Spectral Properties of a Fourth Order
Differential Equation with Eigenvalue
Dependent Boundary Conditions

By: B Moletsane
Supervisor:  Prof M Maoller




Declaration
I declare that this rescarch report is my own,unaided work. It is been
submitted for the degree of Master of Science at the University of the
Witwatersrand, Johannesburg. It has not been submitted before for
any other degree or examination at any other university.

Signature of Student (Boitwmelo Moletsane): m&%&_‘

On the 20th October 2011



SPECTRAL PROPERTIES OF A FOURTH ORDER
DIFFERENTIAL EQUATION WITH EIGENVALUE
DEPENDENT BOUNDARY CONDITIONS

BOITUMELO) MOLETSANE

1. INTRODUCTION

This masters disscrtation containg a discussion of a variation on the
boundary conditions of a problem originally published by M. Méller
and V. Pivorvachik [1]. The Birkhoff regularily of the system is dis-
cussed. The adjoint of the differential operator and its domain are
found. Asymptotic approximations of the eigenvalues of a simplifica-
tion of the problem are found. Using the methods of [7] cigenvalue
asymptotics for the original eigenvalue problems are found.

Small transverse vibrations of a homogencous beam compressed or
stretched by a force g can be described by the partial differential equa-
tion

Nk a a &

o g, £) — _g(:t:)'—u(:r:,i.) ~52 u(x, ).
We suppose g to be a sufﬁment ly smooth real-valued function; through-
out this dissertation g € C'[0, 4], @ = 0, will be assumed. If ¢ = 0,

then the beam is stretched, if g < 0, th(,n it is compressed. Let us
impose the following bc:-undary ccrnd1tmn5 at the lelt end

u(0, 1) =0,
82

%% Sz, 1)

x=0

In the paper of M. Moller and V. Pivorvachik the boundary conditions
corresponding to a hinge connection were

u(a, ) = 0,
&* )
Fe = ——uf, )

——ulz,1) dtd

I=n I=a
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These conditions have now been changed to the following;
a‘l
mu(m, tg=a = 0,
d &
——ufz, 1) = —a —u{z,t)
. Oz , =0 at : Teg
Substituting u(z,t) = ¢*y{A, ) we obtain the ordinary fourth order
differential equation

(1.1} O M00E) — (@) (A 3) = My(h, ),
with boundary conditions

(1'2) y(A,O) = (),

(1.3} | v (A0 =0,

(14) y"(\a) =0,

(1.5) ¥ (A a) + 'JZda\'g()\ a) =0.

The boundary eigenvalue problem converts as pc_,r [7, Lemma 6.1.1] to
the following first order systern,

0 100 y(x)

v I L VI VI P o_ | )

(1.6) Yz, A) = 0 0 o 1 |Y WhereY = o ()
X g g0 y" ()

with the following boundary conditions:

(1.7) WOV (0, A) + WO F(a,2) =0
where
1 000
. O |00 10
(1.8) W0, ) = 0000
0000
and
0 0060
\ (0 _ O 000
(1.9) Wi a, X) = 0 010
A 1 00

A change in boundary conditions of the problem of M. Moller and
V. Pivorvachik from y(A,a) = 0 and y"() a) + iay'(M,a) = 0 to
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y'(A,a) = 0 and y'(A,a4) + iay(X,a) = 0 retains the Birkhoff regu-
larity of the problem because all the 4 perrmutations of -the matrix
W(EU)A + Wn(l) (I — A) arc still invertible where A are block diago-
nal matrices A := diag(dpl,,. ..., 0/, ) and 8, is either 0 or 1 as per
[7, £.1.21) and [7, 4.1.22] however the whole boundary valie problem
changes from being sclf-adjoint to non-self-adjoint. This change results
in the loss of a number of eigenvalue properties from [1); the symmetry
of the eigenvalues with respect to the imaginary axis, all the eigenvalues
lying in the closed upper half planc for @ > 0 and all the eigenvalues
in the negative imaginary axis being semi-simple. We first find the
eigenvalues of a simplified problem with ¢ = 0 and apply Rouché’s
theorem’s to the characteristic equation. For a general ¢ and for suf-
ficiently large A we find the asymptotic fundamental system using [7,
- Theorem 8.2.1]. In order to find the zeros of the characteristic func-
tion, methods of estimating exponential sums from (7, Appendix A.2]
arc used. We then conclude the results of this dissertation with [The-
orem 5.2] which states that for g € C'[0, a], there is a positive integer
ko such that the eigenvalues Ag, k € Z, of the problem (1.1)- (1.5),
counted with multiplicity, can be enumcrated in such a way that the
cigenvalues A; are pure imaginary for |k| < ko, A_x = —Ax for & > ko,
where A, = 12 and in particular, there is an odd nuruber of pure imagi-
nary eigenvalues. Finally, we find the asymptotic approximation of the
elgenvalues to order three to be 70 = 0, 71 = 7 + & [ 9(z)dx and
Th2 = — gy |

2. BIRKIIOFF REGULARITY

Birkboff regularity is a regularity property which is given in terms of
the argument of the nonzero diagonal elements of the leading matrix
in the differential system, further by the zero-approximand of the A-
asymptotic fundamental matrix of the differential system and by the
limit of the cocfficient matrices in the boundary conditions.

Birkhoff regularity for boundary eigenvalue problems for first order
1 %X 7 systems of ordinary differential equations, that are asymptot-
ically lincar in the eigenvalue parameter A requircs that the leading
matrix is supposed to be a diagonal matrix whose nonzero diagonal
elements as well as their nonzero difference are assumed to have con-
stant argurnents and to be bounded away from zero. The boundary
conditions of this boundary eigenvalue problem may depend on A and
have to be asymptotically constant in ), a8 A tends to infinity. Birkhoff



4 Boitumelo Moletsane

regularity for this particular bcrundary Plgenva,]ue problem is defined in
(7, Definition 4.1.2].

Let the boundary eigenvalue problem he defined as follows:

(2.1) ¥ = (A + A+ ATTAY L))y = 0,
e L FONw) + [ W e = o

where y varies in (W)(a, b))".

Ay and Ay belong to Mp(Ly(a, b)), —oc < a < b < o0, 1 < p < oo
and n € N\{0}. The boundary cigenvalue problemn is considered for
a sufficiently large complex number A, say [A| > (> 0) and A%(-, A)
belongs to My(L,(a,b)) for this A, A°(-, A) depends holomorphically on
it and A%, A) is bounded as A — co. More precisely, we suppose A,
to be a diagonal matrix function,

A}
Al 0

Alz 0 ' B 1

where [ is & positive integer,

[
A:, =7,ln, (t=0,... ,l),‘ Zﬂy =
v=()
with ng € N and n, € N\{0} for v =1,...,l. According to the block
structure of A1, we write Ag = (Aguy),, 0. For the diagonal elements

of Ay we assume: rg = 0, and for v,z = 0,...,] there are number
"Pp“_ = [0, 27() Sl](:h that
(2.3) (r, — T”)—-‘l € Ly(a,b)if v#p,

(2.4) rfz) —ru(z) = lru(z) = rfa)|e®* aein (a,b)
Note that 4= 0 gives ;1 € Loo(u,b) for v =1,...,1 and

(2.5) (%) = |r.(2)|e® aein (a,b) v=1,...,1
where o, (=g =y trforv=1,. .. 1

If ngp = 0, then we need the conclltmna (2 3) and (2.4) only for v, i =
{1,....1}. On the other hand, the conditions r;* € Ly(a, b} for v =
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L,...,l and (2.5) are needed in any case. Hence it i3 no additional
assumption if we take v, p € {1,...,1} in (2.3) and (2.4} also in the
case ng = 0.

