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Abstract

The modelling power of Itô integrals has a far reaching impact on a spectrum of diverse fields. For
example, in mathematics of finance, its use has given insights into the relationship between call options
and their non-deterministic underlying stock prices; in the study of blood clotting dynamics, its utility
has helped provide an understanding of the behaviour of platelets in the blood stream; and in the in-
vestigation of experimental psychology, it has been used to build random fluctuations into deterministic
models which model the dynamics of repetitive movements in humans.

Finding the quadrature for these integrals using continuous groups or Lie groups has to take families
of time indexed random variables, known as Wiener processes, into consideration. Adaptations of Sophus
Lie’s work to stochastic ordinary differential equations (SODEs) have been done by Gaeta and Quintero
[1], Wafo Soh and Mahomed [2], Ünal [3], Meleshko et al. [4], Fredericks and Mahomed [5], and Fredericks
and Mahomed [6]. The seminal work [1] was extended in Gaeta [7]; the differential methodology of [2]
and [3] were reconciled in [5]; and the integral methodology of [4] was corrected and reconciled in [5] via [6].

Symmetries of SODEs are analysed. This work focuses on maintaining the properties of the Weiner
processes after the application of infinitesimal transformations. The determining equations for first-order
SODEs are derived in an Itô calculus context. These determining equations are non-stochastic.

Many methods of deriving Lie point-symmetries for Itô SODEs have surfaced. In the Itô calculus context
both the formal and intuitive understanding of how to construct these symmetries has led to seemingly
disparate results. The impact of Lie point-symmetries on the stock market, population growth and
weather SODE models, for example, will not be understood until these different results are reconciled as
has been attempted here.

Extending the symmetry generator to include the infinitesimal transformation of the Wiener process
for Itô stochastic differential equations (SDEs), has successfully been done in this thesis. The impact of
this work leads to an intuitive understanding of the random time change formulae in the context of Lie
point symmetries without having to consult much of the intense Itô calculus theory needed to derive it
formerly (see Øksendal [8, 9]). Symmetries of nth-order SODEs are studied. The determining equations of
these SODEs are derived in an Itô calculus context. These determining equations are not stochastic in na-
ture. SODEs of this nature are normally used to model nature (e.g. earthquakes) or for testing the safety
and reliability of models in construction engineering when looking at the impact of random perturbations.

The symmetries of high-order multi-dimensional SODEs are found using form invariance arguments on
both the instantaneous drift and diffusion properties of the SODEs. We then apply this to a generalised
approximation analysis algorithm. The determining equations of SODEs are derived in an Itö calculus
context.

A methodology for constructing conserved quantities with Lie symmetry infinitesimals in an Itô inte-
gral context is pursued as well. The basis of this construction relies on Lie bracket relations on both the
instantaneous drift and diffusion operators.
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Chapter 1

Introduction and Seminal Works

In 1999 a paper was written by Guiseppe Gaeta and Niurka R. Quintero [1], which discussed relations
between the symmetries of the Fokker-Planck (FP) equation and its corresponding stochastic (ordinary)
differential equation (SDE): The symmetries were found, in the usual way, from the FP equation; these
symmetries were then checked against certain conditions; those that met the conditions were symmetries
of the corresponding SDE. However, the assumption of projectability is assumed.

Two years later, a paper was released by Celestine Wafo Soh and Fazal M. Mahomed [2], which ex-
plained how to derive these Lie point symmtries without referring to the corresponding FP equation.
Their methodology was able to incorporate higher order SDEs, like the governing equation for the re-
sponse of a mass-spring oscillator to a white noise random excitation. The assumption of projectibility
was not needed in their derivation. Their result was for a more generalized case.

Almost a year later a paper was published by Gazanfer Ünal [3]; the paper claimed that the determining
equations it used for finding symmetries for first order SDE’s were far removed from the simplified version
of [2] as [2] precluded an extra condition in its derivation, which was introduced in [3].

It is true that there is an error of notation that was carried through in the derivation for the general case
in [2], but it must be said that its determining equations that was used to solve for the symmetries of
first-order SDEs is correct and by carrying the derivation further, gives the same determining equations
as in [3]. In fact it will be shown in this work that Ünal’s [3] extra condition is unnecessary and is
automatically satisfied.

In this thesis, we also investigate the more formal approach of Meleshko et al. [4]; reconciling it with the
most recent findings. The method followed by [4] is incomplete in the sense that the Itô formula was
neglected in the transformation of the time index variable, which leads to transforms that under the Itô’s
formula are not form invariant in terms of the original SODEs.

Extending the work of Gaeta [7] to both first and nth order SODEs is the next step of our investi-
gation and involves not only point transformations but generalized transformations as well. The result
of this analysis is then applied to approximate SODEs, which was first investigated by Ibragimov et al.
[10] and conserved quantities in an Itô context, which was first studied in Ünal [3].

The outline of the thesis is as follows. In 1.1 Preliminaries, we firstly introduce preliminary results
that underlie our research. This is followed by an in depth view into the relationship between the FP
equations and its associated SODEs. Specifically, the calculations of [1] are done in more detail and the
ansatz is justified using as an aid the work of Mahomed and Momoniat [11].
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Chapter 2 seeks to reconcile the works of Wafo Soh and Mahomed [2] and Ünal [3], by using the instan-
taneous drift and diffusion of the Wiener process. The finite Lie point transformation is also analyzed in
conjunction with the Itô’s formula, which had not been done to date.

Completing the transformation methodology of Meleshko et al. [4] in Chapter 3, reconciles all find-
ings thus far. Examples are used to establish the consequence of precluding Itô’s formula in the time
index transformation.

We then begin Chapter 4, in attempt to extend the results of Gaeta [7] by using form invariant ar-
guments on the moments of the Wiener process which underlies SODEs. The symmetry operator is also
extended as a result. Examples from [7] are then used to establish differences and similarities between
our philosophy and that of [7].

Chapter 5 extends these results for generalized symmetries for nth order SODEs, thus extending on
the work previously done by [2]. As a result of the philosophy of form invariance for the moments of the
transformed Wiener process, new insights into the prolongation formulae needed to find the the prolonged
spatial infinitesimals become apparent. The use of the examples establish the differences between what
was done in [2] and in the thesis thus far.

The next two chapters are merely applications of all the recent findings. Chapter 6 extends the ap-
proximate symmetry analysis for first order SODEs of [10] to nth order SODEs.

Chapter 7 reconciles the work of Ünal [3] with the latest results and in addition finds a new method
for construction of conserved quantities. An example from [3] confirms this.

We provide a conclusion, which places all findings into perspective.
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1.1 Preliminaries

In order to work with SDEs we first have to familiarize ourselves with how we associate events ω belonging
to a sample space Ω with a probability measure P. We apply the probability measure specifically to a
system of subsets of Ω, which we denote by F . This σ-algebra F contains the complement and countable
union of any of its arbitrary members, which we call open sets (refer to [12] for summarized definitions
concerning measure theory). We then form a natural filtration by forming an indexed family of σ-
algebras Ft, where t is a time-index, to which the sample paths of our processes are adapted (see [13]).
The probability space (Ω,F , P) that we have introduced allows us to proceed with the introduction of the
randomess which drives the SDE, namely the Wiener process. The Wiener process is a family of random
variables indexed, for our purposes, by time t, which belongs to the interval I, which can be taken to be
the positive real line. This process is a mathematical tool used to formalize the physical phenomena of
Brownian motion; its sample paths, which are obtained by focusing on a fixed realisation of particular
event ω ∈ Ω and following their families of random variables through time, are almost surely continuous
and are almost surely nowhere differentiable in the usual sense (there are many books that explain these
concepts, e.g. [14] and [15]). We represent it as a function W (t, ω) which does the following:

(t, ω) ∈ I × Ω −→W (t, ω) ∈ R.

The ω in the argument of our function is an arbitrary event and is thus suppressed throughout the paper.
This process W (t) also has the following characteristics:

• at time zero with probability one, W (0) = 0;

• for any strictly increasing sequence of indexed times {ti} ⊂ I, the random variables W (ti+1)−W (ti)
are independent;

• for times s < t, W (t)−W (s) is normally distributed with a zero mean and a variance of t− s;

• the covariance between two scalar processes at different times E (W (s)W (t)) is just the minimum
between the two different times min(t, s).

The conditions which were used in deriving the determining equations in [2] and [3] were based upon
what is known as the Itô’s multiplication table - simple mneumonics based on Itô isometry , see [9]

dW (t, ω)(i) dW (t, ω)(j) dt
dW (t, ω)(i) dt 0 0
dW (t, ω)(j) 0 dt 0

dt 0 0 0

Here dW (t, ω)(i) and dW (t, ω)(j) are two independent standard Wiener processes; i, j = 1, . . . , N .

The derivative, in the distribution sense, of the Brownian motion is called white noise and is repre-
sented as dW (t, ω) dt. One of the earliest descriptions of white noise was given in [16]: ”Inside the plane
... we hear all frequencies added together at once, producing a noise which is to sound what white light
is to light.”

In order to construct the Itô Integral next, we need to define the mean square norm. The mean square
norm of our defined random variable Wt is defined by

‖W(t, ω)‖ =
√

E (|W(t, ω)|2) =

√∫

Ω
|W(t, ω)|2dP,

4



where E and P are the expectation operator and probability law respectively with

|W(t, ω)| =

√√√√
N∑

i=1

(W (t, ω))2.

Now let X(t, ω) be a stochastic process such that ‖X(t, ω)‖ < ∞ for all t ∈ [0, T ], T > 0. Then
we denote the class of such stochastic processes by L2.

Unlike the Riemann Integral whose approximations converge in R, the Itô Integral will be approxi-
mated by a sequence of random variables converging in L2. Also the choice of values that the function
being integrated takes, along the discretized temporal axis, in the integral approximation, affects the
limit of such approximations: in an interval of [ti, ti+1) the choice of si ∈ [ti, ti+1) for the function being
integrated in this interval is crucial, as the choice of ti would give rise to what is known as the Itô Integral
and the choice of 1

2 (ti + ti+1) would give rise to the Stratonovich Integral .

We now consider the mesh
0 = t1 < t2 < · · · < tn = T,

of [0, T ] and let Πn = max1≤ k≤n−1 (tk+1 − tk). The following random variable is now formed:

Yn =
n−1∑

k=1

Xtk

[
Wtk+1 −Wtk

]
. (1.1)

Thus we have as a consequence that

Y (i)
n =

n−1∑

k=1

X(i)
tk

[
W (i)

tk+1
−W (i)

tk

]
. (1.2)

We now show that our newly formed random variable is finite under the mean square norm:

‖Yn‖ =

√√√√√E




N∑

k=1

(
n−1∑

i=1

X(k)
ti

[
W (k)

ti+1
−W (k)

ti

])2




=

√√√√√E




N∑

k=1

n−1∑

i=1

n−1∑

j=1

X(k)
ti

[
W (k)

ti+1
−W (k)

ti

]
X(k)

tj

[
W (k)

tj+1
−W (k)

tj

]




=

√√√√
N∑

k=1

n−1∑

i=1

n−1∑

j=1

E
(
X(k)

ti

[
W (k)

ti+1
−W (k)

ti

]
X(k)

tj

[
W (k)

tj+1
−W (k)

tj

])

=

√√√√
N∑

k=1

n−1∑

i=1

E
((

X(k)
ti

)2 [
W (k)

ti+1
−W (k)

ti

]2
)
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=

√√√√
N∑

k=1

n−1∑

i=1

E
(
X(k)

ti

)2
[ti+1 − ti]

(
as E

([
W (k)

ti+1
−W (k)

ti

])
E

([
W (k)

tj+1
−W (k)

tj

])
= 0; i (= j

)

≤

√√√√
N∑

k=1

n−1∑

i=1

E
(
X(k)

ti

)2
Πn

=
√

Πn

[
n−1∑

i=1

N∑

k=1

E
(
X(k)

ti

)2
] 1

2

=
√

Πn

[
n−1∑

i=1

E
(

N∑

k=1

(
X(k)

ti

)2
)] 1

2

=

√√√√Πn

n−1∑

i=1

‖Xti‖2

≤ ∞.

As ‖Xt‖ is finite for all t ∈ [0, T ], it belongs to the class L2
T . If there is a random variable Y such that

lim
n→+∞,
Πn→0

‖Yn − Y ‖ = 0,

Y is called the Itô integral of Xt and is denoted by
∫ a

0
Xt dWt. We illustrate with the following example:

Example 1.1. The squared Wiener processes, W2
t belongs to the class L2

T since

‖W2
t ‖ =

√√√√E
(

N∑

k=1

(
W (k)

t

)4
)

(1.3)

=

√√√√
N∑

k=1

E
((

W (k)
t

)4
)

=

√√√√3
N∑

k=1

t2

=
√

3Nt2 is thus finite. (1.4)

In order to find its Itô integral we form the random variable1.

Yn =
n∑

i=1

W2
ti

[
Wti+1 −Wti

]
which is finite under the mean-square norm (1.5)

=
1
3

n∑

i=1

(
W3

ti+1
−W3

ti

)
−

n∑

i=1

Wti

(
Wti+1 −Wti

)2 − 1
3

n∑

i=1

(
Wti+1 −Wti

)3

=
1
3
W3

T −Yn1 −Yn2 −
1
3
Yn3 ,

1Use the identity a2(b− a) = 1
3 (b3 − a3)− a(b− a)2 − 1

3 (b− a)3
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where

Yn1 =
n∑

i=1

Wti (ti+1 − ti) (1.6)

Yn2 =
n∑

i=1

Wti

[(
Wti+1 −Wti

)2 − (ti+1 − ti)
]

(1.7)

Yn3 =
1
3

n∑

i=1

(
Wti+1 −Wti

)3
. (1.8)

If we choose Y1 =
∫ T

0
Wt dt, then

‖Yn1 −Y1‖ =

vuuutE

0

@
NX

k=1

 
n−1X

i=1

W (k)
ti

(ti+1 − ti)−
Z T

0

W (k)
t dt

!2
1

A (1.9)

=

vuuutE

0

@
NX

k=1

 
n−1X

i=1

Z ti+1

ti

“
W (k)

ti
−W (k)

t

”
dt

!2
1

A (1.10)

=

vuutE
 

NX

k=1

 
n−1X

i=1

Z ti+1

ti

“
W (k)

ti
−W (k)

t

”
dt

! 
n−1X

j=1

Z tj+1

tj

“
W (k)

tj
−W (k)

t

”
dt

!!

=

vuut
NX

k=1

 
n−1X

i=1

Z ti+1

ti

E
“
W (k)

ti
−W (k)

t

”
dt

! 
n−1X

j=1

Z tj+1

tj

E
“
W (k)

tj
−W (k)

t

”
dt

!

=

vuut
NX

k=1

 
n−1X

i=1

Z ti+1

ti

E
“
W (k)

t −W (k)
ti

”2
dt

!

 
as

Z ti+1

ti

E
“
W (k)

ti
−W (k)

t

”
dt

Z tj+1

tj

E
“
W (k)

tj
−W (k)

t

”
dt = 0; i #= j

!

=

vuut
NX

k=1

 
n−1X

i=1

Z ti+1

ti

(t− ti) dt

!
(1.11)

=

vuut
NX

k=1

n−1X

i=1

„
(t− ti)

2

2

˛̨
˛̨
ti+1

ti

=

vuut
NX

k=1

n−1X

i=1

„
(ti+1 − ti)

2

2

«

≤

vuut
NX

k=1

n−1X

i=1

„
(Πn)2

2

«

−→ 0 as n →∞; Πn → 0. (1.12)

7



Thus Y1 is the Itô integral of Yn1 . As for the third component Yn2 we get

‖Yn2‖ =

vuutE
 

NX

k=1

 
nX

i=1

W (k)
ti

h“
W (k)

ti+1
−W (k)

ti

”
− (ti+1 − ti)

i!2!
(1.13)

=

 
E
 

NX

k=1

 
nX

i=1

W (k)
ti

»“
W (k)

ti+1
−W (k)

ti

”2
− (ti+1 − ti)

–!
× . . .

 
nX

j=1

W (k)
tj

»“
W (k)

tj+1
−W (k)

tj

”2
− (tj+1 − tj)

–!!! 1
2

(1.14)

=

vuut
NX

k=1

 
nX

i=1

E
“
W (k)

ti

”2
E
»“

W (k)
ti+1

−W (k)
ti

”2
− (ti+1 − ti)

–2!
(1.15)

„
as E

“
W (k)

ti

”
E
»“

W (k)
ti+1

−W (k)
ti

”2
− (ti+1 − ti)

–
× · · ·

E
“
W (k)

tj

”
E
»“

W (k)
tj+1

−W (k)
tj

”2
− (tj+1 − tj)

–
= 0; i #= j

«

=

vuut
NX

k=1

 
nX

i=1

tiE
»“

W (k)
ti+1

−W (k)
ti

”4
− 2

“
W (k)

ti+1
−W (k)

ti

”2
(ti+1 − ti)− (ti+1 − ti)

2

–!

=

vuut
NX

k=1

 
nX

i=1

ti

„
E
“
W (k)

ti+1
−W (k)

ti

”4
− 2E

“
W (k)

ti+1
−W (k)

ti

”2
(ti+1 − ti) + (ti+1 − ti)

2

«!

=

vuut
NX

k=1

 
nX

i=1

ti

`
3 (ti+1 − ti)

2 − 2 (ti+1 − ti)
2 + (ti+1 − ti)

2´
!

=

vuut2
NX

k=1

nX

i=1

ti (ti+1 − ti)
2

≤

vuut2
NX

k=1

nX

i=1

ti (Πn)2 (1.16)

−→ 0 as n →∞; Πn → 0. (1.17)

If we look carefully at the second expectation in (1.15), we see that we have actually found justification for the
mneumonic ‘(dWt)

2 = dt’ in the L2
T space, i.e.

E
"„Z T

0

WsdWs

«2
#

= E
»Z T

0

W2
sdt

–
,

which is a particular case of what is also known as Itô’s Isometry.
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Finally the last of the components Yn3 gives us

‖Yn3‖ =

vuutE
 

NX

k=1

 
1
3

nX

i=1

“
W (k)

ti+1
−W (k)

ti

”3
!2!

(1.18)

=

vuutE
 

NX

k=1

 
1
3

nX

i=1

“
W (k)

ti+1
−W (k)

ti

”3
! 

1
3

nX

j=1

“
W (k)

tj+1
−W (k)

tj

”3
!!

=

vuutE
 

NX

k=1

 
1
9

nX

j=1

“
W (k)

tj+1
−W (k)

tj

”6
!!

(1.19)

„
as E

“
W (k)

ti+1
−W (k)

ti

”3
E
“
W (k)

tj+1
−W (k)

tj

”3
= 0; i #= j

«

=

vuut
 

NX

k=1

 
1
9

nX

j=1

E
“
W (k)

tj+1
−W (k)

tj

”6
!!

=

vuut
 

NX

k=1

 
1
9

nX

j=1

E
“
W (k)

tj+1
−W (k)

tj

”6
!!

=

vuut
 

NX

k=1

 
1
9

nX

j=1

15 (tj+1 − tj)
3

!!

≤

vuut
 

NX

k=1

 
2

nX

j=1

(Πn)3
!!

−→ 0, as n →∞; Πn → 0.

Thus we have found that Z T

0

W2
sdWs =

1
3
W3

T −
Z T

0

Wt dt. (1.20)

An Itô process is a stochastic process Xt defined formally as a stochastic integral equation

Xt = Xt0 +
∫ t

t0

f (s,Xs) ds +
∫ t

t0

G (s,Xs) dWs (1.21)

or it can be intuitively presented as a stochastic differential equation

dXt = f (t,Xt) dt + G (t,Xt) dWt, (1.22)

where t0, t ∈ I, f is an N vector - valued function, G is an N ×M matrix-valued function, Wt is an M -
dimensional Wiener process and the second integral is the Itô integral. For the existence and uniqueness
of a temporally-continuous solution, besides the assumption that Xt belongs to L2

T , we also assume that

|f | + |G| ≤ C (1 + |x|) , for some constant C, (1.23)

where |G| =
N∑

i=1

M∑

j=1

|Gij |2 and the drift and diffusion coefficients are Lipschitz continuous

|f(t,x)− f(t,y)| + |G(t,x)−G(t,y)| ≤ D|x− y|, for some constant D. (1.24)

We now state the three main theorems that make our analysis possible.

Theorem 1.1 (Itô’s Formula, [9]).
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If X(t), an N -dimensional vector, is an Itô process,

dX(t) = fdt + G dW(t), (1.25)

where f = f(t, X(t)) and G = G(t, X(t)) are N -dimensional drift vector coefficient and diffusion matrix
coefficient of dimension N×M , respectively; then for an arbitrary application F : I×RN → RM , which is
twice differentiable in the spatial coordinates, F(t, .) ∈ C2

(
RN , RM

)
and only differentiable with respect

to time once, F(.,x) ∈ C1
(
I, RM

)
for all (s,y ) ∈ I ×RN , an Itô process F (t,X(t)) exists and is written

in component form as

dFj (t,X(t)) =
∂Fj (t,x)

∂t

∣∣∣∣
(t,X(t))

dt +
∂Fj (t,x)

∂xi

∣∣∣∣
(t,X(t))

dXi(t)

+
1
2

∂2Fj (t,x)
∂xi∂xm

∣∣∣∣
(t,X(t))

dXi(t) dXm(t), for j = 1, ..., N.

The evaluation of each of the partial derivatives in the right-hand side is made at (t,X(t)) and we simply
write as

dFj (t,X(t)) =
∂Fj

∂t
dt +

∂Fj

∂xi
dXi(t) +

1
2

∂2Fj

∂xi∂xm
dXi(t) dXm(t). (1.26)

It should be kept in mind that though X(t) is indexed by time; it is by its random nature independent
of time. The repeated index summation convention is assumed throughout this work. The terms dXi(t)
and dXi(t) dXm(t) are evaluated using (1.25) and the Itô multiplication table to get

dFj (t,X(t)) = Γ(Fj) (t,X(t)) dt + Y l(Fj) (t,X(t)) dWl(t), (1.27)

where

Γ(Fj) =
∂Fj

∂t
+ fi

∂Fj

∂xi
+

1
2

M∑

k = 1

Gk
i Gk

m
∂2Fj

∂xi∂xm
, (1.28)

Y l(Fj) = Gl
i

∂Fj

∂xi
, for each l = 1, ...,M. (1.29)

For the existence and uniqueness of a temporally-continuous solution, besides the assumption that X(t)
belongs to L2 for an interval [0, T ], we also assume that the instantaneous mean and diffusion coefficients
of (1.25) are Lipschitz continuous (see [15], chap. 7). We give an example to illustrate how Itô’s theorem
could be applied to find the integral of a function of the Wiener process. From this example one notices
how the Newtonian calculus differs from the Itô calculus. We check our tedious calculation from the
example 1.1 done earlier (see equation (1.20)).

Example 1.2.

The Wiener process W2(t) is an Itô process. We apply the Itô’s formula (1.26) to W3(t) to find the
integral of the process W2(t). We therefore obtain

d
(
W3(t)

)
= 3W2(t) dW(t) +

1
2

6W(t) (dW(t))2

= 3W2(t) dW(t) + 3W(t) dt. (1.30)

Hence we now integrate to arrive at

W3(T )−W3(0) = 3
∫ T

0
W2(t) dW(t) +

∫ T

0
3W(t) dt.

Dividing through by 3 and rearranging terms this simplifies to
∫ T

0
W2(t) dW(t) =

1
3

W(T )3 −
∫ T

0
W(t) dt, (1.31)

10



which is the same as before, viz. (1.20). One easily identifies the extra term −
∫ T
0 W(t)dt, as Itô’s

correction term. This adjusts the answer we would have gotten had we used basic Newtonian calculus
methods. Since the calculus governing Wiener processes is not as straightforward as Newtonian calculus,
it is the case that the transformation of a Wiener process into another Wiener process would have to be
contended with. This brings us to the following theorem.

Theorem 1.2 (Random Time Change for Itô Integrals, [8]).

Let c(t, ω) be the measureable time change rate which is related to our time change scalar stochastic
process β(t, ω), by the following equation

β(t, ω) =
∫ t

c(s, ω) ds (1.32)

and α(t, ω) be a scalar stochastic process satisfying

• α(0, ω) = 0,

• dα(t, ω)/dt = 1/c(α(t), ω) ≥ 0, for almost all positive time and almost all ω ∈ Ω,

• β(t, ω) and α(t, ω) are left and right inverses of each other respectively, α (β(t, ω), ω) = β (α(t, ω), ω) =
t for all (t, ω) ∈ I × Ω.

Then, under the (random) time change t = β(t, ω), the Wiener process W(α(t), ω) is mapped to another
Wiener process W(t, ω) according to the relation

√
dα(t)

dt
dW(t) = dW(α(t)), (1.33)

where we have suppressed ω in the expression above. This can then be expressed as

dW(β(t)) =
√

c(t) dW(t), (1.34)

by using the inverse relation between α(t) and β(t) in conjunction with (1.32).

Example 1.3 (An Example of Random Time Change from Øksendal [9]).

The example begins with

dY (t, ω) =
1

|B(t, ω)|σ(Y (t, ω))dB(t, ω) +
1

|B(t, ω)|2 b(Y (t, ω))dt. (1.35)

Now perform the following time change: define

Z(t, ω) = Y (α(t, ω), ω). (1.36)

Thus we have that

dY (α(t, ω), ω) =
1

|B(α(t, ω), ω)|σ(Y (α(t, ω), ω))dB(α(t, ω), ω)

+
1

|B(α(t, ω), ω)|2 b(Y (α(t, ω), ω))dα(t, ω), (1.37)

11



where

α(t, ω) = β−1(t, ω), β(t, ω) =
∫ t

0
c(s, ω) ds and c(t, ω) =

1
|B|2 , (1.38)

which means that

dB̃(t, ω) =
1

|B(α(t, ω), ω)|dB(α(t, ω), ω) (1.39)

and

dt =
dα(t, ω)

|B(α(t, ω), ω)|2 (1.40)

whence

dZ(t, ω) = σ(Z(t, ω))dB̃(t, ω) + b(Z(t, ω))dt (1.41)

when using the random time change formula for Itô integrals.

(1.42)

Theorem 1.3 (Feynman-Kac Theorem [9]). Define

ν(t,x) = Et,xh(XT ), 0 ≤ t ≤ T,

=
∫

h (y) p(T − t,x,y)dy,

where
dXt = a(Xt) dt + G(Xt)dWt

and p(τ,x,y) is the transition density function.

Then
∂ν

∂t
+ Aij(t,x)

∂2ν

∂xi∂xj
+ Bi(t,x)

∂ν

∂xi
+ C(t,x)ν = 0 (1.43)

and
ν(T,x) = h(x),

where

Aij = − 1
2
(GGT )ij ; its components are not to be all zero, (1.44)

Bi = ai − 2
∂Aik

∂xk
, (1.45)

C =
(

∂ai

∂xi

)
− ∂2Aik

∂xi∂xk
. (1.46)

The linear partial differential equation (PDE)(1.43) is known as the Kolmogrov’s Backward equation
(KBE). However, throughtout this chapter, we shall be referring to the Fokker-Plank equation (FP),
which is usually written as

LFP (p) =
∂p(t,x)

∂t
+ Aij

∂2p(t,x)
∂xi∂xj

+ Bi
∂p(t,x)

∂xi
+ Cp(t,x) = 0, (1.47)

where p(t,x) is the density function, satisfying
∫ ∞

−∞
p(t,x)dx1 . . . dxN = 1.. (1.48)
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Please note that the probabilistic equivalence between the FP and Itô equations does not imply
uniqueness between the two; it is possible for different Itô equations to share the same FP equation.

Example 1.4.

dx1 = fdt + GdWt (1.49)

dx2 = fdt + G̃dWt (1.50)

where G is the identity matrix and G̃ is the identity matrix multiplied by an orthogonal matrix
(

cos x sinx
− sin x cos x

)
. (1.51)

In this example both processes share the same constant f and thus the FP equations for both are the
same

∂u

∂t
− 1

2
Aij

∂2u

∂xi∂xj
+ fi

∂u

∂xi
= 0 (1.52)

where Aij is the matrix (
1 0
0 1

)
. (1.53)

Example 1.5. Let us look at the geometric brownian motion model used for stocks in the financial
market,

dS(t) = rS(t)dt + σS(t)dWt, (1.54)

with initial condition
S(t) = x, (1.55)

where r is the fixed risk-free interest rate, σ is the fixed volatility and S(t) is the stock’s price. Let us
now consider the financial instrument known as a European call option, which has term of τ = T − t
and a strike of K. Then we let ν(t, S(t)) be the expected payoff of the option at maturity T , given that
we have all the relevant financial information needed up until time t. This conditional expectation on
the future payoff is not dependent on time and when we arrrive at maturity T , ν is simply just value
of the payoff. That is, the expected future payoff is unaffected by the amount of knowledge we have or
accumulate with time towards the expiry date T .

The expected value of a contingent claim, max{0, s(T ) − K}, at time t is the discounted value of the
expected payout in the future,

u(t, x) = erτEt,x [max{0, s(T )−K}] (1.56)
= e−rτν(t, x) by definition. (1.57)

at some initial time t where S(t) = x. Now if we work out the FP equation w.r.t. ν and then replace ν
with u(t, x)erτ we get the Black-Scholes PDE.

−ru(t, x) +
∂u(t, x)

∂t
+ rx

∂u(t, x)
∂x

+
1
2
σ2x2 ∂2u(t, x)

∂x2
= 0. (1.58)

The terminal condition as was mentioned earlier is

ν(T, x) = max{0, x−K}. (1.59)

Notice if we had chosen h(x) = max{0, K−x} (a put option instead), we would have arrived at the same
PDE, but for a different function u(t, x).
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1.2 Lie Point Symmetries and SDEs

1.2.1 Establishing the ansatz used in work [2]

A relationship between the symmetries of the FP equation and those related to the SDE, via what is
known as the normalization condition (1.48) was established in the paper of Gaeta and Quintero [1].

Given the SDE
dxt = fdt + GdWt (1.60)

The operator

H0 = τ(t,x, u)
∂

∂t
+ ξj(t,x, u)

∂

∂xj
, j = 1, . . . , N (1.61)

will be used in the transformation of the diffusion and drift coeffecients of (1.60). But before we proceed
with the transformation of the spatial and temporal tranformations, we will use [11] to establish the
ansatz for the operator H that [1] used in their paper, i.e.

H0 = τ(t)
∂

∂t
+ ξj(t,x)

∂

∂xj
, j = 1, . . . , N. (1.62)

We first introduce the Lie characteristic function which is given as

Q = η(t,x, u)− ∂u

∂t
τ(t,x, u)− ∂u

∂xi
ξi(t,x, u), (1.63)

where
H = H0 + η(t,x, u)

∂

∂u
, (1.64)

is the Lie point transformation generator. Thus the functions τ , ξi and η can be given in terms of Q

τ = − ∂Q

∂u(t)
, (1.65)

ξi = − ∂Q

∂u(i)
, (1.66)

η = Q− ∂u

∂t

∂Q

∂u(t)
− ∂u

∂xi

∂Q

∂u(i)
, (1.67)

where

u(t) =
∂u

∂t
, (1.68)

u(i) =
∂u

∂xi
, (1.69)

u(ik) =
∂2u

∂xi∂xk

(
=

∂2u

∂xi∂xk

)
, (1.70)

and thus in general

u(i1→N ) =
∂Nu

∂xi1 . . . ∂xiN

(
=

∂Nu

∂xi1 . . . ∂xiN

)
, (1.71)

where

i1→N = i1i2 . . . iN . (1.72)
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In order to find the ansazt for H, we need to apply the second prolongation of H to the second-order
evolution PDE (1.47) (we replace p by u in what follows). The second prolongation of H is given by,

H [2] = H + ζt
∂

∂u(t)
+ ζi

∂

∂u(i)
+ ζit

∂

∂u(it)
+ ζik

∂

∂u(ik)
, (1.73)

where

ζt =
∂Q

∂t
+ u(t)

∂Q

∂u
, (1.74)

ζi =
∂Q

∂xi
+ u(i)

∂Q

∂u
, (1.75)

(1.76)

and since there is only one dependent variable u,

ζik = D(i)D(k) (Q) , (1.77)

=
(

∂

∂xi
+ u(i)

∂

∂u
+ u(il)

∂

∂u(l)
+ . . .

) (
∂

∂xk
+ u(k)

∂

∂u
+ u(kj)

∂

∂u(j)
+ . . .

)
(Q) ,

=
∂2Q

∂xi∂xk
+ u(i)

∂2Q

∂u∂xk
+ u(il)

∂2Q

∂xk∂u(l)
+ u(it)

∂2Q

∂xk∂u(t)
+ . . .

+ u(k)
∂2Q

∂u∂xi
+ u(i)u(k)

∂2Q

∂u∂u
+ u(ik)

∂Q

∂u
+ u(il)u(k)

∂2Q

∂u∂u(l)
+ u(it)u(k)

∂2Q

∂u∂u(t)
+ . . .

+ u(kj)
∂2Q

∂xi∂u(j)
+ u(kt)

∂2Q

∂xi∂u(t)
+ u(i)u(kj)

∂2Q

∂u∂u(j)
+ u(i)u(kt)

∂2Q

∂u∂u(t)
+ . . .

+ u(il)u(kj)
∂2Q

∂u(l)∂u(j)
+ u(ij)u(kl)

∂2Q

∂u(j)∂u(l)
+ u(ij)u(kj)

∂2Q

∂u(j)∂u(j)
+ u(it)u(kt)

∂2Q

∂u(t)∂u(t)
+ . . .

+ u(il)u(kt)
∂2Q

∂u(l)∂u(t)
+ u(it)u(kj)

∂2Q

∂u(t)∂u(j)
; (1.78)

we do not need ζit, since our FP equation does not contain u(it). Applying H [2] on
(
u(t) − F

)
at u(t) = F ,

i.e.,

H [2]
(
u(t) − F

)∣∣
u(t)=F

= 0, (1.79)

where

F = −Aik
∂2u(t,x)
∂xi∂xk

−Bi
∂u

∂xi
− Cu(t,x), (1.80)

gives

− ∂Q

∂t
− u(t)

∂Q

∂u
+ Aik

(
∂2Q

∂xi∂xk
+ u(i)

∂2Q

∂u∂xk
+ u(il)

∂2Q

∂xk∂u(l)
+ u(it)

∂2Q

∂xk∂u(t)
+ . . .

+ u(k)
∂2Q

∂u∂xi
+ u(i)u(k)

∂2Q

∂u∂u
+ u(ik)

∂Q

∂u
+ u(il)u(k)

∂2Q

∂u∂u(l)
+ u(it)u(k)

∂2Q

∂u∂u(t)
+ . . .

+ u(kj)
∂2Q

∂xi∂u(j)
+ u(kt)

∂2Q

∂xi∂u(t)
+ u(i)u(kj)

∂2Q

∂u∂u(j)
+ u(i)u(kt)

∂2Q

∂u∂u(t)
+ . . .

+ u(il)u(kj)
∂2Q

∂u(l)∂u(j)
+ u(ij)u(kl)

∂2Q

∂u(j)∂u(l)
+ u(ij)u(kj)

∂2Q

∂u(j)∂u(j)
+ u(it)u(kt)

∂2Q

∂u(t)∂u(t)
+ . . .

+ u(il)u(kt)
∂2Q

∂u(l)∂u(t)
+ u(it)u(kj)

∂2Q

∂u(t)∂u(j)

)
+ Bi

(
∂Q

∂xi
+ u(i)

∂Q

∂u

)
+ . . .

+ C

(
Q− u(t)

∂Q

∂u(t)
− u(j)

∂Q

∂u(j)

)
= 0, on u(t) = F. (1.81)
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Substitution of u(t) for F yields

− ∂Q

∂t
−

(
−Aiku(ik) −Biu(i) − Cu(t,x)

) ∂Q

∂u
+ . . .

+ Aik

(
∂2Q

∂xi∂xk
+ u(i)

∂2Q

∂u∂xk
+ u(il)

∂2Q

∂xk∂u(l)
+ u(it)

∂2Q

∂xk∂u(t)
+ . . .

+ u(k)
∂2Q

∂u∂xi
+ u(i)u(k)

∂2Q

∂u∂u
+ u(ik)

∂Q

∂u
+ u(il)u(k)

∂2Q

∂u∂u(l)
+ u(it)u(k)

∂2Q

∂u∂u(t)
+ . . .

+ u(kj)
∂2Q

∂xi∂u(j)
+ u(kt)

∂2Q

∂xi∂u(t)
+ u(i)u(kj)

∂2Q

∂u∂u(j)
+ u(i)u(kt)

∂2Q

∂u∂u(t)
+ . . .

+ u(il)u(kj)
∂2Q

∂u(l)∂u(j)
+ u(ij)u(kl)

∂2Q

∂u(j)∂u(l)
+ u(ij)u(kj)

∂2Q

∂u(j)∂u(j)
+ u(it)u(kt)

∂2Q

∂u(t)∂u(t)
+ . . .

+ u(il)u(kt)
∂2Q

∂u(l)∂u(t)
+ u(it)u(kj)

∂2Q

∂u(t)∂u(j)

)
+ Bi

(
∂Q

∂xi
+ u(i)

∂Q

∂u

)
+ . . .

+ C

(
Q−

(
−Aiku(ik) −Biu(i) − Cu(t,x)

) ∂Q

∂u(t)
− u(j)

∂Q

∂u(j)

)
= 0. (1.82)

Separating out (1.82) by derivatives of u mixed in time and space results in

Aik

(
∂2Q

∂xk∂u(t)
+ u(k)

∂2Q

∂u∂u(t)
+ u(kj)

∂2Q

∂u(t)∂u(j)

)
u(it) + . . .

+ Aik

(
∂2Q

∂xi∂u(t)
+ u(i)

∂2Q

∂u∂u(t)
+ u(il)

∂2Q

∂u(l)∂u(t)

)
u(kt) + . . .

+ Aik
∂2Q

∂u(t)∂u(t)
u(it)u(kt) + . . .

− ∂Q

∂t
+

(
Aiku(ik) + Biu(i) + Cu

) ∂Q

∂u
+ . . .

+ Aik

(
∂2Q

∂xi∂xk
+ u(i)

∂2Q

∂u∂xk
+ u(il)

∂2Q

∂xk∂u(l)
+ u(k)

∂2Q

∂u∂xi
+ u(i)u(k)

∂2Q

∂u∂u
+ . . .

+ u(ik)
∂Q

∂u
+ u(il)u(k)

∂2Q

∂u∂u(l)
+ u(kj)

∂2Q

∂xi∂u(j)
+ u(i)u(kj)

∂2Q

∂u∂u(j)
+ u(il)u(kj)

∂2Q

∂u(l)∂u(j)
+ . . .

