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Abstract LetG be the graph corresponding to the graphicalmodel of nearest neighbor
interaction in a Gaussian character. We study Natural Exponential Families (NEF) of
Wishart distributions on convex cones QG and PG , where PG is the cone of tridiagonal
positive definite real symmetric matrices, and QG is the dual cone of PG . TheWishart
NEF that we construct include Wishart distributions considered earlier for models
based on decomposable(chordal) graphs. Our approach is, however, different and
allows us to study the basic objects of Wishart NEF on the cones QG and PG . We
determineRieszmeasures generatingWishart exponential families on QG and PG , and
we give the quadratic construction of these Riesz measures and exponential families.
The mean, inverse-mean, covariance and variance functions, as well as moments of
higher order, are studied and their explicit formulas are given.
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1 Introduction

The classical Wishart distribution was first derived by Wishart (1928) as the distribu-
tion of the maximum likelihood estimator of the covariance matrix of the multivariate
normal distribution. In the framework of graphical Gaussian models, the distribution
of the maximum likelihood estimator of π(Σ), where π denotes the canonical pro-
jection onto QG , was derived by Dawid and Lauritzen (1993), who called it the hyper
Wishart distribution. Dawid and Lauritzen (1993) also considered the hyper-inverse
Wishart distributionwhich is defined on QG as the Diaconis-Ylvisaker conjugate prior
distribution for π(Σ), and Roverato (2000) derived the so-called G-Wishart distribu-
tion on PG , that is, the distribution of the concentration matrix K = Σ−1 when π(Σ)

follows the hyper-inverse Wishart distribution. Letac and Massam (2007) constructed
two classes of multi-parameter Wishart distributions on the cones QG and PG associ-
ated with a decomposable(chordal) graphG and called them type I and type IIWishart
distributions, respectively. They are more flexible because they have multiple shape
parameters. In fact, the type I and type II Wishart distributions generalize the hyper
Wishart distribution and the G-Wishart distribution, respectively.

The Wishart exponential families introduced and studied in this paper include the
type I and type II Wishart distributions of Letac–Massam on the cones QG and PG
associated with the so-called path graphs

v1• − v2• − · · · − vn• . Although path graphs are
often denoted by Pn in the literature (e.g. Bondy and Murty 2008), we shall use the
Dynkin diagram notation An for the path graph. This notation is well known in other
fields of mathematics. In mathematical statistics, this notation is used by Letac and
Massam (2007).

Our methods, which are new and different from methods of articles cited above,
simplify in a significant way the Wishart theory for graphical models.

In Graczyk and Ishi (2014) and Ishi (2014), the theory of Wishart distributions on
general convex cones was developed, with a strong accent on the quadratic construc-
tions and on applications to homogeneous cones. In this article, we apply for the first
time the ideas and results of Graczyk and Ishi (2014) to study important families of
non-homogeneous cones.

Applications in estimation and other practical aspects of Wishart distributions are
intensely studied, cf. Sugiura and Konno (1988), Tsukuma and Konno (2006), Konno
(2007, 2009), Kuriki and Numata (2010).

The focus of this work is on non-homogeneous cones QAn and PAn appearing in the
statistical theory of graphical models, corresponding to the practical model of nearest
neighbor interactions. In the Gaussian character (X1, X2, . . . , Xn), non-neighbors
Xi , X j , |i− j | > 1 are conditionally independent with respect to other variables. This
family of decomposable graphical models presents many advantages: it encompasses
the univariate case (A1), a complete graph (A2), a non-complete homogeneous graph
(A3) and an infinite number of non-homogeneous graphs (An , n ≥ 4).

Some of the results of our research may be extended to cones related to all chordal
graphs (work in progress), e.g., the definitions of the power functions, which are
described (see Definition 3) in general graph terminology. However, there exist diffi-
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Wishart exponential families on cones related to tridiagonal matrices 441

culties to extend numerous results of this paper to all chordal graphs, since a part of
the proposed methods does not work in the general setting.

Our results on the indexation of Riesz and Wishart measures by M = 1, . . . , n,
on the inverse mean map and on the variance function are specific for the cones QAn

and PAn . Thanks to the indexation result, the Laplace transforms attributed to all
the possible eliminating orders are treated in a simple and uniform way. A striking
illustration of the importance and of the special role of path graphs An is the fact that
the methods and results given in this article make it possible to proceed and to solve
the Letac–Massam Conjecture (Letac and Massam 2007) for the cones QAn (Graczyk
et al. 2017) and they give much hope to prove the Letac–Massam Conjecture for the
cones PAn (work in progress). Together with the results of this article, we achieve in
this way the complete study of all classical objects of an exponential family for the
Wishart NEF on the cones QAn .

For all these reasons, we decided to deal in this article exclusively with the path
graphs An . It is clear that a complete comprehension of this important class of graphs
will contribute greatly to the research in mathematical statistics for chordal graphical
models.

Plan of the article. Sections 2, 3 and 4 provide the main tools in order to define
and to study the Wishart NEF on the cones QAn and PAn . In Sect. 2, useful notions of
eliminating orders≺ on An and of generalized power functions δ≺

s andΔ≺
s , s ∈ R

n will
be introduced on the cones QAn and PAn respectively. In Theorem1, a classical relation
between the power functions δ≺

s and Δ≺−s is proved as well as the dependence of δ≺
s

and Δ≺
s on the maximal element M of ≺ only. Thus, in the sequel of the paper, only

generalized power functions δ
(M)
s and Δ

(M)
s appear. Next important tool of analysis

of Wishart exponential families are recurrent construction of the cones PG and QG

and corresponding changes of variables. They are introduced and studied in Sect. 3,
and are immediately applied in Sect. 4 in order to compute the Laplace transform of
generalized power functions δ

(M)
s and Δ

(M)
s (Theorems 2 and 3).

In Sect. 5, Wishart natural exponential families on the cones QAn are defined,
and all their classical objects are explicitly determined, beginning with the Riesz
generating measures, Wishart densities, Laplace transform, mean and covariance. In
Theorem 4 and Corollary 3, an explicit formula for the inverse mean map is proved.
A key formula is obtained in Proposition 6, whence Theorem 4 follows by standard
argument in information geometry of exponential family (Amari and Nagaoka 2007;
Brown 1986; Speed and Kiiveri 1986). It provides an infinite number of versions of
Lauritzen formulas for bijections between the cones QG and PG . In Sect. 5.3, two
explicit formulas are given for the variance function of a Wishart family. The formula
of Theorem 5 is surprisingly simple and similar to the case of the symmetric cone S+

n .
Sections 5.4 and 5.5 are devoted to the quadratic constructions of Wishart exponential
families on QG and to the computation of their higher moments in Theorem 6.

Section 6 is on Wishart natural exponential families on the cones PAn and follows
a similar scheme as Sect. 5; however, the inverse mean map and variance function are
not available on the cones PAn . The analysis on these cones is more difficult.

In the last Sect. 7, we establish the relations of theWishart NEF defined and studied
in our paper with the type I and type II Wishart distributions from Letac and Massam
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(2007). Our methods give a simple proof of the formulas for Laplace transforms of
type I and type II Wishart distributions from Letac and Massam (2007).

2 Preliminaries on An graphs and related cones

In this section, we study properties of graphs An that will be important in the theory
of Riesz measures and Wishart distributions on the cones related to these graphs.
In particular, we characterize all the eliminating orders of vertices and we introduce
generalized power functions related to such orders. We show that they only depend
on the maximal element M ∈ {1, . . . , n} of the order.

An undirected graph is a pair G = (V, E), where V is a finite set and E is a subset
ofP2(V ), the set of all subsets of E with cardinality two. The elements of V are called
nodes or vertices, and the elements of E are called edges. If {v, v′} ∈ E , then v and
v′ are said to be adjacent and this is denoted by v ∼ v′. Graphs are visualized by
representing each node by a point and each edge {v, v′} by a line with the nodes v

and v′ as endpoints. For convenience, we introduce a subset E ⊂ V × V defined by
E := {(v, v′) : v ∼ v′} ∪ {(v, v) : v ∈ V }.

The graph G = (V, E) with set of vertices V = {v1, v2, . . . , vn} and set of edges
E = {{v j , v j+1} : 1 ≤ j ≤ n − 1} is denoted by An . In what follows, we often denote

the vertex vi by i and the graph An : v1• − v2• − · · · − vn• is simply represented as
1− 2− 3− . . .− n. An n-dimensional Gaussian model (Xv)v∈V is said to be Markov
with respect to a graph G if for any (v, v′) /∈ E , the random variables Xv and Xv′ are
conditionally independent given all the other variables. The conditional independence
relations encoded in An graph are of the form: Xvi ⊥⊥ Xv j |(Xvk )k �=i, j , for all |i− j | >

1. Thus, An graphs correspond to nearest neighbor interaction models.
Let Sn be the space of real symmetric matrices of order n and let S+

n ⊂ Sn be
the cone of positive definite matrices. The notation for a positive definite matrix y is
y > 0. For a graph G, let ZG ⊂ Sn be the vector space consisting of y ∈ Sn such
that yi j = 0 if (i , j) /∈ E . Let IG = Z∗

G be the dual vector space with respect to the
scalar product 〈y, η〉 = tr(yη) = ∑

(i, j)∈E yi jηi j , y ∈ ZG , η ∈ IG . In the statistical
literature, the vector space IG is commonly realized as the space of n × n symmetric
matrices η, in which only the coefficients ηi j , (i, j) ∈ E , are given. We adopt this
realization of IG in this paper.

