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ABSTRACT 

 

In-part through a decrease in cardiac cavity dimensions (reverse 

remodelling), β-adrenergic receptor blockers have been demonstrated to produce 

marked benefits to morbidity and mortality in patients with chronic heart failure. 

However, maximum doses of these agents are often difficult to achieve in patients 

with chronic heart failure because of the negative inotropic, hypotensive and other 

side effects. Whether blockade of the excessive adrenergic effects achieves 

complete reverse remodelling in progressive heart failure is nevertheless uncertain. 

To test this hypothesis I simulated the adverse effects of chronic adrenergic 

stimulation on the heart by administering daily doses of the β-adrenergic receptor 

agonist, isoproterenol (ISO) (2.42 X 10-8 mmol.kg-1) to rats for 6 months and 

compared left ventricular (LV) dimensions and systolic function to Saline-vehicle 

treated rats. To imitate the effects of complete adrenergic receptor blockade 

following the development of adrenergic-induced adverse cardiac changes, I 

similarly administered ISO for 6 months and then subsequently withdrew the daily 

ISO administration for a further 4 months (ISO+Recovery) before comparing left 

ventricular dimensions and function to Saline+Recovery treated rats. 

In comparison to a Saline vehicle-treated group, after 6 months of ISO 

administration, LV end diastolic and systolic diameters, and the volume intercept of 

the left ventricular diastolic pressure-volume relationship (LV V0), were markedly 

increased and LV endocardial fractional shortening (FSend), LV end systolic chamber 

(slope of the systolic pressure-volume relationship-Ees) and myocardial (slope of the 

systolic stress-strain relationship-En) contractility were substantially decreased. The 

extent of the adverse remodelling produced by chronic ISO administration was 

exemplified by the 2.5 times increase in LV V0 (ISO=0.40±0.04 vs Saline=0.16±0.01, 

p<0.001), a change proportionate to that noted in humans with chronic heart failure. 
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The proportion of ISO-treated rats with LV chamber diameters, and LV V0 values 

above the 95% confidence interval for Saline-treated rats was markedly greater than 

the proportion of Saline-treated rats above their own 95% confidence intervals. 

Moreover, the proportion of ISO-treated rats with FSend, LV Ees and LV En values 

below the 95% confidence interval for Saline-treated rats was markedly greater than 

the proportion of Saline-treated rats below their own 95% confidence intervals. 

Following a 6 month period of ISO administration and a subsequent period of 

withdrawal of ISO administration for a further 4 months, LV chamber diameters, LV 

V0, FSend, LV Ees and LV En were all noted to be similar to age-matched 

Saline+Recovery control rats. Indeed, the increases in LV V0 observed after 6 

months of ISO administration were completely reversed (ISO+Recovery=0.21±0.02 

vs Saline=0.23±0.02, p<0.001). The proportion of ISO+Recovery rats with LV 

chamber diameters, and LV V0 values above the 95% confidence interval for the 

Saline+Recovery rats was similar to the proportion of Saline+Recovery rats above 

their own 95% confidence intervals. Moreover, the proportion of ISO+Recovery rats 

with FSend, LV Ees and LV En values below the 95% confidence interval for 

Saline+Recovery rats was similar to the proportion of Saline+Recovery rats below 

their own 95% confidence intervals. Chronic ISO administration and the withdrawal 

of ISO administration was not associated with changes in myocardial necrosis 

(pathological score and myocardial collagen concentrations). 

In conclusion, marked cardiac dilatation and pump dysfunction produced by 

chronic β-adrenergic receptor activation can be completely reversed by withdrawal of 

the excessive adrenergic stimulus. These data highlight the importance in chronic 

heart failure of achieving complete blockade of the pathways activated by excessive 

β-adrenergic receptor stimulation even in individuals with advanced cardiac 

dilatation.  
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PREFACE 

 

 Despite impressive advances over the past 10-20 years in the treatment of 

chronic heart failure, chronic heart failure still carries a considerable morbidity and 

mortality. Hence, an important aim in the care of patients with chronic heart failure is 

to achieve optimal therapy. One of the most important recently developed successful 

therapeutic approaches in chronic heart failure, an approach demonstrated in large 

scale clinical trials, has been the use of β-adrenergic receptor blocker (β-blocker) 

therapy. β-blockers, in-part by producing a decrease in cardiac cavity volumes or 

dimensions (i.e. attenuates cardiac dilatation) and hence improving pump function, 

have been shown to decrease morbidity and mortality in a number of forms of chronic 

heart failure including in patients with severe heart failure. However, because of the 

negative inotropic and hypotensive effects of β-blocker therapy, as well as additional 

side effect profiles produced by these agents, many patients with chronic heart 

failure, particularly those with advanced cardiac dilatation and pump dysfunction, 

cannot achieve maximal doses of these agents or may take a considerable period of 

time to achieve maximal doses of β-blocker therapy. Thus, these patients may be 

disadvantaged by low dose β-blocker therapy, a lack of β-blocker therapy or an 

extended period of time taken to achieve clinically important doses.  

As adrenergic activation promotes cardiac dilatation and pump dysfunction in-

part through myocardial changes which are associated with cardiac damage and 

cardiomyocyte cell slippage, whether β-blocker therapy is able to completely reverse 

adrenergic-induced cardiac dilatation is nevertheless still uncertain. No clinical or 

preclinical studies have demonstrated a capacity for complete reversal of adrenergic-

mediated cardiac dilatation and pump dysfunction. If complete reversal is possible 

this should encourage further work in identifying downstream molecular and cellular 

targets from β-adrenergic receptors that are responsible for cardiac dilatation and 

pump dysfunction without mediating adrenergic-inotropic effects. In the present 
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dissertation I therefore explored whether marked cardiac dilatation and pump 

dysfunction mediated by chronic β-adrenergic receptor activation can be reversed by 

removal of the β-adrenergic receptor stimulus. 

In the present dissertation in Chapter 1 I provide a review of the important 

scientific literature that describes the adverse effects of chronic adrenergic activation 

on the heart and argues in favour of performing the study described. In Chapters 2 

and 3 I describe the methodology employed and the results obtained respectively. In 

Chapter 4 I discuss the results of the study in the context of the scientific literature 

described in Chapter 1; I highlight how the results of the dissertation extend our 

knowledge of the field; I underscore the strengths and limitations of the study and I 

suggest potential clinical and scientific implications of the study.      
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Chapter 1 

 

Introduction 

 

Adrenergic-induced cardiac chamber dilatation 

in heart failure 
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1.1. Introduction 

 

Data obtained from earlier studies conducted by the Framingham Heart Study 

indicated that ~1 % of 50 to 59 year olds in the United States of America (USA) may 

have had heart failure in the late 1980’s and early 1990’s and that the prevalence rate 

was noted to double with each decade of age thereafter (Armstrong & Moe, 1993). The 

incidence rate for heart failure in the USA has remained high and approximately 550 000 

new cases of heart failure were reported on in 1999 (Levy et al., 2002).Thus, in any one 

year, ~2 million people in the USA may be affected by heart failure, the consequence 

being an estimated $9 billion in annual costs for hospitalisations, medical care and loss 

of skills (Armstrong & Moe, 1993). These figures are thought to be similar to a variety of 

nations with developed socio-economic infrastructures. However, the burden of heart 

failure is not restricted to developed countries. Indeed, in a recent clinical audit 

conducted in a hospital that services an urban developing community in South Africa, of 

the total cases reported on in a cardiology unit, 44% had heart failure (Stewart et al., 

2008). 

Heart failure is a progressive condition that contributes to a considerable 

proportion of morbidity and mortality (Cowie et al., 2000, Mosterd et al., 2001). From the 

time of diagnosis, survival rates in people with heart failure are often comparable with 

malignancies with the worst possible outcomes (Lenfant, 1994, Stewart et al., 2001, 

Hobbs, 2004) and it is estimated that approximately 287 200 deaths in the USA are 

attributed to heart failure every year (Levy et al., 2002). 

Heart failure represents the sum of multiple anatomical, physiological, cellular 

and molecular alterations that translate into a complex clinical syndrome. Heart failure 

may occur as a consequence of either an abrupt or acute event such as a myocardial 
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infarct following atheromatous plaque rupture and coronary artery occlusion, or 

myocarditis, or following an insidious process such as in conditions of pressure or 

volume overload of the heart, valvular disorders, or in hereditary or other forms of 

cardiomyopathies. Over the past three decades striking advances have been made in 

identifying the haemodynamic, neurohumoral, genetic, cell signalling and molecular 

pathways associated with cardiac abnormalities and disease progression in heart failure. 

A number of these discoveries have led to the development of novel therapeutic 

approaches to improving survival rates in heart failure, therapeutic approaches that are 

designed to target the mechanisms of disease progression, rather than the cause of the 

heart failure per se (Olson, 2004). In this regard, some of the most successful advances 

have been based on our understanding of the adrenergic mechanisms responsible for 

the progression of heart failure. Thus, many of the effective therapies in heart failure 

have been those that target adrenergic changes in heart failure (Packer et al., 1996, 

2001, MERIT-HF, 1999, Lechat et al., 1997, CIBIS-II 1999, Domanski et al., 2003, 

Poole-Wilson et al., 2003, Flather et al., 2005, Butler et al., 2006, Hernandez et al., 

2009). Despite the success of adrenergic blockers, even with the best care the average 

5-year survival rate of patients with heart failure is still only one quarter to one third of the 

survival rates of age-matched healthy counterparts from the time of discharge from 

hospital (Shahar et al., 2004). What has not necessarily received careful consideration in 

the current scientific literature is the reasons for the inability to prevent mortality in a 

significant number of patients with heart failure. 

In the present dissertation I pose the question that because many of the cardiac 

changes responsible for progressive heart failure are through advanced adrenergic-

induced structural alterations in the heart, and that advanced structural alterations may 

be irreparable, that adrenergic-induced cardiac changes may therefore only be partially 
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reversed. Therefore in chapter 1 of the present dissertation, I will first describe the 

evidence to show that adrenergic activation contributes to progressive heart failure and 

consequently that adrenergic blockade is able to save lives in patients with heart failure. 

I will highlight the fact that the ability of adrenergic activation to increase mortality and 

the capacity of adrenergic blockade to save lives in heart failure may be attributed in-part 

to the ability to produce beneficial effects on cardiac structural remodelling associated 

with cardiac dilatation. Subsequently I will outline the potential cellular and molecular 

mechanisms involved in adrenergic-induced cardiac dilatation. I will then describe the 

evidence or the lack thereof to show reversibility of a number of these changes in clinical 

studies. 

 Essential to an understanding of the mechanisms of the adverse effects of 

adrenergic activation in heart failure and the benefits of adrenergic blockade is an 

understanding of the characteristic features of the different pathophysiological 

mechanisms responsible for heart failure. Thus, before addressing the aforementioned 

issues, I will first describe the general pathophysiological processes responsible for heart 

failure that are thought to be driven in-part by adrenergic activation. 

 

1.2 Cardiac dysfunction in heart failure 

 

Heart failure is a clinical syndrome which from a pathophysiological perspective 

may occur as a consequence of changes in systolic and/or diastolic function of the heart 

or in association with high or low output states. High output cardiac failure generally 

occurs as a result of a high venous return which produces an increase in cardiac filling 

and hence an enhanced cardiac output through the Frank-Starling effect. Even though 

the cardiac output is high, it is either inadequate for the bodies energy requirements 
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during exercise (the heart is performing at a peak level of performance even at rest) or, 

through increases in cardiac filling, results in excessive venous and capillary hydrostatic 

pressures in both the lungs and the systemic circulation. In contrast to high output heart 

failure where the heart muscle may have a normal or relatively normal function, there are 

two broad groups of pathophysiological abnormalities that affect the function of the heart 

muscle per se. In this regard, patients with chronic heart failure may develop diastolic 

(primary disorder of filling) or systolic (primary disorder of emptying) heart failure. As the 

characteristic pathophysiological mechanisms that distinguish diastolic from systolic 

heart failure have been employed to define cardiac changes in the present dissertation, 

these changes will be discussed in subsequent sections.  

 

1.2.1 Diastolic dysfunction and diastolic heart fai lure 

 

 Diastolic heart failure is a previously unappreciated but nevertheless common 

cause of chronic heart failure (Vasan et al. 1999), accounting for a significant proportion 

of mortality and morbidity (Zile et al., 2005). In 1988 Kessler first defined the term 

“diastolic” heart failure to identify a group of patients with chronic heart failure 

characterized by concentric cardiac remodelling (increased cardiac chamber wall 

thickness to radius ratio) with a normal or even reduced left ventricular filling volume and 

abnormal left ventricular diastolic features such as a slow or delayed relaxation with an 

increased cardiac stiffness (Kessler, 1988). Diastolic cardiac dysfunction refers to an 

abnormal mechanical property and not a clinical syndrome whereas diastolic heart 

failure is a clinical syndrome, identified by characteristic signs and symptoms of heart 

failure, but that is nevertheless associated with a relatively normal systolic function, but a 

reduced diastolic function (Vasan et al., 1999, Zile et al., 2004, 2005). Diastolic 
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dysfunction occurs when the ability of the ventricular myocardium to return to a relaxed 

unstressed length is prolonged, slowed or incomplete. 

Measurements that reflect an abnormal diastolic function depend on the onset, 

rate, and extend of ventricular pressure decline and filling and the relationship between 

the pressure and volume or the stress and strain observed during diastole (Gilbert & 

Glantz, 1989). A characteristic feature of diastolic cardiac dysfunction (Gilbert & Glantz 

1989) and diastolic heart failure (Zile et al., 2004) is an increased filling pressure for a 

given filling volume subsequent to a reduced cardiac chamber compliance or an 

increased chamber stiffness. Indeed, patients with diastolic heart failure show a cardiac 

diastolic pressure-volume relationship that appears similar to that depicted in Figure 1.1 

(Zile et al., 2004). Figure 1.1 shows typical changes in left ventricular end diastolic 

pressure-volume relations in patients with diastolic heart failure, where ventricular cavity 

size and end-diastolic volumes (or filling volumes) may remain normal or even decrease, 

whilst ventricular filling pressures are elevated for a given filling volume (Zile et al., 2004, 

Chatterjee & Massie, 2007). The mechanism responsible for the abnormal diastolic 

pressure-volume relationship is a decreased chamber compliance or an increased 

chamber stiffness as indicated by the steeper slope of the diastolic pressure-volume 

relationship (Figure 1.1) (Zile et al., 2004). The increased filling pressures that occur at 

normal filling volumes are responsible for the development of pulmonary congestion (left 

heart failure) and thus ultimately the development of right-sided heart failure. 

Although there are a number of causes of diastolic heart failure that are not 

necessarily associated with myocardial abnormalities (e.g. pericardial disease), diastolic 

heart failure is nevertheless most frequently associated with abnormalities of the 

myocardium. In patients with diastolic heart failure, cardiomyocyte sarcomeres may 

replicate in parallel, thus increasing myocyte cross-sectional area with no change in the  



7 

 

 

 

 

 

Figure 1.1 Left ventricular (LV) end diastolic pressure-volume relationships and cartoon 

of the geometry of the heart associated with these relationships (right side) in normal 

hearts and in hearts with diastolic heart failure. The figure shows a normal relationship 

(solid line) and the change in the relationship when chamber compliance decreases or 

stiffness increases (dashed line) in diastolic heart failure. The effect of a less compliant 

chamber on diastolic pressure is illustrated by the dashed arrow (left panel). 
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length-to-width ratio (Chatterjee & Massie, 2007). These changes in myocyte 

remodelling are fundamental to the marked increases in wall thickness that may occur 

(concentric cardiac remodelling) and this increased wall thickness may contribute toward 

the stiffer chamber (see Figure 1.1). Furthermore, alterations in the interstitial properties 

of the myocardium may occur in hearts with diastolic dysfunction, with increases in total 

collagen concentrations or in the concentrations of myocardial collagen with increased 

cross-linked properties (Norton et al., 1996, Norton et al., 1997, Badenhorst et al., 

2003a). The increased myocardial collagen with enhanced cross-linked properties 

determines the material properties of the heart (myocardial passive stiffness) and hence, 

also contributes toward an increased chamber stiffness or decreased chamber 

compliance (Norton et al., 1996, Norton et al., 1997, Badenhorst et al., 2003a). 

Alternatively, in diastolic heart failure the capacity of the myocardium to actively relax 

may be impaired through a number of mechanisms including a reduced capacity of the 

sarcoplasmic reticulum to actively sequester Ca2+ ions (Sordahl et al., 1973). An inability 

of the myocardium to relax will result in an attenuated ventricular filling and hence an 

enhanced filling pressure and subsequently the clinical signs of heart failure such as 

pulmonary congestion and peripheral oedema. 

 

1.2.2 Systolic dysfunction and systolic heart failu re 

 

 Systolic heart failure is a well-recognised cause of chronic heart failure also 

accounting for a significant proportion of mortality and morbidity (Zile et al., 2005). 

Systolic heart failure is associated with a reduced ability of cardiac myofibrils to shorten 

and hence a decreased ability of the ventricle to eject blood despite a normal or even 

increased ventricular filling volume. The characteristic feature of systolic heart failure is 
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heart failure associated with a decreased systolic performance, most frequently 

determined as ventricular ejection fraction (stroke volume/end diastolic filling volume). 

The reduction in systolic performance may be attributed to an increased load on the 

heart, or a decreased myocardial or chamber contractility (defined in experimental 

studies as end systolic elastance or the slope of the end systolic pressure-volume 

relationship, which is a load-independent measure of systolic function). 

 In contrast to heart failure produced by diastolic dysfunction of the left ventricle, 

which is associated with a left shift in the left ventricular pressure-volume relationship 

and concentric cardiac remodelling (Figure 1.1), heart failure produced by systolic 

dysfunction of the left ventricle is associated with a right shift in the left ventricular 

diastolic pressure-volume relationship with ventricular eccentric chamber remodelling or 

cardiac chamber dilatation (Figure 1.2). In cardiac dilatation the ventricular cavity size is 

enlarged resulting in increases in both end-diastolic and end-systolic volumes. However, 

ventricular wall thickness may be unchanged or even decreased as a consequence of 

the chamber dilatation. Nevertheless, in contrast to diastolic heart failure where the 

cardiac chamber is stiff or non-compliant (compare slopes of relationships in Figure 1.1), 

in systolic heart failure cardiac passive stiffness and compliance may be unchanged 

(compare slopes of the relationships in Figure 1.2). Presumably the potential benefits of 

this process are to maintain normal filling pressures despite increases in filling volumes 

that occur as a consequence of a reduced ventricular ejection (note the greater filling 

volumes for the same filling pressure in Figure 1.2). However, as will be discussed in 

subsequent sections (section 1.3), cardiac dilatation is an advanced structural change 

that is well-recognised as being associated with morbidity and mortality in heart failure. 

