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ABSTRACT 

 

Stavudine, a nucleoside reverse transcriptase inhibitor (NRTI) used to treat 

infection by the human immunodeficiency virus (HIV), causes peripheral 

neuropathy and pain in HIV-positive patients. The mechanisms of this toxic 

neuropathy are poorly understood, partly because of a lack of animal models of the 

disease process. I investigated whether long-term daily oral administration of 

stavudine affects nociception in Sprague-Dawley rats, and whether changes in 

nociception are accompanied by a general deterioration in the rats’ conditions, as 

reflected in activity and appetite. Daily stavudine administration induced 

mechanical hyperalgesia in rats within three weeks without affecting appetite, 

growth or physical activity, and this hyperalgesia persisted throughout the six 

weeks of stavudine administration. I then investigated whether central changes 

underlie the hyperalgesia caused by stavudine in rats by examining inflammatory 

cytokine secretion and neuronal death in the spinal cord. Daily stavudine 

administration caused an increase in cytokine-induced neutrophil chemo-attractant 

(CINC)-1 concentration in the spinal cord after six weeks, but early development of 

stavudine-induced hyperalgesia did not depend on increases in spinal concentrations 

of CINC-1 and interleukin (IL)-6, nor on apoptosis or necrosis of spinal neurones. 

The neurotoxicity of stavudine is thought to derive from mitochondrial toxicity, 

which has been linked to increased plasma lactate concentration and decreased 

plasma adiponectin levels caused by lipodystrophy. Thus, I investigated whether a 

systemic inflammatory response or metabolic dysregulation accompanied 
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stavudine-induced hypernociception by examining plasma adiponectin, lactate, 

CINC-1 and IL-6 concentrations in rats administered daily stavudine. Plasma 

adiponectin, lactate, CINC-1 and IL-6 concentrations were unchanged following 

three or six weeks of daily stavudine administration. Therefore, I have shown that 

stavudine-induced hyperalgesia is not dependent on spinal cord plasticity, nor on a 

systemic inflammatory response or extensive metabolic malfunction. Instead, the 

hyperalgesia I observed may be caused by the adverse effects of stavudine on 

peripheral neurone functioning. As stavudine administration to healthy rats had no 

adverse effects besides inducing hyperalgesia and causing a rise in CINC-1 

concentration in the spinal cord after six weeks, my results indicate that many other 

side effects commonly associated with stavudine treatment in HIV-positive patients 

may arise through interaction with the underlying HIV infection.  
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Pain is a common complaint of HIV-positive patients, even in the absence of AIDS-

defining diseases, and frequently is underestimated and treated poorly by doctors 

(Breitbart et al., 1996; Del Borgo et al., 2001; Husstedt et al., 2001; Karus et al., 

2005; Larue et al., 1997). The prevalence of pain in HIV-positive patients increases 

from about 30 % in adult out-patients, to about 60 % in adult in-patients (Brechtl et 

al., 2001; Breitbart et al., 1996; Karus et al., 2005; Larue et al., 1997). Norval 

(2004) found that in South Africa 98 % of patients with advanced AIDS in a 

palliative care facility suffered from chronic pain. Despite the high prevalence of 

pain in HIV-positive patients, 85 % of those patients are not given adequate pain 

relief by doctors (Breitbart et al., 1996; Larue et al., 1997).  

  

While somatic pain, headache, joint pain and muscle pain frequently are reported by 

HIV-positive patients, approximately 30 % of HIV-related pain is thought to be 

neuropathic in origin (Del Borgo et al., 2001; Hewitt et al., 1997), not only because 

of neural damage caused by the virus, but also because some antiretroviral drugs 

cause toxic neuropathies (Cherry et al., 2003; Dalakas, 2001). Although 

antiretroviral drugs effectively retard the progression of the disease, some studies 

have shown that the prevalence of sensory neuropathy in HIV-positive patients has 

increased since the introduction of these drugs (Bacellar et al., 1994; Husstedt et al., 

2001; Luciano et al., 2003; Sacktor et al., 2001; Smyth et al., 2007). Clinically, 

distal sensory polyneuropathy caused by the virus and toxic neuropathy caused by 

antiretroviral drugs are indistinguishable (Dalakas, 2001; McArthur et al., 2005; 
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Nicholas et al., 2007; Simpson & Tagliati, 1995), as both types of neuropathy are 

associated with the same features, including decreased peripheral nerve fibre 

density (Cherry et al., 2003; Pardo et al., 2001; Polydefkis et al., 2002; Zhou et al., 

2007). A diagnosis of toxic neuropathy is dependent mainly on when the symptoms 

of neuropathic pain occur, in relation to the start of antiretroviral therapy (McArthur 

et al., 2005; Nicholas et al., 2007).     

 

While highly active antiretroviral therapy (HAART) used to treat HIV infection 

usually consists of a combination of two nucleoside reverse transcriptase inhibitors 

(NRTIs) and either a non-nucleoside reverse transcriptase inhibitor (NNRTI) or a 

protease inhibitor (PI) (Grimwood, 2004; WHO, 2004), NRTIs are associated with 

a greater risk of developing neuropathy than any other antiretroviral drug (Bacellar 

et al., 1994; Keswani et al., 2002; Moore et al., 2000). Of the other classes of 

antiretroviral drugs only the PI indinavir (IDV) recently has been found to be a risk 

factor for developing peripheral neuropathy (Smyth et al., 2007). Although NRTIs 

form an integral part of HAART, the mechanisms of NRTI-induced toxic 

neuropathy are not well understood. Our poor understanding of how the toxicity of 

NRTIs causes pain in HIV-positive patients arises partly because of a lack of robust 

animal models of the disease process. The purpose of this introduction is to describe 

the clinical features of distal sensory polyneuropathy caused by the HI virus and by 

antiretroviral drugs. As neuropathic pain caused by antiretroviral drugs is the focus 

of my PhD, in this chapter I will examine the role of NRTI-related mitochondrial 
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toxicity on NRTI-induced toxic neuropathy and illustrate the effects of NRTIs on 

nerve fibre density in animals and nerve fibre growth in cell culture. As it is 

impossible to distinguish between the effects of the virus and the antiretroviral 

drugs on neurones in HIV-positive patients, I also will describe animal models of 

NRTI-induced pain hypersensitivity, which have been developed to characterise 

toxic neuropathy in the absence of HIV infection.  

 

1.1 Peripheral neuropathy in HIV-positive patients  

Somatic pain, headache, joint pain, muscle pain and neuropathic pain are among the 

most frequently reported types of pain experienced by HIV-positive patients, with 

about 30 % of patients suffering from neuropathic pain (Del Borgo et al., 2001; 

Hewitt et al., 1997). Peripheral neuropathy, with or without pain, affects up to 50 % 

of HIV-positive adult patients (Dagan et al., 2002; Simpson et al., 2003; Smyth et 

al., 2007), with the incidence of neuropathy increasing with disease progression and 

decreased CD4 cell count (Breitbart et al., 1996; Hewitt et al., 1997; Larue et al., 

1997). The occurrence of peripheral neuropathy also is increased in HIV-positive 

patients with a history of other types of neuropathy (Stenzel & Carpenter, 2000) and 

with increased age (Smyth et al., 2007). The prevalence of peripheral neuropathy is 

similar in HIV-positive adults and children, although the condition frequently is less 

severe in children than in adults (Araujo et al., 2000).  

 

One of the signs of peripheral neuropathy is a reduction in epidermal nerve fibre 
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density, caused by distal axonal degeneration (Cherry et al., 2003; Pardo et al., 

2001; Polydefkis et al., 2002; Zhou et al., 2007). Nerve fibre degeneration is 

accompanied by the release of local inflammatory mediators, which heighten the 

sensitivity of surrounding, uninjured fibres, contributing to neuropathic pain 

(Keswani et al., 2002). Initially, small unmyelinated nerve fibres are lost, followed 

by the degeneration of large myelinated fibres (Cherry et al., 2003). Regeneration of 

damaged nerve fibres is rare (McArthur et al., 2005) and regrowth of damaged 

nerve fibres appears to be impaired with HIV infection (Hahn et al., 2007). Hahn 

and colleagues (2007) found that cutaneous capsaicin application resulted in near 

complete denervation of the affected area and that regeneration of these nerve fibres 

was significantly decreased in HIV-positive patients with or without neuropathy 

compared to healthy controls.  

 

Approximately 50 % of HIV-positive patients with peripheral neuropathy suffer 

from pain (Cornblath & McArthur, 1988; Fuller et al., 1993; Martin et al., 2003), 

most prominently in the lower limbs (Norval, 2004). Patients experience 

hyperalgesia and allodynia, impaired thresholds for hot and cold stimulation, and 

numbness and burning of the extremities, particularly the feet (Cherry et al., 2005; 

Huengsberg et al., 1998; Martin et al., 2003; McArthur et al., 2005). HIV-positive 

patients frequently experience spontaneous pain (Martin et al., 2003; Schreiner & 

McCormick, 2002), making it difficult to perform normal daily activities, 

diminishing quality of life and often resulting in anxiety and depression (Larue et 

al., 1997; Newshan et al., 2002; Ownby & Dune, 2007).  
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While most HIV-positive patients who have died of AIDS have detectable nerve 

damage, indicative of peripheral neuropathy, not all of these patients reported 

experiencing pain when they were alive (Keswani et al., 2002; Luciano et al., 2003; 

Martin et al., 2003). Non-painful peripheral neuropathy may be the result of partial 

damage to the nervous system and limited C-fibre dysfunction, allowing for 

relatively normal nociception (Martin et al., 2003). Alternatively, asymptomatic 

neuropathy may be caused by extensive neural damage, which decreases sensory 

input, such that the patient is less sensitive to stimuli and does not suffer from pain 

(Pardo et al., 2001).   

 

1.2 gp120-induced neurotoxicity  

Much of what is known about the mechanisms of HIV-induced neuropathy and the 

pain associated with that neuropathy was discovered using animal models. The HIV 

envelope glycoprotein gp120, injected intrathecally or administered perineurally to 

mice and rats, results in mechanical and thermal hyperalgesia (Herzberg & Sagen, 

2001; Milligan et al., 2000; Milligan et al., 2001a; Milligan et al., 2001b; Spataro et 

al., 2004; Twining et al., 2005), mechanical allodynia (Herzberg & Sagen, 2001; 

Ledeboer et al., 2005; Minami et al., 2003; Wallace et al., 2007a), and a decrease in 

intra-epidermal nerve fibre density (Wallace et al., 2007b). HIV-gp120 induces 

macrophage infiltration in the peripheral nerve and dorsal root ganglia (Wallace et 

al., 2007a) and activates microglia and astrocytes in the brain and spinal cord 

(Herzberg & Sagen, 2001; Ledeboer et al., 2005; Milligan et al., 2000; Milligan et 

al., 2001b; Wallace et al., 2007a), which then release the pro-inflammatory 
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cytokines interleukin (IL)-1, tumour necrosis factor (TNF)-α (Herzberg & Sagen, 

2001; Holguin et al., 2004; Milligan et al., 2001a; Milligan et al., 2001b) and IL-6 

(Holguin et al., 2004), as well as the chemokine CCL2 (Wallace et al., 2007b). The 

release of nitric oxide (Holguin et al., 2004) and calcium (Minami et al., 2003) in 

the spinal cord also is increased following gp120 administration and in addition the 

spinal cord complement cascade is activated (Twining et al., 2005). Inhibiting the 

complement cascade and glial cell activity and blocking the release of nitric oxide 

and cytokines reduces or abolishes the heightened pain sensitivity induced by gp120 

(Holguin et al., 2004; Ledeboer et al., 2005; Milligan et al., 2000; Milligan et al., 

2001b; Minami et al., 2003; Twining et al., 2005), highlighting the importance of 

centrally-mediated pathways in HIV-related neuropathic pain.  

 

HIV-gp120 also may directly affect neurone functioning. Isolated rat dorsal root 

ganglion neurones incubated with gp120 show an increase in neuronal apoptosis 

(Bodner et al., 2004; Keswani et al., 2003b), a decrease in neurite branching and 

total neurite length (Keswani et al., 2003b) and an increase in the release of 

substance P and calcium (Oh et al., 2001), which may contribute to the increased 

pain sensitivity observed in rodents administered gp120. Chemokines are thought to 

play an essential role in HIV-induced neuropathy, as blocking chemokine receptors 

reduces the adverse effects of gp120 on neurone viability (Bodner et al., 2004; 

Keswani et al., 2003b). HIV-gp120 is thought to bind to the CXCR4 chemokine 

receptor on Schwann cells, resulting in the release of the chemokine RANTES 

(regulated upon activation, normal T-cell expressed and secreted), which binds to 
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the CCR5 chemokine receptor on neurones, resulting in the release of TNF-α and 

subsequent neurotoxic effects (Keswani et al., 2003b).   

 

These animal and cell culture studies of gp120-induced neurotoxicity show that the 

HIV envelope glycoprotein gp120 plays an important role in mediating the 

peripheral neuropathy caused by HIV infection. By causing the release of 

neurotoxic substances, such as pro-inflammatory cytokines and chemokines, gp120 

enhances the sensitivity of neurones and may result in neuronal death, features 

evident in HIV-positive patients with painful peripheral neuropathy caused by the 

virus. Because of a dearth of similar animal models of antiretroviral drug-induced 

neuropathy, the mechanisms of toxic neuropathy are not as well understood.   

 

1.3 Toxic neuropathy caused by antiretroviral drugs 

Although antiretroviral drugs effectively delay the development of AIDS and 

increase life expectancy by increasing CD4 cell count and decreasing viral load 

(Brechtl et al., 2001; Dalakas, 2001), other symptoms of HIV-infection, such as 

fatigue, insomnia, anxiety, and pain, have not been eliminated (Brechtl et al., 2001; 

Newshan et al., 2002). Indeed, some studies have shown that the incidence of 

peripheral neuropathy has increased with the introduction of antiretroviral drugs 

(Bacellar et al., 1994; Husstedt et al., 2001; Sacktor, 2002; Sacktor et al., 2001; 

Smyth et al., 2007). Researchers believe that, in HIV-positive patients, the toxic 

effects of antiretroviral drugs may merely enhance a previously existing distal 

sensory polyneuropathy caused by the virus (Keswani et al., 2002), such that HIV 
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infection is necessary for toxic neuropathy to develop. The virus, pro-inflammatory 

cytokines and chemokines are thought to cause the initial peripheral nerve injury 

(see section 1.2), which then is exacerbated by the toxic effects of antiretroviral 

drugs, resulting in symptomatic, painful neuropathy (Keswani et al., 2002). 

 

While HAART usually consists of a combination of two NRTIs, the backbone of 

combination therapy (Sension, 2007), and an NNRTI or PI (Grimwood, 2004; 

WHO, 2004), the toxic effects of NRTIs in particular are associated with the high 

incidence of peripheral neuropathy in HIV-positive patients taking antiretroviral 

drugs (Bacellar et al., 1994; Keswani et al., 2002; Moore et al., 2000; Smyth et al., 

2007). Toxic neuropathy often arises rapidly (Dalakas, 2001) six to eight weeks 

after starting NRTI treatment (Husstedt et al., 2001), although neuropathy may 

develop as early as one week or up to six months after the onset of NRTI 

administration (Keswani et al., 2002). This temporal association between the 

symptomatic development of neuropathy and the start of antiretroviral therapy 

currently is necessary for the diagnosis of NRTI-induced neuropathy, as the clinical 

symptoms of toxic neuropathy and distal sensory polyneuropathy, caused by the 

virus, are identical (Dalakas, 2001; McArthur et al., 2005; Nicholas et al., 2007; 

Simpson & Tagliati, 1995). Kokotis and colleagues (2007) recently showed that, 

although the clinical symptoms of both kinds of neuropathy are the same, the 

pathology of toxic neuropathy and distal sensory polyneuropathy may differ. The 

researchers found that neuropathy caused by the virus was associated largely with a 

decrease in the conduction velocity of myelinated nerve fibres, while toxic 
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neuropathy appeared to decrease the conduction velocity mainly of unmyelinated 

fibres. Although the authors failed to demonstrate a clear distinction between the 

two types of neuropathy (Kokotis et al., 2007), similar studies may allow us to 

discriminate between neuropathy caused by HIV infection and that resulting from 

antiretroviral drug treatment in the future, which may improve the management of 

the condition. 

 

The prevalence of toxic neuropathy increases with the number of antiretroviral 

drugs used (Scarsella et al., 2002), the duration of NRTI exposure (Scarsella et al., 

2002) and frequent changing of HAART regimens (Silverberg et al., 2004). Also, 

HIV-positive patients with advanced HIV disease, increased age, decreased 

nutritional status (Fichtenbaum et al., 1995; Moyle & Sadler, 1998) and any 

previous incidence of neuropathy are at greater risk of developing toxic neuropathy 

(Fichtenbaum et al., 1995; Keswani et al., 2002). Discontinuing the use of NRTIs, 

or changing the HAART regimen (Keswani et al., 2002), results in an improvement 

of symptoms in two-thirds of patients (Keswani et al., 2002), usually within three 

months (Blum et al., 1996).  
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Table 1: Commonly used* nucleoside reverse transcriptase inhibitors 

(NRTIs) 

Generic 
names 

Chemical 
name 

Nucleotide 
derivative 
 

Brand 
name 

Manufacturer 

Didanosine 
(ddI) 

 

2’,3’-
dideoxyinosine 

Adenosine Videx 
EC  

Bristol-Myers 
Squibb 

 
Lamivudine 
(3TC) 

 
Β-L-2’,3’-
dideoxy-3’-
thiacytidine 

 
Cytidine 

 
Epivir 

 
IAF Biochem 
Int/ Glaxo 
Wellcome 

 
 

Stavudine 
(d4T) 

 
 
2’,3’-didehydro-
3’-
deoxythymidine 

 
 
Thymidine 

 
 
Zerit 

 
 
Bristol-Myers 
Squibb 

 
 

Zalcitabine 
(ddC)* 

 
 
2’,3’-
dideoxycytidine 

 
 
Cytidine 

 
 
Hivid 

 
 
Hoffman La 
Roche 

 
 

Zidovudine 
(AZT) 

 
 
3’-azido-3’-
deoxythymidine 

 
 
Thymidine 

 
 
Retrovir 

 
 
Glaxo 
Wellcome 

  
*zalcitabine no longer is recommended for the treatment of HIV infection 
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All NRTIs (see Table 1 for brand names and manufacturers), except zidovudine 

(AZT), which is administered at a dose of 600 mg per day (WHO, 2004), have been 

associated with peripheral neuropathy (Dalakas, 2001). Besides causing toxic 

neuropathy NRTIs also are associated with numerous other adverse effects, 

including gastrointestinal disturbances, pancreatitis, lactic acidosis, lipodystrophy 

and rash (Montessori et al., 2004), however neuropathy is one of the most common 

reasons for discontinuing the use of these drugs. The prevalence of peripheral 

neuropathy and other side effects commonly reported with the use of NRTIs is 

summarised in Table 2. The severity and the prevalence of the peripheral 

neuropathy caused by NRTIs is dependent on the toxicity of the specific NRTI used 

(Dalakas, 2001). Zalcitabine (ddC) is associated with the highest incidence of 

neuropathy, with all patients administered a high dose (≥ 0.12 mg.kg-1 per day) 

developing neuropathy in seven to nine weeks. Even with a much lower dose (0.02 

mg.kg-1 per day) neuropathy developed in one third of patients within 26 weeks 

(Berger et al., 1993). The neuropathy caused by zalcitabine is painful, progresses 

rapidly and may be irreversible (Cherry et al., 2003; Dalakas, 2001). Because of the 

high incidence of toxic neuropathy associated with zalcitabine administration, 

zalcitabine no longer is recommended for the treatment of HIV infection. 

