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ABSTRACT 

 

This research concerns the further characterisation and establishment of adsorption 

behaviour of the South African clinoptilolite. Synthetic single- and multi-component 

wastewaters were used, and experiments conducted in both batch and column systems 

at 25oC ± 2. Wastewaters containing heavy metals ions Cu2+, Co2+, Ni2+ and Cr3+, 

were used at different feed concentrations (50 - 500 mg/L), and adsorbed onto natural 

and homoionic (Na+, K+, Ca2+, NH+
4) forms of the zeolite. The Na+-form 

clinoptilolite had an improved cation exchange capacity over the natural one, and the 

selectivity series of metal ions by these two forms varied. Brunauer Emmett Teller 

surface area analysis carried out also confirms that preconditioning clinoptilolite with 

Na+ ions results in an increase in pore diameter, allowing for easier diffusion of ions 

and more adsorption. An atomic adsorption spectrophotometer (AAS) was used to 

analyse metal ions in solution. Adsorption efficiencies with over 75% of metal ions 

adsorbed in the first hour of contact were recorded, and complete adsorption 

equilibrium being reached in 4 hrs. Regeneration of Na+-form and natural 

clinoptilolite (using 0.5M NaCl stripping solution) initially showed an increase in 

loading capacities, then a decrease with the subsequent cycles. A comparison between 

two particle sizes revealed that smaller particle sized clinoptilolite have slightly 

higher adsorption capacities. The equilibrium data also fitted well with the linear 

form of the Langmuir and Freundlich isotherms at lower concentrations of 50 mg/L.  
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1.0 CHAPTER ONE 
 

1.1 Background and motivation 

 
It has been stated that “Matter can neither be created nor destroyed, but if no one is 

looking, it may be thrown away” (Grimshaw and Harland, 1975, p.1). The 

introduction of hazardous wastes into the environment has become a worldwide 

concern including in developing countries. This has been accelerated in the last 

century by the many anthropogenic interferences (Dal Bosco et al., 2005; Pitcher et 

al., 2004), the establishment of many industries (Inglezakis et al., 2007; Argun, 

2008), in Africa, and particularly the Republic of South Africa. For instance, acid 

mine drainage water from mine waste is the largest environmental problem facing the 

mining industry today (Mohamed et al., 1992), and at the same time, it also 

constitutes a major resource for the production of high quality drinking water through 

the process of precipitation and desalination (Healing, 2008). Acid mine drainage 

water is formed by the oxidation of sulphide minerals and reaction with water 

yielding sulphuric acid, which in turn increases the solubility of heavy metals and 

increases their mobility (Mohamed et al., 1992), and they easily find their way into 

‘receiving’ waters.  

 

Over a period of time, these accumulated pollutants become a potential hazard to 

human health, animals and ecological environments (Alvarez-Ayuso et al., 2003; 
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Kocaoba et al., 2007). To counteract such activities, there are international and 

national treaties, laws and regulations such as the 1998 International Kyoto protocol 

(United Nations Framework Convention on Climate Change, 2007), and the 1999 

South African National Environmental Management Act (NEMA) (South African 

Government Information, 2004), all aimed at strictly finding ways of reducing, 

monitoring and controlling pollution, in its different forms and establishing 

sustainable wastewater treatment strategies (Gedik and Imamoglu, 2008).  

 

It was only during the decade of the 1960s, that terms such as ‘water’ and ‘air 

pollution’, ‘protection of environment’ and ‘ecology’ became household words 

(Ramalho, 1997; Deunert et al., 2006). Therefore, over the years, many wastewater 

treatment processes have been developed such as chromatography, electrodialysis, 

adsorption, membrane technologies and ion exchange. Some of these processes are 

very cost effective, whilst others although necessary have high capital and operation 

costs and the problem of residual disposal. Due to the economic pressures 

experienced by many companies to reduce operating and maintenance costs, many 

industries opt for economically feasible processes. 

 

The use of ion exchange and adsorption processes in water pollution control, with the 

potential use of the natural zeolite, clinoptilolite, has been the focus of intensive 

research over the last few years in different countries by researchers such as Gunay et 

al., (2007), Panayotova and Velikov (2003), Oztas et al. (2008), Argun (2008), 

Inglezakis et al. (2004), Polat et al. (2004). This work has identified the great 
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potential clinoptilolite has in removing different heavy metals from wastewaters 

because of their high ion exchange capacities, simplicity in operation, minimal waste 

generation, abundance and low costs (Gedik and Imamoglu, 2008; Peric et al., 2004; 

Misaelides et al., 1994; Erdem et al., 2004; Inglezakis et al., 2004). Some of the 

established uses of South African clinoptilolite are in its use as a food additive in 

poultry diets, building stones, fertilizers and mainly in ammonia gas adsorption due to 

its high capacity for this gas (Polat et al., 2004; Koon and Kaufman, 1975). It could 

also be applied on a much larger scale as an adsorbent of heavy metal ions from 

industrial wastewaters then regenerated and the metal ions initially adsorbed could be 

recovered and put back into process streams.  

 

It is well established that the multiple uses of these zeolite materials are based on 

their physicochemical properties. These properties thus explain their wide range of 

applications in numerous agricultural and industrial areas (Rivera et al., 2000), and 

this is what makes them exhibit excellent metal ion adsorption capacities and 

selective properties. The sorption processes on zeolite particles on the whole 

however, are very varied and complex because of the unique porous structures, inner 

and outer charged surfaces, mineralogical heterogeneity, existence of crystal edges, 

broken bonds and other imperfections on the surface (Peric et al., 2004). Therefore, 

despite its promising results, the real applicability of these minerals to purify metal 

waste waters is still quite unknown (Leinonen and Lehto, 2001; Inglezakis et al., 

2002). And as stated by Hamdaoui (2009), the sorption processes of ion exchange 

and adsorption are unit operations, which often share theory, although they have their 
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own special areas of concern. Therefore, more research on the South African 

clinoptilolite and its behaviour as an excellent metal ion adsorbent is of great interest 

in this dissertation. 

 

Reducing metal ion levels in wastewaters to allowable limits can now be attained by 

use of effective and low cost, sustainable and environmentally friendly sorption 

processes. This makes adsorption and ion exchange very practical water pollution 

control methods, especially in developing countries. 

 

1.2  Justification 

 

The sorption process of adsorption and ion exchange is one technique that has 

received increasing interest over the years. There has also been a development of 

synthetic resins with excellent adsorption capacities and higher performances than 

natural zeolites, even after repeated regeneration cycles, but their drawback is that 

they are usually very expensive. Experiments have yielded good results and shown 

that zeolites have high adsorption capacities for pollutants and are able to reach 

adsorption equilibrium in very practical periods of time. It is also interesting to note 

that the clinoptilolite ores mined in different localities behave differently but 

successfully in their behaviour towards ion exchange and adsorption (Blanchard et 

al., 1984; Mercer et al., 1970; Erdem et al., 2004). 
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Thus, many researchers suggest the use of naturally occurring zeolites as discussed in 

section 1.1, for removing dissolved heavy metals from wastewaters (Blanchard et al., 

1984). The South African natural zeolite clinoptilolite has also shown good 

adsorption capacities although, from the available literature, it has not been 

extensively researched and this work seeks to embark on this investigation. 

 

1.3 Problem Statement 

 

Heavy metal contamination of rivers and lakes and other water bodies has become a 

worldwide problem (Peng et al., 2009) in the 21st century. Modern society has 

therefore, become increasingly concerned by environmental issues related to 

industrial activity and so polluting industries have to conform to a more and more 

rigid environmental regulations (Hamdaoui, 2009). 

 

In order to achieve this, techniques such as chemical precipitation, evaporation, 

adsorption, ion exchange and electrodialysis have been used to remove and recover 

heavy metals from wastewaters. Popuri et al. (2008) has emphasised that all other 

technologies apart from adsorption and ion exchange are ineffective and expensive. 

However, the latter two are cost effective, sustainable, environmentally friendly, and 

have abundant reserves such as the South African zeolite, clinoptilolite.  
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The added advantage of using clinoptilolite is that it exhibits improved adsorption 

capacities when chemically modified (Panayotova and Velikov, 2003). 

 

1.4  Objectives of the research 

 

This research will aim to further characterise the South African clinoptilolite and 

investigate some parameters that would favour clinoptilolite’s adsorption abilities of 

heavy metals from industrial wastewaters.  

a. In its natural form and state, does clinoptilolite have good selective properties 

to effectively adsorb heavy metals from wastewater effluents or would 

modification of the zeolite be necessary? How much can be gained by 

modifying the zeolite? 

b. How long is its lifespan on repeated loading and regeneration?  

c. What are some of the other limiting factors of the zeolite (i.e. the presence of 

impurities in the crystal lattice, initial sorbate concentrations) and how can 

they be used to improve the performance of the zeolite? 

This will be achieved by: 

a. determining whether pretreating the natural zeolite improves the selectivity 

properties or adsorption capacity of clinoptilolite. 

b. analysing the zeolite capacity after regeneration. 

c. determining whether the effluent’s initial concentration or the other factors 

also have an impact on the performance of clinoptilolite. 
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d. determining the breakthrough points for a dynamic column before and after 

regeneration in order to evaluate its performance. 

e. determining the applicability of Freundlinch and Langmuir isotherms and 

estimating the parameters characterizing the performance of the batch and 

column processes. 

 

1.5 Layout of dissertation 

 

In chapter two, the dissertation begins with a detailed literature review of the different 

wastewater technologies employed in the world today and also looks at the different 

adsorbents available. It also gives a brief explanation of the adsorption and ion 

exchange concepts and how these sorption processes play a major role in wastewater 

treatment. This chapter also covers the characteristics and properties of South African 

clinoptilolite and thoroughly discusses the different adsorbates being considered and 

their impact on human health, aquatic life and the environment. 

Chapter three consists of a discussion on the experimental methods used for the 

adsorption of metal ions from synthesised wastewaters using South African 

clinoptilolite. Experiments included are for both batch and column systems, 

characterisation techniques of the zeolite and the sample preparation are also outlined 

in this chapter. 
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The results of the batch and the breakthrough curves for column adsorption of metal 

ions onto natural and modified clinoptilolite are discussed in chapter four. 

Characterisation studies of natural and modified clinoptilolite using an atomic 

adsorption spectrophotometer and x –ray diffractometer are considered and discussed. 

The effects of changing the adsorbate concentration and zeolite particle sizes on 

adsorption capacity are also included in this chapter. The regeneration and re-

adsorption results are discussed, and the results look at the applicability of the 

Langmuir and Freundlich isotherms. The findings of BET surface area analysis 

together with the zeolites pore size distribution are recorded and discussed in great 

detail in this chapter too. Conclusions drawn from the results will be are summarised 

in chapter five of this dissertation. 
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2.0 CHAPTER TWO 
 

2.1 Introduction 

 
The United Nations Millennium Goal 7 was put forward to ensure environmental 

sustainability; to give every human being a right to gain access to safe drinking water 

and improved sanitation conditions. In the adoption of the Millennium Declaration in 

2000, the international community pledged to “spare no effort to free our fellow men, 

women and children from abject and dehumanizing conditions of extreme poverty” 

(DESA, 2008, p. 3). 

 

In the Republic of South Africa, Department of Water Affairs and Forestry (DWAF) 

deals directly with matters pertaining to wastewater and its treatment. This ministry is 

the custodian of South Africa's water and forestry resources. It is primarily 

responsible for the formulation and implementation of policy governing these two 

sectors and has the responsibility for water services provided by local government. 

DWAF regulates industries so that they treat their effluents and it funds many 

monitoring programmes and ecological impact studies to evaluate the environmental 

effects of their discharges (DWAF, 2008). In addition to the constitution, the 

government also has special environmental legislation like the National 

Environmental Management Act (NEMA) 1988, which follows principles of the 

constitution and gives details of the constitutional rights; it also guarantees basic 

human rights and provides guiding principles for society. 
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The necessity to maintain quality drinking water and pollutant-free waters has 

become a very important practice in order to prevent diseases and the destruction of 

the environment. The growth of industries worldwide and in South Africa has led to 

an increase in effluents (organic or inorganic) discharged from these industries. 

Nowadays, industries are required to practise environmentally safe activities in order 

that we do not live with the devastating consequences (Rostoll, 2008) of water 

pollution.  

 

It is important to realise that with the exception of the synthetic elements and nuclides 

produced by nuclear installations (Pu, 60 Co) all pollutant metals are naturally present 

in aquatic environments (Harrison, 1993). The mere presence of a toxic metal in a 

water body is not sufficient to warrant pollution, it is when these metal ions are 

present in higher than usual concentrations, that biota are threatened. If no pollutants 

were discharged, waters would remain in pristine condition. However, early reduction 

of pollution discharge to zero is impractical; so industries are granted discharge 

permits; which are frequently reviewed and renewed, but at the same time companies 

are given the onus to make sure that the water discharged to receiving rivers, meets 

the required water quality criteria stipulated for the different industries, or the 

“polluter pays principle” is brought into effect. The limits on discharge have been set 

as a function of the type of pollutant, type of industry discharging it and desired water 

quality (Masters, 1998).  
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Below is a summary of the allowable limits in drinking water as tabulated by the 

World Health Organisation and South Africa (Kazi et al., 2009; Mamba et al., 2008). 

 

Table 2.1: Allowable limits in drinking water 

Description WHO maximum limit 

(µg/L) 

S.A maximum limit 

(µg/L) 

Chromium 50 100 

Copper 2 1 

Nickel 20 150 

Cobalt 40 - 

    

It can be noted that environmental contamination by metals is mainly by the emission 

of liquid effluents with relatively low, although harmful, metal concentrations (up to 

hundreds of mg/L) (Rengaraj et al., 2007). Therefore, the removal of heavy metals 

from wasters is required prior to discharge into receiving waters. This dissertation 

will look at the reduction of metal ions from wastewaters to acceptable limits using 

adsorption techniques onto South African clinoptilolite. 

 

2.2 Wastewater treatment stages 

 

Wastewater treatment covers mechanisms and processes used to treat water that have 

been contaminated in some way by anthropogenic activities, prior to its release into 
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the environment or its reuse (Schroeder, 1977). Wastewater treatment is usually 

divided into four categories: 

 

2.2.1 Preliminary 

The stage is intended to remove the larger floating and suspended debris. This is 

aimed to prevent blockages and damage to equipment. Generally, the preliminary 

stage does not reduce the pollution load but renders the wastewater amenable to 

treatment (Harrison, 1993). 

 

2.2.2 Primary 

This is a screening stage which removes materials that can be easily collected and 

disposed off (suspended and settleable solids); materials that have passed through the 

preliminary stage such as sand, greases, grit and these are mechanically removed 

(Imhoff et al. 1971) (i.e. sedimentation) to prevent damage to pipe work and abrasion 

to pumps. 

 

2.2.3 Secondary 

This treatment stage involves the removal of dissolved solids. The clear secondary 

effluent may then flow directly to receiving environments or to disinfection facilities 

prior to release to receiving waters (Masters, 1998), depending on the consumer using 

the water.  
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2.2.4 Tertiary 

The tertiary treatment stage is an advanced treatment stage to remove suspended and 

dissolved solids remaining after conventional secondary treatment. This can be 

accompanied by physical, chemical or biological treatment (Imhoff et al., 1971) to 

remove the targeted pollutants i.e. colour, odour, organic chemicals, metals or even 

nutrients (phosphorous). 

 

2.3 Existing wastewater treatment technologies for heavy metal removal 

 

Numerous processes have been developed for the removal of dissolved heavy metals 

from wastewaters. These technologies include ion exchange (Cavaco et al., 2007), 

precipitation (Hamdaoui, 2009), ultrafiltration (Richardson and Harker, 2002) reverse 

osmosis and electrodialysis (Peric et al., 2004; Rengaraj et al., 2007). Most of these 

methods are costly and require high levels of expertise, which restricts their 

application to the end-users. In most cases, the choice of method for wastewater 

treatment is based jointly on the concentration of heavy metals in solution and the 

cost of treatment (Richardson and Harker, 2002). Below is a brief description of the 

technologies. 