For the boundary conditions (2.2) we assume that a, € {a, b] for j € N,
that a; £ ay if j ;é k, and that s = a, a, = b. We supposc that the
matrix function W (., A) belongs to M, (L4(a, b)) for |A| = < and that
there is Wy € Mp(L1(a, b)) such that

(26)  W(,A) = Wo =0 in My(£y(a, b)) as A = oo.

It iz assumned that the Wj().) are n X n matrices, defined for |[A} = «,
and that there are n x n matrices VV(P) such that the estimates

(2.7) ‘ Z W] < o0
=0
and
o ' ] ‘
(2.8) DTN - WP = 07" as A = o0
F=0

hold. Since

29 SO < 3 WO+ S WO - W) < oo,
=0 =0 =0

the boundary conditions are well-defined for |A| = +.

For the definition of Birkhoff repularity we need some further notation:
For v = 1,...,l let i, be defined as in (2.5) and let A € C\{0}. We
set ‘ ‘

if R(Aet) < 0,

if R{Aet) >0,

if R(Ae*) =0 and F(\e*) = 0,

if R(Ae**) = 0 and F(re¥) < 0

For convenience let 30()\) = 6i(A). We define the block diagonal matri-
ces

(2.11) - { A(A) := diag(do(A) dng, . -, (A} Luy)

(2.10) 5, (\) =

— = = D

Ap = dlﬂ.g(u oy dngs e Iﬂl)

which (by definition) reduces to
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(2.12) A(A) = diag(d1 (A oy, ... 6(NL,), Ag:= I,
if np = 0. Finally we set

. S b
213 M=) WPPw)+ [ Wow)P(e)de.
v

=0

The matrix function P belongs to M,(W](a.b)) and has block diag-
onal form according to block structure of Al, ie.,

(2.4) P = diag(P, PV, ... P{?]-

The diagonal elements P are uniquely given as solutions of the initial
value problems ‘

POl o 4 pl
(2.15) { 0] Ao P,
R""" (ﬂ) ﬂy

where the 7, x n, matrix functiong Ap,. ate the block diagonal ele-
ments of Aj.

Definition 2.1. The boundary eigenvalue probler (2.1) and (2.2) is
Birkhoff regular if

WL, — AD)Ag + WP AN Ag 4 V(T — Ag)
is invertible for A € C\{O}.

Comnsider a boundary eigenvalue prcﬁblem
n-—1
(216) 1™+ o ) =0

T

217 w0+ w (N e) =0 (k=1,...,n),

i=1

where A € €, and n € W0, a). Let

Te=¢

(2.18) P A) =) Nm_yy; (i=0,, —1),

F=0

where 7, ; € Ly(0,a) (i =0,.. 1), (1=0,...,n—1%). We assume
Tpein-i 7 0 for some i € {0,... ,n - 1}
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The function 7 defined by

n—|

(219) | ﬂ-('! P) = pﬂ + Z piwn—t',n—‘i (P € C)

i=0

iz called the characteristic function of the differential equation (2.16).

Consider this boundary eigenvalue problem together with its associated
first order system defined by the operator

(2.20) TNy =y — AC, Ny (v € (W,(0,a))", A€ C),
where
0 1
0
(221) A= {(dije1 — Ginpia)iyor = .
0 0 1
o - . . Pl

We assume that there are matrix funetion C(-,A) € M, (W} (0, a)) de-
pending polynomially on A and a positive real number 4 mwh that,

(2.22) C(-, A) is invertible in Mﬂ(WP(O,a)) if |A] = ¥

and such that the cquation

(2.23) CHNTPNCC Ny =y = AC Ny = TP (W
holds for [A > v and y € (W} (0, a))", where
(2.24) A5 A) = M+ A+ X7 A) (A 2 )

fulfils the assumptions made above for (2.1).

Consider matrix function

(2.25) W) 1= (WP (AN, Clai, A) (5 =0,1)(a =0 and a; = a)
and set

(226) TR\ = WOR)(0) + WONyla) (v € (W, (0, a))").

Suppose further that there is a nxn matrix polynomial Cy(A) whose de-
terminant is not identically zero such that the following property holds:

There are n X n matrices W( ) and Wm such that estimnates
(2.27)

1CTH WO — WP H e W) - = 000 asd 5
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holds.

Definition 2.2. The boundary eigenvalue problem (2.16), (2.17) is
c:-a.lled Birkhoff regular if #,, # 0 and if there are matrix functions

(-, A) satisfying (2.22) - (2.24) and C2()) satisfying (2.27) so that the
a,asocmtcd boundary mgeuva,luc probilem

TP(M\y =0,
Ca(N) TRy = 0

is Birkhoff regular in the sense of Definition 2.1,

Theorem 2.3. Replacing A with u®, the eigenvalue problem (1.1)-(1.5)
i Birkhoff regular in the sense of Definition 2.2 for all o = €.

Proof. In the notation of (2.16), n =4, po(-, ) = —u*, p1(-, 4) = —¢,
pa(- p) = —g and py(-, ;1) = 0. The characteristic function (2.19)
becomes ‘

3
1, 0) ="+ Py
i=1
= p'i —1

according to {7, 7.1.4], where p € C and its zeros are +%=1 b =1,... 4.
The matrix C(x, 1) = diag(], s, p.z,y,“)(i(k_l)("”)i',:-] fulfils (2.22) to
(2.24). €'(z,u) is invertible and

C_l('i X)TD(A)G(‘, )\)'3! = y’ - Av(, A)y = 'fD(A)y.
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According to [7, Theorem 7.2.4.A), it follows that the boundary matri-
ces defined in {7, (7.3.1)] arc given by

1000
— 0010]|,
WO (1) = WO, u) = 000 0 C(0, 1)
0000
11 11
B ;1,2 _”2 Mz _“2
“{o o o o |
0 0 0 90
0 000
WO =woweam=| 3 5 0 can
fapt 1 0.0
0 0 0 0
B 0 S0 0 0
B ji — a2 I —i

tap® + g dop® + i dop® - p dap® = ip

The first order system (1.6) fulfils all the assumptions made about {2.1)
but the boundary conditions (1.7) are not asymptotically constant in
A. In order for (2.6) to (2.8) hold we require a n X n matrix polynomial
C2(}) whose determinant is not identically zero such that (2.27) holds.
We choose Ca(p) = diag(1, u?, g*, 42) if & = 0 becange Cp(g) is invert-
ible and as 2 -+ og,

