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ABSTRACT 

 

The main aim of this thesis has been to study the way in which Fe(III) and Co(II) 

incorporation into Si-MCM-41 synthesis gels affects the properties of the unmodi-

fied material. Another aim was to investigate the influence of these hetero-atoms 

on the dispersion and particle size distribution as well as the catalytic activity of 

supported Au nanoparticles in the CO oxidation reaction. 

 

Si-MCM-41 has been successfully synthesized in this work using mixtures conta-

ining CTAB as a structure-directing agent (SDA) and water-glass as a SiO2 

source. Replacement of water-glass with pre-calcined Si-MCM-41 for SiO2 source 

in the secondary synthesis step has produced Si-MCM-41 with improved structu-

ral properties (XRD, HRTEM and Raman spectroscopy), including restructured 

and more crystalline pore walls (Raman spectroscopy). 

 

The conventional shortcomings of Si-MCM-41 as a support for catalytically-

active (transition) metal components such as low hydrothermal stability, low PZC, 

lack of cation exchange capacity and no reducibility have been partially addressed 

by modification with Fe(III) and Co(II). The premodification was achieved both 

during framework synthesis and after synthesis by the incipient wetness impreg-

nation (IWI) method. As opposed to the one-pot synthesis of metal-containing 

derivatives, the IWI method gave materials with high metal loadings and maximal 

retention of the properties of pristine Si-MCM-41. On the other hand, metal 

incorporation during synthesis to a loading of ~8.8 wt% using aqueous solutions 

of metal precursors showed some collapse of the mesostructure. Consequently 

methods were sought to incorporate this amount of metal (and up to double, i.e., 

16 wt%) with maximal retention of the MCM-41 characteristics. These methods 

included (i) using Si-MCM-41 as a SiO2 source, (ii) dissolving the metal precurs-

ors in an acid solution before inclusion into the synthesis gel, and (iii) using 

freshly precipitated alkali slurries of the metal precursors. The first method 

produced a highly ordered 16wt% Fe-MCM-41 material with excellent reducib-

ility (TPR showed three well-resolved peaks) and pore-wall structure (Raman spe-
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ctroscopy). Like the aqueous route, the acid-mediated metal incorporation route 

did not produce ordered materials at metal contents of ~16 wt%. The base precipi-

tate route produced highly ordered composite materials up to 16 wt% metal 

content, with characteristics similar to those of Si-MCM-41 (XRD, BET and 

HRTEM), although some metal phases were observed as a separate phase on the 

SiO2 surface. Thus, metal-containing MCM-41 materials could be obtained with 

conservation of MCM-41 mesoporosity. Raman spectroscopic studies have shown 

that the effect of transition metal incorporation in MCM-41-type materials is to 

strengthen the pore walls (shift of Si-O-Si peaks to higher frequencies), while 

TPR studies revealed that the essentially neutral framework of Si-MCM-41 could 

be rendered reducible by transition metal incorporation. 

 

Gold-containing mesoporous nanocomposites were prepared by both direct synth-

esis and post-synthetically. Catalysts prepared by direct hydrothermal synthesis 

were always accompanied by formation of large Au particles because of the need 

to calcine the materials at 500 oC in order to remove the occluded surfactant 

template. The presence of transition metal components in Me-MCM-41 (Me = Fe 

and Co) has been found to play a significant role in the particle size distribution 

and also the dispersion of Au nanoparticles when these materials were used as 

supports. In general, a base metal-containing support was found to produce 

smaller Au nanoparticles than the corresponding siliceous support. It has been 

proposed that the transition metal components serve as anchoring or nucleation 

sites for the Au nanoparticles, which are likely to sinter during calcination. The 

anchoring sites thus retard the surface mobility of Au at calcination temperatures 

above their TTammann. 

 

The use of the Au/Me-MCM-41 materials as catalysts in the CO oxidation 

reaction has led to the following observations: (i) catalyst on metal-containing 

supports showed better activity than those on Si-MCM-41, probably due to the 

induced reducibility in metal-MCM-41, (ii) catalysts prepared by direct synthesis 

showed inferior activity owing to large Au particles, (iii) increasing Au content 

improves the catalytic performance, (iv) increasing the Fe content of the support 
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at constant Au improves the catalytic performance, and (v) changing the base 

metal component of the support from Fe to Co led to a significant improvement in 

catalytic activity. The similarity of the apparent activation energies (Ea) for the 5 

wt% Au-containing 5 wt% Fe- and 5 wt% Co-MCM-41 suggested that the 

difference in catalytic activity is associated with the number of active sites 

possessed by each catalyst system. The observed order of catalytic activity of 

these 5 wt% Au-containing systems in terms of the support type is: Co-MCM-41 

> Fe-MCM-41 > Si-MCM-41. This was further supported by the average Au 

particle size, which, in terms of the support, followed the order Co-MCM-41 < 

Fe-MCM-41 < Si-MCM-41. Thus, metal-support interactions between Au and 

MCM-41 have been enhanced by introducing Fe(III) and Co(II), which also 

induced framework charge, ion exchange capacity (IEC) and reducibility in the 

neutral siliceous support.  
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CTMAOH Cetyltrimethylammonium hydroxide  
 
