
 66 

C H A P T E R       3 

SIMULATION METHODOLOGY AND PARAMETER ESTIMATES FOR 

SIMULATION STUDY 

 

3.1 Simulation Methodology 

 

Using the PR data set a simulation study was carried out to determine the robustness 

of linear mixed effects models under misspecification of the covariance structure. The 

PR data set, as explained in Chapter one, refers to a data set obtained by researchers at 

the University of North Carolina Dental School who followed the growth of 27 

children (16 males, 11 females) from age 8 until age 14. Every two years they 

measured the distance between the pituitary and the pterygomaxillary fissure using x-

ray exposures of the side of the head. This distance was used as the response variable, 

with age as a quantitative predictor variable and gender as a qualitative predictor 

variable (Potthoff & Roy, 1964). 

Before data could be simulated under the various covariance structures, the model 

parameters were first estimated through fitting these models to the original data. 

These parameter estimates were taken as the true parameter values and used to 

generate the simulated data sets. SAS® PROC MIXED (SAS ver. 9.1) was used to 

carry out the analyses. This software allows the user to choose a covariance structure 

for the random effects and for the errors. All of the available covariance structures can 

be selected for either the random effects or the errors. The classical linear mixed 

effect model has the error covariance structure ωi = I2σ , whereas the general linear 

mixed effect model allows the covariance structure of both the errors and the random 
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effects to be arbitrarily specified (Wolfinger, 1993). Wolfinger (1993) and Jennrich 

and Schluchter (1986) discuss the available covariance structures and methods for 

parameter estimation of these covariance structures. Covariance structures available 

include VC, CS, AR(1), TOEP and UN, as well as a number of spatial covariance 

structures. What is made clear by these two studies is that there are a large number of 

possible combinations available. The covariance structures considered included all the 

covariance structures discussed in Chapter two, namely VC, CS, AR(1), CSH, 

ARH(1), TOEP and US, which are those particularly suitable for temporal 

longitudinal data. SAS® PROC MIXED (SAS ver.9.1) allows the user to model the 

correlation between observations by means of the error covariance structure alone, or 

through the inclusion of random effects. Both of these methods were considered. The 

user can also choose the number of random effects to be included in the model. In this 

study the random intercept and the random intercept and slope methods were both 

considered.   

 

The estimated parameter values and variance component values were used to simulate 

data under the assumed model. In order to simulate the data, the linear mixed effects 

model below was used: 
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where the parameters are defined as in Chapters one and two. For the simulation of 

the data, the same regressor matrices, Xi and Zi, were used as in the original model 

fitting. The parameter values for β, Σ and ωi were estimated from the original data. 

The random effects, bi, and random errors, εi, were generated from a normal 

distribution with a zero mean vector and with a covariance matrix equal to the 
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estimated Σ and ωi respectively. The package R (R Development Core Team 2007) 

was used to generate the simulated data. The code used for this procedure is given in 

Appendix C1. At this stage of the simulation process, some models did not converge 

to produce valid parameter estimates, or in other cases warning messages were 

produced by the procedure due to invalid parameter estimates. These models were not 

considered any further. 

 

Two hundred and fifty simulated data sets were obtained for each of the assumed 

models. In some cases simulated data could not be obtained from the available model 

parameters, as at least one of the covariance matrices was not positive definite. These 

problems did not appear in a warning message during the first stage, and therefore 

these models were still retained for later fitting purposes. Since a researcher, unaware 

that the covariance matrices were not positive definite, could still have considered 

these as appropriate models, therefore they were kept for the purposes of comparison, 

although these covariance structures were not considered to be robust options. Certain 

covariance matrices were retained for comparative purposes. In Table 3.1, discussed 

below, those covariance matrices marked with an asterisk (*) are non-positive definite 

matrices, and those marked a double asterisk (**) contain variance components equal 

to zero. The significance of the fixed effects estimates is indicated by the presence of 

either (##) or (#) beside the fixed effects estimate, indicating significance at the 1% 

and 5% significance levels respectively. 

