CHAPTER 3
SIMULATION METHODOLOGY AND PARAMETER ESTIMATESFOR

SIMULATION STUDY

3.1  Simulation Methodology

Using the PR data set a simulation study was choig to determine the robustness
of linear mixed effects models under misspecifmatf the covariance structure. The
PR data set, as explained in Chapter one, refexsltda set obtained by researchers at
the University of North Carolina Dental School wkalowed the growth of 27
children (16 males, 11 females) from age 8 unté dg. Every two years they
measured the distance between the pituitary angtdrggomaxillary fissure using x-
ray exposures of the side of the head. This distaras used as the response variable,
with age as a quantitative predictor variable aeddgr as a qualitative predictor

variable (Potthoff & Roy, 1964).

Before data could be simulated under the variowsartance structures, the model
parameters were first estimated through fittingséhenodels to the original data.
These parameter estimates were taken as the tmagngi@r values and used to
generate the simulated data sets. SAS® PROC MIX&AS(ver. 9.1) was used to
carry out the analyses. This software allows ther ts choose a covariance structure
for the random effects and for the errors. Alllzé fivailable covariance structures can

be selected for either the random effects or thmergr The classical linear mixed

effect model has the error covariance structure ol , whereas the general linear

mixed effect model allows the covariance structfrboth the errors and the random
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effects to be arbitrarily specified (Wolfinger, 39 Wolfinger (1993) and Jennrich
and Schluchter (1986) discuss the available covegisstructures and methods for
parameter estimation of these covariance struct@esariance structures available
include VC, CS, AR(1), TOEP and UN, as well as anbar of spatial covariance
structures. What is made clear by these two stuslitgt there are a large number of
possible combinations available. The covarianagsires considered included all the
covariance structures discussed in Chapter two,ehaC, CS, AR(1), CSH,
ARH(1), TOEP and US, which are those particularlyitable for temporal
longitudinal data. SAS® PROC MIXED (SAS ver.9.1)oals the user to model the
correlation between observations by means of theg epvariance structure alone, or
through the inclusion of random effects. Both cdsh methods were considered. The
user can also choose the number of random effedts included in the model. In this
study the random intercept and the random intereegt slope methods were both

considered.

The estimated parameter values and variance compualies were used to simulate
data under the assumed model. In order to simthatelata, the linear mixed effects
model below was used:

y, =X,B+Z,b, +¢ fori=1..N
b, ~N(O,X), ¢ ~N(O )

where the parameters are defined as in Chaptersmmhéwo. For the simulation of
the data, the same regressor matridgsgnd Z;, were used as in the original model
fitting. The parameter values f@r ¥ andw; were estimated from the original data.
The random effectsb;, and random errorsg;, were generated from a normal

distribution with a zero mean vector and with a axtance matrix equal to the

67



estimatedX and ®; respectively. The package R (R Development Corenilra007)
was used to generate the simulated data. The amtefar this procedure is given in
Appendix C1. At this stage of the simulation pra;esome models did not converge
to produce valid parameter estimates, or in otleses warning messages were
produced by the procedure due to invalid paranesimates. These models were not

considered any further.

Two hundred and fifty simulated data sets were inbthfor each of the assumed
models. In some cases simulated data could nobtagned from the available model
parameters, as at least one of the covarianceameatwas not positive definite. These
problems did not appear in a warning message duhedirst stage, and therefore
these models were still retained for later fittpgposes. Since a researcher, unaware
that the covariance matrices were not positivendefi could still have considered
these as appropriate models, therefore they wearef&ethe purposes of comparison,
although these covariance structures were not deresi to be robust options. Certain
covariance matrices were retained for comparatiupgses. In Table 3.1, discussed
below, those covariance matrices marked with agrigkt(*) are non-positive definite
matrices, and those marked a double asterisk @htain variance components equal
to zero. The significance of the fixed effects resties is indicated by the presence of
either (##) or (#) beside the fixed effects estanatdicating significance at the 1%

and 5% significance levels respectively.

