In view of the tact that the train task is in eaty stages of development, there need not be a significant cortelation between the performances of subjects on this task and on the traditional task. For the present purpose, however, the former task is an appropriate measure of the effects of training since it demands the same logical operations as the training endeavoured to promote. The train task may thus be used for the assessment of selected aspects of intellectual advancement as deseribed in the next paragraph, but Pagetion thought categories may not be allocated on the basis of scores assigned on the train task.

Since any measurement scale that may be constructed for the train task will not therefore necessarily be valid as an indicator of the presence or absence of the combinatorial scheme in pupils, the scale need not strive to embody both the Pingetian criteria, numely, thei of systematic procedure and that of the formulation and testing of lyypotheses in order to reach general conclusions. The present seale was constructed by the selection of only the criterion which satisfied the intentions behind the training. The scope of the thesis was limited to direction of the training towards a single major aspect of combinatorial reasoning, namely, the generation of a complete factorial array by means of a systematic procedure. In order to accept as valid and to sensitise assessment of fraining effects, observations on the train task explored acquisition of this particular skill only.

6.6.2 The Assignment of Scores to Observations

The set of task scors lay on an ordinal seale ranging from 0 to 100 with an underlying continuous distribution. Each score consisted of the stum of two components with arbitrary relative weighting. One component was assigned on the basis of the type of approach used in execution of the task and the other component reflected the number of repeated conbinations.

The former component classiffed each subject thto one of five levels on a scale which ranged from 0 to 80 as follows:

Type of Approach to Task
Random
Systematic to a minor degree
(evidenced by a pattern containing at
lenst five successive combinations)

Points Allocation
0
20
Systematic to a marked degree 40(evidenced by a pattern or patternscontaining at least ten combinations,not necessarily consecutive)Systematic in all respects with partial success60(evidenced by the omission ofcombinations)
Systematic in all respects with attainment of objective 80 Sevidenced by a complete factorial array, although some combinations might be repeated)

The researcher could usually identify the type of approach utilised by a particular subject after the execution of a moderate number of trals. In a few instances, subjects were detained at the end of the task and asked to explain the procedure which had been used in finding the solution.

The second component of the total seore reflected a penalty for repeated combinations. It was considered likely that the more combinations a subjeet had been permitted to test on the task, the more repented combinations would have been produced. To avoid diserimination on the basis of the ntumber of trials which had been allowed, the measurement scale was construeted in such a way that a reasonable range of repeated combinations would result in the same penalty. The number of points allocated to individual subjects bore an inverse relationship to the percentage of redundant combinations and was calculated on a seale of 0 to 20 according to the formula :

Number of points $=100-$ (percentage of redundant combinations)

The expression, percentoge of redundant combinations, has no single established meaning or rule of usage. The above formula genemtes scores which are dependent upon what the expression is triken to mean. If, for example, perentage of redundant combinations in the formula were to be detined as

```
number of repeated combinations \(\times 100\)
number of different combinations
```

then the possibility of negative scores exists, In such in event, the final (composite) score would reduce the performmee of the individual into the next lower thought category and thereby also affect ranking within the set of scores achieved by the group of subjects. The generation of such spurious results musi be avoided by defining the expression, percentage of redundant combinations, in the sense required in the special context of the formula. Percentage of rechundant combinations was therefore defined as

$$
\frac{\text { number of repeated combinations }}{\text { total number of combinations attenpied }}
$$

This definition describes a scale which tends to zero at its lower limit if the number of redundant combinations is taken is the number of times combinations are repeated, including in this total all the times a specific combination is repented. The points therefore range on a continuous scale of 0 to 20. It was thought likely. however, that subjects would tend to achieve fairly woll as a prepondetance of repeated trials by a subject would suggest an unusuat level of incompetence. For example, ten points or fever corresponds to fifts per re nt of redundant combinations or more.

6.7 Resulls

6.7.1 The Effectiveness of the Training

The histognms in Figures $6,2,6,3,6.4$ and 6.5 show the seores whin were obtained. Although the histograms appear to be discontinuons, the measurenemt sente which was employed to generate them, was attualy continuous as has been discussed above. The apparent discontinuities in the listograms are due to the fret that no subject repeated trins often enough to achieve less thim ten points in that component of the seore which reflected a penalty for repented eonbinations.

