For example, Parlay provides much of the inspiration for

the abstraction of bearer connectivity. Moreover we are not aiming to replace an

entire telecoms infrastructure. As we shall see, application layer service development

can be integrated into existing telecommunications networks without the need for

replacing software or hardware.
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Having outlined the process of implementing our proposed service development

environment, in the following chapters we will detail its requirements, the issues

and technical challenges surrounding its implementation and the effects it may have

on value-added service business all with the aim of producing a robust platform for

modern, complex and competitive service development.
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Chapter 2

Application Layer Signalling

The catalyst for all our desired improvements is ALS. The idea, whilst relatively

simple in theory and which can be implemented with current technology, provides

a completely new methodology for developing services. We arrive at the idea using

two key design considerations, which we can explain by two layman statements:

• “Modern Internet services provide lots of fantastic features which I couldn’t

get using only the plain old telephone. I can get them on my cellphone, but

I am still accessing them through the Internet. I can also make cheap VoIP

calls over the Internet, but the reliability and quality of these calls still aren’t

as good the old telephone system or even my cellular voice service.”

• “I’m very happy with the service I get from my telephone and cellular providers.

I know that if I phone someone his or her phone WILL ring (assuming they

are not on another call). Also, I know that the voice quality will always be

adequate for my needs. Its just a shame that I cannot expect much more than

a few basic extra services like voicemail and call holding.”

The two statements verbalise from different angles the perception of the main

difference between telecoms and Internet services: telecoms networks guarantee

quality of service for voice calls but only offer limited services whilst the Internet

provides complex feature-rich services but cannot guarantee carrier-grade voice call

quality and reliability. From this we see that the first of the two important design

aspects which ALS incorporates is that having the terminal signal directly to the AS

(as is done in the Internet world) allows for more complex services to be developed

and easily deployed. The second is that a reliable modern telecoms network must,

at least for simple voice calls, provide the same robustness and QoS levels which

were experienced in legacy networks.
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The integration of the Internet and telecoms to produce a modern network with

Internet-like services and telecoms’ QoS and charging and the ability to integrate

these services has already been undertaken under the IMS umbrella. IMS deploy-

ments require a complete overhaul of current networks to replace all circuit-switched

components with Internet Protocol (IP) packet-switched nodes. This resulting

network provides bearer connectivity for which SIP provides CS signalling carried

over an IP transport network. As is expounded upon in [13] and echoed by our

layman with the comment about VoIP, a SIP-based core results in inefficient CS

signalling. This overhauled network design also relies on SIP for service signalling,

which is problematic as per reasons given in section 1.2.1. Of these two issues

surrounding SIP, we will not cover its use for CS signalling. It is in its use for

service signalling between terminals and ASs where we focus attention in order to

introduce ALS as an effective alternative.

2.1 Direct Application-to-Application Signalling

Distributed applications which rely on the signalling of terminals directly to the

AS is not a new concept. The Internet has a plethora of services which are

implemented in exactly this way – instant messaging, video streaming and online

gaming are all services which involve a client application residing in one node

signalling directly to a server application residing in a remote node. Internet

services based on client-server architectures are ubiquitous. This is because the

Internet is a best-effort network that only provides a means for transporting packets

between connected nodes. Alone, it does not provide any complex services other

than domain name to IP address resolution. Instead, it relies on its openness

to host complex services provided exclusively by 3rd-parties (who, in the Internet

world, is everybody other than the few global Internet administrative bodies), which

effectively keeps complexity at its edges. Direct signalling between applications fits

into this environment well, since the network has no intermediary nodes that process

the application layer payload of packets.

In moving towards the incorporation of Internet-like services into the modern tele-

coms service environment, it would be prudent to follow Internet methodology where

computational processing occurs at the network edge. Doing so would make use

of the computing power that is available to ASs and modern end-user terminals.

Unlike in legacy networks where end-user terminals had little or no computational

power, it is now possible to shift some of the service logic to terminals which have
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Figure 2.1: The operation of services without and with ALS in place. Layering

system taken from top three layers of the NGN framework in [8, pp 56]

adequate computational power to both execute complex service logic and perform

the signalling required to support this service logic.

In the telecoms world, direct application-to-application signalling is a much more

explicit concept, compared to that of the Internet, as it contrasts with traditional

execution of service logic in the core network. It also contrasts with the more modern

IMS approach to services which uses bearer network signalling as shown in figure

2.1(a) and consists of intermediate nodes which are involved in the service logic.

Conversely, where direct application signalling is used, as is depicted in 2.1(b), a

terminal signals directly to an AS for the majority of a service session, and bearer
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network functionality is only invoked when a voice call (or any other media stream)

is required. That is not too say the bearer network loses its importance. Telephony

is the primary reason for a telecoms network and is the main source of a telco’s

revenue from customers. The modern bearer network is designed for bearing media

streams from end-user to end-user, and as such, we do not wish to relieve it of its

purpose – something that would anyway be difficult to do, since telcos invest a lot

of money into ensuring that their bearer networks have high reliability and quality.

The intention, rather, is to allow our proposed service environment to interface

with existing bearer networks and treat the connectivity they provide as reusable

functionality for services.

2.2 Separating the Bearer Network from Services

To further the discussion on direct application-to-application signalling we need to

decouple conceptually the ideas of the bearer network and of services. The bearer

network is made up of those entities which control calls (setup, maintenance, tear-

down and handling of all events linked to calls), including entities that maintain

call context and call state and provide the means for modifying calls (such as

forwarding and call hold). Further it includes those entities which control logical

association between two or more end-points in a call and ensure the availability

of media streams between end-points. All this functionality is described in a

combination of the call control functional layer and bearer control functional layer

in the Telecommunications and Internet Protocol Harmonization Over Networks

(TIPHON) specifications [20]. We call all signalling that occurs between these

bearer network entities “call/session signalling”. Ideally we would not want services

to use this signalling, or to even have knowledge of it, especially since it has been

engineered specifically to support reliable bearer connectivity, and not to support

service communication. Instead, all CS signalling should be abstracted away from

services and accessed via an API.

One should not confuse the functions of the bearer network and that of the transport

network. In comparison to the bearer network functions mentioned above, the trans-

port network is responsible for transporting streams, signals or data (collectively

called information in this case) from one end-point to another. The transport

network does not consider the content of the information which it conveys (the

payload), its purpose is just to ensure that the information arrives at its intended

destination. An IP transport network, for example, is responsible for packets’ correct
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Figure 2.2: The transport plane shown in (a), with which services and the bearer

network, viewed as layers, intersect. The cross-section in (b) shows how all signalling

(shown with dotted arrows), be it between or within layers, always traverses the

transport network.

traversal of routers from one subnet to another. Similarly, in classical circuit-

switched networks the actual voice circuits through various switches formed the

transport network. Services, which we will discuss below, and the bearer network

both make use of a transport network, whether it is shared between them as in the

case of the IMS or if each has its own as is the case with the IN. For the remainder

of this research report it is necessary to envision a transport plane with which both

services and the bearer network separately intersect, as shown in figure 2.2(a). The

technology implementation of the transport network will be assumed to be in place

and its details will not be covered. The CS signals used by the bearer network

and the service signals used by services, which we are about to discuss traverse this

transport plane in the manner depicted in figure 2.2(b).

While the bearer network provides the infrastructure for operation of telephony,

services incorporate all the value-added features for which customers pay addition-

ally and that can be viewed as supplementary to the telco’s core task of providing

reliable bearer connectivity. In the modern telecoms network, the types of services

are varied and require an adequately complex infrastructure to support a wide range

of functionality. Services are also less tied to the telco domain and in the modern

approach they are programmed in a software development environment that caters to

the needs of a wide range of programmers who do not necessarily have a background

in telecoms. Many services, such as instant messaging, also do not require the
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support of the bearer network in their operation which is an important aspect of the

case for ALS.

The boundary between services and bearer networks is formed when we note that

the functions of the bearer network are associated with the traditional telephony

oriented telecoms network whereas rich, modern services are associated with the

Internet and IT views of software. Since they can be seen as very conceptually

different, the level of abstraction of the bearer network to services is important if

their decoupling is to be beneficial. The abstraction cannot be at a very low level,

catering only for individual protocols such as in the case of an API into SIP which is

presented to SIP servlets. Low level abstractions result in APIs which have function

calls representing individual protocol messages thus increasing coupling to specific

CS signalling. Rather, the abstraction should group units of functionality such that

it can be generic and able to be mapped to multiple bearer network architectures.

It should also remove the requirement that a service have knowledge of the bearer

network structure. This kind of abstraction is achieved, for example, by Parlay and

JAIN. Whatever technologies are used, we need to ensure that they enable services

to be decoupled from the bearer network to allow for proper implementation of ALS.

2.3 Application Layer in a Technology Neutral Frame-

work

Various telecoms standards consist of an application layer at the top of a layered

architecture. However, the definitions of these application layers are dependent on

context and on lower layers, resulting in different definitions. The application layer

being discussed is that of the technology neutral NGN framework (from hereon

referred to as the “NGN framework”) developed in [8, ch 2]. We use the layering

system from this framework (shown in figure 2.3) to aid in differentiating between

services and applications and to provide further context to ALS.

The NGN framework presents a system of layers, domains and planes which facilitate

the analysis of complex telecoms systems. Figure 2.3 identifies the top two layers as

the focus of the work in this research report. Of these, the application layer sits at

the top of the layering system and encapsulates the logic of services. In the NGN,

service logic is implemented in software applications developed using traditional IT

techniques. This layer is supported by the Service Control Functionality (SCF) layer

which provides an interface into the Resource Control and Management Function
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Figure 2.3: Layers of the NGN framework. Filled in layers are those which form the

context of this research report.

(RCMF) layer of the bearer network. Section 2.2 explains why this interface should

be abstracted adequately (ideally with an open standard API) so that application

logic can be implemented irrespective of the bearer network technology.

All service logic existing both in ASs and in terminals is bound in the application

layer. Signalling between these entities should not traverse layers – that is to say that

no entities from lower layers should process signals travelling between application

layer entities. This connects with and further enhances the reasoning behind the

problem of incorrect usage of CS signalling laid out in section 1.2.1. We therefore

use the NGN framework as a reference for ensuring that the final design for a service

development environment based on ALS does not violate the requirement of keeping

all inter-application signalling at the application layer.

2.4 Ideal Application Layer Signalling

In formalising ALS we need to visualise a target environment in which service

development and operation is greatly enhanced by direct communication between

terminals and ASs. In this section we identify the main components required to

make ALS into an attractive mechanism for the development of modern services.

2.4.1 Service Operation Centralised in the Application Layer

Besides changing the method of service communication, ALS also affects the overall

structure of services and the manner in which they are invoked. The ideal implement-
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ation of ALS would result in a full inversion of the execution of services by shifting

the locus of service control into the application layer. From the point of view of

services, the bearer network would take on a supporting role, being called upon only

when a service requires media streams to be setup between two or more terminals.

This would mean that sessions would always be initiated in the application layer,

which differs from the traditional approach where services are secondary to the

processing of a call. The result being that service logic is only called on in response

to the occurrence of specific events or criteria being met during the call. In this

new service-centric approach even basic calls are initiated via the application layer,

emphasising the concept of 3rd-party call initiation developed in [19]. This means

that a basic call is treated as a service such that the process of invoking one would

be initiated over ALS. Section 2.5.3 will cover how this necessitates the relocation

of the overall view of bearer connectivity into the application layer.

2.4.2 Signalling Protocol and Structure

Our proposal for ALS has so far only described the route that signals take when

they travel between terminals and ASs. So far no detail has been given on the actual

structure of these signals or protocol which they would follow. Since the reduction

of the reliance on CS signalling is one of the targets that ALS is aimed at, it is

important that the signalling system be designed to be adequately lightweight to

not result in the same overheads experienced by service architectures which rely on

CS signalling. Further, the ALS protocol should be flexible enough to cater for any

complex service. As will be seen in chapter 3, the software framework which will

support ALS will be based on OO and will expose services to terminals as software

objects. Similarly, terminals will expose their functionality as objects. The signalling

should allow for both terminals and ASs to call methods on each other’s exposed

objects remotely, meaning that signals should contain the desired service object, the

method to be called and any arguments to be passed into the method call. This is

reminiscent of the CORBA and RMI mechanisms for accessing the functionality of

remote objects, but as they are both known to be demanding systems, ALS calls for

a much more efficient communications oriented system for remote object interaction

– an idea taken further in section 3.2.4.
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2.4.3 Appropriate Bearer Network Abstraction

We have up to this point emphasised the importance of the abstraction between the

service environment and the facilities provided by the underlying bearer network.

In section 1.2.1 CS signalling was identified as being an incorrect mechanism for

interfacing between services and the bearer network. Then in section 2.2 we outlined

the need to set the correct level of abstraction, for which the solution is open generic

abstraction.

Bearer network abstraction is a topic on its own and has been part of the service

environment for many years. Whilst it is technically separate from the proposal for

ALS, it is closely linked in that it too acts towards centralising service logic in the

application layer. To gain the full benefits of ALS, bearer network abstraction needs

to be in place. Thus the software framework which will be developed in chapter

3 to support ALS will emphasise abstraction to ensure that software programmers

are fully insulated from the detailed workings of underlying telecoms technologies,

effectively and correctly confining them to software development in the application

layer.

2.5 Important Clarifying Concepts

The changes which result from ALS call for various concepts to be clearly defined to

enable correct implementation. These include the description of services based on

the location of their invocation, the locus of a call’s control and view and the types

of signals which can be used. Many of the clarifying concepts covered here are taken

from previous work on the same topic in [19, ch 3].

2.5.1 Atomic and Composite Services and Orchestration

Up to this point the term service has been used loosely. To avoid ambiguity as to

what we mean when we refer to service logic, we define atomic services and composite

services. An atomic service is one which performs very specific functions and does

not reuse functionality provided by other services. For example, if an atomic service

is acting as an interface into the bearer network, then upon execution of one of its

functions a predefined set of signals traverse the bearer network according to the

required functionality. Based on this, it is possible to view Parlay-X web services
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as atomic services. Atomic services are not used directly other than in composite

services, where their atomic functionality is reused to build up complex functionality.

Where we have simply been discussing services, we have been specifically referring

to composite services and the orchestration thereof. Orchestration is the control of

the logical process flow of a composite service as it executes a specified function by

reusing the functionality of atomic services and implementing its own logic. In the

target service environment of this research report, all composite services exist in and

are invoked in the application layer. This differs from the IN in which composite

services (the target services in each capability set) resided in the bearer network

and were built up from atomic Service Independent Building Blocks (SIB) which

also existed in the bearer network.

In the proposed application layer approach, all composite services exist in ASs

where orchestration also occurs. The composite services reuse atomic services which

abstract both bearer network functionality and higher-level reusable logic existing in

ASs. These atomic services will take on the term Reusable Building Blocks (RBB)

when they are discussed in the context of the supporting service framework discussed

in chapter 3. Composite services will continue to be referred to simply as services

and service logic will denote service orchestration.

2.5.2 Types of Service Initiation and Invocation

The mechanisms with which service logic is called on can be categorised under

two headings: the initiation of a service refers to the location where it is deemed

necessary to request the service’s execution; the invocation of a service is the actual

process of calling on service logic. The changes to the network which precede

new types of initiation and invocation are shown in figure 2.4. In the legacy

network, before telcos opened up the functionality of the bearer network to 3rd-party

developers, services could be initiated in the terminal or in the bearer network. They

could, however, only be invoked by the bearer network using triggers which, when a

specific condition was met, would execute service logic residing in SCPs in the bearer

network. This is shown in figure 2.4(a). The opening up of the network resulted in

the AS being the third location for initiation and the second source of invocation,

as per figure 2.4(b). Service logic could now be hosted and initiated in ASs which

in turn also allowed ASs to invoke their own service logic or service logic residing in

other ASs or the bearer network.
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bearer network

(a) legacy

bearer network

AS AS

GW

(b) with open APIs

bearer network

AS AS

GW

(c) with ALS

Figure 2.4: Stages in the progression of service initiation and invocation. Lightbulbs

show points of service initiation; dotted arrows show service invocation. The

terminal is not shown as connected to the bearer network as the arrows only represent

invocation. Also note the gateway (GW) entity required for enabling ASs to invoke

bearer network services and vice versa.

The introduction of ALS adds a third type of invocation by providing terminals with

the ability to invoke service logic directly, shown by the arrow from the terminal to

the AS in figure 2.4(c). This is also aided by the fact that improved computational

abilities of terminals allow for some service functionality to be shifted into them.

This is a contrast to the legacy network, in which the initiation of a request for a

service’s functionality, such as for placing a call on hold, would result in the request

being forwarded to a switch which in turn would invoke the service in an SCP on

behalf of the terminal.

In the ideal environment all service logic is executed in the application layer. To

that end ALS should result in a simplification of figure 2.4(c). If all service logic

is located in the application layer, then there is no need for the application layer

to invoke services in the bearer network (since service logic no longer exists in the

bearer network) and similarly services are no longer initiated in the bearer network.

Figure 2.5 represents this simplification which is also aided by relocating the view

of bearer connectivity and its locus of control into the application layer which is

discussed in section 2.5.3.

2.5.3 Bearer Connectivity Control and Monitoring

Section 2.4.1 presented the objective of inverting control of the entire telecoms service

infrastructure. This is achieved when ALS is in place and the majority of service

logic residing in ASs is either invoked from a terminal or from ASs themselves.

Ideally, the bearer network only serves to provide bearer connectivity and is called
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bearer network

AS AS

GW

Figure 2.5: Simplified service initiation and invocation with ideal ALS. Lightbulbs

show points of service initiation; dotted arrows show service invocation. Note that

ASs no longer invoke service logic residing in the bearer network, and service logic

is no longer initiated in the bearer network.

on only when required. The bearer network’s functionality can then be treated as

supplementary to applications and divided into atomic services which are exposed

by generic call control abstractions. The result is that the application layer becomes

the locus of service control.

Regardless of this, bearer connectivity remains telcos’ main product offering es-

pecially as traditionally their main business is providing carrier grade telephony.

Further, most telecoms services involve some form of telephony and thus require the

support of the bearer network. Because of these two reasons, the issue then arises

as to how bearer connectivity is monitored and controlled when services operate

mainly in the application layer.

BCCM in the Application Layer

In a network configuration in which the bearer network is the primary means for call

and service signalling, it is intuitive to have bearer connections both monitored and

controlled from the bearer network. When service invocation and control is moved

into the application layer as is the proposal for this research report, the location of

bearer connectivity control and monitoring (BCCM) needs to be reconsidered. In

designing an application layer focused network we have to determine whether it is

feasible for BCCM to remain in the bearer network or if benefits can be gained from

relocating it into the application layer. An important point weighing in favour of
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shifting BCCM into the application layer is that in the proposed service environment

all sessions are initiated and maintained in the application layer, to the extent that

even a basic two party call is initiated in the application layer. This means that

all bearer connections are associated to processes in the application layer and are

effectively part of a service. In the ideal case of the proposed network design, all

service logic is located in the application layer. Service programmers developing

services which require bearer connectivity need to interact directly with a BCCM

system. The logical approach would therefore be to have it reside in ASs.

Bearer Connectivity Control in the Application Layer

Moving both the monitoring and control of bearer connectivity can be seen as two

separate, but connected issues. We have already discussed the tool which can enable

bearer connectivity control in the application layer: abstraction using open and

generic APIs into the bearer network. However, the main candidate API for our

purposes, Parlay, is not completely in a form which would cater to IT software

developers. This is because it has inadequate structure, does not implement software

reuse and offers no guidance on application layer usage [21]. The approach we take

is to further abstract Parlay’s interfaces to produce an interface that is more IT-

friendly. This is detailed when we outline the supporting application layer software

framework in chapter 3. It is still important to acknowledge that Parlay capably

performs the task of a generic interface, providing a robust starting point on which

to build an application layer bearer connectivity control interface. We leave the

topic here for further exploration in chapter 3.

Bearer Connectivity Monitoring in the Application Layer

Bearer connectivity monitoring in the application layer provides a newer challenge

in the implementation of ALS. Bearer connectivity monitoring allows a service to

determine whether it can invoke a particular operation in the bearer network without

placing the bearer network into an invalid state and it also keeps a service updated

of any changes to a bearer connection of which the service should be aware. In

older network configurations in which application layer signalling is not formally in

place we can differentiate between network and application views (we use the term

view interchangeably with monitoring) of call processing where the network view is

located in the bearer network and exists throughout the lifetime of a call and the

application view is located in an application server and only lasts as long as it is

27



2. APPLICATION LAYER SIGNALLING

needed by a service [5, pp 53-54]. However these distinctions fall away when ALS is

introduced. All service sessions are initiated and maintained in the application layer

so an application view would also have to exist throughout the lifetime of a call,

since in an ALS environment all calls are initiated in the application layer. From

this we make the design choice of moving bearer connectivity monitoring completely

into the application layer.

To cater for monitoring in the application layer, an AS should be equipped with

models of all the bearer connections that have been started within the context of

a service. The view associated to each model would always represent its associated

bearer connection’s current state. Before invoking an operation on a bearer con-

nection, an application would first query that specific bearer connection’s model to

ascertain whether the operation is valid in the current context. Whilst it could still

be possible to do this if bearer connection state monitoring was kept in the bearer

network, this would be less efficient since in this case, a service application would

have to send a query down to the bearer network before invoking any operation.

Alternatively it would invoke an operation without any guarantee that it would

execute successfully due to the possibility that the operation may put the bearer

connection into an invalid state.

If the models of bearer connections are available in the application layer, services are

offered a consistent view of the bearer network at all times. Further, these models,

which are generic and abstracted, will complement the abstracted control of the

bearer network discussed above – the argument from this being that if control is in

the application layer, monitoring should be closely coupled to it and thus exist in

the application layer too.

Bearer Connectivity Model

Together, control and monitoring are combined into a bearer connectivity model (in

the literature this is referred to as a call model). The model forms part of a call

control API, such as those presented by Parlay [22] and Java Call Control (JCC)

[23]. The call control API which we will use to support our application layer centric

service environment will integrate a finite state machine (FSM) originally designed

to support a Parlay-X extended call control web service. This FSM is presented

in [24] and shown in figure 2.6. Like that of other call models, this FSM shows

the allowed transitions that can occur during the processing of a call. A model

would disallow a call control operation if a particular transition would violate the
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Figure 2.6: Bearer connectivity FSM

constraints set by the FSM.

The FSM in figure 2.6 is applicable to BCCM in the application layer as it was

designed to provide state to a stateless web service interfaces into a bearer network.

It therefore suits the decoupled and abstracted service environment of the supporting

application layer framework to be detailed in chapter 3. Further, to support the

simplified web service interface it was designed for, the model is much simpler

than those used by the standardised, low-level and fine-grained call control APIs

mentioned above. Simplification is a key goal in introducing ALS, making this FSM

very appealing for use in the bearer connectivity model to be implemented by the

framework.

