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Abstract
In the current article, a combination of the differential transform method (DTM) and Padé

approximation method are implemented to solve a system of nonlinear differential equations

modelling the flow of a Newtonian magnetic lubricant squeeze film with magnetic induction

effects incorporated. Solutions for the transformed radial and tangential momentum as well

as solutions for the radial and tangential induced magnetic field conservation equations are

determined. The DTM-Padé combined method is observed to demonstrate excellent con-

vergence, stability and versatility in simulating the magnetic squeeze film problem. The

effects of involved parameters, i.e. squeeze Reynolds number (N1), dimensionless axial

magnetic force strength parameter (N2), dimensionless tangential magnetic force strength

parameter (N3), and magnetic Reynolds number (Rem) are illustrated graphically and dis-

cussed in detail. Applications of the study include automotive magneto-rheological shock

absorbers, novel aircraft landing gear systems and biological prosthetics.

Introduction
Understanding magneto-hydrodynamics (MHD) is strongly related to the comprehension of phys-
ical effects which take place in MHD.When a conductor moves into a magnetic field, electric cur-
rent is induced in the conductor and creates its ownmagnetic field (Lenz’s law). Since the induced
magnetic field tends to eliminate the original and external supported field, the magnetic field lines
will be excluded from the conductor. Conversely, when the magnetic field influences the conductor
to move it out of the field, the induced field amplifies the applied field. The net result of this process
is that the lines of force appear to be dragged accompanied by the conductor. In this paper the con-
ductor is the fluid with complex motions. To understand the second key effect which is dynamical
we should know that when currents are induced by a motion of a conducting fluid through a mag-
netic field, a Lorentz force acts on the fluid and modifies its motion. In MHD, the motion modifies
the field and vice versa. This makes the theory highly non-linear [1, 2].
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In recent decades, researchers have performed several studies in the fields of the MHD
applications’. Khan et al. [3] investigated the effects of an arbitrary wall shear stress on
unsteady MHD flow of a Newtonian fluid with conjugate effects of heat and mass transfer
using the Laplace transform technique. Hussanan et al. [4] analysed the unsteady boundary
layer MHD free convection flow past an oscillating vertical plate embedded in a porous
medium with constant mass diffusion and Newtonian heating condition using the Laplace
transform technique. Samiulhaq et al. [5] studied the magnetic field influence on unsteady free
convection flow of a second grade fluid near an infinite vertical flat plate with ramped wall tem-
perature embedded in a porous medium. In another study, Khan et al. [6] displayed the effects
of an arbitrary wall shear stress on unsteady MHD flow of a Newtonian fluid with conjugate
effects of heat and mass transfer. Further, Khalid et al. [7] illustrated the unsteady MHD free
flow of a Casson fluid past an oscillating vertical plate with constant wall temperature.

Magneto-hydrodynamic lubrication is a type of “smart tribology” which has found increas-
ing applications in diverse branches of engineering in recent years. These include seismic
magneto-rheological (MR) shock dampers [8], magnetic-repulsion enhanced hydrostatic bear-
ings for offshore wave energy conversion devices [9], and biomedical systems [10, 11]. MHD
lubricants respond to the application of magnetic fields and have been presented to enhance
load-carrying capacities, reduce wear and achieve more uniform pressure distributions. A tre-
mendous variety of such lubricants has been developed including ferrofluids, magnetic parti-
cle-based suspensions, electrically-conducting biopolymers and yield stress magnetic fluids. In
parallel with practical and manufacturing developments, there has been a rich contribution
from engineering scientists engaged in mathematical and experimental simulations of the
behaviour of such fluids in many complex tribological configurations.