+ u(ij)u(kl)
∂2Q

∂u(j)∂u(l)
+ u(ij)u(kj)

∂2Q

∂u(j)∂u(j)

)
+ Bi

(
∂Q

∂xi
+ u(i)

∂Q

∂u

)
+ . . .

+ C

(
Q +

(
Aiku(ik) + Biu(i) + Cu

) ∂Q

∂u(t)
− u(j)

∂Q

∂u(j)

)
= 0. (1.83)

By considering only the first three terms of (1.83) we get

u(it) : Aik

(
∂2Q

∂xk∂u(t)
+ u(k)

∂2Q

∂u∂u(t)
+ u(kj)

∂2Q

∂u(t)∂u(j)

)
= 0, (1.84)

u(kt) : Aik

(
∂2Q

∂xi∂u(t)
+ u(i)

∂2Q

∂u∂u(t)
+ u(il)

∂2Q

∂u(l)∂u(t)

)
= 0, (1.85)

u(it)u(kt) : Aik
∂2Q

∂u(t)∂u(t)
= 0. (1.86)

From (1.86) we see that Q is linear in u(t)

Q = α1(t,x, u)u(t) + α2(t,x, u), (1.87)

where α1(t,x, u) and α2(t,x, u) are arbitrary functions of t and x. By substituting (1.87) into (1.84) and
(1.85); separating by u(k), u(i), u(kj) and u(il) gives

Q = α1(t)u(t) + α2(t,x, u). (1.88)
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Separating out (1.82) with respect to u(il)u(kj), u(ij)u(kl) and u(ij)u(kj), gives

Aik

(
∂2Q

∂u(l)∂u(j)

)
u(il)u(kj) + Aik

(
∂2Q

∂u(j)∂u(l)

)
u(ij)u(kl) + Aik

(
∂2Q

∂u(j)∂u(j)

)
u(ij)u(kj) + . . .

− ∂Q

∂t
−

(
−Aiku(ik) −Biu(i) − Cu(t,x)

) ∂Q

∂u
+ . . .

+ Aik

(
∂2Q

∂xi∂xk
+ u(i)

∂2Q

∂u∂xk
+ u(il)

∂2Q

∂xk∂u(l)
+ u(it)

∂2Q

∂xk∂u(t)
+ . . .

+ u(k)
∂2Q

∂u∂xi
+ u(i)u(k)

∂2Q

∂u∂u
+ u(ik)

∂Q

∂u
+ u(il)u(k)

∂2Q

∂u∂u(l)
+ u(it)u(k)

∂2Q

∂u∂u(t)
+ . . .

+ u(kj)
∂2Q

∂xi∂u(j)
+ u(kt)

∂2Q

∂xi∂u(t)
+ u(i)u(kj)

∂2Q

∂u∂u(j)
+ u(i)u(kt)

∂2Q

∂u∂u(t)
+ . . .

+ u(it)u(kt)
∂2Q

∂u(t)∂u(t)
+ u(il)u(kt)

∂2Q

∂u(l)∂u(t)
+ u(it)u(kj)

∂2Q

∂u(t)∂u(j)

)
+ Bi

(
∂Q

∂xi
+ u(i)

∂Q

∂u

)
+ . . .

+ C

(
Q−

(
−Aiku(ik) −Biu(i) − Cu(t,x)

) ∂Q

∂u(t)
− u(j)

∂Q

∂u(j)

)
= 0. (1.89)

Again considering only the first three terms gives rise to

u(il)u(kj) : Aik

(
∂2Q

∂u(l)∂u(j)

)
= 0, (1.90)

u(ij)u(kl) : Aik

(
∂2Q

∂u(j)∂u(l)

)
= 0, (1.91)

u(ij)u(kj) : Aik

(
∂2Q

∂u(j)∂u(j)

)
= 0. (1.92)

From (1.92) we see that α2(t,x, u) is linear in u(j), i.e. we have

Q = α1(t)u(t) + αj(t,x, u)u(j) + α4(t,x, u). (1.93)

Finally separating out (1.82) with respect to u(il)u(k) and u(i)u(kj), gives

Aiku(i)u(kj)
∂2Q

∂u∂u(j)
+ Aiku(il)u(k)

∂2Q

∂u∂u(l)
+ . . .

− ∂Q

∂t
−

(
−Aiku(ik) −Biu(i) − Cu(t,x)

) ∂Q

∂u
+ . . .

+ Aik

(
∂2Q

∂xi∂xk
+ u(i)

∂2Q

∂u∂xk
+ u(il)

∂2Q

∂xk∂u(l)
+ u(it)

∂2Q

∂xk∂u(t)
+ . . .

+ u(k)
∂2Q

∂u∂xi
+ u(i)u(k)

∂2Q

∂u∂u
+ u(ik)

∂Q

∂u
+ +u(it)u(k)

∂2Q

∂u∂u(t)
+ . . .

+ u(kj)
∂2Q

∂xi∂u(j)
+ u(kt)

∂2Q

∂xi∂u(t)
+ +u(i)u(kt)

∂2Q

∂u∂u(t)
+ . . .

+ u(il)u(kj)
∂2Q

∂u(l)∂u(j)
+ u(ij)u(kl)

∂2Q

∂u(j)∂u(l)
+ u(ij)u(kj)

∂2Q

∂u(j)∂u(j)
+ u(it)u(kt)

∂2Q

∂u(t)∂u(t)
+ . . .

+ u(il)u(kt)
∂2Q

∂u(l)∂u(t)
+ u(it)u(kj)

∂2Q

∂u(t)∂u(j)

)
+ Bi

(
∂Q

∂xi
+ u(i)

∂Q

∂u

)
+ . . .

+ C

(
Q−

(
−Aiku(ik) −Biu(i) − Cu(t,x)

) ∂Q

∂u(t)
− u(j)

∂Q

∂u(j)

)
= 0. (1.94)
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This time looking at only the first two terms provide

u(il)u(k) : Aik
∂2Q

∂u∂u(j)
= 0, (1.95)

u(i)u(kj) : Aik
∂2Q

∂u∂u(l)
= 0. (1.96)

From the above, we see that αj(t,x, u) = αj(t,x), whence

Q = α1(t)u(t) + αj(t,x)u(j) + α4(t,x, u). (1.97)

Thus we have established the ansatz which [1] used, viz.

H = τ(t)
∂

∂t
+ ξj(t,x)

∂

∂xj
+ η(t,x, u)

∂

∂u
. (1.98)

Determining Equations Associated with the Transformation of the Variables

The transformation of the spatial, temporal and the Wiener variables are

dX = dX + εdξ + O(ε2) (1.99)
dt = dt + εdτ + O(ε2) (1.100)

and by using the Random Time Change relation (1.34) we get

dW
(l)

t = dW (l)
t

(
1 +

ε

2
dτ

dt

)
+ O(ε2), (1.101)

where, by using Itô’s formula (1.27)

dξ =

(
∂ξ

∂t
+ fi

∂ξ

∂xi
+

1
2

M∑

k=1

Gk
i Gk

j
∂2ξ

∂xi∂xj

)
dt + Gj

i

∂ξ

∂xi
dW j(t) (1.102)

dτ =

(
∂τ

∂t
+ fi

∂τ

∂xi
+

1
2

M∑

k=1

Gk
i Gk

j
∂2τ

∂xi∂xj

)
dt + Gj

i

∂τ

∂xi
dW j(t). (1.103)

However, throughout their paper [1], they made τ a function of time only, thus

dτ =
∂τ

∂t
dt, with the indices i, j = 1, . . . N. (1.104)

Thus, as a consequence of having a projectable symmetry operator H, i.e. with τ(t)

dX = dX + ε

((
∂ξ

∂t
+ fi

∂ξ

∂xi
+

1
2

M∑

k=1

Gk
i Gk

j
∂2ξ

∂xi∂xj

)
dt + Gj

i

∂ξ

∂xi
dW j(t)

)
+ O(ε2)

(1.105)

dt = dt

(
1 + ε

∂τ

∂t

)
+ O(ε2)

(1.106)

dW
(l)

t = dW (l)
t

(
1 +

ε

2
∂τ

∂t

)
+ O(ε2).

(1.107)
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The transformation of f and G under our infinitesimal generator H is

fi(t,x) = fi(t,x) + εHfi(t,x) + O(ε2) (1.108)

= fi + ε

(
τ(t)

∂fi

∂t
+ ξj(t,x)

∂fi

∂xj

)
+ O(ε2), (1.109)

Gi
k(t,x) = Gi

k(t,x) + εHGi
k(t,x) + O(ε2) (1.110)

= Gi
k + ε

(
τ(t)

∂Gi
k

∂t
+ ξj(t,x)

∂Gi
k

∂xj

)
+ O(ε2). (1.111)

The purpose of the transformation was to leave dx form invariant, i.e.

dX l = fl(t,X)dt + Gl
k(t,X)dW

k
t . (1.112)

Multiplying out the above components gives

dX l = fl(t,X)dt + Gl
k(t,X)dW k

t + ε

((
fl

∂τ

∂t
+ τ(t)

∂fl

∂t
+ ξj(t,X)

∂fl

∂xj

)
dt + . . .

+
(

τ(t)
∂Gi

k

∂t
+ ξj(t,X)

∂Gi
k

∂xj
+

1
2
Gi

k
∂τ

∂t

)
dW k

t

)
+ O(ε2). (1.113)

Thus by comparing the terms that follow the ε in (1.106) and (1.113) we have that

fl
∂τ

∂t
+ τ

∂fl

∂t
+ ξj

∂fl

∂xj
−

(
∂ξl

∂t
+ fi

∂ξl

∂xi
+

1
2

M∑

k=1

Gk
i Gk

j
∂2ξl

∂xi∂xj

)
= 0, (1.114)

and τ(t)
∂Gi

k

∂t
+ ξj(t,x)

∂Gi
k

∂xj
−Gi

k
∂ξl

∂xi
+

1
2
Gi

k
∂τ

∂t
= 0. (1.115)

The determining equations (1.186) and (1.187) were then used later in the determining equations of the
FP equation (1.47). Here are a few examples taken from [1] and re-done in this context.

Example 1.6. Consider

dx = σdWt. (1.116)

The determining equations are

−σ2 ∂2ξ

∂x2
− 2

∂ξ

∂t
= 0 (1.117)

1
2
τ̇ − ∂ξ

∂x
= 0 (1.118)

Solving gives

τ = 2C1t + C2 (1.119)

ξ = C1x + C3. (1.120)

Example 1.7. Now we turn to

dx = dt + xdWt. (1.121)
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Its determining equations are

τ̇ − ∂ξ

∂x
− ∂ξ

∂t
= 0 (1.122)

− 1
2

∂2ξ

∂x2
= 0 (1.123)

ξ = 0 (1.124)

1
2
τ̇ − ∂ξ

∂x
= 0 (1.125)

after having separated out coefficients with respect to explicit powers of x. Solving results in

τ = C1 (1.126)

ξ = 0. (1.127)

Example 1.8. We study

dx = xdt + dWt. (1.128)

Its determining equations are

ξ − ∂ξ

∂t
+ x

∂ξ

∂x
= 0 (1.129)

1
2
τ̇ − ∂ξ

∂x
= 0. (1.130)

Solving yields

τ = C1e
2t + C3 (1.131)

ξ = et
(
C1e

tx + C2

)
. (1.132)

Example 1.9. Finally, consider

dx = gdt +
√

DdWt. (1.133)

The determining equations are

g
∂ξ

∂x
− ∂ξ

∂t
= 0 (1.134)

1
2
τ̇ − ∂ξ

∂x
= 0. (1.135)

Solving gives rise to

τ = C12t + C3 (1.136)

ξ = C1(gt + x) + C2. (1.137)

Remark. These results confirm the findings of Gaeta and Quintero [1], even though we are purely
using the random time change formula given by Øksendal [9].
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Determining Equations Associated with the Fokker-Plank Equation.

In order to find the determining equations of (1.47) we need the second prolongation of the symmetry
operator H,

H [2] = H + η
∂

∂u
+ ζt

∂

∂u(t)
+ ζi

∂

∂u(i)
+ ζik

∂

∂u(ik)
, (1.138)

where

u(t) =
∂u

∂t
, (1.139)

u(i) =
∂u

∂xi

(
=

∂u

∂xi

)
, (1.140)

u(ik) =
∂2u

∂xi∂xk

(
=

∂2u

∂xi∂xk

)
(1.141)

and thus in general

u(i1→N ) =
∂Nu

∂xi1 . . . ∂xiN

(
=

∂Nu

∂xi1 . . . ∂xiN

)
, (1.142)

where
i1→N = i1i2 . . . iN . (1.143)

The remaining extended infinitesimals are

ζt = D(t) (η)− u(t)D(t) (τ)− u(j)D(t) (ξj) , (1.144)
ζi = D(i) (η)− u(t)D(i) (τ)− u(j)D(i) (ξj) , (1.145)

ζik = D(k) (ζi)− u(it)D(k) (τ)− u(ij)D(k) (ξj) . (1.146)

The D operator is the total derivative operator defined as

D(t) =
∂

∂t
+ u(t)

∂

∂u
+ u(tj)

∂

∂u(j)
+ . . . + u(ti1→N )

∂

∂u(i1→N )
+ . . . , (1.147)

D(i) =
∂

∂xi
+ u(i)

∂

∂u
+ u(ij)

∂

∂u(j)
+ . . . + u(ii1→N )

∂

∂u(i1→N )
+ . . . (1.148)

(
=

∂

∂xi
+ u(i)

∂

∂u
+ u(ij)

∂

∂u(j)
+ . . . + u(ii1→N )

∂

∂u(i1→N )
+ . . .

)
,

(1.149)

where i1→N = i1i2 . . . iN .

Since our symmetry operator was chosen to projectable, i.e. τ = τ(t), we have as a result

ζt =
∂η

∂t
− ∂ξj

∂t

∂u

∂xj
+

(
∂η

∂u
− ∂τ

∂t

)
∂u

∂t
, (1.150)

ζi =
∂η

∂xi
+

∂η

∂u

∂u

∂xi
− ∂ξj

∂xi

∂u

∂xj
, (1.151)

ζik =
∂2η

∂xi∂xk
+

∂

∂xk

(
∂η

∂u

)
∂u

∂xi
+

∂

∂xi

(
∂η

∂u

)
∂u

∂xk
− ∂2ξj

∂xi∂xk

∂u

∂xj
+ . . .

+
∂η

∂u

∂2u

∂xi∂xk
− ∂ξj

∂xi

∂2u

∂xi∂xk
− ∂ξj

∂xk

∂2u

∂xi∂xj
+

∂2η

∂u2

∂u

∂xi

∂u

∂xk
. (1.152)
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An application of our second prolongation on the FP equation should be zero in order for the infinitesimal
generator H to be a symmetry of (1.47). That is

H [2] (LFP (u)) = 0, (on LFP (u) = 0). (1.153)

This gives

∂η

∂t
− ∂ξj

∂t

∂u

∂xj
+

(
∂η

∂u
− ∂τ

∂t

)
∂u

∂t
+ Aik

(
∂2η

∂xi∂xk
+

∂

∂xk

(
∂η

∂u

)
∂u

∂xi
+ . . .

+
∂

∂xi

(
∂η

∂u

)
∂u

∂xk
− ∂2ξj

∂xi∂xk

∂u

∂xj
+

∂η

∂u

∂2u

∂xi∂xk
− ∂ξj

∂xi

∂2u

∂xi∂xk
+ . . .

− ∂ξj

∂xk

∂2u

∂xi∂xj
+

∂2η

∂u2

∂u

∂xi

∂u

∂xk
.

)
+ Bi

(
∂η

∂xi
+

∂η

∂u

∂u

∂xi
− ∂ξj

∂xi

∂u

∂xj

)
+ . . .

+ Cη +
(

ξj
∂Aik

∂xj
+ τ

∂Aik

∂t

)
∂2u

∂xi∂xk
+

(
ξj

∂Bi

∂xj
+ τ

∂Bi

∂t

)
∂u

∂xi
+ . . .

+
(

ξj
∂C

∂xj
+ τ

∂C

∂t

)
u = 0, (on (1.47)). (1.154)

We now substitute for ∂u/∂t, i.e.

∂u

∂t
= −Aij

∂2u(t,x)
∂xi∂xj

−Bi
∂u

∂xi
− Cu(t,x), (1.155)

in the above. This yields

∂η
∂t
− ∂ξj

∂t
∂u
∂xj

+

„
∂η
∂u
− ∂τ

∂t

«„
−Aij

∂2u
∂xi∂xj

−Bi
∂u
∂xi

− Cu

«
+ . . .

+ Aik

„
∂2η

∂xi∂xk
+

∂
∂xk

„
∂η
∂u

«
∂u
∂xi

+
∂

∂xi

„
∂η
∂u

«
∂u
∂xk

− ∂2ξj

∂xi∂xk

∂u
∂xj

+
∂η
∂u

∂2u
∂xi∂xk

+ . . .

− ∂ξj

∂xi

∂2u
∂xi∂xk

− ∂ξj

∂xk

∂2u
∂xi∂xj

+
∂2η
∂u2

∂u
∂xi

∂u
∂xk

«
+ Bi

„
∂η
∂xi

+
∂η
∂u

∂u
∂xi

− ∂ξj

∂xi

∂u
∂xj

«
+ . . .

+ Cη +

„
ξj

∂Aik

∂xj
+ τ

∂Aik

∂t

«
∂2u

∂xi∂xk
+

„
ξj

∂Bi

∂xj
+ τ

∂Bi

∂t

«
∂u
∂xi

+ . . .

+

„
ξj

∂C
∂xj

+ τ
∂C
∂t

«
u = 0, (on (1.47)). (1.156)

We now collect the terms into four groups, which are coefficients of ∂u
∂xi

∂u
∂xk

, ∂2u
∂xi∂xk

, ∂u
∂xi

and 1:

„
Aik

∂2η
∂u2

«
∂u
∂xi

∂u
∂xk

+

„
τ

∂Aik

∂t
+

∂τ
∂t

τAik + ξr
∂Aik

∂xr
−Air

∂ξk

∂xr
−Ark

∂ξi

∂xr

«
∂2u

∂xi∂xk
+ . . .

+

„
τ

∂Bi

∂t
+

∂τ
∂t

τBi + ξr
∂Bi

∂xr
−Br

∂ξi

∂xr
− ∂ξi

∂t
+ Aik

∂
∂xk

„
∂η
∂u

«
+ . . .

+ Ari
∂

∂xr

„
∂η
∂u

«
−Ark

∂2ξi

∂xr∂xk

«
∂u
∂xi

+

„
∂η
∂t
−
„

∂η
∂u
− ∂τ

∂t

«
Cu+ . . .

+ Aik
∂2η

∂xi∂xk
+ Bi

∂η
∂xi

+ Cη +

„
ξr

∂C
∂xr

+ τ
∂C
∂t

«
u

«
= 0. (1.157)
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Each of the four groups are equal to zero; we have an over-determined system of equations known as determining
equations

Aik(t,x)
∂2η(t,x, u(t,x))

∂u2
= 0, (1.158)

τ(t)
∂Aik

∂t
+

∂τ
∂t

τAik + ξ(t,x)r

∂Aik

∂xr
−Air

∂ξk

∂xr
−Ark

∂ξi

∂xr
= 0, (1.159)

τ
∂Bi(t,x)

∂t
+

∂τ
∂t

τBi + ξr
∂Bi

∂xr
−Br

∂ξi

∂xr
− ∂ξi

∂t
+ Aik

∂
∂xk

„
∂η
∂u

«
+ . . .

+Ari
∂

∂xr

„
∂η
∂u

«
−Ark

∂2ξi

∂xr∂xk
= 0, (1.160)

∂η
∂t
−
„

∂η
∂u
− ∂τ

∂t

«
C(t,x)u + Aik

∂2η
∂xi∂xk

+ Bi
∂η
∂xi

+ Cη + . . .

+

„
ξr

∂C
∂xr

+ τ
∂C
∂t

«
u = 0. (1.161)

Knowing that the Aik’s components are not all zero, we see that

∂2η
∂u2

= 0, (1.162)

which means that η is linear in u
η = α1(t,x) + α2(t,x)u. (1.163)

Substituting for η in (1.160) we get

τ
∂Bi(t,x)

∂t
+

∂τ
∂t

τBi + ξr
∂Bi

∂xr
−Br

∂ξi

∂xr
− ∂ξi

∂t
+ Aik

∂α2(t,x)
∂xk

+ . . .

+Ari
∂α2(t,x)

∂xr
−Ark

∂2ξi

∂xr∂xk
= 0. (1.164)

(1.165)

After insisting for η, the last of the four determining equations splits into two separate equations: one as a
coefficient of u and the other a coefficient of 1:

„
∂α2(t,x)

∂t
+

∂τ
∂t

C + Aik
∂2α2(t,x)
∂xi∂xk

+ Bi
∂α2(t,x)

∂xi
+ . . .

+ ξr
∂C
∂xr

+ τ
∂C
∂t

«
u (1.166)

+

„
∂α1(t,x)

∂t
+ Aik

∂2α1(t,x)
∂xi∂xk

+ Bi
∂α1(t,x)

∂xi
+ Cα1(t,x)

«
= 0. (1.167)

The two groups are each equal to zero, since the u is explicit throughout to get

∂α2(t,x)
∂t

+
∂τ
∂t

C + Aik
∂2α2(t,x)
∂xi∂xk

+ Bi
∂α2(t,x)

∂xi
+ . . .

+ξr
∂C
∂xr

+ τ
∂C
∂t

= 0 (1.168)

∂α1(t,x)
∂t

+ Aik
∂2α1(t,x)
∂xi∂xk

+ Bi
∂α1(t,x)

∂xi
+ Cα1(t,x) = 0 (1.169)

Equation (1.169) is just the FP equation for α1(t,x). Thus it is left alone from here on as this gives the infinite
number of solutions symmetries. As for the coefficients Aik, Bi and C, we can eliminate two of the three so as to
simplify the determining equations further. The relations (1.45) and (1.46) will now be used in (1.159), (1.164)
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and (1.168) to achieve this and give

∂(τAik)
∂t

+

„
ξr

∂Aik

∂xr
−Air

∂ξk

∂xr
−Ark

∂ξi

∂xr

«
= 0 (1.170)

∂(ξi − τfi)
∂t

+ fr
∂ξi

∂xr
− ξr

∂fi

∂xr
−Ark

∂2ξi

∂xr∂xk
− 2

„
∂
∂t

„
τ

∂Aik

∂xk

«
+ . . .

+ Aik
∂α2(t,x)

∂xk
−Ark

∂2ξi

∂xr∂xk
− ∂Ark

∂xk

∂ξi

∂xr
+ ξr

∂2Aik

∂xr∂xk

«
= 0 (1.171)

∂
∂t

„
α2(t,x) + τ

„
∂fi

∂xi
+

∂2Aik

∂xi∂xk

««
+ fi

∂α2(t,x)
∂xi

+ Aik
∂2α2(t,x)
∂xi∂xk

+ . . .

+2
∂Aik

∂xk

∂α2(t,x)
∂xi

+ ξr
∂2fi

∂xi∂xr
+ ξr

∂3Aik

∂xi∂xk∂xr
= 0 (1.172)

Keeping in mind the determining equations associated with the SDEs, (1.186) and (1.187), we now manipulate
the determining systems above. We multiply (1.170) by 2

2
∂(τAik)

∂t
+

„
2ξr

∂Aik

∂xr
− 2Air

∂ξk

∂xr
− 2Ark

∂ξi

∂xr

«
= 0, (1.173)

differentiate with respect to xk

2
∂
∂t

„
τ

∂Aik

∂xk

«
+

„
2ξr

∂2Aik

∂xr∂xk
+ 2

∂ξr

∂xk

∂Aik

∂xr
− 2

∂Air

∂xk

∂ξk

∂xr
− 2Air

∂2ξk

∂xr∂xk
+ . . .

− 2
∂Ark

∂xk

∂ξi

∂xr
− 2Ark

∂2ξi

∂xr∂xk

«
= 0, (1.174)

and using the repeated index summation convention, we sum over all k; add the resulting equation (1.174) to
(1.171), to arrive at

2
∂
∂t

„
τ

∂Aik

∂xk

«
+

„
2ξr

∂2Aik

∂xr∂xk
+ 2

∂ξr

∂xk

∂Aik

∂xr
− 2

∂Air

∂xk

∂ξk

∂xr
− 2Air

∂2ξk

∂xr∂xk
+ . . .

− 2
∂Ark

∂xk

∂ξi

∂xr
− 2Ark

∂2ξi

∂xr∂xk

«
+

∂(ξi − τfi)
∂t

+ fr
∂ξi

∂xr
− ξr

∂fi

∂xr
−Ark

∂2ξi

∂xr∂xk
+ . . .

−2

„
∂
∂t

„
τ

∂Aik

∂xk

«
+ Aik

∂α2(t,x)
∂xk

−Ark
∂2ξi

∂xr∂xk
− ∂Ark

∂xk

∂ξi

∂xr
+ ξr

∂2Aik

∂xr∂xk

«
,

(1.175)

which simplifies to

„
−2Air

∂2ξk

∂xr∂xk

«
+

∂(ξi − τfi)
∂t

+ fr
∂ξi

∂xr
+ . . .

−ξr
∂fi

∂xr
−Ark

∂2ξi

∂xr∂xk
− 2

„
Aik

∂α2(t,x)
∂xk

«
= 0. (1.176)

Rewriting the above we arrive at

∂(ξi − τfi)
∂t

+ fr
∂ξi

∂xr
− ξr

∂fi

∂xr
−Ark

∂2ξi

∂xr∂xk
+ . . .

−2

„
Air

∂2ξk

∂xr∂xk
+ Aik

∂α2(t,x)
∂xk

«
= 0. (1.177)
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Next we differentiate (1.170) w.r.t. xk and xi

∂
∂t

„
τ

∂2Aik

∂xi∂xk

«
+ . . .

+

„
∂ξr

∂xi

∂2Aik

∂xr∂xk
+ ξr

∂3Aik

∂xi∂xr∂xk
+

∂2ξr

∂xi∂xk

∂Aik

∂xr
+

∂ξr

∂xk

∂2Aik

∂xi∂xr
+

− ∂2Air

∂xi∂xk

∂ξk

∂xr
− ∂Air

∂xk

∂2ξk

∂xi∂xr
− ∂Air

∂xi

∂2ξk

∂xr∂xk
−Air

∂3ξk

∂xi∂xr∂xk
. . .

− ∂2Ark

∂xi∂xk

∂ξi

∂xr
− ∂Ark

∂xk

∂2ξi

∂xi∂xr
− ∂Ark

∂xi

∂2ξi

∂xr∂xk
−Ark

∂3ξi

∂xi∂xr∂xk

«
= 0.

(1.178)

Then differentiate equation (1.177) with repsect to xi to deduce

∂
∂t

„
∂ξi

∂xi
− τ

∂fi

∂xi

«
+

∂fr

∂xi

∂ξi

∂xr
+ fr

∂2ξi

∂xi∂xr
+ . . .

−∂ξr

∂xi

∂fi

∂xr
− ξr

∂2fi

∂xi∂xr
− ∂Ark

∂xi

∂2ξi

∂xr∂xk
−Ark

∂3ξi

∂xi∂xr∂xk
+ . . .

−2

„
∂Air

∂xi

∂2ξk

∂xr∂xk
+ Air

∂3ξk

∂xi∂xr∂xk
+

∂Aik

∂xi

∂α2(t,x)
∂xk

+ Aik
∂2α2(t,x)
∂xi∂xk

«
= 0

(1.179)

We now add and subtract (1.179) and (1.178), respectively from (1.172) to get,

∂
∂t

„
α2(t,x) + τ

„
∂fi

∂xi
+

∂2Aik

∂xi∂xk

««
+ fi

∂α2(t,x)
∂xi

+ Aik
∂2α2(t,x)
∂xi∂xk

+ . . .

+2
∂Aik

∂xk

∂α2(t,x)
∂xi

+ ξr
∂2fi

∂xi∂xr
+ ξr

∂3Aik

∂xi∂xk∂xr
+ . . .

− ∂
∂t

„
τ

∂2Aik

∂xi∂xk

«
+ . . .

−
„

∂ξr

∂xi

∂2Aik

∂xr∂xk
+ ξr

∂3Aik

∂xi∂xr∂xk
+

∂2ξr

∂xi∂xk

∂Aik

∂xr
+

∂ξr

∂xk

∂2Aik

∂xi∂xr
+

− ∂2Air

∂xi∂xk

∂ξk

∂xr
− ∂Air

∂xk

∂2ξk

∂xi∂xr
− ∂Air

∂xi

∂2ξk

∂xr∂xk
−Air

∂3ξk

∂xi∂xr∂xk
. . .

− ∂2Ark

∂xi∂xk

∂ξi

∂xr
− ∂Ark

∂xk

∂2ξi

∂xi∂xr
− ∂Ark

∂xi

∂2ξi

∂xr∂xk
−Ark

∂3ξi

∂xi∂xr∂xk

«
+ . . .

∂
∂t

„
∂ξi

∂xi
− τ

∂fi

∂xi

«
+

∂fr

∂xi

∂ξi

∂xr
+ fr

∂2ξi

∂xi∂xr
+ . . .

−∂ξr

∂xi

∂fi

∂xr
− ξr

∂2fi

∂xi∂xr
− ∂Ark

∂xi

∂2ξi

∂xr∂xk
−Ark

∂3ξi

∂xi∂xr∂xk
+ . . .

−2

„
∂Air

∂xi

∂2ξk

∂xr∂xk
+ Air

∂3ξk

∂xi∂xr∂xk
+

∂Aik

∂xi

∂α2(t,x)
∂xk

+ Aik
∂2α2(t,x)
∂xi∂xk

«
= 0.

(1.180)

This simplifies drastically to

∂α2(t,x)
∂t

+
∂
∂t

∂ξi

∂xi
+ fi

∂α2(t,x)
∂xi

+ fr
∂2ξi

∂xi∂xr
−Ark

∂3ξi

∂xi∂xr∂xk
−Aik

∂2α2(t,x)
∂xi∂xk

= 0.

(1.181)

Recollecting terms, we arrive at [1]’s result

„
∂
∂t

+ fi
∂

∂xi
−Aik

∂2

∂xi∂xk

«„
α2(t,x) +

∂ξr

∂xr

«
= 0. (1.182)
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Thus, giving a new system of determining equations

∂(τAik)
∂t

+

„
ξr

∂Aik

∂xr
−Air

∂ξk

∂xr
−Ark

∂ξi

∂xr

«
= 0 (1.183)

∂(ξi − τfi)
∂t

+ fr
∂ξi

∂xr
− ξr

∂fi

∂xr
−Ark

∂2ξi

∂xr∂xk
+ . . .

−2

„
Air

∂2ξk

∂xr∂xk
+ Aik

∂α2(t,x)
∂xk

«
= 0. (1.184)

„
∂
∂t

+ fi
∂

∂xi
−Aik

∂2

∂xi∂xk

«„
α2(t,x) +

∂ξr

∂xr

«
= 0. (1.185)

We now compare these results to the determining equations (1.186) and (1.187)

fl
∂τ
∂t

+ τ
∂fl

∂t
+ ξj

∂fl

∂xj
−
 

∂ξl

∂t
+ fi

∂ξl

∂xi
+

1
2

MX

k=1

Gk
i Gk

j
∂2ξl

∂xi∂xj

!
= 0

(1.186)

and

τ(t)
∂Gi

k

∂t
+ ξj(t,x)

∂Gi
k

∂xj
−Gi

k
∂ξl

∂xi
+

1
2
Gi

k
∂τ
∂t

= 0. (1.187)

Rewriting (1.183), (1.184) and (1.185) w.r.t. G(t,x) gives

Gj
i

 
τ

∂Gk
j

∂t
+

1
2
Gk

j
∂τ
∂t

+ ξr
∂Gk

j

∂xr
−Gr

j
∂ξk

∂xr

!
+ . . .

+Gk
j

„
τ

∂Gj
i

∂t
+

1
2
Gj

i

∂τ
∂t

+ ξr
∂Gj

i

∂xr
−Gj

r
∂ξk

∂xr

«
= 0, (1.188)

−
 

fi
∂τ
∂t

+ τ
∂fi

∂t
+ ξr

∂fi

∂xr
−
 

∂ξi

∂t
+ fj

∂ξi

∂xj
+

1
2

MX

k=1

Gk
j Gk

r
∂2ξi

∂xj∂xr

!!
+ . . .

+
MX

j=1

Gj
iG

j
r

∂2ξk

∂xr∂xk
+

MX

j=1

Gj
iG

j
k

∂α2(t,x)
∂xk

= 0 (1.189)

 
∂
∂t

+ fi
∂

∂xi
+

1
2

MX

j=1

Gj
iG

j
k

∂2

∂xi∂xk

!„
α2(t,x) +

∂ξr

∂xr

«
= 0. (1.190)

We find that (1.188) is a satisfied as a direct result of (1.187). However, the converse is not true. Also from
(1.189), (1.186) forces

MX

j=1

Gj
iG

j
k

∂α2(t,x)
∂xk

= −
MX

j=1

Gj
iG

j
r

∂2ξk

∂xr∂xk
, (1.191)

which when we integrate w.r.t. xk gives

α2(t,x) = − ∂ξr

∂xr
+ β1, where β1 is arbitrary constant. (1.192)

Looking now at the normalization condition (1.48), under the transformation the probability density function
p(t,x) undergoes the following

t = t + ετ(t), (1.193)

xi = xi + εξi(t,x), and (1.194)

p = p + εη(t,x, p), (1.195)

The volume element dx1 . . . dxN undergoes the following for each i, by use of (1.194)

dxi = dxi + ε
∂ξi

∂xj
dxj . (1.196)
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Any element dxi which is raised to a power higher than one, becomes so small that it becomes negligible; with
this in mind we see that

dx1 . . . dxN =

„
1 + ε

∂ξj

∂xj

«
dx1 . . . dxN . (1.197)

Thus at first order in ε we have that
Z ∞

−∞
p(t,x)dx1 . . . dxN =

Z ∞

−∞

„
p(t,x) + ε

„
α1(t,x) +

„
α2(t,x) +

∂ξj

∂xj

«
p

««
dx1 . . . dxN (1.198)

which we separate out to get
Z ∞

−∞
p(t,x)dx1 . . . dxN =

Z ∞

−∞
p(t,x)dx1 . . . dxN + . . .

ε

Z ∞

−∞

„
α1(t,x) +

„
α2(t,x) +

∂ξj

∂xj

«
p

«
dx1 . . . dxN (1.199)

Thus what [1] showed was that α1(t,x) should be zero under integration, i.e.
Z ∞

−∞
α1(t,x)dx1 . . . dxN = 0, (1.200)

in order for the normalization condition (1.48) to be satisified, i.e. in order for term following the ε to vanish.
This then as a result forced

α2(t,x) = − ∂ξr

∂xr
(1.201)

which is the condition we found earlier (1.192), with the arbitrary constant β1 put to zero.

Therefore with these conditions (1.200) and (1.201) the complete probabilistic equivalence between the Itô and
FP equations, which we saw in the Feynman-Kac theorem, is maintained. Thus the symmetry operator H0 would
transform the Itô equation into another; maintaining all the same probabilistic properties.

In summary it was shown that H could only be a symmetry operator for Itô SDE if (1.187) was satisified.
The FP symmetry operator H0 + η ∂/∂u, where η = α1(t,x) + α2(t,x)u, with α1(t,x) being a solution to the
FP equation and satisfying (1.200); α2(t,x) satisfying (1.192), can now be found. Here are the FP equivalent
equations from the previous examples.

Example 1.10. The FP equation

∂u
∂t

= σ
1
2

∂2u
∂x2

(1.202)

has the determining equations

1
2
τ̇ − ∂ξ

∂x
= 0 (1.203)

∂ξ
∂t

+
3
2
σ2 ∂2ξ

∂x2
+ σ2 ∂α2(t, x)

∂x
= 0 (1.204)

∂α2(t, x)
∂t

+
1
2
σ2 ∂2α2(t, x)

∂x2
+

∂2ξ
∂t∂x

+
1
2
σ2 ∂3ξ

∂x3
= 0, (1.205)

which solves as

τ = C0 + C12t + C2t
2 (1.206)

ξ = C1x + C2xt + C3 + C4σ
2t (1.207)

φ =

„
1
2

„
x2

σ2
+ t

«
uC2 + C4xu + C5

«
u + α(t, x). (1.208)
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Example 1.11. The FP equation

∂u
∂t

+
∂u
∂x

= x2 1
2

∂2u
∂x2

(1.209)

results in the determining equations

ξ = 0 (1.210)

τ̇ = 0 (1.211)

∂α2(t, x)
∂x

= 0 (1.212)

∂α2(t, x)
∂t

= 0. (1.213)

(1.214)

Solving this yields

τ = C0 (1.215)

ξ = 0 (1.216)

φ = C1u + α(t, x). (1.217)

Example 1.12. The FP equation

∂u
∂t

+ x
∂u
∂x

=
1
2

∂2u
∂x2

(1.218)

has the associated determining equations

1
2
τ̇ − ∂ξ

∂x
= 0 (1.219)

∂ξ
∂t

+
∂α2(t, x)

∂x
− x

∂ξ
∂x
− ξ = 0 (1.220)

∂α2(t, x)
∂t

+ x
∂α2(t, x)

∂x
+

1
2

∂2α2(t, x)
∂x2

+
∂2ξ
∂t∂x

= 0, (1.221)

which gives rise to

τ = C3e2t −
C0

2
e−2t + C5 (1.222)

ξ =

„
C3e2t +

C0

2
e−2t

«
x + C4et +

C1

2
e−t (1.223)

φ =

„
C0e−2t

x2

2
+ C1e−tx + C2 − C3e2t

«
u + α(t, x) (1.224)

Example 1.13. The FP equation

∂u
∂t

+ g
∂u
∂x

=
1
2
D

∂2u
∂x2

(1.225)

is associated to the determining equations

1
2
τ̇ − ∂ξ

∂x
= 0 (1.226)

∂ξ
∂t

+ D
∂α2(t, x)

∂x
− g

∂ξ
∂x

= 0 (1.227)

∂α2(t, x)
∂t

+ g
∂α2(t, x)

∂x
+

1
2
D

∂2α2(t, x)
∂x2

+
∂2ξ
∂t∂x

= 0. (1.228)
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This furnishes

τ = −DC0t
2 + 2C3t + C5 (1.229)

ξ = (C3 −DC0t) x + (gC3 −DC1) t + C4 (1.230)

φ =

„
C0

x2

2
− gC0tx + C1x + g2 C0

2
t2 −

„
gC1 −

D
2

C0

«
t + C2

«
u + α(t, x).

