DECLARATION

I declare that this thesis is my own, unaided work. It is being submitted for the degree of Doctor of Philosophy in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University.

.....

(Signature of candidate)

...... day of2005

ABSTRACT

The main aim of this thesis has been to study the way in which Fe(III) and Co(II) incorporation into Si-MCM-41 synthesis gels affects the properties of the unmodified material. Another aim was to investigate the influence of these hetero-atoms on the dispersion and particle size distribution as well as the catalytic activity of supported Au nanoparticles in the CO oxidation reaction.

Si-MCM-41 has been successfully synthesized in this work using mixtures containing CTAB as a structure-directing agent (SDA) and water-glass as a SiO₂ source. Replacement of water-glass with pre-calcined Si-MCM-41 for SiO₂ source in the secondary synthesis step has produced Si-MCM-41 with improved structural properties (XRD, HRTEM and Raman spectroscopy), including restructured and more crystalline pore walls (Raman spectroscopy).

The conventional shortcomings of Si-MCM-41 as a support for catalyticallyactive (transition) metal components such as low hydrothermal stability, low PZC, lack of cation exchange capacity and no reducibility have been partially addressed by modification with Fe(III) and Co(II). The premodification was achieved both during framework synthesis and after synthesis by the incipient wetness impregnation (IWI) method. As opposed to the one-pot synthesis of metal-containing derivatives, the IWI method gave materials with high metal loadings and maximal retention of the properties of pristine Si-MCM-41. On the other hand, metal incorporation during synthesis to a loading of ~8.8 wt% using aqueous solutions of metal precursors showed some collapse of the mesostructure. Consequently methods were sought to incorporate this amount of metal (and up to double, i.e., 16 wt%) with maximal retention of the MCM-41 characteristics. These methods included (i) using Si-MCM-41 as a SiO₂ source, (ii) dissolving the metal precursors in an acid solution before inclusion into the synthesis gel, and (iii) using freshly precipitated alkali slurries of the metal precursors. The first method produced a highly ordered 16wt% Fe-MCM-41 material with excellent reducibility (TPR showed three well-resolved peaks) and pore-wall structure (Raman spectroscopy). Like the aqueous route, the acid-mediated metal incorporation route did not produce ordered materials at metal contents of ~16 wt%. The base precipitate route produced highly ordered composite materials up to 16 wt% metal content, with characteristics similar to those of Si-MCM-41 (XRD, BET and HRTEM), although some metal phases were observed as a separate phase on the SiO₂ surface. Thus, metal-containing MCM-41 materials could be obtained with conservation of MCM-41 mesoporosity. Raman spectroscopic studies have shown that the effect of transition metal incorporation in MCM-41-type materials is to strengthen the pore walls (shift of Si-O-Si peaks to higher frequencies), while TPR studies revealed that the essentially neutral framework of Si-MCM-41 could be rendered reducible by transition metal incorporation.

Gold-containing mesoporous nanocomposites were prepared by both direct synthesis and post-synthetically. Catalysts prepared by direct hydrothermal synthesis were always accompanied by formation of large Au particles because of the need to calcine the materials at 500 °C in order to remove the occluded surfactant template. The presence of transition metal components in Me-MCM-41 (Me = Fe and Co) has been found to play a significant role in the particle size distribution and also the dispersion of Au nanoparticles when these materials were used as supports. In general, a base metal-containing support was found to produce smaller Au nanoparticles than the corresponding siliceous support. It has been proposed that the transition metal components serve as anchoring or nucleation sites for the Au nanoparticles, which are likely to sinter during calcination. The anchoring sites thus retard the surface mobility of Au at calcination temperatures above their T_{Tammann}.

The use of the Au/Me-MCM-41 materials as catalysts in the CO oxidation reaction has led to the following observations: (i) catalyst on metal-containing supports showed better activity than those on Si-MCM-41, probably due to the induced reducibility in metal-MCM-41, (ii) catalysts prepared by direct synthesis showed inferior activity owing to large Au particles, (iii) increasing Au content improves the catalytic performance, (iv) increasing the Fe content of the support

at constant Au improves the catalytic performance, and (v) changing the base metal component of the support from Fe to Co led to a significant improvement in catalytic activity. The similarity of the apparent activation energies (E_a) for the 5 wt% Au-containing 5 wt% Fe- and 5 wt% Co-MCM-41 suggested that the difference in catalytic activity is associated with the number of active sites possessed by each catalyst system. The observed order of catalytic activity of these 5 wt% Au-containing systems in terms of the support type is: Co-MCM-41 > Fe-MCM-41 > Si-MCM-41. This was further supported by the average Au particle size, which, in terms of the support, followed the order Co-MCM-41 < Fe-MCM-41 < Si-MCM-41. Thus, metal-support interactions between Au and MCM-41 have been enhanced by introducing Fe(III) and Co(II), which also induced framework charge, ion exchange capacity (IEC) and reducibility in the neutral siliceous support.

DEDICATION

This thesis is dedicated to the memory of my brother

Malesela Simon Mokhonoana

1970-2003

ACKNOWLEDGEMENTS

The extract from the late Brenda Fassie's song, "*It's nice to be with people*" is key to success in life, because whatever we achieve in life depends on how we interact with each other. I would not have accomplished this work without the help from other people, and my sincere appreciation goes to the following people and institutions:

My supervisor, Prof. N. J. Coville for his patience, guidance, support and suggestions

Mr. Basil Chassoulas for his assistance with the autoclaves and TPR measurements

Messrs. Barry Fairbrother and Steve Ganon for their remarkable glassblowing, fixing and making my TPR reactors.

Manuel Fernandes and Prof. Schoning for their continued assistance with the XRD diffractometer, all the pains of changing receiving slits to adapt for low-angle scans.

Prof. Abhaya K. Datye of the Chemical Engineering Department, University of New Mexico, Albuquerque, USA, for giving me the opportunity to research in his Group. Assistance from Hien Pham (*Post-doc*) and Mangesh Bore (*PhD student*) is also appreciated. Your guidance and suggestions are unforgettable.

Prof. Harold H. Kung of the Chemical Engineering Department, Northwestern University, Evanston (*Chicago*), USA, for giving me a further research opportunity in his Group. Being with you was a pleasant research experience, and your approach to research will always be remembered.

My parents, brothers and sisters for their support, encouragement and assistance (*particularly Dr. Moses* during my stay in the USA).

The NRF (*through the Staff Development Program*) and the University of the Witwatersrand for financial support

The NRF-NSF joint support for financing my visit and studies in the United States of America

Last but not least, I would like to thank the University of the North for allowing me study leave for the period 2000-2002.

TABLE OF CONTENTS

	<u>Page</u>
DECLARATION	i
ABSTRACT	ii
DEDICATION	V
ACKNOWLEDGEMENTS	vi
TABLE OF CONTENTS	viii
LIST OF FIGURES	xvi
LIST OF TABLES	xxix
LIST OF ABBREVIATIONS AND ACRONYMS	xxxii
SCOPE AND CONTENT OF THE THESIS	xxxvii
APPENDICES	357
CHAPTER 1: GENERAL INTRODUCTION	
1.1 Extension from Microporous to Mesoporous Dimensions	1
1.2 Synthesis and Fabrication of Mesoporous MCM-41	5
1.2.1 Liquid-Crystal Templating: Supramolecular Self-Assembly	5
1.2.2 Sol-Gel Synthesis Route (Alkali-free Synthesis)	7
1.2.3 Other Mesoporous Materials: Post-LCT Syntheses	9
1.2.3.1 Silica-Based Mesoporous Materials	9
1.2.3.2 Metal Oxide-Based Mesoporous Materials	14
1.2.3.3 Carbon-Based Mesoporous Materials	15
1.2.4 Methods of Template Removal from the Mesostructure	17
1.3 Characteristics of Mesoporous Materials (MCM-41)	18
1.3.1 Bulk and Textural features of MCM-41	18