Chandra et al. [12] studied electromagnetic lubrication in various journal bearings with cav-
itation boundary conditions and for regimes where the magnetization vector is oblique to the
magnetic field vector, showing that better contact performance is achieved compared with
non-magnetic lubricants. Song et al. [13] analysed wear and friction characteristics of a mag-
neto-rheological fluid under different magnetic fields, by employing a pin-on-disc tribometer,
and showed that MR fluid exhibits improved lubrication characteristics. They also observed
that the key wear mechanism for steel and brass specimens was abrasive wear by asperities and
MR particles on the worn surfaces, whereas a mixed wear mechanism that included adhesive
wear and abrasive wear was observed for the aluminium specimen studied. Durán et al. [14]
presented a novel formulation of a stable magnetic fluid to show that the yield stress is elevated
by several orders of magnitude when the magnetic field strength reaches several hundred
microTesla, and furthermore observed that excellent damping of forced oscillations is achiev-
able in automotive magneto-fluid bearings. Huang et al. [15] investigated ferrofluid magnetic
tribology for lubricants comprising stable colloidal systems consisting of single-domain mag-
netic particles with a diameter of approximately 10 nm coated with surfactants and dispersed
in a carrier liquid. By applying an external magnetic field, they demonstrated that ferrofluid
lubricants may be orientated and positioned at optimized locations. They additionally showed
that the load capacity of a Fe3O4-based ferrofluid lubricant film may be significantly boosted
with appropriate magnetic field and that these liquids achieve a good friction-reduction perfor-
mance in the presence of an external magnetic field compared with the carrier liquid with
markedly enhanced lifetimes. Stolarsky and Makida [16] conducted experiments on the effect
of permanent magnetic fields on the wear of lubricated sliding contact operating at short stroke
and high frequency, observing that horizontal magnetic field strongly influences contact per-
formance. They also noted that magnetic field increases the abrasive action by wear particles
and allows reduction in wear of the plate specimen. An especially significant regime in mag-
neto-hydrodynamic tribology is the squeeze film. This has attracted considerable attention as it
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can be simulated using classical methods of elasto-hydrodynamics (EHD). Anwar and Rodkie-
wicz [17] examined computationally the MHD squeeze lubrication of a slider bearing system,
including inertia effects and considering low Hartmann numbers. They found that inertial
terms have a reduced influence with greater Hartmann number and that a non-uniform mag-
netic field achieves noticeably greater load capacity than uniform magnetic fields.

In recent years many sophisticated numerical and so-called semi-numerical/analytical pro-
cedures have been implemented to solve boundary value problems arising in magnetic tribol-
ogy and also nonlinear squeeze film flows. Kargulewicz et al. [18] developed a discrete element
algorithm to optimize aircraft ejector seat applications. Zueco and Bég [19] applied the electro-
thermal network simulation code to study magneto-elastic hydrodynamic lubrication between
rotating disks at generalized magnetic Reynolds numbers, as a model of conceptual spacecraft
landing gear systems for Mars NASA missions. Zhu and Ingber [20] utilized a traction-modi-
fied boundary element method (BEM) to study Newtonian squeeze films between spherical
bodies in locomotive gear systems. Gertzos et al. [21] studied the performance characteristics
of a hydrodynamic journal bearing lubricated with either magneto-rheological Bingham or
electro-rheological Bingham fluids using the commercial CFD software, FLUENT software
with a “dynamic meshing” technique. Bég et al. [22] analyzed the magneto-hydrodynamic
squeezing flow of a microstructural fluid in a porous media biological bearing with the Liao
homotopy analysis method (HAM), observing that micro-rotation of lubricant micro-elements
is strongly influenced by Hartmann number and medium permeability, and that response time
is also enhanced with magnetic field. Moghani et al. [23] used a hybrid fluid-solid meshing pro-
cedure in the ADINA commercial finite element code to study squeezing lubrication of soft
biomaterials. From the above squeezing hydrodynamics studies which have considered mag-
netic fields, with the exception of Zueco and Bég [19] have generally neglected magnetic induc-
tion effects. When magnetic Reynolds number is sizeable, an induced magnetic field is also
generated in the flow and a separate magnetic field conservation equation is required. Several
researchers have studied magnetic induction effects. Elshekh and Elhady [24] investigated
magnetic squeeze film flow between co-rotating disks with induced magnetic field effects, com-
puting the response of radial and azimuthal magnetic fields to squeezing rates and relative disk
rotation, although only for a single value of Batchelor number. Gul et al. [25] demonstrated the
problem of thin film layer flowing on a vertical oscillating belt via two analytical techniques
namely Adomian Decomposition Method (ADM) and Optimal Homotopy Asymptotic
Method (OHAM). In another study, Gul et al. [26] performed an analysis to study the unsteady
thin film flow of a second grade fluid over a vertical oscillating belt.

