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II 

ABSTRACT 
 

The exothermic reaction associated with hydrating Portland Cement releases a 

significant amount of heat within concrete elements. These raised temperatures 

could give rise to thermal cracking which is a function of temperature differential 

and concrete stiffness.  

 

In recent years computer-based modelling has become an intrinsic part of 

engineering. It has been employed to simulate the rise in temperature and 

distribution of heat within concrete elements. The prediction model developed in 

this project is based on the numerical finite element theory in combination with 

heat evolution curves obtained from adiabatic calorimetry. Predicted results are 

compared with two sets of measured data and comparisons are drawn. This model 

is also evaluated against the pre-existing finite difference numerical simulation 

(Ballim, 2004a). The finite element simulation provides engineers with 

temperature differentials from which generalised rules for cracking potential may 

be applied.  

 

The implemented finite element model provides superior predictions to those of 

existing simulations and allows for future developments due to the advanced 

capabilities of the finite element theory.  
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1 INTRODUCTION 
 

1.1 BACKGROUND 
 

The determination of heat evolved and temperature distribution in hardening and 

hydrating concrete is essential to designers and contractors. Potential for thermal 

cracking, deformation control and the evaluation of concrete strength 

development are of importance.  

 

The hydration of cement in concrete is an exothermic reaction which liberates up 

to 500 joules of heat per gram of cement (Neville, 1981). Temperature variations 

within a concrete element can lead to the development of thermal stresses and 

strains which can result in cracking. The relatively low thermal conductivity of a 

concrete mass slows the rate of heat dissipation to the surroundings. Consequently 

a significant temperature rise is observed in large elements at an early age. 

Ambient environmental conditions may further contribute to heat gain in the 

concrete by solar radiation or high temperature curing. With an increase in 

concrete stiffness (i.e. gain in Young’s Modulus), fluctuations in temperature 

cause strains to be induced in the concrete. If these thermally applied strains are 

greater than the allowed, deformation that results in cracking within the concrete 

element will occur. Conversely, if the rate of strain during the hydration period is 

larger than the creep capacity, restraint cracking arises. In mass concrete elements 

at an early age (defined as concrete after the first few days subsequent to casting) 

thermal cracking is a common problem that requires specific consideration at the 

design and construction phase. 

 

1.2 THERMAL CRACKING OF CONCRETE 
 

During early hydration (the first few days after casting a concrete element) the 

core of the concrete element increases in temperature, while the surface remains 

relatively cool. This disparity is associated with heat dissipation to the 
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surrounding environment (Ballim, 2004a). The internal concrete is hotter, 

resulting in a greater potential for expansion than for the cooler surface concrete. 

This probable difference produces tensile stresses and strains in the surface zone. 

If these are greater than the tensile capacity of the early age concrete, surface 

cracks will occur. Generally these cracks are reasonably shallow due to the steep 

temperature gradient existing close to the surface. This temperature differential is 

attributed to the low thermal conductivity of concrete. The surface cracks may 

close substantially after the cooling phase but could potentially have deleterious 

effects on durability of the concrete element. Once the concrete has reached its 

maximum temperature, the core of the element will enter a cooling phase as the 

liberated heat is dissipated to the surrounding environment. The cooler surface 

zone now acts as a restraint to the thermal shrinkage of the internal concrete. Thus 

the internal concrete is subjected to tensile stresses and strains which could lead to 

cracking at the core of the element. This internal cracking is more substantial than 

the surface cracks. In massive elements such as dam walls, the formation of 

internal cracks could result in leakage and thus failure of the wall.  

 

The rate of a chemical reaction increases with an increase in temperature for 

exothermic processes. Therefore cement hydrates more rapidly when the 

temperature is elevated. Concrete at the core of a structure will experience a rise 

in thermal energy faster than that near the exposed surfaces at early age. Internal 

concrete cannot dissipate the induced heat efficiently due to the high thermal 

inertia of concrete. With this build up of heat, the internal concrete gains strength 

and stiffness whilst the creep capacity reduces at a rate higher than that of the 

surface concrete. As the internal concrete undergoes the cooling or contraction 

phase through the transfer of heat to the surrounding environment, it experiences a 

tensile load due to the restraint provided by the surface layer. Conversely, the 

surface stratum also experiences a compressive load on account of the contraction 

of the inner core. Thermal shrinkage can be resisted by the surface concrete as the 

ratio of tension to compression strength is approximately 1:10. The surface cracks 

that appear during early hydration will thus tend to close after the cooling phase as 

a result of the induced compressive stresses. Although the internal concrete can be 
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said to be stronger (i.e. due to the faster rate of hydration whereas the surface zone 

loses heat and moisture to the surrounding environment that hinders the advance 

of hydration and strength development) it is subjected to a tensile strain that can 

exceed the tensile strain capacity of the concrete, thus causing cracks to develop.  

 

Depending on the dimensions of the concrete element and other prevailing 

conditions, namely concrete mixture and boundary conditions, cracks appear over 

weeks, months or even years, in extreme cases, after the concrete element was 

cast. Factors affecting temperature development and distribution can be classified 

as either intrinsic or extrinsic conditions. Intrinsic conditions include; binder and 

aggregate type, quantity and grading, water to cement ratio and admixture and 

extender type and quantity. While extrinsic conditions comprise; formwork type 

and removal time, construction sequencing, initial concrete temperature, ambient 

temperature, radiation, solar radiation, size of the concrete element, wind and any 

possible thermal insulation.  

 

1.3 TEMPERATURE PREDICTION 
 

Heat distribution within a concrete element is generally modelled using numerical 

techniques such as the finite difference method or the finite element method. Both 

techniques attempt to predict the flow of heat in concrete through the solution of 

the Fourier equation, generally in two dimensions.  

 

The finite difference method is one of the oldest and simplest methods used to 

solve differential equations (Cope et al., 1984; Ugural, 1999). The domain in 

which the solution is sought is replaced by a finite set of points forming a regular 

grid. Approximate temperature values are then sought for each point. These values 

are required to satisfy finite difference equations in terms of partial difference 

quotients or through direct heat flow considerations. The equations for each point 

constitute a system of equations, the solution to which yields values for 

temperature. Provided exact boundary and initial conditions have been entered, 

solutions converge towards experimental solutions as the spacing between the grid 
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points contract. Despite the relative ease of formulation of the system of 

differential equations, the finite difference method is limited by the fact that 

irregular geometric shapes, unusual boundaries and extrinsic conditions cannot be 

modelled.  

 

With the finite element method the domain is replaced with an assemblage of 

discreet elements rather than a grid of points. The temperature is then 

approximated over each individual element by way of an assumed function. This 

interpolation function is defined in terms of the temperature at specified points 

called nodes. Nodes are typically located on element boundaries where individual 

elements are connected to one another. The governing differential equation and its 

individual matrices can then be formulated for every element using the method of 

weighted residuals. Matrices associated with each individual element can then be 

assembled to form a system of equations for the entire domain. Consequently, the 

temperature throughout the domain can then be solved using this system of 

equations.  

 

The fundamental difference between the two numerical techniques is that the 

finite difference method provides a point-wise approximation while the finite 

element method generates a piecewise approximation for the governing 

differential equations. 

 

Despite the more complex formulation of differential equations, the finite element 

method has numerous advantages over other methods, the most important being 

that irregular geometric shapes (elements can be put together in a variety of 

ways), unusual boundaries and extrinsic conditions can be represented. Boundary 

conditions, selected as the most appropriate conditions for common problems, are 

convection and radiation. 
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1.4 SCOPE AND LAYOUT OF REPORT 
 

This research project will attempt to improve and expand upon a pre-existing two-

dimensional model (Ballim et al., 2005) which predicts the temperature 

development and distribution in setting concrete. Ballim (2005) employs the finite 

difference method as an approximate mathematical solution while this research 

report will endeavour to utilise the finite element method. The two-dimensional 

finite element numerical model uses various intrinsic and extrinsic factors upon 

which heat liberated and distributed are dependent.   

 

The computer based package, Matlab®, was employed to generate the finite 

element numerical model. Matlab® is a high-level language (mainly applicable to 

engineering and science) and interactive environment that enables users to 

perform computationally intensive tasks faster than with conventional 

programming languages such as C, C++, or Fortran. 

 

The main objective of this research project is to develop a numerical model that 

will be able to predict accurately the heat liberated in hardening concrete in order 

to assess the possibility of thermal cracking in the final structure. This proposed 

model could be used in the selection of both intrinsic and extrinsic factors, thus 

ensuring that thermal cracking does not occur or is at least controlled, limited or 

reduced.  

 

Results generated by the finite element numerical model, could be used to predict 

the stresses and strains within a mass concrete element and thus the cracking 

potential. This research project is seen as the first step in an overall design tool 

requiring the accurate prediction of temperature gradients in mass concrete 

elements.  
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2 LITERATURE REVIEW 
 

2.1 INTRODUCTION 
 

Concrete is a material extensively used in the construction industry, consisting of 

a solid particulate substance known as aggregate (typically different types of 

crushed rock and gravel) that is cemented together using a binder and water. 

Cements utilised in the construction industry generally display similar chemical 

compositions to one another. They contain limestone and siliceous clays as the 

principal ingredients.  

 

Assyrian and Babylonian civilisations were among the earliest recorded users of 

clay as the binding material in ancient times. In 1756, John Smeaton is credited 

with the creation of the first modern concrete which he achieved by adding 

pebbles as a coarse aggregate and mixing powered brick into the cement. This was 

the earliest discovery of the benefits of limestone as a cementitious binder (White, 

1977). In 1824, Joseph Aspdin invented Portland Cement, which has remained the 

principal binder used in concrete production, although in present times cement 

composition is chemically far different. Aspdin created the first artificial cement 

by burning ground limestone and clay together at high temperatures. This burning 

process modified the chemical properties of the materials, resulting in stronger 

cement than that which plain crushed limestone would generate (Ghosh, 1991).  

 

Following Joseph Aspdin’s patent, vast literature concerning the characteristics of 

cement and concrete have been published. The fundamental concept relevant in 

this research report is the reaction between cement and water. These chemical 

components combine in an exothermic process to produce a cement hydrate that 

releases thermal energy known as “heat of hydration”. The heat evolving 

properties of cement are thoroughly documented from practical experience and 

theoretical considerations (van Breugel, 1998). It is well known that early age 

temperatures and temperature-induced stresses have far-reaching implications for 
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the durability, functionality and overall performance of concrete structures. 