Importantly, from a structural perspective there are therefore distinct and 

characteristic differences in the ventricular chamber remodelling processes that  
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Figure 1.2 Left ventricular (LV) end diastolic pressure-volume relationships showing a 

normal relationship (continueous line) and the change in the relationship with cardiac 

chamber dilatation (dashed line). The change in left ventricular geometry associated with 

cardiac dilatation is depicted in the cartoon on the right.  
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accompany systolic as opposed to diastolic heart failure. These characteristic features 

are largely summarized in Table 1.1. What is important to note is that one of the primary 

distinguishing features that characterises systolic from diastolic heart failure is an 

increase in chamber dimensions in systolic heart failure. 

 

1.3 Cardiac dilatation as a cause of cardiac dysfun ction and failure. 

 

As previously indicated, the potential benefits of cardiac dilatation is to maintain 

normal filling pressures despite increases in filling volumes that occur as a consequence 

of a reduced ventricular ejection. However, the question arises as to whether cardiac 

dilatation is indeed a change that benefits patients with heart failure? In this regard, in 

keeping with La Place’s Law, where wall stress or tension is proportional to radius and 

inversely proportional to wall thickness, in systolic heart failure, the structural remodelling 

process (increased chamber volumes, but unchanged or decreased wall thickness) 

results in an increased wall stress. An increased cardiac wall stress is major determinant 

of a reduced pump function and indeed, in heart failure the lowest values for pump 

(systolic) function are associated with the cardiac highest cavity volumes (Norton et al., 

2002). 

An alternative mechanism through which cardiac dilatation may contribute toward 

pump dysfunction is through alterations in chamber shape. With cardiac dilatation, the 

shape of the heart changes from a normal ellipsoid to a more spherical shape. As an 

elliptical shape is required to generate appropriate ventricular ejection during torsion 

(Sallin, 1969), cardiac dilatation may further reduce pump function through shape 

changes. Indeed, left ventricular shape changes predict mortality in dilated hearts 

(Douglas et al., 1989). Thus, although cardiac dilatation may have benefits by
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Table 1.1 Structural and functional changes in systolic versus diastolic heart failure. 

 

Parameters     Systolic heart failure      Diastolic heart failure 

Left ventricular Mass Increased Increased 

Left ventricular cavity size Increased Increased or normal 

Mass/Cavity Decreased Increased 

Ejection fraction Decreased Normal 

Wall thickness Decreased Increased 

End-systolic stress Increased Normal 

End-diastolic stress Increased Increased 

End-systolic volume  Increased Decreased or normal 

End-diastolic volume Increased Normal 

Left ventricular shape        Spherical Unchanged 
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accommodating increased ventricular filling volumes for a given filling pressure; this 

benefit could be offset by the impact of cardiac dilatation on pump function. Importantly 

however, there are many that still hold the view that cardiac dilatation is a consequence, 

rather than a cause of pump dysfunction. This view is largely derived from the fact that 

myocardial contractile dysfunction frequently accompanies cardiac dilatation and a 

reduction in myocardial contractility results in increased chamber volumes. As indicated 

in the aforementioned discussion, chamber dilatation is thus viewed by many as a 

remodelling process that accommodates the increased chamber volumes rather than a 

change that promotes pump dysfunction and systolic heart failure. Is there evidence to 

indicate that cardiac dilatation can cause pump dysfunction? Moreover, is there 

evidence to indicate that cardiac dilatation is associated with worse outcomes in heart 

failure or heralds the onset of heart failure in otherwise well individuals? 

 

1.3.1 Association between cardiac dilatation and pu mp dysfunction independent 

of myocardial systolic (contractile) dysfunction. 

  

There is no clinical evidence that segregates the impact of cardiac dilatation from 

that of myocardial systolic dysfunction on cardiac pump function or the presence of heart 

failure. However, a  preclinical study conducted by members of our group has 

demonstrated that the presence of heart failure (identified from the presence of 

pulmonary congestion) and pump dysfunction (a reduced endocardial fractional 

shortening) in marked pressure overload hypertrophy produced by abdominal aortic 

banding is associated with a combination of cardiac dilatation and myocardial contractile 

disturbances, whilst myocardial contractile disturbances alone were insufficient to 

account for the presence of heart failure (Norton et al., 2002). In this regard, animals with 
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pressure overload hypertrophy and concentric left ventricular remodelling had a reduced 

myocardial contractility, but no evidence of pulmonary congestion or pump dysfunction 

(Norton et al., 2002). Thus, in the absence of cardiac dilatation neither pump dysfunction 

nor pulmonary congestion (left heart failure) were noted despite the presence of 

myocardial contractile disturbances (Norton et al., 2002). Although these data do not 

exclude a role for decreases in myocardial contractility in contributing toward heart 

failure in pressure overload states, this study certainly provides the evidence to indicate 

that pump dysfunction and heart failure in pressure overload states is to some extent 

dependent on the presence of cardiac dilatation (Norton et al., 2002). Further studies 

from members of our group have provided additional support for a critical role of cardiac 

dilatation in mediating pump dysfunction independent of myocardial contractile 

disturbances. Indeed, our group has demonstrated that chronic adrenergic stimulation 

can promote the transition from compensated cardiac hypertrophy to pump dysfunction 

in association with cardiac dilatation, but not with decreases in intrinsic myocardial 

contractile disturbances (Veliotes et al., 2005, Badenhorst et al., 2003b, Gibbs et al., 

2004, Veliotes et al., 2010). Thus, preclinical studies have provided the evidence to 

suggest that cardiac dilatation is a necessary prerequisite for the development of pump 

dysfunction and subsequent systolic heart failure at least in pressure overload states 

and following excessive adrenergic activation.  

 

1.3.2 Association between cardiac dilatation and pu mp dysfunction in clinical 

studies. 

 

 A number of clinical studies have provided the evidence to indicate that cardiac 

dilatation is associated with a worse pump function and adverse clinical outcomes in 
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heart failure. In this regard there are presently innumerable clinical studies, too many to 

cite in the present dissertation, showing strong relationships between end diastolic 

diameters or volumes and pump dysfunction in patients with heart failure. However, it is 

well accepted that in patients with heart failure, a left ventricular end diastolic diameter ≥ 

65 mm is associated with impaired pump function as indexed by a reduced ejection 

fraction (<40%) (Cohn et al., 2000). A number of studies assessing the impact of the 

medical management of heart failure also show a close relationship between changes in 

left ventricular dimensions and pump function. For example, of 171 patients with heart 

failure, in the 38 patients who responded to β-adrenergic receptor blocker therapy, who 

had an average initial left ventricular end diastolic volume (LVEDV) of 175 ml/m2 and a 

left ventricular ejection fraction of 20.2%, after β-adrenergic receptor blocker therapy 

LVEDV decreased to 113 ml/m2  and ejection fraction increased to 43% (Metra et al., 

2003). However, it is perhaps unsurprising that a close relationship exists between 

cardiac chamber volumes and ejection fraction. After all ejection fraction is calculated as 

a fraction of filling volumes. Is there evidence from clinical studies to indicate that filling 

volumes are associated with outcomes in heart failure? 

 

1.3.3 Association between cardiac dilatation and cl inical outcomes in heart 

failure. 

 

With respect to the relationship between cardiac dilatation and outcomes in 

cardiac failure, there is no question that cardiac dilatation is a major risk factor for 

mortality in advanced heart failure (Nestico et al., 1985, Gadsboll et al., 1990, Lee et al., 

1993, Foley et al., 1995, Foley & Parfrey, 1998). Moreover, with the treatment of heart 

failure, reductions in cardiac chamber volumes and dimensions are associated with 
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better long-term outcomes, including survival (Doughty et al., 1997, Sharpe & Doughty, 

1998). Furthermore, patients predicted to be at risk for long-term left ventricular dilatation 

have an increased risk of mortality and heart failure at 6 months (de Kam et al., 2002). 

This knowledge of the dependence of cardiac outcomes on chamber dimensions is now 

sufficiently well established that measurements of chamber dimensions have been 

incorporated as risk predictors into guidelines for the management of heart failure (Hunt 

et al., 2001). However, this evidence still does not establish cause and effect 

relationships between cardiac dilatation and cardiac outcomes. Is there evidence to 

indicate that cardiac dilatation precedes the development of heart failure? 

 

1.3.4 Association between chamber dimensions and th e development of heart 

failure. 

 

There is now substantial evidence to indicate that cardiac dilatation is a precursor 

of left ventricular dysfunction and clinical heart failure (Gaudron et al., 1993, Pfeffer et 

al., 1993, Vasan et al., 1997). This may occur in individuals with cardiac pathology 

(Gaudron et al., 1993, Pfeffer et al., 1993) or without any evidence of pre-existing 

cardiac pathology (Vasan et al., 1997). Moreover, medical therapy that prevents the 

development of cardiac dilatation prevents the development of cardiac dysfunction 

(Pfeffer et al., 1993). Perhaps the most important evidence from the perspective of the 

present dissertation, is the evidence obtained from 4744 participants of the Framingham 

Offspring Study, during an 11 year follow-up period where 74 participants without 

myocardial infarction, or pre-existing heart failure developed congestive heart failure and 

adjusting for age, blood pressure, body-mass index, valve disease, diabetes, 

hypertension treatment and myocardial infarction, left ventricular internal dimensions 
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contributed significantly to the risk of developing congestive heart failure (Vasan et al., 

1997). This evidence provides strong support for a role of cardiac dilatation as a cause 

of heart failure. However, an intervention study specifically targeting chamber volumes is 

still required to establish this hypothesis. 

 

1.4 The role of adrenergic activation in heart fail ure. 

 

 There is now considerable evidence to indicate that adrenergic activation occurs 

in heart failure and that the extent of adrenergic activation contributes to the progression 

and the outcomes in heart failure. Indeed, plasma noradrenaline and adrenaline 

concentrations are considerably increased in patients with heart failure (Kluger et al., 

1982, Cohn et al., 1984, Hasking et al., 1986, Swedberg et al., 1990, Francis et al., 

1993, Sigurdsson et al., 1994, Esler et al., 1997, Anand et al., 2003) and these 

concentrations are related to the severity of pump dysfunction (Kluger et al., 1982), the 

functional class (Sigurdsson et al., 1994) and mortality (Cohn et al., 1984, Swedberg et 

al., 1990, Francis et al., 1993, Anand et al., 2003) in heart failure. 

The increased circulating concentrations of catecholamines in heart failure are 

attributed to both an increased sympathetic spillover and a reduced clearance (Hasking 

et al., 1986). However, sympathetic over-activity in heart failure does not involve all 

organs equally with a more marked spillover occurring to the kidneys and the heart 

(Hasking et al., 1986). Indeed, norepinephrine released from the myocardium of the 

failing heart may be ~50 times greater than that released from a normal heart (Esler et 

al., 1997).  

Irrespective of the source of the excess sympathetic activation in heart failure, 

based on the aforementioned lines of evidence, a number of intervention studies have 
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been performed to asses the impact of adrenergic blockade on pump dysfunction and 

cardiovascular outcomes in patients with heart failure.  

 

1.4.1 Adrenergic blockade has beneficial effects on  pump dysfunction and 

outcomes in heart failure. 

 

Adrenergic receptor blockade with either carvedilol, a non-selective α- and β-

adrenergic receptor blocking agent, or metoprolol, a selective β-adrenergic receptor 

blocking agent improves pump function in patients with heart failure (Waagstein et al., 

1993a, 1993b, Doughty et al., 1997, Hall et al., 1995, Olsen et al., 1995, Quaife et al., 

1996, Lowes et al., 1999, Groenning et al., 2000, Capomolla et al., 2000, Khattar et al., 

2001, Ramahi et al., 2001, Gerson et al., 2002, Toyama et al., 2003, Waagstein et al., 

2003, Metra et al., 2003, Doughty et al., 2004, Rahko et al., 2005, Paraskevaidis et al., 

2007, Gundogdu et al., 2007, Malfatto et al., 2007, Lotze et al., 2001). Furthermore, 

clinical studies have demonstrated improved survival benefits and reduced 

hospitalizations in patients with heart failure in response to a variety of β-adrenergic 

receptor blockers including carvedilol (Packer et al., 1996, 2001, Poole-Wilson et al., 

2003), metoprolol (MERIT-HF, 1999), bisoprolol (Lechat et al., 1997, CIBIS-II, 1999), 

and nebivolol (Flather et al., 2005). In addition, in patients with heart failure, withdrawal 

from beta-blocker therapy after admission to hospital is associated with a marked 

increase in mortality as compared to those patients who continue with beta-blocker 

therapy (Fonarow et al., 2008). The benefits of heart failure therapy on survival and 

hospitalisations have been demonstrated in both moderate-to-severe heart failure 

(Packer et al., 1996, CIBIS-II, 1999) as well as mild-to-severe heart failure (MERIT-HF, 

1999). These data therefore provide a high level of evidence in support of a role for 
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adrenergic activation in the progression of heart failure. How does adrenergic over-

activation promote progressive heart failure? 

 

1.4.2 Mechanisms of the deleterious effect of adren ergic activation: Potential 

role of cardiac dilatation.  

 

Although an increased sympathetic drive in heart failure is likely to increase 

myocardial contractility through direct effects on myocardial adrenergic receptors, and 

thus act as a potential compensatory change in a failing myocardium with systolic 

dysfunction, as discussed in the aforementioned sections, it is now well-recognized that 

this change promotes progressive heart failure and mortality in heart failure. What are 

the potential mechanisms of these adverse effects? 

From a perspective of the haemodynamic view of progressive heart failure, an 

increased sympathetic activation to the peripheral circulation and kidneys causes 

widespread vasoconstriction via α-adrenergic receptor-mediated effects. The 

consequence is an increase in blood pressure and fluid retention with subsequent 

increases in preload and afterload and an enhanced workload on the heart. Moreover, 

via β-adrenergic receptor-mediated effects, adrenergic activation will increase 

myocardial contractility and heart rate, which in the presence of associated coronary 

vascular impairment, is likely to result in a myocardial oxygen demand-to-supply ratio 

that favors oxygen demand and subsequently promotes myocardial ischaemia and 

further myocardial damage. However, notwithstanding the importance of the 

haemodynamic hypothesis of progressive heart failure, there is also substantial evidence 

to indicate that sympathetic activation promotes a number of deleterious effects on the 

myocardium which are mediated through direct neurohumoral actions on heart muscle 
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rather than haemodynamic effects. The neurohumoral hypothesis is in-part explained by 

an effect on chamber dimensions or cardiac dilatation. What is the evidence that 

adrenergic activation promotes progressive heart failure through cardiac dilatation? 

As indicated in previous sections there is significant evidence to suggest that 

cardiac dilatation may contribute toward pump dysfunction. The clinical evidence to 

indicate that adrenergic activation may mediate cardiac dilatation and hence pump 

dysfunction comes from intervention studies with adrenergic blocker therapy. A number 

of studies have demonstrated that β-adrenergic receptor blocking agents reduce cardiac 

cavity dimensions (Hall et al., 1995, Quaife et al., 1996, Doughty et al., 1997, Groenning 

et al., 2000, Capomolla et al., 2000, Metra et al., 2003, Waagstein et al., 2003, Toyama 

et al., 2003, Pieske, 2004, Rahko et al., 2005, Malfatto et al., 2007, Gundogdu et al., 

2007, Lotze et al., 2001). However, decreases in cardiac cavity dimensions with 

adrenergic blockers may be as a consequence of an improved myocardial contractility 

increasing ejection volumes and thus decreasing filling volumes, rather than through 

direct benefits on the myocardium. Is there more direct evidence to indicate that 

adrenergic-induced cardiac dilatation could contribute toward pump dysfunction? 

As previously indicated, our group has demonstrated that chronic β-adrenergic 

receptor stimulation can promote the transition from compensated cardiac hypertrophy to 

pump dysfunction in association with cardiac dilatation, but not with decreases in intrinsic 

myocardial contractile disturbances (Veliotes et al., 2005, 2010, Badenhorst et al., 

2003b, Gibbs et al., 2004). This evidence is the only direct evidence to my knowledge to 

indicate that adrenergic-induced cardiac dilatation is a critical mediator of the 

development of pump dysfunction associated with excessive sympathetic activation. 

What are the potential mechanisms through which adrenergic activation could promote 

cardiac dilatation? 
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1.5 Mechanisms of cardiac dilatation and a potentia l role for adrenergic 

activation in mediating these mechanisms. 

 

 Three hypotheses, illustrated in Figure 1.3, have been developed over the years 

that could explain the mechanism of cardiac dilatation. First, cardiomyocyte cell death 

(Figure 1.3) mediated either through necrosis or apoptisis may reduce the capacity to 

tether cardiomyocytes and hence promote side-to-side slippage. Second, cellular 

hypertrophy (Figure 1.3) especially cell lengthening could account for a dilated chamber. 

Third, alterations in myocardial collagen structure (Figure 1.3) may reduce the capacity 

for side-to-side cell tethering and hence could encourage cell slippage and cardiac 

dilatation. In the following section I will discuss the evidence to suggest a role of each of 

these potential mechanisms, and the evidence to support a role of adrenergic activation 

as a potential contributing factor toward each of these cellular changes. 

 

1.5.1 Cellular hypertrophy 

 

A major cardiomyocyte hypertrophic change that may explain cardiac dilatation is 

lengthening of cells that lie in parallel to the endocardium. In contrast to the adaptive 

phase of cardiomyocyte hypertrophy where concentric remodelling is the consequence 

of increases in cardiomyocyte cross-sectional area and diameter in proportion to 

increases in cell length, in the maladaptive and failing heart with cardiac dilatation,  
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Figure 1.3 Cellular mechanisms responsible for cardiac dilatation. See text for 

explanation. 

Cell Slippage 
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myocyte length may exceed width. Indeed, studies have provided the evidence to 

indicate that in the dilated heart, cardiomyocyte lengthening may exceed increases in 

cell width (Zimmer et al., 1990, Spinale et al., 1991, Gerdes et al., 1992, Gerdes & 

Capasso, 1995, Tamura et al., 1998). Although it is well recognised that the drive behind 

the cardiomyocyte hypertrophic process is through a combination of haemodynamic 

overload, together with neurohumoral (including adrenergic) activation and inflammatory 

cytokines (Tarone & Lembo, 2003), the stimulus for the transition from adaptive to 

maladaptive hypertrophy is nevertheless still unclear. Is there evidence to implicate 

adrenergic activation in promoting cell lengthening that is out of proportion to widening of 

cells? 

