RISSER SIGN – TRENDS IN A SOUTH AFRICAN BLACK POPULATION

Ziyaad Mayet

A research report submitted to the Faculty of Health Sciences, University of the Wiwatersrand, Johannesburg, in partial fulfillment of the Requirements for the degree of Master of Medicine in the branch of Orthopaedics

Johannesburg, 2009

DECLARATION

I, Ziyaad Mayet declare that this research report is my own work. It is being submitted for the degree of Master of Medicine in the branch of Orthopaedics in the University of Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at this or any other University.

•••••

...... day of, 2009

To Nazrana, my source of strength and support.

PRESENTATIONS ARISING FROM THE STUDY

2.

 Lukhele M., Mayet Z. The Risser sign-Is there a difference in the African population? Oral presentation. 1st Biennial Congress of the South African Spine Society 28 – 31 MAY 2009, Sun City

> Mayet Z., Lukhele M., Aboo N., Mohammed N. Risser Sign-Is there a difference in the African population? Poster presentation. SAOA 55th congress 2009, Bloemfontein

ABSTRACT

The 5 stages of the Risser sign, which chart the development of ossification of the iliac crest has been widely used as a tool to assess skeletal age and remaining spinal growth, and thereby influence scoliosis management. However, as with other markers of skeletal age, it is under the influence of genetic and environmental factors. Proof of this was given by Risser, who observed that children in warmer climates developed earlier. Numerous other authors have also shown differences for other measures of maturity between different race groups.

We tried to show that a different trend occurred in the South African Black population, as compared to published data from other population groups.

Radiographs from the Radiology records departments of various hospitals were assessed by 2 independent observers for the Risser sign. This was used to chart trends, which was compared to trends published by Scoles *et. al.* which was recorded on the Cleveland based Brush-Bolton Collection.

The South African black population showed a trend towards starting earlier. They however completed their fusion later. This is suggestive of a longer duration of iliac ossification. Furthermore, the importance of climatic control was shown by the fact that the black & white populations mirrored each other.

ACKNOWLEDGEMENTS

To Professor Lukhele, whose insight and support made this possible, and to all the staff of the radiology records departments at each hospital for their assistance.

TABLE OF CONTENTS

1.INTRODUCTION

1.1Scoliosis	1
1.1.1 Definition	1
1.1.2 Management of scoliosi	.s4
1.2Skeletal age estimation	5
1.2.1Chronologic age	6
1.2.2Secondary sexual	
characteristics	6
1.2.3 Metabolic markers	7
1.2.4Radiological markers	8
1.2.4.1Types of radiologic	cal
markers	8
1.3Risser Sign	11
1.3.1What is the Risser sign?	11
1.3.2Difficulties with the Risse	er
sign	13

PAGE

1.4Impa	ct of ethnicity on skeletal a	ge
estimatio	on	18
1.5Aims		20
2. MATERIALS	& METHODS	
2.1	Description of study	21
2.2	Sites of study	21
2.3	Exclusion criteria &	
asse	essment of radiographs	22
2.4	Statistical methods	23
<u>3. RESULTS</u>		
3.1	Overview of	
	radiographs assessed	25
3.2	Interobserver variability	27
3.3	Trends in the black	
	population	27
3.4	Trends in other population	n
	groups	29
4. DISCUSSION	-	
4.1. Inte	robserver variability	34
4.2. Trei	nds in the black population	39
4.3. Trei	nds in other population grou	aps
		40
4.4. Lim	itations of the study	41
5. CONCLUSIO	<u>NS</u>	44
<u>6. REFERENCE</u>	<u>'S</u>	45
7.APPENDICES		
Appendix A	Mean chronologic age for	
	boys & girls as found by	
	Scoles <i>et.al</i> .	48

Appendix B	Ethics clearance	
	certificate	49
Appendix C	Data collection sheet	50

LIST OF FIGURES

Figure 1	The scoliotic deformity	2
Figure 2	Measuring of Cobb's angle	3
Figure 3	The Risser stages	12
Figure 4	The Risser stages in United states & France	15
Figure 5	Radiograph with metal markers placed at ASIS & PSIS	17
Figure 6	Model seen from posteriorly wi markers placed at ASIS & PSIS	
Figure 7	Overview of radiographs assessed	26
Figure 8	Plot of mean ages at each Risse stage for girls, in each populatio group	
Figure 9	Plot of mean ages at each Risse stage for boys, in each population group	

Figure10Presence of bowel gas obscuring
apophysis37Figure11Unossified or skipped portion of
iliac apophysis38

LIST OF TABLES

Table 1	Mean Chronologic Age	
	(yrs.mo)for the black population	28
Table 2	Mean Chronologic Age	
	(yrs.mo)for the white population	29
Table 3	Mean Chronologic Age	
	(yrs.mo)for the Coloured	
	population	30
Table 4	Comparison of mean chronologi	c
	age (yrs.mo) of the black	
	populations	31

ABBREVIATIONS

PHV	Peak height velocity
PGA	Peak growth age
ASIS	Anterior superior iliac spine
PSIS	Posterior superior iliac spine
AP	Anteroposterior
PA	Posteroanterior
DHEA	Dihydro-epiandrostenedione
DHEA-S	Dihydro-epiandrostenedione- S
IGF-1	Interleukin growth factor-1
DSA	Digital skeletal age