Of the eighty experimental subjects, seventy-(wo achieved the muximum score of 100. The lowest score achieved by an expertmental subject was 76.

The median score for the control group was 37 , with the highost seore being 80 and the lowest score being 12. Among the control subjects, ninetcen pupils gave up completely on the task, on trial numbers rangine from 16 to 67 , mean trial number 41. Further, fourteen other control subjects were struggling to produce combinations

Figure 6.2 Scores Achieved on the Train Task by Standard Nine Boys
Note : Although these histograms appear discontinuous, the measurement scale used to generate them is continuous (see text).

Figure 6.3 Seores Achieved on the Train Task by Standard Eight Boys
Note : Although these histograms appear discontinuous, the measurement scale used to generate them is continuous (see text).

[^0]| | |
| :---: | :---: |

Figure 6.5 Scores Achieved on the Train Task by Standard Eight Girls
Note Although these histograms appear discontinuous. the measurement scale used to generate them is continuous (see text).
so ineffectuaily by the time they had reached trial numbers ranging from 28 to 68 mean trial number 43, that it was apparent that they also would have withchawn from the task, despite encourngement to continue with their efforts, at which stage the tram was opportunely made to run.

It is clear without statistical analysis that the training was beneficial to the experimental group. The statistical siguilicance of the trinhng is given in Table 6.1, showing that nuil hypothesis 6,1 must be rejected in tavour of the research hypothesi: in every block. The extreme values of the Mann Whitney lest statistic are noteworttry The value of U is particularly important in the case of the lower $1 Q$ Standard 8 boye $(\mathrm{U}=\mathrm{O})$ since the experimentol subjects in this block performed better in the pretesi than the control subjects $(U=54.5, \mathrm{p}=0.0450)$. Companson of the two values of U indicates that the training was indeed beneficial to this group of subjects. The quew the of whether any particular group of pupils based on division by age, 10 or sex benefited more from the training than other groups, will be discussed later.

6.7.2 The Effects of Age IQ and Sex on the Task

The datn yielding information on the acceptability of null hypotheses 6.2 to 6.4 are summarised in Tables 6.2 to 6.4 .

Table 6.2 examines age effects and shows the same results as those reporfed for Paget's first chemical experiment in Chapter 4, namely, that the older subjects tended to score better but that the rough age classification of pupils into Standards 8 and 9 does not permit the analysis to reveal any significant differeness in performance which could be attributed to age.

Table 6.3 shows that the effect of IQ is noi significant, except in the block of Standard 8 boys. However, one should view the latter result with caution as the test statistic borders on the region of rejection such that the Mann-Whitney test statistic accepts the null hypothesis and the normal approximation, whether a ties correction is incorported or not, rejects the null liypothesis. In this somewhat awkward case, the preferred choiee is use of the nomblapproximation with adjustment for non-continuity. It should be bome in mind however that the specified level of significance, compared with a more stringent level, has herensed probability of conmitting the Type I error, that is, rejecting the null hypothesis when in fact it is true.

Table 6.1 Rank Ordering of Scores on the Evaluation Task ; Null Hypothesis 6.1 under Tesí

Mann-Whitney U Test, onc-tailed, $\alpha=0,05$

Block	Sample Size		Sum of Ranks		Value of 0		Lecision re H_{o}
	Expert- mental Group	Control Group	Expertmental Group	Control Group	Observed	Critictl, $\alpha=0,05$	
Bays							
Migh 10 Std. 9	14	14	300	106	1	61	reject
Low 10 Std. 9	14	14	301	105	0	61	reject
Hig IO Sid. 8	14	15	315	120	0	66	reject
Low IQ Std. 8	14	14	301	105	0	61	reject
Giels							
High 1Q Std. 9	6	6	57	21	0	7	reject
Low 10 Std. 9	6	6	57	21	0	7	reject
High IQ Std. 8	6	6	57	21	0	7	- reject
Lov IQ Std. 8	6	6	57	21	0	7	reject

Decision : Reject H_{0} in favour of H_{1}, the experimental subjects performed significantly better on the evaluation task than the control subjects.

