
 CHAPTER 3  
 

METHODOLOGY 
 

 

3.1 SUMMARY 

The current study presents a simple methodology by combining different approaches and 

coping with missing (limited) hydrological data using the theories of entropy, artificial 

neural network (ANN) and expectation-maximization (EM) techniques. The entropy 

concept is known as a versatile tool. Hence, this concept is firstly used for quantifying 

information content of hydrological variables (e.g. rainfall or streamflow). The same 

concept (through the directional information transfer index, i.e. DIT) is used in the 

selection of base/subject gauge. Finally, the directional information transfer index is 

extended to the evaluation of the hydrological data interpolation (infilling) technique 

performance (i.e. ANN and EM techniques). Thus, the validity of these data infilling 

techniques with respect to the different gap durations can be defined through entropy 

concept. The results were discussed.  

 

The results from DIT values were crosschecked with other criteria such as statistical and 

graphical. Nonetheless, the DIT notion has the feature of being a non-dimensionally 

informational index. The notion of DIT could enable to compare data infilling techniques 

on different catchment areas. The data interpolation (infilling) techniques viz. artificial 

neural networks (ANNs) and expectation maximization EM techniques (e.g. existing 

methods applied and not yet applied in hydrology) and their new features have been also 

presented.  

 

The methodology in this study is simply expressed into a model named ENANNEX since 

entropy concept, artificial neural networks and expectation maximization techniques 

were used. The summary of the flow chart of the model is given in Figure 3.1. The details 

of the model will be given in the next section.  
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 The methodology of this study was applied to annual mean flow series; annual 

maximum flows, annual total rainfall; and 6-month flow series (means) or seasonal mean 

flows of selected catchments in the drainage region “Orange” of South Africa. A brief 

description of the data availability will be given at the end of this chapter.  

 

To arrive at the different objectives, the proposed model containing different modules 

performs the following tasks: 

 

- Checking whether the time-series of each gauging station is independent is 

performed. This eases the entropy calculations and the EM techniques as explained so far 

in the previous chapter.     

 

- Transforming of data (to follow the normality assumption), if necessary, using 

Box Cox transformation families, is done. This transformation makes possible the EM 

theory, which is easily developed for normal distributions. The normality test is carried 

out much easier for normal distributions than for others. If the original (raw) data are 

approximately normal, transformation is not necessary and one can move to next step.  

 

- Computing of marginal entropy for information contained in each gauging station 

is performed. The conditional entropy is computed to define the uncertainty remaining in 

one gauging station giving the information at the other. Combining the marginal entropy 

and the conditional entropy, the transinformation (T) or mutual information is defined. 

Therefore, the directional information transfer index (DIT) can be known. Thus, the 

determination of the base and the subject gauges within a station pair is based on the 

value of T (DIT). Hence, the station pair is selected if it satisfies the entropy criterion (i.e. 

its DIT value should be above some threshold value).         

 

- Applying EM and ANNs algorithms to fill in the missing data is performed.  The 

following techniques: standard EM, EM-with momentum (MEM1), Expectation 

constrained maximization (ECM1), Expectation Constrained Maximization-Either 

(ECME1). In this study, MEM2 and MEM3, which are the second version and the third 
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 version of MEM1 are also introduced respectively. The effect of the momentum term on 

ECM1 and ECME1 is also carried out. Thus ECM2, which is a second of ECM1 is used. 

ECME2 and ECME3, which are the second and the third versions of ECME1 are also 

formulated respectively.  For ANNs, the following algorithms are performed either in 

sequential or batch learning: standard backpropagation (BP) algorithm, BP with 

momentum (MBP), Variable Learning Rate (VLR), Generalized BP (GenerBP), Quick 

backpropagation (QBP), Golden Search BP (GoldSBP). In the BP technique, the Mac 

Laurin power series (order 1 and order 2 derivatives) are also used to approximate the 

different activation functions (e.g. sigmoid) in the hidden layer. Thus, McL1BP and 

McL2BP techniques, incorporating Mac Laurin power series order 1 and order 2 

derivatives respectively, are formulated as other versions of the standard BP.    

 

- Selection of the best technique to fill in the gaps is based on the value of T(DIT)  

between simulated and observed values. The DIT notion is clearly introduced in this 

study as a model selection criterion. The higher the value of T(DIT) the better the model. 

Some threshold value for DIT is set (e.g. the minimum amount of uncertainty that can be 

removed from the observed data series at the target gauge by applying a given technique). 

The technique is selected when its DIT is greater than (or equal to) this threshold value. 

The reduction in uncertainty at the target gauge (before and after infilling) as defined by 

Panu (1992) is extended, in this study, to cases of assessing flow simulation models. An 

illustration of this extension is given in Chapter 7.   
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Figure 3.1 Summary of ENANNEX model 
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 In order to crosscheck the results from entropy calculations, other statistical criteria such 

as mean square error of predictions (RMSE), relative mean error (RME), volumetric error 

(VE) are computed. To make the comparison fair, ANNs and EM are applied to the data 

after transformation, if necessary.  

 

The transformation back to the original data can be possible through the inverse of 

mathematical transformations. In case where this operation introduces biased (e.g. 

negative values), conclusions can still be drawn on transformed data.  

 

3.2 MODEL ASSUMPTIONS, SPECIFICATIONS AND JUSTIFICATIONS 

This thesis is dealing with the data “interpolation” or “infilling”, where data before and 

after the gaps are available. The missing data fall into a category where significant data 

are missing (e.g. consecutive observations). In this case, the missing data are considered 

important enough to deserve developing a technique that estimates them accurately as 

possible.  At the same time data gaps are too short to have significant damaging effect on 

the structure of the whole records (Elshorbagy et al., 2000a).  

 

Since the missing values under this category occur more often in developing countries in 

general, this category should be first the focus in this study. This case could happen as a 

result of interruption of measurements because of prolonged equipment failure, stopping 

the measurements at some stations for any raisons (e.g. budget limitations) and resuming 

them after some timed and accidental loss of data files. For example in South Africa, the 

overwhelming majority of gaps are caused by temporary absence of observers, the 

cessation of measurement or absence of observations prior to the commencement of 

measurements (Makhuvha et al., 1997a).  

 

Different situations will be taken into consideration, namely: 

(a) gaps with different durations; 

(b) gaps in different regimes; 

(c) gaps in different climatic zones; 
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 This consideration was necessary, because it is well known to model builders that 

hydrological models may fit the data points differently e.g. monthly data, seasons, 

annual, etc. 

 

The problem of missing data is analyzed here by exploiting the information transfer 

(through entropy approach) from nearby gauges. It is emphasized in this study that the 

techniques (i.e. EM and ANN techniques) used, assume that some records (rainfall or 

streamflow) are available. They are not designed to create a streamflow record where 

absolutely no record is available. The choice of these techniques depends on the available 

data (information), which is limited for developing countries in general. 

 

The following data interpolation (infilling) techniques were considered for the objectives 

of this study: 

-Standard BP (with its new features, for example McL1BP –Mac Laurin first order 

derivative BP and McL2BP- Mac Laurin second order derivative BP)   

-BP-with momentum (MBP) 

-Variable Learning Rate (VLR) 

-GenerBP (GenerBP) 

-Quick BP (QBP)  

-Standard EM  

-Momentum EM (MEM1) 

-Second version and third version of the Momentum EM (MEM2 and MEM3) 

-Expectation Conditional Maximization (ECM1) and its version ECM2 

-Expectation Constrained (conditional) Maximization-Either (ECME1) and its second 

version (ECME2) and third version (ECME3).  