 

2.3.1 Chromatography 

Chromatography is a sorptive separation process where a portion of a solute mixture 

(feed) is introduced at the inlet of a column containing a selective adsorbent 
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(stationary phase) and separated over the length of the column by the action of a 

carrier fluid (mobile phase) that is continually supplied to the column following 

introduction of the feed. (Wankat, 1986; Small, 1989). The stationary and mobile 

phases can be contacted with each other; in columns, as a thin layer on a plate, or as a 

paper strip suspended in a reservoir of solvent. 

 

2.3.2 Membrane technologies 

The following four technologies use materials that selectively stop or slow the 

passage of particular types of molecules, such as stopping NaCl but not H2O. 

Membranes have been made of materials such as solvent swollen gels, dry solids or 

immobilised liquids. In general these membranes have highly porous structures but 

pore sizes can be as small as 10 Å (Perry and Green, 1998). The pore shapes are 

generally irregular, although certain gel membranes have highly uniform diameters. 

 

i. Osmosis 

A membrane, which impedes the passage of a low molecular weight solute, is placed 

between a solute-solvent solution and pure solvent. The solvent then diffuses through 

the membrane onto the solution side by osmosis. In osmosis the potential of two 

solutions separated by a membrane is different because of the difference in the salt 

concentrations (Schroeder, 1977). There is therefore, an interaction between the 

pressure and chemical potentials, which results in equilibrium being attained by a 

combination of the two. The schematic diagrams below illustrate this process. 
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Fig. 2.1 Osmosis 

 

ii. Reverse Osmosis (RO) 

In reverse osmosis, a pressure difference is imposed in the reverse direction, which 

causes the flow of solvent to reverse. The process sometimes requires high pressures 

and is thus fairly costly in terms of energy (Hammer, 1986). 
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iii. Electrodialysis 

This is an ion exchange membrane separation technique, which has been widely used 

for the purification, separation, demineralisation and recovery of dissolved species 

from chemical, food, pharmaceutical and metallurgical industries (Basta, 1986). It 

involves the separation of ions by imposing an electromagnetic field (emf) difference 

across the membrane (Schroeder, 1977). Electrodialysis (ED) is widely used in 

removing salts from brackish water, but for high – quality water, ED can 

economically reduce salts in water when used as a hybrid process in conjunction with 

ion exchange systems (Perry and Green, 1998). 

 

iv. Ultrafiltration (UF) 

In this process, pressure is used to separate molecules by a semi-permeable polymeric 

membrane. The membrane discriminates on the basis of molecular size, shape or 

chemical structure and separates relatively high molecular weight solutes such as 

proteins, polymers, colloidal materials (Christensen and Plaumann, 1981) i.e. whey 

processing, and also in concentrating oil in water emulsions. The two most important 

characteristics of UF are its permeability and its retention characteristics, but fouling 

of the membrane is usually the major limiting factor in UF use. 

 

2.3.3 Precipitation 

Precipitation is an initial purification process, particularly following centrifugation 

filtration and/or homogenization steps. Precipitation of solid products, impurities or 
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contaminants from a solution can be induced by adjusting the solution pH, increasing 

the solution temperature, or the addition of solvents, salts or polymers to the solution 

(Ayres et al., 1994). This operation is used often in the early stages of the separation 

sequences. 

 

2.3.4 Oxidation processes 

Ozone is a powerful oxidant for water and waste water treatment. Once dissolved in 

water, ozone reacts with a great number of organic compounds in two different ways: 

by direct oxidation as molecular ozone or by indirect reaction through formation of 

secondary oxidants like free radical species, in particular the hydroxyl radicals. Both 

ozone and hydroxyl radicals are strong oxidants and are capable of oxidizing a 

number of compounds (Bes–Pia et al., 2003) into insoluble metal oxides, which are 

removed by post-filtration. 

 

2.3.5 Adsorption/ Ion exchange 

These two processes are discussed in detail in sections 2.4 and 2.5 below. Out of the 

many developed technologies, adsorption is one of the most attractive because its 

application is relatively simple and safe, as mild operating conditions are used, it is 

also widely available, abrasion resistant and cheap (Peric et al., 2004; Inglezakis et 

al., 2004) and can be very selective. 
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2.4 Adsorption 

 

Adsorption is a separation process whereby the solute is preferentially removed from 

a solution by attachment to the surface of the solid, granular material called 

“adsorbent”. The solute removed is called the “adsorbate”. 

 

Attachment of solutes to the solid surfaces happens by bond formation. According to 

the type of adsorbent – adsorbate bonds formed, there are two forms of adsorption: 

• Physisorption (or physical adsorption), in which the adsorbate is joined to the 

adsorbent micropores by weak Van der Waal forces (Somorjai, 1993). This 

makes the physisorption process mostly reversible i.e. the adsorption bonds 

are easily formed and broken, due to the low energy of adsorption that 

characterises such systems. 

• Chemisorption, is a result of chemical interaction between adsorbate 

molecules and adsorbent surface. During the chemisorption process, 

Somorjai, (1993, p. 54) “ionic and covalent bonds are normally formed and a 

high energy of adsorption is liberated”. This process is usually irreversible as 

the bonds formed are semi-permanent; thus for desorption to occur, the 

adsorbate undergoes a chemical change.  

Thermodynamically speaking, one explanation is that when an atom or molecule 

strikes a surface and forms a bond with it, heat is evolved, as heat of adsorption ∆Hads 

(Somorjai, 1993).This heat evolved is usually measured by desorption – breaking the 
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adsorbate – surface bond. For each bond formed, there is an optimum temperature at 

which adsorbed material is removed at a maximum rate. This maximum rate at which 

desorption occurs is related to the activation energy, which in turn is closely related to 

the ∆H ads. 

 

2.5 Ion exchange 

 
Ion exchange is a chemisorption process, whereas adsorpsion may be physisorption 

or chemisorption. The ion exchange reaction may be defined as the reversible 

interchange of ions between a solid phase (the ion exchanger) and a solution phase. 

The ion exchanger is usually insoluble in the medium in which the exchange is 

carried out (Grimshaw et al., 1975). All ion exchange processes are extremely rapid 

and they follow the general well known kinetic laws as shown in the equation below, 

however, the mathematical treatment of the reaction rates become quite cumbersome 

and difficult in heterogenous systems (Mumpton, 1999). 

 

The following two reactions illustrate the basic interactions that take place between 

the solid phase and the ions in solution; 

 

Cationic Exchanger; M-A+
(solid)  +  B+ 

(solution)  <=> M–B+ 
(solid) +  A+ 

(solution)............(2.1) 

Anionic Exchanger; M+A- 
(solid) + B- 

(solution)    <=> M+B- 
(solid) +  A- 

(solution).............(2.2) 
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Ion exchange is a process that has become increasingly important in the field of water 

treatment because it is able to achieve complete demineralization (Ramalho, 1997), 

through simultaneous cation and anion exchange.  

 

It is usually questioned whether adsorption and ion exchange are synonymous to each 

other. Hamdaoui (2009) has explained that the sorption processes of ion exchange 

and adsorption are unit operations, which often share theory, although they have their 

own special areas of concern. Schroeder (1977) also sums it up well in his book that 

strictly speaking, adsorption is the accumulation of materials at an interface, and this 

interface may be liquid – liquid, liquid – solid, gas – liquid or gas – solid. Ion 

exchange process becomes similar to an adsorption system in which a solid, usually 

porous particle with reactive sites on its surface comes into equilibrium with ions in 

solution. These reactive sites have exchangeable ions such as Na+, H+, Cl–, OH- 

attached, and these ions exchange with ions in solution at equilibrium. Adsorption is 

mainly applicable in wastewater treatment whereas ion exchange is used in water 

treatment. In this dissertation, the terms “adsorption” or “exchange of ions” will be 

used interchangeably to encompass both processes. 

 

In summary, the uptake of heavy metals in wastewater treatment is attributed to both 

mechanisms of ion exchange and the adsorption process (Curkovic et al., 1997). The 

authors Sprynskyy et al. (2006) describe the loading phenomenon of metal ions as 

comprising of three stages. The first stage involves a fast intake of metal ions as this 

is attributed to the ion exchange in the micropores on the microcrystal surfaces of the 
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clinoptilolite grains. The second stage involves an inversion of ion exchange for a 

period of time, due to the counter diffusion of exchangeable cations. This is common 

with Ni2+ ions or solutions of higher metal concentrations. The third stage is 

described as adsorption of metal ions but at a much slower rate compared to the first 

stage.  

 

2.6 Adsorbents used for tertiary wastewater treatment 

 

These adsorbents range from natural to conditioned ones to those that are 

synthetically manufactured. Examples are discussed in the following sections. 

 

2.6.1 Activated carbon 

Activated carbon is an excellent adsorbent, and it has been proven to very effective in 

the removal of both inorganic and organic compounds from wastewaters. It has a 

remarkably high specific surface area ranging between 500 and 1500 m2/g and widely 

different surface functional groups (Yin et al., 2007). Activated carbon is made from 

carbonaceous raw materials such as hard wood, rice husks, carbon black, bagasse ash, 

saw dust and lignin (Crittenden and Thomas, 1998). They are activated with steam or 

carbon dioxide at elevated temperature (700 – 1100oC). Unfortunately, it is not 

suitable for use in developing countries due to the high costs associated with 

production and regeneration of the spent carbon (Panday et al., 1985).  
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2.6.2 Fuller earths 

These are natural clays that are mainly magnesium aluminium silicates. Their 

technical names are attapulgite or montmorillonite. The clays are heated and dried 

during which the structure develops a porous framework; it is then ground and 

screened. Fuller earths are widely used in industry to adsorb oil and grease, as a 

carrier of pesticides, in adhesives, paints and textiles. The advantage is that these 

fuller earth clays can be regenerated by washing and burning off the adsorbed organic 

matter accumulated on the clay. This however, poses a danger to the environment 

because the burned organics are freely released into the atmosphere (Masters, 1998). 

 

2.6.3 Activated clays 

These clays have no adsorption ability unless activated by acid treatment. Activated 

clays are limited in use to the contact process and are not regenerated (Mantell, 

1951). However, they are about four times as powerful as the natural clays. Activated 

clays are used for decolourising petroleum products. 

 

2.6.4 Bauxite 

It is a naturally occurring hydrated alumina Al2O3 rock that is activated by heating to 

temperatures of 230 – 815 oC. This process is a conceptually simple procedure but in 

actual fact, it is complex due to the heterogeneous nature of the bauxite. The bauxite 

rock undergoes phase changes in its purification stages over the whole process 

temperature range. Activated bauxite is used in the percolation treatment of 
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petroleum products and drying air (Miller, 1985; Mantell, 1951). It also finds many 

applications in metallurgical, abrasive, cement, chemical and refractory industries. 

 

2.6.5 Silica gel 

Silica gel is the most widely used desiccant because of its hydrophilic nature, its large 

capacity for water and ease of regeneration and thus its use in dehydration of air and 

other gases (Yang, 2003).  

 

2.6.6 Resins 

A broad range of synthetic, non–ionic polymers are available for use as adsorbents, 

ion exchangers and chromatographic column packing. This technology of designing 

and building porosity in polymers was accomplished in the late 1950s and early 

1960s (Kunin et al., 1962). These polymeric resins can be further reacted to attach 

functional groups to the benzene rings to generate functionalities for ion exchange. 

The advantage of polymeric resins lies in their ease of regeneration and they can be 

tailored for special applications such as in the pharmaceutical and semiconductors 

industries (Yang, 2003). 

 

2.6.7 Zeolites 

At least 40 different types of naturally occurring zeolites have been found. More than 

150 types of zeolites have been synthesised and they are designated by a letter/ group 
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of letters (Type A, X, Y, ZSM-5) as adopted by the International Zeolite Association 

(IZA) (Yang, 2003). These naturally occurring and synthetic zeolitic minerals are 

used commercially because of their unique adsorption, ion exchange, molecular sieve 

and catalytic properties. The advantage of zeolites over resins, apart from their much 

lower cost, is their ion selectivity, generated by their rigid porous structures (Alvarez-

Ayuso et al., 2003; Coruh, 2008), which gives good sieving characteristics. Zeolites 

are particularly suitable for the removal of heavy metals. 

 

2.7 Theory of adsorption 

 

Adsorption isotherms or models can be described as reference points for evaluating 

the characteristic performance of an adsorbent. The adsorption isotherms are plotted 

using the data obtained from experimental batch process. These models are used to 

predict the theoretical adsorption constants and the behaviour of different adsorbates 

for adsorbents. Despite their advantages, some of these isotherms have limiting and 

unrealistic assumption, which are discussed in detail in section 2.7.1 below.  

 

2.7.1 Adsorption models in batch tests 

The Langmuir and Freundlich equations are the most used to describe sorption 

equilibrium for environmental studies (Erdem et al., 2004; Oren and Kaya, 2006; 

Kocaoba et al., 2007). The following expressions for a straight line were used, which 

are obtained by a mathematical transformation of isotherms: 
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For the Freundlich isotherm, 

log ��= log ��+ �/� log �	     (2.3) 

 

This isotherm describes equilibrium on heterogeneous surfaces (Gunay et al., 2007) 

i.e. the energy of adsorption is not equivalent for all adsorption sites, which is a more 

realistic assumption than the Langmuir isotherm. 

 

For the linear traditional Langmuir isotherm, 

   C�/Q�  �  �1/K� � �  �a/K� �  C�    (2.4) 

 

This model assumes that all adsorption sites are energetically identical and have equal 

energies of adsorption (i.e. adsorption is a monolayer) (Gunay et al., 2007). 

 

The empirical constants KL and a for the Langmuir model are related to the heat of 

adsorption maximum (L/g) and bonding strength (L/mg) respectively (Yu et al., 

2003; Oren and Kaya, 2006), whereas, Kf (mg/g) and n (g/L) are the constants for the 

Freundlich model related to the adsorption capacity and intensity of adsorption (Yu et 

al., 2003). 

 

Most industrial adsorption processes are carried out in column systems. Therefore, a 

laboratory batch adsorption test at equilibrium does not give sufficient data for the 

design of a clinoptilolite adsorption system. Batch adsorption kinetic studies give 
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concentration decay curves in terms of Ct versus t. Column tests are required for 

design, with the kinetic adsorption information generated experimentally on a 

laboratory scale or pilot plant scale or theoretically by mathematical modelling. This 

is one advantage column systems have over the batch system approach. 

 

2.7.2 Adsorption in columns 

In fixed bed columns, ion exchange is applied at low liquid flow rates and caution has 

been recommended by Hefferich (1995) and Milan et al. (1997) because of the 

possibility of relatively large unwanted maldistribution (i.e. channelling) and 

dispersion effects, in connection with ion exchange at low flow rates. The dynamic 

column used was 50 mm in diameter and the zeolite bed height was kept at 20 mm in 

all the experiments to avoid solution build-up in the column. An initial feed 

concentration of 50 mg/ L was used for both single and multi-component feeds. All 

the feeds were introduced at the top of the column and so the column operated under 

down flow conditions, pumped to try and improve the steadiness of the packed bed 

and maximise on the zeolite and influent’s contact. The experiments were stopped 

when the column reached its exhaustion point (Inglezakis and Grigoropoulou, 2003); 

when the effluent concentration rose sharply and was nearly that of the influent 

concentration (Geankoplis, 1984). The breakthrough and exhaustion points used in 

this dissertation are 10% and 90% of influent and effluent concentrations, according 

to the work of Bhakat et al. (2007). Mathematically, the concentration – time curve is 

represented by a sigmoid shape and is called the breakthrough curve; expressed in 

terms of �/��  (the influent Co and effluent C metal ion concentrations) as a function 
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of time or bed volume of the eluate for a given bed height. This is a very important 

design feature of adsorption columns as it determines their operational time and 

capacity. Data obtained from the column tests was used with a software package 

called “Origins7.5”, which is able to calculate the areas under the breakthrough 

curves between the two x-axis limits (breakthrough and exhaustion points). 

 

Qualitative interpretation of breakthrough curves 

What happens in a column is approximated by the presence of an adsorption active 

zone (MTZ - Mass Transfer Zone) across the column. Medvidovic et al. (2006) 

describes this zone as representing the layer between the equilibrium bed zone and 

the unused bed zone. A concentration wave, precedes the equilibrium bed zone; this 

wave zone that moves downwards (in the downward system), and the break point is 

assumed to occur when the active zone starts to move outside the column. 