The maximum number of likelihood evaluations an& tmaximum number of

iterations to take place during the optimisatiowgadure can be set. The default

settings for these values are 150 and 50 respégctiaed these defaults were used
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during the parameter estimation procedure. Theultefaonvergence criterion for
PROC MIXED (SAS ver 9.1) was also used, which ig ttelative Hessian

convergence criterion with tolerance equal to 1% Ihis criterion is defined as

1 -1
gk:—klgk <1x10® (SAS PROC MIXED, 2003)
k

where gk is the gradient of the objective functidiR, andHy is the Hessian of the

objective function. The default method of estimatis REML, which was also kept

for this study.

To estimate the degrees of freedom for the t-tésthe fixed effects parameter
estimates, the Satterthwaite degrees of freedonoroptas used, specified in the
MODEL statement of PROC MIXED (SAS ver.9.1). Thiethod bases the degrees
of freedom on the chi-squared distribution whicktsproximates the distribution of
h'(X'\7‘1X)h, where h'Bis a linear combination of the fixed effects partene
(Duchateau & Janssen, 1997). This method for esitim#éhe degrees of freedom for
the t-statistic is recommended by Verbeke and Mmdeghs (2000), but they also note
that for longitudinal data, since different subgecontribute independent information,
resulting in large degrees of freedom, the diffeestimation methods for the degrees

of freedom lead to very similar p-values.
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Table 3.1: Parameter estimates under the variousri@nce structures or reasons for
exclusion from simulation study. Estimates fromcassfully fitted models were used to
generate the simulated data.

M odels with successful parameter estimation

o; p Estimated ; EstimatedX B

VvC None 5.0938 17.372%#
5.0938 -1.0321

OLS Estimates 5.0938 0.479%#
5.0938 0.3048¢

Intercept 1.9221 3.2986 17372 #

Only 19221 ~10321

19221 0.4795##
19221 0.3048¢#

ve 1.8646 24168 17.372%4#
1.8646 ( 0.007747J ~1.0321

1.8646 0.47954#

1.8646 0.3048

1.9880 0.02168 -1.0321
1.9880 0.4795##
1.9880 0.3048#

Ccs 1.9880 (0.02168 0.021651 ok 17.372%#

CSH 17163 57821 -0.2893 17.3727#
17163 ( 0.03249] -1.0321

1.7163 0.47954#

17163 0.3048¢

ARH(1) 17163 57821 -0.2893 17.3727#
17163 ( 0.03249] -1.0321

1.7163 0.47954#

17163 0.3048¢

1.7162 0.03252 -1.0321
1.7162 0.4795##
17162 0.3048#

UN 17162 (5.7864 - 0.2896] 17.372%#

cs None 52207 3.2986 32986 3.2986 17.372%#
52207 3.2986 3.2986 -1.0321
52207 3.2986 0.4795##
52207 0.3048#

CSH 36510 1.9348 1.9348 1.9348 3.8517 -0.2896 17372/ #
3.6510 1.9348 1.9348 ( 0.03253] -1.0321

3.6510 1.9348 0.4795##
3.6510 0.3048#
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Table 3.1 (cont.): Parameter estimates underdhews covariance structures or reasons

for exclusion from simulation study. Estimates freatcessfully fitted models were used

to generate the simulated data.

