FER-Net: facial expression recognition using
densely connected convolutional network

Hui Ma and Turgay Celik™

Convolutional neural network (CNN) architectures have shown
excellent image classification performance on large-scale visual recog-
nition tasks. If a CNN architecture contains a shorter connection
between layers close to the input and those close to the output, the
training can be deeper, more accurate and efficient. In this Lette, the
authors propose a densely connected CNN architecture for facial
expression recognition (FER-Net), which connects the output of each
convolution layer to the inputs of the next convolution layers in the
architecture. Experiments conducted on a publicly available dataset
show that FER-Net produces state-of-the-art results in facial expression
recognition.

Introduction: Facial expression, as one of the most important means for
humans to express emotion and connotation in the process of communi-
cation, plays an important role in the development of human—computer
interaction systems. In recent years, facial expression recognition (FER)
has become an important research topic due to its various applications
in, such as, health care and data-driven animation [1]. The main goal
of a FER system is to identify human emotional states based on a
given facial image.

Deep convolutional neural network (DCNN) architectures have made
a series of breakthroughs in image classification tasks [2, 3]. With the
deepening of the network, when the input information (or the gradient
from the back-propagation) goes through many layers, it can vanish
and ‘wash out’ by the time it reaches the end (or the beginning) of the
network. In order to address this problem, several DCNN architectures
have been proposed. Highway Networks [4] and ResNet [5] bypass the
signal from one layer to the next by identifying intermediate connections
between the layers. Stochastic depth [6] shortens the ResNet by
randomly dropping layers during training to get better information and
gradient flow. FractalNets [7] repeatedly combines several parallel
layer sequences with different numbers of convolution blocks to
obtain a large nominal depth while maintaining many short paths in
the network. Although these methods differ in terms of network
architecture and training strategy, they all have a key characteristic:
‘they create short paths from earlier layers to the later layers’.
Motivated by the literature [8], we introduced densely connected
DCNN for facial expression recognition (FER-Net). To support the
feed-forward information flow, each convolution layer gets additional
input from the all previous convolution layers and passes its own
feature map to all subsequent convolution layers in the architecture.

Network architecture: The network architectures of CNN, ResNet
and FER-Net are shown in Fig. 1. In order to test the performances of
different methods, the networks are designed with the same architectural
components as shown in Figs. la—c. The details of the network
components are given in Fig. 1d where ‘IP3” represents the output of
the network.

The FER-Net architecture adopts the typical architectural designs of
CNN and ResNet. However, in contrast to the ResNet architecture,
the FER-Net architecture never combines the intermediate features
from the convolution layers by summation before they are passed into
the next convolution layer. Instead, it distributes features within the
network by concatenating them to support the feed-forward input
information flow.

As shown in Fig. 1¢, the FER-Net architecture is designed to improve
the information flow by creating direct connections from any convolu-
tion layer to all subsequent convolution layers and to the first densely
connected layer. Let x; € R and y, € R4 respectively, be
the input and the output feature maps at the ith layer, then the ith
layer of the FER-Net receives the input from the preceding layers
as follows: x; = H(y;_\,¥i_» -..,¥;), where H;(-) is a function
which simply concatenates the input feature maps y, i, ¥;_», ..., ¥,
ie. H;: thwxd,-,l x thwxd,-,g X oo X thwxdl — thwx(d,,l+rA,z+---+d1)'

The FER-Net enhances the feed-forward information flow within the
network by distributing the output of each layer to the succeeding layers
in the architecture. Meanwhile, the ResNet only achieves a limited
information flow considering only two preceding layers of each layer,
ie. x;=y,_; +y,_,. In contrast to the ResNet and FER-Net, as

shown in Fig. la, there is no feed-forward information distribution in
the CNN architecture.
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Fig. 1 DCNN architectures for facial expression recognition

a CNN

b ResNet

¢ FER-Net

d Parameters of the architectures.

Legend: ‘Input’ (input greyscale image); ‘Convi’ (ith convolution layer); ‘IP/’
(ith fully connected layer); ‘ReLU’ (rectified linear unit layer); ‘Norm’
(normalisation layer); ‘Pool’” (pooling layer); ‘Dropout’ (dropout layer); ‘BN’
(batch normalisation layer); and ‘Maxout’ (maximum feature map layer)

Data balancing: We utilised the FER2013 dataset [9] for FER task. The
FER2013 dataset is a Kaggle challenge dataset and contains 35,887
greyscale images of size 48 x 48 collected and labelled using
Google’s image search API. The dataset is split into training (28,709
images), validation (3589 images) and test (3589 images) sets. There
are seven classes in the dataset representing facial expressions:
‘angry’, ‘disgust’, ‘fear’, ‘happy’, ‘sad’, ‘surprise’ and ‘neutral’.
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Fig. 2 Sample statistics of FER2013 training dataset before and after data
balancing

