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Abstract

Quantum communication and information processing with photons achieves the over-

arching goals of transferring, encrypting, and processing digital information using ma-

chinery provided by fundamental physics principles that are established in quantum

mechanics. In the last decade, the field has matured rapidly, from being the bedrock

of simple demonstrations of quantum key distribution protocols with typical polarisa-

tion qubits that have two dimensional (𝑑 = 2) alphabets to now overseeing accelerated

developments with high dimensional encoding using alternative photonic degrees of

freedom (DOFs) that span larger Hilbert spaces of dimensions 𝑑 > 2. Excitingly, the

transverse spatial DOF of light offers an infinite encoding alphabet. While spatial

modes may be transported over most propagation media, i.e. free-space, optical fiber

and underwater channels, they are easily perturbed by various noise mechanisms,

e.g., rapidly varying refractive index profiles, diffraction, mode dependent loss, in-

hibiting their performance in practical applications. Most potential approaches for

undoing these deleterious effects require full knowledge of the channel dynamics or

the state evolution. In relation to the latter we can highlight the following challenges

for transverse spatial mode encoding that are prevalent in the field: i) the internal

modal scattering due to the perturbations from a quantum channel for spatial modes

can be difficult to predict; ii) and when possible, accurate characterisation methods

are required before the effects of the channel can be undone; iii) in higher dimensions,

characterising quantum states become increasing difficult due to the quadratic scaling

of the number of measurements with respect to the dimensions.

In this Thesis we tackle these issues by engineering techniques for creating, con-

trolling and characterising photons that are subject to a diverse range of perturbative
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channels. For channels, that cause diffraction induced losses, we tailor non-diffracting

higher dimensional vectorial photon fields, that have coupled polarisation and az-

imuthal spatial components, modulated with self-healing radial profiles. We show

that these fields can be used to transmit secure quantum information in the presence

of disturbances. We overcome the scattering effects of optical media with spatially

varying refractive index, by invoking channel state duality and the invariance of non-

separable states to unitary channels, but in locally entangled vectorial photon fields.

This approach enables us to devise a procedure for undoing the effects of a channel

in order to preserve information encoded in spatial modes. This method advances

the use of so called classical entanglement in quantum and classical optics. Next,

we develop a technique that manipulates heterogeneous channels to deliver multiple

hybrid non-locally entangled states using a single mode fiber channel. The nonlocal

hybrid entanglement between the polarisation and high dimensional spatial modes

of two spatially separated photons is used as main resource. Lastly, we develop a

novel technique for characterising high dimensional quantum states that are affected

by white noise. The procedure involves the use of conditional measurements that re-

turn crucial information about the underlying states’ occupied dimensions and purity.

We demonstrate the feasibility and adaptability of our approach using photons that

have nonlocal entanglement between their transverse spatial modes of orbital angular

momentum, and separately using the pixel position basis.
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Rosales-guzman, Dr. Valeria Rodŕıguez-Fajardo, Dr. Najmeh TabeBordbar and Dr.

Wagner Tavares Buono: The work in this dissertation would not be successfully

conducted without your valuable nurturing;

To my colleges and team mates: you are all such wonderful people to work

with. I have learned the value of friendship and teamwork through all of you.

To our collaborators: Dr. Eileen Otte, Dr. Feng Zhu and Dr. Jun Liu, you

all made my visits in Germany, Scotland and China hospitable, respectively. I would

like to thank your group leaders Prof. Cornelia Denz, Prof. Jian Wang and Prof.

Jonathan Leach for allowing me to work in their labs and also giving me an excellent

experience outside South Africa.

Family and friends: thank you for your continuous support and encouragement.

It has really brought me far.

Funders: Lastly, I would like to acknowledge the University of the Witwatersrand,

the joint Council of Scientific and Industrial Research (CSIR) and Department of

Science and Technology (DST)-Interbursary Support (IBS), the National Laser center

(NLC) and the SPIE optics society for their financial assistance.

iv



Contents

Declaration i

Abstract ii

Acknowledgments iv

List of Figures ix

List of Tables xii

Publications xiii

1 Introduction 1

1.1 Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Polarisation modes . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Qudits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 High dimensional states . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 High dimensional spatial modes with orbital angular momentum 9

1.2.3 High dimensional hybrid polarisation modes . . . . . . . . . . 13

1.3 Two photon states in high dimensions . . . . . . . . . . . . . . . . . . 15

1.3.1 Entangled states . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.2 Nonlocal hybrid entanglement and classical hybrid entanglement 19

1.4 Quantum channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



2 Self healing quantum communication through obstructions 26

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Self-healing Bessel modes . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Non-diffracting information basis . . . . . . . . . . . . . . . . 29

2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Single photon heralding . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Tailoring the desired spatial profile . . . . . . . . . . . . . . . 34

2.3.3 Generation and detection . . . . . . . . . . . . . . . . . . . . 34

2.3.4 Scattering probability . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.1 Procedure and analysis . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 A single vector beam can be used to charactersise turbulence chan-

nels 46

3.0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Nonseparable vector modes . . . . . . . . . . . . . . . . . . . 48

3.1.2 Vector mode propagation through turbulence from the perspec-

tive of quantum mechanics . . . . . . . . . . . . . . . . . . . . 52

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.2 Vector quality factor measurement . . . . . . . . . . . . . . . 56

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Propagation of vector modes through turbulence . . . . . . . . 57

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vi



4 Unraveling the invariance of vectorial photon fields in unitary chan-

nels 62

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Vectorial light and unitary channels . . . . . . . . . . . . . . . 64

4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Vector beam generation . . . . . . . . . . . . . . . . . . . . . 68

4.4 Non-separability measurements . . . . . . . . . . . . . . . . . . . . . 69

4.4.1 Adjusted basis measurement . . . . . . . . . . . . . . . . . . . 71

4.5 Experiment and Results . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.1 Experimental demonstration: the tilted lens. . . . . . . . . . . 72

4.5.2 The role of measurement . . . . . . . . . . . . . . . . . . . . . 75

4.5.3 Reversing turbulence distortions . . . . . . . . . . . . . . . . . 78

4.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Transporting multiple hybrid entangled states through optical fibers 82

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Concept and principle . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 The experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.2 Characterisation . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.1 A hybrid quantum eraser . . . . . . . . . . . . . . . . . . . . . 94

5.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Quantifiying Dimensionality and Purity in High Dimensional En-

tanglement 99

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

vii



6.3.1 High dimensional state projections . . . . . . . . . . . . . . . 107

6.3.2 Experimental setup. . . . . . . . . . . . . . . . . . . . . . . . 109

6.3.3 Optimal purity and dimensionality calculation . . . . . . . . . 109

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4.1 Orbital angular momentum basis measurements . . . . . . . . 110

6.4.2 Pixel basis measurements. . . . . . . . . . . . . . . . . . . . . 113

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 Conclusions 118

7.1 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A Scattering probability of OAM in turbulence 124

B Synthesis of turbulence 126

C Supplementary material: invariant vectorial photon fields 129

C.1 Transmitting vector beams through unitary single sided channels . . . 129

C.2 Nonseparability of the transformed vector mode . . . . . . . . . . . . 131

C.3 Undoing the effects of the channel . . . . . . . . . . . . . . . . . . . . 132

C.4 Examples with a titled lens . . . . . . . . . . . . . . . . . . . . . . . 134

C.5 Titled lens mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

C.5.1 Wave optics description . . . . . . . . . . . . . . . . . . . . . 138

C.6 Basis dependent and basis independent non-separability measurements 139

C.6.1 Basis independent non-separability . . . . . . . . . . . . . . . 139

C.6.2 Basis dependent non-separability . . . . . . . . . . . . . . . . 141

C.7 Basis independent VQF propagation of uncertainty . . . . . . . . . . 143

C.8 Stokes Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

D Supporting data for multi-mode SMF fiber channel 147

D.0.1 Modal spectrum data after the two meter fiber . . . . . . . . . 147

D.0.2 Supporting density matrix reconstruction data . . . . . . . . 147

viii



D.0.3 Supporting quantum eraser data . . . . . . . . . . . . . . . . . 148

D.0.4 Tabulated concurrence and fidelity data . . . . . . . . . . . . 149

E 151

E.1 Dimensionality of Pure States . . . . . . . . . . . . . . . . . . . . . 151

E.2 High dimensional state projections . . . . . . . . . . . . . . . . . . . 153

E.3 Decomposition of Entangled Photons . . . . . . . . . . . . . . . . . . 155

E.4 Detection Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

E.5 Visibility for Different Spectra . . . . . . . . . . . . . . . . . . . . . . 160

E.6 Visibility of Mixed States . . . . . . . . . . . . . . . . . . . . . . . . . 161

E.7 Visibility of Separable States . . . . . . . . . . . . . . . . . . . . . . . 163

E.8 Verification of the Technique . . . . . . . . . . . . . . . . . . . . . . . 164

E.9 Simulations in the Pixel Basis . . . . . . . . . . . . . . . . . . . . . . 165

E.10 Quantum State Fidelity and Schmidt Rank . . . . . . . . . . . . . . . 166

E.11 Measurements in the Pixel Basis . . . . . . . . . . . . . . . . . . . . . 167

E.12 Comparison to State-of-the-art . . . . . . . . . . . . . . . . . . . . . . 168

ix



List of Figures

1-1 BlochSphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1-2 Spatial profiles of LG modes . . . . . . . . . . . . . . . . . . . . . . . 9

1-3 OAM Bloch sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1-4 Higher order Poincareśphere . . . . . . . . . . . . . . . . . . . . . . . 14

1-5 Effects of quantum channels on photons . . . . . . . . . . . . . . . . 20

2-1 Polarisation profiles of self-healing modes. . . . . . . . . . . . . . . . 30

2-2 QKD elements for self-healing vector modes. . . . . . . . . . . . . . . 32

2-3 Experimental setup for heralded self healing photons. . . . . . . . . . 37

2-4 Photon count rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2-5 Crosstalk measurements. . . . . . . . . . . . . . . . . . . . . . . . . . 41

2-6 Security analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3-1 Vector modes in turbulence . . . . . . . . . . . . . . . . . . . . . . . 49

3-2 Experimental setup for VQF measurements. . . . . . . . . . . . . . . 50

3-3 Modal spectrum in turbulence. . . . . . . . . . . . . . . . . . . . . . . 52

3-4 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . 58

4-1 Concept of vectorial fields undergoing a unitary transformation. . . . 65

4-2 Vectorial light through a tilted lens. . . . . . . . . . . . . . . . . . . . 66

4-3 Impact of scattering across multiple subspaces. . . . . . . . . . . . . . 67

4-4 The unitary channel mapping and its inversion. . . . . . . . . . . . . 73

4-5 The choice of measurement basis. . . . . . . . . . . . . . . . . . . . . 76

4-6 Unravelling turbulence. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

x



5-1 Concept of multi-dimensional entanglement . . . . . . . . . . . . . . . 84

5-2 Experimental setup schematic and modal spectrum . . . . . . . . . . 86

5-3 State reconstruction of multiple hybrid states . . . . . . . . . . . . . 88

5-4 Hybrid state Bell violations. . . . . . . . . . . . . . . . . . . . . . . . 94

5-5 Quantum eraser experiment on the channel . . . . . . . . . . . . . . . 95

6-1 Concept of dimensionality measurement . . . . . . . . . . . . . . . . 102

6-2 Visibility, dimensionality and purity extraction. . . . . . . . . . . . . 105

6-3 Experimental visibilities . . . . . . . . . . . . . . . . . . . . . . . . . 111

6-4 Pixels basis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B-1 Turbulence characterisation. . . . . . . . . . . . . . . . . . . . . . . . 126

C-1 Basis dependent measurement for tilted lens with input mode of ℓ = 1. 142

C-2 Basis dependent measurement for tilted lens with input mode of ℓ = 4. 142

C-3 Stokes parameters through a tilted lens. . . . . . . . . . . . . . . . . 144

C-4 Stokes Parameters of corrected modes . . . . . . . . . . . . . . . . . . 146

C-5 Stokes parameters in turbulence . . . . . . . . . . . . . . . . . . . . . 146

D-1 Spectral decomposition of the hybrid channel. . . . . . . . . . . . . . 148

D-2 Experimental tomography measurements. . . . . . . . . . . . . . . . . 149

D-3 Bell-inequality and quantum eraser measurements. . . . . . . . . . . . 150

E-1 Modal spectrum shapes. . . . . . . . . . . . . . . . . . . . . . . . . . 152

E-2 Modal decomposition of the state projectors . . . . . . . . . . . . . . 156

E-3 Detection probability vs relative orientation and dimensionality. . . . 157

E-4 Visibility of entangled pure states with differing spectral shapes. . . . 158

E-5 Impact of purity and dimensionality on visibility . . . . . . . . . . . . 169

E-6 Simulations for the pixel basis . . . . . . . . . . . . . . . . . . . . . . 170

E-7 Dimensionality witness comparison . . . . . . . . . . . . . . . . . . . 171

E-8 Dimensionality and purity measurements in the pixels basis . . . . . . 172

xi



List of Tables

1.1 Eigenvalues and eigenvectors of the Pauli matrices. . . . . . . . . . . 6

2.1 Wave-plate orientation angles . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Security parameters for the channel . . . . . . . . . . . . . . . . . . . 43

3.1 Analysis of vector modes in turbulence . . . . . . . . . . . . . . . . . 59

6.1 Purity and dimensionality measurements . . . . . . . . . . . . . . . . 113

C.1 VQF of selected subspace. . . . . . . . . . . . . . . . . . . . . . . . . 132

C.2 Decomposition of LG modes into HG modes. . . . . . . . . . . . . . 137

C.3 Modal decomposition of LG after a tilted lens transformation. . . . . 138

C.4 VQF Values and errors. . . . . . . . . . . . . . . . . . . . . . . . . . . 145

D.1 Fidelity and concurrence values. . . . . . . . . . . . . . . . . . . . . . 149

E.1 Dimensionality and purity measurements in the OAM basis. . . . . . 165

E.2 Measurement scaling with dimensions . . . . . . . . . . . . . . . . . . 168

xii



Publications

Contributed patents

A. Forbes, B. Ndagano, I. Nape, M. Cox, and C. Rosales-guzman, “Method and

system for hybrid classical-quantum communication,” Dec. 26 2019. US. Patent

App. 16/480,008.

Peer reviewed articles

1. I. Nape, V. Rodri´guez-Fajardo, F. Zhu, H.-C. Huang, J. Leach, and A. Forbes,

“Measuring dimensionality and purity of high-dimensional entangled states,”

Nature Communications, vol. 12, no. 5159, pp. 1–8, 2021.

2. I. Nape, K. Singh, A. Klug, W. Buono, C. Rosales-Guzm´an, S. Franke-Arnold,

A. Dudley, and A. Forbes, “Revealing the invariance of vectorial structured light

in perturbing media,” arXiv preprint arXiv:2108.13890, 2021.

3. A. Klug, I. Nape, and A. Forbes, “The orbital angular momentum of a tur-

bulent atmosphere and its impact on propagating structured light fields,” New

Journal of Physics, vol. 23, p. 093012, 2021.

4. I. Nape, N. Mashaba, N. Mphuthi, S. Jayakumar, S. Bhattacharya, and A.

Forbes, “Vector-mode decay in atmospheric turbulence: An analysis inspired

by quantum mechanics,” Physical Review Applied, vol. 15, no. 3, p. 034030,

2021.

xiii



5. B. Sephton, A. Vall´es, I. Nape, M. A. Cox, F. Steinlechner, T. Konrad, J.

P. Torres, F. S. Roux, and A. Forbes, “High-dimensional spatial teleportation

enabled by nonlinear optics,” arXiv preprint arXiv:2111.13624, 2021.

6. Y. Shen, I. Nape, X. Yang, X. Fu, M. Gong, D. Naidoo, and A. Forbes,

“Creation and control of high-dimensional multi-partite classically entangled

light,” Light: Science & Applications, vol. 10, no. 50, pp. 1–10, 2021.

7. J. Liu, I. Nape, Q. Wang, A. Vall´es, J. Wang, and A. Forbes, “Multidimen-

sional entanglement transport through single-mode fiber,” Sci Adv, vol. 6, no.

4, p. eaay0837, 2020.

8. I. Nape, B. Sephton, Y.-W. Huang, A. Vall´es, C.-W. Qiu, A. Ambrosio,

F. Capasso, and A. Forbes, “Enhancing the modal purity of orbital angular

momentum photons,” APL Photonics, vol. 5, no. 7, p. 070802, 2020.

9. A. Forbes and I. Nape, “A scramble to preserve entanglement,” Nature Physics,

vol. 16, no. 11, pp. 1091–1092, 2020.

10. M. de Oliveira, I. Nape, J. Pinnell, N. TabeBordbar, and A. Forbes, “Ex-

perimental high-dimensional quantum secret sharing with spin-orbit-structured

photons,” Physical Review A, vol. 101, no. 4, p. 042303, 2020.

11. A. Manthalkar, I. Nape, N. T. Bordbar, C. Rosales-Guzm´an, S. Bhattacharya,

A. Forbes, and A. Dudley, “All-digital stokes polarimetry with a digital mi-

cromirror device,” Optics Letters, vol. 45, no. 8, pp. 2319–2322, 2020.

12. A. Forbes and I. Nape, “Quantum mechanics with patterns of light: Progress

in high dimensional and multidimensional entanglement with structured light,”

AVS Quantum Science, vol. 1, no. 1, p. 011701, 2019.

13. J. Pinnell, I. Nape, M. de Oliveira, N. TabeBordbar, and A. Forbes, “Ex-

perimental demonstration of 11-dimensional 10-party quantum secret sharing,”

Laser & Photonics Reviews, vol. 14, no. 9, p. 2000012, 2020.

xiv



14. M. A. Cox, N. Mphuthi, I. Nape, N. Mashaba, L. Cheng, and A. Forbes,

“Structured light in turbulence,” IEEE Journal of Selected Topics in Quantum

Electronics, vol. 27, no. 2, pp. 1–21, 2020.

15. E. Otte, I. Nape, C. Rosales-Guzm´an, C. Denz, A. Forbes, and B. Ndagano,

“High-dimensional cryptography with spatial modes of light: tutorial,” JOSA

B, vol. 37, no. 11, pp. A309–A323, 2020.

16. J. Pinnell, I. Nape, B. Sephton, M. A. Cox, V. Rodr´ıguez-Fajardo, and A.

Forbes, “Modal analysis of structured light with spatial light modulators: a

practical tutorial,” JOSA A, vol. 37, no. 11, pp. C146–C160, 2020.

17. E. Toninelli, B. Ndagano, A. Vall´es, B. Sephton, I. Nape, A. Ambrosio, F.

Capasso, M. J. Padgett, and A. Forbes, “Concepts in quantum state tomogra-

phy and classical implementation with intense light: a tutorial,” Advances in

Optics and Photonics, vol. 11, no. 1, pp. 67–134, 2019.

18. I. Nape, E. Otte, A. Vall´es, C. Rosales-Guzm´an, F. Cardano, C. Denz, and

A. Forbes, “Self-healing high-dimensional quantum key distribution using hy-

brid spin-orbit bessel states,” Optics express, vol. 26, no. 21, pp. 26946–26960,

2018.

19. E. Otte, I. Nape, C. Rosales-Guzm´an, A. Vall´es, C. Denz, and A. Forbes,

“Recovery of nonseparability in self-healing vector bessel beams,” Physical Re-

view A, vol. 98, no. 5, p. 053818, 2018.

20. B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzman, and A. Forbes, “Cre-

ation and detection of vector vortex modes for classical and quantum commu-

nication,” Journal of Lightwave Technology, vol. 36, no. 2, pp. 292–301, 2018.

Conference papers

1. I. Nape, J. Liu, Q. Wang, A. Valles, J. Wang, and A. Forbes, “Transmitting

multiple hybrid entangled states using a conventional single mode fiber,” in

xv



Laser Science, pp. JTh4A–31, Optical Society of America, 2020.

2. I. Nape, V. Rodr´ıguez-Fajardo, H.-C. Huang, and A. Forbes, “Measuring

high dimensional entanglement using fractional orbital angular momentum.,”

in Frontiers in Optics, pp. FW7C–8, Optical Society of America, 2020.

3. K. Singh, I. Nape, A. Manthalkar, N. Tabebordbar, C. Rosales-Guzm´an,

S. Bhattacharya, A. Forbes, and A. Dudley, “Polarization reconstruction with

a digital micro-mirror device,” in Laser Beam Shaping XX, vol. 11486, p.

1148609, International Society for Optics and Photonics, 2020.

4. A. Vall´es, I. Nape, J. Liu, Q. Wang, J. Wang, and A. Forbes, “Multidimen-

sional spatial entanglement transfer through our existing fiber optic network,”

in Optical Manipulation and Structured Materials Conference 2020, vol. 11522,

p. 1152218, International Society for Optics and Photonics, 2020.

5. M. de Oliveira, J. Pinnell, I. Nape, N. TabeBordbar, and A. Forbes, “Realising

high-dimensional quantum secret sharing with structured photons,” in Quan-

tum Communications and Quantum Imaging XVIII, vol. 11507, p. 1150709,

International Society for Optics and Photonics, 2020.

6. V. Rod´rıguez-Fajardo, S. Scholes, R. Kara, J. Pinnell, C. Rosales-Guzm´an,

N. Mashaba, I. Nape, and A. Forbes, “Controlling light with dmds,” in 2020

International Conference Laser Optics (ICLO), pp. 1–1, IEEE, 2020.

7. J. Pinnell, I. M. Nape, M. De Oliveira, N. Tabebordbar, and A. Forbes, “Quan-

tum secret sharing with twisted light,” in Complex Light and Optical Forces XV,

vol. 11701, p. 117010K, International Society for Optics and Photonics,2021.

8. Y. Shen, Z. Wang, X. Yang, I. Nape, D. Naidoo, X. Fu, and A. Forbes, “Clas-

sically entangled vectorial structured light towards multiple degrees of freedom

and higher dimensions,” in CLEO: Science and Innovations, pp. STh1B–1,

Optical Society of America, 2021.

xvi



Conference Presentations

1. I. Nape, V. Rodr´ıguez-Fajardo, F. Zhu, HC. Huang, J. Leach, A. Forbes, “A

method for characterising high dimensional entangled states”, Student Confer-

ence on Optics and Photonics, India, 2021.

2. I. Nape, V. Rodr´ıguez-Fajardo, F. Zhu, HC. Huang, J. Leach, A. Forbes,

“Quantitative measurements of the purity and dimensionality of high dimen-

sional entagled states”, Annual conference of the South African Institute of

Physics, South Africa, 2021.

3. I. Nape, N. Mashaba, N. Mphuthi, S. Jayakumar, S. Bhattacharya, A. Forbes,

“Characterising laser beams through turbulence using vector beams and a sim-

ple quantum trick”, Annual conference of the South African Institute of Physics,

South Africa, 2021.

4. I. Nape, V. Rodr´ıguez-Fajardo, F. Zhu, HC. Huang, J. Leach, A. Forbes,

“Measuring the dimensionality of twisted modes”, Photon 2020 by the Institute

of Physics (IOP), United Kingdom, 2020.

5. I. Nape, E. Otte, J. Liu., A. Vall´es, Q. Wang, J. Wang, C. Rosales-guzman,

C. Denz and A. Forbes, “Reaching high dimensions by spinning and twisting

photons”, Quantum Africa (5) Conference, Stellenbosch, South Africa, 2019.

6. I. Nape, E. Otte, J. Liu., A. Vall´es, Q. Wang, J. Wang, C. Rosales-guzman,

C. Denz and A. Forbes,“Hybrid entanglement for quantum information pro-

cessing”, at the Intentional conference on orbital angular momentum , Ottawa,

Canada, 2019.

7. I. Nape, E. Otte, J. Liu., A. Vall´es, Q. Wang, J. Wang, C. Rosales-guzman,

C. Denz and A. Forbes “Self-healing locally entangled modes for secure com-

munication”, at the 2nd International OSA Network of Students (IONS) South

Africa, South Africa, 2018.

xvii



Chapter 1

Introduction

Initial developments in quantum mechanics unveiled several intriguing features about

the fundamental nature of quantum systems that make them distinct from their clas-

sical counterparts. For example, the most non-classical manifestation of quantum

correlations, i.e. entanglement, was discovered indirectly when Einstein, Podolsky,

and Rosen (EPR) [1] attempted to expose the incompleteness of quantum mechanics

by demonstrating that two particle systems with space-like separation can remain

correlated, therefore violating local hidden variable theories. It took several decades

of theoretical studies (see Ref. [2] for a concise review) and convincing experimental

validation [3], to prove that quantum entanglement, though paradoxical, is a funda-

mental aspect of nature. Another, intriguing feature of quantum systems that has no

classical equivalent is captured in the no-cloning theorem [4], preventing the creation

of exact copies of quantum states. Today, these intriguing properties, among many

others, serve as constituent elements of rapidly advancing technologies in quantum

communication, computing and information science that offer a variety of solutions

for digital information transmission, storage and processing.

While quantum computation harnesses the superposition principle and entangle-

ment for executing computational algorithms and calculations, quantum communi-

cation on the other hand offers solutions for secure information transmission over

long distances. A topical sub-field of quantum communication is quantum cryptog-

raphy [5–7], where single photons are used to generate encryption keys in a provably
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secure manner instead of relying on computationally difficult algorithms that may

fail with advancing computing power. Reaching long transmission distances as well

as maintaining high information capacities and communication speeds is at the core

of quantum communication research. Photons are favoured in this area as opposed to

other elementary particles (protons, electrons, neutrons), because they couple weakly

with the environment and have the highest propagation speeds.

Initially, numerous newly developed quantum communication protocols, e.g., quan-

tum key distribution (QKD) [8], superdense coding [9], quantum teleportation [10],

entanglement swapping [11], quantum secret sharing (QSS) [12] and some fundamen-

tal test of quantum mechanics, e.g., early demonstrations of Bell inequality viola-

tions [13], quantum erasures [14], etc., were demonstrated with photon polarisation

qubits having a two digit alphabet with dimensions of 𝑑 = 2. For this reason, access-

ing higher dimensions (𝑑 > 2) using transverse spatial mode is topical since spatial

modes offer the benefit of increasing the information capacity of photonic quantum

communication protocols [15–17], overcoming the capacity limit imposed by polari-

sation encoding. Transverse spatial modes are receiving much attention, with some

demonstrations of quantum encryption (QKD and QSS) ranging from 𝑑 = 4 [18,19],

𝑑 = 7 [20, 21], 𝑑 = 8 [22] and 𝑑 = 11 [23] dimensions. Current research efforts are

focused on deploying spatial modes in practical scenarios. However, spatial modes

are sensitive to numerous decay mechanisms (or perturbations) in the environment,

therefore limiting their performance. The perturbations can include spatially depen-

dent phase variations [24, 25], optical diffraction [26] and environmental noise [27],

known to scramble information in quantum channels.

In this chapter, we introduce the qubit (two-dimensional states) and transition

to qudits (high dimensional states). We draw our attention to the spatial degree

of freedom (DOF) of light together with polarisation modes and focus on how both

DOFs can be used to increase the encoding dimensions of photons in single and

two photon states. Subsequently, we discuss some of the challenges that come with

deploying spatial mode encoding in practical quantum channels and finally provide

an outline of each chapter in the thesis.

2



Chapter 1 Isaac Nape 3

1.1 Qubits

Discrete quantum states can be expressed as elements of the Hilbert space; an inner

product vector space ℋ, that can be spanned by an orthonormal computational basis,

ℬ𝑑, where the subscript 𝑑, is the number of unique elements corresponding to the

dimensions of the vector space. Moreover, the basis, ℬ𝑑, is complete because any

state on the Hilbert space can be expanded in terms of its elements. The simplest

example of a Hilbert space for discrete quantum states is the two dimensional qubit

space. For qubits, we can construct vectors, |0⟩ =

⎛⎝1

0

⎞⎠ and |1⟩ =

⎛⎝0

1

⎞⎠, which form

our basis. Note that ℬ𝑑 is not unique, e.g., from our computational basis, we can

create another basis, {|+⟩ = 1/
√

2 (|0⟩ + |1⟩) , |−⟩ = 1/
√

2 (|0⟩ − |1⟩)}, that can also

span the qubit vector space. Accordingly, any qubit state can be expanded in terms

of the basis vectors. For example, using our initial basis vectors, {|0⟩ , |1⟩}, i.e. the

computational basis, any state can be expressed as

|Ψ⟩ = 𝑎 |0⟩ + 𝑏 |1⟩ , (1.1)

=

⎛⎝𝑎
𝑏

⎞⎠ , (1.2)

where 𝑎 and 𝑏 are complex coefficients that determine the state |Ψ⟩. Since | ⟨Ψ|Ψ⟩ |2 =

1, the coefficients must satisfy |𝑎|2 + |𝑏|2 = 1. Physically, |𝑎|2 and |𝑏|2 are the prob-

abilities of obtaining the states |0⟩ and |1⟩, respectively. We can represent qubits on

a three dimensional sphere, called the Bloch sphere (shown in Fig. 1-1(a)), where

states are parameterised by angles 𝜃 and 𝜒. We can express Eq. (1.2) using these

parameters according to the mapping

|Ψ⟩ = cos(𝜃/2) |0⟩ + sin(𝜃/2)𝑒−𝑖𝜒 |1⟩ . (1.3)

Here 𝜃, the zenith angle controls the relative weighting between the basis states in

the computational basis while 𝜒 determines the relative phases. A photon with the

3
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Figure 1-1: (a) Bloch sphere, for qubit states. The poles contain the computational basis
states while the equator contains their equally weighted superpositions. (b) Poincareśphere
for polarisation modes.

state in Eq. (1.3) is pure. We can represent it using outer-products of the pure vector

state, |Ψ⟩, mapping it to a density matrix

𝜌Ψ = |Ψ⟩ ⟨Ψ| ,

=

⎛⎝𝑎
𝑏

⎞⎠⊗
(︁
𝑎* 𝑏*

)︁

=

⎛⎝|𝑎|2 𝑎𝑏*

𝑏𝑎* |𝑏|2

⎞⎠ . (1.4)

The matrix version is still normalised under the trace norm, so that Tr(𝜌Ψ) = 1,

where Tr denotes the trace operator. This can represent a process that produces

photons that are identical. In the case where the photons are not identical, or in

other words occupy states that are not necessarily the same, the system can be an

4
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ensemble (statistical mixture) of several pure states,

𝜌 =
∑︁
𝑖

𝑝𝑖𝜌𝑚,

=
∑︁
𝑖

𝑝𝑖 |Ψ𝑚⟩ ⟨Ψ𝑚| , (1.5)

where the states 𝜌𝑚 occur with a probability 𝑝𝑚 = Tr(𝜌†𝑚𝜌), and the states 𝜌𝑚 are not

necessarily orthogonal. If the density matrices are indeed othogonal and complete,

i.e., Tr(|Ψ𝑖⟩ ⟨Ψ𝑖|Ψ𝑗⟩ ⟨Ψ𝑗|) = 𝛿𝑖𝑗 and
∑︀

𝑖 |Ψ𝑖⟩ ⟨Ψ𝑖| = 1 then the state is said to be

maximally mixed and not pure. The purity of a density matrix can be computed

from Tr(𝜌2) ranging from zero for mixed states to one for pure states. Just as there

is a decomposition of pure states, there is also a compact decomposition with a basis

for two dimensional matrices given by,

{ 12 =

⎛⎝1 0

0 1

⎞⎠ , 𝜎𝑥 =

⎛⎝0 1

1 0

⎞⎠ , 𝜎𝑦 =

⎛⎝0 −𝑖

𝑖 0

⎞⎠ , 𝜎𝑧 =

⎛⎝1 0

0 −1

⎞⎠ },

which are the identity matrix, 12 and the three Pauli matrices satisfying Tr(𝜎𝑖) = 0.

Accordingly, any qubit density matrix can be decomposed as

𝜌 =
12

2
+
∑︁
𝑖

𝑏𝑖𝜎𝑖. (1.6)

Here 12 is the identity matrix, b = (𝑏1, 𝑏2, 𝑏3) is called the Bloch vector while 𝜎𝑖 are the

Pauli matrices. Since the density matrix must be semi-positive definite, |b| ≤ 1. The

eigenvalues and eigenvectors corresponding to each Pauli matrix are shown in Table

1.1. Crucially, the eigenvectors of 𝜎𝑧, corresponding to the computational basis, are

on the poles of the Bloch sphere and are aligned with the 𝑧-axis. The 𝜎𝑥 eigenvectors

map the states on the 𝑥-axis and correspond to the Hadamard basis states |±⟩ and

the 𝜎𝑦 eigenstates are on the poles of the 𝑦-axis. Therefore the Pauli matrices form

an over complete basis for the qubit states. Next, we explore an internal DOF of

photons that can be used to encode qubit states.

5
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Table 1.1: Eigenvalues and eigenvectors of the Pauli matrices.

Eigenvalues Eigenvector

𝜎𝑧 ±1 {|0⟩ ≡
(︂

1
0

)︂
, |1⟩ ≡

(︂
0
1

)︂
}

𝜎𝑦 ±1 { 1√
2

(︂
1
−𝑖

)︂
, 1√

2

(︂
1
𝑖

)︂
}

𝜎𝑥 ±1 {|+⟩ ≡ 1√
2

(︂
1
1

)︂
, |−⟩ ≡ 1√

2

(︂
1
−1

)︂
}

1.1.1 Polarisation modes

The polarisation of light is often associated with its spin angular momentum [28], a

property that enables light to rotate objects about their origin. This phenomenon is

observed when the light is circularly polarised. The direction of the rotating object

indicates the handedness of the circular polarisation field.

At the single photon level each photon carries exactly ±1ℏ per photon, where the

sign is associated with the handedness of the circular polarisation photon field and

hence can form a two level system using the circular polarisation basis. In optics, the

Bloch sphere equivilent for polarisation states is called the Poincare´ sphere, shown

in Fig. 1-1(b). Here the poles contain the right |𝑅⟩ ≡ |0⟩ and left |𝐿⟩ ≡ |1⟩ circular

polarisation modes.

Assuming the decomposition of qubits states in Eq. (1.3), we see that 𝜃 = 𝜋/2 can

be associated with states on the equator, corresponding to electric field oscillations

about the xy plane. Here well known linear polarisation states can be found to include

|𝐻⟩ = 1/
√

2 (|𝑅⟩ + |𝐿⟩) , (1.7)

|𝑉 ⟩ = 1/
√

2 (|𝑅⟩ − |𝐿⟩) , (1.8)

|𝐷⟩ = 1/
√

2 (|𝑅⟩ + 𝑖 |𝐿⟩) , (1.9)

|𝐴⟩ = 1/
√

2 (|𝑅⟩ − 𝑖 |𝐿⟩) , (1.10)

listed as the linear the horizontal (H) and vertical (V) polarisation states followed by

the rectilinear diagonal (D) and anti-diagonal (A) polarisation states, corresponding

6
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to phases 𝜒 = 0, 𝜋, 𝜋/2 and 3𝜋/2, respectively.

It should be trivial to see that the right and left circular polarisations are deter-

mined by 𝜃 = 0 and 𝜃 = 𝜋, respectively. For 𝜃 = (0, 𝜋), one obtains various elliptical

polarisation states. Therefore using the parameters (𝜃, 𝜒) it is possible to express any

polarisation qubit.

1.2 Qudits

Upon recognising that polarisation qubits imposed fundamental limits on quantum

communication protocols, i.e., admitting only one bit of information per photon,

numerous protocols were extended to multi-level encoding schemes [29], ushering in

high dimensional (𝑑 > 2) quantum information [17]. The migration from traditional

qubit to high dimensional qudits is motivated by the fact that higher dimensional

states offer increased information capacity and security [29–31], protection against

optimal quantum cloning machines [22, 32,33] and resilience to noise [34].

1.2.1 High dimensional states

In higher dimensions, 𝑑 > 2, we can express states on the Hilbert space by simply

increasing the size of our encoding basis. We achieve this by increasing the number

of elements in the computational basis. That is by constructing a basis with 𝑑 > 2

elements; ℬ𝑑 = {|𝑗⟩ , 𝑖 = 0, 1, ..𝑑 − 1} satisfying, | ⟨𝑖|𝑗⟩ | = 𝛿𝑖𝑗), for all |𝑖⟩ , |𝑗⟩ ∈ ℬ𝑑.

For example, in three dimensions we have the basis

ℬ3 = {|0⟩ =

⎛⎜⎜⎜⎝
1

0

0

⎞⎟⎟⎟⎠ , |1⟩ =

⎛⎜⎜⎜⎝
0

1

0

⎞⎟⎟⎟⎠ , |2⟩ =

⎛⎜⎜⎜⎝
0

0

1

⎞⎟⎟⎟⎠}, (1.11)

spanning the state-space for qutrits (𝑑 = 3). Accordingly, a qutrit pure state can be

written as

|Ψ⟩ = 𝑎1 |0⟩ + 𝑎2 |1⟩ + 𝑎3 |2⟩ , (1.12)

7
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having a corresponding density matrix,

𝜌𝜓 =

⎛⎜⎜⎜⎝
𝑎0

𝑎1

𝑎2

⎞⎟⎟⎟⎠⊗
(︁
𝑎*0 𝑎*2 𝑎*2

)︁
,

=

⎛⎜⎜⎜⎝
|𝑎0|2 𝑎0𝑎

*
1 𝑎0𝑎

*
2

𝑎1𝑎
*
0 |𝑎2|2 𝑎1𝑎

*
2

𝑎2𝑎
*
0 𝑎2𝑎

*
1 |𝑎3|2

⎞⎟⎟⎟⎠ . (1.13)

In general, any high dimensional purestate can be written as the superpositon state

|Ψ⟩ =
𝑑−1∑︁
𝑗=0

𝑎𝑗 |𝑗⟩ , (1.14)

where 𝑎𝑖 are complex coefficients that determine the state |Ψ⟩ up to a global phase.

Similarly to the qubit states, the normalisation condition requires that the coefficients

satisfy
∑︀

𝑗 |𝑎𝑗|2 = 1.

The density matrices can also be expressed using the computational basis as

𝜌 =

(∑︁
𝑚,𝑛=0

𝑑− 1)𝑐𝑚𝑛 |𝑚⟩ ⟨𝑛| . (1.15)

The components of the density matrix are given by 𝑐𝑚𝑛 and there are exactly 𝑑2 of

them. In addition to the decomposition in Eq. (1.15), there exists another decompo-

sition with 𝑑2 − 1 Gell-Mann matrices, 𝜏𝑘, following

𝜌 =
1𝑑

𝑑
+

𝑑2−1∑︁
𝑘=0

𝑡𝑘𝜏𝑘, (1.16)

where t = (𝑡0, 𝑡1, ..𝑡𝑑2−1) are coefficients of the Gell-Mann matrices. The Gell-mann

matrices are also trace-less, othorgonal and have 𝑑 eigenvectors. In order to determine

the coefficients 𝑡𝑘, a set of tomographically complete measurements are required and

these can be the eigenvectors of each matrix. This means that (𝑑2 − 1) observables

8
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Figure 1-2: High dimensional spatial modes of light. (a) Normalised intensity and (b) phase
profiles of LG modes for various discrete radial (𝑝) and OAM indices (ℓ).

are required to completely describe the state. Alternatively mutually unbiased bases

can be used [35], requiring 𝑑+ 1 observables, though there are restrictions on 𝑑 [36].

Now that we have established what qudits (or high dimensional states) are, the

goal is to use photonic DOFs that have the properties listed above.

1.2.2 High dimensional spatial modes with orbital angular

momentum

Photons have internal DOFs that span higher dimensional Hilbert spaces, e.g., time

[37–39], path [40,41] and transverse spatial modes [15,16,42]. In particular, high di-

mensional transverse spatial modes that carry quantised amounts of orbital angular

momentum (OAM) are slowly showing feasibility in freespace [20, 22, 43–46], optical

fiber [47] and underwater [48, 49] quantum communication channels. Here, we focus

on the transverse spatial mode DOF. Firstly, let us revisit the wave description light

where the transverse oscillations of the electric field are characterised by field func-

tions, 𝑈(r, 𝑧, 𝑡), satisfying the wave equation [50]. The parameters r = (𝑥, 𝑦), 𝑧 and

𝑡 are the transverse, longitudinal and temporal coordinates, respectively.

Under the paraxial approximation (the limit of small beam divergence in the

traverse plane) it can be assumed that transverse components of spatial modes are a

slowly varying function of 𝑧, i.e. satisfying the paraxial inequality [28]

| 𝜕
2

𝜕2𝑧
𝑈(r, 𝑧)| << 𝑘| 𝜕

𝜕𝑧
𝑈(r, 𝑧)|. (1.17)

9
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It follows that the differential equation that governs the propagation of these fields

can be written as [28]

(∇2
⊥ + 𝑖𝑘2

𝜕

𝜕𝑧
)𝑈(r, 𝑧) = 0, (1.18)

where ∇2
⊥ is the transverse component of the Laplacian differential operator. Equa-

tion (1.18) is called the paraxial approximation of the Helmholtz equation. In the

cylindrical coordinates, general solutions to Eq. (1.18) have the form

𝑈(𝑟, 𝜑, 𝑧) = 𝑢(𝑟, 𝑧)𝑒𝑖ℓ𝜑. (1.19)

Here 𝜑 and 𝑟 are the azimuthal and radial coordinates, respectively, while ℓ ∈ Z

is an integer, and 𝑢(𝑟, 𝑧) is the radial profile of the beam. These solutions have a

characteristic complex profile, 𝑒𝑖ℓ𝜑, indicative of light beams that carry orbital angu-

lar momentum OAM. The integer, ℓ, has a physical significance: ℓ is the helicity or

topological charge of the vortex present in the field and each photon has an OAM of

ℓℏ. Moreover, the phase profiles have |ℓ| characteristic dislocations that correspond

to complete cycles of 2𝜋. It was Allen et. al. [51] who first generated OAM light

beams and since then they are used throughout the photonics community. Current

methods for generating and detecting photons carrying OAM include the use of phase

elements that utalise dynamic phase control on spatial light modulators (SLM) [52],

geometric phase control using birefringent liquid crystals [53–55] and recently emerg-

ing metasurface technology [56,57].