1Ca()™ W () - W) < Mi e

Co(p) WD () = W 4+ O(ph)

meaning that W(fj ) for J == 0,1 are asymptotically constant in g, whete

11 1 1 O 0 0 o0
@_ |1 -1 1 -1 m_ |0 0 o 0
Wol=1lo 0 0o o] Wo'=11 211 4
0 0 0 0 i ot o

According to |7, Definition 7.3.1 and Proposition 4.1.7], the matrices A
of the problem are the four 4 x 4 diagonal matrices with 2 consecutive
ones and 2 consecufive zeros in the diagonal in a cyclic arrangement.
By (7, Definition 7.3.1] the problem (1.1)—(1.5) is Birkhoff regmlar if

(2.28) wla + wihI - A)
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i mvermble for all four vlmmes of A. For A diag(1,1,0,0)

1 1 0 0
@29)  wOA+wOI-a =) S 01]

0 0 i e
For A = diag(0,1,1,0)

0 1 1 0
(2.30) wWOA +wihi - Ay = 2 _01 (1) _01)

i 0 0 i
For A = diag(0,0,1,1)

0 0 1 1
(2.31) wia + Wi - A) = [1] _01 _[}1 3)

i i 0 0
For A = diag(1,0,0,1)

1 0 0 1
ea)  wPArwOr-m=|2 00

0 i ia O

After permutations of columns, the matrices (2.29) to (2.32) are block
diagonal matrices consisting of 2 x 2 blocks taken from two consecutive
coluinns (in the sense of cyclic arrangmnpnf) of the first two rows of
W and the last two rows of W , respectively. These matrices are
invertible. We thus have shown tha,t the problem is Birkhoff regular.

If o = 0, then the same conclusion holds with Co(p) = diag(1, 12, 12, p)
and

1 1 1 1 - o 0 0 0

) _ 1 -11 -1 y |0 0 0 O
Wo 000 0| M'=|1 a1
O 0 0 0 1 ¢ -1 —4
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3. DIFFERENTIAL OPERATORS AND ADJOINT

Let A, K and M be linear operators acting in Ly(0,a) @ C with
domains ‘

DM%{Y Gﬁ}ymwmww®=wm=wm=@,
D(K) = D(M) = Ly(0,a) & C,

given by

- (400,
-9
v-(39)

We want: to find the adjoint A* of A.

Proposition 3.1. The adjoint A” of A is given by

Y #(x) . £ o _
D(A") = ’ (z”(“) - g(a)z(a)) 2 e Wy, 2a)=2(0) =0,
2(0) = (a) =,

2"(0) = g=(0)
e z(d) - (gzl‘)f
w7 = (o) T ey

In particular, A is not éea{ﬁadjoint.

4] € Lo(0,a) @ C. Then by definition of A*, Z ¢

D(A*) if and only if there is & W € La(0,a) @ C such that (AY, %) =
(Y, W) for all Y € D(A); for such Z, A*Z = W.

Firstly, choose an arbitrary Z = (Z) € D(A*) for y € W}(0, a) with

@ (a) =y 0) =0 for k=0,..,3,Y = (y("":;”(a)) = (g) Given the

hilincar form (, ) and integrating by parts we get;

Proof. Let 2 = (“"
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(AY, 2) = (4" — 9/}, 2o
=™ - gy, )
=", 2" )2+ (¥, 92N
= —(v/,2)s — (4, (92))2
= (4,24 ~ (92) )

with {, ); being the sesquilinear form in the dual pair of spaces Wg and

W57, But y™(a) = (0} = 0 and therefore Y ¢ D{A). Whiting

w . : .
N and Y = g y it follows that for an arbitrary z there is a

wy € Lp(0, a) (which is a set of functionals iu the dual space of Ly (0, «)
which is sclf-dual) such that

(AY, Z) = (Ys W) = (?l,'ml) = (?,h w1 )4
whence
P - (ng), =1 € LQ(U, Cl'.).

Z

Therefore, = ¢ WH0,a) for each Z - ( p

) € D(A*). Thus, taking

Z = (z) with z € W3(0, a) we can write

(AY,Z) = A u(yw —(gy"))z dx + v (a)d

- fo (20 — (7)) da
+ 3P (a)z(a) - ¥ (0)2(0)
—y'(a)Z (a) - " (0)2'(0)
+ 9/ (@)z"(a) — ¢/ (0)2"(0)
— y(a)Z(a) + y(0)z)(0)
~ ¥ (2)(g2)(a) + ¥ (0)(4Z)(0)
+y(a)(g2) (@) — 9(0)(gZ)(0)
+9/ (a)d.
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A comparison of (AY, Z) and (Y, W) to the definition of an adjoint
which' states that Z € D(A*) 1.e (AY, Z} = (V, A*Z), shows that Z &
D(A*) if and only if there is a wp € € such that, for all y ¢ D(A)

w(ayws = y®(a)Z(a) - y™ (0)z(0)
— (@7 (a) +4/"(0)Z'(0)
+y(a)z"(a) ~ ¥/ (0)27(0)
+4(0)29(0) — y(a)z™(a)
- 3/ (a)(gZ)(a) + 4/ (0)(gz)(0)
+y(a)(97')(a) — y(0)(gZ')(0)
+ ¢/ (a)d.

Since Y = (y?ﬂ)) € D(A) satisfies y(0) = y"(0) =y"(a) =0

(31) oYz = ¥ (@)7(a) - yO(0)(0)
— ¥ (0)(z"(0) - 42(0))
— y'(a)(—Z"(a) + gZ(a) + d -
— y(a)(z¥(a) — g7 (a)).

We can choose a particular y € D(A) such that y(a) = 1 with y®(a) =
y@(0) = /(0) = v(a) = 0. Then (3.1) becomes

wp = ~ 2% (a) + g(a)z(a).

Similarly choose y € D(A) such that y/(a) = 1 with y®(a) = y©(0) =
¥ (0) = y{a) = 0. Then ‘

I (o) - gla)2(a).
To find the boundary conditions on z. We need to find z such the
(AY, Z) = (Y, W). Using (3.1) we can substitute for 4 and w, as given
above and since y and its derivatives are linearly independent then;
0=y (a)z(a) - ¥ (0)z(0)
— y(0)(z"(0) — gz(1))
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limplies that 2{a) = 2(0} = 0, 2”(0) = ¢2(0) giving the boundary con-
ditions on ».

We now show that

=-d v _ z(,z:) ,z‘ 4{_{;=¢ — ” o \
B {5 (zu(a) _g(a)z(ﬂ)) rz € Wy, z(a) = 2(0) = 0,2"(0) = 9*-(0)}
satisfies B < D(A*).