(1.231)

Remark. Each of the examples above corresponded with the examples from the previous section. The algebras
of the first order SODEs with one-dimensional Wiener processes form a sub-algebra of the original Lie point
algebras associated with the FP equation.

1.3 Conclusion

The question of whether or not the Lie algebra of a first order SODEs, with multi-dimensional Wiener processes,
will form a sub-algebra of the associated algebra related to FP equations needs to be investigated.

So far the ansatz that the temporal infinitesimal must be projective for both the FP and the related SODEs
ensures that the symmetries generated from the SODEs is a sub-algebra of the one generated by the associated
FP equation.

The question that now arises is whether or not the Lie point transformations of the SODEs are applicable if
the infinitesimals are not projective. This leads us to the works of Wafo Soh and Mahomed [2], Ünal [3] and
Fredericks and Mahomed [5] where no recourse is made to the FP equation. As a result, the ansatz of [1] is not
assumed.
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Chapter 2

Symmetries of First-Order
Stochastic Ordinary Differential
Equations Revisited

Symmetries of first order SODEs are analysed. This work focuses on maintaining the properties of the Weiner
processes after the application of infinitesimal transformations. The determining equations for first-order SODEs
are derived in an Itô calculus context. These determining equations are non-stochastic.

2.1 Introduction

Two years after the seminal work by Gaeta and Quintero [1] which brought to the fore the relations between
the symmetries of the Fokker-Planck (FP) equation and its corresponding Itô stochastic (ordinary) differential
equation (SDE), a paper by Wafo Soh and Mahomed [2] explained how to derive these Lie point symmetries with-
out referring to the corresponding FP equations and without using these FP dependent symmetries to transform
the Itô SDE into a different one as had been done in [7]. This novelty in methodology was able to incorporate
higher order SDEs, for instance the governing equation for the response of a mass-spring oscillator to a random
excitation induced by white noise, which we discuss in a later chapter.

However, this methodology neglected to apply the invariance principle to the underlying properties which drives
the non-deterministic characteristic of Itô SDEs, namely the Wiener process’ properties. This implies that the
instantaneous mean of the transformed Wiener processes is not zero under expectation as it aught to be. As a
result of this oversight, the determining equations related to the invariance of the diffusion coefficient of the SDEs
are non-deterministic; there is a white noise term which survives the transformation. What is interesting is the
fact that this non-determinstic white noise term does not appear in the determining equations for higher order
SDEs.

Ünal [3] uncovered the reason for the non-determinstic nature of the determining equations associated with
the diffusion coefficient of the Itô SDEs by applying an invariance principle to the Itô multiplication table (1.1).
This removes the white noise term which appears in [2]. The determining equations [3] obtained for finding
symmetries of first-order SDEs were superficially not in agreement with the version of [2] as it precluded an extra
condition given in his derivation (see [3]).

This chapter is aimed at reconciling these two seminal works for first order SDEs: in the following section we
derive the determining equations that are needed to solve for the symmetries. We closely follow the methodology
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of [2] in this regard:

• Apply infinitesimal transformations on the spatial, temporal and Wiener process variables.

• Apply infinitesimal transformations on the drift and diffusion coefficients of the SDEs.

• Induce an invariance transformation argument on the transformed SDEs in differential form.

• Show that the symmetry operator constructed from the infinitesimals is a symmetry of the Itô SDEs
provided that the determining equations are satisfied.

However, we extend the derivation of [2] further and arrive at an alternative form of the same determining
equations that were constructed by Ünal [3]. We also seek to ensure that the finite transformations can be
recovered from the infinitesimal transformations; this leads to another condition on the temporal infinitesimal
which neither works have considered. Thus this route not only leads to the same extra condition that was found
in [3], it also yields another important condition on the temporal symmetry variable τ which ensures that the
transformed Wiener differential still behaves like a standard Wiener process. We thus, in the third section, review
the steps given in [3]; deriving these determining equations and comparing them to the ones found in the previous
section mentioned above. We conclude with the same example used in [3] to provide evidence that we have
reconciled the works of both [2] and [3]. We in fact show that Ünal’s extra condition is a direct consequence of
our extension using the properties of the Wiener process.

2.2 Derivation of the Determining Equations

Due to Itô Isometry, the finite quadratic variation of the Wiener process, i.e. (dW (t))2 has a mean-squared value
of dt (see Øksendal [9]), the Newton-Leibnitz chain rule in differential form, which we need to apply to establish
invariance arguments on our spatial, temporal and Wiener variables, has to be adjusted. This change leads to
the Itô Formula and the Random Time Change Formula, which we stated earlier.
Consider an Itô process

dX(t) = f(t, X(t))dt + G(t, X(t)) dW(t), (2.1)

where f(t, x) is a vector of N dimension, which is the same as the dimension of the process X(t) and G(t, x)
is an N ×M -matrix. These functions are evaluated at X(t) in the system of Itô processes above. The Lie Point
Theorem symmetry approach for ODEs requires spatial and temporal infinitesimals ξj(t, x) and τ(t, x), in its
analysis. In the SODEs framework these entities are functionally based on the spatial stochastic process, X(t)
and using Itô’s formula (1.27), we have that the jth spatial infinitesimal, for j = 1, ..., N and temporal infinitesimal
are themselves solutions to Itô processes given in component form, respectively, as

dξj(t, X(t)) = Γ(ξj) (t,X(t)) dt + Y l(ξj) (t,X(t)) dWl(t) (2.2)

and

dτ(t, X(t)) = Γ(τ) (t,X(t)) dt + Y l(τ) (t,X(t)) dWl(t), (2.3)

where Γ(ξj), Y l(ξj), Γ(τ) and Y l(τ) are the drift and diffusion coefficients of our spatial and temporal infinitesi-
mals, respectively and defined using (1.28) and (1.29). The Lie Point Theorem (see Wafo Soh and Mahomed [2]),
as in [2] uses determining equations to furnish symmetries which would enable the transformation of a solution
of the equation to another. These determining equations are in fact O(1) and O(ε) equations derived from form
invariant ODE point transformation analysis. The resultant higher order equations of this form invariant analy-
sis, are functionally dependent on the solution of these equations. We perform a similar point transformation of
(2.1)’s spatial, temporal and the Wiener variables

Xj(t) = eεH(Xj(t))

=

Z t

Γ(eεH(Xj(s))) ds +

Z t

Y (eεH(Xj(s))) dW (s), (2.4)

t = eεH(t)

=

Z t

Γ(eεH(s)) ds +

Z t

Y (eεH(s)) dW (s) (2.5)
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and

dW l(t) =

r
d (eεH(t))

dt
dWl(t), for each l = 1, ..., M (2.6)

using the random time change formula and Itô’s formula; where H is the symmetry generator

H = τ(t,x)
∂
∂t

+ ξj(t,x)
∂

∂xj
, (2.7)

with the spatial and temporal infinitesimals ξj(t,x) and τ(t,x), respectively. The point transformations of the
drift and diffusion coefficients are given by

fj(t,x) = eεH(fj(t, x)) (2.8)

and

gk
i (t,x) = eεH(gk

i (t, x)), (2.9)

for each i, j = 1, ..., N and k = 1, ..., N . The transformations (2.4), (2.5), (2.6), (2.8) and (2.9) are used in
conjunction with Itô’s formula to form an invariant version of the original SODEs (2.1)

dX(t) = f(t, X(t))dt + G(t, X(t)) dW(t). (2.10)

The transformed time index should be invariant in terms of its instantaneous drift and diffusion coefficients, which
implies

E
h
dt(t, ω)

˛̨
˛W(t) = w, X(t) = x

i
= dt(t, ω), (2.11)

since this is trivially so for the original differential time index, dt. By using (2.5), we have

Z t

E
h
Γ(eεH(s))

˛̨
˛W(s) = w, X(s) = x

i
ds =

Z t

Γ(eεH(s)) ds +

Z t

Y (eεH(s)) dW (s), (2.12)

which forces

Y l(eεH(t)) = 0 for each l = 1, ..., M (2.13)

which gives the finite transformation version of the infinitesimal condition that Ünal [3] derived at O(ε) using a
form invariant argument on the Itô multiplication table. We also have that the instantaneous drift of the time
index must be constant, i.e.

Γ(eεH(t)) = Constant. (2.14)

Similarly, the transformed standard Wiener differential process, dW(t), should be invariant in terms of the
existence of an instantaneous mean and variance which implies that the following should still hold, viz.

P
h˛̨

dW l(t)
˛̨
> ε

˛̨
˛W(t) = w, X(t) = x

i
= 0 for all ε > 0, (2.15)

E
h
dW l(t)

˛̨
˛W(t) = w, X(t) = x

i
= 0, (2.16)

E
h
dW l(t) dW m(t)

˛̨
˛W(t) = w, X(t) = x

i
= dt δm

l . (2.17)

Expanding (2.16)

E
"r

Γ(eεH(t)) dt + Y k(eεH(t)) dWk(t)
dt

dWl(t)
˛̨
˛W(t) = w, X(t) = x

#
= 0 (2.18)

by using (2.5) in conjunction with (2.6) we note that the condition (2.13) allows the invariance argument (2.16)
to be satisified

E
h
dW l(t)

˛̨
˛W(t) = w, X(t) = x

i
= E

hp
Γ(eεH(t))dWl(t)

˛̨
˛W(t) = w, X(t) = x

i
(2.19)

= 0. (2.20)

Thus we have the following theorem.
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Theorem 2.1 (Lie Point Symmetry Rate of Time Change Formula).

The rate of time change for the random time change formula under the Lie point symmetry approach is the
temporal instantaneous drift

t =

Z t

Γ(eεH(s))(s, X(s))ds. (2.21)

As a result (2.6) becomes

dW l(t) =
p

Γ(eεH(t))dWl(t), for each l = 1, ..., M . (2.22)

Since the temporal instantaneous drift is measureable as a result of Itô’s formula, the random time change formula
still holds for this application. Expanding the drift term f(t, X(t))dt on the right hand side of (2.10) with simple
algebra gives

(
f(t, X(t)) + ε (Γ(H(t)) + H) f(t, X(t))

+
∞X

k=2

εk

k!

 
(Γ(H(t)) + H)k f(t, X(t))

+
k−2X

j=0

 
k

k − j

!
f(t, X(t)) Hj(t)

“
Γ(Hk−j(t)) − [Γ(H(t))]k−j

”!)
dt. (2.23)

In order to use the Lie Point Theorem in the SODEs context we require that all terms of order higher than O(ε)
be functionally dependent on terms of order O(1) and O(ε). As a result of this dependency, higher order terms
can be ignored completely and justifies the methods of [2] and [3]. This dependency, however, forces the following
condition

eε Γ(H(t))(t, X(t)) = Γ
“
eε H(t)(t, X(t))

”
(2.24)

and the resultant relationship, by separation of coefficients of ε, between the drift components of the left and right
hand side of (2.10) can be expressed as

Γ(Hk(x))(t, X(t)) = (Γ(H(t)) + H)k f(t, X(t)), (2.25)

for k = 1, 2, 3, . . .. Thus for k = 1 we have our first determining equation

Γ(H(x)) = (Γ(H(t)) + H) f(t, X(t)) (2.26)

which partially solves for the spatial and temporal infinitesimals. By using the determining equation (2.26) in
(2.25) for the remaining higher order equations, a direct functional dependency between the two is established by
the following

Γ(Hk(x)) = (Γ(H(t)) + H)k−1 Γ(H(x)), for k = 2, 3, 4, . . .. (2.27)

We thus have our next theorem,

Theorem 2.2 (Constant Temporal Infinitesimal Instantaneous Drift).

The instantaneous drift of the temporal infinitesimal τ has to be constant, i.e. Γ(τ) has to be constant, in
order for the condition (2.24) to be satisfied.
Proof: by merely looking at the second term of (2.24) we have

(Γ(τ))2 = Γ(H(τ)) (2.28)

= Γ

„
H

„Z t

Γ(τ(s, ω))ds

««
(note dτ = Γ(τ) dt) (2.29)

= Γ

„
τ Γ(τ) + ξj

Z t ∂
∂xj

(Γ(τ(s, ω))) ds

«
. (2.30)
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After applying the Γ operator into the brackets, we have the following resulting equation after canceling out terms

Γ2(τ) + Γ(ξj)

Z t ∂
∂xj

(Γ(τ)) ds + ξj

Z t

Γ

„
∂

∂xj
(Γ(τ))

«
ds = 0. (2.31)

This equation, without loss of generality, can only be satisfied if Γ(τ) is constant. But, we have shown that this is
true if the transformed differential time index obeys condition (2.11). Before deriving the remaining determining
equation, we first note that (2.22) can be written as

dW l(t) = e
εΓ(H(t))

2 dWl(t), for each l = 1, ..., M (2.32)

as a result of (2.24). If we expand the diffusion component G(t, X(t)) dW(t) of (2.10) and then compare these
components on both sides of (2.10) by separation of coefficients of ε, we get the following

Y l(H(x))(t, X(t)) =

„
Γ(H(t))

2
+ H

«
Gl(t, X(t)) (2.33)

Y l(Hk(x))(t, X(t)) =

„
Γ(H(t))

2
+ H

«k−1

Y l(H(x)), for k = 2, 3, . . . (2.34)

for each l = 1, ..., M , where (2.33) is the last determining equation needed to solve for the infinitesimals. The
functional dependency of higher order equations on zero and first order ones is satisfied in (2.34). All that remains
to be shown is that the determining equations are unique to their SODEs from which they are derived. If we are
given the determining equations (2.26) and (2.33) the canonical symmetry that is immediately applicable is the
time scaling symmetry H = ∂/∂t. From this we see that the drift and diffusion coefficients have to be functions
of the spatial variable only in order to satisfy (2.26) and (2.33). Thus the SODEs associated with this particular
symmetry is given by

dX(t) = f(X(t))dt + G(X(t)) dW(t). (2.35)

Thus we have proved the following theorem which was partially proved in Wafo Soh and Mahomed [2].

Theorem 2.3. Lie Point Theorem for SODEs

The Itô SODEs
dX(t) = f(t, X(t))dt + G(t, X(t)) dW(t) (2.36)

has the following determining equations and conditions that have to hold in order to transform a solution of (2.36)
to that of another solution using Lie point symmetry methods evaluated at (t, X(t))

Γ(H(x)) = (Γ(H(t)) + H) f (2.37)

Y l(H(x)) =

„
Γ(H(t))

2
+ H

«
Gl (2.38)

eε Γ(H(t)) = Γ
“
eε H(t)

”
(2.39)

and

Y l(eεH(t)) = 0, (2.40)

for each l = 1, ..., M .

To establish a comparison between these results and those of [2] we resort to the definition of the first pro-
longation of an infinitesimal generator for non-stochastic ODEs

H[1] = H + ξ[1]
j

∂
∂ẋj

, (2.41)
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where

ẋj =
dxj

dt
(2.42)

= Dtxj (2.43)

ξ[1]
j = Dt (ξj)− ẋjDt (τ) (2.44)

=
∂ξj

∂t
+ ẋi

∂ξj

∂xi
− ẋj

„
∂τ
∂t
− ẋi

∂τ
∂xi

«
, (2.45)

with the total time derivative Dt given as

Dt =
∂
∂t

+ ẋi
∂

∂xi
+ ẍi

∂
∂ẋi

+ . . . . (2.46)

Applying the first prolongation on (ẋj − fj) at ẋ = f , can be represented as

H[1] (ẋj − fj)

˛̨
˛̨
ẋ=f

= ξ[1]
j − H(fj). (2.47)

Using (2.45) we find that (2.47) in conjunction with the second-order derivative terms of the instantaneous spatial
and temporal drifts constitute the whole of (2.26) and we can express this as

„
(H[1] (ẋj − fj)

˛̨
˛̨
ẋ=f

+
1
2

MX

k=1

Gk
i Gk

p

„
∂2ξj

∂xi∂xp
− fj

∂2τ
∂xi∂xp

««
(t,X(t)) = 0. (2.48)

If we now consider (2.38), there is no white noise term, dWl(t)/dt, as was the case in the previous attempt by [2]
since Y l(τ) = 0.

Theorem 2.4 (Infinitesimal Symmetries of the Itô equation).

A vector field H = τ(t,x)∂/∂t + ξj(t,x)∂/∂xj is a symmetry of (2.1) if and only if (2.37), (2.38), (2.39) and
(2.40) are satisfied.

Proof: If H is an infinitesimal symmetry of (2.1), we merely follow the above derivation to O(ε) and arrive
at the result. If conversely (2.37), (2.38), (2.39) and (2.40) are satisfied, without loss of generality we can use
the conanical variables approach to assume that H = ∂/∂t. Thus the equations (2.37), (2.38), (2.39) and (2.40)
will lead to the drift and diffusion coefficients of (2.1) being functions of the spatial variables only, i.e. the Itô
equation will be invariant under H.

2.3 Ünal’s Extra Condition

Ünal [3] commented that the Itô multiplication table for the transformed variables must be applicable, i.e.

dW l(t) dW m(t) = δm
l dt, (2.49)

dW i(t) dt = 0, (2.50)

dt dt = 0 (2.51)

for each i, l and m = 1, ..., M and derived his DEs from this standpoint. Recently [4] stated that no strict proof
had been done in the past to verify that the transformed Wiener processes using the random time change formula
would still satisfy the properties of a Wiener process. All that the random time change formula requires for it
to be applicable to SODEs, is the measurability of the rate of time change, which Itô’s formula preserves. The
spatial process X(t) is measurable at the onset, so all functions of this stochastic process will be measurable too.
The strict proof has been done in [9] and [8]; the consequences of these properties on the symmetry infinitesimals
were investigated in [3]. Using the results (2.21) and (2.32), we find

dW l(t) dW m(t) = eε
Γ(τ)

2 +ε
Γ(τ)

2 dWl(t)dWm(t)δm
l = δm

l eεΓ(τ)dt = δm
l dt (2.52)

dW l(t)dt = e
3
2 εΓ(τ)dW (t)dt = 0 (2.53)
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and

dtdt = 0 are automatically satisfied. (2.54)

for each i, l and m = 1, ..., M . Thus our application of the Lie Point Theorem for SODEs is consistent with the
criteria set by Ünal [3].

2.4 Examples

We use the same example as Ünal [3] to show that the symmetries, which we arrive at using (2.26) and (2.33),
are the same as what was found in [3]. This is our first example

Example 2.1 (Brownian motion on a circle).

Let X(t) be an Itô process

dX(t) = f dt + G dW (t), (2.55)

where f is the vector „
− 1

2X1(t)
− 1

2X2(t)

«
(2.56)

and G the vector „
−X2(t)

X1(t)

«
. (2.57)

Thus from [2]’s corrected version of the determining equations (2.48) and (2.33), we have for j = 1:

H [1]

„
ẋ1 +

1
2
x1

« ˛̨
˛̨
ẋ=f

+
1
2
G1

i G
1
p

„
∂2ξ1

∂xi∂xp
+

1
2
x1

∂2τ
∂xi∂xp

«
= 0, (2.58)

−ξ2 −G1
i

„
∂ξ1

∂xi

«
− 1

2
x2

 
∂τ
∂t

+ fi
∂τ
∂xi

+
1
2

MX

l=1

Gl
i Gl

p
∂2τ

∂xi∂xp

!
= 0 (2.59)

and for j = 2:

H [1]

„
ẋ2 +

1
2
x2

« ˛̨
˛̨
ẋ=f

+
1
2
G1

i G
1
p

„
∂2ξ2

∂xi∂xp
+

1
2
x2

∂2τ
∂xi∂xp

«
= 0 (2.60)

ξ1 −G1
i

„
∂ξ2

∂xi

«
+

1
2
x1

 
∂τ
∂t

+ fi
∂τ
∂xi

+
1
2

MX

l=1

Gl
i Gl

p
∂2τ

∂xi∂xp

!
= 0. (2.61)

The prolongations of the spatial infinitesimals are given for j equal to 1 and 2 respectively as

ξ[1]
1 =

∂ξ1

∂t
+ ẋi

∂ξ1

∂xi
− ẋ1

„
∂τ
∂t
− ẋi

∂τ
∂xi

«

=
∂ξ1

∂t
+ fi

∂ξ1

∂xi
+

1
2
x1

„
∂τ
∂t
− fi

∂τ
∂xi

«
, (2.62)

ξ[1]
2 =

∂ξ2

∂t
+ ẋi

∂ξ2

∂xi
− ẋ2

„
∂τ
∂t
− ẋi

∂τ
∂xi

«

=
∂ξ1

∂t
+ fi

∂ξ1

∂xi
+

1
2
x2

„
∂τ
∂t
− fi

∂τ
∂xi

«
(2.63)

as we are evaluating at ẋi = fi in both cases of j. Substituting the above into the refurbished determining
equations of Wafo Soh and Mahomed [2], i.e. equations (2.48) and (2.33), we find the following once we have
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multiplied equations (2.58) and (2.60) by a factor of two:

−ξ2 + x2
∂ξ2

∂x2
− x2

1
∂2ξ2

∂x2
2

+ x1
∂ξ2

∂x1
+ 2x1x2

∂2ξ2

∂x1∂x2
− x2

2
∂2ξ2

∂x2
1

= 0 (2.64)

ξ1 − x1
∂ξ2

∂x2
+ x2

∂ξ2

∂x1
= 0 (2.65)

−ξ1 + x2
∂ξ1

∂x2
− x2

1
∂2ξ1

∂x2
2

+ x1
∂ξ1

∂x1
+ 2x1x2

∂2ξ1

∂x1∂x2
− x2

2
∂2ξ1

∂x2
1

= 0 (2.66)

ξ2 − x1
∂ξ1

∂x2
+ x2

∂ξ1

∂x1
= 0 (2.67)

The final determining equation now needed is the extra condition (2.13) which reconciles both papers, viz.

−x1
∂τ
∂x2

+ x2
∂τ
∂x1

= 0, (2.68)

where the evaluation at (t, X(t)) has not taken place. Solving these deterministic equations give

τ(t,X(t)) = C0F0

 
X(t)22 + X(t)21

2

!
, (2.69)

ξ1(t,X(t)) = C1F1

 
X(t)22 + X(t)21

2

!
X(t)1 + C2F2

 
X(t)22 + X(t)21

2

!
X(t)2 (2.70)

and

ξ2(t,X(t)) = C1F1

 
X(t)22 + X(t)21

2

!
X(t)2 − C2F2

 
X(t)22 + X(t)21

2

!
X(t)1 (2.71)

which are the same results that Ünal [3] had found. The condition (Lie point SODEs condition) is satisfied,
since Γ(τ) = 0 and H(τ) = τ Γ(τ) = 0. To demonstrate that a solution of one SODEs is transformed to that

of another, we choose a simple example where F1

“
X(t)22+X(t)21

2

”
= F2

“
X(t)22+X(t)21

2

”
= 1. Thus we have the

following resulting symmetry generators

H0 = F0(
x2

2 + x2
1

2
)

∂
∂t

, (2.72)

H1 = x1
∂

∂x1
+ x2

∂
∂x2

, (2.73)

and

H2 = x2
∂

∂x1
− x1

∂
∂x2

. (2.74)

The point transformations associated with (2.72) are

x1(t) = x1 (2.75)

x2(t) = x2 (2.76)

and

t = t + F0(
x2

2 + x2
1

2
)ε. (2.77)

The point transformations associated with (2.73) are

x1(t) = x1e
ε (2.78)

x2(t) = x2e
ε (2.79)
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and

t = t. (2.80)

The point transformation associated with (2.74) are

x1(t) = x1 cos (ε) + x2 sin (ε) (2.81)

x2(t) = −x1 sin (ε) + x2 cos (ε) (2.82)

and

t = t. (2.83)

The point transformations associated with (2.72) and (2.73) trivially verify form invariance when Itô’s formula is
applied. This is especially for H0 where the temporal infinitesimal is zero under both the Γ and Y 1 operators.
Applying Itô’s formula to (2.81) and (2.82) gives the following

dX1(t) = dX1(t) cos (ε) + dX2(t) sin (ε)

=

„
−X1(t)

2
cos (ε) +

−X2(t)
2

sin (ε)

«
dt + (−X2(t) cos (ε)−X1(t) sin (ε)) dW (t)

=
“
eεH2(f1(X1(t)))

”
dt +

“
eεH2(G1(X2(t))))

”
dW (t) (2.84)

= f1(t, X(t))dt + G1(t, X(t))dW (t) (2.85)

dX2(t) = −dX1(t) sin (ε) + dX2(t) cos (ε)

=

„
−X2(t)

2
cos (ε) +

X1(t)
2

sin (ε)

«
dt + (X1(t) cos (ε) + εX2(t) sin (ε)) dW (t)

=
“
eεH2(f2(X2(t)))

”
dt +

“
eεH2(G2(X1(t)))

”
dW (t) (2.86)

= f2(t, X(t))dt + G2(t, X(t))dW (t) (2.87)

which demonstrates form invariance.

Our following examples follows from Gaeta and Quintero [1]. This is to see if the temporal infinitesimal satisfies
(2.39).

Example 2.2 (Constant noise).

This one-dimensional example has a constant diffusion term σ

dX(t) = σ dW (t), (2.88)

with the determining equations simply given as

∂ξ
∂t

+
1
2
σ2 ∂ξ

∂x2
= 0 (2.89)

∂ξ
∂x

=
∂τ
∂t + 1

2σ2 ∂τ
∂x2

2
(2.90)

σ
∂τ
∂x

= 0. (2.91)

From (2.91) we see that the temporal infinitesimal is projective. Thus we have

∂ξ
∂x

=
ȧ(t)
2

, (2.92)
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where τ(t) = a(t); a(t) is an arbitrary function of time. We can then solve for the spatial variable in (2.90) to
deduce

ξ(t, x) =
ȧ(t)
2

x + b(t), (2.93)

with b(t) being an arbitrary function of the temporal variable. Substituting the above result into (2.89) produces
the following

ä(t)
2

x + ḃ(t) = 0. (2.94)

By using comparison of coefficients, we are able to solve for both the spatial and temporal infinitesimals, respec-
tively

ξ(x) =
c1

2
x + c2 (2.95)

and

τ(t) = c1 t + c3. (2.96)

Our final condition (2.39) on substitution is satisfied. We demonstrate this by just looking at the second term of
the expansion of both sides of the condition. The right-hand side yields

(Γ (c1 t + c3))
2 = (c1)

2 (2.97)

while the remaining side gives

Γ (H (τ)) = (c1)
2. (2.98)

Hence to verify that we can recover the finite transformations with only having access to the infinitesimal trans-
formations, we consider three cases. In the first case we have

dx
dε

=
x
2

, x

˛̨
˛̨
ε=0

= x, (2.99)

dt
dε

= t, t

˛̨
˛̨
ε=0

= t, (2.100)

which results in

x = xe
ε
2 (2.101)

and

t = teε. (2.102)

The random time change formula gives

dW (t) =

r
dt
dt

dW (t) (2.103)

= e
ε
2 dW (t). (2.104)

Applying Itô’s formula to the spatial transformed process we have

dX(t) = dX(t)e
ε
2 (2.105)

= σ e
ε
2 dW (t),

= eεH(σ) dW (t),

= σ dW (t), (2.106)

since σ is constant. The remaining two cases are trivial.

(2.107)
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Example 2.3.

We now consider

dX(t) = x dt + dW (t). (2.108)

The determining equations are

∂ξ
∂t

+ x
∂ξ
∂x

+
1
2

∂ξ
∂x2

= x

„
∂τ
∂t

+ x
∂τ
∂x

+
1
2

∂τ
∂x2

«
+ ξ (2.109)

∂ξ
∂x

=
∂τ
∂t + x ∂τ

∂x + 1
2σ2 ∂τ

∂x2

2
(2.110)

∂τ
∂x

= 0. (2.111)

From (2.111) we see that the temporal infinitesimal is again projective. Thus we have

∂ξ
∂x

=
ȧ(t)
2

, (2.112)

where τ(t) = a(t); a(t) is an arbitrary function of time. We can then solve for the spatial variable in (2.110) to
get

ξ(t, x) =
ȧ(t)
2

x + b(t), (2.113)

with b(t) being an arbitrary function of the temporal variable. Substituting the above result into (2.109) produces
the following

ä(t)
2

x + ḃ(t) + x
ȧ(t)
2

= x ȧ(t) +
ȧ(t)
2

x + b(t). (2.114)

By using comparison of coefficients, we are able to solve for both the spatial and temporal infinitesimals, respec-
tively

ξ(x) = c1 e2t x + c2 et (2.115)

and

τ(t) = c1 e2t + c3. (2.116)

The right-hand side of our final condition (2.39) gives

`
Γ
`
c1 e2t + c3

´´2
= (2 c1 e2t)2 (2.117)

while the remaining side gives

Γ (H (τ)) =
`
8 (c1)

2 e4t + 4 c1 c3 e2t´ . (2.118)

Therefore only for c1 = 0 will the condition (2.39) be satisfied. Thus the only spatial and temporal infinitesimals
that apply are

ξ(x) = c2 et (2.119)

and

τ(t) = c3. (2.120)

40



Recovering the finite transformation which leaves the SDEs form invariant, with only having access to the in-
finitesimal transformations, will be verified by only considering the case associated with c2, as the remaining case
is trivial. We have

dx
dε

= et, (2.121)

dt
dε

= 0, (2.122)

giving

x = x + εet (2.123)

since

t = t. (2.124)

The random time change formula leaves the Wiener process unaltered

dW (t) = dW (t). (2.125)

Applying Itô’s formula to the spatial transformed process we have

dX(t) = dX(t) + εetdt (2.126)

= x dt + dW (t) + εetdt,

= eεH(x) dt + dW (t),

where eεH(x) is evaluated at X(t), yielding

dX(t) = X(t) dt + dW (t), (2.127)

Example 2.4.

We now look at the system

dX1(t) =
a1

X1
dt + dW1(t), (2.128)

dX2(t) = a2 dt + dW2(t), (2.129)

which means that the diffusion coefficient matrix G, is

G =

„
1 0
0 1

«
. (2.130)
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The determining equations here are simply given by

∂ξ1

∂t
+

a1

x1

∂ξ1

∂x1
+ a2

∂ξ1

∂x2
+

1
2

∂ξ1

∂x2
1

+
1
2

∂ξ1

∂x2
2

=
a1

x1

„
∂τ
∂t

+
a1

x1

∂τ
∂x1

+ a2
∂τ
∂x2

+
1
2

∂τ
∂x2

1

+
1
2

∂τ
∂x2

2

«

+ ξ1

„
−a1

x2
1

«
(2.131)

∂ξ2

∂t
+

a1

x1

∂ξ2

∂x1
+ a2

∂ξ2

∂x2
+

1
2

∂ξ2

∂x2
1

+
1
2

∂ξ2

∂x2
2

= a2

„
∂τ
∂t

+
a1

x1

∂τ
∂x1

+ a2
∂τ
∂x2

+
1
2

∂τ
∂x2

1

+
1
2

∂τ
∂x2

2

«
(2.132)

G1
1
∂ξ1

∂x1
+ G1

2
∂ξ1

∂x2
= G1

1Γ(τ) + H(G1
1)

∂ξ1

∂x1
=

1
2

„
∂τ
∂t

+
a1

x1

∂τ
∂x1

+ a2
∂τ
∂x2

+
1
2

∂τ
∂x2

1

+
1
2

∂τ
∂x2

2

«
(2.133)

G2
1
∂ξ1

∂x1
+ G2

2
∂ξ1

∂x2
= G2

1Γ(τ) + H(G2
1)

∂ξ1

∂x2
= 0 (2.134)

G1
1
∂ξ2

∂x1
+ G1

2
∂ξ2

∂x2
= G1

2Γ(τ) + H(G1
2)

∂ξ2

∂x1
= 0 (2.135)

G2
1
∂ξ2

∂x1
+ G2

2
∂ξ2

∂x2
=

1
2

„
∂τ
∂t

+
a1

x1

∂τ
∂x1

+ a2
∂τ
∂x2

+
1
2

∂τ
∂x2

1

+
1
2

∂τ
∂x2

2

«

∂ξ2

∂x2
=

1
2

„
∂τ
∂t

+
a1

x1

∂τ
∂x1

+ a2
∂τ
∂x2

+
1
2

∂τ
∂x2

1

+
1
2

∂τ
∂x2

2

«
(2.136)

G1
1

∂τ
∂x1

+ G1
2

∂τ
∂x2

= 0,

which imply that

∂τ
∂x1

= 0. (2.137)

G2
1

∂τ
∂x1

+ G2
2

∂τ
∂x2

= 0,

whence

∂τ
∂x2

= 0. (2.138)

From (2.138) we have

τ(t, x) = a(t), (2.139)

where a(t) is an arbitrary function of time. The right-hand side of our final condition (2.39) gives

(Γ (a(t)))2 = (ȧ(t))2 (2.140)

while the remaining side provides

Γ (H (τ)) =
`
(ȧ(t))2 + a(t)ä(t)

´
. (2.141)

Thus temporal infinitesimal is forced to be linear with respect to time

τ(t, x) = c1 t + c2. (2.142)
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As a consequence, the determining equations (2.131, 2.132), (2.133, 2.134), (2.135) and (2.136) become

∂ξ1

∂t
+

a1

x1

∂ξ1

∂x1
+ a2

∂ξ1

∂x2
+

1
2

∂ξ1

∂x2
1

+
1
2

∂ξ1

∂x2
2

=
a1

x1
c1 + ξ1

„
−a1

x2
1

«
(2.143)

∂ξ2

∂t
+

a1

x1

∂ξ2

∂x1
+ a2

∂ξ2

∂x2
+

1
2

∂ξ2

∂x2
1

+
1
2

∂ξ2

∂x2
2

= a2 c1 (2.144)

∂ξ1

∂x1
=

1
2

c1 (2.145)

∂ξ1

∂x2
= 0 (2.146)

∂ξ2

∂x1
= 0 (2.147)

∂ξ2

∂x2
=

1
2

c1. (2.148)

From (2.145, 2.146) and (2.147, 2.147) we observe

ξ1 =
1
2

c1 x1 + F1(t) (2.149)

and

ξ2 =
1
2

c1 x2 + F2(t). (2.150)

The expression for ξ1, in (2.149) reduces (2.143) to

Ḟ1(t) +
a1 c1

2 x1
=

a1 c1

x1
−
„

1
2

c1 x1 + F1(t)

«
a1

x2
1

. (2.151)

By comparison of coefficients we have that F1(t) must be zero, i.e.

ξ1 =
1
2

c1 x1. (2.152)

For the remaining spatial infinitesimal we have that (2.150) simplifies (2.144) to

Ḟ3(t) + a2
1
2

c1 = a2 c1. (2.153)

The function F3(t) is forced to be linear with respect to time

F3(t) =
a2 c1

2
t + c4. (2.154)

In summarizing the results, we have

ξ1 =
1
2

c1 x1, (2.155)

ξ2 =
1
2

c1 x2 +
a2 c1

2
t + c4 (2.156)

and the temporal infinitesimal is

τ(t) = c1 t + c3. (2.157)

To verify that the finite transformations can be recovered from only knowing the infinitesimal transforms, while
still maintaining form invariance, we only consider the second case for which

dx1

dε
=

x1

2
, (2.158)

dx2

dε
=

x2 + a2 t
2

(2.159)
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and

dt
dε

= t. (2.160)

Thus we have that

x1 = x1 e
ε
2 , (2.161)

t = t eε (2.162)

and

x2 = (x2 − a2 t ) e
ε
2 + a2 t eε (2.163)

The random time change formula produces

dW i(t) =

r
dt
dt

dWi(t) (2.164)

= e
ε
2 dWi(t), i = 1, 2. (2.165)

Applying Itô’s formula to the spatial transformed process we obtain

dX1(t) = dX1(t) e
ε
2 (2.166)

=
a1

X1
e

ε
2 dt + e

ε
2 dW1(t),

=
a1

X1 e
ε
2

eε dt + e
ε
2 dW1(t),

=
a1

X1(t)
dt + dW 1(t). (2.167)

dX2(t) = dX2(t) e
ε
2 − a2 dt e

ε
2 + a2 dt eε (2.168)

= a2 e
ε
2 dt + e

ε
2 dW2(t) − a2 dt e

ε
2 + a2 dt e

ε
2 ,

= a2 dt eε + e
ε
2 dW2(t),

= a2 dt + dW 2(t). (2.169)

Example 2.5.

Finally we consider the system

dX1(t) = X2 dt, (2.170)

dX2(t) = −k2 X2 dt +
√

2 k2dW (t), (2.171)

which gives rise to the determining equations

∂ξ1

∂t
+ x2

∂ξ1

∂x1
− k2 x2

∂ξ1

∂x2
+ k2 ∂2ξ1

∂x2
2

= x2

„
∂τ
∂t

+ x2
∂τ
∂x1

− k2 x2
∂τ
∂x2

+ k2 ∂2τ
∂x2

2

«
+ ξ2 (2.172)

∂ξ2

∂t
+ x2

∂ξ2

∂x1
− k2 x2

∂ξ2

∂x2
+ k2 ∂2ξ2

∂x2
2

= −k2x2

„
∂τ
∂t

+ x2
∂τ
∂x1

− k2 x2
∂τ
∂x2

+ k2 ∂2τ
∂x2

2

«
− k2ξ2

(2.173)

∂ξ1

∂x2
=

1
2

„
∂τ
∂t

+ x2
∂τ
∂x1

− k2 x2
∂τ
∂x2

+ k2 1
2

∂2τ
∂x2

2

«
(2.174)

∂ξ2

∂x2
=

1
2

„
∂τ
∂t

+ x2
∂τ
∂x1

− k2 x2
∂τ
∂x2

+ k2 1
2

∂2τ
∂x2

2

«
(2.175)

∂τ
∂x2

= 0. (2.176)
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Equation (2.176) easily gives

τ(t, x) = F (x1, t) , (2.177)

where F is an arbitrary function. We then apply condition (2.39) to the newly found temporal infinitesimal to
furnish what the arbitrary function F (x1, t) should be. The right-hand side of our final condition (2.39) yields

(Γ (F (x1, t)))
2 = (

∂F (x1, t)
∂t

+ x2
∂F (x1, t)

∂x1
)2 (2.178)

while the remaining side results in

Γ (H (τ)) = Γ

„
F

∂F (x1, t)
∂t

+ ξ1 x2
∂F (x1, t)

∂x1

«
. (2.179)

By comparison of coefficients we have that F (x1, t) = c1 satisfies the condition (2.39). Thus the temporal
infinitesimal is forced to be

τ(t, x) = c1, (2.180)

where c1 is an arbitrary constant. Hence the determining equations (2.172), (2.173), (2.174) and (2.174) become

∂ξ1

∂t
+ x2

∂ξ1

∂x1
− k2 x2

∂ξ1

∂x2
+ k2 ∂2ξ1

∂x2
2

= ξ2 (2.181)

∂ξ2

∂t
+ x2

∂ξ2

∂x1
− k2 x2

∂ξ2

∂x2
+ k2 ∂2ξ2

∂x2
2

= −k2ξ2 (2.182)

∂ξ1

∂x2
= 0 (2.183)

∂ξ2

∂x2
= 0. (2.184)

From (2.183) and (2.184) we observe

∂2ξ1

∂x2
2

= 0 (2.185)

∂2ξ2

∂x2
2

= 0, (2.186)

which follows by using simple differentiation. As a result of (2.183), (2.184), (2.185) and (2.186) the equations
(2.181) and (2.182) can be simplified to

∂ξ1(x1, t)
∂t

+ x2
∂ξ1(x1, t)

∂x1
= ξ2(x1, t) (2.187)

and

∂ξ2(x1, t)
∂t

+ x2
∂ξ2(x1, t)

∂x1
= −k2ξ2(x1, t). (2.188)

Comparison by coefficient yields

∂ξ1(x1, t)
∂t

− ξ2(x1, t) = 0, (2.189)

∂ξ1(x1, t)
∂x1

= 0, (2.190)

∂ξ2(x1, t)
∂t

+ k2ξ2(x1, t) = 0 (2.191)

45



and

∂ξ2(x1, t)
∂x1

= 0. (2.192)

Therefore, we have that both spatial infinitesimals are functions of time only

ξ2(t) = c2 e−k2 t (2.193)

and

ξ1(t) = c3 −
c2

k2
e−k2 t. (2.194)

Verification of maintaining form invariance after furnishing the finite transformations from the infinitesimal trans-
formations is trivial for this example.