There is no direct evidence to my knowledge to indicate that adrenergic 

stimulation could preferentially lengthen as opposed to widen cells. Moreover, there are 

no studies to my knowledge that have addressed the issue of whether adrenergic 

blockade could attenuate maladaptive hypertrophy of cardiomyocytes and convert them 

into concentrically remodelled cells. However, there is some clinical evidence that may 

caste light on whether adrenergic-induced cardiac dilatation can be explained by cardiac 

hypertrophy. Indeed, in patients with heart failure receiving the β-adrenergic receptor 

blocker metoprolol, decreases in left ventricular volumes were noted after three months 

of metoprolol therapy, whilst left ventricular mass only decreased in this study by 18 

months of metoprolol therapy (Hall et al., 1995). These data suggest that the beneficial 

effects of adrenergic blockade on cardiac cavity volumes in heart failure can precede 

alterations in left ventricular mass. Therefore, it is possible that adrenergic activation 

promotes cardiac dilatation and mediates pump dysfunction independent of cellular 

hypertrophy. 
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1.5.2 Cellular side-to-side slippage produced by co llagen changes 

 

Cardiomyocytes are connected in parallel at the level of the Z lines by collagen 

struts which insert into the sarcolemma (Robinson et al., 1987). Destruction of these 

struts may decrease the capacity of the fibrillar collagen matrix to connect 

cardiomyocytes, the consequence being side-to-side slippage and hence cardiac 

chamber dilatation. The integrity of the collagen matrix is determined by two key features 

of the interstitium. Degradation of myocardial collagen may occur as a consequence of 

activation of collagenases or matrix metalloproteinases (MMPs), which are an 

endogenous family of proteolytic enzymes that degrade all components of the 

myocardial extracellular matrix (Gunasinghe et al., 2001). A number of lines of evidence 

support a key role for MMPs in mediating cardiac dilatation. Indeed, an increased 

myocardial expression and activation of MMPs has been demonstrated in patients with 

congestive heart failure or in patients with a reduced systolic function and cardiac 

dilatation (Spinale et al., 2000, Li et al., 2001, Spinale, 2002, Reddy et al., 2004, 

Polyakova et al., 2004). Furthermore, an increased myocardial expression and activation 

of MMPs has been demonstrated in animal models of pump dysfunction and cardiac 

dilatation (Spinale et al., 1998, Rohde et al., 1999, Peterson et al., 2001, Mukherjee et 

al., 2003, King et al., 2003, Sakata et al., 2004). However, associations between MMP 

activation and cardiac dilatation do not necessarily indicate cause and effect. More direct 

evidence in favour of a role for myocardial MMPs in mediating cardiac dilatation is that 

MMP inhibition attenuates left ventricular dilatation in animal models of pacing-induced 

heart failure (Spinale et al., 1999), myocardial infarction (Rohde et al., 1999, Mukherjee 

et al., 2003) and heart failure in the spontaneously hypertensive rat (Peterson et al., 

2001). Moreover, a loss of MMP inhibitory control of MMPs, through a gene deletion of 
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the tissue inhibitor of the matrix metalloproteinase-type 1 (TIMP-1), has been 

demonstrated to lead to ventricular dilatation in mice (Roten et al., 2000). 

Although there is substantial evidence to support a role for collagenases in 

contributing to cardiac dilatation, there is nevertheless still debate as to the role of 

changes in myocardial collagen concentrations in contributing to side-to-side 

cardiomyocyte slippage and hence cardiac dilatation. Although collagenase activation 

may mediate tears in collagen struts, this may not be accompanied by decreases in 

collagen concentrations. Indeed, many forms of cardiac dilatation are associated with 

increases in myocardial collagen concentrations, and reductions in cardiac cavity 

dimensions following the use of left ventricular assist devices are generally accompanied 

by increases and not decreases in myocardial collagen concentrations (Scheinin et al., 

1992, Li et al., 2001). However, pacing-induced cardiac dilatation (Spinale et al., 1991) 

and adrenergic-induced cardiac dilatation (Woodiwiss et al., 2001) may be accompanied 

by decreases rather than increases in myocardial collagen concentrations. Nevertheless, 

a more recent view of how increases in myocardial collagen synthesis could contribute 

toward chamber dilatation is through the production of collagen that is susceptible to 

degradation (Woodiwiss et al., 2001, Badenhorst et al., 2003a). In this regard, collagen 

of the non-cross-linked phenotype is associated with systolic dysfunction and cardiac 

dilatation (Capasso et al., 1989, Gunja-Smith et al., 1996, Spinale et al., 1991, 

Woodiwiss et al., 2001). It is possible that non-cross-linked collagen may be more 

susceptible to degradation by collagenases and thus to cardiac dilatation. There is direct 

evidence in support of this theory. In this regard, by genetically decreasing the 

susceptibility of collagen to degradation, a reduced degree of dilatation accompanies 

pressure-overload states (Lindsey et al., 2003). 
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What is the evidence that adrenergic activation could contribute toward changes 

in either myocardial collagenases or to changes in the cross-linked properties of 

myocardial collagen. In this regard, there is presently considerable evidence to indicate 

that adrenergic activation can modify the interstitium in a manner that can promote 

cardiac dilatation. Indeed, the β-adrenergic receptor agonist, isoproterenol, has been 

shown to stimulate cardiomyocyte MMP activity in isolated cardiomyocytes (Coker et al., 

2001). Moreover, chronic isoproterenol administration to intact animals for 5-6 months 

either increases the relationship between myocardial non-cross-linked and cross-linked 

collagen or increases the non-cross-linked collagen content of the myocardium in 

association with cardiac dilatation (Woodiwiss et al., 2001). However, the change in the 

phenotypic properties of myocardial collagen in response to chronic adrenergic 

stimulation is unlikely to occur through direct myocardial β-adrenergic receptor-mediated 

effects, as these changes could be prevented by both angiotensin-converting enzyme 

inhibitor administration (Woodiwiss et al., 2001) as well as aldosterone receptor 

blockade (Veliotes et al., 2005, Veliotes et al., 2010). 

 

1.5.3 Apoptosis and necrosis 

  

Cardiomyocyte cell death mediated either by tissue apoptosis or necrosis may 

also promote the development of cardiac dilatation (Yussman et al., 2002). Although 

apoptosis describes an active, regulated, energy demanding process controlled by an 

inherited genetic program (Sabbah & Sharov, 1998), whilst necrosis is an unregulated 

process (Kang & Izumo, 2000), both processes ultimately result in cell death. An 

excessive loss of viable myocardium through apoptosis has been reported to occur as a 

consequence of sustained pressure overload from hypertension or aortic valvular 
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stenosis or from volume overload (Sabbah & Sharov, 1998). Following the initiation of 

the apoptotic pathway, cytochrome c is released from mitochondria (Narula et al., 1999), 

which forms a cocktail with protein-activating factor-1 and caspase-9 resulting in the 

activation of downstream caspases (mainly caspase 9) that cause the morphological and 

biochemical alterations responsible for apoptosis (Li et al., 1997). The multigene family 

of proteins that control apoptosis include the antiapoptotic Bcl-2 proteins and the pro-

apoptotic Bax proteins (Sabbah & Sharov, 1998). The cellular alterations that 

accompany apoptosis include the loss of surface contact with bordering cells, cell 

shrinkage, and condensation of chromatin leading to fragmentation of chromosomal 

deoxyribonucleic acid (DNA) (Arends et al., 1990). 

 The role of sympathetic activation in mediating cardiomyocyte cell death is well-

established. Adrenergic agonists, in excessive concentrations promote both necrosis 

(Benjamin et al., 1989, Mann et al., 1992, Teerlink et al., 1994) and apoptosis 

(Communal et al., 1998, Singh et al., 2001) in cardiomyocyte cell cultures and β-

adrenoreceptor blockade attenuates the apoptotic effects (Communal et al., 1998, Singh 

et al., 2001). Adrenergic stimuli induce cardiomyocyte apoptosis via activation of β1-

adrenoreceptors, cAMP-dependent pathways, protein kinase A, by increasing the ratio of 

Bax to Bcl-2 expression and by stimulating voltage-dependent calcium influx channels 

(Zaugg et al., 2000). The mitogen-activated protein kinase’s (MAPK) involved in the β-

adrenergic signalling pathway responsible for cardiomyocyte apoptosis include the c-Jun 

NH2-terminal kinase (JNK), p38 kinases, extracellular signal related kinase 1/2 (ERK 1/2) 

and apoptosis signal-regulating kinase 1 (ASK1) (Fan et al., 2006). 

Adrenergic activation may also promote cardiomyocyte apoptosis through indirect 

mechanisms by stimulating the renin-angiotensin-aldosterone system which is well 

recognised as a trigger for cardiomyocyte apoptosis (De Angelis et al., 2002). Indeed, 
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both angiotensin II and aldosterone have the capacity to promote cardiomyocyte 

apoptosis (De Angelis et al., 2002, Garg et al., 2005). In addition, adrenergic activation 

may promote cardiomyocyte apoptosis through increases in myocardial cytokine 

expression (Baumgarten et al., 2000). 

 

1.6 Can cardiac dilatation be reversed? 

 

As argued in previous sections, cardiac dilatation may be a fundamental change 

that mediates pump dysfunction. Therefore, a major goal of therapy in heart failure is to 

return cardiac cavity dimensions back to normal values. However, if one reviews all of 

the aforementioned mechanisms that could promote cardiac dilatation, it is difficult to 

conceive of the possibility that complete reversal could occur. Indeed, if cell death is a 

major mechanism responsible for cardiac dilatation, the possibility of complete reversal 

of cardiac dilatation under these conditions may be unrealistic. Furthermore, once side-

to-side slippage has occurred, the question arises as to the chances that realignment of 

cells may occur. Furthermore, as little is known of what switches the cardiomyocyte 

hypertrophic process from a process that produces increases in both length and width, to 

one which promotes increases in predominantly length, the possibility of reversal of this 

process is similarly difficult to conceive of. The question therefore arises as to whether 

increases in cardiac cavity dimensions (cardiac dilatation) in patients with systolic heart 

failure can be returned to normal values? In the following section I will therefore review 

the evidence to suggest the extent to which reverse remodelling can be achieved with 

current heart failure therapy. 
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1.6.1 Impact of medical therapy on cardiac cavity d imensions in heart failure. 

 

As described in aforementioned sections there is substantial evidence to indicate 

that medical therapy can reduce cardiac cavity dimensions in patients with systolic heart 

failure. This has been mentioned in section 1.3.2 and the evidence to show a beneficial 

effect of medical therapy on cardiac cavity dimensions may be found in excellent reviews 

on this topic including a consensus document (Cohn et al., 2000). However, some 

noteworthy studies will be discussed. 

The Studies of Left Ventricular Dysfunction (SOLVD) trial demonstrated that 

angiotensin-converting enzyme inhibitor therapy given to patients with symptomatic and 

asymptomatic heart failure produced reductions in left ventricular cavity diameters and 

an increase in pump function (Konstam et al., 1992, Konstam et al., 1993, Greenberg et 

al., 1995). Moreover, in the Survival and Ventricular Enlargement (SAVE) trial, 

angiotensin-converting enzyme inhibitor therapy attenuated increases in left ventricular 

cavity diameters and volumes within the first year after myocardial infarction (St. John 

Sutton et al., 1997). Despite the aforementioned benefits of angiotensin-converting 

enzyme inhibitors on cardiac cavity size in heart failure, no study has demonstrated that 

cavity size can be normalized with these agents. Indeed, angiotensin-converting enzyme 

inhibitors may only produce benefits on cardiac cavity size within the first year of therapy 

(St John Sutton et al., 1997). Consequently, the impact of angiotensin II receptor blocker 

therapy combined with angiotensin-converting enzyme inhibitor therapy on cardiac cavity 

size was evaluated and this therapeutic approach was demonstrated to produce greater 

benefits on cardiac cavity dimensions than angiotensin-converting enzyme inhibitor 

therapy alone (Wong et al., 2002). Despite the accrued benefits of combined 
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angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker therapy 

however, cavity size was again by no means normalized (Wong et al., 2002). 

A number of studies have reported on the beneficial effects of β-adrenergic 

receptor blockers on cardiac cavity dimensions in heart failure (Waagstein et al., 1989, 

Eichhorn et al., 1990, Gilbert et al., 1990, Woodley et al., 1991, Hall et al., 1995, Heesch 

et al., 1995, Quaife et al., 1996, Doughty et al., 1997, Groenning et al., 2000, Capomolla 

et al., 2000, Metra et al., 2000, Lotze et al., 2001, Bello et al., 2003, Metra et al., 2003, 

Waagstein et al., 2003, Toyama et al., 2003, Pieske, 2004, Rahko et al., 2005, Malfatto 

et al., 2007, Gundogdu et al., 2007) and in those studies that provided mean data in the 

whole group, Table 1.2 summarises some characteristics and the size effect of β-

adrenergic receptor blockade on left ventricular cavity size or volumes. As compared to 

therapeutic agents that inhibit the effects of the renin-angiotensin system, β-adrenergic 

receptor blockers may have more pronounced beneficial effects on cardiac cavity 

dimensions. Indeed, as compared to the angiotensin-converting enzyme inhibitor 

capropril, the non-selective α and β-adrenoreceptor blocker, carvedilol has a 

substantially greater beneficial effect on cardiac cavity dimensions in heart failure 

(Khattar et al., 2001). It is not only the non-selective α and β-adrenoreceptor blocker, 

carvedilol that is capable of reducing cardiac cavity dimensions or volumes in heart 

failure (Table 1.2), but also the selective β-adrenoreceptor blocker, metoprolol has 

similarly been demonstrated to have a striking ability to reduce cardiac cavity dimensions 

or volumes in heart failure (Table 1.2). 

What is important to note is that of the aforementioned clinical studies assessing 

the impact of adrenergic blockade on cardiac cavity dimensions (See references Table 

1.2).  
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Table 1.2 . Summary of important characteristics of studies assessing the impact of adrenergic receptor blockers on left ventricular 

end diastolic (LVED) cavity dimensions or volumes in patients with chronic heart failure (CHF).______________________________                                                             

Reference       Disease       Adrenergic receptor Duration of       Measurement  Baseline Final  

                blocker employed treatment      value  value 

_________________________________________________________________________________________________________ 

Waagstein et al., 1989 CHF  Metoprolol         16 months LVED diameter 7.26 mm 6.44 mm 
Eichhorn et al., 1990  CHF  Bucindolol         3 months  LVED volume   257 ml  228 ml 
Gilbert et al., 1990  IDC  Bucindolol         3 months  LVED diameter  66 mm  63 mm 
Woodley et al., 1991  IDC  Bucindolol         3 months  LVED diameter 66.5 mm 62.9 mm 
Heesch et al., 1995  CHF  Metoprolol         3 months  LVED volume  137 ml/m2 116 ml/m2 

      Bucindolol         3 months  LVED volume   127 ml/m2 114 ml/m2 
Hall et al., 1995       CHF            Metoprolol         18 months           LVED volume            252 mls          177 mls 
Quaife et al., 1996        CHF            Carvedilol         4 months             LVED volume            209 mls          178 mls 
Doughty et al., 1997        CHF            Carvedilol         12 months           LVED volume            100 mls/m2     95.6 mls/m2 
Metra et al., 2000  CHF  Metoprolol         12 months LVED volume   175 ml/m2 160 ml/m2 
      Carvedilol         12 months LVED volume   167 ml/m2 147 ml/m2 
Capomolla et al., 2000      CHF            Carvedilol         6 months             LVED volume           142 mls/m2     135 mls/m2 
Groenning et al., 2000      CHF            Metoprolol         6 months             LVED volume            150 mls/m2     126 mls/m2 

Lotze et al., 2001       CHF            Carvedilol        12 months            LVED diameter           6.7 cm           6.2 cm 
Waagstein et al. 2003       CHF            Metoprolol         6 months             LVED volume          ~200 mls  ~178 mls 
Toyama et al. 2003       CHF            Carvedilol         12 months           LVED diameter           6.4 cm           5.5 cm 
         CHF            Metoprolol         12 months           LVED diameter           6.5 cm           5.8 cm 
Rahko et al. 2005       CHF            Carvedilol        36 months            LVED volume            204 mls 182 mls 
Bello et al., 2003       CHF            Carvedilol                 6 months LVED volume  124mls/m2 112 mls/m2       
Gundogdu et al. 2007       CHF            Carvedilol         3 months             LVED diameter           6.45 cm          6.23 cm  
Malfatto et al., 2007    Hypertensive CHF      Carvedilol         6 months             LVED volume            176mls          133 mls 

           Ischaemic CHF           Carvedilol         6 months             LVED volume            200mls          185 mls 
           Idiopathic CHF            Carvedilol         6 months             LVED volume            187ml          154 mls 

 _________________________________________________________________________________________________________ 
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there is little evidence to suggest that adrenergic receptor blockade has the capacity to 

return cardiac cavity dimensions or volumes to normal values. Indeed, assuming that a 

normal left ventricular end diastolic diameter is <5.5 cm, and a normal left ventricular end 

diastolic volume is between 130-140 mls or 70-80 ml/m2, as indicated in Table 1.2 only 

one study (Malfatto et al., 2007) has demonstrated a capacity of adrenergic receptor 

blockade to decrease cardiac cavity dimensions or volumes to mean values that can be 

considered to lie within a normal range. In that study (Malfatto et al., 2007), a return to 

normal cavity volumes was only noted in patients with hypertensive heart failure, and this 

may not have been achieved through direct effects of adrenergic receptor blockade on 

the heart, but through the antihypertensive properties of these agents. Furthermore, in 

one study (not listed in Table 1.2), 12 months of high-dose metoprolol therapy failed to 

produce significant decreases in left ventricular end diastolic volumes (109 ml/m2 at 

baseline and 96.8 ml/m2 after therapy) (Colucci et al., 2007). The inability of adrenergic 

receptor blockers to normalise cardiac cavity dimensions or volumes is entirely 

consistent with the findings that pharmacological therapy in general is only ever able to 

return cardiac cavity dimensions or volumes back to normal values in a few patients 

(Murphy et al., 2007). 

An important omission from clinical studies that have assessed pharmacological 

reverse remodelling in the treatment of heart failure, including those assessing the 

effects of adrenergic receptor blockade (Table 1.2) is that none of these studies have 

evaluated whether diastolic pressure-volume relationship return back to normal values 

(see Figure 1.2). Indeed, all clinical studies (Table 1.2) have relied on measurements of 

filling volumes or cavity dimensions without simultaneously assessing filling pressures 

over a range of filling volumes. As depicted in Figure 2, decreases in filling volumes may 

simply reflect a downward shift along the diastolic pressure-volume relationship 
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produced by blood volume reduction, rather than a left shift of the pressure-volume 

relationship back toward the normal relationship. As in the treatment of heart failure, a 

diuresis is an important pathophysiological change that accompanies the improvement of 

symptoms, without the evidence to indicate that medical therapy returns the diastolic 

pressure-volume relationship toward normal values, it is difficult to determine whether 

medical therapy does indeed have the capacity to moderate true adverse structural 

remodelling, or whether it is simply moving filling pressures and volumes down the right 

shifted curve. 