Table 6.2 Rank Ordering of Serres on the Evnluation Task : Null Hypothesis 6.2 under Test (Control Group)

Mann-Whitney UTest, one-taled, $\alpha=0,05$
The test statistic was corrected for ties using the normal approximation (Siegel, 1956) in the borderline case only.

Block	Sample SIre		Sum or Ranks		Valie of U		Z	p	Decision re H_{0}
	Std .9	Std. 8	Std. 9	Std. 8	Observed	Crillall $\alpha=0,05$			
Boys									
High IQ	14	15	200,5	234,5	95,5	66	$\square \times$	- 0	necept
Low 10	14	14	236	170	65	61	-1,52	0,0643	accept
Girls									
High 10	6	6	46,5	31,5	10,5	\cdots		$>0,120$	accept
Low 10	6	6	45	33	12	-	.	0,197	necept

In Table 6.3 it is seen that the sum of the ranks of the higher IQ subjects is higher in every block except for the Standard 9 boys. The latter block leads one to ponder on the findings of DeLuca (1979). DeLuca reported that, in accordance with Inhelder and Plaget (1958), the general trend in cognitive development was for both the organisation of combinations and the use of proofs to appear in more systematic fasition as age increased. However, in some cases, there was a retrogression in the degrec of organisation with intellectunl growth, with maximum organisation taking place at substage III-A. Relevant to the present consideration of Table 6.3 , seven of the hipher IQ pupils in the Standard 9 block of male subjects had been assessed at substage $11-A$ on the pretest. This number constituted the lighest percentage in any contro section of the eight blocks. In the lower IQ section of this block, only three of the fourteen subjects had been assessed at substage III-A. As has previously been shown, seores on the train task were based mainly on the criterion of organisation of combinations, the cognitive design skill which is claimed by DeLuca as reaching its peak of development at substage III A. It could have been expected, therefore, that the higher IQ Standard 9 boys would achieve better on this task than their lower IQ peers. Their fillure to do so, as seen in Table 6.3. night, in the

Table 6.3 Rank Ordering of Scores on the Evaluation Task : Null Hypothesis 6.3 under Test (Control Group)

Mann-Whitney UTest, one-tailed, $\alpha=0,05$
The test statistic was corrected for ties using the normal approximation (Siegel, 1956) in the borderline case only.

Block	Sample Size		Sun of Rauks		Value of U			p	Decision re $\\|_{0}$
	High 10	Low IC	Highe	Low IQ	Observed	Critical, $x=0.05$			
Boys									
Standard 9	14	14	193	213.	88	61			accept
Standard 8	15	14	263,5	171.5	60.6	60	-1,68	0,0465	reject
Girls									
Standard 9	6	6	44	34	13				
Standard 8	6	6	45	33	12		-	0,197	aceept

In Table 6.3 it is seen that the sum of the ranks of the higher IQ subjects is higher in every block except for the Standard 9 boys. The latter block leads one to ponder on the findings of DeLuca (1979). DeLuca reported that, in accordance with Inhelder and Piaget (1958), the general trend in cognitive development was for both the organisation of combinations and the use of proos to appear in more systematic fashion as age increased. Hovever, in some cases, there was a retrogression in the degree of organisation with intellectual growth, with maximum organisation taking place at substage III-A. Relevant to the present consideration of Table 6.3 , seven of the higher IQ pupils in the Standard 9 block of male subjects had been assessed at substage 11 -A on the pretest. This number constituted the highest percentage in any control section of the eight blocks. In the lower IC section of this block, only three of the fourteen subjects lad been assessed at substage III-A. As has previously been shown, scores on the train task were based mainly on the criterion of organisation of combinations, the cognitive design skill which is clained by DeLuca as reaching its peak of development at substage $\operatorname{II}-A$. It could have been expected, therefore, that the higher IQ Standard 9 boys would achieve better on this task than their lower 10 peers. Their failure to do so, as seen in Table 6.3 , might, in the

Table 6.3 Rank Ordering of Scores on the Evaluation Task : Null Hypothesis 6.3 under Test (Control Group)

Mann-Whitney U Test, one-tailed, $\alpha=0,05$
The test statistic was corrected for thes using the normal approximation (Siegel, 1956) in the borderine case only.