1.3.2 Morphologies and Shapes in Mesoporous MCM-41 Materials	21
1.3.3 Hydrothermal stability of MCM-41 Materials	22
1.3.3.1 Improving the thermal/hydrothermal stability of Si-MCM-41	23
1.4 Catalysis and Technical Applications of MCM-41 Materials	26
1.4.1 Organically-Modified MCM-41 Materials	26
1.4.1.1 Co-condensation or Direct Organic Modification of MCM-41	28
1.4.1.2 Post-synthesis Organic Modification of MCM-41	28
1.4.1.3 Decontamination of Ground Water: Heavy Metals and Oxyanions	29
1.4.2 Metal-containing Mesoporous Materials (Me-MCM-41)	34
1.4.2.1 Iron-containing Mesoporous MCM-41 (Fe-MCM-41)	35
1.4.2.2 Cobalt-containing Mesoporous MCM-41 (Co-MCM-41)	39
1.4.3 General Catalytic Reactions of Mesoporous Materials	45
1.5 Pollution Control Through Catalysis	46
1.5.1 Carbon Monoxide Poisoning	47
1.5.2 CO Oxidation and Catalysis by Gold	48
1.5.3 Commercial Applications of Gold Catalysts	51
1.5.4 Supported Au Catalysts	51
1.5.5 Preparation of Supported Au Catalysts	54
1.5.6 Controversy over the Active species in CO Oxidation	58
1.6 Hypotheses and Aims of the Study	59
1.7 Rationale/Motivation for Research in this Thesis	60
1.8 References	63
CHAPTER 2: MESOPOROUS SILICA MCM-41 (Si-MCM-41)	

2.1 Introduction 95

2.1.1 Synthesis of MCM-41	96
2.2 Experimental section	99
2.2.1 Starting materials (chemicals, stock solutions and solvents)	99
2.2.2 Synthesis of the Si-MCM-41 Material (Procedure)	99
2.2.2.1 Unstirred Synthesis of Si-MCM-41	100
Room Temperature Synthesis of Si-MCM-41	100
Hydrothermal Synthesis of Si-MCM-41	100
2.2.2.2 Stirred Synthesis of Si-MCM-41	102
2.2.3 Characterization of Si-MCM-41	102
2.2.3.1 X-ray Powder Diffraction	102
2.2.3.2 BET surface area measurement	103
2.2.3.3 HRTEM studies of Si-MCM-41	103
2.3 Results and Discussion	103
2.3.1 Structural (Bulk) Characterization of Si-MCM-41 (XRD)	104
2.3.1.1 Room Temperature Synthesis	104
2.3.1.2 Hydrothermal Synthesis	113
2.3.1.3 Al-Si-MCM-41 Studies	131
2.3.2 BET surface area measurements	134
2.3.2.1 Room Temperature Synthesized Si-MCM-41 Materials	134
2.3.2.2 Hydrothermally-prepared Si-MCM-41 Materials	136
2.3.3 High Resolution Transmission Electron Microscopy (HRTEM) Stud	lies 141
2.4 Conclusions	147
2.5 References	152

CHAPTER 3: IRON- AND COBALT-CONTAINING MCM-41: Synthesis and Characterization

3.1 Introduction	155
3.1.1 Probing the Fe environment in Fe-MCM-41 using ESR spectroscopy	158
3.1.2 Temperature-Programmed Reduction (TPR)	161
3.1.3 Synthetic Strategies used in this study	162
3.2 Experimental	162
3.2.1 Starting Materials	162
3.2.2 Synthesis Procedure	163
(a) Direct Synthesis: (Aqueous) Acid-mediated route	164
(b) Direct Synthesis: The hydroxide precipitate route	164
(c) Post-synthesis metal incorporation: Incipient Wetness Impregnation	164
3.2.3 Characterization of Fe- and Co-MCM-41	165
(a) X-ray Powder Diffraction (XRD)	165
(b) BET Surface Area Measurements	165
(c) High Resolution Transmission Electron Microscopy (HRTEM)	165
(d) Energy-Dispersive Spectrometry (EDS)	166
(e) Temperature-Programmed Reduction Using Hydrogen (H ₂ -TPR)	166
(f) Electron Spin Resonance (ESR) Spectroscopy	166
(g) Raman Spectroscopy	167
(h) Infrared Spectroscopy	167
3.3 Results and Discussion	167
3.3.1 X-ray Powder Diffraction (XRD and BET) measurements	167
(a) Incipient wetness impregnation (IWI) with Fe or Co Precursors	168
(b) Direct Incorporation of aqueous Fe(III) and Co(II) During Synthesis	173

(c) Acid Mediated Incorporation of Fe during synthesis	178
(d) Acid-Mediated Incorporation of Co	183
(e) Simultaneous Incorporation of Fe and Co by the Acid-Mediated Route	184
(f) Base-Mediated Incorporation of Fe During Synthesis	185
1. Variation of the type of base used	185
2. Iron content	187
3. Temperature	188
(g) Base-mediated incorporation of Co	190
(h) Comparisons between Me-MCM-41 ($Me = Fe$, Co, Ru) prepared by the precipitate	e base 194
3.3.2 High Resolution Transmission Electron Microscopy (HRTEM)	196
3.3.3 Temperature-Programmed Reduction (TPR)	202
3.3.3.1 TPR studies of Fe-containing MCM-41	202
3.3.3.2 TPR studies of Co-containing MCM-41	212
3.3.3.3 TPR studies of bimetallic-derivatized MCM-41	215
3.3.4 Spectroscopic Methods	217
3.3.4.1 Electron Spin Resonance (ESR or EPR) Spectroscopy	217
3.3.4.2 Raman Spectroscopy	225
3.3.4.3 Infrared Spectroscopy	233
3.4 Conclusions	235
3.5 References	240
CHAPTER 4 SYNTHESIS AND CHARACTERIZATION OF Au- CONTAINING Me-MCM-41 (Me = Si, Co, Fe)	
4.1 Introduction	247
4.1.1 Synthesis of Supported Gold Nanoparticles: General	249

4.1.2 Gold Nanoparticles on Haruta-type Supports	249
(i) Coprecipitation (CP)	251
(ii) Deposition-precipitation (DP)	252
4.1.3 Gold Nanoparticles on Conventional Zeolite Supports	252
4.1.4 Gold Nanoparticles on Mesoporous Zeolite Supports	253
4.1.5 Characterization of Supported Gold Nanoparticles	254
4.1.6 Aim of Study	256
4.2 Experimental	257
4.2.1 Materials	257
4.2.2 Synthesis of Mesostructured Au/Me-MCM-41 (Me = Si, Co, Fe)	257
4.2.2.1 One-pot Synthesis of Au-containing MCM-41: Direct 80-100 °C S	ynthesis 258
4.2.2.2 Post-synthesis Approach to Au-containing MCM-41: Ethylenedian route	nine 258
4.2.2.3 Post-synthesis Approach to Au-containing MCM-41: Coprecipitat	ion route 259
4.2.2.4 Post-synthesi Approach to Au-containing MCM-41: Miscellaneou	s 259
4.2.3 Characterization of Au/Me-MCM-41 (Me = Si, Fe, Co)	259
4.3 Results and Discussion	260
4.3.1 X-ray Diffraction Studies	260
4.3.2 BET Surface Area Measurements	264
4.3.3 High Resolution Transmission Electron Microscopy (HRTEM) Stud	ies 267
4.3.3.1 Gold Incorporation by Direct Hydrothermal Synthesis (One-pot Sy	onthesis) 267
4.3.3.2 Post-synthesis incorporation of Au in Mesoporous Supports	270

4.3.3.3 Gold Incorporation by Precipitation with ethylenediamine solution calcinations	and 270
4.3.3.4 Gold Incorporation by other Methods (Post-synthetically)	280
4.4 Conclusions	287
4.5 References	291
CHAPTER 5: CO OXIDATION OVER Au/Me-MCM-41 (Me = Si, Fe MATERIALS	e, Co)
5.1 Introduction	298
5.1.1 Gold Catalysts Supported on Mesoporous Silica Derivatives	302
5.2 Experimental	304
5.2.1 Starting Materials	304
5.2.2 Catalyst Preparations	305
Method A	305
Method B	305
Method C	306
5.2.3 Activity Testing Procedure	306
5.3 Results and Discussion	308
5.3.1 Gold Catalysts on Pure Silica MCM-41 Supports	308
5.3.2 Gold Catalysts on Co-functionalized Mesoporous Supports	312
5.3.3 Gold Catalysts on Fe-functionalized Mesoporous Supports	315
5.3.4 Gold catalysts on Fe-functionalized MCM-41: Ethylenediamine Syn route	thesis 317
5.3.5 Gold catalysts on Fe-functionalized MCM-41: Other Post-synthesis	Methods 327
5.4 Conclusions	334
5.5 References	339