A third important limitation of clinical studies that have assessed pharmacological 

reverse remodelling in the treatment of heart failure, including those assessing the 

effects of adrenergic receptor blockade (Table 1.2) is that none of these studies have 

evaluated whether the myocardial cellular changes that mediate adverse structural 

remodelling are reversed or abolished with medical therapy. 

An obvious solution to the limitations of clinical studies where the effect of 

pharmacological therapies on cardiac diastolic pressure-volume relations or myocardial 

structural alterations generally cannot be measured, is to assess these changes in 

appropriate animal models. In this regard, there are some preclinical studies (animal 

studies) that have demonstrated an ability of adrenergic blocking therapy to prevent or 

reverse cardiac dilatation and the associated adverse cellular structural changes (Hu et 

al., 1998, Chan et al. 2004, Gan et al., 2007a, 2007b, Li et al., 2007). In two of these 

studies the investigators evaluated the effect of adrenergic blockade initiated at a time 

when animals had already developed established pump dysfunction and adverse 

remodelling (Hu et al., 1998, Gan et al., 2007b). Importantly, in these studies adrenergic 

receptor blockade produced either only modest changes in cardiac cavity dimensions 

(Gan et al., 2007b) or an attenuated capacity to produce left shifts in ventricular diastolic 
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pressure-volume relations when initiated later in the progression of the disease as 

opposed to earlier (Hu et al., 1998). Thus, even preclinical studies suggest that 

adrenergic blocker therapy cannot reverse cardiac dilatation or if they are able to do so, 

the mechanisms thereof. Furthermore, in one of these studies, changes in cardiac cavity 

dimensions, but not in diastolic pressure-volume relations was assessed (Gan et al., 

2007b). Are there other forms of therapy which lend insights into whether cardiac 

dilatation and the associated cellular changes can be completely reversed?  

 

1.6.2 Impact of left ventricular assist devices on cardiac cavity dimensions in 

heart failure. 

 

Left ventricular assist devices (LVAD), are employed to provide haemodynamic 

support for patients with end-stage heart failure awaiting transplantation. These devices 

divert blood from the left atrium to the aorta and hence remove the preload and afterload 

to the left ventricle. The use of LVADs has been demonstrated to produce marked 

reverse cardiac remodelling and decreases in cardiac chamber dimensions, often to 

values that may be considered to be normal (McCarthy et al., 1995, Madigan et al., 

2001, Barbone et al., 2001, Margulies, 2002, Sabbah,  2004, Wohlschlaeger et al., 2005, 

Klotz et al., 2008). Importantly, LVAD support has been show not only to decrease 

chamber dimensions, but also to shift the diastolic pressure-volume relationship to the 

left  (Heerdt et al., 2000, Barbone et al., 2001) and this effect may be sufficiently 

profound as to normalise this relationship (Barbone et al., 2001). Moreover, the 

decreases in chamber diameters produced by LVAD support are sustained once the 

assist device is removed from patients (Patterson et al., 2010). Hence, the use of LVADs 

has provided substantial evidence to support the view that cardiac dilatation is a 
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reversible structural change. However, some time after LVADs are removed from 

patients with end-stage heart failure, cardiac dimensions may gradually return to 

pathological levels again (Scheinin et al., 1992, Mancini et al., 1998). Nevertheless there 

is some evidence that combined LVAD support together with medical therapy may 

produce even better outcomes than LVAD support alone (Birks et al., 2006). Is there 

evidence to indicate that LVADs are capable of reversing the structural changes that 

occur at a cellular level in patients with cardiac dilatation and end-stage heart failure? 

Myocardial collagen concentrations may increase after the use of an LVAD (Li et 

al., 2001). Although this has been interpreted as indicating a deleterious change, the 

phenotypic characteristic of the myocardial collagen change may nevertheless be 

beneficial. Indeed, after LVAD support, the ratio of insoluble (cross-linked) to total 

soluble (non-cross-linked) collagen concentrations increases (Li et al., 2001). As the 

cross-linked collagen phenotype is more likely to resist collagen degradation by 

collagenases, an increased myocardial collagen in this context could prevent 

cardiomyocyte side-to-side slippage. Not only does LVAD support potentially improve 

the myocardial collagen characteristics, but it also decreases the myocardial expression 

and activity of the MMPs that may be responsible for myocardial collagen degradation (Li 

et al., 2001). Thus, the interstitial changes that may be responsible for cardiomyocyte 

side-to-side slippage are indeed reversed by LVAD support. Despite this evidence 

however, the question of whether cardiomyocyte side-to-side slippage is reversible has 

not been evaluated. 

Is there evidence in favour of LVAD support influencing cardiomyocyte length-to-

width ratios? Indeed, although LVAD support reduces both cardiomyocyte width and 

length, cardiomyocyte length-to-width ratio is also reduced by approximately 32% 

(Zafeiridis et al., 1998). Thus, it is possible that maladaptive cellular hypertrophy is 
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important in contributing towards reverse remodelling after LVAD support and unloading 

of the heart. 

Does LVAD support prevent ongoing cardiomyocyte apoptosis or necrosis? A 

decrease in cardiomyocyte apoptosis has indeed been observed in patients receiving 

LVAD support as compared to patients in whom a LVAD had recently been inserted 

(Patten et al., 2005). However, this does not indicate that apoptotic cells have 

necessarily been replaced after LVAD support or that after significant cell loss a normally 

functioning heart may occur once the process of cell death is halted. Is there evidence 

that normalisation of cardiac size and function can be achieved when unloading the 

heart, even when significant cardiomyocyte apoptosis has preceded the event? In this 

regard, after unloading the heart, reversal of cardiac structure and function has been 

noted in rats (Tsuneyoshi et al., 2005) despite the possibility that cardiomyocyte 

apoptosis and myocardial atrophy had occurred (Schena et al., 2004).  

In summary, data obtained from the use of LVAD support suggest that cardiac 

dilatation and the cellular mechanisms responsible for cardiac dilatation can be reversed. 

However, the conundrum of why removal of LVAD support subsequently results in the 

return of cardiac dimensions to pathological levels again still requires resolution. This 

could indicate that not all the essential cellular mechanisms responsible for cardiac 

dilatation are reversible and hence that further work is required to determine whether 

sustained reverse remodelling is indeed a possibility. 
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1.7 Problem statement and aims of the dissertation 

 

 As indicated in the aforementioned discussion, although there is significant 

evidence to indicate that adrenergic activation is an important mediator of heart failure, 

and that adrenergic receptor blockade saves lives in patients with heart failure, there is 

little evidence to indicate whether adrenergic-induced cardiac dysfunction is completely 

reversible. In this regard, as outlined, adrenergic activation produces cardiac dilatation 

and there is still question as to whether reversal of cardiac dilatation in patients with 

heart failure can be sustained. Moreover, there is little evidence to indicate whether 

adrenergic-induced cardiac dilatation can be completely reversed. Thus, further studies 

are necessary to evaluate whether adrenergic-induced cardiac dilatation can be 

completely reversed. These studies would provide further evidence either in favour or 

against identifying therapeutic targets downstream from β-adrenergic receptors that 

mediate cardiac dilatation and pump dysfunction, but do not influence myocardial 

inotropy. In this regard, the use of β-adrenergic receptor blocker therapy in chronic heart 

failure is presently far from ideal (Cleland et al., 2002, Pont et al., 2003, Rutten et al., 

2003, Komajda et al., 2003, Murphy et al., 2004, Fernandes et al., 2005, Lenzen et al., 

2005, Bongers et al., 2006, Fowler et al., 2007, Sturm et al., 2007, Kavookjian & Mamidi, 

2008) possibly because of the negative inotropic and hence hypotensive effects of these 

agents in many patients, an effect that could be more pronounced in those with 

advanced cardiac dilatation and pump dysfunction. 

Our laboratory is ideally positioned to study reverse remodelling produced by 

adrenergic over-activation. As indicated in the aforementioned, we have repeatedly 

demonstrated that chronic administration of isoproterenol, a β-adrenoreceptor agonist, 

promotes the development of cardiac dilatation and pump dysfunction, even though 
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intrinsic myocardial function is preserved (Woodiwiss et al., 2001, Badenhorst et al., 

2003b, Veliotes et al., 2005, Osadchii et al., 2007). Unlike other animal models of heart 

failure, such as pressure overload states or myocardial infarction, where extensive tissue 

necrosis accompanies pump dysfunction, the model of cardiac dilatation and pump 

dysfunction mediated by chronic β-adrenoreceptor activation is not necessarily 

accompanied by tissue necrosis (Woodiwiss et al., 2001, Badenhorst et al., 2003b, 

Veliotes et al., 2005, Osadchii et al., 2007). Thus, to remove the stimulus for pump 

dysfunction mediated by chronic β-adrenoreceptor activation, one simply stops the daily 

injections of the isoproterenol, whereas in other animal models of pump dysfunction, 

such as pressure overload states or myocardial infarction, the stimulus cannot be 

removed as large portions of the myocardium are necrotic. Thus, in the present 

dissertation I aimed to evaluate whether adrenergic-induced cardiac dilatation and 

cardiac structural remodelling can be completely reversed once the adrenergic 

(neurohumoral) stimulus for the adverse remodelling is removed. I also aimed to identify 

the cellular mechanisms associated with reverse remodelling and the cellular changes 

that persist if residual cardiac dilatation is noted. Any residual changes may be important 

for developing new therapeutic strategies for treating heart failure. 
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2.1 Groups and treatment regimen 

 

 The rodent model of pump dysfunction studied in the present dissertation was 

that induced by chronic administration of the β-adrenoreceptor agonist, isoproterenol 

(ISO) to male Sprague-Dawley (SD) rats. Rats received daily subcutaneous injections of 

either ISO at a dose of 0.006 mg.kg-1 (2.42 X 10-8 mmol.kg-1), or the vehicle control 

(0.9% saline). Although the target daily ISO dose was 0.02 mg.kg-1 as given in prior 

studies (Badenhorst et al 2003, Veliotes et al 2005), in the present study when gradually 

increasing the dose of ISO given in daily injections over a 2 week period (starting from 

0.0001 mg.kg-1), when achieving a dose of 0.02 mg.kg-1 one rat died suddenly. Hence, 

the dose selected for use was 0.006 mg.kg-1, a dose which did not produce further 

deaths. Each injection consisted of a total volume of 0.2 ml. Forty eight SD rats weighing 

between 250-to-300g (obtained from Central Animal Services of the University of 

Witwatersrand) were randomly assigned to four groups. Two groups of rats were used to 

assess the impact of adrenergic stimulation on cardiac structure and function after six 

months of adrenergic stimulation. One group of 10 rats received daily injections of ISO 

and the other group of 10 rats received daily injections of the saline vehicle for six 

months. The remaining two groups of rats were employed to assess the extent to which 

adrenergic-induced cardiac dilation, structural remodelling and pump dysfunction could 

be reversed. One group of 14 rats received daily injections of ISO for six months and 

then subsequently received no injections for four months. The other group of 14 rats 

received daily injections of the saline vehicle for six months and then subsequently 

received no injections for four months. An ISO withdrawal period of four months was 

employed as an initial stage of the study. Longer periods of ISO withdrawal would have 

been evaluated in subsequent studies if reverse remodelling had been incomplete. 
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2.2 Echocardiography  

 

At least 24 hours after the last dose of ISO or saline injection, two-dimensional 

targeted M-mode echocardiography was performed using a 7.0 MHz transducer and a 

ACUSON CYPRESS portable ultrasound machine system (Figure 2.1), as previously 

outlined (Woodiwiss et al., 2001, Norton et al., 2002). Rats were anaesthetized with 

intraperitoneal injections of ketamine (75mg.kg-1) and xylazine (15mg.kg-1). The rat’s 

chest was shaved of hair and the rat was placed in the prone position in a container with 

an open window over which the chest area was positioned. The high resolution 

ultrasonic probe was inserted through the window and placed on the rat chest wall to 

obtain echocardiographic images. 

A two dimensional image was obtained in the short axis of the left ventricle at the 

level of the papillary muscle. The transducer was positioned to obtain clear images 

across the maximal diameter of the short axis of the left ventricle. An M-mode image was 

obtained which was considered to be of high quality if the endocardial surface of both 

the anterior (s eptal) wall and the posterior wall were clearly visible throughout systole 

and diastole (Figure 2.2). Care was taken not to include the endocardial surface of the 

papillary muscle in the posterior wall measurements. On-line recordings were obtained 

and recordings were also obtained for later off-line analysis to ensure quality control. 

Left ventricular internal dimensions and posterior wall thickness were measured 

at the point at which internal diameters were at the smallest value (end systole) and at 

the point at which internal diameters were at the maximum value (end diastole) 

according to the American Society for Echocardiography's leading edge method (Sahn 

et al., 1978) (Figure 2.2). Left ventricular anterior wall thickness was not determined as  
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Figure 2.1  ACUSON CYPRESS portable echocardiograph used to obtain in-vivo 

measures of left ventricular structure and function in anaesthetised rats. 
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Figure 2.2  Typical recordings obtained to determine left ventricular dimensions using 

two-dimensional guided M-mode echocardiography. 
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the right ventricular surface of the septal wall was seldom clearly evident. Anterior wall 

thickness was therefore assumed to be equivalent to posterior wall thickness for all 

calculations. An example of measurements made from actual recordings is provided in 

Figure 2.2. Measurements were made from at least 3 consecutive beats and then 

averaged. 

Left ventricular endocardial and midwall fractional shortening were utilized as 

indices of chamber and myocardial function respectively (Norton et al., 2002), (Chung et 

al., 1998). Left ventricular endocardial (FSend) and midwall (FSmid) fractional shortening 

were determined from the following equations. For the calculations of FSmid, anterior wall 

thickness was assumed to be equivalent to posterior wall thickness. Hence ½ LV PWT + 

½ LV anterior wall thickness was assumed to be equivalent to LV PWT. 

 

FSend  = LV EDD-LV ESD/LVEDD x 100 

 

Where 

LV EDD =  left ventricular end diastolic internal diameter 

LV ESD = left ventricular end systolic internal diameter  

 

FSmid = (LVEDD + LVED PWT)- (LVESD + LVES PWT)/ (LVEDD + 

LVED PWT) x 100 

 

Where 

LVED PWT = left ventricular end diastolic posterior wall thickness 

LVES PWT = left ventricular end systolic posterior wall thickness 
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Importantly, left ventricular ejection fraction was not used as an index of left 

ventricular chamber systolic function as clear endocardial surface images were not 

always available throughout the whole circumference of the heart on two-dimensional 

imaging. Diastolic function (transmitral early-to-late velocity ratios) was not assessed 

using echocardiography as the reproducibility of this measurement in our hands is poor. 

Neither endocardial nor midwall fractional shortening are independent of afterload or 

heart rate, but like left ventricular ejection fraction, they do account for preload-

dependent Frank-Starling effects. 

 

2.3 Isolated perfused heart preparations  

 

As LV dimensions and systolic function are influenced by loading conditions, LV 

remodelling and function was also determined ex vivo under controlled conditions as 

previously described (Weber et al., 1988, Norton et al., 2002, Woodiwiss et al., 2001). A 

midline thoracotomy was performed in anaesthetised rates and the hearts were 

immediately excised and placed in an ice-cold perfusion solution (see description of 

solution in subsequent discussion) to maintain their viability prior to perfusion. Hearts 

were subsequently placed on a Langendorff apparatus and retrogradely perfused via the 

aorta. Using this approach, perfusion fluid is pumped down the aorta toward the heart 

using a peristaltic pump, the aortic valve stays in a closed position because of the 

pressure gradient produced across the aortic valve, and perfusion fluid flows down the 

coronary arteries only. The perfusion solution consisted of (in mM) 118.0 NaCl, 4.7 KCl, 

2.5 CaCl2, 25.0 NaHCO3, 1.2 KH2PO4, 1.2 MgSO4 and 10.0 glucose with a pH of 7.4. 

The solution was saturated with 95% O2 and 5% CO2 gas and carefully filtered through a 

size 0.45µm Millipore Durapore membrane filter before assessing the pH. 
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Figure 2.3  Isolated, perfused heart apparatus. A, water jacket; B, bubble trap; C, 

platinum electrodes attached to isolated heart; D, pacing device; E, fluid filled catheter 

with balloon attached which has been inserted into the left ventricular lumen; F, three 

way tap open to E, G and H; G, pressure transducer; H, micromanipulator; I, peristaltic 

pump. 
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Figure 2.4  Enlargement of a portion of the isolated perfused heart apparatus shown in 

figure 2.8. This figure better shows E, the fluid filled catheter with balloon attached which 

has been inserted into the left ventricular lumen; F, the three way tap; G, the pressure 

transducer; and H, the micromanipulator. 
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The isolated, perfused organ system is depicted in Figures 2.3 and 2.4. The 

perfusion solution was constantly gassed with 95% O2 and 5% CO2 for the duration of 

each study. Hearts were perfused retrogradely at a constant flow of 12 ml.min-1.g wet 

heart weight. This was achieved by first obtaining a crude heart weight (heart weight with 

left ventricle, right ventricle, atria and large vessels) before mounting the heart on the 

perfusion apparatus and then setting the speed on a peristaltic pump to achieve the 

appropriate coronary flow. Coronary flow rate was assessed from timed samples 

obtained of the coronary effluent. A standard proportion of left ventricular weight to crude 

heart weight was assumed for each preparation and then checked at the end of the 

study. Using this approach myocardial viability is maintained via constant coronary 

perfusion without relying on the function of the left ventricular chamber to determine 

coronary flow and myocardial tissue viability. 