Remark. The temporal infinitesimal was projective for all the examples taken from [1]. But we saw from the
example 2.1, that this is not always the case.

2.5 Concluding Remarks

It has been shown that by taking special care that the transformed Wiener variable is still a standard Wiener
process, overlooked in the pioneering work [2] for the Itô process

dX(t) = fdt + G dW(t),

leads to the same results as that of [3] meaning that no recourse to the Itô’s multiplication table for the trans-
formed variables is necessary to find the extra condition (2.13).

This work allows us to investigate the symmetries of SODEs without recourse to the FP equations; preclud-
ing the assumption that the symmetry H of the SDEs had to be projectable, i.e. τ = τ(t). This work has
successfully reconciled the works of [2] and [3]. We have also found a new condition, i.e. Γ(τ) = Constant, which
allows us to use Lie point symmetry in the SODEs context.

We are able to construct the finite transformations with only having the infinitesimal transformations. As a
result, we sometimes have symmetries which are not projectable and hence not belonging to the Lie algebra
associated with the FP equations.
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Chapter 3

A Formal Approach of Handling Lie
Point Symmetries of Scalar
First-Order Itô Stochastic Ordinary
Differential Equations

Various methods of deriving Lie point symmetries for Itô SODEs has surfaced in the recent past. In the Itô
calculus context both the formal and intuitive understanding of how to construct these symmetries has led to
seemingly disparate results. The impact of Lie point symmetries on the stock market, population growth and
weather SODE models, for example, will not be understood properly until these varying results are reconciled as
has been attempted here.

3.1 Introduction

Adjusting Lie’s work for ordinary differential equations (ODEs) to Itô SODEs was first investigated by Gaeta
and Quintero [1]; extended by Wafo Soh and Mahomed [2]; refined by Ünal [3]; and reconciled by Fredericks
and Mahomed [5]. The purpose of the work of Meleshko et al. [4] was to find a formal approach of finding the
determining equations needed to obtain the Lie point infinitesimals for scalar SDEs. This work, however, does
not make use of the Itô formula in conjunction with the random time change formula. As a result, a conditioning
on the temporal infinitesimal, which [3] had constructed with the Itô multiplication table for the transformed
Wiener and time index variables, is not accounted. However, unlike the determining equations derived in [2], the
integro-differential determining equations of [4] is non-stochastic.

This dissimilarity between the determining equations of [5] and [4] is superficial. We will endeavor to unearth the
conditioning on the temporal infinitesimal, which has been precluded from [4]. Without this conditioning, the
determining equations are impossible to solve, without having to consider cases. We also extend the work of [4]
to multidimensional Wiener processes, M -dimensional Wiener processes.

Another point which has only been addressed by [5], is the recoverability of the finite transformations from
the infinitesimal transformations. We will try to re-derive this condition from the methodology followed by [4].
Although the recoverability of the finite transformations from infinitesimal ones is claimed in [4], it is not proven.
The SDE examples used by [4] to establish these claims are either trivial or precluding much of the needed steps;
in some cases the symmetries are not even a subset of the symmetries found for the related FP equations, which
has been demonstrated in [1]. We will redo most of the critical examples, which appear in [4], in conjunction with
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our seminal condition to validate the recoverability of the finite transformations from the infinitesimal ones.

We commence with Lie point transformations. After applying the Itô formula to the transformations, a compar-
ison between the formal Itô integral representation of the transformed time index variable and the random time
change formula defined by [4], will be made. This collation should furnish the needed condition which ensures that
the transformed Wiener process’ properties remain invariant under the transformation. These invariant properties
of the transformed Wiener process is maintained by the way in which [4] defines the rate of time change; we will
show that this rate of time change is the instantaneous drift of the transformed time index, which is a consequence
of Itô’s formula.

Re-deriving the seminal condition, which ensures that the finite transformations are redeemable from the in-
finitesimal transformations, will be made by following the Itô integral methodology used in [4]. We end with
examples.

3.2 Transformation

With the application of a Lie point transformation on the spatial and temporal variables, we intend to trans-
form our probability space (Ω,F , P), where the filtration is generated by the σ-algebras Ft, to the probability
space (Ω,F , P), where the filtration is generated by the σ-algebras Ft. Notice that the density function which
characterizes the probabilistic characteristics of the Wiener process, is also transformed and hence gives rise to
a transformed probability measure P. Please note that the Lie point transformation takes place in the Banach
space; the Itô formula then takes this transformation to the probability space. As per Lie’s work we begin
with a one-paramter group of transformation of the time index and an N -dimensional spatial random process,
respectively

t = θ(t,X(t, ω), ε) X(t, ω) = ϕ(t,X(t, ω), ε), (3.1)

where we link the group transformations to the continuous parameters or infinitesimals via the following relations

∂θ
∂ε

= τ(θ, ϕ)
∂ϕj

∂ε
= ξj(θ, ϕ) for j = 1, N (3.2)

which have the identity boundary condition at ε = 0, i.e.

t

˛̨
˛̨
ε = 0

= t, and X(t, ω)

˛̨
˛̨
ε = 0

= X(t, ω). (3.3)

The spatial and temporal infinitesimals form the symmetry operator

H = τ
∂
∂t

+ ξj
∂

∂xj
, (3.4)

which is applied to functions on the Banach space.

(3.5)

3.3 Review of the Work of Meleshko et al. [4]

Using Itô’s formula on the temporal and spatial group transformations θ(t, X(t, ω), ε) and ϕ(t,X(t, ω), ε) respec-
tively, gives

θ(t,X(t, ω), ε) = θ(0,X(0, ω), ε) +

Z t

0

Γ(θ)(s,X(s, ω), ε) ds

+

Z t

0

Y (θ)(s,X(s, ω), ε) dW(s) (3.6)

48



and

ϕ(t,X(t, ω), ε) = ϕ(0,X(0, ω), ε) +

Z t

0

Γ(ϕ)(s,X(s, ω), ε) ds

+

Z t

0

Y (ϕ)(s,X(s, ω), ε) dW(s). (3.7)

Since random processes which can be viewed as families of random variables, which are indexed by time, are
non-deterministic, we use the random time change formula from Øksendal [8] to perform a random time change

t(t, X(t, ω), ε) =

Z t

0

η2(s, X(s, ω), ε) ds, (3.8)

where [4] defined the time change rate η2(t, X(t, ω), ε) to be continuously differentiable and adapted to the families
of σ-algebras generating the filtration F . By juxtaposing (3.6) and (3.8) we see that the instantaneous drift of
the temporal group transformation is the rate of time change, i.e.

Z t

0

η2(s, X(s, ω), ε) ds = θ(0,X(0, ω), ε) +

Z t

0

Γ(θ)(s,X(s, ω), ε) ds, (3.9)

the initial value of the temporal group transformation at time index naught, is then forced to be zero. Since
our group transformation of the time index is continuously differentiable, the Itô formula ensures that it is also
adapted to the family of σ-algebras that generate the filtration of our original probability space. The instantaneous
diffusion component of the temporal group transformation is forced to be zero in order for the comparison above
in (3.9) to hold, i.e.

Z t

0

Y (θ)(s,X(s, ω), ε) dW (s) = 0. (3.10)

This is the finite transformation version of the infinitesimal condition that Ünal [3] had derived using an invariance
argument on the Itô multiplication table for the transformed Wiener process. Thus the transformed Wiener
process, which [4] defines as

W(β(t, ω), ω) =

Z t

η(s, X(s, ω), ε) dW(s, ω), (3.11)

reads as

W(β(t, ω), ω) =

Z t p
Γ (θ) (s, X(s, ω), ε) dW(s, ω). (3.12)

Form invariance arguments on the integrands require

X(β(t, ω), ω) = X(0, ω) +

Z t

0

f(β(s, ω),X(β(s, ω), ω)) dβ(s, ω) +

Z t

0

G(β(s, ω),X(β(s, ω), ω)) dW(β(s, ω))

(3.13)

which is superficially different to what [4] had, where the form invariance argument was applied to the interval
of integration and not to the time indices which followed the transformed spatial random process along the time
interval. This can also be represented as

X(β(t, ω), ω) = X(0, ω) +

Z t

0

f(β(s, ω),X(β(s, ω), ω)) η2(s, X(s, ω), ε) ds

+

Z t

0

G(β(s, ω),X(β(s, ω), ω)) η(s, X(s, ω), ε) dW(s), (3.14)
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where we used the relation dβ(s, ω)
‹
ds = η2(s, X(s, ω), ε) and dW(β(s, ω))

‹
dW(s) = η(s, X(s, ω), ε) from (3.8)

and (3.11) respectively. We re-write the transformed spatial process above in terms of the symmetry operator

X(β(t, ω), ω) = X(0, ω) +

Z t

0

eεH(f) (s, X(s, ω))Γ(eεH(s))(s, X(s, ω)) ds

+

Z t

0

eεH(G)(s, X(s, ω))
p

Γ(eεH(s))(s, X(s, ω)) dW(s). (3.15)

By looking at the Riemann integral, we see that

Z t

0

eεH(f) (s, X(s, ω))Γ(eεH(s))(s, X(s, ω)) ds =

Z t

0

f(s, X(s, ω)) ds + ε

Z t

0

(Γ(H(t)) + H) f(s, X(s, ω)) ds

+
∞X

k=2

εk

k!

Z t

0

 
(Γ(H(t)) + H)k f(s, X(s, ω)) +

k−2X

j=0

 
k

k − j

!
f(s, X(s, ω)) Hj(t)

“
Γ(Hk−j(t)) − [Γ(H(t))]k−j

”!
ds.

(3.16)

Recovery of the spatial finite transformations from the infinitesimal ones can only be achieved if the higher order
terms are dependent on the first order term. This is the same argument that was used in the previous chapter.
Thus, we arrive at the following condition

 
Γ(H(t))

!k

(t, X(t)) = Γ

 
Hk(t)

!
(t, X(t)), for k ∈ N, (3.17)

from which we can conclude the condition (2.24). Thus (3.16) becomes

Z t

0

eεH(f) (s, X(s, ω))Γ(eεH(s))(s, X(s, ω)) ds

=

Z t

0

f(s, X(s, ω)) ds + ε

Z t

0

(Γ(H(t)) + H) f(s, X(s, ω)) ds

+
∞X

k=2

εk

k!

Z t

0

 
(Γ(H(t)) + H)k f(s, X(s, ω))

!
ds. (3.18)

Comparing the drift components of (3.7) and (3.18) yields

Z t

0

Γ(ϕ)(s,X(s, ω), ε) ds =

Z t

0

f(s, X(s, ω)) ds + ε

Z t

0

(Γ(H(t)) + H) f(s, X(s, ω)) ds

+
∞X

k=2

εk

k!

Z t

0

 
(Γ(H(t)) + H)k f(s, X(s, ω))

!
ds. (3.19)

Equation (3.7) can also be written in terms of the symmetry operator,

Z t

0

Γ(ϕ)(s,X(s, ω), ε) ds =

Z t

0

f(s, X(s, ω)) ds + ε

Z t

0

Γ (H(x)) (s, X(s, ω)) ds

+
∞X

k=2

εk

k!

Z t

0

 
Γ
“
Hk(x)

”
(s, X(s, ω)) ds

!
ds. (3.20)

The collation of (3.19) and (3.20) recovers the same determining equations that were found in the previous chapter.
By differentiating (3.19) and (3.20) by ε at ε = 0 and then equating their results establishes these determining
equations. Differentiating (3.19) and (3.20) by ε, respectively gives

Z t

0

(Γ(H(t)) + H) f(s, X(s, ω)) ds +
∞X

k=2

k εk−1

k!

Z t

0

 
(Γ(H(t)) + H)k f(s, X(s, ω))

!
ds (3.21)
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and

Z t

0

Γ (H(x)) (s, X(s, ω)) ds +
∞X

k=2

k εk−1

k!

Z t

0

 
Γ
“
Hk(x)

”
(s, X(s, ω)) ds

!
ds. (3.22)

Therefore equating at ε = 0 gives our first system of determining equations

Z t

0

(Γ(H(t)) + H) f(s, X(s, ω)) ds =

Z t

0

Γ (H(x)) (s, X(s, ω)) ds. (3.23)

The drift coefficient of the temporal group transformation re-written with respect to the symmetry operator gives

Z t

0

Γ(θ)(s, X(s, ω)) ds =

Z t

0

Γ

„
eε H(s

´«
(s, X(s, ω)) ds. (3.24)

As a consequence of (3.17), the instantaneous drift coefficient of the temporal group transformation has the
following simplication,

Z t

0

Γ(θ)(s, X(s, ω)) ds =

Z t

0

eε Γ(H(s))(s, X(s, ω)) ds. (3.25)

The random time change formula (3.12) as a result, abridges to

W(β(t, ω), ω) =

Z t

eε
Γ(H(s))

2 (s, X(s, ω)) dW(s, ω), (3.26)

which adjusts the diffusion component of (3.15) to

Z t

0

eεH(G)(s, X(s, ω)) eε
Γ(H(s))

2 (s, X(s, ω)) dW(s). (3.27)

Writing the diffusion component of (3.7) in terms of the symmetry operator, while simultaneously expanding the
terms of (3.27) essentially gives the following equality

Z t

0

G(s, X(s, ω)) dW (s) + ε

Z t

0

Y (H(x)) (s, X(s, ω)) dW (s) +
∞X

k=2

εk

k!

Z t

0

 
Y
“
Hk(x)

”
(s, X(s, ω))

!
dW (s)

=
Z t

0

G(s, X(s, ω)) dW (s) + ε

Z t

0

„
Γ(H(t))

2
+ H

«
G(s, X(s, ω)) dW (s)

+
∞X

k=2

εk

k!

Z t

0

 
(
Γ(H(t))

2
+ H)k G(s, X(s, ω))

!
dW (s). (3.28)

Differentiating with respect to ε results in

Z t

0

Y (H(x)) (s, X(s, ω)) dW (s) +
∞X

k=2

k εk−1

k!

Z t

0

 
Y
“
Hk(x)

”
(s, X(s, ω))

!
dW (s) =

Z t

0

„
Γ(H(t))

2
+ H

«
G(s, X(s, ω)) dW (s) +

∞X

k=2

k εk−1

k!

Z t

0

 
(
Γ(H(t))

2
+ H)k G(s, X(s, ω))

!
dW (s). (3.29)
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At ε = 0 we arrive at the remaining determining equation

Z t

0

Y (H(x)) (s, X(s, ω)) dW (s) =

Z t

0

„
Γ(H(t))

2
+ H

«
G(s, X(s, ω)) dW (s). (3.30)

Expanding (3.23) and (3.30) respectively gives

∂ξj(t, x)
∂t

+
NX

l=1

fl(t, x)
∂ξj(t, x)

∂xl
+

MX

p=1

Gp
rGp

s(t, x)
∂2ξj(t, x)
∂xr∂xs

= τ(t, x)
∂fj(t, x)

∂t
+

NX

p=1

ξp(t, x)
∂ξj(t, x)

∂xp

+ fj(t, x)Γ(τ(t, x)) (3.31)

and

MX

p=1

Gs
p(t, x)

∂ξj(t, x)
∂xp

= τ(t, x)
∂Gs

j(t, x)

∂t
+

NX

p=1

ξp(t, x)
∂Gs

j(t, x)

∂xp
+ Gs

j(t, x)
Γ(τ(t, x))

2
, (3.32)

for j = 1, N and s = 1, M . This can then be written with integral terms to give the exact integro-differential
equations of [4]

∂ξj(t, x)
∂t

+
NX

p=1

fl(t, x)
∂ξj(t, x)

∂xl
+

MX

p=1

Gp
rGp

s(t, x)
∂2ξj(t, x)
∂xr∂xs

=
∂fj(t, x)

∂t

Z t

Γ(τ(s, x))ds

+
NX

p=1

ξp(t, x)
∂ξj(t, x)

∂xp

+ fj(t, x)Γ(τ(t, x)) (3.33)

and

MX

p=1

Gs
p(t, x)

∂ξj(t, x)
∂xp

=
∂Gs

j(t, x)

∂t

Z t

Γ(τ(s, x))ds +
NX

p=1

ξp(t, x)
∂Gs

j(t, x)

∂xp

+ Gs
j(t, x)

Γ(τ(t, x))
2

. (3.34)

With the additional conditions (3.10) and (3.17) we review a few of the examples from Meleshko et al. [4].

3.4 Examples

3.4.1 Example 1

Consider

dX(t, ω) = µ X(t, ω) dt + σ X(t, ω) dW (t, ω) (3.35)

with the initital condition X(0, ω) = x0. The determining equations are

Γ(ξ(t, x)) = H(µ x) + µ x Γ(τ(t)),
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or equivalently

∂ξ(t, x)
∂t

+ µ x
∂ξ(t, x)

∂x
+

σ2x2

2
∂2ξ(t, x)

∂x2
= ξ(t, x) µ + µ x

dτ(t)
d t

(3.36)

and

Y (ξ(t, x)) = ξ(t, x) σ +
σ x
2

dτ(t)
dt

which is

x
∂ξ(t, x)

∂ x
= ξ(t, x) +

x
2

dτ(t)
dt

(3.37)

since the extra condition forces the temporal infinitesimal, τ , to be a function of time only. By substituting for
ξ(t, x) from (3.37), (3.36) becomes

∂ξ(t, x)
∂t

+
σ2x2

2
∂2ξ(t, x)

∂x2
=

µ x
2

dτ(t)
d t

. (3.38)

Multiplying (3.37) by x and then differentiating by x gives

x2 ∂2ξ(t, x)
∂ x2

= −x
∂ξ(t, x)

∂ x
+ ξ(t, x) + x

dτ(t)
dt

=
x
2

dτ(t)
dt

(3.39)

after using the result (3.37) again. Thus (3.38) becomes

∂ξ(t, x)
∂t

=
1
2
(µ− 1

2
σ2) x

dτ(t)
dt

(3.40)

which means that

ξ(t, x) =
1
2
(µ− 1

2
σ2) x τ(t) + a1(x), (3.41)

where a1(x) is an arbitrary function of x. Equation (3.39) now becomes

a′′1 (x) =
τ̇(t)
2x

(3.42)

which in turn yields

a1(x) =
1
2
τ̇(t) (x ln x − x) + a2 x + a3, (3.43)

where a2 and a3 are arbitrary constants. By substitution of (3.41) with a1 in (3.43) into (3.36), we have that the
temporal infinitesimal reduces to

τ(t) = a4 + a5t, (3.44)

and the spatial infinitesimal becomes

ξ(t, x) =
1
2
(µ− 1

2
σ2) x (a4 + a5t) + a2 x +

1
2
a5(x ln x− x). (3.45)

We demonstrate that the finite transformations are recoverable by considering the non-trivial case, i.e. a4 = 1
and ai = 0 for i = 2and 5

d x
dε

=
1
2
(µ− 1

2
σ2) x (3.46)

d t
dε

= 1. (3.47)
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Solving (3.47) gives

t = t. (3.48)

Solving for x leaves us with the following

x = e
1
2 (µ− 1

2 σ2) ε x. (3.49)

The Itô formula trivially gives the form invariant SDE

dX(t, ω) = µ X(t, ω) e
1
2 (µ− 1

2 σ2) ε dt + σ X(t, ω) e
1
2 (µ− 1

2 σ2) εdW (t, ω)

= µ X(t, ω) dt + σ X(t, ω) dW (t, ω), (3.50)

which makes sense, since there is no random time change for this example. However, in [4], the symmetries found do
not maintain the properties of the transformed Wiener processes. In trying to show that the finite transformations
are retrievable from the infinitesimal ones, the work of [4] uses the spatial and temporal infinitesimal values directly
up to order O(ε) and falsely claim that the higher order infinitesimals will agree with the Itô formula applied to
the finite group transformations, which are found using the Lie equations.

Focusing on the non-trivial finite group of transformations which was found in [4], i.e.

x = (ε + x−γ)−
1
γ (3.51)

and

t = t (1 + ε xγ)−2 , (3.52)

where γ = 2µ
σ2 − 1, which we are able to derive using the spatial and temporal infinitesimals,

τ = 2 t xγ (3.53)

and

ξ =
xγ− 1

γ
(3.54)

respectively, we see that the invariant condition is not satisfied. We have that the Itô formula gives the following
for the transformed spatial process

dX(t, ω) = Γ(x)(t, ω) dt + Y (x)(t, ω) dW (t, ω) (3.55)

= (ε + X−γ)−
1
γ−2 X−γ(µ (ε + X−γ) − εσ2

2
(1 + γ))dt

+ σ (ε + X−γ)−
1
γ−1 X−γ dW (t, ω), (3.56)

while for the transformed time index, we have

dt(t, ω) = Γ(t)(t, ω) dt + Y (t)(t, ω) dW (t, ω) (3.57)

= (1 + ε Xγ)−2

„
1 − 2 t γµ ε Xγ (1 + ε Xγ)−1

− t σ2

2

`
2 γ (γ − 1) ε Xγ (1 + ε Xγ)−1 − 6 γ2 ε2 X2γ (1 + ε Xγ)−2´

«
dt

− 2 σ t γ ε Xγ (1 + ε Xγ)−3 dW (t, ω). (3.58)
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The Itô formula for the transformed time index can never be recovered in that of the transformed spatial processes
because the variable t appears nowhere in (3.56). We continue with a brief study of the relations between the
three generators of symmetry which we have found, viz.

H1 =
∂
∂t

+
1
2
(µ− 1

2
σ2) x

∂
∂x

H2 = x
∂
∂x

H3 = t
∂
∂t

+
1
2

„
(µ− 1

2
σ2)tx + x ln x− x

«
∂
∂x

. (3.59)

The Lie bracket relations are

[H1, H2] = 0, [H1, H3] = H1 +
1
4
(µ− 1

2
σ2) H2, [H2, H3] =

1
2
H2. (3.60)

Therefore we have a three-dimensional algebra of symmetry generators.

3.4.2 Example 2

We next look at

dX(t, ω) = µ dt + dW (t, ω) (3.61)

with the initital condition X(0, ω) = x0. The determining equations are

Γ(ξ(t, x)) = H(µ) + µ Γ(τ(t)),

or

∂ξ(t, x)
∂t

+ µ
∂ξ(t, x)

∂x
+

∂2ξ(t, x)
2∂x2

= µ
dτ(t)
d t

(3.62)

and

Y (ξ(t, x)) =
1
2
Γ(τ(t)),

which in conjunction with Ünal’s [3] extra condition forces the following relation between the spatial and temporal
infinitesimals

∂ξ(t, x)
∂ x

=
1
2
τ̇(t). (3.63)

Substituting ξ(t, x) from (3.63) into (3.62), causes the equation (3.62) to become

∂ξ(t, x)
∂t

=
1
2
µτ̇(t), (3.64)

which due to the compatibility of (3.63) and (3.64) results in

τ(t, x) = a1 + a2t, (3.65)

where a1 and a2 are arbitrary constants. Then (3.63) and (3.64) imply

ξ =
1
2
a2x +

1
2
µa2t + a3, (3.66)
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where a3 is an arbitrary constant. The finite group of transformations for a2 = 2 and rest zero are solved from
the following equations

d x
dε

= µ t + x, x

˛̨
˛̨
ε=0

= x (3.67)

and

d t
dε

= 2t, t

˛̨
˛̨
ε=0

= t. (3.68)

The temporal group of transformations is easily solved to give

t = t e2ε, (3.69)

which induces the following ODE from (3.67)

d x
dε
− x = µ t e2 ε. (3.70)

Solving gives

x = (x − µ t) eε + µ t e2ε. (3.71)

Applying Itô’s formula to (3.71) yields

dX(t, ω) = (µ dt + dW (t, ω)− µ dt) eε + µ dt e2 ε

= µ e2 ε dt + eε dW (t, ω)

= µ dt + dW (t, ω). (3.72)

Thus form invariance is maintained. This is not true for the following transformations which were found in [4]:

x = x− 1
2 µ

ln (1− 2 µ ε e2 µ x) (3.73)

and

t = t
`
1− 2 µ ε e2 µ x´−2

. (3.74)

The Itô formula for the spatial transformations is

dX(t, ω) =

„
µ
`
1 +

4 µ2 ε e2 µ x

2 µ (1− 2 µ ε e2 µ x)

´

+
8 µ3 ε e2 µ x

4 µ (1− 2 µ ε e2 µ x)2

«
dt

+

„
1 +

4 µ2 ε e2 µ x

2 µ (1− 2 µ ε e2 µ x)

«
dW (t, ω). (3.75)

As with the previous example there is no presence of a time index in the drift or diffusion coefficients. Calculating
the Itô formula for the transformed time index gives

dt(t, ω) =

„
1

(1− 2 µ ε e2 µ x)2
+ t µ

` 8 µ2 ε e2 µ x

(1− 2 µ ε e2 µ x)3
´

+
8 t µ3 ε e2 µ x

(1− 2 µ ε e2 µ x)3
+

48 t µ4ε2 e4 µ x

(1− 2 µ ε e2 µ x)4

«
dt

+
8 µ2 ε t e2 µ x

(1− 2 µ ε e2 µ x)3
dW (t, ω). (3.76)
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The consequence of failing to comply with condition (3.10), leads to symmetries which do not leave the transformed
spatial process form invariant. Though [4] demonstrates that the transformed Wiener process obeys the random
time change formula, form invariance for the transformed spatial process is deficient.

The symmetry generators we obtain are

H1 =
∂
∂t

H2 =
∂
∂x

H3 = 2 t
∂
∂t

+ (µ t + x)
∂
∂x

(3.77)

which have the following Lie bracket relations

[H1, H2] = 0, [H1, H3] = 2H1 + µH2, [H2, H3] = H2. (3.78)

3.4.3 Example 3

We now consider

dX(t, ω) = f(t) dt + g(t) dW (t, ω) (3.79)

with the initital condition X(0, ω) = x0. Here the determining equations are

Γ(ξ(t, x)) = H(f(t)) + f(t)Γ(τ(t)),

which gives

∂ξ(t, x)
∂t

+ f(t)
∂ξ(t, x)

∂x
+

g2(t)
2

∂2ξ(t, x)
∂x2

= τ(t)
∂f(t)

∂t
+ f(t)

dτ(t)
d t

(3.80)

and

Y (ξ(t, x)) = H(g(t)) +
g(t)
2

Γ(τ(t, x)).

Applying Ünal’s [3] extra condition forces the following relation between the spatial and temporal infinitesimals

∂ξ(t, x)
∂ x

= τ(t)
∂ ln g(t)

∂t
+

1
2
τ̇(t). (3.81)

Substituting ξ(t, x) from (3.81) into (3.80) results in the equation (3.80) becoming

∂ξ(t, x)
∂t

+ f(t) τ(t)
∂ ln g(t)

∂t
= τ(t)

∂f(t)
∂t

+ f(t)
1
2
τ̇(t), (3.82)

Integrating (3.81) w.r.t. the spatial coordinate x and then using the time differentiated result of this calculation
to perform a comparison within (3.82) via separation of coefficients w.r.t. the spatial variable x, leads to the
following

τ(t)
∂ ln g(t)

∂t
+

1
2
τ̇(t) = C0 (3.83)

and

ṁ(t) = −f(t) τ(t)
∂ ln g(t)

∂t
+ τ(t)

∂f(t)
∂t

+ f(t)
1
2
τ̇(t), (3.84)
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where C0 and m(t) are an arbitrary constant and arbitrary function of time respectively, which constitute the
spatial infinitesimal as

ξ(t, x) = C0 x + m(t). (3.85)

Solving for the temporal infinitesimal from (3.83) gives

τ(t) = g−2(t)

„
C1 + 2C0

Z t

g2(s) ds

«
, (3.86)

where C1 is a further constant, which finally results in (from (3.84))

m(t) = C1
f(t)
g2(t)

+ C0

Z t

f(s)ds + 2C0

Z t d
dt′

„
f(t′)
g2(t′)

« Z t′

g2(s)ds

!
dt′ + C2, (3.87)

in which C2 is a constant. There arises three symmetry generators which have in them functions f(t) and g(t).
They are

H1 =
∂
∂x

H2 = 2g−2(t)

Z t

g2(s)ds
∂
∂t

+

„
x +

Z t

f(s)ds

+ 2

Z t d
dt′

„
f(t′)
g2(t′)

« Z t′

g2(s)ds

!
dt′
!

∂
∂x

H3 = g−2(t)
∂
∂t

+
f(t)
g2(t)

∂
∂x

. (3.88)

The commutators are
[H1, H2] = H1, [H1, H3] = 0, [H2, H3] = −2H3. (3.89)

Here the generators span a three-dimensional Lie algebra.

3.4.4 Example 4

This example seeks to investigate a SODE which has a diffusion coefficient strictly as a function of time, viz.

dX(t, ω) = µ dt + t dW (t, ω) (3.90)

with the initital condition X(0, ω) = x0. Thus the determining equations are

Γ(ξ(t, x)) = µ Γ(τ(t, x)),

which by the condition (3.10) gives

∂ξ(t, x)
∂t

+ µ
∂ξ(t, x)

∂x
+

t2

2
∂2ξ(t, x)

∂x2
= µ

dτ(t)
d t

(3.91)

and

Y (ξ(t, x)) = τ(t) +
t
2

Γ(τ(t)).
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Applying Ünal’s extra condition forces the following relation between the spatial and temporal infinitesimals

∂ξ(t, x)
∂ x

=
τ(t)

t
+

1
2
τ̇(t). (3.92)

Integrating (3.92) with respect to the spatial variable gives

ξ(t, x) =

„
τ(t)

t
+

τ̇(t)
2

«
x + C0(t), (3.93)

where C0 is an arbitrary function. This follows from the fact that the right-hand side of (3.92) is a purely a
function of time; thus the second derivative of the spatial infinitesimal will be zero. Substituting ξ(t, x) from
(3.93) into (3.91), causes the equation (3.91) to become

Ċ0(t) +

„
τ̇(t)

t
− τ(t)

t2
+

τ̈(t)
2

«
x + µ

„
τ(t)

t
+

1
2
τ̇(t)

«
= µτ̇(t), (3.94)

Separation of coefficients gives

d
dt

„
τ(t)

t
+

1
2
τ̇(t)

«
= 0, (3.95)

which means that we have the following equation

τ(t)
t

+
1
2
τ̇(t) = C1, (3.96)

where C1 is an arbitrary constant and thus the following results

τ(t) =
C2

t2
+

2 C1

3
t. (3.97)

Enforcing the following condition

Γ(τ) = Constant, (3.98)

whence we have that C2 must be zero, i.e.

τ(t) =
2 C1

3
t, (3.99)

C0(t) = −µ

„
C1

3
t

«
+ C3. (3.100)

The only solution which satisfies both equations is when the temporal infinitesimal is zero.

The spatial infinitesimal reduces to

ξ(t, x) = C1 x− µ

„
C1

3
t

«
+ C3. (3.101)

However, the equation (3.98) is only met if C1 is zero. Hence the symmetries are

H1 =
∂
∂x

(3.102)

and

H2 =
2 t
3

∂
∂t

+

„
x− µ

t
3

«
∂
∂x

. (3.103)
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The ODEs for finding the finite transformations are (subject to initial conditions)

d t
d ε

=
2 t
3

(3.104)

which solves as

t = t e
2
3 ε (3.105)

with remaining the ODE being

d x
d ε

= x− µ t
3

e
2
3 ε (3.106)

which easily gives

x = x eε − µ t
“
eε − e

2
3 ε
”

. (3.107)

The Itô SODEs associated with these finite transformations are

dt(t, ω) = e
2
3 ε dt (3.108)

d X(t, ω) = µ e
2
3 ε dt + eε t dW (t, ω) (3.109)

which maintains form invariance, since by the random time change formula we have

dW (t, ω) = e
1
3 εdW (t, ω). (3.110)

Thus in our transformed probability space, we have

d X(t, ω) = µ dt + t dW (t, ω). (3.111)

3.4.5 Example 5

We investigate and adjusted version of the previous SODE which has zero drift, i.e. a Martingale

dX(t, ω) = t dW (t, ω) (3.112)

with the initital condition X(0, ω) = x0. Thus the determining equations are

Γ(ξ(t, x)) = 0,

which by the condition (3.10) gives

∂ξ(t, x)
∂t

+
t2

2
∂2ξ(t, x)

∂x2
= 0 (3.113)

and

Y (ξ(t, x)) = τ(t) +
t
2

Γ(τ(t)).

Applying Ünal’s extra condition forces the following relation between the spatial and temporal infinesimals

∂ξ(t, x)
∂ x

=
τ(t)

t
+

1
2
τ̇(t) (3.114)
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Integrating (3.114) with respect to the spatial variable yields

ξ(t, x) =

„
τ(t)

t
+

τ̇(t)
2

«
x + C0, (3.115)

where C0 is an arbitrary constant. As with the previous example, it follows from the fact that the right-hand
side of (3.114) is a purely a function of time. Substituting ξ(t, x) from (3.115) into (3.113), causes the equation
(3.113) to become the following linear ODE

„
τ̇(t)

t
− τ(t)

t2
+

τ̈(t)
2

«
x = 0. (3.116)

Separation of coefficients gives

d
dt

„
τ(t)

t
+

1
2
τ̇(t)

«
= 0, (3.117)

which means that we have to solve the following equations

τ(t)
t

+
1
2
τ̇(t) = C1, (3.118)

where C1 is an arbitrary constant. The integrating factor t2 furnishes the temporal infinitesimal as

τ(t) = C1 t +
C2

t2
, (3.119)

where C1 is an arbitrary constant. Thus the spatial infinitesimal is

ξ(t, x) =

„
3 C1

2

«
x + C0. (3.120)

The only interesting case is C2 = 1; with the remaining arbitrary constants being zero, i.e.

x = x (3.121)

and

dt
dε

=
1

t
2 , (3.122)

which solves as (using initial conditions)

t =
`
2 ε + t3

´ 1
3 . (3.123)

Moving to the probability space we have

dt(t, ω) =
t2 dt

(2 ε + t3)
2
3

. (3.124)

The random time change formula now gives the following transformed Wiener process

dW (t, ω) =
t dW (t)

(2 ε + t3)
1
3

. (3.125)

The transformed spatial process is

dX(t, ω) = dX(t, ω) (3.126)

= t dW (t, ω) (3.127)

= (2 ε + t3)
1
3 dW (t, ω), (3.128)

as a consequence of (3.125); thus we finally have

dX(t, ω) = t dW (t, ω), (3.129)

as a result of (3.123). Form invariance is preserved.

(3.130)
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3.5 Conclusion

The method which Meleshko et al. [4] followed overlooked the fact that the temporal group transformation was
also subject to the Itô formula. The random time change definition in conjunction with the Itô formula applied
to the temporal group transformation, is enough to derive a condition which is consistent with what Ünal [3] had
derived, where the Itô multiplication table was used in combination with the random time change formula instead.

The methodology of [4] was incomplete: the Itô formula was precluded in the temporal Lie point transformation
analysis which we have remedied. Overlooking this formula gave rise to transformations that did not provide form
invariance. We re-considered two examples from [4] to demonstrate this.

We also note that as a consequence of the equations

Y (ξ) = H(G) +
1
2
G Γ(τ) (3.131)

and

Y (τ) = 0 (3.132)

for first order SODEs with one underlying Wiener process, the temporal infinitesimal must at most be a linear
function of time. This ensures that the condition

Γ(eεH(t)) = eεΓ(τ), (3.133)

which we derived in Fredericks and Mahomed [5] will always be satisfied. It is this condition that enables us to re-
construct the finite transformations from the infinitesimal ones, which maintain form invariance in each of the two
examples from [4]. The Itô formula is an important component of the temporal Lie point symmetry transformation
analysis. Without it, reconstructing form invariant finite transformations from the infinitesimal ones is impossible.

Our third example demonstrates that the symmetry generators found still form a Lie algebra even though the
condition (3.133) is not satisfied. However, it is not guaranteed that the finite transformations that are recoverable
from the infinitesimal ones will guarantee form invariance.

The differences in the way in which the determining equations appear in Meleshko et al. [4] and Fredericks
and Mahomed [5] is superficial. The examples so far have been for SDEs driven by a single Wiener process.
Trying to find a random time change formula for multidimensional Wiener processes is tackled in the next chapter.

From the examples thus far, it seems that the temporal infinitesimals were all projective, but this is only because
the SDEs were driven by one Wiener process. The example in the second chapter has so far been the only
exception, because there were two Wiener processes driving the Brownian motion on a circle in that example.
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Chapter 4

An Alternative ‘W-symmetries’
Approach to Lie Point Symmetries
of Scalar First-Order Itô Stochastic
Ordinary Differential Equations

Extending the symmetry generator to include the infinitesimal transformations of the Wiener process for Itô
SDEs has successfully been done in this chapter. The impact of this work leads to an intuitive understanding of
the random time change formulae in the context of Lie point symmetries without having to consult much of the
intense Itô calculus theory needed to derive it formerly (see Øksendal [8, 9]).