CHAPTER 6 SUMMARY AND CONCLUSIONS

6.1 Summary	343
6.2 Conclusions	345
APPENDICES	
Appendix A.1 . The XRD patterns of Si-MCM-41 materials prepared at 80 6 h under magnetic stirring. The ratio R_{SiO2} represents mol_{SiO2} (TEOS) divisor mol_{SiO2} (water-glass) in the synthesis gel.) °C for ded by 357
Appendix A.2 . Table of lattice parameters of Si-MCM-41 (prepared at 10 2 days) as a function of the synthesis gel H ₂ O content	0 °C for 358
Appendix A.3 . XRD pattern of 20 wt% Fe-MCM-41 prepared at 100 °C fe days via the OH ⁻ precipitate route	For 2 359
Appendix A.4. XRD patterns of 16 wt% Fe-MCM-41 (100 °C, 2 d) using	
different precipitants (TEA and Na ₂ CO ₃).	360
Appendix A.5 (i) . The EDS spectrum of 5 wt% Au/14 wt% Fe-MCM-41 p via the (en) route on the Fe-rich support, followed by calcination at 380 °C Average particle size 3.55 nm.	prepared C for 6 h. 361
Appendix A.5 (ii). EDS spectrum of 2.28 wt% Au/CTAB-MCM-41 prepared via the en route, and then calcined at 500 °C for 12 h to decompose the surfactant. Note that the Au content is relative to the as-synthesized material, and the actual Au content is actually higher than the stipulated value 361	
Appendix A.6 Raw data for the CO oxidation reaction using 1.48 wt%	Au.Co-
MCM-41 as a catalyst, calcined at 325 °C for 6 h	362
Appendix A.7 . The framework Raman spectrum of <i>sec</i> -Si-MCM-41 prepa 100 °C for 48 h and then calcined at 560 °C for 6 h	ared at 363
Appendix A.8. Conferences Attended and Presentations	364

LIST OF FIGURES

CHAPTER 1

Figure 1.1 Three structure types observed for silica-surfactant mesophases: (a) MCM-41 (Hexagonal, 1-D), (b) MCM-48 (Cubic, bicontinuous, 3-D), (c) MCM-50 (Lamellar, 2-D) 4

Figure 1.2 Liquid-crystal templating (LCT) mechanism for self-assemblyproposed by Beck et al [26] showing two possible pathways for the formation ofMCM-41: (1) liquid-crystal initiated and (2) silicate-initiated6

Figure 1.3 SEM micrograph of SBA-2 showing different morphologies 12

Figure 1.4 (Left) Changes in powder XRD patterns during synthesis of the carbon molecular sieve CMK-1 with its silica template MCM-48: (a) The mesoporous silica molecular sieve MCM-48, (b) MCM-48 after completing carbonization within pores, and (c) CMK-1. (Right): Powder XRD patterns of CMK-3 carbon and SBA-15 silica used as template for the CMK-3 synthesis **16**

Figure 1.5 TEM images of MCM-41 materials with Ar pore sizes of (a) 20, (b) 40, (c) 65 and (d) 100 Å 19

Figure 1.6 XRD pattern (a) of high-quality calcined MCM-41 reported by Huo et al [34], and N₂ adsorption isotherm (b) reported by Branton et al [127] **20**

Figure 1.7 SEM images of (a) BMS-1, (b) BMS-2, and (c) BMS-3. The length of the bar for (a, b) corresponds to 5 μ m and for (c) corresponds to 10 μ m. Varying amounts of ethyl acetate were added to the synthesis mixture for the preparation of the BMS materials, with BMS-1, BMS-2 and BMS-3 prepared by adding 15, 25 and 35 ml, respectively, of ethyl acetate to the synthesis gel [ref. 144] **21**

Figure 1.8 Powder XRD patterns of Si-MCM-41 and Si-Al-MCM-41 (a) beforeand (b) after treatment in boiling water for 1 week25

Figure 1.9 S_{BET} of Si-MCM-41, Si-Al-MCM-41, and Al/Si-MCM-41 before and after treatment in boiling water for 1 week: \blacksquare fresh sample, \Box in boiling water. The last material was prepared by Al impregnation of Si-MCM-41 25

Figure 1.10 Recipe for the formation of a silica sponge (A), and retention of the hexagonal structure (B) 31

Figure 1.11 Heavy metal removal by SAMMS	32
Figure 1.12 XRD patterns of Co/MCM-41 and MCM-41	40

Figure 1.13 Zeta potential of MCM-41 as a function of pH. The dotted lineindicates the isoelectric point42

Figure 1.14 TPR patterns of CoMo/Al-MCM(x) catalysts, x is the weight % ofMCM-41 in the support43

Figure 1.15 TEM micrograph of Au-Fe (1 : 19) coprecipitate calcined at 400 °C: dispersion of gold over α -Fe₂O₃ **52**

Figure 1.16 Conversions of H₂ and CO in catalytic oxidation reactions as a function of catalyst temperature. CO or H₂ 1 vol% in air, $SV = 2 \times 10^4 \text{ h}^{-1}$.ml/g-cat: oxidation of H₂ (\odot) and CO (\bullet) on Au-Fe (1 : 19) coprecipitate calcined at 400 °C in air; oxidation of H₂ (\Box) and CO (\bullet) on Au powder prepared from colloidal metal particles with diameters around 20 nm; oxidation of H₂ (Δ) and CO (\bullet) on α -Fe₂O₃ powder prepared by calcination of ferric hydroxide at 400 °C **53**

Figure 1.17 Arrhenius plots for the rate of CO oxidation over supported catalysts: (\blacktriangle) Au (1.2 wt%)/Co₃O₄, (\Box) Au (0.66 wt%)/ α -Fe₂O₃ and (\circ) Au (3.3 wt%)/TiO₂ 53

CHAPTER 2

Figure 2.1 XRD patterns of Si-MCM-41 samples: Different batches prepared on different days using gels of the same composition (mean $a_0 = 46.7$ Å) **101**

Figure 2.2 XRD patterns of Si-MCM-41 materials synthesized at room temperature for 47 days. Replicate syntheses were done using distilled water and deionized water as solvent media 105

Figure 2.3 XRD patterns of some Si-MCM-41 materials prepared at room temperature 106

Figure 2.4 XRD patterns of Si-MCM-41 made at RT using templates of different alkyl chain lengths: ${}^{a}C_{14}$ represents tetradecyltrimethylammonium bromide, and C_{16} represents cetyltrimethylammonium bromide (a.k.a. CTAB) **108**

Figure 2.5 The XRD patterns of Si-MCM-41 prepared at RT from gels of varying silicon/surfactant ratios 110

Figure 2.6 Variation of the lattice parameter with synthesis gel H₂O content (RT, 5 days) 111

Figure 2.7 XRD patterns of secondary Si-MCM-41: (a) primary Si-MCM-41 (parent), and (b) 2° synthesis at RT for 2 days 112

Figure 2.8 XRD pattern of Si-MCM-41 prepared by aging at RT for 5 days, withwater-glass first titrated with HNO3 prior adding to CTAB solution. Calcined at560 °C for 6 h113