Object-Orientation

The framework will be built up using OO and so too will the BCCM built into the

framework. As shown by figure 2.7, BCCM lends itself well to being represented

using OO [25] which provides extra motivation for it to be performed in the applic-

ation layer1. The application layer which is a very software focused layer should

ideally cater to IT methodologies and concepts. Thus OO’s being very much an IT

1The OO model for a bearer connection that we actually use in examples in chapter 3 is much

simpler than that of figure 2.7.
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Figure 2.7: Example of BCCM represented using OO. The CallState object

encapsulates the FSM in figure 2.6.

software concept means that since BCCM can be presented in an OO fashion it is

virtually tailor-made for use in the application layer.

2.5.4 Signalling Requirements in the Application Layer

The technical requirements for direct signalling between terminals and application

servers differs from those usually associated with CS signalling. The differences

are revealed when considering the tasks of nodes involved in application logic and

those involved in bearer connectivity. Obviously, ALS is designed to cater to the

needs of distributing application logic. In the execution of this distributed logic,

two applications signal to each other to request that the other perform some sort of

computation, useful within the context of a service. Bearer network nodes signal to

each other to discover a route for a media stream to traverse, to determine whether

the stream is allowed to be established between two terminals and to maintain the

stream. Therefore, bearer network nodes’ computations are used to direct traffic

based on QoS guarantees and AAA rules.

This distinction between bearer network CS signalling and ALS, highlights the fact

that ALS is unique to the application layer and therefore needs to have a set of

requirements defined based on its task of direct application to application signalling.

Whilst this report does not fully detail a concrete ALS protocol, the requirements

laid out below can be used to develop a protocol. Further, these requirements also

affect the software framework which will support ALS (to be covered in chapter 3)

and so in listing the requirements we also touch on the effects on the framework.
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Figure 2.8: Sideways and downwards communication within the context of the

framework. Note the clear distinction between the API for enabling communication

with terminals and that for communications with the bearer network.

Sideways signalling

One characterising feature of ALS is that it is used exclusively for “sideways”

communication. This means that it does not traverse layers, unlike CS signalling,

which when used to support service functionality, acts in a “downwards” direction to

provide communication between the bearer network and the gateways which provide

services with access into the bearer network.

From figure 2.8 downwards signalling implies the interaction between two set sys-

tems, one of which relies on the other for supporting functionality. A Parlay gateway

interfacing with an entity in the bearer network is an example. The important

feature here is that these two entities stay associated to each other for a long period

of time. Similarly, an AS will only be associated to a single Parlay gateway. On the

other hand, also shown in figure 2.8, sideways communication is designed to allow

communicating entities to interoperate with multiple separate entities. The relevant

example here being ALS with which an AS interfaces simultaneously with multiple

terminals.

The difference in downwards and sideways signalling also affects the way in which

the software framework will present interfaces into the bearer network and into ALS.

Most modern service environments present downwards interfaces, such as the various
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RAs used by JSLEE [15]. Similarly, the OSE includes the I2 interface which is a

general name for any interface that is available to an enabler to access underlying

network resources [18]. In section 3.3.1 the proposed software framework’s RBBs

are introduced, and they too perform a similar function. Downwards interfaces are

those which provide the abstraction between layers that has been discussed in depth

up to this point in the report. However, they are not used for communication within

single layers.

Sideways signalling, which is constrained to a single layer, is not related to abstrac-

tion. Abstractions act to provide isolation between two dissimilar systems, where

one of the systems needs to use the resources of another system in order to function.

The aim of sideways signalling is to enable communication between two logical nodes.

The two nodes can function independently of each other but have to interoperate

to be useful. This can be likened to the difference between protocols and APIs

discussed in [5, pp 24–27]. We cannot make the exact same clear distinction here

because if the framework which is going to be developed in this chapter is going

to be functional, then the protocol for enabling sideways communications is going

to be presented as an OO API. Instead we rely on categorising communication as

either sideways or downwards as a means of showing that the ALS software interface

interacts with the software framework in a different way to that of downwards facing

abstractions which will be encapsulated in RBBs. The software framework has to

cater specifically to ALS as an integral part of the framework and not encapsulate

it as an RBB.

Bidirectional Asynchronous Communication

Figure 2.8 shows that sideways communication, such as that of ALS, caters to a

scenario in which one AS communicates with many terminals and in which these

terminals send messages asynchronously to the AS and vice versa. This means that

ALS has to support simultaneous receiving, handling and sending of messages. For

this, the AS must also be able to initiate a message conversation by sending the first

of a series of messages, and not only be able to respond to terminal requests.

This requirement of asynchronicity supports the simplification of the object-oriented

message passing between distributed application layer entities. As we will see in

section 3.2.4, the proposed ALS framework will use remote method calls as the

format for message passing between ASs and terminals. Methods are capable of

returning values, which calls for synchronous behaviour. However, supporting this
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in a distributed environment adds complexity by requiring a means for enabling

a node to identify the message containing the return value associated to a remote

method it called. Instead, by specifying asynchronous functionality, we simplify the

requirements of ALS by removing the ability to make synchronous method calls.

This is covered further in section 3.2.4.

The bidirectional and asynchronous behaviour also affects the framework by forcing

it to provide an interface both for sending and processing messages to and from

multiple terminals simultaneously. The software mechanisms for this are presented

in chapter 3.

Statefulness

State is a very important aspect of any telecoms system. We examined its im-

portance in relation to BCCM in section 2.5.3. ALS is therefore specified to be

stateful, in the sense that the action an application layer node takes in response to

receiving a message depends on the state of that node. For example, if a terminal,

say terminal C, sends a message to an AS requesting that a voice call be setup

between itself and terminal A, but terminal A is already in a call with terminal B,

the request will fail, whereas it would not if terminal A was available for calls. More

formally, in the context of calls, messages that request a state transition unspecified

by the FSM of figure 2.6 will fail. The idea being that certain messages passing

between terminals and ASs are only relevant to certain states. The requirement of

statefulness therefore mainly comes about by the fact that the ALS is affected by a

dynamic bearer network whose state is constantly changing.

Statefulness places the onus on application logic to handle messages which arrive

out of context (i.e. not appropriate to the current state). This adds complexity to

ALS, however it is unavoidable given the telecoms context of the application layer.

There are ways to simplify the programmer’s task of handling state. For example,

a mechanism involving programming exceptions can force a programmer to handle

these exceptions if an attempt to perform particular operations fail. In this case,

the AS can be programmed to reply to an out of context message with a relevant

error which the terminal can handle. These exceptions can be built into any BCCM-

supporting RBB, an implementation issue which we do not delve into further in this

research report.
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Types of Signals

There are five types of signals that can be sent from terminal to AS and vice versa:

1. instruction: a request that the receiver perform a function specified by the

message.

2. information request : a request for information, such as the state of another

terminal.

3. notification request : a request for the receiver to notify the sender of a partic-

ular event.

4. acknowledgement : confirms that a message has been received.

5. return: in response to a message that needs some information to be returned,

this message contains that information. Note that this message is a separate

asynchronous message as per the asynchronous message transmission require-

ment detailed above.

An ALS implementation does not have to cater explicitly to each of these messages,

since it is up to the service developer to specify the different methods that can be

called remotely. The list above is simply a categorisation that identifies the uses of

ALS.

2.6 Conclusion

We have presented ALS as a novel approach to service development which ensures

that service logic is correctly constrained to the application layer. “Sideways” ALS

does not traverse layers, and so separates the bearer network from service logic

distribution. This leaves terminals and ASs as the only entities that process service

logic. In this situation, services are no longer reliant on the underlying bearer

network infrastructure, making for an IT-friendly service development environment

in which software programmers do not need knowledge of telecoms protocols to

develop services which are distributed over a telecoms network.

ALS is not a protocol, and in fact at no point in this research report do we formally

define a protocol. Rather, it is a methodology for allowing service logic end-points
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to communicate in a similar way to that of the Internet whose infrastructure, which

relies on keeping complexity at the network edge, is better suited to modern complex

services. ALS is the crucial component of an application layer focused service

development environment and from a software perspective is not treated as a reusable

adapter to a signalling system (like a JSLEE RA).

We do not regard ALS as a replacement for bearer network architectures. The bearer

network of any telecoms infrastructure is designed to facilitate high volumes of high

quality calls – the primary source of revenue and hence the primary focus of any telco.

Many bearer networks are in place, and have been for many years and telcos have

made large investments into ensuring that they can offer a high grade and quality

of service. What ALS attempts to achieve is to be complementary to the bearer

network by removing the responsibility of service message communication from the

bearer network and reposition the locus of service development in the application

layer. To do this, all service sessions are initiated in the application layer and are

kept there until a bearer stream is required by the session (which might not always

be the case for some services). This focus on the application layer is performed to

the extent of having BCCM in the application layer.

ALS also acts to simplify service development and calls for a new service development

environment to be designed. The following chapter covers the requirements and

design of a software framework which supports ALS and in doing so aims to simplify

the process of implementing modern distributed telecoms services.
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Chapter 3

Supporting Software Framework

ALS leads to a service environment which is a large step away from the traditional

telco view of services. This is not just in the way that terminals communicate with

service logic. ALS conceptually changes the way that services are developed and

deployed. Service logic can be completely separate from the underlying bearer

network, ideally being decoupled to the extent that it can be reused over any

infrastructure.

Section 1.2.2 named a few of the supporting technologies for modern services. These

are mature, standardised technologies which have been widely deployed to support

telecoms services. If ALS is to be implemented, it would be sensible to look to

these technologies to provide the necessary platform to support this new service

paradigm. In the face of there being no service development environment which

explicitly supports ALS, this chapter lays out the requirements of a supporting

software framework (which will be referred to from hereon simply as the framework.

The requirements are given in the form of a technology-neutral UML design.

3.1 The need for a Formalised Application Layer Sig-

nalling Framework

Whilst ALS provides the mechanism for a seemingly efficient and intuitive service de-

velopment environment, it is not without its idiosyncrasies. Chapter 2 characterised

ALS in terms of its service invocation and BCCM and how they differ from those of a

traditional CS signalling based service infrastructure. Another main difference also

discussed was that of the lifetime of AS processes and that in an ALS environment’s

service session, these processes exist for the length of the session — contrasting
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with the traditional invocation of AS service logic only when required during a

session. These differences highlight the fact that existing service architectures

or frameworks may not cater to the needs of an ALS implementation. This is

because they have been designed to host traditional telecoms services which are only

executed to supplement the bearer network’s handling of a call. Nevertheless, some

existing technologies may actually be suitable, so there is a need to work out the

requirements that implementations would have to meet. With these requirements

in place, it would then be possible to map existing technologies to them and also

to use these requirements as a guide for the development of new ALS supporting

software frameworks and architectures.

3.1.1 Formalising The Level of Abstraction

ALS relies very heavily on service logic being correctly abstracted from bearer

network operation. So far, three levels of abstraction have been covered. The first

and lowest being that of simply abstracting a single CS signalling protocol into

an API, such as is done with SIP servlets. At this level of abstraction a service

programmer requires detailed knowledge of telecoms concepts.

The second level is open generic abstraction like that of Parlay. At this level of

abstraction, programmers make use of a uniform interface which can be mapped to

different bearer network implementations. Despite a service programmer not needing

expertise in CS signalling protocols at this level of abstraction, one still has very

fine grained control of bearer network resources, which to a lesser extent, requires

that a service programmer be equipped with detailed telecoms knowledge. This

follows on from the point made in section 2.5.3 about Parlay not offering guidance

on application layer usage. This point also leads on to the third level of abstraction,

which will be built into the framework and which we label as IT-friendly abstraction.

The idea of this level of abstraction is taken from the use of web services in telecoms.

Looking to Parlay-X as an example, we see that it was created to further abstract out

the fine grained call control offered by Parlay. Web services are “inherently simple

and cannot express detailed network capability” [8, pp 369], yet for many cases they

offer just the right level of control to programmers who come from an IT background

and lack detailed telecoms knowledge. Web services provide the inspiration for this

higher level of control, however we will not explicitly take the web service approach,

instead replacing it with a more technology neutral and still highly abstracted OO

interface into the bearer network.
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This level of abstraction is applicable to the framework since the goal is to have

the framework completely encapsulate service logic in the application layer. The

justification for this comes from the fact the framework must be accessible to software

programmers who are used to developing the computing applications associated with

modern services which reside in the application layer. These programmers do not

necessarily have a telecoms background and so for the sake of the telco and for their

own it is more suitable to have them as far separated from network functionality

as possible. Such an abstracted interface would make the framework a lot more

appealing to wider range of programmers for the reason advanced in [26]: for each

level of increased abstraction, the number of programmers with the skills required

to program at that level increases by multiple orders of magnitude.

The principle here is that ALS is the catalyst for moving all service logic into the

application layer. This, in turn, calls for service logic to be developed in a highly

decoupled software development environment, meaning high abstraction from the

bearer network to ensure that service logic does not cross the boundaries of the

application layer. Despite abstraction from lower layers being a separate concept

from ALS, it is nevertheless a necessary part of the framework.

3.1.2 Meeting The Needs of Direct App-to-App Signalling

The effect of ALS on service development is not a subtle one. It results in a unique

requirement of a supporting mechanism for keeping signalling in the application

layer (instead of adaptation to lower layer signalling, which is already implemented

in various mature technologies). It also changes the way services are developed,

as service logic is distributed between ASs and terminals and is executed only on

them. Since they are both equally important in the computations involved in service

logic there is a need to share the results of these computations easily. ALS must be

an integral part of the framework whilst keeping the signalling mechanisms simple.

This leads to some technical requirements such as multithreading, message context

and dynamic method invocation (all covered in section 3.2).

It is clear that ALS needs a specialised software environment as no exisiting tele-

coms service development environments explicitly cater towards application logic in

terminals and ASs communicating directly with each other to keep all signalling

in the application layer. An ALS-based development environment is unique in

that it must both cater for “downwards” bearer network abstraction and for the

“sideways” signalling we introduced in section 2.5.4. This chapter therefore shows
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how a software framework must be developed to cater specifically towards ALS.

3.1.3 Supporting Application Layer BCCM

In section 2.4.1 we advanced the idea of inversion of control, where in an ALS

environment, bearer network connectivity is secondary to the operation of a service;

in section 2.5.2 we discussed the reconfiguration of service invocation and initiation

to a point where service initiation can only occur in the application layer and only

ASs are able to receive service invocation requests. These two points together

separate service control from bearer network entities in the SCF and RCMF layers

and raise it into the application layer. In section 2.5.3 we went on to explain how

having the application layer as the focal point of service development and operation

would benefit from BCCM being located directly in the application layer as opposed

to being presented as an API.

As was mentioned when BCCM was introduced, OO can intuitively represent bearer

connections in a manner that is accessible to programmers who have limited CS

signalling knowledge. This kind of BCCM demands a service development envir-

onment that is not based on various modules that adapt to different lower-level

bearer network technologies. It instead calls for a interface into it that allows for

the manipulation of a model that is a general representation of the state of the bearer

network from a higher, less detailed viewpoint that is suitable for use by application

logic that has no need for CS details.

We have already specified our framework as being designed for the application layer.

Based on the positioning of BCCM in this layer, the framework is necessary to

provision this higher level interface to service developers. This also fits in with the

IT-friendly abstraction introduced above.

The various reasons given for the necessity of a dedicated ALS framework all centre

around the encapsulation of service logic in the application layer and sideways

signalling between service logic nodes. Having explained these reasons, we now

move on to specifying various requirements to ensure a simple ALS implementation.
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3.2 Guiding Principles and Design Choices

Beyond the main justifications for a formal ALS framework which were examined in

section 3.1, the framework design will follow other important principles along with

specific design choices. We will highlight them in this section before showing how

they are used in and affect the design of the various framework components detailed

in section 3.3.

3.2.1 Object-Orientation

OO is a powerful tool for reusable and extensible software design, and its benefits

are useful to telecoms software development as well. Despite this, older procedural

programming languages have been used for many years in telecoms systems and are

seen as more computationally efficient. However, this fact rests with the quality of

the software programmer — producing robust and efficient software at the lower

level associated with procedural programming is a costly and time consuming task

that can only be undertaken by skilled programmers. OO, on the other hand, opens

up the door to a wider skill base and having a telecoms service environment based on

it, enables programmers to make use of the many OO tools, programming languages

and methodologies which are available to the IT industry.

The reasons for building up a service development environment using OO are

manifold and are covered in [27]. We will give some reasons here which are more

relevant to the ALS framework.

Expressive Power

The expressive power of a programming language refers to its ability to be able to

describe in a human understandable form the solution to a problem that the software

is attempting to solve. In the case of telecoms and ALS, the language needs to cater

to solving various representational problems. The most pertinent problem is how

would BCCM be represented in the application layer. Another is how to represent

ALS so that a programmer has easy access to its functionality.

Regarding the first problem, section 2.5.3 already pointed out the applicability

of OO to BCCM with an example in figure 2.7 of how it could be represented.

The other problem can be handled by having terminals represented as objects. By
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calling a sendMessageToTerminal() using a Terminal object, the framework will

send a message to a physical terminal which this object represents. Further, a

management object containing references to all terminal objects can allow terminals

to be looked up according to specific attributes such as a username or telephone

number associated with the terminal.

OO can also provide a strong representation of the overall framework. The various

components of the framework along with their boundaries can be clearly defined and

so too can their relationships. Structuring the framework in an easily understandable

form makes the framework more accessible since instructions on the use of each of its

components can be more easily contextualised and conveyed. This is more natural

than the procedural approach which groups functions into reusable libraries which

have much weaker relationships and structure in context of the problem being solved.

We will see how OO accomplishes the task of representing the requirements of the

framework in section 3.3.

Encapsulation

Abstraction has come up as a fundamental part of the supporting infrastructure

for ALS. Encapsulation forms a critical part of this, since the objective is to hide

telecoms complexity from the programmer so that no detailed telecoms implement-

ation issues leak into the application layer. Complex implementation details can be

encapsulated within objects so that a programmer can utilise an abstracted interface.

For example, a makeCall() method of a CallManager object would encapsulate all

the Parlay method calls required to setup a bearer connection, thereby simplifying

a programmer’s interaction with underlying network functionality by encapsulating

multiple complex calls into a single method. The encapsulation which OO achieves

is, in a sense, the main means by which bearer network abstraction is implemented.

Encapsulation also enables the reusability of service logic. Since bearer network

implementation details are encapsulated within the framework’s objects, any service

logic using these objects can function irrespective of the encapsulated technology’s

specific bearer network logic — once again pointing towards one of the ideals that

abstraction tries to achieve.
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Object Distribution as a Protocol

Telecoms services are inherently distributed. This fact is very relevant to ALS in that

the framework will rely on having some service logic reside in terminals. Technolo-

gies like RMI, CORBA and Distributed Component Object Model (DCOM), have

shown the usefulness of having application logic distributed as objects in multiple

computing nodes. Whilst not a defining feature of ALS, its signalling protocol can

be structured using OO.

As will be shown, within the framework services will be presented as objects with

public methods that can be called from other services or from terminals. Since

remote terminals will see these service objects as exactly what they are — objects

with methods — they will be able to interact with them using OO message passing.

OO will therefore also serve the framework as the protocol between terminals and

ASs. This will take the form of allowing a terminal or AS to call a method on a

remote service object, have this call marshalled into a form which can be carried by

the transport network, and then at the destination the message will be unmarshalled

so that the local method on the desired service object can be called. This sequence

of events generally describes the operation of all the distributed object technologies

listed above. The difference being that the above technologies have overheads which

are not suitable for use by lower power terminals. Thus we will look to reuse their

concepts but in a simplified manner.

3.2.2 TINA

The use of OO in telecoms is not a new concept. Amongst its other accom-

plishments, the Telecommunication Information Networking Architecture (TINA)

initiative brought to light, emphasised and formalised OO for service development.

A legacy approach to the modern telecoms environment, TINA provided a basis

for future telecoms service technologies. It was made up standardised architectures

which provided guidance on the development of services and the composition of

transport networks to cater to the distribution of the logic of these services. We

briefly mention it here to show how ALS follows on from the TINA vision of modern

services and also formalises a novel way in which TINA’s concepts can be realised.

TINA was never fully accepted in the telecoms industry as a standard, however its

four main principles define modern telecoms services [28] and support the concept
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of ALS:

1. object-oriented analysis and design

2. distribution

3. decoupling of software components

4. separation of concerns

The applicability of the first three of these principles to ALS have been covered.

Contextualised within the ALS framework, the last concerns the need to have

separation between the different components of a telecoms network. ALS enhances

this by providing a means for creating a clear separation between services and bearer

network resources.

As the framework’s details are laid out in the remainder of this chapter, TINA’s

relevance will become more apparent. It is important to keep TINA in mind when

discussing ALS as it formalised a lot of what ALS aims to accomplish.

3.2.3 AAA

AAA is a critical part of any service infrastructure. The framework should provide

mechanisms for this to implemented. The manner in which they are implemented is

only covered very basically in this research report. We only indicate the points where

AAA functionality appears without detailing the implementation. This section

covers the AAA functionality that the framework needs to cater for and section

3.3, which describes the framework, presents a few of the technical details.

Authentication

All terminals connecting to an AS have to authenticate themselves to ensure that

they actually do have access rights to the AS and then to be associated to the AS

in a way which ensures that they can be identified for all service requests.

When a terminal first connects to an AS, it is challenged for credentials that uniquely

identify it and for a password to authenticate it properly. The technical security

details (such as encryption) are not covered, but this report does indicate how the
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Figure 3.1: Access restriction types. Arrows show locations where access restrictions

can be enforced.

framework only allows a terminal to be associated once it is correctly associated. In

fact, the credentials provided during the login phase are used to identify the terminal

during service sessions.

Inter-entity Access Control

From the perspective of the framework there are three types of components that

cooperate in service logic: terminals, services and RBBs. For the purpose of this

discussion we will provide a general term for these components: entity. Since entities

are presented using OO, access between them can be restricted on a per-object and

per-method basis. On a per-object basis, access is granted to all the methods of an

object; on a per-method basis, access can be granted to individual methods.

Figure 3.1 shows the types of access control that can be enforced. Terminals may

require access rights to invoke functionality of service objects or their methods.

Access control can also enforce restrictions on terminals accessing services which

use specific RBBs or their methods. Further, services may have to gain access

rights to use RBBs or other services or their methods. As a clarifying point, control

on RBBs accessing functionality outside of themselves is not required, since RBBs

cannot invoke service methods or other RBBs’ methods.

Whilst not all of these types of access restrictions have to be implemented, the
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telco (or any other host of the framework) has a lot of flexibility in the type of

access that can be granted. This flexibility gives the telco control over the way that

both service developers and end-users interact with its resources. The service-to-

service, and service-to-RBB restrictions allow the telco to limit service developers

by specifying what underlying bearer functionality or existing service logic they can

reuse in their own service applications. The terminal-to-service and terminal-to-

RBB restrictions can ensure that users have to register their terminals for specific

service functionality. This has to be supplemented with authentication functionality

discussed above, so that terminals can be associated with unique credentials that

can represent a user.