4.1 Introduction

A seminal work by Gaeta [7] incorporates the Wiener process into the symmetry operator. However, [7] con-
ditions the transformed Wiener process to be consistent with the original process in terms of its momenta, i.e.
the instantaneous mean and variance of the transformed process are forced to be exactly the instantaneous mean
and variance of the original Wiener process. This chapter enforces the philosophy of a property invariance instead.

In [7], the Wiener process assimilation into the symmetry operator, forces an additional term to appear in the
determining equations. In particular, the determining equation which handles the form invariance of the diffusion
component of the transformed spatial process. This additional term can actually be coalesced into the symmetry
analysis, by using Itô’s formula on a system of SODEs which is built upon both the Wiener and spatial processes.

Instead of viewing the spatial processes individually and applying the random time change formula to the Wiener
processes driving the spatial ones, as has been done in Gaeta and Quintero [1], Gaeta [7], Wafo Soh and Mahomed
[2], Ünal [3] and Fredericks and Mahomed [5], we include the system of Wiener processes as part of the system of
spatial processes. This change of thought adjusts the drift and diffusion operators that have been used so far.

This naturally introduces a Wiener infinitesimal in our symmetry operator. Thus the symmetry analysis takes
place in the Banach space; the Wiener process is viewed as a variable in the Banach space. The Itô formula
transports the group transformations of these variables to processes which exist in the probability space. The
derivation of the random time change formula will then be easily achieved by using the Itô formula in conjunction
with a Wiener property invariance criterion.
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This work seeks to reconcile the work of Gaeta [7] with that of Fredericks and Mahomed [5]. We firstly in-
troduce the SODEs as a system made up of both the spatial and Wiener processes. The operators which are
inherently built upon the Itô formula for these SODEs will be re-defined. With these operators we introduce the
transformation methodology used by the Lie point symmetry approach. An invariance argument on the properties
of the transformed Wiener process should still give rise to the condition (3.10), which we derived in the previous
chapter. The Random Time Change formula used in [5], Wafo Soh and Mahomed [2], Ünal [3] and Meleshko et al.
[4], will be derived from a Lie point symmetry approach. Examples that were considered in [7] will then be done
again and compared.

4.2 Review of Gaeta [7]

SODEs are non-deterministic, see Øksendal [9]. The driver of this randomness is the Wiener process W (t, ω).
The Wiener process is a family of random variables indexed by time; its sample paths or possible realisations are
denoted by ω. So for a particular realisation ω there is a time index, t, following it. (Books by Brzeźniak and
Zastawniak [15], Freidlin [14] and Revuz and Yor [13] explain these concepts well). The SODEs which a random
N -dimensional spatial process, X(t, ω) satisifies, will intuitively be viewed as

dX(t, ω) = f (X(t, ω), t)dt + G (X(t, ω), t) dW(t, ω), (4.1)

where f(X(t, ω), t) and G(X(t, ω), t) are the instantaneous N -dimensional mean and N ×M -dimensional standard
diffusion of our random spatial process, respectively. These momenta are associated with a spatial measure P. In
the work by Gaeta [7], the following infinitesimal transformations were made in the Banach space,

xj = xj + ε ξj(x, t) + O(ε2) (4.2)

t = t + ε τ(t) + O(ε2) (4.3)

and

wl = wl + ε γl(w, t) + O(ε2), where j = 1, N and l = 1, M . (4.4)

Thus our symmetry operator is

H = τ(t)
∂
∂t

+
MX

l=1

γl(w, t)
∂

∂wl
+

NX

j=1

ξj(x, t)
∂

∂xj
. (4.5)

The spatial infinitesimal is chosen to be independent of the Wiener variables, for physical reasons; the temporal
infinitesimal was forced to be projective based upon the Fokker-Plank ansatz used in ealier work by Gaeta and
Quintero [1]; and the Wiener infinitesimal was forced to be independent of the spatial variables. Gaeta [7]
referred to this Wiener transformation as an ‘internal’ transformation because of this spatial independence. To
ensure that the Wiener transformation remains identical to the original Wiener process, only constant orthogonal
transformations are considered by [7]

wl =
MX

m=1

Km
l wm, l = 1, M (4.6)

where

KKT = I (4.7)

and I is the M × M -identity matrix. He further introduces an M × M -dimensional antisymmetric matrix, B
such that

BT = −B (4.8)
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and

wl = wl + ε
MX

m=1

Bm
l wm + O(ε2), l = 1, M . (4.9)

In Gaeta’s previous work, by Gaeta and Quintero [1], the random time change formula of Øksendal [9, 8] was not
used but a portion of the formula was re-derived, viz. ,

wl(t) = (1 + ε
τ̇(t)
2

) wl + O(ε2). (4.10)

Still not apparently knowing of the random time change formula of [9, 8], Gaeta [7] uses the transformed diffusion

component to absorb the scalar term which was derived in [1], i.e. ε τ̇(t)
2 under the introduction of the following

form invariance argument

dX(t, ω) = f
`
X(t, ω), t

´
dt + G

`
X(t, ω), t

´
dW(t, ω), (4.11)

where, the transformed drift component is

f
`
X(t, ω), t

´
= f + ε H(f (X(t, ω), t)) + O(ε2) (4.12)

and the transformed diffusion component is given by

G
`
X(t, ω), t

´
= G + ε H(G (X(t, ω), t)) + ε

τ̇(t)
2

I + O(ε2). (4.13)

The problem of having this absorbed term, is that the Lie point transformation is not being strictly followed.

The Itô SODEs associated with the transformations made in the Banach space are

dX(t, ω) = dX(t, ω) + ε

 
∂ξj

∂t
+

NX

r = 1

fr
∂ξj

∂xr
+

1
2

MX

l = 1

NX

i, j= 1

Gl
iG

l
j

∂2ξj

∂xi∂xj

!
dt

+ ε
NX

r = 1

Gk
r

∂ξj

∂xr
dWk(t, ω) + O(ε2), (4.14)

dt(t, ω) = dt + ετ̇(t) dt + O(ε2) (4.15)

and

dW l(t, ω) = dWl(t, ω) + ε
MX

k = 1

Bk
l dWk(t, ω) + O(ε2), l = 1, M . (4.16)

Expanding these terms to O(ε) in (4.11) gives the following determining equations

Γ(x)(ξ) = H(f) + fΓ(x)(τ) (4.17)

and

Y k
(x)(ξj) = H(Gk

j ) + Gk
j

Γ(x)(τ)

2
+

MX

p = 1

Gk
p Bp

j , j = 1, N (4.18)

where

Γ(x) =
∂
∂t

+
NX

r = 1

fr
∂

∂xr
+

1
2

MX

l = 1

NX

i, j= 1

Gl
iG

l
j

∂2

∂xi∂xj
(4.19)

Y k
(x) =

NX

r = 1

Gk
r

∂
∂xr

, k = 1, M. (4.20)
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The projective nature of the temporal infinitesimal simplifies the determining equations further

Γ(x)(ξj) = H(f) + f τ̇(t) (4.21)

and

Y k
(x)(ξj) = H(Gk

j ) +
Gk

j

2
τ̇ +

MX

p = 1

Gk
p Bp

j , (4.22)

where k = 1, M and j = 1, N . The difference between these determining equations and those of Fredericks and
Mahomed [5] is that the temporal infinitesimal does not necessarily have to be projective. The additional termsPM

p = 1 Gk
p Bp

j also do not appear in the determining equations of [5], which are the result of the Itô SODEs for
the transformed Wiener process, i.e. (4.16), where the Itô formula used in [7] is based on the operators

Γ(w) =
∂
∂t

+
MX

l = 1

∂
∂wl

+
1
2

MX

l, m = 1

∂2

∂wl∂wm
(4.23)

and

Y k
(w) =

∂
∂wk

, k = 1, M . (4.24)

The use of two different systems of operators is apparent, where one pair is applied to functions associated to the
spatial process and the remaining pair used for Wiener processes. Our objective is to reconcile these two pairs of
operators into one pair of operators; and allow a form invariant argument on the transformed Wiener properties
to guide us to what the characteristics of the transformed temporal variable should be.

4.3 Coupled System of SODEs

The methodology of Gaeta [7] highlights the fact that there are two different probability measures involved, i.e.
a Wiener process measure Q and a measure associated with the spatial process P.

The application of Lie point symmetry transformations on Itô SODEs transforms the momenta of these pro-
cesses; thus transforming the measures as well. The Wiener infinitesimal γ is used to transform the Wiener
process measure Q to a new measure Q; and the spatial infinitesimal ξ is used to transform the spatial process
measure P to a new measure P.

These measures are independent of one another because of the inherent difference in the characteristics of the
momenta which they represent. For example, the instantaneous drift of the Wiener process is zero, while that of
the spatial process (4.1) is not. This explains, from a measure theoretic context, why the Wiener transformation
is chosen to be independent of the spatial process, i.e. the Wiener infinitesimal is not a function of the spatial
coordinates; and why the spatial transformation is independent of the realizations of the Wiener process, i.e. the
spatial infinitesimal is independent of the Wiener variables. However, as these transformed processes are following
their different paths of realisation, a transformed time index will be needed to follow both the transformed Wiener
and spatial processes. As a result, we will assume that the scalar temporal infinitesimal, τ be a function of time,
the Wiener variables and the spatial variables.
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4.3.1 Random Time Change Formula

With the above in mind we first derive the random time change formula using the Wiener infinitesimal. Thus the
system which we analyze first is the M -dimensional Wiener process. The Lie point theorem on the time index
and Wiener variable in the Banach space, respectively gives us

t = eε H(t) (4.25)

and

w = eε H(w), (4.26)

which are associated with the following respective Itô SODEs

dt(t, ω) = Γ(w)(e
ε H(t)) dt + Y l

(w)(e
ε H(t)) dWl(t, ω) (4.27)

and

dW(t, ω) = Γ(w)(e
ε H(w)) dt + Y l

(w)(e
ε H(w)) dWl(t, ω). (4.28)

The probabilistic nature of the transformed time index should remain form invariant in the following sense

EQ
ˆ
dt(t, ω)

˜
= dt, (4.29)

since this is trivially satisfied by the original differential time index, dt. This gives rise to the following condition

Y l
(w)(e

ε H(t)) = 0 (4.30)

for l = 1, M , which is a more generalized version of the condition than that by Ünal [3]. In actual fact, we have
derived a random time change formula, where

t =

Z t

Γ(w)

“
eε H(s)

”
ds. (4.31)

The condition (4.29) also forces

Γ(w)(e
ε H(t)) = Constant. (4.32)

An invariance argument on the instantaneous drift component of the Wiener process gives

EQ

»
dW(t, ω)

˛̨
˛̨W = w

–
= 0. (4.33)

As a consequence we have the following new condition

Γ(w)(e
ε H(w)) = 0. (4.34)

A similar invariance argument for the Itô isometry condition or instantaneous variance furnishes

EQ

»
dW l(t, ω)dW m(t, ω)

˛̨
˛̨X = x, W = w

–
= δl

mdt (4.35)

= Γ(w)(e
ε H(t)) dt + Y l

(w)(e
ε H(t)) dWl (4.36)

thus providing

MX

r=1

Y r
(w)(e

ε H(wl))dWr

MX

s=1

Y s
(w)(e

ε H(wm))dWs = δl
mdt (4.37)

MX

r=1

Y r
(w)(e

ε H(wl))Y
r
(w)(e

ε H(wm))dt = δl
mΓ(w)(e

ε H(t)) dt + Y r
(w)(e

ε H(t)) dWm (4.38)
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which by comparing Riemann and Itô integrals, also forces the condition (4.30)

Y l
(w)(e

ε H(t)) = 0 (4.39)

for l = 1, M ; with the transformed Wiener process being given as

dW(t, ω) =

Z t

Y l
(w)(e

ε H(w)) dWl(s, ω), (4.40)

where

MX

r=1

Y r
(w)(e

ε H(wl))Y
r
(w)(e

ε H(wm)) = δl
mΓ(w)(e

ε H(t)). (4.41)

Differentiating (4.41) with respect to ε gives

MX

r=1

Y r
(w)(wl)Y

r
(w)(γm)) +

MX

r=1

Y r
(w)(wm)Y r

(w)(γl)) + O(ε) = δl
mΓ(w)(τ) + O(ε). (4.42)

which simplifies further as

Y l
(w)(wl)Y

l
(w)(γm)) + Y m

(w)(wm)Y m
(w)(γl)) + O(ε) = δl

mΓ(w)(τ) + O(ε), (4.43)

since Y r
(w)(wl) = δr

l .

Equation (4.43) evaluated at ε = 0 simply is

Y l
(w)(γm) + Y m

(w)(γl) = δl
mΓ(w)(τ). (4.44)

The case where l #= m naturally leads to the antisymmetric matrix B which was defined in [7]. We extend the
M -dimensional system by coupling it with an N -dimensional spatial process

dX(t, ω) = f (X(t, ω), t)dt + G (X(t, ω), t) dW(t, ω). (4.45)

As a result of the covariance property of a scalar Wiener process, any arbitrary function of the random spatial
process is subject to Itô calculus. The traditional Itô calculus based on the SODEs (4.45) only, purports that an
arbitrary function, which is at least once and twice differentialable w.r.t. time and space, respectivley, will satisfy
the SODEs

dF (X(t, ω), t) = Γ(x)(F ) (X(t, ω), t) dt + Y k
(x)(F ) (X(t, ω), t) dWk(t, ω), (4.46)

where

Γ(x)(F ) =
∂
∂t

+
NX

r = 1

fr
∂

∂xr
+

1
2

MX

l = 1

NX

i, j= 1

Gl
iG

l
j

∂2

∂xi∂xj
(4.47)

Y k
(x)(F ) =

NX

r = 1

Gk
r

∂
∂xr

, where k = 1, M. (4.48)

With the same arbitrary function F (x, t) we define the following operators which are based upon our coupled
system of M-dimensional Wiener processes and (4.45)

Γ =
∂
∂t

+
NX

r = 1

fr
∂

∂xr
+

1
2

MX

l, m = 1

∂2

∂wl∂wm
+

1
2

MX

l = 1

NX

i, j= 1

Gl
iG

l
j

∂2

∂xi∂xj
(4.49)

Y k =
∂

∂wk
+

NX

r = 1

Gk
r

∂
∂xr

. (4.50)

The application of these operators on our arbitrary function F (x, t) still satisfies equation (4.51) since it is not a
function of the Wiener variables, w, i.e.

dF (X(t, ω), t) = Γ(F ) (X(t, ω), t) dt + Y k(F ) (X(t, ω), t) dWk(t, ω). (4.51)

This calculus is needed for the construction of the Lie point algorithm for SODEs as can be seen in Wafo Soh and
Mahomed [2] and Fredericks and Mahomed [5]. By the above extension we will make use of group transformations
to derive the random time change formula used in the previous chapter for spatial processes with our newly defined
operators.
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4.3.2 Group Transformations

The construction begins with a one-parameter group of transformations of the time index t, the spatial variable
x and Wiener variable w, respectively,

t = θ(x, w, t, ε), x = ϕ(x, t, ε) and w = ϑ(w, t, ε), (4.52)

with the following relation to the infinitesimals

∂θ
∂ε

= τ(θ, ϕ, ϑ),
∂ϕ
∂ε

= ξ(θ, ϕ, ϑ) and
∂ϑ
∂ε

= µ(θ, ϕ, ϑ). (4.53)

The initial boundary conditions at ε = 0 are

t
˛̨
ε = 0

= t, X(t, ω)
˛̨
ε = 0

= X(t, ω) and W(t, ω)
˛̨
ε = 0

= W(t, ω). (4.54)

Hence the symmetry operator is given by

H = τ(x, w, t)
∂
∂t

+
MX

l=1

γl(w, t)
∂

∂wl
+

NX

j=1

ξj(x, t)
∂

∂xj
, (4.55)

which is different to the one used by Gaeta [7] because the temporal infinitesimal is non-projective. Thus group
transformations can be expressed in terms of the symmetry operator as

t = eεH(t), (4.56)

x = eεH(x) (4.57)

and

w = eεH(w). (4.58)

The Itô SODEs are associated to these group of transformations (4.52) by the following

dt(t, ω) = Γ(eεH(t)) dt + Y l(eεH(t)) dWl(t, ω), (4.59)

dW(t, ω) = Γ(eεH(w)) dt + Y l(eεH(w)) dWl(t, ω) (4.60)

and

dX(t, ω) = Γ(eεH(x)) dt + Y l(eεH(x)) dWl(t, ω). (4.61)

The infinitesimal SODEs are given as

dτ(t, ω) = Γ(τ(t, ω)) dt + Y l(τ(t, ω)) dWl(t, ω), (4.62)

dξ(t, ω) = Γ(ξ(t, ω)) dt + Y l(ξ(t, ω)) dWl(t, ω) (4.63)

and

dµ(t, ω) = Γ(µ(t, ω)) dt + Y l(µ(t, ω)) dWl(t, ω), (4.64)

where Γ and Y are operators which have been defined in (4.49) and (4.50), respectively. These operators are in
fact the instantaneous mean and standard deviation of the temporal, spatial and Wiener infintesimals τ, ξ and µ
respectively.
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4.3.3 Wiener Invariance Properties

Before deriving the determining equations we apply an invariance argument to the rudimentary properties of the
Wiener process, viz. the instanteous mean and variance of the Wiener process which are

EQ

»
dW(t, ω)

˛̨
˛̨W = w

–
= 0 (4.65)

and

EQ

»
dWl(t, ω)dWm(t, ω)

˛̨
˛̨W = w

–
= δl

mdt, (4.66)

respectively, for a scalar Wiener process. The form invariance of the instantaneous mean of the transformed
Wiener process under the new measure Q is expressed as

EQ

»
dW(t, ω)

˛̨
˛̨X = x,W = w

–
= 0, (4.67)

which in conjunction with (4.60) gives

EQ

»
Γ(eεH(w)) dt + Y l(eεH(w)) dWl(t, ω)

˛̨
˛̨X = x,W = w

–
= 0. (4.68)

Now on (4.65) use (4.68) to derive the following condition

Γ(eεH(w)) = 0, (4.69)

which is a consequence of the linearity property of the expectation operator and the fact that the expected value
of an Itô integrand is always zero. The condition (4.69), is similar to the condition (4.34) that we found earlier for
the M-dimensional system of Wiener processes. We next apply the form invariance argument to the instantaneous
variance of the transformed Wiener process under the transformed Wiener measure, i.e.

EQ

»
dW l(t, ω)dW m(t, ω)

˛̨
˛̨X = x, W = w

–
= δl

mdt, (4.70)

which after a simple substitution from (4.60) produces

MX

r=1

Y r(eεH(wl))(t, ω)Y r(eεH(wm))(t, ω) dt = δl
m dt, (4.71)

which forces the following differential relation

(4.72)

MX

r=1

Y r(eεH(wl))(t, ω)Y r(eεH(wm))(t, ω) dt = Γ(eεH(t)) dt + Y k(eεH(t)) dWk(t, ω), l = 1, M. (4.73)

Comparing the Wiener and Riemann integrals we have a generalization of the condition developed by Ünal [3]
for the instantaneous standard deviation of the temporal infinitesimal, i.e.

Y l(eεH(t)) = 0, l = 1, M, (4.74)

as well as the following relation

MX

r=1

Y r(eεH(wl))(t, ω)Y r(eεH(wm))(t, ω) = Γ(eεH(t)). (4.75)
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Thus we have derived the following generalized random time change formula

dt(t, ω) =

Z t

Γ(eεH(s)) ds (4.76)

with

Γ(eεH(t)) = Constant (4.77)

when we apply the probabilistic invariance principle to the transformed time index differential, i.e.

EQ
ˆ
dt(t, ω)

˜
= dt. (4.78)

The generalized Wiener transformation is

W r(t, ω) =

Z t MX

m=1

Y m(eεH(wr))dWm(s, ω), (4.79)

where

MX

r=1

Y r(eεH(wl))(t, ω)Y r(eεH(wm))(t, ω) = δl
mΓ(eεH(t)). (4.80)

This is a generalized form of the random time change formula derived in Øksendal [8], Øksendal [9] and Meleshko
et al. [4] and used in [5], [2], [3] and [4].

(4.81)

4.3.4 Form Invariance of the Spatial Process

In order to find the condition (3.17) that ensures the recovery of the finite transformations from the infinitesimal
transformations, we need the following form invariant argument

dX(t, ω) = f
`
X(t, ω), t

´
dt + G

`
X(t, ω), t

´
dW(t, ω), (4.82)

where, the transformed drift component is

f
`
X(t, ω), t

´
= eεH(f) (4.83)

and the transformed diffusion component is given by

G
`
X(t, ω), t

´
= eεH(G). (4.84)

There is no absorption for the transformed diffusion component as was done in Gaeta [7].

If we now expand the drift component of (4.82), we deduce

f
`
X(t, ω), t

´
dt =

(
f(t, X(t)) + ε (Γ(H(t)) + H) f(t, X(t))

+
∞X

k=2

εk

k!

 
(Γ(H(t)) + H)k f(t, X(t))

+
k−2X

j=0

 
k

k − j

!
Hj( f(t, X(t)))

“
Γ(Hk−j(t)) − [Γ(H(t))]k−j

”!)
dt.

(4.85)
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The equations (2.23) and (4.85) will be exactly identical even though the operators used here and in Chapter 1
are different.

The following condition is needed to ensure the recovery of the finite transformations from the infinitesimal
transformations

eε Γ(H(t))(t, X(t)) = Γ
“
eε H(t)(t, X(t))

”
. (4.86)

This condition ensures that the higher order terms depend solely on the first order term associated with O(ε). All
the ordered terms contribute in the construction of the finite transformations; the zeroth and first order terms,
contribute towards the construction of the infinitesimal transformations. This also forces the instantaneous drift
coefficient of the temporal infinitesimal to be a constant, which was demonstrated in the first chapter, i.e.

Γ(τ) = C, where C is an arbitrary constant. (4.87)

Condition (4.86) also simplifies (4.80) to

W(t, ω) =

Z t MX

m=1

Y meεH(w)dWl(s, ω), (4.88)

where

MX

r=1

Y r(eεH(wl))(t, ω)Y r(eεH(wm))(t, ω) = δl
meεΓ(H(t)). (4.89)

Expanding the diffusion component of (4.82) gives

MX

l=1

Gl
j

`
X(t, ω), t

´
dW l(t, ω) =

MX

l=1

Gl
j dWl + ε

0

@
MX

l=1

H(Gl
j) dWl +

MX

l,m=1

Gl
j Y m(H(wl))dWm

1

A

+
X

k=2

εk

k!

 
kX

r=0

 
k
r

!
Hk−r(Gl

j) Y m(Hr(wl))dWm

!
, (4.90)

where

Hk(Gl
j) Y m(H0(wl))dWm = Hk(Gl

j) Y m(wl)dWm = Hk(Gl
j) dWl. (4.91)

4.3.5 Determining equations

We derive the determining equations for furnishing the spatial infinitesimals by differentiating the equations
associated with the drift and diffusion components of the transformed spatial process, i.e. the drift components
and diffusion components of (4.61) with respect to ε; and compare the results with the ε-differentiated equations
of (4.85) and (4.90), at ε = 0. This methodology is the method used in previous chapters, but with different
operators. As a result we have the following determining equations

Γ(ξ) = (Γ(τ) + H) f (4.92)

Y l(ξj) =

 
H(Gl

j) +
MX

m=1

Gm
j Y l(H(wm))

!
l = 1, M and j = 1, N . (4.93)

We derive the determining equations for furnishing the Wiener infinitesimal by differentiating the equations
associated with the drift and diffusion components of the transformed Wiener process, i.e. the drift components
and diffusion components of (4.69) and (4.75), with respect to ε, which gives

Γ(γl) + O(ε) = 0, l = 1, M (4.94)
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and

Y l(γj) + Y j(γl) + O(ε) = δj
l Γ(τ) + O(ε). (4.95)

Evaluating at ε = 0, establishes the following determining equations

Γ(γ) = 0, (4.96)

as well as the following relation

Y l(γl) =
Γ(τ)

2
summation not implied, l = 1, M (4.97)

and

Y l(γj) = −Y j(γl), j #= l. (4.98)

Equation (4.98) develops the antisymmetric matrix, B as was done earlier for the M -dimensional system alone.

Remarks. Prior knowledge of the random time change formula is not required when using an adjusted ‘W-
symmetries’ approach of Gaeta [7]. The rate of change is the drift component of the Itô SODEs of transformed
temporal infinitesimal. By comparing our new method with that of [7] we have that his M matrix used in (4.6)
does not have to be orthogonal. By using the invariant property philosophy, we can define his matrix as

M =
MX

m=1

„
Y m(eεH(w))

«
I, (4.99)

where I is the identity matrix. The components of antisymmetric matrix B are given as

Bi
i = 0, (4.100)

Bl
m = Y l(γm), (4.101)

where

Y l(γm) = −Y m(γl). (4.102)

Thus the Wiener infinitesimal transformation can be given as

wl =

„
1 + ε

Γ(τ)
2

«
wl + ε

MX

m=1

Bm
l dWm. (4.103)

The absorption methodology that was used in [7] is unnecessary. By using a property invariance principal, the

absorbed term, εΓ(τ)
2 wl, comes into existence in a natural way. We continue with examples. The first two are

based on examples done by Gaeta [7].

4.4 Examples

Example 4.1.
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This example was done in the first chapter. Here we look at it again. We have

dX1(t) =
a1

X1
dt + dW1(t), (4.104)

dX2(t) = a2 dt + dW2(t). (4.105)

The determining equations are simply given as

(4.106)

∂ξ1(x, t)
∂t

+
a1

x1

∂ξ1(x, t)
∂x1

+ a2
∂ξ1(x, t)

∂x2
+

1
2

∂ξ1(x, t)
∂x2

1

+
1
2

∂ξ1(x, t)
∂x2

2

+
1
2

∂ξ1(x, t)
∂w2

1

+
1
2

∂ξ1(x, t)
∂w2

2

=

a1

x1

„
∂τ(x,w, t)

∂t
+

a1

x1

∂τ(x,w, t)
∂x1

+ a2
∂τ(x,w, t)

∂x2
+

1
2

∂τ(x,w, t)
∂x2

1

+
1
2

∂τ(x,w, t)
∂x2

2

+
1
2

∂τ(x,w, t)
∂w2

1

+
1
2

∂τ(x,w, t)
∂w2

2

«

+ξ1

„
−a1

x2
1

«
, (4.107)

and
∂ξ2(x, t)

∂t
+

a1

x1

∂ξ2(x, t)
∂x1

+ a2
∂ξ2(x, t)

∂x2
+

1
2

∂ξ2(x, t)
∂x2

1

+
1
2

∂ξ2(x, t)
∂x2

2

+
1
2

∂ξ2(x, t)
∂w2

1

+
1
2

∂ξ2(x, t)
∂w2

2

=

a2

„
∂τ(x,w, t)

∂t
+

a1

x1

∂τ(x,w, t)
∂x1

+ a2
∂τ(x,w, t)

∂x2
+

1
2

∂τ(x,w, t)
∂x2

1

+
1
2

∂τ(x,w, t)
∂x2

2

+
1
2

∂τ(x,w, t)
∂w2

1

+
1
2

∂τ(x,w, t)
∂w2

2

«
,

(4.108)

∂ξ1(x, t)
∂w1

+ G1
1
∂ξ1

∂x1
+ G1

2
∂ξ1

∂x2
= H(G1

1) + G1
1Y

1(γ1) + G2
1Y

1(γ2)

∂ξ1

∂x1
= H(G1

1) + G1
1Y

1(γ1) (4.109)

∂ξ1(x, t)
∂w2

+ G2
1
∂ξ1

∂x1
+ G2

2
∂ξ1

∂x2
= H(G2

1) + G1
1Y

2(γ1) + G2
1Y

2(γ2)

∂ξ1

∂x2
= G1

1Y
2(γ1) (4.110)

∂ξ1(x, t)
∂w1

+ G1
1
∂ξ2

∂x1
+ G1

2
∂ξ2

∂x2
= H(G1

2) + G1
2Y

1(γ1) + G2
2 Y 1(γ2)

∂ξ2

∂x1
= Y 1(γ2) (4.111)

∂ξ2(x, t)
∂w2

+ G2
1
∂ξ2

∂x1
+ G2

2
∂ξ2

∂x2
= H(G2

2) + G1
2Y

2(γ1) + G2
2 Y 2(γ2)

∂ξ2

∂x2
= H(G2

2) + G2
2 Y 2(γ2) (4.112)

∂τ(x,w, t)
∂w1

+ G1
1

∂τ
∂x1

+ G1
2

∂τ
∂x2

= 0,

which implies that

∂τ(x,w, t)
∂w1

+
∂τ
∂x1

= 0 (4.113)

and

∂τ(x,w, t)
∂w2

+ G2
1

∂τ
∂x1

+ G2
2

∂τ
∂x2

= 0,

which reduces to

∂τ(x,w, t)
∂w2

+
∂τ
∂x2

= 0. (4.114)

From (4.113) and (4.114) we have

τ(x,w, t) = F1(x1 − w1) + F2(x2 − w2) + a(t), (4.115)
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where F1, F2 and a are arbitrary functions. The condition (2.39) forces

Γ(τ) = c0. (4.116)

Thus we have

ȧ(t) +
a1

x1
F ′

1(x1 − w1) + a2F
′
2(x2 − w2) + F ′′

1 + F ′′
2 = c0. (4.117)

Differentiating (4.117) with respect to time gives that a(t) is the linear function of time

a(t) = c1 t + c2. (4.118)

Thus (4.117) becomes

a1

x1
F ′

1(x1 − w1) + a2F
′
2(x2 − w2) + F ′′

1 + F ′′
2 = c0 − c1. (4.119)

A simple comparison by coefficients of 1
x1

, imposes that F1 be a constant.

The equation (4.119) evolves into an ODE with dependent variable F2 and independent (x2−w2) which solves as

F2(x2 − w2) =
(c0 − c1)

(a2)2
(a2 (x2 − w2)− 1) + e−a2 (x2−w2)c3. (4.120)

This gives rise to the temporal infinitesimal as

τ(x,w, t) = c1 t + c2 +
(c0 − c1)

(a2)2
(a2 (x2 − w2)− 1) + e−a2 (x2−w2)c3. (4.121)

The Wiener infinitesimals are associated with the following determining equations

(4.122)

∂γ1(w, t)
∂t

+
a1

x1

∂γ1(w, t)
∂x1

+ a2
∂γ1(w, t)

∂x2
+

1
2

∂γ1(w, t)
∂x2

1

+
1
2

∂γ1(w, t)
∂x2

2

+
1
2

∂γ1(w, t)
∂w2

1

+
1
2

∂γ1(w, t)
∂w2

2

= 0, (4.123)

and

∂γ2(w, t)
∂t

+
a1

x1

∂γ2(w, t)
∂x1

+ a2
∂γ2(w, t)

∂x2
+

1
2

∂γ2(w, t)
∂x2

1

+
1
2

∂γ2(w, t)
∂x2

2

+
1
2

∂γ2(w, t)
∂w2

1

+
1
2

∂γ2(w, t)
∂w2

2

= 0, (4.124)

∂γ1(w, t)
∂w1

+ G1
1
∂γ1

∂x1
+ G1

2
∂γ1

∂x2
=

Γ(τ)
2

∂γ1(w, t)
∂w1

+
∂γ1

∂x1
=

c0

2
(4.125)

∂γ1(w, t)
∂w2

+ G2
1
∂γ1

∂x1
+ G2

2
∂γ1

∂x2
= −∂γ2(w, t)

∂w1
+ G1

1
∂γ2

∂x1
+ G1

2
∂γ2

∂x2
(4.126)

∂γ2(w, t)
∂w2

+ G2
2
∂γ2

∂x2
=

c0

2
. (4.127)

Thus we have

γ1(w, t) =
c0

2
w1 + L1(w2, t) (4.128)
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and

γ2(w, t) =
c0

2
w2 + L2( w1, t). (4.129)

The use of equation (4.126) forces the equality

„
∂

∂w2
+

∂
∂x2

«
L1(w2, t) = −

„
∂

∂w1
+

∂
∂x1

«
L2(w1, t) = Constant, (4.130)

as neither side is the function of the other. Further deduction concludes that both functions be linear with respect
to the arguments, i.e.

L1(w2, t) = c5 w2 + c8 t + c6 (4.131)

and

L2(w1, t) = c10 w1 + c9 t + c7. (4.132)

From relation (4.126) we have the following

L1(x2, w2, t) = c5 w2 + c8 t + c6 (4.133)

and

L2(x1, w1, t) = −c5 w1 + c9 t + c7. (4.134)

Applying conditions (4.123) and (4.124) yields

c8 = 0 (4.135)

and

c9 = 0. (4.136)

Thus we finally have the following summary of the Wiener infinitesimals

γ1(w, t) =
c0

2
w1 + c5 w2 + c6 (4.137)

and

γ2(w, t) =
c0

2
w2 − c5 w1 + c7. (4.138)

As a result, the determining equations (4.107), (4.108), (4.109), (4.110), (4.111) and (4.112) become

∂ξ1

∂t
+

a1

x1

∂ξ1

∂x1
+ a2

∂ξ1

∂x2
+

1
2

∂ξ1

∂x2
1

+
1
2

∂ξ1

∂x2
2

=
a1

x1
c0 + ξ1

„
−a1

x2
1

«
(4.139)

∂ξ2

∂t
+

a1

x1

∂ξ2

∂x1
+ a2

∂ξ2

∂x2
+

1
2

∂ξ2

∂x2
1

+
1
2

∂ξ2

∂x2
2

= a2 c0 (4.140)

∂ξ1

∂x1
=

1
2

c0 (4.141)

∂ξ1

∂x2
= c5 (4.142)

∂ξ2

∂x1
= −c5 (4.143)

∂ξ2

∂x2
=

1
2

c0 + . (4.144)
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From (4.141), (4.142), (4.143) and (4.143) we observe the following

ξ1 =
1
2

c0 x1 + c5 x2 + F1(t) (4.145)

and

ξ2 =
1
2

c0 x2 − c5 x1 + F2(t). (4.146)

The consequences of (4.145) reduces (4.139) to

Ḟ1(t) +
a1 c0

2 x1
+ a2 c5 =

a1 c0

x1
−
„

1
2

c0 x1 + c5 x2 + F1(t)

«
a1

x2
1

. (4.147)

By comparison of coefficients we have that F1(t) and c5 must be zero, i.e.

ξ1 =
1
2

c0 x1. (4.148)

For the remaining spatial infinitesimal we have that (4.146) simplifies (4.140) to

Ḟ2(t) + a2
1
2

c0 = a2 c0. (4.149)

The function F2(t) is forced to be linear with respect to time

F2(t) =
a2 c0

2
t + c4. (4.150)

In summarizing the results, we have

ξ1 =
1
2

c0 x1, (4.151)

ξ2 =
1
2

c0 x2 +
a2 c0

2
t + c4, (4.152)

τ(t) = c1 t + c2 +
(c0 − c1)

(a2)2
(a2 (x2 − w2)− 1) + e−a2 (x2−w2)c3, (4.153)

with the Wiener infinitesimal being

γ1(w, t) =
c0

2
w1 + c5 (4.154)

and

γ2(w, t) =
c0

2
w2 + c6. (4.155)

The seven symmetries are

H0 =
(a2 (x2 − w2)− 1)

a2
2

∂
∂t

+
x1

2
∂

∂x1

+

„
x2

2
+

a2 t
2

«
∂

∂x2
+

w1

2
∂

∂w1
+

w2

2
∂

∂w2
(4.156)

H1 =

„
t− (a2 (x2 − w2)− 1)

a2
2

«
∂
∂t

(4.157)

H2 =
∂
∂t

(4.158)

H3 = e−a2 (x2−w2) ∂
∂t

(4.159)

H4 =
∂

∂x2
(4.160)

H5 =
∂

∂w1
(4.161)
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and

H6 =
∂

∂w2
. (4.162)

These symmetries were not found by [7] for a1 #= 0.

In order to find new symmetries, [7] considered the case a1 = 0, where the determining equation for the spatial
infinitesimals are

Ḟ1(t) + a2 c5 = 0. (4.163)

By comparison of coefficients we have that F1(t) is a linear function of time, i.e.

F1(t) = −a2 c5 t + c7. (4.164)

Whence the first spatial infinitesimal is given by

ξ1 =
1
2

c0 x1 + c5 ( x2 − a2 t) + c7. (4.165)

For the remaining spatial infinitesimal the determining equations remain unchanged, i.e.

Ḟ2(t) + a2
1
2

c0 = a2 c0. (4.166)

The function F2(t) remains linear with respect to time

F2(t) =
a2 c0

2
t + c4. (4.167)

However the remaining spatial infinitesimal is different

ξ2 =
1
2

c0 x2 − c5 x1 +
a2 c0

2
t + c4. (4.168)

Thus giving rise to an additional symmetry which Gaeta [7] had found. The symmetries are

H0 =
(a2 (x2 − w2)− 1)

a2
2

∂
∂t

+
x1

2
∂

∂x1

+

„
x2

2
+

a2 t
2

«
∂

∂x2
+

w1

2
∂

∂w1
+

w2

2
∂

∂w2
(4.169)

H1 =

„
t− (a2 (x2 − w2)− 1)

a2
2

«
∂
∂t

(4.170)

H2 =
∂
∂t

(4.171)

H3 = e−a2 (x2−w2) ∂
∂t

(4.172)

H4 =
∂

∂x2
(4.173)

H5 =
∂

∂w1
(4.174)

H6 =
∂

∂w2
(4.175)

H7 =
∂

∂x1
(4.176)

and

H8 = (a2 t − x2)
∂

∂x1
+ x1

∂
∂x2

+ w2
∂

∂w1
− w1

∂
∂w2

. (4.177)
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The four out of the five symmetries which Gaeta [7] lists for a1 = 0 are

H ′
0 = H1 + H2 (4.178)

= t
∂
∂t

+
x1

2
∂

∂x1

+

„
x2

2
+

a2 t
2

«
∂

∂x2
+

w1

2
∂

∂w1
+

w2

2
∂

∂w2
(4.179)

H ′
1 = H2 (4.180)

H ′
2 = H8 (4.181)

and

H ′
3 = H4. (4.182)

The fifth symmetry found by Gaeta [7] is

H ′
5 = ( x2 − a2 t )

∂
∂x1

+ x1
∂

∂x2
+ w2

∂
∂w1

− w1
∂

∂w2
(4.183)

which conserves form invariance. Thus Gaeta [7] obtained five of the nine symmetries given in (4.169) - (4.177).