Control over these temperatures and the associated thermal stresses are crucial in 

the development of concrete with improved properties.  

 

Numerical modelling techniques can be used to address suspected thermal quality 

issues. These techniques are used to predict the heat liberation and distribution 

within a concrete element in order to assess the risk of early age cracking. 

Tetmayer (1883) was one of the first researchers to apply experimental techniques 

to document the significance of temperature effects in early age concrete. In the 

1920’s and 1930’s several researchers discussed the issue of thermal problems in 

relation to the optimization of concrete casting sequences. Their findings were 

applied in the reduction of maximum hydration temperatures in mass concrete 

structures to predict and prevent thermal cracking.  

 

Harrison (1981) also corroborates the finding that early age thermal cracking 

associated with concrete quality is caused by resistance to contraction on cooling. 

During the hydration process thermal energy is retained in the concrete which 

results in a rise in temperature within the body of the concrete element. As this 

heat begins to dissipate to the surrounding environment, the restraint provided by 

the stiff surface layer induces the potential for thermal cracking.   

 

Recently, the focus of research has turned towards the pre-construction phase and 

how concrete mixture design affects the amount of heat liberated and the final 

temperature reached within a concrete element. Developments have been made 

with the introduction of simulation models which are able to predict the rise in 

temperature within a concrete element relative to concrete mixture composition 

and environmental conditions (i.e. intrinsic and extrinsic factors). One piece of 

information required by these simulation models is the rate of heat liberated for a 

particular concrete mixture. Various experimental methods have been introduced 

to determine this rate. Most of the computer models that have been generated to 

address thermal problems in hardening concrete require the adiabatic hydration 

curve (heat liberated plot) of the proposed concrete mixture (Koenders et al., 

1994).  
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2.2 ADIABATIC CALORIMETER 
 

Several methods of measuring the heat of hydration for specific concrete mixtures 

are available, namely: 

 The Heat of Solution Method 

 Adiabatic Calorimetry 

 Isothermal Calorimetry 

 Conduction Calorimetry 

 

Each of these methods measure the heat released from a specific concrete mixture 

from which the heat of hydration can be calculated. Only the adiabatic calorimetry 

method will be discussed as it was the only test facility available to the 

investigation reported in this research report. Interested readers should consult 

relevant literature for further information regarding the other possible methods of 

measuring heat of hydration. 

 

As a means of determining the heat of hydration of a specific concrete mixture, 

adiabatic calorimetry has significant advantages over other calorimetric methods 

(Morabito et al., 1993). An adiabatic calorimeter is an apparatus used to examine 

a runaway reaction. A runaway reaction in this instance can be defined as a 

reaction in which none of the energy produced by the reaction is lost and allows 

the maximum rate of hydration to be obtained. Since the calorimeter runs in an 

adiabatic environment (no heat is lost or gained in the system), any heat generated 

by the specific concrete sample under test causes the sample to increase in 

temperature, thus fuelling the reaction. No adiabatic calorimeter is truly adiabatic 

as some heat will always be lost by the sample to the sample holder. This method 

closely replicates the hydration temperatures in actual mass concrete elements.  

 

Figure 2.1 shows the components of the adiabatic calorimeter test apparatus. The 

principle of the apparatus is to eliminate the effects of the surrounding 

environment in order to accurately assess the heat produced by a specific concrete 

mixture.  
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Figure 2.1   Adiabatic Calorimeter schematic arrangement (after Greensmith, 2005) 

 

Figures 2.2 shows an example of a temperature plot produced from the adiabatic 

calorimeter experiment and Figure 2.3 is an example of the heat evolution curve 

Enlarged Detail 



2.5 

calculated from the experimental results. The heat evolution data is fundamentally 

the key input data in most macro-level numerical modelling techniques. 
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Figure 2.2   Example of a hydration temperature rise curve obtained from an  

 Adiabatic Calorimeter experiment 
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Figure 2.3   Example of a rate of heat evolution curve obtained from an Adiabatic  

          Calorimeter experiment 
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2.3 MODELLING TEMPERATURES IN CONCRETE ELEMENTS 
 

An accurate assessment of the rate of heat evolution from hydrating cement over 

time is required to correctly predict the temperature profile within a concrete 

element. Previous researchers have provided direction on the rate of heat 

evolution for use as input into numerical temperature prediction models. 

Estimated and generalised values of the total heat released over the early 

hydration period for different binder types (Addis, 1986) or cement constituents 

(Scanlon et al., 1994) have been published. Guide equations were introduced by 

Wang (1994), following which prediction models founded on the chemistry and 

crystallography of cement (Maekawa et al., 1999), referred to as hydration models 

were also developed to present the heat released from hydrating cement. These 

hydration models are discussed following which more reliable laboratory-based 

measurements of the rate of heat evolution coupled with numerical analysis 

techniques are reviewed.  

  

2.3.1 Cement Hydration Models 
 

Typically, cement hydration models deal directly with the microstructural 

elements found in specific concrete mixtures. The aim of these microstructural 

models is to predict the time-dependent behaviour of concrete with respect to heat 

production, thermal deformation, autogenous and drying shrinkage, creep 

behaviour. The models simulate the cement particles as spheres packed into an 

“analysis box” of known size and employ periodic boundary conditions. The 

positioning of the cement spheres is carried out by a specific mathematical or 

statistical process. The four most commonly discussed microstructural models are: 

 HYMOSTRUC (Koenders et al., 1994) 

 CEMHYD3D (Bentz et al., 1993) 

 DuCOM (Maekawa et al., 1999) 

 CCBM (Maruyama et al., 2007) 
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The first model, HYMOSTRUC, predicts the degree of hydration utilising the 

information of water to cement ratio, chemical components of cement, particle 

size distribution and curing condition. The programme uses a statistical approach 

in obtaining the particle size distribution. The programme functions by assuming a 

spherical shape for the cement particles that grow during the hydration reaction 

and interconnect or make contact with other particles. The rate of hydration is 

determined by the amount of available C3S and C2S, taking into account the 

density of the hydrates, residual water and relative humidity in the pore structure.  

 

CEMHYD3D creates a local chemical reaction rule which is a function of the 

density of substances in target and neighbouring cells. This prediction model can 

take into account many chemical reactions at once. This method measures the 

accumulation of the reactions in local cells to represent the total reaction of the 

cement paste and provides a 3-dimensional cement paste structure. The cement 

particles, once positioned, can be optionally moved closer together to represent a 

flocculated state or can be placed during positioning in a manner that achieves a 

minimum separation. The method has successfully been interfaced with many 

engineering problems.  

 

DuCOM is a finite element programme developed to determine the hydration of 

concrete at any given time step and boundary conditions. The heat generation rate 

per unit volume of blended cements is represented as the sum of the specific heat 

generation rates of the individual clinker components. The temperature dependent 

heat generation ratio of each clinker (unrefined cement) component is based on 

the Arrhenius law. It also provides results for porosity shrinkage and strength 

gain. With the use of finite elements, the heat transfer and distribution occurs on a 

macro scale rather than the microstructural scale used to model the time 

dependent behaviour of the cement. The limitation of the programme is that the 

pore structure is simulated by a consistent distribution of average sized binder 

grains. Blaine air permeability values are then used to calculate the distance 

between grains. 
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CCBM is based on a kinetic model expressed as a single equation composed of 

four rate-determining coefficients which represent the rate of surface solution, 

formation and destruction of the initial impermeable layer, and the resulting 

diffusion-controlled process. The model assumes the cement as spherical bodies 

that keep their shape during hydration. The model also focuses on the problem of 

early age thermal cracking in concrete elements. The model parameters of 

hydration are determined according to the experimental data of X-ray 

diffraction/Rietvelt analysis. 

  

In the above models, aggregate influence may be considered but the 

representation is often in a weak fashion using a surface of voxels (volumetric 

pixels) a single layer thick. The assignment of spherical shapes to the cement 

particles generates a continuum far removed from reality. The angular shape 

associated with the impact during grinding is far more regularly found in cement 

particle analysis. This obvious disparity between the actual and modelled shapes 

constitutes an initial error for all the models concerned. Thus the attempts to 

modify models to incorporate more realistic cement particle shapes are underway. 

A further assumption that departs from reality is the fact that fresh cement paste 

tends to be densely flocculated unless heavily superplasticized. Only 

CEMHYD3D can account for this flocculation.  

 

2.3.2 Temperature Prediction Models  
 

The hydration, microstructure, moisture states and time-dependent deformation in 

fine pores have been extensively studied over the past decades, but difficulty has 

been observed in verifying the theories particularly at microstructural levels 

(Mihashi, 2007). Thus, it has been proposed that modelling must be postulated 

from macroscopic and empirical information. 
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The macrostructural models and associated numerical methods used for 

temperature prediction of importance to this research report are: 

 Finite Difference Model (Ballim and Graham, 2005) 

 Finite Element Model (Wang and Dilger, 1994) 

 

The Finite Difference Model (Ballim and Graham, 2005) is a two-dimensional 

model as it assumes that the structure’s length dimension is much larger than the 

width or thickness. This simplifies a three-dimensional structure to two 

dimensions by assuming that the heat does not vary over the length of the 

structure. The model utilizes the finite difference method of analysis. The 

distribution or flow of heat through a two-dimensional structure can be described 

by the Fourier equation (Holman 1986): 
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where,  T = temperature; t = time; k = thermal conductivity; Q 
l = rate of internal 

heat evolution;   = density of the concrete; c = specific heat capacity; 

x, y = coordinates at a particular point in the structure.  

 

The finite difference model resolves much of the complexity of heat models by 

using as input, the results of a heat rate determination using an adiabatic 

calorimeter together with the Arrhenius maturity function. This indicates the rate 

and degree of hydration at any position and time in the concrete element, based on 

the time-temperature history at that point. This is executed by expressing the heat 

evolved as measured in the adiabatic test in terms of “maturity heat rate” as a 

function of the cumulative maturity, rather than a time rate. The maturity heat rate 

is expressed as:  
 

dM

dQ
'Q M               (2.2) 
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The time based heat rate as required by the Fourier equation (equation 2.1) is then 

determined as follows: 
 

dt

dQ
'Q               (2.3) 

 

Applying the chain rule from differential calculus: 
 

dt

dM
'Q'Q M             (2.4) 

 

The finite difference model maintains a measure of both the development of 

maturity and the time based rate of change of maturity at each point under 

consideration in the concrete element. An appropriate maturity heat rate is 

selected during each calculation step based on the cumulative maturity at the 

position under consideration. The time based rate of change of maturity is 

multiplied by the appropriate maturity heat rate to yield the time based heat rate 

required by equation 2.1. This approach allows the rate of heat evolution 

determined from the adiabatic calorimeter test to be expressed in a form that is 

independent of the starting temperature of the test. It has been shown that the 

starting temperature of adiabatic calorimeter tests greatly influences both the 

magnitude and time distribution of the heat rate (Ballim and Graham, 2003).  