An example of a photon field that carries OAM is a Gaussian mode that is im-

printed with the characteristic azumthal phase profile of OAM modes, i.e. exp
(︁
− 𝑟2

𝑤2
0

)︁
×

exp(𝑖ℓ𝜑). However, such a field is instead a Hypergoemetric-Gaussian mode [58]and

has a radial profile that changes with propagation though maintaining its azimuthal

profile. On the contrary, a well known mode family that maintains the radially depen-

dent amplitude and phase profiles in the paraxial regime is the of Laguerre-Gaussian

10
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(LG) mode family, expressed here as

𝑈𝐿𝐺
ℓ𝑝 (𝑟, 𝜑, 𝑧) = 𝐶ℓ𝑝

[︂√
2

𝑟

𝑤(𝑧)

]︂ℓ
𝐿𝑝

ℓ

(︂
2𝑟2

𝑤(𝑧)2

)︂
𝑤0

𝑤(𝑧)
exp (−𝑖𝜓𝑝ℓ(𝑧))×

exp

(︂
−𝑖 𝑘

2𝑞(𝑧)
𝑟2
)︂

exp

(︂
− 𝑟2

𝑤(𝑧)2

)︂
exp(𝑖ℓ𝜑), (1.20)

where the function 𝐿ℓ𝑝(·) is the associated Laguerre polynomial, 𝑤(𝑧) = 𝑤0

√︀
1 + (𝑧/𝑧𝑅)

is the beam size of the Gaussian envelope as the field propagates in the 𝑧 direction

while 𝑤0 is its corresponding radius at the 𝑧 = 0 plane, with 𝑧𝑅 = 𝜋𝑤0
2/𝜆 represent-

ing the Gaussian mode Rayleigh range. The term depending on 𝑞(𝑧) = 𝑧− 𝑖𝑧𝑅 is the

complex beam parameter and 𝜓𝑝ℓ(𝑧) = (2𝑝+ |ℓ| + 1) tan−1(𝑧/𝑧𝑅) is the Gouy phase.

The constant factor 𝐶ℓ𝑝 is a normalisation constant so that
∫︀
|𝑈𝐿𝐺

ℓ𝑝 (𝑟, 𝜑, 𝑧)|2𝑑2𝑟 = 1.

The second moment radius of LG beams increases in size with |ℓ| and 𝑝 according to

𝑤ℓ,𝑝 =
√︀

2𝑝+ |ℓ| + 1 × 𝑤0.

In Fig. 1-2(a) and Fig. 1-2(b) various LG intensity, (|𝑈𝐿𝐺
ℓ𝑝 (𝑟, 𝜑, 𝑧)ℓ𝑝|2), and phase

profile, mod
[︀
arg
(︀
𝑈𝐿𝐺
ℓ𝑝 (𝑟, 𝜑, 𝑧 = 0)

)︀
, 2𝜋
]︀
, are shown. The intensity profile has a region

of null intensity, centered at the origin and a radius that increases with |ℓ|. Further-

more, the field has 𝑝+ 1 or 𝑝 concentric rings for |ℓ| > 0 or |ℓ| = 0, respectively.

Interestingly, OAM basis modes that have LG profiles have been measured at

the single photon level using interferometers [59] and refractive optical elements [60].

Moreover, they have been used in high dimensional encoding schemes for single pho-

tons [21], entangled two [61] and three photon GHZ states [62]. In such applications,

the field profiles in Eq. (1.20) are used to describe basis states of the transverse DOF

of photons following the expansion

|ℓ, 𝑝⟩ =

∫︁∫︁
𝑈𝐿𝐺
ℓ𝑝 (𝑥, 𝑦) |𝑥⟩ |𝑦⟩ 𝑑𝑥𝑑𝑦, (1.21)

where |𝑥⟩ |𝑦⟩ are continuous position state vectors in Cartesian coordinates, such

that ⟨𝑥′|𝑥⟩ = 𝛿(𝑥−𝑥′) and ⟨𝑦′|𝑦⟩ = 𝛿(𝑦− 𝑦′), are inner products in the position basis

resulting in Dirac delta functions [63]. It follows that ⟨𝑦′| ⟨𝑥′|𝑥⟩ |𝑦⟩ = ⟨𝑥′|𝑥⟩ ⟨𝑦′|𝑦⟩ =

𝛿(𝑥−𝑥′)𝛿(𝑦−𝑦′). Accordingly, the overlap between any two states |ℓ1, 𝑝1⟩ and |ℓ2, 𝑝2⟩

11
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Figure 1-3: Any two LG basis modes can be used to construct a Bloch (or equivalently

Poincare)́ sphere for spatial qubits. We show an example for OAM modes in the ℓ = ±1
subspace where 𝑝 = 0.

is

⟨𝑝1, ℓ1|ℓ2, 𝑝2⟩ =

∫︁∫︁
𝑈𝐿𝐺*
ℓ1,𝑝1

(𝑥1, 𝑦1)𝑑𝑥1𝑑𝑦1

∫︁∫︁
𝑈𝐿𝐺
ℓ2,𝑝2

(𝑥2, 𝑦2) ⟨𝑥1|𝑥2⟩ ⟨𝑦1|𝑦2⟩ 𝑑𝑥2𝑑𝑦2,

=

∫︁∫︁
𝑈𝐿𝐺*
ℓ1,𝑝1

(𝑥1, 𝑦1)𝑑𝑥1𝑑𝑦1

∫︁∫︁
𝑈𝐿𝐺
ℓ2,𝑝2

(𝑥2, 𝑦2)𝛿(𝑥2 − 𝑥1)𝛿(𝑦2 − 𝑦1)𝑑𝑥2𝑑𝑦2,

=

∫︁∫︁
𝑈𝐿𝐺*
ℓ1,𝑝1

(𝑥, 𝑦)𝑈𝐿𝐺
ℓ2,𝑝2

(𝑥, 𝑦)𝑑𝑥𝑑𝑦,

= 𝛿ℓ1,ℓ2𝛿𝑝1,𝑝2 , (1.22)

owing to the orthonormality of the LG basis modes. This means that any two distinct

LG modes are orthogonal. Therefore a qubit state-space analogous to the polarisation

Poincaré sphere, can be constructed for any two independent OAM modes [64]. In

Fig. 1-3, we show an example of a qubit space for 𝑝 = 0 and ℓ = ±1. Here, the north

and south poles are the basis states |ℓ⟩ ≡ |ℓ, 𝑝 = 0⟩ and |−ℓ⟩ ≡ |−ℓ, 𝑝 = 0⟩. The

superposition states are located on the equator. Any qubit state on this subspace can

12
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be written as

|𝜓ℓ𝜃𝜒⟩ = cos (𝜃/2) 𝑒𝑖𝜒 |ℓ⟩ + sin (𝜃/2) 𝑒−𝑖𝜒 |−ℓ⟩ , (1.23)

parameterised by 𝜃 and 𝜒, similar to qubits on the Bloch sphere. Since ℓ ∈ Z and 𝑝 ∈

Z
+, there are infinitely many such qubit subspaces. In general, the basis states |ℓ, 𝑝⟩

span the high dimensional Hilbert space and is overcomplete over the azimuthal and

radial coordinate. Accordingly, the collection of 𝑑 modes, i.e. {|ℓ𝑗, 𝑝𝑗⟩ , 𝑗 = 0, 1..𝑑−1}

spans a 𝑑 dimensional Hilbert space, ℋ𝑑. This means that we can map the spatial

mode ket states to state vectors with 𝑑 entries. Using the vector notation we can

proceed in discussing photons states with coupled DOF and two photon states in

higher dimensions.

1.2.3 High dimensional hybrid polarisation modes

Another avenue for increasing the dimensions of photon is through the coupling of

independent DOFs to create hybrid states. In particular, the polarisation (ℋ𝑆𝑃𝐼𝑁
2 )

and OAM (ℋ𝑂𝐴𝑀
𝑑 ) (see Fig. 1-4(a)) Hilbert spaces can be combined to construct a

higher dimensional subspace [65], called the higher order Poincaré sphere (see Fig.

1-4(b) and (c)). If the spatial DOF also spans the two dimensional Hilbert space,

then the subspace is a tensor product of the polarisation qubit and spatial qubit

state spaces, respectively. The resulting Hilbert space is ℋ𝑆𝑃𝐼𝑁
2 ⊗ ℋ𝑂𝐴𝑀

2 . Each

qubit, subspace is a span of the scalar mode basis {|𝑅⟩ |ℓ⟩ , |𝐿⟩ |−ℓ⟩} (Fig. 1-4(a))

and {|𝑅⟩ |−ℓ⟩ , |𝐿⟩ |ℓ⟩} (Fig. 1-4(c)). Poles contain the scalar basis modes where

the polarisation and OAM are just scalar separable products. The equator contains

nonseparable superpositions states that cannot be written as independent as scalar

separable products. We can construct a complete basis from modes on the equator

13
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Figure 1-4: The Higher order Poincaré (HOP) sphere is a 4 dimensional state space formed
from the (a) tensor product between the polarisation and two dimensional (±ℓ) state-space.
(b)-(c) The resulting subspaces contain spatial modes ranging from scalar fields to vectorial
fields. Orthogonal vector modes namely the radially (|Ψ1⟩), azimuthally (|Ψ2⟩) polarised
and hybrid electric |Ψ3,4⟩ modes (from left to right).

of the spheres:

⃒⃒
Ψℓ

1

⟩︀
=

1√
2

(|𝑅⟩ |ℓ⟩ + |𝐿⟩ |−ℓ⟩), (1.24)⃒⃒
Ψℓ

2

⟩︀
=

1√
2

(|𝑅⟩ |ℓ⟩ − |𝐿⟩ |−ℓ⟩), (1.25)⃒⃒
Ψℓ

3

⟩︀
=

1√
2

(|𝑅⟩ |−ℓ⟩ + |𝐿⟩ |ℓ⟩), (1.26)⃒⃒
Ψℓ

4

⟩︀
=

1√
2

(|𝑅⟩ |−ℓ⟩ − |𝐿⟩ |ℓ⟩), (1.27)

resulting in a high dimensional (𝑑 = 4) encoding basis that can be used for quantum

key distribution [66]. We show the polarisation profiles for each mode in Fig. 1-

4(d). The polarisation of the fields is nonuniform across the transverse plane of

the fields. These light fields have been a topic of great interest in the classical and

14
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quantum optics community [67–69], especially for possessing correlations that are

ubiquitous to nonlocal quantum entangled states. Before introducing this topic, we

first establish the description of the two photon Hilbert space and then subsequently

introduce entanglement.

1.3 Two photon states in high dimensions

Two independent photons, A and B, defined on Hilbert spaces ℋ𝐴 and ℋ𝐵, respec-

tively, have a joint state that is an element of the tensor product space ℋ𝐴𝐵 =

ℋ𝐴⊗ℋ𝐵. For example, if each photon is a qutrit state |0⟩𝐴 =

⎛⎜⎜⎜⎝
1

0

0

⎞⎟⎟⎟⎠ and |2⟩𝐵 =

⎛⎜⎜⎜⎝
0

0

1

⎞⎟⎟⎟⎠
then the combined state is given by

|0⟩𝐴 ⊗ |2⟩𝐵 =

⎛⎜⎜⎜⎝
1

0

0

⎞⎟⎟⎟⎠⊗

⎛⎜⎜⎜⎝
0

0

1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

⎛⎜⎜⎜⎝
0

0

1

⎞⎟⎟⎟⎠

0

⎛⎜⎜⎜⎝
0

0

1

⎞⎟⎟⎟⎠

0

⎛⎜⎜⎜⎝
0

0

1

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑛1 = 0

𝑛2 = 0

𝑛3 = 1

.

.

.

𝑛8 = 0

𝑛9 = 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1.28)

resulting in an a state vector with nine, 𝑛𝑖 (𝑖 = 1..9), entries. This is because the two

photon subspace has dimensions 𝑑2, resulting from the product of the dimensions of

the individual subspaces. We can further compute the two photon qutrit basis set
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from the tensor product between the bases of each photon resulting in

ℬ𝐴𝐵 = ℬ𝐴 ⊗ ℬ𝐵,

= {|0⟩𝐴 , |1⟩𝐴 , |2⟩𝐴} ⊗ {|0⟩𝐵 , |1⟩𝐵 , |2⟩𝐵},

= {|0⟩𝐴 ⊗ |0⟩𝐵 , |0⟩𝐴 ⊗ |1⟩𝐵 , .., |2⟩𝐴 ⊗ |1⟩𝐵 , |2⟩𝐴 ⊗ |2⟩𝐵},

(1.29)

having nine basis vectors. In general, for any dimensions 𝑑𝐴 and 𝑑𝐵, for each photon,

the basis can be expressed as

ℬ𝐴𝐵 = {|𝑚⟩𝐴 ⊗ |𝑛⟩𝐵 , ∀𝑚 = 0, 1, ..𝑑𝐴 − 1 and 𝑛 = 0, 1, ..𝑑𝐵 − 1}, (1.30)

where each photon is spanned by the bases {|𝑚⟩𝐴} and {|𝑛⟩𝐵}, respectively. As such,

an arbitrary two photon pure state can be written as a superstition

|Ψ⟩𝐴𝐵 =

𝑑𝐴−1∑︁
𝑚=0

𝑑𝐵−1∑︁
𝑛=0

𝑎𝑚𝑛 |𝑚⟩𝐴 ⊗ |𝑛⟩𝐵 , (1.31)

We drop the tensor product symbol (⊗) and use the short hand notation |·⟩𝐴 |·⟩𝐵.

Furthermore, the density matrix for an arbitrary quantum states has the form

𝜌𝐴𝐵 =
∑︁
𝑚,𝑛,𝑘,𝑙

𝑐𝑚𝑛𝑘𝑙 |𝑚⟩𝐴 |𝑛⟩𝐵 ⟨𝑙|𝐵 ⟨𝑘|𝐴 . (1.32)

with components |𝑚⟩𝐴 |𝑛⟩𝐵 ⟨𝑙|𝐵 ⟨𝑘|𝐴 having coefficients 𝑐𝑚𝑛𝑘𝑙.

1.3.1 Entangled states

There is a special class of quantum states that have correlations that have no classical

equivalent. Einstein, Padolsky and Rosen (EPR) introduced these states in their

seminal paper [1] with the intention of using them as examples of states that expose

the incompleteness of quantum mechanics. Paradoxically, the correlations produced

by these states violate local relativistic causality and realism in classical mechanics,
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allowing for measurements on one subsystem to effect the outcomes of measurements

of their other counterparts even when spatially separated. This phenomenon was later

called ’Verschränkung’ in German, by Schrödinger, and translates as entanglement in

English.

To clearly define entanglement, it is instructive to first introduce separable states.

Firstly, let us consider the decomposition in Eq. (1.31), which describes a system of

two spatially separated photons, A and B. If the photons are not entangled then the

final state can be written as the separable product state

|Ψ⟩ = |𝜓⟩𝐴 ⊗ |𝜙⟩𝐵 , (1.33)

where |𝜓⟩𝐴 =
∑︀

𝑖=0 𝑏𝑖 |𝑖⟩𝐴 and |𝜙⟩𝐵 =
∑︀

𝑗=0 𝑐𝑗 |𝑗⟩𝐵. Conversely, the state is entangled

if it cannot be written as a separable product of the individual subsystems, i.e.,

|Ψ⟩𝐴𝐵 ̸= |𝜓⟩𝐴 ⊗ |𝜙⟩𝐵, implying that the state is nonseparable. John Bell, devised

a statistical test [70], with an inequality that can be violated by states that are

nonseparable, and in particular the states

|Φ⟩±𝐴𝐵 =
1√
2

(|0⟩𝐴 |0⟩𝐵 + |1⟩𝐴 |1⟩𝐵),

|Φ⟩±𝐴𝐵 =
1√
2

(|0⟩𝐴 |0⟩𝐵 − |1⟩𝐴 |1⟩𝐵),

|Ψ⟩±𝐴𝐵 =
1√
2

(|0⟩𝐴 |1⟩𝐵 + |1⟩𝐴 |0⟩𝐵),

|Ψ⟩±𝐴𝐵 =
1√
2

(|0⟩𝐴 |1⟩𝐵 − |1⟩𝐴 |0⟩𝐵), (1.34)

are known as maximally entangled Bell-states. From these equations it is clear that

a projection onto of the eigenstates of subsystem A determines the outcome of sub-

system B. For example, in Eq. (1.34), a measurement of the state |0⟩𝐴 in photon A,

results in |1⟩𝐵 for photon B.

The Bell states shown in Eq. (1.34) are only two dimensional. In high dimensions,
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an entangled state can be written as

|Ψ⟩ =
𝑑−1∑︁
𝑗=0

𝜆𝑗 |𝑗⟩𝐵 |𝑗⟩𝐵 , (1.35)

where |𝜆𝑗|2 is the probability of detecting the biphoton state |𝑗⟩𝐴 |𝑗⟩𝐵 spanning a 𝑑

dimensional basis. Here, |𝑗⟩𝐴 |𝑗⟩𝐵 is called a Schmidt basis. For 𝜆𝑗 = 1
√
𝑑, the state

is maximally entangled and the number 𝑑 is called the Schmidt number [71]. For

states where 0 < 𝜆𝑗 ≤ 1 the Schmidt number can be estimated as [72],

𝐾 =

(︁∑︀
𝑗 |𝜆𝑗|2

)︁2∑︀
𝑗 |𝜆𝑗|4

, (1.36)

which evaluates as 𝐾 = 1 for completely separable states and is 𝐾 ≥ 2 for states

that are nonseperable. It is possible to generate entanglement with the spatial DOF.

Recent demonstrations have included different mode families such as the LG [73],

Ince-Gaussian [74] and Bessel Gaussian [75] basis states.

Spontaneous parametric down-conversion (SPDC) is one way of generating en-

tangled photons. In this process, a high frequency pump photon is absorbed by the

crystal and converted into two lower frequency (down-converted) photons which are

highly correlated in polarisation [76–79], momenta [41] and temporal DOF [38,80,81].

The conservation in momentum also results in the conservation of OAM and therefore

the entanglement thereof [75, 82–84]. In the LG basis for OAM modes, the Schmidt

decomposition for SPDC is given by [85,86]

|Ψ⟩ =
∑︁
ℓ1,ℓ2,𝑝

𝜆ℓ1ℓ2𝑝 |ℓ1, 𝑝⟩𝐴 |ℓ2, 𝑝⟩𝐵 , (1.37)

where |𝜆ℓ1ℓ2𝑝|2 is the probability of finding photon 𝐴 and 𝐵 in the state |±ℓ, 𝑝⟩. The

dimensionality of the state is limited by the distribution of |𝜆ℓ1ℓ2𝑝|2. Due to OAM con-

servation in the SPDC process, the OAM of the pump photon sets the restriction that,

ℓ𝑝𝑢𝑚𝑝 = ℓ1 + ℓ2, ensuring that OAM is always conserved. There are several methods

for increasing the number of accessible modes which include tuning phase-matching

18



Chapter 1 Isaac Nape 19

conditions (momentum conservation conditions) at the crystal [61], adjusting the de-

tection mode sizes or by shaping the modes [86] and even selecting different mode

families [87] thus maximising the maximum number of accessible modes. To this end,

valid tests of quantum entanglement using the Bell inequality violations in two [84]

and up to twelve dimensions [88], quantum state tomography [35, 89], entanglement

witnesses [42] have all been demonstrated with SPDC photons using the transverse

spatial DOF of photons.

1.3.2 Nonlocal hybrid entanglement and classical hybrid en-

tanglement

While the states in Eq. (1.37) are entangled in single DOFs, there exists a class of

quantum entangled states where the internal DOFs of each photon are completely

independent. Such states are said to be hybrid entangled and have previously been

prepared between polarisation and path [14, 90], polarisation and OAM [91] and po-

larisation and time-bin [92]. The states can be prepared as maximally entangled

qubits, for example, in the polarisation and OAM basis they can be expressed as

⃒⃒
Ψℓ
⟩︀
𝐴𝐵

=
1√
2

(︀
|𝑅⟩𝐴 |ℓ⟩𝐵 + |𝐿⟩𝐴 |−ℓ⟩𝐵

)︀
, (1.38)

where photon A and B are defined in the circular polarisation (spin) and OAM bases,

respectively. When photon A is projected onto the state |𝑅⟩, photon B will collapse

onto the state |ℓ⟩, similarly, a projection of photon A onto the state |𝐿⟩, will result in

the collapse of photon B into the state |−ℓ⟩. This means that the measurements are

strongly correlated even though the individual photons are defined in independent

DOFs. Interestingly these exotic states have been used for fundamental tests of

quantum mechanics such as the complementary principle [93] through quantum eraser

experiments [14,94,95].

Interestingly, vector modes also demonstrate entanglement like correlations [96].

First notice the resemblance between a vector mode, e.g., in Eq. (1.24), and the

hybrid entangled state in Eq. (1.38). Both these states represent systems that have
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Figure 1-5: (a) A vectorial field propagates through a channel that distorts the spatial
amplitude, phase and polarisation field. The input field is mapped to the output field
having evolved as a result of the channel perturbation. (b) An entanglement source (ES)
creates two strongly correlated photons where one goes through free-space while the other
is perturbed. At the end of the channel, Alice and Bob perform correlation measurements
on the two bi-photon state.

nonseparable correlations with the discrepancy being in the nature of the correlations:

for hybrid entanglement, spatial separation is involved and therefore nonlocality plays

a crucial role in the nonseparable correlations, while for vector modes the nonsepa-

rable correlations are between the internal DOFs, locally, within the photon field.

Therefore, for vector modes, the labels A and B mark the internal DOFs of the same

photons and are therefore classically entangled [97, 98]. Today classical entangle-

ment though controversial, is finding applications to quantum walks [99,100], process

tomography of entangled channels [101] and metrology [102].

1.4 Quantum channels

In Fig. 1-5(a), we show a vector mode before and after it propagates through a

noisy channel. After the channel, the entire field is completely distorted. A cur-

rent challenge has been to mitigate such deleterious effects so that the quality of

photons signals is preserved after a quantum channel. Turbid [103–106] and turbu-

lent media [107–114] can distort the transverse spatial amplitude and phase profiles of

photons due to rapid variations in the refractive index profile. Similarly, birefringence
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(polarisation dependent refractive index) and imperfections in optical fibers [115,116]

are main pertubations that can rotate polarsation fields or cause inter-modal cou-

pling. Moreover, partially obstructed photons can also result in information loss due

to diffraction [26]. On the other hand, high dark count rates in detectors, stray

light and inefficient photon sources can reduce the purity of higher dimensional quan-

tum states [27] since these mechanism can introduce some degree of mixture to the

state [117].

To see the impact of quantum channels on quantum states, we adopt the opera-

tional definition for channel operators, ℰ (·), acting on an initial state 𝜌 [118]

ℰ (𝜌) =
∑︁
𝑖

𝐴𝑖𝜌𝐴
†
𝑖 , (1.39)

that we assume is completely positive and trace preserving (CPTP), meaning that the

operators 𝐴𝑖 satisfy,
∑︀

𝑖𝐴𝑖𝐴
†
𝑖 = 1. Here operators 𝐴𝑖 are called Krauss operators,

and can be further decomposed using a matrix basis {�̃�𝑘, Tr
(︁
�̃�𝑘�̃�𝑙

)︁
= 𝑑𝛿𝑘𝑙} as

𝐴𝑖 =
∑︀

𝑘 𝑎𝑖𝑘�̃�𝑘. Subsequently, the channel mapping can be rewritten as [119]

ℰ (𝜌) =
𝑑2−1∑︁
𝑘𝑙

�̃�𝑘𝜌�̃�
†
𝑙 𝜒𝑘𝑙. (1.40)

The matrix components, 𝜒𝑘𝑙 =
∑︀

𝑝𝑞 𝑎𝑘𝑝𝑎
*
𝑙𝑞, are entries of the positive Hermitian ma-

trix, 𝜒, that determines the channel in the {�̃�𝑘} basis.

There is a one-to-one correspondence between CPTP maps and specific density

matrices that the channels can map onto, i.e., ℰ → 𝜌ℰ , owing to the Choi–Jamio lkowski

isomorphism [120,121] or commonly referred to as channel-state duality [122]. To elu-

cidate this concept, let us consider a two photon state that is maximally entangled,

|Φ+⟩ = 1/
√
𝑑
∑︀𝑑−1

𝑗=0 |𝑗⟩ |𝑗⟩ and subsequently interacts with a quantum channel that

transforms it as

𝜌ℰ = 1⊗ ℰ
⃒⃒
Φ+
⟩︀ ⟨︀

Φ+
⃒⃒
. (1.41)

The operator 1⊗ℰ represents a single sided channel acting on a maximally entangled

state, where nothing happens to one photon (hence the identity, 1) while its twin
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interacts with the channel ℰ . The situation is illustrated in Fig. 1-5(b). Suppose the

channel can be represented by a unitary operator that is trace preserving, therefore

mapping the initial state onto another pure state, i.e. |𝑗⟩ →
∑︀

𝑖 𝑡𝑖𝑗 |𝑖⟩. For transverse

spatial modes, channels of this nature can be, for example, represented by atmospheric

turbulence [24], optical aberrations in underwater channels [123] or refractive index

imperfections in short optical fibers [124]. Accordingly, if we represented the channel

transmission matrix as 𝑇 =
∑︀

𝑖𝑗 𝑡𝑖𝑗 |𝑖⟩ ⟨𝑗|, the transformed two photon state is [125]

(1⊗ ℰ) |Φ⟩ =
1√
𝑑

𝑑−1∑︁
𝑖,𝑗=0

𝑡𝑖𝑗 |𝑗⟩ |𝑖⟩ , (1.42)

where the coefficients, relating to the channel are imprinted onto the final state,

and can be used to undo the effects of the channel [125]. Konrad et al. [126] also

revealed an intriguing aspect of entangled states that are subjected to single sided

channels. The authors, showed that the input and output degree of entanglement of

photons, concurrence [127], after a single sided channel only depends on the evolution

of maximally entangled states as depicted in the relation

𝐶(1⊗ ℰ |𝜓𝑖𝑛)⟩ = 𝐶 (𝜌ℰ) × 𝐶 (|𝜓𝑖𝑛⟩) , (1.43)

where 𝐶 (|𝜓𝑖𝑛⟩), is the concurrence of the input state |𝜓𝑖𝑛⟩ before traversing the

channel while 𝐶 (𝜌ℰ) is the concurrence of the maximally entangled state after the

channel ℰ . This means that the degree of entanglement of any input state |𝜓𝑖𝑛⟩ decays

proportional to a maximally entangled state. This finding has been confirmed through

numerical [128] and experimental [101] studies focusing on spatial mode entanglement

decay and characterisation through turbulence.

Another class of quantum channels that are encountered in practical settings, are

a type of depolarisation channel, that models the influence of external noise entering

the system and reducing the coherence of quantum states [27]. The growing interest

in these classes of states is due to the the potential resilience of high dimensional

quantum states to noise [34]. The state decomposition after such channels is given
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by

𝜌𝑝 = 𝑝 |Ψ𝑑⟩ ⟨Ψ𝑑| +
1 − 𝑝

𝑑2
1𝑑2 , (1.44)

where |Ψ𝑑⟩ is the transmitted high dimensional entangled state, and 1𝑑2 is the identity

operator containing the noise contribution to the state. Here 𝑝 can be associated

with the purity of the state, ranging from a maximally mixed (𝑝 = 0) to a pure state

(𝑝 = 1). Interestingly, the isotropic state is separable for 𝑝 ≤ 1/(𝑑+ 1) and entangled

otherwise. It is important to have knowledge of 𝑝 and 𝑑 since the quality of the

generated state depends on them. For example, in generalised high dimensional Bell

inequality tests, non-local correlations can only be confirmed when 𝑝 > 2/𝑆𝑑 where

𝑆𝑑 is the Bell parameter [129].

Standard procedures for overcoming some of these perturbations includes quantum

error correction methods [125,130,131], that require full knowledge of how the states

evolve through the channel, often requiring a process tomography (reconstruction of

the channel operator) to determine all 𝑑4 components of the channel operator [132],

e.g. in Eq. 1.40.

23



Chapter 1 Isaac Nape 24

1.5 Outline

This thesis will explore several approaches for engineering robust photon states that

span higher dimensional Hilbert spaces by either manipulating their intrinsic prop-

erties to make them immune to malignant effects of perturbative channels, or by

tailoring efficient characterisation methods that yield important parameters about

the state after the perturbation. We draw attention to the spatial (and sometimes

combined polarisation) DOF both locally and nonlocaly with entangled states. Our

overarching goals are executed in five subsequent chapters as follows:

In Chapter 2, we introduce our first perturbation, solid obstructions, that are

diffractive, mimicking dust particles in the air, and show that we can tailor the

radial profile so that the generated photons can be used for quantum key distribu-

tion (QKD) in the presence of obstructions. The photon states that we tailor are

self-reconstructing vector modes that are modulated with a non-diffracting Bessel-

Gaussian (BG) envelope. Using a prepare-measure (BB84) protocol, we demonstrate

that these mode fields offer higher information capacity after solid diffractive objects

in comparison to Laguerre-Gaussian modes.

In Chapter 3, we introduce our second perturbation, optical turbulence. Here, we

will show that a single maximally nonseparable vector mode is sufficient to predict

the behaviour of arbitrary vector OAM states through a unitary channel, showing

interesting features about the performance of various modes through the channel

such as the decay dynamics for different mode orders. We will invoke channel state

duality in our demonstration, a quantum tool, to devise our approach. This method

illustrates the benefit of applying quantum tools to the study of coherent laser light

and single photon states with nonseparable (equivalently entangled) internal DOFs.

In Chapter 4, we build onto the work from chapter three by considering a hidden

feature of vector modes, namely their invariance to unitary channels, thanks to their

entanglement like properties. Here, we introduce a third family of pertubations,

i.e. optical aberrations, that can emanate from, element misalignment, or dynamic

processes during propagation in transparent media with a spatially varying refractive
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index profile and are unitary in the spatial DOF. We will show that the unitary nature

of the channel makes vector fields immune to the perturbations and that the channel

operation can easily be undone. Moreover, the work will address prior contradictions

in the community on the robustness of vectorial photon fields in both quantum and

classical channels.

In Chapter 5, we demonstrate a novel approach for transmitting multiple entangled

states through a heterogeneous free-space and fiber quantum channel. We engineer

hybrid entanglement non-locally, between two photons that are spatially separated.

Each photon will be described in an independent DOF; the polarisation (spin) state

of one photon will be entangled to the OAM state of its twin photon. Enabling for

the polarised photon to be transmitted through a long distance fiber channel while

the high dimensional OAM photon will be transmitted through free-space. Since the

photon that carries the spatial mode can take on any OAM state, we will demonstrate

that the channel can transmit multiple hybrid entangled states subspaces through the

same conventional single mode fibre.

Lastly, in Chapter 6, we will encounter our last channel, a noisy quantum entangled

two photon channel that is encroached in white noise, known to affect the purity and

dimensionlity of quantum entangled states. The focus will be on devising a technique

that can characterise the effective dimensions and purity of entangled states defined

on large Hilbert spaces. A set of conditional measurements that return a visibility

that scales monotonically with state dimensionality and purity will be constructed to

demonstrate the versatility of the approach, we will showcase it with two bases, the

OAM and pixel bases, showing that it works over a wide range of noise levels.
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Self healing quantum

communication through

obstructions

The work in this chapter was published in:

� Nape, I., Otte, E., Vallés, A., Rosales-Guzmán, C., Cardano, F., Denz, C.

and Forbes, A., 2018. “Self-healing high-dimensional quantum key distribution

using hybrid spin-orbit Bessel states.”, Optics express, 26(21), pp.26946-26960.

Nape, I., lead the experiments with the second author, analysed the data and con-

tributed to writing the manuscript under the guidance of the contributing coauthors.
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2.1 Introduction

Quantum key distribution (QKD) enables two parties to securely exchange informa-

tion detecting the presence of eavesdropping [133]. Unlike conventional cryptogra-

phy, with unproven computational assumptions, the security of QKD relies on the

fundamental laws of quantum mechanics [134], prohibiting the cloning of quantum

information encoded in single photons [4]. Although current state of the art imple-

mentations have successfully transfered quantum states in free-space [135], optical

fibers [136], and between satellites [137], efficient high capacity key generation and

robust security are still highly sought-after.

Spatial modes of light hold significant promise in addressing these issues. The

channel capacity can be exponentially increased by encoding information in the spa-

tial degree of freedom (DoF) of photons and has been demonstrated with classical

light in free-space and fibres [138]. Implementing QKD with high-dimensional (HD)

states (𝑑 > 2) has also been demonstrated [20, 139], by exploiting the ability of each

photon to carry up to log2(𝑑) bits per photon while simultaneously increasing the

threshold of the quantum bit error rate (QBER). This makes HD QKD protocols

more robust [29–31], even when considering extreme perturbing conditions, i.e., un-

derwater submarine communication links [123]. While most studies to date have used

spatial modes of light carrying orbital angular momentum (OAM) [140], reaching up

to 𝑑 = 7 [21], higher dimensions are achievable with coupled spatial and polarization

structures, e.g. vector modes. These states have received recent attention in classical

communication [141–144], in the quantum realm as a means of implementing QKD

without a reference frame [145, 146], but only recently have both DoFs been used to

increase dimensionality in QKD [147,148].

To date, there has been only limited work on the impact of perturbations on HD

entanglement and QKD with spatial modes [148–152]. In turbulence, for example,

the key rates are known to decrease [153], with the latter to be compensated for large

OAM states in the superposition. There has been no study on HD QKD through

physical obstacles.
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In this chapter, we take advantage of the self-healing properties in non-diffracting

vector beams to show that the bit rate of a QKD channel, affected by partial obstruc-

tions, can be ameliorated by encoding information onto diffraction-free single photons.

To this end, we generate a non-diffracting (self-reconstructing) set of mutually unbi-

ased bases (MUB), formed by hybrid scalar and vector modes with a Bessel-Gaussian

(BG) transverse profile. We herald a single photon with a BG radial profile by means

of spontaneous parametric down-conversion (SPDC), generating paired photons and

coupling OAM and polarization using a 𝑞-plate [53]. We characterize the quantum link

by measuring the scattering probabilities, mutual information and secret key rates in

a prepare-measure protocol for BG and Laguerre-Gaussian (LG) photons, comparing

the two for various obstacle sizes. We find that the BG modes outperform LG modes

for larger obstructions by more than 3×, highlighting the importance of radial mode

control of single photons for quantum information processing and communication.

2.2 Self-healing Bessel modes

Since Bessel modes cannot be realized experimentally, a valid approximation, the

Bessel-Gaussian (BG) mode, is commonly used [154]. This approximation inherits

from the Bessel modes the ability to self-reconstruct in amplitude, phase [155, 156],

and polarization [157–159], even when considering entangled photon pairs [152] or

non-separable vector modes [160,161]. Mathematically, they are described by

𝒥ℓ,𝑘𝑟(𝑟, 𝜙, 𝑧) =

√︂
2

𝜋
𝐽ℓ

(︂
𝑧𝑅𝑘𝑟𝑟

𝑧𝑅 − i𝑧

)︂
exp (iℓ𝜙− i𝑘𝑧𝑧)

· exp

(︂
i𝑘2𝑟𝑧𝑤0 − 2𝑘𝑟2

4(𝑧𝑅 − i𝑧)

)︂
, (2.1)

where (𝑟, 𝜙, 𝑧) represents the position vector in the cylindrical coordinates, ℓ is the

azimuthal index (topological charge). Furthermore, 𝐽ℓ(·) defines a Bessel function

of the first kind , 𝑘𝑟 and 𝑘𝑧 are the radial and longitudinal components of the wave

number 𝑘 =
√︀
𝑘2𝑟 + 𝑘2𝑧 = 2𝜋/𝜆. The last factor describes the Gaussian envelope with

beam waist 𝑤0 and Rayleigh range 𝑧𝑅 = 𝜋𝑤2
0/𝜆 for a certain wavelength 𝜆.
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The propagation distance over which the BG modes approximate a non-diffracting

mode is given by 𝑧max = 2𝜋𝑤0/𝜆𝑘𝑟. In the presence of an obstruction of radius 𝑅 in-

serted within the non-diffracting distance, a shadow region of length 𝑧min ≈ 2𝜋𝑅/𝑘𝑟𝜆

is formed [162]. The distance 𝑧min determines the minimum distance required for

the beam to recover its original form, whereby full reconstruction is achieved at

2𝑧min [155,156].

We exploit this property with single photons that have non-separable polarization

and OAM DoFs. By carefully selecting a 𝑘𝑟 value, we show that the information of

hybrid entangled single photon encoded with a Bessel radial profile can be recovered

after the shadow region of an obstruction. Traditionally hybrid modes, while still new

in the communication context, have not been controlled in radial profile. Indeed, the

traditional generation approaches often result in very complex radial structures [163].

To control and exploit all spatial and the polarization DoFs for QKD we introduce

a high-dimensional self-healing information basis constructed from non-orthogonal

vector and scalar OAM BG spatial modes.

2.2.1 Non-diffracting information basis

In order to demonstrate the concept we will use the well-known BB84 protocol, but

stress that this may be replaced with more modern and advantageous protocols with

little change to the core idea as outlined here. In the standard BB84 protocol, Alice

and Bob unanimously agree on two information basis. The first basis can be arbitrar-

ily chosen in 𝑑 dimensions as {|Ψ𝑖⟩ , 𝑖 = 1..𝑑}. However, the second basis must fulfill

the condition

| ⟨Ψ𝑖|Φ𝑗⟩ |2 =
1

𝑑
, (2.2)

making |Ψ⟩ and |Φ⟩ mutually unbiased. Various QKD protocols were first imple-

mented using polarization states, spanned by the canonical right |𝑅⟩ and left |𝐿⟩

circular polarization states constituting a two-dimensional Hilbert space, i.e., ℋ𝜎 =

span{|𝐿⟩ , |𝑅⟩}. More dimensions where later realized with the spatial DoF of pho-
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Figure 2-1: Intensity and polarization mappings of vector (first row) and scalar (second
row) MUB modes with (a) BG and (b) LG radial profiles for ℓ = ±1. The polarization
projections on the (c) vector |Ψ⟩ and (d) scalar |Φ⟩ basis BG modes. The vector modes
have spatially varying polarizations which consequently render the polarization and spatial
DoF as non-separable. This is easily seen in the variation of the transverse spatial profile
when polarization projections are performed (orientation indicated by white arrow) on the
|Ψ⟩ modes. In contrast, the scalar modes have separable polarization and spatial DoF hence
polarization projections only cause fluctuations in the intensity of the transverse profile for
the |Φ⟩ modes.

tons [20,21], using the OAM DoF spanning the infinite dimensional space, i.e. ℋ∞ =⨁︀
ℋℓ, such that ℋℓ = {|ℓ⟩ , |−ℓ⟩} is qubit space characterized by a topological charge

ℓ ∈ Z.

Here, we exploit an even larger encoding state space by combining polarization

and OAM, ℋ∞ =
⨁︀

ℋ𝜎 ⊗ℋℓ where ℋ4 = ℋ𝜎 ⊗ℋℓ, is a qu-quart space spanned by

the states {|𝐿⟩ |ℓ⟩ , |𝑅⟩ |ℓ⟩ , |𝐿⟩ |−ℓ⟩ , |𝑅⟩ |−ℓ⟩}, described by the so-called higher-order

Poincaré spheres (HOPSs) [164, 165]. These modes feature a coupling between the

polarization and OAM DoFs, shown in Fig. 2-1. The HOPS concept neglects the

radial structure of the modes, considering only the angular momentum content, spin
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and orbital. Yet all modes have radial structure, shown in Fig. 2-1 (a) for BG and

(b) for LG profiles. We wish to create a basis of orthogonal non-separable vector BG

modes together with their MUBs for our single photon states.