We find the finite transformations (subject to initial conditions) for the fifth symmetry (4.183)

dx1

dε
= ( x2 − a2 t ), (4.184)

dx2

dε
= −x1, (4.185)

dt
dε

= 0 (4.186)

dw1

dε
= w2 (4.187)

and

dw2

dε
= −w1. (4.188)

From (4.184) and (4.185) we have

d2x2

dε2
= a2 t − x2, (4.189)

which solves as

x2 = (x2 − a2 t) cos (ε) + b0 sin (ε) + a2 t, (4.190)

where b0 is an arbitrary constant. Thus (4.184) becomes

dx1

dε
= (x2 − a2 t) cos (ε) + b0 sin (ε) + a2 t − a2 t (4.191)

which implies that the spatial transformation are

x1 = x1 cos (ε) + (x2 − a2 t) sin (ε) (4.192)

and

x2 = (x2 − a2 t) cos (ε)− x1 sin (ε) + a2 t. (4.193)
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The first Wiener infinitesimal is solved in the same fashion as the first spatial transformation

w1 = w1 cos (ε) + b1 sin (ε). (4.194)

This implies that

dw2

dε
= −w1 cos (ε)− b1 sin (ε), (4.195)

where b1 is an arbitrary constant. Thus we can solve the Wiener transformation as

w1 = w1 cos (ε) + w2 sin (ε) (4.196)

and

w2 = w2 cos (ε)− w1 sin (ε). (4.197)

We now furnish the Itô SODEs associated with these finite transformations

d X1(t, ω) = Γ(x1) dt + Y l(x1)dWl(t, ω)

= (a2 − a2 ) sin (ε) dt + (cos (ε)) dW1(t, ω) + (sin (ε)) dW2(t, ω)

= dW 1 (4.198)

d X2(t, ω) = Γ(x2) dt + Y l(x2)dWl(t, ω)

= ((a2 − a2 ) sin (ε) + a2 t) dt + (cos (ε)) dW2(t, ω)− (sin (ε)) dW1(t, ω)
(4.199)

= a2 dt + dW 2 (4.200)

where the transformed Wiener processes are derived by Itô’s formula as well

d W 1(t, ω) = Γ(w1) dt + Y l(w1)dWl(t, ω)

= (cos (ε)) dW1(t, ω) + (sin (ε)) dW2(t, ω) (4.201)

and

d W 2(t, ω) = Γ(w2) dt + Y l(w2)dWl(t, ω)

= (− sin (ε)) dW1(t, ω) + (cos (ε)) dW2(t, ω). (4.202)

Since W 1 = X1, invariance is maintained.

Example 4.2.

The remaining comparison will be done with the following SODEs again from Gaeta [7]

dX1(t) = X2 dt, (4.203)

dX2(t) = −k2 X2 dt +
√

2 k2dW (t), (4.204)

where the instantaneous diffusion matrix G, is

G =

„
0 0
0 1

«
. (4.205)

The determining equations are simply

(4.206)
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∂ξ1(x, t)
∂t

+ x2
∂ξ1(x, t)

∂x1
− k2 x2

∂ξ1(x, t)
∂x2

+ k2 ∂ξ1(x, t)
∂x2

2

+
1
2

∂ξ1(x, t)
∂w2

1

+
1
2

∂ξ1(x, t)
∂w2

2

=

x2

„
∂τ(x,w, t)

∂t
+ x2

∂τ(x,w, t)
∂x1

− k2 x2
∂τ(x,w, t)

∂x2
+ k2 ∂τ(x,w, t)

∂x2
2

+
1
2

∂τ(x,w, t)
∂w2

1

+
1
2

∂τ(x,w, t)
∂w2

2

«

+ξ2, (4.207)

and
∂ξ2(x, t)

∂t
+ x2

∂ξ2(x, t)
∂x1

− k2 x2
∂ξ2(x, t)

∂x2
+ k2 ∂ξ2(x, t)

∂x2
2

+
1
2

∂ξ2(x, t)
∂w2

1

+
1
2

∂ξ2(x, t)
∂w2

2

=

−k2 x2

„
∂τ(x,w, t)

∂t
+ x2

∂τ(x,w, t)
∂x1

− k2 x2
∂τ(x,w, t)

∂x2
+ k2 ∂τ(x,w, t)

∂x2
2

+
1
2

∂τ(x,w, t)
∂w2

1

+
1
2

∂τ(x,w, t)
∂w2

2

«

−k2 ξ2 (4.208)

∂ξ1(x, t)
∂w1

+ G1
1
∂ξ1

∂x1
+ G1

2
∂ξ1

∂x2
= H(G1

1) + G1
1Y

1(γ1) + G2
1Y

1(γ2)

0 = 0 (4.209)

∂ξ1(x, t)
∂w2

+ G2
1
∂ξ1

∂x1
+ G2

2
∂ξ1

∂x2
= H(G2

1) + G1
1Y

2(γ1) + G2
1Y

2(γ2)

∂ξ1

∂x2
= 0 (4.210)

∂ξ2(x, t)
∂w1

+ G1
1
∂ξ2

∂x1
+ G1

2
∂ξ2

∂x2
= H(G1

2) + G1
2Y

1(γ1) + G2
2Y

1(γ2)

0 = Y 1(γ2) (4.211)

∂ξ2(x, t)
∂w2

+ G2
1
∂ξ2

∂x1
+ G2

2
∂ξ2

∂x2
= H(G2

2) + G1
2Y

2(γ1) + G2
2Y

2(γ2)

G2
2

∂ξ2

∂x2
= H(G2

2) + G2
2Y

2(γ2) (4.212)

∂τ(x,w, t)
∂w1

+ G1
1

∂τ
∂x1

+ G1
2

∂τ
∂x2

= 0,

which implies that

∂τ(x,w, t)
∂w1

= 0 (4.213)

and

∂τ(x,w, t)
∂w2

+ G2
1

∂τ
∂x1

+ G2
2

∂τ
∂x2

= 0,

which reduces to

∂τ(x,w, t)
∂w2

+
√

2 k2
∂τ
∂x2

= 0. (4.214)

Equations (4.213) and (4.214) imply

τ(x,w, t) = F1(x2 −
√

2 k2 w2) + F2(x1) + a(t), (4.215)

where F1, F2 and a are arbitrary functions. The condition (2.39) forces

Γ(τ) = c0. (4.216)

Thus we have

ȧ(t) + x2F
′
2(x1)− k2 x2 F ′

1(x2 −
√

2 k2 w2) + k2 F ′′
1 + 2 k2F ′′

1 +
1
2
F ′′

2 = c0. (4.217)
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Differentiating (4.217) with respect to time gives that a(t) is the following linear function of time

a(t) = c1 t + c2. (4.218)

Hence (4.217) becomes

x2F
′
2(x1)− k2 x2 F ′

1(x2 −
√

2 k2 w2) + k2 F ′′
1 + 2 k2F ′′

1 +
1
2
F ′′

2 = c0 − c1. (4.219)

A simple comparison by coefficients of x2, imposes that both F1 and F2 be linear in terms of their arguments

F1 = c3 (x2 −
√

2 k2 w2) + c4 (4.220)

F2 = k2 c3 x1 + c5 (4.221)

and that the constants c0 and c1 be the identical, which implies

a(t) = c0 t + c2. (4.222)

It eventuates that the temporal infinitesimal is

τ(x,w, t) = c0 t + c2 + c3 (x2 −
√

2 k2 w2) + k2 c3 x1. (4.223)

All that is left to obtain are the Wiener infinitesimals, before we can proceed with the spatial infinitesimals. The
associated Wiener infinitesimal determining equations are

(4.224)

∂γ1(w, t)
∂t

+
1
2

∂γ1(w, t)
∂w2

1

+
1
2

∂γ1(w, t)
∂w2

2

= 0, (4.225)

and
∂γ2(w, t)

∂t
+

1
2

∂γ2(w, t)
∂w2

1

+
1
2

∂γ2(w, t)
∂w2

2

= 0, (4.226)

∂γ1(w, t)
∂w1

=
c0

2
, (4.227)

∂γ2(w, t)
∂w2

=
c0

2
, (4.228)

∂γ1(w, t)
∂w2

= −∂γ2(w, t)
∂w1

(4.229)

which in conjunction with (4.211) implies

∂γ1(w, t)
∂w2

= 0. (4.230)

Thus we have the following

γ1(w, t) =
c0

2
w1 + L1( t) (4.231)

and

γ2(w, t) =
c0

2
w2 + L2( t). (4.232)
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The use of equation (4.225) forces the arbitrary L1 function to be a constant

L1(t) = c7, (4.233)

and the (4.226) forces the arbitrary function L2 to follow suite

L2 = c8. (4.234)

Thus we finally have the following summary of the Wiener infinitesimals

γ1(w, t) =
c0

2
w1 + c7 (4.235)

and

γ2(w, t) =
c0

2
w2 + c8. (4.236)

As a result, the determining equations (4.107), (4.208), (4.209), (4.210), (4.211) and (4.212) become

∂ξ1

∂t
+ x2

∂ξ1

∂x1
− k2 x2

∂ξ1

∂x2
+ k2 ∂ξ1

∂x2
2

= x2 c0 + ξ2 (4.237)

∂ξ2

∂t
+ x2

∂ξ2

∂x1
− k2 x2

∂ξ2

∂x2
+ k2 ∂ξ2

∂x2
2

= −k2 x2 c0 − k2 ξ2 (4.238)

0 = 0 (4.239)

∂ξ1

∂x2
= 0 (4.240)

0 = 0 (4.241)

∂ξ2

∂x2
=

1
2

c0. (4.242)

From (4.239), (4.240), (4.241) and (4.241) we observe the following

ξ1 = F1(t) + F2(x1) (4.243)

and

ξ2 =
1
2

c0 x2 + F3(t) + F4(x1). (4.244)

The consequences of (4.243) reduces (4.237) to

Ḟ1 + x2 F ′
2 = x2 c0 +

1
2

c0 x2 + F3(t) + F4(x1). (4.245)

By comparison of coefficients we have that

F ′
2 =

3
2

c0 (4.246)

and

Ḟ1 = F3(t) + F4(x1). (4.247)

Therefore we have

ξ1 =
3
2

c0 x1 + c4 + F1(t) (4.248)
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and

ξ2 =
1
2

c0 x2 + Ḟ1(t) . (4.249)

Equation (4.238) becomes the following as a result

F̈1 −
k2 x2 c0

2
= −k2 x2 c0 − k2

„
1
2

c0 x2 + Ḟ1(t)

«
. (4.250)

The ensuing conclusions are

c0 = 0 (4.251)

and

F1(t) = c6 + c5 e−k2 t. (4.252)

Our infinitesimals are therefore

ξ1 = c4 + c5 e−k2 t, (4.253)

ξ2 = − c5 k2 e−k2 t, (4.254)

γ1 = c7 (4.255)

γ2 = c8 (4.256)

and the temporal infinitesimal is

τ(t) = c2 + c3 (x2 −
√

2 k2 w2) + k2 c3 x1. (4.257)

Thus the symmetries are

H0 =
∂
∂t

(4.258)

H1 =
“
x2 −

√
2 k2 w2 + k2 x1

” ∂
∂t

(4.259)

H2 =
∂

∂x1
(4.260)

H3 = e−k2 t ∂
∂x1

− k2 e−k2 t ∂
∂x2

(4.261)

H4 =
∂

∂w1
(4.262)

and

H5 =
∂

∂w2
. (4.263)

The symmetries which were found by Gaeta [7] were based on those of Gaeta and Quintero [1] and are

H ′
1 =

∂
∂x1

(4.264)

H ′
2 = − 1

k2
e−k2 t ∂

∂x1
+ e−k2 t ∂

∂x2
(4.265)

and

H ′
3 =

∂
∂t

. (4.266)

These again are sub-algebras of the ones we have found spanned by (4.258) - (4.263).
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4.4.1 Stock Price Model

Consider the price of a single stock price X(t, ω) with instantaneous drift ν X(t, ω) and standard deviation
σ X(t, ω) as was done in Fredericks and Mahomed [6], i.e.

dX(t, ω) = ν X(t, ω) dt + σ X(t, ω) dW (t, ω) (4.267)

with the initial condition X(0, ω) = x0. The determining equations by Fredericks and Mahomed [5] were

Γ(ξ(t, x)) = H(ν x)− ν x Γ(τ(t)),

∂ξ(t, x)
∂t

+ ν x
∂ξ(t, x)

∂x
+

σ2x2

2
∂2ξ(t, x)

∂x2
= ξ(t, x) ν − ν x

dτ(t)
d t

(4.268)

and

Y (ξ(t, x)) = ξ(t, x) σ − σ x
2

dτ(t)
dt

x
∂ξ(t, x)

∂ x
= ξ(t, x)− x

2
dτ(t)

dt
. (4.269)

The infinitesimals were given as

τ(t) = a4 + a5t, (4.270)

and

ξ(t, x) =
1
2
(µ− 1

2
σ2) x (a4 + a5t) + a2 x +

1
2
a5(x ln x− x). (4.271)

The three generators of symmetry were

H1 =
∂
∂t

+
1
2
(µ− 1

2
σ2) x

∂
∂x

, (4.272)

H2 = x
∂
∂x

(4.273)

and

H3 = t
∂
∂t

+
1
2

„
(µ− 1

2
σ2)tx + x ln x− x

«
∂
∂x

. (4.274)

By applying the relation (4.97) we find the following relation for the Wiener infinitesimal

∂γ
∂w

= a5 (4.275)

which implies that

γ = a5 w + A(t). (4.276)

However, it also has to satisfy the condition (4.96) which after simplification is

Ȧ(t) = 0. (4.277)

Thus, the Wiener infinitesimal is given by

γ = a5 w + c1 (4.278)
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which means that the ‘W-symmetry’ generators are given by

H1 =
∂
∂t

+
1
2
(µ− 1

2
σ2) x

∂
∂x

, (4.279)

H2 = x
∂
∂x

, (4.280)

H3 = t
∂
∂t

+
1
2

„
(µ− 1

2
σ2)tx + x ln x− x

«
∂
∂x

+ w
∂

∂w
(4.281)

and the additional symmetry generator

H4 =
∂

∂w
. (4.282)

4.4.2 Blood Clotting Dynamics

Consider the one-dimensional SODEs model which models the position of platelets at time t

dX(t, ω) = u(t) dt + σ dW (t, ω). (4.283)

The instantaneous drift is the velocity which satisfies the Stokes’ equations

∂u(t, x)
∂x

= 0 (4.284)

and

ρ u̇(t) +
∂p
∂x

= 0, (4.285)

where the first and second components of (4.285) are the inertia (density, ρ, multiplied by acceleration, u̇(t))
and pressure gradient of the platelets along an arteriole, respectively. The dot notation represents d/dt. The
conservation of mass for these thrombocytes are handled by (4.284). By observation the pressure, p, due to the
interactions between the platelets is linear in the spatial variable, x. Thus the instantaneous drift can be solved
from (4.285) and can be expressed as (A1ρ) t + A2, where A1 and A2 are arbitrary constants which can be
determined by experimentation. The determining equations associated with (4.283) in conjunction with (4.74)
are thus

Γ(ξ(t, x)) = H(A1ρ t + A2) + (A1ρ t + A2) Γ(τ(t)),

∂ξ(t, x)
∂t

+ (A1ρ t + A2)
∂ξ(t, x)

∂x
+

σ2

2
∂2ξ(t, x)

∂x2
= τ(t) A1ρ + (A1ρ t + A2)

dτ(t)
d t

(4.286)

and

Y (ξ(t, x)) =
σ
2

dτ(t)
dt

∂ξ(t, x)
∂ x

=
1
2
τ̇(t). (4.287)

The infinitesimals are easily solved for by substituting (4.287) into (4.286) to give

τ(t) = c1 t + c2 (4.288)

and

ξ(t, x) =
1
2

c1 x + A1ρ

„
3
4
c1 t2 + c2 t

«
+ A2

c1

2
t + c3. (4.289)
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The three generators of symmetry as per [5] are

H1 = t
∂
∂t

+

„
x
2

+
3A1 ρ

4
t2 +

A2

2
t

«
∂
∂x

, (4.290)

H2 =
∂
∂t

+ (A1 tρ)
∂
∂x

(4.291)

and

H3 =
∂
∂x

. (4.292)

If we now wish to extend to ‘W-symmetries’ by applying the relation (4.97) we find the following relation for the
Wiener infinitesimal

∂γ
∂w

=
c1

2
(4.293)

which implies that

γ(w, t) =
c1

2
w + A(t). (4.294)

However, it also has to satisfy the condition (4.96) which easily solves to give

A(t) = c2. (4.295)

Thus, the Wiener infinitesimal is given by

γ =
c1

2
+ c2 (4.296)

which means that the ’W-symmetry’ generators are

H1 = t
∂
∂t

+

„
x
2

+
3A1 ρ

4
t2 +

A2

2
t

«
∂
∂x

+
1
2

∂
∂w

, (4.297)

H2 =
∂
∂t

+ (A1 tρ)
∂
∂x

, (4.298)

H3 =
∂
∂x

(4.299)

and the additional symmetry generator

H4 =
∂

∂w
. (4.300)

4.4.3 Experimental Psychology

Consider the following simple linearised SODE which models small repetitive motions in humans with non-
deterministic flactuations arising from highly populated weakly coupled neuronal cells

dX(t, ω) = −
„

a (X(t, ω)) + 4 b X(t, ω))

«
dt + σ dW (t, ω). (4.301)

The determining equations are

Γ(ξ(t, x)) = −H

„
a x + 4 b x

«
+

„
a x + 4, b x

«
Γ(τ(t))

∂ξ(t, x)
∂t

−
„

a x + 4 b x

«
∂ξ(t, x)

∂x
+

σ2

2
∂2ξ(t, x)

∂x2
= −ξ(t, x)

„
a + 4 b

«
+

„
a x + 4 b x

«
τ̇(t) (4.302)
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and

Y (ξ(t, x)) =
σ
2

dτ(t)
dt

∂ξ(t, x)
∂ x

=
1
2
τ̇ . (4.303)

The temporal infinitesimal has to be linear with respect to time due to the condition that the instantaneous drift
of the temporal has to be constant to ensure the recoverability of the finite transformations from the infinitesimal
ones, i.e

τ(t) = c1 t + c2. (4.304)

Thus the spatial infinitesimal solves as

ξ(t, x) =
c1 x
2

+ C(t) (4.305)

and now we are able to find the arbitrary function C(t), by looking at the resulting substitution of (4.305) into
(4.302)

Ċ(t) = −C (a + 4 b) +

„
a x + 4 b x

«
c1. (4.306)

By comparison of coefficients we have that the arbitrary constant c1 is zero. Hence we solve for the arbitrary
function C(t)

C(t) = c3 e−a− 4 b. (4.307)

Our temporal and spatial infinitesimal respectively are

τ = c2 (4.308)

and

ξ = c3 e−a− 4 b (4.309)

The two generators of symmetry are given as

H1 = e−a− 4 b ∂
∂x

, (4.310)

and

H2 =
∂
∂t

. (4.311)

Including ’W-symmetries’ via relation (4.97) leads to the following relation for the Wiener infinitesimal

∂γ
∂w

= 0 (4.312)

which implies that

γ(t, x) = A(t). (4.313)

However, as in the two previous examples it has to satisfy the condition (4.96) which after simplification leads to

A(t) = c4. (4.314)

Thus, only the following symmetry is added

H3 =
∂

∂w
. (4.315)

Remark. The number of symmetry generators will always increase by at least one, when introducing the Wiener
transformation into the Lie group transformation methodology.
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Algebra BasisOperators RepresentativeEquations
L1 H1 = p dX = f(x) dt + g(x) dW
L1 H1 = q dX = f(t) dt + g(t) dW
L2 H1 = p, H2 = q dX = α dt + β dW
L1 H1 = t q dX = x

t dt + g(t) dW
L1 H1 = p + x q dX = x e−t dt + x e−t dW
L1 H1 = t p + x q dX = F

(
ln (x

t )
)

dt +
√

x
t dW

L1 H1 = (1− a) t p + x q dX = F

(
ln

(
x

(t(1−a))
1

1−a

))
dt +

√
x

(t(1−a))
1

1−a
dW

Algebra W − symmetry BasisOperators Representative Equations
L2 H1 = p, H2 = r dX = f(x) dt + g(x) dW
L2 H1 = q, H2 = r dX = f(t) dt + g(t) dW
L3 H1 = p, H2 = q, H3 = r dX = α dt + β dW
L2 H1 = t q,H2 = r dX = x

t dt + g(t) dW
L2 H1 = p + x q,H2 = r dX = x e−t dt + x e−t dW
L2 H1 = t p + x q + w

2 r, H2 = r dX = F
(
ln (x

t )
)

dt +
√

x
t dW

L2 H1 = (1− a) t p + x q + (1−a) w
2 r, H2 = r dX = F

(
ln

(
x

(t(1−a))
1

1−a

))
dt +

√
x

(t(1−a))
1

1−a
dW

4.5 Applications to 1-Dimensional Wiener SODEs

Classification of SODEs have only been done by Wafo Soh and Mahomed [2] for second-order SODEs. Here we
show the classification as per [2] for first-order SODEs in Table 1. We also show how these basis operators change
when introducing ‘W-symmetries’ in Table 2. The classification was slightly adjusted using the standard basis
operator table from Wafo Soh and Mahomed [2]. The following representations are used

p = ∂/∂t, q = ∂/∂x and r = ∂/∂w

Table 1

The ‘W-symmetries’ basis operator table below extends the dimension in most cases.

Table 2

Remark. Here Lr means the r-dimensional algebra. Algebras in the first table are one-dimensional in most cases.
The introduction of the Wiener infinitesimal into the Lie group analysis increases the dimension of all the algebras
by one.

4.6 Conclusions

The use of the Lie point transformation methodology in conjunction with Itô’s formula enables us to include the
transformation of the Wiener process into the symmetry operator via a Wiener infinitesimal which performs the
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transformation in the Banach space. The Itô formula allows us to relate these transformations to their Itô SODEs
counterparts.

The seminal work of Gaeta [7] is extended here to take into consideration temporal infinitesimals that are not
necessarily projective. This is mainly due to a property invariance philosophy which apply to the transformed
Wiener process. A generalized form of a condition which Ünal [3] had derived for a one-dimensional Wiener
process, is easily extended as a result. By following an invariance argument on the Wiener process’ properties,
we were able to confirm the antisymmetric condition placed on the Wiener transformation for multidimensional
Wiener processes by Gaeta [7].

However, the recovery of the finite transformations from the infinitesimal ones to preserve form invariance has not
been guaranteed by any of the works in the past for multi-dimensional Wiener processes. This chapter derives
the conditions necessary for this to be valid. We show that a particular example by Gaeta [7] does not ensure this.

Many of these insights and new conditions should be replicable for higher order SODEs. Wiener symmetries
for multi-dimensional Wiener processes of higher order SODEs are an exciting unchartered area of investigation.
The recovery of finite transformations that keep form invariancefor these higher order SODEs are important. This
aspect is done in Chapter 5.
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Chapter 5

Symmetries of nth Order Stochastic
Ordinary Differential Equations

Symmetries of nth-order SODEs are studied. The determining equations of these SODEs are derived in an Itô
calculus context. These determining equations are not stochastic in nature. SODEs are normally used to model
nature (e.g. earthquakes) or for testing the safety and reliability of models in construction engineering when
looking at the impact of random perturbations.

5.1 Introduction

Wafo Soh and Mahomed [2] gave an algorithm to obtain Lie point symmetries for both first- and nth-order SODEs.
We briefly review their work and follow with an extension from point symmetries to generalised symmetries.

The first section begins with the transformations of the spatial, temporal and Wiener variables for an nth-
order Itô process. These transformations have the same properties as stated in our previous chapter on first-order
SODEs (see also Fredericks and Mahomed [5]).

Using the Itô formula in conjunction with the infinitesimal transformations which preserve form invariance, we de-
rive conditions for nth-order SODEs that ensures the recovery of invariance preserving finite transformations from
the infinitesimal ones. This has not been done in the past. The inclusion of a Wiener infinitesimal in the symmetry
operator has also been precluded in the past. Faithfully following the ‘Wiener- symmetry’ methodology of the
previous chapter, we construct a generalized random time change formula for multi-dimensional nth-order SODEs.

This is followed up with the development of recursive relations needed for finding the prolonged spatial in-
finitesimals in a SODEs context by using the concept of form invariance. This differs from the methodology used
by [2], where the recursive relation defined was predefined from an ODE context. As a result we also derive a
conditioning on these prolonged spatial infinitesimal variables. We further derive a conditioning on the diffusion
coefficient of the temporal generalised symmetry τ , which is similar to that of Ünal [3]. We conclude the chapter
with an introduction of operators which generalize the determining equations for SODEs of any order that is
adaptable to both point and generalized symmetries.
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5.2 Review of Wafo Soh and Mahomed [2] for nth-order SODEs

An nth-order Itô process has the following vector form

dX(n−1)(t) = f(t,X(t), Ẋ(t), . . . ,X(n−1)(t))dt + G(t,X(t), Ẋ(t), . . . ,X(n−1)(t)) dW(t)

(5.1)

dX(k)
j (t) = X(k+1)

j (t)dt,

(5.2)

X(0)
j (t) = Xj(t) (5.3)

for k = 0, 1, . . . , n − 2. Since the instantaneous mean, f , is an N -vector valued function, the index j runs from
one to N , i.e. j = 1, . . . , N . The diffusion coefficent G is an N × M -matrix valued function and W(t) is an
M -dimensional standard Wiener process. From here onwards we denote {X(t), Ẋ(t), . . . ,X(n−1)(t)} by X (n−1)(t).
The context of this processes is that both the instanteous drift and diffusion coefficients are Lipschitz continuous
with respect to the right norm. A good example of the type of norm used for this is given by [15] in their seventh
chapter.

The Lie point transformation methodology used by Wafo Soh and Mahomed [2] does all calculations to O(ε). As
a result the recoverability of the finite transformations, which keep invariance, from the infinitesimal ones is not
verified. The symmetry operator H is the same as that used in chapter 2, with point symmetries

H = τ(x, t)
∂
∂t

+ ξj(x, t)
∂

∂xj
, (5.4)

where there is summation j = 1, N . However since we are dealing with nth-order SODEs, prolongation formulation
is necessary. In the Banach space the transformation for the (n− 1)th-order spatial derivative is

x(n−1) = eεH[n−1]
x(n−1), (5.5)

x(k) = eεH[n−1]
x(k)

= eεH[k]
x(k), k < n− 1, (5.6)

where

H [n−1] = H(n−2) + ξ[n−1]
j

∂

∂x(n−1)
j

, n ≥ 1 (5.7)

and

H [0] = H. (5.8)

Applying Itô’s formula to a prolongation of a spatial infintesimal of arbitrary order , ξj
[r](t,X (r−1)(t)), gives

dξj
[r](t,X (r−1)(t)) = f(ξ[r])j(t,X

(r−1)(t)) dt + Gl
(ξ[r])j(t,X

(r−1)(t)) dWl(t), (5.9)

where

f(ξ[r])j(t,X
(r−1)(t)) =

∂ξj
[γ]

∂t
+ fi

∂ξj
[γ]

∂x(n−1)
i

+
1
2

MX

k = 1

Gk
i Gk

p
∂2ξj

[γ]

∂x(n−1)
i ∂x(n−1)

p

+
n−2X

α=0

x(α+1)
p

∂ξj
[r]

∂x(α)
p

, where n ≥ 2

(5.10)

Gl
(ξ[r])j(t,X

(r−1)(t)) =
∂ξj

[γ]

∂x(n−1)
i

Gl
ir for each j ranging from 1 to N. (5.11)

If the summation operator runs from a non-negative value, e.g. 0, to a negative one, i.e. −1, the outcome of
the entire summation is set to zero. With this convention we are able to recover the It0̂ formula for first order
SODEs. Due to the repeated index summation convention, the spatial indices i and p both run from 1 to N in the
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summation; the Wiener indices l and k runs from 1 to M . Similarly, the Itô’s formula for the temporal variable,
τ(x, t), gives

dτ = f(τ)(X(t, ω), t) dt + Gl
(τ)(X(t, ω), t) dWl(X(t, ω), t), (5.12)

where

f(τ)(X(t, ω), t) =
∂τ
∂t

+ fi
∂τ

∂x(n−1)
i

+
1
2

MX

k = 1

Gk
i Gk

p
∂2τ

∂x(n−1)
i ∂x(n−1)

p

+
n−2X

α=0

x(α+1)
p

∂τ

∂x(α)
p

(5.13)

which reduces to the total derivative, since the temporal infinitesimal is a point transformation

f(τ)(X(t, ω), t) = D(τ). (5.14)

where the total derivative is defined as

D =
∂
∂t

+
n−2X

α=0

∂

∂x(α)
p

x(α+1)
p . (5.15)

The diffusion coefficient of the temporal infinitesimal, is given by

Gl
(τ)(X(t, ω), t) = Gl

i
∂τ

∂x(n−1)
i

(5.16)

reduces to zero as well because of the fact that we are dealing with point transformations, i.e.

Gl
(τ)(X(t, ω), t) = 0. (5.17)

The drift and diffusion coefficients of the (n− 1)th-order spatial derivative are respectively transformed as

fj(X
(n−1)

(t), t) = fj(X (n−1)(t), t) + εH [n−1]
“
fj(X (n−1)(t), t)

”
+ O(ε2) (5.18)

and

Gl
j(X

(n−1)
(t), t) = Gl

j(X (n−1)(t), t) + εH [n−1]
“
Gl

j(X (n−1)(t), t)
”

+ O(ε2). (5.19)

The Itô formula of the finite time index transformation is

dt = Γ(eεH[n−1]
(t)) dt + Y l(eεH[n−1]

(t))dWl. (5.20)

which Wafo Soh and Mahomed [2] simply write as

dt = dt (1 + ε D(τ)) + O(ε2), (5.21)

since the temporal infinitesimal is a point transformation. We also have that the transformed time index should
keep invariance in the following probabilistic way

EQ
ˆ
dt(t, ω)

˜
= dt(t, ω). (5.22)

This requires

Y l(eεH[n−1]
(t)) = 0 l = 1,M, (5.23)

which is automatically satisfied since τ is point transformation. Condition (5.22) also forces

D(eεH[n−1]
(t)) = Constant, (5.24)

which is overlooked in [2]. Thus the finite transformation of the Wiener process is

dW l(t, ω) =
q

D(eεH[n−1](t))dWl(t, ω) (5.25)
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which Wafo Soh and Mahomed [2] simplified as

dW l(t, ω) = dWl(t, ω) (1 +
ε
2

D(τ)) + O(ε2), (5.26)

where [2] used a generalized binomial expansion of the square-root of the derivative of the transformed time index
with respect to time. The Itô SODEs associated with Lie point nth-order spatial transformation is

dX
(n−1)
j (t) = dX(n−1)

j (t) + ε
“
f(ξ[n−1])j dt + Gl

(ξ[n−1])j dWl(t)
”

+ O(ε2) . (5.27)

Wafo Soh and Mahomed [2] make the assumption that only the system of nth order SODEs, (5.1), remain invariant
under the symmetry operator (5.4), which implies that

dX
(n−1)
j (t) = fj(t,X

(n−1)
(t, ω))dt + Gl

j(t,X
(n−1)

(t, ω))dW l(t), (5.28)

where we denote {X̄(t), ¯̇X(t), . . . , X̄(r−1)(t)} by X (r−1)
(t) for an arbitrary r ∈ N.

Expanding the drift component fj(t,X
(n−1)

(t, ω))dt of (5.28) using (5.18) and (5.21) gives

f(t, X (n−1)(t))dt =

(
f(t, X (n−1)(t)) + ε

“
D(τ) + H [n−1]

”
f(t, X (n−1)(t))

+
∞X

k=2

εk

k!

 “
D(τ) + H [n−1]

”k
f(t, X (n−1)(t))

+
k−2X

j=0

 
k

k − j

!
Hj(f(t, X (n−1)(t)))

“
D(Hk−j(t)) − [D(τ)]k−j

”!)
dt. (5.29)

In order for the finite transformations to keep invariance we require ε-terms of higher order to be solely dependent
on the O(1) and O(ε) terms, this forces the condition

eε D(τ) = D
“
eε H[n−1]

(t)
”

, (5.30)

which is satisfied as a result of condition (5.24). Whence the finite transformation becomes

dW l(t, ω) = e
εD(τ)

2 dWl(t, ω). (5.31)

The diffusion component of (5.28) can easily be expanded with the utility of (5.19) and (5.26)

Gl
j(t, X (n−1)(t))dW l =

(
Gl

j(t, X (n−1)(t)) + ε

„
D(τ)

2
+ H [n−1]

«
Gl

j(t, X (n−1)(t))

+
∞X

k=2

εk

k!

„
D(τ)

2
+ H [n−1]

«k

Gl
j(t, X (n−1)(t))

)
dWl. (5.32)

This allows us to make a comparison with the Itô SODEs associated with the nth-order spatial transformation
(5.27), which furnishes the determining equations used by Wafo Soh and Mahomed [2], i.e.

(5.33)

f(ξ[n−1])j =
“
D(τ) + H [n−1]

”
fj(X (n−1)(t), t) (5.34)

and

Gl
(ξ[n−1])j =

„
D(τ)

2
+ H [n−1]

«
Gl

j(X
(n−1)

(t), t). (5.35)
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Constructing the prolonged variables was done by using pre-existing recursive relations based on the Lie point
theory for ODEs, i.e.

ξj
[k] = Dξj

[k−1] − x(k)
j Dτ , ξj

[0] = ξj , (5.36)

for k ≤ n. The sketch of the methodology used for Lie point symmetries for nth-order SODEs by Wafo Soh
and Mahomed [2] ends here. However, it is possible to construct the recursive relations using form invariance
arguments on the SODEs described in equation (5.2),i.e.

dX
(k)
j (t) = X

(k+1)
(t)dt,

which expands as

dX
(k)
j (t) = X(k+1) dt + ε

“
ξj

[k+1] + x(k+1)
j D(τ)

”
dt + O(ε2); (5.37)

in conjunction with the Itô SODEs associated with the transformation of the kth-order spatial transformation,
i.e.

dX
(k)
j (t) = dX(k)

j (t) + ε
“
f(ξ[k])j dt + Gl

(ξ[k])j dWl(t)
”

+ O(ε2), (5.38)

which reduces to

dX
(k)
j (t) = dX(k)

j (t) + ε D(ξ[k]
j ) dt + O(ε2) (5.39)

as a result of the fact that the prolongation infinitesimals of lower order ξ[k]
j , are not a function of x(n−1) for

k < (n− 1). Thus the recursive relations defined by Wafo Soh and Mahomed [2] from an ODE context, are easily
derived using a form invariance philosophy, viz.

D(ξ[k]
j ) = ξj

[k+1] + x(k+1)
j D(τ). (5.40)

5.3 Generalized Symmetries

Instead of concerning ourselves with only point transformations with respect to the spatial infinitesimals, we
consider making our spatial infinitesimals and thus our temporal infinitesimal generalized transformations as well.
In conjunction with this we include a Wiener infinitesimal with the symmetry operator. The reasoning behind
having the Wiener and spatial infinitesimals independent of one another is still valid, i.e. their respective proba-
bility spaces are independent of one another in terms of the measures associated with them.

We first re-derive the random time change formula using coupled operators as in chapter 3 but for a multi-
dimensional nth-order SODEs. This entails the invariance of the transformed Wiener process with respect to
its properties. A form invariance philosophy for the drift component of the transformed spatial infinitesimals in
combination with the Itô formula is studied to establish the recoverability of the finite transformations from the
infinitesimal ones.

The crux of this methodology is the coupling of two systems of SODEs - the system associated with the M -
dimensional Wiener processes and the N -dimensional nth-order system of spatial SODEs. The probability space
associated with the former is (Ω,F , Q) and the probability space associated with the latter is (Ω,F , P). The prob-
ability spaces associated with the transformed Itô SODEs of these two systems become (Ω,F , Q) and (Ω,F , P),
respectively. The independence of these two spaces with respect to the measures is maintained by insisting on
the independence of the spatial and Wiener infinitesimals.

5.3.1 Generalized Transformations

The construction of the symmetry and Itô formula operators form the basis of the Lie group transformations. They
are used in combination to form the determining equations needed to unearth the infinitesimal transformations
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that allow the original probability spaces to evolve to new transformed probability spaces; whilst maintaining the
probabilistic properties of both the Wiener and the spatial processes.

The generalized symmetry operator used here is,

H = τ(x̂(n−1), t)
∂
∂t

+
NX

j=1

ξj(x̂
(n−1), t)

∂
∂xj

+
MX

l=1

wl(w, t)
∂

∂wl
, (5.41)

where x̂(n−1) signifies the collection {x, ẋ, . . . ,x(n−1)}, and with the generalized prolonged symmetry operator
having generalized spatial infinitesimals, i.e.

H [n−1] = τ(x̂(n−1), t)
∂
∂t

+
NX

j=1

ξj(x̂
(n−1), t)

∂
∂xj

+
NX

j=1

n−1X

α=1

ξ[α]
j (x̂(n−1), t)

∂

∂x(α)
j

+
MX

l=1

wl(w, t)
∂

∂wl
. (5.42)

We allow form and property invariance arguments to guide the behavior of our infinitesimals. In order for this to
take place we use coupled operators as had been done in the previous chapter

Γ =
∂
∂t

+
NX

i=1

fi
∂

∂x(n−1)
i

+
1
2

NX

i,p=1

MX

k = 1

Gk
i Gk

p
∂2

∂x(n−1)
i ∂x(n−1)

p

+
NX

p=1

n−2X

α=0

∂

∂x(α)
p

x(α+1)
p +

1
2

MX

l=1

∂2

∂w2
l

(5.43)

which in essence gives the instantaneous drift of an arbitrary function of the spatial and Wiener variables. The
following coupled operator gives the instantaneous diffusion

Y l =
∂

∂wl
+

NX

i=1

Gl
i

∂[γ]

∂x(n−1)
i

. (5.44)

Equipped with these operators we perform generalized transformations.