 

The Arrhenius maturity function was used to normalise the results obtained from a 

adiabatic calorimeter test for a specific concrete sample, and takes the following 

form:  
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where,  t20  = equivalent maturity time (in hours); E = activation energy; Rg = 

universal gas constant; Ti = temperature (°C) at the end of the ith time 

interval, ti  
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Previous research into the model shows that it is fairly accurate but that it has 

some limitations. It showed good correlation with the temperature as measured in 

a laboratory test. A rectangular concrete block which had a length dimension 

significantly larger than the other two dimensions, instrumented with thermal 

probes was cast in the laboratory. The results obtained were satisfactory with a 

maximum temperature difference of only 2C between the measured and the 

predicted results. 
 

Ballim and Graham (2005) identify the following limitations with the model: 

• The model cannot deal with structures that are not rectangular. 

• The problem of early drying on the exposed surfaces and in general the 

definition of the boundary conditions needs to be overcome and more 

precisely defined to include the effects of sunlight, humidity, wind and cloud 

cover.  

• The model cannot allow for: 

1. Sequential construction (i.e. casting fresh concrete onto concrete 

that has not dissipated all of its hydration heat);  

2. The analysis of the concrete temperature where conduits, which 

have chilled water flowing through them, are cast into the concrete 

in order to reduce the overall temperature within the concrete 

element;  
 

The finite element method of analysis has previously been implemented to 

calculate the heat liberated and distributed through a concrete element 

(Wang et al., 1994). However, the appropriateness of their approach for 

determining the rate of heat evolution is questionable. The following approach 

was used:  

cQ/ct = 0.5 + 0.54M 0.5  for  M ≤ 10 hours         (2.6) 

cQ/ct = 2.2 exp [-0.0286(M – 10)]  for  M ≥ 10 hours       (2.7) 

 
where M is the maturity of the concrete in hours with reference to concrete cured 

at 20C.  
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When the temperature of the test concrete is constantly equal to 20C, the 

maturity time is equal to the clock time. The appropriateness of equations 2.6 and 

2.7 for a temperature prediction model is problematic since: 

• The maximum heat rate is fixed at 2.2W/kg. This is not appropriate since 

measured heat rates have been shown to vary significantly from this value 

(Ballim and Graham, 2004, 2009), particularly when cement extenders are 

used in concrete.  

• The equations are not true if the environmental conditions cause the 

temperature within the concrete to drop to -10C. At this temperature 

hydration is deemed to stop, whereas the above equations indicate a finite rate 

of heat evolution. 

• The approach ignores the temperature at which the adiabatic test was 

conducted. The temperature at which an adiabatic test is started greatly 

influences the rate of hydration.  
 

The two-dimensional model that was undertaken in this research project uses the 

finite element method of calculation rather than the finite difference method due 

to its number of shortcomings. The finite difference method is unsuitable for 

systems with irregular geometry, unusual boundary conditions, or heterogeneous 

compositions. The finite element method provides an alternative that is better 

suited to such systems as it breaks down a structure’s cross section into small 

elements (either rectangular or triangular shaped elements) to create a better 

approximation of irregularly shaped sections. Further, values of the unknown 

variable can be generated continuously across the entire solution domain rather 

than at isolated points.  

 

2.4 EVOLUTION OF THE FINITE ELEMENT METHOD 
 

The principles of finite element theory, as it is known today, can be dated back as 

far as 250 B.C. The Greek mathematician Archimedes calculated the ratio of a 

circle’s circumference to its diameter by the restructuring of a circle as a limit of 

inscribed regular polygons. This piece-wise solution is refined to an acceptable 
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approximation as the number of regular polygons is increased. Figure 2.4 shows 

the principle of this piece-wise solution and Table 2.1 indicates how the solution 

is refined towards the exact value of  as the number of regular polygons is 

increased.  
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Figure 2.4   Archimedes piece-wise solution to calculate  

 

Table 2.1   Archimedes piece-wise solution to calculate  

n n = 2 r n sin (/ n) /d 

1 0,0000 
2 2,0000 
4 2,8284 
8 3,0615 
16 3,1214 
32 3,1365 
64 3,1403 

128 3,1413 
256 3,1415 
512 3,1416 

n = 512 to 9 
decimal places 3.141572940 

Exact  to 9 
decimal places 3,141592654 

 

It is difficult to document the exact origin of the finite element method, because 

the basic concepts have evolved over a period of 150 years or more. 

Courant (1943) was the first to develop the Finite Element Analysis by utilizing 

the Ritz method of numerical analysis and minimization of variational calculus to 

obtain approximate solutions to vibration systems. Soon thereafter, a paper 
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published by Turner (1956) determined a broader definition of numerical analysis. 

The paper centred on the "stiffness and deflection of complex structures".  

 

The term finite element was first created by Clough (1960). In the early 1960’s, 

scientists used the method for the approximate solution of problems in stress 

analysis, fluid flow, heat transfer, and many other areas. The first book published 

on the finite element method was by Zienkiewicz (1967).  

 

In 1970's, Finite Element Analysis was limited to expensive mainframe computers 

generally owned by the aeronautics, automotive, defence, and nuclear industries 

due to the sizeable processing power required by the analysis. Following the 

decline in the cost of computers and the increase in computing power, the finite 

element method has developed into a useful numerical analysis technique. Present 

day supercomputers are now able to produce accurate results for all kinds of 

parameters. Thus continued research into different types of elements and 

convergence studies are presently under development.  

 

2.5 THERMAL CRACKING OF CONCRETE 
 

In attempting to control the risk of thermal cracking in concrete elements, 

knowledge of the expected temperature rise during hydration of cement is 

desirable (Morabito, 1998). Due to increased accessibility of aggressive agents 

like chloride ions, CO2 and other harmful agents into concrete as well as increased 

potential leakage of liquid retaining structures, the effect of thermal cracking can 

lead to reduction of the durability and serviceability of concrete. The long term 

effect of thermal cracking can therefore be of significant consequence and control 

is essential. 

 

Harrison (1981) discusses practical solutions to prevent early age thermal 

cracking in concrete. Section thickness, cement type, concrete mixture 

proportions, formwork, insulation, restraint and ambient conditions were 



2.15 

discussed. Data is provided with respect to concrete tensile strain capacity and 

anticipated heat evolution of different binder types.  

 

Emborg (1992) computes the risk of cracking with respect to different structural 

and environmental scenarios. The proposed procedures have regularly been used 

in Sweden for producing concrete in massive structures intended to be free of 

cracks. The emphasis on the theory is placed on calculations pertaining to the 

cracking risk. The critical maximum temperature differential is limited to 20 

degrees Celsius. A useful finding by Emborg is the relationship between ambient 

air temperature and initial concrete temperature in relation to surface cracking in 

very early age concrete. He notes that favourable conditions for placing of 

concrete exist when the ambient temperature is much lower than the placing 

temperature of the concrete. This condition decreases the risk of early age surface 

cracking.  

 

Taylor and Addis (1994) also confirm that the maximum allowable temperature 

differential should not exceed 20 degrees Celsius for ordinary concrete structures. 

An important fact to note is that during the temperature rising phase of a hydrating 

concrete mixture, the reinforcement does little to prevent cracking because of the 

weak bond between the concrete and steel.    

 

Recently an analytical system labelled JCMAC3 (Suzuki et al., 1990) has been 

developed to not only deal with thermal strain but also other initial strains within 

concrete at an early age (i.e. heat of hydration, autogeneous shrinkage and drying 

shrinkage). The model computes drying shrinkage from the moisture transport 

analysis. A non-linear finite element analysis is the global solver for the strain 

model. JCMAC3 is expected to be a useful tool for simulation of cracking in 

concrete, since it reproduces recent research results and has an essential practical 

aspect.  
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2.6 CONCLUSION 
 

Portland Cement Concrete has been shown to be a complex material that has been 

researched extensively with numerous methods for understanding this material 

being proposed. The sophistication of proposed simulation models indicates this 

complexity of the material and requires introduction of model assumptions which 

in turn limit the functionality of the models.  

 

The introduction of adiabatic calorimeter results into a temperature prediction 

model therefore has benefits of reducing theoretical and scientific inaccuracies. 

The adiabatic test combined with the Arrhenius maturity function expresses the 

rate of heat evolution from the hydrating cement in a rational and normalised form 

required by numerical models.  

 

The finite element temperature prediction model presented in this research report 

will therefore, with the use of adiabatic calorimeter results, be restricted to a 

macrostructural model controlled by factors related to the chemistry of cement. 

The model is unique in that the powerful finite element theory has been combined 

with a reliable method of describing the amount of heat liberated from a specific 

concrete mixture.  

 

The model however, is limited with respect to cracking potential as it is not able 

to predict the consumption of water by the hydration reaction which results in a 

change of concrete stiffness.  The problem regarding stiffness gain with respect to 

time can however be dealt with statically at a specific point in time with empirical 

Young’s modulus values. This relationship will not be dealt with in this research 

report, but the finite element model allows for a future possibility of this 

development.  
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3 DEVELOPMENT OF THE FINITE ELEMENT MODEL 
FOR HEAT FLOW IN CONCRETE 

 

3.1 INTRODUCTION 
 

The finite element method is a numerical analysis technique for obtaining 

approximate solutions to a wide variety of engineering problems. In engineering 

situations today it is necessary to obtain approximate numerical solutions to 

problems due to the unavailability of exact closed-form solutions. Such examples 

are: finding the load carrying capacity of a steel plate that has several stiffeners 

and odd-shaped holes, evaluating the concentration of pollutants during non-

uniform atmospheric conditions, determining the rate of fluid flow through a 

passage of arbitrary space configuration. With relative ease, governing equations 

and boundary conditions for these situations can be resolved, although no simple 

analytical solution may be found. The difficulty in these three examples lies in the 

fact that either the geometry or some other feature of the problem may be irregular 

or poorly quantified. Analytical solutions to problems of this type seldom exist 

even though these situations are commonly encountered by engineers. One 

possible way to overcome this problem is to make simplifying assumptions, which 

ignore inherent complexities. Occasionally this procedure yields adequate results. 