 

The traditional approach is that records at a site are sometimes in-filled by exploiting 

inter-station correlation of streamflow with a base (control) station having a long-term 

record (Hirsch, 1979 and 1982; Elshorbagy et al. 2001). This method ignores gauged 

flows/rainfall at many other potentially important stations, which could be used for filling 
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 in some of the missing record. It is not always true that the short record should be 

considered as target station (Zucchini et al., 1984).  

  

The methodology here selects the base station(s) from among several in a region for 

filling in missing data, if its (they) directional information transfer index value(s) in (a) 

station pair(s) is (are) at least above some threshold value (entropy criterion).  

 

However, where interpolation or infilling or estimation of missing data is considered, 

minimizing the squared error (difference between estimated and true values) is the 

overriding objective as in Panu et al. (2000) and in Elshorbagy et al. (2000a). However, 

Panu (1992) emphasized that the intent of any infilling activity is to produce a time-series 

which, when considered as a whole, possesses statistical characteristics indistinguishable 

to those of historical records for the gauging station. Most importantly these statistics 

should be maintained for design-oriented purposes such as reservoir design, 

determination of reservoir operating policies (Makhuvha et al., 1997a, Zucchini et al. 

1984). Thus, this study does not neglect this aspect. The objective here is to estimate 

missing data (few consecutive observations) in a way that minimizes the error (difference 

between actual and estimated values), however the statistical requirements should be 

fulfilled.  

 

The EM theory is particularly simple and of useful interpretation when the complete data 

have a distribution from the regular exponential family (Dempster et al., 1977; Little et 

al., 1987). Specifically, the normal distribution is simple from its theoretical aspect 

(Makhuva et al., 1997 a, 1997 b; Little et al., 1987; Ibrahim, 1991). This particular form 

of distributions was the focus in this study. Moreover, the computations of entropy for 

multivariate normal distributions are simpler than for other types of distributions. It is 

also much easier to carry out the normality test in the case of multivariate distributions.    

 

The theory on multivariate normal distributions assumes the realizations (e.g. rainfall, 

streamflow) to be serially independent. The foregoing assumption is needed here to 

mainly avoid a bias that can arise if the gaps in the sequence of observations occur in 
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 runs. While this assumption should be checked in each instance, the methods (EM) to be 

used will not lead to nonsensical estimates even if the assumption is slightly violated 

(Makhuva et al., 1997a; Little et al., 1987, Dempster et al., 1977).  

 

Monthly stream flow/rainfall data may display large serial correlation; in that event, one 

may want to consider other flow regimes such as annual mean flows, maximum flows 

series, annual total rainfall. In the case of rainfall, it is well known that rainfall sequences 

are not serially independent. However, this serial dependence is generally both short-term 

and quite weak, so much so that, for practical purposes, sequences of annual and even 

monthly rainfall can be regarded as being serially independent. In the case of streamflow 

both daily and monthly records are usually considered as being dependent and this 

applies sometime to seasonal flows (Zucchini et al., 1984) and in many cases annual 

flows are assumed to be independent. It was found convenient in this study that the auto-

correlation of the time-series be checked for seasonal mean flows, annual mean flows, 

annual maximum flows and annual total rainfall whenever carrying out entropy 

computations and EM techniques. Thus, the independence of data within the time series 

will be checked by computing for example the first order auto-correlation coefficient. 

 

The methodology in this study is such that only cases of independent realizations (e.g. 

rainfall, streamflow regimes) are considered. This consideration is drawn from the fact 

the EM techniques and entropy computations developed in this thesis are based on the 

normality assumption.  

 

The method for carrying out entropy computations for multivariate (bi-variate) discrete 

variables is very complicated and somewhat subjective in terms of selection of the time-

step (Chapman, 1985). For that reason, distributions to fit the hydrological data are 

assumed to be continuous for simplicity and based on the fact that entropy computations 

for continuous distributions lead approximately to the same results as when discrete 

hydrological variables are used (Amorocho and Epilsdora, 1973). This consideration was 

used to ease the computations for entropy. If the marginal distribution of each 

hydrological variable in a station pair is normal, it is also assumed that their joint 
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 distribution and their conditional distribution are normal too. This consideration is based 

on practical purposes as outlined in the literature survey where it may be good enough 

and easy to test marginal normality.  

 

If the raw data are not normal, appropriate transformations can be used. An alternative 

and convenient strategy to make the data follow approximately the normality assumption 

was to use the Box-Cox family of transformations, which are the most popular. Thus, for 

example the regime of data (e.g. annual mean flows, etc) could be referred to these data 

after transformation, only in cases where the inverse transformation (back) to original 

data could be susceptible to introduce biased (e.g. negative) estimated values.    

        

The gaps (missing data) are taken to be missing at random (MAR), in other words the 

mechanism of missing data does not depend on the missing values. In South Africa, it is 

believed that it not unreasonable to assume that the three “missing mechanisms” (i.e. 

temporary absence of observers, the cessation of measurements or the absence of 

observations prior to the commencement of measurements) are not affected by rainfall 

depths during the relevant periods (Makhuvha et al., 1997a). The same applies to loss of 

records. Temporary failure of measuring devices also occurs and it is conceivable that, in 

some instances, failure could be related to the rainfall depth, for example damage by 

storms. (In the case of streamflow measurements, floods are more likely to damage 

measuring devices). However, the proportion of data that goes missing due to this cause 

is, at least in South Africa, negligibly small.  South Africa is mentioned here as the 

methodology was tested on its selected catchments.  

 

The methodology is developed for rainfall (streamflow) station pairs since the notion of 

directional information transfer index is used in the selection of potential predicted (target 

or subject) station and predictor (base or control) station for network design (Yang and 

Burn, 1994). The same notion in this thesis was therefore extended to data interpolation 

(infilling) technique performance assessment.  
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 In contrast with physical hydrology, the model in this thesis is referred to as a systems 

investigation model regarded as being concerned with problems subject only to the 

constraints imposed by the available data and not subject to “ physical considerations” 

(Minns and Hall, 1996). The selection of gauging stations (e.g. streamflow gauges or 

rainfall stations) to form the base stations set is not based on the climatic conditions (i.e. 

size and seasonal correspondence), the length of streamflows and the climatological 

records or other physio-geographic characteristics. However, this selection is based on 

entropy approach (i.e. DIT notion). In this study, the information available is only rainfall 

(streamflow) at a certain station with its neighboring rainfall (streamflow) stations. 

Unlike in typical rainfall-runoff modeling, the notion of transferability of information is 

applied here only to “similar” stations, i.e. rainfall stations with its nearby sites; the same 

applies to streamflow gauging stations.  

 

Time series analysis for infilling missing data (Panu et al. 2000) is not part of the current 

study as the theory of entropy and of EM techniques for exponential families assume 

independent hydrological variables.  

 

Although implementation of the algorithm involves the estimation of the missing values, 

the main focus of the literature of EM techniques is on the model parameters (Little and 

Rubin, 1987). Nonetheless, it can be also dedicated to missing values like in Makhuvha 

(1997 a, 1997 b). Buck’s method was used to start the EM techniques.  

 

Two categories of techniques, EM and ANNs are used in the analysis. The selected 

streamflow gauges and rainfall stations (Midgley et al., 1994) were complete and thus 

exhibited no gaps. However, for testing the methodology outlined so far, some gaps were 

created artificially on the data set. These artificial gaps were then interpolated (infilled) 

using the techniques outlined above and comparison was made between the estimated 

values and the historical data. Different durations (sizes) of  “artificial gaps” (i.e. 6.7 %, 

13.4 etc.) are created in the time series to simulate the gaps in the hydrological data. In 

this way, it was possible for the techniques to make use of the available information 
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 before and after the missing data. The two categories of techniques in the model are 

designed as follows: 

 

a) The testing data are unseen during parameter estimation and assumed to be missing. 