If I ⊂ V , we denote by yI the submatrix of y ∈ ZG obtained by extracting from
y the lines and the columns indexed by I . The same notation is used for η ∈ IG .
Let PG be the cone defined by PG = {y ∈ ZG : y > 0}, and QG ⊂ IG the dual
cone of PG , that is, QG = {η ∈ IG : ∀y ∈ PG\{0} 〈y, η〉 > 0}. A Gaussian
vector model (Xv)v∈V is Markov with respect to G if and only if the concentration
matrix K = Σ−1 belongs to PG . When G = An , the cone QG is described as
QG = {η ∈ IG : η{i,i+1} > 0, i = 1, . . . , n − 1}. Let π = πIG be the projection
of Sn onto IG , x �→ η such that ηi j = xi j if (i, j) ∈ E . Then, it is known (cf.
Letac and Massam 2007; Andersson and Klein 2010) that the mapping PG −→ QG ,
y �−→ π(y−1) is a bijection.

Example 1 Consider the graph A4 : 1• − 2• − 3• − 4•.
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The elements of PA4 are positive definite tridiagonal matrices of the form y =⎛

⎜
⎜
⎝

y11 y12 0 0
y12 y22 y23 0
0 y23 y33 y34
0 0 y34 y44

⎞

⎟
⎟
⎠ . The elements of QA4 are incomplete matrices of the form

x =

⎛

⎜
⎜
⎝

x11 x12 ∗ ∗
x12 x22 x23 ∗
∗ x23 x33 x34
∗ ∗ x34 x44

⎞

⎟
⎟
⎠, with x{1,2} =

(
x11 x12
x12 x22

)

, x2:3 =
(
x22 x23
x23 x33

)

and x3:4 =
(
x33 x34
x34 x44

)

positive definite matrices.

The matrix z = y−1 =

⎛

⎜
⎜
⎝

z11 z12 z13 z14
z12 z22 z23 z24
z13 z23 z33 z34
z14 z24 z34 z44

⎞

⎟
⎟
⎠ is a positive definite matrix that does not

belong to PA4 . The projection of z on QA4 is π(z) =

⎛

⎜
⎜
⎝

z11 z12 ∗ ∗
z12 z22 z23 ∗
∗ z23 z33 z34
∗ ∗ z34 z44

⎞

⎟
⎟
⎠. π can be

understood as the operator to ignore the elements of z corresponding to non-adjacent
vertices.

In the sequel, unless otherwise stated, G = An ,

2.1 Eliminating orders

Different orders of vertices v1, v2, . . . , vn should be considered in order to have a
harmonious theory of Riesz and Wishart distributions on the cones related to An

graphs. The orders that will be important in this work are called eliminating orders of
vertices and will be presented now.

Definition 1 Consider a graph G = (V, E) and an ordering ≺ of the vertices of G.
The set of future neighbors of a vertex v is defined as v+ = {w ∈ V : v ≺ w and v ∼
w}. The set of all predecessors of a vertex v ∈ V with respect to ≺ is defined as
v− = {u ∈ V : u ≺ v}.
Definition 2 An ordering ≺ of the vertices of a graph G is said to be an eliminating
order if v+ is complete for all v ∈ V .

In this section, we present a characterization of the eliminating orders in the case of
the graph An . An algorithm that generates all eliminating orders for a general graph
is given by (Chandran et al. 2003).

Proposition 1 Consider a graph An : 1− 2− 3− · · · − n. All eliminating orders are
obtained by an intertwining of two sequences 1 ≺ . . . ≺ M and n ≺ · · · ≺ M for an
M ∈ V . There are 2n−1 eliminating orders on the graph An.

The proof is easy and is omitted.
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2.2 Generalized power functions

In this section, we define and study generalized power functions on the cones PG and
QG . Here, we introduce useful notation. For 1 ≤ i ≤ j ≤ n, let {i : j} ⊂ V be the
set of a ∈ V for which i ≤ a ≤ j . Then, for y ∈ ZG and 1 ≤ i ≤ n, the matrix
y{1:i} is the upper left submatrix of y of size i , and y{i :n} is the lower right submatrix
of size n − i + 1. Recall that on the cone S+

n , the generalized power functions are
Δs(y) = ∏n

i=1 |y{1:i}|si−si+1 and δs(y) = ∏n
i=1 |y{i :n}|si−si−1 , with s0 = sn+1 = 0.

Definition 3 For s ∈ R
V , setting det y∅ = 1 = det η∅, we define

Δ≺
s (y) :=

∏

v∈V

(
det y{v}∪v−

det y
v−

)sv

(y ∈ PG), (1)

δ≺
s (η) :=

∏

v∈V

(
det η{v}∪v+

det η
v+

)sv

(η ∈ QG). (2)

Note that Definition 3 applied to the complete graph with the usual order 1 < . . . <

n givesΔs and δs . For any s, the following formula δs(y−1) = Δ−s(y) is well known.
In Theorem 1, we find an analogous formula in the case of the cones PG and QG .

We will see in Theorem 1 that on the cones related to the graphs An , different order-
depending power functions Δ≺

s and δ≺
s defined in Definition 3 may be expressed in

terms of explicit “M-power functions”Δ
(M)
s and δ

(M)
s that will be defined below. They

depend only on the choice of M ∈ V .

Definition 4 Let M ∈ V , y ∈ PG and η ∈ QG . We define the M-power functions
Δ

(M)
s (y) on PG and δ

(M)
s (x) on QG by the following formulas:

Δ(M)
s (y) =

M−1∏

i=1

|y{1:i}|si−si+1 |y|sM
n∏

i=M+1

|y{i :n}|si−si−1 , (3)

δ(M)
s (η) =

∏M−1
i=1 |η{i :i+1}|si ∏n

i=M+1 |η{i−1:i}|si
∏M−1

i=2 η
si−1
i i · η

sM−1−sM+sM+1
MM · ∏n−1

i=M+1 η
si+1
i i

. (4)

Observe that for M = 1, n there are n − 1 factors in the denominator of (4), and for
M = 2, . . . n − 1 there are n − 2 factors (powers of η22 . . . ηn−1,n−1).

The main result of this section is the following theorem.

Theorem 1 Consider a graph G = An with an eliminating order ≺. Let M be the
maximal element with respect to ≺. Then for all y ∈ PG, we have

δ≺
s (π(y−1)) = Δ≺−s(y) = Δ

(M)
−s (y). (5)

The proof of Theorem 1 is preceded by a series of elementary lemmas.
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Lemma 1 Let y ∈ PG and i < j < j+1 < k < m. The determinant of the submatrix
y{i : j}∪{k :m} can be factorized as |y{i : j}∪{k :m}| = |y{i : j}||y{k :m}|.

Lemma 2 Let y ∈ PG and η = π(y−1). Then for all i, i + 1 ∈ V , we have

∣
∣η{i,i+1}

∣
∣ = |y|−1|yV \{i,i+1}|.

Proof (of Theorem 1) Part 1: δ≺
s (π(y−1)) = Δ

(M)
−s (y). From Proposition 1, we have

i+ =

⎧
⎪⎨

⎪⎩

{i + 1} if i ≤ M − 1,

∅ if i = M,

{i − 1} if i ≥ M + 1.

Using ηi i = |y|−1|yV \{i}| with η = π(y−1) and Lemmas 1 and 2, we get

δ≺
s (π(y−1)) = Δ

(M)
−s (y). Part 2: Δ≺

s (y) = Δ
(M)
s (y). Let us first consider the elimi-

nating order ≺M given by

1 ≺M 2 ≺M . . . ≺M M − 1 ≺M n ≺M n − 1 ≺M . . . ≺M M + 1 ≺M M. (6)

Using ηi i = |y|−1|yV \{i}|, Lemmas 1 and 2 again, we get Δ≺M
s (y) = Δ

(M)
s (y).

It is easy to see using Proposition 1 and the factorization from Lemma 1 that for
any other eliminating order ≺, the factors of Δ≺

s (y) under the powers si are exactly
the same as for ≺M . Indeed, if i ≤ M − 1, let n − j be the largest vertex greater than
M such that n − j ≺ i . Then, the factor under the power si is

|y{i}∪i−|
|yi−|

= |y{1:i}||y{n− j :n}|
|y{1:i−1}||y{n− j :n}| = |y{1:i}|

|y{1:i−1}| .

A similar argument shows that this is also true for i = M and for i > M . ��

Corollary 1 Let ≺1 and ≺2 be two eliminating orders on G such that max≺1 V =
max≺2 V . Then δ

≺1
s (η) = δ

≺2
s (η) for all η ∈ QG. If max≺ V = M then we have

δ≺
s (η) = δ

(M)
s (η).

3 Recurrent construction of the cones PG and QG and changes of
variables

In this section, we introduce very useful recurrent constructions of the cones PAn and
QAn from the cones PAn−1 and QAn−1 . There are two variants of them for An−1 :
2 − · · · − n and An−1 : 1 − · · · − (n − 1). Corresponding changes of variables for
integration on PAn and QAn are introduced.
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Proposition 2 1. For n ≥ 2, letΦn : R
+×R×PAn−1 −→ PAn , (a, b, z) �−→ y with

y = A(b)

⎛

⎜
⎜
⎜
⎝

a 0 · · · 0
0
... z
0

⎞

⎟
⎟
⎟
⎠

A(b)T , A(b) =

⎛

⎜
⎜
⎜
⎝

1
b 1
...

. . .

0 . . . 0 1

⎞

⎟
⎟
⎟
⎠

,

and let Ψn : R
+ × R × QAn−1 −→ QAn , (α, β, x) �−→ η with

η = π

⎛

⎜
⎜
⎜
⎝
A(β)T

⎛

⎜
⎜
⎜
⎝

α 0 · · · 0
0
... x
0

⎞

⎟
⎟
⎟
⎠

A(β)

⎞

⎟
⎟
⎟
⎠

.

Then the maps Φn and Ψn are bijections.
2. Let Φ̃n : R

+ × R × PAn−1 −→ PAn , (a, b, z) �−→ ỹ with

ỹ = B(b)T

⎛

⎜
⎜
⎜
⎝

0

z
...

0
0 · · · 0 a

⎞

⎟
⎟
⎟
⎠

B(b), B(b) =

⎛

⎜
⎜
⎜
⎝

1
0 1
...

. . .