However, more often than not, serious inaccuracies and incorrect solutions are 

encountered. A more viable alternative is to retain the complexities of the problem 

and find an approximate numerical solution.  

 

Many numerical analysis techniques have been developed, but the most easily 

accessible technique is the finite difference scheme. This analysis tool gives a 

point-wise solution to the governing equations of the problem. The continuum in 

which the solution is sought is replaced by a finite set of points and an attempt is 

made to find approximate values for these points by the use of difference 

equations. This model improves in accuracy as more points are used within the 

continuum. The finite difference technique can solve fairly difficult problems and, 
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with the ease of implementation, the method is commonly employed. However, 

when irregular geometries or unusual boundary conditions are encountered the 

finite difference technique becomes difficult to implement and the results are 

unreliable in their accuracy.  

 

In recognition of the shortcomings of the finite difference method other numerical 

analysis techniques have been developed. The most powerful technique emerging 

in recent years is the finite element method. Unlike the finite difference method, 

which envisions the continuum as a region of grid points, the finite element 

method envisions the continuum as a region built up of small interconnected sub-

regions or elements. Therefore the finite element method gives a piece-wise 

approximation to the governing equations. The basic principle of the finite 

element method is that the continuum can be analytically modelled or 

approximated by replacing it with an assemblage of discrete elements. These 

elements can be assembled in a variety of ways and can thus be used to represent 

extremely complex geometric shapes.  

 

As an example, Figure 3.1 shows a part for an industrial machine. This complex 

geometric shape is modelled using both the finite difference and finite element 

methods. The uniform finite difference mesh approximates the irregular shape 

well except at the boundaries where the series of steps give a rough estimate. On 

the other hand the finite element method (using a combination of triangular and 

quadrilateral elements) improves the approximation of the continuum and requires 

fewer nodes. This example illustrates the fact that the finite element method is 

better suited as a numerical analysis technique for problems with irregular 

geometries.  
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Figure 3.1   Finite difference and finite element discretisations of a machine part 

 

3.2 PRINCIPLE OF THE FINITE ELEMENT METHOD 
 

In a continuum problem (body of matter or simply a region of space in which a 

particular phenomenon is occurring) of any dimension, the field variable 

(temperature in the case of a heat transfer problem) possesses infinitely many 

values because it is a function of each generic point in the body or solution region. 

Therefore the problem is one with an infinite number of unknowns. The 

discretisation procedure reduces the problem to a finite number of unknowns by 

dividing the continuum into elements and by expressing the unknown field 

variable in terms of assumed approximating functions within each element. The 

approximating functions or interpolation functions are defined at specified points 

called nodes. Nodes are generally positioned on the element boundaries where 

adjacent elements are connected. For the finite element representation of a 

Finite difference 
discretisation 

Finite element 
discretisation 

 =  Node 
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problem the nodal values of the field variable are the unknowns. Once the 

unknowns are found the interpolation functions define the distribution of the field 

variable throughout the assemblage of elements. Thus, the nature of the solution 

and the degree of accuracy depend not only on the size and number of elements 

used but also on the interpolation functions selected. Interpolation functions 

cannot be chosen arbitrarily due to certain compatibility conditions that need to be 

satisfied. 

 

The finite element method differs from other numerical analysis techniques due to 

the ability of formulating solutions for individual elements before putting them 

together to represent the entire problem. In essence, a complex problem reduces to 

considering a series of greatly simplified problems.  

 

The formulation of the properties of individual elements can be done in a variety 

of ways. There are three different approaches, namely: 

 Direct approach 

This approach is used for relatively simple problems and is traceable to the 

direct stiffness method of structural analysis.  

 Variational approach 

This approach relies on the calculus of variations and involves extremizing 

the functional. For problems in solid mechanics the functional turns out to 

be the potential energy. 

 Weighted residuals approach 

This approach is the most versatile approach to deriving element 

properties. It starts with the governing equations of the problem and 

proceeds without relying on a variational statement. This method is widely 

used to derive element properties for non-structural applications such as 

heat transfer and fluid mechanics. 
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Whichever of the above approaches is used to formulate the properties of an 

individual element, the process of finding the solution to a continuum problem is a 

step-by-step procedure shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 3.2   Stepwise finite element process 

 

 

 

 

 

2.  Select interpolation functions 

1.  Discretise the continuum 

3.  Find the element properties 

4.  Assemble the element properties to 
obtain the global equations 

5.  Impose the boundary conditions 

6.  Solve the global equations 

7.  Perform additional computations 
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1 Discretising the continuum: 

This initial step involves subdividing the continuum into a suitable number of 

small bodies, called finite elements, as shown in Figure 3.1. Different element 

shapes can be used in order to obtain a better approximate of the continuum. For 

many cases an irregular boundary can be approximated by a number of straight 

lines. Alternatively, it may be necessary to use mathematical functions of 

sufficient order to approximate the boundary. If the boundary is a parabolic shape, 

a second order quadratic function can be used to approximate that boundary. This 

method is used in the concept of isoparametric elements, and will be discussed in 

further detail in the application of the finite element method. 

 

2 Selecting interpolation functions: 

In this step, we allocate nodes to each element and then choose an interpolation 

function to represent the variation of the field variable over the element. 

Polynomials are often selected as interpolation functions because of the ease with 

which they can be integrated or differentiated. The degree of the polynomial 

depends on the number of nodes assigned to the element (i.e. the greater the 

number of nodes the higher the degree of the polynomial). The nodal points of the 

element provide strategic points for writing mathematical functions to describe the 

shape of the distribution of the field variable over the domain of the element. If 

we denote u as the field variable, the polynomial interpolation function can be 

expressed as: 

 

u = N1u1 + N2u2 + N3u3 + ... + Nmum      (3.1) 

 

In the above expression u1, u2, u3,..., um are the values of the field variable at the 

nodal points 1, 2, 3,..., m and N1, N2, N3,..., Nm are the interpolation functions. It 

should be noted here that after all the steps of the finite element method are 

accomplished, the values of the field variable at all of the nodes is established. 

However, to initiate action towards obtaining the solution, an interpolation or 

shape function needs to be assumed in advance. Figure 3.3 shows that the final 

solution is a combination of solutions in each element patched together at the 
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common boundaries. This is further illustrated by sketching a cross-section along 

section P-P. From this figure, it can be observed that the computed solution is not 

necessarily the same as the exact solution shown by the solid curve. The statement 

that the finite element discretisation yields approximate solutions can be 

visualized from this schematic representation.  

 

 
 

Figure 3.3   Approximate solution as a patchwork of solutions over the elements 
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3 Finding the element properties: 

Once the type of elements and their interpolation functions have been selected, the 

matrix equations expressing the properties of the individual elements may be 

formulated. The formulation of the properties of individual elements can be done 

in any one of the three ways mentioned previously (viz. the direct approach, the 

variational approach, or the weighted residuals approach). 

  

4 Assembling the element properties to obtain the global equations: 

The final aim is to obtain equations for the overall system modelled by the 

network of elements. Fundamentally, the matrix equations expressing the 

behaviour of the elements are combined to form the matrix equations expressing 

the behaviour of the entire system of elements. In other words we are assembling 

the element equations into system equations, otherwise known as global 

equations, for the entire system. The global matrix equations have the same form 

as the individual element equations except that they contain many more terms 

since they include all the nodes. The principle of this assemblage process stems 

from the fact that at a common node, where elements are interconnected, the value 

of the field variable is identical for each element sharing the node. 

 

5 Imposing the boundary conditions: 

This step accounts for the boundary conditions which are imposed on the global 

matrix equations. The boundary conditions need to be applied before a solution to 

the problem can be found. Thus, known nodal values of the dependent variable are 

imposed on the boundary.  

 

6 Solving the global equations: 

The assemblage process of step four results in a set of simultaneous equations that 

can be solved to obtain the unknown nodal values of the field variable for the 

specific problem. If the problem describes steady behaviour, it will be necessary 

to solve linear or non-linear algebraic equations. However, if the problem is 

unsteady, the nodal values are a function of time and it is therefore necessary to 

solve linear or non-linear ordinary differential equations.  
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7 Performing additional computations if required: 

The solution of the system equations can very often be used to calculate various 

other parameters. For example, in structural engineering application involving a 

load-deformation problem, the primary solution is deformation. These 

deformations can be used to calculate secondary solutions such as the element 

stresses and strains.  

 

3.3 APPLICATION OF THE FINITE ELEMENT METHOD 
 

The application of the finite element method can be divided into three main 

categories, each dependent on the nature of the problem needing to be solved.  

 

The first category deals with problems known as equilibrium problems or time-

independent problems. Most applications of the finite element method fall into 

this category. The second category is concerned with problems known as 

eigenvalue problems of solid or fluid mechanics. These types of problems are 

steady state. The third category deals with problems which are time dependent and 

are known as propagation problems of continuum mechanics. This is a category 

of problems composed of the previous two problems with an added time 

dimension, thus it is defined as a transient problem. Recognizing that heat transfer 

finite element analysis is a transient problem the third category of problems is 

applicable to the problem of temperature development in concrete.  

 

The application of the finite element method to a transient heat transfer problem 

has been simplified into the following stepwise method: 

 

In general all the subsequent equations are taken or developed from Huebner et al. 

(1995) and Lewis et al. (1996). It is important to note that the parentheses [ ] refer 

to a matrix that contains more than one row and one column, { } refer to a column 

vector and   refer to a row vector.  
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Step 1: 

 

A subject of paramount importance in finite element analysis is the selection of 

the particular finite elements to be used to discretise the continuum. Fitting a 

curved boundary with straight sided elements generally leads to a satisfactory 

representation of the boundary, but improved fitting would be possible if curved 

sided elements could be formulated. With the use of curve sided elements it would 

be possible to use a smaller number of larger elements and still obtain a close 

boundary representation. Thus for large complex continuums, the amount of 

computer time required to obtain a solution to the problem can be considerably 

reduced.  

 

The principle of curved sided elements centres on mapping or transforming simple 

geometric shapes (particularly quadrilaterals) in some local coordinate system into 

distorted shapes in the global Cartesian coordinate system and then evaluating the 

element equations for the curved sided elements that result. These types of 

elements are known as isoparametric elements.  
 