Thus, few patches of consecutive observations are removed from the data set of the 

potential target station to test the estimation of the procedures. Different gap durations 

(length of missing data) were considered, e.g. 6.7 %, 7.4%, 13.4%, 20% and 30%.   

 

b) For any EM technique, the estimated value of an observed event is the observed value 

itself and the model parameters are estimated several times on the complete set (i.e. 

observed plus estimated) until convergence. To make the comparison (similarity) fair 

between EM and ANNs, the ANN techniques are trained over the concurrent data first as 

in Kuligowski and Barros (1998) and finally the observed values remain intact; only the 

missing values are estimated, similarly to Bennis et al. (1999).  

 

c) The different techniques are trained to represent the different rainfall/streamflow 

regimes of the data (annual mean flows, annual total rainfall and annual maximum flows, 

6-month flow series (means), etc).  

 

The selection of the best technique(s) to fill in the data gaps is based on entropy criteria 

as follows: 

-Computing the value of transinformation T between observed and simulated values of 

the target gauge is performed. The transinformation can be used when techniques are to 

be compared on the same data or same catchment area as pointed out in the literature 

review. The higher the value of T, the better the model. In addition to the above selection 

entropy criterion, the notion of directional information transfer index (DIT) is explicitly 

introduced here for model selection. Recall that Yang and Burn (1994) introduced DIT 

(which is always positive and between 0 and 1 or between 0 % and 100 %) as a 

generalization of T. The DIT was initially defined for hydrological network design and 

therefore defined the dependency between stations, hence a criterion for regionalization. 

Yet Chapman (1985) introduced already the ratio of the transinformation to the marginal 
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 entropy as criterion for assessing techniques on different catchments. In Chapman’s case 

the marginal entropy should be positive. In case of negative values, the value of marginal 

entropy can be considered in absolute coordinate in which the origin is set to minus 

infinity. Then, the marginal entropy is no longer negative and regains its normal physical 

meaning. Hence, in this study, the DIT was used and extended to technique performance 

assessment since it is a generalization of the transinformation (T). The higher the value of 

DIT, the better the technique. The DIT notion shows the amount of uncertainty removed 

from the subject station via a given technique. DIT was also used to compare technique 

selection on different catchments unlike T.   

 

It should be noted that the percentage of reduction in the value of entropy of the subject 

gauge station after infilling of missing values as defined by Panu (1992), see equation 

2.90 of Chapter 2 can be also used. However in this thesis, the same formula could be 

extended to cases where absolutely no data exist at the subject site. In this situation, 

simulation models were used to estimate the flows at that site from nearby sites and were 

assessed by an extended expression of Panu’s formula. Chapter 7 illustrates this case.     

Most important formulas from Chapter 2 were repeated in the current chapter. The reader 

is referred to the previous chapter for more details.  

 

3. 3 MODEL DEVELOPMENT 

The characteristics (e.g. independent realizations) in events (rainfall or streamflow) are 

examined to develop data interpolation (infilling) procedure for these events. Independent 

realizations are considered as a starting point for filling in streamflow data, for example 

in the study led by Khalil (2001); Goodier and Panu (1994). In the following, two 

categories of hydrological data interpolation (infilling) techniques are encompassed in the 

model: EM and ANN techniques. Through this methodology, the best technique(s) and 

then a comparison between the different techniques in terms of their performance can be 

made. For that, entropy approach is used in technique selection. The methodology has 

merely been translated into a model named ENANNEX, which is summarized in Figure 

3.1. The details of this model are given in the form of a flow chart in Figure 3.2. 
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The detailed flow chart is explained in the following, i.e. from step 1 to step 8   
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3.3.1 Step 1: Testing data series independence  

The first step in developing the different techniques encompassed in the model involves 

the testing of structure independence of the hydrological time-series (e.g. rainfall or 

streamflow) for different stations of a given network. This consideration is based on the 

theory of entropy and EM techniques developed so far for exponential families, 

particularly for normal distributions. To check whether the time-series are independent, 

the first order auto-correlation coefficient is computed and the following test is 

performed: 

 

The first order serial correlation computed from the sample is given by 

  

[ ] [ ]∑ ∑∑ ∑ −−= + nxxnxxxr
iiiii /)(/)()1( 222

1                                                     (3.1) 

 

and its value from the population is represented by )1(ρ .  

 

The confidence limits (for a circular series) are given below 

 

)1()21( 2/1 −−−−= − nnzl α  

 

)1()21( 2/1 −−+−= − nnzL α  

 

where  and  are respectively lower and upper limits,   is the critical value for 

different values of significance level 

l L 2/1 α−z

α  (Haan, 1977; Mason and Gunst, 1989). 

 

If the calculated value  falls outside these confidence limits, the hypothesis that )1(r )1(ρ  

is zero ( )0)1(:0)1(:0 ≠= ρρ aHversusH is rejected.  is the null hypothesis and  

is the non-null hypothesis. In other words, in case of rejection, the observations in the 

data series are auto-correlated otherwise these observations are independent.  

0H aH
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 So the techniques used in the model are concerned only with independent events (e.g. 

annual mean flows, seasonal flows, maximum annual flows, annual total rainfall, etc). In 

fact, the conclusions would be totally unrealistic if strongly auto-correlated raw data were 

to be transformed to follow approximately normal distributions, as model parameters 

would be determined from transformed (normal thus independent) data; not from the 

original (raw) data, which are actually serially correlated.  Therefore, the model selects 

only the stations for which the time-series are tested to be independent.  

 

A subjective choice can be made also at this stage as stipulated by Elshorbagy (2000a): 

“One can also assume a threshold value of 0.5 for the correlation coefficient below which 

the data series is considered to be insignificantly auto-correlated.”   

 

3.3.2 Step 2: Checking normality assumption 

This step is to check whether the data are normal. In order to test the normality condition, 

the original data are ranked to their corresponding probabilities and one calculates the 

standard normal quantiles. Hence, the straightness of pairs, i.e. quantiles-ordered 

observations (Q-Q plot) is examined. The straightness of the Q-Q plot is measured by 

calculating the correlation coefficient of the points in the plot and the test of normality is 

based on the following consideration: 

Formally, the hypothesis of normality at the level of significance α  is rejected if the 

computed value of the correlation coefficient r  falls below the appropriate value *r (see, 

Johnson and Wichern, 1996). If the data do not exhibit signs of non-normality, 

transformations using Box-Cox power families are applied until the normality is 

achieved. These families of transformation are the mostly used in hydrology and include 

the important special cases of untransformed, inverse, logarithmic, square root, square 

and cubic (Yevjvich, 1972). The following strategy was used in this study:  
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For practical purposes as outlined in the literature survey and repeated in the previous 

section, it may be good enough and easy to test marginal normality.  

 

If the original (raw) data follow approximately the normality assumption, thus the current 

step can be skipped. Recall that the EM techniques used here will not lead to nonsensical 

estimates even if the assumption is slightly violated (Makhuvha et. 1997a; Little et al., 

1987, Dempster et al., 1977). 

 

3.3.3 Step 3: Computation of transinformation (T) and directional information  
            transfer index (DIT) 
 
The third step is the computation of the mutual information (transinformation), i.e. T  and 

subsequently the computation of the directional information index ( DIT ) in order to 

define for each station pair (x, y) the target (subject or predicted) gauge and base (control 

or predictor) gauge. Figure 3.3 depicts a bivariate case with missing data at one gauging 

station. Recall that DIT  is based on the premises of station pairs. Computations are 

performed from the concurrent parts (i.e. missing data are excluded) of the gauging 

stations. 

Missing Station x 

Station y 

Figure 3.3  An example of missing data in station x (bi-series case) 
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Formulas (2.13) and (2.21) can be used as: 

 

)1ln(
2
1),( 2RYXT −−=  

 

)(
),(

XH
YXTDIT =              

 

Therefore the total number of values of T is the number of station pair combinations, as T 

is symmetric. However the total number of DIT  is the number of station pair 

permutations, as DIT  is non-symmetric.  