The construction begins with a one-parameter group transformation of the time index t, the spatial variables x,
the time derivatives of the spatial variables x(k), where k = 0, (n− 1); and the Wiener variable w, respectively,

t = θ(x̂(n−1), w, t, ε), x = ϕ(x̂(n−1), t, ε) x(k) = ϕ[k](x̂(n−1), t, ε) and w = ϑ(w, t, ε), (5.45)

with the following relation to the infinitesimals

∂θ
∂ε

= τ(θ, ϕ, ϑ),
∂ϕ
∂ε

= ξ(θ, ϕ, ϑ),
∂ϕ[k]

∂ε
= ξ[k](θ, ϕ, ϑ) and

∂ϑ
∂ε

= γ(θ, ϕ, ϑ). (5.46)

The initial boundary conditions at ε = 0 are

t
˛̨
ε = 0

= t, X(t, ω)
˛̨
ε = 0

= X(t, ω), X
(k)

(t, ω)
˛̨
ε = 0

= X(k)(t, ω) and W(t, ω)
˛̨
ε = 0

= W(t, ω), (5.47)

Thus group transformations can be expressed in terms of the symmetry operator

t = eεH[n−1]
(t)

= eεH(t) (5.48)

x = eεH[n−1]
(x)

eεH(x) (5.49)

x(k) = eεH[n−1]
(x(k))

= eεH[k]
(x(k)) (5.50)

and

w = eεH(w). (5.51)
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The Itô SODEs are associated to these group transformations (5.45) by the following

dt(t, ω) = Γ(eεH(t)) dt + Y l(eεH(t)) dWl(t, ω) (5.52)

dW(t, ω) = Γ(eεH(w)) dt + Y l(eεH(w)) dWl(t, ω) (5.53)

dX
(k)

(t, ω) = Γ(eεH[k]
(x(k))) dt + Y l(eεH[k]

(x(k))) dWl(t, ω) (5.54)

and

dX(t, ω) = Γ(eεH(x)) dt + Y l(eεH(x)) dWl(t, ω). (5.55)

The infinitesimal SODEs are given as

dτ(t, ω) = Γ(τ(t, ω)) dt + Y l(τ(t, ω)) dWl(t, ω), (5.56)

dξ(t, ω) = Γ(ξ(t, ω)) dt + Y l(ξ(t, ω)) dWl(t, ω) (5.57)

dξ[k](t, ω) = Γ(ξ[k](t, ω)) dt + Y l(ξ[k](t, ω)) dWl(t, ω) (5.58)

and

dγ(t, ω) = Γ(γ(t, ω)) dt + Y l(γ(t, ω)) dWl(t, ω). (5.59)

5.4 Property Invariance of Transformed Wiener Process

Invariance of the characteristics of our transformed standard Weiner process, dW j(t), should still satisfy

EQ

»
dW(t, ω)

˛̨
˛̨W = w

–
= 0. (5.60)

As a result we have the following new condition

Γ(eε H(w)) = 0. (5.61)

Differentiating (5.61) with respect to ε at ε = 0 gives the following Wiener infinitesimal condition

Γ(γ) = 0. (5.62)

A similar invariance argument for the Itô isometry condition, or instantaneous variance yields

EQ

»
dW l(t, ω)dW m(t, ω)

˛̨
˛̨X = x, W = w

–
= δl

mdt (5.63)

= Γ(eε H(t)) dt + Y l(eε H(t)) dWl (5.64)

thus furnishing

MX

r=1

Y r(eε H(wl))dWr

MX

s=1

Y s(eε H(wm))dWs = δl
mdt (5.65)

MX

r=1

Y r(eε H(wl))Y
r(eε H(wm))dt = δl

mΓ(w)(e
ε H(t)) dt + Y r(eε H(t)) dWm (5.66)

which by comparing Riemann and Itô integrals, forces the condition

Y l(eε H(t)) = 0 (5.67)
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for l = 1, M . Differentiating (5.67) with respect to ε at ε = 0, gives rise to the following temporal infinitesimal
condition

Y l(τ) = 0, (5.68)

which is a more generalized version of the condition by Ünal [3] for one-dimensional first-order Itô SODEs. In
actual fact, we have derived a random time change formula, where

t =

Z t

Γ
“
eε H(s)

”
ds (5.69)

and by applying the probabilistic invariance condition

EQ
ˆ
dt(t, ω)

˜
= dt(t, ω) (5.70)

on the transformed time index, which is automatically satisfied by the original differential time index, we get

Y l(eε H(t)) = 0 (5.71)

being re-enforced and we also have the following deduction

Γ
“
eε H(t)

”
= Constant. (5.72)

The finite transformation of the Wiener process is given as

dW(t, ω) =

Z t

Y l(eε H(w)) dWl(s, ω), (5.73)

where

MX

r=1

Y r(eε H(wl))Y
r(eε H(wm)) = δl

mΓ(eε H(t)). (5.74)

Differentiating (5.74) with respect to ε gives

MX

r=1

Y r(wl)Y
r(γm)) +

MX

r=1

Y r(wm)Y r(γl)) + O(ε) = δl
mΓ(τ) + O(ε). (5.75)

which simplifies further as

Y l(wl)Y
l(γm)) + Y m(wm)Y m(γl)) + O(ε) = δl

mΓ(τ) + O(ε), (5.76)

since Y r(wl) = δr
l .

Equation (5.76) evaluated at ε = 0 simply is

Y l(γm) + Y m(γl) = δl
mΓ(τ). (5.77)

The case where l #= m naturally leads to an antisymmetric matrix which is a generalized version of the point
transformation antisymmetric marix, B which was defined by Gaeta [7] for first-order multi-dimensional Itô
SODEs.
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5.5 Form Invariance of the nth-order Spatial Process

In order to find a similar condition to that of (3.17) for nth-order Itô SODEs, that ensures the recovery of the
invariance preserving finite transformations from the infinitesimal transformations, we need the following form
invariant argument,

dX
(n−1)

(t, ω) = f
“
X (n−1)

(t, ω), t
”

dt + G
“
X (n−1)

(t, ω), t
”

dW(t, ω), (5.78)

where, the transformed drift component is

f
“
X (n−1)

(t, ω), t
”

= eεH(f), (5.79)

and the transformed diffusion component is given by

G
“
X (n−1)

(t, ω), t
”

= eεH(G). (5.80)

If we now expand the drift component of (5.78), we get

f
“
X (n−1)

(t, ω), t
”

dt =

(
f(t, X (n−1)(t)) + ε (Γ(H(t)) + H) f(t, X (n−1)(t))

+
∞X

k=2

εk

k!

 
(Γ(H(t)) + H)k f(t, X (n−1)(t))

+
k−2X

j=0

 
k

k − j

!
Hj(f(t, X (n−1)(t)))

“
Γ(Hk−j(t)) − [Γ(H(t))]k−j

”!)
dt.

(5.81)

The equations (2.23) and (5.81) are superficially identical, because the operators used here and in chapter one
are different.

The following condition is needed to ensure the recovery of the finite transformations from the infinitesimal
transformations

eε Γ(H(t))(t, X (n−1)(t)) = Γ
“
eε H(t)(t, X (n−1)(t))

”
. (5.82)

This condition ensures that the higher order terms depend solely on the first order term associated with O(ε).
All the order terms contribute the construction of the finite transformations; the zeroth and first order term,
contribute towards the construction of the infinitesimal transformations. This also forces the instantaneous drift
coefficient of the temporal infinitesimal to be a constant, which was demonstrated in the first chapter, i.e.

Γ(τ) = C, where C is an arbitrary constant. (5.83)

Condition (5.82), also simplifies (5.69), to

W(t, ω) =

Z t MX

m=1

Y meεH(w)dWm(s, ω). (5.84)

where

MX

r=1

Y r(eεH(wl))(t, ω)Y r(eεH(wm))(t, ω) = δl
meεΓ(H(t)). (5.85)
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Thus expanding the diffusion component of (5.78) gives

MX

l=1

Gl
j

`
X(t, ω), t

´
dW l(t, ω) =

MX

l=1

Gl
j dWl + ε

0

@
MX

l=1

H(Gl
j) dWl +

MX

l,m=1

Gl
j Y m(H(wl))dWm

1

A

+
X

k=2

εk

k!

 
kX

r=0

 
k
r

!
Hk−r(Gl

j) Y m(Hr(wl))dWm

!
, (5.86)

where

Hk(Gl
j) Y m(H0(wl))dWm = Hk(Gl

j) Y m(wl)dWm = Hk(Gl
j) dWl. (5.87)

5.5.1 Generalized Prolongation Formulae

All that remains to be derived is the prolongation formulae. We use form invariance for the lower order spatial
derivative processes, i.e.

dX
(r)
j (t) = X

(r+1)
j (t)dt, j = 1, N and r = 1, (n− 2)

which simplifies to

dX
(r)
j (t) = X(r+1)

j dt +

 ∞X

k=1

εk

k!

„
(Γ(H(t)) + H)k x(r+1)

j

«!
(t, ω) dt (5.88)

with the use of the relation (5.82). The Itô SODEs associated with the transformation of the rth-order spatial
transformation is

dX
(r)
j (t) = dX(r)

j (t) + ε
“
Γ(ξ[r]

j )(t, ω) dt + Y l(ξ[r]
j )(t, ω) dWl(t)

”

+
∞X

k=2

εk

k!

 
Γ
“
Hk
“

x(r+1)
j

””
(t, ω)dt + Y l

“
Hk
“

x(r+1)
j

””
(t, ω)dWl

!
, (5.89)

which on comparison with (5.88) with respect to the Riemann and Itô integrals gives the following relations

Γ
“
Hk
“

x(r+1)
j

””
= (Γ(H(t)) + H)k x(r+1)

j , for each r = 1, (n− 2) and j = 1, N (5.90)

where k = 1,∞, and

Y l
“

Hk
“

x(r+1)
j

””
= 0, for each r = 1, (n− 2); l = 1, M and j = 1, N . (5.91)

where l = 1, M . The differentiation of both equations (5.88) and (5.89) with respect to ε at ε = 0, gives rise to
the following determining equations for the prolonged spatial infinitesimals

Γ(ξ[r]
j ) = (Γ(H(t)) + H) x(r+1)

j , (5.92)

which is a generalized prolongation formula and the remaining determining equation is

Y l
“

ξ[r]
j

”
= 0, for each r = 1, (n− 2); l = 1, M and j = 1, N . (5.93)
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In summary we have the following determining equations for multi-dimensional generalized nth-order SODEs

Γ(ξ[n−1]
j ) =

“
Γ(H(t)) + H [n−1]

”
fj (5.94)

Y l(ξ[n−1]
j ) = H(Gl

j) +
MX

m=1

Gm
j Y l(H(wm)) (5.95)

Γ(τ) = Constant (5.96)

Y l(τ) = 0 (5.97)

Γ(γ) = 0 (5.98)

Y l(γm) + Y m(γl) = δl
mΓ(τ) (5.99)

Γ(ξ[r]
j ) =

“
Γ(H(t)) + H [r]

”
x(r+1)

j (5.100)

and

Y l
“

ξ[r]
j

”
= 0, (5.101)

where r ≤ n− 2, r ∈ N.

(5.102)

In our first example, we consider point symmetries only.
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Example 5.1.

Consider the mass-spring linear oscillator response to random excitation (see [2])

dẊ = −ω2Xdt + σdW (5.103)

dX = Ẋdt (5.104)

which is associated with the following set of determining equations

− ω2Γ1(τ) + H(−ω2x)− Γ1(ξ
[1]) = 0, (5.105)

H(σ) +
1
2
σΓ1(τ)− Y1(ξ

[1]) = 0 (5.106)

with the extra conditions

σ
∂ξ
∂ẋ

= 0 (5.107)

σ
∂τ
∂ẋ

= 0 (5.108)

which means that τ(t, x, ẋ) = a(t, x) and ξ(t, x) = c(t, x) , where a(t, x) and c(t, x) are arbitrary functions. We
use this and the fact that ω and σ are constants to get

− ω2xΓ1(a(t, x))− ω2c(t, x)− Γ1(ξ
[1]) = 0, (5.109)

1
2
σΓ1(a(t, x))− Y1(ξ

[1]) = 0 (5.110)

which expands to

− ω2x

„
ȧ(t, x) + ẋ

∂a(t, x)
∂x

«
− ω2c(t, x)−

„
∂ξ[1]

∂t
− ω2x

∂ξ[1]

∂ẋ
+

σ2

2
∂2ξ[1]

∂ẋ2
+ ẋ

∂ξ[1]

∂x

«
= 0, (5.111)

σ
2

„
ȧ(t, x) + ẋ

∂a(t, x)
∂x

«
−
„

σ
∂ξ[1]

∂ẋ

«
= 0 (5.112)

we now find ξ[1] in terms of a(t, x) and c(t, x) by using (5.92) to get

ξ[1] = ċ(t, x) + ẋ
∂c(t, x)

∂x
−
„

ȧ(t, x) + ẋ
∂a(t, x)

∂x

«
ẋ (5.113)

substituting (5.113) into (5.111) gives

− ω2x
`
ȧ(t, x) + ẋa′(t, x)

´
− ω2c(t, x)−

„
c̈(t, x) + ẍc′(t, x) + ẋċ′(t, x)−

`
ä(t, x) + ẍa′(t, x)

+ẋȧ′(t, x)
´
ẋ− ẍ

`
ȧ(t, x) + ẋa′(t, x)

´
− ω2x

`
c′(t, x)− ȧ(t, x)− 2ẋa′(t, x)

´

+
σ2

2

`
−2a′(t, x)

´
+ ẋ

`
ċ′(t, x) + ẋc′′(t, x)

´
−
`
ȧ′(t, x) + ẋa′′(t, x)

´
ẋ

«
= 0 (5.114)

σ
2

`
ȧ(t, x) + ẋa′(t, x)

´
− σ

`
c′(t, x)− ȧ(t, x)− 2ẋa′(t, x)

´
= 0 (5.115)

where ′ denotes the partial derivative with respect to the spatial variable x. From (5.115) we find that τ is a
constant and that c(t, x) is a linear function of the spatial coordinate. This simplifes (5.114) to

− ω2c(t, x)−
„

c̈(t, x) + ẍc′(t, x) + ẋċ′(t, x)− ω2x
`
c′(t, x)

´
+ ẋ

`
ċ′(t, x) + ẋc′′(t, x)

´«
= 0, (5.116)

which implies that

c(t, x) = c(t). (5.117)
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The consequences of which lead to the following

c̈(t) + ω2c(t) = 0. (5.118)

This solves as

c(t) = c2 cos ωt + c3 sin ωt. (5.119)

Thus our symmetries are

τ = c1 (5.120)

and

ξ = c2 cos ωt + c3 sin ωt. (5.121)

In the work by Wafo Soh and Mahomed [2], cases were analyzed concerning ω. When ω = 0 the symmetry
infinitesimals they found were

τ = c1t + c2, (5.122)

and

ξ = c1 x + c3t + c4, (5.123)

thus arriving at the symmetries

H1 =
∂
∂t

, (5.124)

H2 =
∂
∂x

, (5.125)

H3 = t
∂
∂x

, (5.126)

H4 = t
∂
∂t

+ x
∂
∂x

. (5.127)

Next if ω #= 0 the symmetries are consistent with the symmetries we found, i.e.

τ(t) = c2, (5.128)

ξ(t) = c3 cos ωt + c4 sin ωt, (5.129)

which gives

H ′′
1 =

∂
∂t

, (5.130)

H ′′
2 = cos ωt

∂
∂x

, (5.131)

H ′′
3 = sin ωt

∂
∂x

. (5.132)

We investigate what form invariance implies for this example. For the case ω = 0 by Wafo Soh and Mahomed [2]
a trivial symmetry H3 gives the following prolonged spatial infinitesimal as

ξ[1](t, x) = Γ(t)− ẋΓ(0) = 1, (5.133)

thus as a result

dẋ
dε

= 1 (5.134)
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which implies that

ẋ = ẋ + ε. (5.135)

The spatial infinitesimal satisifies

dx
dε

= t, (5.136)

since t = t, which furnishes

x = x + ε t (5.137)

which means that the Itô SODE associated with these group transformations is respectively

dẊ = dẊ = σ dW (5.138)

dX = Γ(x + ε t)dt + Y (x + ε t)dW

= (ẋ + ε) dt

= Ẋ dt, (5.139)

which is not consistently maintaining form invariance. The most non-trivial symmetry for the case ω = 0 by
Wafo Soh and Mahomed [2], is H4. The prolonged spatial infinitesimal is thus

ξ[1](t, x) = Γ(x)− ẋΓ(t) = 0. (5.140)

As a result, we have

dẋ
dε

= 0 (5.141)

which implies that

ẋ = ẋ. (5.142)

The spatial infinitesimal is gives rise the following relation

dx
dε

= x (5.143)

which furnishes

x = x eε. (5.144)

A similar procedure gives

t = t eε (5.145)

and the random time change formula gives

dW = e
1
2 εdW. (5.146)

The Itô SODEs associated with the transforms above are respectively given as

dẊ = dẊ = −ω2 x dt + σ dW (5.147)

= σ dW since ω = 0. (5.148)

dX = Γ(x eε)dt + Y (x eε)dW

= ẋeε(t, ω)dt = Ẋ dt (5.149)
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since

dt = Γ(t eε) dt + Y (t eε)dW = eε dt, (5.150)

hence form invariance is absent or inconsistent. A non-trivial symmetry for the case ω #= 0, is H ′′
2 . The prolonged

spatial infinitesimal is therefore

ξ[1](t, x) = Γ(cos (ω t))− ẋΓ(0) = −ω sin (ω t) (5.151)

As a consequence, we have

dẋ
dε

= −ω sin (ω t) (5.152)

since t = t, which implies that

ẋ = ẋ− ε ω sin (ω t). (5.153)

The spatial infinitesimal gives rise to the following relation

dx
dε

= cos (ω t) (5.154)

which produces

x = x + ε cos (ω t). (5.155)

The Itô SODEs associated with the transforms above are respectively given as

dẋ = Γ(ẋ− ε ω sin (ω t))dt + Y (ẋ− ε ω sin (ω t))dW

= −ω2 ( X + ε cos (ω t)) dt + (σ) dW (5.156)

= −ω2 X dt + (σ) dW (5.157)

dX = Γ(X + ε cos (ω t))dt + Y (x + ε cos (ω t))dW

= (ẋ− εω sin (ω t)) (t, ω)dt (5.158)

= Ẋ(t, ω) dt, (5.159)

since

dt = Γ(t) dt + Y (t)dW = dt (5.160)

and

dW = dW. (5.161)

Thus form invariance is maintained by the finite transformations in this instance.

5.5.2 Revisiting the Canonical Forms for second-order Itô SODEs

The following representations are used in conjunction with the original table given by Wafo Soh and Mahomed
[2]. We let

p = ∂/∂t, q = ∂/∂x and r = ∂/∂w

105



5.5.3 Table 3

Algebra Basis Operators Representative Equations

L2 H0 = q, H1 = t q dẊ = f(t) dt + g(t) dW

L2 H0 = p, H1 = q dẊ = f(ẋ) dt + g(ẋ) dW

L2 H0 = q, H1 = x q dẊ = f(t)ẋ dt + g(t)ẋ dW

L2 H0 = q, H1 = t p + x q dẊ = t−1f(ẋ) dt + t−
1
2 g(ẋ) dW

The introduction of ‘W-symmetries’ gives rise to at least one new symmetry, as seen below.

5.5.4 Table 4

Algebra Basis Operators Representative Equations

L3 H0 = q, H1 = t q, H2 = r dẊ = f(t) dt + g(t) dW

L3 H0 = p, H1 = q, H2 = r dẊ = f(ẋ) dt + g(ẋ) dW

L3 H0 = q, H1 = x q, H2 = r dẊ = f(t)ẋ dt + g(t)ẋ dW

L3 H0 = q, H1 = t p + x q + 1
2 r, H2 = r dẊ = t−1f(ẋ) dt + t−

1
2 g(ẋ) dW

Example 5.2.

Consider the following 2-dimensional version of a mass-spring linear oscillator response to random excitation (see
[2]), without ‘W-symmetries’

dẊ(t) = −ΩX(t)dt + ΞdW(t) (5.162)

dX = Ẋdt (5.163)

where X(t) =

»
X1(t)
X2(t)

–
, Ω =

»
ω2

1 0
0 ω2

2

–
and Ξ =

»
σ11 0
0 0

–
(5.164)

which is associated with the following set of determining equations

Γ(ξ1
[1]) = −ω2

1x1Γ(τ) + H(−ω2
1x1), (5.165)

Y 1(ξ1
[1]) = H(σ11) +

1
2
σ11Γ(τ),

which becomes

Y 1(ξ1
[1]) =

1
2
σ11Γ(τ), (5.166)

Γ(ξ2
[1]) = −ω2

2x2Γ(τ) + H(−ω2
2x2), (5.167)

Y 1(ξ2
[1]) = 0, (5.168)

with the extra conditions

σ11
∂ξ1

∂ẋ1
= 0, (5.169)

σ11
∂ξ2

∂ẋ1
= 0 (5.170)

and

σ11
∂τ
∂ẋ1

= 0, (5.171)

which means that τ(t,x, ẋ) = a(t,x, ẋ2), ξ1(t,x, ẋ) = c1(t,x, ẋ2), ξ2(t,x, ẋ) = c2(t,x, ẋ2) and ξ2
[1](t,x, ẋ2),

where a, c1 and c2 are arbitrary functions. We use the fact that the instantaneous drift of the temporal infinitesimal
has to be constant and the fact that Ω and Ξ are matrices comprised of only constants to get

Γ(τ) = c0 (5.172)
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which expands to

∂a
∂t
− ω2 x2

∂a
∂ẋ2

+ ẋ1
∂a
∂x1

+ ẋ2
∂a
∂x2

= c0. (5.173)

The use of comparison by coefficients of ẋ1 gives us the following relations

∂a
∂x1

= 0 (5.174)

and

∂a
∂t
− ω2 x2

∂a
∂ẋ2

+ ẋ2
∂a
∂x2

= c0. (5.175)

Hence we have that the temporal infinitesimal evolves to the following function

τ = F0

„
ẋ2

2 + ω2
2 x2

2

2

«
+ c0 t + a0. (5.176)

The determining equations (5.165), (5.166) and (5.167) thus become

∂ξ1
[1]

∂t
− ω2

1 x1
∂ξ1

[1]

∂ẋ1
− ω2

1 x2
∂ξ1

[1]

∂ẋ2
+

σ2
11

2
∂ξ1

[1]

∂ẋ2
1

+ ẋ1
∂ξ1

[1]

∂x1
+ ẋ2

∂ξ1
[1]

∂x2
= −ω2

1x1 c0 − ω2
1ξ1, (5.177)

∂ξ1
[1]

∂ẋ1
=

1
2

c0, (5.178)

∂ξ2
[1]

∂t
− ω2

1 x1
∂ξ2

[1]

∂ẋ1
− ω2

1 x2
∂ξ2

[1]

∂ẋ2
+

σ2
11

2
∂ξ2

[1]

∂ẋ2
1

+ ẋ1
∂ξ2

[1]

∂x1
+ ẋ2

∂ξ2
[1]

∂x2
= −ω2

2x2 c0 − ω2
2ξ2. (5.179)

The determining equations (5.165) and (5.167) simplify to

∂ξ1
[1]

∂t
− ω2

2 x2
∂ξ1

[1]

∂ẋ2
+ ẋ1

∂ξ1
[1]

∂x1
+ ẋ2

∂ξ1
[1]

∂x2
= −1

2
ω2

1x1 c0 − ω2
1ξ1, (5.180)

∂ξ2
[1]

∂t
− ω2

2 x2
∂ξ2

[1]

∂ẋ2
+ ẋ1

∂ξ2
[1]

∂x1
+ ẋ2

∂ξ2
[1]

∂x2
= −ω2

2x2 c0 − ω2
2ξ2. (5.181)

From (5.181) we have that

∂ξ2
[1]

∂x1
= 0 (5.182)

by using comparison of coefficients with respect to ẋ1 and the fact that ξ2
[1](t,x, ẋ2), which implies that

ξ2
[1](t,x, ẋ2) = ξ2

[1](t, x2, ẋ2). (5.183)

This simplifies (5.181) further

∂ξ2
[1]

∂t
− ω2 x2

∂ξ2
[1]

∂ẋ2
+ ẋ2

∂ξ2
[1]

∂x2
= −ω2

2(x2 c0 + ξ2). (5.184)

By using the prolongation formula (5.92) we have

ξ1
[1] =

∂c1

∂t
− ω2

2 x2
∂c1

∂ẋ2
+ ẋ1

∂c1

∂x1
+ ẋ2

∂c1

∂x2
− c0 ẋ1. (5.185)
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We also have the relation (5.178) which forces

c1 =
3
2
c0 x1 + c1(t, x2, ẋ). (5.186)

Thus the first prolonged spatial infinitesimal becomes

ξ1
[1] =

∂c1

∂t
− ω2

2 x2
∂c1

∂ẋ2
+ ẋ1

1
2
c0 + ẋ2

∂c1

∂x2
. (5.187)

Therefore we have the following

∂ξ1
[1]

∂t
=

∂2c1

∂t2
− ω2

2 ẋ2
∂c1

∂ẋ2
− ω2 x2

∂2c1

∂ẋ2∂t
+ ẍ1

1
2
c0 + ẋ1

∂2c1

∂x1∂t
+ ẍ2

∂c1

∂x2
+ ẋ2

∂2c1

∂x2∂t
, (5.188)

∂ξ1
[1]

∂ẋ2
=

∂2c1

∂t∂ẋ2
− ω2

2 x2
∂2c1

∂ẋ2
2

+
∂c1

∂x2
+ ẋ2

∂2c1

∂x2∂ẋ2
, (5.189)

∂ξ1
[1]

∂x1
= 0, (5.190)

and

∂ξ1
[1]

∂x2
=

∂2c1

∂t∂x2
− ω2

2
∂c1

∂ẋ2
− ω2 x2

∂2c1

∂ẋ2∂x2
+ ẋ2

∂2c1

∂x2
2

. (5.191)

Using (5.188), (5.189), (5.190) and (5.191) the equation (5.180) becomes

(5.192)

∂2c1

∂t2
− ω2

2 ẋ2
∂c1

∂ẋ2
− ω2

2 x2
∂2c1

∂ẋ2∂t
+ ẍ2

∂c1

∂x2
+ ẋ2

∂2c1

∂x2∂t
− 1

2
c0 ẍ1 − ω2

2 x2
∂2c1

∂t∂ẋ2

+ ω4 x2
2
∂2c1

∂ẋ2
2

− ω2
2 x2

∂2c1

∂x2∂t
− ω2

2 x2 ẋ2
∂2c1

∂x2∂ẋ2
+

+ ẋ2
∂2c1

∂t∂x2
− ω2

2 ẋ2
∂c1

∂ẋ2

− ω2 x2 ẋ2
∂2c1

∂ẋ2∂x2
+ ẋ2

2
∂2c1

∂x2
2

= −ω2
1

„
1
2
x1 c0 +

3
2
c0 x1 + c1(t, x2, ẋ)

«
. (5.193)

Comparison of coefficients with respect ẍ1 leads to c0 being zero, i.e.

c1(t, x, ẋ2) = c1(t, x2, ẋ2). (5.194)

This leads to the following simplification of (5.193)

∂2c1

∂t2
− ω2

2 ẋ2
∂c1

∂ẋ2
− ω2

2 x2
∂2c1

∂ẋ2∂t
+ ẍ2

∂c1

∂x2
+ ẋ2

∂2c1

∂x2∂t
− ω2

2 x2
∂2c1

∂t∂ẋ2

+ ω4
2 x2

2
∂2c1

∂ẋ2
2

− ω2
2 x2

∂2c1

∂x2∂t
− ω2

2 x2 ẋ2
∂2c1

∂x2∂ẋ2
+ ẋ2

∂2c1

∂t∂x2
− ω2

2 ẋ2
∂c1

∂ẋ2

− ω2 x2 ẋ2
∂2c1

∂ẋ2∂x2
+ ẋ2

2
∂2c1

∂x2
2

= −ω2
1 c1(t, x2, ẋ2). (5.195)

Comparison of coefficients with respect to ẍ2, gives

∂c1

∂x2
= 0, (5.196)
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which implies that c1(t, x2, ẋ2) = c1(t, ẋ2). This simplifies equation (5.195), to

∂2c1

∂t2
− 2 ω2

2 ẋ2
∂c1

∂ẋ2
− 2 ω2

2 x2
∂2c1

∂ẋ2∂t
+ ω4

2 x2
2
∂2c1

∂ẋ2
2

= −ω2
1 c1(t, ẋ2). (5.197)

Comparison with respect to coefficients of x2
2 demands

c1 = c5(t) ẋ2 + c6(t). (5.198)

As a result, we have that equation (5.197) becomes

c̈5(t) ẋ2 + c̈6(t)− 2 ω2
2 ẋ2 c5(t)− 2 ω2

2 x2ċ5(t) = −ω2
1 (c5(t) ẋ2 + c6(t)) . (5.199)

Comparison of coefficients of x2 gives that c5(t) = a5 where a5 is constant. This changes equation (5.199) to

c̈6(t)− 2 ω2
2 ẋ2 a5 = −ω2

1 (a5 ẋ2 + c6(t)) . (5.200)

In the same vein as before we find that a5 is forced to be zero, which eventuates the following equation

c̈6(t) = −ω2
1 c6(t). (5.201)

Solving for c6 we find that

c6(t) = a6 sin (ω t) + a7 cos (ω t). (5.202)

Thus the first spatial infinitesimal is

ξ1 = a6 sin (ω t) + a7 cos (ω t) (5.203)

The prolongation formula (5.92) similarly gives

ξ2
[1](t, x2, ẋ2) =

∂c2

∂t
− ω2

2 x2
∂c2

∂ẋ2
+ ẋ2

∂c2

∂x2
. (5.204)

Thus we have the following

∂ξ2
[1]

∂t
=

∂2c2

∂t2
− ω2

2 ẋ2
∂c2

∂ẋ2
− ω2 x2

∂2c2

∂ẋ2∂t
+ ẍ2

∂c2

∂x2
+ ẋ2

∂2c2

∂x2∂t
, (5.205)

∂ξ2
[1]

∂ẋ2
=

∂2c2

∂t∂ẋ2
− ω2

2 x2
∂2c2

∂ẋ2
2

+
∂2c2

∂x2∂t
+ ẋ2

∂2c2

∂x2∂ẋ2
, (5.206)

and

∂ξ2
[1]

∂x2
=

∂2c2

∂t∂x2
− ω2

2
∂c2

∂ẋ2
− ω2 x2

∂2c2

∂ẋ2∂x2
+ ẋ2

∂2c2

∂x2
2

. (5.207)

Using (5.205), (5.206), and (5.207) the equation (5.184) becomes

∂2c2

∂t2
− ω2

2 ẋ2
∂c2

∂ẋ2
− ω2

2 x2
∂2c2

∂ẋ2∂t
+ ẍ2

∂c2

∂x2
+ ẋ2

∂2c2

∂x2∂t

− ω2
2 x2

∂2c2

∂t∂ẋ2
+ ω4

2 x2
2
∂2c2

∂ẋ2
2

− ω2
2 x2

∂2c2

∂x2∂t
− ω2

2 x2 ẋ2
∂2c2

∂x2∂ẋ2

ẋ2
∂2c2

∂t∂x2
− ω2

2 ẋ2
∂c2

∂ẋ2
− ω2

2 x2 ẋ2
∂2c2

∂ẋ2∂x2
+ ẋ2

2
∂2c2

∂x2
2

= −ω2
2(x2 c0 + c2). (5.208)
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Comparison of coefficients with respect ẍ2 leads to the fact that

c2(t, x, ẋ2) = c2(t, ẋ2). (5.209)

This leads to the following simplification of (5.208)

∂2c2

∂t2
− 2ω2

2 ẋ2
∂c2

∂ẋ2
− 2ω2

2 x2
∂2c2

∂ẋ2∂t
+ ω4

2 x2
2
∂2c2

∂ẋ2
2

= −ω2
2 c2(t, ẋ2). (5.210)

Comparing coefficients with respect to x2
2 we have that

∂2c2(t, ẋ2)
∂ẋ2

2

= 0 (5.211)

which implies that

c2 = c3(t) ẋ2 + c4(t). (5.212)

Thus equation (5.210) becomes

c̈3(t) ẋ2 + c̈4(t)− 2ω2
2 ẋ2 c3(t) − 2ω2

2 x2ċ3 = −ω2
2 (c3(t) ẋ2 + c4(t)). (5.213)

Comparison by coefficients with respect to x2 furnishes

c3 = a3, where a3 is an arbitrary constant. (5.214)

As a result we have

c̈4(t)− 2ω2
2 ẋ2 a3 = −ω2

2(a3 ẋ2 + c4(t)). (5.215)

Comparison by coefficients with respect to ẋ2 implies

(5.216)

a3 =
1
2
(a3 ) (5.217)

and

c̈4(t) = −ω2
2c4(t). (5.218)

Equation (5.217) forces a3 to be zero and solving for c4 gives

c4(t) = a4 cos (ω t) + a5 sin (ω t). (5.219)

Thus the second spatial infinitesimal is

ξ2 = a4 cos (ω t) + a5 sin (ω t). (5.220)

In summary we have the infinitesimals being

τ = F0

„
ẋ2

2 + ω2
2 x2

2

2

«
+ a0 (5.221)

ξ1 = a1 sin (ω t) + a2 cos (ω t) (5.222)

and

ξ2 = a3 cos (ω t) + a4 sin (ω t). (5.223)

Remarks. The generalized symmetry generators still form an algebra. Finding the generalized symmetry
transformations is more involved than the point symmetry transformations.
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5.6 Concluding Comments

Lie group analysis for nth-order Itô SODEs were first pursued in Wafo Soh and Mahomed [2]. Though it had only
been done for point symmetries, it has lead to many interesting findings in this chapter. We have shown that it
is possible to derive the prolongation formulas by using the philosophy of form invariance and we have been able
to extend the algebras using the idea of ‘W-symmetries’, which were first introduced by Gaeta [7].

It has been shown that with the introduction of ‘W-symmetries’, we are able to derive a random time change
formula for a multi-dimensional nth-order Itô SODEs. With the use of the philosophy that the properties of
the Wiener processes should remain invariant under the Lie group transformations, we derive conditions on the
temporal and lower level derivative spatial infinitesimals that are a generalization of the condition derived by
Ünal [3] for one-dimensional SODEs.

The key to the success of this chapter is the idea of coupling the M -dimensional Wiener process with the N -
dimensional nth-order spatial Itô process via one pair of operators as in the previous chapter. As a result the
determining equations of both point and generalised symmetries can be handled by operators in one generalised
set of determining equations. There is a wider scope for these operators. We intend to derive these results in an
alternative methodology; eventually applying it to approximate SODEs as in Ibragimov et al. [10].

Unlike ODEs, the contact and point transformations for SODEs are not equivalent. This is highlighted in the
example by Wafo Soh and Mahomed [2] above. By allowing the temporal infintesimal to be a function of the
highest order spatial derivative, Itô’s formula changes the characteristics of the system of determining equations
- giving a larger group of transformations. This is not the case if the temporal infinitesimal is assumed to be
projective.
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Chapter 6

Symmetries of nth Order
Multi-dimensional Approximate
Stochastic Ordinary Differential
Equations

The symmetries of high-order multi-dimensional SODEs are found using form invariance arguments on both the
instantaneous drift and diffusion properties of the SODEs. We then apply this work to a generalised approximation
analysis algorithm. The determining equations of SODEs are derived in an Itö calculus context.

6.1 Introduction

The modelling power of SODE has been applied to many diverse fields of research, from the modelling of turbulent
diffusion to neuronal activity in the brain. Models such as these are often influenced by more than one Wiener
process. In models such as these we assume these Wiener processes are independent of one another. As a result
of this increase in the number of Wiener processes affecting the model, the form of the Itô formula is slightly
different to the one used in Fredericks and Mahomed [6] and Fredericks and Mahomed [17]. The Itô formula is
able to relate an arbitrary sufficiently smooth function F (t, x) of time and space to a particular SODE, of which
it is a solution. This formula, however, needs the SODE of the spatial random process X(t, ω) which drives the
arbitrary function F (X(t, ω), ω). The application of SODE to an approximate analysis algorithm has been done
by Ibragimov et al. [10] for scalar SODEs of first-order. We extend this work for higher dimensions and order.
We derive a similar conditioning on the temporal infinitesimal τ as had been done by Ünal [3] and Fredericks and
Mahomed [17]. We introduce operators to write the determining equations in a neater form.
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6.2 Derivation of the Determining Equations

Consider

dX(β)(t) = f(t,X(t), Ẋ(t), . . . ,X(β)(t), Rµ)dt + G(t,X(t), Ẋ(t), . . . ,X(β)(t), Rν)dW(t)

(6.1)

dX(k)
i (t) = X(k+1)

i dt, (6.2)

X(0)
i (t) = Xi(t) (6.3)

for k = 0, 1, . . . , β−1. The function f is an approximate drift, which is an N vector-valued function, i = 1, . . . , N .
G is an N ×M matrix-valued function approximating diffusion and W(t) is an M -dimensional Wiener process.
Here f and G are defined as follows

f(t,x, ẋ, . . . ,x(β), Rµ) = εrµ
r

f(t,x, ẋ, . . . ,x(β)), (6.4)

where the repeated index r runs from 0 to Rµ, where Rµ is the largest positive integer such that µ Rµ < 2 ρ and

G(t,x, ẋ, . . . ,x(β), Rν) = εrν
r

G(t,x, ẋ, . . . ,x(β)) (6.5)

where the repeated index r runs from 0 to Rν ; Rν is the largest positive integer such that ν Rν < 2 ρ. The order
of accuracy to which we choose to work is ρ.

The spatial and temporal variables of our infinitesimal generator

H = τ(t,x, ẋ, . . . ,x(β), ρ)
∂
∂t

+ ξj(t,x, ẋ, . . . ,x(β), ρ)
∂

∂xj
,

are defined as

τ(t,x, ẋ, . . . ,x(β), ρ) = εr r
τ(t,x, ẋ, . . . ,x(β)), (6.6)

ξ(t,x, ẋ, . . . ,x(β), ρ) = εr
r

ξ(t,x, ẋ, . . . ,x(β)). (6.7)

The repeated index runs from 0 to ρ, since throughout this article we will be working to O(ερ). Using Itô’s formula
on the βth-prolongation of the spatial we get

dξ[β]
j =

 
∂ξj

[β]

∂t
+ fi

∂ξj
[β]

∂x(β)
i

+
1
2

MX

s = 1

Gs
i G

s
k

∂2ξj
[β]

∂x(β)
i ∂x(β)

k

+
β−1X

α=0

x(α+1)
k

∂ξj
[β]

∂x(α)
k

!
dt +

∂ξj
[β]

∂x(β)
i

Gk
i dWk(t)

=

 0

B@
1
2

MX

s=1

0

Gs
i

0

Gs
k

∂2
l

ξj

[β]

∂x(β)
i ∂x(β)

k

+
0

f i

∂ξl[β]
j

∂xi
+

∂
l

ξj

[β]

∂t
+

β−1X

α=0

x(α+1)
k

∂
l

ξj

[β]

∂x(α)
k

1

CA εl+ . . .