Let

L Z= (2"(0) j(;gﬂ)z(“)) €7

and
B 2 — (g2)
W= (_2(3) (a) + g(ﬂ-)z'(“)) |

(4¥,2) = [ — (@)% do +4/ (@) — g(@rs(@)

= [ @~ (g7))y dx
0 '

+y¥(2)Z(a) — ¥(0)2(0)
—y"(a)7(a) + y"(0)Z'(0)

+ 1 (a)z"(a) — ¥ (0)Z"(0)

+ 5(0)29(0) - ¥(e) 2 (a)
— ¥'(a)gZ(a) + ¥'(0)g2(0)
+ y(a)gZ () — y(0)g7 (0)
+4'(a)(z"(a) — g(a)Z(a)).

Substituting for Y ¢ D(A) i.e y(0) = y"(0) = y“(a) =0 and Z € B ie.
z(a) = 2(0) = 0,2"(0) = gz(0) we get

(4v.2) = [~ (@2l do - (-790) + gl(e))y(a)
+ 2y (a)2"(a).

Showing that if Z € B then Z € D(A*). In order for (AY, Z) = (Y, W)
wa require that 2”’(a) = 0, thus C = BN {z"(a) = 0} then D(A*) =C
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and A*Z =W.

Showing that A is not self-adjoint since A # A*. [

4. ASYMPTOTICS OF EIGENVALUES FOR g =0

In this section we consider the cigenvalue problem (1.1)- (1 5) with
qg=10

(1.1) y (A ) = Ay, 2),

As in the paper of M. Mdller and V. Pivorvachik a formula for the
asymptotic distribution of eigenvalues is proved. However the current
boundary eigenvalue problern is not scl-adjoint and hence [1, Lemma
3.1}, [1, Lemma 3.2], [1, Lemma 3.3] and [1, Lemma 3.4] do not hold.
Take the canonical fundamental system y;, 7 = 1,...,4, with yﬁ’”‘) (0) =
Aimt1 fOr o = 0,...,3, which is analytic on C with respect to A
Becanse of the boundary conditions {0} = %”(0) = 0 we only need e
and yy. We put o= \/— A, A # 0. It is casy to see that

1 1
ya(:, X)) = % sin{px) + 2—” sinh(pz)and

1 1 .
y,;(w? A) = o sin{pz) + T sinh(pr),

imterpreting A = 0 as a limit and applying 'Hospital’s rule becomes
y-g(.'lﬂ,. U) = }Ll_anuy2($: "\) .
~ im {sin(uz) + sinh(uz))
0 24

_ llf% (cos(pax) —!—zcoah(,u.m))
p—H

=T

and
- (%, 0) = lim (2, A)
— lim {— sin{pr) - sinh(pa))
a0 24

. (cos{uz) + cosh{jex))
12
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| Representing the boundary conditions (1.5), (1.4) by functionals By, 7%
and %(0} = y"(0) = 0, the (reduced) characteristic matrix of the bound-
3
ary value problem, T(A) := (5”83) D (Wa(0,a))* = (L2(0,a))t x C*
as represcnted by
v — (g

¥(0)
TAY = y'(0)

y"(a)
i () + doAy(a)

becomes

where for y € W(0,a)

By = LU”(“)
Ly = y/(a) + icy’y(a)
since ‘
A s
(12(z) us(c)) = (sin{uz) sinh(y)) (2;‘ o )

The characteristic equation is given by det M = 0, where

1 _A
det M = det l:(g;) (sin(uz) Sinh(u:r:))} # det (fﬁ ?‘_‘5)

2u 5;._:‘3-

with the two determinants given by -

det [(g;) (sin(uz) sin‘h(p:r:))]
= det ( —u? Si¥1(pﬂ-)l e sinh(ua) )
peos(pa) + iap® sin(ua)  j2cosh(ua) + icp® sinh(ua)
= —u’ sin{pa) cosh —u3 cos{pa) sinh(pa)
— 2oy sin(pa) sinh(pa)

and
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Lok 1
21 2 _

det, 1 1 = -2-“—5
2u 207 H

Let v = det M. Then, ¢ becomes

42 wlp) = —wolp) — dnpy (),
where

1 1 ‘
wolp) = % sin{pa) cosh(pa) + % con(pa) sinh(ua),

w1(p) = sin(ua) sinh(pa).

In order to find zeros of @(p), we first find the zeros of wp(p).

~ As in the paper of M. Mdller and V. Pivorvachik, zero is a zero of double
multiplicity. The nonzero zeros of @g{p) are given by those u # 0 for
which sin(ya) sinh(ua) = 0. The non-zero zeros sin(pa) are simple and
are given by:

_ T L m :
fi;, = k;, fhy, = —k:;, k=1,2,...

As sin(iya) = isinh(-ya) the non-zero zeros of sinh{ua) are simple and

given by

_ N T
p.“_Lk = 't-k;, iy, = mzkz, k=12

K LR |

which shows that zeros of gy, counted with multiplicity, are jif and
it k€L
Let ¢a(p) = tanh{po) + tan{ua). Since

tan ((‘;—W + ify) u) = tan(iva) = —itanh(ya) € iR U {co0}
for y € Z, € R we lLive '

| tan(ua) |< 1 for =2 4y, v € R
a
For pua = 2 - iy we conelude

en:+'i.y _ t.—:r:—-i;q
tanh(gpa) = W — =1 .
uniformly in ¥ as z - +00 . Hence there is a j; € N such that 5] = j,

: NS
tanh((2= + iy)a) — (1)9"0)| < .
i1
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for all j € Z with |j| = jn and ~ & R. These two cstimate lead to,

tmm((”—;—r +iv)a) + tan{pa)| — | £ 1] <

tanh((% + #y)a) + tan(pa) £ 1‘
- in
< |tan{ua)| + ‘tanh((? +iv)a) £ 1’

1
+1

=3

5 LI . : _
oa)l <5 for p=T-iy, JEZ, lj|2d, vER

By interchanging tanh and tan we obtain the same estimate for g =
y+11Z, j€Z -y € R Hence for g on the square with vertices

+5% + 452, where j € N,

44 . .
celpo(pe)| = o [e2(1)| | sin(pue) sinh(pa)|

5 .
= —-E-x—wl'sm(;m.) sinh{ua)|
4y

Do
= mlwx(ﬂ-))l

Y
> (-

Iz
Since both ¢, and ¢ are analytic functions in C with squares given by
vertices by 457, then according to Rouché’s theorem, if |y = [i1]
ingide these squarcs, then ¢ has the same number of zeros inside these
SQUATES 85 (g :

Putting
oo = sin(pa),
—g . ‘ ‘
o = Ton (cos{jra) + sin(pa) tanh{ua)) ,
we get,
e
oz = iasinh(pua) oo = vt
Note that

w_ .7
pr=k—, k&L,
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are the zeros of . Let C be the circle of radiug p < 5 with center at
- Due to p < 2 these circles do not intersect. Since |poo(s)| is peri-
- odic with period £, there is constant p{p) > 0 such that |¢g(u)| = p(p)
for all 4 € C and all k € Z. We estimate g on these circles for suf-

ficiently larse positive k:

|cos(ua)| < Ca, |sin{ua)| < Ca, |tanh{pa)| < Cy

e Cf, where the constants C; are independent of p and k is large
encugh. '
Thus we obtain

1
leo1(pa)| < mcz(l + Cs)

for p € Cf and k 2 ky(p) large enough. Since the right hand side tends
to () as |u] — oo, it follows that

oot ()] < feoo(p)l. (€ CL k> ko(p)).