Block	Santple Size		Sum of Ranks		Value of 0		z	P	Decision re Ho
	High to	Low IQ	1 tgh 10	Low IQ	Observed	Critical, $\alpha=0,05$			
Boys									
Standard 9	14	14	193	213	88	61	\cdots	+	accept
Standud 8	15	14	263,5	171,5	66.6	66	-1,68	0,0465	rejoct
Girls									
Standard 9	6	6	44	34	13			0,242	atcept
Standard 8	6	6	45	33	12		\cdots	0,197	necept

Abstract

absence of any other evidence, have been attributed to statistical fluctuations but a parallel deficiency was observed in the performances on this task of the experimental subjects. Assuming that DeLuca's findings are applicable to the present sample, the two sets of observations suggest that the train task involves some factor or factors which tended to inhibit optimum functioning of the higher IQ Standard 9 boys. Qualitative results concerning formal stage subjects, which seem to throw some light on the nature of the problen, are discussed later in this chapter.

Table 6.4 examines sex effects on the task and indicates that there is no significant difference in the scores achieved by the boys and by the girls. This finding is in agreement with the work of Siegler and Liebert (1975) on their train task and of DeLuea (1979) on his electronic equivaient of Plaget's first chemieal experiment. Although differences are not significant, the values of the MannWhitney test statistic in Trble 6.4 findicate that the boys achieved consistently better than the girls except for the Standard 9 higher IQ block. These results roughly correspond to the sex effects on the lirst chemical experiment reported in Chapter 4. where the girls outstripped the boys (total sample of subjects) at the Standard 9 level onf, but not significantly so. Possibly the slight differences in performance might : aflect differential attitude rather than different cognitive capacities as it seemed that the older girls exhibited a more careful approach to the task than the older boys.

6.7. Differential Responsivity to Instruction

6.7.3. Different Classificatory Groups of Subjects

The statistical decisions discussed above are that there are no differences in performance among the Standards 8 and 9 pupis in the control group, which can be attributed to nge, $1 Q$ or sex. These results not only give information inttinsic in the task but also form base-lines in the assessment of whether any particular age. $1 Q$ or sex group among the experimental pupils benefited more from trainut than other groups. This question is analysed in the statistical consideration of null hypetheses $6.5,6.6$ and 6.7 , which are summarised in Tables $6.5,6.6$ nad 6.7

Table 6.5 shows that there are no significant age effects in the performances of the experimental subjects, al(hough, tike the control subjects (Thble 6.2), the older pupils tended to score better. The exception is the block of higher IQ boys where the Standard 8 pupils achicved significantly better scores. Comparing this

Table 6.4 Rank Ordering of Scores on the Evaluation Task : Null Hypothesis 6.4 under Test (Control Group)

Mann-Whitney 1 Test, two-tailed, $\alpha=0,05$

Block	Sumple Size		Mann-Whitncy Statistic		Value of 0		Dection re H_{O}
	Boys	Girls	Bcys	Cirls	Observed	$\begin{gathered} \text { Critical, } \\ \alpha=0,05 \end{gathered}$	
Standard 9							
High iQ	14	6	54,5	29,5	29.5	17	secept
Low IQ	14	6	39,5	44,5	39,5	17	aceept
Standard 8							
High 10	15	6	36	54	36	19	secept
Low 10	4	6	35	49	35	17	accept

Table 6.5 Rank Ordering of Scores on the Evaluation Task , Null Hypothesis 6.5 under Test (Experimental Group)

Mann-Whitney U Test, one-taled, $\alpha=0,05$
Sitce the proportion of ties in each case was quite large, the test statistic was corrected for ties using the normal approximation (Slegel, 1956).