 

3.3.4 Step 4: Determination of base/target gauge 

The fourth step is the determination of the likely potential target station and base station. 

The procedure in this step is as follows: for each station i, one select all the values DIT  

for which information is inferred about a given station i by any other station j, i.e. . 

The possible values of  are then compared to a threshold value, i.e. threshold1. The 

j stations to be retained as potential base stations (and i as subject station) are those; 

which satisfy the following condition: 

jiDIT

jiDIT

 

1)( ThresholdTDIT ijji ≥                                                                                              (3.3)                                 

 

Yang and Burn (1994) assumed arbitrarily a threshold value of 0.35 to measure the 

association between gauging stations for network design using extreme flows. 

In this study, the choice for Threshold1 values was made as follows: 

-If none of the DIT values is above 0.2 (e.g. 20 % of information inferred by the potential 

base station about the subject station) thus no station pair is taken. 

-In case some (all) values are between 0.2 and 0.3, thus threshold value is set to 0.2. 

-In other cases where some (all) values are above 0.3, the threshold value is set to 0.3.  
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 Although being subjective, the choice for the threshold as made above was found to 

produce reasonable results when testing the methodology (refer to chapters 4, 5 and 6). 

                                                                                                                         

Figure 3.4 depicts an example of a group of 5 stations where information is inferred about 

station 1. The remaining stations, e.g. 2, 3, 4 and 5 are potential candidates as base 

stations. Similar figures can be drawn for example where each of the remaining stations 

is considered to be the inferred (predicted or subject) station with respect to the others. 

   

 

51DIT

41DIT

21DIT  

31DIT

Station 1 

Station 3 

Station 4 

Station 5 

Figure 3.4  An example of potential base station candidates 
 (e.g.2, 3, 4and 5) and a potential subject station 1. 

Station 2 

 

3.3.5 Step 5: Creating artificial gaps for complete data sets 

Before estimating the missing values, one has to see whether the selected station pairs 

have complete time-series or not (step 5). Thus, in case they are all complete, it was 

necessary to create artificially gaps with different durations, gaps in different seasons, 
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 gaps in different climatic zones  (e.g. 1 season, 2 seasons, 1 year, 2 years, etc) at the 

subject station. Hence, one could apply the methodology and proceed to the next step.  

 

In the other case (e.g. data are not complete), it has to be checked whether the shortest 

record is really the subject (target) station. If this condition is satisfied, then one can 

proceed to the next step (i.e. interpolation or estimation of missing values). Otherwise, 

search for another station pair selected from the previous step. Recall that it is not always 

true that the short record should be considered as subject station (within its pair), when 

using entropy criterion (see, step 4), i.e. as long as the station (within its pair) satisfies 

condition (3.4), this specific station should be retained as base station.  

 

3.3.6 Step 6: Filling in data by ANN and EM techniques 

Step 6 is to apply the two categories (stream) of techniques, viz. EM techniques and 

ANNs and to make a comparison among these techniques and select the most suitable 

technique(s) for infilling (interpolating) the hydrological data. Standard techniques for 

EM and ANNs are incorporated into the model as well as some of their existing 

modifications. In addition, “new” versions for those techniques are also introduced in this 

study. These versions have been formulated intuitively. Then, the impact on the accuracy 

of the estimated values is also investigated.    

 

3.3.6.1 ANN techniques  

3.3.6.1.1 standard backpropagation (BP) 

The algorithm has been given in the previous chapter and some features incorporated in 

the present model are explained in the following. The flow procedure of the standard PB 

is given below. 
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Yes 

No 

Select neural network architecture 
(number of layers and nodes) 

Initialize weights and set maximum 
acceptable error (E) or maximum 

number of iterations (N) 

Train the neural network 

Is E met or N 

reached ? 

Compute estimates of missing using 
new weights 

Change weights or increase 
the network size 

Figure 3.5  Standard backpropagation (BP) procedure 

 

 
In Figure 3.5, the first step is the selection of the neural network architecture, starting 

from the simple to the complex one, e.g. 3 layers (1 hidden layer with 2 nodes, etc). 

Considering station pairs as outlined above, the number of nodes (in input layer) is the 

same as the number of nodes in the output layer, e.g. 1. The output layer may be non-

linear (e.g. sigmoid, hyperbolic tangent or linear) while the input is always linear as no 

transformation occurs to the input nodes.      

 

The second step in the figure above is the random initialization of the weights and the 

setting the error to a reasonable (acceptable) maximum value and the setting of number of 
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 iterations to a maximum value N (e.g. N = 5000). This avoids an infinite loop. The error 

can be computed using formulas (2.75) as: 

 

∑
=

=
P

k
pEE

1
                                                                                                                                       

 

The random initialization of the weights covers a wide range of values used by different 

authors both in hydrology applications and in other disciplines (Argawal and Singh, 

2001; ASCE Task Committee, 2000; Patnaik et al., 1996; Freeman and Skapura, 1991; 

and others). The exiting ranges of initial weights found in the literature are different from 

one author to the other and are given by (-1.0, +1.0), (-0.1, +0.1), (-0.5, 0.5), (-0.3, 0.3), 

(0, +0.6), (0.6, +0.6), (-0.9, +0.9). These ranges are among choices in this study. Initial 

weights are retained if the convergence criterion is met, otherwise the weights are 

changed. Generally a 3-layered neural network is a starting point as this is the mostly 

used in hydrology as said in the previous chapter and it has been shown to be a general 

approximator (Zealand et el., 1999). This was also supported by Minns and Hall (1996), 

Lawrence (1996) and Raman and Sunilkumar (1995). At this step, output (input) may be 

normalized (scaled) as it has the advantage on the speed of the convergence of the system 

and it gives input equal importance and prevents premature saturation of the squash 

(sigmoid) function (Hines, 1997).  

 

The model developed presents a choice among the mostly used techniques of scaling 

(standardization) and therefore decides on the optimum way of achieving this. The raison 

of this is that there are no fixed rules as to which approach should be used in particular 

circumstances and there has been very little research on the subject. Thus, the scaling 

technique by Dawson and Wilby (1998) could be used as follows 

 

)()( iiiii MinMaxMinRN −−=                                                                                 (3.4) 

 

iii SSRN =                                                                                                             (3.5) 
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 where  is the real value to the node i; the subsequent standardized value calculated for 

node i;  is the minimum value of all values applied to node i;   is the maximum 

value of all the values applied to node i; and  is the sum of squares of all values 

applied to node i.   

iR

iMin iMax

iSS

 

The techniques proposed by Hines (1996) could be also used (e.g. linear scaling and a 

mean center unit variance scaling). The former scaling is given by 

 

1.08.0*))()(( +−−= iiiii MinMaxMinRN                                                               (3.6) 

 

where all the terms are already defined above and the latter scaling is as follows:   

 

iiii rrXRN σ)( −=                                                                                                       (3.7) 

 

where irX  and irσ  are the mean and the variance of all values applied to node i 

respectively. All other terms are already defined above.  

 

It should be noticed that equation (3.6) was enough to be used in this study and to 

produce quite good results. 

 

The mostly used activation functions in hydrology and other disciplines are incorporated 

in this model, e.g. sigmoid and hyperbolic tangent. Recall that these equations are 

differentiable everywhere for x values and are given by equations (2.62) and (2.64) as  
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Recall that for a 3-layered neural network, the update equations (2.71 and 2.72) for the 

output layer and the hidden layer are given in the previous chapter as: 

 

pjpkkjkj itwtw ηδ+=+ )()1( 00                      
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h
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ji
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ji xtwtw ηδ+=+ )()1(        

 

respectively.  