Neuropathy occurs less frequently with the use of lamivudine (3TC), didanosine 

(ddI) and stavudine (d4T) and the neuropathy generally improves when treatment is 

stopped (Cherry et al., 2003; Dalakas, 2001). The prevalence of neuropathy caused 

by lamivudine, which is administered at a dose of 300 mg per day (WHO, 2004), 

has not been assessed systematically (Dalakas, 2001). The recommended dose of 
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didanosine is 250 or 400 mg per day, depending on the patient’s body mass (WHO, 

2004). A dose of didanosine far greater than that currently recommended (≥ 12 

mg.kg-1 per day) resulted in neuropathy in up to 50 % of patients (Lambert et al., 

1990), but neuropathy affected only 2 % of patients administered didanosine at 

recommended doses (Moyle & Sadler, 1998) and those with higher CD4 cell counts 

administered a much lower dose (0.4 mg.kg-1 per day) of this NRTI (Lambert et al., 

1990). A high dose (approximately four times the currently recommended dose) of 

stavudine caused peripheral neuropathy in 70 % of HIV-positive patients (Skowron, 

1995), while currently recommended therapeutic doses of 60 or 80 mg.day-1 (WHO, 

2004) may cause neuropathy in up to 15 % of patients (Moyle & Sadler, 1998; 

Simpson & Tagliati, 1995).  
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Table 2: Prevalence of peripheral neuropathy and other common side 

effects caused by NRTI administration in HIV-positive patients 

NRTI  
 

 
 
Didanosine 
 
 
 
 
 
 
 
Lamivudine 
 
 
Stavudine 

 
 
 
 
 
 
 
Zalcitabine 
 
 
 
 
 
 
Zidovudine 
 

 

Dose 
 
 
 

≥ 12 mg.kg-1 per 
day(1) 

 
0.4 mg.kg-1 per 

day(1); 250 or 400 
mg per day(2) 

 
 

300 mg per day 
 
 

Four times 
currently 

recommended(3) 
 

60 or 80 mg per 
day(2,4) 

 
 

≥ 0.12 mg.kg-1 
per day(5) 

 
0.02 mg.kg-1 per 

day(5) 
 
 

600 mg per day 

Patients with 
peripheral 

neuropathy (%) 
 

50 
 
 
2 
 
 
 
 

Not assessed 
 
 

70 
 
 
 

15 
 
 
 

100 
 
 

33 
 
 
 

None reported 

Other common side 
effects(6) 
 

 
 

Gastrointestinal 
disturbances, 

pancreatitis, hepatic 
steatosis, lactic acidosis 

 
 
 

Neutropenia  
 
 
 

Gastrointestinal 
disturbances, lactic 

acidosis, lipodystrophy, 
hepatic steatosis   

 
 
 
 

Pancreatitis, mouth 
ulcers, lactic acidosis 

 
 
 
 

Gastrointestinal 
disturbances, rash, 

anaemia, lactic 
acidosis, hepatotoxicity 

 
  

References: 1. Lambert et al., 1990; 2. Moyle & Sadler, 1998; 3. Skowron, 1995; 4. Simpson & 

Tagliati, 1995; 5. Berger et al., 1993; 6. Montessori et al., 2004 
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1.4 Mechanism of action of NRTIs 

NRTIs are derivatives of the nucleotides adenosine, cytidine, guanosine or 

thymidine (see Table 1), with a modified 3’,OH end of the deoxyribose sugar 

(Kakuda, 2000). NRTIs need to be phosphorylated before they can exert their 

effects, and this process is specific to each NRTI, resulting in different rate-limiting 

steps in the actions of different NRTIs (Kakuda, 2000). The active, 

triphosphorylated form of an NRTI provides an alternative substrate for DNA 

polymerases, including the HIV reverse transcriptase enzyme (Dagan et al., 2002). 

By competing with normal nucleic acids and terminating chain elongation before 

completion, NRTIs prevent the virus from producing DNA copies of its RNA, 

impairing viral replication (Dagan et al., 2002; Kakuda, 2000).  

 

Although NRTIs successfully decrease viral proliferation, the inhibitory effect of 

these antiretroviral drugs is not restricted to viral enzymes. Just as NRTIs decrease 

viral DNA production by inhibiting the HIV reverse transcriptase enzyme, NRTIs 

also may decrease mitochondrial DNA production by inhibiting mitochondrial 

enzymes, resulting in mitochondrial dysfunction. 

 

1.5 Effects of NRTIs on mitochondrial function 

The metabolic abnormalities and decreased ATP production caused by NRTI-

induced mitochondrial dysfunction may have debilitating effects, leading to tissue 

and organ malfunction (Cherry et al., 2003; McComsey & Lonergan, 2004), 

including nerve damage causing peripheral neuropathy and resulting in pain 
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(Cherry et al., 2003). NRTI-mediated mitochondrial dysfunction is linked to lactic 

acidosis (Montessori et al., 2004), a common side effect of NRTI use (see Table 2), 

which is caused by an increase in anaerobic respiration and lactate buildup (Dagan 

et al., 2002; Lewis, 2003; McComsey & Lonergan, 2004). Lipodystrophy, the fat 

redistribution characterised by peripheral fat loss and central fat accumulation, in 

HIV-positive patients (Lechelt et al., 2007) also is thought to be caused by 

mitochondrial dysfunction (Brinkman et al., 1999; Kakuda et al., 1999), resulting 

from the increased rate of lipolysis induced by NRTI administration (Hadigan et al., 

2002) and the adverse effects of NRTI-mediated mitochondrial dysfunction on 

adipocyte functioning (Brinkman et al., 1999; Kakuda et al., 1999). The effects of 

NRTIs on mitochondrial function may be caused by incorporation of NRTIs into 

mitochondrial DNA (Dagan et al., 2002; Kakuda, 2000), impairment of 

mitochondrial enzymes and triggering of mitochondrial-induced apoptosis (Kakuda, 

2000). The effects of NRTIs on mitochondrial function have been examined in 

isolated mitochondria and in vivo and are summarised in Table 3. 
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Table 3: Effects of NRTIs on mitochondrial function in cell culture and 

animal studies 

NRTI 
 

Didanosine 
 
 
Stavudine 

 
 
 
 
 
 
 
 
Zalcitabine 
 
 
 
 
 
Zidovudine 
 

 

Effect  
 
Decreased mitochondrial 
membrane potential difference*  
 
Decreased mitochondrial DNA 
content* 
 
Decreased calcium loading 
capacity* 
 
Decreased mitochondrial 
membrane potential difference*  
 
Changes in mitochondrial structure 
in rats# 
 
Decreased mitochondrial 
membrane potential difference*  
 
Increased calcium loading 
capacity* 
 
Increased protein oxidation, 
release of cytochrome c, decreased 
Bcl-2, increased caspase-3 and 
Bax* 
 
Uncoupling of oxidative 
phosphorylation* 
 
Reduction in mitochondrial DNA 
in rats# 
 

Reference 
 
Keswani et al., 2003a 
 
 
Kakuda, 2000 
 
 
Lund & Wallace, 2004 
 
 
Keswani et al., 2003a 
 
 
Feldman & Anderson, 1994 
 
 
Keswani et al., 2003a 
 
 
Lund & Wallace, 2004 
 
 
Opii et al., 2007 
 
 
 
 
Keilbaugh et al., 1997 
 
 
Collins et al., 2004 

* indicates cell culture studies. # indicates in vivo studies.  
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1.5.1 Effects of NRTIs on mitochondrial function in vitro  

The effects of NRTIs on the function of isolated mitochondria are dose-dependent 

and complex, involving various pathways, with subtle differences in the properties 

of specific NRTIs (Lund & Wallace, 2004). One of the ways in which NRTIs may 

disrupt mitochondrial activity is by decreasing mitochondrial DNA content, which 

may be caused by inhibition of DNA polymerase-γ activity (Birkus et al., 2002; 

Brinkman et al., 1999; Dalakas et al., 2001; Kakuda, 2000; Lewis & Dalakas, 1995; 

Lund & Wallace, 2004; Martin et al., 1994; Morris & Carr, 1999). NRTIs also may 

increase mitochondrial DNA mutations (Lewis, 2003). Mitochondrial DNA 

mutation and depletion has adverse effects on mitochondrial structure and function 

(Lewis, 2003). Although most NRTIs are thought to decrease mitochondrial DNA 

content, results from studies examining mitochondrial DNA depletion after NRTI 

exposure are inconsistent. In one study stavudine, unlike other commonly used 

NRTIs, did not cause DNA depletion of isolated mitochondria (Cui et al., 1997), 

while, in another study, stavudine did decrease mitochondrial DNA content 

(Kakuda, 2000). Also, while stavudine decreased the calcium loading capacity of 

isolated rat heart mitochondria, zidovudine increased calcium loading capacity 

(Lund & Wallace, 2004). These contradictory results indicate that the mechanisms 

of NRTI-induced mitochondrial toxicity are complex, and different NRTIs interfere 

with mitochondrial function through discrete mechanisms (Cui et al., 1997), making 

it difficult to find appropriate treatments for the adverse effects caused by NRTI-

induced mitochondrial dysfunction in HIV-positive patients.  
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NRTIs also induce oxidative stress in isolated mitochondria (Opii et al., 2007) by 

the release of free radicals, which may cause mitochondrial DNA mutations 

(Kakuda, 2000) and NRTI-induced neuronal death (Opii et al., 2007). These effects 

may be reversed by pre-treatment with anti-oxidants (Opii et al., 2007). Zidovudine 

increased oxidative stress in isolated mitochondria by increasing protein oxidation 

and elevating the release of cytochrome c (Opii et al., 2007). The adverse effects of 

NRTIs on isolated nerve fibres (see section 1.6.1) and NRTI-induced decreases in 

peripheral nerve fibre density in animal models (see section 1.6.2) may be 

explained by what is known about the drugs’ effects on isolated mitochondria. 

Zidovudine decreased levels of the anti-apoptotic protein Bcl-2 and increased levels 

of the pro-apoptotic proteins caspase-3 and Bax (Opii et al., 2007), increasing the 

likelihood of NRTI-induced neuronal apoptosis.  

 

A further way in which NRTIs may impair mitochondrial function is by altering 

mitochondrial membrane potential difference (Keswani et al., 2003a). Zalcitabine, 

didanosine and stavudine, incubated with dorsal root ganglion neurones and 

Schwann cells, reduced neuronal mitochondrial membrane potential difference 

within four hours of exposure in a dose-dependent manner (Keswani et al., 2003a). 

Zalcitabine had the greatest effect on neuronal mitochondrial membrane potential 

difference, but did not cause mitochondrial depolarisation in Schwann cells. 

Stavudine altered mitochondrial membrane potential difference to a lesser degree 

than zalcitabine and didanosine, but zidovudine had no effect on membrane 

potential difference. Application of the immunophilin ligand FK506, which has 
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neuroprotective and neurotrophic properties, prevented the alterations in 

mitochondrial membrane potential difference induced by NRTI exposure. However, 

the use of immunophilins in the treatment of toxic neuropathy in HIV-positive 

patients is limited, because of the immunosuppressant properties of these agents 

(Keswani et al., 2003a).   

 

1.5.2 Effects of NRTIs on mitochondrial function in vivo 

Oral administration of zidovudine to rats at a dose of 100 mg.kg-1, which falls 

outside the equivalent human therapeutic dose range (50-75 mg.kg-1 per day), 

resulted in a reduction in mitochondrial DNA, which the authors contributed to a 

decrease in mitochondrial synthesis and biogenesis (Collins et al., 2004). A very 

low dose of zidovudine (15 mg.kg-1 per day) had no effect on mitochondrial 

synthesis. The number of abnormal mitochondria also increased after NRTI 

administration (Dagan et al., 2002; Feldman & Anderson, 1994). Oral 

administration of zalcitabine to rats for up to 24 weeks resulted in time-dependent 

and site-specific changes in mitochondrial structure (Feldman & Anderson, 1994). 

Mitochondria in the sciatic nerve, tibial nerve and dorsal root ganglia were 

abnormally shaped and closely packed. The occurrence of these abnormal 

mitochondria frequently was correlated with myelin splitting associated with 

zalcitabine treatment (see section 1.6.2), but mitochondrial alterations appeared to 

precede myelin splitting (Feldman & Anderson, 1994). While zalcitabine induced 

morphological changes in mitochondria, there were no signs of structural damage to 

the mitochondria as a whole or to the cristae. The authors suggested that the 
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observed morphological changes occur to improve the impaired mitochondrial 

function caused by zalcitabine, such as changing the shape of the mitochondria to 

increase the surface area available for energy production (Feldman & Anderson, 

1994). It appears however that these morphological changes cannot sustain normal 

mitochondrial function indefinitely, as these mitochondrial alterations later were 

followed by abnormalities in the myelin sheath of affected nerves (see section 

1.6.2), which may have been caused by abnormal mitochondrial and cell 

functioning.  

 

While much is known about mitochondrial dysfunction caused by NRTIs, it is 

poorly understood how this mitochondrial toxicity causes the nerve damage evident 

in peripheral neuropathy, and especially what determines whether the neuropathy is 

painful or not. As both the virus and antiretroviral drugs may cause neuropathy in 

HIV-positive patients it is difficult to separate the effects of the virus and the drugs 

in these patients. Thus it is necessary to examine NRTI-induced nerve damage in 

the absence of HIV infection, in cell culture and in animal models, to improve our 

understanding of toxic neuropathy. The effects of NRTIs on nerve fibres are 

summarised in Table 4. 
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Table 4: Effects of NRTIs on nerve fibres in cell culture and animal 

studies 

NRTI 
 

Didanosine 
 
 
 
 

 
 
 
 
 
Stavudine 
 
 
 
 
 
 
Zalcitabine 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Zidovudine 
 

Effect  
 
Apoptosis in up to 60 % of fibres* 
  
Decreased neurite regeneration* 
 
Altered neurone morphology*  
 
Swelling, axon shrinkage and myelin splitting in the 
sciatic nerve of rats# 
 
 
Apoptosis in up to 25 % of fibres* 
 
Decreased neurite regeneration* 

 

Altered neurone morphology* 
 
 
Apoptosis in up to 28 % of fibres* 
 
Axonal degeneration, cell death in 50 % of 
neurones* 
 
Decreased neurite regeneration, decreased cell 
proliferation* 
 
Altered neurone morphology* 
 
Decreased conduction velocity, demyelination and 
myelin splitting in peripheral nerves of rabbits# 
 
Increased myelin thickness and decreased cytoplasm 
in the sciatic nerve of rats# 
 
Decreased conduction velocity of C fibres in the 
saphenous nerve of rats# 
 
Decreased epidermal nerve fibre density in the hind 
paw of rats# 
 
Apoptosis in up to 8 % of fibres* 

Reference 
 
Bodner et al., 2004 
  
Cui et al., 1997 
 
Keswani et al., 2003a 
 
Schmued et al., 1996 
 
 
 
Bodner et al., 2004 
 
Cui et al., 1997 
 
Keswani et al., 2003a 
 
 
Bodner et al., 2004 
 
Keswani et al., 2004 
 
 
Cui et al., 1997 
 
 
Keswani et al., 2003a 
 
Anderson et al., 1992 
 
 
Bhangoo et al., 2007 
 
 
Chen & Levine, 2007 
 
 
Wallace et al., 2007b 
 
 
Bodner et al., 2004 
 

* indicates cell culture studies. # indicates in vivo studies.  
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1.6 Effects of NRTIs on nerve fibres 

1.6.1 Effects of NRTIs on nerve fibres in cell culture 

NRTIs induce axonal degeneration and apoptosis and decrease regeneration of 

isolated rat neurones (Bodner et al., 2004; Cui et al., 1997; Keswani et al., 2004). 

These effects are dose-dependent and differ in severity depending on the NRTI 

used.  

 

Didanosine resulted in dose-dependent apoptosis of rat neonatal dorsal root 

ganglion neurones, with between 40 % and 60 % of neurones being killed by the 

drug (Bodner et al., 2004). This effect was enhanced with the addition of HIV 

glycoprotein gp120 and decreased with the addition of CEP-1347, an inhibitor of c-

Jun N-terminal kinase (JNK). Thus, blocking the JNK pathway may be useful in 

treating HIV-related neuropathy. Zalcitabine, stavudine and zidovudine also caused 

apoptosis of rat dorsal root ganglion neurones, in descending order of severity 

(Bodner et al., 2004). The finding that didanosine had a greater adverse effect on 

neurone viability than zalcitabine is unusual, as zalcitabine normally is regarded as 

the most neurotoxic of all NRTIs.  

 

Rat dorsal root ganglion neurones incubated for 24 hours with zalcitabine showed 

axonal degeneration, such that the length of neurones was decreased after the 

incubation period (Keswani et al., 2004). Zalcitabine also caused cell death in 

almost 50 % of neurones, when incubated for 36 hours. Axonal degeneration and 

cell death were prevented by the administration of erythropoietin, attributed to its 



 24 

binding to the erythropoietin receptor on the surface of the dorsal root ganglion 

neurones. Although the authors failed to postulate how erythropoietin may prevent 

zalcitabine-induced axonal degeneration and cell death this study highlights another 

possible treatment for peripheral neuropathy in HIV-positive patients (Keswani et 

al., 2004). Administering erythropoietin to HIV-positive patients with signs of toxic 

neuropathy may protect nerve fibres from further nerve damage, decreasing the 

progression of the neuropathy and improving quality of life.  

 

The dose-dependent neurotoxicity of therapeutic doses (1-100 µM) of NRTIs has 

been examined by Keswani et al. (2003a) who showed that zalcitabine, incubated 

with dorsal root ganglion neurones and Schwann cells for 15 hours, caused changes 

in neurone morphology, including varicosities in distal portions at low doses and 

neurite degeneration at high doses. Didanosine and stavudine had similar, but less 

potent, effects on neurone morphology, while no morphological abnormalities were 

observed following zidovudine application (Keswani et al. 2003a). These results are 

in keeping with the observation that zalcitabine is associated with the highest 

incidence of toxic neuropathy, while zidovudine does not cause peripheral 

neuropathy (see Table 2). Zalcitabine-induced neurotoxicity was prevented by the 

immunophilin FK506; however clinical application of this agent in the treatment of 

toxic neuropathy in HIV-positive patients is limited, because of its 

immunosuppressant properties (Keswani et al., 2003a).  

   

Cui and colleagues (1997) observed the effect of various NRTIs on cell 
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proliferation and neurite regeneration in PC-12, a rat pheochromocytoma, an 

adrenal medullary tumour frequently used as an in vitro neuronal model. 