Mathematically, working out the area under the breakthrough curve between the 

breakthrough and exhaustion points give the maximum exchange capacity, qe. 

 

2.8 Natural zeolite: clinoptilolite 

 

The term ‘zeolite’ was created by Croestedt in 1756 from the two Greek words 

meaning “to boil” and “stone” for minerals which expel water when heated and seem 

to boil (Newsam, 1986; Gottardi and Galli, 1985; Polat et al., 2004).  
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2.8.1 Geographical distribution  

South African clinoptilolite mined by Pratley Perlite Ltd. has been found to have the 

formula:  

(MgCaNa2K2)25(AlO2)7(SiO2)30.21H2O 

This is based on the KwaZulu - Natal clinoptilolite’s chemical composition. The 

chemical analysis yielded the above molecular formula, with the main exchange 

cations in this zeolite being Mg2+, Ca2+, Na+ and K+. 

The idealised chemical formula of clinoptilolite is: 

CaNa4 (AlO3)6(SiO2)30. 24H2O 

This generalised formula of clinoptilolite has two main dominating exchangeable 

cations namely Ca2+ and Na+. 

 

Pratley Perlite. Ltd datasheet provides information on the elemental analysis in mass 

% of the natural zeolite clinoptilolite rock, using XRD analysis. The rock was found 

to contain 80 – 85% clinoptilolite. A breakdown of the elemental analysis is outlined 

in Table 2.2: 

 

 

 

 

 

  



 

K.Kapanji (MSc) Page 29 
 

Table 2.2 Elemental Analysis of natural South African clinoptilolite 

Element  % 

SiO2   71.52 

Al2O3   12.10 

Na2O   1.40 

K2O   3.85 

Fe2O3   1.21 

MnO   0.07 

Cu    trace 

P    0.009 

TiO3   0.13 

 

MgO   0.86 

CaO   1.53 

Ni   trace 

Cr   trace 

Ba   trace 

Sr   trace 

Co   nil 

Total water  7.30 

(Free water 5.7%)  

 

Other properties of clinoptilolite are outlined in tables A2 and A3 in Appendix A. 

 

Clinoptilolite has been mined in many different countries. Work and publications 

have been carried out on clinoptilolite from Greece (Inglezakis et al., 2007), Turkey 

(Gedik and Imamoglu, 2008), Ukraine (Sprynskyy et al., 2006), Serbia and 

Montenegro (Medvidovic et al., 2006), Cuba (Rivera et al., 2000), California, U.S.A 

(Semmens and Martin, 1988), China (Du et al., 2005) and in South Africa (Semosa, 

2005; Themistocleous, 1990). Clinoptilolite is common as a major constituent of 

submarine volcanic sediments of tuffites (Gottardi and Galli, 1985; Erdem et al., 

2004) and it occurs principally as microcrystalline sedimentary masses (Gottardi and 

Galli, 1985).  
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In South Africa, up to 75% of pure zeolite beds (mainly consisting of heulandites and 

mordenite) are located in the Heildelberg – Riversdale area. It occurs in altered tuff 

beds overlying bentonite – rich horizons (Wipplinger and Horn, 1998). 

Clinoptilolite has been found in two principle areas of South Africa namely: 

i) Western Cape Province: in the Heildelberg Riversdale area. 

ii) Northern KwaZulu - Natal: in the Nxwala Estate near the Mkuze Game 

Reserve of the Lebombo Mountains (Wipplinger and Horn, 1998). In this 

region, the clinoptilolite occurs in association with perlites. Other impurities 

found in clinoptilolites include quartz, k-feldspar, opal, cristobalite, 

montmorillonite, micas and calcite. Unfortunately, these impurities have 

densities very close to clinoptilolite, which makes the purification of this 

zeolite nearly impossible by conventional flotation methods (Themistocleous, 

1990).  

 

Polat et al. (2004), Koon and Kaufman (1975), Coruh (2008) and Mumpton (1999) 

list the following diverse applications of clinoptilolite and other natural zeolites: 

i) Building stones 

ii) Soil conditioner – in the retention of NH+
4 and K+, favourable for crops. 

iii) Dietary supplement for pigs and roosters – percentages of about 6 and 7.5 

respectively showed a weight increment in these livestock, with no effect 

on live mass. 

iv) Wastewater purification – such as the recovery of carbons from 

radioactive wastewater and ammonia from municipal waste. 
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v) Dehydration for instance before a catalytic reaction, fill drying beds for 

gas, liquid dehydration. 

vi) Gas separation and in catalysis. 

vii) Chemical carrier – in agriculture, to carry herbicides and fertilizers. 

Pratley’s main application of South African clinoptilolite is for the manufacture 

of fertilisers and in gas adsorption [See Table A2 in Appendix 2]. 

 

2.8.2 Structure of clinoptilolite 

Clinoptilolite is a mineral zeolite of the heulandite group and crystallizes in the 

monoclinic system. Clinoptilolite and heulandite have similar aluminosilicate 

frameworks but the stability and dehydration behaviours are different. The table 

below summarises their differences as quoted by Sprynskyy et al. (2006) 

and Breck, (1974). 

 

Table 2.3 Differences between clinoptilolite and heulandites 
 

CLINOPTILOLITE HEULANDITE 

Higher Si/Al ratio (4.0 – 5.3) Lower Si/Al ratio ( 2.5 – 3.7) 

Higher thermal stability (600 – 800 °C) Lower thermal stability (350 – 450°C) 

Mainly dominated by alkali monovalent 

cations (Na�and K�) 

Mainly dominated by alkali earth 

divalent cations (Ca��, Ba�� and Sr��) 
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In as much as these differences are noted, other researchers have forwarded the idea 

that clinoptilolite falls into the heulandites group because no clear and distinct 

difference occurs between the two minerals. Many zeolites of clinoptilolite structure 

have been found with intermediate Si/Al ratios (which determine their maximum 

exchange capacity (Covarrubias et al., 2006)) and the thermal stability of these two 

zeolites depends on the cations present on the mineral (Themistocleous, 1990). It has 

been demonstrated by authors such as Kitsopoulous (2001) and Breck (1974), that 

clinoptilolite in which the Ca2+ is substituted for Na+ and K+ shows similar structural 

contraction to heulandites; K+ substituted heulandites results in greater thermal 

stability. 

 

Clinoptilolite finds many applications because of its framework that encloses cavities 

(pores or cage-like structures) occupied by cations and water molecules, both of 

which have considerable freedom of movement permitting the exchange of ions and 

reversible dehydration. 

 

These crystals are characterised by three-dimensional pore systems, with pores of 

precisely defined diameters, which are interconnected to form long wide channels/ 

cage like structures. Zeolites have a basic tetrahedral arrangement of aluminium 

(AlO4) and silicon (SiO4) oxides as shown in Figure 2.3. This implies that the Si and 

Al are linked to each other by four oxygen bridges. Each silicon atom in the 

framework with a formal charge of 4+ balances the one negative charge on each the 

four oxygen atoms. The latter are formally charged -2 but at the same time shared 
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with two neighbouring Si or Al atoms. The isomorphous substitution of Si

creates an excess negative charge, which is balanced

ions such as K+, Ca2+

also exchangeable with larger metal ions in wastewaters such as Cu

Cr3+ because the negatively charged ions are rigidly held 

whereas the harmless balancing ions are not.

 

Fig. 2.3

 

2.8.3 Properties of zeolites

As described by Corma

i) high surface area properties

capacities, but large internal surface area in a limited volume gives rise to a 

large number of small sized pores between adsorption surfaces.

ii) surface polarity

to the zeolite’s affinity 

like zeolite are hydrophilic, and non
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with two neighbouring Si or Al atoms. The isomorphous substitution of Si

creates an excess negative charge, which is balanced by innocuous extra framework 

2+ and Na+ (Erdem et al., 2004). These extra framework ions are 

also exchangeable with larger metal ions in wastewaters such as Cu

because the negatively charged ions are rigidly held in the zeolite lattice, 

whereas the harmless balancing ions are not. 

 

g. 2.3 Isomorphous substitution of Si4+ by Al3+

of zeolites 

As described by Corma (1997), zeolites are characterised by; 

surface area properties. This is good for providing large adsorption

capacities, but large internal surface area in a limited volume gives rise to a 

large number of small sized pores between adsorption surfaces.

polarity. Surface polarity and molecular sieve distribution correspond 

to the zeolite’s affinity for polar substances such as water. Polar substances 

like zeolite are hydrophilic, and non-polar carbonaceous adsorbents such as 
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with two neighbouring Si or Al atoms. The isomorphous substitution of Si4+ by Al3+ 

by innocuous extra framework 

(Erdem et al., 2004). These extra framework ions are 

also exchangeable with larger metal ions in wastewaters such as Cu2+, Co2+, Ni2+ and 

in the zeolite lattice, 

  

3+ 

his is good for providing large adsorption 

capacities, but large internal surface area in a limited volume gives rise to a 

large number of small sized pores between adsorption surfaces.  

Surface polarity and molecular sieve distribution correspond 

lar substances such as water. Polar substances 

polar carbonaceous adsorbents such as 

The overall  
negative charge 
on the zeolite 
framework is 
balanced by K+, 
Na+,Ca2+, which 
also exchanges 
ions with those 
in solution i.e. 
Cu2+, Ni2+,Cr3+ 
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activated carbon are hydrophobic, as they have an affinity for oil rather than 

water. This also serves as an advantage because this property can be 

controlled and varied. 

iii) Large channel sizes in the range typical for the diameter of many species (5 – 

12 Å). The large structural cavities and entry channels leading into the internal 

parts of the zeolites contain water molecules, which form hydration spheres 

around the exchangeable ions. On removal of the water by heating at 350°C – 

400°C, smaller and large particles can pass through but larger molecules are 

excluded (Mumpton, 1999): this is called the molecular sieve effect of 

crystalline zeolites. 

iv) Active sites, such as acid sites for instance, can be generated in the framework 

and their strength and concentration can be tailored for a particular 

application.  

 

2.8.4 Regeneration 

The reversible nature of ion exchange makes the regeneration process of clinoptilolite 

an important step in ion exchange. It also makes the processes economical as the 

zeolite samples can be reused for a couple of cycles before the structures are 

exhausted. The adsorbed metal ions can be recovered and re-used. 

 

Ion exchange in packed columns is inherently unsteady state or a batch type process. 

Due to the stationary nature of the sorbent (solid), it will saturate at the feed 
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concentration if the feed enters the column continuously (Wankat, 2007). 

Regeneration involves the removal of most sorbate (liquid) from the zeolite usually 

by washing or flushing with water, and then running an acidic or basic solution 

through the bed. Investigation into the regeneration of natural zeolites has already 

been conducted and it has been found that zeolite capacity decreases with each 

repeated regeneration cycle (Argun, 2008). This is caused by the difficulty of 

removing ions for which the zeolite framework has a high affinity. Some metal ions 

once exchanged onto the zeolite are rigidly fixed or become inaccessible to the 

incoming ions, thus ion exchange sites reduce with time. Another possible 

mechanism for the loss of capacity of the zeolite, is the removal of oxygen atoms 

from the lattice, when strongly held cationic species are removed during the 

regeneration step (Tsitsishvili et al., 1992). This would result in the destruction of the 

zeolite lattice and loss of adsorption/ ion exchange sites. More work is required on 

the regeneration of South African zeolite to improve its lifespan (Semosa, 2005). 

 

2.8.5 Capacity and selectivity of natural and pretreated zeolites 

Most researchers in their work have observed that the pre-treatment of natural 

zeolites improves ion exchange capacity (Gunay et al., 2007; Inglezakis et al., 2004; 

Han et al., 2006). The selectivity of the zeolites for metal ions has also been studied 

by authors such as Semmens and Martin (1988), and Inglezakis et al. (2004). 
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The cation exchange capacity CEC of zeolites is basically the amount of Al3+ ions 

that substitute the Si4+ ions in the tetrahedral zeolite framework (Mumpton, 1999; 

Ouki and Kavannagh, 1999); the Si/Al ratio. The greater the aluminium content, the 

more incoming ions are needed to balance the charge, thus the higher the exchange 

capacity. Other factors that determine the adsorption capacity of zeolites by heavy 

metals are:  

i. The hydration diameters; of ions sitting in the framework and those 

incoming into the zeolite. 

ii. Hydration enthalpies 

iii. Solubility of cations 

 

The selectivity order of zeolites for metal ions is usually brought about by the various 

factors that influence adsorption and ion exchange behaviour in zeolites (Zamzow 

and Eichbaum, 1990). This brings about effects such as the sieving effect for metal 

ions or the availability of the specific exchange sites in the zeolite. Depending on the 

arrangement of the zeolite crystal lattice or pore volumes, the incoming ions will be 

affected, and may diffuse through the structure or fail to move through the pores. 

Most researchers have found different cation exchange capacities and interestingly, it 

was noted that clinoptilolite exhibits different selectivity series for different metal 

ions. A summary of these series are in table 2.4 below: 
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Table 2.4 Summary of selectivity series observed by different researchers. 

Authors Selectivity series 

Ouki and Kavannagh, 

1997 

Pb�� # Cu�� # Cd�� # Zn�� # Cr&� # Co�� # Ni�� 

using natural clinoptilolite. 

Semmens and Martin, 

1998 

)*�� # �� # +,�� # -./
� # �,�� # �0�� # �1�� #

-,�using Na� 2 form clinoptilolite 

Inglezakis et al., 2004 Pb�� # Cr&� # Fe�� # Cu��using natural clinnoptilolite 

Pb�� # Cr&� ; Fe�� # Cu��using Na�clinoptilolite 

Kocaoba et al., 2007  Cd�� # Ni�� # Cu��using natural clinoptilolite. 
 
 

Alvarez-Ayuso et al., 

2003. 

Cu�� # Cr&� # Zn�� # Cd�� # Ni�� using natural 
clinoptilolite. 

Zamzow et al., 1990 
 
 

Pb�� # Cd�� # Cs� # Cu�� # Co�� # �=&� # Zn�� #
Ni�� # Hg��using natural clinoptilolite. 

 

2.8.6 Effect of pH in adsorption 

pH is a very important controlling parameter in adsorption and ion exchange 

processes. Chemically, a change in solution pH influences metal speciation leading to 

the formation of complex inorganic species in solution. The exact speciation (the 

metal ion complex that predominates at a particular solution pH) of a metal has a 

significant impact on the removal efficiency of clinoptilolite and its selectivity (Hai et 

al., 2005). The presence of precipitates in solution, usually clog the zeolites and 
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hinder metal ion accessibility of sites (Alvarez-Ayuso et al., 2003; Dal Bosco et al., 

2005; Inglezakis et al., 2004).  

 

According to Ragnarsdottir et al. (1996), and Oren and Kaya (2006), adsorption 

dependency on lower pH values (< 4) is explained by the dissolution of the crystal 

structure and the zeolites may exchange some of their exchangeable cations with 

H3O
+ ions. Between pH values of 4 and 6, the basic mechanism is the ion exchange 

process (Oren and Kaya, 2006. Then at higher pH values, precipitation process of 

metal ions takes effect (Alvarez – Ayuso et al., 2003; Dal Bosco et al., 2005). 

Generally, ion exchange increases with an increase in pH up to a maximum value, 

then slowly decreases thereafter (Argun, 2008, Yu et al., 2003; Oren and Kaya 2006: 

Alvarez – Ayuso et al., 2003). This increase in adsorption is because at higher pH 

values, fewer H+ ions are present in the solution, and so there is reduced competition 

between the metal ions in solution and the H+ for the active exchange sites on the 

zeolite (Alvarez-Ayuso et al., 2003). 

 

2.8.7 Metal ions removed  

Process wastewaters containing heavy metals will be discussed in this section. 

Chromium, nickel, zinc, and copper are considered “priority metals” from the 

standpoint of potential hazards to human health, animals and ecological systems 

(Alvarez-Ayuso et al., 2003; Kocaoba et al., 2007). These priority metals are a list of 

129 substances originally set forth in a consent decree between the Environmental 
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Protection Agency (EPA) of the U.S.A and several environmental organisations 

(Masters, 1998). General contaminants include organic materials and most heavy 

metals and their properties are listed based on risk assessment not on hazardous 

assessment only because toxicity is not absolute, but depends on concentration. 