 

The training of the neural network (i.e. finding the new weights) is done from the 

concurrent parts of data. The new weights are then used to compute the estimated values. 

The bias term for the ANN can be assumed to be zero as it use is optional (Freeman and 

Skapura, 1991). As said so far, the testing part can be unseen during the training and is 

assumed to be missing in case observed data were complete.  

 

In case the sigmoid (or hyperbolic tangent) function is used, it is necessary to unscale the 

data  (back to normality assumption), in such away one can perform different entropy 

calculations. Statistical performance criteria such RMSEp, RMEp and EVp were also 

performed to crosscheck the results.  
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No 

Yes Is unscaling 
biased? 

Stop 

Draw conclusions on scaled 
data 

Proceed to next step 

For ANNs: Unscale data before 
proceeding to next step 

Figure 3.6  Unscaling for ANNs 

 

 

The above remark applies to the rest of ANN techniques developed in this thesis.      

 

3.3.6.1.2 Momentum Backpropagation (MBP) 

This algorithm is explained in section 2.3.2.2.5.5.1. The procedure is similar as in the 

previous section but in “ train neural network” step, the momentum term is added. Recall 

that the update equations (2.77) and (2.78) are given in the previous chapter as: 
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All the features for the standard BP can be used for MBP.  
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3.3.6.1.3 Variable Learning BP (VLR) module   

The algorithm has been explained in section (2.3.2.2.5.5.2). The implementation is 

similar to the MBP algorithm. However, in “train neural network” step, a variable 

learning parameter is introduced according to equations 2.79 and 2.80. 

 

1. If training is “went well “(error decreased) then increase the step size. 

ρηη *=    ( )1fρ .               

 

The weight update is accepted. 

 

2. If training is “went poor “(error increased) then decrease the step size. 

δηη *=   )1( pδ                

 

Thus the weight update is discarded. 

 

Hines (1997) suggested 1.1=ρ , 5.0=δ  while Demuth and Beale (1998) suggested 

these values be 1.05 and 0.7 respectively. Patnaik et al. (1996) did not give any specific 

value for these parameters. This a batch mode technique. 

It is suggested in this study to use a wide range of the above parameters, i.e. ρδ , , 

including the above-proposed values. The additional features for BP are all included in 

the VLR technique. 

 

3.3.6.1.4 Generalized BP (GenerBP) module 

The same applies as for VLR here but in “train neural network” step, the weight update is 

done according to equations 2.81 and 2.82 as  

 

b
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Ng et al. (1996) developed these equations only in the case of the squash (logistic) 

function, i.e. equation (2.62). These authors applied this technique to three different 

problems including XOR, 3-bit parity and 5-bit counting. No literature was found where 

the Generalized BP was used in hydrology or water related fields. In this study, the 

Generlized BP technique incorporates also the hyperbolic tangent as activation function 

(see equation 2. 63). Several values for b could be tried. Only those values, which give an 

acceptable accuracy of the estimated values, could be retained.  

 

3.3.6.1.5 Quick backpropagation (QBP) module 

The same applies here as for the standard BP technique, however in “train the neural 

network” step, the weight update is done according to equations 2.83 and 2.84 as: 

 

)1(
)()1(

)()( −∆
−−

=∆ tw
tsts

tstω                                   

 

The above formula is numerically unstable if  is very close to, equal, or greater than 

. In this case the weights update formula becomes: 

)(ts

)1( −ts

 

)1()( 1 −∆=∆ twt αω                                                                                                                                               

 

Before applying the QBP, the first values of weights were determined using the standard 

BP.  

 

In this study, two options have been used for the QBP. The first option is named the 

Weight Condition (Weight Cond), where the update is done according following 
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where 2α  is a factor greater than 1 and should be chosen heuristically and Abs means 

absolute value. 

 

The second option is the Gradient Condition (Grad. cond) and is done as follows: 

 

( )

IfEnd
equationtoaccordingUpdate

Else
equationtoaccordingUpdate

ThentstsIf

)85.2(
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))1())( −p

 

 

3.3.6.1.6 Golden Search BP (GoldSBP) module 

This is basically the linear search method. This is done by the procedure by locating the 

minimum of a function in a specific direction. This will involve two steps: interval 

location and interval reduction. The purpose of this interval location is to find some 

initial interval that contains a local minimum. The interval reduction step then reduces the 

size of the initial interval until the minimum is located to the desired accuracy.   

 

In the interval location step, the error function is first evaluated at an initial point, which 

corresponds to the current values of the neural weights. The next step is to evaluate the 

function at a second point, which is at some distance from the initial point, along the first 

search direction. Then the error function is evaluated at new points, successively 

doubling the distance between points. This process stops when the function increases 

between two consecutive evaluations.  
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 The next step in the linear search is interval reduction. This involves the function at 

points inside the interval was selected in the first step.  Given an interval (a, b), if the 

function error E  is evaluated at two different points c and d, the interval of uncertainty 

can be reduced. If , then the minimum must occur in the interval (c, d), then 

the minimum must have occured in the interval (a, d). The Golden Section Search allows 

deciding how to determine the location of the interval points c and d. The Golden Section 

Search is designed to reduce the number of function error evaluations. The algorithm of 

this method can be for example can be traced in Hagan et al. (1996) and in Press et al. 

(1996).        

)()( dEcE >

 

3.3.6.1.7 Pseudo Mac Laurin order 1 BP and Mac Laurin order 2 BP  
                 (e.g. McL1BP and McL2BP) modules 
 

These techniques are introduced for the first time. They are modifications to the standard 

BP, by approximating the sigmoid activation function by “pseudo” Mac Laurin power 

series order 1 and 2 derivatives. Thus, using the Mac Laurin series power series, the 

sigmoid (logistic) function of a variable x (e.g. scaled input data) can be approximated 

by:  
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The Mac Laurin power series (which is actually a particular case of a Taylor power 

series) approximate the function  when x approaches zero. In other words, for small 

values of x such that , a good approximation of  can be achieved by a 

Mac Laurin power series. The Mac Laurin first order derivative approximation of 

equation (3.8) is given by:  
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The derivative of equation (2.9) is given by:        
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Equation (3.10) which, is an approximation to the first derivative of the logistic function 

can also be used in the weights update equations of the neural network. 

 

The Mac Laurin second order derivative approximation of equation (3.8) is given by:  
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The first derivative of equation (3.11) is given by  

 

2

2
2 ))()(1(

)
2

2(

1)(' xfx
xx

xxf −≈
+−

−
≈                                                                      (3.12) 

 

Expression (3.12), which is an approximation to the first derivative of the logistic 

function, can also be used in the weights update equations of the neural network. Like the 

sigmoid function, equation (3.10) and (3.12) are also continuous, monotonic non-

decreasing functions and differentiable on the interval of scaled input data or output data 

(0.1, 0.9). In the discussion of the results, sometimes the prefix “pseudo” is omitted.  

 

For this study, no strict limitation on the range of values of x (e.g. x is greater than 0 but 

approaching 0) was set for the application of the Mac Laurin power series. However, the 

Mac Laurin power series approximation is just applied to an interval such that 10 << x , 

e.g. (0.1, 0.9) for scaled input and output data. That is why the prefix “pseudo” is 

introduced. The Mac Laurin (order 1 and order 2) approximation is done purposely for 

this interval just to evaluate the impact on the accuracy of the estimated missing values. 
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 The reader would bear in mind that the formulas above don’t have unit since they were 

applied to scaled streamflow or rainfall data (e.g. refer to equation 3.6).  

 

3.3.6.2 Expectation maximization (EM) techniques  

3.3.6.2.1 Standard EM (EM) module 

The reader should remember that step 6 is still being processed, i.e. apply ANNs and EM 

techniques (see the detailed flowchart for model development).  