Zalcitabine, didanosine and stavudine caused a dose-dependent decrease in neurite 

regeneration, after neurite removal, while zidovudine and lamivudine had no effect 

(Cui et al., 1997). Zalcitabine also decreased cell proliferation, reducing the number 

of viable cells after incubation. A zalcitabine concentration of 25 µM completely 

inhibited cell proliferation, while didanosine, stavudine, zidovudine and lamivudine 

had no effect on cell proliferation (Cui et al., 1997). Moreover, stavudine did not 

decrease mitochondrial DNA content, unlike the other NRTIs, indicating a different 

mechanism of action for stavudine’s effects on nerve fibres (Cui et al., 1997). The 

findings of Cui et al. (1997) indicate that, while zalcitabine is highly toxic to 

isolated neurones, which is consistent with the high incidence of toxic neuropathy 

associated with the use of this NRTI in HIV-positive patients (see section 1.3), 

zidovudine had few adverse effects on neurone viability, which may explain why 

zidovudine is the only NRTI not associated with peripheral neuropathy in HIV-

positive patients (see section 1.3). Zidovudine did however increase markers of 

protein oxidation in isolated synaptosomes, which are studied as an indicator of 

neuronal synaptic function at nerve terminals (Opii et al., 2007), again indicating 

that antioxidant supplementation may be useful in the treatment of toxic neuropathy 

in HIV-positive patients. The finding that zidovudine adversely affected 

synaptosome functioning shows that, although zidovudine generally is found to be 

less toxic than zalcitabine and is not associated with the same degree of cell death 

of isolated neurones as other NRTIs, zidovudine still may adversely affect neurone 
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function. Increasing protein oxidation and inducing oxidative stress may have 

adverse effects on normal synaptic functioning (Opii et al., 2007), which may 

contribute to some of the side effects resulting from zidovudine treatment in HIV-

positive patients (see Table 2).   

    

In another study examining the effects of NRTIs on PC-12 Keilbaugh et al. (1997) 

showed that zalcitabine caused uncoupling of oxidative phoshorylation in these 

cells, as seen by a dose-dependent increase in lactate production and a concomitant 

increase in oxygen consumption. Both effects only were evident several days after 

the cells were incubated with the NRTI, demonstrating that zalcitabine does not 

directly cause uncoupling of the electron transport chain. The authors suggested that 

zalcitabine decreases mitochondrial DNA replication and production, which 

decreases the synthesis of proteins necessary for oxidative phosphorylation and thus 

results in the delayed increase in lactate production and oxygen consumption 

observed (Keilbaugh et al., 1997), which may explain the high incidence of lactic 

acidosis associated with NRTI use (see Table 2).    

 

While studies examining the effects of NRTIs on isolated neurones in cell culture 

have shown consistently that most NRTIs result in cell death and decrease neurite 

regeneration, the effects of NRTIs on nerve fibres in animal models of toxic 

neuropathy frequently are inconsistent with each other and with the in vitro 

evidence. 
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1.6.2 Effects of NRTIs on nerve fibres in animal models 

Although NRTI administration is associated with decreased peripheral nerve fibre 

density in HIV-positive patients (Cherry et al., 2003; Pardo et al., 2001; Polydefkis 

et al., 2002), Warner and colleagues (1995) failed to observe signs of peripheral 

neurotoxicity in rabbits given oral didanosine or stavudine daily for 24 weeks. One 

rabbit receiving a high dose (1500 mg.kg-1) of didanosine had to be killed after 

eleven weeks, after it developed signs of dehydration, a loss of appetite, and poor 

body positioning, which forced the researchers to decrease the dose of didanosine to 

1000 mg.kg-1 for the other rabbits receiving the 1500 mg.kg-1 dose for the 

remainder of the study. Even these near-lethal doses of didanosine and stavudine 

were not sufficient to induce significant changes in the peripheral nervous system 

(Warner et al., 1995). Throughout the study, plasma levels of didanosine and 

stavudine confirmed systemic exposure to these NRTIs, but Warner et al. (1995) 

found no change in peripheral nerve conduction or in the histopathology of 

peripheral or central nerves. Similarly, daily oral administration of stavudine for 

one year did not result in signs of peripheral neuropathy in monkeys (Kaul et al., 

1999), although, the authors do not explain clearly how peripheral neuropathy was 

measured, and so these findings are difficult to interpret.   

 

In contrast to the lack of neurotoxicity observed in rabbits after didanosine and 

stavudine administration (Warner et al., 1995), Anderson and colleagues (1992) 

found that chronic oral administration of zalcitabine induced a decrease in 

conduction velocity in the distal sural nerve and structural damage to neurones in 
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the sciatic nerve of rabbits. Neurone pathology was evident in dorsal root ganglia, 

the peripheral sensory system, in the ventral roots and the peripheral motor system. 

Several rabbits in this study exhibited clinical symptoms of neurologic damage, 

such as hind limb paresis and dysaesthesia, as well as gait and postural 

abnormalities. The severity of neural damage was dependent on the dose and the 

duration of drug exposure. Peripheral nerve abnormalities included demyelination 

and myelin splitting with intramyelinic oedema and axon shrinkage; however, some 

neurones exhibited signs of remyelination. These effects were more pronounced in 

larger diameter axons (Feldman et al., 1992) and resulted in axonal loss in 

peripheral nerves (Anderson et al., 1992). Inflammatory cell infiltrates were 

minimal and neural damage was not evident in the spinal cord or brain. The authors 

suggested that the morphological changes observed in peripheral neurones may be 

caused by impaired Schwann cell activity, resulting in abnormal myelin production 

(Feldman et al., 1992).   

 

In a similar study in rats, 20 weeks of twice daily oral administration of didanosine 

caused morphological changes to neurones in the sciatic nerve (Schmued et al., 

1996), which is in contrast to the findings of Warner at al. (1995), who showed no 

changes in peripheral nerve morphology following once daily didanosine 

administration to rabbits for 24 weeks. Schmued and colleagues (1996) showed 

that, in rats administered didanosine, nerve fibres were swollen, while axons were 

shrunken and the myelin was split into two distinct sheaths, features identical to 

those described following zalcitabine administration to rabbits (Feldman et al., 
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1992). Subsequent studies showed that these changes first were evident after 15 

weeks of daily drug administration, while abnormal nerve fibre morphology was 

less frequent after 20 weeks (Patterson et al., 2000). The authors suggested that the 

nerves may be able to adapt to the toxic effects of didanosine, making partial 

recovery during drug administration possible (Patterson et al., 2000), resulting in 

the improvement in nerve fibre morphology observed after 20 weeks. While such a 

recovery may be feasible in uninfected rats, it is doubtful that this process occurs in 

HIV-positive patients, as toxic neuropathy normally does not spontaneously 

disappear during continued administration of the causative agent, possibly because 

of the underlying neuropathy caused by the virus.  

 

Recently, Bhangoo and colleagues (2007) found that a single intraperitoneal 

injection of 25 mg.kg-1 zalcitabine to rats resulted in structural changes in the sciatic 

nerve similar to those observed following repeated administration of NRTIs to 

rabbits and rats (Anderson et al., 1992; Feldman et al., 1992; Schmued et al., 1996). 

While the diameter of the neurones remained unchanged, the myelin sheath was 

distorted and swollen, such that the cytoplasm of the neurones was decreased 

compared to controls. These structural changes were not observed in dorsal root 

ganglion neurones (Bhangoo et al., 2007). A single intravenous injection of 

zalcitabine also decreased the conduction velocity of C fibres in the saphenous 

nerve of rats, while the firing rate remained unchanged (Chen & Levine, 2007). The 

mechanism by which NRTI administration alters conduction velocity remains 

unclear.   
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In contrast to studies that have shown significant alterations to peripheral neurones 

following a single injection of zalcitabine to rats, Siau et al. (2006) found that a 

single injection of zalcitabine into the tail vein of rats had no effect on intra-

epidermal nerve fibre density in the hind paw and did not cause activation of 

Langerhans cells, which contribute to epidermal inflammation by releasing pro-

inflammatory cytokines and nitric oxide when activated (Siau et al., 2006). 

Systemic injections of zalcitabine three times a week for three weeks did however 

decrease epidermal nerve fibre density in the lateral plantar surface of the hind paw 

of rats (Wallace et al., 2007b). It appears that a single injection of an NRTI may 

cause morphological changes in peripheral neurones and may result in a heightened 

sensitivity to noxious stimulation (see section 1.7), but that a reduction in peripheral 

nerve fibre density occurs only with continuous NRTI administration. This finding 

corresponds to the observation that symptomatic toxic neuropathy in HIV-positive 

patients arises a minimum of one week, usually six to eight weeks or up to six 

months, after starting antiretroviral therapy (Husstedt et al., 2001).   

 

Although numerous studies have examined the effects of NRTIs on peripheral nerve 

fibre density and morphology, few researchers have addressed the consequences of 

the observed nerve damage on motor function in animals. Joseph and colleagues 

(2004) showed that 50 mg.kg-1 zalcitabine, administered once intravenously into the 

tail vein, resulted in hyperalgesia (see section 1.7) but did not significantly affect 

motor function or co-ordination of rats, as tested on a rotarod. In contrast to Joseph 

et al. (2004), Morse and colleagues (1997) found that a single oral administration of 
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zalcitabine resulted in a dose- and time-dependent decrease in open-field locomotor 

activity of rats, while oral administration of zidovudine had no effect on locomotion 

(Morse et al., 1997). Although different testing methods were used, the studies of 

Joseph et al. (2004) and Morse et al. (1997) appear to be contradictory and the 

effects of NRTI administration on motor function remain unclear. It also is 

uncertain whether the changes in peripheral neurone morphology and peripheral 

nerve fibre density associated with repeated NRTI administration (Anderson et al., 

1992; Feldman et al., 1992; Patterson et al., 2000; Schmued et al., 1996; Wallace et 

al., 2007b) alter motor function in animals, as the effect of repeated NRTI 

administration on motor function only has been examined in one study. Wallace and 

colleagues (2007b) showed that, although thigmotaxis (anxiety-like behaviour) was 

significantly increased in zalcitabine-treated rats compared to controls at the time of 

peak mechanical hypersensitivity (see section 1.7), repeated systemic injections of 

zalcitabine to rats did not affect the total distance covered in a novel environment, 

indicating that zalcitabine did not cause obvious motor deficits (Wallace et al., 

2007b). The findings of Wallace et al. (2007b) are in contrast to those of Morse and 

colleagues (1997) who showed a significant decrease in the open-field locomotor 

activity of rats after a single injection of zalcitabine.        

  

The inconsistencies in the effects of NRTIs on nerve fibres and motor function in 

animal models may be caused by the difference in the toxicity of the NRTIs tested, 

by the different routes of administration employed, the duration of NRTI exposure 

and the different testing methods used, as well as by the animal species used. Also, 
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developing a robust animal model of NRTI-induced neuropathy may be of limited 

value because HIV infection may be necessary for toxic neuropathy to develop in 

HIV-positive patients (Keswani et al., 2002). The effects of NRTIs on animals, in 

the absence of HIV-infection, also may be minimal and varied, resulting in findings 

that sometimes are contradictory. Thus, because of the lack of robust animal models 

of the disease process, the mechanisms of toxic neuropathy are not well understood. 

Also, few studies have examined the effects of NRTI administration on pain 

sensitivity in animals, and most of these studies focused on the effects of 

zalcitabine, which no longer is recommended for the treatment of HIV infection, 

making it difficult to find appropriate treatments for the pain caused by toxic 

neuropathy in HIV-positive patients.  

 

1.7 Animal models of NRTI-induced pain hypersensitivity 

In one of the first animal studies focusing on pain caused by antiretroviral drugs, 

Joseph and colleagues (2004) showed that a single intravenous injection of the 

NRTIs didanosine, zalcitabine and stavudine to rats resulted in a dose-dependent 

mechanical and thermal hyperalgesia of the hind paw that lasted for twenty days. 

Hyperalgesia was observed with all of the agents within one day when a dose of 50 

mg.kg-1 was used, while injections of 25 mg.kg-1 and 10 mg.kg-1 resulted in 

hyperalgesia within three days. Blocking protein kinase and nitric oxide synthase, 

which has been shown to decrease hypersensitivity in other models of neuropathic 

pain, did not attenuate the hyperalgesia elicited by NRTI injection. Buffering 

intracellular calcium significantly decreased NRTI-induced mechanical 
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hyperalgesia. The authors suggested that calcium signalling plays a role in the 

development of NRTI-induced hypersensitivity and that calcium homeostasis is 

impaired by mitochondrial dysfunction caused by NRTIs (Joseph et al., 2004).  

 

Subsequent studies showed that disrupting the mitochondrial electron transport 

chain and preventing mitochondrial phosphorylation, which is useful in treating 

other types of neuropathic pain, attenuated zalcitabine-induced hyperalgesia and 

allodynia (Joseph & Levine, 2006). The authors concluded that pathways dependent 

on the mitochondrial electron transport chain, particularly those in primary afferent 

nociceptors, may play a role in NRTI-induced neuropathic pain. This suggestion 

however is not in agreement with the proposed mechanism of action of NRTIs, 

which assumes that NRTIs cause inhibition of mitochondrial DNA synthesis and a 

subsequent decrease in the production of mitochondrial proteins, which results in a 

decrease in mitochondrial phosphorylation (see section 1.5). Thus, administering 

agents that block the mitochondrial electron transport chain might be expected to 

exacerbate the effects of NRTIs and possibly enhance the hyperalgesia caused by 

NRTIs, instead of abolishing NRTI-induced hyperalgesia as shown by Joseph and 

Levine (2006). These findings highlight the complexity of NRTI-induced 

neuropathic pain and further studies examining the role of the electron transport 

chain in NRTI-mediated hypersensitivity are necessary to clarify these results. 

  

Recently Wallace et al. (2007b) found that zalcitabine, injected intraperitoneally 

three times a week for three weeks, induced mechanical hyperalgesia and anxiety-
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like behaviour in rats and decreased epidermal nerve fibre density (see section 

1.6.2), but did not affect heat or cold sensitivity. The finding that zalcitabine 

administration did not alter heat or cold sensitivity contradicts the results of Joseph 

et al. (2004) who showed that a single intravenous injection of zalcitabine induced 

thermal hyperalgesia in rats. Also, most HIV-positive patients with peripheral 

neuropathy present with impaired thresholds for hot and cold stimulation and this 

criterion frequently is used to diagnose peripheral neuropathy in these patients 

(Cherry et al., 2005; Huengsberg et al., 1998; Martin et al., 2003; McArthur et al., 

2005). Thus, although animal models of NRTI-related neuropathy can help improve 

our understanding of the mechanisms of the disease, it is necessary to interpret the 

results of these studies with caution, when translating the effects of NRTI 

administration in animals to the effects of NRTI administration in HIV-positive 

patients.  

 

Although systemic administration of zalcitabine to rats did not alter heat and cold 

sensitivity, Wallace and colleagues (2007b) did show that mechanical hyperalgesia 

occurred throughout the study. Mechanical hyperalgesia was observed from six 

days after the first injection, when doses of 50 mg.kg-1 and 25 mg.kg-1 were used, 

while injections of 5 mg.kg-1 did not change the mechanical threshold at any time. 

Zalcitabine injection did not result in the expression of stress-related factors in 

dorsal root ganglion neurones, but enhanced expression of the chemokine CCL2, 

indicating that chemokines play a role in NRTI-induced pain hypersensitivity. 

Zalcitabine injection also caused an increase in macrophage infiltration in dorsal 
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root ganglion neurones, but macrophage infiltration was not evident in peripheral 

neurones. Systemic zalcitabine administration caused only modest increases in 

astrocyte and microglial activity in the spinal dorsal horn, and blocking microglial 

activity by concomitant administration of minocycline did not alter zalcitabine-

induced hyperalgesia (Wallace et al., 2007b). The authors concluded that 

zalcitabine has a limited effect on primary sensory neurones and spinal afferent 

pathways and that further studies are required to elucidate the mechanisms by 

which these drugs induce neuropathic pain.   

 

In another study, Siau et al. (2006) found that a single intravenous injection of 

zalcitabine to rats induced mechanical hypersensitivity, but did not cause a decrease 

in peripheral nerve fibre density (see section 1.6.2). More recently Bhangoo and 

colleagues (2007) showed that a single intraperitoneal injection of 25 mg.kg-1 

zalcitabine resulted in a decrease in the paw withdrawal threshold of rats for 42 

days from day three after injection, but the rats did not exhibit changes in grooming 

behaviour or appearance. Blocking the CXCR4 chemokine receptor, which plays a 

role in gp120-mediated neurotoxicity (see section 1.2), abolished the allodynia 

induced by zalcitabine injection. The results of this study and those of Wallace and 

colleagues (2007b) show that, just as chemokines are implicated in the heightened 

pain sensitivity caused by gp120 administration (see section 1.2), chemokines also 

may be involved in the production of NRTI-induced pain.  

 

While the injection models of NRTI-induced neuropathy have yielded valuable 
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insights into the development of NRTI-induced pain, these models may not be 

entirely suitable to examine the underlying mechanisms of this pain, as 

antiretroviral drugs are administered orally to HIV-positive patients, and 

neuropathy in these patients normally develops only after six to eight weeks of 

chronic NRTI administration (Husstedt et al., 2001). Joseph and colleagues (2004) 

however did also show that daily oral administration of the NRTI zalcitabine to rats 

at a dose of 50 mg.kg-1 for six weeks resulted in mechanical and thermal 

hyperalgesia in the hind paw from seven days onward. A dose of 25 mg.kg-1 of 

zalcitabine induced hyperalgesia only after three weeks of daily oral administration. 

 

These rat models of NRTI-induced pain hypersensitivity show that the dose and the 

route of administration are determinants of the hypersensitivity caused by NRTIs. 

While intravenous administration of the causative agent results in hyperalgesia and 

allodynia one day after injection (Joseph et al., 2004; Siau et al., 2006), 

hypersensitivity develops more slowly following systemic administration, occurring 

between three and six days after injection (Bhangoo et al., 2007; Wallace et al., 

2007b). Although the oral bioavailabilty of NRTIs is high (Kaul et al., 1999; Kelley 

et al., 1987), hypersensitivity only was evident after one week of daily oral 

administration of 50 mg.kg-1 zalcitabine to rats (Joseph et al., 2004). However, the 

occurrence of hyperalgesia and allodynia after seven days of daily oral NRTI 

administration in rats still is much faster than the development of painful peripheral 

neuropathy in HIV-positive patients, which usually occurs only after six weeks of 

antiretroviral therapy (Husstedt et al., 2001).  
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It is important to investigate the effects of NRTIs on pain hypersensitivity in 

animals, to determine possible mechanisms of the pain induced by these drugs in 

HIV-positive patients, but both the virus and the antiretroviral drugs are associated 

with the development of painful peripheral neuropathy in HIV-positive patients, and 

thus it also is useful to examine the combined effects of NRTI and gp120 

administration on pain sensitivity in animal models. To my knowledge only two 

such studies exist, and both show that most of the effects of the virus on neurone 

functioning are enhanced by NRTI exposure. 

 

1.8 Interaction of gp120 and NRTIs 

Keswani et al. (2006) administered 25 mg.kg-1 didanosine daily to gp120 transgenic 

mice, which express gp120 in astrocytes, for four weeks. Didanosine was dissolved 

in the drinking water and the spontaneous expression of gp120 in the sciatic nerve 

and spinal cord was confirmed at the start of the study. Intra-epidermal nerve fibre 

density was decreased after four weeks in transgenic mice administered didanosine, 

with the greatest decrease occurring in unmyelinated fibres (Keswani et al., 2006). 

Neither gp120 expression without didanosine exposure, nor didanosine 

administration to control mice affected epidermal nerve fibre density (Keswani et 

al., 2006), indicating that both the virus and NRTI exposure may indeed be 

necessary for neuropathy to develop in HIV-positive patients (Keswani et al., 

2002). Similarly, only transgenic mice receiving didanosine developed mild thermal 

hyperalgesia, with no further differences in behavioural or electrophysiological 

measures between groups. Sciatic nerve morphology also was identical in all mice. 
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Keswani and colleagues (2006) concluded that the results of their study correlate 

with clinical findings in HIV-positive patients with early sensory neuropathy and 

suggested that this model could be used to further examine the mechanisms of, and 

develop treatments for, peripheral neuropathy in HIV infection.   