Accounting

Telcos require a lot of flexibility in accounting to provide as much flexibility in

charging for added value as they do for the technical functionality of services. To

cater to this, every call to any service and RBB method can be charged in whatever

way the telcos wishes. Before the actual method is executed, the relevant charging is

performed. We cannot detail the charging functionality, but this report does indicate

where accounting does hook into the method calls performed within the framework.

The remainder is left as an implementation detail.

3.2.4 Signalling Protocol

Seeing as the main attribute of the framework is that it supports and is based

on ALS, the actual application layer communication protocol forms part of the

framework’s design. Section 3.2.1 already covered this from the point of view of

treating message passing between objects as the main communication mechanism.

We touched on the requirement of having method calls marshalled into a format

which can be carried by the transport network. We now detail this requirement.

When two local objects interact the messages passing between them are in the form

of a method call with specified arguments. In remote interaction between objects,

the name of the object would also have to be included to assist the ASs in which

the objects reside in identifying the object for which the method call is intended.

Overall, in the ALS context, this would mean that messages between nodes would

contain the following information:
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• object name

• called method

• list of arguments for method

Obviously, more information could be included, such as the package into which the

object is grouped (assuming the implemented framework makes use of a package

mechanism like Java’s package or Python’s modules) and the types of each of the

arguments. However, here we are only looking for essential elements and so it is

from the above list that we identify the requirements of the marshalled method calls

which act as the ALS protocol.

A protocol has two identifying features. The first is the actual format or structure

of the messages and deals with issues of encoding and readability. The second is

the mechanism with which they are sent, specifying the sequence of events which

occurs to send a message from one node to the next. Provided that the protocol is

capable of transporting method invocations from one node to the next, one could

argue that the detail of its mechanisms and message structure are irrelevant. This

argument is not completely untrue, especially since the real advantages of ALS lie

in the direct communication between terminals and ASs and not in the details of

the signalling that provides this. On the other hand, one could make the same

argument about any service architecture, be it the IMS or the IN. Yet these two

telecoms infrastructures both have rigorous definitions of their various protocols for

the purposes of standardisation, interoperability and ensuring the use of best practice

techniques. Whilst we are not aiming to standardise on any protocols within the

scope of this research report, recommendations are put forward based on the grander

purpose of ALS.

Message Structure

The structure of messages should be able to represent the information describing the

call to a method on a remote object along with arguments for that method. We are

designing for the simplest case in which argument types are not included and thus all

arguments can be represented as strings. This is important in that the protocol will

be text-based like many other modern application layer protocols that are in common

use in telecoms services such as SIP and the Hypertext Transfer Protocol (HTTP).

Then, we look to the Extensible Markup Language (XML) to provide the text-based
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<?xml version="1.0">

<message >

<service -object >InstantMessaging </service -object >

<method >sendMessage </method >

<arguments >

<argument >+27825551212 </argument >

<argument >I dont know where I am but the food

in the fridge is awesome! LOL!</argument >

<arguments >

</message >

Listing 3.1: XML formatting of a remote method invocation of a service object

structure. XML is adept at representing objects in a textual manner and is also in

common use by telecoms web services and most modern programming languages also

have built-in support for it. XML’s structure makes for human-readability which is

advantageous in that it makes for efficient debugging and ensures that the meaning

of messages can be comprehended more easily by programmers.

Listing 3.1 presents an example of a message structured using XML. The schema is

very simple but conveys adequate information to invoke a remote service method.

The message does not explicitly associate the arguments with specific method

parameters, instead the schema relies on the position of the arguments much like

how methods are normally called in most languages. That and any other extraneous

information which is not included here, can be included in an actual implementation

at the cost of lessening simplicity, but for clarity only the bare necessities are shown.

The schema also does not include a place for a destination address. ALS deals

with direct application-to-application signalling, and so, unlike SIP which uses

proxies, does not have to consider the routing of messages. Instead ALS can rely

on the transport network for addressing functionality. The manner in which this is

performed is part of the signalling mechanism of the protocol.

Signalling Mechanism

The actual mechanism for sending messages is built up around a list of requirements

of which some have already been covered; the following should be supported:

• remote method calls

• asynchronous message sending and receiving
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• direct application-to-application signalling

• peer-to-peer relationships

Remote method calls This is more of an overriding requirement which leads to

the other three: the signalling mechanism should support the transportation of the

marshalled method calls in the format of the XML structure above. The protocol’s

transmission mechanism should therefore provide an applicable “channel” over which

the message can travel according to the following three requirements.

Asynchronous message sending and receiving The asynchronous nature of

the framework affects the protocol on two levels. The first is that a specific method

of a service object should be able to be accessed by multiple terminals simultaneously

(a topic covered in regards to message context in section 3.2.6). The second relates

to the returned value of a method. Within a single program thread of a non-

distributed application, method calls are synchronous: the thread’s logical flow

waits for a method to return with a value. Doing this in a remote multithreaded

situation is more complex because it relies on each method call being transported

with a unique identifier enabling the returned value to be associated with the original

method call. This results in extra overhead which can be overcome by specifying

that the return of values is not supported. If a method has to send information

back to the calling node (be it the AS or terminal), this can be performed inside

that method by calling a method on a remote object of the calling node. This is

better supported in an asynchronous environment and does not require any extra

supporting functionality. We summarise by stating that the protocol does not

support synchronous communication.

Direct application-to-application signalling This is a requirement which links

to the addressing of terminals. The protocol does not have to cater to addressing

because nodes operating at the application layer do not perform any kind of relaying

of messages (unlike that which is performed by SIP proxies). Instead a direct channel

is established from origin to destination and the transport network can be relied

on for addressing and message routing as service messages are not processed by

any intermediate transport network nodes. The form of this direct channel is not

specified and left as a transport network issue, but we can propose some ideas. For

example, a terminal can open up a connection in the form of a socket to keep the

channel continuously open while the terminal is associated with the AS. This kind

48



3. SUPPORTING SOFTWARE FRAMEWORK

of continuous connection is often blocked by firewalls. Thus another example would

be to use a web service type of connection to overcome firewall issues, but it would

not be a web service in the true form as both the terminal and the AS would have to

act as HTTP servers, which would blur the client-server relationship of web services.

However, we will not delve deeper into this transport network issue.

Peer-to-peer relationships OO interactions are inherently peer-to-peer in that

no one object can assume a server role. In a client-server model clients can only make

requests to servers and not vice versa. The closest a client-server model can come to

a server invoking client functionality is using a notification pattern. Whereas servers

can never make requests to clients, objects all have the capability to invoke methods

on other objects (provided they have the permission to do so). Since the protocol is

built up using OO concepts, a peer-to-peer relationship between terminals and ASs

is more applicable. It enables the asynchronous communication discussed above by

allowing both terminals and ASs to invoke the methods of each other’s objects. At

the protocol level this means that message transmission is symmetric in that there

is no telling apart remote method invocations from terminals or ASs.

3.2.5 Dynamic Object Loading and Method Invocation

The consequence of objects interacting remotely by having method calls marshalled

into a form suitable for network transportation, is that dynamic object manipulation

has to be introduced. Traditional non-distributed OO source code makes reference

to class names in a static manner. That is, when an object is to be created from

a class, the actual name of the class appears in the source code. When one of this

object’s methods is called, the actual name of the method also appears in the source

code — more formally, the specific class and its methods are referred to at compile

time. Although this is the most intuitive way to create objects and invoke their

methods, objects do not necessarily have to be manipulated in this way, and for

some cases, such as in the case of making remote calls to methods, they cannot be

manipulated in this way.

Most modern, industry-standard languages include the ability to load objects dy-

namically and call their methods. Objects can be created from classes whose names

have been specified at runtime and similarly, method names can also be specified at

runtime for invocation. This is useful to the framework in that when a method call
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is unmarshalled, the method on the remote terminal or AS can be called despite its

name and its associated object’s name not being “hardcoded” at compile time.

Further benefits of this dynamic manipulation of objects result from the fact that

this decouples the framework’s source code from that of service and RBB logic.

These benefits include enabling access control on objects and also allowing new

services and RBBs to be installed without having to restart the framework process

on the host AS. The former is useful in the context of the inter-entity access control

of the framework (see section 3.2.3). Instead of the traditional direct method

calling on objects, methods are invoked by calling a framework method of the

form invokeMethod(objectName,methodName,arguments)1. This invokeMethod()

method can implement the above-mentioned access control, before actually invoking

the method. The latter benefit is critical in a telecoms environment with a 99.999%

uptime requirement, since it ensures an AS can continue to operate, and not be

shutdown to install new services.

For the framework design, dynamic object manipulation will not be explicitly shown,

but it will be assumed to be in place. Any SDs will show remote objects being ma-

nipulated as if they were co-located with local objects, meaning that an interaction

between two remote objects will be shown by direct method calls by one object on

the other. The reader must be aware that dynamic method calls are actually being

used in this case, and are being relayed to the called object via a suitable manager

object to be introduced in section 3.3.4.

3.2.6 Message Context

Communication between terminals and ASs occurs using methods calls on remote

objects. Consequently, consideration must be given to the mechanism with which a

programmer can identify a terminal which called a specific method. Service logic is

invoked as per section 2.5.4, leading to a situation in which two or more terminals

could simultaneously call the same method on the same AS. In the majority of

cases the AS would have to reply to each terminal with some specific contextualised

message, which may be different for each of the terminals.

As a rudimentary example, say there is a service object called ShortMessage which

allows a terminal to send a short message to another terminal. The object has

1In the framework this method is actually called callServiceMethod() and is called in the context

of invoking service methods.
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a sendMessage(dest,msg) method which, when called, sends a message from the

requesting terminal to the destination specified as a method argument. The logic

of this method needs to be able to signal back to the requesting terminal indicating

the success of sending the short message. If two terminals simultaneously request

a short message to be sent and one is successful while the other is not, the service

logic must be able to send back a different signal to each of the terminals.

There are two options for accomplishing this. The first would require the pro-

grammer to include a reference to the terminal at the beginning of each method

definition (from the example above: sendMessage(terminal,dest,msg)). The

other option relies on the fact that due to the asynchronous nature of the frame-

work, multithreading would be used to spawn a new thread for each service logic

invocation. Programmatically, this would mean that an invoking terminal could be

associated with a thread in a lookup table. Within the flow of a particular thread,

multithreaded languages allow for a reference to that particular current thread to

be obtained (for example, Java’s Thread.currentThread()). This reference then

provides the index of the associated terminal in the lookup table.

The second option is simpler from a programming point-of-view, as it means that

a programmer does not have to include the terminal in the list of each method’s

parameters. Yet, it does introduce the overhead of a lookup table albeit hidden

from the programmer. This means that both options are viable but have their

drawbacks. We do not standardise the mechanism for identifying message context,

but we select the second mechanism in this report for describing the operation

of the framework. In an actual implementation, whichever way message context

functionality is implemented, care must be taken to ensure that the interface into

ALS is kept as simple as possible.

3.2.7 Reusable Functionality

Reusability is defined as “the extent to which a program (or parts thereof) can be

reused in other applications” [29, pp 111]. Reusability is not a new concept in the

telecommunication service development industry. Services in the IN were built up

from SIBs which encapsulated functionality that was common to multiple services.

The idea being that these SIBs contained flows of program logic that could be connec-

ted to each other to form the logic of a full service. A more contemporary example

comes indirectly from the Parlay SOA approach. In standardizing the interfaces

into the bearer network, Parlay allowed for easier reuse of software modules. Any
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module that complied with Parlay could be slotted into a service application that

made use of the Parlay standard and required that specific module’s functionality.

By pushing abstraction as an important concept for telecoms, Parlay made a good

case for proper software reusability in telecoms and persuaded telecoms software

developers and vendors to develop software in a reusable manner.

In the IT industry, reusability is a more prevalent concept. Any experienced software

developer will look to reuse as much functionality as possible. High quality reusable

software modules are widely (and often freely) available. The obvious benefit

being that this allows software to be developed rapidly. The other benefit being

that software developers can focus on building high quality application logic (i.e.

the application logic that is unique to their software) whilst relying on 3rd party

developers to maintain the quality of the reusable functionality. Nonetheless, even

with IT demonstrating the benefits of software reuse, telecoms has had a much slower

uptake of it. Software modules, more often than not, are proprietary, make no use

of open interface standards and are not considered for use in other applications.

The software framework of this research report will include software reusability as

a formal concept and as such it will be one of the core features. We have already

considered it in terms of its integration with access control (see section 3.2.3) and

since abstraction has been made into a very important aspect of the framework so

far in this report, reusability, which arises naturally out of abstraction, is already

inherently part of the framework. Its integration into the overall framework and

its use within service logic will also be covered in section 3.3.1. Whilst reusabilitiy

will be emphasised, the functionality, structure and interfaces of specific reusable

components will not. We have recognized that standardised interfaces are important,

but specifying the exact form of these interfaces is beyond the scope of the framework

and the work of this research report. Instead we will show how reusable modules’ (or

RBBs’) functionality will be invoked, how they will provide the abstracted “down-

wards” interfaces into the bearer network and how new RBBs can be integrated.

3.2.8 Location of Essential Value-added Functionality

Certain reusable functionality is essential to the value, but not necessarily the

structure, of the framework. For example, BCCM provides the abstracted interface

into the bearer network and is thus essential to the telecoms context of the frame-

work. However, not all services require its functionality, thus making it auxiliary to

the structure of the service framework. This is also true since the actual BCCM
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implementation can be changed depending on the technology of the underlying

bearer network.

The fact that some important value-added functionality is not crucial to the func-

tioning of some services means that this functionality should be encapsulated within

RBBs or as services as opposed to being presented as dedicated components of the

overall framework . This point will be clarified with other examples when the service

framework is presented in section 3.3.

3.2.9 User Identity

Within traditional telecommunications users are represented by their E.164 numbers.

If one party wishes to contact another be it by a basic voice call or by short message

service (SMS) message, the E.164 number is used to identify the destination party.

This applies to the framework as well. Every terminal which will connect to the

application server will have to be identified in some way. We are not aiming to

replace the user experience of telecommunications functionality. So for example, as

above, when one party wishes to call another they should still be able to use the

E.164 numbering system. When a basic two party call is performed using ALS, the

caller dials the called party’s E.164 number which identifies the called terminal. The

AS signals, over ALS, to the called terminal that there is an incoming call, and if

the terminal is not engaged, the bearer network is invoked to setup the call.

The framework is therefore designed to challenge a terminal with user credentials

when it first connects to the AS. On a successful authentication, the terminal is

associated with the user credentials, including an E.164 number. The number is

then used to contact the terminal for any service session. We note that the E.164

numbering system does not have to be used and can instead be replaced with a

username system. However, telecoms end-users are accustomed to E.164 numbering

and thus it remains as an identifying mechanism.

3.3 Main Framework Components

The overall design of the framework is presented in OO form in figure 3.2. The design

draws on that proposed in [19]. It is presented at a high-level and does not show

some of the important features of the framework which have so far been discussed:
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Figure 3.2: UML class diagram of overall framework

BCCM and AAA. Section 3.2.8 explained how BCCM is a feature best captured as

an RBB, and not as a component of the overall framework. Similarly, AAA is not

part of the high-level framework, but rather will be presented as a formal service for

reasons to be stated later in section 3.3.3.

The framework is made up of five discernible parts. Two of the parts, services

and RBBs, directly concern programmers who are developing software within the

framework. The other three, being the ALS interface, user profiles and the various

managers are abstracted from service programmers, but are instrumental in the

operation of the framework. The five major framework components are now covered.

3.3.1 Reusable Building Blocks

RBBs have been contextualised within the topic of atomic and composite services

(section 2.5.1) and within the software engineering technique of reusability (section

3.2.7). One more inferred purpose of RBBs is their provision of one of the frame-

work’s hallmarks: abstraction. In the same vain as JAIN’s RAs, RBBs also provide

reusable functionality of which some includes adaptation to lower-level telecoms

network resources.
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Figure 3.3: Basic operation of the two party call RBB

The purpose of RBBs is to encapsulate that functionality that will be reused in

different services, whether the functionality be the interfacing with other systems

or simply some useful reusable logic. This report will not actually standardise the

framework’s RBBs. Instead, by way of example, show how they are integrated and

their functionality called on.

Example RBB: Two Party Call

We will use a BCCM example to convey various concepts of RBBs. The two party

call RBB is an essential element of many telecoms services and so is a fitting

example. This RBB encapsulates basic call control between two parties. It offers

three functions: making a call, hanging up a call and notifications of call events. Its

operation is explained with reference to figure 3.3.

In context of a basic call service, this RBB is called on when a terminal sends an

ALS request to an AS (1) to setup a call with a specified destination terminal. The

service logic invokes the RBB (2) to create a reference to the call (3). The service

logic uses this call reference (4) to request from the bearer network (5) that it setup

a call using CS signalling (6). When either participating party wishes to hangup

the call, a request is sent from that party’s terminal to the AS (7). Using the object

reference to the call, the RBB’s hangup operation is called (8) which requests from

the bearer network that it disconnect the call (9, 10). Not shown in figure 3.3 are

the notifications which the RBB provides. These notifications are used to couple

55



3. SUPPORTING SOFTWARE FRAMEWORK

+shutdown()

ReusableBuildingBlock

+initialiseCall(terminal1Number : String,

TwoPartyCallRBB

terminal2Number : String) : Call

(a)

+startCall()
+endCall()
+registerEventListener(TwoPartyCallEventListener)

Call

+getEventListener() : TwoPartyCallEventListener

(b)

+indicateEvent(event : String)

<<Interface>>
TwoPartyCallEventListener

(c)

Figure 3.4: Classes of the two party call RBB

the call state model of section 2.5.3 to the BCCM provided by the framework.

We now detail the structure and operation of RBBs using the two party call RBB

just specified.

Structure and Operation

RBBs are made up of multiple objects which cooperate to provide reusable func-

tionality. The first point of contact to each RBB is a single object with the same

name as the RBB (such as TwoPartyCallRBB). This object constrains the location

of access-control to a single point, making for simpler access management. It also

presents the RBB with a minimalistic interface. Each RBB has one of these “first-

contact” objects which is implemented using the singleton design pattern [9, pp

127-134]; these objects exist from the point that they are first used until the time

that the framework is shutdown, meaning that the same object is always invoked,

regardless where the invocation originates.

The “first-contact” objects inherit from the ReusableBuildingBlock abstract class

shown in figure 3.4(a). In doing so, they must override the shutdown() abstract

method. This method is used when the AS is shutdown. When this happens,

shutdown() is called on all RBBs that have been instantiated. This gives the

RBBs an opportunity to perform any cleanup that needs to occur before the AS

is shutdown.

The entire RBB is not just made up of a single “first-contact” object. Rather this

single object can be seen as a kind of factory, which produces the objects which

the service logic manipulates in order to interact with the RBB. In the two party

call example, calling an initialiseCall() method on the TwoPartyCallRBB object
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produces a Call object with which the service logic interfaces to control the call.

More formally, the TwoPartyCallRBB’s single method is defined as in figure 3.4(a).

The Call object which the initialiseCall() method returns has four methods

which map onto the RBB’s three main operations shown in figure 3.4(b). The

first two methods, startCall() and endCall(), are self explanatory. The last

two are critical to ensuring that there is a mechanism for the RBB to signal the

service logic that particular events have occurred. The mechanism relies on a

listener pattern to implement notifications. The listener, which is passed into the

registerEventListener() method, is an implementation of a formal programming

interface (for example, an interface in Java or a class with only pure virtual

functions in C++) in figure 3.4(c). The interface specifies various methods which

the RBB calls in response to specific events. In the two party call RBB, notifications

exist for each step in a call setup, for failed bearer connection setup, and for expected

or unexpected termination of the bearer connection. All these events can be mapped

on to the FSM of figure 2.6.

Notifications are critical to the implementation of the call state model of the BCCM

of the framework, which uses the above mentioned FSM. The call state model is

implemented as a separate RBB since it is used in the same form for multiple bearer

connectivity RBBs. For the two party call RBB, the service logic would register

a concrete implementation of TwoPartyCallListener that updated the call state

model in response to events which mapped to relevant state transitions. This is one

example of the use of notifications which will be further detailed in section 3.3.6.

From the above details we can extract the following from RBBs:

• The first point of contact of an RBB is a single object which

– is a singleton

– is named with the same name as the whole RBB module

– acts as a factory to produce the other objects with which service logic

interacts to perform desired tasks.

• RBBs never signal directly to service logic; their functionality is only ever

called-on and they never operate independent of service logic.

• An RBB can signal back to service logic indirectly using a notification pattern.

The service logic must create a concrete implementation of a listener with

predefined methods which the RBB calls on in response to defined events.

57



3. SUPPORTING SOFTWARE FRAMEWORK

• An RBB only notifies of events occurring in resources which it encapsulates.

However, if the event occurs in a terminal, the notification is rather sent using

direct ALS, even if the event occurs within the context of one of the RBB’s

operations.

3.3.2 Application Layer Signalling Interface

In the JAIN standard all interfaces to external systems are presented as resource

adapters which perform that exact task: enabling the application server to adapt

to independent resources. Implicitly this also conveys that this adaptation performs

abstraction between layers. We raise this point to contrast the implementation

of ALS within the framework to the way one would attempt to implement it in

other frameworks. If JAIN were to be mapped to our framework, RAs would fill

the role of RBBs. Thus, using JAIN, ALS would simply be presented as another

RA. This contradicts a number of points about RBBs and ALS. Firstly, ALS is

constrained only to the application layer (section 2.5.4) whereas RAs interface with

lower layer functions. Secondly, RBBs do not call on service logic directly. This

means that the lower layer entities with which these RBBs interface, are not able

to invoke services within the framework. On the other hand, ALS allows terminals

and ASs to signal directly and asynchronously to each other and the relationship

between them can be seen more as a peer-to-peer (section 3.2.4). Thirdly, RBBs

are interchangeable and the framework can technically operate without them, albeit

with reduced functionality. This differs from ALS which was the catalyst for the

development of the framework in the first place and thus is ingrained in it and critical

to the moving of service logic to the application layer. Lastly, RBBs encapsulate the

functionality of resources that contain no orchestrating service logic whereas ALS

enables service logic to be distributed between ASs and terminals - resulting in the

requirements of ALS being different to those of RBBs.

Structure and Operation

The above discussion contains the reasoning for the framework’s ALS interface being

a completely separate component of the framework to RBBs as per figure 3.2. This

separation assists service developers in differentiating between reusable functionality

and service logic. The ALS API is presented as distinct from that used to invoke

RBB functionality. It is made up of the main ApplicationLayerSignalling object
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(a)

+callServiceMethod(terminal, serviceObject,
method, arguments[])

+handleNewConnection(terminal)
+handleDisconnect(terminal)

<<Interface>>
ApplicationLayerSignallingListener

(b)

Figure 3.5: ALS Classes. The association class in figure (a) represents the mapping

between Terminals and TerminalConnections

(figure 3.5(a)) which encapsulates the ALS mechanisms and protocols and presents

a clean and simple interface for sending messages to terminals.