The perfusion apparatus maintained a constant temperature of the perfusion 

solution by passing the perfusion solution through a tube surrounded by a water jacket 

through which heated water flowed (Figure 2.3). The temperature of the coronary 

effluent was maintained at 37oC by controlling the temperature of the water flowing 

through the water jacket. To avoid air bubbles entering the coronary arteries, a bubble 

trap was placed proximal to the heart (Figure 2.3). Once the heart was mounted on the 

perfusion apparatus, platinum electrodes were attached to the right atrium and the apex 

of the heart and the heart was paced at 360 beats.min-1 using a Grass (Astro Med Inc.) 

model SD9 stimulator (Figure 2.3). All hearts were paced at the same rates in order to 

avoid having to account for an impact of heart rate on functional measurements. The 

heart rate selected for these studies was much lower than what we have measured in 

conscious restrained rats in vivo (400-500 beats.min-1). This lower heart rate was 

employed as this is a crystalloid perfused preparation rather than a blood perfused 
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preparation. It is only in blood perfused preparations in which physiological heart rates 

can be employed because of the presence of a greater arterial oxygen content. The 

heart rate selected for the study was one aimed to achieve maximal systolic function 

through the “Treppe” and other effects without producing demand-induced ischaemia. To 

ensure that rat hearts are not ischaemic at 360 beats.min-1 previous studies have been 

performed to assess the pacing rate at which diastolic pressures in the rat heart begin to 

increase. Demand-induced ischaemia characteristically results in an increase in diastolic 

left ventricular pressures, whereas low-flow ischaemia decreases contractile function 

(Umeda et al., 2003). In our hands, we have found that 360 beats.min-1 is well below the 

rate at which left ventricular diastolic pressures first begin to increase in crystalloid 

perfused rat hearts. Hearts were paced at a voltage that was estimated to be 10% above 

threshold for spontaneous excitation (Norton et al., 2002). 

In order to measure left ventricular developed pressures and diastolic pressures 

a latex balloon was placed through the mitral valve into the left ventricular chamber 

(Figure 2.3 and 2.4). The latex balloon was coupled via fluid-filled catheters and a three 

way tap to both a pressure transducer and a micromanipulator (Figure 2.4). The lumen 

of the latex balloon was sufficiently large to accommodate volumes well beyond the 

maximal left ventricular volume of a normal rat or a rat with a dilated ventricle. Indeed, 

the balloon had a pressure-volume relationship where the pressure in the balloon only 

started to increase well beyond that of the maximal left ventricular volume of a normal rat 

or a rat with a dilated ventricle. In the assessment of intraventricular volumes, the 

balloon material was included as part of volume. The volume of the balloon material was 

calculated using a volume displacement technique employing larger quantities of the 

same material and calibrating against the weight of the material. Before inserting the 

balloon into the left ventricular cavity, the balloon was emptied by removing the 
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micromanipulator, opening the three way tap to atmosphere, squeezing the balloon and 

allowing fluid to move from the balloon, up the catheter and out of the tap, and then 

closing the three way tap to the balloon (Figure 2.4). 

Left ventricular pressures were determined at as many multiple small increments 

in volume as were practically possible. The micromanipulator has a Vernier scale (Figure 

2.4) that allows for 0.005-0.01 ml increments in volume to be injected into the balloon. 

The micromanupilator was regularly calibrated by weighing 0.005-to-0.01 ml increments 

of volumes of fluid. Left ventricular developed pressures and diastolic pressures were 

measured and recorded on a Hellige recorder (Figure 2.5). Left ventricular developed 

pressures were recorded on a different channel to left ventricular diastolic pressures 

(Figure 2.5). An amplified calibration scale was used to assess left ventricular diastolic 

pressure to ensure the accuracy of recordings (Figure 2.5). The channel used to record 

left ventricular developed pressures was calibrated using a mercury manometer. The 

channel used to record left ventricular diastolic pressures was calibrated with a water-

filled U-tube system designed to calibrate low pressure systems (Norton et al., 1996). 

Calibrations for both left ventricular developed pressure and diastolic pressure 

recordings were performed both before and after each heart preparation. Left ventricular 

pressures were determined over a range of volumes measured in the absence of an 

inotropic stimulus. As the isolated, perfused heart preparation used in this dissertation is 

isovolumic, left ventricular minimum pressures (diastolic pressures) were assumed to be 

the equivalent of left ventricular end diastolic pressure in a heart with volume changes 

that correspond to a normal cardiac cycle. 

 Left ventricular diastolic pressure-volume relations were constructed to assess 

the degree of left ventricular dilatation. For statistical comparisons, left ventricular  
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Figure 2.5  Typical recordings obtained of left ventricular developed pressures and left ventricular 

diastolic pressures in isolated, perfused heart preparations. 
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dilatation (remodeling) was assessed by comparing left ventricular volumes obtained at a 

left ventricular diastolic pressure of 0 mm Hg (volume intercept of the left ventricular 

diastolic pressure-volume relationship-LV V0) (Badenhorst et al., 2003a, Badenhorst et 

al., 2003b, Woodiwiss et al., 2001, Norton et al., 2002). To determine systolic chamber 

function, the slope of the linear portion of the systolic developed pressure-volume 

relationship was calculated (systolic chamber elastance-E). This is the equivalent of left 

ventricular end systolic elastance in an ejecting and filling left ventricle. Left ventricular 

end systolic elastance is the slope of the end systolic pressure-volume relationship. Left 

ventricular end systolic elastance has been well established as being afterload and 

preload-independent (Sagawa et al., 1981, Sugawa et al., 1988). The linear portion of 

the systolic developed pressure-volume relationship in an isovolumic preparation is 

considered to be the equivalent of end systolic elastance in a heart that ejects and fills 

during the cardiac cycle, as peak systolic pressures in an isovolumic preparation are the 

same as end systole pressures. Data points were included in the peak systolic pressure-

volume relationship if on linear regression analysis for individual rats, the r2 value with 

each point included was 0.95 or more. Using this approach I could include the first five 

left ventricular developed pressures in the left ventricular developed pressure-volume 

relationship for all rats for baseline measurements. 

To determine intrinsic systolic myocardial function, the slope of the systolic 

developed stress-strain relationship was calculated (myocardial systolic elastance-En) 

(Norton et al., 2002, Badenhorst et al., 2003b, Veliotes et al., 2005). By converting 

pressures and volumes into stress and strain data, the impact of alterations in left 

ventricular chamber geometry on systolic function are eliminated (Weber et al., 1988). 

Thus, En is the myocardial equivalent of E and hence is also afterload and preload-

independent. En is a linear relationship and hence substantially more data points were 
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included in the analysis than five data points. However, to ensure that calculations of En 

were representative of data obtained for E, En was also recalculated from only the first 

five left ventricular developed pressure and volume data and provided essentially the 

same outcomes. This is not surprising as the relationship is linear. Left ventricular 

developed stress and strain values were calculated from previously described formulae 

(Weber et al., 1988, Norton et al., 2002, Badenhorst et al., 2003b, Veliotes et al., 2005) 

assuming a thick-walled spherical geometry of the left ventricle as follows: 

 

Left ventricular systolic stress =  1.36 x LV developed pressure x (LVV)2/3 
                                                               ____________________________ 
 
         [LVV + (0943 x LV mass)]2/3 – LVV2/3  

            

Left ventricular systolic strain      =        LVV1/3 + [LVV + (0.943 x LV mass)]1/3] -1 
                                                               ________________________________ 
 
         LV V0 

1/3 + [LV V0 + (0.943 x LV mass)]1/3 

 

Where LVV is left ventricular volume and LV V0 is the volume intercept of the LV 

developed pressure- volume relationship, i.e. LV volume when LV developed pressure = 

0 mm Hg. 

  

2.4 Cardiac fibrosis and apoptosis 

 

After weighing heart tissue, a longitudinal slice of the left ventricle from the apex 

to the base through the left ventricular free wall was obtained from all rats for histology. 

Left ventricular tissue was stored in 10% buffered formaldehyde for subsequent 

histology. Myocardial tissue was subsequently processed, embedded in paraffin wax and 
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cut into sections. Left ventricular tissue was processed routinely for light microscopy and 

50 µm-thick sections of the long axis circumference were cut through the full thickness of 

the left ventricular wall. Ten slices were obtained at 1-mm intervals and stained with van 

Gieson’s stain. After staining a pathological grade was assigned, where 0 indicates no 

damage; 1 and 2, patchy fibrosis in less than or more than 20% of the field respectively; 

3 and 4, diffuse contiguous subendocardial fibrosis in less than or more than 50% of the 

field respectively and 5 and 6, full thickness fibrosis in less than or more than 50% of the 

field respectively (Teerlink et al., 1994, Woodiwiss et al., 2001). Representative slides 

stained with van Gieson’s stain are shown in Figure 2.6. 

The degree of apoptosis was quantified on myocardial tissue sections obtained 

from the same tissue blocks used to assess the pathological score. For each tissue 

block, 50 µm thick sections were stained and evaluated. Nuclear deoxyribonucleic acid 

(DNA) fragments in the tissue sections were detected using a non-radioactive in situ 

apoptotic cell death detection kit (DeadEndTM Colorimetric TUNEL system, Promega, 

Madison, WI, USA), where terminal deoxynucleotidyl transferase (TdT) was used to 

incorporate biotinylated nucleotide at the 3’-OH DNA ends. Horseradish-peroxidase-

labeled streptavidin binds to biotinylated nucleotides, which subsequently stain dark 

brown in response to hydrogen peroxide and diaminobenzidine (Agarwala & Kalil, 1998). 

Both positive (DNase treated) and negative (no addition of TdT) control tissue sections 

were incorporated into each assay. A separate Coplin jar was used for the positive slide 

due to DNase I activity from the positive control which may affect the experimental slides 

by staining non-apoptotic cells. 

To identify apoptotic nuclei, all procedures were carried out at room temperature 

except where otherwise stated. Paraffin embedded sections were first immersed in  
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Figure 2.6  Typical images obtained of sections of the left ventricle of rats stained with 

Van Giesson’s stain. Image A shows areas of tissue fibrosis. Image B depicts normal 

cardiac tissue with no fibrosis. 
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xylene for 5 minutes to de-paraffinize the tissue sections. The tissue sections were then 

washed by immersing the slides in 100% ethanol for 5 minutes and again for 3 minutes. 

The sections were then rehydrated by immersing the slides through graded ethanol 

washes (95%, 85%, 70% and 50%) for 3 minutes each. The slides were then washed in 

0.85% NaCl solution for 5 minutes and in PBS for 5 minutes. The tissue sections were 

then fixed by immersing the slides in 4% paraformaldehyde solution for 15 minutes. The 

slides were then immersed in PBS for 5 minutes. The liquid was then dried from the 

tissue sections and the slides were placed on a flat surface. A 20µg/ml protein kinase K 

solution was prepared from the 10µg/ml Proteinase K stock solution by diluting it with 

PBS. 100µl of the proteinase K solution was then added to the slides to cover each 

tissue section. The slides were then incubated for 30 minutes at room temperature to 

allow the proteinase K to increase the permeability of the cells. The tissue sections were 

then washed by immersing the slides in PBS for 5 minutes and re-fixed by immersing in 

4% paraformaldehyde solution and washed again in PBS for 5 minutes. At this point the 

positive control slide was treated with DNase I to cause DNA fragmentation whilst the 

experimental slides remained in a PBS solution. 100µl of DNase I buffer was added to 

the positive control slide to cover the tissue sections and incubated at room temperature 

for 5 minutes. The DNase I buffer liquid was then tapped off the tissue sections and 

DNase I buffer containing DNase was added to cover the tissue sections. The slides 

were then incubated for 10 minutes at room temperature. The excess liquid was 

removed by tapping the slides. The positive control slide was then washed 4 times in 

distilled water and in PBS for 5 minutes. After DNase treatment the positive control slide 

was again processed with the experimental slides. The excess liquid was removed by 

tapping the slides and the tissue sections were then covered with Equilibration Buffer for 

8 minutes. Whilst the sections were equilibrating, 10µl of Biotinylated Nucleotide Mix and 
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10µl of rTDT Enzyme were added to 980µl of Equilibration Buffer for the reaction mix. A 

control incubation buffer was prepared for the negative control slide by adding 1µl of 

Biotinylated Nucleotide Mix and 1µl of distilled water to 98µl of Equilibration buffer. After 

equilibration the slides were blotted with tissue paper to remove excess liquid and 100µl 

of the rTDT reaction mix was then added to each tissue section. The sections were then 

covered with plastic cover slips and incubated at 37˚C for 60 minutes inside a humidified 

chamber to allow the end-labelling reaction to occur. After 60 minutes the slides were 

removed from the incubator and the plastic cover slips were removed. 20X saline-

sodium citrate (SSC) was diluted with distilled water. The rTDT reaction was terminated 

by immersing the slides in 20 x SSC solution for 15 minutes. This procedure was 

repeated. The tissue sections were subsequently washed in PBS twice for 5 minutes 

each to remove unincorporated biotinylated nucleotides. The slides were then immersed 

in 0.3% hydrogen peroxide for 5 minutes to block the endogenous peroxides and 

washed with PBS for 5 minutes. Streptavidin HRP was diluted in PBS. 100µl was added 

to each slide to cover the tissue sections and the slides were incubated at room 

temperature for 30 minutes. The slides were then washed with PBS for 5 minutes. 50µl 

of DAB Substrate 20X Buffer, 50µl of DAB 20X Chromogen and 50µl of Hydrogen 

Peroxide 20X were added to 950µl of distilled water.  100µl of the DAB solution was then 

added to each slide to cover the tissue sections for 8 minutes at room temperature. The 

slides were then rinsed 4 times with distilled water, dehydrated by immersing the slides 

in graded ethanol washes (50%, 70%, 85% and 95%) and immersed in xylene. The 

slides were subsequently mounted using permanent mounting medium (Entellan, Merck 

KGaA, Germany). 

The number of apoptotic cardiomyocyte nuclei and the total number of 

cardiomyocyte nuclei (haematoxylin and eosin stain) in each slide were counted on ten  
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Figure 2.7 Typical images obtained of sections of the left ventricle of rats stained for 

apoptotic nuclei. Image A shows apoptotic nuclei (arrows). Image B shows the negative 

control slide showing a lack of apoptotic nuclei and image C shows a positive control 

slide showing many apoptotic nuclei.  
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evenly spaced fields from the apex to the base using a computer-based image 

acquisition and analysis system at 400 times magnification (Axiovision 3, Carl Zeiss, 

Gottingen, Germany). Typical images of apoptotic nuclei from cardiomyocytes are shown 

in Figure 2.7. Cardiomyocyte apoptotic nuclei were expressed as a percentage of the 

total number of cardiomyocyte nuclei. All sections were coded and a single observer 

“blinded” to the identity of the rat from which the section was obtained recorded the 

number of apoptotic nuclei, and counted the total number of cardiac myocyte nuclei from 

slides stained with haemotoxylin and eosin (H & E). 

 

2.5 Myocardial collagen 

 

Samples of LV tissue were weighed and stored at -70ºC prior to tissue analysis. 

Myocardial hydroxyproline concentration ([HPRO]) was determined after acid (HCL) 

hydrolysis using the method of Stegeman and Stalder (1967) and previously described 

by members of our lab (Norton et al., 1997, Woodiwiss et al., 2001). Myocardial collagen 

was also extracted by means of tissue homogenation and then digested with cyanogen 

bromide (CNBr) overnight in water-bath (± 25ºC at slight angle)  (Norton et al., 1997, 

Woodiwiss et al., 2001). A portion of the CNBr digested collagen sample was vacuum 

sealed and subjected to acid hydrolysis (18 hours at 108ºC in 6N HCl) and [HPRO] 

determination followed. The amounts of non-cross-linked (soluble) and cross-linked 

(insoluble) collagen in the myocardium were ascertained based on the solubility of 

myocardial collagen to CNBr digestion (Norton et al., 1997, Woodiwiss et al., 2001). 
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2.6 Data analysis 

 

 All values in text are represented as mean ± SEM. Regression analysis was used 

to determine the lines of best fit for cardiac function. To compare cardiac weights, left 

ventricular internal dimensions and wall thickness values, left ventricular V0 (volume 

intercept of the diastolic pressure-volume relationship), left ventricular systolic chamber 

or myocardial function (FSend, FSmid, Ees and En), left ventricular cardiomyocyte 

apoptosis and myocardial collagen concentrations between groups, a one-factor ANOVA 

followed by a Newman-Keuls post hoc test was employed. To compare pathological 

scores between groups, a one-factor ANOVA followed by a Kruskal-Wallis post hoc test 

was employed. To assess whether complete reversal of the adverse effects of 6 months 

of ISO administration had occurred after 4 months of cessation of ISO administration, I 

not only compared mean values, but also the proportion of rats with data either greater 

than or equal to, or less than or equal to the 95% confidence intervals for controls. 

Proportions were compared using a Fishers Exact test.  
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3.1 Impact of cessation of chronic isoproterenol ad ministration on body and 

heart weights. 

 

Table 3.1 and Figure 3.1 show the impact of 6 months of daily isoproterenol 

(ISO) administration and 4 months of recovery after cessation of ISO administration on 

body and heart weights of rats. Chronic ISO administration produced no statistically 

significant effect on body weights (Table 3.1). However, 6 months of daily ISO 

administration increased heart weight (Table 3.1), left ventricular weight (Figure 3.1) and 

right ventricular weight (Table 3.1) in rats, an effect that was completely reversed 4 

months after cessation of ISO. After 4 months of recovery, heart weight (Table 3.1), right 

ventricular weight (Table 3.1), left ventricular weight (Figure 3.1), heart weight-to-body 

weight ratio (Table 3.1) and left ventricular-to-body weight ratio (Table 3.1) decreased to 

values that were lower than age-matched control rat values. 

Although 90% of rats receiving ISO for 6 months had a left ventricular weight that 

was greater than or equal to the upper 95% confidence interval for control rats at 6 

months (p<0.01 for comparison of proportion of rats within the control group that had a 

left ventricular weight that was greater than or equal to the upper 95% confidence 

interval for control rats) (Figure 3.1), only 14.3% of rats 4 months after cessation of ISO 

administration had a left ventricular weight that was greater than or equal to the upper 

95% confidence interval for age-matched control rats (p=0.39 for comparison of 

proportion of rats within the control group that had a left ventricular weight that was 

greater than or equal to the upper 95% confidence interval for age-matched control rats) 

(Figure 3.1). Thus, withdrawal of ISO administration resulted in complete reversal of 

cardiac hypertrophy. 

 



63 

 

Table 3.1 Impact of chronic isoproterenol (ISO) administration and 4 months of recovery 

after cessation of ISO administration (recovery) on body and heart weights in rats. Left 

ventricular weights are shown in Figure 3.1. 