0 . . . b 1

⎞

⎟
⎟
⎟
⎠

,

and let Ψ̃n : R
+ × R × QAn−1 −→ QAn , (α, β, x) �−→ η̃ with

η̃ = π

⎛

⎜
⎜
⎜
⎝
B(β)

⎛

⎜
⎜
⎜
⎝

0

x
...

0
0 · · · 0 α

⎞

⎟
⎟
⎟
⎠

B(β)T

⎞

⎟
⎟
⎟
⎠

.

Then the maps Φ̃n and Ψ̃n are bijections.
3. The Jacobians of the changes of variables y = Φn(a, b, z) and y = Φ̃n(a, b, z)

are given by

JΦn (a, b, z) = a, JΦ̃n
(a, b, z) = a. (7)

The Jacobians of the changes of variables η = Ψn(α, β, x) and η = Ψ̃n(α, β, x)
are given by

JΨn (α, β, x) = x22, JΨ̃n
(α, β, x) = xn−1,n−1. (8)

It should be noted that for Φn(a, b, z) and Ψn(α, β, x) the rows and columns of z
and x are numbered 2, . . . , n while for Φ̃n(a, b, z) and Ψ̃n(α, β, x) they are numbered
1, . . . , n − 1.
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Proof 1. Let y′ =

⎛

⎜
⎜
⎜
⎝

a 0 . . . 0
0
... z
0

⎞

⎟
⎟
⎟
⎠

and η′ =

⎛

⎜
⎜
⎜
⎝

α 0 . . . 0
0
... x
0

⎞

⎟
⎟
⎟
⎠
. Then

yi j =
⎧
⎨

⎩

ab if (i, j) = (1, 2) or (i, j) = (2, 1),
ab2 + z22 if i = j = 2,
y′
i j otherwise.

(9)

Thus, on the one hand, if (a, b, z) ∈ R
+ × R × PAn−1 , then y ∈ ZAn . And z > 0

implies y′ > 0 as every principal minor of y′ equals a times a principal minor of z.
From y = T y′T T with T = A(b), we get y ∈ PAn . On the other hand, if y ∈ PAn , we

have a = y11 > 0, b = y12
y11

, z22 = y22 − y212
y11

and zi j = yi j for all i �= 2 and j �= 2.
We use the notation z = (zi j )2≤i, j≤n . Now, let us show that z ∈ PAn−1 . We have
y′ = T−1y (T T )−1 > 0. Hence, we have also z > 0 since each principal minor of z
equals 1/a times a principal minor of y′. Therefore, the map Φn is indeed a bijection
from R

+ × R × PAn−1 onto PAn .
Let us turn to Ψn . The relation between η and η′ is given by

ηi j =
⎧
⎨

⎩

α + β2x22 if i = j = 1,
βx22 if (i, j) = (1, 2) or (i, j) = (2, 1),
η′
i j otherwise.

(10)

First we show that if (α, β, x) ∈ R
+ × R × QAn−1 , then η ∈ IAn . Actually, since

x{2,3} > 0, we have α + β2x22 > 0 and η{1,2} =
(

α + β2x22 βx22
βx22 x22

)

> 0. On the

other hand, if η ∈ QAn , we have xi j = ηi j for all i, j = 2, . . . , n. Thus, η ∈ QAn

implies x ∈ QAn−1 .

2. Let ỹ′ =

⎛

⎜
⎜
⎜
⎝

0

z
...

0
0 . . . 0 a

⎞

⎟
⎟
⎟
⎠

and η̃′ =

⎛

⎜
⎜
⎜
⎝

0

x
...

0
0 . . . 0 α

⎞

⎟
⎟
⎟
⎠
. Then we have

ỹi j =

⎧
⎪⎨

⎪⎩

ab if (i, j) = (n − 1, n) or (i, j) = (n, n − 1),

ab2 + zn−1,n−1 if i = j = n − 1,

ỹ′
i j otherwise,

(11)

and

η̃i j =
⎧
⎨

⎩

α + β2xn−1,n−1 if i = j = n,

βxn−1,n−1 if (i, j) = (n − 1, n) or (i, j) = (n, n − 1),
η̃′
i j otherwise.

(12)

Similar reasoning as above shows that Φ̃ and Ψ̃ are indeed bijections.
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3. The proof is by direct computation. ��
Let us define ϕAn : QAn → R+ by ϕA1(η) = η−1, and for n ≥ 2

ϕAn (η) =
n−1∏

i=1

|η{i,i+1}|−3/2
∏

i �=1,n

ηi i . (13)

Lemma 3 1. Let y = Φn(a, b, z) and η = Ψn(α, β, x). Then, for all M = 2, . . . , n,

Δ(M)
s (y) = as1Δ(M)

(s2,...,sn)
(z), (14)

δ(M)
s (η) = αs1δ

(M)
(s2,...,sn)

(x). (15)

Let y = Φ̃n(a, b, z) and η = Ψ̃n(α, β, x). Then, for all M = 1, . . . , n − 1,

Δ(M)
s (y) = asnΔ(M)

(s1,...,sn−1)
(z), (16)

δ(M)
s (η) = αsnδ

(M)
(s1,...,sn−1)

(x). (17)

2. Let η = Ψn(α, β, x) and η̃ = Ψ̃n(α, β, x). Then,

ϕAn (η) = x−1/2
22 α−3/2ϕAn−1(x) (18)

and

ϕAn (η̃) = x−1/2
n−1,n−1α

−3/2ϕAn−1(x). (19)

3. If y = Φn(a, b, z) and η = Ψn(α, β, x), then

tr(yη) = aα + ax22(b + β)2 + tr(zx). (20)

If y = Φ̃n(a, b, z) and η = Ψ̃n(α, β, x), then

tr(yη) = aα + axn−1,n−1(b + β)2 + tr(zx). (21)

Proof 1. For M ≥ 2, we have

Δ
(M)
s (y)

Δ
(M)
(s2,...,sn)

(z)
= (y11)

s1−s2

[
M−1∏

i=2

( |y{1:i}|
|z{2:i}|

)si−si+1
]( |y|

|z|
)sM

.

Using Lemma 7, we have |y{1:i}| = a|z{2:i}|. Thus,

Δ
(M)
s (y)

Δ
(M)
(s2,...,sn)

(z)
= as1 .
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Noting that a = ynn , we have for M = 1, . . . , n − 1,

Δ(M)
s (ỹ) = |ỹ|s1

n∏

i=2

|ỹ{i :n}|si−si−1 = as1 |z|s1
n−1∏

i=2

(
a |z{i :n}|si−si−1

)
asn−sn−1

= asn |z|s1
n−1∏

i=2

|z{i :n}|si−si−1 = asnΔ(M)
(s1,...,sn−1)

(z).

Similarly, we show that δ
(M)
s (η) = αs1δ

(M)
(s2,...,sn)

(x) for M ≥ 2 and that δ
(M)
s (η) =

αsnδ
(M)
s (x) for all M ≤ n − 1.

2. Let η = Ψ (α, β, x) and η̃ = Ψ̃ (α, β, x). For n = 2, we have

ϕA2(η) = |η{1,2}|−3/2 =
∣
∣
∣
∣
α + β2x βx

βx x

∣
∣
∣
∣

−3/2

= α−3/2x−3/2

= x−1/2α−3/2ϕA1(x).

For n > 2, using (10), we have

ϕAn (η) = η22 |η{1,2}|−3/2

n−1∏

i=2
|η{i,i+1}|−3/2

n−1∏

i=3
η−1
i i

= x−1/2
22 α−3/2ϕAn−1(x).

The proof of the second part is analogous.
3. The proof is by direct computation. ��

4 Laplace transform of generalized power functions on QG and PG

Theorem 2 For all n ≥ 1, for all 1 ≤ M ≤ n and for all y ∈ PAn , the integral
∫
QAn

e− tr(yη)δ
(M)
s (η)ϕAn (η)dη converges if and only if si > 1

2 for all i �= M, and
sM > 0. In this case, we have

∫

QAn

e− tr(yη)δ(M)
s (η)ϕAn (η)dη = π(n−1)/2

⎧
⎨

⎩

∏

i �=M

Γ (si − 1

2
)

⎫
⎬

⎭
Γ (sM )Δ

(M)
−s (y).

(22)

Proof We will proceed by induction on the number n of vertices. For n = 1, we have
the gamma integral that converges if and only if s > 0, so that

∫ ∞

0
e−yηδ(1)

s (η)ϕA1(η)dη =
∫ ∞

0
e−yηηs−1dη = Γ (s)y−s .
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Now assume that the assertion holds for a graph with n − 1 vertices.
Case M > 1. Let y = Φn(a, b, z) and let us make the change of variable η =
Ψn(α, β, x). The induction hypothesis gives

∫

QAn−1

e− tr(zx)δ
(M)
(s2,...,sn)

(x)ϕAn−1(x)dx (23)

= π(n−2)/2
{ ∏

i �=1,M

Γ (si − 1

2
)
}
Γ (sM )Δ

(M)
−(s2,...,sn)

(z)

if and only if si > 1
2 for all i �= M , and sM > 0. By Lemma 3, the change of variable

η = Ψn(α, β, x) gives dη = x22dαdβdx . Thus, we have

∫

QAn

e− tr(yη)δ(M)
s (η)ϕAn (η)dη

=
∫ ∞

0

∫ ∞

−∞

∫

QAn−1

e−(aα+ax22(b+β)2+tr(zx))αs1−3/2

×δ
(M)
(s2,...,sn)

(x)ϕAn−1(x)x
1/2
22 dαdβdx,

where we used parts 3 and 1 of Lemma 3. Now, using the Gaussian integral

∫ ∞

−∞
e−ax22(b+β)2dβ = π1/2a−1/2x−1/2

22

and the gamma integral

∫ ∞

0
e−aααs1−3/2dα = a−s1+1/2Γ

(

s1 − 1

2

)

,

that is finite if and only if s1 > 1
2 , we get

∫

QAn

e− tr(yη)δ(M)
s (η)ϕAn (η)dη

= π1/2a−s1Γ (s1 − 1

2
)

∫

QAn−1

e− tr(zx)δ
(M)
(s2,...,sn)

(x)ϕAn−1(x)dx .
(24)

Finally, using Formulas (23) and (14) completes the proof in the case M > 1. Case
M = 1. Let y = Φ̃n(a, b, z) and let us make the change of variable η = Ψ̃n(α, β, x).
The proof is similar. ��

Theorem 3 For all n ≥ 1, for all 1 ≤ M ≤ n and for all η ∈ QAn , the integral∫
PAn

e− tr(yη)Δ
(M)
s (y)dy converges if and only if si > − 3

2 for all i �= M,and sM > −1.
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In this case, we have

∫

PAn

e− tr(yη)Δ(M)
s (y)dy = π(n−1)/2

⎧
⎨

⎩

∏

i �=M

Γ

(

si + 3

2

)
⎫
⎬

⎭
Γ (sM + 1)δ(M)

−s (η)ϕAn (η).