Applying Rouché’s theorem we obtain that each of these circles (for &
large enough) contains exactly one zero of wys, and thus exactly one
zero of ¢,

Inside sufficiently large squares ¢ and g have the same number of ze-
ros, and there are zeros which have the same first order approximations
as the zeros of .

We sumnmarize the resulis of this section as follows:

Lemma 4.1. For g = 0 there s u positive integer ky such thal the
eigenvialues A, k € Z, of the problem (1.1)-(1.5), counted with mul-
tiplicity, can be enumerated in such a way that the eigenvalues A\ are
pure unaginary for |k < kg, Ay = — A for k = ko, where M, = p2 with

T
JITE k; + Cl(k)

k € Z,us k = oc. In particular, there i3 an odd number of pure
imaginary cigenvalues.
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Proof. Consider the characteristic function ¢(p) above, then

(i) = —go(iT) — ixr ()
== (Q_ZLﬁ sin(ifta) cosh(iga) + 2:—‘{_& cos(ifin) Sinh('iﬁu))
— s 8in(zg) sinh(izia)
= - (%ﬂl sinh(fza) cos(fa) + Ez!ﬁ msh(ﬁa)i Sin(ﬁu))
— iai sinh(7)i sin(fia)

= — o) + iai () = ().

Hence, if A = 4? is an eigenvalue of (1.1) - (1.5) for ¢ = 0, then
also (471)% = —Ji® = —X i3 an eigenvaluc of the same multiplicity. Thus
Ak = A

O

5. ASYMPTOTICS OF EIGENVALUES

We will use the results of [7, Chapter VIII] for asymptotic funda-
mental systemns of differential equations discussed in this paper. [7,
Chapter VIII] is concerned with regular two-point boundary cigenvalue
problems for the n-th order A-lincar differential equation of the type
K7 = AHy, where K and H are differential operators such that K is
of higher order than H and L? = K — AH, where L? is as defined
previously. {7, Theorem 8.2.1], gives propertics of the fundamental sys-
tem of L% in terms of that of Hy where X is replaced with p? and
cstablishes the existence of functions ¢,. [7, Theorem 8.2.1] is quoted
below.

Theorem 5.1. Suppose that h,,, = 1, setl =n —ny, and let k € N.
Suppose thal k = maz{l,ng — 1} if ng = 0. Suppose that

@) k; € Ly(a,b) for j =0,...,n—1—k and kn_y—; &€ W ¥(a,b) for
J=0,...,mink —1,n—14iny =0,

B) ho,- - hg1 € WE(a,), Koy kngo1 € WE™(a,b), and kuo1_; €
W (a,b) forj =0,...,1=1ifng > 0. Let{m,..., T} C WEt™(a,b)
be a fundamental system of Hnyp = 0. ' .
For sufficiently large A the differential equation Kn = N Hn has the
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fundamental system {m(-,A),...,m(-,A)} with the following proper-
lies:

i) There are funclions m,, € W"”’”’“ lab) 1 €v<ngl<r< )
such that

7
1 0 = )+ D A 4 (o0 ) e

(V"—_11"':“0;#’=0:“‘1n0_1)
[k n+un 1]

(5.2) -, A) = »W 4 Z ARl g fo(ATRERmet))

(v=1,... ;050 =mnp,...,n—1),
#) Set k := min{k,k+1 — ﬂg} Let wy = e:cp{i‘gL—‘l} (7=1,....D.
There are functions @, € W:,“ "(a,b), r = ., k such that gy is the
solution of the mitial value problem
.. ;1 |
({!d) Yo — I(h‘ﬂo—l - kn—‘l)‘PO =10, 'ﬂ'o((l.) =1,
and

]
BN = [ ] () Tl o)
r=(

Ho(AH#) e orom e
(v=mng+1,...,n5p=ng,...,n—1),
ihere [ u] means that we omit those terms of the Letbniz expansion

()

which contain a function o with § > k —r.

In order to apply the theorem above we need to replace A with ;2 and
(1.1) has an asymptotic fundamental system {n, 7, 13,74} of the form
(we write a formula which also gives the derivatives, because we need
them for the characteristic determinant)

(5.5) NIz, p) = 8,5(m, w)e ™,
where
{(5.6)

=0
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k = 0,1,..., and k can be chosen to be sufficiently large if g is
sufficiently regular. Since the coefficient of y® in (1.1) is zero, 7,
(8.2.3)] immediately gives ¢g(x) = 1. Further functions ¢, g, -~ €
W5*'7"(0,a) are determined below. We then recall that

1 1 1 1 0 0 o0 0

_ (1 -1 1 -1 @ _ [0 0 0 0

W = 000 o0f WM =]1 01 4
0

0 0 0 i i b R

Where it now follows that the characteristic function D(g) of (1.1)-
(1.5) is the determinant of the associated characteristic matrix given

by
M) = Wo" (W)Y (0, 1) + WP ()Y (a, )

b1,0(0, 1) d2,6(0, 1)
_ d1,2(0, 1) d2.2(0, p2)
B G1,2(a, p)et? ba2(a, pr)e™®
[61,1(a, j2) +icep®d1 0(a, p)]e* {821 (a, 1) -+ tapPdz oa, p1)]e™e
O50(0, 1) da,0(0, 1)
G3,2(0, 1) - 842(0, )
d3.2(a, p)e™ ds.2(a, p)e~ e

(64,1 (a, p} + 1'3(.15].,!.2(5‘3,“(&, wle ™ [841(a, pu) + 'iap,zdg,o(u, p)le— e

where ¥ (x, ) = (Té*_”(m, 1)1 ;=1 is the fundamental matrix associated
with the fundamental system {n, 72,73, 74}.