 

Despite of the intensive use for problems involving incomplete data (Little and Rubin, 

1987; and many others), the literature of EM techniques dealing with missing data still 

remains very sparse in hydrology and related fields. From the literature available, two 

studies involving missing data have been found in hydrology, i.e. Makhuvha (1997a, 

1997b) and Kuczera (1987). 

 

In fact, the latter considered the standard EM technique in a state-space framework 

compatible with the multi-site streamflow model and concluded that this technique is 

simple to implement and produces smoothed estimates of the missing data.  The former 

deals with rainfall data patching and made a comparison between the standard EM and 

introduced a modification (to the standard EM) that he called pseudo-EM algorithm. 

Hence, a comparison of performance between the two techniques was conducted by 

computing the RMSE of the predictions. 

 

This study does not include only the standard EM technique but includes its several 

modifications existing in the literature (not yet applied in hydrology) and encompasses 

other new features. The present research work takes also the opportunity of assessing the 

different EM techniques through entropy criterion.   

 

As said before, the standard EM technique (EM) is the primitive form developed by 

Dempster et al. (1977). The EM algorithm and other modifications are particularly simple 

and useful interpretation when the complete data Y have a distribution from the regular 
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 exponential family (Little et al., 1987). Thus, the normal distributions were specifically 

considered in this research work.  

 

Since the EM technique is applied to the station pairs selected from step 5 and since the 

there is no missing values for the base gauging station (e.g. 1), its data values will remain 

unchanged throughout at any t-th iteration. Consequently the estimates of the mean and 

variance of that site (e.g. 1) will also remain unchanged throughout. The computations in 

the t+1 iteration of the estimates at the subject site (e.g. 2) is based on equations (2.47-

2.50), that is 
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The above steps are repeated until reasonable convergence is achieved.  

 

Convergence is normally judged by examining changes in individual components of 

)...,,,( 21 kθθθθ =  from one iteration to the next. The criterion of convergence used is as 

follows (Kuczera, 1987; Schaffer, 1994): 

 

  )()()1( t
j

t
jj

t θεθθ ≤−+                                                                                             (3.13) 

 

for  and a suitable kj ...,,2,1= ε (tolerance). In the present case,  ),,( 1.21222 βσµθ = . 

 

Hence convergence tolerance can be set or a maximum number of iterations should also 

be set. The impact on the accuracy of the missing values could be finally determined. 

 

To start the iterations, one needs to give a value to . However, the Buck’method 

could be used in this study for the starting value of   (refer to equation 2.51, Chapter 

2). 

)0(θ
)0(θ

 

3.3.6.2.2  Momentum EM (MEM1) module 

No literature is available where MEM technique is used in hydrology and water related 

fields. It has been taken the opportunity of applying it in this study.  This algorithm has 

been described in section 2.3.2.6 of Chapter 2. The parameters are updated according to 

equation 2.58, that is, 

 

θηθθ ∆+=+ *)1( tt , 0fη        

 

For an iterative algorithm with a current incremental , one can always 

modify the obtained  into . The momentum can be chosen 

heuristically to speed up the convergence (Melijson, 1989). This author did not propose 

tt θθθ −=∆ + )1(

)1( +tθ tt θηηθ )1()1( −++
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 any specific value for the momentum. Xu (1997) proposed a value such that 5.0fη  

while in this thesis a wide range of the values for the momentum were used and the 

optimum value could be the one which gives the accurate results of the estimated missing 

values. In the following, the second and third versions of the MEM1 module are 

proposed. 

 

3.3.6.2.3 Second  and third versions of the MEM algorithm (i.e. MEM2 and 
MEM3 modules) 

 
In this thesis, a second version and a third one (i.e. MEM2 and MEM3) of the MEM1 

technique are proposed. These two versions are more based on a consideration which is 

more intuitive than a strong mathematical basis. The starting point of these two 

modifications to the original MEM1 technique is that a second term is added to the 

update above equation 2.83 and thus the accuracy of the estimated values is investigated. 

This second term is taken to be proportional to the previous change in the parameter, i.e. 

 in the update equation. In this case, the update equation can be 

written as follows: 

)1()()1( −− −=∆ ttt θθθ

 

For an iterative algorithm with a current incremental , one can always 

modify the obtained  into . Hence 

tt θθθ −=∆ + )1(

)1( +tθ )1()1( )1( −+ ∆+−+ ttt θαθηηθ

 

)1()(*)1( −∆+∆+=+ tttt θαθηθθ                                                                            (3.14) 

 

where α  is just a coefficient of proportionality. 

 

The two versions are as follows: 
 

a) MEM2 

-For the iterative algorithm with the current increment , the obtained 

regression coefficients are modified into  while the other 

individual parameters (e.g. mean and variance) remain unchanged at the subject station. 

tt θθθ −=∆ + )1(

)1()()1( )1( −+ ∆+−+ ttt βαβηηβ
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b) MEM3 

-For the iterative algorithm with the current increment,  the obtained 

statistical parameters, e.g. variance, mean are modified into 

 and  respectively. 

However, the other individual parameters, e.g. regression coefficients are not modified. 

tt θθθ −=∆ + )1(

)1()()1( )1( −+ ∆+−+ ttt µαµηηµ
)1(2)(2)1(2 )1( −+

∆+−+
ttt
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In either case, the accuracy of the estimated values is investigated.  

 

3.3.6.2.4 Expectation constrained maximization (ECM) module and its  
                  Version 
 
As outlined in section 2.3.2.1.7, the M-step is replaced by a series of constrained 

(conditional) steps. In this study, it is not argued about the complexity of the complete-

data maximum likelihood estimation to apply the ECM algorithm. Hence, it is believed 

that the CM are over small dimensional spaces, often they are simpler and, faster and 

more reliable than the corresponding full maximization called for in the M-step of the 

EM algorithm (Meng and Rubin, 1993). However, the most important thing is to apply it 

to hydrological missing data problem and to compare its performance with the standard 

EM or other data interpolation (infilling) techniques. It is reminded that no literature is 

available where the ECM technique has been applied to hydrology or related fields, 

specifically to problems dealing with missing hydrological data.  

 

From Meng and Rubin (1993), the ECM algorithm performs as follows: 

-Having the mean and variance of the target station, the regression coefficient β  are 

estimated first through equation 2.15, which is the first CM-step     
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 Given , the )1( += tββ second CM-step is carried out by computing the conditional 

maximum likelihood estimate of the other individual parameters, e.g. mean, variance and 

covariance are then estimated. The CM-steps are performed until convergence. 

 

The algorithm described above can be seen as first version named ECM1 module. The 

second version (ECM2) of the above algorithm is base just on an intuitive consideration, 

i.e. is one can always re-compute  using the result from the above-mentioned  

second CM-step.     

)1( +tβ

 

3.3.6.2.5 Expectation Constrained Maximization Either (ECME1) 
                  module and its versions 
 
No literature was found where this technique is used in hydrology or water related fields, 

specifically for data interpolation (infilling) problems.  The ECME was explained in 

section 2.3.2.1.8 and leads basically to cases where CM-steps maximizes either the 

expected complete loglikelihood, as with ECM, or the actual likelihood function subject 

to the same constraints. A multi-cycle version of ECM which is obtained by performing a 

second E-step before the second CM-step to find the expected complete loglikelihood is 

an example of the ECME algorithm (Meng and Rubin, 1993). 

 

The versions here are also based on intuitive considerations rather than strong 

mathematical proofs, similarly to the other versions introduced in the previous sections.      

 

Version 1 

This option is performed similarly as in the previous section both for E-step and CM-

steps, however each CM-step is preceded by an E-step.  