Nonlinear differential equations are employed to describe some of physical systems. Con-
current with the development of computers, rising use of analytical methods can be observed
in comparison with numerical methods. Despite all the benefits, there are a lot of cons for the
numerical methods such as the inability to apply infinite boundary condition, etc. There are a
lot of analytical methods such as DTM [27, 28], HAM [29, 30], HPM [31], and ADM [32]
applied to solve nonlinear equations. The main advantage of these methods applied to nonlin-
ear differential equations is that no linearization or discretization needs to take place [33]. In
the present article we employ DTM-Padé method to analyse two nonlinear magneto-hydrody-
namic squeeze film boundary value problems. The present DTM-Padé code is also bench-
marked with the numerical method based on shooting technique, illustrating excellent
correlation. Excellent convergence and stability characteristics are also observed for the
DTM-Padé code. The present simulations find applications in novel aircraft landing gear sys-
tems exploiting smart magnetic fluids.

The paper is divided up as follows: in section 2 we derive the mathematical model we will be
investigating in this paper. In section 3 we implement the DTM-Padé method to solve the
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resulting system of nonlinear differential equations. Results are discussed in section 4. Con-
cluding remarks are presented in section 5.

Mathematical Model
In this problem, we assume the axisymmetric flow in a polar coordinate system (r, θ, z) of a
thin Newtonian, hydro-magnetic lubricant fluid squeeze film between two disks placed parallel
to each other and each rotating at constant velocity in its own plane. The components of the
flow velocity (u, v, w) are in the directions of increasing (r, θ, z), respectively. The disks are sep-
arated by a distance D(1 − αt)1/2 at time t, where D is a representative length equivalent to the
disk separation at t = 0 and t denotes time. The coordinate system and the physical regime of
the problem are shown in Fig 1.

The upper disk can moves downwards at velocity d(d(t))/dt (where d(t) is separation of the
disks at time t), towards the constrained lower disk. In the other words, the lower disk is pro-
hibited from moving in the axial direction (along the z-axis). The applied magnetic field (H)
has two components; include an azimuthal (tangential) component (Hθ) and an axial compo-
nent (Hz) which affect the upper disk. These parameters are defined asHθ = r N0/(μ2(1 − αt))
andHz = −αM0/(μ1(1 − αt)1/2), whereM0 and N0 are the magnetic field quantities introduced
to render Hθ and Hz, dimensionless, μ2 and μ1 are the magnetic permeability’s of the squeeze
film and the medium external to the disks, respectively. For liquid metals μ2 = μ0, where μ0 is
the permeability of free space. Following the experimental study, Hθ and Hz are assumed to be
zero on the lower disk [24]. This applied magnetic field (H) generates an induced magnetic
field B with components (Br, Bθ, Bz) in the squeeze film, between the disks. By neglecting the
convective acceleration components in the Navier–Stokes equations and considering the above
assumptions, the governing equations of the hydro-magnetic squeeze film regime for the
momentum and magnetic field equations in a (r, θ, z) coordinate system are [24, 34, 35]:
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where ν is the kinematic fluid viscosity, ρ is fluid density, μ2 is magnetic permeability of the
medium between the two disks (squeeze film regime) and σ is the electrical conductivity of
fluid (squeeze film).
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It should be noticed that the Eqs (4)–(6) are the components of magnetic field equation
@ B
@t

¼ r� ðr �BÞ þ 1
s m2

r2B in the directions of polar coordinate system, where B = μ2 H

[24, 36]. The governing equations can be reduced from a system of partial differential equa-
tions (PDEs) to dimensionless, coupled and nonlinear ordinary differential equations (ODEs)
by introducing the following transformations:
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Fig 1. Hydromagnetic rotating squeeze film lubrication with magnetic induction.