+
1
2

MX

s=1

p

Gs
i

p

Gs
k

∂2
l

ξj

[β]

∂x(β)
i ∂x(β)

k

εl + 2 p ν +
MX

s=1

r

Gs
i

p

Gs
k

∂2
l

ξj

[β]

∂x(β)
i ∂x(β)

k

εl + ν(r + p) +
q

f i

∂
l

ξj

[β]

∂x(β)
i

εl + µ q

1

CA dt + . . .

+
p

Gs
i
∂

l

ξj

[β]

∂x(β)
s

εl + ν p dW (i)

(6.8)
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and on the temporal infinitesimal

dτ =

 
∂τ
∂t

+ fi
∂τ

∂x(β)
i

+
1
2

MX

k = 1

Gk
i Gk

j
∂2τ

∂x(β)
i ∂x(β)

j

+
β−1X

α=0

x(α+1)
j

∂τ

∂x(α)
j

!
dt + Gi

j
∂τ

∂x(β)
i

dW (j)
t

=

  
1
2

MX

s=1

0

Gs
i

0

Gs
k

∂2 l
τ

∂x(β)
i ∂x(β)

k

+
0

f i

∂
l
τ

∂x(β)
i

+
∂

l
τ

∂t
+

β−1X

α=0

x(α+1)
k

∂
l
τ

∂x(β)
k

!
εl +

1
2

MX

s=1

p

Gs
i

p

Gs
k

∂2 l
τ

∂xi∂xk
εl + 2 p ν+ . . .

+
MX

s=1

r

Gs
i

p

Gs
k

∂2 l
τ

∂x(β)
i ∂x(β)

k

εl + ν(r + p) +
q

f i

∂
l
τ

∂x(β)
i

εl + µ q

!
dt + . . .

+
p

Gs
i

∂
l
τ

∂x(β)
s

εl + ν p dW (i).

(6.9)

The repeated indices r, p, q, and l run from 0 to Rν − 1, Rν , Rµ, and ρ respectivley in our repeated index
summation convention; r < p. Thus, by substitution we get

dX
(β)

= dX(β) + θ

 
∂ξ[β]

∂t
+ fi

∂ξ[β]

∂x(β)
i

+
1
2

MX

k = 1

Gk
i Gk

j
∂2ξ[β]

∂x(β)
i ∂x(β)

j

+
β−1X

α=0

x(α+1)
j

∂ξ[β]

∂x(α)
j

!
dt . . .

+θGi
j

∂ξ[β]

∂x(β)
i

dW (j)
t + O(θ2) (6.10)

dt = dt + θ

 
∂τ
∂t

+ fi
∂τ

∂x(β)
i

+
1
2

MX

k = 1

Gk
i Gk

j
∂2τ

∂x(β)
i ∂x(β)

j

+
β−1X

α=0

x(α+1)
j

∂τ

∂x(α)
j

!
dt + . . .

+θGi
j

∂τ

∂x(β)
i

dW (j)
t + O(θ2) (6.11)

dW t = dW (l)
t

 
1 +

θ
2

 
∂τ
∂t

+ fi
∂τ

∂x(β)
i

+
1
2

MX

k = 1

Gk
i Gk

j
∂2τ

∂x(β)
i ∂x(β)

j

+
β−1X

α=0

x(α+1)
j

∂τ

∂x(α)
j

!
+ . . .

+
θ
2
Gi

j
∂τ

∂x(β)
i

dW (j)
t

dt

!
+ O(θ2). (6.12)

The transformed time index should satisfy the following probabilistic condition which the original time differential
index satisfies, i.e.

EQ

»
dt(t, ω)

–
= dt(t, ω). (6.13)

As a result of this condition we have

Gi
j

∂τ

∂x(β)
i

= 0, (6.14)

which in turn gives

Gi
j

∂
l
τ

∂x(β)
i

= 0, (6.15)

which is true for all l from 0 to ρ and for all j from 1 to M . Thus (6.11) can now be written as

dt = dt + θ

 
∂τ
∂t

+ fi
∂τ

∂x(β)
i

+
1
2

MX

k = 1

Gk
i Gk
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The condition (6.13) also forces

Γ(τ) = Constant, (6.17)
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where
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The transformation of f and G under our prolongated infinitesimal generator H [β] is

fi(t, X̂ (β)) = fi(t,X (β)) + θH [β]fi(t,X (β)) + O(θ2) (6.19)
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where {X, Ẋ, . . . , X(β)} is represented by X (β) and the transformed set {X, Ẋ, . . . , X(β)} is represented by

X̂ (β). The repeated indices q, p, l and n run from 0 to Rµ, Rν , ρ and β respectively. Form invariance of dX
(β)

means the following for each of its components

dX
(β)
m = fm(t, X̂ (β))dt + Gm

k (t, X̂ (β))dW
k
t . (6.23)

Multiplying out the drift component gives

fm(t, X̂ (β))dt =

(
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“
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”
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In order for the finite transformations to keep invariance we need the following condition

eε Γ(τ) = Γ
“
eε H[β]

(t)
”

, (6.25)

which is automatically satisfied as a result of (6.17). The relation (6.25) ensures that the higher θ-terms depend
only on the O(1) and O(θ) terms. As a result may ignore the higher order terms and construct them later once
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we have solved for the infinitesimals. Carrying on with the expansion of (6.23) we have
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(6.26)

Thus by comparing the terms that follow the θ in (6.10) and (6.26) we have that
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(6.28)

which can be written as
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which we write as
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Following the same methodology as above we implement a form invariance argument on (6.2)

dX
(k)
i (t) = X
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i dt. (6.32)

Expanding (6.32) yields the following θ-order relations
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which in turn means
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6.3 Operators

We can now rewrite (6.29) and (6.31) as
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respectively, where
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Note that we cannot cancel out the terms εl and εl + ν p in (6.36) and (6.37) respectively, in order to simplify them.
These terms are a part of the summation convention implied by the repeated indices. These terms contribute to
the order of error as a result of this implication.

We now apply our generalised methodology for find approximate symmetries to the Itô system considered in
[10]. Our application should be consistent with the determining equations found in Ibragimov, Ünal, and Jogréus
[10].

Example 1

For their approximate SODEs, β = 0, µ = 1, ν = 1
2 , Rµ = 1, Rν = 1 and ρ = 1. Thus the diffusion

coefficient G, which was taken to be constant, and the drift f appeared as follows in the Itô system
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where the drift is a N × 1 vector and the constant diffusion coefficient is a matrix with dimension N ×M . The
determining equations are
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and
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Now since we are working to order ρ we get the following groups of determining equations which are exactly what
Ibragimov, Ünal, and Jogréus [10] get
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which we get by comparing coefficients with no ε’s
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which all share the same coefficient ε. In a similar fashion we get the following for
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ε and ε respectively

1
2

1

Gj
k

 
∂

0
τ

∂t
+

0

f i

∂
0
τ

∂xi

!
−

1

Gi
k

∂
0

ξj

∂xi
= 0, (6.49)
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Notice that we used (6.14), and the fact that G was constant to simplify the above.

Remark. Our application is consistent with that of [10] in this example.

Example 2

We consider

dẊ = −ω2 X dt + σ dW +
√

εXdW. (6.51)

By applying the condition (6.34) we have that

ξ = ξ(t, x) (6.52)

and that the prolongation formula (6.33) becomes

ξ[1] = D(ξ)− ẋD(τ), (6.53)

where D is the total time derivative operator. Our determining equations at ε0 are
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and
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and the final determining equation at ε
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Solving equations (6.54) and (6.55) for the infinitesimals give

0
τ = C0 (6.60)

0

ξ = C1 cos (ω t) + C2 sin (ω t). (6.61)

Therefore, equations (6.58) and (6.59) force

0

ξ = 0 (6.62)

and

1
τ = C3. (6.63)

From equation (6.56) we get

−ω2
1
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ξ) (6.64)

which solves as

1

ξ = C4 cos (ω t) + C5 sin (ω t). (6.65)

Therefore we have

ξ = ε (C4 cos (ω t) + C5 sin (ω t)) (6.66)

and

τ = C0 + εC3. (6.67)

6.4 Concluding Comments

In this more general approximate approach to higher order SODEs we derive the same conditioning as Ünal [3]
did without recourse to the Itô’s multiplication table for the transformed variables. Our results are consistent
with that of [10] in the first order case. However, we have a generalization to nth order SODEs. We also applied
our method to an example taken from [10] as well as another example.
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Chapter 7

Conservation Laws for SDEs

A methodology for constructing conserved quantities with Lie symmetry infinitesimals in an Itô integral context
is pursued. The basis of this construction relies on Lie bracket relations on both the instantaneous drift and
diffusion operators.

7.1 Introduction

Conserved quantities in this context implies an entity which is constant on all sample paths for all time indices;
their instantaneous drift and diffusion are zero. Trivially this implies that these conserved quantities are all
Martingales, i.e. their expected value in the future or present is their eventuated values in the past. Methods for
constructing conserved quantities of SODEs by using Lie transformations was analyzed for Stratonovich integral
based SODEs by Misawa [18] and Albeverio and Fei [19]. The conserved quantity construction of Misawa [18] and
Albeverio and Fei [19], preclude the necessity for Lagrangian or Hamiltonian theory. The philosophy followed,
highlighted the interplay between the infinitesimals of the symmetry operator, H, and the conserved quantity itself.

The Itô integral construction of the conserved quantities was later attempted by Ünal [3]. In this attempt
Ünal [3] uses both the FP equations and its associated SODEs to construct the conserved quantity.

Having reconciled the determining equations between Wafo Soh and Mahomed [2] and Ünal [3] via Fredericks and
Mahomed [5], we can focus on the conserved quantity analysis of [3]. In the first chapter, we showed that the
symmetries of the FP equations are projectable using the methodology of Mahomed and Momoniat [11]. This
projectable nature of the temporal infinitesimal was an anzats that Gaeta and Quintero [1] enforced on both the
FP equations and its associated SODEs.

The work of [3] shows that in the SODEs context, the temporal infinitesimal need not be a function of time
only. This implies that the Lie algebra generated by the SODEs can have non-projectable symmetries which will
not belong to the Lie algebra generated by the FP equation.

However, in constructing the conserved quantity for Itô integral based SODEs, [3] tries to combine the de-
termining equations associated with SODEs, which allows the said infinitesimal to be non-projectable, with the
determining equations based on the associated FP equation. However, in the first chapter we proved that the
symmetries of the FP equation have to be projectable. Thus we have that only projectable symmetries will satisfy
both FP equation and its associated SODEs, which is what was shown by Gaeta and Quintero [1].

In this chapter, we first revisit the conserved quantity results of Ünal [3] and juxtapose it with the new find-
ings from our earlier chapters. This scrutiny will be followed by an attempt to construct a conserved quantity
based upon the methodology of Albeverio and Fei [19] for Stratonovich integral SODEs.
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7.2 Conserved Quantities for Itô Integrals Revisited

The system determining equations belonging to the FP equations can be rewritten in terms of the instantaneous
drift and diffusion operators. The original equations are:

∂(τAik)
∂t

+

„
ξr

∂Aik

∂xr
−Air

∂ξk

∂xr
−Ark

∂ξi

∂xr

«
= 0 (7.1)

∂(ξi − τfi)
∂t

+ fr
∂ξi

∂xr
− ξr

∂fi

∂xr
−Ark

∂2ξi

∂xr∂xk
+ . . .

−2

„
Air

∂2ξk

∂xr∂xk
+ Aik

∂α2(t,x)
∂xk

«
= 0. (7.2)

„
∂
∂t

+ fi
∂

∂xi
−Aik

∂2

∂xi∂xk

«„
α2(t,x) +

∂ξr

∂xr

«
= 0, (7.3)

where

Aij = −1
2

MX

k=1

Gk
i Gk

j (7.4)

and the dependent variables infinitesimal Φ of the FP equation has the following relation

Φ = α1(t, x) + u α2(t, x) (7.5)

which is associated to the FP symmetry operator as

HFP = τ(t)
∂
∂t

+ ξj(t, x)
∂

∂xj
+ Φ(t, x, u)

∂
∂u

. (7.6)

Equation (7.1) can be written as

MX

l=1

Gl
iY

l(ξk) +
MX

l=1

Gl
kY l(ξi) = H

„ MX

l=1

Gl
iG

l
k

«
+

MX

l=1

Gl
iG

l
kΓ(τ). (7.7)

Since τ is a projectable in this context, i.e. function of time only, we have that Γ(τ) = ∂τ
∂t . Further simplification

gives

Y l(ξk) = H

„
Gl

k

«
+

1
2

Gl
k Γ(τ), for l = 1, M and k = 1, N . (7.8)

Equations (7.2) and (7.3) can likewise be written as

Γ(ξk) =

„
Γ(τ) + H

«
fk +

MX

l=1

Gl
kY l

„
α2(t, x) +

NX

r=1

∂ξr

∂xr

«
(7.9)

and

Γ

„
α2(t, x) +

NX

r=1

∂ξr

∂xr

«
= 0, (7.10)

respectively.

(7.11)

The projectable symmetries of the Itô SODEs satisfy the following determining equations

Y l(ξk) =

„
1
2

Γ(τ) + H

«
Gl

k, (7.12)

Γ(ξk) =

„
Γ(τ) + H

«
fk, (7.13)

Y l(τ) = 0 (7.14)
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and

Γ(τ) = Constant, (7.15)

for l = 1, M and k = 1, N . Since these projectable symmetries are a sub-algebra of that belonging to the FP
equation, we have that the determining equations associated with the FP equation become

Y l

„
α2(t, x) +

NX

r=1

∂ξr

∂xr

«
= 0 (7.16)

and

Γ

„
α2(t, x) +

NX

r=1

∂ξr

∂xr

«
= 0, (7.17)

for all l = 1, M . Thus for projectable symmetries of the Itô integral based SODEs we have that α2(t, x) +PN
r=1 ∂ξr/∂r is a conserved quantity because both its instantaneous drift and diffusion is zero. This is different

from what was derived in [3], where extra terms involving the spatial derivative of the temporal infinitesimal
survive, because of the preclusion of the fact that the temporal infinitesimal has to be projectable in the FP
equation context.

7.3 An Alternative Formulation

An alternative formulation for deriving conserved quantities from the Lie symmetries is adapted from Albeverio
and Fei [19], which derived conserved quantities from the Lie infinitesimals for Stratonovich based SODEs. This
allows us to use both the projectable and non-projectable Lie symmetries of the Itô SODEs.

We first need a relation between the instantaneous drift and diffusion operators and the the symmetry oper-
ator. The use of Lie brackets achieves this. The determining equations (7.12) and (7.13) based on the SODEs
can be written in terms of Lie brackets, i.e.

[Γ, H] (fk) = Γ(τ)Γ(fk) (7.18)

and

h
Y l, H

i
(Gl

k) =
1
2

Γ(τ)Y l(Gl
k) l = 1, M, (7.19)

where [Γ, H] = Γ(H) − H(Γ), and where condition (7.14) dictates that Y l(H) =
PN

k=1 Y l(ξk) ∂/∂xk for all
l = 1, M . However the drift and diffusion coefficients of the SODEs are arbitrary, so we have the following

[Γ, H] = Γ(τ)Γ (7.20)
h
Y l, H

i
=

1
2

Γ(τ)Y l l = 1, M. (7.21)

We next define I ≡ {I (t,x)| dI = 0, wherever (7.12) and (7.13) are satisfied}.

Theorem 7.1. If I ∈ I, i.e. satisfies Γ(I) = 0 and Y l(I) = 0, then H(I) ∈ I, where H satisfies (7.20) and
(7.21).
Proof: from (7.20)

Γ(H(I)) = (Γ(H)) (I) + H (Γ(I)) (7.22)

= [Γ, H] (I) + H(Γ(I)) (7.23)

= Γ(τ)Γ(I) (7.24)

= 0. (7.25)
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By looking at (7.21) we also get

Y l(H(I)) =
“
Y l(H)

”
(I) + H

“
Y l(I)

”
(7.26)

=
h
Y l, H

i
(I) + H(Y l(I)) (7.27)

=
1
2
Γ(τ)Y l(I) (7.28)

= 0. (7.29)

Let L denote the set of all H satisfying (7.20) and (7.21). Having established L we now proceed with a proof
that demonstrates that it is a complex Lie algebra.

Theorem 7.2. This set L forms a complex Lie algebra, i.e. for
H1, H2, and H3 ∈ L:

(a)a1H1 + a2H2 ∈ L ∀a1, a2 ∈ C\ {0} (7.30)

(b) [H1, H2] ∈ L (7.31)

(c) [H1 [H2, H3]] + [H2 [H3, H1]] + [H3 [H1, H2]] = 0 (7.32)

Proof: let H1, H2 ∈ L, i.e.,

[Γ, Hi] = Γ(τi)Γ (7.33)
h
Y l, Hi

i
=

1
2
Γ(τi)Y

l. (7.34)

for i = 1, 2.
(a)

[Γ, [a1H1 + a2H2]] = [Γ, a1H1] + [Γ, a2H2] (7.35)

= Γ(τ1)Γ + Γ(τ2)Γ (7.36)

= Γ (τ1 + τ2)Γ (7.37)

we also have
h
Y l, [a1H1 + a2H2]

i
=

h
Y l, a1H1

i
+
h
Y l, a2H2

i
(7.38)

=
1
2
Γ(τ1)Y

l +
1
2
Γ(τ2)Y

l (7.39)

=
1
2
Γ (τ1 + τ2) Y l (7.40)

(b)
By direct calculation
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[Γ, [H1, H2]] = [Γ, H1H2 −H2H1] (7.41)

= [Γ, H1H2]− [Γ, H2H1] (7.42)

= ΓH1H2 −H1H2Γ− ΓH2H1 + H2H1Γ (7.43)

= ΓH1H2 −H2ΓH1 −H1ΓH2 + H2H1Γ + . . . (7.44)

− ΓH2H1 + H1ΓH2 + H2ΓH1 −H1H2Γ (7.45)

= [ΓH1, H2]− [H1Γ, H2] + . . . (7.46)

− [ΓH2, H1] + [H2Γ, H1] (7.47)

= [[Γ, H1] , H2]− [[Γ, H2] , H1] (7.48)

= [Γ(τ1)Γ, H2]− [Γ(τ2)Γ, H1] (7.49)

= Γ(τ1)Γ (H2)−H2 (Γ(τ1)Γ) + . . . (7.50)

− Γ(τ2)Γ (H1) + H1 (Γ(τ2)Γ) (7.51)

= Γ(τ1) [Γ, H2]−H2 (Γ(τ1))Γ + . . . (7.52)

− Γ(τ2) [Γ, H1] + H1 (Γ(τ2))Γ (7.53)

= Γ(τ1)Γ(τ2)Γ− Γ(τ2)Γ(τ1)Γ + . . . (7.54)

− H2 (Γ(τ1))Γ + H1 (Γ(τ2))Γ (7.55)

= (H1 (Γ(τ2))−H2 (Γ(τ1)))Γ. (7.56)

A similar manipulation is used to get the following
h
Y l, [H1, H2]

i
=

hh
Y l, H1

i
, H2

i
−
hh

Y l, H2

i
, H1

i
(7.57)

=

»
1
2
Γ(τ1)Y

l, H2

–
−
»

1
2
Γ(τ2)Y

l, H1

–
(7.58)

=
1
2
Γ(τ1)Y

l (H2)−H2

„
1
2
Γ(τ1)Y

l

«
+ . . . (7.59)

− 1
2
Γ(τ2)Y

l (H1) + H1

„
1
2
Γ(τ2)Y

l

«
(7.60)

=
1
2
Γ(τ1)

h
Y l, H2

i
−H2

„
1
2
Γ(τ1)

«
Y l + . . . (7.61)

− 1
2
Γ(τ2)

h
Y l, H1

i
+ H1

„
1
2
Γ(τ2)

«
Y l (7.62)

=
1
4
Γ(τ1)Γ(τ2)Y

l − 1
4
Γ(τ2)Γ(τ1)Y

l + . . . (7.63)

− H2

„
1
2
Γ(τ1)

«
Y l + H1

„
1
2
Γ(τ2)

«
Y l (7.64)

=
1
2

(H1 (Γ(τ2))−H2 (Γ(τ1))) Y l. (7.65)

The proof for (c) is as follows

[H1 [H2, H3]] + [H2 [H3, H1]] + [H3 [H1, H2]] = (7.66)

= [H1, H2H3]− [H1, H3H2] + . . . (7.67)

+ [H2, H3H1]− [H2, H1H3] + . . . (7.68)

+ [H3, H1H2]− [H3, H2H1] (7.69)

= H1H2H3 −H2H3H1 −H1H3H2 + H2H3H1 + . . . (7.70)

+ H2H3H1 −H3H1H2 −H2H1H3 + H1H3H2 + . . . (7.71)

+ H3H1H2 −H1H2H3 −H3H2H1 + H2H1H3 (7.72)

= 0 (7.73)

Thus L is a complex Lie algebra.
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7.3.1 Conserved Quantities for First Order SODEs

From the previous work we have

[Γ, H] = Γ(τ)Γ, (7.74)

H(fj) = Γ(ξj)− Γ(τ)fj , (7.75)

and

Γ(τ) = Constant (7.76)

and we also have
h
Y l, H

i
=

1
2
Γ(τ)Y l, (7.77)

Y l(τ) = 0, (7.78)

Y l(Γ(τ)) = 0, (7.79)
h
Γ, Y l

i
(τ) = 0 (7.80)

for first order SODEs. We propose that for first order SODEs,

I =
NX

j=1

ξj + Γ(τ) + H(φ) (7.81)

is a conserved quantity, where φ (not yet specified) is at least twice continuous with respect to spacial and temporal
variables. This implies the following

Γ(I) = Γ (ξj) + Γ (H(φ)) + Γ (Γ(τ))

=
NX

j=1

(Γ(τ) + H) fj + Γ (Hφ)

which we get by using relation (7.75) and (7.76) for first order SODEs. Using (7.74) gives

Γ(I) =
NX

j=1

(Γ(τ) + H) fj + Γ(τ)Γ(φ) + HΓ(φ),

which simply means that

(H + Γ(τ))

 
NX

j=1

fj + Γ(φ)

!
= 0. (7.82)

The function φ is chosen such that
NX

j=1

fj + Γ(φ) = 0. (7.83)

Next we have to show that Y lI is zero. We have

Y lI = Y l

 
NX

j=1

ξj

!
+ Y l (Hφ) + Y l (Γ(τ))

=
NX

j=1

„
1
2
Γ(τ) + H

«
Gl

j +
1
2
Γ(τ)Y l(φ) + HY l(φ)

=

„
H +

1
2
Γ(τ)

« NX

j=1

Gl
j + Y l (φ)

!
.

This is because we proved that Y l (Γ(τ)) = 0. The main calculations above were arrived at in a similar manner
to what we did before only now using (7.77). In summary, this forces φ to be chosen such that

NX

j=1

fj + Γ(φ) = 0, (7.84)
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and

NX

j=1

Gl
j + Y l(φ) = 0. (7.85)

7.3.2 Conserved Quantities for nth-order SODEs

By defining an I ≡
˘

I
`
t,x, ẋ, ẍ, . . . ,x(β)

´˛̨
dI = 0, wherever (5.94) and (5.95) are satisfied

¯
we extend the method-

ology to nth-order SODEs. For nth-order SODEs, the temporal and spatial infinitesimals can be either point or
generalized Lie symmetries. The drift and diffusion coefficients, f and G, are respectively functions of at most
the highest order spatial process X(n)(t, ω). We have

h
Γ, H [n]

i
= Γ(τ)Γ, (7.86)

h
Y l, H [n]

i
=

1
2
Γ(τ)Y l, (7.87)

Γ(ξ[r]
j ) = ξ[r+1]

j + Γ(τ)x(r+1)
j , r = 0, . . . , n− 1, (7.88)

Γ(ξ[n]
j ) = H [n](fj) + Γ(τ)fj , (7.89)

Y l(ξ[n]
i ) =

„
H [n] +

1
2
Γ(τ)

«
Gi

j , (7.90)

2 Gi
lY

l(ξ[n]
j ) = H(Gi

kGk
j ) + Γ(τ)Gi

kGk
j , (7.91)

Γ(τ) = Constant (7.92)

Y l(τ) = 0, (7.93)

Y l(ξ[k]
j ) = 0, where k < n (7.94)

Y l(Γ(τ)) = 0, (7.95)
h
Γ, Y l

i
(τ) = 0. (7.96)

We construct the conserved quantity as

I =
NX

j=1

nX

r=0

ξ[r]
j + Γ(τ) + H (φ) . (7.97)

Again, φ will be defined later. Applying Γ on I we obtain

Γ(I) = Γ

„ NX

j=1

nX

r=0

ξ[r]
j

«
+ Γ (H (φ)) + Γ(Γ(τ))

=
NX

j=1

„
Γ(τ) + H [n]

«
fj +

NX

j=1

n−1X

r=0

„
Γ(τ) + H [r+1]

«
x(r+1)

j + Γ(τ)Γ(φ) + H(Γ(φ)),

which we get by using (7.89), (7.88), (7.86) and (7.92). This simplifies as

Γ(I) =

„
Γ(τ) + H [n]

«„ NX

j=1

fj +
NX

j=1

n−1X

r=0

x(r+1)
j + Γ(φ)

«

Thus we have to choose φ such that

NX

j=1

fj +
NX

j=1

n−1X

r=0

x(r+1)
j + Γ(φ) = 0.

Next we have to show that Y lI is zero:

Y lI = Y l

 
nX

r=0

ξ[r]
j + Γ(τ) + (Hφ)

!
(7.98)

=
NX

j=1

„
1
2
Γ(τ) + H [n]

«
Gl

j +
1
2
Γ(τ)Y l(φ) + H [n](Y l(φ)), (7.99)

127



which we get by implementing (7.90), (7.94), (7.87) and (7.92). In summary, this forces φ to be chosen such that

NX

j=1

fj +
NX

j=1

n−1X

r=0

x(r+1)
j + Γ(φ) = 0, (7.100)

and

NX

j=1

Gl
j + Y l(φ) = 0. (7.101)

7.3.3 Conserved Quantities based on the FP equation

Although we are limited to only projectable symmetries under the FP equation context, we can still derive some
interesting results. By considering only the projectable symmetries of the associated SODEs, we showed that the
FP determining equations simplify to

Γ

„
α2(t, x) +

NX

j=1

∂ξj

∂xj

«
= 0 (7.102)

and

Y l

„
α2(t, x) +

NX

j=1

∂ξj

∂xj

«
= 0. (7.103)

Focusing only on (7.102), we expand in the following way

Γ(α2) = −Γ(
NX

j=1

∂ξj

∂xj
) (7.104)

=
NX

j=1

»
− ∂

∂xj

„
Γ(ξj)

«
+

∂fk

∂xj

„
∂ξj

∂xk

«
− ∂Ars

∂xj

„
∂2ξj

∂xr xs

«–
(7.105)

=
NX

j=1

»
−ξi

∂2fj

∂xi xj
− ∂ξi

∂xj

∂fj

∂xi
+

∂fk

∂xj

„
∂ξj

∂xk

«
− ∂Ars

∂xj

„
∂2ξj

∂xr xs

«–
(7.106)

which we get by using (7.12) and the fact that the temporal infinitesimal is projectable, i.e. a function of time
only. Thus we have the following relation

Γ(α2) =
NX

j=1

»
−ξi

∂2fj

∂xi xj
− ∂Ars

∂xj

„
∂2ξj

∂xr xs

«–
. (7.107)

In a similar fashion we focus on (7.103) which we modify as follows

Y l

„
α2(t, x)

«
= Y l

„ NX

j=1

∂ξj

∂xj

«
(7.108)

=
NX

j=1

»
− ∂

∂xj

„
Y l(ξj)

«
+

∂Gl
k

∂xj

„
∂ξj

∂xk

«
(7.109)

=
NX

j=1

»
−ξi

∂2Gl
j

∂xi xj
− ∂ξi

∂xj

∂Gl
j

∂xi
+

∂Gl
k

∂xj

„
∂ξj

∂xk

«–
(7.110)
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which we get by using (7.13) and the fact that the temporal infinitesimal is projectable. Thus we have the
following

Y l

„
α2(t, x)

«
=

NX

j=1

»
−ξi

∂2Gl
j

∂xi xj

–
. (7.111)

If we can find an α2(t, x) such that (7.107) and (7.111) are satisfied, then we can use the projectable symmetries
of the SODEs to generate conserved quantities. Thus it is also possible to generate the conserved quantities from
the determining equations of the associated Fokker-Plank equations, but only for the case where τ(t), ξ(t,x) and
Φ(t,x, u), which is what [1] used as an ansatz for both the SODEs and the FP equations.

7.4 Example

In Ünal [3] it was stated that the temporal infinitesimal of the form

H = τ
∂
∂t

(7.112)

was a conserved quantity. This is not true. By analyzing the resulting determining equations we have that

Γ(τ)fj + τ
∂fj

∂t
= 0 (7.113)

and

1
2
Γ(τ)Gl

j + τ
∂Gl

j

∂t
= 0. (7.114)

In the concluding example in [3] we have the following SODEs

dX(t) = f dt + G dW (t), (7.115)

where f is the vector „
− 1

2X1(t)
− 1

2X2(t)

«
(7.116)

and G the vector „
−X2(t)

X1(t)

«
. (7.117)

In chapter 2 we found the following symmetries infinitesimals

τ(t,X(t)) = C0F0

 
X(t)22 + X(t)21

2

!
, (7.118)

ξ1(t,X(t)) = C1F1

 
X(t)22 + X(t)21

2

!
X(t)1 + C2F2

 
X(t)22 + X(t)21

2

!
X(t)2 (7.119)

and

ξ2(t,X(t)) = C1F1

 
X(t)22 + X(t)21

2

!
X(t)2 − C2F2

 
X(t)22 + X(t)21

2

!
X(t)1 (7.120)

Since the temporal infinitesimal is not projectable, it does not belong to sub-algebra of the FP equation. Thus
only the spatial infinitesimals are symmetries of the FP equation itself. The temporal infinitesimal in this case, is
a conserved quantity because the drift and diffusion coefficients are not functions of time and the instantaneous
drift of the temporal infinitesimal is zero, i.e. Γ(τ) = 0; thus the equations (7.113) and (7.114) are satisfied. We
now construct conserved quantities using both our alternate method and the FP associated method above.

129



7.4.1 Alternative Method

Considering equation (7.85), we have

Y (φ) = x2 − x1 (7.121)

which implies that

−x2
∂φ
∂x1

+ x1
∂φ
∂x2

= −x1 + x2, (7.122)

which easily solves as

φ = F3

 
X(t)22 + X(t)21

2

!
F4(t)− (X1(t) + X2(t)). (7.123)

Invoking relation (7.84) gives

F3

 
X(t)22 + X(t)21

2

!
Ḟ4(t) = 0 (7.124)

since Γ(F3

“
X(t)22+X(t)21

2

”
) = 0. This forces the following simplification

φ = F3

 
X(t)22 + X(t)21

2

!
− (X1(t) + X2(t)). (7.125)

The conserved quantity is constructed by utilizing the non-projectable temporal infinitesimal in this instance. By
invoking the projectable symmetries only, we now implement the FP associated conserved quantity construction.

7.4.2 FP associated conserved quantity construction

The conserved quantity is of the form

I = α2 +
2X

j=1

∂ξj

∂xj
. (7.126)

Equation (7.111) becomes

Y (α2) = 0, (7.127)

since G has linear components. Thus we have

α2 = F5 (u) F6(t), (7.128)

where

u =
X(t)22 + X(t)21

2
. (7.129)
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By bringing equation (7.107) into consideration we have

Γ(α2) = −∂A22

∂x1

∂2ξ1

∂2x2
− ∂A11

∂x2

∂2ξ2

∂2x1
(7.130)

where

−∂A11

∂x2

∂2ξ2

∂2x1
= −2 x1

`
C1 F ′′

1 (u) x1 x2
2 + C1 F ′

1(u) x1 + C2 F ′′
2 (u) x3

2 + 2C2 F ′
2(u) x2 + C2 F ′

2(u) x2

´
, (7.131)

and

−∂A22

∂x1

∂2ξ1

∂2x2
= −2 x2

`
C1 F ′′

1 (u) x2 x2
1 + C1 F ′

1(u) x2 − C2 F ′′
2 (u) x3

1 − 2C2 F ′
2(u) x1 − C2 F ′

2(u) x1

´
. (7.132)

Comparing coefficients of various combinations of the spatial variables which are independent of u, we get

F ′′
1 (u) = 0 (7.133)

which implies

F1(u) =
C1 u2

2
+ C2 u + C3 (7.134)

and

F ′′
2 (u) = 0 (7.135)

which results in a similar looking quadratic

F2(u) =
C4 u2

2
+ C5 u + C6. (7.136)

Thus we ultimately have

F5(u)Ḟ6(t) = −2C1

`
C2 u2 + C3 u

´
, (7.137)

which we can solve as

F5(u) = C2 u2 + C3 u (7.138)

and

F6(t) = −2 C1 t + C8. (7.139)

Eventually we can write our unknown variable α2 as

α2 = (C8 − 2 C1 t)
`
C2 u2 + C3 u

´
, (7.140)

which implies that our conserved quantity is

I = (C8 − 2 C1 t)
`
C2 u2 + C3 u

´
+ 2 C1

`
C2 u2 + C3 u

´
+ 2 C2 F2(u), (7.141)

since

∂ξ1

∂x1
= C1 F ′

1(u) x2
1 + C2 F2(u) + C2 F ′

2(u) x1 x2 (7.142)

and

∂ξ1

∂x1
= C1 F ′

1(u) x2
2 + C2 F2(u)− C2 F ′

2(u) x1 x2. (7.143)

Remark. The two methods yield two unrelated conserved quantities. Neither of the two have been found in the
past. It is also interesting to note that the last method further dictates the form of the arbitrary functions F1

and F2, which generate the two spatial infinitesimals.
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7.5 Conclusion

We have reconciled the conserved quantity analysis of Ünal [3] with the latest findings concerning the symmetries
of both the FP equations and its associated SODEs. We have shown two ways of constructing conserved quantities:
one based on the projectable symmetries of the SODEs and thus a sub-algebra of the FP equation and the other
method takes advantage of both the projectable and non-projectable symmetries of the SODEs alone. Both
methods preclude the necessity for a Hamiltonian or Lagrangian framework.
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Chapter 8

Conclusions

We have proved that the symmetry infinitesimals for the FP equation has to be projectable by using the work of
Mahomed and Momoniat [11]. We have also shown that the symmetry transformations for the SODE need not
be projective as those for the FP equation.

This body of work has successfully reconciled the work of Wafo Soh and Mahomed [2] and Ünal [3]. This means
that both works agree on the determining equations needed to furnish the spatial and temporal infinitesimals, i.e.

Γ(ξj) =

„
H + Γ(τ)

«
fj j = 1, N , (8.1)

Y l(ξj) =

„
H +

1
2
Γ(τ)

«
Gl

j l = 1, M (8.2)

and

Y l(τ) = 0, (8.3)

where

Γ =
∂
∂t

+ fj
∂

∂xj
+

MX

k=1

Gk
i Gk

j
∂

∂xi∂xj
(8.4)

and

Y l = Gl
j

∂
∂xj

, (8.5)

where N is the dimension of the spatial process and M is the dimension of the Wiener process.

A condition that allows the Lie transformation theory to be used in an Itô SODE context was also found

Γ(τ) = Constant. (8.6)

It ensured that the finite transformations are recoverable from the infinitesimal ones to preserve invariance.

With the works of Wafo Soh and Mahomed [2], Ünal [3] and Meleshko et al. [4] being reconciled, we extended
the Lie transformation theory to the Wiener process as well. This extension was based on the work of Gaeta
[7]. However, unlike the previous work of Gaeta and Quintero [1] and Gaeta [7], we preclude the condition that
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the symmetry infinitesimals need to be projective. This gave rise to larger dimension algebras. The determining
equations needed to produce our infinitesimals were

Γ(ξj) =

„
H + Γ(τ)

«
fj j = 1, N , (8.7)

Y l(ξj) =

„
H +

1
2
Γ(τ)

«
Gl

j l = 1, M, (8.8)

Γ(γl) = 0, (8.9)

Y l(γm) + Y m(γl) = δl
mΓ(τ) (8.10)

and

Y l(τ) = 0, (8.11)

where

Γ =
∂
∂t

+ fj
∂

∂xj
+

MX

k=1

Gk
i Gk

j
∂

∂xi∂xj
+

MX

k=1

δk
i δk

j
∂

∂wi∂wj
(8.12)

and

Y l = Gl
j

∂
∂xj

+ δl
j

∂
∂wj

. (8.13)

This was easily extended to higher order SDEs

Γ(ξ[n−1]
j ) =

„
H + Γ(τ)

«
fj j = 1, N , (8.14)

Y l(ξ[n−1]
j ) = H

“
Gl

j

”
+

MX

m=1

Gm
j Y l (γm) l = 1, M, (8.15)

Γ(γl) = 0, (8.16)

Y l(γm) + Y m(γl) = δl
mΓ(τ), (8.17)

Y l(τ) = 0, (8.18)

Γ(ξ[r]
j ) =

„
H + Γ(τ)

«
x(r+1)

j j = 1, N , (8.19)

and

Y l(ξ[r]
j ) = 0, r ≤ n− 2 (8.20)

where

Γ =
∂
∂t

+
NX

i=1

fi
∂

∂x(n−1)
i

+
1
2

NX

i,p=1

MX

k = 1

Gk
i Gk

p
∂2

∂x(n−1)
i ∂x(n−1)

p

+
NX

p=1

n−2X

α=0

∂

∂x(α)
p

x(α+1)
p +

1
2

MX

l=1

∂2

∂w2
l

(8.21)

and

Y l =
∂

∂wl
+

NX

i=1

Gl
i

∂[γ]

∂x(n−1)
i

. (8.22)

We then applied these results to approximate SODEs and to the construction of conserved quantities. The result
of these applications gave rise to new methods of constructing conserved quantities and we used an example from
Ünal [3] to demonstrate this.

Extending these results to numerical Monte Carlo integration techniques remains an open problem. This could
provide us with a method of implementing variance reduction schemes (see Kloeden and Platen [20]).
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[15] Zdzis*law Brzeźniak and Tomasz Zastawniak. Basic Stochastic Processes. Springer, 2002.

[16] W. R. Miles L. D. Carson and S. S. Stevens. Vision, Hearing and Aeronautical Design. Scientific Monthly,
56:446–451, 1943.

[17] E Fredericks and FM Mahomed. An alternative ‘W-symmetries’ approach to Lie point symmetries of scalar
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