  

 ISO 
(6 months)  

 
 

(n = 10) 

Control 
(6 months)  

 
 

(n= 10) 

ISO 
(6 months) 
+ Recovery  

 
(n= 14) 

     Control 
    (6 months) 
    + Recovery 

 
 (n= 14) 

Body weight   (g) 599 ± 15.1 
 

612 ± 19.5 
 
 

584 ± 11.5 610 ± 16.3 

Heart weight (g)  
 
 

1.84 ± 0.102* 
 

1.61 ± 0.066 
 

1.29 ± 0.036† 
 

1.53 ± 0.073 
 

Right ventricular 
weight (g) 
 

0.392 ± 0.016* 
 
 

0.331 ± 0.015 
 
 

0.284 ± 0.007† 
 

0.333 ± 0.018 
 

HW/BW (g.kg -1)   
x 103 
 

3.1 ± 0.13* 
 
 

2.6 ± 0.06 
 
 

2.2 ± 0.05†  2.5 ± 0.09 
 

LVW/BW (g.kg -1) 
x 103 
 

2.4 ± 0.11* 
 

 

2.0 ± 0.04 
 
 

1.7 ± 0.04† 1.9 ± 0.07 

 

HW, Heart weight; BW, Body weight; LVW, Left ventricular weight. * p<0.05 vs other 

groups. † p<0.05 vs control (6 months) and Control (6 months) + Recovery. 
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Figure 3.1  Impact of chronic isoproterenol (ISO) administration and 4 months of 

recovery after cessation of ISO administration (recovery) on left ventricular (LV) weight in 

rats. The upper panel shows means and standard errors and the lower panel shows 

individual data and 95% confidence intervals for control rat data. The lower panel 

therefore illustrates the proportion of experimental animals whose data lies at or outside 

of the 95% intervals for controls.*p<0.05, ***p<0.001 vs ISO, †p<0.05 vs Control and 

Control recovery. Statistical comparisons of proportions of ISO or ISO Recovery rats that 

are above or equal to the upper 95% confidence intervals for controls are given in the 

text. 
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3.2 Impact of cessation of chronic isoproterenol ad ministration on 

echocardiographic parameters. 

 

Table 3.2 and Figures 3.2 and 3.3 show the impact of 6 months of daily 

isoproterenol (ISO) administration and 4 months of recovery after cessation of ISO 

administration on echocardiographic parameters. Six months of daily ISO administration 

resulted in left ventricular dilatation as indexed by an increased left ventricular end 

diastolic (Figure 3.2) and end systolic diameters (Table 3.2), and a decreased left 

ventricular relative wall thickness (Table 3.2), an effect that was completely reversed 4 

months after cessation of ISO. 

Although 100% of rats had a left ventricular end diastolic diameter that was noted 

to lie beyond the upper 95% confidence interval for control rats at 6 months (p<0.02 for 

comparison of proportion of rats within the control group that had a left ventricular end 

diastolic diameter that was noted to lie beyond the upper 95% confidence interval for 

control rats) (Figure 3.2), only 21.4% of rats 4 months after cessation of ISO 

administration had a left ventricular end diastolic diameter that was noted to lie beyond 

the upper 95% confidence interval for age-matched control rats (p=0.42 for comparison 

of proportion of rats within the control group that had a left ventricular end diastolic 

diameter that was noted to lie beyond the upper 95% confidence interval for age-

matched control rats) (Figure 3.2). Thus, withdrawal of ISO administration resulted in 

complete reversal of cardiac dilatation as determined by in vivo measurements assessed 

at uncontrolled heart rates and loading conditions. 

Six months of daily ISO administration also resulted in a reduced left ventricular 

pump function as indexed by a decrease in left ventricular endocardial fractional 

shortening (LV FSend), an effect that was completely reversed 4 months after cessation 
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Table 3.2 Impact of chronic isoproterenol (ISO) administration and 4 months of recovery 

after cessation of ISO administration (recovery) on echocardiographic parameters. Other 

echocardiographic data are shown in Figures 3.2 and 3.3  

 

      ISO 
(6 months) 

 
 

(n=10) 

Control 
(6 months) 

 
 

(n=10) 

ISO 
(6 months) 
+ Recovery 

 
(n=14) 

Control 
(6 months) 
+ Recovery 

 
(n =14) 

LV ESD (mm) 
 
 

5.7 ± 0.19* 
 

   4.0 ± 0.25 
 

3.5 ± 0.14 
 

3.8 ± 0.14 
 

LV PWED (mm) 
 
 

1.8 ± 0.07 
 
 

   2.1 ± 0.11 
 
 

1.8 ± 0.07 2.0 ± 0.08 

LV PWES (mm) 
 
 

2.9 ± 0.16 
 
 

   3.4 ± 0.12 
 
 

3.1 ± 0.07 3.3 ± 0.07 

LV relative wall 
thickness (mm) 
 
 

0.39±0.012* 
 
 

   0.55 ± 0.037 
 

0.49 ± 0.022 
 

0.52 ± 0.019 
 

Heart rate 
(beats.min -1) 
 

220 ± 9.5 
 
 

  239 ± 7 222 ± 8.3 234 ± 7.8 

 

LV, left ventricle; ESD, end systolic diameter; PWED, posterior wall thickness at end 

diastole; PWES: posterior wall thickness at end systole. *p<0.05 vs the other three 

groups. 
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Figure 3.2  Impact of chronic isoproterenol (ISO) administration and 4 months of 

recovery after cessation of ISO administration (recovery) on left ventricular (LV) end 

diastolic diameter in rats. The upper panel shows means and standard errors and the 

lower panel shows individual data and 95% confidence intervals for control rat data. The 

lower panel therefore illustrates the proportion of experimental animals whose data lies 

at or outside of the 95% intervals for controls.***p<0.001 vs ISO. Statistical comparisons 

of proportions ISO or ISO Recovery rats that are above or equal to the upper 95% 

confidence intervals for controls are given in the text. 
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of ISO (Figure 3.3). 

Although 80% of rats had a LV FSend that was below or equal to the lower 95% 

confidence interval for control rats at 6 months (p<0.05 for comparison of proportion of 

rats within the control group that had a LV FSend that was below or equal to the lower 

95% confidence interval for control rats) (Figure 3.3), only 28.6% of rats 4 months after 

cessation of ISO administration had a LV FSend that was was below or equal to the lower 

95% confidence interval for age-matched control rats (p=0.70 for comparison of 

proportion of rats within the control group that had a LV FSend that was was below or 

equal to the lower 95% confidence interval for age-matched control rats) (Figure 3.3). 

Thus, withdrawal of ISO administration resulted in complete reversal of a reduced pump 

function as determined by in vivo measurements assessed at uncontrolled heart rates 

and loading conditions. Differences in LV endocardial fractional shortening could not be 

attributed to differences in heart rate (Table 3.2). 

 

3.3 Impact of cessation of chronic isoproterenol admini stration on left 

ventricular chamber dimensions assessed ex vivo under controlled 

conditions. 

 

Figure 3.4 shows the impact of 6 months of daily isoproterenol (ISO) 

administration and 4 months of recovery after cessation of ISO administration on left 

ventricular diastolic pressure-volume relations as determined in isolated perfused heart 

preparations under controlled conditions. Figure 3.5 shows the impact of 6 months of 

daily isoproterenol (ISO) administration and 4 months of recovery after cessation of ISO 

administration on the volume intercept (LV V0) of these relations. Six months of daily ISO 

administration resulted in left ventricular dilatation as indexed by a right shift in 



69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3  Impact of chronic isoproterenol (ISO) administration and 4 months of 

recovery after cessation of ISO administration (recovery) on left ventricular endocardial 

fractional shortening (FSend) (pump function) in rats. The upper panel shows means and 

standard errors and the lower panel shows individual data and 95% confidence intervals 

for control rat data. The lower panel therefore illustrates the proportion of experimental 

animals whose data lies at or outside of the 95% intervals for controls.**p<0.01, 

***p<0.001 vs ISO. Statistical comparisons of proportions ISO or ISO Recovery rats that 

are below or equal to the lower 95% confidence intervals for controls are given in the 

text. 
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Figure 3.4  Impact of chronic isoproterenol (ISO) administration and 4 months of 

recovery after cessation of ISO administration (recovery) on left ventricular (LV) diastolic 

pressure-volume relations in rats. Statistical comparisons of the volume intercepts of 

these relations are given in Figure 3.5. 
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Figure 3.5  Impact of chronic isoproterenol (ISO) administration and 4 months of 

recovery after cessation of ISO administration (recovery) on the volume intercept at 0 

mm Hg (LV volume0) of the left ventricular diastolic pressure-volume relations shown in 

Figure 3.4 in rats. The upper panel shows means and standard errors and the lower 

panel shows individual data and 95% confidence intervals for control rat data. The lower 

panel therefore illustrates the proportion of experimental animals whose data lies at or 

outside of the 95% intervals for controls. ***p<0.001 vs ISO. Statistical comparisons of 

proportions ISO or ISO Recovery rats that are above the upper 95% confidence intervals 

for controls are given in the text. 
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the left ventricular diastolic pressure-volume relationship (Figure 3.4) and an increase in 

LV V0 (Figure 3.5), an effect that was completely reversed 4 months after cessation of 

ISO (Figures 3.4 and 3.5). 

Although 100% of rats had LV V0 values that lay beyond the upper 95% 

confidence interval for control rats at 6 months (p<0.001 for comparison of proportion of 

rats within the control group that had LV V0 values that were noted to lie beyond the 

upper 95% confidence interval for control rats) (Figure 3.5), only 14.3% of rats 4 months 

after cessation of ISO administration had  LV V0 values that were noted to lie at or 

beyond the upper 95% confidence interval for age-matched control rats (p=1.40 for 

comparison of proportion of rats within the control group that had LV V0 values that were 

noted to lie at or beyond the upper 95% confidence interval for age-matched control rats) 

(Figure 3.5). Thus, withdrawal of ISO administration resulted in complete reversal of 

cardiac dilatation as determined by ex vivo measurements assessed at controlled heart 

rates, under controlled loading conditions and at matched coronary flows. 

 

3.4 Impact of cessation of chronic isoproterenol admini stration on left 

ventricular systolic chamber contractility assessed  ex vivo. 

 

Figure 3.6 shows the impact of 6 months of daily isoproterenol (ISO) 

administration and 4 months of recovery after cessation of ISO administration on left 

ventricular systolic pressure-volume relations as determined in isolated perfused heart 

preparations. Figure 3.7 shows the impact of 6 months of daily isoproterenol (ISO) 

administration and 4 months of recovery after cessation of ISO administration on the 

slope (LV Ees) of these relations. Six months of daily ISO administration resulted in a  
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Figure 3.6  Impact of chronic isoproterenol (ISO) administration and 4 months of 

recovery after cessation of ISO administration (recovery) on left ventricular (LV) systolic 

pressure-volume relations in rats. Statistical comparisons of the slopes of these relations 

are given in Figure 3.7. 
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Figure 3.7  Impact of chronic isoproterenol (ISO) administration and 4 months of 

recovery after cessation of ISO administration (recovery) on the slope (LV end systolic 

elastance-LV Ees) of the left ventricular systolic pressure-volume relations shown in 

Figure 3.6 in rats. The upper panel shows means and standard deviations and the lower 

panel shows individual data and 95% confidence intervals for control rat data. The lower 

panel therefore illustrates the proportion of experimental animals whose data lies at or 

outside of the 95% intervals for controls. *p<0.05,***p<0.001 vs ISO. Statistical 

comparisons of proportions ISO or ISO Recovery rats that are at or below the lower 95% 

confidence intervals for controls are given in the text. 
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reduced left ventricular systolic chamber function as indexed by a right shift in the left 

ventricular systolic pressure-volume relation (Figure 3.6) and a decreased LV Ees 

(Figure 3.7) effects that were completely reversed 4 months after cessation of ISO 

(Figures 3.6 and 3.7). 

Although 100% of rats had LV Ees values that lay below the lower 95% 

confidence interval for control rats at 6 months (p<0.02 for comparison of proportion of 

rats within the control group that had LV Ees values that were noted to lie below the 

lower 95% confidence interval for control rats) (Figure 3.7), only 14.3% of rats 4 months 

after cessation of ISO administration had  LV Ees values that were noted to lie below the 

lower 95% confidence interval for age-matched control rats (p=0.21 for comparison of 

proportion of rats within the control group that had LV Ees values that were noted to lie 

below the lower 95% confidence interval for age-matched control rats) (Figure 3.7). 

Thus, withdrawal of ISO administration resulted in complete reversal of the attenuation of 

cardiac systolic chamber contractility as determined by ex vivo measurements assessed 

at controlled heart rates, under controlled loading conditions and at matched coronary 

flows. 

 

3.5 Impact of cessation of chronic isoproterenol admini stration on left 

ventricular systolic myocardial contractility asses sed ex vivo. 

 

Figure 3.8 shows the impact of 6 months of daily isoproterenol (ISO) 

administration and 4 months of recovery after cessation of ISO administration on left 

ventricular systolic stress-strain relations as determined in isolated perfused heart 

preparations. Figure 3.9 shows the impact of 6 months of daily isoproterenol (ISO) 

administration and 4 months of recovery after cessation of ISO administration on the  
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Figure 3.8  Impact of chronic isoproterenol (ISO) administration and 4 months of 

recovery after cessation of ISO administration (recovery) on left ventricular (LV) systolic 

stress-strain relations in rats. Statistical comparisons of the slopes of these relations are 

given in Figure 3.9. 
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Figure 3.9  Impact of chronic isoproterenol (ISO) adminis tration and 4 months of 

recovery after cessation of ISO administration (recovery) on the slope (LV end systolic 

myocardial elastance-LV En) of the left ventricular systolic stress-strain relations shown 

in Figure 3.8 in rats. The upper panel shows means and standard deviations and the 

lower panel shows individual data and 95% confidence intervals for control rat data. The 

lower panel therefore illustrates the proportion of experimental animals whose data lies 

at or outside of the 95% intervals for controls. *p<0.05,**p<0.001 vs ISO. Statistical 

comparisons of proportions ISO or ISO Recovery rats that are at or below the lower 95% 

confidence intervals for controls are given in the text. 
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slope (LV En) of these relations. Six months of daily ISO administration resulted in a 

reduced left ventricular systolic myocardial function as indexed by a right shift in the left 

ventricular systolic stress-strain relation (Figure 3.8) and a decreased LV En (Figure 3.9) 

effects that were completely reversed 4 months after cessation of ISO (Figures 3.8 and 

3.9). 

Eighty percent of rats had LV En values that lay below the lower 95% confidence 

interval for control rats at 6 months. However, this proportion was not statistically greater 

than the proportion of control rats with LV En values below the lower 95% confidence 

intervals (p=0.07 for comparison of proportion of rats within the control group that had LV 

En values that were below the lower 95% confidence interval for control rats) (Figure 

3.9). Only 21.4% of rats 4 months after cessation of ISO administration had LV En 

values that were below the lower 95% confidence interval for age-matched control rats 

(p=0.68 for comparison of proportion of rats within the control group that had LV En 

values that were noted to lie below the lower 95% confidence interval for age-matched 

control rats) (Figure 3.7). 

 

3.6 Impact of chronic isoproterenol administration and the cessation of 

isoproterenol administration on myocardial damage. 

 

Table 3.3 shows the impact of 6 months of daily isoproterenol (ISO) 

administration and 4 months of recovery after cessation of ISO administration on left 

ventricular necrosis (pathological score), cardiomyocyte apoptosis (TUNEL) and 

collagen concentrations (hydroxyproline). Chronic ISO administration did not modify 

either the pathological score or myocardial collagen concentrations. Moreover, as 

assessed 24 hours after the last dose of ISO, no evidence of cardiomyocyte apoptosis  
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was noted in rats receiving chronic ISO. After 4 months of recovery following cessation 

of ISO administration, cardiomyocyte apoptosis tended to be lower than those rats 4 

months younger.    
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Table 3.3  Impact of chronic isoproterenol (ISO) administration and 4 months of 

recovery after cessation of ISO administration (recovery) on cardiac apoptosis, necrosis 

and total myocardial collagen concentrations. 

 

 ISO 
(6 months) 

 
 

(n= 10) 

Control 
(6 months) 

 
 

(n= 10) 

ISO 
(6 months) 
+ Recovery 

 
(n=14 ) 

Control 
(6 months) 
+ Recovery 

 
(n = 14) 

Path Score 
(Necrosis) 
 

1.4 ± 0.27 1.5 ± 0.22 1.6 ± 0.17 1.9 ± 0.25 

% Apoptosis 
 
 

0.205 ± 0.04 0.207 ± 0.03 0.097 ± 0.01* 
 

0.137 ± 0.02 

Total collagen 
[HPRO]  
µg.mg -1 

0.86 ± 0.03 0.84 ± 0.05 0.85 ± 0.07 0.92 ± 0.05 

 

Path, pathological; [HPRO], myocardial concentration of hydroxyproline. *p<0.05 vs ISO 

(6 months) and Control (6 months) groups. 
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4.1 Summary of main findings 

 

 The main findings of the present study are as follows: After the induction of 

marked cardiac dilatation (as indexed by increases in LVEDD, right shifts in LV diastolic 

pressure-volume relations and increases in LV V0 with the increase in LV V0 being 2.5 

times normal), pump dysfunction (as indexed by decreases in LV FSend), and decreases 

in left ventricular chamber (as indexed by decreases in LV Ees) and myocardial (as 

indexed by decreases in LV En) contractility by daily administration of the β-adrenergic 

receptor agonist ISO for 6 months, withdrawal of ISO resulted in complete reversal of the 

adverse remodelling, pump dysfunction and contractile disturbances over a subsequent 

4 month follow-up period. The adrenergic-induced left ventricular dilatation, pump 

dysfunction and contractile disturbances (chamber and myocardial) and the subsequent 

complete reversal of this process was documented not only with load and heart rate-

dependent echocardiographic measurements obtained in vivo, but also with load and 

heart rate-independent measures of cardiac dilatation and pump dysfunction ex vivo 

under controlled conditions. Importantly however, isoproterenol-induced left ventricular 

dilatation, pump dysfunction and contractile disturbances in the present study were not 

associated with myocardial necrosis, or fibrosis. Although I could not document 

myocardial apoptosis and reversal of this process, these data will be considered in the 

context of the timing of the measurement. How do the results of the present study build 

on our previous understanding of the ability of adrenergic blockers to decrease cardiac 

cavity volumes through the process of reverse remodelling?  
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4.2 How does the present study build on our current  understanding of reversal 

of adrenergic-induced cardiac dilatation and pump d ysfunction? 

 

The present study is the first to provide clear evidence to show that marked 

adrenergic-induced cardiac dilatation, pump dysfunction and contractile disturbances 

can be completely reversed when excessive adrenergic stimulation is removed. Unlike 

the present study where reversal of the deleterious effects of adrenergic activation was 

assessed after removal of the adrenergic stimulus, to address the question of the extent 

to which adrenergic-induced cardiac dilatation can be reversed, previous studies have 

focussed principally on the beneficial effects of adrenergic receptor blockade to reduce 

excessive adrenergic stimulation, on cardiac cavity dimensions in cardiac disease. In this 

regard, although pre-clinical studies have demonstrated the capacity of adrenergic 

receptor blockers to prevent the development of cardiac dilatation (Chan et al., 2004, Hu 

et al., 1998), the impact of adrenergic receptor blockade once the structural remodelling 

and contractile disturbances are fully established is minimal at best and by no means 

returns cardiac cavity dimensions back to normal values (Hu et al., 1998, Gan et al., 

2007b). In this regard, the administration of a β-adrenoreceptor blocker late in the 

development of cardiac dilatation results in a diminished capacity to attenuate cardiac 

dilatation as compared to when initiating therapy early (Hu et al., 1998). These studies 

(Hu et al., 1998, Gan et al., 2007b) therefore challenge the possibility that adrenergic 

receptor blockade can reverse cardiac dilatation once fully established. 