(O} ) Estimated o, EstimatedX B
Ccs TOEP | (36510 19348 19348 19348 003251 -0.2895), | (17.3727#
36510 19348 19348 ( 0.03251j -1.0321
36510 19348 0.47954#
36510 0.3048¢
CSH | None 56959 3.1205 37414 3.3304 17.40464#
42362 32266 28721 ~12737
6.0896 3.4436 0.4788¢#
4.8253 0.3156¢
CSH 39049 10782 12889 0.3484 12423 -0.1584 17.4201#
22372 09756 0.2637 ( 0.04054J -15428
31966 0.3152 04767 #
02335 0.3507%
ARH(1) | (39049 10782 12889 0.3484 12423 -0.1584 17.4201#
22372 09756 0.2637 ( 0.04054J -15428
31966 0.3152 04767 #
02335 0.3507%
UN 39045 10779 12885 0.3480 12429 -0.1584 17.4201#
22369 09753 0.2634 ( 0.04055J -15428
31962 0.3148 04767 #
02331 0.3507%
AR(1) | None 52145 32564 20336 12700 17.3206¢#
52145 32564 20336 -07215
52145 3.2564 0.4838##
52145 0.2854
Intercept| (1.8854 —-0.07077 0.002656 —-0.00010| | 3.3355 17.37624#
only 18854 -007077 0.002656 ~1.0510
18854 -0.07077 0.4792#
1.8854 0.3062¢
vC 17583 -0.1822 001888 -0.00196 2.3624 17.3824¢#
17583 -0.1822 001888 ( 0.009372j -1.0842
17583 -0.1822 0.4785+#
17583 0.3086¢
CSH 11926 -05644 02671 -0.1264 113738 -08147) | (17.417H#
11926 -05644 02671 ( 0.08452J ~1.2647
11926 -0.5644 0.475%#
11926 03222
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Table 3.1 (cont.): Parameter estimates underdhews covariance structures or

reasons for exclusion from simulation study. Estemdrom successfully fitted models

were used to generate the simulated data.

o, 3 Estimated o; | Estimatedx B
AR(1) ARH(1) | (11926 -0.5644 0.2671 -0.1264 113738 -0.8147 17.417%4#
11926 -0.5644 0.2671 ( 0.08452J -1.2647
11926 -0.5644 0475 #
1.1926 0.3222¢
UN 11924 -05643 02671 -0.1264 11.3775 -0.8150 17.417%#
11924 -0.5643 0.2671 ( 0.08455J -1.2647
11926 -0.5644 0475 #
11924 0.3222¢
ARH(1) | None 58149 32682 23721 1.3043 17.3523+#
45807 3.3246 18281 -0.9805
6.0172 3.3087 0.4827#
4.5369 0.300%
vC 27111 -01975 0.02288 -0.001621 1.8325 174109 #
14452 -0.16756 0.01176 ( 0.0lZB?J -1.5006
19499 -0.1369 04768t#
0.9661 0.3431#
CSH 16176 -0.5901 03553 -0.05427) 119301 -0.8616 17.4203+#
10533 -0.6342 0.09687 ( 0.087l7j -1.6346
18685 -0.2854 0.476Q+#
02134 0.355%
ARH(1) | (16176 —05901 0.3553 -0.05427) 119301 -0.8616 17.4203+#
10533 -0.6342 0.09687 ( 0.087l7j -1.6346
18685 -0.2854 0.476Q+#
02134 0.355%
UN 16176 -0.5901 03553 -0.05427) 119301 -0.8616 17.4203t#
10533 -0.6342 0.09687 ( 0.087l7j -1.6346
18685 -0.2854 0.476Q+#
02134 0.355%
TOEP None 52826 3.3659 3.6804 25285 17.408%#
52826 3.3659 3.6804 -1.1385
52826 3.3659 0475%#
5.2826 0.32144
cs 95596 7.7466 8.4209 7.7515 0.03251 -0.2895), 174152 #
9.5596 7.7466 8.4209 ( 0.03251] -1.2252
9.5596 7.7466 0475 #
9.5596 0.3223
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Table 3.1 (cont.): Parameter estimates underdhews covariance structures or
reasons for exclusion from simulation study. Esteadrom successfully fitted models
were used to generate the simulated data.