Before the ALS component begins listening for connections from terminals, an

ApplicationLayerSignallingListener implementation is registered with it by

calling addApplicationLayerSignallingListener(). This listener’s methods,

shown in figure 3.5(b), are called when a new terminal connects or disconnects

and when a terminal sends a message to the AS. Once the listener is registered,

the framework calls startListening(). Then, on a terminal’s connection to the

AS, handleNewConnection() receives a new Terminal object (figure 3.5(a)) which

represents the terminal’s association to the framework. The method also calls on

AAA logic to challenge the terminal to login with correct credentials, the operational

details of which we leave for section 3.3.3. Every Terminal is associated to a unique

TerminalConnection object which has a single method, sendMessage(), that the

ALS component calls to send a message to the physical terminal represented by

the object. This method does not block, due the specification of only asynchronous

message sending and receiving in section 3.2.4.

Service logic never calls sendMessage() directly and, in fact, has no direct commu-

nication with TerminalConnection objects at all. User identities are not tied to

specific terminals, meaning that messages that an AS sends to a terminal are within

the context of a user ’s session. Service logic cannot signal directly to terminals as

there needs to be a way to decouple users from terminals. As we will see in the

next subsection, once a terminal has been authenticated using a user’s login details,

the terminal is associated with the user and service logic can now send messages

to terminals using a user’s identity, instead of directly to the terminal. To further

this decoupling, as mentioned above, every TerminalConnection is mapped to a

Terminal object which is nothing more than a mapping key that the service logic
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and the ServiceManager (also introduced in section 3.3.4) use to identify a terminal

uniquely. The TerminalConnection to Terminal mapping is performed when a new

terminal connects to the AS and is stored in the ApplicationLayerSignalling

object. To send a message to a terminal, sendMessageToTerminal(terminal, ...)

can be called (i.e. using the Terminal key to specify the terminal to which the

message should be sent), which in turn calls the relevant TerminalConnection’s

sendMessage() method.

To describe communication in the direction of a terminal to an AS we return to the

ApplicationLayerSignallingListener and its callServiceMethod() method.

The method is defined with the following parameters:

• callServiceMethod(terminal, serviceObject, method, arguments[])

When a terminal sends a message, the ALS component unmarshalls the message, cre-

ates a new thread of execution for the remote method call and finally calls the above

callServiceMethod() within this thread. The terminal parameter identifies the

source of the message and the framework uses this identifying parameter to associate

the message source to the thread of execution by passing it on to ServiceManager’s

sendMessageToService() method — providing a means for the service logic to

signal back to the message source if need be by effectively creating a “message

context” (according to section 3.2.6) and enabling ApplicationLayerSignalling’s

sendMessageToCurrentTerminal() method. The detail of this is more relevant to

the service manager component and so is left to section 3.3.4.

ApplicationLayerSignallingListener also caters for notifications of terminal

disconnection, using the handleDisconnect() method. This method is called when

the terminal physically disconnects from the AS. There are two scenarios for this:

an expected or unexpected disconnect. An expected disconnect is a graceful one

in which the terminal first logs off and then physically closes the ALS channel

between it and the AS. In this scenario, the terminal sends a logoff request to

the AS, which then sets off a process of ending all service sessions in which the

terminal may be involved. The AS then acknowledges this logoff request, in response

to which, the terminal physically closes its connection to the AS. This in turn

triggers the handleTerminalDisconnect() method which is called as a notification

that the terminal’s connection has been physically terminated indicating that the

terminal’s association to the framework which was created when the terminal

initially connected has been removed.
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In the other scenario, the physical connection between the terminal and the AS

may end unexpectedly, due to some environmental reason. At this point, a similar

sequence of events as the expected disconnection occurs, in the opposite order:

first handleTerminalDisconnect() is called, and then the logoff procedure occurs,

minus the acknowledgement.

In the above two scenarios we indicated that all service sessions are ended when a

terminal disconnects from the application server. To accommodate this, all services

have to implement a method which is called in response to a terminal disconnecting

in the above scenarios. This ensures that services are not left in an invalid state in

the case of a service session not ending completely before a terminal’s association to

an AS ends. We look at this implementation detail in section 3.3.4.

3.3.3 User Profiles

User identity within the framework was introduced in section 3.2.9. A user can be

identified with any unique feature, however we selected legacy E.164 numbering to

keep the user experience of “dialing” the same, as a further means of showing that

an ALS-based solution to services can be used in contemporary telecommunication

networks.

User profiles cannot be introduced without covering some implementation details

of AAA. Although AAA exists in the framework as a formal service, it is critical

to the framework’s operation. From the perspective of user profiles, it provides the

mechanisms that the framework uses to identify a user initially and to provide the

necessary authentication. The AAA service challenges the terminal when it attempts

to login, and then orchestrates the process of looking up the user’s credentials,

authenticating the user and then associating the user’s profile with the terminal.

The detailing of how services signal to terminals or how the framework itself makes

a request to a service is left to sections 3.3.4 and 3.3.6. Nevertheless, AAA is

implemented as a service, so the reader should be aware that services have access to

features of the framework, and that it is not just terminals that can invoke service

functionality but also the framework itself. Another design detail also relevant to

user profiles, is that service logic in terminals is also presented using objects with

methods that can be called remotely. Figure 3.6 shows the service objects that exist

for AAA in both ASs and terminals.
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+receiveNewTerminal()
+login()
+logoff()

(a) in AS

+requestAuthentication()
+loginAcknowledge()
+logoffAcknowledge()

AAA

(b) in terminal

Figure 3.6: AAA service objects showing only those methods which assist the

implementation of user profiles.

+isTerminalLoggedIn(terminal) : bool
+mapTerminalToE164Number(terminal, E164Number : String)
+removeTerminalToE164NumberMapping(terminal)
+getTerminalFromE164Number(E164Number : String) : Terminal

UserManager

+getE164NumberFromTerminal(terminal) : String

Figure 3.7: User profile class

One more design issue relevant to user profile functionality is that in the description

of the operation of user profile functionality we make mention of a “database”.

User profile information has permanent storage in this database, the interface to

which is implemented as an RBB. For this discussion, the reader can assume that

this database functionality is in place and that whatever user profile information is

required can be retrieved using a suitably abstracted database RBB interface.

Structure and Operation

The user profile functionality operates in the following way (restating some opera-

tional details from section 3.3.2). In response to a new terminal connection, the ALS

interface signals to the framework to call the receiveNewTerminal() method of the

AAA service object, shown in figure 3.6(a). By calling requestAuthentication()

on the terminal’s AAA service object in figure 3.6(b), the terminal is challenged

to authenticate itself to the AS. To meet this challenge, the terminal sends its

credentials as arguments to the login() method. At this point processing is handed

over to the user profile component, which looks up and authenticates the user’s

credentials. On success, the terminal is associated to user information retrieved

from the database.

For the purposes of this report, we look to the bare essentials of user profile
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functionality. The E.164 number can function as a unique identifier for a user. Thus

authentication can occur using only this number and a password. Further, the E.164

number can be used as an identifier for the purposes of targeting a particular terminal

during a service session. Therefore, once the user is authenticated by verifying

the E.164 number and password supplied to the login() method, the terminal

is bidirectionally mapped to the E.164 number within the UserManager during a

call to mapTerminalToE164Number(). This enables the operation of the function-

ality of the getTerminalFromE164Number(), getE164NumberFromTerminal() and

isTerminalLoggedIn() methods in figure 3.7.

It is acknowledged that more than just an E.164 number would be required for

full user profile functionality of an actual implementation of the framework. For

example, a user’s access rights to particular services and RBBs might be stored

along with other information about the user. We leave this as an implementation

detail.

Once the Terminal has been associated to the relevant user information, a login ac-

knowledgement (the loginAcknowledge() method) is sent to the physical terminal,

ending the initial connection and login process. At this point the user is associated to

the terminal in a way that would provide all necessary support to services to enable

them to target specific terminals based on user information and also to obtain user

information if required by a specific message context.

A terminal’s logoff process also involves the AAA. In the graceful disconnection

scenario covered in section 3.3.2 above, the terminal calls logoff() on the AS’s AAA

service object. The AS performs a formal logoff process (covered in section 3.3.5) and

then acknowledges this by calling logoffAcknowledge() on the terminal. During

the logoff process, the terminal-to-E.164 number is removed by calling the aptly

named removeTerminalToE164NumberMapping() method.

3.3.4 Managers

The main task of manager objects is to facilitate communication between the four

main components of the framework: services, RBBs, user profiles and the ALS

interface. Whilst technically these components could communicate directly, a telco is

given more flexibility in access control and accounting if all communication traverses

manager objects. We cover these managers — ServiceManager, RBBManager and

ApplicationServer — below.
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Service and RBB Managers

Service and RBB managers operate similarly so we discuss them together. To

introduce their operation we use the example of a terminal attempting to invoke

a method on a service object. Once the remote method call is unmarshalled, the

invocation travels via the service manager which then performs three functions:

1. determines if the terminal has access rights to either the service object or to

the method

2. performs any accounting that should result from that method call

3. performs dynamic method invocation

The same sequence of events occurs when a service makes a call to an RBB method.

In this research report the actual details of the mechanisms for implementing the

first two operations above are not covered. All that is considered with regards to

them is that the managers first perform access control and then accounting before

the actual method is invoked. The third operation has already been introduced in

section 3.2.5. We supplement this with a description of the actual process of invoking

a method and a few more details with regards to the instantiation of services and

RBBs.

Message context plays a critical role here. As we specified in section 3.2.6 that a new

thread is started up every time a method is called on a service object and that the

service object can use this thread to identify the terminal which called the method,

this means that only a single service object per service need be instantiated. If the

framework did not cater for message context a new service object would have to be

instantiated for each service session. Since this is not the case, each service object

becomes a singleton, only being instantiated the first time it is used and then staying

in existence until the application server is shut down.

Whilst message context does not apply directly to RBBs, individual RBB methods

are called within service message contexts, meaning that the same specification of

singleton objects applies to RBBs. Section 3.3.1 covered the detail that each RBB

has a single object as an initial point of contact, matching up with the message

context requirement of singletons.

This entire discussion of single objects leads to a design detail of dynamic method

invocation: when calling a method dynamically, only the name of the service or RBB
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+callServiceMethod(terminal, serviceObject,
method, arguments [])

+callServiceMethod(serviceObject,
method, arguments [])

+getCurrentTerminal() : Terminal
+handleTerminalDisconnect(terminal)
+shutdownAllServices()

ServiceManager

+shutdown()

Service

Terminal

Thread

0..*1

0..*1

+handleTerminalDisconnect(terminal)

Figure 3.8: Service manager classes. Note the message context association between

Terminals and Threads.

has to be specified and not the name of a specific instance of the object. It is up to

the programmer to ensure that any service or RBB is designed with this in mind. For

example in an instant messaging type service where two users can be engaged in a

conversation, each conversation might have to be represented by a unique object. In

this case, the main instant messaging singleton service object would have to create

these conversation objects to manage the state of the conversations, as opposed

to creating a new instant messaging service object for each conversation. This also

applies to RBBs and in fact corresponds to the Call objects of the TwoPartyCallRBB

and the “first-contact” objects touched on in section 3.3.1. This single object setup

makes for simpler service logic invocation, removing the need for terminal service

logic to obtain a reference to a specific object while also removing the need to have

this reference included in any protocol messages.

Service Manager Structure and Operation

The ServiceManager object is a singleton with three main purposes: the first is

to instantiate services when their functionality is invoked, the second is to relay

messages (which are effectively method calls) to services and the third is to maintain

message context when a terminal invokes a method on the service. Figure 3.8 shows

how these functions are statically structured in the framework.

With regards to service instantiation, when either form of the callServiceMethod()

method is called, the service manager first checks if this service has been used since

the AS was started up, by checking if the service’s singleton is stored in a collection

of instantiated services in the ServiceManager. If not, the service’s singleton

is instantiated and stored in the collection. Once this process is completed, the

ServiceManager performs dynamic method invocation to call the method specified
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in the message sent from the terminal — which is the message relaying functionality

mentioned above. Before relaying the message, the ServiceManager maps the

terminal, represented by a Terminal object, to the current thread of execution

created by the ALS component when the message was originally received by the

AS. This enables the message context functionality of the framework. With this

thread-to-terminal association in place, a call to getCurrentTerminal() will return

a Terminal object representing that terminal that invoked the current thread of

execution.

The message context association only occurs when the callServiceMethod()

method which takes a Terminal as an argument is called. The other version of

the method does not require a Terminal as its purpose is simply to facilitate one

service invoking the functionality of another, as opposed to the invocation being

received from a terminal.

The callServiceMethod() methods also perform the access control of section 3.2.3

before invoking any service method. The mechanisms involved in this are not

considered in this research report, but the point is raised here to show where the

access-control functionality hooks into the framework.

In section 3.2.4 the ALS protocol was specified using XML, a text-based repres-

entation of messages. For that reason, callServiceMethod() takes an array of

strings as its argument argument, indicating that service methods can only accept

arguments in the form of strings. The protocol also affects callServiceMethod() by

specifying that this method does not return a value — a side-effect of the protocol’s

asynchronous behaviour.

The process of a terminal disconnecting from the framework was covered in section

3.3.2. During this process, all service sessions are ended, which explains the presence

of the handleTerminalDisconnect() method. This method iterates through all

services with which the disconnecting terminal is engaged in a session and alerts

them to the fact that the terminal is disconnecting. This provides an opportunity to

service logic to end its session with the terminal gracefully by having its overridden

handleTerminalDisconnect() method called.

The shutdownAllServices() method, which is called when the AS is shutdown,

iteratively calls the overridden abstract shutdown() method on all services. During

this process all services must perform any cleanup required to ensure that the AS

shuts down gracefully.
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+callRBBMethod(rbbObject, method,
arguments []) : Object

+shutdownAllRBBs()

ReusableBuildingBlockManager

+shutdown()

ReusableBuildingBlock0..*1

Figure 3.9: RBB manager classes

RBB Manager Structure and Operation

The static structure of the RBB manager component is very similar to the service

manager. However, it lacks message context functionality and the ability to enable

RBBs to signal to terminals. The ReusableBuildingBlockManager, shown in figure

3.9, has a callRBBMethod() method which performs the same object initialisation

and dynamic method invocation that the service manager does. Because of this,

RBBs are built up using the same singleton, first-contact object approach as services

— a topic which was already covered in section 3.3.1.

RBBs are capable of signalling back to services using a notification mechanism.

Section 3.3.1 listed that this involves creating a concrete implementation of a listener

interface and passing it to the relevant RBB via a registerEventListener()

type of method. Therefore, unlike service methods, RBB methods have to be

able to accept objects, and not just strings, as arguments to their methods. The

sendMessageToRBB() takes an array of objects as its arguments argument to cater

for this. Moreover, since RBBs exist locally to service logic, their methods do

not necessarily operate asynchronously, meaning that, unlike service methods, it is

possible for them to return a value in the form of general objects (such as an Object

in Java) which can be casted into whatever type required for their use.

Main Application Server Manager

The main ApplicationServer object is the first object that is created when the

AS is started up. It contains singletons of each of the framework’s main ob-

jects which represent the four main components (ApplicationLayerSignalling,

ServiceManager, ReusableBuildingBlockManager and UserManager). As shown

by figure 3.10 it provides four get...() methods to retrieve each of these com-

ponents from anywhere in the framework. The ApplicationServer singleton ob-

ject itself is retrieved by calling its own getApplicationServerInstance() static

method.
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+getApplicationServerInstance()
+getApplicationLayerSignalling()
+getServiceManager()
+getReusableBuildingBlockManager()
+getUserManager()
+receiveNewTerminal()
+logoffTerminal()
+handleTerminalDisconnect()
+startup()

ApplicationServer

ApplicationLayerSignalling

UserManager

ServiceManager

ReusableBuildingBlockManager

Figure 3.10: Application server class

The startup() method initialises the AS by instantiating each component and

performing any necessary initialisation on them. For example, once initialised,

this method calls the startListening() method of ApplicationLayerSignalling.

startup() effectively provides the hook-in point for any initialisation that the

framework’s components require. Once this method has completed, the AS is ready

to handle service logic.

ApplicationServer also takes part in the orchestration of the login and logoff

processes that occur when a terminal connects to and disconnects from the AS

respectively. receiveNewTerminal() is called in response to a new physical con-

nection to terminal being formed. In the simplest case presented in this research

report, the only operation which this method performs is to challenge the terminal

for user credentials. logoffTerminal() and handleTerminalDisconnect() reflect

the two parts to a terminal disconnecting from the AS: logging off and physical

disconnection. In the case of a terminal formally logging off before physically

disconnecting, logoffTerminal() is called before handleTerminalDisconnect()

and ensures that the terminal’s user’s current association to the AS is removed

first. The methods are called in the opposite order if the terminal disconnects

unexpectedly and the AS is forced to clean up the association. These processes are

all detailed in section 3.3.5.
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3.3.5 Dynamic Behaviour of Supporting Infrastructure

Up to this point we have described various components of the framework that

support service logic. We have presented their static structure and the functionality

they provide. As each component is dependent on each of the other components, a

detailed description the dynamic behaviour of each one requires an understanding

of each of the other components. We have adequately covered each to now be able

to present their dynamic operation and the manner in which they co-operate in the

form of SDs.

The following scenarios are covered:

• a terminal connecting to and logging into an AS

• a terminal remotely calling a method on an AS

• a service invoking another service’s method

• an AS calling a method on a terminal (either a terminal that is already involved

in a service session or one that is not)

• a service invoking an RBB’s method

• a terminal disconnecting (gracefully and non-gracefully) from an AS

Terminal Connection and Login

The terminal connection and login procedure in figure 3.11 begins when a ter-

minal forms a physical connection with the AS. For example, this could be the

form of a socket being opened between the terminal and AS. When this occurs,

the ApplicationLayerSignallingListener’s handleTerminalConnect() method

is called with a TerminalConnection representing the physical terminal as an

argument (1). A new Terminal object is created and uniquely mapped to the

TerminalConnection (2). This Terminal is passed on to the ApplicationServer

object (3, 4), which then instructs the AAA service to challenge the terminal for

its credentials (5, 6). It must be noted here that whenever a method is called

on a service, this request always goes through the ServiceManager (be it from a

terminal, a service or from another location within the frame), however we do not

always show this in order to simplify the SDs. In the case being described, what

is not shown is that the ServiceManager’s callServiceMethod() which takes a
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9: mapTerminalToE164Number
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6: AAA.requestAuthentication

5: receiveNewTerminal

3: new Terminal

2: addNewTerminal

1: handleTerminalConnect

Figure 3.11: Terminal connection and login SD

Terminal argument is used, allowing AAA to use ApplicationLayerSignalling’s

sendMessageToCurrentTerminal() method to send the challenge to the correct

terminal. It should also be noted that the SDs will also always show service objects

signalling directly to terminals, hiding the fact that ApplicationLayerSignalling’s

sendMessageToTerminal() or sendMessageToCurrentTerminal() has to be called

to facilitate this.

In response to the challenge for its credentials, the terminal sends them in a call

to AAA’s login() method (7). The credentials are checked according to the im-

plementation’s authentication logic (8). The terminal’s credentials, in this case,

represented by an E.164 number, are then mapped to the terminal’s representative

Terminal object within the UserManager object (9) allowing the Terminal to be

later retrieved by service logic. AAA then acknowledges to the terminal that the login

was successful (10), completing the connection and login process.
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6: store service singleton

5: new

14: methodB

12: access control and accounting

11: create message context

10: callServiceMethod(methodB)
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3: create message context

7: methodB

4: access control and accounting

2: callServiceMethod(methodB)

1: callServiceMethod(methodB)

Figure 3.12: SD of remote method call from terminal to AS

Terminal to AS Remote Method Call

The SD of figure 3.12 encompasses all the operations that occur when a method call

request arrives from a remote terminal. The entire process is abstracted from the

service developer, so for simplicity’s sake, other SDs will only show this as an arrow

directly from the terminal to the service object. However, this SD breaks the whole
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process down into the individual critical operations to show what actually occurs to

facilitate a successful remote method call.

The SD shows two scenarios which result in a slightly different set of operations

being executed. The difference lies in the fact that the first scenario covers what

occurs when specific service logic is being used for the first time. In this case, the

representative service object singleton has to be instantiated and stored before the

desired method can be called. In the other scenario, the service object has already

been instantiated and so just has to be retrieved. We now describe both scenarios.

When a method call arrives from a terminal a new thread is created (not shown

in the SD) and ApplicationLayerSignallingListener’s callServiceMethod()

method receives a Terminal object (representing the originating physical terminal)

along with strings of the names of the desired service object and method name and

a list of arguments destined for the desired method in the format of strings (1 and

9). A call to the ServiceManager’s callServiceMethod() method then begins

the process of dynamic method invocation (2 and 10). Firstly, a message context

is created by mapping an object representing the current thread of execution to

the Terminal object (3 and 11). Then access control and accounting functionality

determines whether the current terminal has access to the desired service object and

method and performs any necessary charging (4 and 12) — the details of which are

not covered in this research report.

If the desired service object singleton has not yet been instantiated, a new instance

is created and stored inside the ServiceManager (5, 6). If it has already been

instantiated since the AS was started up, the service object singleton is retrieved

(13). After this, the actual service method is called synchronously to the current

thread with the arguments that were originally sent to callServiceMethod() (7

and 14) (note that no value is returned from the method). At the end of the remote

method call procedure, a cleanup operation removes the message context (8 and

15).

It is also possible for one service to call on another’s logic. In this case, the sequence

of operations is almost the same as above except that the originating service directly

calls the callServiceMethod() overloaded method without passing in a Terminal

object. Since it is a service initiating this method call, and not a remote terminal,

no message context is created. Otherwise, the service method call proceeds in the

same manner.
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Figure 3.13: SD of remote method call from AS to terminal

AS to Terminal Remote Method Call

Similar to terminal to AS signalling, when describing service logic in SDs we show the

services signalling directly to terminals. Whilst a programmer is presented with very

simple sendMessageToTerminal() or sendMessageToCurrentTerminal() methods,

the message arrows from ASs to terminals encapsulate a number of operations which

have to be performed to transfer the messages successfully. These are shown in figure

3.13 and detailed below.

There are two cases for transferring messages, which arise from the two methods

available to programmers for sending messages to terminals. In the first case, the

service logic has to send a message to the terminal which remotely called a method
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on the AS resulting in the current message context. The second case occurs when

service logic has to signal to a terminal which did not make the remote method call

resulting in the current thread of execution. In the second case, service logic may

or may not have a reference to that terminal yet.

In the first case, service logic calls sendMessageToCurrentTerminal() on the

ApplicationLayerSignalling object, passing into this method the desired object

and method existing in the terminal and arguments in string format (1). At

this point the current terminal has to be retrieved. In the description of figure

3.12 we explained how in creating a message context the object representing

the current terminal is mapped to an object representing the current thread.