 

Although Keswani and colleagues (2006) found that the combined effect of gp120 

and didanosine altered peripheral nerve fibre density and caused hyperalgesia in 

mice, mice expressing gp120 without receiving didanosine did not exhibit the vast 

changes in pain sensitivity and the reduction in epidermal nerve fibre density 

observed with exogenous gp120 administration to rodents without concomitant 

NRTI administration (see section 1.2). While the authors stated that spontaneous 

expression of gp120 was measured in transgenic mice during the study, Keswani et 

al. (2006) failed to give an indication of the amount of gp120 expressed and how 

this measure compares to the amount of exogenous gp120 administered to rodents 

in other studies. Thus, it is possible that the spontaneous expression of gp120 in 

transgenic mice was minimal, and insufficient to induce hyperalgesia and nerve 

damage without the added adverse effects of didanosine.   

 

Besides finding that hyperalgesia did not develop in gp120 transgenic mice without 

concomitant didanosine administration, Keswani et al. (2006) also showed that 

hyperalgesia did not occur with daily oral administration of 25 mg.kg-1 didanosine 

to control mice for four weeks. This finding is in contrast to the observations of 

Joseph et al. (2004), who showed that a single intravenous injection of 25 mg.kg-1 
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didanosine caused hyperalgesia in rats within three days and that this hyperalgesia 

persisted for the twenty days of the study. The difference between the two studies 

may be explained by the different routes of administration employed and may be 

clarified by the different effects of oral and intravenous zalcitabine administration 

on pain hypersensitivity in rats. Although Joseph and colleagues (2004) found that 

both oral and intravenous administration of zalcitabine to rats caused hyperalgesia, 

the hyperalgesia induced by oral administration of zalcitabine arose later and was of 

a lesser intensity than that caused by intravenous injection of the same agent. Thus, 

oral administration of NRTIs appears to have fewer toxic effects than intravenous 

administration, which may explain why a single intravenous injection of didanosine 

resulted in hyperalgesia in rats (Joseph et al., 2004), while oral administration of 

didanosine, which is less neurotoxic than zalcitabine (Dalakas, 2001), did not 

change pain behaviours in mice over four weeks (Keswani et al., 2006).  

 

In a more extensive study examining the interaction of gp120 and NRTIs, 

exogenous gp120 was administered directly to the sciatic nerve of rats via cellulose 

wrapped lightly around the nerve (Wallace et al., 2007b). Zalcitabine (50 mg.kg-1) 

was injected intraperitoneally at the time of surgery and three times a week for three 

weeks thereafter. The simultaneous administration of both agents resulted in more 

pronounced mechanical hyperalgesia, a greater decrease in epidermal nerve fibre 

density and a greater increase in the expression of the chemokine CCL2 than 

induced by either treatment alone (see sections 1.2, 1.6.2 and 1.7). Zalcitabine also 

enhanced the microgliosis induced by gp120 administration (see section 1.2), but 
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had no effect on gp120-mediated astrocytosis. Blocking microglial activity by 

concomitant administration of minocycline delayed the onset of the mechanical 

hyperalgesia caused by the combination of gp120 and zalcitabine, while morphine 

completely resolved the hyperalgesia induced by the simultaneous administration of 

both agents. These results indicate that HIV and NRTIs cause peripheral neuropathy 

and pain by different mechanisms and that the effects of these agents frequently are 

synergistic (Wallace et al., 2007b). This study also strengthens the theory that 

NRTIs enhance the adverse effects of the virus in HIV-positive patients (Keswani et 

al., 2002).  

 

1.9 Thesis aims 

Although zalcitabine frequently is used in animal and cell culture studies to 

examine the adverse effects of NRTIs, results of these studies are of limited value to 

HIV-positive patients, as zalcitabine no longer is recommended for the treatment of 

HIV infection, because of the high incidence of peripheral neuropathy associated 

with the use of this NRTI. Until recently stavudine was recommended by the World 

Health Organisation (WHO) as part of first-line antiretroviral drug regimens (WHO, 

2004), but since the introduction of newer, less toxic antiretroviral drugs stavudine 

seldom is administered to HIV-positive patients in first-world countries. Currently, 

stavudine still is prescribed regularly to HIV-positive patients in developing 

countries, as only a limited variety of antiretroviral drugs is available in these 

regions. In South Africa stavudine is recommended by the National Antiretroviral 

Treatment Guidelines as the backbone of both available first-line antiretroviral 
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treatment regimens for HIV-positive adults in the public sector, as well as the 

recommended regimens for children infected with HIV (Grimwood, 2004). 

Stavudine is included in first-line antiretroviral treatment regimens, because 

combinations of antiretroviral drugs that include stavudine produce greater 

increases in CD4 cell count than do other antiretroviral drug combinations not 

including stavudine (Mocroft et al., 2006), which has long-term health benefits for 

HIV-positive patients. If the initial drug regimen was unsuccessful or intolerable 

didanosine is prescribed as part of second-line antiretroviral therapy. Although the 

NRTI lamivudine also is prescribed as part of first-line regimens in South Africa 

(Grimwood, 2004), toxic neuropathy caused by stavudine administration in 

particular is one of the most common reasons for patients discontinuing 

antiretroviral drug therapy; therefore I chose to use stavudine, and not lamivudine, 

in my studies. 

 

Thus, the primary aim of my PhD was to examine how chronic oral administration 

of stavudine affects nociception in rats, and specifically, whether the drug induces 

hyperalgesia. As stavudine has been associated with other side effects such as 

hepatitis, pancreatitis and gastrointestinal disturbances (Montessori et al., 2004), I 

also wanted to examine whether long-term daily stavudine administration affects 

the overall condition of the rats, and, particularly, produces deficits resulting from 

neural malfunction. Consequently I also investigated the effect of daily stavudine 

administration on body mass, food intake and voluntary wheel running activity. 
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After establishing a rat model of stavudine-induced hyperalgesia, I wanted to 

investigate possible mechanisms of the hyperalgesia caused by oral stavudine 

administration in this model. Wallace et al. (2007b) recently showed that repeated 

systemic injection of zalcitabine to rats resulted in a modest increase in microglial 

and astrocyte activity in the dorsal horn, with only a limited effect on dorsal root 

ganglion phenotype. The role of spinal neuronal damage and central pro-

inflammatory cytokines and chemokines in NRTI-induced neuropathy remains 

unexplored. As stavudine is known to cause nerve damage in vitro (Bodner et al., 

2004; Cui et al., 1997; Keswani et al., 2004), and other types of neuropathic pain 

are associated with neuronal death in the dorsal horn (Scholz et al., 2005), I 

examined whether oral administration of stavudine induces apoptosis or necrosis of 

spinal neurones in rats. Secondly, as pro-inflammatory cytokines in the spinal cord 

are involved in the development of other types of neuropathic pain (DeLeo et al., 

1996; DeLeo et al., 1997; Murphy et al., 1995; Ohtori et al., 2004; Wieseler-Frank 

et al., 2005), and possibly NRTI-induced pain (Pardo et al., 2001), I investigated 

whether daily oral administration of stavudine causes the release of IL-6, which is 

increased in the spinal cord in other rat models of neuropathic pain (DeLeo et al., 

1996; Murphy et al., 1995). As chemokines also are thought to be involved in 

NRTI-induced neuropathy (Bhangoo et al., 2007; Wallace et al., 2007b), I 

investigated whether daily oral administration of stavudine causes the release of 

cytokine-induced neutrophil chemo-attractant (CINC)-1 in the spinal cord of rats. 

Intracerebroventricular injection of CINC-1 decreases the mechanical nociceptive 

threshold of rats (Yamamoto et al., 1998) and CINC-1 is involved in the 



 43 

development of other types of pain (Loram et al., 2007a; Loram et al., 2007b) and 

thus may be involved in stavudine-induced hyperalgesia.  

 

Besides causing peripheral neuropathy, stavudine administration also is associated 

with other adverse effects, such as lipodystrophy, the fat redistribution characterised 

by peripheral fat loss and central fat accumulation (Lechelt et al., 2007), and lactic 

acidosis caused by mitochondrial dysfunction (Montessori et al., 2004). In HIV-

positive patients these side effects frequently are associated with increased plasma 

pro-inflammatory cytokine concentration, decreased plasma adiponectin 

concentration (Jones et al., 2005; Lindegaard et al., 2004) and increased plasma 

lactate levels (Brew et al., 2003; Geddes et al., 2006; Haugaard et al., 2005) 

respectively. Thus, in my third study, to investigate whether a systemic 

inflammatory response or metabolic dysregulation is responsible for the 

hypernociception induced by stavudine in rats, I determined whether plasma 

adiponectin, lactate, IL-6 and CINC-1 concentrations were altered in rats 

administered daily stavudine. 
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Abstract 

WEBER, J., D. MITCHELL AND P. R. KAMERMAN. Oral administration of 

stavudine induces hyperalgesia without affecting activity in rats. PHYSIOL 

BEHAV 92: 807 - 813, 2007.−We have investigated whether long-term oral 

administration of the nucleoside reverse transcriptase inhibitor (NRTI) stavudine 

affects nociception in Sprague-Dawley rats, and whether any changes of 

nociception are accompanied by deterioration in activity and appetite. Stavudine (50 

mg.kg-1) was administered to rats orally once daily for six weeks in gelatine cubes. 

Mechanical hyperalgesia of the tail was assessed using a bar algometer, and thermal 

hyperalgesia by tail immersion in 49 ºC water. Withdrawal latencies were compared 

to those of rats receiving placebo gelatine cubes. Withdrawal latencies to the 

noxious thermal challenge were not affected by stavudine, but those to the 

mechanical challenge were significantly decreased in rats receiving stavudine, 

compared to rats receiving placebo, from week three to week six of drug 

administration (P<0.05, ANCOVA with Newman-Keuls post-hoc comparisons). 

The overall condition of the rats was assessed by recording daily voluntary wheel 

running distance and maximum running speed, food intake and body mass. Daily 

stavudine administration did not adversely affect voluntary running activity, 

appetite or growth. We have shown that long-term daily oral administration of the 

NRTI stavudine results in mechanical hyperalgesia in rats within three weeks 

without affecting appetite, growth and physical activity.  
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1. Introduction 

Pain is a common complaint of HIV-positive patients, even in the absence of AIDS-

defining diseases, and frequently is underestimated and treated poorly by doctors 

[3,7,15]. HIV-related pain often is neuropathic in origin, not only because of neural 

damage caused by the virus, but also because antiretroviral drugs cause toxic 

neuropathies [4,6]. Although antiretroviral drugs effectively retard the progression 

of the disease, the prevalence of sensory neuropathy in HIV-positive patients has 

increased since the introduction of these drugs [4,27]. This increased incidence of 

neuropathy is particularly related to nucleoside reverse transcriptase inhibitors 

(NRTIs) [4,16], which form an integral part of Highly Active Antiretroviral 

Therapy (HAART).  

 

NRTIs cause delayed cell doubling and decreased mitochondrial DNA content 

[4,17,19], possibly by inhibiting DNA polymerase-γ activity [17]. In HIV-positive 

patients, administration of NRTIs is associated with axonal degeneration and the 

loss of small unmyelinated nerve fibres, resulting in decreased peripheral nerve 

fibre density [4,25,26]. However, not all HIV-positive patients experience pain, 

even if they have other signs of peripheral neuropathy [16,18]. Our poor 

understanding of how the mitochondrial toxicity of NRTIs causes pain is partly 

because of a lack of animal models of the disease process. 

 

In one of the few animal studies focusing on pain caused by antiretroviral drugs, 

Joseph and colleagues [11] showed that a single intravenous injection of the NRTIs 
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didanosine (ddI), zalcitabine (ddC) and stavudine (d4T) resulted in a dose-

dependent hyperalgesia of the hind paw that lasted for twenty days. Subsequent 

studies showed that disrupting the mitochondrial electron transport chain attenuated 

zalcitabine-induced hyperalgesia [12]. However, as antiretroviral drugs are 

administered orally to HIV-positive patients, and neuropathy in these patients 

normally develops only after six to eight weeks of chronic NRTI administration 

[10], the injection model of NRTI-induced neuropathy may not be entirely suitable 

to examine the mechanisms of NRTI-induced pain. Joseph and colleagues [11] 

however did also show that daily oral administration of the NRTI zalcitabine to rats 

at a dose of 50 mg.kg-1 for six weeks resulted in hyperalgesia in the hind paw after 

seven days.  

 

Although zalcitabine is effective at treating HIV, stavudine is prescribed more 

commonly, and is recommended by the World Health Organisation (WHO) as part 

of first-line antiretroviral drug regimens [31]. Combinations of antiretroviral drugs 

that include stavudine produce greater increases in CD4 cell count than do other 

antiretroviral drug combinations not including stavudine [20]. In addition, while 

neuropathy is the most common reason for patients discontinuing the use of 

stavudine, stavudine is less neurotoxic than is zalcitabine [6]. Therefore, the aim of 

our study was to investigate how long-term daily oral administration of the NRTI 

stavudine affects nociception in rats. As the drug has been associated with other 

side effects such as hepatitis, pancreatitis and gastrointestinal disturbances [22], we 

also wanted to expand the work of Joseph et al. [11] by examining whether long-
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term daily stavudine administration affects the overall condition of the rats, and, 

particularly, produces deficits resulting from neural malfunction. Consequently we 

also investigated the effect of daily stavudine administration on food intake and 

voluntary running activity. 

 

2. Methods 

2.1. Animals 

Experiments were performed on female Sprague-Dawley rats that were housed 

individually and had free access to standard rat chow and water. All procedures 

were approved by the Animal Ethics Screening Committee of the University of the 

Witwatersrand (clearance no. 2004/20/3). 

 

2.2. Drug administration 

Stavudine (Zerit, Bristol-Myers Squibb, Johannesburg, South Africa) was 

administered orally once daily, at a dose of 50 mg.kg-1, as a suspension set in a 

flavoured gelatine cube. Gelatine cubes were made by adding 7ml savoury bread 

spread (Bovril, Unilever, Johannesburg, South Africa), 20 g cane sugar and 12 g 

unflavoured gelatine powder (Davis Gelatine, Johannesburg, South Africa) to 100 

ml warm water [13]. The solution was aliquoted into 3 ml moulds and allowed to 

set. Stavudine-containing gelatine cubes were made by adding powdered stavudine 

to each aliquot, and mixing thoroughly before the gelatine set. Placebo gelatine 

cubes did not contain stavudine. Rats were fed placebo gelatine cubes, once daily, 

for one week before the start of experimentation, by which time they ate the entire 
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cube within 15 minutes of it being placed in their cage. This method of 

administering a drug allows a precise dose to be administered orally, without the rat 

being handled. 

 

2.3. Nociceptive testing 

We tested for hyperalgesia by recording the withdrawal latency to a noxious 

mechanical challenge and a noxious thermal challenge applied to the tail of rats 

placed in clear plastic restrainers, which restricted trunk movement but allowed free 

movement of the tail. The rats were familiarized with the restrainers for three hours 

a day for three consecutive days before measurements began. All measurements 

were made by the same observer between 09:00 and 12:00 in the morning. The 

withdrawal latency was recorded only when the rat displayed a clear tail withdrawal 

from the noxious challenge or the rat tried to turn around in the restrainer to get at 

the noxious challenge being applied to the tail. Other nondescript end-points, such 

as the rat starting to fidget were ignored.   

 

2.3.1. Noxious mechanical challenge  

A bar algometer with a 1mm diameter probe (Haldex AB, Halmstad, Sweden), was 

placed across the dorsal surface of the middle of the tail and a static force of 4 N 

was applied [29]. The time taken for the rat to withdraw its tail was recorded with a 

stopwatch. The test was repeated three times for each rat at slightly displaced sites, 

with at least one minute between each measurement, and the average of the three 
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measurements was recorded as the withdrawal latency for each rat. The algometer 

was removed from the tail if the rat had not reacted after 30 s.  

 

2.3.2. Noxious thermal challenge 

The tail of each rat was submerged in 29 °C water for 30 min before testing began. 

Thereafter, the whole tail of each rat was submerged in 49 °C water [9]. The time 

taken for the rat to show a characteristic tail flick response was recorded with a 

stopwatch. The test was repeated three times for each rat, with at least one minute 

between each measurement, and the average of the three measurements was 

recorded as the withdrawal latency for each rat. The tail was removed from the 

water if the rat had not reacted after 30 s.   

 

2.4. Voluntary activity, body mass and food intake 

To assess the general health status of the rats and possible motor defects, we 

recorded voluntary running activity, body mass and food intake. Rats were weighed 

daily and food containers were filled daily with 60 g of standard pelleted rat chow. 

Daily food intake was measured by subtracting the amount of food remaining in the 

food container and on the cage floor every morning from the amount of food given 

the preceding day. Because we wanted to monitor whether stavudine affects 

voluntary exercise, we selected rats that ran spontaneously on running wheels 

attached to their cages. To select the rats, we recorded the distance 30 rats ran each 

night using odometers (Cateye Tomo XC, Cyclocomputer, Model CC-ST200) 

attached to the running wheels, and then selected the 20 rats that ran the furthest 
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over 12 consecutive nights for subsequent nociceptive testing. Running distance and 

maximum running speed then were measured daily for each rat for the remainder of 

the study. 

 

2.5. Experimental protocol 

After the 20 rats had been selected for the study, we recorded baseline values for 

the withdrawal latency to the noxious challenges, voluntary running activity, body 

mass and food intake daily for five days before the start of stavudine administration. 

Throughout this period, all rats were given placebo gelatine cubes once daily. On 

the sixth day, rats in the experimental group received gelatine cubes containing 50 

mg.kg-1 stavudine, and continued to be fed stavudine cubes once daily for six weeks 

(n=10). Rats in the control group continued to be fed placebo gelatine cubes once 

daily for six weeks (n=10). Nociceptive tests were performed once a week, 

commencing seven days after the first day of stavudine or placebo administration.  

                       

2.6. Data analysis 

All data are expressed as mean ± SEM. The average of the withdrawal latencies 

measured on the last three days before stavudine or placebo administration began 

served as a baseline value against which changes in withdrawal latency were 

compared. During stavudine or placebo administration weekly maximum running 

speed and weekly food intake was compared to the average maximum running 

speed and food intake recorded five days before the start of stavudine or placebo 
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administration. Weekly running distance was compared to the average running 

distance recorded over the days before stavudine or placebo administration.   

 

Changes in withdrawal latencies to the noxious challenges, changes in daily running 

distance and absolute maximum daily running speed were assessed by means of 

two-way Analysis of Covariance (ANCOVA) using group and time as the main 

effects and rat mass as covariate, with Newman-Keuls post-hoc comparisons if 

main effects or interaction were significant. ANCOVA was used because previous 

experience has shown us that as rats grow, and their tails become thicker and the 

skin more keratinised, their response to the noxious mechanical and thermal 

challenge changes. Also, voluntary wheel running changes with age in female rats 

[1]. Body mass and food intake, per 100 g body mass, were assessed by means of 

two-way Analysis of Variance (ANOVA), using group and time as the main effects, 

with Newman-Keuls post-hoc comparisons if main effects or interaction were 

significant. Initial body mass was compared to that on the day before the start of 

stavudine or placebo administration and on the last day of each week of drug 

administration. No rats reached the cut-off of 30 s in either of the two nociceptive 

tests and no rats lost more than 15 % of body mass during the study. 
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3. Results 

3.1. Noxious mechanical challenge  

Before stavudine or placebo administration, the withdrawal latency to the 4N 

mechanical challenge applied to the tail was 10.07 ± 0.83 s for rats receiving 

placebo gelatine cubes and 11.01 ± 0.87 s for rats receiving stavudine gelatine 

cubes (t-test: t=0.78, P=0.45). Compared to rats receiving placebo gelatine cubes, 

and compared to withdrawal latencies measured before stavudine administration, 

there was a significant decrease in the withdrawal latencies of rats given stavudine 

from week three to week six of stavudine administration (two-way ANCOVA; 

group effect: F1,15=8.29, P=0.01; time effect: F6,6=1.75, P=0.12; interaction: 

F6,90=2.24, P=0.04; Figure 1a). 