	Sample Size		Sum of Ranks		Oluserve: Value of U	7	p	$\begin{gathered} \text { Decision } \\ \text { re } \\ H_{0} \end{gathered}$
	Std, 9	Std. 8	Std. 9	Stu. 8				
Boys								
High 10	14	14	182	224	77	-1,80	0,0359	reject
Low 10	14	14	217	189	84	1.44	0.0749	necept
Trir								
High 10	6	6	39	39	18	0	0.5000	accept
Low 10	6	6	42	36	15	1100	0.1587	necept

result with the corresponding resule for the control group (Table 0.2) which showed no significant difference in performance for the block of higher IQ boys, the conclusion is that, among boys of higher $1 Q$, Standard 9 pupils benefited less from training than Standard 8 pupils. This is discussed further in the next paragraph in conjunction with null hypothesis 6.6.

The probabilites in Table 6.6 are similur to those in Table 6.5 . This arises from the very high proportion of tied scores of 100% acheved by experimental subjects. Table 6.6 indicates that the effect of 10 is not significant, although in generat, like the control group (Table 6.3), the higher $1 Q$ subjects tended to achieve higher seores. The exception is the block of Standard 9 boys where the lower $1 Q$ pupils were rated significantly better. The cotresponding block in the control group (Table 6.3) did not manifest any sig ificant differences in performance. The inference is that higher IQ Standerd 9 boys beneffted less from training than their lower $1 Q$ counterparts. This finding, coupled with the finding reported th the previous paragraph, namely, that higher IQ Standard 9 boys benefited less from tmining than their Standard 8 counterparts, leads to the suggestion that training should be presented earlier than Standard 9 for all papils to derive maximum benelt.

Table 6.7 shews that there are no significant sex effects in the perfor, ances of the experimental subjects. Since the corresponding results for the control subjects (Table 6.4) also exhibit no signficant sex effects, it is evident that the training did not discriminate against subjects on the basis of sex.

It seens from Table 6.7 that the block which most nearly approaches significance is the one whic' consists of higher IQ Standard 9 subjects. The probability of ocenrence under H_{0} of $\mathrm{z} \leqslant-1,20$ is $\mathrm{p}=0,2302$ compared with probabilities of $1,0000,1,0000$ and 0,8966 for the other three blocks respectively. Comparison of $\mathrm{p}=0,2302$ with the probability of like magnitude which is ussociated whith $U=29,5$ for the corresponding eontrol block in Table $6.4(z=-1,04$ and $\mathrm{p}=0,2984$), does not reveal any fendency for higher IO Standard 9 boys to benefit differently from trining than their femalo peers.

This analysis of the differential benefits of trining with reference to groups divided by age, 10 and sex, should be interpreted with cantion in tems of genemal applicability. The construction or the present task served to attain the minin objective of being able to delect any differences between the performances of the taineo and untrained groups of subjects. It also served to supply information, from the

Table 6.6 Rank Ordering of Scores on the Evaluation Task : Null Hypothesis 6.6 under Test (Experimental Group)

Mann-Whitney U Test, one-tailed, $\alpha=0,05$
Since the proportion of ties in ench case was quite large, the test statistic was corrected for ties using the nomal approximation (Siegel, 1956).

Block	Simple Size		Sum of Ranks		Observed Value or U	z	p	
	$\begin{gathered} \text { High } \\ 10 \end{gathered}$	$\begin{gathered} \text { Low } \\ 10 \end{gathered}$	High 10	$\begin{aligned} & \text { Low } \\ & 10 \end{aligned}$				
Boys								
Standard 9	14	14	182	224	77	-1,80	0,0359	reject
Standard 8	14	14	217	189	84	-1,44	0,0749	accept
Girs								
Standard 9	6	6	39	39	18	0	0.5000	, uceept
Standard 8	6	6	42	36	15	-1,00	0.1587	secept

Table 6.7 Rank Ordering of Scores on the Evaluation Task : Null Hypotitesis 6.7 under Test (Experimental Group)

Mam-Whitney U Test, two-taled, $\alpha=0,05$
Since the proportion of ties in each case was quite large, the test statistic was corrected for ties using the normal approximation (Siegel, 1956).