 
Figure 3.4   Curve sided elements – Isoparametric elements 

 

y 
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Three nodes must be associated with each side of the quadrilateral element if it is 

required to represent a continuum in x-y Cartesian coordinates by a network of 

curved sided quadrilateral elements, and furthermore it is required that the field 

variable T (temperature in this case) has a quadratic variation within each element. 

The continuum and the desired finite element model might appear as shown in 

Figure 3.4. To construct one typical element of this assemblage it is required to 

relate this one element to a simpler “parent” element in the - local coordinate 

system shown in Figure 3.5.  
 

 
Figure 3.5   Isoparametric “parent” element 

 

This element is part of the serendipity family of rectangular elements. The nodes 

in the - plane may be mapped into corresponding nodes in the x-y plane as 

follows: 
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In the above equations the mapping functions, Ni, are the element interpolation 

functions and these will be defined in Step 2. These interpolation functions need 

to be quadratic since the curved boundaries of the element in the x-y plane need 

three points for their unique specification, and the interpolation functions should 

take on the proper values of unity and zero when evaluated at the nodes in the - 

plane.  

 

When writing equations such as equations 3.2 and 3.3, we assume that the 

transformation between the local - coordinates and the global x-y coordinates is 

unique (i.e. we assume that each point in one coordinate system relates to a unique 

corresponding point in the other coordinate system). It is also important that 

continuity between curved elements is upheld when the elements are assembled 

(i.e. the slope between adjacent elements is constant).  

 

These mapping equations result in curved sided quadrilateral elements of the type 

shown in Figures 3.6 and 3.7. These figures were produced using equations 3.2 

and 3.3 and the element interpolation functions. 
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Figure 3.6   Curved sided eight noded quadrilateral isoparametric elements 

 



 3.13

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0 2.5

 

Figure 3.7   Curved sided eight noded quadrilateral isoparametric elements 

 

 

Step 2: 

 

In the finite element procedure, once the element mesh for the solution continuum 

has been decided, the behaviour of the unknown field variable over each element 

is approximated by continuous functions expressed in terms of the nodal values of 

the field variable. The functions defined over each finite element are called 

interpolation functions or shape functions.  

 

Interpolation functions cannot be chosen arbitrarily as certain continuity 

requirements must be met to ensure that the convergence criteria are satisfied. Due 

to the fact that the field variable is continuous at the element faces, it can be said 

that the current problem has C0 continuity.  

 

The type of elements to be used in the proposed heat transfer analysis is eight 

noded quadrilateral isoparametric elements with the nodes located as shown in 

Figure 3.8.  



 3.14

 
Figure 3.8   Eight noded quadrilateral isoparametric element 

 

These elements possess interpolation functions associated with any arbitrary 

node j and can be determined directly from the requirement: 
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For this type of element the corresponding nodal interpolation functions are: 

 

    41111  N          211 2
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The form of the interpolation functions is illustrated in Figure 3.9, specifically for 

node 1. The form of the interpolation functions, N1 to N8, produce similar plots. 

 

 
Figure 3.9   Form of interpolation function N1 

 

Figure 3.10 shows the temperature distribution due to the interpolation functions 

within an individual element when the nodal values of temperature T1, T2,…, T8 

are prescribed.  
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Figure 3.10   Temperature distribution when nodal values of temperature are  

     prescribed 

 

If the edge of an eight noded quadrilateral isoparametric element coincides with 

the boundary of a region with surface heat transfer, an additional conductance 

matrix and heat load vector are required. The heat load vectors are the essential 

boundary conditions to which the surface of the continuum is subjected. The 

curved edge of a typical eight noded quadrilateral isoparametric element 

resembles the quadratic rod element and therefore we can use the corresponding 

matrices for the rod element, provided the proper surface is employed.  
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The three noded quadratic rod element has interpolation functions of the form: 

 

    211  N  

   2
2 1  N  

    213  N  

 

These interpolation functions are shown in Figure 3.11, as well as the form of the 

field variable T when the nodal values T1, T2, and T3 are prescribed.  

 

 
Figure 3.11   Form of the interpolation functions and temperature distribution when  

          the nodal values of the temperature are prescribed 
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The 3 noded quadratic rod element is also part of the serendipity family of 

elements. Therefore the nodes in the  plane are mapped onto corresponding 

nodes in the x-y plane. This is accomplished by again mapping the region  

-1    1 into the region of interest by the isoparametric mapping condition: 
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These elements are assembled with the eight noded quadrilateral isoparametric 

elements as shown in step 4.  

 

Step 3: 

 

 
Figure 3.12   General continuum () and boundary () 
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Considering a transient heat transfer problem in a two-dimensional solid, , 

bounded by a surface, , (Figure 3.12). The problem is governed by the energy 

equation: 
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Where Q’ is the internal heat generation rate per unit volume,  is the density, c is 

the specific heat, t is the time and qx and qy are components of the heat flow rate 

vector per unit area in Cartesian coordinates. For an anisotropic continuum 

Fourier’s law is: 
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With k being the thermal conductivity, the heat conduction equation is derived for 

non-linear material properties. Note: Thermal conductivity k can be considered 

constant for concrete, while assuming it to be an isotropic medium.  

 

The heat conduction equation is solved subject to initial and boundary conditions. 

The initial condition stipulates the temperature within the continuum when time is 

zero (i.e. the placing temperature of the concrete). 

 

   yxTyxT ,0,, 0         (3.10) 

 

The boundary conditions may incorporate specified surface temperature, specified 

surface heat flow, convective heat exchange and radiation.  

 

 

 

(3.9) 
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The latter two boundary conditions were selected as being the most appropriate 

conditions for the problem; thus the boundary conditions are: 

 

 esyyxx TThnqnq    Convection on all surfaces  (3.11) 

 44
esyyxx TTnqnq     Radiation on all surfaces   (3.12) 

except bottom surface 

 

Where nx and ny are the direction cosines of the outward normal to the surface, h 

is the convective heat transfer coefficient, Ts is the unknown surface temperature, 

Te is the known atmospheric temperature,  is the Stefan-Boltzmann constant and 

 is the surface emissivity.  

 

The convection heat transfer coefficient, h, is dependent on whether the concrete 

is still contained by the formwork. The formwork generally is constructed of 

timber, and the heat transfer coefficient is taken as approximately 5 W/m2K 

compared with the approximate value of 30 W/m2K for concrete without 

formwork (Holman, 1986). The heat transfer coefficient is a measure of how 

much heat can be transmitted between the surface and the environment.  

 

The surface temperature, Ts, is the temperature at the nodes on each of the 

surfaces and is unknown. The atmospheric temperature, Te, is the temperature of 

the surrounding environment and is approximated by the following sinusoidal 

function (Ballim, 2004a): 

 

 






 







 






 


2224

2sin minmaxminmax TTTTtt
T wd

e

    (3.13) 

 

Where td is the clock time of day at which the approximation is being made (0 to 

24 hours), tw is the time at which the minimum overnight temperature occurs, Tmax 

is the maximum temperature for the day under consideration and Tmin is the 

minimum temperature for the day under consideration.  
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An important benefit of this equation is that it can approximate the ambient 

temperature at any time using only the daily maximum and minimum 

temperatures which can be obtained from the local meteorological office. This 

ensures that at the design stage of a construction project, the ambient temperatures 

can be predicted on an hourly basis as required for the numerical heat transfer 

analysis. However, the model does have a disadvantage. It has been simplified and 

does not incorporate factors such as cloud cover, wind or direct sunlight. It should 

be noted that direct sunlight could be included in the radiation boundary condition 

as solar radiation if required. The presence of wind could also be included within 

the convection heat transfer coefficient. The greater the wind speed the higher the 

coefficient value and vice versa. Thus, with the above arguments the ambient 

temperature model can be said to be fairly accurate and has been shown to give 

acceptable results (Ballim, 2004a). Figure 3.13 shows the sinusoidal function for 

prescribed maximum and minimum temperatures (Ballim, 2004a). 
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Figure 3.13   Modelled atmospheric temperatures using equation 3.13 
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The radiation boundary condition shows that energy will be emitted at a rate 

proportional to the fourth power of the absolute temperature of the body. The 

emissivity of the grey concrete surface is equal to the ratio of emission from a 

grey surface to that from a perfect radiator at the same temperature and can be 

taken as 0.9 for most cases (Isgor, 2004). The Stefan-Boltzmann constant, , is 

the proportionality constant and has a value of 5.669 x 10-8 W/m2K4. 
 

 
Figure 3.14   Heat transfer between Surfaces 1 to 4 and the environment 

 

For a typical cross-section as shown in Figure 3.14, the boundaries are specified 

as Surface 1 to Surface 4. Each of the surfaces undergoes convection into the 

surface or convection out of the surface from the surrounding environment. It is 

assumed that the bottom surface (Surface 4) will lose or gain heat from the casting 

surface (generally rock or concrete) through convection. Conceptually this is 

incorrect but this assumption will not have a large effect on the results (refer to 

Chapter 4 of this report). A proposed solution to this problem would be to model 

the casting surface as a separate mesh. This would then lead to more accurate 

results although the computation time required to obtain a solution would increase 

significantly. It is also assumed that radiation into or out of the cross-section 

occurs on surfaces 1, 2 and 3 only.  
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The material properties, specifically thermal conductivity, and boundary 

conditions are non-linear as they change with incremental time. It can therefore be 

stated that the problem is inherently non-linear. Although the derivation of the 

finite element equation is for non-linear problems it can be assumed at a later 

stage that these material properties are actually linear. This is done for simplicity 

since consideration of non-linear material properties would have high demand on 

the computation time required to obtain a solution to a particular problem. The 

internal heat generation rate per unit volume (Q’) is inherently non-linear as a 

result of the exothermic hydration reaction. This non-linearity is resolved through 

the use of an iterative solution as it cannot be regarded as linear.  

 

Following the derivation of the initial and boundary conditions, the formulation of 

the finite element equation for a single element is required. Knowing that the 

continuum has been divided into M number of elements each containing eight 

nodes, the temperature and temperature gradients within each element can be 

expressed as: 
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or in matrix notation 

 
        tTyxNtyxT e ,,,         (3.17) 
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Where the superscript e denotes a single element, [N] is the temperature 

interpolation matrix, [B] is the temperature gradient interpolation matrix, Ti(t) is 

the value of the temperature at each node and {T(t)} is a single column vector 

with eight rows of nodal temperatures.  

 

    87654321, NNNNNNNNyxN     (3.19) 
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The method of weighted residuals is now employed to formulate the individual 

element equations. This method is a global technique for obtaining approximate 

solutions to linear and non-linear partial differential equations. It allows the finite 

element equations to be derived directly from the governing differential equations. 