 

The maximum number of likelihood evaluations and the maximum number of 

iterations to take place during the optimisation procedure can be set. The default 

settings for these values are 150 and 50 respectively, and these defaults were used 
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during the parameter estimation procedure. The default convergence criterion for 

PROC MIXED (SAS ver 9.1) was also used, which is the relative Hessian 

convergence criterion with tolerance equal to 1×10-8. This criterion is defined as 
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  (SAS PROC MIXED, 2003) 

where gk is the gradient of the objective function, fk, and Hk is the Hessian of the 

objective function. The default method of estimation is REML, which was also kept 

for this study.  

 

To estimate the degrees of freedom for the t-test of the fixed effects parameter 

estimates, the Satterthwaite degrees of freedom option was used, specified in the 

MODEL statement of PROC MIXED (SAS ver.9.1). This method bases the degrees 

of freedom on the chi-squared distribution which best approximates the distribution of 

hXVXh )ˆ( 1−′′ , where βh′ is a linear combination of the fixed effects parameters 

(Duchateau & Janssen, 1997). This method for estimating the degrees of freedom for 

the t-statistic is recommended by Verbeke and Molenberghs (2000), but they also note 

that for longitudinal data, since different subjects contribute independent information, 

resulting in large degrees of freedom, the different estimation methods for the degrees 

of freedom lead to very similar p-values. 
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Models with successful parameter estimation 
ωi Σ Estimated  ωi Estimated  Σ β 
VC None 

OLS Estimates 




















0938.5

0938.5

0938.5

0938.5

 

 





















−

#3048.0

##4795.0

0321.1

##3727.17

 

 Intercept 
Only 





















9221.1

9221.1

9221.1

9221.1

 

3.2986 





















−

#3048.0

##4795.0

0321.1

##3727.17

 

 VC 





















8646.1

8646.1

8646.1

8646.1

 








007747.0

4168.2  





















−

#3048.0

##4795.0

0321.1

##3727.17

 

 CS 





















9880.1

9880.1

9880.1

9880.1

 








02168.0

02168.002168.0 ** 





















−

#3048.0

##4795.0

0321.1

##3727.17

 

 CSH 





















7163.1

7163.1

7163.1

7163.1

 






 −
03249.0

2893.07821.5  





















−

#3048.0

##4795.0

0321.1

##3727.17

 

 ARH(1) 





















7163.1

7163.1

7163.1

7163.1

 






 −
03249.0

2893.07821.5  





















−

#3048.0

##4795.0

0321.1

##3727.17

 

 UN 





















7162.1

7162.1

7162.1

7162.1

 






 −
03252.0

2896.07864.5  





















−

#3048.0

##4795.0

0321.1

##3727.17

 

CS None 





















2207.5

2986.32207.5

2986.32986.32207.5

2986.32986.32986.32207.5

 

 





















−

#3048.0

##4795.0

0321.1

##3727.17

 

 CSH 





















6510.3

9348.16510.3

9348.19348.16510.3

9348.19348.19348.16510.3

 






 −
03253.0

2896.08517.3  





















−

#3048.0

##4795.0

0321.1

##3727.17

 

Table 3.1:  Parameter estimates under the various covariance structures or reasons for 
exclusion from simulation study. Estimates from successfully fitted models were used to 
generate the simulated data. 
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ωi Σ Estimated  ωi Estimated  Σ β 
CS TOEP  





















6510.3

9348.16510.3

9348.19348.16510.3

9348.19348.19348.16510.3

 






 −
03251.0

2895.003251.0 * 





















−

#3048.0

##4795.0

0321.1

##3727.17

 

CSH None 





















8253.4

4436.30896.6

8721.22266.32362.4

3304.37414.31205.36959.5

 

 





















−

#3156.0

##4788.0

2737.1

##4046.17

 

 CSH 





















2335.0

3152.01966.3

2637.09756.02372.2

3484.02889.10782.19049.3

 






 −
04054.0

1584.02423.1  





















−

#3507.0

##4767.0

5428.1

##4201.17

 

 ARH(1) 





















2335.0

3152.01966.3

2637.09756.02372.2

3484.02889.10782.19049.3

 






 −
04054.0

1584.02423.1  





















−

#3507.0

##4767.0

5428.1

##4201.17

 