Metals however, differ from other toxic substances in that they are totally non - 

degradable; they are virtually indestructible in the environment (Masters, 1998). The 

following four metal ions used in this research are discussed below: copper, cobalt 

nickel and chromium. 

 

i. Copper 

Copper is a very common element which occurs naturally in the environment. Human 

activities also aggravate the copper levels in the environment; examples include 

mining, metal and wood production and phosphate fertiliser production. It then settles 

and binds itself to water and soil sediments and livestock due to its non-

biodegradable nature. 

 

The most stable copper ion is Cu2+, although it begins to hydrolyse at pH 4 to a small 

extent and precipitate with OH- or O2- soon afterwards (Baes Jr. and Mesmer., 1976). 

Short- and long-term exposure at high levels in humans leads to conditions such as 

metal fever, liver and kidney damage although its toxicity is considered moderate to 

humans and livestock (Alvarez- Ayuso et al., 2003). The allowable WHO limit of 

copper in water is 2 (µg/L) (Kazi et al., 2009).  
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ii. Cobalt 

Pure cobalt is not found in nature but is found in various metallic- lustred ores such as 

cobaltite (CoAsS). Cobalt is essential to the body in minute amounts for vitamin B12 

formation. It is also produced as a copper and nickel by-product in mining processes. 

 

Cobalt (II) is the most stable valency in water, and cobalt (III) is a powerful oxidising 

agent, which decomposes water (Miller, 1985), whereas, cobalt–60 is radioactive and 

used in radiotherapy. However, at higher doses it has mutagenic and carcinogenic 

effects similar to those of nickel exposure. Cobalt also causes poisoning but this is 

less than lead poisoning because it is excreted by the body. The allowable WHO limit 

of cobalt in water is 40 (µg/L) (Kazi et al., 2009). 

 

iii. Nickel  

Most of the Nickel on earth is inaccessible because it is locked away in the planet’s 

iron–nickel molten core. It therefore, occurs in the environment at very low levels.  

 

The +2 oxidation state of nickel is the most important one, particularly in its aqueous 

chemistry (Baes Jr. and Mesmer, 1976). Nickel exposure at high levels varies from 

dermatitis to damage to lungs, nervous system and mucous membranes. It is also a 

known carcinogen (Argun, 2008); therefore, its removal from wastewater is essential. 

The allowable WHO limit of nickel in water is 20 (µg/L) (Kazi et al., 2009). 
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iv. Chromium 

Chromium exists naturally in mineral chromite FeCr2O4. Two- fifths of the world 

reserves of this mineral deposit are found in Southern Africa. Therefore, its natural 

abundance implies that it can be found in soils, water, fauna and flora, volcanic dust 

and gases, in doses that are not harmful to man (Gomez and Callao, 2006). The 

higher  valency chromium (III) is an essential micronutrient in the body and combines 

with various body enzymes to transform sugars, proteins and fat, it is also used in a 

number of commercial products. Due to human activities such as in dyestuff 

industries, metallurgy, electroplating and tanning, chromium species have found their 

way into receiving waters and environments. 

 

Chromium (VI) is a powerful oxidant and easily penetrates biological membranes. 

Chromium (VI) is hundred times more toxic than Chromium (III), and has been found 

to be carcinogenic and mutagenic. It is also known to induce dermatitis, when in 

solution and not just inhaled (Rengaraj et al., 2007; Gomez and Callao, 2006; Olad 

and Nabavi, 2007; Porter et al., 1999). The allowable WHO limit of chromium in 

water is 50 (µg/L) (Kazi et al., 2009). 

Due to the heavy metals’ mobility, toxicity and non-biodegradable natures (dependent 

on its chemical form/oxidation), it is very important that we control them and dispose 

of them using acceptable methods. 
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2.9 Concluding statement 

 

Various wastewater technologies have been successfully used to remove metal ions 

from wastewater, but unfortunately, some technologies are very expensive to operate 

and others generate more waste in the process, which sometimes poses a threat to the 

environment. 

 

Much research work has been done on the selectivity sequences and adsorption 

capacities of natural clinoptilolite for a range of metals, and different results have 

been observed (Erdem et al., 2004), but most researchers agree that generally 

clinoptilolite has good adsorption capacities for heavy metals. In addition, the pre-

treatment of natural zeolites either by acids, bases or surfactants enhances ion 

exchange and adsorption capacity (Gunay et al., 2007; Malliou et al., 1994; Wark et 

al., 1994; Oztas et al., 2008). 

 

It is well established that the multiple uses of these zeolite materials are based on 

their physicochemical properties. The adsorption of metal ions onto clinoptilolite has 

more advantages than most technologies, as has been alluded to in section 2.3. Many 

authors have investigated the use of clinoptilolite and found it to have high cation 

exchange capacities (CEC) (Kocaoba et al., 2007) and thus they are suitable for use 

as adsorbents of metal contaminants in solution up to hundreds of mg/L (Rengaraj, et 

al., 2007). The cationic exchange capacity of zeolites is a function of the amount of 

aluminium that substitutes for silicon in the framework. The greater the aluminium 
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content, the more extra framework cations are needed to balance the charge 

(Mumpton, 1999). The sorption processes on zeolite particles on the whole however, 

are very varied and complex because of the unique porous structures, inner and outer 

charged surfaces, mineralogical heterogeneity, existence of crystal edges, broken 

bonds and other imperfections on the surface (Peric et al., 2004). 
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3.0 CHAPTER THREE 
 

3.1  Experimental 

The experiments carried out in this dissertation were conducted using South African 

clinoptilolite. The methodology of this dissertation was of two types; 

i) Comparative: looking at the similarities between the research results in this 

dissertation and those already established in literature concerning adsorption 

of metal ions onto clinoptilolite. 

ii) Manipulative: varying set point conditions and then carefully noting the 

results obtained and establishing their effect of adsorption efficiencies. 

 

3.1.1 Clinoptilolite and reagent samples. 

The natural clinoptilolite (also referred to as CLINO) mined in KwaZulu - Natal and 

supplied by Pratley Perlite Ltd. plc, was used in the following forms: untreated (as 

received), sodium, potassium, calcium and ammonium. These samples were 

conditioned according to the method of Gunay et al. (2007) and Spryskyy et al. 

(2006), which is outlined in section 3.1.2 below. The two particle sizes provided were 

1.0mm - 4.0mm (bigger particle size) and 0.4mm – 0.8mm (smaller particle size). 

 

 

  



 

K.Kapanji (MSc) Page 45 
 

3.1.2 Sample preparation 

i. Zeolite preparation 

The natural zeolite used ‘as received’ was first washed in ample distilled water to 

remove fines and impurities as explained by Medvidovic et al. (2006), Gunay et al. 

(2007) and Du et al. (2005) and dried at room temperature for 24 hours. 

 

Some of the natural zeolite was modified/ converted/ homoionised into different 

forms prior to their use by washing it in distilled water and soaking it in 2M chloride 

salts (NaCl, KCl, CaCl2 and NH4Cl) for 24 hours, after which the sample was rinsed 

with distilled water and then finally dried at room temperature for a further 24 hours. 

The aim of the pre-treatment is to increase the content in a single ion (homoionic 

form) so that certain ions from the zeolite structure are removed, whilst the more 

easily removable ones are well located (Inglezakis et al., 2001).  

 

ii. Feed preparation 

The synthetic feed solutions in concentrations ranging from 50 - 500 mg/ L were 

prepared using distilled water and Merck Ltd. high grade salts of Cu(NO3)2.3H2O, 

Co(NO3)2.6H2O, NiSO4.7H2O and Cr(NO3)3.9H2O. The solutions were well mixed 

prior to use. 
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3.2  Experimental methods 

 

3.2.1 Batch studies 

For the batch tests, 2g, 4g and 10g zeolite samples were contacted in conical flasks 

with 100 mL of single-and multi - component synthetic feed solutions. They were 

agitated at 300 rpm in a shaking incubator (Labex) at room temperature, in the aim of 

reducing the film boundary layer surrounding the clinoptilolite particles, thus 

increasing the external film transfer coefficient and hence the rate of metal ions 

uptake (Kesraoui - Ouki et al., 1993) and eliminate mass transfer control by diffusion 

(Kocaoba et al., 2007; Inglezakis et al., 2007). Every hour, 2 mL supernatant samples 

were taken for metal ion concentration analysis using the atomic adsorption 

spectrophotometer, AAS (Spectro AA, 55B Varian) and pH measurement using a pH 

meter (labX Direct - Seven Multi Mettler Toledo). The pH values were just 

monitored and not adjusted. Contact was continued usually for 24 hours, until 

adsorption equilibrium was attained (determined using AAS as the stage at which the 

supernatant concentration becomes constant with time). 

 

Data obtained from the batch adsorption tests was used to determining the loading 

capacity, qe (mg/g) of the different adsorbents, using the following mass balance:  

�� � ���  – �A� B C/D     (3.1) 
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The percentage removal of metal ions from solution was also determined using the 

relationship below:  

% =FDGH,I ��  �  J�CK 2 CL�100N/CK  (3.2) 

 

where, Co and Ct are the initial and final metal ion concentrations in solution (mg/L) 

respectively, V is the solution volume (L) and m is the weight of the zeolite used (g). 

 

Regeneration in batch studies 

Regeneration of the natural and Na+- form zeolite was performed using 0.5M NaCl as 

eluant. After each run, the zeolite sample was shaken in the stripping solution at 300 

rpm for 45 mins, rinsed twice in ample distilled water for a total period of 15 mins 

and dried in open air. It was then re-used for the next service run and the regeneration 

was repeated 4 to 5 times in order to observe the adsorption efficiencies with time. 

The adsorption/ desorption cycle was carried out to determine the reversibility of the 

reactions and reusability of clinoptilolite (Oztas et al., 2008; Han et al., 2006). 

 

For the batch processes conducted, repeat tests were carried out with varying 

conditions as follows:  

i) Initial feed concentrations (Co) between 50 mg/L (initially used on South 

African clinoptilolite by Semosa (2005) and 500 mg/ L (the chosen upper 

limit).  

ii) Clinoptilolite particle sizes (1.0mm - 4.0mm and 0.4mm – 0.8mm) 

iii) Forms of the clinoptilolite (natural and conditioned/ pretreated samples) 
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iv) Regenerated clinoptilolite samples (up to 4 or 5 regeneration cycles). 

 

All experiments in the batch and continuous processes were conducted at room 

temperature and pressure. 
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3.2.2 Column studies 

Most industrial adsorption processes are carried out in column systems. The dynamic 

adsorption tests were carried out at isothermal conditions (T = 25 ± 2oC) using an 

AKTAprime set of equipment as shown below. 

 

   

Fig.3.1 AKTAprime dynamic column apparatus 

 

The equipment consists of a vertical tightly sealed column packed with zeolite, 

through which the feed solution (and later, the elution solution) is continuously 

pumped so that the packed zeolite bed meets fresh feed each time as the feed trickles 

down the column. The AKTAprime equipment automatically collects effluent 

samples in the fraction collector at set intervals of time and the remaining solution is 

discarded through the outlet tubing just before the fraction collector. The collected 

samples are then analysed for metal ion concentrations using the AAS.  

Fraction 
collector 

Column 

Feed solution 

Feed inlet 
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Pressure 
sensor UV and  
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Regeneration in column studies 

After every run, the column was regenerated using 0.5M NaCl as stripping solution, 

which was being feed to the column at the top at 2mL/min until the effluent was 

exhausted of most of the metal ions it adsorbed. The elution stage was left to run for 

85 mins, and by this time, most of the ions would have been desorbed. After the 

stripping stage, the column was washed with water that was also feed from the top at 

4 mL/min for10 mins. After this the column was ready for use again. About 2 to 3 

regeneration cycles were carried out for each experiment and the adsorption 

efficiencies determined. 

 

All experimental analyses were carried out in duplicate and mean values are 

presented in all the results. 
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3.3 Characterisation techniques/ experimental procedures 

 

3.3.1 B.E.T Surface Area Analysis 

The Brunauer Emmett and Teller (BET) method was employed to measure natural, 

Ca2+, K+, NH+
4, Na+ - form clinoptilolite for their specific surface areas. The zeolite 

samples were dried in flowing helium for 2 hours at room temperature. Thereafter, 

they were cooled by submerging the reactor in liquid nitrogen, over which a stream 

where 30% nitrogen in helium flowed. The zeolite samples were then heated to room 

temperature and desorption isotherms for N2 were measured. To calibrate the 

equipment, samples of known surface area were used. 

 

3.3.2 Atomic Adsorption Spectrophotometer (AAS) 

Metal ions concentrations in solution were determined by atomic adsorption 

spectrophotometry (Spectro AA, 55B Varian). Adsorbate was aspirated into the 

spectrophotometer, where metal ions present in solution were ionised in an air and 

acetylene flame environment until a corresponding concentration was recorded on the 

screen. The wavelengths and slit widths were varied to suit the optimum working 

range required for the particular metal ion. Before every run, the equipment was 

calibrated using known high grade standard solutions and the appropriate lamp until a 

curve was obtained, which was in agreement with the calibration curves in the AAS 

working manual. 
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3.3.3 Scanning Electron Microspectrometer (SEM) 

The surface morphology of the different zeolite samples was determined using the 

Scanning Electron Microscopy (SEM) model Jeol JSM840 at varying magnifications. 

The SEM was operated at an accelerated voltage of 20 keV. The zeolite samples were 

coated with carbon to make their surfaces conductive. 

 

3.3.4 X-Ray diffraction 

XRD was used to identify the bulk phases of the natural zeolite. The sample was 

ground to a fine powder and pressed firmly into the sampler holder before analysis 

using the Philips PW 1830 diffractometer. The x - ray diffractometer was operated at 

40kV and 40mA for 45 minutes, over a range of °2θ from 0° to 80º, and a step size of 

0.04. The patterns were collected and phase identification was done using X’Pert 

HighScore software containing ICDD (International Centre for Diffraction Data) files 

for comparison.  
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4.0 CHAPTER FOUR 

4.1  Results and discussion 

 

Batch and column experiments were carried out to investigate the adsorption 

capacities of natural and modified zeolites for nickel, cobalt, copper and chromium. 

The chromium metal ion was introduced to try and observe the effect of a higher 

valency metal ion in adsorption by the zeolites. The adsorption capacities were 

determined using theoretical techniques, making use of the Langmuir and Freundlich 

isotherms for the batch tests. Desorption of metal ions from clinoptilolite was also 

determined. The aim of this work is to establish the reversibility and reusability of the 

South African clinoptilolite. 

 

4.2 Characterisation results 

4.2.1 X-ray diffraction 

X ray – diffraction was carried out on the natural, Na+, K+, Ca2+ and NH+
4 - form 

clinoptilolite. The results are presented in figures 4.1 to 4.5. 
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Natural form 

Fig

 

The natural zeolite was found to be crystalline, monoclinic, and mainly consisting of 

heulandite, (CaAl2Si7

22 and most of the peaks lying between 2

ion on this natural sample is Ca

 

a 

a a 

 

Fig. 4.1 XRD analysis of natural clinoptilolite.

The natural zeolite was found to be crystalline, monoclinic, and mainly consisting of 

7O18. 16 H2O), with the highest peak occurring at a °2

22 and most of the peaks lying between 2θ values of 10 – 40. The dominant exchange 

ion on this natural sample is Ca2+. 