O )y Estimated o, EstimatedX B
TOEP TOEP 95613 7.7483 84227 7.7534 0.05769 -0.5286), | (17.4152#
95613 7.7483 8.4227 0.05769 -1.2252
95613 7.7483 0.475F#
9.5613 0.3223
UN None 5.4252 27092 3.8411 27151 17.42544#
41906 29745 33137 -15831
6.2632 4.1332 0.47644#
4.9862 0.3504#
o, | = | Details
Final Hessian matrix not positive definite
CSs Intercept Final Hessian matrix not positive definite
only
VC Final Hessian matrix not positive definite
UN Final Hessian matrix not positive definite. \éarce component estimated as
zero
CSH Intercept Final Hessian matrix not positive definite. Variammmponent estimated as
only Zero
ARH(1) | Intercept| Final Hessian matrix not positive definite
only
TOEP Intercept Final Hessian matrix not positive definite
only
VC Final Hessian matrix not positive definite
UN Final Hessian matrix not positive definite
UN Intercept| Final Hessian matrix not positive definite
only
VC Final Hessian matrix not positive definite
CS Final Hessian matrix not positive definite
CSH Final Hessian matrix not positive definite ridace estimated as zero
AR(1) Final Hessian matrix not positive definite
ARH(1) | Final Hessian matrix not positive definite
TOEP Final Hessian matrix not positive definite
UN Final Hessian matrix not positive definite. \arce estimated close to zero
Covariance of random effects not positive definite
CS CS Estimated matrix not positive definite
CSH CS Estimated matrix not positive definite
TOEP Estimated matrix not positive definite
AR(1) CS Variance component estimated as zero
ARH(1) | TOEP Estimated matrix not positive definite
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Table 3.1 (cont.): Parameter estimates underdhews covariance structures or
reasons for exclusion from simulation study. Esteadrom successfully fitted models
were used to generate the simulated data.

o, | = | Details

Parameter estimates out of bounds

VC TOEP Variances estimated as zero

CS AR(1) Correlation parameter, estimated as -1

ARH(1) When this model was fitted to simulatedadsgts simulated from this model
the estimates fgy were not valid

CSH VC Variances estimated as zero

AR(1) AR(1) Correlation parameter, estimated as 1
TOEP Variances estimated as zero

ARH(1) | CS Variance component estimated as zero
AR(1) Correlation parametes, estimated as 1

TOEP CSH Correlation parametgr,estimated as -1
AR(1) Correlation parametes, estimated as -1

ARH(1) Correlation parametes, estimated as -1

Nonconver gence
VC AR(1) Likelihood tended to infinity
CSH AR(1) Failed to converge. On last iterationaili estimate of -1 fop obtained

Note: Only the upper half the covariance matriseshiown.
Matrices are symmetrical. Blank spaces in the uppdrof the
matrices indicate zero values.

* indicates non-positive (semi-)definite matricktodel retained
for comparative purposes.

** indicates that variance component estimatedeass.zModel
retained for comparative purposes.

# indicates a significant fixed effect parametdimeate at the 5%
level of significance.

## indicates a significant fixed effect parametimeate at the
1% level of significance.
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3.2 Parameter Estimation

The estimated fixed effects model is of the form:
Length= 3, + B,Gender+ 3,Age+ B,Genderx Age
whereGender =0 specifies a boy an@ender =1 specifies a girl, andgetakes on
values 8, 10, 12 and 14. To take the first moddélable 3.1, the model with the VC
error structure and no random effects (i.e. the @h&del), as an example, the
estimated model is
[ength =17.3727 - 1.0321Gender + 0.4795Age + 0.3048Gender x Age.

This model implies that the intercept of girls asver compared to the boys, but that
the girls have a steeper upward slope, shown byptsitive interaction term of
GenderxAge The difference in intercepts between the boys #ed girls is not

significant, but the slopes are significantly (a 6% level) different.