 UN 





















2331.0

3148.01962.3

2634.09753.02369.2

3480.02885.10779.19045.3

 






 −
04055.0

1584.02429.1  





















−

#3507.0

##4767.0

5428.1

##4201.17

 

AR(1) None 





















2145.5

2564.32145.5

0336.22564.32145.5

2700.10336.22564.32145.5

 

 





















−

2854.0

##4838.0

7215.0

##3206.17

 

 Intercept 
only 





















−
−

−−

8854.1

07077.08854.1

002656.007077.08854.1

00010.0002656.007077.08854.1

 

3.3355 





















−

#3062.0

##4792.0

0510.1

##3762.17

 

 VC 





















−
−

−−

7583.1

1822.07583.1

01888.01822.07583.1

00196.001888.01822.07583.1

 








009372.0

3624.2  





















−

#3086.0

##4785.0

0842.1

##3824.17

 

 CSH 





















−
−

−−

1926.1

5644.01926.1

2671.05644.01926.1

1264.02671.05644.01926.1

 






 −
08452.0

8147.03738.11  





















−

#3222.0

##4757.0

2647.1

##4171.17

 

Table 3.1 (cont.):  Parameter estimates under the various covariance structures or reasons 
for exclusion from simulation study. Estimates from successfully fitted models were used 
to generate the simulated data. 
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ωi Σ Estimated  ωi Estimated  Σ Β 
AR(1) ARH(1) 





















−
−

−−

1926.1

5644.01926.1

2671.05644.01926.1

1264.02671.05644.01926.1

 






 −
08452.0

8147.03738.11  





















−

#3222.0

##4757.0

2647.1

##4171.17

 

 UN 





















−
−

−−

1924.1

5644.01926.1

2671.05643.01924.1

1264.02671.05643.01924.1

 






 −
08455.0

8150.03775.11  





















−

#3222.0

##4757.0

2647.1

##4171.17

 

ARH(1) None 





















5369.4

3087.30172.6

8281.13246.35807.4

3043.13721.22682.38149.5

 

 





















−

#3009.0

##4827.0

9805.0

##3523.17

 

 VC 





















−
−

−−

9661.0

1369.09499.1

01176.016756.04452.1

00161.002288.01975.07111.2

 








01283.0

8325.1  





















−

#3431.0

##4768.0

5006.1

##4109.17

 

 CSH 





















−
−

−−

2134.0

2854.08685.1

09687.06342.00533.1

05427.03553.05901.06176.1

 






 −
08717.0

8616.09301.11  





















−

#3559.0

##4760.0

6346.1

##4203.17

 

 ARH(1) 





















−
−

−−

2134.0

2854.08685.1

09687.06342.00533.1

05427.03553.05901.06176.1

 






 −
08717.0

8616.09301.11  





















−

#3559.0

##4760.0

6346.1

##4203.17

 

 UN 





















−
−

−−

2134.0

2854.08685.1

09687.06342.00533.1

05427.03553.05901.06176.1

 






 −
08717.0

8616.09301.11  





















−

#3559.0

##4760.0

6346.1

##4203.17

 

TOEP None 





















2826.5

3659.32826.5

6804.33659.32826.5

5285.26804.33659.32826.5

 

 





















−

#3214.0

##4759.0

1385.1

##4089.17

 

 CS 





















5596.9

7466.75596.9

4209.87466.75596.9

7515.74209.87466.75596.9

 






 −
03251.0

2895.003251.0 * 





















−

#3223.0

##4757.0

2252.1

##4152.17

 

 
 
 
 
 
 

Table 3.1 (cont.):  Parameter estimates under the various covariance structures or 
reasons for exclusion from simulation study. Estimates from successfully fitted models 
were used to generate the simulated data. 
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ωi Σ Estimated  ωi Estimated  Σ β 
TOEP TOEP  





















5613.9

7483.75613.9

4227.87483.75613.9

7534.74227.87483.75613.9

 






 −
05769.0

5286.005769.0 * 





















−

#3223.0

##4757.0

2252.1

##4152.17

 

UN None 





















9862.4

1332.42632.6

3137.39745.21906.4

7151.28411.37092.24252.5

 

 





