 

a = Heulandite
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The natural zeolite was found to be crystalline, monoclinic, and mainly consisting of 

with the highest peak occurring at a °2θ value of 

40. The dominant exchange 

a = Heulandite 
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Na+ -form 

Fig. 4.2

 

The sharp peaks in the 

crystalline and monoclinic nature of this zeolite. The highest peak also occurs at a °2

position of 22 and the peaks are mostly concentrated between 2

The sample consists of clinoptilolite, 

the zeolite is predominantly in the Na

still present in the zeolite because Na

ions from the framework; they are rigidly bound to the framework or occluded in the 

zeolite. Semmens and Martin, (1988) and Inglezakis et al. (2004) observed the same. 

c 

c 
c 

c 

 

. 4.2 XRD analysis of Na+ modified clinoptilolite

The sharp peaks in the diffraction pattern for the Na+ -form clinoptilolite indicate the 

crystalline and monoclinic nature of this zeolite. The highest peak also occurs at a °2

position of 22 and the peaks are mostly concentrated between 2θ

s of clinoptilolite, (NaKCa)6(SiAl)36O72.120H

the zeolite is predominantly in the Na+ -form. The ions calcium and potassium are 

still present in the zeolite because Na+ ions are not able to totally displace all of these 

ework; they are rigidly bound to the framework or occluded in the 

zeolite. Semmens and Martin, (1988) and Inglezakis et al. (2004) observed the same. 
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c 

c = Clinoptilolite
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modified clinoptilolite 

form clinoptilolite indicate the 

crystalline and monoclinic nature of this zeolite. The highest peak also occurs at a °2θ 

position of 22 and the peaks are mostly concentrated between 2θ values of 10 - 40. 

.120H2O indicating that 

form. The ions calcium and potassium are 

ions are not able to totally displace all of these 

ework; they are rigidly bound to the framework or occluded in the 

zeolite. Semmens and Martin, (1988) and Inglezakis et al. (2004) observed the same. 

Clinoptilolite        
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This also confirms that complete homoionic conversion of natural clinoptilolite is 

difficult to achieve. 

 

K+ -form 

Fig.4.3 XRD analysis of K+ modified clinoptilolite 

 

The crystallography of K+-form clinoptilolite was monoclinic and the highest peak 

was also at °2θ value of 22, and the range of the sharp peaks was 10 – 40. The K+–

modified zeolite sample mainly constituted of clinoptilolite, 

(NaK)4CaAl6Si30O72.124H2O and heulandite, CaAl2Si7O18.16H2O. This suggests that 
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K+ is not as good at displacing Ca

from the zeolite framework.

 

Ca2+ - form 

Fig. 4.4 

 

The Ca2+-form of clinoptilolite was also crystalline and monoclinic in nature, with the 

highest peak similar to the 

The 2θ range was 10 

(CaAl2Si7O18.16H2O)
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a 

a 
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is not as good at displacing Ca2+ as Na+ is, and it is also not able to displace Na

from the zeolite framework. 

g. 4.4 XRD analysis of Ca2+ modified clinoptilolite

form of clinoptilolite was also crystalline and monoclinic in nature, with the 

highest peak similar to the natural, Na+ and K+ forms; occurring at °2

 range was 10 – 40 as well, and the main component was heulandite 

O) occurring in conjunction with hexagonal kilsilite (
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not able to displace Na+ 

 

modified clinoptilolite 

form of clinoptilolite was also crystalline and monoclinic in nature, with the 

; occurring at °2θ value of 22. 

40 as well, and the main component was heulandite 

occurring in conjunction with hexagonal kilsilite (KAlSiO4), as 

Heulandite 
b = Kilsilite 
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the main impurity. As expected Ca2+ ions are the predominant ions, although it cannot 

completely displace K+ ions in kilsilite. 

 

NH+
4-form 

 

Fig. 4.5 XRD analysis of NH4
+ modified clinoptilolite 

 

 

The NH+
4-form of zeolite has a monoclinic crystallography too, with the highest 

crystalline peak appearing at a °2θ position of 22, and most of the peaks occurring 

between 2θ values of 10 – 40. The NH+
4–modified samples consisted of clinoptilolite 
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(NaKCa)6(SiAl)36O72.120H2O, with the predominant ions being Na+ ions. This 

modified sample also consists of an aluminium silicate hydroxide mineral identified 

as pargasite (NaCa2Mg4Al(Si6Al2)O22(OH)2). This compound has been identified as 

calcic clinoamphiboles (Brodie and Rutter, 1985). The main component in the NH+
4–

form zeolite was clinoptilolite, which  suggests that NH+
4 ions are not good at 

displacing Na+, K+ and Ca2+ ions from the zeolite structure . 

 

In summary, the XRD diffraction patterns of all the zeolite samples had monoclinic 

crystollographies (glassy) with an average density of 2.2 g/cm3. Most of the sharp 

peaks were assigned to clinoptilolite and heulandite. The main impurities observed 

were with kilsilite (found in the Ca2+ - form clinoptilolite) and pargasite (found in the 

NH4
+
-form clinoptilolite). In all the XRD patterns, the highest crystalline peak was 

situated at 2θ value of 22, agreeing with the work of Themistocleous (1990). The Na+ 

form clinoptilolite was found to be closest to homoionic form.  The NH4
+-form 

clinoptilolite was not able to displace any of the other metal ions (Na+ ,Ca2+ and K+) 

from solution, and the Ca2+ does not displace K+ from the zeolite framework and vice 

versa. This could suggest that separate exchange site exist for particular ions on the 

zeolite framework, and these sites are independent of the incoming metal ion. 

Sprynskyy et al. (2006) has stated that “apparently all metal ions except nickel are 

sorbed on their own sorption positions.” 
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4.2.2 Scanning Electron microscopic 

The following surface morphologies were 

analysed. The figures 4.6 and 4.7 below represent the images obtained when 

clinoptilolite samples were
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      Fig. 4.6 SEM at 850×

 

Figures 4.6 and 4.7 above show the randomly oriented crystallites and figure 4.7 

particularly indicates the crystalline nature of the

 

4.2.3 BET surface area 

Below is a table of the surface areas and pore volumes of the natural and homoionised

zeolites (based on B.E.T analysis that was carried o

(Table 4.1) also has data of the 

summarized by Nightingale, Jr. (1959):

 

Scanning Electron microscopic  

The following surface morphologies were found when the zeolite samples were

. The figures 4.6 and 4.7 below represent the images obtained when 

clinoptilolite samples were analysed using SEM at different magnifications.
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Figures 4.6 and 4.7 above show the randomly oriented crystallites and figure 4.7 

particularly indicates the crystalline nature of the zeolite. 

surface area analysis 
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Table 4.1 BET analyses of natural and homoionised zeolites before loading 

 

SAMPLE 

 

SURFACE 

AREA 

D� O⁄  

 

PORE 

VOLUME 

QD& O⁄  

 

Crystal ionic 

radius at 25°C 

(Å) 

 

Hydrated radius 

at 25°C  

(Å) 

Natural 14.9 0.054 - - 

-,�RG=D 16.5 0.054 0.95 3.58 

�� form 15.6 0.049 1.33 3.31 

�,� form 10.2 0.043 0.99 4.12 

-./
� form 16.1 0.051 1.48 3.31 

 

When the natural zeolite was converted to the Na+ -form, the surface area increased 

from 14.9 m2/g to 16.5 m2/g but the pore volume remained constant at 0.054 cm3/g. 

This supports the results on the preconditioning of zeolites; that Na+ -form 

clinoptilolite exhibits slightly higher adsorption capacities than natural clinoptilolite. 

Converting the natural clinoptilolite to Na+ displaces other cations sitting in the 

zeolite and opens up more sites in this almost homoionic form, thus the increase in 

the surface areas. It was found that after conditioning, the pore volume remained 

constant implying that the presence of the Na+ ions does not affect the pore volumes. 

 

When the natural zeolite was conditioned to the K+ form, it was noticed that the 

surface area increased to 15.6 m2/g and the pore volume decreased from 0.054 to 

0.049 cm3/g. From the XRD analysis, the K+ form clinoptilolite contained 
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clinoptilolite, with Na+ as the dominant ion, and K+ is not able to completely displace 

Na+ and Ca2+ ions from the framework. The surface area was measured to be more 

than that of the natural clinoptilolite, but adsorption capacities at 50 mg/L were still 

lower than that of the natural clinoptilolite (see Table 4.1 in section 4.2.3 above). The 

decreased pore volume might have restricted the accessibility of exchange sites in the 

K+ form zeolite. 

 

Ca2+ pretreated zeolites exhibited the smallest surface area (10.2 m2/g) and pore 

volume (0.043 cm3/g), which coincides with its lower percentage adsorption of all 

metal ions at lower concentrations as also shown in figures 4.27, 4.28 and 4.29. The 

Ca2+ ions also have the largest hydrated radius as stated by Nightingale, Jr. (1959). So 

once these ions sit in the zeolite framework, the ions bound with water molecules 

close up the zeolite pores, reduce interaction with the adsorbent and restrict ion 

movement in and out of the structure  

 

The NH+
4 -form clinoptilolite exhibited a higher surface area than the natural zeolite, 

namely 16.1 m2/g as compared to the 14.9 m2/g of the natural zeolite. However, the 

natural zeolite had a pore volume of 0.054 and the NH+
4 0.051 cm3/g. This slight 

difference in the pore volume may have had an effect on the loading capacity 

(Figures 4.27, 4.28 and 4.29). The other exchange ions (Na+ and Ca2+) sitting in the 

NH+
4 -form clinoptilolite, which NH+

4 is not able to displace may have contributed to 

the closing up of the pores and reducing loading capacities as compared to the natural 

or Na+ clinoptilolites. 
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In summary, it was interesting to observe that the Na+-form clinoptilolite with the 

larger surface area (16.5 m2/g) adsorbed more metal ions from solution as compared 

to that natural, K+ and NH+
4-form zeolites, with a smaller surface areas. Despite the 

natural zeolite having a smaller surface area than K+ and NH+
4-form zeolites, it seems 

to exhibit a higher cation exchange capacity than those two homoionised zeolites 

possibly due to its slightly larger pore volume, which makes it more accessible for 

metal ions to move in and out of the zeolite framework and exchange ions at the 

different sites. 
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4.3 Batch processes 

 

4.3.1 Particle size effect 

A big particle size (4.0 mm – 1.0mm) and a small zeolite particle size (0.8 mm – 

0.4mm) were used at a feed concentration of 50 mg/L and zeolite weights of 2 and 

4g, and the amounts of adsorbate remaining in solution with respect to the two 

particle sizes were observed. This experiment was initially done for Cu2+, Co2+ and 

Ni2+ and the results obtained are presented in figure 4.8 below. 

 

 

 

 

 

 

 

 

 

 

 

  



 

K.Kapanji (MSc) Page 65 
 

 

 

  

Fig. 4.8 Adsorption of metal ions on big and small sized natural zeolite 
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It was observed that the smaller particle sized samples adsorbed slightly more metal 

ions of Ni2+, Cu2+ and Co2+, and so less metal ions remained in the supernatant 

solution at equilibrium for the smaller particle sizes than the bigger particle sized 

zeolite. For instance, adsorption of nickel ions using 2g clinoptilolite samples showed 

final supernatant concentrations of 19 and 23 mg/L for the smaller and bigger particle 

sizes respectively. For Cu2+ ions, the final ions in solution were 12 and 14 mg/L, and 

for Co2+ ions, the remaining ions in solution were 14 and 19 mg/L, with the smaller 

particle sized natural clinoptilolite adsorbing the most ions The lower final 

concentration (with the smaller particle sized particles) implies a greater loading for 

metal ions onto the zeolite. This increase in loading capacity can be attributed to the 

exposure of more internal pores in the particles, which in turn makes adsorption 

centres more exposed and accessible in relation to the incoming ions, and so 

adsorption and ion exchange capacities are increased. Authors such as Sprynskyy et 

al. (2006) and Inglezakis et al. (2007) observed the same behaviour using 

clinoptilolite and bentonite clay. The bigger particle sized clinoptilolite had lower 

adsorption capacities than the smaller particle sizes possibly because the 

exchangeable sites were occluded within the bulk of the zeolite structure, and 

breaking it up into smaller sizes makes the sites more available to the incoming ions 

and thus increases the adsorption capacity. 

 

The availability of sites relates to the equilibrium behavior of the ion exchange 

system whereas the accessibility relates to the kinetic behavior of the ion exchange 
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system; the ease of movement of the specific ions within the pores leading to the 

sites. 

 

On the whole, as seen in figure 4.8, adsorption capacity slightly increases with a 

decrease in zeolite particle size for the three metal ions discussed. From this 

experiment, it was therefore decided to use the smaller particle sized clinoptilolite 

samples in the rest of the experiments because of their slightly higher adsorption 

capacities and less variability, which is expected in adsorption studies. 

 

4.3.2 Adsorption Equilibrium 

The adsorption equilibrium was observed for Cu2+, Co2+ and Ni2+ using 50 and 500 

mg/L single feed stocks. Figure 4.9 and 4.10 show the results obtained at 50 and 500 

mg/L, after the results of the metal ions were superimposed onto one graph. 

Adsorption equilibrium was completely attained by the 4th hour (240 mins) of running 

at lower and higher feed concentrations of 50 mg/L and 500 mg/L. However, at 50 

mg/L feed concentrations, about 99%, 99%, 98% and 89% of Cu2+, Co2+, Ni2+ and 

Cr3+ were adsorbed in the first hour of contact using 10g of clinoptilolite; a very fast 

intake of metal ions was observed. Therefore, at lower concentrations, the adsorption 

equilibrium is said to be completely reached by the 4th hour, although the process can 

be stopped after the 1st hour. It was observed that at 500 mg/L feed concentration, 

only 75%, 43%, 51% and 26% of Cu2+,Co2+, Ni2+ and Cr3+ were adsorbed 

respectively, at equilibrium (4th hour) using 10g zeolite samples. Beyond this time, 
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the amount of adsorbate removed from solution with increase in time is negligible. 

This behaviour was observed in single and multi-component feeds and at all 

concentrations.  

 

During the removal of metal ions from the supernatant solutions, a bumpy trend was 

observed for the nickel lines at both 50 and 500 mg/L feed concentrations. The nickel 

ions adsorbed initially and then desorbed with time. Sprynskyy et al. (2006) also 

observed this behaviour with Ni2+ ions or when conducting experiments at higher 

metal concentrations. This inversion phenomenon was attributed to the counter 

diffusion of exchangeable cations. Figures 4.9 and 4.10 indicate the time at which 

adsorption equilibrium was attained and the adsorption and desorption behaviour of 

nickel ions.  

 

 

Fig. 4.9 Adsorption equilibrium on 2g natural clinoptilolite using 50 mg/L feed. 
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Fig. 4.10 Adsorption equilibrium on 10g natural clinoptilolite using 500 mg/L feed. 

 

4.3.3 Natural zeolite loading 

Using the mass balance equation (3.1) from chapter 3, the loading capacity, 

, was determined. The loading capacity of the natural zeolite, and 

later on, the modified zeolites were determined, giving the maximum exchange 

capacities reached after at equilibrium (4 hours). The loading capacities are given 

figures 4.11 and 4.12 below.  
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Fig. 4.11 Equilibrium loading capacities of natural clinoptilolite at 50mg/L feed. 

 

 

Fig. 4.12 Equilibrium loading capacities of natural clinoptilolite at 500 mg/L feed. 

 

The experimental maximum equilibrium sorption capacity was found to be obtained 

at lower masses of the zeolite; at 2g, regardless of metal ion concentration used (Also 

0

0.5

1

1.5

2

2.5

3

2g 4g 10g

Lo
a

d
in

g
 c

a
p

a
ci

ty
 (

m
g

/g
)

Natural zeolite weights

copper

cobalt

nickel

chromium

0

1

2

3

4

5

6

7

8

9

10

2g 4g 10g

Lo
a

d
in

g
 c

a
p

a
ci

ty
 (

m
g

/g
)

Natural zeolite weights

copper

cobalt

nickel

chromium



 

K.Kapanji (MSc) Page 71 
 

see table B1 in Appendix B). The natural South African clinoptilolite maximum 

adsorption capacities for copper, cobalt, nickel and chromium (Figure 4.11) was 

found to be 2.6, 2.3, 2.1 and 1.7 mg/g respectively at 50 mg/L feed. Almost 100% 

removal was achieved for these experiments at 50mg/L. This however, was not 

conclusive because the loading capacity was limited by insufficient initial metal ions 

in solution. For the 500 mg/L feed, the loading capacity onto 2g natural clinoptilolite 

was 8.9, 3.3, 7.0, and 6.1 mg/g, respectively (Figure 4.12). Copper metal ions were 

adsorbed the most in the single-component feeds at both 50 mg/L and 500 mg/L. 

Clearly, it can be seen that the loading capacity is dependent on the amount of zeolite 

added to a fixed volume; the larger the amount of zeolite used in a fixed volume, the 

lower the loading capacity and vice versa.  