For the case g = 0 we already know the asymptotic distribution of the
eigenvalues, see Lemma 4.1. Denote the corresponding characteristic
function D by Dy. Due to the Birkhofl regularity, g only influences
lower order terms in D, and therefore it follows from the estimates in
[7, Appendix A.2] that, away from small disks around the zeros of 1)y,
|D(A) = Do(A)| < |Do{X)] if |A] is sufficiently large. The function D{X)
i# not analytic, but this estimate extends to the analytic equivalents
with, e. g., a fundamental system »;, j = 1,...,4, with y:(,.m)((]) = 8; mt1
form =40, ...,3, since changing initial conditions results in multiplying
the fundamental matrix with the same A dependent matrices so that
both D and ), are multiplied by the same matrix. Hence applying
Rouché’s theorem both to large circles centered at zero avoiding the
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small disks and to the boundaries of the small discs which are suf-
ficiently far away from 0, it follows that the eigenvalue problem for
general ¢ have the samc asymptotic distribution as for ¢ = 0. Hence
Lemma 4.1 leads to

Lemma 5.2. For g € C'[0,4] there is a positive integer ko such that
the eigenvalues Ay, k € Z, of the problemn (1.1)-(1.5), counted with
mulliplicity, can be enumerated in such a way that the eigenvalues Ay

ure purt imaginary for |k| < ko, A = =M + 0o1) for k > ko, where
Ar = pi with

e = k% + o(k)

as k — co. In particular, there is an odd number of pure imaginary
eigenvalises,

In [7, Appendix A] an estimate below of D(y) has been given. With
the methods used there one can also obtain more precise estimates of
the loeation of the zeros of 12, To this end we first observe that D has
the form

&
D(u) = Z Y (e} 42,

where the o, (i) are polynomlal‘% in 8, 4(0, 1) and 8, (e, 1) and w, is
the sum of the powers of the exponential in 'r;,(,’ (a, 1) = 6, (@, p)e" e
when computing the characteristic function D(A). Form = 1,...,5 we
have w, = 1+4, we = -1+, wy = —1—13, wg =1—14, wy =0, For
example, we can write :

Di() i= D()e™# = 1 () + 3 Yim()eon e,

m=2
It now follows from wy —wy = =2, wz—wr = —2—24, wy—wy = =24, wr—
= —1 —4, that for arg p € (—‘%, g) we hn.vp |e[wm—w1).lml < E_m" FHiele

tur m = 2,3,5, and these terms therefore can be absorbed by 4 (jz) as
thoy are 0f the form o{p™%) for any integer s. This cstimate holds since
arg(wm —wn) € {37, 7}. Hence, in the sector argp € (-4, 2),
(5.7) D {12) = 4 (12) + by (p)et—rdue

= th1 () + halpu)e 4

This will be used to find the cigenvalue asymptotics along the positive
real axis, Our assumption has to be that +, and ¢ have nonzero terns
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apart from the o-terms. But this condition is satisfied as we already
know that the problem is Birkhoff regular, see Theorem 2.3.

Due to the symmetry of the problem, the asymptotics on the other half
axes are not explicitly nceded. We now want to find the asymptotics

(58) me=ko 41, To=D Tamk " Ho(k™), k=12 ..

m=l)

where will find 7 and 7 ; from the expansion of D, (u).
Next we find the terins 740, 7k, and 72 in the expansion of 7 in (5.8).
We calculate

900 = [220019 ento |
‘ 51,2(5!, i) 52,2 {a, 1)
Si{a, i) +i0p2d gla, w)  Baa(a, m) + iap?ss o(a, 12)
= [35,0(0, 12)042(0, ) — 82,0(0, 1£)032(0, )]
x [B1,2(a, 1[0z, (a, pu} + iap®dap(a, )]
— dy,2(a, w)[d12(a, p) + iap®b) ola, w)]], ‘
) = 5500 5|

, d1.2(a, Lf) ] daz(a, )
Or1(ay pa) +deep 8y (e, p)  Saa(a, p) + topda p(a, 1)

= [d2,0(0, H)"’-S,ﬁ(os ) — 53,0(0, #5)52,2(Oa #)]
x ['6],‘2 (ﬂ'& ,U.) [54.1 (ﬂ-, p) + ?:a#'gé“'l‘n.(a! ,UJ)]
= daa(a, 1) [0y,1(a, ) + i dr,0(a, )]].

A straightiforward but lengthy caleulation see appendix 1, leads to
i{p) = —diou® + O(®) and yu(pe) = Giop® + O(®) as p — co.
Hence we can write

(5.9) 175 (1) = —dicx + prap” o + o)
(5.10) 1 ey (p) = dioe+ Yaap! + 1,[’4,2#_2 +o(u"?).
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-1
ka,m"' m_,_a(k—n))

m—{)

a
— Teo+ —5 Tk -+

wk

i

- QI‘—'i

a
wh2 T A T

-1
a
R ZTkmk e I o(k-—n)))
Wk (m—d
1 112
_E(l ( kot k*‘-T“+ k*
a .
E (Z,Tk'mk +o(k ))) )
_ a (43
= Tk (1 - (ﬁ’r‘“'” k-’-“' * k3
a. Ti
2 (St )]
ki (mz3 |

a 2
+(—Tk,u+...) +)
Tk

_ Lt fy_e a1 oy
= (1 ~ Tk (ﬂ_ﬂc,: (71*) Tk,[))kg ko(k ))»
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a2 a
w2 (E) (1 - (ﬁ‘?‘k,nﬁ- gz Tl + — k3
a b3
+ﬁ (Z Tﬁ.mk +O(n’(‘ n)))
. a 2 2
+(—‘Tk,o+...) +)
Tk ‘
a2 “
) (E) (1 -2 (&’”‘"‘Jr et s kJ
@ - —m . LT :
e (’;Tk,mk + o(k )))
a fL a
+ (ET’“‘O + mﬂc,l + ;];‘-3.'77.:,2

[ 2
a —m —i
Tk (MZ;.mk + ok )))

a
+2(ﬂk7'k0+ ) Tk + == k'*

2 ‘
(ZT’“” +O(k¢_“)))+...
=3

= (_C%) + olk™?)

m

-2 : Tkl | Th2 | Thd .
e™H = exp (—2w (Tk,() e - SRR LS o(k“‘)))

= ™M oxpy (—Qiaﬂ) exp ( QzaT—kg)

k k2 k3

k
exp ( Qza?; + n(k ))

= p—dameg (-l 24 a' ~ 2q2 kl " o(k:_z))

kQ

P T

(1 — 2111? + ﬂ(ﬁ'-z)) (.l — th— + n(ﬂ _3))

= g~ ATk (1 QLGT + (=2a? *r,“ — 2iaTy 2) 2 + u(k_z))
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implics
1y M () = —4ice + ¥ et + dnap™ + o(u™?)
a 7}
— i+ by (— (22,
1o+ "111'1(11'!;: (TI'k)) Tho+-..)
+ihia(() 4 ) ok
1z s () = e+ a1 ™"+ g™ + o(u?)
a a..
= 4i &2y
doet e (— = (= o+ )
a .
Fnal() ) + olk"2),

‘Sinee Di(j) =0 can be written as

0 = pu " (px) + pay; "l i) 2
= —diex + 'iﬁ]‘l(% — (%)27};0 + .Y ey 2((—%—)2 +.. ) + U(k_z)
+ (dia+ paa(— - () oo+ )+ dhua(( ) + )+ o(h™2))

e~ 4aTk.0 (1 — 2ig Tk + ( 2a° 'rk 1 — 2iam 2)— -+ o(k‘z)) ,
where after a lengthy but straightforward calculation of

(5.11)
1,[)1 1) = —2(1+4) + 4a(l + ) {p(0) — pi(a))

(5.12)
thaa () = 200 — @) — 41 — D) (@1 {a) = ©1(0)),

(5.13) |
o) = ~4r(a) ~ 01(0)) + 81 O)ga(a) — e (0) + ¥(@)  and

(5.14) |
(i) = 4ea(a) — ©1(0)) + Barp; (0)1(a) — da(i(a) + 7(0)).