Therefore, using a mechanism described in section 3.2.6, the object representing

the current thread is retrieved and used to lookup the Terminal involved in the

current message context (2, 3). ApplicationLayerSignalling then calls its own

sendMessageToTerminal(), passing in the retrieved Terminal as an argument (4).

This method performs a Terminal-to-TerminalConnection lookup, retrieving the

TerminalConnection which was originally created when the physical terminal first

connected to the AS. Using this object and a call to its sendMessage() method (5),

the ALS component ensures that the message is marshalled and sent to the correct

terminal (6).

The second case of service logic signalling to a terminal starts with the service logic

obtaining a reference to a representative Terminal object (7, 8), since the terminal

was not originally involved in the current message context. One way to obtain

this reference is for the service logic to send the E.164 number associated to the

terminal to the UserManager. This E.164 number is that which was associated to

the terminal when it originally logged in. As is noted in the SD, the service logic

may already have a Terminal reference to the terminal and so does not actually

have to request a lookup from the UserManager. To send the message, the service

logic calls ApplicationLayerSignalling’s sendMessageToTerminal() and passes

in the Terminal object along with the desired remote terminal object, method

and arguments (9). In the same way as the first case detailed above, this method

then looks up the relevant TerminalConnection and calls its sendMessage() (10)

method to put the actual marshalled message onto the wire (11).
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11: methodY

8: callRBBMethod(methodY)

7: returned object

1: callRBBMethod(methodY)

Figure 3.14: SD of a call to an RBB’s method

RBB Method Invocation

Invoking RBB functionality is reminiscent of a terminal signalling to a service object

in an AS. This is because RBBs are designed and managed using the same first-

contact singleton object pattern as services. The SD for RBB method calls, shown

in figure 3.14, is therefore similar to remote method calls to AS service objects except

for three differences. Firstly, message context is not considered since RBBs cannot

signal back directly to service logic. Secondly, RBB method calls originate only from

service logic and not from terminals or other RBBs. Lastly, unlike service object

methods, RBB methods can return a value since they exist locally to service logic.

This last difference also results in method calls being synchronous from the point of

75



3. SUPPORTING SOFTWARE FRAMEWORK

the view of the caller (in this case, service logic).

RBB method invocation also has two of the same scenarios as terminal-to-AS method

calls. The first scenario occurs when the desired RBB has not been called on since

the AS was started up. The other scenario covers what occurs when the RBB has

been used before. Both scenarios are now detailed.

In both of the above RBB invocation scenarios, a method call request arrives

at the ReusableBuildingBlockManager from some service logic (1 and 8). The

request contains the targeted RBB object and method and a list of arguments for

the method. The ReusableBuildingBlockManager determines whether the calling

service logic has access rights to the desired RBB and method and performs any

required accounting for the method call (2 and 9). At this point the sequence differs

depending on the scenario. If the RBB has not yet been used, then its singleton is

instantiated (3) and stored in the ReusableBuildingBlockManager (4). If it has

been used since the AS was started up, then the singleton is retrieved (10). In

both scenarios the method is then called synchronously using the arguments that

were originally sent to the ReusableBuildingBlockManager (5 and 11). Once the

method call completes and a resulting value is returned (6 and 12), this resulting

value is relayed to the calling service logic (7 and 13) completing the dynamic RBB

method invocation.

In other SDs, when service logic calls on RBB functionality, the method call will be

shown simply as a single arrow directly from the service logic lifeline directly to the

RBB’s singleton object lifeline. The reader can now be aware that this single arrow

encompasses all of the operations in the above SD.

Terminal Disconnection and Logoff

When discussing the ALS interface of the framework in section 3.3.2, we covered

the fact that the disconnection of a terminal from an AS can occur in two ways:

gracefully with a formal logoff before closing the physical connection and non-

gracefully without logging off first. In both cases, the AS must ensure that a

terminal’s association to it is completely removed and any service session in which

the terminal was involved is not left in an unstable state.

In the SD of figure 3.15 both scenarios are described and we show how even for a non-

graceful disconnect the terminal’s association is still fully removed and all services
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Figure 3.15: Terminal disconnection and logoff SD
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are still given an opportunity to end their session with the terminal in question.

In the case of a graceful disconnect, the terminal first remotely calls logoff()

on the AAA service object (1). The ApplicationServer object is then invoked to

orchestrate the logoff process (2) by first calling handleTerminalDisconnect() on

the ServiceManager (3). This causes the ServiceManager to iterate through all

the service objects with which the terminal is involved in a session and calling

handleTerminalDisconnect() on each of them (4), providing them with an

opportunity to remove any reference to the terminal cleanly. Once this process is

complete, a call to removeTerminalToE164NumberMapping() on the UserManager

(5) removes the association of the terminal to the AS, indicating to the framework

that the terminal is no longer logged in. The logoff process is then completed by

remotely calling logoffAcknowledge() on the terminal’s AAA object (6).

Once the terminal is aware that the logoff procedure is complete it physically

disconnects itself from the AS, which invokes a handleDisconnect() on the

ApplicationLayerSignallingListener (7). The ApplicationServer is then

requested to orchestrate the removal of physical association of the terminal (8)

which in this case simply means removing the Terminal-to-TerminalConnection

mapping within the ApplicationSignalling object (9). The last method call of

the process checks if the terminal has been logged off. It will always return a value

of false in this scenario since the terminal has been logged off before the physical

disconnection (10). The point of checking if the terminal is logged off is for the

second scenario in which the terminal is physically disconnected before it is logged

off of the AS.

The second scenario begins when a terminal unexpectedly physically disconnects

itself from the AS. This triggers a handleDisconnect() event (11) which indicates

that the ApplicationServer now has to orchestrate both a removal of the physical

association to the terminal and the logging off of the terminal from the AS (12).

The Terminal-to-TerminalConnection mapping is first removed (13) and then a

check as to whether the terminal is logged in this circumstance indicates that the

terminal is still logged in (14). This means that the process of logging off the

terminal has to be performed in a similar way to the first scenario and is set off by

calling logoffTerminal() (15).

First a call to handleTerminalDisconnect() on the ServiceManager (16) iterat-

ively ends all service sessions with which the terminal was involved (17). To end the

process, the terminal’s association in the UserManager is removed (18). The logoff
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process is obviously not acknowledged to the terminal since the physical connection

to the terminal no longer exists.

3.3.6 Services

In describing the framework so far, we have covered much with regards to its facilities

which support the operation of services. We now focus directly on services and in

doing so give an outline of how service developers use the framework to implement

service logic. To do this, we introduce an example service which integrates the

functionality of the framework which has been covered so far.

Along with this functionality, the aim is also to show other essential functionality

including demonstrating how service logic brings a terminal that was not originally

involved in a service session, into this service session and giving an example of how

application layer BCCM is actually implemented in service logic. In doing the latter

we show how remote method calls are actually used to replace certain CS signals.

This essential service is presented from end-to-end, including the static (class dia-

gram) and dynamic (SD) designs which dictate its operation.

Example Service: Two Party Call

We have already covered that the basic two party calling functionality of a terminal is

implemented as a service in the ALS environment. As a means of demonstrating the

implementation of services in the framework, we therefore use the relevant example

of a two party call service.

This example service reuses the example two party call RBB from section 3.3.1 and

also introduces a call state model RBB which encapsulates the FSM of figure 2.6.

The FSM has to represent the current state of the two party call by having the

implementation of the TwoPartyCallEventListener send transition requests to the

call state model RBB. This means that the call model will only be used to show the

current state of the call. For this example service the call model will not be used

to check whether an operation on a call is valid or not, however it is important to

note that in an actual implementation an operation would be disallowed if it would

cause an invalid transition to occur.
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Figure 3.16: Classes of the call state model RBB

This example service also demonstrates another aspect of application layer BCCM.

Traditionally, in an abstracted environment for a 3rd-party call service all signalling

related to the setup of a call goes through the bearer network and the service logic

only gets notified of the correct operation of the CS signalling as opposed to being

involved in it. Throughout this report we have emphasised ALS which we take as far

using it to replace CS signalling for certain parts of bearer connectivity. This whole

aspect of ALS comes to the fore in this example where we show how a terminal

signals in the application layer to indicate the fact that it is either ringing or has

been answered, instead of the AS being alerted to these events via an RBB which

acts as interface into underlying bearer network functionality.

Static Structure of The Two Party Call Service

Figure 3.16 is a representation of the classes involved in the call state model

RBB. The RBB’s main singleton (figure 3.16(a)) has a createNewCallModel()

method, which is a factory method used to manufacture a CallModel object (figure

3.16(b)) for manipulation in service logic. The manufactured object can transition

to one of the six states specified by the FSM implemented by the RBB by calling

transition() and passing into it a State enumeration (figure 3.16(c)) value. In

an actual implementation, this method would use exceptions to indicate an invalid

state transition, a detail which we leave out here for the sake of simplicity.

Besides orchestrating two party calls, this two party call service facilitates the

communication between the call state model and the two party call RBBs. Since

the specification was laid down that RBBs cannot communicate directly with each

other, an implementation of TwoPartyCallEventListener (figure 3.4(c)) is used

to commuicate events in the two party call RBB to the call state model RBB

by translating these events into state transitions which are then passed to the
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Figure 3.17: Classes of the two party call service. The TwoPartyCallEventListener

interface and Call class are from the two party call RBB in figure 3.4.

CallModel’s transition() function.

The classes which actually make up the service are very simple. The service’s first-

contact class (figure 3.17(a)) contains the two methods representing the operations

which a user would invoke on the service — makeCall() and hangup() — neither

of which take arguments representing the originating terminal since its information

can be retrieved using the framework’s message context functionality. The third

method, indicateEvent(), is that remotely accessible method of the service which

allows for CS signalling to be replaced by ALS. This method takes as its argument

a string representing an event that has occurred on the terminal as part of cre-

ating, maintaining or tearing down a two party call. This method passes on the

event information to the TwoPartyCallEventListener implementation by calling

indicateEvent() on that object. This means that the listener can be notified from

two locations, since its indicateEvent() method can be called from both service

logic and in response to an event occurring in the bearer network. The latter would

occur, for example, after a failed attempt to contact a terminal through the bearer

network.

The last method, registerRequestListener(), takes an implementation of the

TwoPartyCallRequestListener (as shown in figure 3.17(c)) interface as an argu-

ment. The use of this method and the associated interface will be explained in

section 4.2.
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The TwoPartyCallEventListenerImp in figure 3.17(b) integrates the two RBBs.

The class has a registerCallModel() method that allows the listener implement-

ation to store a call model whose state represents the current state of the call of

which the listener is being notified of events. This enables the indicateEvent()

service logic above.

When a call is created, the two terminals involved in this call have to be bidirection-

ally mapped to it. The Terminal-to-Call mappings are required to support message

context functionality such that the call associated to the terminal invoking a service

method can be retrieved. Call-to-Terminal mappings assist in determining the

other terminal involved in a call when one of the terminals makes a two party call

service request. Figure 3.17(a) shows these mappings as two separate association

class UML relationships.

Dynamic Operation of The Two Party Call Service

Two SDs demonstrate the main functions available to the two party call service:

making and hanging up a call. Figure 3.18 shows the operation of requesting

the setup of a call until the point where the bearer connection is actually setup.

Figure 3.20 shows the service logic that gets executed when either terminal makes

a request to hangup the call. Along with showing how service logic operates within

the framework, these SDs clearly shows how ALS replaces certain parts of CS.

Making a call The operation of setting up a call in figure 3.18 is set in motion

when terminal 1 makes a makeCall() remote method call (1). This method takes

terminal 2’s E.164 number as an argument. The TwoPartyCallService now needs

to get two items which it does not yet have but which it requires for later use:

terminal 1’s E.164 number (to be passed to the TwoPartyCallRBB in order to setup

the call) and terminal 2’s object reference (which the service logic maps to a Call

and also uses to notify terminal 2 to prepare itself for an incoming call). To obtain

the latter the service makes a call to UserManager’s getTerminalFromE164Number()

and passes in terminal 2’s number that was sent from terminal 1 (2, 3). To obtain

the former, the service uses the getCurrentTerminal() message context method to

obtain the Terminal object representing terminal 1 (4) and then passes this object

on to the UserManager to lookup terminal 1’s E.164 number (5). The service then

uses the reference to terminal 2 to signal to terminal 2 that it should ready itself to

receive a phonecall (6).
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Figure 3.18: SD for the setup of a two party call
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Figure 3.19: CallModel association to Call

The two party call RBB’s functionality is now invoked. A Call object is created by

passing the two terminals’ numbers to the initialiseCall() RBB method (7–9).

This object is then mapped for later retrieval to each terminals’ E.164 numbers (10)

as per the mapping of figure 3.17(a). Following this, a new CallModel object is

created by the CallStateModelRBB (11–13). This model is associated to the Call

by first instantiating the TwoPartyCallEventListener implementation (14) which

allows for a CallModel to be registered with it (15). The event listener in turn

is registered with the Call (16). This results in the setup shown in figure 3.19

where the CallModel is contained within the TwoPartyCallEventListener which

is contained within the Call. With this setup, any events occurring during the call

will trigger an event on the TwoPartyCallEventListener implementation which

will update the CallModel accordingly.

At this point, the service is now ready to invoke the TwoPartyCallRBB to setup

the call via the bearer network using a 3rd-party call setup. A call to the Call’s

startCall() method starts this process (17). We do not show the details of the

low-level CS signalling which occurs to setup the call (18), but the fact that the call

setup has been initiated is indicated by firing firstLegSetupInitiated event on

the TwoPartyCallEventListener (19) which updates the CallModel to be in the

Initiated state (20).

Traditionally in a 3rd-party call, the originating terminal rings, then is answered by

the calling party and then the call is routed to the destination terminal (while the

calling party waits). When the called party answers, the call is fully setup. This

situation changes in the case of using ALS to setup a call as it involves a 3rd-party

call being setup using a 1st-party mechanism: the caller makes a call request from

the terminal that is going to receive the call, but the request is directed towards
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the AS which acts as a 3rd-party in the setup of the call between the two terminals.

Despite 3rd-party call control being used, there is no reason for the originating

terminal to ring or be answered. On the SD, the fact that the originating terminal

indicates that it is ringing or answered is just to show the AS that it has been

contacted via the bearer network and a bearer stream has been setup and also to

ensure that the call model does not make any invalid state transitions. Therefore,

once the terminal has been contacted over CS signalling it indicates a ringing event

(21). The service then updates the call model by retrieving the Call object from

the Call-to-Terminal mapping (22), obtaining the Call’s event listener (23) and

then telling the event listener that the terminal of the first leg of the call has been

contacted (indicated as a firstLegRinging event) (24) so that it knows to update

the CallModel to the Ringing state (25). Once the bearer stream has been setup

on the originating terminal, it sends an answered event to the AS (26). This makes

the service follow the same steps preceding the ringing event above, but this time

to make the CallModel transition to the Active state (27–30).

Using CS signalling, the two party call RBB continues to setup the second leg of the

call (31). The setup of the second leg does not need to be explicitly requested by the

service since the earlier startCall() request (17) is a request to setup the entire call

and not just the first leg. The setup of the second leg over CS signalling is therefore

shown as an asynchronous message to indicate that it occurs independently of the

service logic. Once this second leg setup has begun, a secondLegSetupInitiated

event is signalled to the TwoPartyCallListener (32) so that the CallModel can

transition to the Initiated state (33).

For the second leg of the call a similar set of events occurs as for the first in order to

keep the CallModel updated. However, in this case, the destination terminal does

actually ring and is actually answered by the called party. Thus, when the terminal

rings, it indicates a ringing event over ALS (34) which results in all the steps being

taken to update the CallModel to a Ringing state (35–38). When the terminal

is answered it indicates an answered event (39) which results in the CallModel

transitioning into the Active state (40–43). At this point the call is completely

setup and the voice call can proceed.

Hanging Up a Call In response to a hangup request from either party in the call,

a hangupCall() remote method invocation on the TwoPartyCallService object

(1) begins the process of hanging up a call shown in figure 3.20 (in the case of this

SD, Terminal 2 is the requesting terminal and thus referred to as the first leg in
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CallModelTwoPartyCallEvent
ListenerImp

CallTwoPartyCall
Service

ServiceManager

Terminal 2Terminal 1

22: transition(Inactive)

21: indicateEvent(hangupComplete)

20: getEventListener:TwoPartyCallEventListener

18: check if other Terminal-to-Call mapping exists for current Call

19: TwoPartyCall.acknowledgeHangup

17: remove current Terminal to Call Mapping

16: get Call from current Terminal

15: getCurrentTerminal

14: indicateEvent(callEnded)

13: hangup second leg over call/session signaling

12: check if other Terminal-to-Call mapping exists for current Call

11: remove current Terminal to Call mapping

9: getCurrentTerminal

10: get Call from current Terminal

8: indicateEvent(callEnded)

7: transition(Active)

6: indicateEvent(hangupInitiated)

5: hangup second leg over call/session signalling

3: get Call from current Terminal

4: endCall

2: getCurrentTerminal

1: hangupCall

Figure 3.20: SD for hanging up a two party call
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the following description). The TwoPartyCall service firstly obtains the current

message context Terminal (2) and uses this to retrieve the Call object representing

the call in which the requesting terminal is involved (3). By calling endCall() on

the retrieved Call object, the service then requests from the two party call RBB that

it terminate the bearer connection (4). Underlying bearer network functionality to

disconnect the call is invoked (shown by an asynchronous arrow in the SD), starting

with disconnecting the second leg of the call (5). The CallModel is then updated

by indicating a hangupInitiated event on the TwoPartyCallEventListener (6)

which in turns tells the CallModel to transition to the Active state (7).

Once the second leg’s bearer connection has been ended, it indicates this as a

callEnded event (8). The service now needs to determine if the call has been ended

completely so that it can update the CallModel accordingly and delete any objects

which are no longer required. To do this, the service obtains the current reference

object of the terminal which just indicated that its bearer connection ended (9).

The Call object representing the current call is retrieved from the Terminal-to-

Call mapping (10) before the mapping to the Terminal of the first leg is removed

(11). This Call object is then used to determine if there are other call legs involved

in the call (represented by the other Terminal-to-Call) (12), which at this point is

not the case, since the first leg has not yet been disconnected, so no further service

logic occurs at this point.

The RBB then continues to invoke bearer network functionality to disconnect the

first leg of the call, which is shown simply as a single asynchronous message (13).

When the first leg’s bearer connection ends, it sends a callEnded event message

(14). In the same manner as the second leg, the service logic obtains the current

message context Terminal (15), its associated Call (16) and then removes the

association (17). This time, however, the association is the last to the current Call,

so the service logic knows that the call has ended completely. In response to this, it

sends an hangup acknowledgement to the TwoPartyCall object of the terminal that

originally requested the hangup (19). The service logic then puts the CallModel into

the Inactive state by retrieving the TwoPartyCallEventListener (20), sending it

a hangupComplete event (21) so that it in turn tells the CallModel to perform the

transition (22).
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3.4 Conclusion

Both the static structure and dynamic operation of the framework have been presen-

ted, giving a thorough description of the manner in which ALS enhances and

simplifies service development. Very simple method calls allow sending messages

to terminals and an intuitive inheritance hierarchy ensures that messages received

from terminals can be processed within service logic. This functionality is supported

by dynamic method invocation and message context, ensuring that service logic can

be invoked without having previously been compiled into the system and allowing

service logic to identify an invoking terminal respectively.

To add to this, the framework was developed to support those features necessary for

fully fledged services including RBBs, user identity and AAA functionality. Further,

the details of various manager components revealed how the framework manages the

co-operation of the various components of the framework and ensures that service

logic programmed by 3rd-party developers is appropriately decoupled from the

remainder of the framework by having various details of the framework abstracted

but still ensuring that service logic has sufficient access to operate correctly.

The framework was presented in UML form to support its OO design. Along with

class diagrams, various SDs gave the dynamic operation of the main processes which

occur in the system, including terminal login and logoff, remote method invocation

from the terminal to the AS and dynamic method invocation. Finally, two SDs

presented a two party call service, combining all the elements of the framework and

also revealing how the framework supports BCCM in the application layer.

All the above elements bring together the various principles and design choices which

were selected to guide the design of the framework. This framework confirmed OO as

very applicable to telecommunications services, whilst the importance of reusability

was realised as RBBs. As mentioned above, dynamic method invocation and message

context were pivotal to simplifying the mechanisms provided to programmers for

asynchronously accessing remote service logic. Whilst the actual signalling protocol

supporting this was not finely detailed, a higher-level overview was adequate to

demonstrate the manner in which remote method invocations are sent between

terminal and AS allowing for direct application-to-application signalling. The frame-

work was also defined to cater for lower-level network functionality abstraction

by showing how RBBs are used to interface with the bearer network and give

programmers intuitive control over its functionality.
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The framework has therefore been presented in its entirety. A proof of concept

implementation of it is discussed in appendix A. Chapter 4 then builds on it, by

presenting three services which show how the framework deals with non-call related

services as well demonstrating how a call-based service interacts with other services.
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Chapter 4

Example Services

With the framework adequately defined, its utility in the development of services

can be explored. This is done by developing three example services within the

framework. The intention of this chapter is to make full use of all the features of

the framework to show how it acts as a foundation for simple service development,

whilst providing flexibility in the design of these services and supporting them with

a robust platform on which to execute.

Different kinds of services are presented. A simple presence service demonstrates

a service operating only in the application layer and also how the framework is

applicable to modern services such as presence. This presence service is then

combined with the two party call service of section 3.3.6. Finally, a conference

call service is presented as a more complex BCCM-based service.

4.1 Presence Service

A presence service can be defined as a “software system whose role is to collect

and disseminate Presence Information, subject to a wide variety of controls” [30].

Presence information is the “dynamic set of information pertaining to a presentity

that may include Presence Information Elements such as the status, reachability,

willingness, and capabilities of that Presentity” [30]. In this case, presence in-

formation elements are the basic unit of information in a presence service and a

presentity is a “logical entity that has Presence Information associated with it” [30].

In summary, presence is “a set of characteristics describing the context in which the

user, or an agent representing the user, exists” [8, pp 364] and a presence system

“allows users to subscribe to each other and be notified of changes in state” [31].
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Presence state information can be static or dynamic – terminal capabilities and

availability being an example of each respectively. For this service, only availability

is considered as a presence information element, realising that if the service operates

correctly then it can be easily extended to incorporate other information elements

like location and reachability.

In the context of this service, certain terms need to be defined. Two definitions

here are based on those in [31]. A presentity is an entity that provides presence

information about itself that other entities may be interested in. A watcher is

an entity that is interested in presence information of other entities and either

subscribes to presence updates or when required, fetches current presence states from

these entities. For this service we are only dealing with subscription-based presence

updates, which leads to two other terms, defined specifically for the purposes of

this report: subscriber and subscription. We define a subscriber as a watcher that is

registered to receive updates from presentities. A subscription is an actual presentity

from which a watcher will receive updates.