 

Version 2 

The second option is to consider the introduction of the momentum term into this version 

of the ECME as set out above. At each CM-step of the iterative algorithm with the 
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 current increment,  the obtained parameter, e.g. variance, mean at the subject 

station are modified into  

)1( +tθ
)1()1( )1( −+ ∆+−+ ttt θαθηηθ

 

Version 3 

Performing once CM-step for the regression coefficient as above for each selected station 

pair is done. Then, the obtained value of the regression coefficient is used to perform 

several CM-steps (2, 3, 4, etc) with respect to the statistical parameters e.g. mean, 

variance, and covariance. Each CM-step is preceded by an E-step.   

 

For each version, the accuracy of the estimated values is also investigated. 

 

3.3.7 Step 7: Technique performance assessment 

This step is to assess the performance of the techniques for interpolating (infilling) 

hydrological data gaps to achieve an optimum agreement between computed and 

observed data.  

 

Step 7.1 

According to the detailed flow chart depicted in Figure 3.1, in a case where the station 

with short record has been infilled and no missing values have been created artificially, 

the reduction in uncertainty at the predicted station, via a given technique, is the only 

criterion used here (Panu, 1992). It is defined by equation 2.90 as  

 

cccompcc HHHd /)((%)Re −=  

 

This equation can be used for cases where the values of marginal entropies for the target 

station, e.g.  and  are positive before and after infilling respectively. A slight 

modification can be introduced in the above formula in case these values are negative. As 

negative information does not have any physical meaning, entropy values should be 

considered in absolute coordinates in which, the origin is set at minus infinity. Thus 

ccH compH
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 entropy values are no longer negative and regain their physical meaning. Thus, in this 

study, the above formula can be modified into 

 

)/()(*100Re aHaHaHd cccompcc ++−−=  

 

 which is equivalent to  

 

)/()(*100Re aHHHd cccompcc +−=                                                                         (3.16) 

 

where  is defined here as a translation parameter which enables to keep always the 

reduction in uncertainty between 0 and 100%.   

a

 

Given a set of data, the computation of the reduction in uncertainty is carried out for all 

infilling techniques used in the previous step. Therefore, the only techniques, which are 

selected, are those for which  values satisfy the following condition dRe

 

2Re Thresholdd ≥                                                                                                    (3.17) 

 

The value of Threshold2 was chosen in this study such that at least 30 % of uncertainty 

should be removed from the subject station via a technique, after the data series at this 

station has been infilled. According to Panu (1992), the values of reduction in uncertainty 

at the subject station via the different models he used ranged from 5% to 79%.  

 

It should be noticed that runoff simulation models were assessed through the extension of 

Panu’s formula (refer to Chapter 8) for cases where no data was absolutely available at 

the subject site.  

 

Step 7.2 

In cases where missing values have been created artificially, the following is performed: 

The entropy criterion could be performed using equations 2.86 and 3.19:   
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)1ln(
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1),( 2RYXT −−=                            
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),(

/ XH
YXTDIT ESTOBS =                                                 (3.19) 

 

In formula 3.19, the  is the directional information transfer index between the 

observed and the estimated series. In this study, the DIT notion as formulated by Yang 

and Burn (1994) is extended to models evaluation criterion. The DIT as generalization of 

the transinformation (T) was used for deciding on the dependency of station pairs. Here, 

the DIT notion is used as a generalization of the T for model performance evaluation 

since the transinformation (T) can be used for that purpose. DIT was used as positively 

non-dimensional information index, which varies between 0 and 1 (e.g. between 0% and 

100% in terms of percentage). This was applied in recent papers (Ilunga and Stephenson, 

2002; 2003a). Given a set of data, the DIT computation is carried out for all data infilling 

techniques used in the previous step. Therefore, the only selected techniques are those for 

which DIT values satisfy the following condition 

ESTOBSDIT /

 

3ThresholdDIT ≥                                                                                                      (3.20) 

 

The value of Threshold3 was chosen in this study such that at least 30 % of uncertainty 

should be removed from the subject site via a technique. In a study led by Chapman 

(1987), the values of reduction in uncertainty for the different models ranged from 18 % 

to 46 %.  

 

Since the DIT notion was used as a general criterion to compare technique performance 

on different data sets, it was possible to consider the same origin of coordinates for 

entropy values. In the present study, this origin could be set to the highest 

transinformation for the different techniques.    
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 For each subject station, if entropy criterion is not fulfilled, then the technique is not 

selected and therefore cannot be used to fill in the missing data at that specific station. 

The same is repeated for each technique and every target station. 

 

The following statistical criteria (see equations 2.91-2.93) are used just to crosscheck 

whether the results from the entropy criterion are reasonable. These criteria can be also 

performed after step 8.2.  
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These criteria are made on the predictions of the series and the summation can be done 

over those predictions. 

A part from the numerical performance indicators above, the following graphical 

indicator has to be given below:  

(iii) A scatter plot of the simulated (interpolated) versus observed data. 

 

3.3.8 Step 8.1: Transformation back to original data 

Step 8.1 

Now the question that arises is to know whether raw data have been forced so far to 

follow approximately the normality assumption through Box-Cox transformation (see 

step 2). If that is the case, thus one has to untransform the current results through inverse 

of set of expression (3.2), i.e.  
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                                             (3.21) 

 

If this transformation back original data does not introduce any bias (e.g. negative values) 

in the estimates or eventually in the parameters, the results are considered to be 

satisfactory and the algorithm ends. Otherwise, conclusions can still be drawn on 

transformed variables as it has been done in many hydrological studies, e.g. Minns and 

Hall, (1996) and many others.   

 

On transformation back to the initial space, one has to ensure that the infilled series 

contains no negative values.   

 

Step 8.2 

Steps 8.1 and 8.2 are mutually exclusive. In step 8.2, raw data followed the normality 

assumption and therefore, if this is the case, the algorithm is terminated and step 8.1 is 

not done. 

 

After the missing parts have been estimated, a comparison between estimated 

(interpolated) and observed values, is made to judge the accuracy of the estimates. 

Although the overriding objective in infilling or estimating missing data is to minimize 

the squared error between observed and simulated data (Panu et al., 2000, Elshorbagy, 

2000a), there are some requirements, namely, that the estimated values should not 

introduce systematic bias in the statistics of importance in the record (Zucchini et al., 

1984). In particular, the mean and variance should not be systematically distorted by the 

estimates. Thus, the infilled series can be used for other purposes, say reservoir design, 

water resources development, reestablishment of reservoir operation rules, hydropower 
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 development, estimation of some statistics of the annual yields of reservoir, flood 

control, planning of storage projects, evaluation of the severity and duration of 

hydrological extremes, etc. Hence, the potential applications are also taken into 

consideration and therefore a range of proportion of missing data is determined beyond 

the statistical properties (e.g. variance, mean). The degree of uncertainty is reduced so 

much a lot and this can affect the above-mentioned purposes (Stephenson, 2003). 

 

3.4 DATA AVAILABILITY 

3.4.1 Introduction 

The methodology as explained in this chapter was tested on selected streamflow and 

rainfall gauges of South Africa (Midgley et al., 1994). These gauges belong to the Orange 

drainage system rivers. Rainfall and streamflow data of this drainage system used in 

Chapters 5, 6 and 8 are briefly described in this chapter, except for data used in Chapter 

7. The hydrological data used in Chapter 7 are briefly explained in the same chapter. It 

was convenient to do so, as these data don’t belong to the Orange system rivers.     

 

3.4.2 Physical characteristics of the Orange drainage system rivers 

The Orange River rises in the sovereign Kingdom of Lesotho, draining the Maluti 

Mountains and the western slopes of the Drankesberg range. Its major tributary is the 

Vaal. 