The method employs two steps, the first of which is to assume the general 

functional behaviour of the dependent field variable (temperature), in such a way 

as to satisfy the governing differential equation and boundary conditions. This 

assumption will result in an error when it is substituted into the governing 

differential equation. This error is known as a residual. In order to cancel out this 

residual, the error is averaged over the entire continuum ensuring an insignificant 

error.  

 

If it is required to find an approximate functional representation for the field 

variable, T, governed by the differential equation (equation 3.21) in a continuum, 

, bounded by the surface , step one can be illustrated. 

 

  0 bTG          (3.21) 

 

Where b is a known function of the independent variable (i.e. b specifies the 

boundary conditions) and G is the differential operator. The first step in the 
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method of weighted residuals requires that the unknown exact solution T is 

approximated by T’ and is shown in equation 3.22. 
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iiCNTT
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'         (3.22) 

 

Where Ni are the assumed interpolation functions, Ci are the unknown functions of 

the independent variable (function of time for transient problems) and m is the 

number of unknown Ci values. Substituting T’ (equation 3.22) into the governing 

differential equation (equation 3.21) results in the following: 

 

  0'  RbTG         (3.23) 

 

Where R is the error or residual that is obtained with the approximation of T with 

T’. As mentioned previously the method of weighted residuals attempts to 

determine the m unknown Ci values such that the residual over the entire 

continuum is small. A weighted average of the residual is then created which 

fades away over the entire continuum. Therefore, m linearly independent 

weighting functions, Wi, are chosen and the following weighting is then 

performed: 

 

   midRWdWbTG
T ii ,...,3,2,10'     (3.24) 

 

Therefore R  0. With the specification of the weighting functions, the above 

equation represents a set of m algebraic or ordinary differential equations.  

 

The second step involves solving the equation resulting from the first step and to 

find a general functional form for the governing differential equation which will 

then become the approximate solution to the problem. This is done by solving 

equation 3.24 for Ci and hence obtaining an approximate solution for the field 
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variable T from equation 3.22. It has been shown that as m increases towards 

infinity the approximate temperature T’ approaches the actual temperature T.  

The selection of the weighting functions now becomes important due to the wide 

variety of functions that can be used. The Galerkin method is the most common 

method used to derive the weighting functions which are required to obtain the 

finite element equations. In particular the Bubnov-Galerkin method is employed 

and thus the chosen weighting functions are the same as the interpolation 

functions given in Step 2. Therefore Wi = Ni for i = 1, 2, 3,…, 8. There are many 

other choices for the weighting functions such as the Pertov-Galerkin method (e.g. 

least-squares method and collocation method), however these are far more 

complex than the Bubnov-Galerkin method. 

 

The Bubnov-Galerkin method is now implemented on the governing differential 

equation (equation 3.21).  
 

    0' dNbTG i        (3.25) 

 

This equation deals with the entire continuum, although it also holds for an 

arbitrary subdomain or element within the continuum. Therefore the above 

equation will be formulated for a single element as Step 3 of the application of the 

finite element method is only concerned with single element equations. The 

weighting functions Ni are now the interpolation functions for the type of element 

concerned (eight noded quadrilateral isoparametric element) and the Ci unknown 

values are the nodal values of the field variable (i.e. temperature). Equation 3.25 

now becomes: 
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Where the superscript e indicates that equation 3.26 is for a single element and r is 

the number of nodes assigned to the element. 
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With equation 3.27 the temperature at each node within the element can then be 

solved. 

 

      eee TNT          (3.27) 

 

Now that the method of weighted residuals has been briefly introduced, the 

differential equation used to illustrate the method (equation 3.21) can now be 

replaced in equation 3.26 with the governing heat transfer differential equation 

(equation 3.8).  

 

   e dNtTcQyqxq iyx 0     (3.28) 

 

For simplicity the superscript e has been omitted. The above equation is now 

expanded in order to obtain a solution.  

 

        
e ee dNtTcdQNdNyqxq iiiyx 0  (3.29) 

 

 
 

It is now required to simplify equation 3.29 with part A of the equation simplified 

by applying integration of parts. When integration of parts is used to find the 

element equations it offers a convenient way to introduce the natural boundary 

conditions that must be satisfied on some portion of the boundary. Although the 

boundary terms containing the natural boundary conditions appear in the 

equations for each element, in the assembly of the element equations only the 

boundary elements give contributions that do not disappear.  
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Integration by parts for a two-dimensional continuum  with boundary  is: 
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Applying integration of parts on part A of equation 3.29 yields: 
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Now equation 3.29 is re-written in a simplified form: 
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The surface integral is now expressed in terms of the relevant surface and the 

boundary conditions are introduced. As previously mentioned, each surface 

experiences convection (i.e. Surface 1 to Surface 4) and surfaces 1 to 3 experience 

radiation.  
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Therefore equation 3.32 becomes: 
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Where S1 to S4 refer to Surfaces 1 to 4 respectively.  

 

From equation 3.9, knowing that the material properties are assumed to be non-

linear: 
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From equations 3.15 and 3.16: 

 

      tTBT           (3.35) 
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Now we will assume that the material properties are linear, therefore: 
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Where k is the constant thermal conductivity for the concrete.  
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Where: 























8

2

1

N

N

N

Ni 
           (3.39) 

    tTNT             (3.40) 

 

Simplifying: 

 

                  eee dNQdTBkBdtTNNc T  
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Equation 3.41 reduces to: 

 

                   
         
       
      321

3214

3214

321

SrSrSr

SSSSh

ShShShSh

ShShShQc

RRR

RRRR

RRRTk

TkTkTkRTktTC










 (3.42) 

Where: 

 

       e dNNcC   

 

         e dBkBk T
c  

 

       dNQR eQ  

 

     
11 SSh dNNhk         

22 SSh dNNhk  

     
33 SSh dNNhk         

44 SSh dNNhk  

 

    
11 S eSh dNhTR        

22 S eSh dNhTR  

    
33 S eSh dNhTR        

44 S eSh dNhTR  

 

        
1

4
1 SS dTNNR            

2
4

2 SS dTNNR   

        
3

4
3 SS dTNNR   

 

      dNTR
S eSr 1

4
1           dNTR

S eSr 2
4

2   

      dNTR
S eSr 3

4
3   
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Where [C] is the element capacitance matrix and relates to conduction and [kc] 

and [kh] are the element conductance matrices which relate to convection. The 

convection matrix [kh] is only formulated for elements on the boundaries where 

convection takes place. The matrices RQ, Rh, R and Rr are the matrices due to the 

internal heat generation, surface convection and surface radiation respectively (the 

latter two matrices are both for surface radiation).  

 

The formulation of the finite element equation for a single element has now been 

completed. This equation (equation 3.42) however, is formulated for elements 

with interpolation functions that are defined in Cartesian coordinates. These 

elements have relatively low accuracy because of the low order interpolation 

functions. In step 2 of the application of the finite element method eight noded 

quadrilateral isoparametric elements were chosen to discretise the continuum. 

These elements have higher order interpolation functions thus they provide higher 

accuracy and can better approximate curved boundaries. The disadvantage of 

utilizing isoparametric elements is that the elements are required to be mapped 

into the Cartesian coordinate system. This principle requires the matrices in 

equation 3.42 to be modified.  

 

The element matrices involving volume integrals (i.e. [C], [kc] and {RQ}) are 

integrated with respect to the volume of an element in Cartesian coordinates. 

 

dydxtd   

 

Where t is the thickness of the element.  

 

These integrals now need to be modified such that the integration is with respect 

to the - coordinate system. This is done such that numerical integration is 

possible.  
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The introduction of the Jacobian matrix is required to carry out this 

transformation. From equations 3.15 and 3.16 it is required to express Ni/x and 

Ni/y in terms of  and . Due to the inverse form of equations 3.2 and 3.3 it is 

possible to utilize the chain rule of differentiation such that: 

 

       yyNxxNN iii  

       yyNxxNN iii  

 

These equations can now be written in matrix notation: 
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     (3.44) 

 

The Jacobian [J] is now defined as: 

 

  














yx

yx
J        (3.45) 

 

Equations 3.2 and 3.3 are now rewritten and differentiated accordingly: 
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i
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The Jacobian therefore becomes: 
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J
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    (3.46) 

 

Equation 3.44 can be rearranged in the following form: 
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

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N
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J
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Now this transformation process can be illustrated using equations 3.15 and 3.16: 
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The above equation can be transformed into: 
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   (3.49) 

 

The element matrices are integrated with respect to the volume of the element 

relative to the Cartesian coordinates. This can now also be transformed as follows: 

 

   ddJtdydxtd ,       (3.50) 
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The Jacobian matrix is also useful for checking whether the mapping is acceptable 

(i.e. the elements do not overlap). If J  0 and the sign of J does not change in 

the continuum, acceptable mapping can be assured ( J is the determinate of J ).  

 

This transformation allows the element integrals to be evaluated by integration 

over the unit square of the isoparametric parent element. The element matrices 

involving volume integrals ([C], [kc] and {RQ}) can now be transformed into: 

 

Capacitance matrix: 

 

          
 


1

1

1

1

,,,  ddJNNtcC    (3.51) 

 

This double integral can now be evaluated using a numerical integration 

technique. The commonly used method is Gauss-Legendre quadrature. Using this 

technique the capacitance matrix becomes: 

 

          
 


NG

i

NG

j
jijijiji JNNtcWWC

1 1
,,,     (3.52) 

 

Where NG is the number of Gauss points in each integration direction and can 

range between 1 and 8, Wi and Wj are the Gauss weights and i and j are the 

coordinates of the Gauss points.  

 

This numerical integration technique (Gauss-Legendre quadrature) was however 

not used in the Matlab programme code, due to the vast number of built-in 

integration functions in Matlab.  
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Conductance matrix: 

 

The element conductance matrix is formulated in a similar manner, except the 

temperature gradient matrix [B] is evaluated in terms of  and . Using equations 

3.20 and 3.47 the equation for [B] in terms of  and  is derived: 

 

      










 



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821

8211,,
NNN

NNN
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


   (3.53) 

 

The element conductance matrix therefore is: 

 

             ddJBkBtk T
c ,,,

1

1

1

1
 
 

     (3.54) 

 

The conductance matrix can also be evaluated by Gauss-Legendre quadrature: 

 

            
 


NG

i

NG

j
jiji

T
jijic JBkBtWWk

1 1
,,,     (3.55) 

 

Heat liberated matrix: 

 

        ddJNtQRQ ,,
1

1

1

1
 
 

      (3.56) 

 

The heat liberated matrix can also be evaluated by Gauss-Legendre quadrature: 

 

       
 


NG

i

NG

j
jijijiQ JNQtWWR

1 1
,,      (3.57) 
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The remaining element matrices ( [kh]S1 to S4, {Rh}S1 to S4, {R}S1 to S4 and {Rr}S1 to S4) 

can be evaluated similarly by Gauss-Legendre quadrature in the  plane. These 

element matrices are due to the existence of the three noded quadratic rod elements 

that are used to incorporate the boundary conditions. Integrals along an element 

edge (integration with respect to ) are evaluated using a local coordinate system s. 