A comparison of coefficients of k%, k™! and k2 in D1 (px) = 0 leads to
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K0 = —dio + diqe=Horo

o e—2itFTklo
k10 =q a ) ; —diaTg o 2 —Siam
10 = 'j—’l,l; - 4%&(23&7}_‘])3 L4+ T,bd,l—ﬂ k0
: T

— L ] . )
k0= (;)”(w‘.‘.z — P1aTko) + 41&(—2a27}f’, — ity z)e” HeTko
Y Y i .
- 2’&&.(;)’1‘[)4,17-&1& Bhry g _ (_7;)2(1‘[)4’17,‘:,0 — .,1[)4,2)'3 Dare
@, . ]
= (;)J((wlﬁ - 'l,b1,]Tk,n) - (1/)4“1”]";‘:’0 - 11{)4‘2)3_21""'#.11)
2
- 21:(4&&27—13,1 + %"*/)4,17%,1)'3_2{““‘” + 8(1!‘17’;‘:,2(3‘_2';“7'“"3,

thus

Tro = 0,

1
Th1 = —%(wu + 1hg,1)

= _%(—4-5 +8a(1(0) = py(a)))
= :2% %ﬁﬁl(a) and

1
Thy = —— ((%)2((’414,” k0 — YPa2) — (12 — 1/11,1’%,0)))

Bacx

1 e on g | O
+ e 2i{daa’r, + Flbat,‘l Th,1)

1 2
=i (—;:2 (Y + 1.[11.2))
+ “‘"—“': (4!12!17';31 + a—ul,m 1Tk 1)
dacy ’ o
1 a? 2 2
- 527 (-5 1601 0)1(6) ~ 8e?(0) + (@)

iatE) + % (2(1 = 4) — 4e(l = D) (o1 (a) — 1(0))) 7.
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Finally, {or all 7,1 and 13, we need to find the fur;ctmn 2 and athers
ag needed. According to [7 (8.2.45)],

Cur = el VlezlEu—nu

where T = (1,1,1,1), and the 4 x 4 matrix function QI iz a solution
of (sec [7, (8.2. 53) a,nd (8.2.34)] where Q1% = 1, by [7, (8.2.18)])

T T r— " 1 - =1-j Alr—1—j
(5.15) QY - . =@ + szn—1—j“4“m41 QL

i=1

. 4
. 1 . - )
(5.16) Q' -I—ZE k1 Qe QR

Here Q4 = diag(w:,we,ws,wa) = diag(l,4,—1, —i).Let QI = qu;l,
whence

Wiy gt)dt ifi=j

-
ifis#7g
o [ HAJ a0+ o ifi=;
Ty =
0 ifi#3
g (5 J5 o) d)® + 59(x) fy otydt ifi=j=1 .
iy =
0 ifis#j
and thus

(5.17) pi(z) = : [ i-_q(t) dt,

619 o) =3 (3 [ o0 ) +14(e),

619) e =z (% [ o(t) da)3+1_‘—ﬁg(z) / " g(t) dt
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Altogether, we obtain
(5.20)

% 1 "
T = - +‘E A g(z) dz

(5.21)

Tk2 =

3 + mvﬁ;

z 1+ &)p1(a)me

= % _(fy(m) dx)g Fra (ﬁ“& ¥ ’1%” o2 )2
gt (gt [a i)
_ %(1 i) G fu“ g(z) d:r).(— m,:m +% /u ) 9(x) d;)
= E% (fag(m) dw)2+ 1;2 (/ﬂﬂg(m) ﬂ’-ﬂ?)z
Eenlfons) )
©_ (1 44) ( fu * o) d:z:) ( / 9(z) rl:r)

ia a 1
T Amin? 471'2052( —14)
i
Am2a?’

Theorem 5.3. For g € CL[0, a], there is ¢ positive integer kg such that
the eigenvalues Mg, k € Z, of the problem (1.1)- (1.5), counted with
m?}lt?'pl?'czfy, can be enumerated in such o way that the eigenvalues A,

are pure imaginary for |k,| < ko, Aok = =M+ o(1) for k = ko, where
A = i wilh

1( 4 1 (e
e = k— +h(27r |-§ glz)d )

1 -
+E‘_4 7 2+O(k' z)
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as k — 00, In purticular, there is an odd number of pure fmaginary
etgervalues.

Appendix 1

r=0

6.,,j(w,#)=ﬁ{2(m Do) }c M o{u ), k=01,

k
3310 T ) = {Z | }+O(I"Hk)

=)

. .
0y (z, 1) = {z,u, Py (,::)ﬂ‘”} e™H o o RHY

= Z 177 (pen () + () + o(u )

r=() ‘ .
da(z, p) = dﬁ {Z,u 4,0,.(7')9“”} &M 4 o r )
r=0
k
= ZV‘ (F wr () +2P*’Pr($) +‘19 (I)) + o(u” k+2) .
baoer, ) = {Z(m)-*qor(w>}+ow)
| dr:ﬂ . |
o1z, ) = p Z 148) T oy (.c)r“”‘} eTHE 4 o(p R
. .
3 ) (i)nl@) + () + o)
B 1]
. k
oz, ) = {Z(m:)-*((m)%r(m) 2l (x) + (J:))} + o4
R .
d30(x, 1) = {Z(—H)"%(w)} +o(u™%)
d31(z, 1) = {Z( 1) ({(—n)e(x )+(P,-(T))} + o(u™*"?)
r=()
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Baalz, 1) = {é.( —18) " ((—p)Per () + 2—p) () + & (ﬂf))} + o2
Balz, u) = {g(—@) '”wr(ﬂ:)} + o(p)