doi:10.1371/journal.pone.0135004.g001
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Substituting Eq 7 in Eqs (1)–(6), we obtain the following dimensionless system of highly
nonlinear and coupled ordinary differential equations in terms of a single independent space
variable (η):
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where η is dimensionless z-coordinate, f is dimensionless axial velocity, g is dimensionless tan-
gential velocity,m is dimensionless axial induced magnetic field component, n is dimensionless
tangential induced magnetic field component, N1(=α D2/2ν) is squeeze Reynolds number
(based on the speed of approach of the two disks), represents the ratio between the normal
(axial) velocity of the upper disk and kinematic viscosity, N2ð¼ M0=D

ffiffiffiffiffiffiffiffi
m2 r

p Þ is dimensionless

parameter based on the magnetic force in the axial direction, N3ð¼ N0=O1

ffiffiffiffiffiffiffiffi
m2 r

p Þ is dimen-

sionless parameter based on magnetic force strength in the azimuthal (tangential) direction,
Rem(=N1Bt) is magnetic Reynolds number and Bt(=σ μ2 ν) is the Batchelor number. As it is
obvious from Eqs (8)–(11) the variation in the magnetic Reynolds number can be varied by
keeping N1 invariant and altering Batchelor number (Bt) or vice versa. According to the
Hughes and Elco [37], it is considered that both disks are ideal (perfect) conductors. Electrical
forces are much smaller than the magnetic forces and consequently are ignored in the present
problem. The boundary conditions for the magnetic induction B follow from the fact that the
normal component of B and the tangential component ofH are continuous through the two
disks. The transformed boundary conditions become:

f ð0Þ ¼ df ð0Þ
dZ

¼ 0; gð0Þ ¼ 1; mð0Þ ¼ nð0Þ ¼ 0; at Z ¼ 0 ðLower diskÞ;

f ð1Þ ¼ 0:5;
df ð1Þ
dZ

¼ 0; gð1Þ ¼ 0; mð1Þ ¼ nð1Þ ¼ 1; at Z ¼ 1 ðUpper diskÞ;
ð12Þ

In tribological applications, we can further define the dimensionless frictional moment’s i.e.
non-dimensional torques exerted on the upper and lower disks. The torque at the upper disk is

TUpper disk ¼ 2pm
Z a

0

@v
@z

� �
z¼d

dr; ð13Þ

where μm denotes the Newtonian dynamic viscosity. Using (7) and (13), we obtain:

�TUpper disk ¼
2Dð1� a xÞ3=2

pmO1 a4
TUpper disk ¼

dgð1Þ
dZ

; ð14Þ

where �TUpper disk is the dimensionless torque exerted by the fluid on the upper disk and dg(1)/dη

is the azimuthal (tangential) velocity gradient at the upper disk (η = 1). Similarly for the lower
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disk, the dimensionless torque is simply given by the same calculation evaluated at η = 0, as

�TLower disk ¼
dgð0Þ
dZ

; ð15Þ

where dg(0)/dη is the tangential (azimuthal) velocity gradient at the lower disk (η = 0).

The Differential TransformMethod
DTM is employed to obtain semi- analytical/numerical solutions to the well-posed two-point
boundary value problem defined by Eqs (8)–(11) and conditions (12). DTM is an extremely
strong technique in finding solutions to magneto-hydrodynamic and complex material flow
problems. It has also been used very effectively in conjunction with Padé approximants. To
provide a summary of the method, the transformation of the kth derivative of a function in one
variable is considered which is defined as:

FðkÞ ¼ 1

k!
dkf ðZÞ
dZk

� �
Z¼Z0

; ð16Þ

where f (η) is the original function and F(k) is transformed function. The differential inverse
transformation of F(k) is:

f ðZÞ ¼
X1
k¼0

FðkÞðZ� Z0Þk; ð17Þ

The concept of the differential transform is derived from a Taylor series expansion and in
actual applications the function f (η) is expressed by a finite series as follows:

f ðZÞ ffi
Xm
k¼0

FðkÞðZ� Z0Þk; ð18Þ

The value ofm is decided by convergence of the series coefficients.