Figure 2.9 XRD patterns of Si-MCM-41 showing the effect of synthesistemperature (3 days synthesis)114
Figure 2.10 A plot of a_0 versus synthesis temperature for Si-MCM-41, 3 dayssynthesis. Room temperature has been arbitrarily taken as 25 °C.115
Figure 2.11 XRD patterns of Si-MCM-41 made from gels with different pHvalues (2 days)116
Figure 2.12 The XRD pattern of Si-MCM-41 prepared by intermediate pHadjustment117
Figure 2.13 XRD patterns of calcined Si-MCM-41 prepared at 100 °C for 12-72h: (a) $1^{\circ} \le 2\theta \le 10^{\circ}$, and (b) $3^{\circ} \le 2\theta \le 10^{\circ}$ (higher order region)118
Figure 2.14 Variation of a_0 with synthesis time at 100 °C for Si-MCM-41 119
Figure 2.15 XRD patterns of Si-MCM-41, RT v/s 100 °C synthesis: (a) 3 days,(b) 5 days120
Figure 2.16 A plot of lattice parameter versus gel H2O/SiO2 molar ratio (Si-MCM-41, 100 °C, 2 days)121
Figure 2.17 XRD patterns of Si-MCM-41 prepared in a pH 10 buffer solution 121
Figure 2.18 XRD pattern of Si-MCM-41 prepared by doubling the gelcomposition123
Figure 2.19 XRD patterns of Si-MCM-41 prepared using different acids 124
Figure 2.20 XRD patterns of Si-MCM-41 synthesized at 100 °C for 2 days 125
Figure 2.21 XRD patterns of Si-MCM-41, showing the effect of the silicaprecursor126
Figure 2.22 XRD patterns of secondary Si-MCM-41: Effect of calcinationtemperature127
Figure 2.23 The XRD patterns of secondary Si-MCM-41: Effect of synthesistime, (a) full range, and (b) $3^{\circ} \le 2\theta \le 10^{\circ}$ 129
Figure 2.24 XRD pattern of Si-MCM-41 prepared by heating the synthesis gel(97 °C for 45 minutes) made with pre-hydrolysis of water-glass with HNO3 beforeadding to CTAB solution. Calcined at 560 °C for 6 h130

Figure 2.25 XRD patterns of (Al, Si)-MCM-41 (Si/Al = 30) prepared at 100 $^{\circ}$ C for 48 h: (a) Al source added to the gel after pH adjustment, (b) Al source added to the gel before pH adjustment, followed by 2 days aging prior to synthesis, and (c) Al source added to the gel before pH adjustment 132

Figure 2.26 XRD patterns of (Al, Si)-MCM-41 (Si/Al = 22) prepared by IWI ofSi-MCM-41. (a) methanol as solvent, (b) water as solvent, and (c) ethanol assolvent. IWI abbreviates incipient wetness impregnation133

Figure 2.27 XRD patterns of (Al, Si)-MCM-41 (Si/Al = 22) by different synthesis routes 134

Figure 2.28 Variation of the BET surface area of Si-MCM-41 with gel water content (RT, 5 days) 135

Figure 2.29 Variation of the BET surface area with synthesis time for Si-MCM-41 (100 °C) 137

Figure 2.30 HRTEM images of Si-MCM-41 prepared at 100 °C for 5 days, and calcined at 560 °C for 6 h 142

Figure 2.31 HRTEM images of Si-MCM-41 made with CTAB/NaK-tartrate as template, calcined at 560 °C for 6 h: Images taken at different regions of the same sample 143

Figure 2.32 Different regions of Si-MCM-41 (2 days, 100 °C, C14TMAB astemplate, calcined at 560 °C for 6 h) as seen under HRTEM144

Figure 2.33 HRTEM images of different regions of Si-MCM-41 prepared at 80 °C for 6 h, $R_{SiO2} = 3.95$, and calcined at 500 °C for 12 h 145

Figure 2.34 HRTEM images of different regions of Si-MCM-41 prepared at 80 °C for 6 h, with $R_{SiO2} = 1.48$, and calcined at 500 °C for 12 h 146

CHAPTER 3

Figure 3.1 TEM micrograph of 4 wt% Fe-MCM-41. Fe introduced during framework synthesis 157

Figure 3.2 Room temperature X-band EPR spectrum of the iron-containing Kenyaite 160

Figure 3.3 XRD patterns of 5 wt% Fe-MCM-41 (a) and the pure support (b) 168

Figure 3.4 The XRD pattern of 5 wt% Fe-MCM-41 prepared by IWI of *sec*-Si-MCM-41, calcined at 560 °C for 6 h. Insert: Expanded high-angle region, * represents Fe₂O₃ **169**

Figure 3.5 XRD patterns of Fe-MCM-41 prepared by IWI compared with that of bulk Fe_2O_3 : (a) 16 wt% Fe-MCM-41, (b) 50 wt% Fe-MCM-41, and (c) bulk Fe_2O_3 **171**

Figure 3.6 XRD patterns of 16 wt% Co-MCM-41 prepared by IWI in 1 M HNO3solution (a) and Co₃O₄ reference sample (b)172

Figure 3.7 Effect of Co incorporation by IWI on XRD patterns: (a) parent Si-MCM-41 and (b) 10.2 wt% Co-MCM-41172

Figure 3.8 Effect of synthesis gel pH on the XRD properties of hydrothermally-
prepared 1.9 wt% Fe-MCM-41173

Figure 3.9 XRD patterns of 8.8 wt% Fe-MCM-41: Solid NaOH versus aqueousNaOH for pH adjustment174

Figure 3.10 XRD pattern of 8.9 wt% Co-MCM-41 prepared at 100 °C for 72 h(one-pot synthesis)175

Figure 3.11Low-angle (a) and high-angle (b) XRD patterns of 16 wt% Fe-MCM- $41: Fe^{3+}(aq)$ added after 2 h stirring. Synthesis at 100 °C for 6 h, dried at 110 °Cfor 3 h, uncalcined176

Figure 3.12 Variation of ao with calcination temperature for 5 wt% Fe-MCM-41prepared at 100 °C for 2 days178

Figure 3.13 XRD patterns of 5 wt% Fe-MCM-41 calcined at different temperatures 179

Figure 3.14 Lattice parameters for 8.8 wt% Fe-MCM-41 prepared at 100 °C for 2days using various acids to add the Fe precursor180

Figure 3.15 Variation of BET surface areas of 8.8 wt% Fe-MCM-41, prepared at 100 °C for 2 days, with acid identity. All samples were calcined at 560 °C for 6 h 181

Figure 3.16 Variation of the BET surface area (a) and lattice parameter (b) with Fe content for the Fe-MCM-41 materials prepared in HNO₃ at 100 °C for 48 h. All samples were calcined at 560 °C for 6 h **182**

Figure 3.17 XRD patterns of a bimetallic and monometallic Fe-MCM-41prepared at 100 °C for 2 days with metal precursors in 1 M HNO3: (a) 8.8 wt%Fe-MCM-41 and (b) (7.8 wt% Fe, 11.5 wt% Co)-MCM-41184

Figure 3.18 XRD patterns of Fe-MCM-41 prepared via the OH⁻ route and calcined at 560 $^{\circ}$ C for 6 h: (a) 5 wt% Fe-MCM-41, (b) 10 wt% Fe-MCM-41, (c) 16 wt% Fe-MCM-41, and (d) bulk Fe₂O₃ **187**

Figure 3.19 The XRD patterns of 5 wt% Fe-MCM-41 prepared by adding Fe(OH)₃ to the synthesis gel and carrying out the synthesis (a) at 97 °C for 45 minutes and (b) at room temperature for 4 days **189**

Figure 3.20 XRD patterns of Co-MCM-41 prepared by the OH route at 100 °Cfor 48 h and calcined at 560 °C for 6 h191

Figure 3.21 XRD patterns of 10 wt% Co-MCM-41 prepared hydrothermally via the hydroxide route: (a) calcined at 560 °C for 6 h, and (b) after the TPR experiment 192

Figure 3.22 XRD pattern of 16 wt% Co-MCM-41 (5 days at RT, OH⁻ route) 192

Figure 3.23 High-angle XRD patterns of Co_3O_4 (a), 16 wt% Co-MCM-41 prepared at RT for 5 days (b), and 16 wt% Co-MCM-41 prepared at 100 °C for 2 days (c) 193

Figure 3.24 XRD patterns of 16 wt% Me-MCM-41 prepared via the NaOH precipitate route: Me = Co (a), Fe (b) and Ru (c). All materials calcined at 560 $^{\circ}$ C for 6 h 194