(25)

Proof Similar to the proof of Theorem 2 using Proposition 2 and Lemma 3. ��
The characteristic function ϕΩ of a convex cone Ω is defined as the Laplace trans-

form of the Lebesgue measure of the dual cone: ϕΩ(x) = ∫
Ω∗ e−〈y,x〉dy, where Ω∗

is the dual of Ω . The measure ϕΩ(x)dx is called the canonical measure of Ω . It is
invariant by linear automorphisms of Ω (Faraut and Korányi 1994).

Corollary 2 ϕQAn
= const . ϕAn .

Proof The result,
(

4
π2

) n−1
2 ∫

PAn
e− tr(yη)dy = ϕAn (η), is obtained by substituting

s = (0, . . . , 0) into Theorem 3. ��
Remark 1 Formulas (22) and (25) may seem similar but in (25) the integrand does not
contain the characteristic function of the cone PAn . This function is unknown except
for A4 when it is not a power function (Letac and Massam 2007, Prop.3.2).

5 Wishart exponential families on QG

Let us define the Riesz measure R(M)
s on QG by

dR(M)
s (x) = Csδ

(M)
s (x)ϕAn (x)1QAn

(x)dx, (26)

where C−1
s = π(n−1)/2

(
∏

i �=M
Γ (si − 1

2 )

)

Γ (sM ). Therefore, from Theorem 2, the

Laplace transform of the measure dR(M)
s is given for all si > 1

2 , i �= M and sM > 0
by

L(R(M)
s )(y) =

∫

QAn

e− tr(yη)dR(M)
s (η) = Δ

(M)
−s (y), y ∈ PAn . (27)

Wishart natural exponential family γ
(M)
s,y on QG is, by definition, generated by the

Riesz measure dR(M)
s . The density function of theWishart distribution on QG is given

by

γ (M)
s,y (dx) = Cse

− tr(yx)Δ(M)
s (y)δ(M)

s (x)ϕAn (x)1QAn
(x)dx . (28)
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The Laplace transform of γ
(M)
s,y (dx) is

L(γ (M)
s,y )(z) = L(R(M)

s )(z + y)

L(R(M)
s )(y)

= Δ
(M)
−s (z + y)

Δ
(M)
−s (y)

.

The family γ
(M)
s,y does not depend on the normalization of the Riesz measure.

5.1 Mean and covariance of the Wishart distributions on QG

In this subsection, we derive a formula for the mean of theWishart exponential family
on the cones QG . It is known from the general theory of exponential families of
distributions (Brown 1986) that the mean of γ

(M)
s,y is obtained by differentiation with

respect to y of the cumulant generating function of the Riesz measure:

m(M)
s (y) = −grady logΔ

(M)
−s (y) ∈ QG . (29)

For all matrix A in ZG and a subset B ⊂ V of the set of vertices V of G, we note

(AB)0 the matrix in ZG such that (AB)0i j =
{
Ai j if i, j ∈ B,

0 otherwise.

Proposition 3 The mean function of the Wishart family γ
(M)
s,y on QG is equal to

m(M)
s (y)

= π

(
M−1∑

i=1

(si − si+1)[(y{1:i})−1]0 + sM y−1 +
n∑

i=M+1

(si − si−1)[(y{i :n})−1]0
)

.

(30)

Proof Use formulas (3), (29) and grad log |yA| = (
(yA)−1

)0
. ��

Proposition 4 For all y ∈ PG, we have

〈m(M)
s (y), y〉 = κ(s),

where the constant κ(s) is
∑n

i=1 si − (n − M)sM.

Proof Observe that by (3), for any c > 0, Δ
(M)
−s (cy) = c−κ(s)Δ

(M)
−s (y). By (29),

〈m(M)
s (y), y〉 = −〈grady logΔ

(M)
−s (y), y〉. Set F(y) = logΔ

(M)
−s (y). By the chain

rule, 〈grady F(y), y〉 = d
dt F(t y)

∣
∣
t=1. The map t → F(t y) = logϕ(t), R

+ → R,

where ϕ(t) = Δ
(M)
−s (t y), satisfies ϕ(ct) = c−κ(s)ϕ(t). Hence ϕ(c) = c−κ(s)ϕ(1) and

d
dt F(t y)

∣
∣
t=1 = ϕ′(1)

ϕ(1) = −κ(s). Thus 〈grady F(y), y〉 = −κ(s) and the result follows.
��
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Differentiating the mean function gives the covariance function. For A ∈ Sn , let
P(A) : ZG → IG be the quadratic operator defined by P(A)u = π(AuA), u ∈ ZG .

Proposition 5 The covariance function of the Wishart family γ
(M)
s,y on QG is equal to

v(y) = −dm(M)
s (y)

dy
=

M−1∑

i=1

(si − si+1) P

[(
(y{1:i})−1

)0
]

+ sM P(y−1) (31)

+
n∑

i=M+1

(si − si−1) P

[(
(y{i :n})−1

)0
]

.

5.2 Inverse mean map

In the study of the exponential family (γ
(M)
s,y )y∈PG , it is important to determine explic-

itly the inverse of the mean map ψ
(M)
s : m = m(M)

s (y) �→ y, which we refer to
as the inverse mean map in the sequel. The following theorem is known for Wishart
exponential families on homogeneous cones (Ishi 2014). Surprisingly, it is also true
on QG .

Theorem 4 The inverse mean map ψ
(M)
s is given by the formula

ψ(M)
s (m) = gradm log δ(M)

s (m), m ∈ QG . (32)

The proof consists in following steps:

1. One shows that there exists a constant cs depending only on s such that for any
y ∈ PG

δ(M)
s (m(M)

s (y)) = csΔ
(M)
−s (y) =csδ

(M)
s (π(y−1)).

This is done in Proposition 6 below.
2. One uses the Fenchel–Legendre duality, following a standard argument in infor-

mation geometry of exponential family.

Proposition 6 The following formula holds for any y ∈ PG and s ∈ R
n:

δ(M)
s (m(M)

s (y)) =
(

n∏

i=1

ssii

)

Δ
(M)
−s (y) =

(
n∏

i=1

ssii

)

δ(M)
s (π(y−1)).

Theproof ofProposition6will need ageneralizationofLemma2,where coefficients
of inverse matrices of principal submatrices y{1:k} (or of y{k:n}) are simultaneously
considered. Define for y ∈ PG , η(k) = (y{1:k})−1, η[k] = (y{k:n})−1. The rows and
the columns of the matrix η(k) are numbered by i = 1, . . . , k and the rows and the
columns of the matrix η[k] are numbered by i = k, . . . , n.

Lemma 4 Let y ∈ PG.
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1. For all i ∈ V and k,m ≥ i + 1 we have

Dk,m
i :=

∣
∣
∣
∣
∣

η
(k)
i i η

(m)
i,i+1

η
(k)
i,i+1 η

(m)
i+1,i+1

∣
∣
∣
∣
∣
= |y{1:m}|−1|y{1:m}\{i,i+1}|. (33)

2. For all i ∈ V and k,m ≤ i < n we have

D[k,m]
i :=

∣
∣
∣
∣
∣

η
[k]
i i η

[m]
i,i+1

η
[k]
i,i+1 η

[m]
i+1,i+1

∣
∣
∣
∣
∣
= |y{k:n}|−1|y{k:n}\{i,i+1}|. (34)

Proof (of Proposition 6) We will deal with δ
(M)
s (m(M)

s (y)) = δ
≺M
s (m(M)

s (y)) where
the order ≺M was defined in (6). By formula (30) and by the definition of δ

≺M
s we

obtain that δ≺M
s (ms(y)) equals

M−1∏

i=1

(
1

ci

∣
∣
∣
∣
xi + ai bi
bi ci

∣
∣
∣
∣

)si
(sMη

(n)
MM )sM

n∏

i=M+1

(
1

c′
i

∣
∣
∣
∣
x ′
i + a′

i b
′
i

b′
i c′

i

∣
∣
∣
∣

)si
,

where xi = (si − si+1)η
(i)
i i , ai = ∑M−1

k=i+1(sk − sk+1)η
(k)
i i + sMη

(n)
i i ,

bi =
M−1∑

k=i+1

(sk − sk+1)η
(k)
i,i+1 + sMη

(n)
i,i+1,

ci =
M−1∑

k=i+1

(sk − sk+1)η
(k)
i+1,i+1 + sMη

(n)
i+1,i+1,

a′
i =

i−1∑

k=M+1

(sk − sk−1)η
[k]
i i + sMη

[1]
i i ,

b′
i =

i−1∑

k=M+1

(sk − sk−1)η
[k]
i,i−1 + sMη

[1]
i,i−1,

c′
i =

i−1∑

k=M+1

(sk − sk−1)η
[k]
i−1,i−1 + sMη

[1]
i−1,i−1,

and x ′
i = (si − si−1)η

[i]
i i . Let us first compute the factors

∣
∣
∣
∣
xi + ai bi

bi ci

∣
∣
∣
∣ /ci for i =

1, . . . , M − 1. We will show that

1

ci

∣
∣
∣
∣
xi + ai bi

bi ci

∣
∣
∣
∣ = siη

(i)
i i , i = 1, . . . , M − 1. (35)
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We have
1

ci

∣
∣
∣
∣
xi + ai bi

bi ci

∣
∣
∣
∣ = xi + 1

ci

∣
∣
∣
∣
ai bi
bi ci

∣
∣
∣
∣ , so in order to prove (35), it is sufficient to

prove that

1

ci

∣
∣
∣
∣
ai bi
bi ci

∣
∣
∣
∣ = si+1η

(i)
i i . (36)

In order to prove (36), we first use the multilinearity of the determinant with respect
to its columns and we write, using the notation Dk,m

i from Lemma 4,

∣
∣
∣
∣
ai bi
bi ci

∣
∣
∣
∣ =

M−1∑

k,m=i+1

(sk − sk+1)(sm − sm+1)D
k,m
i + sM

M−1∑

k=i+1

(sk − sk+1)D
k,n
i

+sM

M−1∑

m=i+1

(sm − sm+1)D
n,m
i + s2MDn,n

i .