3.1. Padé Approximant
Páde approximants are applied to the problem to increase the convergence of a given series.

Suppose that a power series
X1
i¼0

aix
i is given, which represents a function f (x), such that:

f ðxÞ ¼
X1
i¼0

aix
i; ð19Þ

The Páde approximant is a rational fraction and the notation for such a Padé approximant
is:

½L=M� ¼ PLðxÞ
QMðxÞ

; ð20Þ

where PL(x) is a polynomial of degree at most L and QM (x) is a polynomial of degree at most
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M. Therefore:

f ðxÞ ¼ a0 þ a1x þ a2x
2 þ a3x

3 þ a4x
4 þ � � � ; ð21Þ

PLðxÞ ¼ p0 þ p1x þ p2x
2 þ p3x

3 þ . . .þ pLx
L; ð22Þ

QMðxÞ ¼ q0 þ q1x þ q2x
2 þ q3x

3 þ . . .þ qMx
M; ð23Þ

where in Eq (20) there are L + 1 numerator coefficients andM + 1 denominator coefficients.
Since the numerator and denominator can be multiplied by a constant and [L/M] left
unchanged, the following normalization condition is imposed

QMð0Þ ¼ 1; ð24Þ

So there are L + 1 independent numerator coefficients andM independent denominator
coefficients, which make L +M + 1 unknown coefficients in all. This number suggests that nor-
mally the [L/M] ought to fit the power series Eq (19) through the orders 1, x, x2,. . ., xL+M.
Based on conditions given in [38, 39], [L/M] approximation is uniquely determined. In the
notation of formal power series:

X1
i¼0
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3 þ . . .þ pLx

L
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By cross-multiplying Eq (25), one obtains:
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From Eq (26) the following set of linear equations are obtained
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a2 þ a1 q1 þ a0 q2 ¼ p2;

..

.
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8>>>>>>>><
>>>>>>>>:

and

aLþ1 þ aL q1 þ � � � þ aL�Mþ1 qM ¼ 0;

aLþ2 þ aLþ1 q1 þ � � � þ aL�Mþ2 qM ¼ 0;

..

.

aLþM þ aLþM�1 q1 þ � � � þ aL qM ¼ 0;

ð28Þ

8>>>>><
>>>>>:

where an = 0 for n< 0 and qj = 0 for j>M. Eqs (27) and (28) can be solved directly if they are
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non-singular

½L=M� ¼

aL�mþ1 aL�Mþ2 . . . aLþ1

..

. ..
. . .

. ..
.

aL aLþ1 . . . aLþMXL
j¼M

aj�Mx
j
XL
j¼M�1

aj�Mþ1x
j . . .

XL
j¼0

ajx
j

���������������

���������������
aL�mþ1 aL�mþ2 . . . aLþ1

..

. ..
. . .

. ..
.

aL aLþ1 . . . aLþM

xM xM�1 . . . 1

������������

������������

; ð29Þ

If the lower index on a sum exceeds the upper, the sum is replaced by zero. Alternate forms
are:
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6666664
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7777775
; ð32Þ

The construction of [L/M] approximants involves only algebraic operations [38, 39]. Each
choice of L, degree of the numerator andM, degree of the denominator, leads to an approxi-
mant. How to direct the choice in order to obtain the best approximant is the major difficulty
in applying the technique, which necessitates the need for a criterion for the choice depending
on the shape of the solution. A criterion which has worked well here is the choice of [L/M]
approximants such that L =M.
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3.2. Analytical approximation by means of DTM-Padé
Taking differential transform of Eqs (8)–(11), one can obtain (for more details, see [40–42])
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ðk� r þ 1ÞnðrÞmðk� r þ 1Þ

 !

0
BBBBBBBBB@

1
CCCCCCCCCA

¼ 0; ð34Þ

ðkþ 1Þðkþ 2Þmðkþ 2Þ � Rem mðkÞ þ
Xk

r¼0

ðk� r þ 1ÞdðrÞmðk� r þ 1Þ�
2ðk� r þ 1Þf ðrÞmðk� r þ 1Þþ
2ðk� r þ 1ÞmðrÞf ðk� r þ 1Þ

0
B@

1
CA

0
BB@

1
CCA ¼ 0; ð35Þ

ðkþ 1Þðkþ 2Þnðkþ 2Þ � Rem

2nðkÞ þ
Xk

r¼0

ðk� r þ 1ÞdðrÞnðk� r þ 1Þ�

2ðk� r þ 1Þf ðrÞnðk� r þ 1Þ

 !