 

3.2. Noxious thermal challenge  

Before stavudine or placebo administration, the withdrawal latency to the 49 ºC 

thermal challenge was 4.82 ± 0.32 s for rats receiving placebo gelatine cubes and 

4.79 ± 0.34 s for rats receiving stavudine gelatine cubes (t-test: t=0.08, P=0.94). 

There was no significant difference in the change in withdrawal latencies to the 

noxious thermal challenge over time, nor between rats given stavudine and placebo 

gelatine cubes (two-way ANCOVA; group effect: F1,15=0.36, P=0.56; time effect: 

F6,6=1.43, P=0.21; interaction: F6,90=0.79, P=0.58; Figure 1b). 
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Figure 1. Changes in the withdrawal latencies (mean ± SEM) to a noxious 

mechanical challenge (A) and a noxious thermal challenge (B) on the tail of rats 

given oral placebo (clear bars) or 50mg.kg-1 stavudine (solid bars). Withdrawal 

latencies are expressed as percentage change from latencies before cube 

administration. * indicates a significant difference in withdrawal latencies between 

the two groups of rats (P<0.05, ANCOVA with Newman-Keuls post-hoc 

comparisons)  
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3.3. Body mass 

The initial body mass of rats receiving placebo gelatine cubes was 172.6 ± 6.4 g and 

that of rats receiving stavudine gelatine cubes was 175.4 ± 5.3 g (t-test: t=0.34, 

P=0.74). There was no significant difference in body mass between rats given 

stavudine and placebo gelatine cubes (two-way ANOVA; group effect: F1,16=0.36, 

P=0.56). Compared to the initial body mass, body mass increased significantly on 

each subsequent day analysed, for both groups of rats (two-way ANOVA; time 

effect: F7,7=898, P<0.01; Figure 2). There was no interaction (two-way ANOVA; 

F7,112=0.29, P=0.96).  
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Figure 2. Body mass (mean ± SEM) of rats given oral placebo (clear circles) or 

50mg.kg-1 stavudine (solid circles). Error bars are shown on days that were 

compared using statistical analysis once a week. There were no significant 

differences between the two groups of rats. Compared to the initial body mass, body 

mass increased significantly on each subsequent day analysed for both groups of 

rats (P<0.05, ANOVA with Newman-Keuls post-hoc comparisons). 
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3.4. Food intake 

Before stavudine or placebo administration, food intake was 11.5 ± 0.4 g of food 

per 100 g body mass for rats receiving placebo gelatine cubes and 12.4 ± 0.5 g of 

food per 100 g body mass for rats receiving stavudine gelatine cubes (t-test: t=1.30, 

P=0.21). There was no significant difference in food intake, per 100 g body mass, 

between rats given stavudine and placebo gelatine cubes (two-way ANOVA: group 

effect: F1,16=0.36, P=0.56). There was a significant decrease in food intake, per 100 

g body mass, compared to food intake before stavudine or placebo administration, 

for both groups of rats from week two to week six of stavudine and placebo 

administration (two-way ANOVA; time effect: F6,6=108, P<0.01; Figure 3). There 

was no interaction (two-way ANOVA; F6,96=0.69, P=0.66). 
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Figure 3. Food intake (mean ± SEM) of rats given oral placebo (clear bars) or 

50mg.kg-1 stavudine (solid bars). There were no significant differences between the 

two groups of rats. For both groups of rats, average daily food intake, per 100g 

body mass, decreased from week two onward (P<0.05, ANOVA with Newman-

Keuls post-hoc comparisons).          
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3.5. Voluntary running distance 

Before stavudine or placebo administration, average daily running distance was 

3.51 ± 0.5 km for rats receiving placebo gelatine cubes and 5.0 ± 0.7 km for rats 

receiving stavudine gelatine cubes (t-test: t=1.78, P=0.09). There was no significant 

difference in the change in running distance between rats given stavudine and 

placebo gelatine cubes (two-way ANCOVA; group effect: F1,15=0.001, P=0.98). 

There was a significant increase in voluntary running distance, compared to that 

before stavudine or placebo administration, for both groups of rats from week one 

to week four of stavudine or placebo administration (two-way ANCOVA; time 

effect: F6,6=4.52, P<0.01; Figure 4). There was no interaction (two-way ANCOVA; 

F6,90=1.25, P=0.29).  
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Figure 4. Changes in running distance (mean ± SEM) of rats given oral placebo 

(clear bars) or 50mg.kg-1 stavudine (solid bars). There were no significant 

differences between the two groups of rats. For both groups of rats voluntary 

running distance increased from week one to week four, but decreased to pre-cube 

distances by week five (P<0.05, ANCOVA with Newman-Keuls post-hoc 

comparisons).             
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3.6. Maximum running speed 

Before stavudine or placebo administration, maximum daily running speed was 4.2 

± 0.4 km.h-1 for rats receiving placebo gelatine cubes and 4.6 ± 0.1 km.h-1 for rats 

receiving stavudine gelatine cubes (t-test: t=1.94, P=0.36). There was no significant 

difference in the maximum daily running speed over time, nor between rats given 

stavudine and placebo gelatine cubes (two-way ANCOVA; group effect: F1,14=0.05, 

P=0.83; time effect: F6,6=2.88, P=0.11; interaction: F6,84=0.58, P=0.75; Figure 5). 
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Figure 5. Maximum daily running speed (mean ± SEM) of rats given oral placebo 

(clear bars) or 50mg.kg-1 stavudine (solid bars). There were no significant 

differences between the two groups of rats.              
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4. Discussion 

The aim of our study was to investigate whether oral administration of the NRTI 

stavudine produced hyperalgesia in rats and whether it also affected the overall 

condition of the rats, including gross motor function. Daily oral administration of 

stavudine at a dose of 50 mg.kg-1 resulted in mechanical hyperalgesia in our rats 

within three weeks, and this hyperalgesia persisted throughout the six weeks of the 

study. Rats that received stavudine were more sensitive to the pressure applied to 

the tail by the bar algometer, such that the withdrawal latency to the noxious 

mechanical challenge, compared to the latency before stavudine administration, was 

decreased by 40 % to 50 % on average after three weeks of daily stavudine 

administration. While daily stavudine administration resulted in mechanical 

hyperalgesia from week three onward, hyperalgesia to the thermal challenge (49 ºC 

water) did not develop.    

 

Although daily oral stavudine administration resulted in mechanical hyperalgesia 

within three weeks, other physiological functions which we measured, related to the 

overall condition of the rats, were not affected by the drug. Rats receiving stavudine 

gained weight normally, and consumed the same amount of food, per 100 g body 

mass, as rats receiving placebo. Voluntary wheel running activity also did not 

change with daily stavudine administration. Maximum running speed remained the 

same in rats given stavudine and placebo throughout the study, and both groups of 

rats showed similar increases in running distance over the first four weeks of the 
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study, followed by a decline in running distance in week five and week six, as they 

aged.  

 

We stopped measuring for hyperalgesia in week six of the experiment, when we 

stopped administering the drug, but the pain induced by stavudine in humans 

typically resolves once drug administration ends [4]. Therefore it would be 

interesting to investigate whether the hyperalgesia in our rats also resolves after 

drug administration is stopped. In addition, even though we found no difference in 

the body mass of rats receiving stavudine or placebo, it is possible that the drug 

caused changes in body composition, as stavudine has been associated with 

lipodystrophy [22].    

 

HIV-positive patients frequently experience spontaneous pain, such as lower limb 

pain and headache, making it difficult to perform normal daily activities and 

diminishing their quality of life [15,24]. Our finding that daily oral stavudine 

administration induced mechanical hyperalgesia without affecting appetite or 

voluntary activity suggests that stavudine did not cause spontaneous pain or 

allodynia (pain evoked by non-noxious challenges) to develop in our rats. Or, if 

spontaneous pain or allodynia did develop, the intensity of the pain was not 

sufficient to affect the normal growth and activity of the rats.  

 

Although the oral bioavailabilty of stavudine is complete in rats, with 100 % of the 

dose reaching the systemic circulation [14], we found that mechanical hyperalgesia 
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to the bar algometer developed in the rat tail only after three weeks of daily oral 

stavudine administration, while Joseph and colleagues [11] showed that daily oral 

administration of 50 mg.kg-1 of zalcitabine resulted in hyperalgesia in the rat hind 

paw within just seven days, as tested using von Frey filaments. The rate of onset of 

hyperalgesia may be different in the two anatomical sites or the techniques used to 

test for hyperalgesia may account for the differences in results. Joseph et al. [11] 

used a dynamic, punctuate stimulus, while we used a tonic, blunt stimulus. These 

two challenges may activate different nociceptors, which may explain why we 

observed mechanical hyperalgesia far later than Joseph and colleagues [11]. Also, 

differences in toxicity between the drugs may be responsible for the disparity 

between the two studies. Zalcitabine has a higher toxicity than stavudine, having the 

highest reported incidence of neuropathy in patients of all the NRTIs [6] and, in cell 

cultures, unlike stavudine, zalcitabine causes mitochondrial DNA depletion and 

decreases cell proliferation [5]. A further difference between our study and that of 

Joseph et al. [11] is that oral zalcitabine administration resulted in both mechanical 

and thermal hyperalgesia of the rat hind paw, whereas, in our study, stavudine 

induced only mechanical hyperalgesia in the rat tail. This difference also may result 

from the increased toxicity of zalcitabine compared to stavudine. Alternatively, the 

difference may be caused by differences in the thermal challenges employed. 

Joseph and colleagues [11] focused a radiant heat source on the rat paw, while we 

submerged the whole tail in 49 °C water. It may be possible that different 

nociceptive pathways are responsible for transmitting the thermal and mechanical 

challenges we employed, such that neurons responding to the noxious mechanical 
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challenge became sensitized following stavudine administration, while neurons 

responding to the noxious thermal challenge (49 °C water) did not [8].  

 

Joseph et al. [11] also found that the paw withdrawal threshold of rats was 

decreased significantly for twenty days following a single intravenous injection of 

stavudine, from day one (50 mg.kg-1) or day three (25 mg.kg-1 and 10 mg.kg-1) after 

injection, while daily oral administration of 50 mg.kg-1 zalcitabine resulted in 

hyperalgesia in the hind paw after seven days [11]. Also, a single intraperitoneal 

injection of 25 mg.kg-1 zalcitabine resulted in a decrease in the paw withdrawal 

threshold of rats for 42 days from day three after injection [2]. These results, along 

with the data presented here, show that the route of administration is a determinant 

of the hyperalgesia caused by NRTIs. The drugs, however, are administered orally 

to HIV-positive patients, so the time course we observed is likely to be more 

relevant to the management of HIV-positive patients, as it usually takes six to eight 

weeks of daily drug administration for HIV-positive patients to experience 

symptoms of peripheral neuropathy [10]. Also, our rats developed hyperalgesia 

rapidly between week two and week three of drug administration. This rapid onset 

of hyperalgesia after the drugs have been administered for some time, fits with the 

characteristic delayed onset of antiretroviral drug-induced pain in human patients 

on antiretroviral therapy [4,6].  

 

Despite the presence of mechanical hyperalgesia in our rats, voluntary running 

activity was not affected. Throughout the study, our rats ran in a pattern consistent 
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with that observed for running distances in both male [21] and female [1] rats. 

Running distance increased significantly over the first four weeks and then 

decreased again toward baseline values as the rats aged. Maximum running speed 

remained constant throughout the study. Thus, although stavudine altered afferent 

nociceptive pathways, efferent pathways involved in gross motor activity were 

unaffected. Near lethal doses of stavudine administered orally to rabbits once daily 

for 24 weeks also did not result in signs of peripheral neurological deficits [30] and 

Joseph et al. [11] showed that 50 mg.kg-1 zalcitabine, administered once 

intravenously into the tail vein, resulted in hyperalgesia but did not significantly 

affect motor function or co-ordination of rats, as tested on a rotarod [11]. In 

contrast, Morse et al. [23] found that oral administration of zalcitabine resulted in a 

dose- and time-dependent decrease in open-field locomotor activity of rats. Oral 

administration of zidovudine (AZT), which has very low neurotoxicity [6], had no 

effect on locomotion [23]. Thus, different NRTIs may have different effects on the 

locomotion of rats, related to the toxicity of the specific drug. Also, the same NRTI 

may have different effects on different types of locomotive activity, although the 

voluntary wheel-running we measured probably is more akin to the open-field 

activity measured by Morse and colleagues [23] than to the forced activity on the 

rotarod employed by Joseph et al. [11]. 

 

Although antiretroviral drug regimens may have side effects including 

gastrointestinal disturbances, such as nausea and diarrhoea, these adverse effects 

often are transient, occurring only in the early stages of antiretroviral therapy [22]. 
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Stavudine also is more frequently associated with peripheral neuropathy than 

gastrointestinal disturbances [22]. Accordingly, our animals developed hyperalgesia 

with stavudine administration, but continued to thrive. Body mass increased by over 

50 % in both groups of rats and each rat consumed approximately the same absolute 

amount of food every day of the study. The decrease in food intake, per 100 g body 

mass, in both groups of rats presumably simply was a consequence of ageing [28], 

indicating that growth and appetite were not affected by stavudine administration. 

Warner and colleagues [30] also showed that daily oral administration of stavudine 

to rabbits for 24 weeks did not result in changes in body mass or food intake.  

 

In conclusion, we have shown that daily oral administration of the antiretroviral 

drug stavudine, using a novel technique for administering the drugs, resulted in 

mechanical hyperalgesia in rats within three weeks, and that this hyperalgesia 

persisted throughout the six weeks of the study. To our knowledge, this study is the 

first to demonstrate that extended daily stavudine administration does not adversely 

affect the overall condition of the rats. Voluntary running activity, appetite and 

growth did not differ between rats receiving stavudine and placebo, suggesting that 

the drug does not cause spontaneous pain. Further studies are required to determine 

possible causes for the mechanical hyperalgesia we have observed.  
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Abstract 

To investigate whether central changes underlie the hyperalgesia induced by the 

nucleoside reverse transcriptase inhibitor (NRTI) stavudine in rats, we examined 

neuronal death and inflammatory cytokine secretion in the spinal cord. Stavudine 

(50 mg.kg-1) or placebo was administered orally to Sprague-Dawley rats once daily 

for three or six weeks. Rats’ responses to a blunt noxious mechanical challenge 

applied to their tails were recorded before and at the end of stavudine or placebo 

administration. Spinal cords excised after three or six weeks of drug or placebo 

administration either were examined for neuronal necrosis and apoptosis, or for 

cytokine-induced neutrophil chemo-attractant (CINC)-1 and interleukin (IL)-6. 

Daily stavudine administration induced mechanical hyperalgesia within three 

weeks, but increased CINC-1 concentrations only by six weeks. Neither the 

concentration of IL-6, nor the number of spinal cord neurones or the number of 

spinal apoptotic nuclei was affected by stavudine administration. Therefore, 

although six weeks of daily stavudine administration resulted in an increase in 

CINC-1 concentration in the spinal cord, the development of stavudine-induced 

hyperalgesia did not depend on increases in spinal concentrations of CINC-1 and 

IL-6, nor on apoptosis or necrosis of spinal cord neurones. 
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1. Introduction 

Nucleoside reverse transcriptase inhibitors (NRTIs) are an integral part of highly 

active antiretroviral therapy (HAART), particularly in developing countries. These 

drugs frequently cause peripheral neuropathy and pain in HIV-positive patients 

[1,2], often leading to discontinuation of therapy or drug switching [2]. Although 

the precise mechanisms of NRTI-induced neuropathy are poorly understood, NRTI-

related mitochondrial toxicity is thought to mediate the nerve damage caused by 

these drugs [1]. While long-term administration of NRTIs in HIV-positive patients 

is associated with decreased peripheral nerve fibre density, caused by axonal 

degeneration and the loss of small unmyelinated nerve fibres [1,3,4], and a single 

intraperitoneal injection of 25 mg.kg-1 of the NRTI zalcitabine (ddC) resulted in 

structural changes of neurones in the sciatic nerves of rats [5], the effects of NRTI 

administration on neurones of the central nervous system are not well understood. 

Wallace et al. (2007) recently showed that repeated systemic injection of zalcitabine 

to rats resulted in a modest increase in microglial and astrocyte activity in the dorsal 

horn, with only a limited effect on dorsal root ganglion phenotype. The role of 

spinal neuronal damage and central pro-inflammatory cytokines in NRTI-induced 

neuropathy remains unexplored.  

  

In rodent models of neuropathic pain, increased nociceptive hypersensitivity after 

peripheral nerve injury [6] is associated with microglial activation [7,8], the release 

of central pro-inflammatory cytokines [9-12] and neuronal death in the dorsal horn 

[6]. The NRTIs zalcitabine, didanosine (ddI), stavudine (d4T) and zidovudine 
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(AZT) also induce apoptosis of isolated rat dorsal root neurones [13,14] and 

decrease the regeneration of isolated rat neurones, following neurite removal [15]. 

If this NRTI-induced apoptosis and neuronal degeneration is not limited to isolated 

rat dorsal root neurones, but also occurs in the spinal cord of HIV-positive patients, 

it may contribute to the activation of glial cells and the release of pro-inflammatory 

cytokines, resulting in pain [3]. 

 

The South African National Antiretroviral Treatment Guidelines [16] recommend 

that the NRTI stavudine be prescribed as part of first-line HAART regimens, yet 

stavudine frequently is associated with the development of neuropathy [17]. We 

previously have shown that daily oral administration of the NRTI stavudine at a 

dose of 50 mg.kg-1 resulted in mechanical hyperalgesia in the rat tail within three 

weeks, without affecting appetite and voluntary activity [18]. We now have 

investigated possible mechanisms of the hyperalgesia caused by oral stavudine 

administration in rats. As stavudine is known to cause nerve damage in vitro [13-

15], and neuropathic pain is associated with neuronal death in the dorsal horn [6], 

we examined whether oral administration of stavudine induces apoptosis or necrosis 

of spinal neurones in rats. Secondly, as pro-inflammatory cytokines in the spinal 

cord are involved in the development of neuropathic pain [9-12,19], and possibly in 

NRTI-induced pain [3], we investigated whether daily oral administration of 

stavudine causes the release of cytokine-induced neutrophil chemo-attractant 

(CINC)-1 and interleukin (IL)-6 in the spinal cord of rats. Chemokines are thought 

to be involved in NRTI-induced neuropathy [5,20] and intracerebroventricular 
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injection of CINC-1 decreases the mechanical nociceptive threshold of rats [21], 

while IL-6 is increased in the spinal cord in other rat models of neuropathic pain 

[10,11]. Thus, the chemokine CINC-1 and the cytokine IL-6 may play a role in 

hyperalgesia caused by stavudine administration.  

 

2. Materials and Methods 

2.1. Animals 

Experiments were performed on female Sprague-Dawley rats with an initial body 

mass of 199.8 ± 2.1 g that were housed individually and had free access to standard 

rat chow and water. All procedures were approved by the Animal Ethics Screening 

Committee of the University of the Witwatersrand (clearance no. 2005/26/3 & 

2005/89/3) and are in accordance with the International Association for the Study of 

Pain (IASP)’s guidelines for pain research in animals [22]. 