The conditional form of the model for the randortercept models is
Length = 3, + B,Gender+ 3,Age+ 3,Gendemx Age+ b
and for the random intercept and slope models is

Eength = [5’0 + ,élGendeH ,@zAge+ ,[3’3Genderx Age+ Bli + 62i Age.

During the first stage of the simulation study mampdels were eliminated as
possible robust models. Before a model could beidered as a robust model, valid
estimates for the fixed effects and variance patarsaeeded to be obtained for the
model fitted to the original data. Table 3.1 sumpsex the results of the initial

parameter fitting process.
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Firstly it should be noted that for all the modéiat were successfully fitted, the
estimates of the fixed effects were very similanat exactly the same. The estimate
which seemed to vary the most was that of @ender estimate, which is the
difference in intercepts between the line for tis@nd the line for the boys. The p-
value for this parameter estimate was non-sigmficéor all models under
consideration. This effect was kept in the modethasinteraction betweeGender
andAgewas significant for the majority of the models.I{pm the cases of the OLS
model and the no random effects AR(1) model was ititeraction term not
significant. Therefore, in most cases the researaleild have come to the same
conclusion regardless of the covariance structhiasen. The OLS model obtained
exactly the same parameter estimates compared tihar models withw; = VC.
Since the interaction term of this model is nom#igant, it indicates a large standard
error estimate from the OLS model compared to ati@dels which do not assume an

independent model covariance structure.

In general, those models that had fewer parametaded to be more likely to obtain
valid estimates compared to more complicated moaddilsough there were a large
number of models with few parameters that were atsiofitted successfully (Table

3.2). All models not containing random effects wsumecessfully fitted, demonstrating
that in some circumstances including random effeets come at the cost of poor
estimates or no estimates at all. To support thesservations, the percentage
convergence of different categories of models vadsutated. There were 42 models
fitted with random effects covariance structureat tid not force the variance of the
intercept and the slope to be equal (referred tmadels with appropriate covariance

structures), and 61.90% of these were successiuiéy to the data. There were 21
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Table 3.2: Number of covariance parameter estinfateasach model arranged in

ascending order, with AIC for fitted models or reagor failure to obtain parameter

estimates.
; X Number @; | Number X Total number | Reason for failureto | AIC
parameters | parameters | covariance fit model
parameters
VvC None 1 0 1 485.6
AR(1) None 2 0 2 448.6
Cs None 2 0 2 437.8
VC Intercept| 1 1 2 437.8
only
AR(1) Intercept| 2 1 3 439.7
only
CSs Intercept 2 1 3 Final Hessian not
only positive definite
VC AR(1) 1 2 3 Non-convergence
VC CS 1 2 3 440.1
VC TOEP 1 2 3 Parameter estimate
out of bounds
VC VC 1 2 3 439.2
AR(1) AR(1) 2 2 4 Parameter estimate
out of bounds
AR(1) | CS 2 2 4 2. not positive
definite
AR(1) TOEP 2 2 4 Parameter estimate
out of bounds
AR(1) | VvC 2 2 4 440.8
CSs AR(1) 2 2 4 Parameter estimate
out of bounds
CS Cs 2 2 4 2 not positive
definite
Cs TOEP 2 2 4 440.6
CS VvC 2 2 4 Final Hessian not
positive definite
TOEP None 4 0 4 437.4
VC ARH(1) | 1 3 4 440.6
VC CSH 1 3 4 440.6
VC UN 1 3 4 440.6
AR(1) | ARHQ1) | 2 3 5 438.8
AR(1) | CSH 2 3 5 438.8
AR(1) | UN 2 3 5 438.8
CSs ARH(1) | 2 3 5 Parameter estimate
out of bounds
Cs CSH 2 3 5 442.6
CSs UN 2 3 5 Final Hessian not
positive definite
TOEP Intercept 4 1 5 Final Hessian not
only positive definite
TOEP AR(1) 4 2 6 Parameter estimate
out of bounds
TOEP CS 4 2 6 440.7
TOEP TOEP 4 2 6 440.7
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Table 3.2 (cont.): Number of covariance parametgémates for each model arranged in
ascending order, with AIC for fitted models or reagor failure to obtain parameter
estimates.