þ2ðN2=N3Þ
Xk

r¼0

ððk� r þ 1ÞmðrÞgðk� r þ 1ÞÞ

0
BBBBB@

1
CCCCCA ¼ 0; ð36Þ

where f (k), g (k),m (k) and n (k) are the differential transforms of f (η), g (η),m (η) and n (η)
are displayed by:
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f ðZÞ ¼
X1
k¼0

f ðkÞZk; ð37Þ

gðZÞ ¼
X1
k¼0

gðkÞZk; ð38Þ

mðZÞ ¼
X1
k¼0

mðkÞZk; ð39Þ

nðZÞ ¼
X1
k¼0

nðkÞZk; ð40Þ

f ð0Þ ¼ 0; f ð1Þ ¼ 0; f ð2Þ ¼ a; f ð3Þ ¼ b;

gð0Þ ¼ 1; gð1Þ ¼ g; mð0Þ ¼ 0; mð1Þ ¼ k; nð0Þ ¼ 0; nð1Þ ¼ o;
ð41Þ

where α, β, γ, κ and ω are constants. By substituting Eq (41) into Eqs (33)–(36), we obtain the
values of f (η), g (η),m (η) and n(η).

f ðZÞ ¼ a Z2 þ bZ3 þ 1

4
N1 aZ

4 þ 1

5
N1 bZ

5 þ � � � ; ð42Þ

gðZÞ ¼ 1þ g Zþ N1 Z
2 þ 1

6
N1ð4aþ 3 gÞZ3 þ 1

12
N1ð4N1 þ 6bþ 2 a gÞZ4

þ 1

20
N1

2N1 aþ 4bgþ 5

6
N1ð4 aþ 3 gÞþ

2N2N3 � 2

3
Rem koþ 1

3
Rem k

2N2 g k
N3

þ 3o
� �� �

0
BBB@

1
CCCAZ5 þ � � � ;

ð43Þ

mðZÞ ¼ kZþ 1

3
Rem kZ

3 þ 1

6
Rem akZ

4 þ 1

20
Rem

4Rem k
3

þ 4bk
� �

Z5 þ � � � ; ð44Þ

nðZÞ ¼ oZþ 1

6
Rem

2N2 gk
N3

þ 3o
� �

Z3 þ 1

12
Rem

4N1 N2 k
N3

� 2 ao
� �

Z4þ

1

20
Rem

2N2 Rem gk
3N3

þ N1 N2ð4 aþ 3 gÞk
N3

� 2boþ 5

6
Rem

2N2 gk
N3

þ 3o
� �� �

Z5 þ � � � ;
ð45Þ

where the number of required terms is determined by the convergence of the numerical values to
one’s desired accuracy. We obtain the approximants usingMATHEMATICA software. The Padé
approximant is employed to extend the convergence radius of the truncated series solution. As it is
illustrated in Figs 2–3, without using the Padé approximant, the different orders of DTM solution
cannot satisfy boundary conditions at infinity. Therefore, it is necessary to apply DTM-Padé to pro-
vide an effective way to handle infinite boundary value problems. The Padé approximant is applied
to Eqs (42)–(45) and one can obtain α, β, γ, κ and ω.
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Results and Discussion
The nonlinear ordinary differential equations subject to the boundary conditions are solved via
DTM-Padé method for some values of the four key parameters i.e. squeeze Reynolds number
(N1), magnetic Reynolds number (Rem = N1 Bt), dimensionless axial magnetic force parameter
(N2), dimensionless tangential magnetic force parameter (N3) on the velocity and induced
magnetic field components in the gap between the disks and also on the torques at the lower
and upper disk. Computations are performed for the evolution of velocity components (f, g)
and induced magnetic field components (m, n) with dimensionless axial coordinate (η). Repre-
sentative values are used to simulate physically realistic flows. Table 1 and Table 2 present the
comparison between the DTM-Padé and numerical solution, based on shooting technique,
results for torque values at lower (dg(0)/dη) and upper disk (dg(1)/dη) for various values of
squeeze Reynolds number (N1) and axial magnetic force number (N2).