CVD  Chemical vapour deposition 
 
DAM-1  Dallas Amorphous Material # 1 
 
DP   Deposition-precipitation 
 
DRIFTS Diffuse Reflectance Infrared Fourier Transform Spectroscopy 
 
DRS UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis) 
 
DTA  Differential Thermal Analysis 
 
EDS  Energy-dispersive X-ray spectrometry 
 
EDTA  Ethylenediamine tetraacetate 
 
EDX  Energy-dispersive X-ray Analysis 
 
EHC  Electrically heated catalyst 
 
en  Ethylenediamine 
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EPA  Environmental Protection Agency 
 
EPR  Electron Paramagnetic Resonance 
 
ESR  Electron Spin Resonance 
 
EXAFS Extended X-ray Absorption Fine Structure 
 
FMMS  Functionalized Monolayers on Mesoporous Supports 
 
FMS-16 Folded Sheet Mesoporous material, 16 designates a 16 C surfactant 

template 
 
(FT)IR  Fourier Transform Infrared  
 
FTS  Fischer-Tropsch Synthesis 
 
g  Lande factor or gyromagnetic ratio 
 
HCs  Hydrocarbons 
 
HDP  Homogeneous deposition-precipitation  
 
HDS  Hydrodesulphurization 
 
HMS  Hexagonal mesoporous silica 
 
(HR)TEM High resolution transmission electron microscopy 
 
(HR)SEM High Resolution Scanning Electron Microscopy 
 
ICP  Inductively-coupled plasma 
 
IEC  Ion exchange capacity 
 
IEP  Isoelectric point 
 
IUPAC International Union of Pure and Applied Chemistry  
 
IWI  Incipient wetness impregnation 
 
KAIST  Korea Advanced Institute of Science and Technology 
 
LAT  Ligand-assisted templating 
 
LCT  Liquid-crystal templating 
 
MCM  Mobil’s Composition of Matter 
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MFI  Mobil Five 
 
MSU-G, -X Michigan state university-G or X 
 
MTS  Micelle-templated silica 
 
NOx  Nitrogen oxides 
 
NMR  Nuclear Magnetic Resonance 
 
O2Hb  Oxyhemoglobin 
 
OMS  Ordered Mesoporous Silica 
 
ORMOSILs Organically-Modified Silicas 
 
PE  Polyethylene 
 
PP  Polypropylene 
 
PGMs  Platinum Group Metals 
 
PHCs  Porous Clay Heterostructures 
 
PILCs  Pillared Clays 
 
PNNL  Pacific Northwest National Laboratory 
 
PSD  Particle size distribution 
 
PVD  Physical Vapour Deposition 
 
PZC  Point of Zero Charge 
 
RS  Raman spectroscopy 
 
SAMMS Self-Assembled Monolayers on Mesoporous Supports 
 
SBA  Santa Barbara 
 
SCTA  Sample Controlled Thermal Analysis 
 
SDA  Structure-directing agent 
 
SFE  Supercritical Fluid Extraction 
 
SIB  Ship-in-a-bottle 
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SMSIs  Strong metal-support interactions 
 
SV  Space velocity 
 
T50  Light-off temperature 
 
TBHP  Tertiarybutylhydroperoxide 
 
TCD  Thermal conductivity detector 
 
TEA  Triethanolamine 
 
TEOS  Tetraethyl orthosilicate 
 
TGA  Thermogravimetric analysis 
 
TIE  Template ion-exchange 
 
TMCS  Trimethyl chlorosilane 
 
TMMPS  Tris(methoxy)mercaptopropylsilane 
 
TMOS  Tetramethyl orthosilicate 
 
TMS-1   Transition-metal mesoporous molecular sieves 
 
TOS  Time on stream 
 
TPGS  α-Tocopheryl polyethylyne glycol 1000 succinate 
 
TPR  Temperature-Programmed Reduction 
 
TUD-1  Technical University of Delft # 1 
 
TWC  Three-way catalyst 
 
USY  Ultrastable Y zeolite 
 
UTD  University of Texas at Dallas 
 
UV-Vis Ultraviolet and Visible spectrophotometry 
 
VAM  Vinyl acetate monomer 
 
VPI-5   Virginia Polytechnic Institute # 5 
 
XANES X-ray Absorption Near-Edge Spectroscopy 
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XPS  X-ray Photoelectron spectroscopy 
 
XRD  X-ray diffraction 
 
XRF  X-ray fluorescence 
 
WGC  World Gold Council 
 
WGS  Water-gas shift 
 
ZSM-5  Zeolite Saucony Mobil # 5 
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SCOPE AND CONTENT OF THE THESIS 

 

Pure silica has a neutral framework in which the Si4+ is tetrahedrally bonded to 

four bridging O atoms, and consequently cannot show cation exchange properties. 