−

#3504.0

##4764.0

5831.1

##4254.17

 

     
ωi Σ Details 
Final Hessian matrix not positive definite 
CS Intercept 

only 
Final Hessian matrix not positive definite 

 VC Final Hessian matrix not positive definite 
 UN Final Hessian matrix not positive definite. Variance component estimated as 

zero 
CSH Intercept 

only 
Final Hessian matrix not positive definite. Variance component estimated as 
zero 

ARH(1) Intercept 
only 

Final Hessian matrix not positive definite 

TOEP Intercept 
only 

Final Hessian matrix not positive definite 

 VC Final Hessian matrix not positive definite 
 UN Final Hessian matrix not positive definite 
UN Intercept 

only 
Final Hessian matrix not positive definite 

 VC Final Hessian matrix not positive definite 
 CS Final Hessian matrix not positive definite 
 CSH Final Hessian matrix not positive definite. Variance estimated as zero 
 AR(1) Final Hessian matrix not positive definite 
 ARH(1) Final Hessian matrix not positive definite 
 TOEP  Final Hessian matrix not positive definite 
 UN Final Hessian matrix not positive definite. Variance estimated close to zero 
   
Covariance of random effects not positive definite 
CS CS Estimated  Σ  matrix not positive definite 
CSH CS Estimated  Σ  matrix not positive definite 
 TOEP  Estimated  Σ  matrix not positive definite 
AR(1) CS Variance component estimated as zero 
ARH(1) TOEP  Estimated  Σ  matrix not positive definite 
   

 
 
 
 
 
 
 

Table 3.1 (cont.):  Parameter estimates under the various covariance structures or 
reasons for exclusion from simulation study. Estimates from successfully fitted models 
were used to generate the simulated data. 
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ωi Σ Details 
Parameter estimates out of bounds 
VC TOEP  Variances estimated as zero 
CS AR(1) Correlation parameter, ρ, estimated as -1 
 ARH(1) When this model was fitted to simulated data sets simulated from this model, 

the estimates for ρ were not valid 
CSH VC Variances estimated as zero 
AR(1) AR(1) Correlation parameter, ρ, estimated as 1 
 TOEP  Variances estimated as zero 
ARH(1) CS Variance component estimated as zero 
 AR(1) Correlation parameter, ρ, estimated as 1 
TOEP CSH Correlation parameter, ρ, estimated as -1 
 AR(1) Correlation parameter, ρ, estimated as -1 
 ARH(1) Correlation parameter, ρ, estimated as -1 
   
Nonconvergence 
VC AR(1) Likelihood tended to infinity 
CSH AR(1) Failed to converge. On last iteration invalid estimate of -1 for  ρ obtained 
   

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Note: Only the upper half the covariance matrices is shown. 
Matrices are symmetrical. Blank spaces in the upper half of the 
matrices indicate zero values. 
 
* indicates non-positive (semi-)definite matrices. Model retained 
for comparative purposes. 
** indicates that variance component estimated as zero. Model 
retained for comparative purposes. 
# indicates a significant fixed effect parameter estimate at the 5% 
level of significance. 
## indicates a significant fixed effect parameter estimate at the 
1% level of significance. 
 

Table 3.1 (cont.):  Parameter estimates under the various covariance structures or 
reasons for exclusion from simulation study. Estimates from successfully fitted models 
were used to generate the simulated data. 
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3.2 Parameter Estimation 

 

The estimated fixed effects model is of the form: 

AgeGenderAgeGenderengthL ×+++= 3210
ˆˆˆˆˆ ββββ  

where Gender = 0 specifies a boy and Gender = 1 specifies a girl, and Age takes on 

values 8, 10, 12 and 14. To take the first model in Table 3.1, the model with the VC 

error structure and no random effects (i.e. the OLS model), as an example, the 

estimated model is  

AgeGenderAgeGenderengthL ×++−= 3048.04795.00321.13727.17ˆ . 

This model implies that the intercept of girls is lower compared to the boys, but that 

the girls have a steeper upward slope, shown by the positive interaction term of 

Gender×Age. The difference in intercepts between the boys and the girls is not 

significant, but the slopes are significantly (at the 5% level) different. 