The distance d along an element edge can be expressed in terms of ds: 

 

     ddddyddxds  22       (3.58) 

 

Considering a side s of an element that connects three nodes, as shown in 

Figure 3.15, the Pythagoras theorem is used for this derivation.  
 

 
Figure 3.15   Segment s of a boundary which forms one side of an eight noded  

 quadrilateral element 

 

This transformation allows the element integrals to be evaluated by integration 

over the isoparametric parent element. The element matrices involving surface 

integrals ( [kh]S1 to S4, {Rh}S1 to S4, {R}S1 to S4 and {Rr}S1 to S4) can now be 

transformed into: 

 

 

y 

x 

I 

J

K 

d dy 

dx 



 3.38

Additional conductance matrix: 

 

           



1

1

22
41  dddyddxtNNhk StoSh    (3.59) 

 

Using Gauss-Legendre quadrature: 

 

           



NG

i
iiiStoSh ddyddxNNthWk

1

22
41    (3.60) 

 

Additional heat load matrices: 

 

        



1

1

22
41  dddyddxtNThR eStoSh    (3.61) 

             



1

1

224
41  dddyddxtTNNR StoS  (3.62) 

        



1

1

224
41  dddyddxtNTR eStoSr    (3.63) 

 

Gauss-Legendre quadrature can also be applied to the above three matrices. 

 

Now that the finite element equation has been defined and modified due to the use 

of isoparametric elements, the assemblage of the elements is required.  
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Step 4: 

 

The assembly procedure is in principle a general procedure that applies to all 

finite element systems. The general procedure can be summarized in the following 

steps: 

 

1 Create n x n and n x 1 all zero matrices, where n is the total number of 

nodes required to discretise a continuum. In Figure 3.16, n = 21. Due to 

temperature being the only unknown (degree of freedom) at each node the 

number of nodes is equal to the number of unknowns required to be solved 

throughout the continuum. Therefore the number of unknown temperature 

values is equal to n.  

 
Figure 3.16   Four elements connected producing 21 nodes 

 

2 Transform the element equations from the local to the global numbering 

system if the two numbering systems are not coincident. In Figure 3.17 the 

local and global numbering systems are shown for element 4 from 

Figure 3.16. The process of assemblage is a stepwise process, thus only 

one element is considered presently.  
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Figure 3.17   Element 4, global and local numbering scheme 

 

3 Using this established correspondence between local and global numbering 

systems, change from the local to the global indices. Further, it requires 

that a subscript referencing the position of each and every term in the 

element matrices be created. The square element matrices will have a 

double subscript to indicate the row and column in which the term is 

located. The column matrices require only a single subscript. It must be 

emphasized that these subscripts are global node numbers not local node 

numbers.  

 

4 These terms are now inserted into the corresponding n x n and n x 1 all 

zero matrices in the locations designated by their indices. If for instance 

there is already a term in a certain position where another term is required 

to be placed, the terms are added.  

 

5 It is now required to return to step 2 of the assemblage process and repeat 

this procedure until all the elements have been considered. The final result 

will be n x n global capacitance, conductance and additional conductance 

matrices and n x 1 global column heat liberated and heat load matrices. 

This then results in a global finite element equation for the entire 
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continuum containing M number of elements. This equation is then solved 

to obtain the temperature distribution throughout the continuum (refer to 

step 6). 

 

This assembling process is based on the law of compatibility or continuity as it 

requires that the body remain continuous. Due to the fact that temperature is a 

scalar quantity, it must be assured that continuity will be upheld.  

 

There is however the issue of combining the three noded quadratic rod elements 

with the eight noded quadrilateral isoparametric elements. Figure 3.18 shows four 

quadrilateral elements and eight rod elements plus the relative global node 

numbering of the quadrilateral elements. 

 
 

 
Figure 3.18   Combining three noded quadratic elements with eight noded  

      quadrilateral isoparametric elements 
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Element a in Figure 3.18 shares common nodes with element 1 (i.e. node 2 of 

element a shares a node with node 6 of element 1). This sharing of nodes is 

fundamental to the assemblage process. The node numbering of the three-noded 

rod elements is in terms of the local numbering system, and therefore these 

elements will adopt the global node numbering from the eight noded 

quadrilaterals in the assemblage process due to node sharing. The heat load 

vectors will therefore only have entries in the rows relating to the common global 

node numbers.  

 

The surface integrals can now be combined for the appropriate like terms and 

equation 3.42 becomes the global finite element heat transfer equation: 
 

                rhQhc RRRRTkktTC     (3.64) 

 

Step 5: 

 

The general stepwise procedure of finding a solution to a continuum problem with 

the use of the finite element method includes a separate step for the inclusion of 

the boundary conditions. This step however, has already been taken into account 

in Step 3. The process of solving for an individual element equation involves the 

method of weighted residuals and related integration by parts. As mentioned 

previously, the integration by parts incorporates the boundary conditions 

automatically and thus they have already been considered.  

 

Step 6: 

 

The transient global finite element heat transfer equation (equation 3.64) is solved 

in this step. This is an ordinary differential equation that is required to be solved 

iteratively. This numerical integration procedure relies on recursion formulas 

which permit the solution to be “marched out” in time, starting from an initial 

temperature distribution. The algorithm to be used is the implicit one-parameter 
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“ ” scheme where -1    1. This scheme computes temperatures at time tn+1 

from a set of coupled algebraic equations.  

 

                rhQhc RRRRTkktTC       (3.64) 

                rhQhc RRRRTkkTC  
     (3.65) 

 

 

The following approximations can be formulated: 

 

       tT~tTTT nn  1
         (3.66) 

       11  nn TTT           (3.67) 

 

Where t is the time step through which the solution will be iterated, {T}n+1 is the 

temperature at the next time step and {T}n is the temperature at the current time 

step. 

 

Substituting equations 3.66 and 3.67 into equation 3.65 yields: 

 

                 HTTkktTTC nnhcnn   11 1      (3.68) 

 

Equation 3.68 then simplifies to provide a time marching scheme to be used to 

obtain a solution to the transient global finite element heat transfer equation.  

 

                    
       rhQ

nhcnhc

RRRR

TkkCtTkkCt



 



 111 1   (3.69) 

 

 

 

 

H 
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The parameter  was chosen to be ½, which represents the Crank-Nicolson 

algorithm. This algorithm is unconditionally stable, but a time step that is too 

large may introduce oscillations that could cause the solution to diverge from the 

exact solution. Equation 3.69 is programmed in Matlab such that a solution to the 

temperature after each time step (t) throughout the continuum is established.  

 

Step 7: 

 

No additional computations are required for the finite element heat transfer 

analysis, although a proposed additional computation would be to calculate the 

stresses and strains that are generated within a continuum due to the differential 

temperatures within the medium.  

 

 

3.4 CONCLUSION 
 

This chapter considered the fundamental steps required to obtain a transient 

solution to a heat transfer problem. A general formulation was presented based on 

the method of weighted residuals. This theory was used to create a programme 

written in Matlab to predict the heat liberated and distributed over a two-

dimensional continuum. Chapter 4 presents the results obtained from the 

numerical model and compares this data to experimental results. Appendix A 

gives the Matlab code for the fundamental functions.  
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4 MODEL OUTPUT AND DISCUSSION 
 

4.1 INTRODUCTION 
 

This chapter deals with the results produced by the finite element numerical 

model. Comparisons between the predicted and measured results obtained from 

two different experiments are then drawn. The two available measured 

temperature profiles that were utilized for a comparison/verification exercise are: 

1 Temperature measurement exercise that was conducted during the 

construction of the Katse Dam in Lesotho (Ballim, 2004a). 

2 Temperature verification exercise that was conducted for the previously 

mentioned finite difference numerical model: An instrumented block of 

concrete was cast in the University of the Witwatersrand’s laboratory from 

which temperature profiles were obtained (Ballim, 2004b). 

 

Furthermore, this chapter presents a detailed comparison between the predicted 

two dimensional temperature profiles using finite element and finite difference 

analysis techniques. Comments and proposed solutions to errors within the 

modelling techniques are also discussed.  

 

This section will commence with an explanation of the input variables required to 

obtain a solution from the finite element numerical model - accurate input 

variables are the fundamental basis for the prediction of valid solutions. The 

results of the finite element numerical model, including a comparison with the 

measured and finite difference model results, are then presented. A sensitivity 

analysis, demonstrating the effect of various element configurations on the 

predicted results, will bring the model output portion to a close.  
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4.2 FINITE ELEMENT NUMERICAL MODEL 
 

4.2.1 Input Data 
 

Microsoft Excel spreadsheets were used to generate the input data essential for the 

finite element numerical model. Various code written in Microsoft Visual Basic, 

were implemented to create input files that specify the geometry of the finite 

element discretisation. The Microsoft Excel file “Co-ordinates.xls” (refer to 

attached compact disk) generates the discretised continuum with the following 

input data: 
 

Table 4.1 Input required for the mesh generator 

x Dimension = 2 m 

Number of 

elements in the 

x direction = 

20 

Element width 

in the x 

direction (m) = 

0.1 

Number of 

nodes in the x 

direction = 

41 

y Dimension = 1 m 

Number of 

elements in the 

y direction = 

10 

Element width 

in the y 

direction (m) = 

0.1 

Number of 

nodes in the y 

direction = 

21 

Total number of elements = 200 Aspect ratio = 1 
Total number 

of nodes = 
661 

 

The cells highlighted in green (i.e. the x and y dimensions of the cross-section and 

the number of elements in the x and y directions) are the only input values 

required by the user for this discretisation procedure. This procedure produces a 

finite element mesh as shown as an example in Figure 4.1.  