 

2.2. Drug administration 

Stavudine (2’,3’-didehydro-3’-deoxythimidine, d4T; Zerit, Bristol-Myers Squibb, 

Johannesburg, South Africa) was administered orally once daily, at a dose of 50 

mg.kg-1, as a suspension set in a flavoured gelatine cube. Gelatine cubes were made 

by adding 7 ml savoury bread spread (Bovril, Unilever, Johannesburg, South 

Africa), 20 g cane sugar and 12 g unflavoured gelatine powder (Davis Gelatine, 

Johannesburg, South Africa) to 100 ml warm water [23]. The solution was 

aliquoted into 3 ml moulds and allowed to set. Stavudine-containing gelatine cubes 

were made by adding powdered stavudine to each aliquot, and mixing thoroughly 
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before the gelatine set. Placebo gelatine cubes did not contain stavudine. One 

gelatine cube was placed in the cage of each rat every morning at 09:00. The rats 

ate the gelatine cubes enthusiastically, and without spillage; spillage was visible 

easily because the spread imparted a dense black colour to the cubes. 

 

2.3. Nociceptive testing 

We tested for mechanical hyperalgesia by recording the withdrawal latency to a 

noxious mechanical challenge applied to the tail, with the rats placed in clear plastic 

restrainers that restricted trunk movement but allowed free movement of the tail. 

The rats were familiarized with the restrainers for three hours a day for three 

consecutive days before measurements began. A bar algometer with a 1 mm 

diameter probe (Haldex AB, Halmstad, Sweden), was placed across the dorsal 

surface of the middle of the tail and a static force of 4 N was applied [24]. The time 

taken for the rat to withdraw its tail was recorded with a stopwatch. The test was 

repeated three times for each rat at slightly displaced sites, with at least one minute 

between each measurement, and the average of the three measurements was 

recorded as the withdrawal latency for each rat. The algometer was removed from 

the tail if the rat had not reacted after 30 s. All measurements were made by the 

same observer between 09:00 and 12:00 in the morning. The withdrawal latency 

was recorded only when the rat displayed a clear tail withdrawal from the noxious 

challenge or the rat tried to turn around in the restrainer to get at the noxious 

challenge being applied to the tail. Other nondescript end-points, such as the rat 

starting to fidget, were ignored.   
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2.4. Experimental protocol 

We used two separate groups of rats. In the first group, we tested rats’ nociceptive 

function in response to daily stavudine administration, and killed the rats after three 

or six weeks of stavudine administration to take spinal cord samples for measuring 

apoptosis and necrosis. In the second group, nociceptive testing was not performed. 

Rats also were killed after three or six weeks of stavudine or placebo 

administration, and spinal cord samples taken to determine the expression of CINC-

1 and IL-6. 

 

2.4.1. Stavudine-induced hyperalgesia and histopathology  

We recorded rats’ withdrawal latencies to the noxious mechanical challenge once 

daily for five days before the start of stavudine administration. During this period 

rats were given placebo gelatine cubes every day. On the sixth day, experimental 

rats received gelatine cubes containing 50 mg.kg-1 stavudine, and continued to be 

fed stavudine cubes once daily for three (n=5) or six (n=5) weeks. Control rats 

continued to receive placebo gelatine cubes once daily for three (n=5) or six (n=5) 

weeks. Nociceptive testing was repeated on the day before spinal cord samples were 

collected. An additional five treatment-naïve rats, which received neither stavudine 

nor placebo gelatine cubes and which were age-matched to rats in the stavudine and 

control groups did not undergo nociceptive testing but also were killed, and their 

spinal cords examined.  
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For spinal cord excision, rats were deeply anaesthetised with 1 ml sodium 

pentobarbital i.p. (Euthapent, 200 mg.ml-1; Kyron Laboratories (Pty) Ltd., South 

Africa), before being perfused transcardially with heparinised saline (100 ml), 

followed by 4 % paraformaldehyde in 0.1 M phosphate buffer (pH=7.4) [28]. The 

entire lumbar spinal cord (L1 – L5) was removed and post-fixed in 4 % 

paraformaldehyde in phosphate buffer for 1 h at room temperature. Samples then 

were embedded in paraffin wax. 

 

2.4.2. Stavudine-induced changes in cytokine synthesis  

To investigate the effect of stavudine administration on cytokine concentrations, we 

removed the lumbar spinal cord of rats given daily 50 mg.kg-1 stavudine gelatine 

cubes for three (n=5) or six (n=5) weeks. Control rats received placebo gelatine 

cubes for three (n=5) or six (n=5) weeks. An additional five treatment-naïve rats, 

age-matched to rats in the stavudine and control groups, also were killed and had 

their lumbar spinal cords removed and analysed.  

 

For sample collection, rats were anaesthetised in a chamber perfused with 2 % 

isofluorane (Safeline Pharmaceuticals, Johannesburg, South Africa) and killed by 

intracardiac injection of 1 ml sodium pentobarbital (Euthanase, Kyron, 

Johannesburg, South Africa). The lumbar spinal cord was removed, weighed, flash 

frozen in liquid nitrogen and stored at -70 °C. For cytokine analysis, spinal cord 

samples were homogenised in 500 µl PBS (pH=7.4) containing 0.4 M NaCl, 0.05 % 

Tween-20, 0.5 % bovine serum albumin, 0.1 mM benzethonium chloride, 10 mM 
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EDTA and 20 Kl.ml-1 aprotinin. The homogenates were centrifuged at 12 000 g for 

60 min at 4 °C. The supernatant was analysed for CINC-1 and IL-6.  

 

2.5. Histopathology 

2.5.1. Neuronal density 

To allow us to determine the number of dorsal horn and anterior horn neurones in a 

cross section of the spinal cord of each rat, 5 µm spinal cord sections were stained 

with haematoxylin and eosin (H&E) and neuronal cells counted, as previously 

described [25]. Sections were divided through the centre and analysed by light 

microscopy by a pathologist (BM), blinded to the treatment of the rat. Cells anterior 

to the central line were included in the anterior horns and those posterior to the line 

were included in the posterior (dorsal) horns. A neurone-specific marker was not 

used, as neurones were easily identified morphologically by the pathologist by their 

large size and characteristics of the nuclei and the amount of cytoplasm. The total 

number of dorsal horn and anterior horn neuronal nuclei was counted in up to five 

serial cross sections for each cord, giving an average number of neurones for the 

spinal cord of each rat.   

 

2.5.2. Apoptosis 

To allow us to examine neuronal apoptosis, 5 µm spinal cord sections were stained 

using a commercially available modified Terminal Deoxynucleotidyl Transferase-

Mediated dUTP Nick End-Labelling (TUNEL) stain kit (DeadEndTM Colorimetric 
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TUNEL System, Promega Corporation, Madison, WI, USA), as previously 

described [26]. Briefly, tissue sections were deparaffinised in xylene, gradually 

rehydrated in ethanol and then equilibrated in 0.85 % NaCl, followed by phosphate 

buffered saline (PBS, pH=7.4). Thereafter, spinal cord sections were fixed in 4 % 

paraformaldehyde in PBS, permeabilised with Proteinase K, and re-fixed with 4 % 

paraformaldehyde in PBS. Biotinylated nucleotides then were incorporated at the 

3’-OH fragmented DNA ends of apoptotic nuclei using the terminal 

Deoxynucleotidyl Transferase (rTDT) enzyme in a humidified 37 ºC incubator, for 

one hour. The reaction was terminated by immersion in standard saline citrate 

(SSC, pH=7.2). Endogenous peroxidase activity was blocked by 0.3 % peroxide, 

after which horseradish peroxidase-labeled streptavidin (Streptavidin HRP) was 

bound to the biotinylated nucleotides, and coloured with the chromagen 

diaminobenzidine (DAB) and the peroxidase substrate hydrogen peroxide. Slides 

were rinsed in water, gradually dehydrated in ethanol and then xylene, and sealed 

with glass coverslips for analysis.  

 

A positive control was included with each set of slides stained in order to 

demonstrate the efficacy of the assay. The enzyme DNAse was added to positive 

control slides after the second fixation step in paraformaldehyde, resulting in DNA 

fragmentation and positive staining for the TUNEL assay. Negative control slides 

also were included in each set of slides stained, in order to assess non-specific 

binding of the biotinylated nucleotides in the absence of the rTDT enzyme. 
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Using light microscopy, the number and location of apoptotic nuclei was recorded 

for up to five serial sections of each spinal cord [26]. In order to decrease the 

number of false positive results, cells were deemed to have stained TUNEL-positive 

only if the nucleus stained dark brown while the cytoplasm remained pale, as 

assessed by visual comparison of positive and negative control slides. As we found 

very few TUNEL-positive nuclei per spinal cord section we did not further examine 

apoptosis in this study by staining for activated caspase-3.  

 

2.6. Cytokine assays 

We determined CINC-1 and IL-6 concentrations in the spinal cord using an 

enzyme-linked immunosorbent assay (ELISA, National Institute of Biological 

Standards and Control, UK), as previously described [27]. Briefly, microtitre plates 

were coated overnight with sheep anti-rat polyclonal antibody. Volumes of 100 µl 

standard recombinant rat cytokine or sample was added to each well and left 

overnight at 4 °C. Sheep anti-rat biotinylated polyclonal antibodies were added at a 

1:2000 dilution, and the sample incubated at room temperature (~22 ºC) for one 

hour. Finally, 100 µl of streptavidin-polyHRP (1:10000 dilution, Euroimmun, Cape 

Town, South Africa) was added to each well, at room temperature. After 30 minutes 

the plates were washed and the colour reagent o-Phenylenediamine dihydrochloride 

(40 µg in 100 µl per well, Sigma-Aldrich, South Africa) added. The reaction was 

terminated with H2SO4 (1 M, 150 µl per well) and the optical density measured at 

490 nm. CINC-1 and IL-6 cytokine concentrations were analysed in duplicate using 

the appropriate sheep anti-rat polyclonal and biotinylated antibodies for each 
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cytokine. The detection limit of each assay, which allowed for the dilution factor of 

the sample, differed between CINC-1 and IL-6 assays, and is reported with the 

results of the assay. 

 

2.7. Data analysis  

Nociceptive and cytokine data are expressed as mean ± SEM. The average of the 

withdrawal latencies measured on the last three days before stavudine or placebo 

administration began served as a reference value against which changes in 

withdrawal latency were compared. Changes in withdrawal latencies to the noxious 

mechanical challenge were assessed using two-way Analysis of Covariance 

(ANCOVA) with group and time as the main effects, and rat mass as covariate. A 

Newman-Keuls post-hoc test was used if any of the main effects or interaction were 

significant. ANCOVA was used because previous experience has shown us that as 

rats grow, and their tails become thicker and the skin more keratinised, their 

response to the noxious mechanical challenge changes. Cytokine concentrations 

were assessed using two-way Analysis of Variance (ANOVA), with group and time 

as the main effects, and Newman-Keuls post-hoc comparisons if any of the main 

effects or interaction were significant. 

 

The number of apoptotic nuclei and the number of dorsal horn and anterior horn 

neurones per spinal cord section are expressed as median (full range). The number 

of apoptotic nuclei and the number of dorsal horn and anterior horn neurones per 

spinal cord section were compared over time for rats administered stavudine or 
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placebo gelatine cubes using the Kruskal-Wallis test, with treatment-naïve rats (as 

time = 0) included in the comparison. Comparisons were made between rats 

receiving placebo and stavudine cubes at three weeks and six weeks using the 

Mann-Whitney test. Bonferroni correction for multiple comparisons was used for 

all non-parametric tests.  

 

3. Results  

3.1. Noxious mechanical challenge   

Before stavudine or placebo administration, the withdrawal latency to the 4 N 

mechanical challenge applied to the tail was 5.4 ± 0.8 s for rats scheduled to receive 

placebo gelatine cubes and 6.3 ± 1.1 s for rats that were to receive stavudine 

gelatine cubes (t-test: t=1.96, P=0.08). Compared to rats receiving placebo cubes, 

and compared to withdrawal latencies before stavudine gelatine cube 

administration, there was a significant decrease in the withdrawal latencies of rats 

given stavudine for three weeks and six weeks (two-way ANCOVA; group effect: 

F1,7=27.59, P<0.01; time effect: F1,1=3.62, P=0.31; interaction: F1,7=1.43, P=0.27; 

Figure 1). 
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Figure 1. Changes in the withdrawal latencies (mean ± SEM) to a 4 N noxious 

mechanical challenge applied to the tail of rats given daily placebo (clear bars) or 

50 mg.kg-1 stavudine (hashed bars) orally in gelatine cubes. Withdrawal latencies 

are expressed as percentage change from latencies before cube administration.        

* indicates a significant difference in withdrawal latencies between the two 

treatment groups (P<0.05, ANCOVA with Newman-Keuls post-hoc comparisons) 
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3.2. Histopathology 

3.2.1. Dorsal horn neuronal density 

The number of dorsal horn neurones averaged on five serial sections of the lumbar 

spinal cord from each rat and then averaged across each group of rats receiving 

placebo or stavudine gelatine cubes is shown in Figure 2. The number of dorsal 

horn neurones did not differ over time for rats given placebo (Kruskal-Wallis Test; 

KW=2.90, P=0.94) or stavudine (Kruskal-Wallis Test; KW=0.20, P=3.69) or 

between rats receiving placebo or stavudine at three weeks (Mann-Whitney Test; 

U=9.50, P=2.19) or six weeks (Mann-Whitney Test; U=4.00, P=0.76). 

 

3.2.2. Anterior horn neuronal density 

The number of anterior horn neurones averaged on five serial sections of the lumbar 

spinal cord from each rat and then averaged across each group of rats receiving 

placebo or stavudine gelatine cubes also is shown in Figure 2. The number of 

anterior horn neurones did not differ over time for rats given placebo (Kruskal-

Wallis Test; KW=8.73, P=0.05) or stavudine (Kruskal-Wallis Test; KW=7.61, 

P=0.09) or between rats receiving placebo or stavudine at three weeks (Mann-

Whitney Test; U=1.00, P=0.06) or six weeks (Mann-Whitney Test; U=2.50, 

P=0.13). 
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Figure 2. Dorsal horn and anterior horn neurones, median (full range), per spinal 

cord section of rats given placebo (clear bars) or 50 mg.kg-1 stavudine (hashed bars) 

orally in gelatine cubes. Treatment-naïve rats are represented by week zero. There 

were no significant differences between treatment groups in the number of either 

dorsal horn or anterior horn neurones. 
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3.2.3. Apoptosis 

As we found very few TUNEL-positive nuclei per spinal cord section, we did not 

determine the percentage of apoptotic nuclei per section. The absolute number of 

TUNEL-positive nuclei averaged on five serial sections of the lumbar spinal cord 

from each rat and then averaged across each group of rats receiving placebo or 

stavudine gelatine cubes is shown in Figure 3. The number of TUNEL-positive 

spinal cord nuclei did not differ over time for rats given placebo (Kruskal-Wallis 

Test; KW=0.82, P=2.66) or stavudine (Kruskal-Wallis Test; KW=0.82, P=2.66) or 

between rats receiving placebo or stavudine for three weeks (Mann-Whitney Test; 

U=8.00, P=2.92) or six weeks (Mann-Whitney Test; U=10.50, P=2.76). 
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Figure 3. Apoptotic (TUNEL-positive) nuclei, median (full range), per spinal cord 

section of rats given placebo (clear bars) or 50 mg.kg-1 stavudine (hashed bars) 

orally in gelatine cubes. Treatment-naïve rats are represented by week zero. There 

were no significant differences between treatment groups. 
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3.3. Spinal cord cytokine concentrations 

Concentrations of CINC-1 and IL-6 in all spinal cord samples were above the 

detection limit of the assay.  

 

3.3.1. Spinal cord CINC-1 

Concentrations of CINC-1 in the spinal cord of rats receiving placebo or stavudine 

gelatine cubes are shown in Figure 4. Spinal cord CINC-1 concentrations were 

significantly elevated in rats receiving stavudine for six weeks, compared to all 

other groups of rats (two-way ANOVA; group effect: F1,7=6.37, P=0.04; time 

effect: F1,1=1.67, P=0.42; interaction: F1,7=6.30, P=0.04). 

 

3.3.2. Spinal cord IL-6 

Concentrations of IL-6 in the spinal cord of rats receiving placebo or stavudine 

gelatine cubes also are shown in Figure 4. Spinal cord IL-6 concentrations did not 

differ between groups or with time (two-way ANOVA; group effect: F1,7=0.03, 

P=0.87; time effect: F1,1=1.03, P=0.49; interaction: F1,7=4.23, P=0.08). 
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Figure 4. Spinal cord CINC-1 and IL-6 concentrations (mean ± SEM) of rats given 

placebo (clear bars) or 50 mg.kg-1 stavudine (hashed bars) orally in gelatine cubes. 

Treatment-naïve rats are represented by week zero. The dashed lines show the 

detection limits of the assays. * indicates a significant difference between rats 

receiving 50 mg.kg-1 stavudine daily for six weeks and all other groups of rats 

(P<0.05, ANOVA with Newman-Keuls post-hoc comparisons) 
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4. Discussion 

We previously have shown that mechanical hyperalgesia develops in the tail of rats 

within three weeks of daily administration of 50 mg.kg-1 stavudine [18]. The aim of 

our new study was to investigate possible mechanisms of this hyperalgesia by 

examining whether stavudine administration induces spinal nerve fibre death or 

causes the release of pro-inflammatory cytokines in the spinal cord. Daily oral 

administration of 50 mg.kg-1 stavudine resulted in a pattern of mechanical 

hyperalgesia similar to that observed in our previous study [18]. Hyperalgesia was 

evident after the third week of drug administration, and still was present, at the 

same degree in week six, that is after three more weeks of stavudine administration. 

However, we found no evidence of stavudine-induced apoptosis or necrosis in the 

spinal cord, even following six weeks of daily stavudine intake. Neither the number 

of TUNEL-positive nuclei nor the number of dorsal horn or anterior horn neurones 

per spinal cord section was affected by stavudine administration. Spinal cord 

concentrations of IL-6 also remained unchanged following six weeks of daily 

stavudine administration. However, the concentration of CINC-1 in the lumbar 

spinal cord was elevated significantly in rats fed stavudine daily for six weeks, but 

not after three weeks of drug administration.  

 

The elevation of CINC-1 well after hyperalgesia had developed indicates that 

CINC-1 may contribute to the long-term maintenance of stavudine-induced 

hyperalgesia, but the initial development of the hyperalgesia does not require 

increased spinal cord CINC-1. Neither the initiation nor the maintenance of 
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hyperalgesia requires increased spinal cord IL-6 and it still is unclear how the 

hyperalgesia first develops. It may be necessary to examine more closely changes in 

the spinal cord occurring after one or two weeks of daily stavudine administration, 

when hyperalgesia has not yet developed, to determine whether other central 

mechanisms are involved in the development of stavudine-induced hyperalgesia. In 

our study we only examined spinal concentrations of CINC-1 and IL-6, but other 

pro-inflammatory cytokines, including IL-1β [9,10,12] and tumour necrosis factor 

(TNF)-α [9,10], also are elevated in the spinal cord in other rodent models of 

peripheral neuropathy, and may be involved in stavudine-induced hyperalgesia. 

Also, with the elevation in CINC-1 in the spinal cord after six weeks of daily 

stavudine administration, it would be worthwhile, in a future experiment, to 

administer stavudine for longer, and to check for an increased incidence of cell 

death in later weeks.  