; X Number ®; | Number X Total Reason for failure | AIC
parameters | parameters | number to fit model
covariance
parameters
TOEP VC 4 2 6 Final Hessian not
positive definite
TOEP ARH(1) | 4 3 7 Parameter estimate
out of bounds
TOEP CSH 4 3 7 Parameter estimate
out of bounds
TOEP UN 4 3 7 Final Hessian not
positive definite
ARH(1) | None 10 0 10 452.8
CSH None 10 0 10 442.0
UN None 10 0 10 4445
ARH(1) | Intercept| 10 1 11 Final Hessian not
only positive definite
CSH Intercept 10 1 11 Final Hessian not
only positive definite
UN Intercept| 10 1 11 Final Hessian not
only positive definite
ARH(1) | AR(1) 10 2 12 Parameter estimate
out of bounds
ARH(1) | CS 10 2 12 Parameter estimate
out of bounds
ARH(1) | TOEP 10 2 12 S not positive
definite
ARH(1) | VC 10 2 12 443.9
CSH AR(1) 10 2 12 Non-convergence
CSH CS 10 2 12 2 not positive
definite
CSH TOEP 10 2 12 5 not positive
definite
CSH VC 10 2 12 Parameter estimate
out of bounds
UN AR(1) 10 2 12 Final Hessian not
positive definite
UN Cs 10 2 12 Final Hessian not
positive definite
UN TOEP 10 2 12 Final Hessian not
positive definite
UN VC 10 2 12 Final Hessian not
positive definite
ARH(1) | ARH(1) | 10 3 13 441.0
ARH(1) | CSH 10 3 13 441.0
ARH(1) | UN 10 3 13 441.0
CSH ARH(1) | 10 3 13 443.9
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Table 3.2 (cont.): Number of covariance parametgémates for each model arranged in
ascending order, with AIC for fitted models or reagor failure to obtain parameter
estimates.

; X Number ®; | Number X Total number | Reason for failure | AIC
parameters | parameters | covariance to fit model
parameters

CSH CSH 10 3 13 443.9
CSH UN 10 3 13 443.9
UN ARH(1) | 10 3 13 Final Hessian not

positive definite
UN CSH 10 3 13 Final Hessian not

positive definite
UN UN 10 3 13 Final Hessian not

positive definite

models fitted with appropriate covariance strucdumeith six or less covariance
parameters, and of these 71.43% were successitidg fo the data. Twelve models
with six or less covariance parameters were fittéth inappropriate random effects
covariance structures, and of these only 33.33%earged. Twenty-one models were
fitted with appropriate covariance structures anith wnore than six covariance
parameters. Of these models, 47.62% were succlysiftdd to the data. Eighteen

random effects models were fitted to the data véfipropriate random effects
covariance structures and with more than six paramseand of these models only
38.89% were successfully fitted. Three no randofaces models were fitted with

more than six parameters, and 100.00% of these Ismadee successfully fitted to the

data.

The PR data set has a total of 27 subjects with dbxservation each, resulting in a
total number of observations of 108. A variety adals, of varying complexity (i.e.

having large differences in the number of paranseter be estimated), were
considered. The OLS, with four fixed effects parter& and one covariance

parameter, results in an observation to paramettts of 21.6:1. The no random
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effects models have a maximum number of covarigmarameters of ten, leading to
fourteen parameters in total and an observatiopa@meter ratio of 7.7:1. The
random intercept models require an additional Zimeses for the random effects,
and one additional covariance parameter, leading tmaximum total number of

parameters of 42 and an observation to parameterafa2.6:1. The random intercept
and slope models require 54 random effects paranestgmates and up to three
random effects covariance parameters, leadingttdahnumber of parameters of 71,
resulting in an observation to parameter ratio .6t11 The fewer observations there
are per parameter, the more sensitive the paramestenates will be to individual

data points. Generally, it is accepted that forresgion models an observation to
parameter ratio of at least 4:1 is required (J Bajpersonal communication from DM

Hawkins, 1985). Hocking (2005, p. 42) states thatgeneral, we would like to have
at least six to ten observations per predictothimcase of a multiple linear regression
model. Therefore it is expected that the high patam models will show high

sensitivity to individual data points.