The statistics of the training dataset is given in (see Fig. 2) which
shows that the training dataset is highly imbalanced and learning from
imbalanced dataset is a challenging task. In a typical imbalanced
dataset the number of instances of some classes, called the majority
classes, are significantly higher than the number of instances of the
remaining classes, called the minority classes. In order to re-balance
the class distribution by means of under- or over-sampling, the majority
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class ‘Happy’ is randomly under-sampled to reduce its class size.
Meanwhile, in this paper, the number of samples of the minority class
‘Disgust’ is increased by a linear transformation of the greyscale
images in the class as follows. Considering that the greyscale range of
and each image f'in a minority class is in [a, b], a linear transformation
is applied to the pixels of f'to generate a synthetic image g in range
[c,d], ie. g =(d —¢)/(b— a)f + c. Some synthetic images from the
linear transformation process of a ‘Disgust’ class sample are shown in
Fig. 3. The class statistics after data balancing is shown in Fig. 2.
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Fig. 3 Synthetic images (b-j) generated from a ‘Disgust’ class sample
(a) using the linear transformation

Experiments: Experiments are carried out on a desktop computer with
Intel(R) Core(TM) i5-8600 K, 3.6 GHz x 6CPUs, a single GeForce
GTX 1080, on Ubuntu 16.04 LTS OS. The DCNN architectures were
implemented in deep learning library Caffe.
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Fig. 4 Test performances as confusion matrix of different architectures
trained on original (imbalanced) and balanced training datasets. Legend.:
‘Angry’ (Ang); ‘Disgust’ (Dis); ‘Fear’ (Fea); ‘Happy’ (Hap); ‘Sad’ (Sad);
‘Surprise’ (Sur); and ‘Neutral’ (Neu)

We first compared FER-Net against to ResNet and CNN trained on
the original (imbalanced) and balanced datasets. The experimental
results are given in Table 1 and the corresponding confusion matrixes
are shown in Fig. 4. The results show that, although CNN and ResNet
have shorter average forward-backward time and smaller network size
compared to FER-Net, FER-Net achieves about 3% improvement in
accuracy with respect to CNN and ResNet on both imbalanced and
balanced datasets. It is also clear that data balancing with a linear trans-
formation yields about 2, 2.5 and 3% accuracy improvements for CNN,
ResNet and FER-Net, respectively. The confusion matrixes show that all
three networks produce the lowest or the second lowest accuracy on the
class ‘Fear’ on both imbalanced and balanced datasets. The class ‘Fear’
is mostly confused with the classes ‘Angry’ and ‘Sad’ as these emotions

have similar visual characteristics, which makes it difficult for the
networks to discriminate between them. Meanwhile, the networks
achieve highest accuracy in classifying ‘Happy’ class, which has
discriminative visual features resulting from widened mouth.

Table 1: Test performances of different architectures on
FER2013 dataset
A
Model Train dataset | Accuracy, % cqrjl;‘jtgirfg s?/;e),d;}[
time, ms
CNN imbalanced 63.50 5.89 10.8
ResNet (ReLU-Maxout) imbalanced 64.14 2541 61.1
FER-Net (ReLU) imbalanced 66.54 57.59 428.4
CNN balanced 65.68 5.61 10.8
ResNet (ReLU-Maxout) balanced 66.51 25.68 61.1
FER-Net (ReLU) balanced 69.51 57.59 428.4
FER-Net (Maxout) balanced 69.01 46.29 218.4
FER-Net (Maxout-ReLU) balanced 68.36 53.13 428.1
FER-Net (ReLU-Maxout) balanced 69.72 50.55 428.4
Multiple Deep Network [10] — 52.29 — —
Net B_DAL [11] — 58.33 —
Net B_DAL_MSE [11] — 59.15 —
Net Net B [11] — 60.91 — —
Net Subnet2 [12] — 61.58 — —
Net Subnet] [12] — 61.74 —
Net Subnet3 [12] — 62.44 —

The FER-Net employs ReLU as activation function, however, the
performance of the network may change according to the type of
activation function utilised. Thus, we experimented with different
activation functions to test the performance of FER-Net on the balanced
dataset. The experimental results are given in Table 1 which shows that
the combination of ReLU-Maxout achieves the highest test accuracy.
The results also show that the performance of the FER-Net does not
significantly change with respect to the type of activation function
used. The maximum performance change for different activation func-
tions stays within 1% margin.

In Table 1, we also compared the performance of FER-Net against
to the state-of-the-art architectures designed for facial expression
recognition task on FER2013 dataset. The results show that the
FER-Net outperforms all methods considered in this Letter on both
imbalanced and balanced training datasets.

Conclusion: In this Letter, we introduced a FER-Net for facial
expression recognition. The FER-Net densely distributes features
within the network by concatenating them to support the feed-forward
input information flow. By doing so it achieves the state-of-the-art
accuracy in facial expression recognition task on a publicly available
dataset. We also showed that data balancing using a simple linear
transformation of training images results in considerable performance
improvements.
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