 

The conditional form of the model for the random intercept models is 

ii bAgeGenderAgeGenderengthL ˆˆˆˆˆˆ
3210 +×+++= ββββ  

and for the random intercept and slope models is 

AgebbAgeGenderAgeGenderengthL iii 213210
ˆˆˆˆˆˆˆ ++×+++= ββββ . 

 

During the first stage of the simulation study many models were eliminated as 

possible robust models. Before a model could be considered as a robust model, valid 

estimates for the fixed effects and variance parameters needed to be obtained for the 

model fitted to the original data. Table 3.1 summarises the results of the initial 

parameter fitting process.  
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Firstly it should be noted that for all the models that were successfully fitted, the 

estimates of the fixed effects were very similar, if not exactly the same. The estimate 

which seemed to vary the most was that of the Gender estimate, which is the 

difference in intercepts between the line for the girls and the line for the boys. The p-

value for this parameter estimate was non-significant for all models under 

consideration. This effect was kept in the model as the interaction between Gender 

and Age was significant for the majority of the models. Only in the cases of the OLS 

model and the no random effects AR(1) model was the interaction term not 

significant. Therefore, in most cases the researcher would have come to the same 

conclusion regardless of the covariance structure chosen. The OLS model obtained 

exactly the same parameter estimates compared to all other models with ωi = VC. 

Since the interaction term of this model is non-significant, it indicates a large standard 

error estimate from the OLS model compared to other models which do not assume an 

independent model covariance structure. 

 

In general, those models that had fewer parameters tended to be more likely to obtain 

valid estimates compared to more complicated models, although there were a large 

number of models with few parameters that were also not fitted successfully (Table 

3.2). All models not containing random effects were successfully fitted, demonstrating 

that in some circumstances including random effects can come at the cost of poor 

estimates or no estimates at all. To support these observations, the percentage 

convergence of different categories of models was calculated. There were 42 models 

fitted with random effects covariance structures that did not force the variance of the 

intercept and the slope to be equal (referred to as models with appropriate covariance 

structures), and 61.90% of these were successfully fitted to the data. There were 21  
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ωi Σ Number ωi 
parameters 

Number Σ 
parameters 

Total number 
covariance 
parameters 

Reason for failure to 
fit model 

AIC 

VC None  1 0 1  485.6 
AR(1) None 2 0 2  448.6 
CS None 2 0 2  437.8 
VC Intercept 

only 
1 1 2  437.8 

AR(1) Intercept 
only 

2 1 3  439.7 

CS Intercept 
only 

2 1 3 Final Hessian not 
positive definite 

 

VC AR(1) 1 2 3 Non-convergence  
VC CS 1 2 3  440.1 
VC TOEP 1 2 3 Parameter estimate 

out of bounds 
 

VC VC 1 2 3  439.2 
AR(1) AR(1) 2 2 4 Parameter estimate 

out of bounds 
 

AR(1) CS 2 2 4 Σ̂  not positive 
definite 

 

AR(1) TOEP 2 2 4 Parameter estimate 
out of bounds 

 

AR(1) VC 2 2 4  440.8 
CS AR(1) 2 2 4 Parameter estimate 

out of bounds 
 

CS CS 2 2 4 Σ̂  not positive 
definite 

 

CS TOEP 2 2 4  440.6 
CS VC 2 2 4 Final Hessian not 

positive definite 
 

TOEP None 4 0 4  437.4 
VC ARH(1) 1 3 4  440.6 
VC CSH 1 3 4  440.6 
VC UN 1 3 4  440.6 
AR(1) ARH(1) 2 3 5  438.8 
AR(1) CSH 2 3 5  438.8 
AR(1) UN 2 3 5  438.8 
CS ARH(1) 2 3 5 Parameter estimate 

out of bounds 
 

CS CSH 2 3 5  442.6 
CS UN 2 3 5 Final Hessian not 

positive definite 
 

TOEP Intercept 
only 

4 1 5 Final Hessian not 
positive definite 

 

TOEP AR(1) 4 2 6 Parameter estimate 
out of bounds 

 

TOEP CS 4 2 6  440.7 
TOEP TOEP 4 2 6  440.7 

 

 

Table 3.2: Number of covariance parameter estimates for each model arranged in 
ascending order, with AIC for fitted models or reason for failure to obtain parameter 
estimates. 