Without loss of generality, we choose a mode basis on the ℋ4 subspace with ℓ = ±1

as our example. Our encoding basis is constructed as follows: we define the radial

profile 𝒥ℓ,𝑘𝑟(𝑟) representing the radial component of the BG mode in Eq. (2.1). Our

first mode set is comprised of a self-healing vector BG mode basis, mapped as

|Ψ⟩00 =
1√
2
𝒥ℓ,𝑘𝑟(𝑟)

(︀
|𝑅⟩ |ℓ⟩ + |𝐿⟩ |−ℓ⟩

)︀
, (2.3)

|Ψ⟩01 =
1√
2
𝒥ℓ,𝑘𝑟(𝑟)

(︀
|𝑅⟩ |ℓ⟩ − |𝐿⟩ |−ℓ⟩

)︀
, (2.4)

|Ψ⟩10 =
1√
2
𝒥ℓ,𝑘𝑟(𝑟)

(︀
|𝐿⟩ |ℓ⟩ + |𝑅⟩ |−ℓ⟩

)︀
, (2.5)

|Ψ⟩11 =
1√
2
𝒥ℓ,𝑘𝑟(𝑟)

(︀
|𝐿⟩ |ℓ⟩ − |𝑅⟩ |−ℓ⟩

)︀
, (2.6)

with some example polarization projections shown in Fig. 2-1 (c). The set of MUB

modes is given by

|Φ⟩00 = 𝒥ℓ,𝑘𝑟(𝑟) |𝐷⟩ |−ℓ⟩ , (2.7)

|Φ⟩01 = 𝒥ℓ,𝑘𝑟(𝑟) |𝐷⟩ |ℓ⟩ , (2.8)

|Φ⟩10 = 𝒥ℓ,𝑘𝑟(𝑟) |𝐴⟩ |−ℓ⟩ , (2.9)

|Φ⟩11 = 𝒥ℓ,𝑘𝑟(𝑟) |𝐴⟩ |ℓ⟩ , (2.10)

where 𝐷 and 𝐴 are the diagonal and anti-diagonal polarization states (see Fig. 2-1

(d) for polarization projections). The set |Ψ⟩𝑖𝑗 and |Φ⟩𝑖𝑗 are mutually unbiased and,

therefore, form a reputable information basis for QKD in high dimensions.

As a point of comparison to the self-healing properties of the non-diffracting

modes, we make use also of a similar alphabet but projecting the heralding photon

onto a Gaussian mode, obtaining a helical mode in the other photon after traversing
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a spin-to-orbital angular momentum converter [53]. We will refer to this as a LG

mode in the remainder of the manuscript.

2.3 Methods

2.3.1 Single photon heralding
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Figure 2-2: (a) Conceptual drawing of the QKD with self-healing BG modes. The SLMs
post-select the self-healing BG radial profile from the SPDC source. The prepare (P)
and measure (M) optics modulate and demodulate the OAM and polarization DoF of the
heralded photon. The physical obstruction (O) is placed at a distance 𝐿 from the right-
most SLM, which decodes the radial information of Bob’s photon. The optics are within
𝑧max = 54 cm distance of the BG modes depicted as the rhombus shape. The propagation
of the post-selected BG mode can be determined via back-projection. (b) Numerical scat-
tering probability matrix for the vector and scalar modes sets in free-space. The channels
correspond to the probabilities |𝐶𝑖𝑗 |2 calculated from Eq. (2.22). (c) Optical elements re-
quired by Alice and Bob to prepare and measure the spin-coupled states of the heralded
photons (cf. Table 2.1).

Heralded photon sources have been used as a means of producing single photons

in QKD [166]. In this process, the heralded photon conditions the existence of its

correlated twin. Moreover, the statistics of the heralded photon have low multi-photon

probabilities which can be further remedied by using decoy states [167].

Here, we herald a single photon via SPDC where a high frequency photon (𝜆 =
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405 nm) was absorbed by a nonlinear crystal, generating a signal (𝑠) and idler (𝑖)

correlated paired photons at 𝜆 = 810 nm. In the case of a collinear emission of 𝑠 and

𝑖, the probability amplitude of detecting mode functions |𝑚⟩𝑠 and |𝑚⟩𝑖, respectively,

is given by [168]

𝑐𝑠,𝑖 =

∫︁ ∫︁
𝑚*
𝑠(x)𝑚*

𝑖 (x)𝑚𝑝(x)𝑑2𝑥, (2.11)

where 𝑚𝑝(x) is the field profile of the pump (𝑝) beam which best approximates the

phase-matching condition in the thin crystal limit; the Rayleigh range of the pump

beam is much larger than the crystal length. The probabilities amplitudes 𝑐𝑠,𝑖 can be

calculated using the Bessel basis,

𝑚𝑠,𝑖(𝑟, 𝜙) = 𝒥ℓ𝑠,𝑖,𝑘𝑟(𝑟) exp(iℓ𝑠,𝑖𝜙), (2.12)

where exp(iℓ𝜙) corresponds to the characteristic azimuthal phase mapping onto the

state vector |ℓ⟩. Taking into account a SPDC type-I process and a Gaussian pump

beam, the quantum state used to encode and decode the shared key can be written

in the Bessel basis as

|Ψ⟩𝐴𝐵 =
∑︁

𝑐ℓ,𝑘𝑟,1,𝑘𝑟,2 |ℓ, 𝑘𝑟,1⟩𝑠 |−ℓ, 𝑘𝑟,2⟩𝑖 |𝐻⟩𝑠 |𝐻⟩𝑖 , (2.13)

being |ℓ, 𝑘𝑟⟩𝑠 ∼ 𝐽ℓ,𝑘𝑟(𝑟) |ℓ⟩ and 𝐻 the horizontal polarization state. The probability

amplitudes 𝑐ℓ,𝑘𝑟,1,𝑘𝑟,2 can be calculated using the overlap integral in Eq. (2.11). Ex-

perimentally |𝑐ℓ,𝑘𝑟,1,𝑘𝑟,2|2 is proportional to the probability of detecting a coincidence

when the state |ℓ, 𝑘𝑟,1⟩𝑠 |−ℓ, 𝑘𝑟,2⟩𝑖 is selected. Coincidences are optimal when |𝑘𝑟,1|

and |𝑘𝑟,2| are equivalent.

In this experiment, the idler photon (𝑖) was projected into the state |0, 𝑘𝑟⟩𝑖, herald-

ing only the signal photons (𝑠) with the same spatial state |0, 𝑘𝑟⟩𝑠, as can be seen

in the sketch of Fig. 2-2(a). Therefore, a prepare-measure protocol can be carried

out by using the same 𝑠 photon. In other-words, Alice remotely prepared her single

photon with a desired radial profile from the SPDC before encoding the polarization
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and OAM information.

2.3.2 Tailoring the desired spatial profile

Spatial light modulators (SLMs) are a ubiquitous tool for generating and detecting

spatial modes [52, 169]. We exploit their on-demand dynamic modulation via com-

puter generated holograms to post-select the spatial profiles of our desired modes (see

hologram inset in Fig. 2-2(a)). For the detection of BG modes, we choose a binary

Bessel function as phase-only hologram, defined by the transmission function

𝑇 (𝑟, 𝜙) = sign{𝐽ℓ(𝑘𝑟𝑟)} exp(iℓ𝜙), (2.14)

with the sign function sign{·} [170,171]. Classically, this approach has the advantage

of generating a BG beam immediately after the SLM and, reciprocally, detects the

mode efficiently [152]. Importantly, a blazed grating is used to encode the hologram,

with the desired mode being detected in the first diffraction order [172] and spatial

filtered with a single mode fiber (SMF).

Here, we set 𝑘𝑟 = 18 rad/mm and ℓ = 0 for the fundamental Bessel mode and,

conversely, 𝑘𝑟 = 0 to eliminate the multi-ringed Bessel structure.

2.3.3 Generation and detection

Liquid crystals 𝑞-plates represent a convenient and versatile way to engineer several

types of vector beams [67]. In our setup, vector and scalar modes, described in Fig.

2-1, are either generated or detected, at Alice and Bob’s prepare (P) and measure

(M) stations in Fig. 2-2 (a), by letting signal photons pass through a combination

of these devices and standard wave plates (see Fig. 2-2 (c)). A 𝑞-plate consists of a

thin layer of liquid crystals (sandwiched between glass plates) whose optic axes are

arranged so that they form a singular pattern with topological charge 𝑞. By adjusting

the voltage applied to the plate it is possible to tune its retardation to the optimal

value 𝛿 = 𝜋 [173]. In such a configuration indeed the plate behaves like a standard

half-wave plate (with an inhomogeneous orientation of its fast axis) and can be used

34



Chapter 2 Isaac Nape 35

to change the OAM of circularly polarized light by ±2𝑞, depending on the associated

handedness being left or right, respectively. As such, the 𝑞-plate is used to achieve

spin orbit coupling. In the Jones matrix formalism, the 𝑞-plate is represented by the

operator

�̂� =

⎛⎝cos(2𝑞𝜙) sin(2𝑞𝜙)

sin(2𝑞𝜙) −cos(2𝑞𝜙)

⎞⎠ , (2.15)

where 𝜙 is the azimuthal coordinate. The matrix is then written in the following

linear basis {|𝐻⟩ =

⎛⎝1

0

⎞⎠ , |𝑉 ⟩ =

⎛⎝0

1

⎞⎠}. In our experiment we use 𝑞-plates with

𝑞 = 1/2, and half-wave (𝜆
2
) as well as quarter-wave (𝜆

4
) plates for polarization control,

represented by the Jones matrices

𝐽𝜆
2
(𝜃) =

⎛⎝cos(2𝜃) sin(2𝜃)

sin(2𝜃) −cos(2𝜃)

⎞⎠ , (2.16)

and

𝐽𝜆
4
(𝜃) =

⎛⎝ cos2(𝜃) + isin2(𝜃) (1 − i) sin(𝜃)cos(𝜃)

(1 − i) sin(𝜃)cos(𝜃) sin2(𝜃) + icos2(𝜃)

⎞⎠ . (2.17)

Here, 𝜃 represents the rotation angle of the wave plates fast axis with respect to the

horizontal polarization. The operator associated with the generation of the vector

mode is

𝑉 (𝛼1, 𝛼2) = 𝐽𝜆
2
(𝛼2)�̂�𝐽𝜆

2
(𝛼1)𝑃𝐻 , (2.18)

where 𝛼1 and 𝛼2 are the rotation angles for the half-wave plates and 𝑃𝐻 =

⎛⎝1 0

0 0

⎞⎠
represents the operator for a horizontal linear polarizer. Similarly, the operator for
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the scalar modes is

𝑆(𝛽1, 𝛽2) = 𝐽𝜆
4
(𝛽2)�̂�𝐽𝜆

4
(𝛽1)𝑃𝐻 , (2.19)

where 𝛽1 and 𝛽2 are the rotation angles for the quarter-wave plates.

Let the set ℳ1 = {𝑉𝑖 |𝑉𝑖 → |Ψ𝑖⟩ , 𝑖 = 1..4} be associated with the generation of

vector modes from 𝑉 (𝛼1, 𝛼2), and ℳ2 = {𝑆𝑗 |𝑆𝑗 → |Φ𝑗⟩ , 𝑗 = 1..4} for the scalar

modes from 𝑆(𝛽1, 𝛽2). The orientation of the angles required to obtain them is given

in Table 2.1 for the vector and scalar modes (see also schematics of wave plates

arrangement in Fig. 2-2 (c)).

Table 2.1: Generation of vector and scalar modes from a horizontally polarized BG mode
(ℓ = 0) at the input. The angles 𝛼1,2 and 𝛽1,2 are defined with respect to the horizontal
polarization. For each 𝑉𝑖 and 𝑆𝑖 we present the angles needed to perform the mapping of
ℳ1 → {|Ψ𝑖⟩} and ℳ2 → {|Φ𝑖⟩} with a one-to-one correspondence.

Vector, 𝑉 (𝛼1, 𝛼2) Scalar, 𝑆(𝛽1, 𝛽2)

Operator 𝐽𝜆
2
(𝛼1) 𝐽𝜆

2
(𝛼2) Operator 𝐽𝜆

4
(𝛽1) 𝐽𝜆

4
(𝛽2)

𝑉1 0 – 𝑆1 −𝜋/4 0

𝑉2 𝜋/4 – 𝑆2 𝜋/4 𝜋/2

𝑉3 0 0 𝑆3 −𝜋/4 𝜋/2

𝑉4 𝜋/4 0 𝑆4 𝜋/4 0

2.3.4 Scattering probability

Let 𝐴𝑖, �̂�𝑗 ∈ ℳ1 ∪ℳ2 represent operators selected by Alice and Bob, respectively.

Alice first obtains a heralded pshoton from the SPDC with the input state |𝜓in⟩ =

𝒥0,𝑘𝑟 |𝐻⟩. Then, Alice prepares the photon in a desired state from the MUB with

|𝑎𝑖⟩ = 𝐴𝑖𝒥0,𝑘𝑟(𝑟) |𝐻⟩ , (2.20)

and Bob similarly measures the state

|𝑏𝑗⟩ = �̂�𝑗𝒥0,𝑘𝑟(𝑟) |𝐻⟩ . (2.21)
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Figure 2-3: Experimental setup for the self-healing QKD. Pump: 𝜆 = 405 nm (Cobalt, MLD
laser diode); f: Fourier lenses of focal length f1,2,3&4 = 100 mm, 750 mm, 500 mm, 2 mm,
respectively; PPKTP: periodically poled potassium titanyl phosphate (nonlinear crystal);
BS: 50:50 beam splitter; s and i: signal and idler photon paths; P: preparation of the state
(Alice); O: variable sized obstacle; M: measurement of the state (Bob); SLM: spatial light
modulator (Pluto, Holoeye); BPF: band-pass filter; SMF: single mode fiber; D1&2: single
photon detectors (Perkin Elmer); C.C.: coincidence electronics.

The probability amplitude of Bob’s detection is

𝐶𝑖𝑗 = ⟨𝑏𝑗|𝑎𝑖⟩ =

∫︁ 2𝜋

0

∫︁ ∞

0

⟨𝐻| 𝒥 *
0,𝑘𝑟(𝑟)�̂�

†
𝑗𝐴𝑖𝒥0,𝑘𝑟(𝑟) |𝐻⟩ 𝑟𝑑𝑟𝑑𝜑, (2.22)

while the corresponding detection probabilities, |𝐶𝑖𝑗|2, are presented in Fig. 2-2 (b).

2.4 Experimental set-up

Figure 2-3 is a schematic representation of our experimental setup. The continuous-

wave pump laser (Cobalt MLD diode laser, 𝜆 = 405 nm) was spatially filtered to

deliver 40 mW of average power in a Gaussian beam of 𝑤0 ≈ 170 𝜇m at the crystal

(2-mm-long PPKTP nonlinear crystal), generating two lower-frequency photons by

means of a type-I spontaneous parametric down-conversion (SPDC) process. By

virtue of this, the signal and idler photons had the same wavelength (𝜆 = 810 nm)

and polarization (horizontal).

The two correlated photons, signal and idler, were spatially separated by a 50:50

beam splitter (BS), with the idler photon projected into a Bessel state of 0 OAM,

thus heralding a zero-order Bessel photon in the signal arm for the prepare-measure

BB84 protocol. The signal photon traversed the preparation stage (P) where Alice

37



Chapter 2 Isaac Nape 38

could prepare a vector or scalar state from the MUB alphabet using elements detailed

in Fig. 2-2 (c). The signal photon was then propagated in free-space with an obstacle

of variable size placed within the non-diffracting distance. This mimics a line-of-sight

quantum channel. In our experiment we used the spatial light modulators (SLMs)

to post-select a wave number of 𝑘𝑟 = 18 rad/mm, thus realising a non-diffracting

distance of 𝑧max = 54 cm. These values where verified by classical back-projection

through the system [87]. The state measurement (M) was implemented after the

obstacle by Bob. The SLM acted both as a horizontal polarization filter and as a

post-selecting filter for the radial wave number. To conclude the heralding experi-

ment, both photons were spectrally filtered by band-pass filters (10 nm bandwidth

at full-width at half-maximum) and coupled with single mode fibers to single photon

detectors (D1&2; Perkin-Elmer), with the output pulses synchronized with a coinci-

dence counter (C.C.), discarding also the cases where the two photons exit the same

output port from the BS.

2.4.1 Procedure and analysis

We measured the scattering matrix for the BG and, for comparison reasons, the

LG profiles under three conditions: (FS) in free-space; (R1) with a 600 𝜇m radius

obstruction placed strategically such that the complete decoding is performed after

𝐿 > 𝑧min (𝐿: distance between obstruction and decoding SLM); and (R2) with a

800 𝜇m radius obstruction, placed at the same position. In the (R2) the shadow

region overlaps the detection system (𝐿 < 𝑧min) so that the mode is not able to self-

reconstruct completely before being detected. We measure the quantum bit error rate

(QBER) in each of these cases and computed the mutual information between Alice

and Bob in 𝑑 = 4 dimensions by [29]

𝐼𝐴𝐵 = log2(𝑑) + (1 − 𝑒) log2(1 − 𝑒) + (𝑒) log2

(︂
𝑒

𝑑− 1

)︂
. (2.23)

Here, 𝑒 denotes the QBER. Lastly, we measured the practical secure key rate per

signal state emitted by Alice, using the Gottesman-Lo-Lütkenhaus-Preskill (GLLP)
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Figure 2-4: (a) Measured photon count rates and (b) average photon number (𝜇) per-gating
window of 25 ns in free-space (FS) and the two obstructions (R1 = 600 𝜇m and R2 = 800
𝜇m) for the radially polarized mode |𝜓⟩00. (c) and (d) show coincidence rates with the same
obstructions for the BG and LG radial profiles, respectively. The BG count rate is lower
for smaller obstructions due to the high 𝑘𝑟 hologram on the SLM [87].

method [174,175] for practical implementations with BB84 states, given by

𝑅Δ = 𝑄𝜇

(︂
(1 − ∆)

(︂
1 −𝐻𝑑

(︂
𝑒

1 − ∆

)︂)︂
− 𝑓EC𝐻𝑑(𝑒)

)︂
, (2.24)

where 𝐻𝑑(·) is the high-dimensional Shannon entropy and 𝑓EC is a factor that accounts

for error correction and is nominally 𝑓EC = 1.2 for error correction systems that are

currently in practice.

The photon gain is defined as 𝑄𝜇 =
∑︀

𝑛 𝑌𝑛𝑃𝑛(𝜇) (in the orders of 10−4 for our

experiment), where 𝑌𝑛 is the 𝑛-th photon yield while 𝑃𝑛 is the probability distribution

over 𝑛 with respect to the average photon number 𝜇, following sub-Poisson statistics

for heralded photons produced from a SPDC source [175]. 𝑌𝑛 can be calculated from

the background rate, 𝑝𝐷 = 2.5×10−6 photons per gating window (25 ns), and 𝑛-signal

detection efficiency 𝜂𝑛:

𝑌𝑛 = 𝜂𝑛 + 𝑝𝐷(1 − 𝜂𝑛), (2.25)

39



Chapter 2 Isaac Nape 40

where the 𝑛-signal detection efficiency 𝜂𝑛 is given by

𝜂𝑛 = 1 − (1 − 𝜂)𝑛. (2.26)

Here 𝜂 = 𝜂𝑑𝑡𝐵 is the transmission probability of each photon state with 𝜂 = 0.45×0.8

for Bob’s detection (when accounting for the SLM grating). Furthermore, ∆ is the

multi-photon rate computed as (1 − 𝑃0 − 𝑃1)/𝑄𝜇 [175] where 𝑃0,1 are the vacuum

and single photon emission probabilities, respectively. The term (1−∆) accounts for

photon splitting attacks [175]. In our experiment, we measured the photon intensities

for every obstruction from the photon detection rates of the obstructed photon and

deduced 𝑃1 and 𝑃0 assuming a thermal statistics of the heralded photon. We point

out that it may be necessary to implement decoy states with a heralded source to

ensure security against multi photon states owing to the thermal nature of the reduced

photon state of SPDC correlated pairs [166,175].

2.5 Results and Discussion

We performed the aforementioned experiment in four dimensions using heralded single

photons with either a heralded LG mode or BG mode for the radial spatial profile,

and compare their performance under the influence of varying sized obstructions.

2.5.1 Experimental results

The photon count-rates, mean-photon counts (per gating window) and coincidence-

rates are presented in Fig. 2-4 (a) and (b), for the |Ψ⟩00 input state. As shown, the

photon count rates decay for both the BG and LG radial profiles, however, more so

for LG profile under the R2 obstruction. The coincidences rates are recovered for

the BG mode (Fig. 2-4 (c)) under the R1 obstruction since L> 𝑧min (detection is

performed outside the shadow region of the obstruction). Further, the BG mode still

demonstrates less decay for R2 obstructed even when the mode has not reconstructed

(since 𝐿 < 𝑧min), as compared to LG (Fig. 2-4 (d)), where the coincidence rate is
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Figure 2-5: Crosstalk (scattering) matrix for vector and scalar modes in (a) (I) free-space
having post-selected in a BG radial profile. The vector and scalar measured probabilities
with the first obstruction (II) having a radius R1 = 600 𝜇m (𝐿 > 𝑧min) when taking into
account (b) BG and (c) LG radial profiles. Measured probabilities with (III) an obstruction
of R2 = 800 𝜇m (𝐿 < 𝑧min) when taking into account (d) BG and (e) LG radially profiled
single photons.

seen to completely decay.

Next, we present the measured detection probability matrices for three tested

cases in Fig. 2-5 using our high-dimensional information basis. In the free-space case,

we measure QBERs of 𝑒 = 0.04±0.004 for the BG and LG spatial profiles (see Fig. 2-5

(a) and Table 2.2). We compute a mutual information of I𝐴𝐵 = 1.69 bits/photon and

a secure key rate of 𝑅Δ/𝑄𝜇 = 1.32 bits/s per photon for both radial profiles.

Under the perturbation of the R1 = 600 𝜇m obstruction (0.53× the beam waist of

the down converted photon), we measure a QBER of 𝑒 = 0.05 for both spatial profiles,

indicative of information retention, i.e. high fidelity. The intensity fields from the

back-projected classical beam (see insets of Fig. 2-5 (b) and (c)), show self-healing of

the BG mode at the SLM plane (see Fig. 2-5 (b)), although the LG is not completely

reconstructed (see Fig. 2-5 (c)). The photons encoded with the LG profile may have

a large component of the input mode which is undisturbed in polarization and phase.

Furthermore, the coincidence counts decreases to 49% for the LG profile relative to

the counts in free-space, as highlighted in Fig. 2-6 (a). In comparison, the BG modes

show resilience thanks to the multiple concentric rings [176].
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Figure 2-6: (a) Experimental normalized coincidence (NC) count-rate for the BG and LG
MUB for free-space (FS) and the two obstructions (R1 = 600 𝜇m and R2 = 800 𝜇m) on
the radially polarized mode |𝜓⟩00. (b) The QBER, mutual information (𝐼𝐴𝐵) and key
rate (𝑅Δ/𝑄𝜇) for the BG and LG modes with no perturbation and under the two tested
obstructions are shown.

Lastly, we investigate the security when the R2 = 800 𝜇m (0.71× the beam waist

of the down converted photon) obstruction is used. Remarkably, as illustrated in

Fig. 2-6 (a), the signal decreased by almost four orders of magnitude, remaining only

the 0.07% of the signal for the LG set, but up to 71% for the BG self-healing mode

set, owing to an earlier reconstruction of the BG radial profile in comparison to the

LG radial profile. Based on the measurement results shown in Fig. 2-5 (d) and (e),

we determine a QBER of 𝑒 = 0.15 ± 0.01 and 𝑒 = 0.51 ± 0.00 for the BG and LG

modes, respectively. The mutual information (I𝐴𝐵) and secure key rates are higher

for the BG basis than the LG, even though the BG MUB has not fully reconstructed

(see Fig. 2-6 (b)). Table 2.2 shows a summary of the measured security parameters

for the BG and LG mode sets.

2.5.2 Discussion

We have presented a proof-of-concept experiment highlighting the importance of struc-

turing photons in the complete spatial mode state. Here we have demonstrated the

advantage when doing so with BG spatial modes for obstacle-tolerant QKD. Fur-

ther, we have employed hybrid spin-orbital states to access high dimensions, with the

spin-orbit states used to encode the information and the radial mode used to ame-
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Table 2.2: Measured security parameters for the self-healing BG (LG) modes. NC represents
the normalized coincidence counts. The normalization was performed with respect to the
counts obtained from the free-space measurements.

BG (LG) modes

Free-space R1 = 600 µm R2 = 800 µm
QBER 0.04 ± 0.01 (0.04 ± 0.01) 0.05 ± 0.02 (0.05 ± 0.03) 0.15 ± 0.01 (0.51 ± 0.00)
𝐼𝐴𝐵 1.69 ± 0.06 (1.69 ± 0.03) 1.63 ± 0.1 (1.63 ± 0.02) 1.15 ± 04 (0.19 ± .004)
∆ 1.60 10−3 (1.80 10−3) 1.10 10−3 (1.30 10−3) 0.73 10−3 (0.04 10−3)
𝑅Δ

𝑄𝜇
1.32 ± 0.06 (1.32 ± 0.03) 1.19 ± 0.1 (1.19 ± 0.02) 0.13 ± 04 (0.01 ± 0.00)

liorate perturbations in the form of obstructions. Our scheme shows that with high-

dimensional encoding and self-reconstruction, high information transmission rates are

still achievable even in the presence of absorbing obstructions that perturb the tra-

verse extent of the quantum channel. Our scheme exploits the radial DoF which has

previously not been explored in HD QKD implementations with spatial modes. In our

experiment the propagation length was tailored for laboratory implementation, but

could be extended for practical long distance links as has been done at the classical

level with scalar Bessel beams [177]. Doing so would likely increase the beam size as

well as reduce the cone angle. In a realistic channel the obstruction could range in

scale from the very small, e.g., dust particles in dry environments, to the very large,

perhaps birds, and may even be in the transmitter or receiver itself, e.g., conventional

mirror telescope designs that block part of the incoming light. To mimic this range

in scale we have used obstructions that range in relative size to the mode from 0

(free-space) to 0.7× (very large). We have also used a very difficult high 𝑘𝑟 value of

18 rad/mm, returning meter scale distances (54 cm in our case) for a beam radius in

the order of 100s of 𝜇m. Thus links in the kilometer range could be produced with

modest cm scale beams, or the heralding efficiency could be dramatically increased

by lowering 𝑘𝑟 [87] and instead increasing the beam size. These design trade-offs are

afforded to the user by the use of BG modes over LG modes.

In free-space a common problem is phase distortions, such as turbulence. Here BG

modes do not show complete reconstruction [178], nor does the hybrid combination

add value [179], but classical studies have suggested that perhaps such modes may

43



Chapter 2 Isaac Nape 44

be resilient to beam wander due to turbulence [180]. This is yet to be tested in the

quantum regime. We predict that the ability to tailor both the size and 𝑘𝑟 to achieve

a desired distance may assist in keeping the beam size below the Fried scale.

In cases where the BG adds no advantage the radial mode should still be tailored

correctly to a more appropriate choice. In this sense this study highlights the general

case for complete control of the DoFs of the state for QKD, using BG modes as an

example.

We also stress that although there are reported benefits with HD encoding, not

all commonly used protocols have been generalized to high dimensions, for example,

the SARG04 protocol [5] which is designed for robustness against the photon number

splitting attacks or the B92 protocol which is a simpler version of the BB84 proto-

col [181], hence newer protocols such as the Round-Robin Differential-Phase-Shift are

the subject of ongoing development in the context of spatial modes [182]. Impor-

tantly, there may be further improvements of our work by implementing our selection

of modes with decoy states which has proven invaluable for HD QKD in both free-

space and fiber [183, 184] and could be of higher value if implemented with heralded

sources [175]. Although the scheme we present is filter based, i.e. filtering states one

at a time, the experiment can be performed robustly and more efficiently using a de-

terministic detector for spin-orbit coupled states, sorting the modes in position [147].

This ensures high detection rates. Obtaining high switching between modes during

generation would require fast modulators which is a serious experimental challenge

when implementing HD QKD [185].

2.6 Conclusion

The self-healing property of the Bessel-Gaussian modes opens an important research

field, being able to securely share the cryptographic key despite any possible obstruc-

tion partially blocking the quantum channel. We have shown in this manuscript the

experimental results of the scattering probabilities, mutual information and secret

key rates in a prepare-measure protocol, comparing two different modes forming the
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QKD quantum state alphabet: Bessel-Gaussian (BG) and Laguerre-Gaussian (LG).

Our results clearly show lower quantum bit error rate (QBER) by using BG modes

when transmitting the shared key through a mostly blocked quantum channel. Con-

cretely, we measured a QBER of 0.15 ± 0.01 and 0.51 ± 0.00 for the BG and LG

modes, respectively. Furthermore, when almost completely blocking the channel, the

mutual information for the BG modes only drops due to the increase of the noise

with respect of the signal. The quantum state information can be reconstructed even

when having barely any photons after the obstacle.
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A single vector beam can be used

to charactersise turbulence

channels
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3.0.1 Introduction

Structured light has become topical of late [186,187], with so called cylindrical vector

vortex (CVV) beams [68] taking centre stage in numerous fundamental and applied

studies [188, 189]. For example, they form a family of natural solutions of free-space

and optical waveguides, and have been used in optical trapping [190–192], metrol-

ogy [193], as well as high capacity classical [194–196] and quantum [19,148,197, 198]

communication. To meet the demand of such growing applications, a plethora of gen-

eration methods have emerged, including directly from lasers [199–201], or externally

with liquid crystal q-plate technology [202], metasurfaces [203,204], and spatial light

modulators [205]. Detection has likewise matured to include deterministic detectors

incorporating interferometers [206, 207], mode sorters [208] or both [147], as well as

fast digital Stokes measurements [209–211] and direct measures of the nonseparability

or vector quality factor [96, 212], giving a quantitative measure of how “vector” the

vector beam is.

An open challenge in the context of classical and quantum communication is the

propagation of such modes through media exhibiting spatially dependent perturba-

tions. These might include thermal effects due to overheating of optical elements [213],

rapid refractive index fluctuations in the atmosphere [109,214] and underwater [215],

and in optical fibre [115,116]. In particular, atmospheric turbulence leaves the polar-

ization of optical beams undisturbed while the spatial components degrade rapidly

resulting in modal scattering and therefore information loss [128,179,216–221]. Con-

sequently, information encoding with the spatial components of light is restricted to

only several km [150, 222]. In the case of vector beams having coupled polarization

and spatial components, the polarization fields are indirectly impacted [223], resulting

in the decay of nonseparability or “vectorness” [101].

Here we exploit parallels between nonseparability of vector beams and entangle-

ment in quantum systems [98, 101, 102, 224–228] to deploy a quantum toolkit for the

study of vector beams in atmospheric turbulence. Importantly, we recognise that just

as the degree of entanglement of any pure quantum state can be determined by that of
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a maximally entangled state [126], courtesy of the Choi-–Jamio lkowski isomorphism

(channel state duality) [120,121], so it must be true that the dynamics of any vector

beam in a one-sided noisy channel should be able to be inferred from the dynamics of

just one beam, a purely inhomogeneously polarized field (a perfectly “vector” beam

with orthogonal spatial modes), which from now on we will refer to as ideal vector

vortex (VV) beams. In the context of OAM, any one of the CVV beams with oppoiste

spin and OAM states would suffice, as well as VV beams in the linear polarization

basis. Using such beams as a probe, we confirm the Choi-–Jamio lkowski isomorphism

for classical vectorial light, and show that the“vectorness” decay of all initial beams

can be predicted from the decay of an ideal VV beam. The approach is first outlined

using CVV beams and then generalised to other VV beams for adaptability. We illus-

trate this for two OAM subspaces, ℓ = ±1 and ℓ = ±10, revealing from this measure

a simple factor for the rate at which one subspace decays relative to the other. Our

work not only offers a simple tool for probing classical communication channels, but

also reveals insights into the decay dynamics of vectorial OAM light. While we have

demonstrated the approach with OAM in the atmosphere, it can easily be adapted

to other mode sets and media, and likewise to hybrid entangled quantum states.

3.1 Concepts

Here we elucidate the concept of channel state duality with nonseparable vector beams

for Characterizing classical beams through perturbing media. We first introduce

the key concepts of nonseparability in vector beams, vector beam decay through

turbulence and then finally channel state duality. The core idea is that an ideal

vector beam is sufficient to predict the behaviour of any vector beam, even partially

“vector”, through a channel.

3.1.1 Nonseparable vector modes

To construct an ideal VV beam we require a vectorial superposiiton of spatial mode

and polarization where the nonseparability is maximum. We illustrate the concept of
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(c) (d) (e)

(f) (g) (h)

(a) (b)

Figure 3-1: Example theoretical polarization field profiles of (a) a CVV beam and (b) a VV
beam. The CVV beam has nonuniform linear polarization states while the VV beam varies
between linear and elliptical polarization states. Both beams have a VQF of 1. Experimental
polarization fields of vector modes transmitted through turbulence with varying strengths
from left to right, initially encoded in OAM subspaces (c)-(e) |ℓ| = 1 and (f)-(h) |ℓ| = 10 in
the second and third bottom panels, respectively. The turbulence strengths are 𝐷/𝑟0 = 0
(no turbulence), 𝐷/𝑟0 = 2.5 and 𝐷/𝑟0 = 3.5 in each column, respectively.

nonseparability using familiar CVV beams since they are ubiquitous in a myriad of

applications [229]. Thereafter, we extend the concept to a family of VV beams by a

simple change of basis in the polarization components.

CVV beams are natural solutions of the vectorial Helmholtz equation in cylindrical

coordinates. An example of one such beam is shown in Fig. 3-1 (a), having a radially

symmetric polarization field. Such beams are commonly represented as superpositions

of scalar fields coupled to orthogonal circular polarization states, i.e.,

Ψℓ(r) = 𝑎 exp(𝑖ℓ𝜑)𝑒𝑅 + 𝑏 exp(−𝑖𝛼) exp(−𝑖ℓ𝜑)𝑒𝐿, (3.1)
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Figure 3-2: (a) Illustration of the experimental set up. A helium-neon (He-Ne) laser was
expanded and collimated onto a spatial light modulater (SLM). On the SLM, two modes
with oppositely charged OAM and distinct gratings frequencies were encoded on a single
hologram as shown in (b). Upon propagation, the modes separated in path. Since they
propagate closely, a D–shaped mirror (DM) as used to redirect one of them. A half-wave
(HW) plate was used to rotate the polarization of the redirected beam. The modes were
subsequently recombined at a beam-splitter (BS). The resulting mode was imaged to the
digital micromirror device (DMD) where (c) turbulence was encoded in combination with
the detection holograms. Polarisation projections were performed with a linear polarizer
(P). Finally, the resulting mode was propagated to the far field with a 500 mm Fourier
lens (L) where an on-axis intensity measurement was performed with a CCD camera. (d)
Example of measurements needed to calculate the nonseparability, VQF, of vector modes.

where r = (𝑟, 𝜑, 𝑧 = 0) are the cylindrical coordinates, 𝑒𝑅,𝐿 are the canonical right

and left circular polarization states, respectively. The polarization modes are coupled

to spatial modes having characteristic azimuthal phase profiles exp(±𝑖ℓ𝜑), associated

with light fields carrying an OAM of ±ℓℏ per photon, respectively. Here, the un-

bounded integer, ±ℓ, is the topological charge. The parameters, 𝑎, 𝑏 and 𝛼 are the

relative amplitudes and phases between the the modes in the superposition. Next,

we show that the coupling between the polarization and spatial components is remi-

niscent of quantum entanglement between two particles.

It is common to represent the polarization and spatial components of vector modes

as state vectors using the Dirac notation from quantum mechanics, i.e., 𝑒𝑅(𝐿) →

|𝑅(𝐿)⟩ and exp(±𝑖ℓ𝜑) → |±ℓ⟩, enabling a more compact representation of Eq. (3.1)
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following

|Ψℓ⟩ = 𝑎 |ℓ⟩ |𝑅⟩ + 𝑏 exp(−𝑖𝛼) |−ℓ⟩ |𝐿⟩ . (3.2)

Here the bra-ket notation is used to mark the spatial and polarization components

making it convenient to express each Degree of Freedom (DoF) as a unique subsystem

analogous to two particle states in quantum mechanics. By clearly identifying each

DoF, we wish to quantify the amount of nonseparability between them. This can be

achieved by using the vector quality factor (VQF) [96, 212], which is an analogous

measure of entanglement based on the concurrence [127], but between the internal

DoF of the classical light fields. For the state in Eq. (3.2), the VQF, equivalently

concurrence, is therefore given by VQF = |𝑎𝑏| ranging from VQF = 0 for a separable

scalar beam (𝑎 = 0 or 𝑏 = 0) to VQF = 1 for a nonseparable vector beam (𝑎 =

𝑏); and otherwise partially “vector” for 0 < VQF < 1. This measure has been

used in a myriad of experiments as a witness for nonseparability in classical beams

[160,209,230].

Note that in the circular polarization basis, vector beams of varying nonsepara-

bility” are spanned on a four dimensional state-space and therefore have the general

form

|Φℓ⟩ = 𝑎 |ℓ⟩ |𝑅⟩ + 𝑏 |−ℓ⟩ |𝑅⟩

+ 𝑐 |ℓ⟩ |𝐿⟩ + 𝑑 |−ℓ⟩ |𝐿⟩
)︀
, (3.3)

with a corresponding degree of nonseparability

VQF = |𝑎𝑑− 𝑐𝑏|, (3.4)

assuming the coefficients satisfy, (|𝑎|2 + |𝑏|2 + |𝑐|2 + |𝑑|2) = 1. One can simply recover

the previous vector beam for example by setting (𝑎 = 𝑏) while 𝑐𝑏 = 0. This will

become crucial when studying the decay of vector beams since we will always project

onto the entire subspace (±ℓ) of spatial modes we started with.
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(a) (b) (c)

(d) (e) (f)

Figure 3-3: Measured modal spectrum for the vertical and horizontal polarized components
of vector modes in OAM subspaces corresponding to ℓ = 1 (top panel) and ℓ = 10 (bottom
panel), with (a,d) no turbulence 𝐷/𝑟0 = 0 and increased turbulence strengths of (b,e)
𝐷/𝑟0 = 2.5 and (c,f) 𝐷/𝑟0 = 3.5. The solid lines correspond to the theoretical spectrum.
The asymmetry in the mode distributions can be attributed to the statistical fluctuations
in the data due to imperfections induced by phase drifts from our interferometer as well as
aberrations on the DMD.

Next, we show that the coupling between the DoFs of any spatial mode that is

transmitted through a complex medium, using turbulence as an example, can be de-

termined by that of a maximally nonseparable vector mode by exploiting channel

state duality.

3.1.2 Vector mode propagation through turbulence from the

perspective of quantum mechanics

Structured light is known to be perturbed in atmospheric turbulence [107]. In par-

ticular, a vector mode propagating through turbulence experiences phase dependent

fluctuations that have an impact on its transverse spatial components. Assuming weak

irradiance fluctuations approximated by Kolmogorov theory [214], the phase varia-
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tions can be Characterized by the phase structure function, 𝐷𝜑(r1, r2) = 6.88∆𝑟/𝑟0,

where 𝑟0 is the Fried parameter [231] describing the transverse scale of the atmospheric

distortions and ∆𝑟 = |r1 − r2| are relative displacements in the transverse plane. For

an optical system with a diameter (aperture) 𝐷, we can associate the turbulence

strength with the normalised aperture size, 𝐷/𝑟0, relating turbulence strength to the

relative transverse distance within which the refractive index is correlated. For ex-

ample a large aperture size seeing a smaller Fried parameter (𝐷 > 𝑟0) experiences

more distortions than a smaller aperture seeing a larger Fried parameter (𝐷 < 𝑟0).

In this chapter, 𝐷 approximates the size of the beam. We show examples of the the

effect of turbulence on the polarization field of vector modes in Fig. 3-1 (c)-(h). The

polarization field as well as the spatial distribution gets deformed with increasing

turbulence strength (from left to right). We investigate how the distortions affect the

nonsepability.

Now, since the atmosphere is non-birefringent, only the transverse spatial com-

ponents of the mode expressed in Eq. (3.2) are perturbed and as a consequence

there is modal scattering into adjacent OAM modes [223]. For example, an OAM

mode corresponding to the state |ℓ⟩ traversing a medium with the channel matrix

𝑇 =
∑︀

𝑚,𝑛 𝑐𝑛,𝑚 |𝑚⟩ ⟨𝑛|, transfers energy from the initial state into its neighbouring

eigenmodes following the mapping

|ℓ⟩ 𝑇−→
∑︁
𝑚

𝑐ℓ,𝑚 |𝑚⟩ , (3.5)

where 𝑃 (ℓ,𝑚) = |𝑐ℓ,𝑚|2 is the conditional probability for the mode |ℓ⟩ to exchange

energy with the mode |𝑚⟩. For Kolmogorov turbulence, the probabilities have been

determined analytically [232] and are symmetric about |ℓ| for weak turbulence.