 

Expression of CINC-1 increases following injury to the central nervous system 

[29,30], with CINC-1 production being more pronounced in the spinal cord than in 

the brain [30]. Once CINC-1 is expressed, it attracts neutrophils to the damaged 

region, which may exacerbate damage to the affected area, as these cells destroy 

tissue by releasing free radicals [4,31] and proteolytic enzymes [32], as well as by 

phagocytosis [33]. However, in our study, there was no evidence of spinal cord 

damage, and the hyperalgesia we observed was no more intense when CINC-1 was 

elevated after six weeks of daily stavudine administration than it was after three 

weeks, before CINC-1 was elevated. Moreover, there was no deterioration in 
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running activity [18], which is dependent on a functional spinal cord, when CINC-1 

was increased. Thus, the elevation of CINC-1 in the spinal cord of rats, 

administered stavudine daily for six weeks, probably was not caused by nerve 

damage in the spinal cord. Wallace et al. (2007) recently showed that systemic 

administration of zalcitabine to rats resulted in moderate microgliosis and 

astrocytosis in the dorsal horn. Therefore, the increased concentration of CINC-1 

we observed following stavudine administration also may have been the result of 

microglial and astrocyte activation [34] in response to peripheral nerve injury [35] 

induced by stavudine [1,3,4].  

 

Though the concentration of the chemokine CINC-1 was increased following 

stavudine administration in our study, concentrations of IL-6 in the spinal cord were 

not elevated, although production of this cytokine also is increased in the spinal 

cord in other rat models of peripheral neuropathy [10,11]. IL-6 plays a role in the 

creation and continuation of other types of neuropathic pain [19], but this cytokine 

does not appear to be involved in the maintenance of stavudine-induced 

hyperalgesia, as it was not increased in the spinal cord after six weeks. While IL-6 

also was not elevated in the spinal cord after three weeks, indicating that it probably 

is not involved in the development of stavudine-induced hyperalgesia, we cannot 

exclude the possibility that IL-6 was elevated before the onset of the hyperalgesia.  

 

Whereas the hyperalgesia caused by other models of neuropathic pain is 

accompanied by vast changes in cytokine activity in the spinal cord [9-12], and 
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neuronal death in the dorsal horn [6], we have no evidence that the hyperalgesia 

induced by stavudine administration resulted from plasticity in the central nervous 

system. While stavudine induces apoptosis and neuronal degradation of isolated rat 

neurones [13-15], daily oral stavudine administration did not cause apoptosis or 

necrosis of spinal cord neurones in rats in our study. Similarly, Wallace et al (2007) 

found that systemic administration of zalcitabine to rats caused only minimal 

changes in dorsal root ganglion activity, although paw withdrawal threshold was 

decreased. As stavudine administration is associated with loss of peripheral 

neurones in HIV-positive patients [1,3,4], and repeated injections of zalcitabine to 

rats resulted in decreased intra-epidermal nerve fibre density [20], stavudine 

administration to rats also may have caused damage to peripheral neurones. 

Damage to peripheral neurones initiates the release of excitatory amino acids, 

prostaglandins and nitric oxide from activated glial cells [19] and may result in up- 

or down-regulation of genes responsible for the excitability of the neurones [36], 

inducing a heightened sensitivity to nociceptive input [19,36]. Similar changes, 

caused by injury to peripheral neurones, may account for the mechanical 

hyperalgesia we observed following daily oral administration of stavudine to rats.  

 

In conclusion, we have shown that hyperalgesia that develops with chronic daily 

oral administration of the NRTI stavudine to rats does not involve apoptosis or 

necrosis of spinal neurones, or elevation of spinal secretion of the inflammatory 

cytokine IL-6.  Few studies have examined concentrations of both IL-6 and CINC-1 

in the spinal cord following central or peripheral nerve injury, but we have shown 
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that daily oral administration of stavudine increases the production of CINC-1, 

while the concentration of IL-6 remains unaffected. Stavudine administration 

resulted in an increase in the concentration of CINC-1 in the spinal cord, as 

assessed after six weeks of stavudine administration, up to three weeks after the rats 

developed hyperalgesia, which indicates that CINC-1 is not essential for initiating 

the hyperalgesia. Further studies are required to examine other mechanisms, both 

centrally and peripherally, which may be responsible for the hyperalgesia we 

observed with chronic stavudine administration to rats.  
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Abstract 

Stavudine, a nucleoside reverse transcriptase inhibitor (NRTI) used to treat HIV 

infection, causes side effects in HIV-positive patients, including mitochondrial 

toxicity, lipodystrophy and peripheral neuropathy. These conditions are associated 

with increased plasma lactate, decreased plasma adiponectin and increased plasma 

pro-inflammatory cytokine concentrations. It is not yet clear whether stavudine is 

intrinsically toxic, or whether its side effects are confined to patients compromised 

by HIV. To investigate stavudine-induced changes in mitochondrial bioenergetics, 

fat distribution, and circulating pro-inflammatory cytokine concentrations in rats 

exhibiting the neurological phenomenon of hyperalgesia, we administered stavudine 

(50 mg.kg-1) orally to Sprague-Dawley rats once daily for three or six weeks, in 

gelatine cubes, and measured plasma lactate, adiponectin, cytokine-induced 

neutrophil chemo-attractant (CINC)-1 and interleukin (IL)-6. Control rats received 

cubes without stavudine. Plasma lactate, adiponectin, CINC-1 and IL-6 

concentrations were unchanged in rats following three or six weeks of daily 

stavudine administration. We have shown that stavudine-related mitochondrial 

toxicity and fat redistribution, if present, were insufficient to significantly alter 

lactate and adiponectin production in rats, and that circulating CINC-1 and IL-6 are 

unlikely to be involved in the development or maintenance of the hyperalgesia 

induced by stavudine in rats. Stavudine toxicity appears to be exacerbated in HIV-

positive patients. 
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1. Introduction 

Stavudine (d4T) is a nucleoside reverse transcriptase inhibitor (NRTI) 

recommended by the South African National Antiretroviral Treatment Guidelines 

[1,2] as part of first-line highly-active antiretroviral therapy (HAART). NRTIs 

frequently cause peripheral neuropathy and pain in HIV-positive patients [3,4], and 

also are associated, in HIV-positive patients, with other adverse effects, such as 

lipodystrophy and lactic acidosis [5]. Many of these side effects are related to 

NRTI-induced mitochondrial toxicity, which results in delayed cell doubling and 

decreased mitochondrial DNA content [3,6,7], possibly by inhibition of DNA 

polymerase-γ activity [6]. Mitochondrial toxicity causes alterations in mitochondrial 

bioenergetics [6], increasing anaerobic respiration and lactate buildup [7-9]. Thus 

plasma lactate concentration frequently is increased in HIV-positive patients on 

stavudine-containing therapy [10-12].  

 

Stavudine also has been implicated in the development of lipodystrophy, the fat 

redistribution characterised by peripheral fat loss and central fat accumulation, in 

HIV-positive patients [13]. Lindegaard et al. (2004) found that 90 % of patients 

who had previously received or currently were receiving stavudine developed 

lipodystrophy. Lipodystrophy [14,15] and stavudine use [15,16] are associated with 

decreased plasma levels of adiponectin, an adipocytokine produced and secreted by 

adipose tissue, which may play a role in glucose metabolism [17]. Lindegaard and 

colleagues (2004) found that lipodystrophy further was associated with increased 

plasma levels of the pro-inflammatory cytokines interleukin (IL)-6, and tumour 
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necrosis factor (TNF)-α, in HIV-positive patients receiving stavudine [15]. 

Circulating pro-inflammatory cytokines are thought to play a role in neuropathic 

pain [18], such as may occur in HIV-positive patients treated with antiretroviral 

medication [3,4].  

 

Though stavudine clearly produces toxic side effects in HIV-positive patients, what 

is less clear is whether stavudine is intrinsically toxic, or is toxic only in patients 

already compromised by HIV infection. A recent study showed that a paediatric 

dose (10 mg) of stavudine administered to healthy volunteers for eight days had no 

adverse effects on the general wellbeing of the volunteers [19]. While eight days 

may have been insufficient to induce symptoms of neuropathy in healthy 

volunteers, stavudine has been shown to cause hyperalgesia after one day [20] and 

changes in fat mass within two weeks [21,22] in otherwise-healthy rodents, 

indicating that stavudine indeed appears to be intrinsically toxic. We have found 

previously that daily oral administration of stavudine to rats resulted in mechanical 

hyperalgesia of the tail within three weeks [23] and that this hyperalgesia is not 

dependent on inflammatory changes in the spinal cord (unpublished results), a 

recognised cause of hyperalgesia in other circumstances [24-28]. We now have 

investigated whether prolonged oral administration of stavudine induces changes in 

plasma concentrations of lactate, adiponectin and the cytokines, CINC-1 and IL-6. 

We examined plasma levels after three weeks, when hyperalgesia first was evident 

in our previous study and after six weeks, when hyperalgesia was well established 

[23].  
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2. Materials and Methods 

2.1. Animals 

Experiments were performed on female Sprague-Dawley rats with an initial mass of 

199.8 ± 10.8 g, which were housed individually and had free access to standard rat 

chow and water. All procedures were approved by the Animal Ethics Screening 

Committee of the University of the Witwatersrand (clearance no. 2005/26/3). 

 

2.2. Drug administration 

Stavudine (2’,3’-didehydro-3’-deoxythimidine, d4T; Zerit, Bristol-Myers Squibb, 

Johannesburg, South Africa) was administered orally once daily, at a dose of 50 

mg.kg-1, as a suspension set in a flavoured gelatine cube. Gelatine cubes were made 

by adding 7 ml savoury bread spread (Bovril, Unilever, Johannesburg, South 

Africa), 20 g cane sugar and 12 g unflavoured gelatine powder (Davis Gelatine, 

Johannesburg, South Africa) to 100 ml warm water [29]. The solution was allowed 

to set in 3 ml moulds. Stavudine-containing gelatine cubes were made by adding 

powdered stavudine to each aliquot, and mixing thoroughly before the gelatine set. 

Placebo gelatine cubes were identical but did not contain stavudine. One gelatine 

cube was placed in the cage of each rat every morning at 09:00. The rats ate the 

gelatine cubes enthusiastically, and without spillage; any spillage would have been 

visible easily because the spread imparted a dense black colour to the cubes. 
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2.3. Experimental protocol 

We took blood samples from rats given stavudine or placebo gelatine cubes daily 

for three (n=5) or six (n=5) weeks. An additional five treatment-naïve rats, age-

matched to rats in the stavudine and control groups, also were killed, and had blood 

samples taken and analysed. For blood collection, rats were anaesthetised in a 

chamber perfused with 2 % isofluorane (Safeline Pharmaceuticals, Johannesburg, 

South Africa). Blood was collected by cardiac puncture into sterile tubes containing 

EDTA and the rats then were killed by intracardiac injection of 1 ml sodium 

pentobarbital (Euthanase, Kyron, Johannesburg, South Africa). Blood samples were 

centrifuged at 2000 g for 15 minutes at 4 °C. The plasma was removed and stored at 

-70 °C until assayed.  

 

2.4. Assays 

We determined lactate concentrations in the plasma using a commercially-available 

lactate assay kit (EnzyChromTM, BioAssay Systems, California, USA), following 

the manufacturer’s instructions. Adiponectin concentrations were determined using 

a commercially-available rat adiponectin enzyme-linked immunosorbent assay 

(ELISA) kit (LINCO Research, Missouri, USA), following the manufacturer’s 

instructions. 

 

CINC-1 and IL-6 concentrations in the plasma also were determined using an 

ELISA (National Institute of Biological Standards and Control, UK), as described 

previously [30]. Briefly, microtitre plates were coated overnight with sheep anti-rat 
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polyclonal antibody. Volumes of 100 µl standard recombinant rat cytokine or 

plasma sample were added to each well and left overnight at 4 °C. Sheep anti-rat 

biotinylated polyclonal antibodies were added at a 1:2000 dilution, and the sample 

incubated at room temperature (~22 ºC) for one hour. Finally, 100 µl of 

streptavidin-polyHRP (1:10000 dilution, Euroimmun, Cape Town, South Africa) 

was added to each well, at room temperature. After 30 minutes the plates were 

washed and the colour reagent o-Phenylenediamine dihydrochloride (40 µg in 100 

µl per well, Sigma-Aldrich, South Africa) added. The reaction was terminated with 

H2SO4 (1 M, 150 µl per well) and the optical density measured at 490 nm.  

 

Lactate, adiponectin, CINC-1 and IL-6 concentrations in each sample were 

analysed in duplicate. The detection limit of each assay, which allowed for the 

dilution factor of the sample, differed between lactate, adiponectin, CINC-1 and IL-

6 assays, and is reported with the results of the assays. 

  

2.5. Data analysis  

Data are expressed as mean ± SEM. Lactate, adiponectin and cytokine 

concentrations were assessed using two-way Analysis of Variance (ANOVA), with 

group and time as the main effects. Newman-Keuls post-hoc comparisons were 

used if any of the main effects or interaction were significant. 
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3. Results 

3.1. Plasma lactate concentrations 

Concentrations of lactate in all plasma samples were above the detection limit of the 

assay. Plasma lactate concentrations of rats receiving placebo or stavudine gelatine 

cubes and treatment-naïve rats are shown in Figure 1. Plasma lactate concentrations 

did not differ between groups or with time (two-way ANOVA; group effect: 

F1,8=1.30, P=0.29; time effect: F1,1=7.16, P=0.23; interaction: F1,8=2.38, P=0.16). 
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Figure 1. Plasma lactate concentrations (mean ± SEM) of rats given placebo (clear 

bars) or 50 mg.kg-1 stavudine (solid bars) orally in gelatine cubes. Treatment-naïve 

rats are represented by week zero. The dashed line shows the detection limit of the 

assay. There were no significant differences between any groups.  
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3.2. Plasma adiponectin concentrations 

Concentrations of adiponectin in all plasma samples were above the detection limit 

of the assay. Plasma adiponectin concentrations of rats receiving placebo or 

stavudine gelatine cubes and treatment-naïve rats are shown in Figure 2. Plasma 

adiponectin concentrations did not differ between groups or with time (two-way 

ANOVA; group effect: F1,8=1.83, P=0.21; time effect: F1,1=0.23, P=0.72; 

interaction: F1,8=0.24, P=0.64). 
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Figure 2. Plasma adiponectin concentrations (mean ± SEM) of rats given placebo 

(clear bars) or 50 mg.kg-1 stavudine (solid bars) orally in gelatine cubes. Treatment-

naïve rats are represented by week zero. The dashed line shows the detection limit 

of the assay. There were no significant differences between any groups.  
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3.3. Plasma pro-inflammatory cytokine concentrations 

Concentrations of CINC-1 and IL-6 in all plasma samples were above the detection 

limit of the assays.  

 

3.3.1. Plasma CINC-1 

Plasma CINC-1 concentrations of rats receiving placebo or stavudine gelatine cubes 

and treatment-naïve rats are shown in Figure 3. Plasma CINC-1 concentrations did 

not differ between groups or with time (two-way ANOVA; group effect: F1,8=1.68, 

P=0.23; time effect: F1,1=0.37, P=0.65; interaction: F1,8=2.21, P=0.18). 

 

3.3.2. Plasma IL-6 

Plasma IL-6 concentrations of rats receiving placebo or stavudine gelatine cubes 

and treatment-naïve rats also are shown in Figure 3. Plasma IL-6 concentrations did 

not differ between groups or with time (two-way ANOVA; group effect: F1,8=0.64, 

P=0.45; time effect: F1,1=2.81, P=0.34; interaction: F1,8=1.92, P=0.20). 
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Figure 3. Plasma CINC-1 and IL-6 concentrations (mean ± SEM) of rats given 

placebo (clear bars) or 50 mg.kg-1 stavudine (solid bars) orally in gelatine cubes. 

Treatment-naïve rats are represented by week zero. The dashed lines show the 

detection limits of the assays. There were no significant differences between any 

groups, for either cytokine.  
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4. Discussion  

We have shown previously that daily oral administration of the NRTI stavudine to 

rats at a dose of 50 mg.kg-1 resulted in mechanical hyperalgesia within three weeks, 

without affecting the overall condition of the rats [23]. We have shown now that the 

neurological changes responsible for the hyperalgesia occurred without 

physiological changes in mitochondrial activity, as reflected in plasma 

concentrations of lactate, and that stavudine administration was not associated with 

changes in plasma concentrations of adiponectin. We also have shown that the 

neurological changes are not accompanied by changes in plasma concentrations of 

two pro-inflammatory cytokines, CINC-1 and IL-6. We have shown that plasma 

concentrations of lactate, adiponectin, CINC-1 and IL-6 did not change 

significantly over the period of stavudine administration, and did not differ 

significantly, at any time, from the concentrations in rats receiving placebo.   

  

We previously have found that the concentration of CINC-1 is increased in the 

lumbar spinal cord of rats receiving stavudine once daily for six weeks 

(unpublished results) but in this study we found that the concentration of CINC-1 in 

the plasma did not differ between groups. It is possible that there was an increase in 

the plasma concentration of CINC-1 in rats receiving oral stavudine daily for six 

weeks but that we were unable to detect this difference because the sample size was 

too small. Given the similarity in concentrations between those of rats receiving 

stavudine and those receiving placebo, it is highly unlikely that the absence of a rise 

in lactate and adiponectin concentrations was the result of statistical error. It is 
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possible, nevertheless, that stavudine indeed induced mitochondrial toxicity and fat 

redistribution, but that these metabolic changes did not result in an increased lactate 

and a decreased adiponectin concentration in the plasma, as observed in HIV-

positive patients on stavudine-containing therapy [10-12]. In a future study, it 

would be advisable to examine other indices of mitochondrial toxicity, such as 

mitochondrial DNA content [31,32], and to determine the actual body fat 

distribution of rats given stavudine, to further examine the possibility of 

mitochondrial toxicity and lipodystrophy in otherwise-healthy rats given stavudine.    

 

In a previous study we found that daily oral administration of stavudine did not 

affect growth, appetite or voluntary activity in rats, despite inducing mechanical 

hyperalgesia within three weeks [23]. We now have failed to find evidence that 

stavudine significantly altered mitochondrial bioenergetics in rats, although 

administration of other NRTIs has been shown to adversely affect mitochondrial 

function in rats  [32,33] . While lactic acidosis is a well-recognised adverse event in 

HIV-positive patients taking stavudine [10-12] and stavudine also is associated with 

decreased mitochondrial function in cell culture [6,34], we found that daily 

stavudine administration for three or six weeks did not significantly elevate plasma 

lactate concentrations in rats. Our findings are in agreement with those of Note et 

al. (2003), who showed that plasma lactate levels were unchanged in mice receiving 

a high dose of stavudine daily for two weeks [35], and with the findings of Lewis 

and colleagues (2005) who found that plasma lactate levels were not elevated in 

mice receiving antiretroviral drug combination therapy containing stavudine for 35 
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days [36]. In another study, mice receiving a very high dose of stavudine (500 

mg.kg-1) once daily for two weeks also did not show an increase in plasma lactate 

concentration although stavudine did induce fat wasting [21]. Although 

administration of other NRTIs to rats is associated with a decrease in mitochondrial 

DNA [32,33] and alterations in the functioning of the mitochondrial electron 

transport chain [32,33], the toxicity of NRTIs varies [4] and the effect of stavudine 

on mitochondrial function in otherwise-healthy rodents remains unclear. The results 

of our and other studies examining the effect of stavudine on plasma lactate 

concentrations indicate that mitochondrial toxicity induced by stavudine in 

otherwise-healthy rodents appears to be inadequate to cause an increase in 

anaerobic respiration great enough to result in significant lactate buildup.  