Figs 4, 5, 6 and 7 display the effects of magnetic Reynolds number (Rem) on the axial and
tangential velocity distributions and induced magnetic field distributions (f, g,m, n). The mag-
netic Reynolds number defines the ratio of the fluid flux to the magnetic diffusivity. This
parameter therefore is instrumental in determining the diffusion of magnetic field along
streamlines and is analogous to the classical Reynolds number in viscous hydrodynamics, the
latter controlling the vorticity diffusion along the streamlines. When N1 is large this implies
fast vertical velocity of the upper disk and vice versa for small values of this squeezing parame-
ter. The variation in Rem has almost little effect on the axial velocity distribution. As it is obvi-
ous from Fig 5, the maximum values of g arises at the lower disk (η = 0) for all cases. In other
word, the azimuthal velocity of the fluid decreases as we move from the lower disk towards the

Fig 2. The obtained results of tangential velocity distribution (g) for different orders of DTM and
DTM-Padé solutions in comparison with the numerical solution whenN1 =N2 =N3 = 1 andBt = 6.

doi:10.1371/journal.pone.0135004.g002
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upper disk. In addition, the tangential velocity distribution is a decreasing function of magnetic
Reynolds number. With an increase in Rem from 1, 2 through to the maximum value of 10,
there is a strong decrease in the axial induced magnetic field component (m) and tangential
induced magnetic field component (n). For all cases the maximum values ofm and n arise at
the upper disk (η = 1). It is to certify that for higher values of Rem the squeeze film must possess
much higher electrical conductivities.

The effects of dimensionless axial magnetic force parameter (N2) on the axial and tangential
velocity distributions and induced magnetic field distributions (f, g,m, n) are illustrated in Figs
8, 9, 10 and 11. Axial velocity is generated in the two-disk system from the vertical motion of
the upper disk and the radial flux far from the axis of rotation in the vicinity of the lower disk.
When N2 is large this means fast vertical velocity of the upper disk and vice versa for small N2.

Fig 3. The obtained results of tangential inducedmagnetic field distribution (n) for different orders of
DTM and DTM-Padé solutions in comparison with the numerical solution whenN1 = N2 =N3 = 1 and
Bt = 6.

doi:10.1371/journal.pone.0135004.g003

Table 1. Torque values at lower (dg(0)/dη) and upper disk (dg(1)/dη) whenN2 = 1,N3 = 0.5 andBt = 6 for variousN1.

N1
dgð0Þ
dη

dgð1Þ
dη

DTM-Padé Result Numerical Result DTM-Padé Result Numerical Result

0.1 − 1.08963495 − 1.08963506 − 0.95987351 − 0.95987349

0.2 − 1.17203735 − 1.17203765 − 0.93844853 − 0.93844830

0.3 − 1.25013614 − 1.25013649 − 0.92615659 − 0.92615609

0.5 − 1.39797802 − 1.39797797 − 0.91295668 − 0.91295593

1 − 1.73306809 − 1.73306821 − 0.89280560 − 0.89280536

2 − 2.28925264 − 2.28925762 − 0.83902287 − 0.83902117

doi:10.1371/journal.pone.0135004.t001
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It can be seen that an increase in N2 from 0 to 5 induces a significant decrease in the axial veloc-
ity between the disks. The tangential velocity distribution (g) is also directly affected by an
increase in squeeze Reynolds number. As the axial component of the magnetic force N2

increases, the azimuthal velocity g increases. Hence, the axial magnetic force N2 can be used to
increase the azimuthal velocity of the fluid. The increase of g with N2 agrees with the results
obtained by Elshekh and Elhady [24] and Hamza [43]. The effect of the magnetic force N2 will
be dominant O1. As the results present, an increase in the dimensionless axial magnetic force
parameter causes to decrease the axial induced magnetic field distribution (m) and increase in
the tangential induced magnetic field distribution (n). The tangential velocity profile and tan-
gential induced magnetic field also become significantly more curved with higher N2 values.
The current results are an expected result since the normal component of the induced magnetic

Table 2. Torque values at lower (dg(0)/dη) and upper disk (dg(1)/dη)N1 = 1,N3 = 0.5 andBt = 6 for variousN2.