 

Many researchers have tested the sorption capacity of clinoptilolite samples, but 

results are often difficult to compare. For instance in this experiment, copper seemed 

to be exchanged most with the 2g clinoptilolite samples and 500 mg/L feed 

concentration, giving 8.9 mg/g as the loading capacity. Erdem et al. (2004) estimated 

this value to be 9.10 mg/g for 400 mg/L copper feed concentration, whereas, Alvarez- 

Ayuso et al. (2003) studied metal uptake from solutions with metal concentrations 

ranging from 10 to 200 mg/L and found copper loading to be about 5.91 mg/g. Then 

again, according to Sprynskyy et al. (2006), from the Langmuir isotherm 

investigations, the maximum sorption capacity for copper was 6.74 mg/g. The noted 

discrepancies of the published data can be attributed to the mineralogy and chemical 

features of the used sorbents as well as by experimental parameters such as sorbent–



 

K.Kapanji (MSc) Page 72 
 

solution ratio, duration of experiments and equilibrium concentration values 

(Sprynskyy et al., 2006; Erdem et al., 2004). 

 

4.3.4 Batch adsorption isotherm models 

Adsorption isotherms or models can be used as reference points for evaluating the 

characteristic performance of an adsorbent. 

 

Langmuir isotherm  

Different equilibrium feed concentrations (50 and 500 mg/L) using 2g, 4g and 10g 

zeolite weights were used at 25oC ± 2 to yield the following results shown in figures 

4.13 and 4.14,when Ce/Q e was plotted against Ce values at equilibrium. The three 

metal ions are superimposed onto one graph for comparative purposes. 

 

 

Fig. 4.13 Langmuir isotherm of natural clinoptilolite in 50 mg/L feed. 
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Fig. 4.14 Langmuir isotherm of Na+ form clinoptilolite in 50 mg/L feed. 
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adsorption is a monolayer) (Gunay et al., 2007). The correlation coefficients, R2, were 
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below.  
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Table 4.2 Parameters for Langmuir isotherms at 50 mg/ L 

Natural zeolite Na+ form zeolite 

 �ST� �UT� VWT� �ST� �UT� VWT� 

XY (l/g) 2.6 0.51 0.60 0.98 0.81 0.87 

a (l/mg) 0.20 0.22 0.27 0.37 0.32 0.34 

XY Z⁄  (mg/g) 13.0 2.3 2.2 2.6 2.5 2.6 

[T 0.9929 0.9971 0.9996 0.999 0.9937 0.9935 

 

The experimental equilibrium loading capacity at the 50 mg/L feed concentration was 

found to be in the range of 1.6 – 2.6 mg/g for all the metal ions. The theoretical 

maximum monolayer adsorption capacity, \] from the Langmuir model was found 

using the relationship ^_ `⁄  (mg/ g) (Gunay et al., 2007), and the range obtained was 

2.27 – 2.64 mg/g (which is relatively close to the experimental values) although one 

theoretical adsorption capacity value for Cu2+ loading onto natural zeolite was as high 

as 13.0 mg/g (see first column in table 4.2). 

 

A plot of the Langmuir isotherms was done using 2g, 4g and 10g zeolite samples, and 

equilibrium data using initial feeds of 50 and 500 mg/L. The following results were 

obtained; 
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Fig. 4.15 Langmuir isotherm of natural clinoptilolite in 50 and 500mg/L feed. 

 

 

Fig. 4.16 Langmuir isotherm of Na+ clinoptilolite in 50 and 500 mg/L feed. 
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line, which increases with increasing concentration but with different gradients (Also 

see figures E5 and E6 in Appendix E). Thus, the Langmuir isotherm model applies 

well to lower concentrations but not at higher concentrations. This may indicate that 

the Langmuir isotherms assumptions do not hold at higher concentrations such as 500 

mg/L.  

 

Freundlich isotherm 

This was conducted at different equilibrium feed concentrations (50 and 500 mg/ L) 

using 2g, 4g and 10g zeolite samples, and at 25oC ± 2. The following results (Table 

4.3) were obtained: 

 

Table 4.3 Parameters for Freundlich isotherms at 50 mg/ L 

Natural zeolite Na+ form zeolite 

 �ST� �UT� VWT� �ST� �UT� VWT� 

Xa (mg/g) 3.0 0.5 0.5 0.7 0.7 0.7 

n(g/ L) 2.1 2.0 2.1 2.0 2.4 2.0 

[T 0.9631 0.989 0.9523 0.9261 0.9037 0.9071 

 

At 50 mg/L, the data only fitted moderately well with the linear form of the 

Freundlich isotherm with the correlation coefficients R2, ranging from 0.9037 – 

0.989. The values of Kf  and n, relating to the adsorption capacity (mg/g) and 

adsorption intensity (g/L) respectively were also calculated. The theoretical 
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maximum loading capacity range was found to be in the range 0.5 – 3.0 mg/g, which 

is closely related to the experimental values obtained (1.6 – 2.6 mg/g). It has been 

observed that for values of n between 2 and 10, the zeolite shows good adsorption 

(Erdem et al., 2004). At higher feed concentrations (500 mg/L), the data did not fit 

the Freundlich isotherm, implying that the isotherm does not hold, even when it 

assumes that the energies of adsorption are not identical. 

 

4.3.5 Zeolite modification/homoionisation and their performance 

Adsorption data for Cu2+, Co2+ and Ni2+ onto natural clinoptilolite and zeolites which 

had been modified with Na+, K+, Ca2+ and NH+
4 are shown below in figures 4.17, 

4.18 and 4.19. The graphs were superimposed, to compare their performances as 

shown below: 

 

Fig. 4.17 Cu2+ loading onto 10g natural and homoionised clinoptilolite using 50mg/L 
feed. 
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Fig. 4.18 Co2+ loading on 10g of natural and homoionised clinoptilolite using  

50 mg/L feed. 
 
 

 

Fig. 4.19 Ni2+ loading onto 10g of natural and homoionised clinoptilolite using 50 
mg/L feed. 
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i) At 50 ppm 

When the three metal ions were loaded onto natural and modified zeolites, a similar 

order was observed, regardless of the mass of zeolite used (Also see Figures C7, C8 

and C9 in Appendix C). For Cu2+ and Ni2+ ions, The loading capacities for the Na+ 

form and natural clinoptilolite were closer to each other, followed by the NH+
4 and 

K+ -forms, which were also close together, then lastly Ca2+ -form clinoptilolite, which 

recorded the lowest adsorption capacities at 50 mg/L. This trend was observed for 

single component feed solutions of Cu2+, Co2+ and Ni2+ using 2g, 4g and 10g zeolite 

weights. This trend shows that natural and Na+ form clinoptilolite have similar 

adsorption capacities, although Na+ form has a slightly higher adsorption capacity 

that the natural zeolite. This adsorption capacity was followed by K+ and NH+
4, and 

lastly Ca2+. Panayotova and Velikov (2003), as stated in section 1.3, also observed a 

higher adsorption capacity of Na+ pretreated clinoptilolite compared to the natural 

one (improved loading capacities when the zeolite is modified). This coincides with 

Na+ - form zeolite’s higher BET surface areas and pore volumes than that of K+,Ca2+ 

and NH+
4- form zeolites, as was observed during BET analysis in Table 4.1 of section 

4.2.3.  

 

NH+
4 and K+ -form clinoptilolites have surfaces areas larger than Ca2+ but lower than 

Na+ -form zeolite. Their ionic radii and hydrated radii are the same (Table 4.1), which 
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accounts for the small difference in their adsorption capacities values of the three 

metal ions.  

Ca2+ form zeolite adsorbs the smallest amount of metal ions. One explanation is 

attributed to the pore sizes of the zeolite crystallites, which are usually affected by the 

size of the exchange cations sitting in the zeolite framework. Ca2+ has the largest 

hydrated radius (Table 4.1), and when it exchanges its ions with the ions in the 

zeolite, the hydrated ion occupies the exchange sites but restricts the pore size 

openings and thus creates a sieving effect on the metal ions in solution. Therefore, 

most of the ions have restricted access into the framework to exchange with the Ca2+ 

ions. The performance of the natural and pretreated zeolites showed the following 

adsorption capacity order for the metal ions; 

Na+ ≥ natural > NH+
4 > K+ > Ca2+ 

This order was very pronounced for Ni2+ and Cu2+ adsorption. For Co2+ the same 

trend was followed although the difference in the adsorption capacities by the natural 

and modified zeolites was very small  

 

Also, at low concentrations of 50 mg/L, it was noticed that the loading capacities 

were ranging between 0.6 mg/g to 2.13 mg/g (using 10g natural zeolite). From this, it 

can be concluded that at equilibrium, almost all the Cu2+, Co2+ and Ni2+ ions have 

been loaded onto the zeolite (very negligible amounts are present in the supernatant 

solutions). Theoretically, the amount of Na+, NH+
4, K+ and Ca2+ ions that are 

displaced from the zeolite equals the number of moles of metal ions adsorbed 
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(depending on the metal ions charge balance and valency). Therefore, the amount of 

Na+ ions displaced from the zeolite is very minimal in comparison with the bulk of 

Na+ ions still in the zeolite. This implies that the natural and Na+ form zeolites take 

up Ni2+ metal ions (Figure 4.19) for instance, but it is essentially still in the Na+ form, 

which is characterized by high surface area and pore volumes as shown in BET 

surface area results in table 4.1. This explains the consistent trends obtained for Cu2+, 

Co2+ and Ni2+, where the loading depends on the initial form of the zeolite. 

 

ii) At 500 ppm 

At higher feed concentrations of 500 mg/L, no consistent order was observed in the 

adsorption of the metal ions, regardless of the mass of zeolite used; see figures 4.20 

to 4.22 below: 

 
Fig. 4.20 Cu2+ loading on 2g natural and homoionised clinoptilolite using  

500 mg/L feed.  
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Fig. 4.21 Co2+ loading on 2g natural and homoionised clinoptilolite using  
500 mg/L feed. 

 

 
Fig. 4.22 Ni2+ loading on 2g natural and homoionised clinoptilolite using  

500 mg/L feed. 
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It was noted that there was a reversal of capacity (and selectivity) at higher 

concentrations. The following order of the 2g zeolites’ performance for the metal ions 

was as given below: 

 

Cu2+ adsorption:  Na+ > natural > NH+
4 > K+ > Ca2+ 

Co2+ adsorption: Ca2+ > NH+
4 ; Na+ > K+ > natural 

Ni2+ adsorption: natural > Ca2+ > Na+ > K+ > NH+
4  

 

No consistent order was observed at higher concentrations of 500 mg/L like it was 

when 50 mg/L feed concentration was used. Interestingly, Ca2+-form zeolite loading 

capacity of Co2+ and Ni2+ metal ions improved at higher concentrations, even higher 

than the Na+ form clinoptilolite, despite the Ca2+ -form clinoptilolite having narrow 

pores. This is possibly because the increased concentration gradient between the 

metal ions in solution and the exchange ions in the zeolite framework may have 

triggered the exchange of ions due to the created concentration potential, causing the 

weak Van der Waals forces to easily break off (Somorjai, 1993), and release Ca2+ 

ions into solution. At equilibrium, the high residual metal ions in solution are able to 

displace Ca2+ ions and so modify the Ca2+ zeolite to a Ni2+ or Co2+ zeolite for 

example. Therefore the zeolite takes on pore volumes that correspond to Ni2+ and 

Co2+ ions. That is probably why the zeolite performance does not follow the same 

trend followed at lower concentrations. 
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The above results demonstrate that metal selectivity (and capacity) can be controlled, 

at low loadings and feed concentrations using natural and homoionic forms, where 

the surface areas and pore volumes can be altered. It was therefore, decided to use the 

natural and Na+ form zeolites for the remainder of the experiments because they 

generally exhibited better and consistent metal ion adsorption than the other 

homoionised zeolites.  

 

4.3.5 Regeneration of natural and Na
+
 form zeolites 

The regeneration process of clinoptilolite is an important step in ion exchange, in 

order to make the process economical, as it is able to recover adsorbed metal ions 

from the zeolites, which can then be put back into the process stream. Regeneration 

employs the adsorption and desorption mechanisms, which in turn determine the 

reversibility and reusability of the zeolite material (Argun, 2008; Oztas et al., 2008; 

Han et al., 2006). 
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Regeneration of the natural zeolite 

 

Fig. 4.23 Loading of Cu2+ using 10g regenerated natural clinoptilolite and 500 mg/L. 

 

Figure 4.23 above showed that when the natural clinoptilolite was initially used at 

500 mg/L, the loading capacity for Cu2+ ions was 3.6 mg/L, and after the first 

regeneration with 0.5M NaCl stripping solution, the loading capacity increased by 

25%. The third and forth loading capacities after regeneration were around 3.8 mg/L 

(lower than the first regeneration run but still higher than the initial run) and the forth 

run had a loading capacity with was slightly lower than the initial run (Figure 4.23). 
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Fig. 4.24 Loading of Co2+ using 10g regenerated natural clinoptilolite and 500 mg/L. 

 

The initial loading capacity of Co2+ ions at 500 mg/L was 2.1 mg/g. and after the first 

regeneration cycle, the loading capacity increased by about 75%. The second and 

third regeneration cycles also recorded loading capacities higher than the initial run 

but lower than the first regeneration cycle (Figure 4.24). 

 

 

Fig. 4.25 Loading of Ni2+ using 10g regenerated natural clinoptilolite and 500 mg/L. 
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The initial Ni2+ ions loading capacity recorded when using 500 mg/L was 2.4 mg/g. 

The inversion phenomenon of nickel (also discussed in 4.3.2) was also observed at 

higher concentrations; the adsorption and desorption phenomenon of nickel ions due 

to counter diffusion of ions. After the first regeneration cycle, the loading capacity 

increased by 50%. The second and third regeneration cycles loading capacities were 

almost the same, at 3 mg/g (which was higher than the initial run but lower than the 

first regeneration cycles). 

 

In summary, it was observed that the subsequent regeneration runs had higher 

adsorption capacities than the first initial service run (Figures 4.23, 4.24 and 4.25) 

when natural clinoptilolite and feed concentrations of 500 mg/L were used. This 

shows that the natural zeolite, after regeneration is converted to Na+ form zeolites 

(Du et al., 2005) (with increased surface area and pore volume), which opens up more 

vacant exchangeable sites and easily exchanges with incoming ions. This then explain 

why after the initial run, the regenerated runs adsorb more metal ions. This was 

applicable to the three metal ions Co2+, Cu2+ and Ni2+. The natural clinoptilolite 

exhibited good adsorption capacities using 0.5M NaCl as the stripping solution and 

the first three regeneration cycles were able to achieve loading capacities that were 

higher than the initial run. 
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Regeneration of Na+ form zeolite 

Na+ form clinoptilolite and 500 mg/L of feed concentration were used to observe the 

regeneration behaviour. Figures 4.26, 4.27 and 4.28 illustrate the loading capacities 

obtained: 

 

Fig. 4.26 Loading of Cu2+ using 10g regenerated Na+-form clinoptilolite and 500 

mg/L. 

 

It was observed that when Na+ clinoptilolite was first regenerated with 0.5M NaCl, 

the loading capacity increased by about 12% (Figure 4.26). The second regeneration 

run was 14% lower than the initial run. Then the subsequent third and forth 

regeneration runs were also lower than the initial run. 
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Fig. 4.27 Loading of Co2+ using 10g regenerated Na+-form clinoptilolite and 500 

mg/L. 

 

With an initial loading capacity of Co2+ ions of 2.7 mg/g (Figure 4.27), it was 

observed that the first regeneration loading capacity increased to 3.6 mg/g. The 
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Fig. 4.28 Loading of Ni2+ using 10g regenerated Na+-form clinoptilolite and 500 

mg/L. 

 

The initial Na+-form clinoptilolite loading capacity for Ni2+ ions was calculated to be 

2.3 mg/g. After the first regeneration cycle, the loading capacity slightly increased to 

2.6 mg/g. The second, third and forth regeneration cycles also recorded loading 

capacities lower than the initial run (Figure 4.28). 