From the AIC and AICc values obtained for the @ttmodels, it seems that for the
original data, simpler models were preferred, with no random effects model with
o; = TOEP obtaining the lowest AIC of 437.4, followlegthe CS models (no random
effects model withw; = CS and the random intercept model with= VC) obtaining

the minimum AIC value (Table 3.2). The OLS moded fandom effects model with
o; = VC) obtained the highest AIC value. Of the randeffects models, the CSH
random error models with heterogeneous randomtsffeodels or US random effects
models obtained the highest AIC value, and theamolom effects model (other than

the OLS model) which had the highest AIC value #esARH(1) no random effects
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model. These results agree with those obtainedebyrith and Schluchter (1986),
Verbeke and Molenberghs (2000), and Davis (2008}, rhany more covariance
structures are compared in addition to those usetth@se studies, as discussed in

Chapter two.

Three main problems occurred during the fitting gedure. The most common
problem was indicated by the warning message “Cgeree criteria met but final
Hessian not positive definite”. This means thabapon the cost function curve has
been reached where the gradient is equal to zetahé curvature of the cost function
is not downwards in all directions (Weiss, 2005)asBally, this means the
optimisation procedure was unable to reach a lo@dimum, and the details of SAS
PROC MIXED (2003) state that in general this intksathat the model has been over
parameterised and that duplicate parameters mag lbeen fitted. Collinearity in the
predictor variables can also result in destabtjdime optimisation procedure, and if
present may result in this error message (Verbelkdokenberghs, 2000). In this case
collinearity cannot be the cause as there was oméycontinuous predictor variable,
and so the problem is related to inappropriate Gamee structure specification, or

inability of the optimisation procedure to locateeal maximum.

The second type of problem that occurred was wittd fmodels produced estimates
that were outside of the parameter boundaries.dékals of the SAS PROC MIXED

(2003) indicate that the estimate of the correfaparametep needs to be such that -
1<p<1. Therefore fitted models wittp = 1 or -1 have invalid estimates, which
would indicate that the model has been over pammsetl and that a model with

fewer parameters would be more appropriate. Inrothses, variance components
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were estimated as zero, again indicating that glsimmodel would be a better
choice. In more serious cases, variances of theorareffects were estimated as zero.
Since it is assumed that the random effects armaldr distributed, a zero estimate
for the variance is invalid. Sometimes it was nbvious that the estimates of the
parameters were invalid. The covariance structurethe random effects was
sometimes found not to be positive (semi-)definitdis resulted in a failure to
simulate data from these parameters as it is agbtimaé the covariance structures of
the random effects and errors are positive (segfif)ile as discussed in Section
2.2.3. These problems of invalid parameter estimatere only found through
investigation of the model estimates; no warningsage was produced in the SAS
PROC MIXED (ver. 9.1) output. Some of these modedse used after the data had
been simulated for comparative purposes. Theseidecimodels with non-positive
(semi-)definite random effects covariance strucuvehich were the models witly =
TOEP an = CS,m;= CS andX = TOEP, ando; = TOEP an® = TOEP, as well as
the model witho; = VC andX = CS, which had a variance component equal to, zero

resulting in the variances and covariances allriwathie same value.