N2
dgð0Þ
dη

dgð1Þ
dη

DTM-Padé Result Numerical Result DTM-Padé Result Numerical Result

0 − 1.77239023 − 1.77238909 − 0.60923829 − 0.60923369

1 − 1.73306809 − 1.73306821 − 0.89280560 − 0.89280536

2 − 1.62765012 − 1.62765091 − 1.91333401 − 1.91333213

3 − 1.48539942 − 1.48539918 − 3.92694971 − 3.92694747

4 − 1.34565346 − 1.34565395 − 6.89037665 − 6.89038054

5 − 1.23080507 − 1.23080496 − 10.44130841 − 10.44131517

doi:10.1371/journal.pone.0135004.t002

Fig 4. Effect of magnetic Reynolds number (Rem) on the axial velocity distribution (f) whenN2 = 1,N3 =
0.5 and Bt = 6.

doi:10.1371/journal.pone.0135004.g004

Nonlinear MHD Tribological Squeeze Film

PLOSONE | DOI:10.1371/journal.pone.0135004 August 12, 2015 14 / 21



field between the two disks must increase with the increase of the normal component of the
external applied magnetic field.

Figs 12 and 13 depict the effect of dimensionless tangential magnetic force parameter (N3)
on the tangential velocity distribution (g) and tangential induced magnetic field distribution
(n), respectively. The tangential velocity distribution slightly increases with the increases in the
dimensionless tangential magnetic force parameter from 0.5 to 5. Increasing the dimensionless
tangential magnetic force parameter causes to decreases the tangential induced magnetic field
distribution.

Conclusions
The present study has displayed novel DTM-Padé solution, the combination of differential
transform method and Padé approximation, for two nonlinear magneto-hydrodynamic
squeeze film problems. Applications of the study include in automotive magneto-rheological
shock absorbers, novel aircraft landing gear systems and biological prosthetics. The trans-
formed dimensionless equations have been formulated and solved with robust boundary con-
ditions. Exceptional stability and convergence characteristics have been demonstrated with the
DTM. The physical key parameters emerging have been investigated graphically in detail
including dimensionless axial magnetic force strength parameter, dimensionless tangential
magnetic force strength parameter and magnetic Reynolds number. The results illustrated that
the tangential velocity distribution is a decreasing function of magnetic Reynolds number. Fur-
ther, the tangential velocity distribution is directly affected by an increase in squeeze Reynolds
number. In addition, an increase in the dimensionless axial magnetic force parameter causes to
decrease the axial induced magnetic field distribution and increase in the tangential induced

Fig 5. Effect of magnetic Reynolds number (Rem) on the tangential velocity distribution (g) whenN2 =
1,N3 = 0.5 andBt = 6.

doi:10.1371/journal.pone.0135004.g005
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Fig 6. Effect of magnetic Reynolds number (Rem) on the axial inducedmagnetic field distribution (m)
whenN2 = 1,N3 = 0.5 and Bt = 6.

doi:10.1371/journal.pone.0135004.g006

Fig 7. Effect of magnetic Reynolds number (Rem) on the tangential inducedmagnetic field distribution
(n) whenN2 = 1,N3 = 0.5 and Bt = 6.

doi:10.1371/journal.pone.0135004.g007
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Fig 8. Effect of axial magnetic force number (N2) on the axial velocity distribution (f) whenN1 = 1,N3 =
0.5 and Bt = 6.

doi:10.1371/journal.pone.0135004.g008

Fig 9. Effect of axial magnetic force number (N2) on the tangential velocity distribution (g) whenN1 =
1,N3 = 0.5 andBt = 6.

doi:10.1371/journal.pone.0135004.g009
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Fig 10. Effect of axial magnetic force number (N2) on the axial inducedmagnetic field distribution (m)
whenN1 = 1,N3 = 0.5 and Bt = 6.

doi:10.1371/journal.pone.0135004.g010

Fig 11. Effect of axial magnetic force number (N2) on the tangential inducedmagnetic field
distribution (n) whenN1 = 1,N3 = 0.5 and Bt = 6.

doi:10.1371/journal.pone.0135004.g011
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Fig 12. Effect of tangential magnetic force number (N3) on the tangential velocity distribution (g) when
N1 =N2 = 1, andBt = 6.

doi:10.1371/journal.pone.0135004.g012

Fig 13. Effect of tangential magnetic force number (N3) on the tangential inducedmagnetic field
distribution (n) whenN1 =N2 = 1, andBt = 6.

doi:10.1371/journal.pone.0135004.g013
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magnetic field distribution. Moreover, increasing the dimensionless tangential magnetic force
parameter causes to decreases the tangential induced magnetic field distribution.
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