By Part 1 of Lemma 4 we have Dk,m
i = |y{1:m}|−1|y{1:m}\{i,i+1}|, which is indepen-

dent of the left index k. The last fact allows to write

∣
∣
∣
∣
ai bi
bi ci

∣
∣
∣
∣ = si+1

M−1∑

m=i+1

(sm − sm+1)D
n,m
i + si+1sM Dn,n

i

= si+1

(
M−1∑

m=i+1

(sm − sm+1)
|y{1:m}\{i,i+1}|

|y{1:m}| + sM
|y{1:n}\{i,i+1}|

|y|

)

.

We factorize the determinants |y{1:m}\{i,i+1}| and |y{1:n}\{i,i+1}| in the last sum accord-
ing to Lemma 1 and we write this sum as

|y{1:i−1}|
|y{1:i}|

(
M−1∑

m=i+1

(sm − sm+1)
|y{1:i}||y{i+2:m}|

|y{1:m}| + sM
|y{1:i}||y{i+2:n}|

|y|

)

.

We have |y{1:m}|−1|y{1:i}||y{i+2:m}| = η
(m)
i+1,i+1. By definition of ci we finally obtain

∣
∣
∣
∣
ai bi
bi ci

∣
∣
∣
∣ = si+1

|y{1:i−1}|
|y{1:i}| ci = si+1η

(i)
i i ci

and formulas (36) and (35) are proved.
A “mirror” proof based on Part 2 of Lemma 4 shows that

1

c′
i

∣
∣
∣
∣
x ′
i + a′

i b
′
i

b′
i c′

i

∣
∣
∣
∣ = siη

[i]
i i , i = M + 1, . . . , n (37)
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and that δ
(M)
s (m(M)

s (y)) = ∏n
i=1 s

si
i

∏M−1
i=1 (η

(i)
i i )si (η

(n)
MM )sM

∏n
i=M+1(η

[i]
i i )si . Recall

that

η
(i)
i i = |y{1:i−1}|

|y{1:i}| , η
[i]
i i = |y{i+1:n}|

|y{i :n}| , η
(n)
MM = |y{1:M−1}||y{M+1:n}|

|y| ,

so we deduce, using formula (3) that

M−1∏

i=1

(η
(i)
i i )si (η

(n)
MM )sM

n∏

i=M+1

(η
[i]
i i )si = Δ

(M)
−s (y).

Applying Theorem 1, we see that δ(M)
s (m(M)

s (y)) = ∏n
i=1 s

si
i δ

(M)
s (π(y−1)). ��

Proof (of Theorem 4). In order to apply techniques in information geometry of expo-
nential family of Amari and Nagaoka (2007), see also Brown (1986), we introduce a
variable θ = −y ∈ (−PG). By (29), we have

m(M)
s (y) = −grady logΔ

(M)
−s (y) = gradθ logΔ

(M)
−s (−θ).

Let f (θ) := logΔ
(M)
−s (−θ), which is the cumulant generating function of the Riesz

measure by (27). Then, f is a convex function on the domain −PG . Let g(m) be the
Fenchel–Legendre transform of f (θ), that is to say, g(m) = 〈m, θ〉 − f (θ), where

m = gradθ f (θ) = m(M)
s (−θ), θ ∈ (−PG).

Thanks to the Fenchel–Legendre duality, the inverse map of gradθ f : (−PG) � θ �→
m = m(M)

s (−θ) ∈ QG is given by gradm g : QG � m �→ θ ∈ (−PG). Now, by
Proposition 4, we have

〈m, θ〉 = 〈m(M)
s (y),−y〉 = −κ(s).

On the other hand, Proposition 6 implies that

f (θ) = logΔ
(M)
−s (−θ) = log

(
c−1
s δ(M)

s (m)
)

,

where cs = ∏r
i=1 s

si
i . Therefore, we have

θ = gradmg(m) = gradm
{ − κ(s) + log cs − log δ(M)

s (m)
}

= −gradm log δ(M)
s (m),

which leads us to y = −θ = gradm log δ
(M)
s (m). ��
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Corollary 3 The inverse mean map ψ
(M)
s : QG → PG is given by

ψ(M)
s (m) =

M−1∑

k=1

sk
(
(m{k:k+1})−1

)0 +
n∑

k=M+1

sk
(
(m{k−1:k})−1

)0

−
M−1∑

k=2

sk−1

(
(m{kk})−1

)0 − (sM−1 − sM + sM+1)
(
(m{MM})−1

)0

−
n−1∑

k=M+1

sk+1

(
(m{kk})−1

)0
. (38)

Proof The result is obtained by computing the gradient of log δ
(M)
s (m), as indicated

in (32). We use the formula (4). ��

The Lauritzen formula (Lauritzen 1996) is an explicit formula for a bijection between
QG and PG . It states that for all x ∈ QG , the unique y ∈ PG such that π(y−1) = x is
given by

y =
n−1∑

i=1

(x−1
{i :i+1})

0 −
n−1∑

i=2

(x−1
i i )0. (39)

Setting s1 = . . . = sn = 1 in formula (30) for the mean function, we get

m(M)
(1,...,1)(y) = π(y−1) = x . (40)

Thus,

ψ
(M)
(1,...,1) (x) = y (41)

is the Lauritzen formula. Indeed, for s1 = . . . = sn = 1, formula (38) gives

ψ
(M)
(1,...,1)(m) =

n−1∑

i=1

(m−1
{i :i+1})

0 −
n−1∑

i=2

(m−1
i i )0. (42)

Thus we found a new proof of the Lauritzen formula, based on the observation that the
Lauritzen map is the inverse mean map for s = 1 = (1, 1, . . . , 1). At the same time,
we find an infinite number of explicit isomorphisms from QG onto PG , given by the
inverse mean maps ψ

(M)
s . It is an essential generalization of the Lauritzen formula.

Each map ψ
(M)
s is a generalized Lauritzen map.
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5.3 Variance function

5.3.1 Properties of lower-upper M-triangular matrices

Here, we define and prove basic properties of lower-upper M-triangular matrices, that
we will denote by LU(M). They are very important in proofs of this section.

Definition 5 A matrix T is said to be an LU(M) triangular matrix if for all i < M ,
Ti j = 0 if j > i and for all i > M , Ti j = 0 if i > j .

In particular, T is an LU(n) triangular matrix if and only if it is lower triangular,
and T is an LU(1) triangular matrix if and only if it is upper triangular. An LU(M)
triangular matrix T is a succession of an M × M lower triangular matrix L = T{1:M}
and an (N − M) × (N − M) upper triangular matrix U = T{M :n} with diagonal term
TMM in common. We write T = s(L ,U ).

T = TMM
L

U

Proposition 7 1. s(L ,U )s(L ′,U ′) = s(LL ′,UU ′).
2. If s(L ,U ) is invertible, then (s(L ,U ))−1 is also an LU(M) triangular matrix and

(s(L ,U ))−1 = s(L−1,U−1).
3. The set of LU (M) triangular matrices is a group.

Lemma 5 Let S and T be LU(M) triangular n × n matrices.

1. (a) Let A = K 0 with K = A{1:k}. If k ≤ M − 1, then ST AT =
(
ST{1:k}KT{1:k}

)0
.

(b) Let B = K 0 with K = B{k:n}. If k ≥ M + 1, then ST BT =
(
ST{k:n}KT{k:n}

)0
.

2. Let A be an n × n matrix. Then (T AST ){1:i} = T{1:i}A{1:i}ST{1:i} for i ≤ M − 1,

and (T AST ){i :n} = T{i :n}A{i :n}ST{i :n} for i ≥ M + 1.
3. If T is invertible, then

(a) (T{1:k})−1 = (T−1){1:k} for all k ≤ M − 1;
(b) (T{k:n})−1 = (T−1){k:n} for all k ≥ M + 1.

Proposition 8 For all y ∈ PAn , for all 1 ≤ M ≤ n, there exists an LU(M) triangular
matrix T satisfying Ti j = 0 if i � j and such that y = T T T .

Proof We will proceed by induction on n. The statement is obviously true for n = 1.
Let us assume that the statement is true for n−1. Let y ∈ PAn and M �= 1. Let us write
y = Φn(a, b, z) with z ∈ PAn−1 . The induction assumption implies that there exists
V an (n − 1) × (n − 1) LU(M) triangular matrix such that Vi j = 0 if i � j and such

that z = V V T . Let us write T =

⎛

⎜
⎜
⎝

1
b 1

0
. . .

...
. . .

0 ... ... ... 0 1

⎞

⎟
⎟
⎠

⎛

⎝

√
a 0 ... 0
0
... V
0

⎞

⎠ =

⎛

⎜
⎜
⎝

√
a 0 ... 0√
ab
0
... V
0

⎞

⎟
⎟
⎠.