In contrast to only preventing or attenuating progressive cardiac dilatation, which 

generally characterises the beneficial effects of renin-angiotensin system blockers 

(Konstam et al., 1992, Konstam et al., 1993, Greenberg et al., 1995, St. John Sutton et 

al., 1997, Wong et al 2002), as summarised in Table 1.2, in the clinical setting β-
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adrenergic receptor blockers reduce cardiac cavity dimensions and volumes in patients 

with heart failure and established cardiac dilatation (Waagstein et al., 1989, Eichhorn et 

al., 1990, Gilbert et al., 1990, Woodley et al., 1991, Hall et al., 1995, Heesch et al., 1995, 

Quaife et al., 1996, Doughty et al., 1997, Groenning et al., 2000, Capomolla et al., 2000, 

Metra et al., 2000, Lotze et al., 2001, Bello et al., 2003, Metra et al., 2003, Waagstein et 

al., 2003, Toyama et al., 2003, Pieske, 2004, Rahko et al., 2005, Malfatto et al., 2007, 

Gundogdu et al., 2007) As compared to the angiotensin-converting enzyme inhibitors, 

the non-selective α and β-adrenoreceptor blocker, carvedilol produces a greater 

beneficial effect on cardiac cavity dimensions (Khattar et al., 2001). These beneficial 

effects of adrenergic blockade on cardiac cavity dimensions and volumes have been 

noted for the non-selective α and β-adrenoreceptor blocker, carvedilol as well as for the 

selective β-adrenoreceptor blocker, metoprolol (Table 1.2), thus indicating that the 

benefits that accrue from adrenergic receptor blockade on cardiac cavity dimensions in 

heart failure mainly occur through β-adrenoreceptor blockade. However, these effects by 

no means achieve normalisation of the cavity volumes or dimensions (see Table 1.2 for 

a summary of cardiac chamber volumes and internal diameters before and after β-

adrenergic receptor blockers therapy). 

In contrast to an inability of β-adrenergic receptor blockade to show complete 

reverse remodelling in both preclinical and clinical studies, I have been able to show that 

complete reversal of β-adrenoreceptor-mediated cardiac dilatation, pump dysfunction 

and chamber and myocardial contractile disturbances can occur. One possible 

explanation for the apparent discrepancies between the present study and studies 

conducted with β-adrenergic receptor blockers in heart failure is that the model of 

adrenergic-induced cardiac dilatation and pump dysfunction evaluated in the present 

study simply does not reflect what happens in the clinical heart failure condition where β-
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adrenergic receptor blockers produce benefits. Indeed, at a clinical level in heart failure, 

increases in circulating adrenaline and noradrenaline concentrations are noted and 

sympathetic activation to the heart and other organs increases (see chapter 1 for a 

summary), effects that are in-part targeted by α and β-adrenoreceptor blockers. In 

contrast, in the present study an increase in circulating concentrations of a β-adrenergic 

receptor agonist was employed to induce cardiac dilatation and pump dysfunction and I 

failed to assess the impact of α and β-adrenoreceptor blockers on the model. However, it 

is difficult to conceive of how the model studied in the current dissertation cannot be 

seen as in some way as able to mimic the human condition as the β-adrenergic receptor 

blockers bisoprolol and metoprolol (which do not target any other adrenergic receptors) 

produce beneficial effects on outcomes and cardiac dimensions in heart failure (see 

chapter 1 for summary). 

Assuming that the model of adrenergic-induced cardiac dilatation and pump 

dysfunction explored in the present dissertation does mimic the human heart failure 

condition, another obvious question that arises is whether in the present study the extent 

of cardiac dilatation can be considered to be compatible with that noted in many of the 

clinical studies described in Table 1.2. This question is important, as normalisation of 

cavity volumes may occur if the extent of the dilatation is not as advanced. Indeed, as 

indicated in Table 1.2 when baseline left ventricular volumes are lower, final volumes 

after β-adrenoreceptor blocker therapy may lie in the normal range (Malfatto et al., 

2007). Is the extent of cardiac dilatation and pump dysfunction noted in the present 

study compatible with more marked cardiac dilatation noted in many clinical studies? 

Although it is difficult to extrapolate cardiac dimension data obtained in rodents to 

the clinical setting, there is no question that proportionately, the left ventricular diastolic 

volume changes noted in the present study are of clinical importance. In this regard, as 
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with the present study where LV V0 increased from on average ~0.16 mls in the control 

group to on average ~0.40 mls in the group receiving β-adrenergic stimulation for 6 

months, in clinical studies assessing the impact of adrenergic blockade on cardiac cavity 

volumes, the baseline volumes in patients with heart failure were approximately 1.3-1.9 

times that considered to be normal (Hall et al., 1995, Quaife et al., 1996, Doughty et al., 

1997, Capomolla et al., 2000, Groenning et al., 2000, Waagstein et al., 2003, Rahko et 

al. 2005, Malfato et al., 2007). In the present study the volume increase in response to β-

adrenergic stimulation was 2.5 times greater than the control group, volume increases 

that may therefore even exceed that noted in clinical studies. Despite the potentially 

greater extent of the left ventricular chamber volume changes noted in the present study 

as compared to clinical studies (Waagstein et al., 1989, Eichhorn et al., 1990, Gilbert et 

al., 1990, Woodley et al., 1991, Hall et al., 1995, Heesch et al., 1995, Quaife et al., 1996, 

Doughty et al., 1997, Groenning et al., 2000, Capomolla et al., 2000, Metra et al., 2000, 

Lotze et al., 2001, Bello et al., 2003, Metra et al., 2003, Waagstein et al., 2003, Toyama 

et al., 2003, Pieske, 2004, Rahko et al., 2005, Malfatto et al., 2007, Gundogdu et al., 

2007), LV V0 returned to control values in the present study after cessation of the β-

adrenergic agonist. In contrast, in clinical studies, long-term blockade of adrenergic 

receptors failed to normalise left ventricular chamber volumes. Assuming that the model 

studied in the present dissertation does in-part mimic the human heart failure condition, 

the question therefore arises as to why chronic β-adrenergic receptor blockade cannot 

normalize cardiac cavity size in clinical studies of heart failure when the current study 

suggests that complete reversal should be achievable? 
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4.3 Why is adrenergic receptor blockade unable to c ompletely reverse cardiac 

dilatation and pump dysfunction? 

 

A number of potential explanations could account for the inability of adrenergic 

receptor blockers to completely reverse cardiac dilatation and pump dysfunction. First, in 

clinical (Hall et al., 1995, Quaife et al., 1996, Doughty et al., 1997, Groenning et al., 

2000, Capomolla et al., 2000, Metra et al., 2003, Waagstein et al., 2003, Toyama et al., 

2003, Rahko et al., 2005, Malfatto et al., 2007, Gundogdu et al., 2007, Lotze et al., 

2001)(Table 1.2) and pre-clinical (Hu et al., 1998, Gan et al., 2007a, 20007b, Li et al., 

2007) studies where the impact of β-adrenergic receptor blockade on cardiac cavity 

dimensions and pump function has been evaluated, it is impossible to document whether 

complete myocardial β-adrenergic receptor blockade has been achieved. Indeed, it is 

unlikely that in many patients receiving β-adrenergic receptor blockers, because of the 

negative inotropic and hypotensive effects of these agents, or through alternative side 

effects such as bronchoconstriction, that maximal doses of β-adrenergic receptor 

blockers can be achieved and tolerated by many patients with heart failure (Fowler et al., 

2007, Egred et al., 2005). In this regard, it is possible that the higher the dose of β-

adrenergic receptor blocker employed the better the outcomes. No clear dose-response 

relationship between β-adrenergic receptor blocker use and changes in cardiac structure 

and function in pre-clinical (Yaoita et al., 2002) or some clinical (Colucci et al., 2007) 

studies, and similarly no clear dose-response relationship between β-adrenergic 

receptor blocker use and outcomes in some clinical studies (CIBIS II, 1999, Packer et 

al., 2001, MERIT-HF, 1999) has been documented. However, there is indeed a survival 

advantage and decreased hospitalisations when the dose of β-adrenergic receptor 

blockers is relatively close to target doses (CIBIS II, 1999, Packer et al., 2001, MERIT-



88 

 

HF, 1999). Furthermore, dose-related improvements in left ventricular function and 

survival have been reported on in one study for carvedilol (Bristow et al., 1996) and 

patients treated with high doses of β-adrenergic receptor blockers gain a greater benefit 

than patients treated with low doses (Lenzen et al., 2005). In contrast to the use of β-

adrenergic receptor blockers, where complete adrenergic receptor blockade may not 

occur, using the approach employed in the present study, I could ensure that excessive 

β-adrenergic receptor activation was largely attenuated, simply by removing the 

adrenergic stimulus. Hence, a lack of ability to completely reverse cardiac dilatation 

through the use of β-adrenergic receptor blockers may simply reflect an inability to 

completely block adrenergic receptors. 

The second reason that may account for the inability of adrenergic receptor 

blockers to completely reverse cardiac dilatation and pump dysfunction in clinical 

(Waagstein et al., 1989, Eichhorn et al., 1990, Gilbert et al., 1990, Woodley et al., 1991, 

Hall et al., 1995, Heesch et al., 1995, Quaife et al., 1996, Doughty et al., 1997, 

Groenning et al., 2000, Capomolla et al., 2000, Metra et al., 2000, Lotze et al., 2001, 

Bello et al., 2003, Metra et al., 2003, Waagstein et al., 2003, Toyama et al., 2003, 

Pieske, 2004, Rahko et al., 2005, Malfatto et al., 2007, Gundogdu et al., 2007) and one 

pre-clinical (Hu et al., 1998) study, is that in progressive heart failure a number of 

neurohumoral and inflammatory changes may occur which could contribute toward 

progressive cardiac dilatation and pump dysfunction over and above that produced by 

adrenergic activation (Mann, 1999). An inability to completely reverse cardiac dilatation 

through the use of β-adrenergic receptor blockers may therefore also reflect the inability 

of these agents to target all neurohumoral and inflammatory mechanisms responsible for 

chronic heart failure. In contrast, in the present study, the only stimulus for cardiac 

dilatation was excessive β-adrenergic receptor activation, and hence reversal of the 
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deleterious chamber remodelling process was dependent only on removing this stimulus. 

However, in one pre-clinical study (Gan et al., 2007b) cardiac dilatation produced by 

adrenergic activation (isoproterenol) was not reversed by β-adrenergic receptor 

blockade. Nevertheless, in contrast to our study where doses of isoproterenol were 

employed that failed to produce myocardial necrosis and fibrosis, in this previous study 

(Gan et al., 2007b) isoproterenol administration produced marked myocardial fibrosis. 

The third reason that may account for the inability of adrenergic receptor blockers 

to completely reverse cardiac dilatation and pump dysfunction is that in progressive 

heart failure in the aforementioned clinical (Waagstein et al., 1989, Eichhorn et al., 1990, 

Gilbert et al., 1990, Woodley et al., 1991, Hall et al., 1995, Heesch et al., 1995, Quaife et 

al., 1996, Doughty et al., 1997, Groenning et al., 2000, Capomolla et al., 2000, Metra et 

al., 2000, Lotze et al., 2001, Bello et al., 2003, Metra et al., 2003, Waagstein et al., 2003, 

Toyama et al., 2003, Pieske, 2004, Rahko et al., 2005, Malfatto et al., 2007, Gundogdu 

et al., 2007) and pre-clinical (Hu et al., 1998) studies an initiating event such as 

hypertension, myocardial infarction or myocarditis may have caused marked and 

irreparable myocardial damage well beyond that which is produced by excessive 

adrenergic activation. An inability to completely reverse cardiac dilatation through the 

use of β-adrenergic receptor blockers in some patients may therefore simply reflect the 

presence of extensive pre-existing cardiac damage. In contrast, in the present study, the 

stimulus for cardiac dilatation was excessive β-adrenergic receptor activation produced 

by exogenous agonist administration and not the presence of pre-existing cardiac 

disease. Hence reversal of the deleterious chamber remodelling process was dependent 

only on removing this exogenous stimulus. 

In summary, in none of the aforementioned clinical (Waagstein et al., 1989, 

Eichhorn et al., 1990, Gilbert et al., 1990, Woodley et al., 1991, Hall et al., 1995, Heesch 
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et al., 1995, Quaife et al., 1996, Doughty et al., 1997, Groenning et al., 2000, Capomolla 

et al., 2000, Metra et al., 2000, Lotze et al., 2001, Bello et al., 2003, Metra et al., 2003, 

Waagstein et al., 2003, Toyama et al., 2003, Pieske, 2004, Rahko et al., 2005, Malfatto 

et al., 2007, Gundogdu et al., 2007) and pre-clinical (Hu et al., 1998, Gan et al., 2007a, 

2007b, Li et al., 2007) studies can the presence of residual cardiac dilatation be taken to 

indicate that changes to the myocardium produced by excessive adrenergic activation 

cannot be completely reversed by adrenergic receptor blockade. Indeed, assuming that 

the model studied in the present dissertation does indeed in some way mimic the human 

heart failure condition, in this regard, the present study provides clear evidence to show 

that even after inducing marked cardiac dilatation and pump dysfunction through chronic 

β-adrenergic receptor activation, removal of the adrenergic stimulus can completely 

reverse the chamber dilatation and pump dysfunction. 

 

4.4 Reversal of adrenergic-induced cardiac dilatati on: Can this be attributed to 

normalisation of diastolic pressure-volume relation s? 

 

In clinical studies that have assessed the capacity and extent of adrenergic 

blockade to decrease cardiac dilatation (Waagstein et al., 1989, Eichhorn et al., 1990, 

Gilbert et al., 1990, Woodley et al., 1991, Hall et al., 1995, Heesch et al., 1995, Quaife et 

al., 1996, Doughty et al., 1997, Groenning et al., 2000, Capomolla et al., 2000, Metra et 

al., 2000, Lotze et al., 2001, Bello et al., 2003, Metra et al., 2003, Waagstein et al., 2003, 

Toyama et al., 2003, Pieske, 2004, Rahko et al., 2005, Malfatto et al., 2007, Gundogdu 

et al., 2007), cardiac dilatation has been defined by the magnitude of the increase in 

cardiac cavity volumes or dimensions measured. As highlighted in chapter 1, this 

approach does not account for the fact that cardiac chamber dimensions or volumes can 
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change not only with true cardiac remodelling (a shift in the diastolic pressure-volume 

relationship), but also with alterations in heart rate (a decreased heart rate increases 

cavity volumes because the time for filling is extended), preload (an increased blood 

volume increases cavity volumes), afterload (an increased afterload decreases pump 

function and hence increases blood remaining in the ventricle at the end of each beat), 

or myocardial contractility (a decreased pump function increases blood remaining in the 

ventricle at the end of each beat). In contrast to prior studies that have described the 

impact of adrenergic receptor blockade on reverse remodelling in established cardiac 

dilatation, by reporting only on cardiac cavity dimensions or volumes (see Table 1.2) 

(Gan et al., 2007b) in the present study I have confirmed the beneficial effects of 

withdrawal of the adrenergic stimulus on adverse cardiac chamber remodelling, with 

measures of diastolic pressure-volume relationships assessed under controlled 

conditions (in paced hearts with comparable coronary flow rates). 

In the present study true reverse remodelling of the chamber after cessation of 

chronic β-adrenoreceptor activation accounted for decreases in left ventricular cavity 

dimensions. In this regard, chronic β-adrenoreceptor activation resulted in a right shift in 

the diastolic pressure-volume relationship and this change was completely reversed four 

months after cessation of isoproterenol administration. This finding suggests that the 

beneficial effects of adrenergic receptor blockade on cardiac cavity dimensions or 

volumes in previous clinical (see Table 1.2) or preclinical studies (Gan et al., 2007b) 

could be accounted for by a right shift in cardiac diastolic pressure-volume relationships. 

Obviously this would only apply if the current model of adrenergic-induced cardiac 

dilatation does indeed in-part mimic the human heart failure condition. Although in the 

present study the ability to show that chronic β-adrenergic receptor stimulation produces 

increases in cavity volumes through right shifts in diastolic pressure-volume relationships 
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is entirely consistent with a number of previous studies published by our group 

(Woodiwiss et al., 2001, Badenhorst et al., 2003b, Osadchii et al., 2007), the present 

study is the first to show that this change can indeed be completely reversed by removal 

of the adrenergic stimulus. 

 

4.5 Reverse remodelling or changes in myocardial co ntractile function as a 

determinant of an improved pump function? 

 

As discussed in the introduction to the present dissertation, an important debate 

that has accompanied the topic of adverse cardiac chamber remodelling is whether 

cardiac dilatation is simply a consequence and hence an index of decreases in 

myocardial systolic function, or whether cardiac dilatation is indeed a cause of cardiac 

pump dysfunction. In this regard, one argument is that a decreased myocardial systolic 

function attenuates pump function and increases blood remaining in the ventricle at the 

end of each beat. With time the ventricle adapts to accommodate the increases in blood 

volume and maintain normal filling pressures by producing a right shift in the diastolic 

pressure-volume relationship. This view holds that cardiac dilatation is just an index of 

the extent of myocardial systolic dysfunction rather than an essential pathophysiological 

mechanism responsible for pump dysfunction. Although there is currently a general 

consensus that cardiac dilatation is an important cause of pump dysfunction and hence 

of heart failure (Cohn et al., 2000), there is no clinical evidence that segregates the 

impact of cardiac dilatation from that of myocardial systolic dysfunction on cardiac pump 

function or the presence of heart failure. Probably the strongest clinical evidence in this 

regard is that in the absence of myocardial infarction, or pre-existing heart failure, over 

an 11 year follow-up period, the development of congestive heart failure is predicted by 
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baseline left ventricular internal dimensions (Vasan et al., 1997). However, in the clinical 

setting an intervention study specifically targeting chamber volumes without influencing 

myocardial systolic function is still required to establish this hypothesis. Nevertheless, 

preclinical studies conducted by members of our group have provided significant 

evidence to show that cardiac dilatation is a cause of pump dysfunction and heart failure. 

What is this evidence and how does the current study compare to the outcomes of these 

prior studies? 