 78 

 

 

ωi Σ Number ωi 
parameters 

Number Σ 
parameters 

Total 
number 
covariance 
parameters 

Reason for failure 
to fit model 

AIC 

TOEP VC 4 2 6 Final Hessian not 
positive definite 

 

TOEP ARH(1) 4 3 7 Parameter estimate 
out of bounds 

 

TOEP CSH 4 3 7 Parameter estimate 
out of bounds 

 

TOEP UN 4 3 7 Final Hessian not 
positive definite 

 

ARH(1) None 10 0 10  452.8 
CSH None 10 0 10  442.0 
UN None 10 0 10  444.5 
ARH(1) Intercept 

only 
10 1 11 Final Hessian not 

positive definite 
 

CSH Intercept 
only 

10 1 11 Final Hessian not 
positive definite 

 

UN Intercept 
only 

10 1 11 Final Hessian not 
positive definite 

 

ARH(1) AR(1) 10 2 12 Parameter estimate 
out of bounds 

 

ARH(1) CS 10 2 12 Parameter estimate 
out of bounds 

 

ARH(1) TOEP 10 2 12 Σ̂  not positive 
definite 

 

ARH(1) VC 10 2 12  443.9 
CSH AR(1) 10 2 12 Non-convergence  
CSH CS 10 2 12 Σ̂  not positive 

definite 

 

CSH TOEP 10 2 12 Σ̂  not positive 
definite 

 

CSH VC 10 2 12 Parameter estimate 
out of bounds 

 

UN AR(1) 10 2 12 Final Hessian not 
positive definite 

 

UN CS 10 2 12 Final Hessian not 
positive definite 

 

UN TOEP 10 2 12 Final Hessian not 
positive definite 

 

UN VC 10 2 12 Final Hessian not 
positive definite 

 

ARH(1) ARH(1) 10 3 13  441.0 
ARH(1) CSH 10 3 13  441.0 
ARH(1) UN 10 3 13  441.0 
CSH ARH(1) 10 3 13  443.9 

 

 

 

Table 3.2 (cont.): Number of covariance parameter estimates for each model arranged in 
ascending order, with AIC for fitted models or reason for failure to obtain parameter 
estimates. 
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ωi Σ Number ωi 
parameters 

Number Σ 
parameters 

Total number 
covariance 
parameters 

Reason for failure 
to fit model 

AIC 

CSH CSH 10 3 13  443.9 
CSH UN 10 3 13  443.9 
UN ARH(1) 10 3 13 Final Hessian not 

positive definite 
 

UN CSH 10 3 13 Final Hessian not 
positive definite 

 

UN UN 10 3 13 Final Hessian not 
positive definite 

 

 

 

models fitted with appropriate covariance structures with six or less covariance 

parameters, and of these 71.43% were successfully fitted to the data. Twelve models 

with six or less covariance parameters were fitted with inappropriate random effects 

covariance structures, and of these only 33.33% converged. Twenty-one models were 

fitted with appropriate covariance structures and with more than six covariance 

parameters. Of these models, 47.62% were successfully fitted to the data. Eighteen 

random effects models were fitted to the data with appropriate random effects 

covariance structures and with more than six parameters, and of these models only 

38.89% were successfully fitted. Three no random effects models were fitted with 

more than six parameters, and 100.00% of these models were successfully fitted to the 

data. 

 

The PR data set has a total of 27 subjects with four observation each, resulting in a 

total number of observations of 108. A variety of models, of varying complexity (i.e. 