Figure 3.25 HRTEM micrograph (a) and EDS (b) of 16 wt% Fe-MCM-41 prepared by IWI method. After overnight drying at 110 °C, the sample was calcined at 560 °C for 6 h 197

Figure 3.26 HRTEM micrograph of 5 wt% Fe-MCM-41 prepared by IWI on sec-Si-MCM-41198

Figure 3.27 HRTEM micrograph (a) and EDS (b) of 14 wt% Fe-MCM-41material made from TEOS and urea at 80-90 °C for 24 h199

Figure 3.28 HRTEM micrograph of 7.5 wt% Fe-silica material made by theaerosol route at 125 °C200

Figure 3.29 HRTEM micrograph of 3 wt% Fe-MCM-41 prepared at 80 °C for 6h. The material was then calcined at 500 °C for 12 h200

Figure 3.30 HRTEM micrographs of two different regions of 5 wt% Fe-MCM-51prepared via the OH⁻ route at 100 °C for 2 days201

Figure 3.31 TPR profiles of 16 wt% Fe-MCM-41 prepared by IWI: (a) calcined at 450 °C for 12 h, (b) calcined at 560 °C for 6 h, and (c) bulk Fe₂O₃ reference **202**

Figure 3.32 TPR profiles of (a) 5 wt% Fe-MCM-41 prepared by IWI method using *sec*-Si-MCM-41 as a support, calcined at 560 °C for 6 h, (b) bulk Fe₂O₃ **203**

Figure 3.33 TPR profiles of (a) 16 wt% Fe-MCM-41 prepared by adding $Fe^{3+}(aq)$ to the synthesis gel 2 h after mixing (but prior to hydrothermal synthesis and calcination at 560 °C for 6 h)), and (b) bulk Fe₂O₃ **204**

Figure 3.34 TPR profiles of (a) 16 wt% Fe-MCM-41 prepared hydrothermallyfrom $Fe^{3+}(aq)$ and Si-MCM-41 as a SiO2 source followed by calcination at 560 °Cfor 6 h, (b) bulk Fe_2O_3 205

Figure 3.35 TPR profile of (a) Fe2O3 and (b) 8.8 wt% Fe-MCM-41 prepared byHNO3-mediated incorporation of Fe(III) (2 days at 100 °C) and calcined at 560 °Cfor 6 h206

Figure 3.36 TPR profiles of Fe-MCM-41 prepared via NaOH precipitate (100 °C for 2 days): (a) 5 wt% Fe, (b) 10 wt% Fe, and (c) bulk Fe₂O₃ **207**

Figure 3.37 TPR profiles of 16 wt% Fe-MCM-41 prepared via the OH⁻ route at 100 °C for 5 days: (a) calcined at 450 °C for 12 h, and (b) calcined at 560 °C for 6 h 208

Figure 3.38 The TPR profiles of (a) 16 wt% Fe-MCM-41 prepared by delayed addition of Fe(OH)₃ to the synthesis gel (100 °C for 2 days) and (b) bulk Fe₂O₃ **209**

Figure 3.39 TPR profiles of 16 wt% Fe-MCM-41 prepared at 100 °C for 2 days via the OH⁻ precipitate route: (a) Na₂CO₃ and (b) (HOCH₂CH₂)₃N as precipitants **210**

Figure 3.40 TPR profiles of (a) 5 wt% Fe-MCM-41 prepared via NaOHprecipitation of Fe^{3+} at RT for 4 days and (b) bulk Fe_2O_3 211

Figure 3.41 TPR profiles of Co₃O₄: (a) synthesized in this work, (b) reported byWu et al212

Figure 3.42 TPR profiles of (a) 16 wt% Co-MCM-41 prepared by IWI with a 1 M HNO₃ solution of Fe³⁺ and calcined at 560 $^{\circ}$ C for 6 h, and (b) bulk Co₃O₄ **213**

Figure 3.43 TPR profiles of Co-MCM-41 prepared via OH⁻ precipitates at 100 °Cfor 2 days: (a) 5 wt% Co, (b) 10 wt% Co, and (c) bulk Co₃O₄. All Co-MCM-41were calcined at 560 °C for 6 h214

Figure 3.44 TPR profiles of 10 wt% Co-MCM-41 prepared via the OH route at $100 \,^{\circ}$ C for 2 days: (a) calcined at 560 °C for 6 h, (b) calcined at 450 °C for 12 hand (c) bulk Co₃O₄215

Figure 3.45 TPR profiles of (a) Fe₂O₃ and (b) (7.8 wt% Fe, 11.5 wt% Co)-MCM-41 prepared at 100 °C for 2 days using a HNO₃ solution of the metal precursors, and calcined at 560 °C for 6 h **216**

Figure 3.46 TPR profile of (1.9 wt% Au, 6.5 wt% Fe)-MCM-41 prepared bycoprecipitation of Au(III) and Fe(III) with water-glass prior to hydrothermalsynthesis at 100 °C for 5 days, calcined at 560 °C for 6 h217

Figure 3.47 Room temperature X-band ESR spectra of 5 wt% Fe-MCM-41 prepared at 100 °C for 2 days, as a function of calcination temperature: (a) assynthesized, (b) 300 °C for 6 h, (c) 400 °C for 6 h, and (d) 560 °C for 6 h **218**

Figure 3.48 ESR spectrum of as-synthesized 8.8 wt% Fe-MCM-41 prepared by room temperature synthesis for 5 days with a HNO₃ solution of Fe(III) **219**

Figure 3.49 ESR spectrum of 8.8 wt% Fe-MCM-41 prepared at 100 °C for 2 days using Fe(III) in maleic acid solution, followed by calcination at 560 °C for 6 h 220

Figure 3.50 ESR spectrum of calcined (560 °C for 6 h) 8.8 wt% Fe-MCM-41prepared at RT for 5 days with Fe(III) in oxalic acid solution221

Figure 3.51 The ESR spectrum of 16 wt% Fe-MCM-41 prepared by IWI with a 1M HNO3 solution of Fe(III), and calcined at 560 °C for 6 h222

Figure 3.52 ESR spectrum of 16 wt% Ru-MCM-41 prepared at 100 °C for 2 daysusing the OH synthesis route, and calcined at 560 °C for 6 h222

Figure 3.53 ESR spectra of 16 wt% Co-MCM-41 prepared by IWI with HNO₃ solution of Co(II): (a) dried overnight at 110 °C, and (b) calcined at 560 °C for 6 h 224

Figure 3.54 ESR spectra of 16 wt% Co-MCM-41 prepared by one-pot synthesisvia the OH route under different conditions: (a) 100 °C for 48 h, calcined at 560°C for 6 h, (b) RT synthesis for 5 days, uncalcined224

Figure 3.55 Raman spectra of Si-MCM-41 in the framework region: (a) primary Si-MCM-41 and (b) *sec*-Si-MCM-41 (prepared using calcined Si-MCM-41 as a SiO₂ source) **225**

Figure 3.56 Raman spectra of Si-MCM-41 showing the OH stretching region: (a)primary Si-MCM-41 and (b) secondary Si-MCM-41226

Figure 3.57 Framework Raman spectra or 5 wt% Fe-MCM-41 (2 days at 100 °C): (a) as-synthesized, (b) calcined at 300 °C for 6 h, (c) calcined at 400 °C for 6 h, and (d) calcined at 560 °C for 6 h 227

Figure 3.58 Raman spectra of 5 wt% Fe-MCM-41 (2 days at 100 °C) in the OHregion: (a) as-synthesized, (b) calcined at 400 °C for 6 h, and (c) calcined at 560°C for 6 h228

Figure 3.59 Variation of the Raman OH band (3476 cm⁻¹) area of Fe-MCM-41 prepared at 100 °C for 2 days using HNO3 for iron incorporation. All samples were calcined at 560 °C for 6 h 229

Figure 3.60 Framework Raman spectra of 16 wt% Fe-MCM-41 prepared with Si-MCM-41 as a SiO₂ source (100 °C for 2 days) and calcined at 560 °C: (a) *sec*-Si-MCM-41 reference sample, (b) calcined for 3 h, and (c) calcined for 6 h **230**