With this in mind, we can now describe the state of our CVV mode after it

traverses the turbulent channel. Let us assume that vector mode is initially in the

state

|Ψℓ⟩ = 1/
√

2 (|ℓ⟩ |𝑅⟩ + |−ℓ⟩ |𝐿⟩) . (3.6)
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Upon traversing the channel, the OAM modes scatter according to Eq. (3.5). By

projecting back onto the initial OAM subspace, i.e., {|−ℓ⟩ , |ℓ⟩}, we obtain the state

⃒⃒⃒
Ψ̃ℓ

⟩
= 𝒩

(︀
𝑐ℓ,ℓ |ℓ⟩ |𝑅⟩ + 𝑐ℓ,−ℓ |−ℓ⟩ |𝑅⟩

+ 𝑐−ℓ,ℓ |ℓ⟩ |𝐿⟩ + 𝑐−ℓ,−ℓ |−ℓ⟩ |𝐿⟩
)︀
. (3.7)

Here 𝒩 is a normalisation factor satisfying, |
⟨

Ψ̃ℓ

⃒⃒⃒
Ψ̃ℓ

⟩
|2 = 1. We are assuming that

the losses are identical for the spatial modes making up the vector beam, which is

true for our case and indeed all the CVV beams. In this case the overall losses can

be ignored as they play no part in the analysis. The VQF becomes

VQFmax = 2|𝒩 |2|𝑐ℓ,−ℓ𝑐−ℓ,ℓ − 𝑐ℓ,ℓ𝑐−ℓ,−ℓ|. (3.8)

By applying the notion of the Choi-–Jamio lkowski isomorphism (channel state

duality), we hypothesis that any other vector mode with initial “vectorness” of VQFin

will decay according to the factorisation law,

VQFout = VQFmax × VQFin, (3.9)

where VQFout is the nonseparability of the state after the channel. In other words,

the decay of the any arbitrary vector beam can be inferred by simply propagating

an ideal vector beam through the channel to find the scale factor, VQFmax. Rather

than propagating many beams through the channel, only one beam has to be passed

through to understand its impact. Remarkably, the channel’s properties are deter-

mined by its interaction with a maximally nonseparable vector mode. This means

that by knowing how a maximally nonseparable vector mode propagates through

turbulence, it is possible to predict how the nonseparability of any other arbitrary

superposition state evolves. Equation (3.9) also predicts that the trend is linear and

an intercept at zero, with the decay of the CVV beam returning the slope (VQFmax).

This intriguing property, can be understood from the perspective of quantum
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mechanics. Firstly, the channel weights, | ⟨ℓ|𝑇 |ℓ⟩ |2, are imprinted on the input non-

separable state mapping the channel onto a pure state, as a consequence of the Choi–

Jamio lkowski isomorphism [120,121]. Equivalently, a vector mode traversing a noisy

channel has similar properties owing to the nonseparability of the spatial and po-

larization components. This means that the final VQF of any partial nonseparable

mode can be determined by that of a maximally nonseparable vector mode.

Finally, although we have used the CVV beam as a well-known example, in general

the polarization and spatial components can be in any basis. For convenience going

forward and in the experiment, we will convert to the horizontal (|𝐻⟩) and vertical

(|𝑉 ⟩) polarization basis while the spatial profiles are defined in the Laguerre-Gaussian

(LG) basis. As a result, we no longer have a CVV beam since there is no cylindrical

symmetry in the polarization field. An example of our VV beam is shown in Fig. 3-1

(b), where the polarization states across the tranverse plane are mixtures of linear of

elliptical states. Such a beam is represented by the state,

|Ψℓ⟩ = 𝑎 |ℓ⟩ |𝐻⟩ + 𝑏 |−ℓ⟩ |𝑉 ⟩ , (3.10)

with the same VQF = 1 as that of Eq. (3.2). This serves to make it clear than any

ideal VV is sufficient for the test.

3.2 Methods

3.2.1 Experimental set-up

We describe the generation and detection scheme illustrated in Fig. 3-2 (a). We used

a helium-neon (He-Ne) laser with a central wavelength of 633 nm and collimated

Gaussian field profile. As the approach is not influenced by the wavelength, we

selected our laser for convenience only. We modulated the laser beam using a Phase

only Holo-Eye Pluto spatial light modulate (SLM). To obtain the states |Ψ⟩ℓ=1,10,

we encoded the multiplexed holograms [229] with Laguerre Gaussian (LG) modes of

charges ℓ = −1(−10) and ℓ = 1(10) and subsequently separated them in path using
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a D shaped mirror. The amplitudes and phases of each mode were encoded using

the Arrizon technique for complete amplitude and phase control [233]. An example

of one of the holograms is shown in Fig. 3-2 (b).

Before interfering the two beams at the BS, we rotated the polarization of the re-

flected beam from the D–shape mirror by 45∘ using a half wave-plate. This converted

the polarization from H to V. The two beams now had orthogonal polarizations. After

combining the two beams, the resulting vector mode was transmitted to the digital

micro-mirror device (DMD). On the DMD, we encoded Kolmogorov turbulence phase

screens following [234] in combination with the detection holograms necessary for the

VQF measurements. An example of one of the detection holograms is shown in Fig. 3-

2 (c) as a combination of the detection mode and turbulence phase screen, resulting

in a noisy detection hologram that has both the perturbation from turbulence and

projection mode. The VQF projection holograms, with no turbulence, had phase

profiles shown in the first row of Fig. 3-2 (d), shown for the ℓ = ±1 subspace.

Lastly we used a polarizer to project onto the H and V polarization modes after

the DMD. The resulting field was then propagated to the far field using a Fourier lens

(L) and an on axis measurement of the intensity was recorded, providing the modal

overlap of the input state, the simulated turbulence and the detection mode [235].

For each measurement we prepared up to 30 instances of each turbulence strength

ranging from 𝐷/𝑟𝑜=0 to 3.5 in steps of 𝐷/𝑟𝑜 = 0.5. An example of measurements

for intensities 𝐼𝑢𝑣 is shown in Fig. 3-2 (d) for a perfect vector mode. The columns

correspond to the spatial projections while the rows correspond to the polarization

measurements. Next we show how the VQF (nonseparability) is measured.

3.2.2 Vector quality factor measurement

We follow the procedure outlined in ref. [96] to measure the nonseparability of vector

modes. The VQF is given by

VQF =

⎯⎸⎸⎷1 −
3∑︁
𝑖

⟨𝜎𝑖⟩2, (3.11)
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where the expectation values of the Pauli matrices ⟨𝜎𝑖⟩ can be obtained from

⟨𝜎1⟩ = 𝐼13 + 𝐼23 − (𝐼15 + 𝐼25), (3.12)

⟨𝜎2⟩ = 𝐼14 + 𝐼24 − (𝐼16 + 𝐼26), (3.13)

⟨𝜎3⟩ = 𝐼11 + 𝐼21 − (𝐼12 + 𝐼22). (3.14)

The detection probabilities 𝐼𝑢𝑣, 𝑢 = {1, 2} , 𝑣 = {1, 2, ..., 6} are determined from

six identical projections of different polarization basis states, namely horizontal and

vertical polarizations. The projections are performed by inserting a polarizer, set to

0∘ and 90∘ for the horizontal and vertical polarization projections, respectively. The

six spatial measurements consist of projections onto OAM states |±ℓ⟩ and their four

superpositions |𝜃⟩ = |−ℓ⟩ + 𝑒𝑖
𝜃
|ℓ| |ℓ⟩ with 𝜃 = 0, 𝜋

2
, 𝜋 and 3𝜋

2
. The spatial projections

were encoded as binary holograms onto the digital micro-mirror device using the

method in [236] tailored for amplitude only devices. Finally, the on-axis intensity,

due to each projection is measured in the focal plane of a Fourier lens by a CCD

camera, in the first diffraction order.

3.3 Results

3.3.1 Propagation of vector modes through turbulence

We first generated vector modes (|Ψℓ⟩) and subsequently measured their resulting po-

larization ellipses/fields using Stokes polarometry. For brevity, the reader is directed

to ref. [211] (sections 2 and 5) for calculations of the Stokes parameters and further

details on extracting the polarization ellipses. The polarization profiles are shown in

Fig. 3-1 (c)-(e) and (f)-(h) for |Ψ1⟩ and |Ψ10⟩, respectively. In each panel, the profiles

are shown for increasing turbulence strengths 𝐷 = 0, 2.5 and 𝐷 = 3.5, from left to

right. The intensity profile is shown to deteriorate in each instance confirming the

presence of distortions in the transverse plane of the fields.

Next, we measured the modal spectrum of each polarization component averaged
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Figure 3-4: (a) Experimental results (points) and theoretical prediction (lines) for the degree
of nonsepability of vector modes in the subspaces, ℓ = 1 and 10, with increasing turbulence
strength. Experimental output VQF with respect to the known input VQF under the
effect of turbulence strengths of (b) 𝐷/𝑟0 = 2.5 and (c) 𝐷/𝑟0 = 3.5. In the absence of
perturbations, the output VQF maps onto the diagonal (“No perturbation”) line. The
circles are for vector modes in the subspace of ℓ = 1 and squares are for ℓ = 10, while the
lines are the theoretical prediction based on the isomorphism. The horizontal error-bars
are smaller than the points. Each data point was obtained from 30 realisations of the same
turbulence strength.

over 30 instances of the same turbulence strength. The results are shown in Fig 3-

3 (a)-(c) for |Ψℓ=1⟩ and in Fig 3-3 (d)-(f) for |Ψℓ=10⟩. For each ℓ dependent mode, the

turbulence strength was 𝐷/𝑟0 = 0 (a , d) 𝐷/𝑟0=2.5 (b , e) and 𝐷/𝑟0=3.5 (c, f). In

each plot, the distribution on the right corresponds the horizontally polarized mode

(blue) while the distribution on the left (red) corresponds to the vertically polarized

mode. As expected, the mode distribution is symmetric about |ℓ|, consistent with

the theoretical distribution shown as lines [237]. We measured the width of each

distribution as 2 times the standard deviation using the formula

∆ℓ = 2

√︃∑︀
𝑚 |𝑚− ℓ|𝑃 (ℓ,𝑚)∑︀

𝑚 𝑃 (ℓ,𝑚)
, (3.15)

where ℓ is the mean OAM in the field. For 𝐷/𝑟0 = 2.5 we measured a width of ∆ℓ =

3.18 and ∆ℓ = 6.64 for |Ψℓ=1⟩ and |Ψ10⟩, respectively, averaged over both polarization

components of the beams. With an increased turbulence strength, 𝐷/𝑟0 = 3.5, we

measured a width of ∆ℓ = 4.44 and ∆ℓ = 8.79. In both cases the OAM width of

ℓ = 10 vector modes is higher than that of ℓ = 1 vector modes (2 times), showing that

higher order OAM modes spread farther than lower order OAM modes, consistent
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with theory [223].

While this reveals information about how the spatial components are perturbed,

we now investigate how the polarization in tandem with the spatial components are

affected, testing our isomorphism hypothesis.

To illustrate the effect of the mode scattering on the nonseparability, we show the

theoretical (lines) and experimental (points) of VQF values measured for |ℓ| = 1, 10

subspaces as a function of turbulence strength in Fig. 3-4 (a). The VQF of the ℓ = 10

modes decay at lower rate than the VQF of the ℓ = 1 modes, analogous to the

decay of entangled photons through a single sided channel of turbulence [128]. This

can be explained by the higher mode separation between the spatial components of

the generated vector modes; the scattering onto the other modes happens in both

cases, and it takes longer for larger OAM (ℓ = 10) to diffuse onto opposite sides than

for lower OAM (ℓ = 1). While the above analysis was performed on input modes

Table 3.1: Analysis of the different OAM subspace through turbulence. The values in brack-
ets correspond to the theoretical values. Here the gradients, 𝑚ℓ, correspond to VQFmax.

𝐷/𝑟0 ∆ℓ (ℓ = 1) ∆ℓ (ℓ = 10) 𝑚1 𝑅2
1 𝑚10 𝑅2

10

0 0.05 (0) 0.84 (0) - - - -
2.5 3.18 (4.1) 6.64 (9) 0.40 0.97 0.94 0.99
3.5 4.44 (5.59) 8.79 (11.94) 0.21 0.97 0.92 0.98

with a high nonseparability (𝑉 𝑄𝐹 ≈ 1), next we evaluated how vector modes with

a varying degree of nonseparability also decay under the same turbulence strength.

We demonstrate this to confirm the channel state duality inherent in vector modes

propagated through a perturbation channel acting on the spatial DoF. The results

are shown in Fig. 3-4 (b) and (c) under turbulence conditions of 𝐷/𝑟𝑜 = 2.5 and 3.5,

respectively. This was done for subspaces ℓ = ±1 (circles) and ℓ = ±10 (squares).

The error-bars for the x-axis are smaller than the points. To control the VQF

of the input mode, we adjusted the grating depth of the hologram corresponding to

the ℓ = −1(−10) mode. The plots show that the output VQF, i.e., VQFout, has a

linear relation to the input VQF where the line fitted through each data set has a

gradient, 𝑚ℓ or equivalently VQFmax, that is equivalent to the VQF of a maximally
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nonseparable vector mode transmitted through the same turbulence. We show the

gradient of each line in Table 3.1 as well as the goodness of fit, which are above

𝑅2 = 0.96. A perfect fit would result in 𝑅2 = 1. As shown, the gradients of the

ℓ = 10 modes is higher than that of ℓ = 1, owing to the higher crosstalk in the

ℓ = 1 subspace as demonstrated earlier. For 𝐷/𝑟𝑜 = 3.5, we find that the ℓ = 10

subspace, the gradient can be 4 times larger in comparison to the ℓ = 1 subspace.

Since the gradient indicates the maximum VQF that a vector mode with an input

nonseparability of VQFin ≈ 1 can obtain, after propagating through the channel,

all partially nonseparable vector modes within the same subspace are bounded on

the interval VQFout ∈ [0,𝑚ℓ] consistent with the factorisation law [126] for single

sided channels indicating that vector modes posses the ability to probe channel state

duality of noisy channels. Indeed, our results show that the decay in nonseparability

of any vector mode decays through the medium according to the relation VQFout =

VQFin × 𝑚ℓ = VQFin × VQFmax where VQFmax = VQF(𝑇 |Ψ⟩ℓ) is the VQF of a

vector mode, |Ψ⟩ℓ, after traversing the channel, 𝑇 , and having an initial VQF of

1 while VQFin is the VQF of the mode we wish to Characterize after the channel.

The isomorphism implies that one maximally nonseparable vector beam is needed to

probe a channel, from which the behaviour of all other vector beams can be inferred.

3.4 Discussion

Vector beams possess nonseparable coupling between their polarization and spatial

components and exhibiting correlations similar to entangled pairs of photons. In this

chapter, we used this fact to study the decay of vector beams in atmospheric tur-

bulence both qualitatively and quantitatively by invoking properties such as channel

state duality [120, 121] and the factorisation law [126]. These features are unique

to quantum entangled states, and are commonly used for channel (medium) charac-

terization [238]. Our results confirm that the nonseparability of any other partially

(VQF < 1) nonseparable vector mode is purely determined by that of a maximally

(VQF ≈ 1) nonseparable vector mode experiencing the same turbulence within the
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same subspace of optical modes. Interestingly, this does not limit the method to

characterization purposes but creates the possibility of using such vector modes as a

means to overcoming quantum state perturbations, for example by selecting higher or-

der modes (e.g., ℓ = 10 as apposed to ℓ = 1), or for unscrambling complex aberrations

by using classical light or appropriate high dimensional quantum states [125]. The

extension of the latter to classical beams could be used as an additional tool for adap-

tive optics since vector modes can carry information related to the channel/medium.

While we demonstrated this method for turbulence, it can in principle be extended

to various scenarios where optical aberrations are encountered, for example, arising

from imperfections or overheating in optical elements in high power regimes or an

optical medium that induces intermodal cross-talk through other mechanisms (e.g, a

multimode fiber). In other words, the method is adaptable to any medium that is

compatible with the modal scattering mechanism given in Eq. 3.5. Finally, we point

out that the use of the DMD makes the approach very fast, up to kHz rates [239],

which makes the approach “real-time” for most beam perturbation process such as

turbulence, thermal loading, mechanical stress, and so on.

3.5 Conclusion

In summary, we exploited the concept of channel state duality analogously to Charac-

terize the evolution of various vector/scalar modes through turbulence, demonstrating

that the evolution of vector beams can be used to study how various spatial modes

decay through turbulence. We showed this for two subspaces, ℓ = 1 and ℓ = 10,

with our results demonstrating that higher order OAM vector modes decay rapidly

while also maintaining a high nonseparability. We envisage that this technique also

be used to study how the information capacity of the channel scales with the strength

of perturbations since the VQF depends on the cross-talk in the channel. The work

in this chapter is integral to the development of alternative methods for character-

izing optical beams by borrowing principles from quantum mechanics, with possible

applications in various scenarios where complex perturbations are encountered.
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channels

The work in this Chapter has been uploaded on a public repository:

� Nape, I., Singh, K., Klug, A., Buono, W., Rosales-Guzmán, C., Franke-Arnold,

S., Dudley, A. and Forbes, A., 2021. Revealing the invariance of vectorial

structured light in perturbing media. arXiv preprint arXiv:2108.13890.

Nape, I., contributed to the theoretical framework, experiment, data analyses and

manuscript preparation.
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4.1 Introduction

Non-paraxial light is vectorial in 3D and has given rise to exotic states of structured

light [187] such as optical skyrmions [240, 241], knotted strands of light [242, 243],

flying donuts [244, 245] and Möbius strips [246]. Paraxial light too is vectorial, in

2D, characterised by an inhomogeneous polarisation structure across the transverse

plane [247]. Vectorial structured light in 2D and 3D has been instrumental in a

range of applications (see Refs. [15, 189, 248, 249] and references therein), for exam-

ple, to drive currents with a direction dictated by the vectorial nature of the optical

field [250, 251], imprinting the spatial structure into matter [252], enhanced metro-

logical measurements [253, 254], probing single molecules [255], and to encode more

information for larger bandwidths [143, 195, 256, 257]. They are easy to create in the

laboratory using simple glass cones [258], stressed optics [259] and GRIN lenses [260],

as well as from spatial light modulators and digital micro-mirror devices [205, 261],

non-linear crystals [262, 263], geometric phase elements [53, 264], metasurfaces [203]

and directly from lasers [265].

Given the importance of these structured light fields, much attention has focused

on their propagation through optical systems that are paraxial [266], guided [267]

and tight focussing [268,269], as well as in perturbing media such as turbid [103–106],

turbulent [107–114] and underwater [215, 270, 271]. The conclusions are seemingly

contradictory, with compelling evidence that the vectorial structure is stable, and

equally compelling evidence that it is not, while the specific nature of each study

prohibits making general conclusions on the robustness of vectorial light in arbitrary

complex media.

Here we show that the inhomogeneity of a vectorial light field is impervious to

all aberrations so long as they are unitary. We demonstrate this with two examples

featuring strong aberrations: a tilted lens and atmospheric turbulence, treating each

as a unitary channel. Our quantum-inspired framework explains the robustness of

these light fields by virtue of unitary operations on the vectorial state, manifesting as

an intact inhomogeneity even if the vectorial pattern appears spatially distorted due
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to modal scattering in the component scalar spatial modes. We show that the channel

action can be reversed by a reciprocal unitary process applied either pre-channel or

post-channel, demonstrating full scalar and vector restoration, as well as cross-talk

free detection of vectorial fields through complex media. Our study highlights the

importance of measurement in the context of vectorial light fields, in doing so resolving

a standing paradox on the robustness of vectorial light to perturbations, and provides

a general framework for understanding the impact of arbitrary optical aberrations on

vectorial structured light fields.

4.2 Concepts

4.2.1 Vectorial light and unitary channels

A vectorial structured light field can be written compactly in a quantum notation as

the unnormalised state |Ψ⟩ = |𝑒1⟩𝐴 |𝑢1⟩𝐵 + |𝑒2⟩𝐴 |𝑢2⟩𝐵, highlighting the non-separable

nature of the two degrees of freedom (DoFs), 𝐴 and 𝐵, denoting the polarization and

the spatial degree of freedom, respectively. In this way, the vectorial field is treated

as a quantum-like state (but not quantum and without non-local correlations), by

virtue of its non-separable DoFs, akin to a locally entangled state [225,226,272,273].

The polarisation DoF is expressed as any pair of orthonormal states, {|𝑒1⟩ and |𝑒2⟩}

while the spatial mode DoF is given by the orthonormal basis states {|𝑢1⟩ and |𝑢2⟩}.

In a quantum sense, this vectorial structured field would be called a pure state. The

vectorial nature can be quantified through a measure of its non-separability [96], a

Vector Quality Factor (VQF) (equivalently concurrence) which for succinctness we

will call its “vectorness”, ranging from 0 (homogeneous polarisation structure of scalar

light) to 1 (ideally inhomogeneous vectorial polarisation structure).

Now imagine that our vectorial light field, |Ψin⟩, passes through an arbitrary

aberrated optical channel, as illustrated in Figure 4-1, e.g., imperfect optics or a

perturbing medium such as tissue, turbulence or underwater channels. If there is no

birefringence (often there is not, but see discussion later) then this can be considered
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Figure 4-1: A vectorial light field, |Ψin⟩, propagates through a perturbing medium and
undergoes a unitary transformation, 1𝐴⊗𝑇𝐵, acting only on the spatial components. Such
perturbing media can be organic tissue, underwater, optical fiber or the turbulent atmo-
sphere (bottom panels). The resulting field, |Ψout⟩, has a distorted intensity and polarisation
structure.

a one-sided channel since the spatial mode (DoF 𝐵) is affected (distorted), while the

polarisation (DoF 𝐴) is not. An open question is whether this implies that the entire

polarisation structure of the state is likewise unaffected? To answer this, we note that

such a one-sided channel is unitary to any input vectorial (pure) state since it may

be written as a positive trace-preserving map, ensuring that the output must also be

a vectorial (pure) state, with full details provided in the Supplementary Information

(SI). The Choi-Jamiolkowski isomorphism [122] establishes a correspondence between

the channel operator, 𝑇𝐵, and a quantum state, so that a measurement on one returns

the other, invaluable for characterising quantum channels [125,126]. Applying this to

our classical beam, justified because of its non-separability [274], the vectorial state

after the channel is then |Ψout⟩ = (1𝐴⊗𝑇𝐵) |Ψin⟩, where 1𝐴 is the identity operator for

DoF 𝐴 with the subscript in |Ψ⟩ indicating the input and output states. Importantly,

the spatial components remain orthogonal even after a distorting medium: if the

channel operator results in new (“distorted”) modes in DoF 𝐵 given by |𝑣1⟩ and |𝑣2⟩,
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Figure 4-2: (a) The experiment has four stages: a generation stage to create the vectorial
fields, a perturbation stage to pass it through a perturbing medium, and two detection
stages to perform Stokes projections and modal decomposition. The insets show the initial
ℓ = ±1 (left panel) and ℓ = ±4 (right panel) beams at plane 𝑍0. (b) Illustration of the
propagation through a tilted lens, with exemplary measurement planes indicated as 𝑍1

through to 𝑍3. (c) The output ℓ = ±1 and ℓ = ±4 beams at these distances, confirm
that the spatial structure alters with distance but that the vectorness (the inset number to
each beam frame) does not, remaining above 93%. The optical elements comprise a HWP:
half-wave plate, PBS: polarising beam splitter, Pol: polariser, BS: beam splitter, QWP:
quarter-wave plate, and CAM: camera. All beam profiles are shown as false colour intensity
and polarisation maps.

then one finds that ⟨𝑣1|𝑣2⟩ = ⟨𝑢1|𝑇 †
𝐵𝑇𝐵 |𝑢2⟩ = ⟨𝑢1|𝑢2⟩ = 0. For this reason, the

output remains a non-separable vector beam with the same vectorness as the initial

beam, although altered in its spatial structure, and now expressed in what we will

call an adjusted basis, {|𝑣1⟩ and |𝑣2⟩}. Thus our description of the vectorial state has

changed, it is now |𝑒1⟩𝐴 |𝑣1⟩𝐵 + |𝑒2⟩𝐴 |𝑣2⟩𝐵, and (in general) its spatial structure too

has altered in amplitude, phase and polarisation, but not its vectorial inhomogeneity

(see appx. C.1).

Because the channel (with or without propagation) is unitary, the channel operator
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Figure 4-3: (a) The initial vector beam is geometrically represented by an equatorial state
vector of unit length on a single ℓ = ±4 HOP Sphere, indicative of a maximally non-
separable pure state. The experimental basis states are shown on the poles (as intensities
with their respective polarisation state on the right) and the vectorial sum (amplitude and
polarisation structure) is shown on the equator. The tilted lens deforms the initial mode into
(b), and this new state can be mapped to the sum of multiple HOP Spheres, each spanned
by a different OAM and radial mode (c). Each of these potentially describes a mixed state
of some degree of non-separability (non-unit and/or non-equatorial state vectors). The (d)
scattering probabilities and (e) phases over the OAM (ℓ) and radial (𝑝) modes for the right
(left) (𝑅(𝐿)) circular polarisation components after the ℓ = ±4 vectorial field traverses the
tilted lens channel. The right and left components have equivalent scattering probabilities.
There are 𝑁 = 5 states, (ℓ, 𝑝), with non-zero probabilities and 𝑁(𝑁 − 1)/2 = 10 pairs of
xcmultiple subspaces that can be formed. (f) The pairs of states constituting the subspace
and corresponding VQF for the vector field in that particular subspace can be represented
with a graph having a set of vertices (as the contributing states) connected by weighted
edges, respectively. The weights of the edges correspond to the VQF.
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is unitary too, so that its Hermitian adjoint represents the inverse process

|Ψin⟩ = (1𝐴 ⊗ 𝑇𝐵)† |Ψout⟩ , (4.1)

pointing to a recipe that will unravel the vectorial light back to its original form

without adaptive optics (see appx. C.3). We will demonstrate this correction both

pre- and post-channel.

4.3 Methods

4.3.1 Vector beam generation

To generate vector beams, a horizontally polarized Gaussian beam from a HeNe laser

(wavelength 𝜆 = 633 nm) was expanded and collimated using a 10× objective and

a 250 mm focal length lens. The expanded beam was then passed through a half-

wave plate (HWP) before being separated into its horizontally (H) and vertically (V)

polarized components using a Wollaston prism (WP). The plane at the WP was then

imaged onto the screen of a digital micro-mirror device (DMD - DLP6500) using a 4f

system. The separation angle of the polarization components from the WP of ≈ 1 ∘

resulted in the diffracted 0𝑡ℎ order components overlapping. To create a desired scalar

component mode of the form 𝑈(r) = |𝑈(r)| exp(𝑖Φ), where Φ is the phase of the field

and 𝑈 has maximum unit amplitude, the DMD was programmed with a hologram

given by

𝐻 =
1

2
− 1

2
sign (cos (𝜋𝜑+ 2𝜋𝐺) − cos(𝜋𝐴)) , (4.2)

with 𝐺(r) = g · r a phase ramp function with grating frequencies g = (𝑔𝑥, 𝑔𝑦), and

𝐴(r) = arcsin(|𝑈(r)|)/𝜋 and 𝜑(r) = Φ/𝜋 are the respective, appropriately enveloped,

amplitude and phase of the desired complex fields at pixel positions r = (𝑥, 𝑦). Holo-

grams for each polarization component (denoted as 𝐻𝐴 and 𝐻𝐵) were multiplexed
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on the DMD, where the grating frequencies (𝑔𝑥, 𝑔𝑦) could be chosen to cause the H

polarized 1𝑠𝑡 diffraction order from 𝐻𝐴 and the V polarized 1𝑠𝑡 diffraction order from

𝐻𝐵 to spatially overlap. This combined 1𝑠𝑡 order contained our vector field which was

subsequently spatially filtered at the focal plane of a 4f imaging system and imaged

onto a second DMD. The second DMD was addressed with a single hologram of the

same form as 𝐻𝐴/𝐵 onto which the turbulence phase screens, along with any correla-

tion filters were encoded (a quater-wave plate, QWP, was used to convert H and V

polarization to right (R) and left (L) circular respectively). Polarization projections

were made using a linear polarizer (LP) and a QWP before the second DMD. The

intensities at the Fourier plane were captured using a CCD (FLIR Grasshopper 3)

placed at the focal plane of a 2f imaging system.

4.4 Non-separability measurements

We measured the non-separability of the vector beams in a basis dependent and in-

dependent approach using Stokes parameters and modal decomposition, respectively

(see sec. 4.4 and appx. C.6 for further details). Firstly, to measure the Stokes parame-

ters, we used the reduced set of four Stokes intensities, 𝐼𝐻 , 𝐼𝐷, 𝐼𝑅 and 𝐼𝐿 corresponding

to the linearly polarized horizontal (H), diagonal (D) and the circular right (R) and

left (L) polarizations. From these measurements we extracted the Stokes parameters,

𝑆 ′
0 = 𝐼𝑅 + 𝐼𝐿, (4.3)

𝑆 ′
1 = 2𝐼𝐻 − 𝑆0, (4.4)

𝑆 ′
2 = 2𝐼𝐷 − 𝑆0, (4.5)

𝑆 ′
3 = 𝐼𝑅 − 𝐼𝐿. (4.6)

The four intensity projections were acquired through the use of a linear polarizer

(for 𝐼𝐻 and 𝐼𝐷) rotated by 0 and 𝜋/4 radians together with a quarter-wave plate

(for 𝐼𝑅 and 𝐼𝐿), oriented at ±𝜋/4 radians relative to the fast axis. Subsequently,
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the basis independent VQF (equivalently non-separability) was determined from 𝑉 =√︀
1 − (𝑆2

1 + 𝑆2
2 + 𝑆2

3)/𝑆2
0 , with 𝑆𝑖 =

∫︀
𝑆 ′
𝑖(r)𝑑r being the global Stokes parameters

integrated over the transverse plane.

For the basis dependent approach, the overlap between orthogonally polarized

projections of the field in question was used as a measure of non-separability, with

unity overlap signalling that the field is completely scalar, while a zero overlap in-

dicated a maximally non-separable vector field. This overlap can be characterized

by the magnitude of the Bloch vector, 𝑠, lying on the surface of a sphere spanned

by superpositions of a chosen pair of basis states |𝜓1,2⟩. The magnitude can then

be seen as a sum-in-quadrature of the Pauli matrix expectation values ⟨𝜎𝑖⟩, as their

operation on the basis states gives the unit vectors of the sphere. We can determine

these expectation values using projections ⟨𝑃 | into superpositions of the spatial basis

components described by

⟨𝑃𝑗| = 𝛼𝑗⟨𝜓1| + 𝛽𝑗⟨𝜓2| . (4.7)

With (𝛼, 𝛽) = {(1, 0), (0, 1), 1√
2
(1, 1), 1√

2
(1,−1),

1√
2
(1, 𝑖), 1√

2
(1,−𝑖)} for both |𝑅⟩ and |𝐿⟩. These 12 on axis intensity projections are

used to calculate the length of the Bloch vector according to

⟨𝜎1⟩ = (𝐼13 + 𝐼23) − (𝐼14 + 𝐼24) (4.8)

⟨𝜎2⟩ = (𝐼15 + 𝐼25) − (𝐼16 + 𝐼26) (4.9)

⟨𝜎3⟩ = (𝐼11 + 𝐼21) − (𝐼11 + 𝐼22), (4.10)

where the 𝑖 index of 𝐼𝑖𝑗 corresponds to the ⟨𝑅,𝐿| polarization projections and the

𝑗 index represents the spatial mode projections defined above. The nonseparability

is then given by 𝑉 =
√

1 − 𝑠2. In this work the projections into the right- and

left-circular polarization components was achieved using a linear polarizer and QWP.

The subsequent spatial mode projections were performed using a correlation filter
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encoded into a digital micro-mirror device (DMD), and a Fourier lens to produce

on-axis intensities 𝐼𝑖𝑗.

4.4.1 Adjusted basis measurement

To determine the adjusted basis, the complex amplitude of an aberrated probe field

|Ψ⟩probe needs to be measured (see appx. C.3). This field was approximated using a

maximum likelihood estimation procedure, where far field intensities of the right- and

left-polarized components of the ideal vector beam through turbulence were captured:

𝐼𝑅,𝐿probe = ⟨𝑅,𝐿|𝜓(k = 0)⟩probe . (4.11)

Where |𝜓⟩probe denotes the Fourier transform of |Ψ⟩probe and k = (𝑘𝑥, 𝑘𝑦). Simu-

lated Fourier intensities, |𝜓⟩Zern, of ideal beams modulated by a phase (modelled by

possible weighted combinations of Zernike polynomials 𝑍𝑗),

|Ψ±1⟩Zern = LG±1
0 exp

(︃
𝑖
∑︁
𝑗

𝑐𝑗𝑍𝑗

)︃
, (4.12)

were generated (spatial dependence has been omitted). The set of coefficients 𝑐𝑗

which lead to the lowest square difference in intensity between the experimental and

simulated cases,

𝜒2 = (𝐼𝑅probe − 𝐼𝑅Zern)2 + (𝐼𝐿probe − 𝐼𝐿Zern)2, (4.13)

was used to determine the required basis for recovery of the initial beam.
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4.5 Experiment and Results

4.5.1 Experimental demonstration: the tilted lens.

To validate this perspective, we built the set-up shown in Figure 4-2 (a), first creating

our test vectorial fields before passing them through some perturbing medium. With-

out any loss of generality, we chose the left- and right-circular basis, {|𝑒1⟩ ≡ |𝑅⟩ and

|𝑒2⟩ ≡ |𝐿⟩}, for the polarisation degree of freedom and spatial modes imbued with

orbital angular momentum (OAM) following {|𝑢1⟩ ≡ |ℓ⟩ and |𝑢2⟩ ≡ |−ℓ⟩}, with ℓ

the topological charge, forming the topical cylindrical vector vortex beams [68]. The

resulting vectorial field was then analysed by both Stokes measurements and modal

decomposition (outlined in appx. C.6 including the raw data). The superimposed

intensity and polarisation (ellipse) profile of the initial beams (no perturbation) are

shown in the inset of Figure 4-2 (a) for ℓ = ±1 and ℓ = ±4, both with a radial mode

of 𝑝 = 0, with corresponding mode numbers 𝑁 = 2𝑝+ |ℓ| + 1 of 2 and 5 respectively.

Next, we pass these beams through a highly aberrated system, a tilted lens, illus-

trated in Figure 4-2 (b). This is known to severely distort OAM modes and is routinely

used as an OAM detector by breaking the beam into countable fringes [275]. The

results at illustrative distances (𝑍1 to 𝑍3) after the lens are shown in Figure 4-2 (c).

The superimposed intensity and polarisation profiles reveal that while the vectorial

structure distorts as one moves towards the far-field, the inhomogeneity as measured

by the vectorness does not, corroborated by the vectorness of each beam (reported

in the insets), all remaining above 93%, i.e., remaining fully vectorial as predicted by

the unitary nature of the channel.

In contrast we see that the intensity profiles change morphology, and concomi-

tantly polarisation structure. This change can be explained by the coupling of modes

outside the original subspace by virtue of the channel operator: the channel scatters

the original OAM modes into new mode sets that maintain the same mode number

as the input modes. We can visualise this using the Higher Order Poincaré (HOP)

Sphere, a geometric representation of vectorial structured light [65, 165]. The case
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Figure 4-4: (a) The unitary channel (tilted lens) 1𝐴⊗ 𝑇𝐵 maps the initial ℓ± 4 vector field
from the equator of its s corresponding subspace onto a (b) new HOP Sphere spanned by an
adjusted basis (shown as experimental images on the poles) where the vectorial structure is
also a maximally non-separable pure state. Because the unitary channel is a change of basis,
the inverse (1𝐴 ⊗ 𝑇𝐵)

† can be applied to map the field back to the original sphere. The
inversion can be done (c) pre-channel by inserting the state (1𝐴⊗𝑇𝐵)† |Ψin⟩, the conjugated
field in the new basis, resulting in the desired corrected field |Ψin⟩ after transmission. For
(d) post-channel correction, the unitary nature of the channel is inverted after the channel.
We show this for the ℓ = 1 vector field, where the operation is simply a quarter waveplate,
since 1𝐴 ⊗ 𝑇𝐵 = 𝑇𝐴 ⊗ 1𝐵 for this subspace.

for ℓ = ±4 is shown in Figure 4-3 as an illustrative example. The initial cylindrical

vector vortex beam is visualised as an equatorial vector of unit length (a pure state),

shown in Figure 4-3 (a). The channel (our tilted lens) maps this initial state to a new

field, shown in Figure 4-3 (b), expressed across multiple HOP Spheres, illustrated in

Figure 4-3 (c).

The new HOP Spheres are made up of all modal pairings that have non-zero modal

powers (scattering probabilities). We quantify this by reporting the scattering proba-

bilities and phases for every subspace, shown in Figures 4-3 (d) and (e), respectively.

The initial modes (ℓin = ±4, 𝑝in = 0) now only contain ≈12% of the total modal

power, with new modal subspaces emerging to carry the rest. The HOP Spheres

are made of pairings of these modes, one on each pole, but not all contribute to the
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vectorness. To determine the contributing pairs, we measure the vectorness for every

possible pairing (there are 𝑁(𝑁 − 1)/2 = 10 possibilities), with the results shown

as a graph in Figure 4-4 (f). In the graph, each vertex corresponds to a non-zero

state from (d) and the edges represent possible pairings to form a HOP Sphere. The

weight of each edge corresponds to the vectorness of that pairing. The initial subspace

(±4, 0) is no longer a non-separable state, with a vectorness of 0, while some of the

new subspaces (new HOP Spheres) can be as high as 98%, i.e., pure vectorial states.

The graph can be re-arranged with the zero weighted edges removed to reveal a 𝐾3,2

bipartite graph structure with two independent vertex sets, 𝒰 = {(±4, 0), (2, 0)} and

𝒱 = {(±2, 1)}, connected by 6 edges. Thus of the 10 unique subspaces created from

the five scattered modes, only six are non-separable states, occurring for mapping

combinations of states between 𝒰 and 𝒱 . One can appreciate that this becomes ever

more complicated as the complexity of the medium (and modal scattering) increases.

From this conventional perspective the situation is complicated, but only because

the original (OAM) basis modes ({|𝑢1⟩ ≡ |ℓ⟩ and |𝑢2⟩ ≡ |−ℓ⟩}) are used to form

the HOP Spheres. We offer a simplification by recognising the unitary nature of the

transformation: one can visualise the action of the channel as a mapping (after the

channel operation (1𝐴 ⊗ 𝑇𝐵) to a single HOP Sphere spanned by the new vectors

forming an adjusted basis, |𝑣1⟩ and |𝑣2⟩, shown in Figure 4-4 (a). This mapping is

a result of channel state duality, where the new spatial basis states that the non-

separable vectorial field maps onto are isomorphic to the basis states of the unitary

channel operation [122]. In this new “adjusted” HOP Sphere the state vector is

again maximally non-separable and pure. The new adjusted basis states are complex

structured light fields (one may say “distorted” modes due to the noisy channel),

shown as experimental images on the poles. In some special cases the mode may be

recognisable: for the ℓ = ±1 state shown in Figure 4-4 (b) the mapping returns the

Hermite-Gaussian modes as the adjusted basis. Pertinently, the initial state vector

in the original HOP Sphere, and the new state vector in the adjusted HOP Sphere

are both equatorial and of unit length, representing a maximally non-separable pure

state. This explains why the polarisation structure appears to change (a change in
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HOP Sphere) yet the inhomogeneity does not (the same state vector in each HOP

Sphere).

Since the mapping is unitary it is possible to invert the action of the channel

either as a pre-channel action or post-channel correction, both lossless; conveniently,

the experimental steps to determine the channel unitary are straightforward: modal

and Stokes projections. Using a pre-channel corrective step, we insert the adjusted

basis vectorial mode into the tilted lens and allow the aberrations to unravel it back to

the original initial state, shown in Figure 4-4 (c). For the ℓ = ±1 example the required

inversion operator is just a quarter wave plate, which can be derived analytically from

Eq. 4.1 (see appx. C.4). The counter-intuitive notion that a polarisation element can

be used to correct a channel that acts only on the spatial mode DoF is explained

by the fact that the channel correction, (1𝐴 ⊗ 𝑇𝐵)†(1𝐴 ⊗ 𝑇𝐵) can be rewritten as

𝑇 †
𝐴𝑇𝐴 ⊗ 𝑇 †

𝐵𝑇𝐵 = (𝑇 †
𝐴 ⊗ 1𝐵)(𝑇𝐴 ⊗ 1𝐵), so that the post-channel unitary, 𝑇 †

𝐵 = 𝑇 †
𝐴,

can be applied to the polarisation degree of freedom for ℓ = ±1. The impact of this

unitary is shown in Figure 4-4 (d) as a post-channel correction, restoring the full

vectorial initial state.

4.5.2 The role of measurement

Given that the state vector after the channel lives on many HOP Spheres in the

original basis, {|𝑢1⟩ and |𝑢2⟩}, but only one HOP Sphere in the adjusted basis, {|𝑣1⟩

and |𝑣2⟩}, it is pertinent to ask in which basis (or HOP Sphere) should one make the

vectorial measurement? In the quoted vectorness values thus far, we have circum-

vented this problem by using a Stokes measurement approach to extract the degree of

non-separability [209], with the benefit of sampling in a basis-independent fashion. In

contrast, many measurements of structured light are basis dependent, e.g., in classi-

cal and quantum communication, where the basis elements form the communication

alphabet. In Figure 4-5 (a) we show the outcome of a basis-dependent vectorness

measurement in the original basis and in the adjusted basis, using the tilted lens as

the channel. We see that for some symmetries the choice of basis has no impact on
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Figure 4-5: (a) Measurement of the vectorness in the original (Ori.) and adjusted (Adj.)
basis ℓ = ±1 (left) and ℓ = ±4 (right) in the far-field of the tilted lens. (b) Measure-
ment of the vectorness of an initial ℓ = ±1 mode through experimentally simulated at-
mospheric turbulence as a function of the turbulence strength (𝐷/𝑟0). A basis-dependent
(BD) measurement in the original basis (ℓ = ±1) shows a decay in vectorness, while the
basis-independent (BI) approach reveals an invariance. Experimental data (points) show
excellent agreement with theory (dashed curves). The insets show the left (red) and right
(blue) polarisation projections on the ℓ = ±1 modal sphere for three example turbulence
strengths (low, medium and strong). Each point on the spheres represents one instance
from the experimental turbulence ensemble. Error bars are plotted as standard deviations
from 50 instances of simulated turbulence.

the outcome, as in the case of ℓ = ±1, while for other vectorial fields the impact is

significant (ℓ = ±4). It should be noted that the ℓ = ±1 beam through a tilted lens

is a special case, because in modal space the state vector has simply been rotated.