The three models included with estimatdon-positive definite were included as
the non-positive definiteness was not evident withzalculating the eigenvalues of
these matrices, and therefore the estimates focdkariance structure could easily
have been accepted if further investigation wascaatied out orE. The AIC values

obtained for these models were not unreasonabkyeftire these models may
potentially have been considered as good modelbl€Ta.2). One model with a
covariance parameter estimated as zero was altal@ttin order to compare how

well this model, with an unnecessary covarianceupater, performed compared to
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other models. This model (model with = VC andX = CS) obtained a reasonable
AIC value so may also have been considered as d gumdel if the covariance

parameters were not investigated.

Failure of the optimisation algorithm to convergasathe third problem that occurred
in the fitting procedure, but it only occurred fibre model withw; = CSH andX =
AR(1). In this particular case there were too méikglihood evaluations before
convergence of the optimisation algorithm occurrdthe number of likelihood
evaluation was increased to 1000, but still no eogence occurred. The convergence
criterion cycled between very small values (<0.000® extremely large values

(>109), but always above the convergence level.

Errors or invalid parameter estimates occurredalbrmodels where the specified
covariance matrix of the random effects forced thgance of the intercept and the
slope to be equal, such as in the cases of CS, T&DEFAR(1) options (Table 3.1).
SAS PROC MIXED (ver. 9.1) seems to have dealt whik problem in the VC case,
asvariance estimates for the intercept and slopeliffierent when VC is specified for
Y. When VC is specified fow;, all of the diagonal elements are equal. All medel
with four or less covariance parameters which dhite obtain valid estimates, except
in the case of the random intercept model with= CS and the random intercept and
slope model withw; = CS andX = VC, had specifications fom; that forced the

diagonal elements of the covariance matrix to heak(lable 3.2).

Since the covariance matrix of the random effatthis case is 2x2, it is easy to state

the condition of positive definiteness when thegdial of the matrix has equal
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elements. A random intercept and slope model, adfiial variances for the intercept

and slope, would have a 2x2 symmetric matrix of fiieowing form (a“ a“j

a, a,)

wherea;1>0. For this matrix to be positive definite, thgemvalues would need to be

a; -4 a,

positive (Johnson, 1970), therefore solving for theterminant
ay, a:l.l_/‘

results in eigenvalues equaldg + a;; anda;; — a;2. Since the eigenvalues need to be
positive, this implies thata;; < a;» < a;;. The problem with random effects
covariance structures that weren’t positive definit Table 3.1 is that the absolute
covariance is too large for the small variancenestes that were obtained. If the
variances of the intercept and slope are allowdtifter, the estimates are found to be
very far apart from each other; therefore the davae would need to be large as
well. To take the cases of the random effects nsodéth ®; = CS andX = CS and
with ®; = CS andt = CSH, the estimatel matrix of the first model, which assumes
equal diagonal elements, was non-positive definiteereas th& matrix estimated
for the second model, which allows the diagonaimelets to differ, is positive
definite. The diagonal elements estimated for #ewsd model are 3.8517 and 0.0325
for the random intercept and slope respectivelyiciviare very different from each
other, and therefore indicate that assuming thesevialues are equal would not be
appropriate. Therefore it is unreasonable to asstirat the random intercept and
slope have the same variance, and therefore coeargtructures which assume equal

variance parameters along the diagonal are poace$ho

These problems of parameter estimates that areofothieir bounds, non-positive
definite random effects covariance matrices, andcaovergence are due to the

marginal modelling approach used to obtain the rpatar estimates (Verbeke &
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Molenberghs, 2000). The parameter estimation methae@® designed to ensure
positive definiteness of the covariance structufeyioLindstrom & Bates, 1988;
Wolfinger, 1993; Pourahmadi, 2000), but this does$ imply that the individual
covariances of the hierarchical mod&l,and o, will be positive definite. These
problems can in some cases be avoided by specibattgr starting values for the
parameters or by specifying a different fitting @edure (Verbeke & Molenberghs,

2000).
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