Ga,1 (5, 1) = {:0(—;&%‘)‘*((-#5)%@) + (-T))} + o)

daalz, p) = {;(—wi)*'"((—;f-'i)""<Pr(:ﬂ) + 2 —pipl{a) + wi’(iv))} + o u~*+%)
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i) = [63,0(0, 1)81,2(0, ) — dap(0, 1) 832(0, )]
x [Bra(e, 1) b2, (a, 1) -+ doyi2ds (e, 1))
~ Sop(a, )81 1 (s 1) + iy 0(a, 1))
= d30(0, )84,2(0, p)d1 2(@, 1) (62,1 (a, 1) + i o (a1, 1))
= O3,0(0, 10)8a,2(0, 1)d20(a, ) (8 1 (2, 1) + ders®d1 p(a, 44)]
— d0,0(0, 1}3.2(0, )81 2(, 1) Bz, (0, o) + i Bz.0(a, 1)
+ da,0(0, 1)d3,2(0, )82.2(a, )1 (0, ) + dap’br0(a, )]
= (14 (=) 21 (0) -+ (=11) %02(0) +..)
((—pi)* + (= )1 (0) + 201 (0) + 22(0) + ..)
x (1 + ppa(a) + 29 (0) + 2(a) +..)
x [((ud) + @r(@) +...) + i (1 + (pd) r(a) + (i) Pipafa) + . ..)]
= (L4 (=) 1(0) + (=) 2(0) + ...)
((=10)* + (—12)p1(0) + 20 (0) + 2(0) +....)
X ((16)* + (pi)pr(a) + 20} (a) + @a(a) +..)
x [({a) + ¢rla) +...) + i (1+ p o (a) + p~2a(a) +..)]
- = A =) e (0) + (=) Pi{0) + )
(=) + (=)1(0) + 2, (0) + 2(0) -+ . .)
x (1? + ppr(a) + 200 (a) + p2(e) +..)
* [((41) + r(@) + .. ) + 0P (1 + () Mip1 (a) + (i) pala) +...)]
A (1 (—p) T r(0) + (=) (@) + )
(=) + (=12)21 (0) + 2 (0) + p2(0) + ..
X (4 + 2pp1(a) + 261 (a) + p2(a) +...)
X ((13)* + (pi)ir(a) + 2} (@) + wala) +...)
x [(la) + wala) +...) +iog® (1 + () Fo1(a) + (1) epala) + .. )]
= —4iog® + (=2(1 + 9) + da(1 +9)(21(0) = @i(e)))1°
+ (4(1(0) — ya(a)) + a1 (0)1 (a) — 4a(T(0) + @} (@)’ + Ox?)
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Palpn) = [02,0(0, 1)03.2(0, 12) — 85,00, 1) 822(0, 1))

% [81.2(a, p)da,(a, p) +iaudsna, 1))
— dag(a, 1)[d1,1 (2, 1) + ip®br0(a, )]}

= d2,0(0, 12}032(0, )61 ,2(a, w)[da 1 {a, 1) + ia;1.254,9(a, )]
— 02,000, 11)35,2(0, p)da p(a, 1) (81 1 (a, 1) + ders®d1 o (a, )]
— 03,0(0, p)32,2(0, )by 3(a, (1) [6a1 (e, 1) + iop®8an(a, p)]
+ 03,000, 1)82,2(0, g zlar, )0 (a, 1) + i) (e, )]

= (14 (i) L1 (0) + (2) 2p2(0) +...)
((=19* + (—2)1(0) + 26 (0) + ¢02(0) + . .)
X (42 + 1 () + 26 (a) + @ala) +..)
x [((=pd) + er(a) +...) + dap? (1 + (—pi) r(a) + (=) *pa(a) +..)]
— (1+ (i) 01 (0) + () 202(0) + .. )
((=12)* + (=191 (0) + 2¢1.(0) + 02(0) + ..
x ((—d)® + ()1 (@) + 264 (@) + wala) + ...
X [(pe+wi(a) +...) +iog() + p o (@) +
— (L4 (=)@ (0) + (=p) a(0) + ...}
((a)® + ()1 (0) + 201 (0) + 02(0) +....)
x (1 + per(a) + 295 (a) + wa(a) +...)
X [((=p2) + @r(0) + .. ) +iopP (L + (=) pr(a) + (— i) (@) + .. )]
4 (1 4 (=) or(0) + (=) 202 (0) + .. )
((8)? + (1) (0) + 2601 (0) + 02 (0) + - .)
X ((—pi)* + (—pidnr(a) + 24 (@) + eafa) + .. )
X [(5+ @i(@) +..) Fiop(1+ p™ pa(a) + £ %0(a) +..)]

= dioyd® + (2(1 —7) — 4ol = D) (pi(a) — @ (0)))1®
+ (4(p1(a) ~ ¢1(0)) + Barpn (0)p1 (a) — 4a(wi(a) + £F(0))n' + O (™)

From (5.5)

)

12 pa(a) +.. )]

0@, 1) = By, e,

Substituting into (4.1) for 7 = 0 and A replaced with ;.[2 we get
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dd . Jbt . 1;"'_':1':
i {8l e ) b = (o, e ),

| = d,(x, ) is & non-zero constant in 2, d,(w).
Thus {71, 92, s, 1} i given by {8, (et 3(p)er™, 3()e™r, d4(u)e=i},
Choose all &, = 1 and {n%} for ;) = 1,2. becomes {j2e"*, iue”®, —pe~H, —ipemmT)
and {7Pc*, —plerie 2eHr e e } respectively. A comparison of

the the two qutemq to (5.5), we have {4,;} equal to {u,iu, —p, —ip}
and {32, —p?, u?, —p?} for § =1 and 2.

| _ 185000, 1) 8ap(0, )
Pi(p) = 5;;(0,‘,,) Jj,z(o,u) '

0a,2(a, 1) Fa.2(, 1)
dy,1 (e, p) + ioep® oa, 1) daa(a, 1) + e dz0(a, 1)

= [53,0(0, 1)0a2(0, 1) — d4,0(0, p)ds 200, )]
x [61,2(a, {022 (e, 1) + ic®Sa0(a, )]
— B2.2(a, 1) (81,1 (a, ) + i’ o(a, p)]],
= 03,000, 14)d4,2(0, #)51,2(!1, m)[02,1(a, ) + iwzﬁz,n(u, 1]
— 83,0(0, 1£)84,2(0, p)dz2(a, 1) (811 (e, 1) + i) ola, 1))
— d1,0(0, 1)d22(0, ‘#)51 a(a, 1}[6a,1 (e, p) + i’y ola, 1))
+ 810(0, )8 2(0, 1) 2(a, 1) [F1,1 (e M) + dap’dia, )]
= —dio® — 21+ i),
W =0 B
o1 2 (ﬂ, #) 54.2 (u, #)
di(a, p) +icp®diola, 1) dayla, ) + dopbap(a, p)
= [62,0(0, 128320, 1) — 83,0(0, 18)62,2(0, DI
x [82(a, p)[Ba,1 (@, ) + it gp(a, )]
— dag(a, w8y i{a, 1) + 1Sy oa, w)]
= a0(0, ;f.)éu,g(ﬂ, p)o1o(a, w)[da1(a, 1£) + ioye®dyy(a, 1))
— O2,0(0, 2)83,2(0, 104,20, ) (01,1 (a, 1) + i’y ola, ¢2)]
— 83,0(0, 11)d2.2(0, 1)d1 2, p)[da1(a, 1) + m;;f"rﬁ‘o(nﬁ, 1)]
+ 85.0(0, 1£)82,2(0, p)anle, p) (811 (a, 1) + icp?dy o a, 1))
= diog + 2(1 — ) '
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