In general, it is the adjusted basis that always reveals the invariance of the vector-

ness. The failure of the measurement in the original basis is easily explained by the
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concatenation of the measurement subspace to just one of the many HOP Spheres in

which the state resides, and the consequent reduction of the state vector to a mixed

and separable state because information is lost to other OAM subspaces.

To make clear that the tilted lens is not a special case, we alter the channel to

atmospheric turbulence, and this time measure the vectorness as a function of the

turbulence strength in the original basis and in a basis independent fashion, with

the result shown in Figure 4-5 (b). We find that a measurement in the original basis

shows a decay in the vectorial nature of the light as the turbulence strength increases,

whereas the basis-independent approach reveals the unitary nature of turbulence:

while the spatial structure is complex and altered, its vectorness remains intact and

invariant to the turbulence strength. Here, all the measurements were performed in

the far-field, so that the phase-only perturbations manifest as phase and amplitude

effects. We clearly see the paradox: the vectorial structure can appear robust or not

depending on how the measurement was done. This result highlights the important

role of measurement in determining the salient properties of vectorial light fields.

The inset spheres in Figure 4-5 (b) show the left (red) and right (blue) state

vector projections on the ℓ = ±1 modal sphere [64] for low, medium and strong

turbulence. Each instance of a turbulence strength is a red (blue) point, the scatter

of which and deviation from the poles is indicative of modal cross-talk. This is a visual

representation of why the vectorness decays when one considers only one sphere in

the original basis: the original states are orthogonal (points on opposite poles with

little scatter) but as turbulence increases they disperse across the sphere, resulting

on superpositions of OAM, which become maximally mixed. For example, looking

only at the ℓ = ±1 subspace, the state may evolve following (ignoring normalisation):

|𝑅⟩ |1⟩ → |𝑅⟩ |1⟩+ 𝑖 |𝑅⟩ |−1⟩ and likewise |𝐿⟩ |−1⟩ → |𝐿⟩ |−1⟩− 𝑖 |𝐿⟩ |1⟩. The original

vectorial state becomes |𝑅⟩ |1⟩+ |𝐿⟩ |−1⟩ → |𝐿⟩ |−1⟩+ 𝑖 |𝐿⟩ |1⟩+ |𝑅⟩ |1⟩+ |𝑅⟩ |−1⟩ =

(|𝑅⟩ + 𝑖 |𝐿⟩)(|1⟩ + |−1⟩), which is a scalar, diagonally polarised, Hermite-Gaussian

beam with a vectorness of 0. One can deduce from this simple example that if only

some modal spaces are considered in the beam analysis, then vectorial modes can

“decay” to become scalar, but scalar modes cannot “decay” to become vectorial.
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4.5.3 Reversing turbulence distortions

Figure 4-6: Cross-talk matrices for preparation and measurement in the original basis for
(a) no turbulence and (b) medium turbulence (𝐷/𝑟0 = 1.6). (c) Measuring or (d) preparing
in the adjusted removes the cross-talk. (e) The unitary action of the channel distorts
the polarization structure of the initial beam but not its vectorial homogeneity, with the
vectorness given in the insets. Below the polarisation structure are the spatial modes
composing the original basis (𝑢1,2) and perturbed basis (𝑣1,2) along with their polarization
states |𝑅⟩ and |𝐿⟩. (f) The unravelling of the turbulence by a lossless unitary applied
pre-channel, restoring the initial beam after the turbulence. The adjusted basis modes
(𝑣*1,2) and the corrected basis modes (𝑢1,2) are shown below the polarisation structures
with their respective polarisation states. In (g), an image (left) encoded in the original
basis is distorted after transmission through moderately weak (middle) and medium (right)
turbulence. The same image is transmitted through the channel but decoded in the adjusted
basis, for distortion-free communication, shown in the insets.

In our final example we keep atmospheric turbulence as our unitary channel be-

cause of its complex aberration profile. In Figure 4-6 (a) and (b) we show typical cross-
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talk matrices with and without turbulence, respectively, where the input and output

modes are both expressed in the original basis, {|𝑅⟩ |𝑢1⟩ , |𝑅⟩ |𝑢2⟩ , |𝐿⟩ |𝑢1⟩ , |𝐿⟩ |𝑢2⟩}.

The cross-talk in (b) is deleterious for both classical and quantum communication.

However, the unitary nature of the channel means that there is an adjusted basis,

{|𝑅⟩ |𝑣1⟩ , |𝑅⟩ |𝑣2⟩ , |𝐿⟩ |𝑣1⟩ , |𝐿⟩ |𝑣2⟩}, where the state vector is pure. Consequently,

a post- or pre-channel unitary can undo the action of the channel, removing the

cross-talk, as shown in Figure 4-6 (c) and (d). The post-channel unitary is simply

a measurement in the new adjusted basis, requiring nothing more than a change to

the detection optics (holograms in our example) based on the channel under study.

In Figure 4-6 (d), the preparation optics are programmed to prepare the state in the

adjusted basis, but measure it in the original basis, once again returning a cross-talk

free result. While the action of the channel is to distort the initial beam, as shown

in Figure 4-6 (e), the channel action can be reversed as shown in Figure 4-6 (f),

restoring the initial beam. This is a visualisation of the low cross-talk matrix in part

(d): sending in the adjusted basis but measuring in the original basis. The scalar

version of the basis modes are shown in Figures 4-6 (e) and (f) as insets below each

polarisation profile, starting with the original modes, which become perturbed due to

turbulence. The adjusted basis, with scalar versions shown in the insets of Figure 4-6

(f), maintains the orthogonality of the modes, and shows the key to the restoration

of the initial field. When the adjusted basis is the input, the output is the corrected

mode in the original basis. These results suggest that cross-talk free communication

is possible with a judiciously selected basis set for the preparation or measurement,

exploiting the fact that the vectorial state is intact in the adjusted basis. We use

this fact in (g) to encode graphical information using our modal set, send it across

the channel, and decode it on the other side. Turbulence causes cross-talk, distorting

the image, but this can easily be overcome by simply decoding (measuring) in the

adjusted basis, with results shown for medium and strong turbulence. A measure-

ment in the adjusted basis reveals no modal decay, no cross-talk and high-fidelity

information transfer across this noisy channel.
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4.6 Discussion and Conclusion

Careful inspection of the studies that report vectorial robustness in noisy channels

reveal that the distances propagated were short and the strength of perturbation

low, mimicking a phase-only near-field effect where indeed little change is expected,

and hence these are not true tests for robustness or invariance. Studies that claim

enhanced resilience of vector modes over distances comparable to the Rayleigh length

[108, 114] have used the variance in the field’s intensity as a measure, a quantity

that one would expect to be robust due to the fact that each polarisation component

behaves independently and so will have a low covariance.

Our results show that vectorial structured light in complex media will evolve from

the near-field to the far-field, generally appearing spatially distorted in amplitude,

phase and polarisation structure, although unaltered in vectorial inhomogeneity. This

is explained by the unitary nature of such channels, mapping the state from a HOP

Sphere spanned by the original basis to a new HOP Sphere spanned by an adjusted

basis, as if only our perspective has altered. Any measurement in the original basis

will show an apparent ”decay” of the vectorial structure in strongly perturbing media

even though the degree of polarisation remains intact - a hidden invariance that can

be observed through a judicious measurement. The role of measurement in quantum

studies is well appreciated, and here too the vectorness of a classical beam can be

found to be high and low, seemingly contradictory outcomes, yet both equally valid

based on the choice of measurement. This is not only of fundamental importance but

also of practical relevance: we have shown how to make a basis choice for preparation

and/or measurement to negate modal cross-talk, with obvious benefits in classical

and quantum communication across noisy channels, as well as in imaging through

complex media.

The argument for robustness of vectorial light due to the fact that the polarisa-

tion is not affected in a non-birefringent channel is egregious: our quantum notation

makes clear that the entire state is altered since its two DoFs are non-separable, in

the same way that a true bi-photon quantum state is altered if just one of the two
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photons is perturbed - both examples of one-sided channels. Ironically, the incorrect

statement is true if the initial mode is not vectorial, since separable states (scalar ho-

mogenously polarised light) cannot become less scalar in a non-birefringent medium.

Our statement is corroborated here by theoretical examples and experimental proof,

particularly illustrated by the example of operating on the “unaffected” polarisation

DoF to correct the entire vectorial state.

Our analysis has considered non-birefringent channels, but can be generalised by

allowing the polarisation DoF to be perturbed while selecting the other DoF to be

invariant, or by adjusting the theory to treat the medium as a two-sided channel

to allow both DoFs to alter. We remark too that not all channels are unitary. In

non-linear systems the vectorness can improve or degrade depending on the medium

[230,276,277], and our results are not in contradiction to these findings. Finally, the

notion of robustness implies that there must also be states that are not robust, and

here we wish to clarify the role of a unitary operator versus a filter. It is always

possible to convert noise into loss by a filtering process [278, 279], but this does not

make the initial state robust to the medium, while the loss induced correction is

non-unitary.

In conclusion, we have provided a general framework for understanding the impact

of aberrations on vectorial light fields, in doing so revealing the unitary nature of many

complex media, where the perturbation is understood as a simple unitary mapping.

Because the mapping is unitary, it can be pre- or post-corrected in a lossless manner,

armed only with simple Stokes and modal decomposition projections. Our work

resolves a standing debate on the robustness of vectorial light in complex media, and

will be invaluable to the exploding community working with vectorial structured light

and its applications.
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5.1 Introduction

Entanglement is an intriguing aspect of quantum mechanics with well-known quantum

paradoxes such as those of Einstein-Podolsky-Rosen (EPR) [280], Hardy [281], and

Leggett [282]. Yet it is also a valuable resource to be harnessed: entangled particles

shared with different distant observers can be used in quantum cryptography to set

an unconditional secure key [283,284], in quantum teleportation to transfer quantum

information [285–289], in super-dense coding [290, 291], in ghost imaging [292, 293],

and are also an important part for quantum computation [294–296].

In the past few decades, quantum entanglement has been extensively explored

for a variety of quantum information protocols. Standard quantum communication

protocols exploit polarisation (or “spin” angular momentum) encoding with single

photon and multipartite states. Up to now, entanglement transport has been verified

over distances up to 1200 km via free space (satellite-based distribution) [297] and over

100 km through fibre using polarisation-entangled photons [298,299]. Exploiting high-

dimensional entangled systems presents many opportunities, for example, a larger

alphabet for higher photon information capacity and better robustness to background

noise and hacking attacks [30, 300], increasing also the storage capacity in quantum

memories [198, 301]. High-dimensional systems have been studied by correlations in

various degrees of freedom, including position-time [302], energy-time [303,304], time-

bin [38,305,306], time-frequency [307], and frequency [308]. More recently, the orbital

angular momentum (OAM) of light, related to the photon’s transverse mode spatial

structure, has been recognized as a promising resource [309–311].

Despite these advances, quantum communication with spatial modes is still in

its infancy, with reported entanglement transport in multi-mode fibre limited to less

than 1 m [312,313] and to kilometre ranges using single photons states (no entangle-

ment) in specially designed custom multi-mode fibre [314], still orders of magnitude

less than that with polarisation, and lacking the ability to integrate into existing

networks, a crucial element of any future quantum network [315–317]. Moreover,

the mooted benefits of high-dimensional states against noise has yet to be realized
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Figure 5-1: Multi-dimensional entanglement transport through single-mode fibre.
An initially high-dimensional state is converted by spin-orbit coupling into multiple two
dimensional hybrid entangled states. The polarisation (spin) photon has a fundamental
spatial mode (Gaussian), facilitating transport down a SMF. By hybrid entanglement the
infinite space of OAM is accessed by two-dimensional subspaces at a time.

in the laboratory, while a measured channel capacity has been found to be twice

higher by multiplexing two-dimensional subspaces rather than transmitting the full

four high-dimensional state [314]. This motivates us to seek alternative, immediately

deployable solutions that are neither two-dimensional nor high-dimensional but rather

“multi-dimensional”.
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Here we demonstrate the transport of multi-dimensional entangled states down

conventional single-mode fibre (SMF) by exploiting hybrid entangled states. We

combine polarisation qubits with high-dimensional spatial modes by entangling the

spin-orbit (SO) degrees of freedom of a bi-photon pair, passing the polarisation (spin)

photon down the SMF while accessing multi-dimensional OAM subspaces with the

other photon in free space. We show high fidelity hybrid entanglement preservation

down 250 m of SMF across two two-dimensional subspaces (2×2 dimensions) in what

we refer to as multi-dimensional entanglement. We quantify our one-sided channel by

means of quantum state tomography, Bell inequality and quantum eraser experiments.

This work suggests an alternative approach to spatial mode entanglement transport

in fibre, with the telling advantage of deployment over legacy optical networks with

conventional SMF.

5.2 Concept and principle

The concept and principle of multi-dimensional spin-orbit entanglement transport

through SMF is illustrated in Fig. 5-1. Light beams carrying OAM are character-

ized by a helical phase front of exp(𝑖ℓ𝜃) [318], where 𝜃 is the azimuthal angle and

ℓ ∈ [−∞,∞] is the topological charge. This implies that OAM modes, in principle,

form a complete basis in an infinitely large Hilbert space. However, the control of

such high-dimensional states is complex, and their transport requires custom chan-

nels, e.g. specially designed custom multi-mode fibre. On the contrary, polarisation

is limited to just a two-level system but is easily transported down SMF. Here we

compromise between the two-level spin entanglement and the high-dimensional OAM

entanglement to transport multi-dimensional spin-orbit hyrbid entanglement. A con-

sequence is that the entire high-dimensional OAM Hilbert space can be accessed,

but two dimensions at a time. We will demonstrate that in doing so we are able to

transport multi-dimensional entanglement down conventional fibre.

To see how this works, consider the generation of OAM-entangled pairs of photons

by spontaneous parametric down-conversion (SPDC). The bi-photon state produced
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Figure 5-2: (a) Experimental setup. Pump: 𝜆= 405 nm (Cobolt, MLD laser diode); f:
Fourier lenses of focal length 𝑓1;2;3;4;5 = 100 mm, 100 mm, 200 mm, 750 mm, 1000 mm,
respectively; PPKTP: periodically poled potassium titanyl phosphate (nonlinear crystal);
Filter: band-pass filter; BS: 50:50 beam splitter; QWP: quarter-wave plate; Pol.: polarizer;
SLM: spatial light modulator; Col.: collimator, f=4.51 mm; C.C.: coincidence counter. (b)
Measured coincidence count rate for the mode spectrum of the ℓ = ±1 subspace and (c) the
ℓ = ±2 subspace after transmitting through 250 m of SMF. All coincidence-rates given as
coincidences per second.

from the type-I SPDC process can be expressed in the OAM basis as

|𝜓⟩𝐴𝐵 =
∑︁
ℓ

𝑐ℓ |𝐻⟩𝐴 |𝐻⟩𝐵 |ℓ⟩𝐴 |−ℓ⟩𝐵 , (5.1)

where |𝑐ℓ|2 is the probability of finding photon 𝐴 and 𝐵 in the eigenstates |±ℓ⟩,

respectively, and |𝐻⟩ is the horizontal polarisation. Subsequently one of the photons

(e.g. photon A), from the N-dimensional OAM-entangled photon pair, is passed

through a spin-orbit coupling (SOC) optics for OAM to spin conversion, resulting in
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a hybrid multi-dimensional polarisation (spin) and OAM entangled state

⃒⃒
Ψℓ
⟩︀
𝐴𝐵

=
1√
2

(︀
|𝑅⟩𝐴 |ℓ1⟩𝐵 + |𝐿⟩𝐴 |ℓ2⟩𝐵

)︀
. (5.2)

Here |𝑅⟩ and |𝐿⟩ are the right and left circular polarisation (spin) eigenstates on the

qubit space ℋ𝐴,spin of photon A and |ℓ1⟩ and |ℓ2⟩ denotes the OAM eigenstates on the

OAM subspace ℋ𝐵,orbit of photon B. The state in Eq. (5.2) represents a maximally

entangled Bell state where the polarisation degree of freedom of photon A is entangled

with the OAM of photon B. Each prepared photon pair can be mapped onto a density

operator 𝜌ℓ =
⃒⃒
Ψℓ
⟩︀ ⟨︀

Ψℓ
⃒⃒

with
⃒⃒
Ψℓ
⟩︀
∈ ℋ𝐴,spin ⊗ℋ𝐵,orbit by actively switching between

OAM modes sequentially in time: the larger Hilbert space is spanned by multiple

two dimensional sub-spaces, multi-dimensional states in the quantum channel. For

simplicity we will consider subspaces of |±ℓ⟩ but stress that any OAM subspace is

possible, only limited by the SOC device characteristics. We can represent the density

matrix of this system as

𝜌𝐴𝐵 =
∞∑︁
𝑙=1

𝛾ℓ𝜌ℓ, (5.3)

where 𝛾ℓ represents the probability of post-selecting the hybrid state 𝜌ℓ. The density

matrix pertaining to system related to photon B is

𝜌𝐵 = Tr𝐴(𝜌𝐴𝐵) =
∞∑︁
ℓ=0

𝛾ℓ
2

(︀
|ℓ⟩𝐵 ⟨ℓ|𝐵 + |−ℓ⟩𝐵 ⟨−ℓ|𝐵

)︀
, (5.4)

where Tr𝐴(·) is the partial trace over photon A. While photon B is in a superposition

of spatial modes (but a single spin state), photon A is in a superposition of spin states

but only a single fundamental spatial mode (Gaussian), i.e., |𝜓⟩𝐴 ∝ (|𝐿⟩ + |𝑅⟩) |0⟩

and |𝜓⟩𝐵 ∝ |𝐻⟩ (|ℓ⟩ + |−ℓ⟩). As a consequence, photon A can readily be transported

down SMF while still maintaining the spatial mode entanglement with photon B.

Importantly, we stress that we use the term “multi-dimensional” as a proxy for multi-

OAM states due to the variability of OAM modes in the reduced state of photon

B: any one of these infinite possibilities can be accessed by suitable SOC optics,

offering distinct advantages over only one two-dimensional subspace as is the case
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with polarisation.

Figure 5-3: (a) ℓ = ±1 in free space for system verification with (b) ℓ = ±1 and (c) ℓ = ±2
subspaces after transmitting the hybrid state through a one-sided 250 m SMF channel. The
top panels show the raw tomography data for the 6× 6 projections, the rows representing
polarisation measurements on photon A and the columns representing holographic mea-
surements on photon B. The bottom panels show the outcome of the tomography, a density
matrix for each subspace.

5.3 Methods

5.3.1 The experiment

We prepare the state in Eq. (5.2) via post-selection from the high-dimensional SPDC

state. In this section the SOC optics is based on 𝑞-plates [53]. The 𝑞-plate couples

the spin and OAM degrees of freedom following

|𝑅⟩ |ℓ⟩ 𝑞-plate−−−→ |𝐿⟩ |ℓ− 2𝑞⟩ ,

|𝐿⟩ |ℓ⟩ 𝑞-plate−−−→ |𝑅⟩ |ℓ+ 2𝑞⟩ , (5.5)
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where 𝑞 is the topological charge of the 𝑞-plate. Accordingly, the circular polarisa-

tion eigenstates are inverted and an OAM variation of ±2𝑞 is imparted on the photon

depending on the handedness of the input circular polarisation (spin) state. Transmis-

sion of photon A through the SMF together with a detection acts as a post-selection,

resulting in the desired hybrid state. Hence, considering 𝑁 different OAM states ±ℓ𝑛
and 𝑁 different 𝑞-plates with different topological charge 𝑞𝑛 (such as ℓ𝑛 ± 2𝑞𝑛 = 0),

would allow us to access 2 ×𝑁 dimensions using a single SMF.

The experimental setup for multi-dimensional spin-orbit entanglement transport

through SMF is shown in Fig. 5-2(a). A continuous-wave pump laser (Cobolt MLD

diode laser, 𝜆= 405 nm) was spatially filtered by a pinhole with a diameter of 100 𝜇m

to deliver 118 mW of average power in a Gaussian beam at the nonlinear crystal (a

temperature controlled 10-mm-long PPKTP crystal), generating two lower-frequency

photons by means of a degenerate type-I SPDC process. By virtue of this, the signal

and idler photons had the same wavelength (𝜆= 810 nm) and polarisation (horizon-

tal). The residual pump beam was filtered out by a band-pass filter with the centre

wavelength of 810 nm and bandwidth of 10 nm. The two correlated photons, signal

and idler, were spatially separated by a 50:50 beam-splitter (BS), with the signal

photon A interacting with the spin-orbit coupling optics, e.g. 𝑞-plate, for orbit to

spin conversion. Subsequently, photon A was coupled into the 250 m SMF by a 20×

objective lens to transmit through the fibre and coupled out by another 20× objec-

tive lens. The idler photon B was imaged to the spatial light modulator (SLM) with

lenses 𝑓3 and 𝑓4. After that, photon B was imaged again by 𝑓5 and collimator, being

coupled into a SMF, hence spatial filtered also, for detection.

The projective measurements were done by the quarter-wave plate (QWP) along

with a polarizer for photon A, and SLM along with a SMF for photon B. Photon A,

encoded with polarisation eigenstates was transmitted through the SMF while photon

B, encoded with multi-dimensional OAM eigenstates, was transported through free

space. Finally, both photons were detected by the single photon detectors, with the

output pulses synchronized with a coincidence counter (C.C.).
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5.3.2 Characterisation

5.3.2.1 Fidelity

We calculate the fidelity of our states from [319]

𝐹 = Tr
(︁√︁√

𝜌𝑇𝜌𝑃
√
𝜌𝑇

)︁2
, (5.6)

where 𝜌𝑇 is the density matrix representing a target state and 𝜌𝑃 is the predicted

(or reconstructed) density matrix taking values ranging from 0 to 1 for 𝜌𝑇 ̸= 𝜌𝑃 and

𝜌𝑇 = 𝜌𝑃 , respectively. For a target state that is pure, such as the given in Eq. (5.2),

i.e., 𝜌𝑇 =
⃒⃒
Ψℓ
⟩︀ ⟨︀

Ψℓ
⃒⃒
, the fidelity can be also expressed as

𝐹 = Tr
[︁
𝜌𝑇𝜌𝑃

]︁
=
⟨︀
Ψℓ
⃒⃒
𝜌𝑃
⃒⃒
Ψℓ
⟩︀
. (5.7)

5.3.2.2 Concurrence

. We use the concurrence as our measure of entanglement, calculated from

𝐶Θ(𝜌) = max{0, 𝜆1 −
∑︁
𝑖=2

𝜆𝑖}, (5.8)

where 𝜌 is the density matrix of the system being studied (mixed or pure), 𝜆 are

the eigenvalues of the operator R=
√
𝜌
√
𝜌 in descending order with 𝜌 = Θ𝜌*Θ and *

denotes a complex conjugation. The operator Θ represents any arbitrary anti-unitary

operator satisfying ⟨𝜓|Θ |𝜑⟩=⟨𝜑|Θ−1 |𝜓⟩ for any state |𝜑⟩ and |𝜓⟩, if Θ−1 = Θ†.
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5.3.2.3 State tomography

The density matrix of a single photon in a two-dimensional state space (ℋ2), can be

represented as a linear combination of the Pauli matrices [320]

𝜌 =
1

2

(︀
I0 +

𝑘=1∑︁
3

𝑏𝑘𝜎𝑘
)︀
, (5.9)

where I0 is the two-dimensional identity operator, 𝜎𝑘 are the trace-less Pauli operators

with complex coefficients 𝑏𝑘. In this work we consider the density matrix of a hybrid

entangled state similar to Eq. (5.2). It can be expressed as

𝜌 =
1

2

(︀
I𝐴 ⊗ I𝐵 +

𝑚,𝑛=1∑︁
3

𝑏𝑚𝑛𝜎𝐴𝑚 ⊗ 𝜎𝐵𝑛
)︀
, (5.10)

here I𝐴𝐵 is the two photon identity matrix and 𝜎𝐴𝑚 and 𝜎𝐵𝑛 are the Pauli matrices

that span the two-dimensional hybrid space for polarisation and OAM respectively.

We reconstruct each hybrid state, 𝜌ℓ, via a quantum state tomography. This

entails performing a series of local projections 𝑀𝑖𝑗 = 𝑃 𝑖
𝐴⊗𝑃 𝑗

𝐵 where 𝑃 𝑖,𝑗
𝐴,𝐵 are projec-

tions on photon A and photon B, respectively, and using the resulting measurement

outcomes to reconstruct the state [89]. The detection probabilities on a system with

a corresponding density matrix (𝜌) are

𝑝𝑖𝑗 = 𝑇𝑟[𝑀𝑖𝑗𝜌𝑀
†
𝑖𝑗]. (5.11)

The overall projections constitute an over-complete set of measurements on the two

photon subspace.

In the experiment, photon A is projected onto the spin basis states |𝑅⟩ and |𝐿⟩,

along with their equally weighted superpositions of linear anti-diagonal, diagonal, hor-

izontal, vertical polarisation states, i.e |𝐴⟩ , |𝐷⟩ , |𝐻⟩ and |𝑉 ⟩, respectively. Similarly,

photon B is locally projected onto the eigenstates |±ℓ⟩ along with superpositions

|𝜃⟩ =
1√
2

(︀
|ℓ⟩ + 𝑒𝑖𝜃 |−ℓ⟩

)︀
, (5.12)
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for relative phase 𝜃 = 3𝜋
2
, 𝜋, 𝜋

2
, 0.

5.3.2.4 CHSH Bell violation

To further characterise the non-local correlations in each hybrid subspace, a violation

of the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality [321] with the two pho-

ton system is used. First, we project photon B onto the states, 𝜃𝐴 = {3𝜋
2
, 𝜋, 𝜋

2
, 0},

corresponding to A, V, D, H polarisation states while we measure the photon co-

incidence rate as a function of 𝜃𝐵 (relative phase between |ℓ⟩ and |−ℓ⟩ in arm B).

The variation of the number of coincidences with the angle 𝜃𝐵 is in agreement with

expected non-classical correlations. We define the CHSH-Bell parameter 𝑆 as [84]

𝑆 = |𝐸(𝜃𝐴, 𝜃𝐵) − 𝐸(𝜃𝐴, 𝜃
′
𝐵) + 𝐸(𝜃′𝐴, 𝜃𝐵) + 𝐸(𝜃′𝐴, 𝜃

′
𝐵)| , (5.13)

with 𝐸(𝜃𝐴, 𝜃𝐵) calculated from coincidence events

𝐸(𝜃𝐴, 𝜃𝐵) =
𝜉(𝜃𝐴, 𝜃𝐵) − 𝜉′(𝜃𝐴, 𝜃𝐵)

𝜉(𝜃𝐴, 𝜃𝐵) + 𝜉′(𝜃𝐴, 𝜃𝐵)
, (5.14)

𝜉(𝜃𝐴, 𝜃𝐵) = 𝐶(𝜃𝐴, 𝜃𝐵) + 𝐶
(︁
𝜃𝐴 +

𝜋

2
, 𝜃𝐵 +

𝜋

2

)︁
,

𝜉′(𝜃𝐴, 𝜃𝐵) = 𝐶
(︁
𝜃𝐴 +

𝜋

2
, 𝜃𝐵

)︁
+ 𝐶

(︁
𝜃𝐴, 𝜃𝐵 +

𝜋

2

)︁
.

Here 𝐶(𝜃𝐴, 𝜃𝐵) represents measured coincidence counts. The Bell parameter can be

characterized as 𝑆 ≤ 2 for separable states and 2 < 𝑆 ≤ 2
√

2 for maximally entangled

states.

5.4 Results

We first evaluate the SMF quantum channel by measuring the OAM mode spectrum

after transmitting through 250 m SMF. Figures 5-2(b) and 5-2(c) show the mode

spectrum of the ℓ = ±1 and ℓ = ±2 subspaces, respectively. We project photon A onto

right circular polarisation (R), left circular polarisation (L), horizontal polarisation
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(H) and vertical polarisation (V) by adjusting the QWP and polarizer at the output

of the fibre, while measuring the OAM of photon B holographically with a SLM and

SMF. The results are in very good agreement with a channel that is impervious to

OAM. When the orthogonal polarisation states are selected on photon A (|𝐿⟩ and

|𝑅⟩), an OAM state of high purity is measured for photon B, approximately 93% for

ℓ = ±1 and approximately 87% for ℓ = ±2. The slightly lower value for the ℓ = ±2

subspace is due to concatenation of two SOC optics for the hybrid entanglement step.

To confirm the state and the entanglement conservation, we perform a full quan-

tum state tomography on the hybrid state to reconstruct the density matrix. Figure

5-3 shows the state tomography measurements and resulting density matrices for

both the ℓ = ±1 and ℓ = ±2 subspaces after 250 m SMF, with the free space ℓ = ±1

shown as a point of comparison (see appx. D.0.1 for more results in free space and

in 2 m SMF). The fidelity against a maximally entangled state is calculated to be

95% for the ℓ = ±1 and 92% for the ℓ = ±2 subspaces. This confirms that the fibre

largely maintains the fidelity of each state. Using concurrence (𝐶) as our measure of

entanglement we find 𝐶 = 0.91 for free space, down slightly to 𝐶 = 0.9 for ℓ = ±1

and 𝐶 = 0.88 for ℓ = ±2.

The state tomography results depicted for each of the subspaces have different

average coincidence count rates due to several small imperfections during the exper-

imental realization: different collection efficiency depending on the detected spatial

mode, temperature fluctuations in the nonlinear crystal oven causing a slight reduc-

tion in the SPDC efficiency, and some error in the rotation of the wave plates may

have caused differences in the state tomography outcome depending on the projec-

tions. Nonetheless, the fidelity of the free-space density matrix is still higher due to

the minimal cross-talk between the orthogonal modes (across the diagonal).

To carry out a non-locality test in the hybrid regime we define the two sets of

dichotomic observables for A and B: the bases 𝑎 and �̃� of Alice correspond to the

linear polarisation states {|𝐻⟩ , |𝑉 ⟩} and {|𝐴⟩ , |𝐷⟩}, respectively, while the bases 𝑏

and �̃� of Bob correspond to the OAM states {cos
(︀
𝜋
8

)︀
|ℓ⟩ − sin

(︀
𝜋
8

)︀
|−ℓ⟩ ,− sin

(︀
𝜋
8

)︀
|ℓ⟩ +

cos
(︀
𝜋
8

)︀
|−ℓ⟩} and {cos

(︀
𝜋
8

)︀
|ℓ⟩ + sin

(︀
𝜋
8

)︀
|−ℓ⟩ , sin

(︀
𝜋
8

)︀
|ℓ⟩ − cos

(︀
𝜋
8

)︀
|−ℓ⟩}. From the data
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Figure 5-4: Measured correlations between photon A (polarisation) and photon B (OAM)
in (a) the ℓ = ±1 subspace after 250 m SMF and (b) the ℓ = ±2 subspace after 250 m
SMF. Photon A is projected onto the states 𝜃𝐴 = {3𝜋

2 , 𝜋,
𝜋
2 , 0}, corresponding to A, V,

D, H polarisation states and known to maximally violate the Bell inequality, while the
superposition hologram is rotated in arm B through an angle 𝜃𝐵. All coincidence-rates
given as coincidences per second.

shown in Fig. 4 we calculate the CHSH Bell parameters in free space and through

SMF . We find CHSH Bell parameters of 𝑆 = 2.77 ± 0.06 and 𝑆 = 2.47 ± 0.09 for

the ℓ = ±1 subspace in free space and in 250 m of SMF, respectively, reducing to

𝑆 = 2.51 ± 0.04 and 𝑆 = 2.25 ± 0.19 for the ℓ = ±2 subspace. In all cases we violate

the Bell-like inequality.

5.4.1 A hybrid quantum eraser

Next we use the same experimental setup to demonstrate a hybrid quantum eraser

across 250 m SMF. We treat OAM as our “path” and the polarisation as the “which
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Figure 5-5: Experimental coincidence count-rates for distinguishing and erasing the OAM,
in the the ℓ = ±1 subspace, of photon B upon transmitting photon A through (a) free space
and through (b) 250 m SMF. OAM (path) information is introduced into the system with a
QWP, and a polariser selecting one of the markers. Here we select the state |𝐻⟩ and as seen,
the spatial distribution of photon B is uniform with minimal visibility. In the complimentary
case, the path markers are collapsed onto a superposition |+⟩ or equivalently |𝐷⟩, with the
polariser and all the path information removed, manifesting as prominent visible azimuthal
fringes. All coincidence-rates given as coincidences per second.

path” marker to realize a quantum eraser with our hybrid entangled photons. We

first distinguish the OAM (path) information in the system by marking the OAM

eigenstates of photon B with linear polarisations of photon A. In this experiment, we
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achieve this by placing a QWP before a polarizer, transforming Eq. (5.2) to

⃒⃒⃒
Ψ̃ℓ
⟩
𝐴𝐵

=
1√
2

(︀
|𝐻⟩𝐴 |ℓ1⟩𝐵 + |𝑉 ⟩𝐴 |ℓ2⟩𝐵

)︀
. (5.15)

By selecting either polarisation states, |𝐻⟩ or |𝑉 ⟩, the distribution of photon B col-

lapses on one of the OAM eigenstates, ℓ1,2, having a uniform azimuthal distribution

and fringe visibility of V ≡ (max−min)
(max+min)

= 0, reminiscent of the smeared pattern that

is observed from distinguishable (non-interfering) paths in the traditional quantum

eraser [322]. The OAM information can be erased by projecting photon A onto the

complimentary basis of the OAM markers, i.e., |±⟩ = 1√
2
(|𝐻⟩ ± |𝑉 ⟩), causing the

previously distinguished OAM (paths) to interfere, thus creating azimuthal fringes

that can be detected with an azimuthal pattern sensitive scanner. The fringes appear

with a visibility of V = 1 indicative of OAM information reduction [94]. The appear-

ance in azimuthal fringes of photon B is indicative of OAM information being erased

from photon B. Importantly, it is noteworthy to point out that here the QWP acts

as the path marker while the polariser acts as the eraser. Notably, complementarity

between path information and fringe visibility (V) is essential to the quantum eraser.

By defining the two distinct paths using the OAM degree of freedom, we find that it

is possible to distinguish (𝑉 = 0.05 ± 0.01) and erase (𝑉 = 0.98 ± 0.002) the OAM

path information of a photon through the polarisation control of its entangled twin

in free space. With only marginal loss of visibility after transmitting through 250 m

SMF, conserving the entanglement with the ability to distinguish (𝑉 = 0.11 ± 0.01)

and erase (𝑉 = 0.93 ± 0.01) the OAM path information.

Though the eraser procedure was performed on the ℓ = ±1 subspace, it can be

extended to higher subspaces: depending on the SOC device that is used for photon

A, the SLM holograms implemented for scanning the azimuthal fringes of photon B

can be adapted to the relevant subspace.
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5.5 Discussion and Conclusion

In our work, any two-dimensional subspace of the high-dimensional space is acces-

sible by simply changing the SOC optic. In our experiment we used two sets of

the SOC optics, each for selecting ℓ = ±1, in order to reach ℓ = ±2; this intro-

duced additional distortions which reflected in the lower performance as compared

to ℓ = ±1. Nevertheless, even with this arrangement the entanglement was still

preserved over an extended distance of 250 m, which we have demonstrated through

quantum state tomography, Bell inequality violations and a novel quantum eraser ex-

periment. Moreover, the demonstration of two two-dimensional subspaces is double

what would be possible with only polarisation entanglement. While we used OAM

states of {|ℓ⟩ , |−ℓ⟩} it is possible to select any two orthogonal OAM states from the

N-dimensional space to establish the OAM basis, i.e. {|ℓ1⟩ , |ℓ2⟩} ∀ ℓ1 ̸= ℓ2. In addi-

tion, one can also choose any orthogonal polarisation states, for example, {|𝑅⟩ , |𝐿⟩},

{|𝐻⟩ , |𝑉 ⟩} or {|𝐴⟩ , |𝐷⟩}. This can be done by specially designed spin-orbit coupling

optics and has already been demonstrated classically [203]. In this way, our work

may be extended by judiciously selecting states for reducing coupling with the en-

vironment and therefore preserve the entanglement of the system over even longer

distances.

Excitingly, our work opens a new path towards multiplexed QKD down conven-

tional SMF. Multiplexed QKD has been demonstrated with OAM modes down cus-

tom optical fibre and shown to double the key rate of transmitting a four-dimensional

state [314]. In our approach each spatial mode, e.g., the OAM modes, would corre-

spond to an independent channel, as a long as all counterparts are post-selected with

different ℓ, forming an interesting rerouting quantum optical hub. In addition to de-

ployment over conventional fibre, this multiplexing advance requires only the use of

already existing technology in the form of OAM mode sorters [323].

Importantly, our scheme offers an alternative to high-dimensional entanglement

transport over long distance, the latter limited by both fundamental and practical

issues. These include the need for multiple photons to teleport high-dimensions [324],
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the excessively long measurement times to reconstruct such states [35], and the diffi-

culty in experimental execution of high-dimensional spatial mode teleportation [325].

The mooted benefits of high-dimensional states are likewise yet to be realised exper-

imentally: robustness to noise has not been shown for spatial mode entanglement,

while existing models consider only white noise and not the more troublesome modal

coupling noise terms. Further, the benefit is derived in part from the existence of 𝐾

dimensional entanglement in the initial 𝐷 dimensional state, but without any recipe

for finding or specifying what 𝐾 might be. Because of these issues, laboratory QKD

(in speciality fibre) has revealed that it is far better to use the higher-dimensions for

multiplexing than it is to encode information directly in them. Our approach is a

compromise that reaps the benefits of multiple states while the allowing immediate

deployment across legacy networks. No other spatial mode solution allows this.

In conclusion, we have outlined a new approach to transporting entanglement

through fibre in a manner that allows deployment over a conventional network of SMF.

The result is based on hybrid entangled states, allowing access to multiple dimensions:

an infinite number of two-dimensional subspaces. Together these subspaces span

the entire high-dimensional Hilbert space that would be available by spatial mode

entanglement. Our experimental demonstration over 250 m SMF and at double the

dimensions available to polarisation shows that this scheme is a viable approach to

circumvent the technological hurdles of deploying spatial mode entanglement.
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6.1 Introduction

High-dimensional quantum states are widely used to increase secure information band-

width and improve security bounds for quantum communication [17]. Through the

precise control of high dimensional photonic states [326], i.e., time-energy, transverse

momentum, spatial degrees of freedom or all of them simultaneously [327], the po-

tential benefits of high dimensional state encoding are taking center stage. Recent

developments in this direction have displayed the feasibility of quantum information

processing that is robustness against optimal quantum cloning machines [32,33], envi-

ronmental noise [34] and improved information rates [328], demonstrating a significant

advantage in comparison to traditional qubit encoding.

Despite the advantages of high-dimensional quantum states, certifying and quan-

tifying the dimensionality of such systems still remains challenging, particularly in

the presence of noise. The intuitive approach of simply measuring the width of the

modal spectrum is a necessary but not sufficient condition to determine dimensionality

as it fails to account for non-local correlations. Consequently, many techniques have

been developed to witness, bound and attempt to quantify high-dimensional quantum

states. These include approximating the density matrix via quantum state tomog-

raphy (QST) with multiple qubit state projections [329], using mutually unbiased

bases [35, 330] to probe the states or incorporating self-guided approaches [131, 331],

and testing non-local bi-photon correlations by generalised Bell tests in higher di-

mensions [83, 139, 332]. However, the spectrum measurements do not confirm en-

tanglement, the QST approach scales unfavourably with dimension, only bounds or

witnesses are possible with the mutually unbiased bases method and the dimension to

be probed must be known a priori (e.g., valid for prime or prime power dimensions),

and finally, the high-dimensional Bell tests can fail the fair sampling condition [73,88].

A further limitation in the present state-of-the-art is that certain dimensionality mea-

surements consider only pure states [35,333], yet noise mechanisms always introduce

some degree of mixture to the system [117], which has a detrimental effect on the

accuracy of measured dimensions due to the reduced purity [27]. Yet, knowing the
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purity and dimension of the state is crucial for fundamental tests of quantum me-

chanics as well as for quantum information processing protocols, setting the required

violation of inequalities in the former, and the information capacity of the state,

the allowed error bounds in secure communication systems, and the requirement for

entanglement distillation in the latter.