4.1.1 Functionality and Structure

The presence service presented here offers the following functions:

• description of a presentity’s current availability as either available, away, busy

or in call (the last one being reserved for use when the two party call service

is integrated with this service in section 4.2)

• subscription to presentity status updates

• database persistence of status and subscriptions (by involving a database RBB)

• alerts to subscribers when a presentity (in which they have interest) registers

to the system

The service, with its static structure shown in figure 4.1, is made up of a

PresenceService first-contact service object which stores two mappings: between

subscriber and subscription terminals and between terminals and current availability

state. Both of the mappings are represented by the association classes shown in

figure 4.1(a). The former mapping is bi-directional in that it allows the service to

determine all subscriptions for a particular watcher and all subscribers to a particular

presentity. An example of this mapping is shown in figure 4.2. The latter mapping is
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+setAvailability(availability : String)

Service

+register()

+getPresentityAvailability(

PresenceService

Available
Away
Busy
InCall

<<enumeration>>
Availability

TerminalPresentity : Terminal

Watcher : Terminal

+subscribeToPresentity(
presentityNumber : String)

+setAvailability(availability : String,
terminalNumber : String)

presentityNumber : String) : Availability

(a) main AS classes

+synchroniseAvailability(status : String)

+subscriptionList(
listOfSubscriptions : String [])

+presentityRegistered(
presentityNumber : String, status : String)

+presentityAvailabilityUpdate(
presentityNumber : String, availability : String)

Presence

+requestAvailabilityUpdate(status : String)

(b) terminal classes

Figure 4.1: Presence service classes

simply to associate a terminal to a particular availability state. In a presence service

which catered for more detailed state descriptions, terminals would be associated to

an object that would encapsulate various presence information elements. For this

service only availability is catered for in the form of an Availability enumeration

class which represents each of the states which the presence service makes available

to a terminal.

The main AS PresenceService object, has four methods which support the main

features of the framework: allowing service logic to update the presence status of

a terminal, allowing a presentity to update its own presence state to the service,

registering to the service and subscribing to a presentity’s updates. Each of these

functions will be expanded out into SDs. The fifth method which is not callable from

a remote terminal, getPresentityAvailability(), returns a value and is used by

other services to determine a specific terminal’s presence state. Its use will become

clear in section 4.2 when the presence service is combined with the two party call

service. The SDs below also show that the service calls remote methods on an object

existing in the terminal. The use of each of the methods of the Presence terminal

object in figure 4.1(b) will be clarified in the following section.
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Terminal 1

Terminal 2

Terminal 3

Terminal 4

Terminal 1

Terminal 2

Terminal 3

Terminal 4

watchers presentities

Figure 4.2: Example subscription mappings. Bi-directionality of arrows shows how

subscribers can be retrieved from a subscription and vice versa. Note that a terminal

can be both a watcher and presentity.

4.1.2 Dynamic Operation

When a terminal associates itself to the presence service this fact is broadcasted to

all the terminals who are subscribed to its presence updates. On association it must

also be mapped to all of its subscriptions as described in figure 4.3. These and the

service’s other main functions are detailed in the following SDs.

As shown in the SDs, the terminal’s subscriptions and associated subscribers are not

kept in memory while the terminal is not registered to the service. Instead these

are stored in a database using a database RBB, which will not be formally defined

in this report. Instead, methods that are invoked on this RBB simply represent the

database functionality that should be catered for and so should not be considered as

actual methods for implementation. A proper database RBB would be more general

purpose and not tied only to presence functionality as it is here. The SDs below use

this arbitrary database RBB to show at what points the database is accessed.

Registering

The process of registering to the service begins in figure 4.3 when a terminal (in this

case, Terminal 1) calls the register() remote method (1). In response to this, the

service must first obtain a reference to Terminal 1 so that it can communicate back to
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loop

Terminal X

DatabaseRBBServiceManager UserManagerPresenceService

Terminal 1

5: map current terminal to status

18: Presence.presentityRegistered(terminal1Number,available)

16: Terminal

15: getTerminalFromE164Number(subscriberNumber)

17: map subscriber (watcher) terminal to current terminal

6: Presence.synchroniseAvailability(available)

4: getPresenceAvailability(currentTerminalNumber)

12: Presence.subscriptionList(listOfSubscriptions)

14: list of subscriber E.164 numbers

13: getAllSubscribers(currentTerminalNumber)

11: map current terminal to subscription (presentity)

10: Terminal

9: getTerminalFromE164Number(subscriptionTerminalNumber)

3: getE164NumberFromTerminal(currentTerminal)

2: getCurrentTerminal

8: list of subscription E.164 numbers

7: getAllSubscriptions(currentTerminalNumber)

1: register

loop over all subscriptions 
that the current terminal has 
a subscription to watch

loop over all subscribers 
that are registered to watch 
the current terminal

Figure 4.3: Presence service registration SD. Terminal X represents each of the

subscriber terminals to Terminal 1.
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the terminal and also perform the various mappings crucial to the operation of this

service (2). All information relevant to the service which can be associated to specific

users is persisted in the database using E.164 numbers as an index value. The current

terminal’s E.164 number is therefore at this point retrieved from the UserManager

(3) since this registration process will involve interaction with the database. The

service is capable of storing a user’s last availability status and since the terminal may

have been previously registered to the service, this last availability state is retrieved

from the database (4) (the point where the last availability was actually persisted

in the database is indicated later in the SD which describes a terminal updating its

availability). The availability value retrieved from the database is mapped to the

current terminal (5) and sent to the terminal so that it can synchronise its status

with the service (6).

Two tasks are now undertaken in the registration process. The first is to map

the registering terminal to all its subscriptions and then send the list of these

subscriptions to the terminal. The second is to map all of the terminal’s subscribers

to itself and then broadcast the fact that this terminal has just registered along with

its availability status to each of the subscribers.

The first task begins when the PresenceService requests a list of all the current ter-

minal’s subscriptions from the database RBB (7, 8). The service logic then iterates

through this list, retrieving the associated Terminal object from the UserManager

for each E.164 number in the list (9, 10) and then storing a subscription mapping

of this Terminal to the representative object for the current terminal (11). Then

the list of E.164 numbers is relayed to the current terminal (12) so that it too will

have knowledge of the states of all its subscriptions.

The second task similarly retrieves a list of the all the current terminal’s subscribers

which have previously been persisted in the database (13, 14). By iterating through

this list, the service logic retrieves each terminal associated to the E.164 numbers in

the list (15, 16) and then maps each as a subscriber to the current terminal (17).

Finally, a remote method call on each subscriber terminal (represented by Terminal

X in figure 4.3) indicates that the current terminal (Terminal 1) has just registered

to the presence service (18).
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DatabaseRBBServiceManager UserManagerPresenceService

Terminal 2Terminal 1

5: getTerminalFromE164Number(terminal1Number)

6: map current terminal to new subscription (presentity)

4: persistSubscription(terminal2Number,terminal1Number)

3: getE164NumberFromTerminal(currentTerminal)

2: getCurrentTerminal

1: subscribeToPresentity(terminal1Number)

"new subscription" is 
Terminal 1 in this case

Figure 4.4: SD describing the subscription to a terminal’s presence updates.

Subscribe to a Presentity

Subscription to a terminal’s status updates is a simple process that involves storing

the subscription in the database and mapping the requesting terminal as a subscriber

to the terminal which it is interested in. Figure 4.4 details these steps.

After the requesting terminal remotely calls the subscribeToPresentity() method

of the PresenceService object (1), expressing its interest in the terminal repres-

ented by the E.164 number which it sends as the presentityNumber parameter,

the service logic retrieves the reference object of the requesting terminal (2). The

reference object is used to retrieve the requesting terminal’s E.164 number (3) which

in turn is persisted along with the subscription terminal’s E.164 number. These two

pieces of data together represent the new subscription relationship in the database

(4). The subscription terminal’s representative object is then retrieved from the

UserManager (5) allowing for a mapping to be created between the subscriber and

subscription (6).

Update Presence Availability Status

When a terminal user wishes to update a terminal’s current service, he or she ex-

ecutes a command on the terminal which initiates a request from the terminal to the

AS to effect this update. The request is made in the form of a setAvailability()
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loop

DatabaseRBBUserManagerPresenceServiceServiceManager

Terminal XTerminal 1

4: persistAvailability(terminal1Number, busy)

1: setAvailability(busy)

7: Presence.presentityAvailabilityUpdate(terminal1Number,busy)

3: getE164NumberFromTerminal(currentTerminal)

2: getCurrentTerminal

5: replace current terminal-to-status mapping with new status

6: get all subscriber terminals

Loop over all 
subscriber terminals

Figure 4.5: SD describing the process of a terminal updating its availability status

remote method call on the PresenceService object (1) as per figure 4.5. This

request is made with one of the possible availability statuses (specified by the

Availabilty enumeration) included as an argument.

The current message context terminal is retrieved (2) and used to obtain its E.164

number from the UserManager (3). The service logic then interfaces with the

database RBB to persist the new availability status to the database (4). The current

Availability-to-Terminal mapping is updated to represent the new status (5).

All subscribers to the current terminal have to be notified of the status update. This

is achieved by retrieving the list of all the current terminal’s subscribers (6) and

iterating through the list, calling the presentityAvailabilityUpdate() method

on each of them (7).

The service also supports the updating of presence from other service logic. The

setAvailability() method has been overloaded to also take a E.164 number as

an argument. Calling this version of the method from within the application server

results in the server making a request to the terminal to update its presence so that

the logic of the SD of figure 4.5 can be reused. This is described in figure 4.6. The

utility of this method will become apparent in section 4.2, where the presence service

is integrated with another service.

When service logic requires that a terminal update its presence status, it calls

setAvailability() with the terminal’s E.164 number as an argument (1). This
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Arbitrary Service
Logic

UserManagerPresenceService

Terminal XTerminal 1

4: setAvailability(busy)

3: Presence.requestAvailabilityUpdate(busy)

2: getTerminalFromE164Number(terminal1Number)

1: setAvailability(busy,terminal1Number)

5: proceed from message 2 in figure 4.5

Figure 4.6: SD describing the updating process for a service requesting that a

terminal update its availability status

makes the service retrieve the terminal’s representative object (2) and send a

requestAvailabilityUpdate() with the desired status as an argument (3). The

terminal responds to this by remotely calling the setAvailability() method

(that does not take a E.164 number as an argument) (4). This makes the

PresenceService orchestrate the same presence updating process as figure 4.5 (5),

resulting in the terminal and AS having consistent availability information about

the terminal’s new status.

4.2 Two Party Call Service with Presence

Two services have so far been designed for implementation within the framework,

namely a two party call service and a presence service. The aim is now to join

these two services to build up complex service functionality. The purpose of this

is twofold. Firstly we want to demonstrate how complex service functionality is

actually implemented very simply. Secondly, services are not as useful in isolation

and so we wish to show how services are combined.

In the legacy IN, service logic was executed at specific points (detection points (DP))

in the processing of a call. These DPs represented state transitions of the BCSM,

and allowed service logic to either only be notified of the state change, or actually

be requested to perform some function before call processing would continue [32].
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In integrating the two services to build up a more complex service, we take a similar

approach since we are integrating a call service. Whilst not formally implementing

detection points, hooks, which serve the same purpose, are introduced into the two

party call service. These hooks act in the same way as event detection points (EDP)

in the IN. They may function like an EDP-R (request type), that is, call processing

stops until these triggers have been handled and call processing may be affected by

the outcome of the invoked service logic. They may also function like an EDP-N

(notification type) in which external service logic is only notified of a state transition

in the call model but does not affect call processing.

In the implementation in this section the number and types of hooks certainly do not

match those of the IN’s BCSM, but we are only aiming to show how two services

co-operate, and not to provide the same generalised functionality as the IN call

processing. It is also important to note that the presence service can still operate

in isolation. The fact that we are able to combine two or more services shows

the flexibility of the framework and how it can be used to orchestrate complex

functionality.

4.2.1 Functionality and Structure

Section 3.3.6 mentioned the TwoPartyCallRequestListener interface along with

the registerRequestListener() method of the TwoPartyCallService class.

Their use is specifically for integrating the two party call service with other service

logic. TwoPartyCallRequestListener specifies the methods which act as the

“hooks” that were mentioned above. These methods get called on soon after a

terminal makes a request to either make or hangup a call. The methods serve

two functions, firstly to perform some sort of service logic before the call processing

continues and then, in the case of making a call, to return a boolean value indicating

whether call processing should continue.

The high-level functionality of the combined service logic is to allow the presence

service to determine whether a call can be made or not. If a user has set his or her

terminal’s presence availability to Busy, this should indicate to other users that this

user is not able to accept calls currently. By combining the two party call service to

the presence service, call restrictions can be enforced based on presence availability.

Thus, if a user tries to call another whose availability is Busy, the call will not be

setup. This is taken further by specifying that when a two party call is setup, its

availability is automatically set to InCall. Then if another user tries to initiate a
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+handleMakeCall(terminal1Number : String,
terminal2Number : String) : bool

+handleHangup(terminal1Number : String,
terminal2Number : String)

<<Interface>>
TwoPartyCallRequestListener

TwoPartyCallRequestListenerImp

terminalE164Number :
String

previousAvailability : Availability1..*1

Figure 4.7: Classes required for the integration of the two party call and presence

services

call with a user that is already in a call, the call setup will fail immediately, reducing

the amount of signalling required to determine that the call cannot be setup. When

the call is hungup, both terminals return to the availability state in which they were

before the call began.

The combination of the two services which facilitates the above functionality relies

on the classes shown in figure 4.7. The TwoPartyCallRequestListener implement-

ation overrides the handleMakeCall() and handleHangup() methods, allowing it

to execute some service logic when a request to make or hangup a call is made.

These two methods take the E.164 numbers of the originating and destination

terminals as arguments which can be used by the service logic invoked by these hooks.

The TwoPartyCallRequestListener implementation also stores a mapping between

terminal E.164 numbers (which the presence service uses to identify terminals

uniquely) and previous availability states to provide a means for the terminals to

return to their previous states once a call is complete. The purpose of this mapping

will be elucidated in the following section.

4.2.2 Dynamic Operation

The integration requires modifications to the SDs of figures 3.18 (makeCall())

and 3.20 (hangupCall()). The change to the makeCall() SD involves inserting

an invocation of handleMakeCall() just before initialising the call in the bearer

network (via the TwoPartyCallRBB). Thus, this invocation is inserted after message

5 of figure 3.18. The changes along with the invocation of the PresenceService

functionality are shown in figure 4.8 and we now run through each of the messages
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opt

opt

Presence
Service

TwoPartyCallRequest
ListenerImp

TwoPartyCall
Service

11: "true" if should proceed with call, otherwise "false"

10: setAvailability(InCall,terminal2Number)

9: setAvailability(InCall,terminal1Number)

8: map Availabilities to Terminals' E.164 numbers

7: Availability

6: getPresentityAvailability(terminal1Number)

5: determine if call should proceed

4: Availability

3: getPresentityAvailability(terminal2Number)

2: handleMakeCall(terminal1Number,terminal2Number)

Call should proceed only 
if Availability is "Away" or 
"Available"

[ call should proceed = true ]

[ call should proceed = true ]

 as previous Availabilities for both Terminals

12: proceed from message 6 in figure 3.18

1: messages 1-5 in figure 3.18

Figure 4.8: Using handleMakeCall() hook to integrate two party call and presence

services

in this figure.

In response to receiving a makeCall() invocation from the terminal, the E.164

numbers of both terminals are retrieved (1). At this point the SD of figure 3.18

is modified, by inserting an invocation of the handleMakeCall() hook (2). By the

programmed behaviour of the TwoPartyCallRequestListener implementation, this

gets the availability of the destination terminal (3, 4) and then determines if the call

setup should proceed according to the functionality of the service stated in section

4.2.1. That is, it should proceed only if the terminal’s availability is not Busy or

InCall (5). Based on this information, if the service logic determines that the call

should proceed, it obtains the availability of the originating terminal as well (6, 7)

and then stores the current availabilities of both terminals as previous availabilities

in the terminal E.164 number to previous Availability mapping shown in figure 4.7

(8). Having backed up the previous availability states, both terminal’s availabilities

are now set to InCall (9, 10), preventing other terminals from contacting them. The

setAvailability() method used is that version of the overloaded method which
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UserManager Presence
Service

TwoPartyCallRequest
ListenerImp

TwoPartyCall
Service

8: setAvailability(terminal2PreviousAvailability,terminal2Number)

7: setAvailability(terminal1PreviousAvailability,terminal1Number)

6: get previous Availabilities from E.164 numbers

5: handleHangup(terminal1Number,terminal2Number)

4: getE164NumberFromTerminal(terminal2 : Terminal)

3: getE164NumberFromTerminal(terminal1 : Terminal)

2: get other Terminal from Call-to-Terminal mapping

9: proceed from message 4 in figure 3.20

1: messages 1-3 in figure 3.20

Figure 4.9: Using handleHangup() hook to integrate two party call and presence

services

can be called from within an AS from other service logic as discussed in section

4.1.2.

If it was determined in message 5 that call processing should proceed, the

handleMakeCall() hook returns a boolean value of true (11), indicating to the

TwoPartyCallService that it should continue call processing as per figure 3.18

(12). Otherwise, a false value is returned and the call processing ends, preventing

the call from being setup.

The hangupCall() SD of figure 3.20 is also modified just before it invokes bearer

network functionality via the TwoPartyCallRBB. This modification and the integra-

tion point with the PresenceService at the point where a call is hung up is shown

in figure 4.9. As is similar to the TwoPartyCallService in isolation, hanging up

a call begins with the terminal invoking a hangupCall() remote method call and

the service logic obtaining a reference to the current Terminal and the Call object

representing the two party call in which the terminal is involved (1). Since, the

service logic now requires the E.164 numbers of both terminals to interface with the

PresenceService, but in the original SD these are not required, the modification is

made at this point. Here, the Call is used to retrieve the other Terminal involved

in the call (2). Then the E.164 numbers are retrieved using both Terminal objects

(3, 4). The handleHangup() hook is invoked (5) to orchestrate the service logic of
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returning both terminals to the availability state they were in before the call was

setup. The previous availabilities are retrieved from the terminal E.164 number to

the previous Availability mapping (6) and then set as the current availabilities

for each terminal (7, 8). Call processing for hanging up a call then proceeds as

before in the original hangupCall() SD (9). Note that this hook does not return a

value, and merely sends a notification to the service logic which it invokes, thus call

processing will continue irrespective of the invoked service logic.

The two services could be integrated further, for example, by allowing a user to

request that a call automatically be setup with another user when that user’s

availability changes to Available. However, we have adequately shown how two

services co-operate (whilst making sure that they are not too closely coupled) and

so do not pursue further integration possibilities.

One last point to note is that, unlike in the IN where triggers are executed based

on transitions of the BCSM, service logic external to the two party call service is

not executed on transitions of a CallModel object. The integration could have been

done in this way, but we have chosen to keep the CallModel as exactly what it

is, a model, and not as a means for triggering other service logic. More so, the

CallStateModelRBB does not cater for triggering external service logic and so it

was simpler to add hooks into the TwoPartyCallService directly.

4.3 Multiparty Call Control RBB

Before presenting the design of a conference call service, a multiparty call RBB will

be introduced to serve a similar supporting function that the two party call RBB

does for the two party call service. That is, it will provide a simplified interface into

the bearer network that will allow for the setup of calls involving more than two

parties. With this in place, the conference call service will reuse its functionality

and also provide more complex features that are required of conference calls. This is

done in the same way that the OSA/Parlay conference call control service capability

feature (SCF) [33] is supported by and extends the multi-party call control SCF

[34].

The multiparty call RBB will enable service logic to create a call in the bearer

network and then add multiple legs to this call. Further it will provide the same

listener functionality as that of the two party call RBB, in that each leg of the call
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+createCall() : MultipartyCall

MultipartyCallRBB

ReusableBuildingBlock

(a)

+destroy()
+addLeg(E164Number : String) : Leg
+removeLeg(Leg)

MultipartyCall

-MultipartyCallRef : MultipartyCall

+Leg(MultipartyCall, E164Number : String)
+getMultipartyCall() : MultipartyCall
+registerEventListener(LegEventListener)
+getEventListener() : LegEventListener
+startLeg()
+endLeg()

Leg

+indicateEvent(event : String)

<<Interface>>
LegEventListener0..110..*1

+getLegs() : Leg []

(b)

Figure 4.10: Multiparty call RBB classes

will be able to have an event listener registered with it. This can and will be used

to integrate this RBB with the call state model RBB allowing for each leg of the

call to maintain its own call model.

4.3.1 Functionality and Structure

The RBB is made up of a MultipartyCallRBB first-contact object which creates

MultipartyCall objects in response to an invocation of createCall(). These

objects represent multiparty calls in the bearer network. When they are first created

they are empty, such that no parties are involved in the call. In order to add legs

representing parties, service logic calls addLeg() on the MultipartyCall object

which adds the leg to the call within the bearer network and then returns a Leg

object representing this leg. The Leg object is then manipulated in order to connect

the terminal to a bearer network stream, remove the terminal from the call or to

add event listeners which respond to specific bearer network events.

The classes making up this RBB are shown in figure 4.10. The main singleton,

MultipartyCallRBB (figure 4.10(a)), is a formal ReusableBuildingBlock that acts

in the same way as other RBBs in that it operates as a factory class that produces

other objects that can be manipulated by service logic. The objects which it

produces, MultipartyCalls, can store multiple Leg objects which in turn can each

have a LegEventListener object registered with it, all of which is represented in

the class diagram of figure 4.10(b).

A MultipartyCall object, which is created in response to an invocation of
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createCall() on the MultipartyCallRBB object has methods relating to the basic

functionality required of a multiparty call in the bearer network. Firstly, the object’s

constructor automatically creates a multiparty call in the bearer network and ensures

that there is an association between it and the constructed object. The addLeg()

and removeLeg() methods allow legs to be added and removed from the multiparty

call respectively. The former constructs and returns Leg object which is associated

to the relevant leg in the bearer network. The latter allows one of these Leg objects

to be passed into it, signalling to the RBB that it destroy the associated call leg in

the bearer network.

This MultipartyCall object can also be completely destroyed by calling its

destroy() method. This firstly removes all legs (and associated Legs) from the

multiparty call and then destroys this multiparty call in the bearer network. The

last method of this object, getLegs() simply returns a collection of all Leg objects

currently associated with this call.

Leg objects provide the very basic functionality required for manipulating a

participant in a multiparty call. The startLeg() and endLeg() methods con-

nect and disconnect the associated terminals from the bearer stream of the

call. The registerEventListener() method allows for an implementation of the

LegEventListener interface to execute service logic external to the RBB in response

to specific events within the network. This event listener can also be retrieved by

service logic using the getEventListener() method, since it is also possible for

service logic to indicate the occurrence of a call-related event (such as a terminal

signalling over ALS that a call leg has been setup or disconnected).