having large differences in the number of parameters to be estimated), were 

considered. The OLS, with four fixed effects parameters and one covariance 

parameter, results in an observation to parameter ratio of 21.6:1. The no random 

Table 3.2 (cont.): Number of covariance parameter estimates for each model arranged in 
ascending order, with AIC for fitted models or reason for failure to obtain parameter 
estimates. 
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effects models have a maximum number of covariance parameters of ten, leading to 

fourteen parameters in total and an observation to parameter ratio of 7.7:1. The 

random intercept models require an additional 27 estimates for the random effects, 

and one additional covariance parameter, leading to a maximum total number of 

parameters of 42 and an observation to parameter ratio of 2.6:1. The random intercept 

and slope models require 54 random effects parameter estimates and up to three 

random effects covariance parameters, leading to a total number of parameters of 71, 

resulting in an observation to parameter ratio of 1.5:1. The fewer observations there 

are per parameter, the more sensitive the parameter estimates will be to individual 

data points. Generally, it is accepted that for regression models an observation to 

parameter ratio of at least 4:1 is required (J Galpin, personal communication from DM 

Hawkins, 1985). Hocking (2005, p. 42) states that “in general, we would like to have 

at least six to ten observations per predictor” in the case of a multiple linear regression 

model. Therefore it is expected that the high parameter models will show high 

sensitivity to individual data points. 

 

From the AIC and AICc values obtained for the fitted models, it seems that for the 

original data, simpler models were preferred, with the no random effects model with 

ωi = TOEP obtaining the lowest AIC of 437.4, followed by the CS models (no random 

effects model with ωi = CS and the random intercept model with ωi = VC) obtaining 

the minimum AIC value (Table 3.2). The OLS model (no random effects model with 

ωi = VC) obtained the highest AIC value. Of the random effects models, the CSH 

random error models with heterogeneous random effects models or US random effects 

models obtained the highest AIC value, and the no random effects model (other than 

the OLS model) which had the highest AIC value was the ARH(1) no random effects 
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model. These results agree with those obtained by Jennrich and Schluchter (1986), 

Verbeke and Molenberghs (2000), and Davis (2002), but many more covariance 

structures are compared in addition to those used in these studies, as discussed in 

Chapter two. 

 

Three main problems occurred during the fitting procedure. The most common 

problem was indicated by the warning message “Convergence criteria met but final 

Hessian not positive definite”. This means that a point on the cost function curve has 

been reached where the gradient is equal to zero, but the curvature of the cost function 

is not downwards in all directions (Weiss, 2005). Basically, this means the 

optimisation procedure was unable to reach a local maximum, and the details of SAS 

PROC MIXED (2003) state that in general this indicates that the model has been over 

parameterised and that duplicate parameters may have been fitted. Collinearity in the 

predictor variables can also result in destabilising the optimisation procedure, and if 

present may result in this error message (Verbeke & Molenberghs, 2000). In this case 

collinearity cannot be the cause as there was only one continuous predictor variable, 

and so the problem is related to inappropriate covariance structure specification, or 

inability of the optimisation procedure to locate a local maximum.    

 

The second type of problem that occurred was when fitted models produced estimates 

that were outside of the parameter boundaries. The details of the SAS PROC MIXED 

(2003) indicate that the estimate of the correlation parameter ρ needs to be such that -

1< ρ̂ <1. Therefore fitted models with ρ̂  = 1 or -1 have invalid estimates, which 

would indicate that the model has been over parameterised and that a model with 

fewer parameters would be more appropriate. In other cases, variance components 
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were estimated as zero, again indicating that a simpler model would be a better 

choice. In more serious cases, variances of the random effects were estimated as zero. 

Since it is assumed that the random effects are normally distributed, a zero estimate 

for the variance is invalid. Sometimes it was not obvious that the estimates of the 

parameters were invalid. The covariance structure of the random effects was 

sometimes found not to be positive (semi-)definite. This resulted in a failure to 

simulate data from these parameters as it is assumed that the covariance structures of 

the random effects and errors are positive (semi-)definite as discussed in Section 

2.2.3. These problems of invalid parameter estimates were only found through 

investigation of the model estimates; no warning message was produced in the SAS 

PROC MIXED  (ver. 9.1) output. Some of these models were used after the data had 

been simulated for comparative purposes. These include models with non-positive 

(semi-)definite random effects covariance structures, which were the models with ωi = 

TOEP and Σ = CS, ωi = CS and Σ = TOEP, and ωi = TOEP and Σ = TOEP, as well as 

the model with ωi = VC and Σ = CS, which had a variance component equal to zero, 

resulting in the variances and covariances all having the same value. 