In this work we present a scheme to simultaneously quantify the dimensionality

and purity of a bi-photon high-dimensional entangled state, even in the presence of

noise, using the isotropic state as our test example. By measuring coincidence fringes

from carefully crafted projective measurements, we are able to accurately measure

the dimensionality and purity of our entangled state from the visibility, which is

only reproducible by entangled photons. We first outline the concept and theory

and then demonstrate it experimentally on states with arbitrary purity and a wide

range of dimensions. To show the versatility of our approach, we use it to measure

entanglement in the topical photonic orbital angular momentum (OAM) basis, and

the pixel (position) basis, commonly used in quantum imaging. With knowledge of

the visibilities, purity and dimensionality, we have sufficient information to infer other

salient measures. Our quantitative technique is simple, robust, and scales favourably

(linearly) with dimension, making it ideal for practical implementations of quantum

protocols with general high-dimensional photonic quantum entangled states, even

under undesired noise conditions.

6.2 Implementation

6.2.1 Concept

The task here is to quantify the effective dimensions and purity of an entangled

photonic state. If the state is assumed pure and without noise, then the problem

is trivial. Here we wish to make as few assumptions as possible, and consider the

more general case of arbitrary mixed states in the presence of noise. Incorporating

noise into the description of high-dimensional states is highly topical of late and
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Figure 6-1: (a) Conceptual visualisation of different analysers sampling various portions
of a high dimensional discrete Hilbert space. Mode analysers construction for (b) 𝑛 = 3
and (c) 𝑛 = 7 superpositions of fractional OAM states where 𝛽𝑖 is an orientation angle.
(d) Schematic of the experimental setup used to measure the dimensionality and purity of
a quantum system. (NLC: Nonlinear crystal, f1,2,3,4: lens, BS: 50:50 Beam-splitter, SLM:
Spatial light modulator, D: detector, APD: avalanche photo diode coupled to a single mode
fiber (SMF), C.C.: coincidence counter)

very much in its infancy, with a full understanding of its deleterious impact only

slowly emerging [34]. In general, the purity of the quantum system, and therefore the

entanglement between photon pairs, is reduced due to noise introduced by the source,

the environment and/or the detection system, very often in the form of white noise

produced by background photons, high dark counts in single photon detectors and

unwanted multiphoton events [27]. We follow convention [34] and model such noisy

quantum systems by an isotropic state following

𝜌 = 𝑝 |Ψ⟩ ⟨Ψ| +
(︀
1−𝑝
𝑑2

)︀
1𝑑2 , (6.1)

which considers contributions of both the pure, |Ψ⟩, and a mixed part, 1
2
𝑑 (d2-

dimensional identity operator), parts. Although this will be our target state for

extracting the purity and dimensionality, it does not appear in the construction of
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the analysers nor the measurement procedure itself. As such, the state and the param-

eters to be extracted may be modified to incorporate other factors, for example, mode

dependent noise due to the resolution limits of detection devices [334]. The pure part,

|Ψ⟩ =
∑︀𝑑−1

𝑖=0 𝜆𝑗 |𝑗⟩ |𝑗⟩, can be decomposed using the Schmidt basis states, |𝑗⟩ |𝑗⟩ ∈ ℋ2
𝑑

with corresponding Schmidt coefficients, 𝜆𝑗. A variety of entangled, quantum states

(time, energy, position, hybrid and hyper-entangled) can be decomposed in this way,

therefore covering a vast number of cases. Here 𝑝 is a parameter that determines the

purity of the state, and varies from a maximally mixed (separable) state for 𝑝 = 0

to a completely pure (entangled) state for 𝑝 = 1. The purity of a non-separable 𝑑

dimensional state is given by Tr(𝜌2) where 1/𝑑 < Tr(𝜌2) ≤ 1, while the bounds on 𝑝

are, 1/(𝑑 + 1) < 𝑝 ≤ 1. Hence, since 1/(𝑑 + 1) ∼ 1/𝑑 for high-dimensional states, it

suffices to use the notion of purity and 𝑝, interchangeably. We use 𝐾 = 1/
∑︀

𝑗 |𝜆𝑗|4

as a measure of the local dimensions of the pure part of the state [72].

Our procedure allows us to quickly establish 𝐾 and 𝑝, i.e. the dimensionality of

the pure component and its probability. Another common measure of dimensionality

is the Schmidt Rank [71], which we will denote as 𝑑ent. The 𝑑ent refers to the dimen-

sionality of the entire state, not just the pure component, and it is possible to deduce

𝑑ent from our approach through knowledge of 𝐾 and 𝑝 (See appx. E.1 and E.10).

As we characterise the pure component of the state and establish the overall purity,

the number of required measurements scales linearly with the dimension 𝑑 of the

probed Hilbert space. This provides a significant gain in speed for high-dimensional

states.

Thus, our proposed method is a fast, accurate, and simple procedure to charac-

terise the properties of two-photon high-dimensional entangled states.

The working principle of our technique is visualised in Fig. 6-1 (a), where a set

of custom analysers probe distinct parts of a discrete Hilbert space. We can think of

each analyser as a probe that scans a sparse set of modes, reminiscent of a conditional

measurement that indicates whether there is entanglement within the subspace or not.

By combining the information gathered from a number of such analysers, we infer

how many dimensions the state occupies. We will demonstrate this procedure both
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theoretically and experimentally.

It is instructive to illustrate the concept by example. Consider a pair of photons

entangled in their polarisation, energy-time, momentum or in the spatial basis [15],

so-called structured light [187], the former useful to access high-dimensions, with up

to 100×100 dimensions already demonstrated [335]. In this work we will consider

two examples: the OAM basis [16, 140] and the pixel (position) basis [42]. Due to

the great potential of the former, particularly for quantum information processing

and communications [20, 47, 62, 197, 222, 325, 336–344], we first illustrate and demon-

strate our method for OAM entangled states. In this case, the basis states, |ℓ1⟩ |ℓ2⟩,

are associated with an azimuthal phase profile exp(𝑖ℓ1,2𝜑), with ℓ1,2 ∈ Z being the

topological charge and ℓ1,2ℏ OAM per photon. An OAM entangled pure state can be

expressed as

|Ψ⟩ =
∞∑︁

ℓ1,2=−∞

𝜆ℓ1,2 |ℓ1⟩𝐴 |ℓ2⟩𝐵 , (6.2)

where |𝜆ℓ1,2|2 is the probability of generating photons in the states |±ℓ1,2⟩ for photons

𝐴 and 𝐵, respectively. For our experimental tests with a Gaussian pumped SPDC

source, the state only has non-zero probabilities when ℓ ≡ ℓ1 = −ℓ2. While in general

the state |Ψ⟩ can be represented using an unbounded number of eigenmodes as shown,

i.e., 𝑑→ ∞, we truncate |Ψ⟩ to 𝑑 eigen-states. This is simply applying common sense:

one should select a Hilbert space with a dimension large enough to test in based on

what you are looking for (analogous to selecting a camera area that is large enough to

fit the image you hope to measure). Importantly, since our approach scales linearly

with test dimension, there is no significant penalty for selecting a test dimension that

is “too big”, in stark contrast to QST-based approaches (See appx. E.12 and Table

E.2) . In this sense, 𝑑 may be chosen at will.

To gain access to various parts of the Hilbert space, we make use of high dimen-

sional mode projectors that map onto the states

|𝑀,𝛼⟩𝑛 = 𝒩
𝑑−1∑︁
𝑗=0

𝑐𝑛𝑤𝑗 ,𝑀
(𝛼) |𝑗⟩ , (6.3)
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Figure 6-2: Experimental (points) and theoretical (solid lines) coincidence count rates result-
ing from projections of photons 𝐴 and 𝐵 onto the states |𝑀, 𝜃⟩𝑛 and |−𝑀, 0⟩𝑛, respectively,
as a function of the relative orientation angle 𝜃 for (a) 𝑛 = 5 and (b) 𝑛 = 9. Theoretical
visibility as a function of the dimensionality (𝐾) and purity (𝑝) for (c) 𝑛 = 5 and (d)
𝑛 = 9, exemplifying it increases monotonically with both parameters. The (red) planes
intersecting the curves are the experimental visibilities, with the possible solution space for
each shown as a red trajectory. The resulting trajectories for 𝑛 = 1, 3, ...11 are shown in
(e), where the thickness of each is due to the uncertainty in the visibility outcome. The
dimension and purity of the system are found where they coincide, shown as a dashed red
circle. (f) The later corresponds to the optimal (𝑝,𝐾) that minimise the function 𝜒2(𝑝,𝐾),
or, equivalently, maximizes

√︀
1/𝜒2, where the minimum of 𝜒2 is now shown as a peak

corresponding to (𝑝,𝐾) = (0.45 ± 0.03, 22.84 ± 0.62). The critical bound, 𝑝 ≤ 1/(𝐾 + 1),
separating entangled and separable states is marked by the white dashed line.

where 𝒩 is a normalisation factor, |𝑗⟩ are the basis states on the 𝑑 dimensional space.

The coefficients, 𝑐𝑛𝑤𝑗 ,𝑀
(𝛼), control the amplitudes and phases of the modes in the

superposition. For OAM basis states, the coefficients can be represented accordingly

by replacing the index 𝑤𝑗 with the topological charge ℓ = 𝑗− (𝑑− 1)/2. Examples of

the phase profiles for two such analysers are shown in Fig. 6-1 (b) and (c) for 𝑛 = 3

and 𝑛 = 7, respectively, with full details on their construction in the Methods section

and appx. E.2 - E.4. While 𝑛 and 𝑀 can be chosen arbitrarily, we find it optimal to

set 𝑛 as an odd positive integer and 𝑀 = 𝑛/2 (See appx. E.5).

Next, we project each entangled photon onto the superposition states |𝑀, 0⟩𝑛
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and |𝑀, 𝜃⟩𝑛, respectively, where 𝜃 = [0, 𝜋/𝑛] controls the relative phases between

the modes in the superposition. In the context of OAM this translates into a relative

rotation by an angle 𝜃. A typical experimental setup for implementing this is sketched

in Fig. 6-1 (d). Entangled photon pairs are generated in a non-linear crystal (NLC)

and subsequently projected onto the states |𝑀, 𝜃⟩ and |−𝑀, 0⟩ by means of holograms

programmed onto spatial light modulators (SLMs) having the transmission functions

𝑈𝑛(𝜑; 𝜃) and 𝑈*
𝑛(𝜑; 0), respectively. In the OAM degree of freedom, the holograms

correspond to fractional OAM modes [345], known to have a non-integer azimuthal

phase gradient. The modulated photons are then coupled into single mode fibers

and measured in coincidences. The outcome probability of such a measurement, i.e.,

| ⟨0,−𝑀 |𝑛 ⟨𝜃,𝑀 |𝑛 𝜌 |𝑀, 𝜃⟩𝑛 |−𝑀, 0⟩𝑛 |, is

𝑃𝑛(𝜃; 𝑝,𝐾) = 𝑝𝑃𝑛(𝜃,𝐾) +
1 − 𝑝

𝐾2
𝐼𝑛(0, 𝐾), (6.4)

where 𝐼𝑛(0, 𝐾)/𝐾2 is the probability resulting from the overlap of the analysers with

the maximally mixed state and 𝑃𝑛(𝜃,𝐾) =
⃒⃒⃒∑︀(𝐾−1)/2

ℓ=−(𝐾−1)/2 𝜆ℓ𝑐
𝑛
ℓ,𝑀(0)𝑐𝑛−ℓ,𝑀(𝜃)

⃒⃒⃒2
is the

overlap probability with the pure state, with 𝑀 = 𝑛/2 the fractional charge and 𝜆ℓ

the initial bi-photon OAM spectrum. For a pure state, the probability curves have

a parabolic shape following 𝑃𝑛(𝜃) = (𝜋(2𝑡 − 1) − 𝑛𝜃)2/𝜋2, where 𝑡 = 1, 2, ... 𝑛. In

Fig. 6-2 (a) and (b), we show as solid lines the theoretical probabilities (calculated

using Equation (6.4)) of such a measurement as function of 𝜃.

We choose odd values of 𝑛 and 𝑀 = 𝑛/2 to ensure a high visibility, which in-

creases monotonically with 𝐾 and 𝑝 for each analyser (See appx. E.6 and Fig. E-5).

In general, both the shape and visibility of the fringes yield information about the

state. To make the approach accurate and precise, we measure several visibilities,

𝑉𝑛, for 𝑛 = 1, 3, 5...2𝑁 − 1, and infer the state properties by the intersection of their

solution spaces (Fig. 6-2 (e)).
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6.3 Methods

6.3.1 High dimensional state projections

Our analysers project onto the high dimensional Hilbert space, ℋ𝑑, mapping onto the

states in Equation (6.9), i.e |𝑀,𝛼⟩𝑛, repeated here as

|𝑀,𝛼⟩𝑛 = 𝒩
𝑑−1∑︁
𝑗=0

𝑐𝑛𝑤𝑗 ,𝑀
(𝛼) |𝑗⟩ , (6.5)

composed of coherent superpositions of basis states |𝑗⟩ ∈ {|𝑗⟩ , 𝑗 = 0, 1..𝑑 − 1} with

tune-able phases and amplitudes

𝑐𝑛𝑤𝑗 ,𝑀
(𝛼) = 𝑒−𝑖𝜋𝑤𝑗(𝑛−1)/𝑛𝐴𝑛𝑤𝑗

𝑐𝑤𝑗 ,𝑀(𝛼), (6.6)

and where 𝑤𝑗 = 𝑗 − (𝑑− 1)/2 and the factors

𝑐𝑤𝑗 ,𝑀(𝛼) = − 𝑖𝑒−𝑖𝑤𝑗𝛼

𝜋(𝑀 − 𝑤𝑗)
. (6.7)

and

𝐴𝑛𝑤𝑗
=

⎧⎨⎩ 1, mod {𝑤𝑗, 𝑛} = 0

0, otherwise
. (6.8)

Here, 𝑐𝑤𝑘,𝑀(𝛼) controls the relative phases and amplitudes of the eigenmodes and

𝐴𝑛𝑤𝑗
modulates the coefficients’ amplitudes while 𝛼 ∈ [0, 2𝜋/𝑛]. The spectrum given

by Equation (E.40) can be tuned by carefully selecting 𝑛, therefore enabling precise

control of the subspaces that will be probed.

In the OAM basis, i.e |ℓ⟩ ∈ ℋ𝑑, the index 𝑤𝑗 can be replaced with the index

ℓ ∈ 𝒵. The mode projectors can be constructed from spiral phase profiles having the
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transmission function

𝑈𝑛(𝜑, 𝛼) = ℳ
𝑛−1∑︁
𝑘=0

exp (𝑖Φ𝑀 (𝜑; 𝛽𝑘 ⊕ 𝛼)) , (6.9)

that is constructed from superpositions of fractional OAM modes [345,346],

exp (𝑖Φ𝑀(𝜑;𝛼)) =

⎧⎪⎨⎪⎩𝑒
𝑖𝑀(2𝜋+𝜑−𝛼) 0 ≤ 𝜑 < 𝛼

𝑒𝑖𝑀(𝜑−𝛼) 𝛼 ≤ 𝜑 < 2𝜋

, (6.10)

having the same charge, 𝑀 , but rotated by an angle 𝛽𝑘 ⊕ 𝛼 = mod {𝛽𝑘 + 𝛼, 2𝜋} for

𝛽𝑘 = 2𝜋
𝑛
𝑘, as illustrated in Figs. 6-1 (b) and (c) for 𝑛 = 3 and 𝑛 = 7, respectively.

Here, 𝜑 is the azimuthal coordinate and ℳ a normalization constant.

For the pixel basis, we constructed the holograms on a 𝑑 = 𝐷 × 𝐷 grid with

each square corresponding to a “pixel” state. The coefficients corresponding to a

projection onto the state, |𝑀,𝛼⟩𝑛, can be mapped as

𝐶𝑟,𝑐 = 𝑐𝑛𝑤𝑜−1,𝑀
(𝛼), (6.11)

where 𝑜 = (𝑟 − 1)𝐷 − 𝑐, for each index pair, 𝑟, 𝑐 = 1, 2, 3...𝑑, locating the row

and column index of each pixel state on the grid. This mapping converts the list of

coefficients, 𝑐𝑤𝑗
( for 𝑗 = 0, 1... 𝑑-1), into a square matrix 𝐶𝑟,𝑐. To construct the

hologram we then extract the amplitude and phase of the matrix components of 𝐶

and obtain,

𝑈𝑟,𝑐 = 𝐵𝑟,𝑐mod{arg (𝐶𝑟,𝑐) , 2𝜋}, (6.12)

where 𝐵𝑟,𝑐 = |𝐶𝑟,𝑐|/max
(︀
𝐶
)︀
. The final hologram can then be obtained by re-sampling

𝑈 onto a high resolution grid that can be loaded onto the SLM. In this work, we re-

sampled each projection hologram onto a 200×200 grid. Example holograms for 9×9

states that were resampled onto a 200 × 200 grid are shown in Fig. 6-4 (b).
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6.3.2 Experimental setup.

The experimental setup for the generation and measurement of entangled photons is

illustrated schematically in Fig. 6-1 (d). A potassium-titanium-phosphate (PPKTP)

type I nonlinear crystal (NLC) was pumped with a 405 nm wavelength diode laser.

The crystal temperature was set to obtain co-linear signal and idler entangled SPDC

photons centred at a wavelength 810 nm. The photon pairs were then separated in

path using a 50:50 beam splitter (BS). Each entangled photon was imaged onto a

spatial light modulator (SLM) using a 4𝑓 telescope (𝑓1 and 𝑓2 having focal lengths

of 100 mm and 500 mm, respectively), then subsequently coupled into single mode

fibers with a second 4𝑓 telescope (lenses 𝑓3 and 𝑓4 having focal lengths of 750 mm

and 2 mm, respectively) and finally detected with avalanche photo-detectors (APDs).

Signals from each arm were measured in coincidences within a 25 ns coincidence

window. The entangled photons were filtered with 10 nm bandpass filters centered

at a wavelength of 810 nm. For our experimental demonstration, we restrict our

measurements to a specific optical setup and we varied the purity of the entangled

state by introducing background noise in the form of white light. To obtain a high

purity state (p=0.45 in K=22 dimensions), we had to reduce the laser power using an

ND filter such as to reduce multi-photon emission events, known to have an impact

on the purity of the SPDC photons [27]. To increase the noise in the system for the

OAM basis measurements, we introduced background noise in the form of white light

emitted by an incandescent light bulb until the quantum contrast (equivalently signal-

to-noise ratio) dropped to 3. The measuremnt procedure of the quantum contrast is

discussed in the appx. E.9.

6.3.3 Optimal purity and dimensionality calculation

Using the fact that the visibility obtained for each analyser is affected by the dimen-

sionality and purity of the input state, we describe the procedure for determining

their values for a given entangled quantum system, assuming it can be modelled by

the isotropic state in Equation (E.29). We measure the probability curves for N
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analysers each with 𝑛 = 1, 3, ..., 2𝑁 − 1, and compute their corresponding visibilities

𝑉𝑛 := 𝑉𝑛(𝑝,𝐾). This results in a set of 𝑁 nonlinear equations that depend on the

parameters 𝑝 and 𝐾. We then determine the optimal (𝑝,𝐾) pair that best fit the

function 𝑉𝑛(𝑝,𝐾) to all 𝑁 measured visibilities by employing the method of least

squares (LSF), which aims to minimise the objective function

𝜒2(𝑝,𝐾) =
𝑁∑︁
𝑖=1

|𝑉 The.
2𝑖−1 (𝑝,𝐾) − 𝑉 Exp.

2𝑖−1 |2, (6.13)

where the terms in the summation are the residuals (absolute errors) for each 𝑛 =

2𝑖− 1 visibility measurement (Exp.) with respect to the theory (The.).

6.4 Results

6.4.1 Orbital angular momentum basis measurements

The set-up used to demonstrate our scheme is shown conceptually in Fig. 6-1 (d)

with the corresponding detailed description in the Methods section. We measure the

coincidences between the signal and idler photons for analyser projections on both

arms as a function of the relative rotation angle of the holograms. To achieve this,

we encoded the fractional OAM mode analyser on the SLM in the signal arm fixed at

an angle 𝜃 = 0, while the conjugate mode was encoded in the idler arm and rotated

at angles 𝜃 ∈ [0, 2𝜋].

To illustrate the operation of our technique we measured the coincidence-rates

for six (𝑁 = 6) analysers with 𝑛 = 1, 3, 5, 7, 9 and 11, and 𝑀 = 𝑛/2, with example

outcomes for 𝑛 = 5 and 9 shown as filled circles in Fig. 6-2(a) and (b), respectively.

No background subtraction was performed on the measurements to leave noise in

the system, which was deliberately increased to enact a range in purities for test

purposes. Importantly, the periodicity in the detected probabilities confirms the az-

imuthal 𝑛-fold symmetry predicted by our theory (solid curve). Because the visibility

is a monotonically increasing function of dimension and purity, a measured visibility
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Figure 6-3: (a) Visibility measurements for low (top solid line) and high noise (bottom
dashed line) levels. The points are the experimental visibilities while the lines correspond
to the fitted values of dimension and purity. Measured spiral spectrum for the (b) low and
(c) high noise levels. The shaded area corresponds to the uncertainty in the fit (standard
deviation).
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returns a range of possible (𝑝,𝐾) values, a “trajectory” or curve in the (𝑝,𝐾) space.

This is illustrated in Fig. 6-2 (c) and (d), where the measured visibility (red horizon-

tal plane) intercepts the visibility function along a curve (red curve) that restricts

the possible solutions, 𝐾 and 𝑝, to those consistent with the measurement outcome.

The set of such curves from measuring many visibilities (each with its own anal-

yser/projection) then restricts the final solution to a narrow region in (𝑝,𝐾), whose

uncertainty (width) is determined primarily from the uncertainly in the visibility

measurement. An example is shown in Fig. 6-2 (e), where each solution trajectory

is projected onto the (𝑝,𝐾) plane. Final values and uncertainty of (𝑝,𝐾) can be

determined by an appropriate routine to find the interception of all such trajectories

by a minimisation procedure, as shown in Fig. 6-2 (f).

Using this approach we infer the purity and dimensionality of the system to be

(𝑝,𝐾) = (0.45 ± 0.03, 22.84 ± 0.62).

In Fig. 6-3 (a) we show the six measured visibilities as square data points together

with the calculated visibility (solid red line) based on the inferred (𝑝,𝐾), which clearly

match very well. This is confirmation of the minimisation procedure for finding the

intercept. In order to assess the procedure under high noise levels, we introduced

background noise using a white light source and repeated the measurements, shown

as the circle data points and the associated blue dashed line in Fig. 6-3. The average

quantum contrast (See appx. E.8), measured from the spiral spectrum in Fig. 6-3

(c) and (d), dropped from 𝑄 = 19.19 to 𝑄 = 3.76, resulting in a reduced purity and

dimensionality of (𝑝,𝐾) = (0.13 ± 0.01, 17.73 ± 0.71). Note that the minimisation

was performed over the parameters (𝑝,𝐾), but additional parameters could also be

added, for example, to take account of the modal cross-talk in the observed data. In

our case, we choose the minimisation over a small set of parameters in order to keep

the method and model simple.

As a form of validation of these results, we estimate values from other techniques,

with the comparison given in Table E.1. If the dimension and noise are known or

assumed, then it is possible to calculate the purity following 𝑝 = (𝑄−1)/(𝑄−1 +𝐾)

where 𝑄 is the quantum contrast and 𝐾 the dimension [27]. Likewise, if the state is
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Noise level 𝑝 𝐾 𝑄 𝑝 �̂�
low 0.45 ± 0.03 22.84 ± 0.62 19.19 ± 0.22 0.44 ± 0.01 22 ± 1
high 0.13 ± 0.01 17.73 ± 0.71 3.76 ± 0.57 0.13 ± 0.02 18 ± 1

Table 6.1: Measured purity (𝑝) and dimensionality (𝐾), under low and high noise levels,
compared to estimates from other methods. Here 𝑄 is the average quantum contrast. Our
experiment used a gating time of 25 ns for the coincidences with averaging over 10 s. Re-
duced the gating time, increasing the averaging time and taking care with the experimental
conditions would significantly enhance the purities [42], even for the low noise conditions.

assumed to be pure and not mixed, and background subtraction is done to remove

noise, then the spiral spectrum can be used to get an upper bound on the dimension.

For the two noise cases in Table E.1, low and high, we find purity estimates of

𝑝 ≈ 0.44±0.01 and 𝑝 ≈ 0.13±0.02 from estimates of the dimensionality of �̂� ≈ 22±1

and �̂� ≈ 18±1, respectively. These values are in excellent agreement with our results,

which did not require any such assumptions, nor any noise adjustments.

6.4.2 Pixel basis measurements.

To illustrate that OAM is only as an example and that the approach is general, we

perform the same procedure using the pixel basis, shown in Fig. 6-4 (a). Here the

spatial basis is position as “pixels” in the transverse plane, with the number of pixels

setting the test dimension. The size and number would be judiciously chosen based

on the source of biphotons and the imaging resolution of the optical system. We use

grids from 3 × 3 up to 11 × 11, thus testing to over 100 dimensions. Holograms for

three analyser cases are shown in Fig. 6-4 (b) for the 81 dimensional example, where

the phases within the 9 × 9 pixel grid are shown to change. Although there is no

resemblance to the prior OAM holograms, the measurement procedure is identical.

From the resulting visibilities we again infer the key parameters from the intersection

of the trajectories in (𝑝,𝐾) space, shown visually in Fig. 6-4 (c) and (d).

Our approach has the benefit of a wealth of information in the analyser visibilities,

as well as knowledge of both 𝐾 and 𝑝. This is sufficient to infer other key informa-

tion (See Fig. E-7), such as an estimate of the state fidelity (𝐹𝑝) and the Schmidt

Rank, 𝑑ent = 𝐾 × 𝐹𝑝 (See appx. E.10 and ref. [71]). We show the outcome for this
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measurement in Fig. 6-4 (e), where the “effective dimensions” as measured by the

Schmidt Rank decreases as the purity decreases, becoming separable below a critical

value that corresponds to the separability boundaries shown in Fig. 6-2 (e) and (f).

Our data is shown with deliberately introduced noise to reduce the purity, and jux-

taposed with the case of background subtraction to eliminate the noise. Here we see

that the Schmidt Rank gives a lower bound for the system. Our technique can detect

correlations below the separability criterion for isotropic states, meaning that it is

sensitive to correlations even in extreme noise situations, which may prove valuable

in situations such as high resolution quantum imaging in real-world scenarios [347].

6.5 Discussion

A quantitative measure of dimensionality and purity, particularly in the presence of

(inevitable) deleterious noise that degrades the purity, is crucial for many quantum

protocols and studies. For example, there is a minimum purity needed to witness

entanglement in a given dimension [2, 348, 349], setting the transition from separa-

ble to entangled states. Likewise, knowing the purity is important in entanglement

distillation processes since it informs whether the noise can be removed for a given

dimension [350, 351], while in entanglement based quantum communication there is

a minimum purity [129] associated with security [352]. In turn, the dimensional-

ity sets the information capacity of the state for quantum information processing

and the error tolerance in quantum communication protocols, while high-dimensional

states are important for fundamental tests of quantum mechanics where qubits will

not suffice [353, 354]. Now we have demonstrated a simple approach to return these

crucial numbers. Although this chapter is not a report on noise in high-dimensional

quantum systems, we have deliberately introduce noise in order to demonstrate the

robustness of the approach, and to attain a range in purities for test purposes. The

impact of noise in realising pure high-dimensional quantum states is only beginning

to emerge [34], revealing that the there are limits to the dimensionality that can
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Figure 6-4: (a) The basis of our entanglement is expressed as pixels, illustrated here across
the SPDC source (measured at the crystal), where each pixel is our state, |𝑗⟩. (b) Example
holograms in this basis for the visibility measurements, shown here for 𝑛 = 1, 3 and 5. (c)
and (d) show the measurement outcomes for two example cases of dimension and purity,
with and without background subtraction, respectively. All the measurements outcomes
are plotted as data points in (e) showing the Schmidt Rank, 𝑑ent as a function of purity, 𝑝,
in excellent agreement with theory (lines). The dimensionality, 𝐾, is quoted for each case.
Error bars are too small to be visualised.

be reached based on the quantum contrast and noise in the system. Our findings

are entirely consistent with these reports. Although in the final test we have added

noise (accidentals) subtraction to illustrated the juxtaposed position, this is strictly

speaking not advisable [355].

Unlike a conventional Schmidt decomposition, we do not assume the state is pure,

and the dimension extracted from our technique is conditioned on the presence of

entanglement: a maximally mixed and maximally entangled system cannot yield

the same result. While our approach would benefit from knowledge of the modal

spectrum, which can be measured very quickly [356,357], the outcome on purity and

dimensionality are only modestly affected by typical spectrum shapes (See Fig. E-5),

e.g., in our examples the uncertainty in dimensionality is ≈ 5% with knowledge of

the spectrum, increasing to ≈ 10% without.

In addition to well-established quantum tomography tools, there are several new
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methods for characterising, measuring, and extracting information about different

quantum states [131,330,331]. Each method has its own set of pros and cons, regard-

ing measurement time, the total number of required measurement settings, and the

ease of implementation. The method that we present here complements the existing

techniques, providing one of the fastest mechanisms to extract and estimate valuable

information about high-dimensional entangled quantum states.

The advantage of our method is the linear scaling to the number of measurements

and the flexibility of the minimisation procedure. Our approach is thus a excellent

candidate for a fast and easy test of purity and dimensionality prior to a more lengthy

tomography, if necessary. One of the limitations of our technique is that prior knowl-

edge of the form of the underlying state is required for accurate fitting. Thus, we

cannot provide definite proof of entanglement in an assumption-free manner.

However, the easy construction of our analysers and the resulting measurement of

only visibilities reduces the complexity of characterising quantum states significantly

when contrasted with QST based approaches. Finally, our measurement approach has

been tested against the topical isotropic state, but we point out that the construction

of the analyzers is not dependent on this state. This is analogous to other methods

where extracting a measure always requires a target state, e.g., the fidelity from a

QST measured against a maximally entangled state. We envisage that it may be

possible to generalise the theory to extract key parameters from states other than

just the isotropic state.

In summary, we have developed a simple yet powerful technique to measure the

dimensionality and purity of high dimensional entangled photonic quantum systems.

Our approach is robust, fast, and provides quantitative values rather than bounds or

witnesses, and works on both pure and mixed states. Our scheme exploits visibility

in fringes after joint projections, making it fast and easy to implement, returning the

key parameters of the system in a fraction of the time that a QST would take. Thus

we believe that our approach will be useful as a quick test with minimal experimental

effort prior to more comprehensive state testing, valuable to the active research in

high-dimensional spatial mode entanglement and foster its wide-spread deployment
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in quantum based protocols.
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Chapter 7

Conclusions

7.1 Concluding remarks

This thesis outlines techniques that may be crucial for future deployment of quantum

channels that use high dimensional transverse spatial modes as a means to increasing

the encoding capacity of quantum communication protocols. The focus was on devel-

oping techniques for overcoming channel perturbations that can distort the transverse

spatial amplitude, phase and polarisation profiles of photons. The channel pertur-

bations that were considered are solid obstructions, atmospheric turbulence, optical

aberrations, mode mixing in optical fibres, and environmental noise. For this reason,

the methods reported in this Thesis add on to the existing toolbox for transmitting,

controlling and characterising photon fields in various media. Our approaches ranged

from judiciously selecting mode families that are resilient to particular obstructions

and perturbations or studying the evolution of spatially structured photons through

typical optical aberrations and noise mechanisms and subsequently designing mea-

surement procedures that revealed crucial information that can be used to remedy

the deleterious effects of the medium under investigation.

To begin, in Chapter 1, we introduced high dimensional states of single and two

photon states and highlighted the significance of higher dimensional encoding in con-

trast to traditional two qubits, showing that the encoding basis of photons can be

expanded in two ways: i) by encoding the information in the transverse spatial pro-
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file of photons and ii) by combining the spatial and polarisation degrees of freedom

(DOF). In the final section, we discussed the deleterious effects of channel pertur-

bations, highlighting the various techniques that are commonly used for mitigating

them. Moreover, we presented some of the challenges that come with implementing

them. This chapter sets the scene for the chapters that followed.

In Chapter 2, we introduced the first perturbation in the form of solid obstructions,

acting on photons encoded using transverse spatial modes that carry orbital angular

momentum (OAM). The obstructions were small micron-sized particles that partially

blocked the path of a photon field, resulting in optical diffraction. We showed that a

quantum channel having such pertubations, can result in photon loss and crosstalk [26]

but by using photons with Bessel-Gaussian radial profiles we were able to harness their

previously discovered resilience even at the single photon level [152]. The novelty on

our approach came in using polarisation and the spatial DOF in nonseparable vector

modes and their scalar counterparts to construct a secure communication channel.

Another advancement made in this chapter was in utalising higher dimensional en-

coding with four dimensional basis states. We focused our analysis of the channel

to the application of quantum key distribution showing that it is possible to ex-

change quantum information even when photons are partially obstructed. To show

the benefit of our encoding technique we performed a similar analysis on modes with

Laguerre-Gaussian spatial profiles, with our results clearly indicating that the BG

vector modes perform far better in the presence of obstructions.

While our choice of the radial profile for our nonseparable vector fields made them

immune to diffraction, there is another class pertubations that can completely distort

the transverse spatial amplitude, phase and polarisation profiles of photons, namely

channels with spatially varying refractive index profiles, e.g., turbulence and optical

aberrations. In Chapter 3 and 4, we dealt with distortion of this kind. Initially, in 3,

we showed that the nonseprability, equivilently entanglement, between the polarisa-

tion and spatial components of vector beams can be used as a tool for characterising

photon fields that are perturbed by optical turbulence. To achieve this, we invoked the

principle of channel state duality, a purely quantum mechanical feature that grants
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maximally nonseparable vector fields the ability to map onto a state that contains

all the channel dynamics. From this demonstration, we showed that a single vector

mode is sufficient for predicting the decay of any other field in the same subspace by

showing that the nonseparability of any field is determined by that of a maximally

nonseparable vector beam. Although this work can reveal the decay dynamics of

vectorial (and scalar) fields under any aberration that is unitary in nature, we also

asked ourselves whether these fields even decay at all? This was motivated by the

fact that entangled states are invariant under unitary transformations.

Indeed, in Chapter 4, we illustrated that this is true for vector modes since the

phase dependent aberrations only perturbed the spatial components of the fields while

the polarisation components were unaffected. But this is only true in the nearfield

since a spatially dependent phase only pertubation transfers a global phase onto the

field components. However, we showed that the phase distortions appeared to change

the amplitude, phase and polarisation of the fields upon propagation although a

basis independent measurement revealed that the spatial and polarisation components

remained nonseparable. By using the fact that nonseparability and entanglement are

equivalent, and that the unitary nature of the channel only causes a change of basis, we

where able to show that the measurement and preparation procedure can be adjusted

to undo the effects of the channel by invoking the channel state duality to find the

basis that the channel maps the spatial components onto. Through this procedure we

were able to recover all the information scattered by the channel and demonstrated

its usefulness for encoding classical/quantum information over a scattering channel.

This work brought classical or local entanglement, i.e. entanglement between the

internal DOF of light, showcasing its practical significance to applications in both

classical and quantum communication.

In the last two chapters we introduce truly non-local entangled systems and also

devised technique for overcoming technical challenges in high dimensional encoding

in the presence of deleterious effects that can inhibit their performance.

Accordingly, in Chapter 5 we demonstrated a new approach for transmitting multi-

modal entanglement, for the first time, through a fiber that only supports one spatial
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mode via a heterogeneous free-space and fiber network. Here, hybrid entanglement

with nonlocal polarisation-spatial mode correlations was the main workhorse of our

implementation. This work overcomes the challenge of transmitting spatial modes

through optical fibers. The hybrid entangled states span infinite number of two-

dimensional subspaces due to the high dimensional nature of the spatial DOF. The

channel spanned over 250 m of fiber length which transmitted the polarisation qubits

that were entangled to multiple spatial modes, showing that this scheme is a viable

approach to circumvent the technological hurdles of deploying spatial mode entan-

glement through fiber channels, ushering in a new way of utalising multidimensional

entangled photons in heterogeneous quantum channels that exploit a multi-level en-

coding basis.

While the method in Chapter 5 makes intelligent use of photons with independent

properties to realise information encoding in a quantum channel, next we considered

devising a robust technique that accurately characterises quantum entangled correla-

tions so that the quality of the generated correlations are known. In Chapter 6, we

developed a powerful technique for measuring the dimensionality and purity of high

dimensional entangled photonic quantum systems that are encroached by white noise.

In the procedure, a conditional measurement in the form of a visibility obtained from

projective measurements with tailored superposition states, were used to extract in-

formation about the purity and dimensionality of two dimensional entangled photons.

The visibilities scaled monotonically with increasing dimensions and purity showing

that the visibility strongly depended on the number of linearly independent modes

that constitute the state as well as the quality of the correlations. Our approach is

robust, fast, and provides quantitative values. A key facet of our procedure is that it

returned key parameters of the underlying state in a fraction of the time than what

a QST would take, adding value to active research in high-dimensional spatial mode

entanglement. This can be crucial in practical applications where noise can have a

negative impact on the state and an initial estimations of the state is required.
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7.2 Future work

The work presented in this Thesis presents several techniques for overcoming per-

turbations in quantum channels comprised of spatial and (or) polarisation states for

single and two photon states, crucial for the transmission of photons through noisy

freespace, underwater and optical fiber channels. The findings reported here add on

to the toolbox for using structured quantum light [187] for quantum communication

applications. Here, we highlight some of the aspects of the work that can be improved

and expanded on in future work.

In future, we hope to explore the possibility of extracting complete information

about a quantum channel using a single vectorial field and not just limit their use

to performing an analysis for a small subset of modes. This kind of research is

strongly linked with finding the eigenmodes of a quantum channel, i.e. the orthogonal

eigenvectors that are invariant of the unitary operator representing the channel. While

this in general is also related to quantum process tomography [132], it is interesting

to ask whether a single vector mode can be used to retrieve the whole channel matrix

instead of performing a complete tomography to retrieve it?

Another aspect of our work to consider expanding on is, again, related to tomog-

raphy. In most state tomography procedures, the measurement are overcomplete and

make no assumption about the underlying state although the models commonly used

in maximum likelihood algorithms [89] assume a more general decomposition of the

state. Our dimensionality and purity measurement (Chapter 6) technique is limited

in this sense because the fitting procedure used assumes a specific model that does

not cover a wide class of quantum states while the projective measurements also do

not obeying fair sampling though they are very sensitive to the state dimensions as

desired. Therefore, in future, we hope to generalise the method to various classes of

quantum states while the projective measurements can also be improved by consid-

ering the use of positive operator-valued measurements (POVM) [118] that sample a

larger portion of the Hilbert space. As is, the method only requires knowledge of the

Schmidt basis expansion of the entangled state should work if the channel is unitary
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and the change of basis mapping is known. It may also be interesting to use a hybrid

approach that combines the use of vector modes to study the evolution of the chan-

nel while the dimensionality measurement procedure is employed for quantifying the

dimensionality and purity of the entangled Schmidt basis modes.

Lastly, the multidimensional nature of the optical fiber based hybrid channel that

was presented in Chapter 5 enables for the transmission of independent hybrid states

across a single mode fiber channel, it however does not produce high dimensional

superposition states beyond qubits. We may consider replacing the spin-orbit coupling

effect with another optic that can couple the OAM to an alternative DOF that is also

high dimensional in nature. For example, such a transformation can be achieved

using a mode sorter [60] which can convert the OAM states to path states. Once each

OAM state is converted to path, it can be coupled to a multicore single mode fibre

and recombined afterwards. As such, the channel will be able to transmit true higher

dimensional states while benefiting from utalising coupled DOF and conventional

single mode optical fibers that can span long distances.
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Appendix A

Scattering probability of OAM in

turbulence

The detection probability of an OAM beam propagated through turbulence can com-

puted from

𝑃 (𝑙,𝑚) =

∫︁∫︁
𝐶𝜓(𝑟,∆𝜃, 𝑧)𝑟𝑑𝑟 × exp(−𝑖𝑚∆𝜃)

2𝜋
𝑑∆𝜃, (A.1)

where ℓ is the input OAM index of the beam, and 𝑚 is the index for the scattered

mode, while 𝐶𝜓 (𝑟,∆𝜃, 𝑧) is the rotational coherence function defined in the cylindrical

coordinates, (𝑟, 𝜃, 𝑧) defined as [24]

𝐶𝜓(𝑟,∆𝜃, 𝑧) = ⟨𝜓*(𝑟, 0, 𝑧)𝜓(𝑟,∆𝜃, 𝑧)|𝜓*(𝑟, 0, 𝑧)𝜓(𝑟,∆𝜃, 𝑧)⟩ . (A.2)

Here 𝜓(𝑟, 𝜃, 𝑧) = 𝑢(𝑟, 𝜃, 𝑧) exp(𝑖𝜑(𝑟, 𝜃)) is the beam profile after propagating a dis-

tance 𝑧 with an initial profile of 𝑢(𝑟, 𝜃, 0) at the waist plane and exp(𝑖𝜑(𝑟, 𝜃)) is the

accumulated phase according to the Rytov approximation.