Metal components can be introduced into the silica to induce cation exchange 

capacity, redox properties and nucleation sites for the growth or development of 

metal nanoparticles. This thesis examines Si-MCM-41 and metal-containing 

variants, i.e., Fe- and Co-MCM-41 as supports for Au catalysts. Au catalysts have 

recently gained popularity because of their ability to catalyze a wide range of 

reactions at low temperature.  

 

Chapter 1 covers the literature on inorganic porous materials, with particular 

reference to addressing the issue of shape selectivity in microporous materials and 

improving the surface area of the resulting materials. The survey includes a 

discussion of the first templated synthesis of a mesoporous family of zeolitic 

materials, designated M41S, to which belong a range of interesting materials such 

as MCM-41, MCM-48 and MCM-50. The survey includes the synthesis, 

characterization, catalytic and technical applications of the Si-MCM-41 materials. 

 

Chapter 2 presents the results of the work carried out on pure silica MCM-41 

materials that were prepared in this thesis. Covered in this study are the role of 

various synthetic variables (i.e. optimization of the synthesis conditions) that lead 

to a highly ordered Si-MCM-41 with improved structural integrity, as well as 

enhanced thermal and hydrothermal stability. These variables include the 

crystallization time and reaction temperature, the synthesis gel composition 

(SiO2/CTAB molar ratio and the water content), inclusion of additives as co-

templates in the synthesis gel, the pH of the synthesis gel, and the nature of the 

silica source. These materials were characterized using X-ray diffraction (XRD) to 

assess structural integrity, High Resolution Transmission Electron Microscopy 

(HRTEM) to evaluate the microstructure of the pores, and Brunauer-Emmett-

Teller (BET) surface area analysis. Conclusions at the end of the chapter are based 

on the findings of these characterization techniques. The optimized Si-MCM-41 
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materials so obtained were used as benchmarks in the synthesis of base metal-

containing mesoporous MCM-41 materials described in chapter 3. 

 

Chapter 3 focuses on Fe- and Co-MCM-41 materials, with particular emphasis 

on their synthesis and characterization. The metal precursors were introduced at 

various stages of the synthesis, and in various forms (i.e., as solutions or as 

freshly-prepared gelatinous precipitates). The synthesis was carried out under both 

ambient and hydrothermal temperature conditions, and the amount of the 

heterometal that was incorporated into the mesostructure with structural retention 

has been optimized. Incipient wetness impregnation was also used for the 

synthesis of Fe- and Co-MCM-41 derivatives. Physicochemical characterization 

of the resulting materials included XRD, HRTEM, BET, temperature programmed 

reduction (TPR), ESR spectroscopy and Raman spectroscopy. Conclusions are 

also included at the end of this chapter, based on the observations from these 

characterization techniques. These heteroatom-containing mesoporous materials, 

with their associated redox and cation exchange properties, were used as supports 

in the preparation of supported Au catalysts discussed in chapter 4. 

 

Chapter 4 focuses on an investigation of different methods used to prepare 

supported gold nanoparticles. These methods range from deposition-precipitation, 

co-deposition-precipitation (both Fe(III) or Co(II) and Au(III) deposited 

simultaneously on Si-MCM-41), co-precipitation of Au(III) with either Fe(III) or 

Co(II) in the presence of a preformed Si-MCM-41, or direct one-pot hydrothermal 

synthesis where the metal components form part of the initial synthesis gel. 

Characterization of the final materials involved XRD, HRTEM, BET and EDS 

techniques. These materials and other related materials were evaluated for 

catalytic activity as described in chapter 5. 

 

Chapter 5 describes the catalytic properties of the Au/Me-MCM-41 materials, 

with Me = Si, Fe and Co, in the reaction:  

 

2 CO(g) + O2(g) → 2 CO2(g),  ∆G298 K = -257.1 kJ/mol 
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The results are interpreted in terms of the light-off temperature, i.e., the 

temperature at which the catalyst starts converting carbon monoxide into carbon 

dioxide. Conclusions based on the observed catalytic behaviour are found at the 

end of the chapter. 

 

Chapter 6 presents the summary of the work done, and the main conclusions of 

the study entailed in this thesis. 

  
 
 
 
 
 
 
 
 
  