T is LU(M) triangular satisfying Ti j = 0 if i � j and y = T T T .
For M = 1, we use y = Φ̃n(a, b, z) with z ∈ PAn−1 . ��
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5.3.2 Two formulas for the variance function

Letm ∈ QG . We note m̂ ∈ S+
n the unique symmetric positive definite matrix verifying

π(m̂) = m, m̂−1 ∈ PG . Define y = ψ
(M)
s (m) ∈ PG . Decompose y = T T T , with T

an LU(M) triangular matrix such that Ti j = 0 when i � j .

Lemma 6 We have

m̂ = (T−1)
T

⎛

⎜
⎝

s1 0
. . .

0 sn

⎞

⎟
⎠ T−1. (43)

Proof Note that y = ψ
(M)
s (m) is equivalent to m = m(M)

s (y). The formula of the
mean function (30) gives m = π(Z), where

Z =
M−1∑

i=1

(si − si+1)[(y{1:i})−1]0 + sM y−1 +
n∑

i=M+1

(si − si−1)[(y{i :n})−1]0. (44)

Using Part 2 of Lemma 5, we have y{1:i} = T{1:i} I{1:i}(T{1:i})T for i ≤ M − 1.
Here I{1:i} is the i × i identity matrix. By Part 3 of Lemma 5, we get (y{1:i})−1 =
(T−1)T{1:i} I{1:i}(T−1){1:i}. Finally, using Part 1 of Lemma 5, we obtain

[(y{1:i})−1]0 = (T−1)T (I{1:i})0T−1, i ≤ M − 1. (45)

Similarly, we have

[(y{i :n})−1]0 = (T−1)T (I{i :n})0T−1, i ≥ M + 1. (46)

Thus,

Z = (T−1)
T

(
M−1∑

i=1

(si − si+1)(I{1:i})0 + sM I +
n∑

i=M+1

(si − si−1)(I{i :n})0
)

T−1

= (T−1)
T

⎛

⎜
⎝

s1 0
. . .

0 sn

⎞

⎟
⎠ T−1.

Therefore, Z is positive definite and Z−1 = T

⎛

⎜
⎝

s−1
1 0

. . .

0 s−1
n

⎞

⎟
⎠ T T ∈ PAn . Indeed, for

all i < i +1 < j , we have (Z−1)i j = ∑n
k=1 TikTjks

−1
k . Since Tik = 0 for |k− i | > 1,

(Z−1)i j = Ti,i−1Tj,i−1s
−1
i−1 +Tii Tji s

−1
i +Ti,i+1Tj,i+1s

−1
i+1. But since | j − i | > 1, we

have Tj,i−1 = 0 = Tji and (Z−1)i j = Ti,i+1Tj,i+1s
−1
i+1. Now since T is LU(M), we
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have Ti,i+1Tj,i+1 = 0. In fact, Ti,i+1 = 0 for i ≤ M −1 and Tj,i+1 = 0 for i ≥ M . In
conclusion, we have shown that m = π(Z) with Z−1 ∈ PAn , which implies Z = m̂.

��
The following Proposition derives the formula for the variance function V (m)

which, for each fixed m ∈ QG is a continuous operator V (m) : ZG → IG (Casalis
and Letac 1996). Recall that P(A) : ZG → IG is the quadratic operator defined
by P(A)u = π(AuA). For A, B ∈ Sn , let P(A, B)u = 1

2π(AuB + BuA). For all
m ∈ QG and I ⊂ V , we note

MI = [((m̂−1)I )
−1]0. (47)

Proposition 9 The variance function V (m) of a Wishart NEF on QG is equal to

M−1∑

i=1

(si − si+1) P

⎛

⎝
i−1∑

j=1

(
1

s j
− 1

s j+1

)

M{1: j} + 1

si
M{1:i}

⎞

⎠

+ sM P

⎛

⎝ m̂

sM
+

M−1∑

j=1

(
1

s j
− 1

s j+1

)

M{1: j} +
n∑

k=M+1

(
1

sk
− 1

sk−1

)

M{k:n}

⎞

⎠

+
n∑

i=M+1

(si − si−1) P

⎛

⎝ 1

si
M{i :n} +

n∑

j=i+1

(
1

s j
− 1

s j−1

)

M{ j :n}

⎞

⎠ . (48)

Proof The variance function is given for allm ∈ QAn by V (m) = v(ψ
(M)
s (m)), where

v(y) is given by (31). Let y = ψ
(M)
s (m) = T T T , where T is LU(M). From Lemma

6, we have

m̂−1 = T

⎛

⎜
⎝

s−1
1 0

. . .

0 s−1
n

⎞

⎟
⎠ T T .

Using Lemma 5, we get

M{1:i} = (T−1)T (diag(s1, . . . , si ))
0 T−1, i ≤ M − 1 (49)

and

M{i :n} = (T−1)T (diag(si , . . . , sn))
0 T−1, i ≥ M + 1. (50)

Thus, for all 2 ≤ i ≤ M − 1, we have

1

s1
M1 = (T−1)T e1T

−1,
1

si
(M{1:i} − M{1:i−1}) = (T−1)T ei T

−1, (51)
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and for all n − 1 ≥ i ≥ M + 1, we have

1

sn
Mn = (T−1)T enT

−1,
1

si
(M{i :n} − M{i+1:n}) = (T−1)T ei T

−1, (52)

where ei is the matrix with eii = 1 and ei j = 0 for all i �= j . Observing that
(I{1:i})0 = ∑i

k=1 ek and (I{i :n})0 = ∑n
k=i ek, and using (45) and (51), we obtain for

i ≤ M − 1

[(y{1:i})−1]0 = (T−1)T (I{1:i})0T−1 = (T−1)T

(
i∑

k=1

ek

)

T−1 =
i∑

k=1

(
(T−1)T ekT

−1
)

= 1

s1
M{1} + 1

s2
(M{1:2} − M{1}) + . . . + 1

si
(M{1:i} − M{1:i−1})

=
(
1

s1
− 1

s2

)

M{1} + . . . +
(

1

si−1
− 1

si

)

M{1:i−1} + 1

si
M{1:i}.

Similarly, using (46) and (52), we obtain for i ≥ M + 1,

[(y{i :n})−1]0 = 1

si
M{i :n} +

(
1

si+1
− 1

si

)

M{i+1:n} + . . . +
(
1

sn
− 1

sn−1

)

M{n}.

We also observe that

(T−1)T eMT−1 = 1

sM

(
m̂ − M{1:M−1} − M{M+1:n}

)
. (53)

Thus, by (51), (52) and (53), we get

y−1 =
n∑

i=1

(T−1)T ei T
−1 =

M−1∑

i=1

(T−1)T ei T
−1 + (T−1)T eMT−1

+
n∑

i=M+1

(T−1)T ei T
−1

= m̂

sM
+

M−1∑

j=1

(
1

s j
− 1

s j+1

)

M{1: j} +
n∑

j=M+1

(
1

s j
− 1

s j−1

)

M{ j :n}. (54)

Substituting these expressions of [(y{1:i})−1]0, y−1 and [(y{i :n})−1]0 into v(y) given
by (31), we obtain the stated result. ��

Weprove nowamuch simpler formula for the variance function on QG , surprisingly
similar to the variance function on a homogeneous cone, in particular on the symmetric
cone S+

n (cf. Graczyk et al. 2016).
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Theorem 5 The variance function of the Wishart exponential family γ
(M)
s,y is

V (m) =
(
1

s1
+ 1

sn
− 1

sM

)

P(m̂) (55)

+
M−1∑

i=1

(
1

si+1
− 1

si

)

P(m̂ − M{1:i}) +
n∑

i=M+1

(
1

si−1
− 1

si

)

P(m̂ − M{i :n}),

where M{1:i} and M{i :n} are defined in (47).

Proof Using P(a − b) = P(a) + P(b) − 2P(a, b), we see that (55) is equivalent to

V (m)

= 1

sM
P(m̂) +

M−1∑

i=1

(
1

si+1
− 1

si

)

P(M{1:i}) +
n∑

i=M+1

(
1

si−1
− 1

si

)

P(M{i :n})

− 2

(
M−1∑

i=1

(
1

si+1
− 1

si

)

P(m̂, M{1:i}) +
n∑

i=M+1

(
1

si−1
− 1

si

)

P(m̂, M{i :n})
)

.

(56)

We show that the right-hand sides of (48) and (56) are the same. Below, we expand
(48) using P(a + b) = P(a) + P(b) + 2P(a, b) and compute the coefficients in the
expanded formula. Note that for all Z ∈ ZG , P(M{1:i}, M{k:n})Z = 0 for all i ≤ M−1
and k ≥ M + 1, since Z{1:i},{k:n} = 0.

For a fixed r ≤ M − 1, the coefficient of P(M{1:r}) is

sr − sr+1

s2r
+

M−1∑

i=r+1

(si − si+1)

(
1

sr
− 1

sr+1

)2

+ sM

(
1

sr
− 1

sr+1

)2

= 1

sr+1
− 1

sr
.

By a mirror argument, for a fixed r ≥ M + 1, the coefficient of P(M{r :n}) is 1
sr−1

− 1
sr
.

On the other hand, the coefficient of P(m̂) is 1
sM

.

For a fixed r , the coefficient of P(m̂, M{1:r}) is 1
sr

− 1
sr+1

if r ≤ M − 1, and the

coefficient of P(m̂, M{r :n}) is 1
sr

− 1
sr−1

if r ≥ M + 1. Moreover, if k < r ≤ M − 1,
the coefficient of P(M{1:r}, M{1:k}) is

(sr − sr+1)
1

sr

(
1

sk
− 1

sk+1

)

+
M−1∑

i=r+1

(si − si+1)

(
1

sr
− 1

sr+1

)(
1

sk
− 1

sk+1

)

+ sM

(
1

sr
− 1

sr+1

)(
1

sk
− 1

sk+1

)

=
(
1

sk
− 1

sk+1

)(

1 − sr+1

sr
+ sr+1

(
1

sr
− 1

sr+1

))

= 0.
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By a mirror argument, for a fixed M + 1 ≤ k < r , the coefficient of P(M{k:n}, M{r :n})
is 0. ��

Remark 2 m̂ is easy to compute, using, for non-adjacent i and j the formula m̂i j =
mi,V \{i, j}(m̂−1

V \{i, j},V \{i, j})mV \{i, j}, j . (Letac and Massam 2007, p.1279).