 

In summary, even though Na+ -form clinoptilolite has higher loading capacities than 

the natural clinoptilolite, it was observed that after the first regeneration, the 
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exchangeable sites saturated or 0.5M NaCl could not effectively regenerate the 

zeolites. Therefore, regenerating the Na+ form clinoptilolite may have only opened up 

a few sites that for further exchange of ions (Giles et al., 1974). This relationship was 

observed for all the three metal ions at 500 mg/L, regardless of the amount of zeolite 

used. 

 

Na+ -form zeolite shows better adsorption capacity than natural clinoptilolite. 

However, when regenerated, the Na+-form clinoptilolite exhibited lower regeneration 

adsorption capacities compared to the natural clinoptilolite. Inglezakis et al. (2004) 

also observed a similar pattern. With the Na+-form clinoptilolite, only the first 

regeneration cycle was able to achieve loading capacities higher than the initial run 

but with the natural clinoptilolite, the first three regeneration cycles achieved loading 

capacities higher than the initial run, using 0.5M NaCl as the stripping solution and 

feed concentrations of 500 mg/L. 

 

4.3.6 Adsorption in multi-component feed 

A mixed feed at 50 mg/L and then 500 mg/L was used to observe the percentage 

removal of metal ions from solution during competitive adsorption at equilibrium 

using natural clinoptilolite. 
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i. Using 50 mg/L. 

 

Table 4.4 Percentage metal ions removal at 50 mg/L. 

Time   2g natural clino.   4g natural clino.   10g natural clino. 

(hr) Ni
2+

 Cu
2+

 Co
2+

 Cr
3+

 Ni
2+

 Cu
2+

 Co
2+

 Cr
3+

 Ni
2+

 Cu
2+

 Co
2+

 Cr
3+

 

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1 74.0 93.1 72.9 63.8 88.8 98.6 93.4 80.2 98.2 98.9 99.3 88.6 

2 65.6 93.1 79.2 65.1 96.2 97.9 95.3 85.7 96.9 98.3 99.2 92.4 

3 76.1 94.0 81.9 67.1 91.3 98.1 96.5 86.5 98.6 98.0 99.5 94.1 

4 68.6 95.5 84.5 64.3 92.0 98.2 97.1 85.6 98.5 97.3 99.1 93.7 

5 68.2 96.9 87.8 64.3 92.3 98.4 97.0 85.8 98.1 98.5 99.1 96.8 

6 68.4 97.0 87.8 64.4 91.9 98.3 97.2 85.9 97.8 98.5 98.8 96.9 

 

At 50 mg/L, the percentage removal of metal ions increased with an increase in the 

amount of natural zeolite used (Table 4.4). For nickel removal, the percentage 

removal range was from 68% - 98% at equilibrium (using the 4th hour values). All the 

metal ions were removed from solution using 10g of zeolite. For copper removal, the 

average percentage range observed, using 2g - 10g weights of zeolite was 96% - 97%. 

The range obtained for cobalt removal was 84% - 97% and for chromium 64% - 94%. 

 

The percentage adsorption of the metal ions Cu2+, Co2+, Cr3+ and Ni2+ was also very 

good in mixed feeds of 50 mg/L. The amount of metal ions removed increased with 

an increase in the amount of adsorbent used. All the metal ions were removed when 

10g zeolite amounts were used but when 2 and 4g samples were used, the zeolite 

removed the copper and cobalt preferentially, followed by nickel and then chromium.  
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In the case of low concentrations, the ratio of the initial number of moles of metal 

ions to the available surface area is larger and consequently the fractional adsorption 

becomes independent of initial concentrations. That is why all the metal ions were 

removed at initial feeds of 50 mg/L. Copper was mostly removed from solution 

followed by cobalt possibly because the Cu2+ and Co2+ ions are adsorbed more 

strongly, thus bringing in an aspect of competition of the ions in solution for the 

available sites. Another explanation is that more of the copper is adsorbed than the 

other metal ions because each metal ion, despite having similar properties to each 

other interacts only with specific sorption centres of the clinoptilolite and in different 

sorption forms (Sprynskyy et al., 2006).  

 

Thermodynamically, the ionic radius of an ion plays a role in determining the size of 

the hydrated radius. The smaller this ionic radius, the more water molecules it draws 

to itself thus the larger the hydrated radius, which then does not easily diffuse through 

the zeolite framework. Nightingale Jr. (1959) gives the ionic radii of Ni2+, Cu2+, Co2+ 

and Cr3+ as 0.69, 0.71, 0.78 and 0.91 Å respectively. Chromium (III) has the smallest 

ionic radius and thus the highest hydrated radius of any known heavy metal and its 

exchange in zeolitic materials requires a favourable pore opening (Covarrubias et al., 

2006). This may explain why chromium when introduced into the experiments in 

multi-component and single–feed solutions was least adsorbed. Dal Bosco et al. 

(2005) concluded that highly charged ions, such as chromium (III), tend to have a 

higher affinity with cation–exchange sites on the zeolite surface than divalent cations. 

However, this was not observed in the experiments in this dissertation. 
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Effect of initial metal ion concentration 

ii. Using 500 mg/L feed 

The following metal removal percentages at higher feed concentration of 500 mg/L, 

using 2g, 4g and 10g natural zeolite weights, were obtained (Table 4.5) and are 

presented below: 

 

Table 4.5 Percentage metal ions removal at 500 mg/L. 

Time   2g natural clino.   4g natural clino.   10g natural clino. 

(hr) Ni
2+

 Cu
2+

 Co
2+

 Cr
3+

 Ni
2+

 Cu
2+

 Co
2+

 Cr
3+

 Ni
2+

 Cu
2+

 Co
2+

 Cr
3+

 

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1 12.1 27.0 10.6 4.4 33.2 39.2 18.9 3.7 49.3 63.2 37.9 1.4 

2 22.8 32.0 14.0 3.8 44.2 47.9 21.0 4.5 52.8 69.0 41.2 18.1 

3 27.1 36.5 14.9 17.6 32.5 47.6 19.8 27.8 42.0 71.8 41.7 23.2 

4 32.9 35.4 13.8 26.2 39.9 49.6 24.1 30.4 50.6 74.8 42.6 26.1 

5 32.0 34.8 10.9 26.0 41.3 49.7 20.5 31.6 51.7 74.8 44.4 26.7 

6 28.2 36.0 13.4 25.5 33.2 50.0 21.7 30.4 51.3 75.1 43.1 26.5 

 

From table 4.5 above, it can be seen that generally, the amount of metal ions removed 

also increased with an increase in the amount of adsorbent used. At higher metal ion 

concentrations, the percentage metal ion removal drastically dropped compared to the 

values obtained at 50 mg/L. The following ranges were obtained at equilibrium, using 

the 4th hour values. For nickel removal, the range obtained was 33% - 51% and for 

copper removal, it was 35% - 75%. Cobalt removal was in the range 14% - 43% and 

chromium, 26% - 30%.  
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At higher concentrations, the available sites of adsorption become fewer in relation to 

the adsorbates and hence the percentage removal of metal ions is also dependent on 

initial concentration (Yu et al., 2003). The following metal ion selectivity was 

observed at 500 mg/L: 

i.  2g zeolite : Cu2+> Ni2+ > Cr3+> Co2+ 

ii. 4g zeolite: Cu2+ > Ni2+ > Cr3+ > Co2+ 

iii. 10g zeolite: Cu2+ > Ni2+ > Co2+ > Cr3+. 

The zeolite selectivity for the metal ions at higher feed concentrations of 500 mg/L 

was seen to vary, with 2g and 4g giving the same series, and Co2+ and Cr3+ reversing 

in order for 10g. This shows that clinoptilolite’s selectivity for metal ions is affected 

by other factors too, not only on metal ions concentrations in solution or pore 

volumes or hydrated radii of ions sitting in the framework but it can also be altered by 

equilibrium parameters and several physicochemical causes (Inglezakis et al., 2004). 

 

4.3.7 Hydrolysis of metal ions 

Hydrolysis of metal ions from solution also contributes to the removal of metal ions 

from solution. The pH values in most the experiments were monitored, to observe to 

what extent hydrolysis had an influence on the metal ions in solution. Hydrolysis is a 

chemical reaction involving the decomposition of an ion by water (Baes Jr. et al., 

1976). In inorganic chemistry, this leads to the formation of precipitates, oxides, 

hydroxides or basic salts. Baes Jr. et al. (1976, p1) have stated that “the determination 

of the identity and stability of dissolved hydrolysis products has proved to be a 

difficult and a challenging task” because hydrolysis of a cation often appears to run 
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its course to precipitation, within a narrow range of pH, typically 1–2 units, so this 

makes it hard to determine. 

 

Although the exact hydrolysis species were not qualified and fully studied in this 

dissertation, the precipitation of metallic species and the formation of complexes are 

acknowledged as parameters that affect the separation of metal ions using zeolites. 

Only the pH values were observed, but not controlled in these experiments. The 

possibility of precipitation taking place explains to an extent the reason why the 

selectivity series and efficiencies kept varying in the experiments carried out in this 

dissertation; many different factors are at play, including external ones. 

 

Self- regulated pH 

The pH measurements were taken without adjustments, just to observe the natural 

path followed. The range observed for the metal ions is as follows: 
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Fig. 4.29 pH trends with time using a) Na+ form and b) natural clinoptilolite, at 500 
mg/L. 

 

There was a general rise in the pH with time compared to the initial pH value 

recorded in the natural and Na+ zeolites at higher feed concentrations. The pH values 

at lower concentration i.e. 50 mg/L rose slightly (Figures D3 in Appendix D), with an 

average value of 6.8.  

 

At higher feed concentrations of 500 mg/L, the pH was seen to increase with increase 

in time for both natural and Na+ - form clinoptilolite (Figure 4.29b and D4 in 

Appendix D). For instance, during nickel adsorption, the pH of the supernatant 

solution ranged between 6.0 – 6.8 and 5.8 – 6.7, for both Na+ -form and natural 

clinoptilolites respectively.  
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It cannot be ignored that with these small changes in pH values, hydrolysis of metal 

ions was taking place, and regardless of what specific basic mechanism was taking 

place at that pH, the inorganic complexes in solution had an effect on the sorption 

processes. 
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4.4 Column processes 

 

4.4.1 Breakthrough curves 

The successful design of a column adsorption process requires the prediction of the 

concentration – time profile or the breakthrough curve for the effluent (Han et al., 

2006). An estimation of the area under the breakthrough curves in the continuous 

process between the breakthrough and exhaustion points, gives the maximum column 

capacity, qe (mg/g). 

 

The characteristic S-like shaped sigmoidal graphs were obtained (though not well 

defined) in these experiments and the breakthrough and exhaustion points were 

defined as the points when effluent concentrations were about 10% and 90% of the 

initial feed concentration respectively (Han et al., 2006, Kundu and Gupta, 2005). 

The influent was a synthetic mixed (competitive) feed of Cu2+, Co2+, Cr3+ and Ni2+ 

ions. 

 

This dissertation will aim to look at the adsorption and desorption behaviour of 

clinoptilolite in column studies and its performance following regeneration. 

 

4.4.2 Column performance with mixed feed  

Figure 4.30 below shows the breakthrough curves obtained with a mixed feed 

containing Cu2+,Co2+, Ni2+ and Cr3+ ions at 50 mg/L and feed rate of 2mL/min (an 
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average flow rate used in many studies as observed in literature). The effluent 

samples were collected and concentrations analysed. The C/Co ratio was plotted 

against time to observe the behaviour of natural clinoptilolite in column studies. 

 

 

Fig. 4.30 Breakthrough curves for a mixed feed in 50mg/L at 2mL/min. 
 

The initial breakthrough point (10% of 50mg/L ; 0.1 as a C/Co ratio) was obtained at 
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the same time) by all the four metal ions. The exhaustion points however were 

different for all the metal ions (the point at which the final effluent concentration was 

90% of the initial feed). The exhaustion point for nickel was attained at 120mins (2h) 

and 200mins (3
b

�
 h� for cobalt. This exhaustion point for copper was attained at 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 60 120 180 240 300 360 420 480 540 600 660 720 780

C
/C

o

Time (min)

copper

cobalt

nickel

chromium



 

K.Kapanji (MSc) Page 101 
 

360mins (6h) and interestingly for chromium ions, the exhaustion point could not be 

reached, with the final value below 90% of the initial feed. For the first three metal 

ions, the saturation points of the zeolite for nickel, cobalt and copper was reached at 

2h, 3
b

�
 h and 6h respectively; this implies that nickel was taken up into the exchange 

sites at a faster rate than the other ions. Its specific exchange centres were more 

readily available so that the nickel diffused more quickly through the zeolite than for 

Co2+ and Cu2+ ions. For the chromium ions, it can be said that the effluent 

concentration could not reach 90% of the feed concentration of 50mg/L because the 

rate, at which chromium was adsorbed from the surface film into the micropores, may 

have been slowed down by the large hydrated radius of chromium. The metal ions 

where preferred in the following order by the natural zeolite (based on the metal ion 

that reached exhaustion point quickly): 

Ni2+ > Co2+ > Cu2+ > Cr3+ 

The selectivity series again was different from those in the batch tests at 50 mg/L, 

indicating that many factors/ experimental conditions affect the selectivity series of 

clinoptilolite for different metal ions.  

 

The inversion phenomenon of nickel was still observed in column studies, as the 

nickel adsorbed and desorbed during the experiments giving fluctuating effluent 

concentrations. This is attributed to the ease of counter diffusion of nickel ions with 

those in the sites. 
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4.4.3 Performance of regenerated zeolites 

This was conducted on the multi–component feed of Cu2+, Ni2+, Co2+ and Cr3+ metal 

ions. The regeneration solution used was 0.5M NaCl fed at 2 mL/min. However, for 

easier comparison, the discussion makes an analysis of each metal ion with every 

repeated/regenerated cycle as shown in figures 4.31, 4.32, 4.33 and 4.34 below: 

 

 

Fig. 4.31 Initial and regenerated cycles of Cu2+ ions in 50mg/L feed. 

 

From figure 4.31, it was observed the C/Co ratio of the first and second regeneration 

cycles were the same (no change in regeneration efficiency), with their final 

equilibrium value being 11% lower than the initial run (See table H1 in Appendix H). 

The breakthrough points for the regenerated cycles shifted to the left. From an initial 

value being attained at the 20th minute, the value shifted to 10mins for the first 
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regeneration cycle and 3mins for the second. Only the initial run for copper was able 

to achieve 90% exhaustion value. The first and second regeneration runs had values 

below this exhaustion point value. 

 

 

Fig. 4.32 Initial and regenerated cycles of Co2+ ions in 50mg/L feed. 

 

Figure 4.32 showed that the breakthrough points also shifted to the left with every 
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losing its loading capacity for cobalt with every new regeneration cycle, or its sites 

became inaccessible due to metal ions competing for sites and so the metal ions did 

not adsorb onto the zeolite. This explains why the breakthrough points were reached 

much earlier. The loading capacities reduced with every new regeneration cycle; the 
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first regeneration cycle reduced by 11% and the second, by 19% in comparison to the 

initial run (Table H2 of Appendix H). The two regenerated cycles could not reach the 

value of the exhaustion point (90% of the influent feed). 

 

 

Fig. 4.33 Initial and regenerated cycles of Ni2+ ions in 50mg/L feed. 

 

The breakthrough points for Ni2+ column adsorption also shifted to the left with every 

repeated regeneration cycle (Figure 4.33); from an initial value at 20mins, to about 

12mins for the first regeneration cycle. The second regeneration cycles had a 

breakthrough point attained at 2mins. The regeneration cycles had a slightly lower 

loading of 1%, compared to the initial run (Table H3 in Appendix H). In nickel 

adsorption with the regeneration cycles, all the runs were able to achieve the 
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exhaustion point values; the initial run attained this point at 150mins, the first 

regeneration cycle at 250mins and the second at 120mins.  

 

Fig. 4.34 Initial and regenerated cycles of Cr3+ ions in 50mg/L feed. 