 

The three models included with estimated Σ non-positive definite were included as 

the non-positive definiteness was not evident without calculating the eigenvalues of 

these matrices, and therefore the estimates for the covariance structure could easily 

have been accepted if further investigation was not carried out on Σ. The AIC values 

obtained for these models were not unreasonable, therefore these models may 

potentially have been considered as good models (Table 3.2). One model with a 

covariance parameter estimated as zero was also included in order to compare how 

well this model, with an unnecessary covariance parameter, performed compared to 
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other models. This model (model with ωi = VC and Σ = CS) obtained a reasonable 

AIC value so may also have been considered as a good model if the covariance 

parameters were not investigated. 

 

Failure of the optimisation algorithm to converge was the third problem that occurred 

in the fitting procedure, but it only occurred for the model with ωi = CSH and Σ = 

AR(1). In this particular case there were too many likelihood evaluations before 

convergence of the optimisation algorithm occurred. The number of likelihood 

evaluation was increased to 1000, but still no convergence occurred. The convergence 

criterion cycled between very small values (<0.0006) to extremely large values 

(>1012), but always above the convergence level. 

 

Errors or invalid parameter estimates occurred for all models where the specified 

covariance matrix of the random effects forced the variance of the intercept and the 

slope to be equal, such as in the cases of CS, TOEP and AR(1) options (Table 3.1). 

SAS PROC MIXED (ver. 9.1) seems to have dealt with this problem in the VC case, 

as variance estimates for the intercept and slope are different when VC is specified for 

Σ. When VC is specified for ωi, all of the diagonal elements are equal. All models 

with four or less covariance parameters which failed to obtain valid estimates, except 

in the case of the random intercept model with ωi = CS and the random intercept and 

slope model with ωi = CS and Σ = VC, had specifications for ωi that forced the 

diagonal elements of the covariance matrix to be equal (Table 3.2).  

 

Since the covariance matrix of the random effects in this case is 2×2, it is easy to state 

the condition of positive definiteness when the diagonal of the matrix has equal 
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elements. A random intercept and slope model, with equal variances for the intercept 

and slope, would have a 2×2 symmetric matrix of the following form 








1112

1211

aa

aa
, 

where a11>0. For this matrix to be positive definite, the eigenvalues would need to be 

positive (Johnson, 1970), therefore solving for the determinant 
λ

λ
−

−

1112

1211

aa

aa
 

results in eigenvalues equal to a12 + a11 and a11 – a12. Since the eigenvalues need to be 

positive, this implies that -a11 < a12 < a11. The problem with random effects 

covariance structures that weren’t positive definite in Table 3.1 is that the absolute 

covariance is too large for the small variance estimates that were obtained. If the 

variances of the intercept and slope are allowed to differ, the estimates are found to be 

very far apart from each other; therefore the covariance would need to be large as 

well. To take the cases of the random effects models with ωi = CS and Σ = CS and 

with ωi = CS and Σ = CSH, the estimated Σ matrix of the first model, which assumes 

equal diagonal elements, was non-positive definite, whereas the Σ matrix estimated 

for the second model, which allows the diagonal elements to differ, is positive 

definite. The diagonal elements estimated for the second model are 3.8517 and 0.0325 

for the random intercept and slope respectively, which are very different from each 

other, and therefore indicate that assuming these two values are equal would not be 

appropriate.  Therefore it is unreasonable to assume that the random intercept and 

slope have the same variance, and therefore covariance structures which assume equal 

variance parameters along the diagonal are poor choices. 

 

These problems of parameter estimates that are out of their bounds, non-positive 

definite random effects covariance matrices, and nonconvergence are due to the 

marginal modelling approach used to obtain the parameter estimates (Verbeke & 
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Molenberghs, 2000). The parameter estimation methods are designed to ensure 

positive definiteness of the covariance structure of yi (Lindstrom & Bates, 1988; 

Wolfinger, 1993; Pourahmadi, 2000), but this does not imply that the individual 

covariances of the hierarchical model, Σ and ωi, will be positive definite. These 

problems can in some cases be avoided by specifying better starting values for the 

parameters or by specifying a different fitting procedure (Verbeke & Molenberghs, 

2000).  