Standard 9

High 1Q	14	6	51	33	33	$-1,20$	0.2302	necept
Low IQ	14	6	42	42	42	0	1,0000	nccept

Standard 8

High 10	14	6	42	42	42	0	1,0000	necept
Low 10	14	6	41	43	41	0,13	0,8960	accept

performances of the members of the control group, differentiable from one another within this group, on the question of any age- IQ-and sex-bias intrinsic in the task. However, the trained subjects, in contrast totheir untrained counterparts, found the task a relatively easy problem. Thus most of the scores achieved by the experimental subjects were tied observations on the upper lint of the measurement seale and were therefore not differentiable. Without extension of this research and alteration to the existing structure of the task, differentiation among experimental subjects is not feasible. If the task were merely increased in complexity to allow this differentiation, Hen any differences between the experimental group and the control groups may be wbscured ow, to loss of motivation in control subjects on being confronted with a task requiring manoeuvres beyond their powers of organisation. In summary, the resulting tied scores among the experimental group mean that no inference may be made that the clifferential benefits of training will be the sante when measured by performances on another combinatorial task which, apart from the usual content differences from one task to mother, may allow better discrimination umong the experimental subjects.

The foregoing paragraphs have examined the differential benefits of training with reference to different classificatory groups of subjects. The diseussion will now be extended to individuals at different stages of intellectual growth.

6.7.3.2 Individuals at the Formal Stage

All nine experimental subjects who had been assessed at substage $111-B$ in the Piagetian pretest displayed retrogressive appronches towards the trin problem. Confronted with this task, they nbandoned fleir former strategies hivolving the combinatorial system as a means of conelusive deduetion. They encl constructed a tree diagram and dmost mechumically execuled one combination of switches after the other without pursuit or tests to produce information to sypport effects and proofs. It was apparent that the previous spontancity in problem-solving had vanished.

Similar approaches towards the problem were observet in the control subjects at the formal stage. There was no cyidence of organisation of the experiment with an eye to proof. However, both the experimental group and the control group chimed to like the train task as much as the chemiculs task (see Appendix H). This factor is probably linked to, but not on lts own accountable for, performance. Since the
experimental and control groups liad received different treatments, the explanations for listless behaviour could differ for subjects from the two groups.

Tt appears that the untrained subjects viewed the chemical experiment and the train task as markedly different in content. Few control subjects attempted to solve the train problem with the same approaeh that they had used on the chemicals task (see Section 6.7.5). In Chapter 2, there is reference to studies which suggest that
> .. It is the contextual aspect of a task for a pupil rather than its logical structure which detemines performance. (Driver, 1981, 1. 9).

By the time the pupils parficipating in the present investigation reached senior high school, they had had regular haborntory experience. Although their sehool experience was not directly applicable to the chemieals lask, it is possible that the control subjects viewed a task which required handling of test-tubes and mixing of solutions as a reasonably familin assignment. On the other hand, the train task was unlikely to have been affected by a similar process of educational diffusion and therefore may have constituted for the pupils a novel problem. If this were so, then, in the case of the control group, there would seem to be justification for the observed behaviour. Ausubel (1968) has stated.

> Generally mature students tend to function at a relatively concrete or intuitive level when confronted with a particularly new subject-matter area in which they are totally unsophisticated.

However, the experimental subjects could hardly be described as unsophisticated in the principles behind the train task when each of them had produced a tree diagram which indeated all possible combinations of switches prior to the netual execution of the experiment. Possibly the training whieh they had received in the construction of tree diagrams, had suggested to them that the generation of a complete factorial array was an efficient method of problem-solving in contrast to their usual hypothetico-deduetive methods. Nevertheless, lack of resislance to counter-sugestion seems far less likely than the explanation that these pupits were simply responding within the contines of what they considered to be the stereotype of performance expected by the teacher, in accordanee with their wellestablished habit of switchung off' in answer to lack of stimulation in the ustal classroom situation where teaching is necessatily directed nostly towards the pupils of average ability. In
particular, the performances of three boys from the higher $1 Q$ Standard 9 experimental group were noteworthy. The boy with the highest 10 , who had previously been assessed at substage $\operatorname{Ii}-B_{\text {, prombed a tree diagran but carried out the experiment }}$ without consulting the diagrais, mentally following the block pattern indicated by the tree. He onitted 22% of the combinations, later ascribing his omission to the fact that he did not have to think with such a mechanical method and would prefer a more demanding puttern of combinations.