 

The column adsorption of Cr3+ ions (Figure 4.34) showed the breakthrough points 

also shifted to the left, giving values at 20mins for the initial run, 10mins for the first 

regeneration and 4mins for the second. After regenerating the zeolite with 0.5M NaCl 

as stripping solution at 2mL/min, the loading seemed to remain constant and almost 

equal to the initial run (Also see table H4 in Appendix H). The column adsorption for 

chromium ions did not reach the exhaustion point of 90% of the initial feed 

concentration. 
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Following the first and second regenerations of the natural clinoptilolite in the 

column studies, a summary of the results is given below: 

i. The breakthrough point shifted to the left hand side with every repeated 

regeneration cycle, as compared to the initial run. The more the zeolite 

was regenerated, the shorter the time to reach the breakthrough point. It is 

likely that at this stage the zeolite structure had reduced loading capacities 

or non available sites due to metal ions initially competing for exchange 

sites. This therefore, led to the breakthrough point being quickly reached.  

 

ii. Only the regeneration cycles for nickel removal were able to reach the 

exhaustion point of 90% of 50 mg/L feed. After the first regeneration for 

nickel ions, it took a longer time to reach the exhaustion point and a much 

shorter time during the second regeneration. This suggests that for nickel 

column adsorption a longer time was recorded for the column to reach 

exhaustion point because of the effect Na+ ions have on the pore volume 

of the zeolite; this may have slowed down diffusion of nickel into the 

zeolite, thus the longer the time needed to reach this point or more 

adsorption sites became readily available after regeneration due to the 

zeolite conversion to Na+ form. During the second regeneration, the 

exhaustion point was reached much earlier possible because the loading 

capacity reduced.  

The ions cobalt, copper and chromium could not reach the 90% 

exhaustion point possibly because the sites were readily available but the 
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exchange rate of these ions with those in the zeolite framework was 

greatly reduced due to the alteration in pore volume caused by the 

conversion to natural clinoptilolite to Na+ -form after regeneration. 

iii. The selectivity series for the first and second regeneration cycles also kept 

varying. 

1st regeneration: Ni 2+> Co2+ > Cr3+ > Cu2+ 

2nd regeneration: Ni 2+> Cr 3+> Co 2+> Cu2+ 

This further consolidates the explanation given earlier that metal ion 

selectivity is affected by different internal and external factors. 

 

4.4.4 Elution curves and desorption studies 

Once the column reached exhaustion (the effluent concentration 90% of the influent 

concentration), the zeolite was regenerated using 0.5M NaCl as the stripping solution. 

The column was finally washed with distilled water at 4mL/min for 10 minutes. The 

following trend was observed on a mixed feed that was run at 2mL/min; 
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Fig. 4.35 Elution of metal ions during 1st cycle of regeneration. 

 

The above elution curve (Figure 4.35) was obtained for all regeneration cycles (1st 

and 2nd). All the curves showed a rapid/sharp increase in metal ion concentration in 

the exit solution, which was followed by a decrease in effluent values with time (also 

see figures F2, F3 and F4 in Appendix F). The same elution trends were observed by 

Medvidovic et al. (2006) and Du et al. (2005), when they conducted experiments on 

lead and ammonium column studies. The initial high concentrations in effluent 

solution suggested that the solution not only contained metal ions from within the 

zeolite lattice but also metal ions in the column between the particles, because values 

in the second elution stage where as high as the initial feed of 50 mg/L (100% 

elution) and some even more than 50 mg/L (Figures F2 and F4 in Appendix F). This 

type of desorption trend is useful in determining in how much time/ volume the 

majority of the metal ions are eluted i.e. in the first 180mins, most of the metal ions 
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had been eluted in these experiments. Extrapolating the graphs to metal ion 

concentration values of zero (complete elution) would indicate the time needed for 

complete elution of the zeolite bed, if this were possible. For instance, it would take 

approximately 690mins to completely expel Ni2+ ions from the South African 

clinoptilolite, if the stripping solution is 0.5M NaCl (fed to the column at 2mL/min). 

The South African clinoptilolite exhibited good elution efficiencies after first 

regeneration cycles with elution efficiency values of 76%, 84%, 86% and 92% for 

copper, chromium, cobalt and nickel ions respectively. Gedik et al. (2008) also 

recorded high elution efficiencies for cadmium removal using clinoptilolite.  

 

The elution efficiencies, after the 2nd regeneration were also high and close to the first 

regeneration values (Figures F2, F3, F4 and F5 in Appendix F). This corresponds to 

the good adsorption capacities and high C/Co values of clinoptilolite after the first and 

second regeneration cycles (See Tables H1, H2 and H3 in Appendix H).  

 

4.4.5 Theoretical estimation of the loading capacity in column adsorption 

The area under the curve for copper, cobalt and nickel metal ions was calculated 

between the breakthrough and exhaustion points. A summary is given below: 
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Table 4.6 Theoretical estimation of loading capacities in column studies 

 

Metal ion 

 

Area under the curve ; theoretical loading capacity (mg/g) 

�1�� 7.20 

�G�� 2.97 

-d�� 2.25 

 

Most of the calculated values were close to those obtained in the batch tests. For the 

nickel breakthrough curve between the breakthrough and exhaustion points, the area 

under the curve corresponding to the qe value was 2.25 mg/g (Table 4.6). In the batch 

tests conducted, it was calculated as 2.12 mg/g. The value of the maximum 

equilibrium loading capacity for copper was calculated to be as high as 7.19 mg/g 

compared to a value of 2.61 mg/g from batch experiments. The calculated value for 

Co2+ was 2.96 mg/g and 2.30 mg/g from batch tests. Figures G1, G2 and G3 in 

Appendix G, show the breakthrough curves with their calculated areas under the 

curves/loading capacities, using “Origins 7.5” software. 

 

The values obtained above were approximates, but the accuracy of this procedure 

would be improved if the frequency at which the samples were collected was 

increased. However this could not be done as the volume of the samples would be 

insufficient for metal ion analysis.  
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4.5 Summary of results and discussion 

 
Natural South African clinoptilolite has the ability to remove metal ion contaminants 

from solution in both batch and column studies. The pre-treatment of the natural 

clinoptilolite and a decrease in the zeolite particle size increases the surface area of 

available sites and enhances the cation exchange capacity (CEC) of the zeolite, thus 

improving its metal uptake. The good fit of adsorption isotherms at lower 

concentration (50 mg/L) and the calculated adsorption capacities also indicate the 

large adsorption capacities of clinoptilolite. 

 

The advantage of the natural South African clinoptilolite also lies in its reversibility 

as was seen that it is able to be regenerated and re-used before it begins to lose 

capacity and the efficiencies of the regenerated zeolites are very good. In batch tests, 

the loading capacities for regenerated samples increased slightly compared to the 

original runs before it started decreasing. However, in the column tests, the loading 

capacities after regeneration either remained constant or slightly reduced in 

comparison to the initial runs. 

 

Clinoptilolite’s selectivity of metal ions is not only affected by factors such as the 

metal ions concentration in solution, the opening and closing of pores depending on 

what hydrated radii of ions are sitting in the framework but it can also be altered by 

equilibrium parameters and several physicochemical causes. This conclusion explains 

why different researchers as well as work done in this dissertation have stated 
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different selectivity series/inconsistencies of clinoptilolite for metal ions. Therefore, 

the determination of selectivity series of clinoptilolite for metal ions is very complex, 

but again, this is one of the zeolite’s strength because the zeolite can be specifically 

conditioned for a desired adsorption operation/selectivity. 

  



 

K.Kapanji (MSc) Page 113 
 

5.0 CHAPTER FIVE 
 

5.1 Conclusions 

 
The ability of South African clinoptilolite to adsorb metal ions was researched in this 

dissertation. All the metal solutions used as feed were prepared in the laboratory. 

 

The following conclusions can be drawn from this research work: 

 

i) Like other clinoptilolites mined from other countries, natural South 

African clinoptilolite exhibits good adsorption capacities for metal ions 

Cu2+, Co2+, Ni2+ and Cr3+ in both batch and column studies. 

 

ii) The experimental data was slightly better suited to the Langmuir isotherm 

than Freundlinch isotherm especially at lower feeds of 50 mg/L, but this 

did not hold at higher feed concentrations of 500 mg/L. 

 
iii) Pre-treatment of the natural zeolite into Na+ form showed an improved 

cation exchange capacity at lower (50 mg/L) feed concentrations. The 

order of performance of the modified zeolites was: 

Na+ ≥ natural > NH+
4 > K+ > Ca2+ 

However, at higher concentrations of 500 mg/L, K+, NH+
4 and Ca2+ 

modified zeolite samples showed higher adsorption capacities than the 

natural zeolite, although the order of performance changed due to the 
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alteration in pore diameters caused by the type of zeolite sitting in the 

framework. The selectivity series of metal ions by natural and Na+ form 

zeolite was found to be different. This inconsistency of the selectivity 

series of metal ions is dependent on the pore diameters of metal ions 

initially sitting in the zeolite structure, equilibrium parameters, 

physicochemical causes as well as external factors such as metal ion 

complexes/ precipitates affecting zeolite pores.  

 

iv) Natural zeolite has the ability to be regenerated and re-used for subsequent 

runs (in batch and column processes) before it begins to lose capacity. 

This makes it very economical especially for developing countries like 

South Africa. The elution of natural clinotilolite in batch and column 

processes using 0.5M NaCl was very efficient. This corresponds to high 

adsorption capacities of clinoptilolite after regeneration. 
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6.0 RECOMMENDATIONS 

p.115 “Some of the parameters that affect adsorption of metal ions where researched 

in this dissertation, and their effects observed. To fully consolidate the findings on the 

behaviour of metal ions during adsorption onto clinoptilolite, it is recommended that 

the kinetics of the adsorption process and how this may vary for different metal ions 

be researched. Factors such as the potential effect of hydrolysis of metal ions and 

adsorption onto clinoptilolite (i.e. Cr3+, being trivalent, undergoes hydrolysis 

reactions at neutral pHs) should be studied. Also the possible effect of complexation 

during regeneration of clinoptilolite with 0.5M NaCl should be investigated, as some 

of the metals form stronger chloride complexes than others, notably Ni2+, and some 

metal ions like Cr3+ have slow kinetics during complexation reactions.”  
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APPENDIX A: Data Sheets 
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Table A2 Pratley data sheet 
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APPENDIX B: Maximum loading capacities using 

500mg/L feed 
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Table B1 Maximum loading capacities of natural clinoptilolite at 2g and 500 mg/L 
feed 

Time 
 

NATURAL CLINOPTILOLITE 

(hrs) Copper Cobalt Nickel Chromium 

 
(mg/g) (mg/g) (mg/g) (mg/g) 

0.0 0.0 0.0 0.0 0.0 

1.0 3.0 6.7 2.6 1.4 

2.0 5.7 7.9 3.5 2.9 

3.0 6.7 9.0 3.7 5.0 

4.0 8.2 8.8 3.4 6.8 equilibrium 

5.0 8.0 8.6 2.7 6.9 

6.0 7.0 8.9 3.3 6.9 

 
 
 
 
 
Table B2 Maximum loading capacities of Na+ clinoptilolite at 2g and 500 mg/L 

 
Time Na- FORM  CLINOPTILOLITE 

  (hrs) Copper Cobalt Nickel Chromium 

 
(mg/g) (mg/g) (mg/g) (mg/g) 

0 0.0 0.0 0.0 0.0 

1 8.0 4.2 4.5 0.6 

2 9.8 4.4 4.6 2.3 

3 10.7 4.6 4.2 4.6 

4 10.7 4.6 3.8 5.8 equilibrium 

5 10.1 5.0 3.4 6.4 

6 10.2 4.9 3.1 6.7 
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APPENDIX C: Metal ions loading onto natural and 

modified clinoptilolite at 50mg/L 
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Fig. C7 Cu2+ loading on 2g of natural and homoionised clinoptilolite using  

50 mg/L feed. 
 
 
 

 

 
 
 

Fig. C8 Ni2+ loading on 4g of natural and homoionised clinoptilolite using  
50 mg/L feed. 
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Fig. C9 Cr3+ loading on 10g of natural and homoionised clinoptilolite using 

50 mg/L feed. 
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APPENDIX D: pH trends with time 
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Figure D3 pH values vs time at 50 mg/L feed concentration onto Natural 
clinoptilolite. 

 

Cu2+ pH range: 5.6 – 6.4 
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Figure D4 pH values vs time at 500 mg/L feed concentration onto Na+-form 
clinoptilolite. 

 
 
 

Cu2+ pH range: 4.7 – 5.3 

Co2+ pH range: 3.6 – 4.72 

Ni2+ pH range:  6.0 – 6.6 
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APPENDIX E: Langmuir isotherms andchanges in slopes 

with changes in zeolite form. 
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Figure E5 Superimposed Langmuir isotherms for metal ions using 50 and 500 mg/L 

feeds on natural clinoptilolite 
 
 
 

 
 
Figure E6 Superimposed Langmuir isotherms for metal ions using 50 and 500 mg/L 

feeds on Na+ clinoptilolite 
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APPENDIX F: Elution of metal ions in column systems 
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Figure F2 Cu (II) elution during 1st and 2nd regeneration 
 
 
 
 

 
Figure F3 Co (II) elution during 1st and 2nd regeneration. 
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Figure F4 Ni (II) elution during 1st and 2nd regeneration 

  
 
 

 
Figure F5 Cr (III) elution during 1st and 2nd regeneration 
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APPENDIX G: Area under breakthrough curves 
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Fig. G1 Area under the breakthrough curve for Co(II) 
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APPENDIX H: Performance of column adsorption after 

regeneration 
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Table H1 1st and 2nd regeneration natural zeolite in column with 50 mg/L Cu (II) feed 

 
 

Time  Initial  

1st 

regen 

2nd 

regen 

(min) C/Co C/Co C/Co 

0 0.00 0.00 0.00 

15 0.00 0.15 0.53 

30 0.65 0.35 0.57 

60 0.72 0.52 0.60 

120 0.75 0.57 0.63 

180 0.84 0.63 0.63 

240 0.86 0.68 0.69 

300 0.86 0.72 0.73 

360 0.89 0.76 0.74 

420 0.88 0.77 0.75 

480 0.88 0.77 0.76 

540 0.90 0.78 0.78 

600 0.92 0.81 0.79 

660 0.93 0.81 0.80 

720 0.91 0.80 0.81 

780 0.91     
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Table H2 1st and 2nd regeneration of natural clinoptilolite in columns with 50 mg/L 

Co (II) feed. 
 

time  Initial  

1st 

regen 

2nd 

regen 

(min) C/Co C/Co C/Co 

0 0.00 0.00 0.00 

15 0.00 0.13 0.66 

30 0.68 0.46 0.67 

60 0.76 0.61 0.69 

120 0.80 0.67 0.70 

180 0.89 0.72 0.70 

240 0.90 0.77 0.73 

300 0.91 0.78 0.73 

360 0.93 0.79 0.74 

420 0.94 0.80   

480 0.94 0.82   

540 0.92 0.81   

600 0.93 

 

  

660 0.91 

 

  

720 0.91 

 

  

780 0.92     
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Table H3 1st and 2nd regeneration of natural clinoptilolite in columns with 50 mg/L  
Ni (II) feed. 

 

time  Initial  

1st 

regen 

2nd 

regen 

(min) C/Co C/Co C/Co 

0 0.00 0.00 0.00 

15 0.01 0.15 0.90 

30 0.71 0.48 0.87 

60 0.83 0.69 0.88 

120 0.88 0.78 0.91 

180 0.96 0.85 0.92 

240 0.97 0.93 0.95 

300 0.99 0.96 0.96 

360 0.97 0.97 0.95 

420 0.97 0.98 0.95 

480 0.97 0.98   

540 0.95 0.98   

600 0.97 

 

  

660 0.90 

 

  

720 0.94 

 

  

780 0.96     
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Table H4 1st and 2nd regeneration of natural clinoptilolite in columns with 50 mg/L 
Cr(III) feed 

 

Time  Initial  

1st 

regen 

2nd 

regen 

(min) C/Co C/Co C/Co 

0 0.00 0.00 0.00 

15 0.01 0.18 0.64 

30 0.52 0.37 0.65 

60 0.55 0.54 0.68 

120 0.59 0.59 0.73 

180 0.68 0.66 0.73 

240 0.74 0.73 0.73 

300 0.75 0.76 0.77 

360 0.77 0.77 0.79 

420 0.80 0.79   

480 0.79 0.80   

540 0.79 0.83   

600 0.80 

 

  

660 0.80 

 

  

720 0.80 

 

  

780 0.80     

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 