 

Besides highlighting the limited effect of stavudine on mitochondrial function in 

rats, we also have shown that daily oral administration of stavudine to rats did not 

significantly affect fat distribution, at least as reflected in plasma adiponectin 

concentration. Our results correspond to those by Maisonneuve et al. (2004), who 

showed that, although stavudine administration did alter body fat mass in mice, 

plasma adiponectin concentration remained unchanged throughout the study. These 

and our findings imply that stavudine administration on its own does not result in 

sufficient changes in fat distribution to cause the decreased plasma adiponectin 

concentration observed in HIV-positive patients with stavudine-induced 

lipodystrophy [15].   



 121 

We previously have shown that, in rats, there is no clear increase in spinal pro-

inflammatory cytokines accompanying stavudine-induced mechanical hyperalgesia, 

with only the concentration of CINC-1 being elevated in the spinal cord of rats 

administered stavudine daily for six weeks (unpublished results). Our finding that 

plasma concentrations of CINC-1 and IL-6 were not altered by daily administration 

of 50 mg.kg-1 stavudine indicates that these circulating pro-inflammatory cytokines, 

which are elevated in the plasma of rats in other models of hyperalgesia [37,38], 

also are unlikely to be involved in the development or maintenance of stavudine-

induced mechanical hyperalgesia [23], although we cannot exclude the possibility 

that these cytokines were elevated in the plasma before the onset of the 

hyperalgesia. Instead, as stavudine administration is associated with loss of 

peripheral neurones in HIV-positive patients [3,39,40], and repeated injections of 

zalcitabine to rats resulted in decreased intra-epidermal nerve fibre density [41], 

stavudine administration to rats also may have caused damage to peripheral 

neurones. Damage to peripheral neurones initiates the release of excitatory amino 

acids, prostaglandins and nitric oxide from activated glial cells [28] and may result 

in up- or down-regulation of genes responsible for the excitability of the neurones 

[42], inducing a heightened sensitivity to nociceptive input [28,42]. Similar 

changes, rather than pro-inflammatory cytokine release, may account for the 

mechanical hyperalgesia we observed in rats following daily oral administration of 

stavudine [23].  
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In contrast to the lack of change of plasma concentrations in rats given stavudine, 

plasma concentrations of lactate [10-12] and pro-inflammatory cytokines [15] 

frequently are increased, while adiponectin concentrations often are decreased 

[15,16], in HIV-positive patients on stavudine-containing therapy. Our results and 

the contrasting results in HIV-positive patients are consistent with the suggestion 

that HIV infection is necessary for toxic neuropathy, the nerve damage induced by 

antiretroviral drugs, to develop [41,43]. It is possible that, just as antiretroviral 

drugs, particularly NRTIs, are thought to exacerbate the nerve damage initially 

caused by the virus [41,43], HIV infection also is necessary for other adverse 

effects of NRTI therapy to arise. The underlying HIV infection and accompanying 

immune suppression may enhance the side effects of NRTI therapy, such that these 

adverse effects are more pronounced in HIV-positive patients than in animals 

administered NRTIs in the absence of HIV infection.  

 

Although stavudine administration to rats results in hyperalgesia [20,23] and NRTIs 

adversely affect mitochondrial function at a cellular level in rats, decreasing 

mitochondrial DNA [32], altering mitochondrial morphology [8,44] and affecting 

the functioning of the mitochondrial electron transport chain [33], these changes do 

not appear to affect the overall condition of the rats [23]. In contrast, the numerous 

side effects associated with antiretroviral therapy in HIV-positive patients 

frequently diminish quality of life in these patients, often resulting in anxiety and 

depression [45-47], indicating that the toxicity of NRTIs probably is exacerbated by 
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HIV infection, thereby increasing the severity of NRTI-induced adverse events in 

immuno-compromised individuals. 

 

In conclusion, we have found that daily oral administration of 50 mg.kg-1 stavudine 

to rats for three or six weeks did not alter plasma concentrations of lactate, 

adiponectin, CINC-1 or IL-6. These findings indicate that stavudine has limited 

effects on mitochondrial bioenergetics and fat distribution, at least as reflected in 

plasma adiponectin concentration, and that circulating levels of the pro-

inflammatory cytokines CINC-1 and IL-6 are unlikely to be involved in the 

development or maintenance of stavudine-induced hyperalgesia, in otherwise-

healthy rats.   
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The NRTI stavudine, which is used to treat HIV infection, is associated with 

peripheral neuropathy and pain in HIV-positive patients (Dalakas, 2001; Moyle & 

Sadler, 1998; Simpson & Tagliati, 1995) and causes pain hypersensitivity in 

otherwise-healthy rats (Joseph et al., 2004). The mechanisms of NRTI-induced 

toxic neuropathy and pain are not well understood, partly because of a lack of 

robust animal models of the disease process. In particular, few studies have 

examined the effects of stavudine, a frequently prescribed antiretroviral drug in 

South Africa (Grimwood, 2004), on pain sensitivity in animals, as most researchers 

investigate the more toxic, yet seldom prescribed NRTI zalcitabine instead.  

 

Thus, the primary aim of my PhD was to investigate how chronic daily oral 

administration of the NRTI stavudine affects nociception in rats, and specifically, 

whether stavudine induces hyperalgesia. In my first study I showed that daily oral 

administration of 50 mg.kg-1 stavudine, using a novel technique for administering 

the drug, resulted in mechanical hyperalgesia in rats within three weeks, and that 

this hyperalgesia persisted throughout the six weeks of the study. In contrast, 

Joseph and colleagues (2004) showed that chronic daily oral administration of the 

NRTI zalcitabine to rats induced hyperalgesia in the hind paw within just seven 

days. The differing rate of onset of hyperalgesia in these two models may be caused 

by the difference in the toxicity of the two drugs, or the different anatomical sites 

and testing methods used.  

 

Besides altering pain sensitivity in otherwise-healthy rats (Joseph et al., 2004) and 
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in HIV-positive patients (Dalakas, 2001; Moyle & Sadler, 1998; Simpson & 

Tagliati, 1995), stavudine also may decrease the overall wellbeing of HIV-positive 

patients by causing other side-effects, including gastrointestinal disturbances, 

pancreatitis and hepatitis (Montessori et al., 2004). The effects of stavudine 

administration on the general condition of otherwise-healthy rats have not been 

investigated extensively. Therefore, I wanted to examine whether long-term daily 

stavudine administration affects the overall condition of the rats, and, particularly, 

produces deficits resulting from neural malfunction. Consequently I investigated the 

effect of daily stavudine administration on body mass, food intake and voluntary 

wheel running activity. Although stavudine administration resulted in mechanical 

hyperalgesia in rats within three weeks, I found that prolonged oral administration 

of stavudine had no adverse effects on the overall condition of the rats. Voluntary 

wheel running activity, appetite and growth did not differ between rats receiving 

stavudine and placebo. These results indicate that any adverse effects that stavudine 

administration may have on the general health of the rats were mild and transient, 

and did not affect growth and food intake over six weeks. Because stavudine 

administration also did not affect voluntary running activity it appears that the drug 

does not cause spontaneous pain in otherwise-healthy rats, or that spontaneous pain 

induced by stavudine administration is insufficient to affect the rats’ ability or 

desire to run. Stavudine also did not cause other neurological deficits which would 

affect running activity.  

 

The observation that stavudine administration caused hyperalgesia without affecting 
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the general condition of the rats is in agreement with the findings of Joseph et al. 

(2004), who showed that, although a single injection of stavudine induced 

mechanical hypersensitivity in rats, stavudine did not alter the physical appearance 

or open field behaviour of the rats. Warner and colleagues (1995) also found that 

rabbits administered stavudine orally once daily for 24 weeks did not exhibit signs 

of neurological damage, as assessed by the rabbits’ hindleg movements. I have 

shown now, in a more extensive study of the effects of stavudine on the general 

welfare of rats, that stavudine-induced hyperalgesia is not associated with changes 

in motor function and voluntary activity, or with alterations in the rats’ food intake 

and growth.  

 

After establishing a rat model of stavudine-induced hyperalgesia, I wanted to 

investigate possible mechanisms of the hyperalgesia caused by oral stavudine 

administration in this model. While several studies have shown that NRTI-induced 

damage to peripheral nerve fibres may contribute to the heightened sensitivity to 

pain observed in animals administered NRTIs (Anderson et al., 1992; Bhangoo et 

al., 2007; Feldman et al., 1992; Patterson et al., 2000; Schmued et al., 1996; 

Wallace et al., 2007b), the role of the central nervous system, and the spinal cord in 

particular, in the development of NRTI-mediated pain hypersensitivity is unclear. 

Rat models of other peripheral neuropathic pain, including spared nerve injury, 

chronic constriction injury and spinal nerve ligation, are associated with neuronal 

death in the dorsal horn (Scholz et al., 2005). Neural damage initiates macrophage 

activation and is accompanied by an increase in central pro-inflammatory cytokines 
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and chemokines (Keswani et al., 2002; McArthur et al., 2005; Pardo et al., 2001), 

which may contribute to neuropathic pain (Cherry et al., 2003). Wallace et al. 

(2007b) recently showed that repeated systemic injection of zalcitabine to rats 

resulted in a modest increase in microglial and astrocyte activity in the dorsal horn, 

and a limited effect on dorsal root ganglion phenotype. The role of spinal neuronal 

damage in NRTI-induced neuropathy remains unexplored. Consequently, as 

stavudine is known to cause nerve damage in vitro (Bodner et al., 2004; Cui et al., 

1997; Keswani et al., 2004), in my second study I examined whether oral 

administration of stavudine induces apoptosis or necrosis of spinal neurones in rats. 

I found that hyperalgesia that develops with chronic daily oral administration of 

stavudine to rats is not accompanied by spinal neuronal apoptosis or necrosis.  

 

In addition to neuronal death in the dorsal horn (Scholz et al., 2005), other types of 

neuropathic pain are associated with an increase in pro-inflammatory cytokine 

concentrations in the spinal cord (DeLeo et al., 1996; DeLeo et al., 1997; Murphy et 

al., 1995; Ohtori et al., 2004; Wieseler-Frank et al., 2005). Cytokines also are 

thought to play a role in NRTI-induced pain (Pardo et al., 2001) and chemokines 

have been implicated in the progression of zalcitabine-induced pain hypersensitivity 

(Bhangoo et al., 2007; Wallace et al., 2007b). Thus I investigated whether daily oral 

administration of stavudine causes spinal release of the pro-inflammatory cytokine 

IL-6, which is increased in the spinal cord in other rat models of neuropathic pain 

(DeLeo et al., 1996; Murphy et al., 1995), and the chemokine CINC-1, which is 

involved in the development of other types of pain (Loram et al., 2007a; Loram et 
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al., 2007b). While few studies have examined concentrations of both IL-6 and 

CINC-1 in the spinal cord following central or peripheral nerve injury, I have found 

that stavudine administration resulted in an increase in the concentration of CINC-1 

in the spinal cord, as assessed after six weeks of daily administration, up to three 

weeks after the rats developed hyperalgesia, while IL-6 concentration was 

unchanged throughout the six weeks of stavudine administration. These results are 

unique for any rat model of hyperalgesia and I am the first to show that the 

chemokine CINC-1 may play a role in the maintenance of stavudine-induced 

mechanical hyperalgesia, confirming the importance of chemokines in NRTI-

induced pain hypersensitivity in rats (Bhangoo et al., 2007; Wallace et al., 2007b). 

The pro-inflammatory cytokine IL-6 however is unlikely to be involved in the 

development or the maintenance of mechanical hyperalgesia caused by prolonged 

stavudine administration, although this cytokine may have been elevated in the 

spinal cord before the onset of the hyperalgesia. 

 

Besides causing pain hypersensitivity in otherwise-healthy rats (Joseph et al., 2004; 

Weber et al. 2007) and peripheral neuropathy and pain in HIV-positive patients 

(Dalakas, 2001; Moyle & Sadler, 1998; Simpson & Tagliati, 1995), stavudine 

administration, in HIV-positive patients, also is associated with other adverse 

events, such as lipodystrophy, the fat redistribution characterised by peripheral fat 

loss and central fat accumulation (Lechelt et al., 2007), and lactic acidosis caused 

by mitochondrial dysfunction (Montessori et al., 2004). In HIV-positive patients 

these side effects frequently are associated with increased plasma pro-inflammatory 
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cytokine concentration, decreased plasma adiponectin concentration (Jones et al., 

2005; Lindegaard et al., 2004) and increased plasma lactate levels (Brew et al., 

2003; Geddes et al., 2006; Haugaard et al., 2005) respectively.  

 

Although plasma adiponectin (Maisonneuve et al., 2004) and lactate (Igoudjil et al., 

2007; Lewis et al., 2005; Note et al., 2003) levels previously have been shown to 

remain unchanged in mice administered oral stavudine once daily, in two of these 

studies stavudine only was administered for two weeks (Igoudjil et al., 2007; Note 

et al., 2003), which may have been too brief a time for significant adverse events of 

stavudine administration to occur, falling one week short of the time taken for 

hyperalgesia to develop with oral stavudine administration to rats in my study. 

Studies examining the effects of stavudine administration on plasma adiponectin 

and lactate concentrations in mice also did not include data on changes in 

nociception caused by stavudine. Therefore it is unknown whether stavudine indeed 

causes pain hypersensitivity in mice and, as plasma cytokine, adiponectin and 

lactate levels have not been measured in rats administered oral stavudine, whether 

any changes in the concentrations of these variables correspond to the heightened 

sensitivity to pain induced by stavudine in rats. Thus, in my third study, to 

investigate whether a systemic inflammatory response or metabolic dysregulation is 

responsible for the hyperalgesia induced by stavudine in rats, I determined whether 

plasma adiponectin, lactate, CINC-1 and IL-6 concentrations were altered in rats 

administered daily stavudine. I have found that daily oral administration of 50 

mg.kg-1 stavudine to rats for three or six weeks did not alter plasma concentrations 
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of adiponectin, lactate, CINC-1 and IL-6. These findings show that, just as 

stavudine did not affect growth, appetite and voluntary running activity in rats, 

stavudine also had limited adverse effects on mitochondrial bioenergetics and fat 

distribution, at least as reflected in plasma adiponectin concentration, and that 

circulating levels of lactate, adiponectin, and the pro-inflammatory cytokines 

CINC-1 and IL-6 are unlikely to be involved in the development or maintenance of 

stavudine-induced hyperalgesia.   

 

Although I successfully developed a rat model of stavudine-induced hyperalgesia, I 

was unable to determine the underlying mechanisms of this hyperalgesia. Stavudine 

administration did not result in spinal neuronal apoptosis or necrosis, did not cause 

alterations in spinal secretion of the pro-inflammatory cytokine IL-6, and did not 

induce peripheral release of adiponectin, lactate, IL-6 or CINC-1. The chemokine 

CINC-1 only was elevated in the spinal cord following six weeks of daily oral 

stavudine administration, which indicates that spinal CINC-1 may be involved in 

the maintenance of stavudine-induced hyperalgesia, but does not appear to play a 

role in the development of this hyperalgesia.  

 

It is possible that the hyperalgesia induced by stavudine is the result of peripheral 

nerve damage caused by the drug. Stavudine administration results in the loss of 

peripheral neurones in HIV-positive patients (Cherry et al., 2003; Pardo et al., 2001; 

Polydefkis et al., 2002), and repeated systemic injections of zalcitabine to rats 

resulted in decreased intra-epidermal nerve fibre density (Wallace et al., 2007b). 
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NRTI administration to animals also is associated with changes in peripheral 

neurone morphology, such as myelin splitting and demyelination, and changes in 

nerve conduction velocity (Anderson et al., 1992; Bhangoo et al., 2007; Feldman et 

al., 1992; Patterson et al., 2000; Schmued et al., 1996). Similarly, in my studies, 

stavudine administration to rats may have caused damage to peripheral neurones, 

which may result in the release of excitatory amino acids, prostaglandins and nitric 

oxide from activated glial cells (Wieseler-Frank et al., 2005) and cause up- or 

down-regulation of genes responsible for the excitability of surrounding neurones 

(Woolf, 2004), inducing the heightened sensitivity to nociceptive input I observed 

(Wieseler-Frank et al., 2005; Woolf, 2004) following stavudine administration to 

rats.   

   

The fact that I found no effect of stavudine administration on voluntary wheel 

running activity, food intake and growth, no effect on spinal neuronal viability, no 

effect on peripheral release of adiponectin, lactate, and cytokines and only a limited 

effect of stavudine administration on the production of spinal pro-inflammatory 

cytokines indicates that stavudine administration to rats is not associated with the 

numerous side-effects common to HIV-positive patients on stavudine-containing 

therapy. It is thought that HIV-infection may be necessary for toxic neuropathy to 

develop (Keswani et al., 2002; Wallace et al., 2007b). The results of my PhD 

indicate that HIV-infection also may be necessary for other side-effects of stavudine 

therapy, such as lipodystrophy and lactic acidosis, to occur. The underlying HIV 

infection and accompanying immune suppression may enhance the side effects of 
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NRTI therapy, such that these adverse effects are more pronounced in HIV-positive 

patients taking stavudine-containing therapy than in rats administered stavudine in 

the absence of HIV infection. Furthermore, the adverse effects of stavudine 

treatment may be enhanced by other antiretroviral drugs, particularly other NRTIs, 

which are prescribed as part of HAART to HIV-positive patients. As all 

antiretroviral drugs are associated with side effects, the combination of such agents 

is likely to cause a greater degree of toxicity in HIV-positive patients than the 

administration of only stavudine to otherwise-healthy rats. 

 

As stavudine administration to HIV-positive patients is associated with numerous, 

often severe, adverse events, which may result in anxiety and depression and 

decrease quality of life (Larue et al., 1997; Newshan et al., 2002; Ownby & Dune, 

2007), stavudine, and other NRTIs, are assumed to be intrinsically toxic. In this 

thesis I have shown that attaching intrinsic neurotoxicity to NRTIs may have been 

without foundation, as the neurotoxicity of these drugs in HIV-positive patients 

may result largely from the HIV/treatment interaction. Indeed Monif et al. (2007) 

found that a low dose (10 mg) of stavudine administered to healthy volunteers for 

eight days had no adverse effects on the general wellbeing of the volunteers. 

Although the dose of stavudine taken by the healthy volunteers was lower than that 

normally administered to HIV-positive patients and the duration of stavudine 

exposure was very brief, the results of this study indicate that stavudine may not be 

as toxic as previously thought and that an underlying HIV infection may be 

necessary for the numerous, severe side-effects of stavudine therapy to occur. This 
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observation may explain the difficulty of developing robust animal models of 

NRTI-induced neuropathy and neuropathic pain without concurrent HIV-infection.  

 

Wallace and colleagues (2007b) recently showed that, while zalcitabine 

administration to rats had only a limited effect on dorsal root ganglion phenotype 

and glial cell activity in the spinal cord, these effects were exacerbated significantly 

by concurrent gp120 administration. To clarify the intrinsic toxicity of NRTIs, it is 

necessary to further examine the effects of NRTI administration in otherwise-

healthy animals. It also is important to compare the effects of different NRTIs and 

to evaluate the effects of NRTI combinations in otherwise-healthy animals, which 

may be achieved using the model I have described here. However, to more 

accurately assess the adverse effects of antiretroviral drugs in HIV-positive patients, 

it is more appropriate to examine the mechanisms of NRTI-induced toxic 

neuropathy and neuropathic pain in animals concomitantly administered gp120, to 

mimic HIV infection.  
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