 

Along the highest yields of sediments in the country are those encountered in the Cave 

sandstone formations of the upper Caledon and in the Kraai catchment as well as the 

southern watershed of the Orange River. 

 

Listed in Table 3.1 are total areas of catchments of the Orange River System as well as 

catchment-averaged MAP (mean annual precipitation) and MAR (mean annual 

riverflow). Since the Orange drainage river system has known major developments in 

irrigation and hydropower), this table contains the summary of the information relating to 

irrigation, afforestation, and storage utilization in the Orange system rivers. 
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Table 3.1  Total catchment area, mean annual precipitation and mean annual riverflow      
                  of the primary Orange River system   

Primary drainage region: Orange (D) 
Catchment 

area 

(km^2) 

MAP 

(mm) 
MAR 

(Mm^3) 
Total irrigation 

area (km^2) 

Total 

afforestation 

area (km^2) 

Total 

reservoir 

capacity 

409621 315 6987 746 - 9507 

 

3.4.3 Secondary drainage river systems considered for this study 

Some selected streamflow gauges and rainfall stations belonging respectively to the 

secondary drainage D1 and D33 of the Orange drainage system rivers (D) were 

considered for this study. The monthly data could be found from Midgley et al. (1994). 

The geographical location of the selected rivers is depicted in Figures A.1 and A.2 (refer 

to Appendix A) and Tables 3.2 and 3.3. The geographical location of the selected rainfall 

stations is depicted in Figure A.3 (refer to Appendix A) and Tables 3.4 and 3.5. The mean 

monthly rainfall data (in Table 3.4) were obtained by multiplying the MAP (in mm) by 

the monthly rainfall as percentage of MAP. Note that the rainfall stations were just coded 

and no names were given to them according to the report by Midgley et al. (1994). 

The hydrological year starts in October and ends in September for the data used (i.e. 

rainfall and streamflow). 

 

 

It has to be said that the subcatchment for the three gauges namely D1H003, D1H006 and 

D1H009 belong to the Upper Orange catchment. Gauge D1H003 named Aliwal North 

and D1H009 named Oranjedraai are both situated on the Orange River while D1H009 

named Maghaleen is situated on the Kornetspruit River, which is a confluence with the 

Orange River. The distances between D1H003 and D1H009 and D1H006 and D1H009 

are approximately 8.8 km and 2 km respectively. Gauge D1H003 is in the Aliwal North 

Town of South Africa and is at the latitude 300 40' 47" and the longitude 26 0 42' 45". 

Gauge D1H006 is in the Maghaleen Town of South Africa and is at the latitude 300 09' 

37" and the longitude 27 0 24' 06". Gauge D1H009 is in the Free State at the latitude 300 

20' 10" and the longitude 27 0 21' 34". The Orange River rises in the sovereign Kingdom 
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 of Lesotho, less than 200 mm and flows West, with its wide sweeps and North, to the 

Atlantic. It drains, with its tributaries, an area estimated over 400, 000 m2, passing 

through more than 12 degrees longitude or 750 m, a straight line from source to mouth. 

The headstreams of the Orange River are in the highest part of the Drankesberg range, the 

principal source, the Senku, rising, at an elevation of more than 10, 000 feet (or 305 m), 

on the South face of the Mont aux Sources in 28 0 48' East and 28 0 50' South. The 

headstreams are South East of the Senku source, in Champagne Castle, Giant's Castle and 

other heights of the Drankesberg. Rising in the inner slopes of the hills, these rivulets all 

join the Senku, which receives from the north several streams which rise in the Maluti 

Mountains. After a course of some 200 m, passing the South West corner of the Maluti 

Mountains, the Seku, already known as the Orange, receives the Kornetspruit (90 m), 

which rises in the Machaba Mountain. The Orange River here enters the Great inner 

Plateau of South Africa, which at Aliwal North, the first town of any size on the banks of 

the river, 80 m below the Kornet Spruit Confluence, has an elevation of 4300 feet (or 

1300 m).  

 

As is to be expected in a river that traverses practically the full width of the subcontinent, 

there is a wide range of topography. With its sources in the high mountains of Lesotho, 

the Orange River remains deeply incised in the interior plateau until it reaches the main 

irrigation areas from Buchuberg to Kakamas. Then at Aughrabies Falls, the river plunges 

into a deep canyon and winds its way through the broken country of the Richtersveld to 

emerge on a broad stretch of desert across which it meanders to the sea. 

 

The soils of 3 gauges in the upper Orange River catchment are lithosols, solonetzic and 

montmorillonitic clays while along the lower Orange, the soils are mainly lithosols. The 

catchment for the three gauges in the upper Orange catchment is dominated in the by 

pure grassveld.  

 

Rainfall is high in the upper Orange, MAP (mean annual precipitation) reaching 2000 

mm in the Drankesberg and decreasing sharply to 400 mm at the confluence of the 
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 Caledon with the Orange. Evaporation increases along with the Orange River from the 

1300 mm in the east to 2700 mm at the confluence with the Molopo.      
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Table 3.2  Geographical location of selected rivers of the secondary drainage D1  

Secondary drainage D1 

Gauge     Name River Latitude Longitude
Area 

(km^2) 

Period of 

records used 

Mean annual 

riverflow 

(Mm^3) 

% of 

Missing 

D1H001          Diepkloof Wonderboomspruit 31000’11’’ 26021’11’’ 2397 1924 –1953 45.51 0

D1H003 Aliwal North Orange River 30040’47’’ 26042’45’’ 37075 1960 – 1989 5170.27 0 

D1H004    Molteno Stombergspruit 31024’00’’ 26022’17’’ 348 1924 – 1953 6.89 0 

D1H006   Maghaleen Kornetspruit 30009’37 ” 27024’06’’ 2969 1960 – 1989 566.44 0 

D1H009    Oranjedraai Orange River 30020’10’’ 27021’34’’ 24550 1960 – 1989 4212.14 0 

 

Table 3.3  Mean monthly flows for selected rivers of the secondary drainage region D1 
Mean monthly flows (Mm^3) 

Gauge             Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June July Aug. Sept.

D1H001 1.57            3.02 2.99 4.22 6.51 11.75 4.97 3.69 1.04 0.51 2.92 2.30

D1H003 407.8            546.9 537.6 586.2 888.8 757.8 556.1 261.4 178.6 111.9 124.9 212.4

D1H004 0.24            0.77 0.71 0.74 0.89 1.45 0.86 0.66 0.12 0.19 0.05 0.21

D1H006 41.98            45.02 59.54 72.24 87.58 81.51 77.47 30.97 18.17 13.10 14.21 24.66

D1H009 355.9            459.9 429.6 493.5 710.8 603.5 429.3 188.2 134.1 92.45 109.0 206.0
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Table 3.4 Geographical location of selected rainfall stations of the secondary 
               drainage D33 

 

Secondary drainage D33 
 

Gauge Section Position 
MAP 

(mm) 

Latitude Longitude Period of 

records used 

% of 

Missing 

0228170 288 170 341 29050’00’’ 24036’00’’ 1924 -1989 0 

0228458 228 458 348 29038’00’’ 24046’00’’ 1924 -1989 0 

0228495 228 495 376 29045’00’’ 24047’00’’ 1924 -1989 0 

 

Table 3.5  Mean monthly rainfall for selected stations of the secondary drainage  
                 D33 
 Mean monthly rainfall (mm) 

Station Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June July Aug. Sept. 

0228170 23.59 34.92 33.32 39.62 56.67 60.39 38.94 16.54 7.63 6.58 10.47 12.48 

0228458 23.98 35.64 34.0 40.44 57.84 61.63 39.74 16.88 6.16 6.72 10.68 12.74 

0228495 25.57 38.50 36.74 43.69 62.49 66.59 42.94 18.24 6.66 7.26 14.14 13.76 
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