Figure 3.61 Raman spectra of 16 wt% Fe-MCM-41 prepared by the TMAOH precipitate route: (a) as-synthesized, (b) calcined at 560 °C for 6 h 231

Figure 3.62 Comparative Raman spectra of 16 wt% Co-MCM-41 prepared by IWI from nitric acid solution, and hydrothermally via the Co(OH)₂ route: (a) Frame-work region and (b) OH region. All samples were calcined at 560 °C for 6 h 232

Figure 3.63 IR spectra (KBr pellet) fo Fe-MCM-41 prepared at 100 °C for 48 h using HNO₃-assisted incorporation of Fe(III): (a) Si-MCM-41, (b) 1.9 wt% Fe-MCM-41, (c) 5.5 wt% Fe-MCM-41, and (d) 8.8 wt% Fe-MCM-41. All materials calcined at 560 °C for 6 h 233

CHAPTER 4

Figure 4.1 Variation of CO oxidation activity as a function of Au cluster size for the model Au/TiO₂ (001)/Mo(100) system 248

Figure 4.2 XRD patterns of 1.92 wt% Au/6.5 wt% Fe-MCM-41 prepared bydirect hydrothermal synthesis at 100 °C for 5 days, from a water-glasscoprecipitate of the metal precursors261

Figure 4.3 XRD pattern of 3 wt% Au/5 wt% Fe/MCM-41 prepared by coprecipitating Au(III) and Fe(III) with a Na₂CO₃ solution in the presence of calcined Si-MCM-41 that was synthesized at 120 °C for 3 days. The material was oven-dried at 120 °C for 15 minutes prior to XRD analysis **262**

Figure 4.4 XRD patterns of 1.6 wt% Au/0.73 wt% Fe/MCM-41 (a) and 1.5 wt% Au/5 wt% Fe/MCM-41 (b) prepared by coprecipitating Au(III) and Fe(III) with Na₂CO₃ (aq) in the presence of calcined Si-MCM-41 that was synthesized at 120 °C for 3 days. Both materials were air-dried before XRD measurements **263**

Figure 4.5 XRD pattern of 1.5 wt% Au/5 wt% Co/MCM-41 prepared by coprecipitating Au(III) and Co(II) with Na₂CO₃ (aq) in the presence of preformed Si-MCM-41 that was synthesized at 120 °C for 3 days **264**

Figure 4.6 HRTEM micrograph (a) and PSD (b) of 1.285 wt% Au/MCM-41 prepared by direct synthesis at 96 °C for 3 h. The synthesis gel was initially aged at room temperature in a PP bottle before carrying out the hydrothermal synthesis, and the final material was calcined at 500 °C for 12 h **268**

Figure 4.7 HRTEM image (a) and particle size distribution (b) of 2.6 wt%Au/2.96 wt% Fe-MCM-41 prepared in situ at 80 °C for 6 h and calcined at 500 °Cfor 12 h269

Figure 4.8 HRTEM image (a) and PSD (b) of 5 wt% Au/Si-MCM-41 prepared by precipitating Au(III) with (en) in the presence of calcined Si-MCM-41, calcined at 400 °C for 4 h 270

Figure 4.9 HRTEM image (a) and PSD (b) of 1 wt% Au/3 wt% Fe-MCM-41prepared by precipitating Au(III) with en solution in the presence of calcined 3wt% Fe-MCM-41, calcined at 400 °C for 4 h272

Figure 4.10 HRTEM image (a) and PSD (b) of 2.57 wt% Au/3 wt% Fe-MCM-41prepared by precipitating Au(III) with en solution in the presence of calcined 3wt% Fe-MCM-41, calcined at 400 °C for 4 h273

Figure 4.11 HRTEM image (a) and PSD (b) of 5 wt% Au/3 wt% Fe-MCM-41 prepared by precipitating Au(III) with en solution in the presence of calcined 3 wt% Fe-MCM-41, calcined at 400 °C for 4 h 274

Figure 4.12 HRTEM image (a) and PSD (b) of 5wt% Au/5 wt% Fe-MCM-41 prepared by precipitating Au(III) with en solution in the presence of calcined 5 wt% Fe-MCM-41, followed by calcination at 400 °C for 4 h 275

Figure 4.13 HRTEM image (a) and PSD (b) of 5 wt% Au/5 wt% Fe-MCM-41 prepared by precipitating Au(III) with en solution in the presence of preformed 5 wt% Fe-MCM-41, then treated to incipient wetness with a dilute base solution (0.27 % NaBH₄/0.89 % NaOH/8.85 % H₂O) prior to calcination at 400 °C for 4 h **276**

Figure 4.14 HRTEM image (a) and PSD (b) of 5 wt% Au/14 wt% Fe-MCM-41prepared by precipitating Au(III) with en in the presence of calcined 14 wt% Fe-MCM-41, followed by calcination at 380 °C for 6 h277

Figure 4.15 HRTEM image (a) and PSD (b) of 1 wt% Au/5 wt% Co-MCM-41 prepared by precipitating Au(III) with en in the presence of 5 wt% Co-MCM-41, followed by calcination at 400 °C for 4 h 278

Figure 4.16 HRTEM image (a) and PSD (b) of 5 wt% Au/5 wt% Co-MCM-41prepared by precipitating Au(III) with en in the presence of preformed 5 wt% Co-MCM-41, calcined at 400 °C for 4 h279

Figure 4.17 The HRTEM image of 2.28 wt% Au/CTAB-Si-MCM-41 prepared by ethylenediamine precipitation of Au(III). The material is in its uncalcined state **280**

Figure 4.18 HRTEM image (a) and PSD (b) of 2.28 wt% Au/CTAB-Si-MCM-41 prepared by precipitating Au(III) with en in the presence of the as-synthesized Si-MCM-41, followed by calcination at 500 °C for 12 h **281**

Figure 4.19 HRTEM image (a) and PSD (b) of 2.67 wt% Au/3 wt% Fe-MCM-41prepared by precipitating Au(III) with urea in the presence of 3 wt% Fe-MCM-41,calcined at 400 °C for 4 h283

Figure 4.20 HRTEM image (a) and PSD (b) of 1.1 wt% Au/3 wt% Fe-MCM-41prepared by reducing Au(III) with sodium citrate in the presence of calcined 3wt% Fe-MCM-41, calcined at 325 °C for 6 h284

CHAPTER 5

Figure 5.1 CO conversion as a function of temperature for different supported Au catalysts: Au on wormhole mesoporous silica, Au on hexagonally ordered mesoporous silica, Au on mesoporous titania calcined at 150 °C, and Au on mesoporous titania calcined at 200 °C 304

Figure 5.2 The catalyst testing set-up for the CO oxidation reaction 307

Figure 5.3 Light-off curve for 1.285 wt% Au/Si-MCM-41 prepared by prioraging the synthesis gel at room temperature for 20 h, followed by treatment at 96°C for 6 h and 500 °C calcination at 500 °C for 12 h**309**

Figure 5.4 Light-off curve for 2.28 wt% Au/Si-MCM-41 prepared from AuCl₄⁻ and as-synthesized Si-MCM-41 via the (en) route. Material calcined at 500 °C for 12 h 310

Figure 5.5 Light-off curve for 5 wt% Au/Si-MCM-41 prepared by (en)deposition-precipitation of AuCl4 onto precalcined Si-MCM-41. The catalystsystem was then calcined at 400 °C for 4 h311

Figure 5.6 The light-off curves of Au/5 wt% Co-MCM-41 prepared by DP with (en) solution and calcination at 400 °C for 4 h: The effect of Au content **313**

Figure 5.7 The light-off curves of 1.48 wt% Au/5 wt% Co-MCM-41 prepared viathe (en) deposition route and subjected to two different calcination processes.Neither HRTEM nor BET analysis was done on these samples and therefore, noaverage Au particle diameter has been determined314

Figure 5.8 The light-off curves for Au/3 wt% Fe-MCM-41 prepared by directhydrothermal synthesis at 80 ± 2 °C for 6 h, followed by calcination at 500 °C for12 h: The effect of Au content315