The Leg class’ constructor takes a MultipartyCall as an argument. This

MultipartyCall instance is actually that object that has called the constructor

of the Leg object currently being constructed. Leg objects are never constructed in

isolation but rather in response to calls to addLeg() on a MultipartyCall object.

The reason that a MultipartyCall is passed into the constructor and then stored in

the MultipartyCallRef attribute, is to enable the getMultipartyCall() method

of the Leg class. This method allows service logic to determine the MultipartyCall

to which a specific Leg belongs. This method is required since service logic would

intuitively have Leg objects associated to Terminal objects, such that when a

Terminal is retrieved using the message context functionality of the framework,

the Leg object to which it is associated can also be retrieved. In turn, this method

would allow the associated MultipartyCall to also be retrieved.
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MultipartyCall

MultipartyCall
RBB

Service
Logic

4: new MultipartyCall

3: create empty multiparty
call over CS signalling

2: new

1: createCall

Figure 4.11: SD for creating a multiparty call in initial state (with no attached legs)

With the static structure in place, we now look to develop some reference sequences

that service logic may implement to make use of the functionality that this RBB

provides. These reference sequences relate to the most common way that the RBB

can be used: allowing a terminal to request that it join a multiparty call and then

having the AS instruct the bearer network to contact the terminal and join it to the

multiparty call. This also includes the integration of call monitoring functionality

by means of the CallModelRBB.

4.3.2 Dynamic Operation

Creating an Empty Multiparty Call

The most trivial message sequence is related to creating a multiparty call in

its initial state as shown in figure 4.11. A call to createCall() (1) instructs

the MultipartyCallRBB to construct a new MultipartyCall object (2). In the

constructor, the RBB interfaces with the bearer network, signalling to it to initiate

a multiparty call (3). Once this is complete, the new MultipartyCall object is

returned to the service logic for manipulation (4).

Adding a Leg to a Multiparty Call

Once the MultipartyCall is created it is now possible to add legs to it. To do this,

we follow the sequence in figure 4.12, which is similar to that of the sequence that

occurs in response to a makeCall() invocation on the TwoPartyCallService as per

figure 3.18. Adding a leg to a multiparty call is also similar to setting up a two party

call in that it also relies on ALS to indicate terminal-side call setup events.
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CallModel

CallStateModel
RBB

LegEventListener
Imp

Leg

MultipartyCallService Logic

Terminal 1

24: transition(Active)

23: indicateEvent(legAnswered)

22: getEventListener

21: get Leg from current Terminal

20: indicateEvent(answered)

19: transition(Ringing)

18: indicateEvent(legRinging)

17: getEventListener

16: get Leg from current Terminal

15: indicateEvent(ringing)

14: transition(Initiated)
13: indicateEvent(legSetupInitiated)

12: setup leg over CS signalling

11: startLeg

10: registerEventListener

9: registerCallModel

8: new

6: new

7: new CallModel

5: createNewCallModel

4: new Leg

3: store Leg in collection

2: new(MultipartyCall,terminal1E164Number)

1: addLeg(termina1E164Number)

Figure 4.12: SD for adding a leg to a multiparty call
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The process of adding a leg to a multiparty call begins when service logic calls

addLeg() (1) on a MultipartyCall object. This instructs the MultipartyCall to

create a new Leg object which it associates to the E.164 number passed into to the

constructor and also to an underlying reference to a leg in the bearer network (2).

The MultipartyCall then stores this new Leg inside its collection of Leg objects

which are associated to it (3). This new Leg is then returned to the service logic (4)

which stores it in such a way that it can be retrieved again within a specific message

context.

At this point, service logic would usually register a CallModel with the newly created

Leg. Whilst this does not necessarily have to be done, we include it here since all

call related functionality of the framework requires the use of a call model for proper

BCCM. Thus, the functionality of the CallStateModelRBB is invoked by requesting

the creation of a new CallModel object (5-7). Then, an implementation of the

LegEventListener interface, which has been specified to update a CallModel in

response to call related events, is created (8) and the CallModel is registered with

it (9). This LegEventListener, whose implementation is formally introduced in

section 4.4.1 within the conference call service, is registered to the Leg just created

above (10).

The Leg is now ready to be connected to the multiparty call bearer stream. To

do this, the service logic calls startLeg() (11) which initiates the call leg setup

using CS signalling within the bearer network (12). When the bearer network has

itself initiated the setup of the call leg, it signals up to the application layer and in

response a legSetupInitiated event is indicated (13) resulting in the CallModel

transitioning to the Initiated state (14).

Since the process of a terminal joining a multiparty call is a 3rd-party initiated

process, the terminal is contacted via the bearer network and therefore goes through

the process of ringing and then being answered. However, since in this reference

sequence we are considering the case for when a terminal actually requests via ALS

that it join the multiparty call, the terminal does not actually ring or have to be

manually answered by the user. Instead these two events occur without the user’s

knowledge. The formality is kept so as not to break the state transition rules of

the CallModel. As such, when the terminal is contacted via the bearer network, it

indicates a ringing event over ALS (15). In response, the Leg is retrieved using

the message context (16) and its registered LegEventListener is retrieved (17).

Service logic uses this event listener to indicate a legRinging event (18) which

causes the CallModel to transition to the Ringing state (19).
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CallModelLegEventListener
Imp

LegMultipartyCallService Logic

Terminal 1

11: transition(Inactive)

10: indicateEvent(legHangupComplete)

9: getEventListener

7: indicateEvent(callEnded)

6: transition(Active)

5: indicateEvent(legHangupInitiated)

4: hangup leg over
CS singalling

3: endLeg

2: remove leg from collection

1: removeLeg(terminal1Leg)

8: get Leg from current Terminal

Figure 4.13: SD for removing a leg from a multiparty call

When the call is answered (or more correctly, the terminal accepts the connectivity

request from the bearer network), it indicates an answered event to the AS (20).

Once again, the related Leg object and then its registered event listener are retrieved

(21, 22). A legAnswered event is indicated to this event listener (23) making the

CallModel transition to the Active state (24). At this point, a stream should be

setup within the bearer network between the terminal and the multiparty call and

the user can participate in the multiparty call.

Removing a Leg from a Multiparty Call

The removal of a leg from multiparty call would often occur in response to an ALS

request from the terminal. This would set off the sequence represented in figure 4.13.

Beginning with service logic calling removeLeg() on the MultipartyCall object (1)

to which the terminal is associated by passing in the Leg object representing the

bearer network stream to the terminal. This would precede the Leg object being

removed from the MultipartyCall’s collection of associated Legs (2). This would

then be followed by a call to endLeg() on the Leg object (3) making the RBB

request from the bearer network that it disconnect the terminal from the multiparty

call within the network (4). Once this disconnection process has begun, the bearer

network signals this fact up to the framework, and a legHangupInitiated event is
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loop

MultipartyCallService Logic

4: proceed from message 2

2: getLegs

3: removeLeg(terminalLeg)

1: destroy
loop over all legs in the 
MultipartyCall's collection 
of Legs

5: destroy multiparty call
over CS signalling

in figure 4.13

Figure 4.14: Destroying a multiparty call

indicated to the LegEventListener implementation (5) and the CallModel would

be instructed to transition to the Active state (6).

Once the terminal has been fully disconnected from the multiparty call over CS

signalling, it sends a callEnded event to the service logic in the AS (7). To respond

to this, the relevant Leg object is retrieved using the message context (8). The

Leg’s event listener is retrieved (9) and a legHangupComplete event is signalled to

it (10) making it update the CallModel to a Inactive state (11) indicating that

the terminal’s leg has been completely disconnected from the multiparty call.

Destroying a Call

If the multiparty call has reached its conclusion there may be a desire to end

it completely. There can be no guarantee that all connected terminals would

have willingly disconnected from the call before the call is destroyed in the bearer

network. Thus the sequence for gracefully destroying this call would involve forcing

all terminal’s to disconnect from this call and only then instructing the bearer

network that the call be completely cleared away. The multiparty call RBB has been

designed to cause this all to happen with a single call to the destroy() method on

a MultipartyCall object. This is presented in figure 4.14.

When service logic calls destroy() (1), the MultipartyCall object retrieves all

the Legs associated to it and stored in its collection (2) and iterates through them,

invoking the same set of messages to be called as per the leg disconnection SD of
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figure 4.13 (3, 4). These messages are not repeated here, and the reader is referred

back to this figure. The only slight difference with that set of messages is that

the call to removeLeg() (3) originates from within the MultipartyCall object as

opposed to originating from external service logic. Once all terminals have been

disconnected from the call, the bearer network is signalled to destroy the multiparty

call within it (5), effectively ending the multiparty call completely.

These SDs have covered that usage of the multiparty call RBB adequately enough

for reuse within the conference call service. Thus we now leave the detail of this

RBB and begin exploring the details of the conference call service which was our

original aim.

4.4 Conference Call Service

The conference call service is a service which provides more structure to the concept

of a multiparty call. Multiparty calls can be implemented in various ways. For

example, user A can call user B, then put user B on hold while contacting user C

and then bringing user B into the conversation with user C. In this way, a single

user, user A, initiated the call and controlled it. The call did not exist until user

A called user B and other users have no way of selectively joining this call without

being contacted by user A.

The conference call service formalises multiparty calls into conference calls. That

is these calls can be joined and left at will and are uniquely identified by a specific

value, so that terminals are able to locate and then join them. We now detail

this service as a means of showing how the framework copes with more complex

call-based services.

4.4.1 Structure and Functionality

From a high-level the service is organised thus: created conference calls are stored

in the service and identified by unique identifying strings. When a terminal joins

this service, it joins the lobby. In doing so, it is furnished with a list of all unique

identifiers for each of the conference calls in existence created by the service. This

lobby is not represented by an object, rather it is just a means of stating that the

terminal is not attached to any conference call. If a terminal creates a conference,
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+joinLobby()
+createConference(conferenceIdentifier : String)
+joinConference(conferenceIdentifier : String)
+leaveConference()
+transferOwnership(newOwnerE164Number : String)
+indicateEvent(event : String)
+getAllConferenceAttendees(

ConferenceCallService

Terminal

-isOwner : bool

+setOwnership(bool)
+getOwnership() : bool
+getLeg() : Leg

ConferenceCallLeg

MultipartyCall

identifier : String

Service

0..*110..*

Leg
+ConferenceCallLeg(Leg)

11

conferenceIdentifier : String) : Terminal []

(a)

+indicateEvent(event : String)

<<Interface>>
LegEventListener

+registerCallModel(CallModel)

LegEventListenerImp CallModel11

(b)

Figure 4.15: AS conference call service classes

it becomes the owner of this conference. Usually this would mean that the user of

the terminal has the ability to prevent other terminals from accessing the conference

call or remove terminals that are already part of the conference call (amongst other

functionality). However, for this simplified conference call service, ownership simply

means that if the owner leaves the conference, the conference will be destroyed. This

in turn specifies that a conference cannot exist without an owner, and thus when a

conference is created, the owner is automatically placed in it.

Main Conference Call Service Classes

Using this high-level description as a guide, we now detail the objects that make

up the service. Figure 4.15 shows all the classes introduced to support the service’s

functionality. Starting with figure 4.15(a), the ConferenceCallService is a formal

Service object that functions as the first-contact singleton for the service. Its

purpose is to create new conference calls, store references to these conference calls

against unique identifiers and to associate terminals with legs in these conference

calls.

The ConferenceCallService hosts two maps to cater for this functionality. An
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identifier string-to-MultipartyCall bidirectional map allows terminals to identify a

conference call which they would like to join uniquely, noting that the combination

of a multiparty call RBB’s MultipartyCall object with a unique string makes up

a conference call. A unidirectional Terminal-to-ConferenceCallLeg map enables

message context functionality, allowing the current terminal reference to be used

to retrieve its associated conference call leg and hence conference call (since a

Leg, which is wrapped in a ConferenceCallLeg, contains a reference back to the

multiparty call as per the multiparty call RBB).

This service introduces a ConferenceCallLeg class as a wrapper to the multiparty

call RBB’s Leg to provide the Leg with the properties needed for the ownership

functionality of the conference call service. This class defines two methods to

support conference call ownership, namely setOwneship() (which sets the terminal

corresponding to the ConferenceCallLeg as an owner or not based on a true or

false boolean value, respectively) and getOwnership (which simply determines if

the terminal is the owner or not). Besides the constructor, which takes the Leg to

be wrapped as an argument, the getLeg() method is the last method of the class

which allows the wrapped Leg to be retrieved so that it can be used to interface

with the multiparty call RBB.

The ConferenceCallService object has various, mainly remotely-callable, methods

which represent the basic functionality of the service. They are each described in

the following list:

• joinLobby() (detailed in figure 4.17) - A terminal calls this method to create

an initial association to the service. In response, it receives a list of unique

identifiers for the available conferences that it can join.

• createConference() (detailed in figure 4.18) - A call to this method creates

a new conference and automatically attaches the terminal that requested the

creation to this conference.

• joinConference() (detailed in 4.19) - Makes a terminal join the conference

specified by the conferenceIdentifier string.

• leaveConference() (detailed figure 4.21) - In response to a call to this

method, the requesting terminal is removed from the conference in which it is

currently participating. Note that this method does not require a conference

identifier as an argument as message context functionality ensures that the

relevant conference call can be retrieved.
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+conferenceList(conferenceIdentifiers : String [])
+conferenceAttendeesList(terminalE164Numbers : String [])
+attendeeJoined(terminalE164Number : String)
+attendeeLeft(terminalE164Number : String)
+conferenceEnded()
+indicateNewOwner()

ConferenceCall

Figure 4.16: Terminal conference call class

• transferOwnership() (detailed in figure 4.20) - The service allows for a

conference to change ownership such that the original owner can leave the

conference without it being destroyed. The method is remotely called with an

E.164 number as an argument indicating the new owner.

• indicateEvent() - This method is for enabling the ALS of bearer network

level events (such as the success of a stream being setup between a terminal

and the remainder of a conference).

• getAllConferenceAttendees() - This is the only method which is not re-

motely callable. It is a utility method which iterates through the Terminal-

to-ConferenceCall leg map and builds up a list of Terminal objects which are

associated to a specified conference call. It is possible to identify this relation-

ship in the following manner: conferenceIdentifier → MultipartyCall →
Leg → ConferenceCallLeg → Terminal.

Bearer Network Event Listener

In the SDs of figures 4.12 and 4.13 an implementation of the LegEventListener

interface of the multiparty call RBB was used. This implementation was the

LegEventListenerImp class in figure 4.15(b). Besides the indicateEvent()

method which has been implemented to update a CallModel, if a bearer net-

work event occurs, this LegEventListenerImp introduces a registerCallModel()

method which allows the CallModel to be registered with it.

Conference Call Service Class in Terminal

For this service to function correctly, certain remotely-callable methods have to

exist in the terminal as well. These methods are grouped into ConferenceCall

class existing on the terminal (shown in figure 4.16) and their uses are summarised

in the following list:
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• conferenceList() - This method is called by the AS to send the terminal

a list of all the conferences being hosted. Usually called in response to the

terminal joining the “lobby”.

• conferenceAttendeeList() - In response to a terminal joining a conference

call, the AS calls this method to send the terminal a list of E.164 numbers of

the attendees currently participating in the call.

• attendeeJoined() - When a new attendee joins a conference in which a

terminal is already a participant, a call to this method will alert the terminal

along with the E.164 number of the new attendee.

• attendeeLeft() - This method is similar to the case of a new attendee joining

a conference, except it is used to indicate that an attendee has just left a

conference call.

• conferenceEnded() - If a conference call is ended before a terminal has

voluntarily disconnected from it, it is informed that the call has ended using

this method, giving it a chance to perform the necessary functions to disconnect

gracefully from the conference call.

• indicateNewOwner() - Since ownership of a conference call can be transfered

from one terminal to another, if this occurs, the new owner is notified using

this method.

4.4.2 Dynamic Operation

With the static structure of the service defined, we now move onto to presenting

SDs defining the dynamic behaviour of the service.

Initial Conference Call List Retrieval

Before taking part in a conference call, a terminal must first join the conference call

“lobby” and retrieve a list of available conference calls . This process is performed

according to the SD of figure 4.17. A terminal remotely calls joinLobby() on the

ConferenceCallService object (1), making the object retrieve a list of conference

call identifiers from the conference call identifier string-to-MultipartyCall map (2).

This list is then sent to the terminal (3). This process does not change the state

of the conference call service and is just a mechanism for the terminal to retrieve

available conference calls.
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ConferenceCall
Service

Terminal 1

3: conferenceList(listOfConferenceRooms)

2: get list of conference
call identifiers

1: joinLobby

Figure 4.17: SD describing the initial retrieval of available conference calls

Creating a Conference Call

Once a terminal has received a list of all available conferences, its user can either

create a new conference or join an existing one. Figure 4.18 covers the message

sequences which occur in response to a user opting to create a new conference. As

mentioned earlier, once this new conference has been created, the user is automat-

ically placed in it with the role of being the owner, since in this service it has been

specified that a conference call cannot exist without an owner as a participant.

The case of joining a conference is covered after the description of the creation of a

conference call. Some parts of the conference call creation message sequence will be

reused in the joining a conference call sequence. Further, some message sequences

describing the operation of the multiparty call RBB are reused here.

When a user decides to create a conference call, a createConferenceCall() message

is sent over ALS, with a unique name for this conference selected by the user as an

argument (1). This causes the ConferenceCallService object to orchestrate the

creation of a MultipartyCall object and hence the setup of a multiparty call in the

bearer network. This is done by calling createCall() on the MultipartyCallRBB

object (2), which results in a new MultipartyCall object being constructed (3)

and the bearer network being signalled to create an associated multi party call

(4). The new MultipartyCall is then returned to the conference call service

logic (5). This new MultipartyCall is mapped to the identifier string sent in

the createConferenceCall() message (6).

With the multiparty call created, the terminal now has to join it as an owner. Since

the multiparty call RBB uses E.164 numbers in the arguments to the methods used

for setting up calls, the current terminal’s E1.64 number has to be retrieved. First,

the current message context Terminal is retrieved (7). Then its E.164 number is
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loop

ConferenceCallLeg

Leg

UserManagerServiceManager

MultipartyCall

MultipartyCall
RBB

ConferenceCall
Service

Terminal 1

15: map ConferenceCallLeg to current Terminal

19: conferenceAttendeeList

18: getE164NumberFromTerminal(conferenceAttendeeTerminal)

17: getAllConferenceAttendees(conferenceIdentifier)

14: setOwnership(true)

13: new(Leg)

12: new Leg

11: store Leg in collection

10: new(MultipartyCall, Terminal1E164Number)

9: addLeg(terminal1E164Number)

8: getE164NumberFromTerminal(currentTerminal)

7: getCurrentTerminal

6: map MultipartyCall to
conferenceIdentifier

5: new MultipartyCall

4: create empty multiparty
call over CS signalling

3: new

2: createCall

1: createConference(conferenceIndentifier)

loop over all 
Terminals 
representing 
attendees to the 
conference

20: proceed from message 11 in figure 4.12

16: messages 5 - 10 in figure 4.12

Figure 4.18: SD for creating a conference call

retrieved from the UserManager (8). By calling addLeg() on the MultipartyCall

with this E.164 number as an argument (9) a new Leg is created (which also

initialised a call leg within the bearer network) (10), stored in the MultipartyCall

(11) and returned back to the service logic (12). This Leg is wrapped in a new

ConferenceCallLeg (13) and the service logic indicates that this leg is attached

to the owner of the conference call (14). The Leg is then mapped within the

ConferenceCallService to the current message context Terminal (since it also

represents a bearer stream to the same terminal) (15).
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loop

UserManagerLegConferenceCallLeg ServiceManagerMultipartyCallConferenceCall
Service

Terminal XTerminal 1

5: getE164NumberFromTerminal(currentTerminal)

9: get conferenceIndentifier from MultipartyCall

8: getMultipartyCall

7: getLeg

6: get ConferenceCallLeg from Terminal

4: getCurrentTerminal

10: getAllConferenceAttendees(conferenceIdentifier)

11: attendeeJoined(terminal1E164Number)

2: get MultipartyCall
from conferenceIdentifier

1: joinConference(conferenceIdentifier)

Loop over all 
conference 
attendees

[but replace message 14 with setOwnership(false)]

This is a continuation of the 
ConferenceCallService's 
response to an "answered" 
event indication from Terminal 1 
as per figure

3: proceed from message 7 in figure 4.18

4.12

Figure 4.19: SD for joining a conference call

At this point, reference message sequences are reused from the multiparty call RBB.

These cover the logic for associating the newly created Leg to a CallModel using a

LegEventListener (16). Once this is complete, the service logic retrieves the list

of parties already in the conference call (17) and each of their E.164 numbers (18)

which are then sent to the current terminal (19). Obviously at this point as the

conference call has just been created, the list of E.164 numbers will be empty. We

are only indicating this sequence here since this logic will be reused by the next SD

for a user joining a conference call.

The entire process ends by following the same reference message sequence for adding

a new leg to a multiparty call which has the service logic request the start of setting

up a bearer stream to the current terminal along with all the relevant ALS messages,

event notifications and call model transitions to support this (20). With this process

complete, the conference call is now fully setup and a bearer stream has been joined

to the owner.
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Joining a Conference Call

In order to respond to a request from a terminal that it join a specific conference

call, the AS follows the logic specified in figure 4.19. The initial part of this sequence

reuses the message sequence of adding an owner to a newly created conference

call, except in this case, not setting the current terminal to be an owner. Having

connected the terminal to a conference call within the bearer network and associated

it in the application layer as well, all other terminals in the conference call are alerted.

The entire process is now detailed.

When a terminal wishes to join a conference call, it calls joinConference() on

the ConferenceCallService object, using the unique conference identifier as an

argument (1). The service then retrieves the MultipartyCall object associated

to this identifier (2) and undertakes the process of connecting the terminal to the

conference call. This involves creating a Leg, wrapping it in a ConferenceCallLeg

which is mapped to the current Terminal, sending the list of the conference attendees

to the terminal and then connecting the leg within the bearer network (with all

associated ALS method calls, event notifications and call model transitions) (3).