For LG beams, the integral in Eq. (A.1) has been solved analytically, yielding the
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in the expression [237]

𝑃 (𝑙,𝑚) = (
1

𝑡
)|ℓ|+1

(︂
𝑡− 1

𝑡+ 1

)︂𝑛 |ℓ|∑︁
𝑘=0

(︂
|ℓ| + 𝑛

𝑘

)︂

×
(︂

2|ℓ| − 𝑘

ℓ

)︂(︂
4𝑡

(𝑡− 1)2

)︂𝑘−|ℓ|

(A.3)

where 𝑛 = |ℓ −𝑚|, 𝑡 =
√

1 + 𝜁 while 𝜁 = 3.44 × 22/3(𝑤0/𝑟0)
2 where 𝑤0 is the is the

waist size of the Gaussian argument in the LG mode and 𝑟0 is the Fried parameter.

We re-scaled the Gaussian argument, i.e. 𝑤ℓ = 𝑤0/
√︀

|ℓ| + 1, so that each OAM mode

has the same diameter, 𝐷 :=
√

8𝑤ℓ [214] and turbulence strength, 𝐷/𝑟0.
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Appendix B

Synthesis of turbulence

Figure B-1: The Strehl ratio (SR) for increasing turbulence strength 𝐷/𝑟0. Theoretical
(programmed) values are plotted as a solid line and experimentally measured points are
represented as blue markers.

We model turbulence as a random phase screen Θ that captures the refractive

index variations in the atmosphere. The statistics of such a screen are well known.

Two useful characterisations of Θ are the phase structure function, defined as

𝐷(r) =
⟨︀
|Θ(r′ + r) − Θ(r′)|2

⟩︀
, (B.1)
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and the Weiner spectrum Φ which is related to 𝐷(r) by

𝐷(r) = 2

∫︁
d2k Φ(k)[1 − cos(2𝜋k · r)], (B.2)

where ⟨·⟩ denotes the ensemble average. In the Kolmogorov model, these expressions

are

𝐷(r) = 6.88

(︂
‖r‖
𝑟0

)︂5/3

, (B.3)

and

Φ(k) =
0.023

𝑟
5/3
0

‖k‖−11/3, (B.4)

where 𝑟0 is the Fried parameter [358]. These quantities, which are taken over many

iterations of Θ, are not the same as Θ itself, which is a random variable, or its equally

random power spectrum

𝑃 (k) = ℱ{Θ} =

∫︁
d2r Θ exp (−𝑖2𝜋k · r) , (B.5)

where ℱ denotes the Fourier transform. In fact, Φ(k) is the covariance function of

𝑃 (k). To simulate a turbulent screen Θ, a matrix of random values must be generated

whose statistics match Eq. B.3 and Eq. B.4. If we could find 𝑃 (k), we could extract Θ

using the inverse Fourier transform. We sample 𝑃 (k) from a random distribution with

zero mean and variance equal to Φ(k). Such a method [359] samples the Kolmogorov

Weiner spectrum over a square grid of 𝑁 ×𝑁 points with indices (𝑖, 𝑗) as

Φ(𝑖, 𝑗) = 0.023

(︂
2𝐷

𝑟0

)︂5/3

(𝑖2 + 𝑗2)−11/3, (B.6)

where 𝐷 is the length of the aperture over which we are considering Θ. We would then

multiply
√

Φ by a matrix M of random, complex values with zero mean and variance

1, giving us an instance of 𝑃 (k), and inverse Fourier transform the resultant matrix to

produce the phase screen Θ. However, this does not properly describe the ‖k‖−11/3

behaviour since the smallest sampled frequency is 1/𝐷. Frequencies with periods

greater than 𝐷 (corresponding to indices smaller than 1) are thus not included. To
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counteract this, subharmonic terms must be included by evaluating Φ at frequencies

whose periods are greater than 𝐷 and multiplying by a weighting factor which takes

into account the fractional sampling contribution. Taking the real component only

gives

Θ = R{ℱ−1{M
√

Φ}} (B.7)

where Φ includes the subharmonic contributions.

The phase screens must be calibrated to ensure that their turbulence strength

is consistent with the programmed value of 𝐷/𝑟0. The Strehl ratio (SR) provides

a convenient link between measured intensities and turbulence strength 𝐷/𝑟0. It is

defined as the ratio of the average on axis intensity with, ⟨𝐼(0)⟩, and without, 𝐼0(0),

turbulence. For a plane wave in Kolmogorov theory it is

SR =
⟨𝐼(0)⟩
𝐼0(0)

≈ 1

(1 + (𝐷/𝑟0)5/3)
6/5
. (B.8)

Experimentally, one would calculate the SR for a range of turbulence strengths

𝐷/𝑟0 while adjusting the parameter 𝐷 of the phase screens so that the measured

(⟨𝐼(0)⟩/𝐼0(0)) and programmed values agree. Fig. B-1 shows such a calibration curve,

where the solid line represents the theoretical (programmed) strength and the markers

denote experimentally measured values.
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Appendix C

Supplementary material: invariant

vectorial photon fields

C.1 Transmitting vector beams through unitary

single sided channels

Suppose we have a vector beam that we would like to transmit through a single sided

channel, 1𝐴 ⊗ 𝑇𝐵, where 1𝐵 is the identity matrix while 𝑇𝐵 is a unitary operator,

i.e., 𝑇 †
𝐵 = 𝑇−1

𝐵 . The subscripts 𝐴, 𝐵 refer to the polarization and spatial degrees of

freedom respectively. Such channels are known to be completely postive mappings

and are trace preserving [121]. We can define our vector mode in a compact manner

using Dirac notation

|Ψ⟩ = |𝑒1⟩𝐴 |𝑢1⟩𝐵 + |𝑒2⟩𝐴 |𝑢2⟩𝐵 , (C.1)

where the spatial components {|𝑢1⟩ and |𝑢2⟩} are orthogonal. In the basis, {|𝑗⟩ , 𝑗 =

1, 2, ..𝑑}, we can express the spatial components of |Ψ⟩ as

|𝑢1⟩ =
∑︁
𝑗

𝛼𝑗 |𝑗⟩ , (C.2)
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and

|𝑢2⟩ =
∑︁
𝑗

𝛽𝑗 |𝑗⟩ . (C.3)

Here 𝛼𝑗 and 𝛽𝑗 are the expansion coefficients of 𝑢12, respectively. We can also express

𝑇𝐵 in our chosen basis {|𝑗⟩}:

𝑇𝐵 =
∑︁
𝑗𝑛

𝜏𝑗𝑛 |𝑛⟩ ⟨𝑗| , (C.4)

where the channel maps any state |𝑗⟩𝐵 onto to the state
∑︀

𝑛 𝜏𝑗𝑛 |𝑛⟩ with coefficients

𝜏𝑗𝑛, having the property that
∑︀

𝑛(𝜏𝑖𝑛)*𝜏𝑛𝑗 = 𝛿𝑖𝑗, due to the unitary nature of 𝑇𝐵.

Upon transferring |Ψ⟩ through the channel, the spatial components become

|𝑣1⟩ =
∑︁
𝑗

𝛼𝑗
∑︁
𝑛

𝜏𝑗𝑛 |𝑛⟩ ,

=
∑︁
𝑛

∑︁
𝑗

(𝛼𝑗𝜏𝑗𝑛) |𝑛⟩ ,

=
∑︁
𝑛

𝛼′
𝑛 |𝑛⟩ , (C.5)

and

|𝑣2⟩ =
∑︁
𝑗

𝛽𝑗
∑︁
𝑚

𝜏𝑗𝑚 |𝑚⟩ ,

=
∑︁
𝑚

∑︁
𝑗

(𝛽𝑗𝜏𝑗𝑚) |𝑚⟩ ,

=
∑︁
𝑚

𝛽′
𝑚 |𝑚⟩ . (C.6)

Consequently, after the channel, |Ψ⟩ is mapped onto to the state

|Ψ⟩out = |𝑒1⟩𝐴 |𝑣1⟩𝐵 + |𝑒2⟩𝐴 |𝑣2⟩𝐵 . (C.7)
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The expansion coefficients of the spatial components can be extracted via modal

decomposition on each independent polarisation state.

Importantly, the spatial components remain orthogonal: ⟨𝑣1|𝑣2⟩ = ⟨𝑣1|𝑇 †
𝐵𝑇𝐵 |𝑢2⟩ =

⟨𝑢1|𝑢2⟩ = 0.

C.2 Nonseparability of the transformed vector mode

The nonseparability or vector quality factor [360] of a vector beam can range from

0 to 1, for scalar fields (separable) and for completely nonseparable vector beams,

respectively. For the vector beam in Eq. (C.7), the nonseparability will remain 1

provided the final projections are performed in the new basis
⃒⃒
𝑢

′
1,2

⟩︀
. However when

projected back into the initial basis, the vector modes in Eq. (C.1) can be mapped

onto

|Φℓ⟩ = 𝑎 |𝑒1⟩𝐴 |𝑢1⟩𝐵 + 𝑏 |𝑒1⟩𝐴 |𝑢2⟩𝐵

+ 𝑐 |𝑒2⟩𝐴 |𝑢1⟩𝐵 + 𝑑 |𝑒2⟩𝐴 |𝑢2⟩𝐵 , (C.8)

with a corresponding degree of nonseparability

V = |𝑎𝑑− 𝑐𝑏|, (C.9)

assuming the coefficients satisfy, (|𝑎|2 + |𝑏|2 + |𝑐|2 + |𝑑|2) = 1. When the modes are

completely scattered, then 𝑎 = 𝑏 = 𝑐 = 𝑑 = 1/2 and hence 𝑉 = 0. This means

that the nonseparability will decay if the state is measured in the initial subspace.

Otherwise, if there is no modal scattering then 𝑎 = 𝑏 while 𝑐𝑏 = 0, therefore the VQF

is 1.

We can show this with the tilted lens channel, where performing the measurements

for ℓ = ±1 and ℓ = ±4 (now in basis |𝑣1,2⟩) using the old basis (|𝑢1,2⟩), is a form of

post-selection onto the state |Ψ𝑜𝑢𝑡⟩ = 𝑐1 |𝑅⟩ |𝑢1⟩+ 𝑐2 |𝑅⟩ |𝑢2⟩+ 𝑐3 |𝐿⟩ |𝑢1⟩+ 𝑐4 |𝐿⟩ |𝑢2⟩

with a resulting 𝑉 that can be estimated from 2|𝑐1𝑐4−𝑐2𝑏3|. The scattering coefficients

can be computed as 𝑐1 = ⟨𝑢1|𝑣1⟩, 𝑐2 = ⟨𝑢2|𝑣1⟩, 𝑐3 = ⟨𝑢1|𝑣2⟩ and 𝑐4 = ⟨𝑢2|𝑣2⟩. For the
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Subspace 𝑐1 𝑐2 𝑐3 𝑐4 𝑉

ℓ = ±1 (𝑢1,2) 1/2 i/2 1/2 -i/2 1
ℓ = ±1 (𝑣1,2) 1/2 0 0 1/1 1
ℓ = ±4 (𝑢1,2) 1/2 1/2 1/2 1/2 0
ℓ = ±4 (𝑣1,2) 1/2 0 0 1/2 1

Table C.1: Impact of selecting the measurement subspace. The theoretical scattering
complex coefficients for tilted lens and resulting vectorness (𝑉 ) from measurements in the
incorrect (𝑢1,2) and correct (𝑣1,2) subspace for ℓ = ±1(4). In each case, the VQF is computed
from 2|𝑐1𝑐4 − 𝑐2𝑐3|.

titled lens, the coefficients are shown in Table C.1 where the overlap was performed.

Expressions of |𝑢1,2⟩ and |𝑢1,2⟩ for the tilted lens can be found in the Supplementary

material in terms of the HG basis. As expected, the ℓ = ±1 𝑉 does no change since

the mapping is within the same subspace, consistent with the experimental plots in

Fig. 1(a). In contrast, ℓ = ±4 has vectorness values of 0 and 1 for the incorrect and

correct measurement subspace, respectively, reaffirming our experimental results.

C.3 Undoing the effects of the channel

We have now seen that a vector beam |Ψ⟩, interacting with the unitary channel,

1𝐴⊗𝑇𝐵, maps onto a new vector beam |Ψ⟩out. Here we show that we can recover the

vector beam |Ψ⟩ by probing the channel a with a probe state |Ψ⟩probe and later using

it’s modal content to prepare a new vector beam |Φ⟩ which will then be converted to

|Ψ⟩, our target mode, upon traversing the channel.

To achieve this we first send in a probe state

|Ψ⟩probe = |𝑒1⟩𝐴
∑︁
𝑗

𝛼*
𝑗 |𝑗⟩𝐵 + |𝑒2⟩𝐴

∑︁
𝑗

𝛽*
𝑗 |𝑗⟩𝐵 , (C.10)

that is encoded with the complex conjugated coefficients of |Ψ⟩, through the channel.

After undergoing the channel the probe state is mapped to
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|Ψ⟩probe
1𝐴⊗𝑇𝐵−−−−→ |𝑒1⟩𝐴

∑︁
𝑗𝑛

𝛼*
𝑗𝜏𝑗𝑛 |𝑛⟩𝐵 + |𝑒2⟩𝐴

∑︁
𝑗𝑚

𝛽*
𝑗 𝜏𝑗𝑚 |𝑚⟩𝐵 . (C.11)

The coefficients of the modal expansion in each field can be measured via modal

decomposition. Using the extracted coefficients, we can then send the new mode

|Φ⟩ = |𝑒1⟩𝐴
⃒⃒⃒
𝑢

′

1

⟩
𝐵

+ |𝑒2⟩𝐴
⃒⃒⃒
𝑢

′

2

⟩
𝐵
, (C.12)

= |𝑒1⟩𝐴
∑︁
𝑗𝑛

𝛼𝑗𝜏
*
𝑛𝑗 |𝑛⟩𝐵 + |𝑒2⟩𝐴

∑︁
𝑗𝑚

𝛽𝑗𝜏
*
𝑚𝑗 |𝑚⟩𝐵 , (C.13)

through the channel. Here |Φ⟩ has the conjugated coefficients of probe state after

interacting with channel which are in-fact the coefficients of our desire target state

|Ψ⟩ coupled with the scattering coefficients from the channel. To see that |Φ⟩ maps

to the target state |Ψ⟩ after traversing the channel, we can observe the evolution of,

|𝑣12⟩ :

𝑇𝐵

⃒⃒⃒
𝑢

′

1

⟩
=
∑︁
𝑗𝑛

𝛼𝑗𝜏
*
𝑗𝑛𝑇𝐵 |𝑛⟩ ,

=
∑︁
𝑗𝑛𝑘

𝛼𝑗𝜏
*
𝑗𝑛𝜏𝑛𝑘 |𝑘⟩ ,

=
∑︁
𝑗𝑘

𝛼𝑗
∑︁
𝑛

𝜏 *𝑗𝑛𝜏𝑛𝑘 |𝑘⟩ ,

=
∑︁
𝑗𝑘

𝛼𝑗𝛿𝑗𝑘 |𝑘⟩ , (C.14)

=
∑︁
𝑗

𝛼𝑗 |𝑗⟩ (C.15)

= |𝑢1⟩ . (C.16)
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Similarly,
⃒⃒
𝑢

′
2

⟩︀
, maps onto

𝑇𝐵

⃒⃒⃒
𝑢

′

2

⟩
=
∑︁
𝑗

𝛽𝑗 |𝑗⟩ ,

= |𝑢2⟩ . (C.17)

This gives us the spatial components of |Ψ⟩, as desired.

C.4 Examples with a titled lens

Vector beams can be used to imprint information about a spatially dependent per-

turbation. If the channel is unitary and single sided, then the spatial information can

be imprinted on the polarisation field. The following steps show how one can obtain

the transformation corresponding to a unitary channel via the polarisation pattern of

vector beam and maybe also undo the evolution.

Suppose we have a vector beam given by

|𝜓⟩in = |𝑅⟩𝐴 |ℓ⟩𝐵 + |𝐿⟩𝐴 |−ℓ⟩𝐵 , (C.18)

that is prepared in the right (𝑅) and left (𝐿) circular polarisation basis and the OAM

spatial basis characterised by eigenstates with indices ±ℓ. This vector beam can be

found on the Higher order Poincaré Sphere (HoPS) spanned by the basis modes {

|𝑅⟩𝐴 |ℓ⟩𝐵 , |𝐿⟩𝐴 |−ℓ⟩𝐵 }

When transmitted through a unitary and single sided channel, the OAM modes

can scatter the spatial components into arbitrary ℓ’s, but what remains is that the

mode still remains a vector beam due to the invariance of nonseparability to unitary

transformations. Since the vector beam can map the channel, we will show that this

information can be used to make corrections on the beam with a simple unitary trans-

formation. Lets see an example with a transformation that only induces transitions

on a qubit space.
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Consider the case where ℓ = ±1 for our vector beam. The unitary mapping follows

|ℓ⟩ 𝑇𝐵−→ |ℓ⟩ + 𝑖 |−ℓ⟩√
2

(C.19)

|−ℓ⟩ 𝑇𝐵−→ |ℓ⟩ − 𝑖 |−ℓ⟩√
2

(C.20)

mapping the spatial components onto another set of orthogonal modes. This can be

performed using a titled lens. Once the vector beam interacts with the lens and is

subsequently propagated to the far-field, it evolves into the state

|𝜓⟩out = |𝑅⟩𝐴
(︂
|ℓ⟩𝐵 + 𝑖 |−ℓ⟩𝐵√

2

)︂
+ |𝐿⟩𝐴

(︂
|ℓ⟩𝐵 − 𝑖 |−ℓ⟩𝐵√

2

)︂
, (C.21)

which is still nonseparable since the spatial components are orthogonal. All that the

unitary transformation did was to perform a change of basis in the spatial components.

With further manipulation, we arrive at

|𝜓⟩out =

(︂
|𝑅⟩𝐴 + |𝐿⟩𝐴√

2

)︂
|ℓ⟩𝐵 + 𝑖

(︂
|𝑅⟩𝐴 − |𝐿⟩𝐴√

2

)︂
|−ℓ⟩𝐵 , (C.22)

= |𝐻⟩𝐴 |ℓ⟩𝐵 + |𝑉 ⟩𝐴 |−ℓ⟩𝐵 . (C.23)

which resembles the original mode except that the OAM components are now marked

by the horizontal (|𝐻⟩𝐴) and vertical (|𝑉 ⟩𝐴) states. We see that the channel per-

formed a simple change of basis in the spatial components which affects the polarisa-

tion field therefore mapping us onto a new HoPs sphere that is spanned by { |𝐻⟩𝐴 |ℓ⟩𝐵
, |𝑉 ⟩𝐴 |−ℓ⟩𝐵 }. Moreover, for this specific case, the relative phases between the spatial

coordinates were transferred to the polarisation components.

To obtain the original state, |𝜓⟩in, we simply need to apply a unitary transforma-

tion, �̂� = 𝑇 †
𝐵, so that

|𝜓⟩in = �̂� |𝜓⟩out . (C.24)

Therefore cancelling out the effect of the channel.
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For our example, a quarter-wave plate at an angle of 𝜃 = 45∘ maps the polarisation

field back to its original state. This is possible because the relative phase between

the spatial modes was uniform. In general the polarisation mapping can be spatially

dependent.

Alternatively, since the unitary maps the initial spatial modes basis to a new one,

we can use the new modes in the detection system. For example, if we start with the

mode

|𝜓⟩in = |𝑅⟩𝐴 |ℓ⟩𝐵 + |𝐿⟩𝐴 |−ℓ⟩𝐵 , (C.25)

, and send it through the channel 𝑇𝐵, we arrive at the new mode

|𝜓⟩out = |𝑅⟩𝐴 |𝜒1⟩𝐵 + |𝐿⟩𝐴 |𝜒2⟩𝐵 . (C.26)

where 𝑇𝐵 |±ℓ⟩𝐵 = |𝜒1,2⟩𝐵 are the transformed basis modes. In the next sections

we describe how the LG modes can generally be mapped onto new modes with the

titled lens.

C.5 Titled lens mapping

Following [361], the decomposition of LG modes into HG modes can be written as

LG𝑛,𝑚(𝑥, 𝑦, 𝑧) =
𝑘=0∑︁
𝑁

𝑖𝑘𝑏(𝑛,𝑚, 𝑘)HG𝑁−𝑘,𝑘(𝑥, 𝑦, 𝑧) (C.27)

where 𝑙 = 𝑛−𝑚, 𝑝 = min(𝑛,𝑚) and 𝑏(𝑛,𝑚, 𝑘) is given by

𝑏(𝑛,𝑚, 𝑘) =

(︂
(𝑁 − 𝑘)!𝑘!

2𝑁𝑛!𝑚!

)︂1/2
1

𝑘!

d𝑘

d𝑡𝑘
[(1 − 𝑡)𝑛(1 + 𝑡)𝑚]𝑡=0 . (C.28)

The same 𝑏 coefficients are also present when an HG mode is decomposed into
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LG𝑙
𝑝 HG modes decomposition

0,0 HG0,0

0,1 1√
2
HG1,0 + 𝑖√

2
HG0,1

0,-1 1√
2
HG1,0 − 𝑖√

2
HG0,1

0,2 −1
2
HG0,2 + 𝑖√

2
HG1,1 + 1

2
HG2,0

0,-2 −1
2
HG0,2 − 𝑖√

2
HG1,1 + 1

2
HG2,0

0,4 1
4
HG0,4 − 1

2
𝑖HG1,3 − 1

2

√︁
3
2
HG2,2 + 1

2
𝑖HG3,1 + 1

4
HG4,0

0,-4 1
4
HG0,4 + 1

2
𝑖HG1,3 − 1

2

√︁
3
2
HG2,2 − 1

2
𝑖HG3,1 + 1

4
HG4,0

Table C.2: Decomposition of LG modes into HG modes.

HG modes at 45𝑜 as in

HG𝑛,𝑚(
𝑥+ 𝑦√

2
,
𝑥− 𝑦√

2
, 𝑧) =

𝑘=0∑︁
𝑁

𝑏(𝑛,𝑚, 𝑘)HG𝑁−𝑘,𝑘(𝑥, 𝑦, 𝑧). (C.29)

Intuitively, converting an LG into an HG mode is a question of rephasing modes.

This is possible by exploiting the Gouy phase through a cylindrical lens. By using a

lens with different focal lengths for two axis, i.e. astigmatic, it is possible to change

the Rayleigh length of two coordinates independently, thus adding a relative phase to

modes of a given geometry. It means that it is not possible to convert any mode in

any direction, the nodal lines have to be parallel to the axes of the astigmatism. The

HG modes are a suitable basis because they are completely separable in the direction

of the astigmatism.

At the conversion plane, the cylindrical lens gives a 𝜋/2 phase between each HG

mode that composes the input LG mode. In this sense, the action of the tilted lens

in a given LG mode can be seen as:

LG𝑙
𝑝(𝑥, 𝑦, 𝑧) →

𝑁∑︁
𝑘=0

𝑏(𝑙 + 𝑝, 𝑝, 𝑘)HG𝑁−𝑘,𝑘(𝑥, 𝑦, 𝑧) (C.30)

for 𝑙 > 0 and

LG𝑙
𝑝(𝑥, 𝑦, 𝑧) →

𝑁∑︁
𝑘=0

𝑏(𝑝, 𝑝− 𝑙, 𝑘)HG𝑁−𝑘,𝑘(𝑥, 𝑦, 𝑧) (C.31)

otherwise.

137



Chapter C Isaac Nape 138

LG𝑙
𝑝 HG modes after conversion

0,0 HG0,0

0,1 1√
2
HG1,0 + 1√

2
HG0,1

0,-1 1√
2
HG1,0 − 1√

2
HG0,1

0,2 1
2
HG0,2 + 1√

2
HG1,1 + 1

2
HG2,0

0,-2 1
2
HG0,2 − 1√

2
HG1,1 + 1

2
HG2,0

0,4 1
4
HG0,4 + 1

2
HG1,3 + 1

2

√︁
3
2
HG2,2 + 1

2
HG3,1 + 1

4
HG4,0

0,-4 1
4
HG0,4 − 1

2
HG1,3 + 1

2

√︁
3
2
HG2,2 − 1

2
HG3,1 + 1

4
HG4,0

Table C.3: Modal decomposition of LG after a tilted lens transformation.

Alternatively, as described in [362], this astigmatic mode converter can be seen

as a unitary transformation in each mode order subspace. The definition in terms of

HG modes, which are the eigenstates of this transformation, is given by:

𝐿𝐷 =
𝐷−1∑︁
𝑚=0

𝑒𝑖(𝑚−𝑛)𝜋
4 |𝐻𝐺𝑚,𝑛⟩ ⟨𝐻𝐺𝑚,𝑛| (C.32)

where𝐷 = 𝑁+1 is the dimension of the subspace of the input mode and 𝑛 = 𝐷−𝑚−1.

C.5.1 Wave optics description

Following ref [275], the ray transfer matrix for the tilted lens M𝑇𝐿 is given by:

M𝑇𝐿 = M𝑧M𝑙𝑒𝑛𝑠M𝑧0 =

⎛⎝ A B

−C/𝑓 D

⎞⎠ (C.33)

where A, B, C, D are 2×2 diagonal matrices whose elements are 𝑐1 = sec 𝜃, 𝑐2 = cos 𝜃,

𝑎𝑗 = 1 − 𝑧𝑐𝑗/𝑓 , 𝑑𝑗 = 1 − 𝑧0𝑐/𝑓 and 𝑏𝑗 = 𝑧0 + 𝑧𝑑 for 𝑗 = 1, 2. The matrices 𝑀𝑧0 and

𝑀𝑧 describe free space propagation before and after the lens by distances 𝑧0 and 𝑧

respectively. 𝑀𝑙𝑒𝑛𝑠 describes a lens rotated around the 𝑦 axis (vertical) by an angle

𝜃. How a ray matrix is interpreted as a transfer function can be found in [363].

From the generalized Huygens-Fresnel integral, an electric field that propagates
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through this optical element is given by

𝐸2(𝑥2, 𝑦2) =
𝑖/𝜆

|𝐵|1/2

∫︁∫︁
d𝑥d𝑦𝐸1(𝑥1, 𝑦1)

× exp

[︂
−(𝑖𝜋)

𝜆
𝜑(𝑥1, 𝑥2, 𝑦1, 𝑦2)

]︂ (C.34)

where |𝐵| is the determinant of B and

𝜑(𝑥1, 𝑥2, 𝑦1, 𝑦2) =𝑥21𝑎1/𝑏1 + 𝑦2𝑎2/𝑏2 + 𝑥22𝑑1/𝑏1 + 𝑦22𝑑2/𝑏2

− 2(𝑥1𝑥2/𝑏1 + 𝑦1𝑦2/𝑏2)
(C.35)

is the applied phase.

C.6 Basis dependent and basis independent non-

separability measurements

A classical vector light field represents a hybrid-entanglement system, where the po-

larization and spatial mode degrees of freedom (DoFs) are non-separable. Since our

one sided channel only affects the spatial mode DoF it is expected that a spatial

mode basis dependent non-separability measurement should be affected by the chan-

nel while a basis independent measurement should remain invariant. We have show

that the mode dependent non-separability is recoverable if the spatial mode basis is

appropriately chosen. This is an important development as it allows for the recovery

of mode dependent quantum correlations across such channels [274]. In this section

we will outline the basis independent non-separability measurement based on Stokes

intensity projections as well as the basis dependent non-separability measurement

based on spatial mode projections of orthogonally polarized components - both of

which are based on the quantum mechanical concept of concurrence.

C.6.1 Basis independent non-separability

Consider a vector field of the form
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|Ψ⟩ = |𝐻⟩𝐴 |𝜓𝐻⟩𝐵 + |𝑉 ⟩𝐴 |𝜓𝑉 ⟩𝐵 (C.36)

where |𝜓𝐻,𝑉 ⟩𝐵 are arbitrary unnormalized spatial modes. We can then expand

the spatial modes into some orthonormal two dimensional basis set |𝜓±⟩𝐵, giving the

general form

|Ψ⟩ = 𝑎|𝐻⟩𝐴|𝜓+⟩𝐵 + 𝑏|𝐻⟩𝐴|𝜓−⟩|𝐵

+ 𝑐|𝑉 ⟩𝐴|𝜓+⟩𝐵 + 𝑑|𝑉 ⟩𝐴|𝜓−⟩|𝐵. (C.37)

This state has a concurrence given by 𝐶(|Ψ⟩) = 2|𝑎𝑑−𝑏𝑐|. By selecting a negligible

global phase, we can express the orthonormal states as [209]

|𝜓±⟩ =
1√︁

2(1 ± ⟨𝜓𝐻 |𝜓𝑉 ⟩)
(|𝜓𝐻⟩ ± |𝜓𝑉 ⟩), (C.38)

where |𝜓𝐻,𝑉 ⟩ = |𝜓𝐻,𝑉 ⟩/⟨𝜓𝐻,𝑉 |𝜓𝐻,𝑉 ⟩. This gives a concurrence 𝐶(|Ψ⟩) = 2
√︀

⟨𝜓𝐻 |𝜓𝐻⟩⟨𝜓𝑉 |𝜓𝑉 ⟩ − |⟨𝜓𝐻 |𝜓𝑉 ⟩|2.

Since we now have the concurrence expressed in terms of the initial arbitrary unnor-

malized spatial components we can use the spatially varying Stokes parameters 𝑆 ′
𝑖(r)

(r being the rtansverse spatial coordinates), to retrieve the degree of non-separability

using the global Stokes parameters, 𝑆𝑖 =
∫︀

d2r𝑆 ′
𝑖, by exploiting the following rela-

tionships:

𝑆0 = ⟨𝜓𝐻 |𝜓𝐻⟩ + ⟨𝜓𝑉 |𝜓𝑉 ⟩, (C.39)

𝑆1 = ⟨𝜓𝐻 |𝜓𝐻⟩ − ⟨𝜓𝑉 |𝜓𝑉 ⟩, (C.40)

𝑆2 = ⟨𝜓𝐻 |𝜓𝑉 ⟩ + ⟨𝜓𝑉 |𝜓𝐻⟩, (C.41)

𝑆3 = 𝑖(⟨𝜓𝐻 |𝜓𝑉 ⟩ − ⟨𝜓𝑉 |𝜓𝐻⟩), (C.42)

This convenient result allows us to determine the non-separability in a basis in-

dependent manner according to 𝐶(|Ψ⟩) =
√︀

1 − (𝑆2
1 + 𝑆2

2 + 𝑆2
3)/𝑆2

0 . In this work the
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Stokes parameters were determined (for convenience) by the measurement of the re-

duced set of four Stokes intensities (𝐼𝐻 , 𝐼𝐷, 𝐼𝑅 and 𝐼𝐿), where 𝐼𝑖 = ⟨𝜓𝑖|𝜓𝑖⟩) - according

to

𝑆0 = 𝐼𝑅 + 𝐼𝐿, (C.43)

𝑆1 = 2𝐼𝐻 − 𝑆0, (C.44)

𝑆2 = 2𝐼𝐷 − 𝑆0, (C.45)

𝑆3 = 𝐼𝑅 − 𝐼𝐿. (C.46)

The four intensity projections were acquired through the use of a linear polarizer

(for 𝐼𝐻 and 𝐼𝐷) together with a quater-wave plate (for 𝐼𝑅 and 𝐼𝐿) [211].

C.6.2 Basis dependent non-separability

Consider a vector field of the form

|Ψ⟩ = |𝐻⟩𝐴 |𝜓𝐻⟩𝐵 + |𝑉 ⟩𝐴 |𝜓𝑉 ⟩𝐵 . (C.47)

The concurrence can be determined from 𝐶(Ψ) =
√

1 − 𝑠2 where 𝑠 is the length of

the vector when maps the state to a Bloch sphere defined by a chosen orthogonal set

of orthonormal basis spatial modes |𝜓1,2⟩ (resulting in the measurements dependence

on this choice of basis) - given by

𝑠 =

(︃∑︁
𝑖

⟨𝜎𝑖⟩2
)︃1/2

, (C.48)

where ⟨𝜎𝑖⟩ are the expectation values of the Pauli matrices [360]. We can determine

these expectation values using projections ⟨𝑃 | into superpositions of the spatial basis

components described by

⟨𝑃𝑗| = 𝛼𝑗⟨𝜓1| + 𝛽𝑗⟨𝜓2| . (C.49)
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Figure C-1: Basis dependent measurement for tilted lens with input mode of ℓ = 1.

Figure C-2: Basis dependent measurement for tilted lens with input mode of ℓ = 4.

With (𝛼, 𝛽) = {(1, 0), (0, 1), 1√
2
(1, 1), 1√

2
(1,−1),

1√
2
(1, 𝑖), 1√

2
(1,−𝑖)} for both |𝐻⟩ and |𝑉 ⟩. These 12 on axis intensity projections are

used to calculate the length of the Bloch vector according to

⟨𝜎1⟩ = (𝐼13 + 𝐼23) − (𝐼14 + 𝐼24) (C.50)

⟨𝜎2⟩ = (𝐼15 + 𝐼25) − (𝐼16 + 𝐼26) (C.51)

⟨𝜎3⟩ = (𝐼11 + 𝐼21) − (𝐼11 + 𝐼22) (C.52)

where the 𝑖 index of 𝐼𝑖𝑗 corresponds to the ⟨𝐻,𝑉 | polarization projections and

the 𝑗 index represents the spatial mode projections defined above. In this work the

projections into the horizontal and vertical polarization components was achieved

using a linear polarizer. The subsequent spatial mode projections were performed

using a correlation filter encoded into a digital micro-mirror device (DMD), and a

Fourier lens to produce on-axis intensities 𝐼𝑖𝑗.
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In Fig. C-1 and C-2 we can see basis dependent measurements for the vector

mode depicted in section C.4 when passed through a tilted lens. While in Fig. C-1

the OAM state is ℓ = 1 and we can see a simple shift in basis, in Fig. C-2 the

OAM state is ℓ = 4 there is considerable crosstalk. These measurements were used

to calculate the VQF values in Fig. 4-5(a).

C.7 Basis independent VQF propagation of uncer-

tainty

To record our intensity images, we used a FLIR Grasshopper3 CCD camera oper-

ating at 16-bit depth. Therefore the measurement uncertainty in a single pixel of a

given normalized intensity image is ∆𝑚𝑒𝑎𝑠 ≈ 7.63 × 10−6. The propagation of this

uncertainty into a pixel in a calculated Stokes parameter is then ∆𝑆′
𝑖

=
√︀

2∆2
𝑚𝑒𝑎𝑠,

while the uncertainty in the global parameters gains dependence in the number of

pixels (𝑁) integrated over ∆𝑆𝑖
=
√︀

2∆2
𝑚𝑒𝑎𝑠𝑁

2. Finally the uncertainty in the VQF

is a function of the measured VQF, 𝑁 and ∆𝐼 according to

∆𝑉 𝑄𝐹 =

√︀
8∆2

𝑚𝑒𝑎𝑠𝑁
2

𝑉 𝑄𝐹
. (C.53)

In this work 𝑁 ∈ [100, 480] to accommodate changes in beam size (e.g. due to

propagation from the tilted lens). Therefor our ∆𝑉 𝑄𝐹 ∈ [2.16 × 10−3, 1.04 × 10−2].

C.8 Stokes Parameters

In order to represent spatially non uniform polarisation, the following Stokes pa-

rameters were calculated using the intensity data from polarisation projections, as

described in the Methods section. In Fig. C-3 are the Stokes parameters for Fig. 4-2.

The insets show the input modes and the respective parameters are in C-3(a). When

propagating through a tilted lens, the transformation of the polarisation structure

can be seen in Fig. 4-2(c) and their respective parameters can be seen in C-3(b).
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Figure C-3: Stokes Parameters for transverse modes going through a tilted lens
in Fig. 4-2. Column (a) Shows the parameters for the modes on the inset of Fig. 4-2(a).
The set of Fig. 4-2 (b) show the parameters for the modes depicted in Fig. 4-2(c) in
sequence.The minimum and maximum values are {0, 1} for 𝑆0 and {−1, 1} for 𝑆1,2,3.
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Mode VQF value VQF error
Figure 1(a)

ℓ = 1 0.996952 ±0.002164
ℓ = 4 0.999133 ±0.003239

Figure 1(c)
𝑧1,ℓ = 1 0.991797 ±0.003263
𝑧1,ℓ = 4 0.961124 ±0.004715
𝑧2,ℓ = 1 0.974518 ±0.004871
𝑧2,ℓ = 4 0.960012 ±0.006294
𝑧3,ℓ = 1 0.931651 ±0.008339
𝑧3,ℓ = 4 0.952852 ±0.010871

Figure 2(f)
In (Row 1) 0.999133 ±0.003239

Out (Row 1) 0.960012 ±0.006294
In (Row 2) 0.989600 ±0.003271

Out (Row 2) 0.991154 ±0.003266
Figure 2(g)

Input 0.999707 ±0.008634
Tilted Lens 0.998234 ±0.008647

QWP 0.988016 ±0.008737
Figure 4(e)

In 0.999418 ±0.002807
Out 0.991506 ±0.002829

Figure 4(f)
In 0.995465 ±0.002818

Out 0.995430 ±0.002818

Table C.4: VQF Values and errors.

Figure C-4 shows the stokes parameters for modes in Fig. 4-4. In Fig. 4-4(c) we

show pre-channel correction, with the respective parameters in C-4(a). In Fig. 4-4(d)

we show post-channel correction and the respective parameters are in C-4(b).

In Fig. C-5 are the parameters used to show the polarisation structure in Fig. 4-6

(e) and (f). In (a) are the parameters for Fig. 4-6(e) where left corresponds to ”In”

mode and right to ”Out” mode. In (b) are the parameters for Fig. 4-6(f) where left

is ”In” and right is ”Out”.
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Figure C-4: Stokes Parameters for the correction of modes depicted in Fig. 4-4.
Row (a) Shows the parameters for Fig. 4-4(c). On the second row (b) are the parameters
for Fig. 4-4(d). The minimum and maximum values are {0, 1} for 𝑆0 and {−1, 1} for 𝑆1,2,3.

Figure C-5: Stokes Parameters for modes affected by turbulence depicted in Fig.
4-6. (a) Shows the parameters for Fig. 4-6(e) In (left) and Out (right). (b) Shows the
parameters for Fig. 4-6(f) In (left) and Out (right). The minimum and maximum values
are {0, 1} for 𝑆0 and {−1, 1} for 𝑆1,2,3.
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Appendix D

Supporting data for multi-mode

SMF fiber channel

D.0.1 Modal spectrum data after the two meter fiber

We also evaluate the mode spectrum after transmitting through 2 m SMF (ℓ = ±1

subspace) and in free space (ℓ = ±2 subspace). Figure D-1(a) demonstrates the mode

spectrum of ℓ = 1 subspace after transmitting through 2 m fibre. The measured mode

spectrum of ℓ = ±2 subspace in free space is illustrated in Fig. D-1(b). We get ℓ = ±2

subspace by using two 𝑞-plates with one half-wave plate (HWP) inserted in between.

D.0.2 Supporting density matrix reconstruction data

We also perform the quantum state tomographies for ℓ = ±1 subspace through 2

m fibre transmission and ℓ = ±2 subspace in free space as shown in Figs. D-2(a)

and D-2(b), respectively. The reconstructed density matrices are demonstrated with

fidelity 94% for ℓ = ±1 subspace through 2 m fibre transmission and 93% for ℓ = ±2

subspace in free space.
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Figure D-1: The measured mode spectrum of (a) ℓ = ±1 subspace after transmitting
through 2 m SMF and (b) ℓ = ±2 subspace in free space by projecting photon A onto a
polarisation state and decomposing the OAM of photon B while measuring the coincidence
count rate.

D.0.3 Supporting quantum eraser data

We also carry out a non-locality test in the 2 m SMF. As shown in Figs. D-3(a) and

D-3(b) we get the 𝑆 = (2.71 ± 0.04) and 𝑆 = (2.51 ± 0.04) for subspace ℓ = ±1 in

2 m SMF and ℓ = ±2 subspace in free space, respectively. Furthermore, we realize

quantum eraser with polarisation-OAM hybrid entangled photon in the 2 m SMF.
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Figure D-2: Experimental tomography measurements upon transmitting photon A through
(a) 2 m SMF for ℓ = ±1 subspace and in (b) free space for ℓ = ±2 subspace. The bottom
panels show the reconstructed density matrices through 2 m SMF for ℓ = ±1 subspace and
in free space for ℓ = ±2 subspace, respectively.

By defining the two distinct paths using the OAM degree of freedom, we have shown

that through polarisation-OAM hybrid entanglement, it is possible to distinguish (V

= 0.09 ± 0.01) and erase (V = 0.97 ± 0.002) the OAM path information of a photon

through the polarisation control of its entangled twin in 2 m SMF.

D.0.4 Tabulated concurrence and fidelity data

ℓ = ±1 ℓ = ±2
F 𝐹𝑛 C 𝐶𝑛 F 𝐹𝑛 C 𝐶𝑛

Free-space 95% 100% 0.91 1.00 93% 100% 0.88 1.00
2m 94% 99% 0.89 0.98 ∖ ∖ ∖ ∖

250m 90% 95% 0.82 0.90 86% 92% 0.77 0.88

Table D.1: Fidelity and concurrence values in free space, through 2 m SMF and 250 m SMF
for ℓ = ±1 and ℓ = ±2 subspaces.