In the next Corollary, we consider s = p1, p > 1/2. We note that δ
(M)
p1 and

γ
(M)
p1, y := γp,y do not depend on M .

Corollary 4 The variance function of the Wishart exponential family γp,y is

V (m) = 1

p
P(m̂).

5.3.3 A relation between the inverse mean map and m 1
s

Recall that for the classical Wishart exponential familiesWs1,y on the symmetric cone
Sym+

n the bijection between the cone QG and PG is given by L(m) = m−1. The mean
map is ms(y) = sy−1 and the inverse mean map ψs(m) = sm−1. It follows that

ψs = L ◦ m 1
s

◦ L ,

that is, the maps ψs and m 1
s
are intertwined by the bijection L .

An analogous property holds on the cone QAn , with the intertwiner given by the
Lauritzen map. The bijection L : QAn → PAn is the Lauritzen map L(m) = (m̂)−1.
Its inverse L−1 : PAn → QAn is L

−1(y) = π(y−1).

Proposition 10 The inverse mean map ψ
(M)
s : QG → PG satisfies

ψ(M)
s = L ◦ m(M)

1
s

◦ L .

Equivalently, for any m ∈ QG, π(ψ
(M)
s (m)−1) = m(M)

1
s

(m̂−1).

QAn

ψ
(M)
s

L

PAn

PAn
m(M)

1
s

QAn

L
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Proof Using formula (30) of themean function and definition (47) ofM{1:i} andM{i :n},
we see that m(M)

1
s

(m̂−1) equals

π

⎛

⎝
M−1∑

j=1

(
1

s j
− 1

s j+1

)

M{1: j} + m̂

sM
+

n∑

j=M+1

(
1

s j
− 1

s j−1

)

M{ j :n}

⎞

⎠ .

Confronting this result with (54), we obtain m(M)
1
s

(m̂−1) = π
(
ψ

(M)
s (m)−1

)
. ��

5.4 Quadratic construction of Riesz measures and Wishart distributions on QG

Let I ⊂ {1, . . . , n}. We define |I |-dimensional subspaces WI of R
n by

WI = {x ∈ R
n | xi = 0, i /∈ I }.

Denote by q I the quadratic map q I (x) = xxT from WI into Sym(n, R) and by q I∗ its
projection onto IG , i.e. q I∗ = π ◦q I . Themaps q I∗ are clearly QG -positive (submatrices
yI of a positive definite matrix y are positive definite for any I ⊂ {1, . . . , n}). In
Graczyk and Ishi (2014), p.322, Riesz measures μq associated to a quadratic map q
were defined and their Laplace transform computed. Recall that the measure μq I∗ is

the image of the Lebesgue measure onWI by q I∗ and that its Laplace transform equals

L(μq I∗ )(y) = π |I |/2|yI |−1/2, y ∈ PG . (57)

When I = {1, . . . , k}, we write q I∗ = qk∗ . When I = {k, . . . , n}, we write q I∗ = q̃k∗ .
Fix M ∈ {1, . . . , n}. We define the set BM of basic quadratic maps for the Riesz

R(M)
s andWishart γ (M)

s,y families on QG by BM = {q1∗ , . . . , qM−1∗ , qn∗ , q̃M+1∗ , . . . , q̃n∗ }.
Note that the basic quadratic maps with values in QG are different for each fixed
M = 1, . . . , n.

Proposition 11 Let σi ∈ R, i = 1, . . . ,m. A virtual quadratic map
qσ
∗ = ∑⊕

i<M (qi∗)⊕σi ⊕(qn∗ )⊕σM ⊕∑⊕
i>M (q̃i∗)⊕σi . exists if there exists s satisfying

si > 1
2 , i �= M, sM > 0 and

σi

2
= si − si+1, 1 ≤ i < M,

σM

2
= sM ,

σi

2
= si − si−1, M < i ≤ n. (58)

Proof We compare the Laplace transform ofμqσ
∗ , computed thanks to (57), with (27).

As a result, we see that there exists a constant c > 0 such that R(M)
s = cμq

σ
∗ . ��

Thus, all the Riesz R(M)
s measures on QG defined in this paper are obtained as

virtual or true (i.e. for σi ∈ N) quadratic Riesz families, with basic maps from BM .
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Observe that by the quadratic construction, we can obtain absolutely continuous
Riesz measures on QG not belonging to ∪M {R(M)

s }, e.g. when n = 3, consider μq

associated with the quadratic map q = q2∗ ⊕ (q3∗)⊕2 ⊕ q̃2∗ .

5.5 Higher-order moments of Wishart families on QAn

Thanks to the identification of Wishart families γ
(M)
s,y with quadratically constructed

Wishart distributions γqσ
∗ in Sect. 5.4, we can compute moments of any order N of a

Wishart random variable X on QAn .

Theorem 6 Let X be a QAn -valued random variable with the Wishart law γ
(M)
s,y . Let

z(1), z(2), . . . , z(N ) ∈ ZG. Then, denoting by C(π) the set of cycles of a permutation
π ∈ SN , the N-th moment E(〈X, z(1)〉 . . . 〈X, z(N )〉) equals

∑

π∈SN

∏

c∈C(π)

⎧
⎨

⎩

M−1∑

i=1

(si − si+1) tr
∏

j∈c
(y{1:i})−1z( j){1:i}

+sM tr
∏

j∈c
y−1z( j) +

n∑

i=M+1

(si − si−1) tr
∏

j∈c
(y{i :n})−1z( j){i :n}

⎫
⎬

⎭
.

Proof We apply Theorem 2.13 from Graczyk and Ishi (2014) and formula (58). ��

Corollary 5 If s = s1, s > 1
2 , then γ

(M)
s,y = γs,y does not depend on M. Moreover,

for X with law γs,y , we have

E(〈X, z(1)〉 . . . 〈X, z(N )〉) =
∑

π∈SN
s|C(π)| ∏

c∈C(π)

tr
∏

j∈c
y−1z( j).

Example. For any graph An and N = 3 we get for X with law γs,y :

E(〈X, z(1)〉〈X, z(2)〉〈X, z(3)〉) = s3
3∏

j=1

tr(y−1z( j))

+s2
[
tr y−1z(1)y−1z(2) tr y−1z(3) + tr y−1z(1)y−1z(3) tr y−1z(2)

+ tr y−1z(2)y−1z(3) tr y−1z(1)
]

+ s

⎡

⎣tr
3∏

j=1

y−1z( j) + tr y−1z(1)y−1z(3)y−1z(2)

⎤

⎦ .
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6 Wishart exponential families on the cone PG

A measure R̃ on PG is said to be a Riesz measure if, for some 1 ≤ M ≤ n, sM > −1
and si > −3/2, i �= M , its Laplace transform is given by

L R̃(x) =
∫

PG
e−〈x,y〉 R̃(dy) = δ

(M)
−s (x)ϕQAn

(x). (59)

From formula (22), the measure R̃(M)
s (dy) = CsΔ

(M)
s (y)dy, where

C−1
s = π(n−1)/2

{∏

i �=M

Γ (si + 3

2
)
}
Γ (sM + 1),

is a Riesz measure. The exponential family of generated by R̃(M)
s will be called the

exponential family of Wishart distributions on PG . Its density function is

γ̃ (M)
s (y) = 1

δ
(M)
−s (x)ϕQAn

(x)
e−〈x,y〉 R̃(M)

s (dy). (60)

Its Laplace transform is

L
γ̃

(M)
s

(θ) =
∫

PG
e−〈θ,y〉γ̃ (M)

s (y) =
L

μ
(M)
s

(θ + x)

L
μ

(M)
s

(x)
= δ

(M)
−s (θ + x)ϕQAn

(θ + x)

δ
(M)
−s (x)ϕQAn

(x)
.

(61)

6.1 Mean and covariance

Theorem 7 The mean function of the Wishart exponential family on PG is for all
si > − 3

2 and x ∈ QG,

m̃(M)
s (x) =

M−1∑

i=1

(si + 3
2 )(x

−1
{i :i+1})

0 +
n∑

i=M+1

(si + 3
2 )(x

−1
{i−1:i})

0

−
M−1∑

i=2

(si−1 + 1)(x−1
i i )0 − (sM−1 − sM + sM+1 + 1)(x−1

MM )0

−
n−1∑

i=M+1

(si+1 + 1)(x−1
i i )0. (62)
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The covariance function ṽ(x) : IG → ZG of the Wishart exponential family on PG
equals

ṽ(x) =
M−1∑

i=1

(si + 3
2 )P

[
(x−1

{i :i+1})
0
]

+
n∑

i=M+1

(si + 3
2 )P

[
(x−1

{i−1:i})
0
]

−
M−1∑

i=2

(si−1 + 1)P
[
(x−1

i i )0
]

− (sM−1 − sM + sM+1 + 1)P
[
(x−1

MM )0
]

−
n−1∑

i=M+1

(si+1 + 1)P
[
(x−1

i i )0
]
,

where we identify IG with ZG by the trace inner product.