When the terminal is fully connected, the service has to alert other conference

call participants of the new terminal. To do this, when the terminal indicates

the answered event at the end of the bearer connection setup, the service logic

uses this opportunity to notify the other participants. The list of participants

has to be retrieved using the getAllConferenceAttendees() method which re-

quires the current conference call’s unique identifying string. To obtain this, the

current message context Terminal (which is a reference to the newly connected

terminal) is retrieved (4) followed by its E.164 number (5). The newly created

ConferenceCallLeg mapped to this Terminal is retrieved (6) and then used to

obtain the Leg object representing the new terminal’s bearer connection within the

network (7). Using the Leg’s getMultipartyCall() method, the MultipartyCall

to which this Leg belongs is fetched (8). The MultipartyCall is mapped to the

conference call’s identifying string which can now be obtained (9). This string

is passed into the getAllConferenceAttendees() method which returns a list of

Terminals representing the other conference call participants (10). The service

logic iterates through this list, sending the new terminal’s E.164 number to each

terminal via a call to these terminal’s attendeeJoined() method (11). This ends

the process of a new terminal joining a conference call, and the terminal’s user can

now participate in the call.
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ServiceManager

Terminal 2

Terminal2Conference
CallLeg :

ConferenceCallLeg

Terminal1Conference
CallLeg :

ConferenceCallLeg

UserManagerConferenceCall
Service

Terminal 1

9: indicateNewOwner

8: setOwnership(false)

7: get ConferenceCallLeg
from Terminal 1

6: Terminal 1

5: getCurrentTerminal

4: setOwnership(true)

3: get ConferenceCallLeg
from Terminal 2

2: getTerminalFromE164Number(terminal2E164number)

1: transferOwnership(terminal2E164Number)

Figure 4.20: SD for transferring ownership of a conference call

Transfer Ownership

The service offers the owner of a conference call the ability to transfer ownership to

another terminal. Figure 4.20 covers the message sequence involved in transferring

ownership from a hypothetical Terminal 1 to another Terminal 2. The process begins

when Terminal 1 calls transferOwnership() on the ConferenceCallService,

passing in Terminal 2’s E.164 number as an argument (1). The service logic

calls on the UserManager to retrieve Terminal 2’s representative Terminal (2)

which is in turn used to retrieve the ConferenceCallLeg to which it is mapped

within the ConferenceCallService (3). A call to setOwnership() on this

ConferenceCallLeg, passing in a boolean value of true, results in Terminal 2 be-

coming an owner of the conference call (4). Then to remove Terminal 1’s ownership,

its representative Terminal is obtained using message context functionality (5, 6),

allowing its associated ConferenceCallLeg to also be obtained (7). Terminal 1’s

ownership is then revoked by calling setOwnership() with false as an argument

(8). Terminal 2 is then notified that it is the new owner (9).

With Terminal 2 as the new owner, if it leaves the conference call, the conference

call will be destroyed as will be shown in the next message sequence for leaving a

conference.
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alt

[ownership = false]

loop

[else]

loop

UserManagerMultipartyCallLegConferenceCall
Leg

ServiceManagerConferenceCall
Service

Terminal XTerminal 1

15: conferenceEnded

16: destroy

14: remove ConferenceCallLeg
to Terminal mapping

10: attendeeLeft(terminal1E164Number)

9: getE164NumberFromTerminal(currentTerminal)

7: getAllConferenceAttendees(conferenceIdentifier)

6: get conferenceIdentifier
from MultipartyCall

12: removeLeg(Terminal1Leg)

11: remove ConferenceCallLeg
to Terminal mapping for Terminal 1

8: getOwnership

5: getMultipartyCall

4: getLeg

3: get ConferenceCallLeg
from Terminal

2: getCurrentTerminal

1: leaveConference

loop over all conference 
attendee Terminals

loop over all conference 
attendee Terminals

17: proceed from message 2 in figure 4.14

13: proceed from message 2 in figure 4.13

Figure 4.21: SD for a terminal leaving a conference. This terminal may or may not

be the conference owner.

Leaving a Conference

When a terminal leaves a conference call, one of two things can occur. If it is not

an owner, it simply leaves the conference and all other participants are notified. If

it is an owner, all other terminals are forced to disconnect and then the conference

call is destroyed. Both cases are covered in figure 4.21 and are separated using an

alternative combined fragment in UML. The entire process reuses reference message

sequences for the multiparty call RBB.
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When a user wishes to leave a conference call, his or her terminal requests this

by calling leaveConference() (1). Four pieces of important information are now

required: the Leg object representing the terminal in the conference call, the

MultipartyCall object representing the conference call, the Terminal’s ownership

status over the conference call and a list of participants in the call. These are all

retrieved thus: first the Terminal object representing the requesting terminal is

accessed using the current message context (2). The ConferenceCallLeg mapped

to this Terminal is then retrieved (3), allowing for the Leg representing the terminal

in the conference call (4) and hence the MutlipartyCall of this conference call to

be accessed (5). The MultipartyCall is associated to an identifying string within

the ConferenceCallService, so this string can now be retrieved (6) and then used

in the getAllConferenceAttendees() method to get a list of participants in the

call (7) (to be used later). Lastly, whether the terminal is owner of the conference

call is determined (8). All required information has now been retrieved.

It is now at this point that a process breaks into one of two message sequences

depending on whether the terminal is the owner of the conference call or not. If the

terminal is not the owner, then the sequence of simply removing the terminal from

the conference call and alerting all other terminals is followed. This is performed

in the following steps. The current terminal’s E.164 number is retrieved (9) and

the list of call participants’ Terminals retrieved earlier is iterated over, calling

attendeeLeft() on each of them with the current terminal’s E.164 number as

an argument (10). Then the ConferenceCallLeg object representing the current

terminal’s bearer network connection is removed from its mapping to the terminal’s

Terminal object (11) – effectively removing its application layer association to the

conference call. After this, the multiparty party call RBB is called on to remove the

bearer network connection. By calling the removeLeg() MultipartyCall method

with the current terminal’s Leg as an argument this process is started (12). This

involves removing the Leg from the MultipartyCall, calling endLeg() on the Leg

to end the connection in the bearer network and handling all events that occur in

response by updating the CallModel appropriately (13).

For the case where the terminal disconnecting from the call is the conference call

owner, all other terminals have to also be disconnected from the call and along

with the call having to be destroyed. This is achieved in the alternative flow of

messages in figure 4.21. Before the conference call is ended in the bearer network,

all Terminal objects representing call attendees, have to be disassociated from the

ConferenceCallLegs of the call (14). Also, conferenceEnded() has to be called

on each of the terminal’s participating in the call (15), thereby indicating over
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ALS that the call is about to be ended. After this, an invocation of the destroy()

method on the object representing the conference call in the bearer network initiates

the destruction of the call (16). The actual process of destroying the call using

the multiparty call RBB has been covered previously, but in summary involves:

getting all the Leg objects associated to the call, calling removeLeg() repeatedly on

the relevant MultipartyCall with each Leg as an arguments, handling all bearer

network events as they occur and then finally destroying the call once all call legs

have been disconnected (17).

4.5 Conclusion

Using the framework built up in chapter 3 and the ALS service development

paradigm, we have quite simply built up complex services. The service logic for

all these services, including the BCCM-based conference call service, is completely

constrained to the application layer. The state of each service can be determined

without accessing the bearer network and the operation of the service can be fully

comprehended in detail by looking only at the objects instantiated by the framework

and the sequences of messages that they send between each other. This point is

emphasised when one considers the fact that all the message sequences making use

of bearer network functionality show interaction with bearer network with only single

messages amongst many application layer messages.

The services used to demonstrate the framework are built up using important parts

of the framework including ALS (used for bearer network level event indication

as well), message context functionality and the ability of a service to invoke the

service logic of other services. The framework’s functionality is simple enough to

allow services to be developed easily and general enough to give flexibility in service

design whilst ensuring that service logic can be developed to be fully hosted in the

application layer.

This presentation of various services has attempted to promote the simplified service

framework and ALS as worthy contenders for service development in a modern

telecommunications. Whilst no attempt has been made to formalise all aspects of

the framework or of the protocols used over ALS, it is already possible to gauge the

power of a service environment based on the concepts that they put forward.

The next chapter look to conclude this research report by considering the grander
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purpose of ALS and application layer focused service development within the highly

competitive value-added telecommunications service business. Amongst looking at

the potential of the framework, further work on it will be considered so as to make

it more appealing to service developers not just as a tool but as a completely new

way to look at service development.
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Chapter 5

Conclusion

The research presented in this report undertook to simplify service development by

first identifying the weaknesses in the current modern service development envir-

onment and then considering the overuse of the bearer network to support service

logic as the main culprit causing service development to be overcomplex. Using the

“complexity-at-the-edge” design of the Internet as inspiration, chapter 1 introduced

the intuitive solution to this being the removal of the heavy reliance on the bearer

network and its CS signalling and only having terminals and ASs host and process

service logic.

5.1 Service logic exclusively in the application layer

In the contemporary solution to complex service development, service logic is dis-

tributed using the bearer network as transport and the service logic in the ap-

plication layer has to interface with the bearer network. Inherently this forces

service developers to make use of CS protocols to interface with the bearer network,

resulting in the incorrect use of a protocol as an API and abstractions of the bearer

network leaking into service logic. Forcing service logic into the application layer

does away with the need for using bearer network-centric protocols when developing

services and also ensures that software developers from an IT background need not

be very familiar with telecoms signalling technologies — which widens the base of

programmers correctly qualified to develop telecoms services.

This migration into the application layer is covered in chapter 2 and is a process

involving two main components.
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1. Replacing CS signalling for service logic distribution with a mechanism more

suitable to the application layer

2. Structuring the application layer formally so that the abstractions from the

bearer network give a complete, adequately detailed overview of the particular

part of the bearer network being monitored and controlled. This structuring

should also aim to provide a lot of reusable functionality and simplification in

the deployment of services.

The aim is not to replace the bearer network, but rather to make it secondary to the

functioning of service logic. This is an inversion of control in which service logic calls

on the bearer network when the setup of a bearer stream is required as opposed to

service logic being triggered only by specific events during the processing of a bearer

connection. The idea is that when the application layer is the locus of service logic,

sessions begin and end in the application layer. The first contact that a terminal will

make is with an application server as opposed to some node in the bearer network.

ALS plays the critical part here. By allowing application logic in terminals to

communicate directly with logic in ASs, the bearer network is not involved in the

service initiation and invocation at all. In fact, it would be possible for an entire

service session to proceed without the bearer network playing a part. ALS is not

a communication protocol but rather a design feature of a service development

environment that differentiates between “downwards” and “sideways” signalling.

When ALS is introduced the communication between terminal and AS is seen as

“sideways” such that the messages relevant to application logic are not processed in

the lower layers of a network infrastructure as would be the case when “downwards”

signalling provides communication between inter-layer network entities.

In keeping with the constraints of the application layer, service developers need to

be correctly abstracted from the bearer network and also have an intuitive interface

to ALS to make it both robust and appealing for service development. This can be

accomplished by enforcing some amount of structure on the application layer. As it

stands, service development environments are not standardised. With every service

development environment standard or product offering comes a different approach

to abstractions and managing service logic. This research report showed how service

development environments can be better structured when service logic stays in the

service layer. Firstly, the environment can be structured as a framework in which

service logic execution is controlled by this framework. Secondly bearer network

abstraction and other reusable logic can be grouped into simple atomic building
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blocks whose functionality can be orchestrated into complex composite services.

5.2 Framework

This research report developed a framework which supports application layer focused

service development. Whilst not detailed to the extent required for implementation

by a telco, it does cover the technical requirements of service environments: AAA,

bearer network interfacing, service logic distribution and reusable functionality. It

also goes further by supporting the unique feature of ALS as a critical part of its

infrastructure.

The framework is built in an IT-friendly manner by using OO to represent all

components of the framework and advocating services being built up using OO.

Further, the entire framework is kept well decoupled using various manager objects

which control access into various parts of the framework. This decoupling is also

supported by message context functionality and dynamic method invocation, whilst

a form of remote method invocation is used for enabling terminals and ASs to access

each other’s functionality.

Chapter 3 detailed the features, structure and dynamic operation of the framework

and explained how services are built up and deployed within the framework.

5.3 Main features

When developing the services within the framework, as is done in chapter 4, certain

aspects of the application layer constrained service development become apparent

as being very useful.

Object-orientation Keeping application logic in the application layer does not

necessarily call for the use of the OO. However in this report, its use was emphasised

due to its strong abstraction and decoupling abilities. It is also useful along with

UML for representing high-level overviews of service logic.

Reusability Being able to reuse already implemented functionality in a controlled

manner plays a critical role in this service environment. Even though the framework
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is built up using the principles of application layer service development it still

requires the use of the bearer network. Whilst the fact was emphasised that a

programmer should have no direct contact with the bearer network and its protocols,

there still needs to be a standardised means for accessing the functionality of the

bearer network especially for BCCM-supporting services. To this end, the framework

was built to support RBBs, which, as was seen from the various SDs describing

service logic, is critical to simple implementation of complex services.

Separation of “sideways” signalling It was recognised when building up the

framework that ALS could not be built into an RBB. Since services are initiated

in terminals and service logic is invoked in the application layer, ALS is a critical

element of the framework and thus had to be treated as a separate function of the

framework. The programmer is presented with a very abstracted view of ALS in

which sending a message to a remote terminal only requires a call to a method on

an object representation of that terminal and receiving a message only requires that

service objects be aware that method calls may originate from remote terminals. In

spite of its simple implementation, ALS is pivotal in ensuring intuitive service logic

distribution.

Simplification and Abstraction The ability of the framework to represent

service logic very simply using object-orientation rose naturally out of the imple-

mentation of ALS, the structuring of the framework and the abstraction of the

bearer network. The simplification goes hand in hand with the abstracted views

of the various components of the framework. The simplification is embodied in the

manager objects which make up the framework which are capable of controlling

access to the service logic without breaking the message passing relationships of

service objects. The simplification is also captured by the fact that service logic can

treat terminals as being co-located by having the abstraction of the transport of

service logic messages to distributed nodes provide this. Further, using correctly

abstracted OO BCCM RBBs (such as for two party and multiparty calls), the

programmer is presented with intuitive and simplified access into the bearer network.

BCCM in the application layer When service logic gets moved completely into

the application layer one must consider what happens to the control of the bearer

network and its representation in the application layer. Of the two options for this,

the first is that the application layer not be heavily integrated with the control
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and monitoring of calls, simply making requests to the network to control calls and

obtain their state. The second option, which provides more intuitive integration

into the bearer network without sacrificing abstraction is to have a model of the call

maintained in the application layer so that it can be both controlled and monitored.

A BCCM RBB can be built to ensure that a model always correctly represents the

state of a call. A programmer can then use an OO interface to the call, making

method invocations on an object representation of the call and treating the call

as if it exists in the application layer. The second approach is better supported,

since in the inversion of control in which the application layer becomes the focal

point of service logic, it is intuitive to also have the primary point of BCCM in the

application layer.

5.4 Future work

It was mentioned throughout this report that no attempt will be made within the

report to formalise the functionality and protocols used by the framework. To make

this into a service development environment which could be integrated by a telco

these would have to be considered very carefully and in detail. This standardisation

would cover the ALS protocol, the structure of a homogenised set of RBBs especially

for interfacing with the bearer network and formalising the manner which AAA is

performed.

Service interaction needs to also be considered. Services built up in this framework

can be very complex and constructed using many objects with many method calls,

opening up the possibility of incorrect operation due to objects communicating not

according to design. This is exacerbated by the fact that service logic can be invoked

at any point by any terminal and more so by the fact that services are also able to

be invoked by the logic of other services. Thus, further design would have to go

into implementing some control over method calls based on whether they would

potentially cause a service to go into an invalid state.

The further item of important future work is in regards to BCCM. It may seem at

first unintuitive to bring bearer functionality up into the application layer especially

since this research report aimed to decouple service logic from the bearer network

properly. A formal implementation of this framework would have to ensure that the

bearer network remains under the control of the telco keeping the BCCM simply

in the form of model whose representation it keeps updated. A programmer should
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have no control beyond this model.

Lastly, business considerations must be made. It can be noted that the framework

can be implemented in two ways. The first places more control in the hands of

a 3rd-party service developer. In this case, the AS is not controlled by the telco

(the owner of the bearer network) and connects to the bearer network over an open

interface. The 3rd-party service developer can decide what service logic should be

run. This also requires that terminals be allowed to connect directly to these 3rd-

parties without traversing the telco’s bearer network. The other implementation

would have the AS under the control of the telco which can decide the services to

be hosted. Obviously this creates a more closed service development environment,

however, the end-user is provided with greater quality guarantees traditionally

associated with telcos and does not have to deal with 3rd-parties which may not

be as reliable. These are not the only business considerations, but the manner in

which application layer focused service development is implemented from a business

perspective will greatly shape the actual development of this approach to service

development.

5.5 Summary

Simplification was reached by moving all service logic into the application layer and

by introducing ALS, ensured that this service logic does not leak into the bearer

network. By also considering the structure of an application layer-centric service

development environment and various means for removing the need to utilise CS

to integrate bearer network functionality into a service, this research presented an

efficient, robust and novel approach to service development.
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Proof of Concept

As a means for gauging the viability of the framework, an implementation of it was

undertaken. The various tools used to support the implementation are discussed

here along with a brief look at the result.

A.1 Implementation Tools

In order to develop a reference implementation, the correct tools had to be selected

in order for the framework to be programmed efficiently and simply as possible, al-

lowing all the theoretical concepts developed in this report to be supported correctly

so as to prove that such a framework is realisable. The tools used are now covered.

Whilst the bulk of the research report does not go heavily into the design details

of how terminals handle service logic, we cover some of the technologies used to

support it here, since the proof of concept would serve no purpose without correctly

functioning terminal logic.

The aim of the proof of concept was to make the implementation as real as pos-

sible. Thus service logic was actually distributed amongst an AS implemented on a

server computer publicly accessible on the Internet and on cellular telephones with

Internet connectivity acting as terminals. The tools used in the proof of concept

implementation therefore provide some viable solutions to the various requirements

of the framework.
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A.1.1 Application Server

The AS implementation was tested on a computer with a server architecture. Whilst

no consideration was made for scalability, the server provided a robust platform on

which the framework could operate.

Main Implementation Language

Java was selected for implementation of the AS due to its strength in implementing

OO designs and capability of following these designs very closely. Whilst various AS

frameworks already exist for this language, the decision was taken to implement the

framework from the ground up as a means of showing the framework’s completeness

as an AS.

The Java Standard Edition also has most of the functionality required by the

framework already built in. These are covered in the following subsections.

Application Layer Signalling

The research report makes no attempt to standardise the technology over which

ALS occurs. There are already many mature technologies based in Java which

exist for sending and receiving messages to and from remote terminals. So

as to keep the implementation as simple as possible a low-level approach was

taken. Connectivity to remote terminals was implemented using sockets. The

ApplicationLayerSignalling component of the framework completely abstracted

these sockets so as not to tie the framework to a particular implementation.

Since the AS is exactly that, a server, it has to handle multiple simultaneous

connections from clients (terminals). In a raw form, basic sockets are designed for

single connections to single clients. The ability to handle multiple connections has to

be built on top of these sockets. The java.nio package provides this management

of sockets. Since multiple simultaneous clients infers that multithreading has to be

used to handle messages sent from these clients, java.nio provides mechanisms for

new threads to be launched each time a message is received from a terminal. Within

these threads, dynamic method invocation occurs to call methods on the desired

objects.
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Dynamic Method Invocation

Another aim of the framework is to ensure that it can continue running when

new services are installed. This means that service logic cannot be precompiled

into the framework. However, there still needs to be a mechanism for calling on

objects’ methods containing service logic when these objects did not exist when the

framework was compiled.

Java is a reflective language, meaning that it is possible to both instantiate objects

using object names as strings and calling methods on these objects when only a string

containing the method name exists. The Class.forName(String : classname)

method returns a Class object on which getConstructor().newInstance() can

be called to create a new instance of a particular required class. Similarly, calling

invoke() on a Method object (retrieved using the getMethod() method) calls a

method on the desired object.

If this dynamic method invocation is performed within a new thread created by the

ALS component, the AS can respond to remote method invocations from multiple

simultaneous clients.

Bearer Network Interfacing

The TwoPartyCallRBB and MultipartyCallRBB classes encapsulate and abstract

bearer network functionality, providing a simplified interface to service logic. Ideally,

an actual existing bearer network would be used for proof of concept, showing the

framework’s applicability to existing infrastructures. The bearer network interface

has the potential to be more complex than the framework itself due to the myriad of

technologies available used for supporting this. However, there exist some Internet-

based services which provide simplified interfaces for this purpose.

The service offered by the Internet service Twilio provides a RESTful HTTP web

service interface into the public switched telephone network (PSTN), allowing two

party and multiparty calls to be setup using simple invocations over HTTP. The

service maps well to the two party call RBB. Whilst the multiparty call RBB (and

hence the conference call service) was not implemented in this proof of concept,

Twilio also provides functionality for this.
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Call State Model

The call state model RBB uses a call state model with defined allowable state

transitions. In the case of an invalid transition occurring, service logic should be able

to handle this gracefully. The detection of these invalid transitions is best performed

using Java’s exceptions, whereby each call to transition() checks if the transition

is valid based on the current state of the model and throws an exception if it is not.

Maps

Maps are used through the framework and provide a means for decoupling service

logic from the underlying supporting infrastructure of the framework. In many

cases where a unidirectional mapping is required, the java.util.Map generic class

functioned well to support this. However, the Java standard edition is not shipped

with bidirectional map functionality. The BidiMap class of the Apache Commons’

extension to the Java Collection’s framework fills this gap. BidiMap is a simplified

bidirectional mapping implementation which is very similar to the standard basic

Map class.

A.1.2 Terminal

Service logic is distributed to terminals as well. For the proof of concept a basic

mobile framework for supporting this had to be developed. In fact, most of the basic

functionality of the AS has to also be supported on the terminal, including ALS and

dynamic method invocation.

Main Implementation Language and Platform

The Python programming language is supported on the Symbian operating system

(OS). For this implementation, the Python language provided adequate support,

using its very strong but simple language features to allow Nokia cellular phones to

act as the terminal in the proof of concept.
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Application Layer Signalling

The asyncore built-in Python module provides the asynchronous socket function-

ality required to allow the terminal to interface with the AS. In a similar way to

the AS’s implementation of ALS, sending a message only requires a simple call to

a send_async_message() method. Similarly, receiving messages can be handled

asynchronously and handled by newly spawned threads.

Dynamic Method Invocation

Python is a strongly reflective language. Calling a method on an object when only

a string naming the object’s class and desired method exists, depends on a simple

invocation of the getattr() built-in function.

Telephony

The main reason that Symbian Python was selected for the terminal implementation

is because it provides a very simplified interface into the telephony of the hosting

cellular phone. Since two party and multiparty calls are implemented using 3rd-

party invocation, the originating terminal has to be able to answer an incoming call

automatically, since it is the terminal actually requesting the call (it is of little sense

to have to make the user manually answer a call he or she initially requested).

The Python implementation on the Symbian platform has the telephone module

which allows for the setting of a call state handler function which is called in response

to the terminal ringing. The implemented function can be set to answer an incoming

call automatically when the terminal begins to ring by calling telephone.answer().

Whilst not a perfect implementation, since the cellular phone still rings at least once,

it still provides the expected behaviour required when a call is made.

A.2 Result

The resulting terminal and AS implementations allowed for basic testing of the

presence service integrated with the two party call service. Using a graphical user

interface (GUI) on the cellular phone, the user is able to set his or her presence and
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make phonecall’s by entering E.164 numbers. All remote functionality is invoked by

having method calls marshalled into XML and sent over sockets to the AS and vice

versa.

The proof of concept functioned according to design and showed firstly how service

logic can be implemented very simply and secondly that such a framework is a viable

solution to service development.
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