Another boy from the group, also at substage II-B, extibited an unexpected degree of hesitation on the task. He explained that this was due to confusion between the binary counting pattern which he often used and the block r: specified by the tree diagram. The boy with the third highest IQ, also po an established system of generating combinations. He had been assessed at the upper limit of substage $I I-A$, that is exhibiting maximum organisation of combinations. However, he became confused on the task by the tree diagram to the extent that he could execute neither pattern satisfactorily.

The adverse effect of training on late formal subjects lends to the suggestion that such subjects sltould be screened before the application of a training programme in the regular school situation. In Chapter 2, the problems associated with intertask reliability have been discussed. Several combinatorial tasks, therefore, should be employed to give an overall impression of each individnal's stage classification with respect to the combinatorial scheme.

6.7.4 The Effect of Record-Keeping

Of the experimental group, 98% kept a written recard. Each of these records consisted of an advance scheme of all possible combinations (with io redundant combinations) which guaranteed solution of the problem. This type of record is superior to those merely listing combinations acturlly tried.

Each record was in the form of it tree diggran, althongh this had not been requested or directly suggested. The possibility of interpupil communication concerning the use or a tree dhatran to faciltate exection of the train factorial experiment, has to bo acknowledged. In this ense, pupils would have had to establish which trentment other individuals had received before suggestions as to technique were passed on. No control subject produeed a tree diagram.

Fou puphls conmenced the draxing of an incorted tree digeran but of these, Bree spontaneously corrected themselves, Minor crrors, cue to carelessness, were mode by in futher four pupils, which were not comected.

A diffeuly experienced by ntany pupils wha the spatial organisation of the digram with respect to the sige of the paper provided, as a result of which many pe pils requested extra gaper on which to tedrow the diagrams using a smaller seale. This appled to 5% of the pupils who drew tr. diggrans and 10% of these (i.e. 5% 6t hose presenting tree digerms) had to draw three dingrams.

Of the group which produced trees, 97 correctly interpreted the alternative - arses of netion indicated by their diagrams. Most of the group (22%) extended Huir methodical approach to marking off etch combination on the diagram as it was xatimentally sxeatna.

Of the contuol group, $5 \sqrt{6}$ noed an writige one or more of thair responses. It hot interest to compate this percentage with the corresponding figure of 12% on We pretest. This seemed lo indicate willin the control group a prowing awareness. arising from experience, of the desirability of keeping records. In spite of this, there wes no control subjeet who nvoided redundant combinutions. The nean number of retindent conbinations was 21 .

The effect of record-keeping on experimental design proficiency was examined Altistically by dividing the control group into record keepers and non-tecord keepers th shown in Table 6.8. It had been expected that record-keeping should result in Heher scores as it ought to prevent trials of redundant combintions and should misist m the generation of further non-redundant combinations. This led to application Qf the one-taifed Mann-Whitney U tost also contained in Table 6.8. Examination of tre Mann-Whtney lest statistic facieated that in four of the seven blocks, record keepers nchieved higher scores than nonarecord keepers, while in the otler blocks the freerse occurred. In alf eases, here was no signifieunt diflerence between record lespers and those who did not keep records.

The above results indicate that it is not the mere keeping of records wheh is manificant for the efficient generation of combinations hut that the kind of record cept is of prime Importance, To illustrate, many record keepers tried each suceessive ombination withoul any reference to previous trials on their lists. A systematic approach was essential to achieve a high seore on the task but record-keeping did not
exclude random tials by pupils. Moreover, caly one wontrol subpect prepared y witten adyance scheme of combintions.

Table 6.8 Rank Ordering of Scores on the Eqahation Task : Nulf Hypothesis 6.8 under Test

Mansw Whitney U Test, one-tatled, $o=0,05$
The test statisfic was corrected for ties using the normal approximuthe (Siegel, 1956) in the bordertine case onla.