Figure 5.9 TOS curve for CO oxidation using 5 wt% Au/3 wt% Fe-MCM-41 prepared by hydrothermal synthesis at 80 ± 2 °C for 6 h, followed by calcination at 500 °C for 12 h. Measurements were performed at 22 °C **316**

Figure 5.10 The light-off curves for Au/3 wt% Fe-MCM-41 prepared by (en)deposition of Au(III) onto 3 wt% Fe-MCM-41, showing the effect of Au content.All samples were calcined at 400 °C for 4 h317

Figure 5.11 Light-off curves for 5 wt% Au-containing materials prepared by the(en) route, showing the effect of the amount of Fe in the support. All materialswere calcined at 400 °C for 4 h319

Figure 5.12 Light-off curves for differently treated 5 wt% Au/5 wt% Fe-MCM-41 materials prepared via the (en) route: Effect of NaBH₄ treatment prior calcination at 400 °C for 4 h 321

Figure 5.13 CO conversion versus time on stream for 5 wt% Au/5 wt% Fe-MCM-41 prepared by ethylenediamine deposition of Au(III) onto preformed 5 wt% Fe-MCM-41, treated with NaBH₄ and then calcined at 400 °C for 4 h 322

Figure 5.14 The light-off curve for 10 wt% Au/5 wt% Fe-MCM-41 prepared by ethylenediamine deposition onto preformed 5 wt% Fe-MCM-41, calcined at 325 °C for 6 h **323**

Figure 5.15 The light-off curve for 5 wt% Au/14 wt% Fe-MCM-41 prepared viaethylenediamine deposition of Au(III) onto preformed 14 wt% Fe-MCM-41,calcined at 350 °C for 6 h324

Figure 5.16 Effect of metal identity on the light-off temperatures of 5 wt% Aucatalysts prepared by ethylenediamine deposition of Au(III) on various supports.All materials calcined at 400 °C for 4 h325

Figure 5.17 The Arrhenius plots for the CO oxidation reaction using 5 wt% Au catalysts supported on Si-MCM-41, 5 wt% Fe-MCM-41 and 5 wt% Co-MCM-41. The materials were prepared via the ethylenediamine deposition route and calcined at 400 °C for 4 h 326

Figure 5.18 Light-off curves for the Au-containing materials prepared by urea deposition-precipitation of Au(III) onto preformed 3 wt% Fe-MCM-41, calcined at 400 °C for 4 h 328

Figure 5.19 Light-off curves for Au/5 wt% Fe-MCM-41 materials prepared by CP of Au(III) and Fe(III) with NaOH at 90 °C, calcined at 400 °C for 4 h 329

Figure 5.20 Light-off curve for 1.07 wt% Au/3 wt% Fe-MCM-41 prepared bysodium citrate reduction at 80 °C, calcined at 325 °C for 6 h330

Figure 5.21 Light-off curves for uncalcined Au-containing materials prepared by coprecipitation in the presence of Si-MCM-41, showing the effect of Au loading

331

Figure 5.22 Light-off curves for uncalcined Au-containing materials prepared bycoprecipitation of Au(III) and Fe(III) in the presence of preformed Si-MCM-41,showing the effect of Fe content332

Figure 5.23 Light-off curves for uncalcined 1.5 wt% Au/Me-MCM-41 materials(Me = Fe or Co) prepared by coprecipitation in the presence of Si-MCM-41,showing the effect of metal identity on the activity of the catalyst333

LIST OF TABLES

CHAPTER 1

Table 1.1 Composition of synthesis mixtures for the formation of various M41Sphases4

Table 1.2 Iron contents and H2 consumption of different Fe-MCM-41 samples38

CHAPTER 2

Table 2.1 Room temperature synthesis of Si-MCM-41: ao versus synthesis time107

Table 2.2 Effect of gel SiO2/CTAB mole ratio on the structure of Si-MCM-41109

Table 2.3 XRD p	properties of sec-Si-MCM-4	$(100 ^{\circ}\text{C} \text{ for 4 days})$	128
-----------------	----------------------------	---	-----

Table 2.4 BET surface area (S_{BET}) versus crystallization temperature (3 dayssynthesis) for Si-MCM-41136

Table 2.5 Si-MCM-41 properties: Effect of mineral acid identity139

Table 2.6 The effect of additives to the synthesis gel on the surface area of Si-MCM-41140

Table 2.7 Effect of gel R_{SiO2} on S_{BET} of Si-MCM-41140

CHAPTER 3

Table 3.1 Effects of Fe loading on the XRD properties of Fe-MCM-41 preparedby IWI170

Table 3.2 Effect of calcination temperature on impregnated 16 wt% Fe-MCM-41170

Table 3.3 XRD data for 16 wt% Fe-MCM-41 made with calcined Si-MCM-41(which was made from a mixture of fumed SiO_2 and water-glass as SiO_2 source)as SiO_2 source177

Table 3.4 XRD data for 16 wt% Fe-MCM-41 made with calcined Si-MCM-41 (which was made from only water-glass as SiO₂ precursor) as SiO₂ source 177

Table 3.5 HNO3-assisted Co(II) incorporation into the MCM-41 synthesis gel,and its effect on the properties of the resulting Co-MCM-41 materials183

Table 3.6 Variation of the lattice parameter (a_0) of 16 wt% Fe-MCM-41 with the identity of the precipitant for Fe(III) 186
 Table 3.7 Variation of the lattice parameter and BET surface area of Fe-MCM-41
 with the Fe content. The materials were calcined at 560 °C for 6 h 188 **Table 3.8** Variation of a_0 and S_{BET} with Co content for Co-MCM-41 prepared via the OH⁻ route at 100 °C for 2 days (calcined at 560 °C for 6 h) 190 Table 3.9 XRD and BET surface area data for 16 wt% Me-MCM-41 (Me = Si, Fe, Co and Ru) prepared by the metal hydroxide route at different temperatures 195 Table 3.10 A comparison of a₀ values of 16 wt% Fe- and Co-MCM-41 as influenced by the synthesis method 196
 Table 3.11 Assignment of IR vibrational peaks in the Fe-containing MCM-41
 materials in Figure 3.63 234 **CHAPTER 4 Table 4.1** Representative characterization techniques for supported Au catalysts
 255 **Table 4.2** Variation of S_{BET} for Au/Me-MCM-41 (Me = Si, Co and Fe) 265
Table 4.3 Surface areas of the Au-containing samples
 266 Table 4.4 (a) One-pot synthesized Au-containing materials calcined at 500 °C for 12 h 284 Table 4.4 (b) Post-synthetically prepared Au-containing MCM-41 prepared via en route. Calcination was done at 400 °C for 4 h, unless stated otherwise 285
 Table 4.4 (c) Other post-synthesis methods for Au-containing materials
 285 **CHAPTER 5** 301
 Table 5.1 WGC Reference Gold Catalysts
 Table 5.2 Correlation of preparation method, Au particle size and catalytic activity for Au/Si-MCM-41 catalysts 312 Table 5.3 Activity and other properties of Au on 5 wt% Co-MCM-41 catalysts 314 Table 5.4 Activity and physical properties of 1-5 wt% Au/3 wt% Fe-MCM-41 318

Table 5.5 Activity and physical property data for 5 wt% Au on 0-5 wt% Fe-
MCM-41**320**

Table 5.6 Correlation of activity with physical properties of 5 wt% Au ondifferent supports (Fe- and Co-modified MCM-41)**325**

Table 5.7 Activation energy (E_a) for Au/ Me-MCM-41 (Me = Si, Fe and Co)327

CHAPTER 6

Table 6.1 Lattice parameters and BET data for 16 wt% Me-MCM-41 (Me = Fe,
Co, Ru)352