In a preclinical study conducted by members of our group, the presence of heart 

failure (identified from the presence of pulmonary congestion) and pump dysfunction (a 

reduced endocardial fractional shortening) in marked pressure overload hypertrophy 

produced by abdominal aortic banding was noted to occur in association with a 

combination of cardiac dilatation and myocardial contractile disturbances, whilst 

myocardial contractile disturbances alone were insufficient to account for the presence of 

pump dysfunction and heart failure (Norton et al., 2002). Thus, without cardiac dilatation, 

pump dysfunction and heart failure may not occur in pressure overload states (Norton et 

al., 2002). Further studies from members of our group have provided additional support 

for a critical role of cardiac dilatation in mediating pump dysfunction independent of 

myocardial contractile disturbances. Indeed, our group has demonstrated that chronic 

adrenergic stimulation can promote the transition from compensated cardiac hypertrophy 

to pump dysfunction in association with cardiac dilatation, but not with decreases in 

intrinsic myocardial contractile disturbances (Badenhorst et al., 2003b, Gibbs et al., 

2004, Veliotes et al., 2005, Veliotes et al., 2010). Thus, preclinical studies have provided 

significant evidence to suggest that cardiac dilatation is a necessary prerequisite for the 

development of pump dysfunction and subsequent systolic heart failure at least in 
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pressure overload states and following excessive adrenergic activation. How does the 

present study differ from previous studies? 

In the present study adrenergic-induced cardiac dilatation and pump dysfunction 

was associated with decreases in myocardial contractility (as indexed by a decrease in 

the load-independent measure, LV En). Moreover, the reversal of cardiac dilatation and 

the return of pump function to normal values was associated with a parallel return of 

myocardial contractile function back to normal levels. Thus, in the present study at least, 

adrenergic-induced pump dysfunction and its’ reversal may be attributed to myocardial 

contractile disturbances rather than to cardiac dilatation. However, the more likely 

interpretation of the present data is that pump dysfunction and the reversal of the 

process following withdrawal of the adrenergic stimulus can be accounted for by both 

changes in myocardial contractility and in cardiac chamber dimensions. Importantly, in 

the present study I have taken care to determine myocardial systolic function using a 

load-independent measure of intrinsic myocardial contractile properties (that is left 

ventricular En) determined in hearts paced at the same rate and with comparable 

coronary flow rates. 

 

4.6 Potential cellular mechanisms of reversal of ad renergic-induced cardiac 

dilatation. 

 

 As discussed in chapter 1 of the present dissertation a number of cellular 

mechanisms could explain adverse cardiac chamber remodelling. In the present study I 

evaluated some of these mechanisms including cardiomyocyte necrosis, apoptosis, and 

alterations in total myocardial collagen concentrations. Consistent with previous findings 

by our group in the model studied in the present dissertation, excessive cardiomyocyte 
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necrosis was not observed after chronic β-adrenergic receptor stimulation (Woodiwiss et 

al., 2001, Badenhorst et al., 2003b, Osadchii et al., 2007, Veliotes et al., 2005). 

Moreover, consistent with previous findings by our group in the model studied in the 

present dissertation, excessive cardiomyocyte apoptosis was not observed 24 hours 

after the last dose of isoproterenol (Veliotes et al., 2005). What are the implications of 

these findings for the present study? 

 

4.6.1 Cardiomyocyte necrosis 

 

As previously demonstrated (Woodiwiss et al., 2001, Badenhorst et al., 2003b, 

Osadchii et al., 2007, Veliotes et al., 2005), cardiomyocyte necrosis is unlikely to be a 

major characteristic of the model of adrenergic-induced cardiac dilatation and pump 

dysfunction studied by our group. This is an important point as the conclusion that β-

adrenoreceptor-mediated cardiac dilatation and pump dysfunction can be completely 

reversed, must carry the caveat that this may possibly only occur in situations where 

adrenergic stimulation is insufficiently robust to have produced cardiomyocyte necrosis. 

As previously shown (Benjamin et al., 1989, Mann et al., 1992, Teerlink et al., 1994), 

cardiomyocyte necrosis is indeed a possible response to excessive β-adrenoreceptor 

activation and β-adrenergic blocker therapy attenuates this effect (Chan et al., 2004, 

Pacca et al., 2002). Nevertheless, how frequently sympathetic activation is sufficient to 

promote excessive cardiomyocyte necrosis in heart failure has not been identified. In our 

group’s hands, doses of isoproterenol that cause significant cardiomyocyte necrosis 

(Teerlink et al., 1994) result in extremely high mortality rates from sudden death in rats, 

and hence this model is not feasible for study in our laboratory. 
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4.6.2 Cardiomyocyte apoptosis 

 

Cardiomyocyte cell death mediated by apoptosis, and the degree to which 

subsequent regeneration of cardiomyocytes via stem cells occurs, may determine the 

extent of deleterious remodelling of the myocardium (Yussman et al., 2002). However, it 

may be argued that if cardiomyocyte apoptosis plays an important role in the adverse 

remodelling process following adrenergic activation, and that the myocytes have a 

limited capacity for mitosis, that reverse remodelling is unlikely to ever be complete if 

apoptosis is the fundamental mechanism responsible for cardiac dilatation. 

Nevertheless, it is becoming increasingly recognised that the heart has a considerable 

capacity to regenerate cells after an injury (Kajstura et al., 1998, Beltrami et al., 2001), 

and hence that even considerable cell death should not be seen as a limiting factor in 

the process of reverse remodelling. Does the current study support a role for 

cardiomyocyte apoptosis in mediating adrenergic-induced cardiac dilatation? 

In the present study no relationship between adrenergic activation and 

cardiomyocyte apoptosis was noted. This finding however does not preclude the 

possibility that cardiomyocyte apoptosis plays a significant role in promoting β-

adrenergic-mediated cardiac dilatation and pump dysfunction or that the reversal of this 

process depends on regeneration of cells. Indeed, in the present study the 

administration of the last dose of the β-adrenergic receptor agonist was given at least 24 

hours prior to harvesting tissue for the assessment of cardiomyocyte apoptosis. This 

approach was employed to ensure that cardiac function measurements were not 

confounded by residual inotropic, chronotropic and lusitropic effects of isoproterenol. It is 

therefore possible that I may have missed the β-adrenergic receptor agonist-mediated 

cardiomyocyte apoptosis. Indeed, our group has previously demonstrated that when 
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assessing hearts within a short time period after injecting the last dose of isoproterenol, 

excessive cardiomyocyte apoptosis does indeed occur (Osadchii et al., 2007, Veliotes et 

al., 2010). 

In the present study, support for a cardiomyocyte apoptotic process occurring in 

response to chronic adrenergic activation is the evidence to indicate that after cessation 

of the adrenergic stimulus, cardiac weight decreased to values lower than the control 

groups. This could only have occurred for one of two reasons. One possibility is that 

after cessation of the adrenergic stimulus, atrophy of cells to values lower than control 

cells occurs. However, the second possibility, which is the more likely of the two 

possibilities, is that after cessation of the adrenergic stimulus, although cell size returns 

to normal values, because of prior cell death mediated through adrenergic-induced 

apoptotic processes, cardiac weight decreases to values lower than control values. 

Clearly, this effect cannot be attributed to cardiomyocyte necrosis as pathological score 

and myocardial collagen concentrations were not increased. The only likely possibility is 

that β-adrenergic receptor-mediated cardiomyocyte apoptosis (Communal et al., 1998, 

Singh et al., 2001) (or autophagy) attenuated the number of viable cardiomyocytes and 

hence reduced cardiac weight to values lower than control values. Further work is 

therefore still required to evaluate changes in cell size at six months of isoproterenol 

administration and then at four months after cessation of the adrenergic stimulus. 

 

4.6.3 Myocardial collagen changes 

 

 Although I was unable to show a relationship between myocardial collagen 

concentrations and cardiac dilatation or pump dysfunction in the present study, this does 

not preclude the possibility that interstitial changes could still explain adrenergic-induced 
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adverse chamber remodelling and the reversal thereof. In the present study because 

cardiac function was assessed in-part through the use of isolated, perfused heart 

techniques, and in our hands perfusion of hearts alters myocardial matrix 

metalloproteinase (MMP) expression and activity, I did not evaluate the role of 

myocardial expression and activity of matrix metalloproteinases (MMPs) in the reverse 

remodelling process. In this regard, as described in chapter 1 of the present dissertation, 

increases in myocardial MMP expression and activation may cause breaks in myocardial 

collagen and thus promote side-to-side cardiomyocyte slippage and cardiac dilatation. 

Indeed, increases in myocardial MMP expression and activity have been shown by 

members of our laboratory to accompany adrenergic-induced cardiac dilatation in vivo 

(Veliotes et al., 2010). Obviously further work is required to evaluate whether cessation 

of adrenergic stimulation is accompanied by normalisation of myocardial MMP 

expression and activity. 

 

4.6.4 Cardiomyocyte morphology 

 

 Adrenergic-induced cardiac hypertrophy may be an important mechanism 

responsible for cardiac dilatation. Indeed, as highlighted in chapter 1 of the present 

dissertation, through hypertrophic processes increases in cardiomyocyte length-to-width 

ratios could contribute toward adverse chamber remodelling (Zimmer et al., 1990, 

Spinale et al., 1991, Gerdes et al., 1992, Gerdes & Capasso, 1995, Tamura et al., 1998). 

However, in the present study I did not evaluate the role of cardiomyocyte length-to-

width ratios in contributing toward reverse remodelling following cessation of adrenergic 

stimulation. Nevertheless, recent work from our laboratory, using both image analysis 

and flow cytometry performed on isolated cardiomyocytes, suggests that adrenergic-
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induced cardiac dilatation is not accounted for by changes in cardiomyocyte length-to-

width ratios (Veliotes et al., 2010). 

A lack of contribution of cardiomyocyte length-to-width ratios to the development 

of adrenergic-induced cardiac dilatation does not exclude the possibility that reversal of 

the adverse chamber remodelling process may depend in-part on alterations in 

cardiomyocyte morphology. In this regard, consistent with studies showing that 

adrenergic blockers decrease cardiac mass in heart failure (Hall et al., 1995, Lowes et 

al., 1999, Groenning et al., 2000, Khattar et al., 2001) in the present study reversal of 

adrenergic-induced chamber dilatation was closely associated with reversal of 

adrenergic-induced cardiac hypertrophy. In this circumstance, although changes in 

cardiomyocyte length-to-width ratios may not have occurred, by reducing cell length, 

cardiac cavity volumes could have been attenuated. Nevertheless, if cardiac hypertrophy 

was an important process in mediating reverse remodelling, it is likely that wall thickness 

would have changed. However, on echocardiography at least, although relative wall 

thickness values decreased with chronic adrenergic stimulation, absolute wall thickness 

remained unchanged throughout the study. Importantly, also against a role for 

adrenergic-induced cardiac hypertrophy in promoting cardiac dilatation is the evidence 

that in patients with heart failure receiving the β-adrenergic receptor blocker metoprolol, 

decreases in left ventricular volumes were noted after three months of metoprolol 

therapy, whilst left ventricular mass only decreased in this study by 18 months of 

metoprolol therapy (Hall et al., 1995). These data suggest that the beneficial effects of 

adrenergic blockade on cardiac cavity volumes in heart failure can precede alterations in 

left ventricular mass. Further studies are therefore required to assess the role of 

cardiomyocyte morphology in the reverse remodelling process. 
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4.7 Potential cellular mechanisms of the reversal o f adrenergic-induced 

myocardial contractile disturbances. 

 

 A number of cellular mechanisms could explain myocardial contractile 

disturbances produced by chronic adrenergic activation and the subsequent reversal of 

this process following withdrawal of the adrenergic stimulus. As discussed in sections 

4.6.1 and 4.6.2 of the present dissertation, cardiomyocyte necrosis and apoptosis may 

occur following excessive adrenergic activation, changes which could account for a 

decrease in myocardial contractility. However, as previously pointed out in these 

sections, no evidence of cardiomyocyte necrosis was noted in the present study. 

Furthermore, although I was also unable to show an adrenergic-induced increase in 

cardiomyocyte apoptosis, I may have missed this change through the collection of tissue 

24-hours after the last dose of isoproterenol. Hence, excessive cardiomyocyte apoptosis 

may explain the adrenergic-induced decrease in myocardial contractility. If this is indeed 

the explanation, to conceive of how withdrawal of the adrenergic stimulus could reverse 

the myocardial dysfunction one would have to consider the possibility that substantial 

reparative properties occur in the myocardium. In this regard, as pointed out in section 

4.6.2, it is becoming increasingly recognised that the heart has a considerable capacity 

to regenerate cells after an injury (Kajstura et al., 1998, Beltrami et al., 2001).  

An alternative potential mechanism by which chronic sympathetic activation may 

promote progressive decreases in myocardial contraction and subsequently a return of 

contractility to normal after cessation of the adrenergic stimulus, is through alterations in 

the sensitivity of the system to agonist stimulation. A number of authors have 

demonstrated that as a consequence of sympathetic over-activation, in failing human 

hearts a decrease in β-adrenoreceptor density leads to subsensitivity of the β-adrenergic 
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pathway and decreased β-adrenoreceptor-agonist-stimulated muscle contraction 

(Bristow et al., 1982, Bristow et al., 1986, Brodde et al., 1986, Böhm et al., 1988, Brodde 

et al., 1989, Brodde, 1991, Steinfath et al., 1991, Schotten et al., 2000, Tevaearai & 

Koch, 2004). In support of a role of β-adrenergic receptor desensitization in-part 

explaining the reduced myocardial contractility associated with chronic adrenergic 

activation in the present study, is data from a previous study by our group demonstrating 

β1- and β2-adrenoreceptor inotropic down-regulation (attenuated contractile responses to 

dobutamine and salbutamol) after three months of isoproterenol administration (Osadchii 

et al., 2007). However, in that study myocardial contractility was not decreased by three 

months of isoproterenol administration (Osadchii et al., 2007), a finding that was 

explained by increases in myocardial norepinephrine release, to up-regulation of α-

adrenoreceptor-mediated contractile effects as determined by phenylephrine 

responsiveness and to compensatory cardiac hypertrophy (Osadchii et al., 2007). 

Whether a longer period of isoproterenol administration, such as in the present study, 

subsequently results in an attenuation of these compensatory changes and hence a 

reduction in myocardial contractility was not explored.    

 

4.8 Clinical implications 

 

 The present study provides clear evidence to show that even with advanced 

adrenergic-induced cardiac dilatation, decreases in myocardial contractility and pump 

dysfunction, complete reversal of these changes may be achieved as long as the 

adrenergic stimulus is eliminated. The caveat is that this is possible in the absence of 

cardiomyocyte necrosis, but whether the same outcome can be achieved in patients in 

whom adrenergic activation is sufficiently robust to cause necrosis of cardiomyocytes 
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remains to be established. Assuming that the model of cardiac dilatation and pump 

dysfunction reported on in the present dissertation can indeed be considered to in-part 

mimic the human heart failure condition, these data therefore support the need to block 

β-adrenergic receptors or the downstream pathways that mediate cardiac dilatation in 

patients with heart failure associated with cardiac dilatation. In this regard, the use of β-

adrenergic receptor blockers in patients with heart failure is not always optimal (Cleland 

et al., 2002, Pont et al., 2003, Rutten et al., 2003, Komajda et al., 2003, Murphy et al., 

2004, Lenzen et al., 2005, Fernandes et al., 2005, Bongers et al., 2006, Fowler et al., 

2007, Sturm et al., 2007, Kavookjian & Mamidi, 2008), possibly because of hypotensive 

effects produced by negative inotropic actions of β-adrenergic receptor blockers, 

particularly in patients with severe pump dysfunction, or because of the presence of co-

morbid conditions where β-adrenergic receptor blockers are contraindicated (e.g. the 

presence of reactive airways disease) (Egred et al., 2005). Future studies may therefore 

be required to identify alternative therapeutic interventions, specifically targeting 

downstream pathways responsible for adrenergic-induced cardiac dilatation, myocardial 

contractile disturbances and pump dysfunction, but pathways which do not influence 

cardiac or vascular smooth muscle function. 

 

4.9 Strengths and limitations of the present study.  

 

 As with any study the outcomes of the present study should be evaluated in the 

context of the strengths and weakness. As previously indicated, a weakness of the study 

is that I assessed the effect of a β-adrenergic receptor agonist and its withdrawal, rather 

than trying to mimic the human heart failure condition where increases in circulating 

concentrations of both adrenaline and noradrenaline occur and where sympathetic 
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activation to some but not other organ systems also occurs. Hence, data obtained from 

the present model of cardiac dilatation and pump dysfunction may not apply to the 

human heart failure condition. 

As previously emphasised, in the present study I used two approaches to 

measure cardiac chamber remodelling and pump function, each with its own strengths 

and weaknesses. The first approach was echocardiography performed in anaesthetised 

rats. The second approach was to construct diastolic and systolic pressure-volume and 

stress-strain relations in an isolated, perfused heart preparation. The strength of the 

echocardiographic measurements is that heart dimensions and pump function were 

measured in a filling and emptying ventricle, in the presence of an intact and functional 

neurohumoral system, and in blood perfused hearts. The limitation of using 

echocardiography is the presence of an anaesthetic with potential effects on cardiac 

function, and that the measurement is affected by the confounding effects of preload, 

afterload, coronary flow, and heart rate. In addition, on echocardiography left ventricular 

end diastole was taken as that point at which maximal diastolic diameter was achieved 

rather than identifying end diastole from the onset of the Q wave of the 

electrocardiograph recording. Although in human studies correlating echocardiographic 

images with electrocardiographic recordings allows for accurate identification of the 

exact end diastolic period of the cardiac cyce, in rats the much faster heart rate (4-5 

times faster) results in a decreased ability to accurately time end diastole using 

electrocardiograph recordings. Nevertheless, at end diastole the heart is at peak filling 

volumes, and hence maximal diameter is likely to reflect diameters at end diastole.    

The strength of the measurements obtained in the isolated, perfused heart 

preparation is that they are preload and afterload independent, and that these 

measurements were obtained at controlled heart rates and coronary flow rates. 
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Moreover, the confounding effects of anaesthesia are eliminated. The limitations of the 

isolated, perfused heart preparation include measurements performed under non-

physiological conditions, and obtained in isovolumic preparations. Importantly, however, 

despite the strengths and weaknesses of each approach, the same outcomes were 

reproduced with both. In addition to considering the strengths and weaknesses of the 

whole organ assessments, it is similarly important to consider the strengths and 

weaknesses of the measurements designed to assess the cellular mechanisms of the 

reverse remodelling. In this regard, most of the deficiencies of these measurements 

have been discussed in aforementioned sections. 

 

4.10 Conclusions 

 

 In conclusion, data provided from this study provide clear evidence to indicate 

that in the absence of myocardial necrosis, even marked adrenergic-induced cardiac 

dilatation, contractile disturbances and pump dysfunction are completely reversible.  
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