6.7.5 Classification of Search Pattems

In cases where control subjects systematised their approaches to the task (to a greater or a lesser degree), in general the search pattems usen tended to be less complex than those used in the first chemieal experiment, possibly occasioned by the slightly greater information-processing load of the former task. Table 6.9 summarises the main search patterns which were identified. The simplest patterns were symmetrical or progressive in form (columns 1 and 2 of Table 6.9). Both these patterns necessarily terminated after a short sequence of combinations and usually left subjects confused over the manner in which to continue the hask. The more successful patterns were various block systems. Thic block pattem shown in column 3 was the most frequently used but inherently omits many combinations. It appeared that only a minority of control subjects recognised the train task as essentially the same problem as the first chemical experiment. This estimate formed 12% of the control group. Such subjects
Search Patterns Used By Control Subjects
$\mathrm{d}=$ switch in down position

Type of Search Pattern					
Symmetrical	Progressive	Block	Block	Block	Block
12345	12345	12345	12345	12345	12345
uauuu	ичиии	पи女uи	4unu4	uuuuu	4u4ua
ddad	duuuu	duunu	dduuu	duuus	u4u..
dudud	dduuu	uduuu	duduu	dduuu	+ all possible
ududu	ddduu	uncuu	duudu	ddmu	mbination
unduu	ddddu	unudu	duund	ddduu	of switches
ddudd	ddddd	uuuud	udduu	ddumu	4 and 5 (xy)
*		dduus	ududu	ddudu	
		udduu	uduud	dduud	unm.
		uuddu	unddu	ddmmu	+xy
		uuudd	uudud	dddmu	
		ddduu	uuudd	dddda	uud.
		udddu	ddduu	dddud	$+x y$
		uuddd	dudu	$d d d d u$	Repeat scheme
		udddd	ddddu	ddddr	for
		ddddd	dddud	Proceed to	$1 \mathrm{d.}$. .
			d dudd	blocks	du...
			duddd	commencing	d d...
			udddd	d $4 .$.	
			ddddd	ud...	
				u u...	

*The trials following this stage were usually conbinations involving midway settings of switches 3 and 4 .
were identified as those who transferred the block pattern which had been the most commonly used in the chemicals task, to the (rain task (column 4). Identification was assisted by the fact that many of these pupils spontaneously commented that the same procedure could be used f t both tasks. An ' r block pattern which was more efficient than those previously described but whic atd not possess the ability to produce a complete factorial array, is exemplified in column 5. Only exceptional control subjects attempted to use a block pattern which essentially corresponded to a tree diagram, resulting in the generation of all possible combinations if correctly evolved.

These observations confirm the work of DeLuca (1979) on lis electronic equivalent of Piaget's first chemical experiment in which he reports that the search patterns nose frequently utilised by subjeets were block systems. The choice of block patterns can be interpreted in terms of Miler's (1956) concept of chunking or encoding information, cited by DeLuca in his research. This involves a reduction procedure which simplifies a complex task to well within the immediate memory span by encoding relevant pleces of information into chunks. In the present task, a block pattern apparently represents the most efficient encoding of information in relation to memory load and the number of chunks required. Each chunk then consists of a set of combinatore whel contain a fixed number of switches at a specific setting. This is tantamount to holdige : wiven number of variables constant in turn until all combinations have been generated.

6.7.6 Summary of Statistical Results*

1. Trained subjects achieved significantly higher scores than untrained subjects. Even in the ease of the lower IQ Standard 8 boys (where experimental subjects had performed better in the pretest than control subjects, $\mathrm{U}=54.5$. $p=0,0456$), the extreme value of zero observed for the Mann-Whitney test statistic indicated that training was neficial to this group of subjects also.
2. The trom task itself did not inherently discriminate to a significant extent among groups of subjects divided by standard (age), IQ and sex.

[^1]3. Groups of subjects divided as above did not differ significantly in their responsivity to training with the exception of the higher 10 Standard 9 boys who did not benefit from instruction to the same degree as the other groups.
4. Untrained subjects who kept written records did not score significantly better than those who did not do so.

Author Chandler H A
Name of thesis The acquisition of formal scientific reasoning by physical science pupils in standard eight and nine 1984

PUBLISHER:

University of the Witwatersrand, Johannesburg
© 2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.

[^0]: Figure 6.: Scores Achieved on the Train Task by Standard Nine Girls
 Note : Atthough these histograms appear discontinuous, the measurement scale used to generate them is continuous (see text).

[^1]: *See the frotnote at the end of Chapter Four.