Proof We have m̃(M)
s (x) = − grad log L

μ
(M)
s

(x) = − grad log δ
(M)
−s (x)ϕQAn

(x). The

covariance operator is obtained by differentiation of (62). ��

6.2 Quadratic construction of Riesz measures and Wishart distributions on PG

Let M ∈ {1, . . . , n}. Suppose si > − 3
2 , for all i �= M and sM > −1. Let

θ ∈ QG . In order to establish a relation between quadratically constructed Riesz
measures μ̃q on PG and the measures R̃(M)

s we consider the sets Jk = {k, k + 1}
and J ′

k = {k}. As basic quadratic maps we choose the quadratic PG -positive maps

q Jk and q J ′
k . For α = (α1, . . . , αn−1) and β = (β1, . . . , βn) with αi , β j ∈ N define

qα,β = ∑⊕
k<n(q

Jk )⊕αk ⊕ ∑⊕
k≤n(q

J ′
k )⊕βk . The following proposition is easy to prove

by comparing δ
(M)
−s (η)ϕQAn

(η) with the Laplace transform

Lμ̃qα,β
(η) = π(

∑
k<n αk+∑

k≤n βk )/2
∏

i<n

|η{i,i+1}|−αi /2
∏

j≤n

|η j j |−β j /2.

Proposition 12 Let M ∈ {2, . . . , n− 1}. Then there exists a constant c > 0 such that
cR̃(M)

s = μ̃qα,β if and only if αi/2 = si +3/2, i ≤ M −1, αi/2 = si+1 +3/2, i ≥ M,
β1 = 0, βi/2 = −si−1−1, 2 ≤ i ≤ M−1, βM/2 = −sM−1+sM −sM+1−1, βi/2 =
−si+1−1, M+1 ≤ i < n, βn = 0. For M = 1, n the conditionβM = 0 is suppressed.

Proposition 12 implies easily two following facts.

Corollary 6 1. All Riesz measures R̃(M)
s are equal (up to a factor) to a virtual

quadratic Riesz measure μ̃qα,β .
2. For n ≥ 4, no true quadratic Riesz measure μ̃qα,β , αi , β j ∈ N, belongs (up to a

factor) to the set of Riesz measures R̃(M)
s .

Proof To prove Part 2, we have conditions si + 3
2 = αi ′/2 and s j +1 = −β j ′/2, so all

(except at most one) si ≥ −1, and all (except at most one) s j ≤ −3/2 simultaneously.
��
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6.3 Higher-order moments of Wishart families on PAn

Thanks to Part 1 of Corollary 6, all the moments of the Wishart Exponential Fami-
lies γ̃

(M)
s,θ can be computed, using Theorem 2.13 from Graczyk and Ishi (2014) and

Proposition 12.

Theorem 8 Let Y be a PAn -valued random variable with the Wishart law γ̃
(M)
s,θ . Let

x (1), x (2), . . . , x (N ) ∈ IG. Then, denoting by C(π) the set of cycles of a permutation
π ∈ SN , the N-th moment E(〈Y, x (1)〉 . . . 〈Y, x (N )〉) equals

∑

π∈SN

∏

c∈C(π)

{M−1∑

i=1

(si + 3

2
) tr

∏

j∈c
(θ{i :i+1})−1x ( j)

{i :i+1}

+
n−1∑

i=M

(si+1 + 3

2
) tr

∏

j∈c
(θ{i :i+1})−1x ( j)

{i :i+1} −
M−1∑

i=2

(si−1 + 1)θ−|c|
i i

∏

j∈c
x ( j)
i i

− (sM−1 − sM + sM+1 + 1)θ−|c|
MM

∏

j∈c
x ( j)
MM −

n−1∑

i=M+1

(si+1 + 1)θ−|c|
i i

∏

j∈c
x ( j)
i i

}
.

7 Relations with the type I and type II Wishart distributions of Letac
and Massam (2007)

In this section, we will explain the relation between our work and type 1 and type 2
Wishart distributions constructed by Letac and Massam (2007).

Letac and Massam (2007) introduced, studied and used the function H(α, β, x)
on QG as a generalized power function for constructing type I and type II Wishart
distributions. The reader is referred to the cited paper for the general definition of
the function H(α, β, x) as well as for graphical theoretic notions such as cliques,
separators and perfect order of cliques (see also Lauritzen 1996). For our purpose, it
is sufficient to recall that for α ∈ R

n−1 and β ∈ R
n−2

H(α, β; x) =
∏n−1

i=1 |x{i,i+1}|αi
∏n−1

i=2 xβi
i i

, x ∈ QAn , (63)

that the cliques(i.e. the sets of vertices of maximal complete subgraphs) are
{1, 2}, . . . , {n−1, n} and the separators {2}, . . . , {n−1}. The definition of the function
H(α, β; x) does not include any restrictions on the values of the parameter (α, β) of
dimension 2n − 3.

However, the existence of type I Wishart distributions on QG is only showed for
(α, β) belonging to some set AP dependent on a perfect order of cliques P , i.e. for
(α, β) ∈ A0 = ∪P AP , where the union is on all perfect order of cliques. Proposition
14 describes this set for An graphs. It also makes clear a phenomenon observed by
Letac and Massam (2007) for the graph A4, where there are only two different sets
AP although there are 4 perfect orders of cliques. To prove Proposition 14, we use
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the following explicit relation between two concepts: perfect orders of cliques used
by Letac and Massam (2007) and eliminating orders of vertices used in this work.

Proposition 13 Let G = An : 1−2−3−· · ·−n. A clique ordering C ′
1 < · · · < C ′

n−1
is perfect if and only if C ′

n−1 ≺ . . . ≺ C ′
1 is an eliminating order on the An−1 graph

G ′ : C1 − C2 . . . − Cn−1. There are 2n−2 perfect orders of cliques on An.

The proof is easy and is omitted.

Proposition 14 Let P ′ : C ′
1 < C ′

2 < . . . < C ′
n−1 and P ′′ : C ′′

1 < C ′′
2 < . . . < C ′′

n−1
be two perfect orders of cliques on G = An. Let S′

2 and S′′
2 be the first separators of

P ′ and P ′′. If S′
2 = S′′

2 then AP ′ = AP ′′ , i.e. the parameter set AP depends only on
the first separator S2 with respect to the clique order P. If S2 = {M} then the set AP

is described by the conditions:

{
α j = β j+1 if 1 ≤ j ≤ M − 2,
α j = β j if M + 1 ≤ j ≤ n − 1,

(64)

and

α j >
1

2
for all 1 ≤ j ≤ n − 1; αM−1 + αM − βM > 0. (65)

ThusA0 = ∪P AP is the set of (α, β) such that there exists 2 ≤ M ≤ n − 1 for which
(64) and (65) are satisfied.

Proof We use Propositions 1 and 13. ��
The reference measure μG used by Letac and Massam (2007) is, on the cone QAn ,

μAn (x)(dx) = HAn (−
3

2
1,−1; x)1QAn

(x)dx . (66)

By (13), we observe that μAn (x)(dx) = ϕQAn
(x)1QAn

(x)dx . Namely, the reference
measure μG is the characteristic measure of the cone G = QAn .

Theorem 9 [Letac and Massam (2007) Theorem 3.3] If (α, β) ∈ A0, then, for a
constant Γ1(α,β), and for all y ∈ PAn

∫

QAn

e− tr(xy)H(α, β; x)μAn (x)(dx) = Γ1(α,β)H(α, β;π(y−1)).

The methods of our article give a new simple proof of Theorem 9, see the proof of
Corollary 7 below.

Let us compare now the functions H(α, β; x) and H(α, β;π(y−1)) with the gen-
eralized power functions δ

(M)
s and Δ

(M)
s .
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Proposition 15 1. Let α ∈ R
n−1 and β ∈ R

n−2. There exists s ∈ R
n such that

H(α, β; x) = δ
(M)
s (x) if and only if (64) holds for some 2 ≤ M ≤ n − 1.

Then s j = α j if 1 ≤ j ≤ M −1, sM = αM−1 +αM −βM and s j = α j−1 if M +
1 ≤ j ≤ n.

2. Moreover, under the hypothesis of Part 1, we have H(α, β;π(y−1)) = Δ
(M)
−s (y).

The proof is easy and is omitted.

Corollary 7 The type IWishart distributions indexedby the setA0 are equal to the sub-
set

⋃n−1
M=2(γ

(M)
s,y )y∈PG ofWishart NEF families defined in Sect. 5. Thus, they are strictly

contained in the set of all Wishart NEF families on QG, equal to
⋃n

M=1(γ
(M)
s,y )y∈PG .

The proof is easy and is omitted.
Note that Theorem 2 implies Theorem 9 of Letac and Massam (2007).
The family of functions H(α, β, x) does not contain the power functions δ

(1)
s or

δ
(n)
s . In fact, the last functions contain powers of n− 1 diagonal elements xii , whereas
the function H(α, β, x) contains powers of n−2 such elements. Similar comparisons
can be done on the cones PG . In this case, Letac and Massam (2007) define type II
Wishart distributions on PG indexed by a set B0, analogous to the set A0 for QG .
Similar arguments as on the cone QG lead to

Corollary 8 The type II Wishart distributions on PG indexed by the set B0 are equal
to the subset

⋃n−1
M=2(γ̃

(M)
s,x )x∈QG of Wishart NEF families defined in Sect. 6. Thus

they are strictly contained in the set of all Wishart NEF families on PG, equal to⋃n
M=1(γ̃

(M)
s,x )x∈QG .

Acknowledgements The authors would like to thank Gérard Letac and two anonymous referees for their
insightful suggestions.

8 Appendix

We list here some properties of triangular matrices, used in proofs.

Lemma 7 1. Let A = K 0, where K = A{1:k} and let L be lower triangular and U

upper triangular n × n matrices. Then U AL = (
U{1:k}K L{1:k}

)0
.

2. Let M, L ,U be matrices n × n, with L lower triangular and U upper triangular.
Then, for all i = 1, . . . , n, (LMU ){1:i} = L{1:i}M{1:i}U{1:i} and (UML){i :n} =
U{i :n}M{i :n}L{i :n}.

3. If T is an invertible triangular matrix then (T{1:k})−1 = (T−1){1:k} for all k =
1, . . . , n.
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