LIST OF ABBREVIATIONS AND ACRONYMS

- AAS Atomic Absorption Spectrometry BET Brunnauer-Emmett-Teller BJH Barrett-Joyner-Halenda BMS Bimodal silica CIT-5 California Institute of Technology number 5 CO Carbon monoxide CMC Critical micelle concentration CMK Carbon Mesostructures at KAIST CP Coprecipitation COHb Carboxyhemoglobin **CTAB** Cetyltrimethylammonium bromide СТМАОН Cetyltrimethylammonium hydroxide CVD Chemical vapour deposition DAM-1 Dallas Amorphous Material # 1 DP Deposition-precipitation DRIFTS Diffuse Reflectance Infrared Fourier Transform Spectroscopy DRS UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis) DTA Differential Thermal Analysis EDS Energy-dispersive X-ray spectrometry **EDTA** Ethylenediamine tetraacetate EDX Energy-dispersive X-ray Analysis EHC Electrically heated catalyst
- en Ethylenediamine

EPA	Environmental Protection Agency
EPR	Electron Paramagnetic Resonance
ESR	Electron Spin Resonance
EXAFS	Extended X-ray Absorption Fine Structure
FMMS	Functionalized Monolayers on Mesoporous Supports
FMS-16	Folded Sheet Mesoporous material, 16 designates a 16 C surfactant template
(FT)IR	Fourier Transform Infrared
FTS	Fischer-Tropsch Synthesis
g	Lande factor or gyromagnetic ratio
HCs	Hydrocarbons
HDP	Homogeneous deposition-precipitation
HDS	Hydrodesulphurization
HMS	Hexagonal mesoporous silica
(HR)TEM	High resolution transmission electron microscopy
(HR)SEM	High Resolution Scanning Electron Microscopy
ICP	Inductively-coupled plasma
IEC	Ion exchange capacity
IEP	Isoelectric point
IUPAC	International Union of Pure and Applied Chemistry
IWI	Incipient wetness impregnation
KAIST	Korea Advanced Institute of Science and Technology
LAT	Ligand-assisted templating
LCT	Liquid-crystal templating
МСМ	Mobil's Composition of Matter

xxxiii

MFI	Mobil Five
MSU-G, -X	Michigan state university-G or X
MTS	Micelle-templated silica
NOx	Nitrogen oxides
NMR	Nuclear Magnetic Resonance
O ₂ Hb	Oxyhemoglobin
OMS	Ordered Mesoporous Silica
ORMOSILs	Organically-Modified Silicas
PE	Polyethylene
РР	Polypropylene
PGMs	Platinum Group Metals
PHCs	Porous Clay Heterostructures
PILCs	Pillared Clays
PNNL	Pacific Northwest National Laboratory
PSD	Particle size distribution
PVD	Physical Vapour Deposition
PZC	Point of Zero Charge
RS	Raman spectroscopy
SAMMS	Self-Assembled Monolayers on Mesoporous Supports
SBA	Santa Barbara
SCTA	Sample Controlled Thermal Analysis
SDA	Structure-directing agent
SFE	Supercritical Fluid Extraction

SIB Ship-in-a-bottle

SMSIs	Strong metal-support interactions
SV	Space velocity
T ₅₀	Light-off temperature
ТВНР	Tertiarybutylhydroperoxide
TCD	Thermal conductivity detector
TEA	Triethanolamine
TEOS	Tetraethyl orthosilicate
TGA	Thermogravimetric analysis
TIE	Template ion-exchange
TMCS	Trimethyl chlorosilane
TMMPS	Tris(methoxy)mercaptopropylsilane
TMOS	Tetramethyl orthosilicate
TMS-1	Transition-metal mesoporous molecular sieves
TOS	Time on stream
TPGS	α -Tocopheryl polyethylyne glycol 1000 succinate
TPR	Temperature-Programmed Reduction
TUD-1	Technical University of Delft # 1
TWC	Three-way catalyst
USY	Ultrastable Y zeolite
UTD	University of Texas at Dallas
UV-Vis	Ultraviolet and Visible spectrophotometry
VAM	Vinyl acetate monomer
VPI-5	Virginia Polytechnic Institute # 5
XANES	X-ray Absorption Near-Edge Spectroscopy

- XPS X-ray Photoelectron spectroscopy
- XRD X-ray diffraction
- XRF X-ray fluorescence
- WGC World Gold Council
- WGS Water-gas shift
- ZSM-5 Zeolite Saucony Mobil # 5

SCOPE AND CONTENT OF THE THESIS

Pure silica has a neutral framework in which the Si⁴⁺ is tetrahedrally bonded to four bridging O atoms, and consequently cannot show cation exchange properties. Metal components can be introduced into the silica to induce cation exchange capacity, redox properties and nucleation sites for the growth or development of metal nanoparticles. This thesis examines Si-MCM-41 and metal-containing variants, i.e., Fe- and Co-MCM-41 as supports for Au catalysts. Au catalysts have recently gained popularity because of their ability to catalyze a wide range of reactions at low temperature.

Chapter 1 covers the literature on inorganic porous materials, with particular reference to addressing the issue of shape selectivity in microporous materials and improving the surface area of the resulting materials. The survey includes a discussion of the first templated synthesis of a mesoporous family of zeolitic materials, designated M41S, to which belong a range of interesting materials such as MCM-41, MCM-48 and MCM-50. The survey includes the synthesis, characterization, catalytic and technical applications of the Si-MCM-41 materials.

Chapter 2 presents the results of the work carried out on pure silica MCM-41 materials that were prepared in this thesis. Covered in this study are the role of various synthetic variables (i.e. optimization of the synthesis conditions) that lead to a highly ordered Si-MCM-41 with improved structural integrity, as well as enhanced thermal and hydrothermal stability. These variables include the crystallization time and reaction temperature, the synthesis gel composition (SiO₂/CTAB molar ratio and the water content), inclusion of additives as co-templates in the synthesis gel, the pH of the synthesis gel, and the nature of the silica source. These materials were characterized using X-ray diffraction (XRD) to assess structural integrity, High Resolution Transmission Electron Microscopy (HRTEM) to evaluate the microstructure of the pores, and Brunauer-Emmett-Teller (BET) surface area analysis. Conclusions at the end of the chapter are based on the findings of these characterization techniques. The optimized Si-MCM-41

materials so obtained were used as benchmarks in the synthesis of base metalcontaining mesoporous MCM-41 materials described in **chapter 3**.

Chapter 3 focuses on Fe- and Co-MCM-41 materials, with particular emphasis on their synthesis and characterization. The metal precursors were introduced at various stages of the synthesis, and in various forms (i.e., as solutions or as freshly-prepared gelatinous precipitates). The synthesis was carried out under both ambient and hydrothermal temperature conditions, and the amount of the heterometal that was incorporated into the mesostructure with structural retention has been optimized. Incipient wetness impregnation was also used for the synthesis of Fe- and Co-MCM-41 derivatives. Physicochemical characterization of the resulting materials included XRD, HRTEM, BET, temperature programmed reduction (TPR), ESR spectroscopy and Raman spectroscopy. Conclusions are also included at the end of this chapter, based on the observations from these characterization techniques. These heteroatom-containing mesoporous materials, with their associated redox and cation exchange properties, were used as supports in the preparation of supported Au catalysts discussed in **chapter 4**.

Chapter 4 focuses on an investigation of different methods used to prepare supported gold nanoparticles. These methods range from deposition-precipitation, co-deposition-precipitation (both Fe(III) or Co(II) and Au(III) deposited simultaneously on Si-MCM-41), co-precipitation of Au(III) with either Fe(III) or Co(II) in the presence of a preformed Si-MCM-41, or direct one-pot hydrothermal synthesis where the metal components form part of the initial synthesis gel. Characterization of the final materials involved XRD, HRTEM, BET and EDS techniques. These materials and other related materials were evaluated for catalytic activity as described in **chapter 5**.

Chapter 5 describes the catalytic properties of the Au/Me-MCM-41 materials, with Me = Si, Fe and Co, in the reaction:

$$2 \text{ CO}(g) + O_2(g) \rightarrow 2 \text{ CO}_2(g), \qquad \Delta G_{298 \text{ K}} = -257.1 \text{ kJ/mol}$$

The results are interpreted in terms of the light-off temperature, i.e., the temperature at which the catalyst starts converting carbon monoxide into carbon dioxide. Conclusions based on the observed catalytic behaviour are found at the end of the chapter.

Chapter 6 presents the summary of the work done, and the main conclusions of the study entailed in this thesis.