Here we represent all the fidelity and concurrence values in Table D.1. F and C
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Figure D-3: Measured correlations between photon A (polarisation) and photon B (OAM)
in (a) the ℓ = ±1 subspace after 2 m SMF and in (b) the ℓ = ±2 subspace for free space
propagation. (c) Experimental coincidence count-rates for distinguishing and erasing the
OAM (ℓ = ±1 subspace) of photon B upon transmitting photon A through 2 m SMF.

stand for fidelity and concurrence, while 𝐹𝑛 and 𝐶𝑛 stand for Fidelity and concurrence

normalized to the values in free space for corresponding ℓ subspaces. Since we focus

on the difference between free space and SMF transmission, comparing fidelity and

concurrence values normalized to free space let the actual performance in SMF stand

out. If the free space fidelity is 𝐹1 and the fidelity through 250 m SMF is 𝐹2 then

the actual performance can be described as 𝐹𝑛 = 𝐹2

𝐹1
. This works for all fidelity and

concurrence as well.
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Appendix E

E.1 Dimensionality of Pure States

To quantify dimensionality, we adopt the definition of Schmidt number from Ref. [72]

for pure states and later show how it can be used to determine the Schmidt rank

[71, 330]. The former, which we shall use in this thesis, determines the number of

modes needed to describe the state irrespective of the spectrum shape. Consider

the Schmidt basis states, |𝑗⟩ |𝑗⟩, spanning a high dimensional Hilbert space for two

photons, i.e. ℋ⊗ℋ. Using this basis, we can describe a nonseparable entangled state

as

|Ψ⟩ =
∞∑︁
𝑗=0

𝜆𝑗 |𝑗⟩ |𝑗⟩ , (E.1)

where |𝜆𝑗|2 is the probability of detecting the biphoton state |𝑗⟩ |𝑗⟩. The dimension-

ality of such a state can be obtained from

𝐾 =

(︁∑︀
𝑗 |𝜆𝑗|2

)︁2∑︀
𝑗 |𝜆𝑗|4

. (E.2)

Examples of various types of distributions for |𝜆𝑗|2 are shown in Fig. E-1 for 𝐾 = 21

for the OAM basis where the Schmidt basis modes have the form |ℓ⟩ |−ℓ⟩ ∈ ℋ ⊗ℋ.

The distributions are: a square distribution, corresponding to a maximally entangled

state within a given ℓ-range,

𝜆ℓ = 1/
√

2𝐿+ 1, |ℓ| ≤ 𝐿; (E.3)
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Figure E-1: Modal spectrum shapes. Examples of various OAM (ℓ) distributions for a
quantum source possessing OAM entanglement.

a Gaussian (normal) distribution

|𝜆ℓ𝑔 |2 ∝ exp

[︂
−|ℓ|2

𝛾2𝐺

]︂
, (E.4)

where 𝛾𝐺 scales with the width of the distribution; a SPDC source [85,86]

|𝜆ℓ𝑆 |2 ∝
(︂

2𝛾2𝑆
1 + 𝛾2𝑆

)︂|ℓ|

, (E.5)

where 𝛾𝑆 is determined by the experimental conditions; and a Lorentz distribution

|𝜆ℓ𝐿|2 ∝
1

𝜋𝛾𝐿

(︁
1 + ℓ2

𝛾2𝐿

)︁ , (E.6)

where 𝛾𝐿 is a scaling parameter.

For convenience, we relate the Schmidt number to the scaling parameters as, 𝛾𝑆 ≈√︀
(𝐾 − 1)/4 and 𝛾𝐺 ≈ 2.5066𝐾 for the SPDC and normal distributions, respectively.

Later, we show how one can use the dimensional (K) together with purity to deduce
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the Schmidt rank (entanglement dimensionality) [71] for mixed states. Moreover

these definitions are not restricted to the SPDC modes or OAM modes. We will

in subsequent sections show how the technique can be extended to other degrees of

freedom.

E.2 High dimensional state projections

To introduce the projections required for our technique, we will describe them in the

OAM basis and later generalise them to other degrees of freedom, i.e. the pixel basis.

We take this approach since the projections were initially discovered in the OAM

basis [345]. We can represent our analysers on the high dimensional Hilbert space

using the OAM basis modes |ℓ⟩ ∈ ℋ∞ as

|𝑀,𝛼⟩ =
∞∑︁

ℓ=−∞

𝑐ℓ,𝑀(𝛼) |ℓ⟩ , (E.7)

where the complex coefficients, 𝑐ℓ,𝑀(𝛼), are computed from the overlap integral,∫︀
𝑒−𝑖ℓ𝜑𝑒𝑖Φ𝑀 (𝜑;𝛼) 𝑑𝜑. Here 𝑒𝑖Φ𝑀 (𝜑;𝛼) is the azimuthally dependent mode characteriz-

ing the analyser orientated at an angle 𝛼. These modes project onto fractional OAM

states [345]. Note that a complete decomposition would require an expansion onto a

complete basis that includes the radial component. For brevity, we restrict ourselves

to the azimuthal degree of freedom, consistent with [345].

By computing the overlap integral, one arrives at complex amplitudes

𝑐ℓ,𝑀(𝛼) = −𝑖𝑒
−𝑖ℓ𝛼 sin (𝜇𝜋)

𝜋(𝑀 − ℓ)
, (E.8)

with 𝜇 representing the fractional part of the total charge 𝑀 . The detection proba-

bility for each OAM mode with charge ℓ is therefore

𝑃ℓ = |𝑐ℓ,𝑀(𝛼)|2 =
sin2(𝜇𝜋)

𝜋2(𝑀 − ℓ)2
, (E.9)

consistent with probability amplitudes computed in [345] for fractional OAM states.
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We have shown that fractional OAM modes project onto the high dimensional

state space of OAM modes with complex amplitudes given by Equation (E.8). Next,

we tailor new amplitudes and phases by superimposing rotated fractional OAM modes

|𝑀,𝛼⟩𝑛 = 𝒩
𝑛−1∑︁
𝑘=0

|𝑀,𝛽𝑘 ⊕ 𝛼⟩ , (E.10)

where 𝒩 is a normalization constant. Each fractional mode in this superposition has

the same charge, 𝑀 , but is rotated by an angle 𝛽𝑘 ⊕ 𝛼 = mod {𝛽𝑘 + 𝛼, 2𝜋}, with

𝛽𝑘 = 2𝜋
𝑛
𝑘. In the OAM basis, Equation (E.10) becomes

|𝑀,𝛼⟩𝑛 =𝒩
𝑛−1∑︁
𝑘=0

{︃∑︁
ℓ

𝑐ℓ,𝑀(𝛽𝑘 ⊕ 𝛼) |ℓ⟩

}︃
,

=𝒩
∑︁
ℓ

𝑐𝑛ℓ,𝑀(𝛼) |ℓ⟩ , (E.11)

where the coefficients 𝑐𝑛ℓ,𝑀(𝛼) are computed from

𝑐𝑛ℓ,𝑀(𝛼) =
𝑛−1∑︁
𝑘=0

𝑐ℓ,𝑀(𝛽𝑘 ⊕ 𝛼). (E.12)

Using Equation (E.8) and the condition mod {𝛽𝑘 ⊕ 𝛼, 2𝜋} = 0, we obtain

𝑐𝑛ℓ,𝑀(𝛼) = 𝑐ℓ,𝑀(𝛼)
𝑛−1∑︁
𝑘=0

𝑒𝑖𝛽𝑘ℓ. (E.13)

Since the summation can be evaluated as a geometric series, after some simplification

it results in
𝑛−1∑︁
𝑘=0

𝑒𝑖𝛽𝑘ℓ = 𝑒−𝑖𝜋ℓ(𝑛−1)/𝑛 csc

(︂
𝜋ℓ

𝑛

)︂
sin(𝜋ℓ).

Therefore the coefficients can be written as

𝑐𝑛ℓ,𝑀(𝛼) =𝑒−𝑖𝜋ℓ(𝑛−1)/𝑛𝐴𝑛ℓ 𝑐ℓ,𝑀(𝛼) , (E.14)
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where

𝐴𝑛ℓ = csc

(︂
𝜋ℓ

𝑛

)︂
sin (𝜋ℓ) ,

=

⎧⎪⎨⎪⎩
0 mod {ℓ, 𝑛} ≠ 0

1 mod {ℓ, 𝑛} = 0

. (E.15)

Consequently, the overlap probabilities are 𝑃ℓ,𝑛 = |𝒩 𝐴𝑛ℓ 𝑐ℓ,𝑀(𝛼)|2. Importantly, the

probabilities are independent of 𝛼. Accordingly, the new spectrum has the amplitudes

|𝑐ℓ,𝑀 |, but following the selection rule 𝐴𝑛ℓ . Indeed, this new spectrum can be tuned

by carefully selecting 𝑛, therefore enabling control of the OAM subspaces.

E.3 Decomposition of Entangled Photons

Our fractional OAM analysers can be decomposed into the OAM basis using entangled

photons through digital spiral imaging. In this scheme, one photon from an entangled

pair interacts with the analyser while its twin is decomposed in the OAM basis. The

entangled photon pair has a biphoton state

|Ψ⟩ =
𝐿∑︁

ℓ=−𝐿

𝜆ℓ |ℓ⟩ |−ℓ⟩ . (E.16)

The probability amplitude for detecting the 𝑚th OAM mode, given a M charged

fractional mode of 𝑛 superpositions, is

𝑐𝑛𝑚(𝛼) =ℳ⟨𝑚| ⟨𝑀,𝛼|𝑛|Ψ|𝑀,𝛼|𝑛|Ψ⟩ ,

=ℳ
𝐿∑︁

ℓ=−𝐿

𝜆ℓ ⟨𝑚|ℓ|𝑚|ℓ⟩ ⟨𝑀,𝛼|𝑛| − ℓ|𝑀,𝛼|𝑛| − ℓ⟩ . (E.17)

where ℳ is a normalisation constant such that
∑︀

𝑚 |𝑐𝑛𝑚(𝛼)|2 = 1. Due to the or-

thonormality of the OAM basis, the overlap ⟨𝑚|ℓ|𝑚|ℓ⟩ is simply the Kronecker delta

function 𝛿𝑚,ℓ, which evaluates as 0 if ℓ ̸= 𝑚 or 1 if ℓ = 𝑚. Since from Equation

(E.14) we know the expansion coefficients for the analyser in terms of the OAM
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 c  a  b 

Figure E-2: Modal decomposition of the state projectors. Measured (bars) and
theoretical spectrum (points) for fractional OAM analysers (a) |𝑀,𝛼⟩𝑛 = |0.5, 0⟩1, (b)
|𝑀,𝛼⟩𝑛 = |1.5, 0⟩3, and (c) |𝑀,𝛼⟩𝑛 = |2.5, 0⟩5 resulting from digital spiral imaging with
entangled photons. Here the weightings are modulated by the OAM spectrum of the en-
tanglement source according to Equation (E.18).

basis, ⟨𝑀,𝛼|𝑛|ℓ|𝑀,𝛼|𝑛|ℓ⟩ evaluate as

𝑐𝑛𝑚(𝛼) =ℳ
𝐿∑︁

ℓ=−𝐿

𝛿𝑚,ℓ𝜆ℓ
[︀
𝒩 𝑐𝑛−ℓ(𝛼)

]︀*
=ℳ𝒩 𝜆𝑚

[︀
𝑐𝑛−𝑚(𝛼)

]︀*
. (E.18)

These new weightings are simply the original coefficients of the analysers modulated

by the spectrum of the entangled system. For a maximally entangled state, we obtain

the expression |𝑐𝑛𝑚(𝛼)|2 = |𝑐𝑛−𝑚(𝛼)|2, being the original weightings of the analyser, as

desired.

In Fig. E-2 we show the measured weightings for our SPDC system which has a

normal distribution of OAM modes with ∆ℓ = 11 centered at ℓ = 0. We show results

for |𝑀,𝛼⟩𝑛 = |0.5, 0⟩1 , |1.5, 0⟩3 , |2.5, 0⟩5 for analysers 𝑛 = 1, 3 and 5 in Fig. E-2(a),

(b) and (c), respectively. It can be seen that the theory (points) and experiment

(bars) are in good agreement. To obtain these results, two photons where generated

from an SPDC source and modulated with SLMs. One SLM was encoded with a

fractional OAM mode projecting onto the state, |𝑀, 0⟩𝑛, while the second SLM was

encoded with OAM basis modes, |ℓ⟩.
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Figure E-3: Detection probability vs relative orientation and dimensionality. Sim-
ulated normalised probability curves for (a) 𝑛 = 1, (b) 𝑛 = 3, (c) 𝑛 = 5 and (d) 𝑛 = 7, with
an analyser corresponding to 𝑀 = 𝑛

2 , as a function of the relative orientation 𝜃 between
the two analysers and the dimensions, 𝐾, of the entanglement state. The bottom row of
panels are probability curves for specific 𝐾 values for each analyser. The normalisation to
unity was performed to illustrate the impact of the dimensions on the visibility. Here, the
OAM spectrum shape was assumed to follow a normal (Gaussian) distribution.

E.4 Detection Probability

Given a bipartite system of the form of Equation (E.16), we want to know what

the detection probability is, due to the relative rotations of our fractional OAM

analysers acting on the entangled photons. Suppose the first analyser projects onto

the state |𝑀, 𝜃1⟩𝑛, and the second analyser projects on the state |−𝑀, 𝜃2⟩𝑛. A joint

measurement on a two photon system using the two analysers is characterized by the

product state |𝑀, 𝜃1⟩𝑛 |−𝑀, 𝜃2⟩𝑛. The probability amplitude resulting from such a

measurement is

𝐶𝑛(𝜃1, 𝜃2) = 𝑛 ⟨𝜃2,−𝑀 | 𝑛 ⟨𝜃1,𝑀 |Ψ⟩

=
∞∑︁

ℓ=−∞

𝜆ℓ 𝑛 ⟨𝜃1,𝑀 |ℓ⟩ 𝑛 ⟨𝜃2,−𝑀 |−ℓ⟩ . (E.19)

Therefore we only need to know how to decompose each of the analysers in the

OAM basis to obtain the detection probability for the joint measurements. Using
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a b c

Figure E-4: Visibility of entangled pure states with differing spectral shapes. Con-
tour plots of visibility vs dimensionality (𝐾) and 𝑛 (indexing the projection state |𝑀, 𝜃⟩𝑛)
for the (a) Normal, (b) SPDC theory and (c) maximally uniform distribution (or maxi-
mally entangled pure state). Here we demonstrate the sensitivity of the analysers to the
dimensions of a OAM entanglement. The visibilities from the maximally entangled state
demonstrates the minimum number of modes required to have a visibility 𝑉 = 1.

Equation (E.14), it follows that

𝐶𝑛(𝜃1, 𝜃2) ∝
∞∑︁

ℓ=−∞

𝜆ℓ⏟ ⏞ 
SPDC

[ 𝑐𝑛ℓ,𝑀(𝜃1)⏟  ⏞  
analyser

𝑐𝑛−ℓ,−𝑀(𝜃2)⏟  ⏞  
analyser

]*. (E.20)

We use this approach to numerically calculate the detection probabilities |𝐶𝑛(𝜃1, 𝜃2)|2

by simply calculating the probability amplitudes for each analyser in the OAM ba-

sis with a desired rotation 𝜃1,2 and multiplying them with the coefficients 𝜆ℓ that

determine the quantum system being probed.

An alternative approach, can be to compute the overlap integral by considering

the modal overlaps in the azimuthal degree of freedom, 𝜑, following

𝑛 ⟨𝜃,𝑀 |ℓ⟩ =
1

2𝜋

∫︁
exp(−𝑖Φ𝑀(𝜑; 𝜃)) × exp(𝑖ℓ𝜑) 𝑑𝜑, (E.21)

with Φ𝑀(𝜑; 𝜃)/
√

2𝜋 being the transmission function of the fractional OAM analyser

projecting onto the state |𝑀, 𝜃⟩𝑛. We can rewrite the probability amplitude 𝐶𝑛(𝜃1, 𝜃2)
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as an overlap integral given by

𝐶𝑛(𝜃1, 𝜃2) =
1

4𝜋

∞∑︁
ℓ=−∞

(︀
𝜆ℓ

∫︁
𝑒−𝑖Φ𝑀 (𝜑1;𝜃1)𝑒𝑖ℓ𝜑1

×
∫︁
𝑒−𝑖Φ−𝑀 (𝜑2;𝜃2)𝑒−𝑖ℓ𝜑2 𝑑𝜑1𝑑𝜑2

)︀
, (E.22)

where Φ±𝑀(𝜑1,2, 𝜃1,2) are the phases of the fractional OAM analysers. Since 𝑒−𝑖Φ𝑀 (𝜑1;𝜃1)

has no ℓ dependence, we can introduce the summation into the second integral re-

sulting in

𝐶𝑛(𝜃1, 𝜃2) =
1

2𝜋

∫︁
𝑒−𝑖Φ𝑀 (𝜑1;𝜃1)

(︀ ∫︁
𝑒−𝑖Φ𝑀 (𝜑2;𝜃2)

× 1

2𝜋

∞∑︁
ℓ=−∞

𝜆ℓ𝑒
𝑖ℓ(𝜑1−𝜑2)𝑑𝜑2

)︀
𝑑𝜑1. (E.23)

It is convenient to define the periodic function

Λ(𝜑1 − 𝜑2) =
1

2𝜋

∞∑︁
ℓ=−∞

𝜆ℓ𝑒
𝑖ℓ(𝜑1−𝜑2), (E.24)

with angular harmonics 𝑒𝑖ℓ(𝜑1−𝜑2) determined by the coefficients 𝜆ℓ, and use it to

rewrite 𝐶𝑛(𝜃1, 𝜃2) as

𝐶𝑛(𝜃1, 𝜃2) =
1

2𝜋

∫︁
𝑒−𝑖Φ𝑀 (𝜑1;𝜃1)(︂∫︁

𝑒−𝑖Φ𝑀 (𝜑2;𝜃2)Λ(𝜑1 − 𝜑2)𝑑𝜑2

)︂
𝑑𝜑1. (E.25)

Notice that the second integral is a convolution between Λ(𝜑1 − 𝜑2) and the second

analyser. As a example, we consider a maximally entangled state (𝜆ℓ := constant).

In this case, Λ(𝜑1 − 𝜑2) = 𝛿(𝜑1 − 𝜑2) and therefore

𝐶𝑛(𝜃1, 𝜃2) =
1

2𝜋

∫︁
𝑒−𝑖Φ𝑀 (𝜑;𝜃1) 𝑒−𝑖Φ−𝑀 (𝜑;𝜃2)𝑑𝜑. (E.26)

The integral now only depends in the transmission functions of the analysers with an
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analytical solution found in [364].

We now calculate the probability 𝑃𝑛(𝜃1, 𝜃2) = |𝐶𝑛(𝜃1, 𝜃2)|2 as a function of relative

orientation 𝜃 = (𝜃1 − 𝜃2) between the two analysers and the dimensions, 𝐾, of an

entangled system with some given OAM spectrum |𝜆ℓ|2. The latter is embedded in

the function Λ(𝜑1−𝜑2). Figures E-3(a)-(d) show examples of the probability surfaces

assuming a normal (Gaussian) spectrum |𝜆ℓ|2 for superposition states 𝑛 = 1, 3, 5

and 7. In the second row of Fig. E-3, we show examples of the probability curves

normalised to unity for several values of dimensionality 𝐾. Here, it can be seen that

the frequency of the probabilities as a function of 𝜃 increases with 𝑛, owing to the

n-fold symmetry in the phase profiles of the analysers.

Crucially, the exact shape and visibility of the curves depends on both the dimen-

sions (𝐾) of the state being probed and the number of superpositions (𝑛). For all

𝑛’s, the visibility for a specific 𝐾 shows a decreasing trend as the number of super-

positions 𝑛 are increased. Therefore the analysers are sensitive to the dimensions of

the system.

We also found that the shape of the spectrum affects the measured probabilities, as

illustrated in Fig. E-4(a)-(c) for the normal (Gaussian), SPDC and square (maximally

entangled) distributions, respectively.

Now that we have shown how the detected probabilities depended on the dimen-

sions and superposition states measured, in the following section we study the relation

between the visibility and dimensions quantitatively.

E.5 Visibility for Different Spectra

The visibilities are calculated from detection probabilities resulting from the projec-

tions of an entangled state with an initial OAM distribution |𝜆ℓ|2 onto the states

|𝑀, 0⟩𝑛 |−𝑀, 𝜃⟩𝑛, where 𝜃 ∈ [0, 2𝜋] is their relative rotation.

For example, for a square (uniform) (𝐾 → ∞) distribution and 𝑛 superpositions

160



Chapter E Isaac Nape 161

of fractional modes the probability is given by [364]

𝑃 (𝜃1, 𝜃2) =|𝐶(𝜃1, 𝜃2)|2

=𝑎 sin2

(︂
𝑀𝜋

𝑛

)︂
+ cos2

(︂
𝑀𝜋

𝑛

)︂
, (E.27)

with 𝑎 = (𝜋(2𝑡−1)−𝑛𝜃)2/𝜋2 for 2𝜋
𝑛

(𝑡−1) ≤ 𝜃 ≤ 2𝜋
𝑛

(𝑡), 𝑡 = 1, ..., 𝑛, where 𝑡 indexes

each 2𝜋/𝑛 period over the range of 0 ≤ 𝜃 < 2𝜋 and 𝜃 = 𝜃1 − 𝜃2. This oscillating

function results in fringes with a visibility function given by

𝑉𝑛(𝑀) =
1 − cos2

(︀
𝑀𝜋
𝑛

)︀
1 + cos2

(︀
𝑀𝜋
𝑛

)︀ . (E.28)

For 𝑛 = 1, parabolic fringes with perfect visibility occur when 𝑀 = ℓ + 0.5 for all

OAM integer charges ℓ. In contrast, when 𝑛 > 1 high visibility fringes occur for only

specific choices of 𝑛 and 𝑀 . That is, parabolic fringes with high visibility (𝑉 = 1)

are expected when 𝑛 is odd and mod
{︀
𝑀 − 𝑛

2
, 𝑛
}︀

= 0.

Contour plots of the visibilities with changing dimensions (𝐾) and fractional OAM

superpositions (𝑛) for various OAM spectral shapes (Normal, SPDC, Uniform) are

shown in Fig. E-4 (a)-(c) for pure states. As shown, the assumed spectrum can affect

the visibility that is measured for various superpositions (𝑛). The visibilities for each

analyser (𝑛) and spectrum shape are monotonic with increasing 𝐾. In particular,

for the uniform spectrum (maximal entanglement in K dimensions) the visibility is

1 above some 𝐾 = 𝑑𝑛 and zero below this. We further exploit this property to

determine the dimensionality of an entanglement system.

E.6 Visibility of Mixed States

The visibilities that can be measured with our analysers are not only dependent on

the effective dimensions of the system but also the purity. In particular, we consider

the isotropic state,
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𝜌𝑝 = 𝑝 |Ψ𝑑⟩ ⟨Ψ𝑑| +
1 − 𝑝

𝑑2
I𝑑2 , (E.29)

which can decomposed into the high-dimensional entangled state, |Ψ𝑑⟩, and the sepa-

rable and mixed state, 1/𝑑2I𝑑2 = 1/𝑑2
∑︀ℓ,ℓ′=𝐿

ℓ,ℓ′=−𝐿 |ℓ⟩ |ℓ′⟩ ⟨ℓ′| ⟨ℓ|, where I𝑑2 is the identity

operator. Such states model quantum systems that have noise contributions from the

environment. Here 𝑝 can be associated with the purity of the state ranging from a

maximally mixed (𝑝 = 0) to a pure state (𝑝 = 1). Interestingly, the isotropic state is

separable for 𝑝 ≤ 1/(𝑑+1) and entangled otherwise. Importantly, the generalised Bell

inequality can also be violated when 𝑝 > 2/𝑆𝑑 where 𝑆𝑑 is the Bell parameter [129].

We show that both 𝑝 and 𝑑 can be measured using our analysers. For convenience,

we assume 𝑑 ≈ 𝐾, where K is the effective dimensionality of the pure state. We will

demonstrate that we can measure both 𝑝 and 𝐾 using our analysers.

Firstly, we calculate the detection probabilities from the overlap, 𝑃𝑛(𝜃;𝐾, 𝑝) =

Trace(�̂�𝜌𝑝) where �̂� projects onto the states |𝑀, 0⟩𝑛 |−𝑀, 𝜃⟩𝑛. As a result, the

detection probability can be written as

𝑃𝑛(𝜃; 𝑝,𝐾) = 𝑝𝑃𝑛(𝜃;𝐾) +
1 − 𝑝

𝐾2
𝐼𝑛(0;𝐾), (E.30)

where 𝑃𝑛(𝜃,𝐾) =
⃒⃒⃒∑︀𝐿

ℓ=−𝐿 𝜆ℓ𝑐
𝑛
ℓ (0)𝑐𝑛−ℓ(𝜃)

⃒⃒⃒2
and 𝐼𝑛(0;𝐾) =

⃒⃒⃒∑︀𝐿
ℓ=−𝐿 |𝑐𝑛ℓ (0)|2

⃒⃒⃒2
is the

overlap of the analysers with the maximally mixed state. Since the functions are

periodic and obtain maximum and minimum values for 𝜃 = 0 and 𝜋/𝑛, respectively,

we obtain the expression

∆𝑃𝑛(𝑝,𝐾) = 𝑃𝑛(0; 𝑝,𝐾) − 𝑃𝑛(𝜋/𝑛; 𝑝,𝐾)

= 𝑝∆𝑃𝑛(𝐾), (E.31)

where ∆𝑃𝑛(𝐾) = 𝑃𝑛(0, 𝑝 = 1, 𝐾) − 𝑃𝑛(𝜋/𝑛, 𝑝 = 1, 𝐾). The visibilities can be
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calculated from

𝑉𝑛(𝑝,𝐾) =
∆𝑃𝑛(𝑝,𝐾)

𝑃𝑛(𝜋/𝑛; 𝑝,𝐾) + 𝑃𝑛(0; 𝑝,𝐾)
, (E.32)

We show the dependence of the visibilities on the dimensions (𝐾) and purity (𝑝) in

Fig. E-5 (a-c) for the Normal, SPDC and uniform distribution, respectively. Each

panel shows the visibilties from various analysers depending on the number of su-

perpositions (𝑛). As shown the visibilities increase monotonically with increasing

dimensions (𝐾) as well as purity 𝑝 for each analyser. However, as 𝑛 increases the

visibilities decrease for all 𝑝 and 𝐾. Since the visibilities are monotonic in both 𝑝 and

𝐾 as well as 𝑛, we can exploit this property to map the dimensions of a quantum

system. We favour this approach since the visibilities can be easily measured and

require few measurements (peak and trough).

E.7 Visibility of Separable States

Consider a system that is completely separable,

𝜌 = 1/𝐷
∑︁
ℓ1ℓ2

|ℓ1⟩ |ℓ2⟩ ⟨ℓ2| ⟨ℓ1| , (E.33)

where the product states, |ℓ1⟩ |ℓ2⟩, are orthogonal. We will show that such a state

yields a visibility of zero. Firstly, the overlap probability of Equation (E.33) with our

analyser projecting onto the state |𝑀, 0⟩𝑛 |−𝑀, 𝜃⟩𝑛, is

𝑃 (𝜃) = ⟨𝜃,−𝑀 |𝑛 ⟨0,𝑀 |𝑛 𝜌 |𝑀, 0⟩𝑛 |−𝑀, 𝜃⟩𝑛 (E.34)

∝
∑︁
ℓ1,ℓ2

|𝑐𝑛ℓ1,𝑀(0)|2|𝑐𝑛ℓ2,𝑀(𝜃)|2, (E.35)
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which follows from Equation (E.11). Since, from Equation E.8, |𝑐𝑛ℓ2,𝑀(𝜃)|2 = |𝑐𝑛ℓ2,𝑀(0)|2,

Equation E.35 simplifies to

𝑃 (𝜃) ∝ (
∑︁
ℓ1

|𝑐𝑛ℓ1,𝑀(0)|2)2, (E.36)

We see that 𝑃 (𝜃) = 𝑃 (0) for all 𝜃, meaning that |𝑃 (0) − 𝑃 (𝜋/𝑛)| = 0. This implies

that the visibility of separable mixed states is always 0.

E.8 Verification of the Technique

Using our procedure we measured the dimensions and purity of SPDC photons with

varying noise levels (low and high). The results are summarised in Table E.1. In the

second and third column, we know what the input spectrum shape is (SPDC) and can

therefore accurately optimise for the dimensions (𝐾) and purity (𝑝) of the state (see

Results section). Further, if we guess the spectrum based on its shape (symmetry)

we also obtain values that are similar to the expected results, with a relative error of

up to ≈ 13%. This was done using the normal distribution as the function modelling

the mode spectrum. Next, we verify our result using the values extracted from the

spiral bandwidth.

To calculate the expected dimensions, �̂�, we used the coincidences from the spiral

spectrum in the OAM basis, i.e 𝐶ℓ𝐴,𝑚𝐵
, where ℓ𝐴 denotes the mode index of photon

A and 𝑚𝐵 for photon B. Since we want the Schmidt number of the pure part of the

state, we subtracted the accidentals and then used Equation (E.2), yielding results

with a low relative error of 3%, validating our results. Subsequently, we estimated the

purity 𝑝 (see Results section). Note that no accidentals subtraction was performed

in this case. Accordingly, to estimate the purity, we measured the quantum contrast

using

𝑄 = 𝐶/𝐶 ′, (E.37)

taken from the ratio between the average coincidences in the anti-diagonal entries,

𝐶 =
∑︀

ℓ𝐶ℓ,−ℓ and the average noise contribution from coincidences excluding the
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Noise level 𝑝𝑆𝑃𝐷𝐶 𝐾𝑆𝑃𝐷𝐶 𝑝norm 𝐾norm 𝑄 �̂� 𝑝
low 0.45 ± 0.03 22.84 ± 0.62 0.42 ± 0.02 20.00 ± 0.32 19.19 ± 0.22 22 ± 1 0.44 ± 0.01
high 0.13 ± 0.01 17.73 ± 0.71 0.13 ± 0.01 17.18 ± 0.34 3.76 ± 0.57 18 ± 1 0.13 ± 0.02

Table E.1: Dimensionality and purity measurements in the OAM basis. Measured
purity (𝑝) and dimensionality (𝐾), under low and high noise levels, compared to estimates
from other methods. Here 𝑄 is the average quantum contrast.

anti-diagonal entries, i.e 𝐶 ′ = 1
𝑑2−𝑑

(︀
𝐶𝑇 − 𝑑 𝐶

)︀
. Here 𝐶𝑇 corresponds to the total

coincidences 𝐶𝑇 =
∑︀

ℓ,𝑚𝐶ℓ,𝑚. Indeed, using the quantum contrast we obtained a

purity that is comparable to that obtained from our method showing a relative error

of only up to 2%.

E.9 Simulations in the Pixel Basis

We demonstrate our technique using the pixel basis. Firstly, we define an entangled

state using the pixel position basis modes, |𝑗⟩ for {𝑗 = 1, 2...}. Since we are modelling

the isotropic state in Equation (E.29), we define the pure part of the state as

|Ψ𝑑⟩ =
𝑑−1∑︁
𝑗=0

𝜆𝑗 |𝑗⟩ |𝑗⟩ (E.38)

on a 𝑑-dimensional space. Our analysers are now defined as

|𝑀,𝛼⟩𝑛 = 𝒩
𝑑−1∑︁
𝑗=0

𝑐𝑛𝑤𝑗 ,𝑀
(𝛼) |𝑗⟩ , (E.39)

composed of coherent superpositions of basis states |𝑗⟩ ∈ {|𝑗⟩ , 𝑗 = 0, 1..𝑑 − 1} with

tune-able phases and amplitudes

𝑐𝑛𝑤𝑗 ,𝑀
(𝛼) = 𝑒−𝑖𝜋𝑤𝑗(𝑛−1)/𝑛𝐴𝑛𝑤𝑗

𝑐𝑤𝑗 ,𝑀(𝛼), (E.40)

and where 𝑤𝑗 = 𝑗 − (𝑑− 1)/2 and the factors

𝑐𝑤𝑗 ,𝑀(𝛼) = − 𝑖𝑒−𝑖𝑤𝑗𝛼

𝜋(𝑀 − 𝑤𝑗)
. (E.41)
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and

𝐴𝑛𝑤𝑗
=

⎧⎨⎩ 1, mod {𝑤𝑗, 𝑛} = 0

0, otherwise
. (E.42)

The projections follow the same procedure as in the OAM basis, i.e., projections

onto the states |𝑀, 0⟩𝑛 |−𝑀, 𝜃⟩𝑛 at angles 𝜃 = 0 and 𝜋/𝑛. Subsequently, the visibilities

can be measured from these two projections for each 𝑛𝑡ℎ analyser.

Examples of simulations for 𝜒2 over the parameter space (𝐾, 𝑝) are shown in

Fig. E-6 with the maximally entangled state.

E.10 Quantum State Fidelity and Schmidt Rank

Using our technique it is possible to determine how well the state, parametrised by

𝐾 and 𝑝, generally approximates a maximally entangled state |Φ⟩ =
∑︀𝑑

𝑖 𝛾𝑖 |𝑖⟩ |𝑖⟩ and

how it generally performs with respect to well known entanglement witnesses.

Firstly, we note that our definition of the dimensionality (𝐾), generally estimate

the effective number of Schmidt modes required to describe a pure state and therefore

reflects how large the Hilbert space is. From Fig. E-7 we see that K maintains a high

value for very low values of 𝑝 meaning that our measurement technique can sift out

the dimensionality of the pure part of the state under extremely noisy conditions. As

such, in the isotropic state, it gives us an indication of the number of modes that

posses strong correlations, given a purity (probability) 𝑝.

To relate our measured dimensionality (𝐾) with a common entanglement witness,

we consider the operational definition of Schmidt rank, 𝑘 [71], in comparison to our

method. Firstly, the operational general definition of Schmidt rank [330], is the 𝑘 for

which

𝐹 (𝜌,Φ) ≤ 𝐵𝑘(Φ) (E.43)

where 𝐹 (𝜌,Φ) = Tr(𝜌, |Φ⟩ ⟨Φ|) is the fidelity while 𝐵(Φ) =
∑︀𝑘

𝑖 |𝛾𝑖|2. For a maximally

entangled state, 𝐵(Φ) = 𝑘/𝑑. Therefore one finds the lower bound of the Schmidt
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rank 𝑘− 1 when 𝐹 (𝜌,Φ) > 𝐵𝑘(Φ) [71,330]. For the isotropic state, the Schmidt rank

is determined by 𝑑𝑒𝑛𝑡 := 𝑑𝐹 (𝜌,Φ) [71]. Since the relation between the fidelity (𝐹 )

and purity (𝑝) is known, i.e.,

𝐹𝑝 =
𝑝(𝑑2 − 1) + 1

𝑑2
(E.44)

we can estimate the fidelity of the state using our measured 𝑑 = 𝐾 and as well as 𝑝.

This means that for a state with an effective dimensionality of 𝑑 = 𝐾, the Schmidt

rank is given by 𝑑𝑒𝑛𝑡 ≈ 𝐾𝐹𝑝 [330]. We show both the entanglement dimensionality

from [330] and our approximation 𝐾 * 𝐹𝑝 in Fig. E-7, which are in good agreement.

E.11 Measurements in the Pixel Basis

In pixel basis we projected the photons onto the states |𝑀, 0⟩𝑛 |−𝑀, 𝜃⟩𝑛 for 𝜃 = 0, 𝜋/𝑛

and 𝑛 = 1, 3, 5...(𝑑 − 1)/2 + 1. From the measured probabilities we calculated the

visibilities and applied the optimazation procedure to determine 𝑝 and 𝐾. Here the

model spectrum of the source was assumed to be normally distributed over the pixels.

We demonstrate the technique over square pixel states from 3 × 3, 5 × 5, 7 × 7,

9 × 9 and 11 × 11 grids constituting test dimensions of 𝑑 = 9, 25, 49, 81 and 121,

respectively. For the first three cases we varied the laser power in order to change the

purity of the state for average photon numbers of 𝜇 = 0.002, 0.003 and 0.01 with an

integration time of 10 seconds per measurement. For the 11 × 11 states, we had an

average photon number of 𝜇 = 0.001 while we used an integration time of 20 second

per measurement. In this case the 11 projections produced 𝑝 = 0.01 ± 0.004 and 𝐾 =

119 ± 1 witout accidental subtraction. After accidental subtraction we obtained, 𝑝 =

0.04 ± 0.002 and 𝐾 = 121 ± 2. The purity in these cases was above the separability

bound of 𝑝 = 0.0082.

The results are shown in Fig. E-8 for the first three cases of grid states. Here,

the dimensions (𝐾) of the pure part of the state increases as the average photon
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number in the system decreases due to the reduction in the number of multi-photon

events from the SPDC source. The purity is also seen to improve showing that the

measurement technique is sensitive to multi-photon events and noise in the system.

The entanglement dimensions, do not seem to improve due the low purity in the

system. This can be explained by the fact that as the dimensions of the system

increase, a much higher purity is needed to ensure 𝑑-dimensional entanglement.

E.12 Comparison to State-of-the-art

We compare the number of measurement needed in our approach for determining

the dimensionality and purity of a quantum state in the table E.2. As compared to

QST and the recent two MuB approach, the number of measurements are far fewer;

in our approach the number measurements scale linearly rather than quadratically

for the other two approaches. This can significantly reduce the measurement time of

quantum state characterisation.

Our method QST 2 MUB

No. of analysers 𝑑+1
4

∼ 𝑑
4

𝑑2 - 1 2𝑑

Local proj. ∼ 𝑑
2

(𝑑2 − 1)𝑑2 2𝑑2

Table E.2: Measurement scaling with dimensions. Comparison of our technique to
the traditional QST [329] and two MuB approach [330].
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 a

 b

 c

Figure E-5: Impact of purity and dimensionality on visibility. Visibility as a function
of purity (p) and dimensions (K) for the (a) Normal, (b) SPDC theory and (c) the uniform
(maximally entangled state) obtained for fractional OAM projections corresponding to 𝑛 =
1, 5, 7, 51.
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K  = 9, p = 0.1 K  = 49, p = 0.1 K  = 121, p = 0.02

a b c

Figure E-6: Simulations for the pixel basis. Simulated 𝜒 vs 𝐾 and 𝑝 for input states
with dimensions 𝑑 = 9, 49 and 121. The white dashed line defines the boundary between
the separable and entangled states.
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Figure E-7: Dimensionality witness. On the top panel we show simulations of calculated
entanglement dimensions using the our approach, 𝐾, and the Schmidt rank, 𝑑𝑒𝑛𝑡 = 𝑑× 𝐹 ,
as a function of purity, 𝑝. In the bottom panel we show 𝑑𝑒𝑛𝑡 and our estimation as computed
from 𝐾 × 𝐹𝑝, which are in good agreement.
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a b c

d e f

Figure E-8: Dimensionality and purity measurements in the pixels basis. Exper-
imental data for measurements of dimensionality (𝐾) and purity (𝑝) in the pixel basis for
various average photon numbers (𝜇). (a) - (c) are projections with different pixels dimen-
sions (grids), without noise subtraction, while (d) - (f) have accidental noise subtraction.
The light squares mark results for purities above the separability bound, 1/(𝐾 + 1).
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[183] S. Etcheverry, G. Cañas, E. Gómez, W. Nogueira, C. Saavedra, G. Xavier,

and G. Lima, “Quantum key distribution session with 16-dimensional photonic

states,” Scientific reports, vol. 3, p. 2316, 2013.

193



Chapter E Isaac Nape 194

[184] G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. Connolly,
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[287] M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T. Lancaster,

T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt,

“Deterministic quantum teleportation with atoms,” Nature, vol. 429, pp. 734–

–737, 2004.

[288] M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost,

E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Deterministic

quantum teleportation of atomic qubits,” Nature, vol. 429, pp. 737––739, 2004.

205



Chapter E Isaac Nape 206

[289] R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal,

P. Walther, and A. Zeilinger, “Quantum teleportation across the danube,” Na-

ture, vol. 430, p. 849, 2004.

[290] C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle

operators on einstein-podolsky-rosen states,” Physical Review Letters, vol. 69,

pp. 2881–2884, Nov 1992.

[291] Z. Shadman, H. Kampermann, C. Macchiavello, and D. Bruß, “Optimal super

dense coding over noisy quantum channels,” New Journal of Physics, vol. 12,

no. 7, p. 073042, 2010.

[292] T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical

imaging by means of two-photon quantum entanglement,” Physical Review A,

vol. 52, pp. R3429–R3432, Nov 1995.

[293] J. H. Shapiro, “Computational ghost imaging,” Physical Review A, vol. 78,

p. 061802, Dec 2008.

[294] D. Deutsch and A. Ekert, “Quantum computation,” Physics World, vol. 11,

no. 3, pp. 47–53, 1998.

[295] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral,

M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,”

Nature, vol. 434, pp. 169––176, 2005.

[296] R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein,
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