 

The spreadsheet also creates the global node numbers and corresponding 

Cartesian co-ordinates of each node. However it must be emphasized, that this 

particular mesh generator can only discretise a continuum with regular 8 noded 

rectangular elements of equal size.  

 

The cell highlighted in blue in Table 4.1 represents an individual element’s aspect 

ratio. This is a relationship of the element width (m or mm) to its height (m or 

mm) (i.e. the proportion of the maximum dimension to the minimum dimension). 
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As an approximate guideline, elements with an aspect ratio exceeding three 

should be used with caution and those exceeding ten are viewed as an 

inappropriate approximation of a continuum (i.e. the elements become excessively 

elongated and thus the finite element approximation in the extended direction is a 

rough estimate) (Kumar, 1996). Therefore, in order to obtain comparatively 

reliable results an aspect ratio of one is maintained (i.e. the elements are square). 

A sensitivity analysis found in Section 4.5, was performed with a variation of the 

element’s aspect ratio to illustrate the above phenomenon.  
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Figure 4.1 An example of the Finite element discretisation over a specified cross-  

                            section (only element nodes are shown) showing all four peripheral  

  surfaces 

 

This Microsoft Excel file (Co-ordinates.xls) also creates arrays of global node 

numbers and their relative x and y co-ordinates for the respective surfaces (i.e. 

Surface 1 to Surface 4 as shown in Figure 4.1).  

 

A supplementary Microsoft Excel file titled “Elements.xls” (refer to attached 

compact disk) generates further input files with the same input data as the 

Single Element 

      Surface 1 
      Surface 2 
      Surface 3 
      Surface 4 
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previous file. The function of this spreadsheet is to specify how the elements are 

linked together, and to present the data from the previous spreadsheet in a format 

compatible with the finite element numerical model.  

 

The spreadsheets within both of the Microsoft Excel files or parts thereof are then 

saved as data files, such that they can be imported into Matlab.  

 

The general geometric input data produced by the Microsoft Excel files are:  

 ElementCoord:       The x and y co-ordinates for each node of  

every 8 noded quadrilateral element. 

 NodesXElements:      Global node numbers for each 8 noded  

quadrilateral element. 

 NodesXElementsS1:      Global node numbers for each 3 noded  

quadratic rod element on Surface 1. 

 NodesXElementsS2:      Global node numbers for each 3 noded  

quadratic rod element on Surface 2. 

 NodesXElementsS3:      Global node numbers for each 3 noded  

quadratic rod element on Surface 3. 

 NodesXElementsS4:      Global node numbers for each 3 noded  

quadratic rod element on Surface 4. 

 S1:        The x and y co-ordinates for each node of  

every 3 noded quadratic rod element  

on Surface 1. 

 S2:        The x and y co-ordinates for each node of  

every 3 noded quadratic rod element  

on Surface 2. 

 S3:        The x and y co-ordinates for each node of  

every 3 noded quadratic rod element  

on Surface 3. 

 S4:        The x and y co-ordinates for each node of  

every 3 noded quadratic rod element  

on Surface 4. 
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These arrays are also required to assemble the individual elements into a global 

system for the finite element numerical model assemblage process. Each array is 

formulated such that the element matrices are assembled relative to the 

discretisation of the continuum.  

 

Furthermore, additional input arrays are required to define the ambient 

temperature and the amount of heat liberated within the concrete:  

      AmbientTemp:  Specifies daily maximum and minimum ambient  

temperatures (C) for the use of the sinusoidal temperature 

variation function programmed in Matlab 

 Maturity:      Tabulated values of the heat rate curve as calculated using 

the experimental data obtained from the adiabatic 

calorimeter test. The values tabulated are: Time (t20 hours) 

with respect to the Maturity Heat Rate (W/kg) 

 

Additional data such as; material properties, initial conditions, specific boundary 

conditions and time increment and duration are required as input for the finite 

element numerical model. These input variables must be entered at the 

commencement of the finite element programme: 

 Total number of elements 

 Total number of nodes 

 Total number of elements in the y-direction 

 Total number of elements in the x-direction 

 Initial concrete temperature (C) 

 Time of day when concrete is cast (hrs) 

 Thermal conductivity of concrete (W/m.K) 

 Concrete density (kg/m3) 

 Concrete specific heat (J/kg.K) 

 Formwork removal time (hrs) 

 Convective heat transfer coefficient for the exposed concrete surface 

(W/m2.K) 
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 Convective heat transfer coefficient for the surfaces covered with formwork 

(W/m2.K) 

 Thermal conductivity of founding rock (W/m.K) 

 Stefan Boltzman constant (W/m2.K4) 

 Emissivity of the grey concrete surface 

 Time at which the minimum overnight temperature occurs (hrs) 

 Binder content (kg/m3) 

 Apparent activation energy (kJ/mol) 

 Universal gas constant (kJ/mol.K) 

 Time increment (hrs) 

 Time period (hrs) 

 

4.2.2 Output data 
 

The finite element numerical model produces graphical output as shown in 

Figure 4.2. Temperature profiles from individual nodes within the discretised 

continuum may be extracted from the analysis results, converted and then copied 

into a Microsoft Excel spreadsheet. These arrays can then be plotted with respect 

to measured temperatures with relative simplicity. Due to the limited range of the 

experimental results, only certain points within the cross-section are compared. 

 

Figure 4.2(a) shows a plot of temperature (C) versus time (hrs) for each 

individual node within the cross-section and Figure 4.2(b) illustrates a contour 

plot of the temperature over the cross-section at the specified time period. An 

envelope plot of the maximum and minimum temperatures, encompassing all the 

nodal temperatures is also depicted in Figure 4.2(c). This is a practical illustration 

of the maximum temperature gradient within the concrete element and the time at 

which it occurs. The envelope plot is the primary purpose of the temperature 

prediction model as it indicates, for a given concrete material and environmental 

conditions, the temperature gradients that are likely to be achieved for a given 

concrete structural configuration. This information is essential for determining the 
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thermally induced stresses that may develop and, the likelihood of such stresses 

inducing cracks in the concrete. 
 

 
Figure 4.2 An example of the finite element numerical model graphical output 

 

Appendix B should be consulted for a worked example that describes in detail the 

functionality and procedure required to implement and obtain results from the finite 

element numerical model.  

 

 

 

 

 

 

 

 

 

 

Temperature 
(deg C) 

(a) 

(b) 

Single Element

(c) 29.8 C 
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4.3 EXPERIMENTAL AND NUMERICAL RESULTS COMPARISON 
 

This section is divided into two parts; verification of the finite element model 

against data obtained from the Katse Dam measurements (Ballim, 2004b), 

followed by a further validation against data obtained from the laboratory 

experiment reported by Ballim (2004a). 

 

4.3.1 Temperature – time profiles: Katse verification 
 

Introduction 
 

An unreinforced concrete cube, with dimensions 2m x 2m x 2m, instrumented 

with thermal probes was cast on the Katse Dam site. The concrete block was cast 

over a three hour time period with thermal probes numbered 1 to 6 held in 

position as shown in Figure 4.3.  

 
Figure 4.3 Positions of the thermal probes within the 8 m3 concrete element  

   cast on the Katse Dam site 
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The coordinates of the centre of the concrete element in millimetres (x, y, z) = (0, 0, 0). 

 

Prior to the casting of concrete, thermal probes were laid out inside the cube. The 

relative positions were: 

1:   At the centre of the rock and concrete interface (bottom).  (x, y, z) = (0, -1000, 0) 

2:   250 mm above the bottom probe.        (x, y, z) = (0, -750, 0) 

3:   500 mm above the bottom probe.        (x, y, z) = (0, -500, 0) 

4:   At the centre of the concrete cube.       (x, y, z) = (0, 0, 0) 

5:   500 mm north of the central probe.       (x, y, z) = (0, 0, 500) 

6:   50 mm from the east face level with the central probe.     (x, y, z) = (-950, 0, 0) 

 

Figure 4.4 illustrates the finite element discretisation through a central cross-

section of the 8 m3 cube. Relative numbering of thermal probe positions (numbers 

in italics) and finite element global node numbers are included. 
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Figure 4.4 Finite element discretisation over the specified cross-section 

 

Temperature versus time profiles are constructed and compared with the measured 

results by extracting relative data from the finite element numerical model. Each 

position (positions 1 to 6) within the cross-section has a specific temperature 

versus time profile that was plotted using the Microsoft Excel Chart Wizard. A 

plot of measured results and results obtained from the finite difference numerical 

model are included in every graph.  

 

The finite element numerical model, evaluated over a time period of 107 hours, 

(this is the time at which the maximum temperature within the cross-section is 

produced relative to the finite element numerical model) produces the graphical 

output as shown in Figure 4.5.  

    = Verification Points/   
       Points of Comparison 

5 4 

3 

2 

1 

6 
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Figure 4.5 Finite element numerical model graphical output for the Katse  

                               verification 

 

 

Predicted temperatures obtained from the finite element numerical model and 

finite difference numerical model (as determined by Ballim (2004b)) including the 

measured data are now presented at all six positions throughout the cross-section.  
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Position 1: At the centre of the rock and concrete interface 
 

Measured results were recorded over a 210 hour time span. Thus, for this 

comparison, the same time period is utilized for the numerical models. 
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Figure 4.6 Temperature profile plot at position 1 

 

Figure 4.6 reveals that the predicted and measured results are comparatively close. 

However, the finite element numerical model appears to overestimate the 

temperature for the greater part of the time period. This inaccuracy can be 

attributed to convection theory rather than conduction theory being employed to 

model the interface between the rock and the concrete. Discretising the rock and 

including it within the finite element analysis, thus treating the surface between 

the rock and concrete element as a thermal conduction problem rather than the 

assumed thermal convection problem would significantly improve the results of 

the finite element numerical model. It is important to note that the proposed 

technique will substantially increase the amount of computer time required to 

obtain a solution to the heat transfer problem. Nevertheless, it is argued that this 

Maximum Temperatures (C) 
FEM MODEL 19.9 
MEASURED 18.7 
FD MODEL 17.6 

Time to attain Max Temp. (hrs) 
FEM MODEL 122 
MEASURED 144 
FD MODEL 84 
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compromise in computer runtime will not greatly influence the accuracy of the 

results throughout the cross-section. 

 

The maximum measured temperature was 18.7C compared with 19.9C for the 

finite element model and 17.6C for the finite difference model. This translates to 

an absolute error of 1.2C for the finite element model and 1.1C for the finite 

difference model. Relatively small absolute errors indicate that the numerical 

modelling techniques predict the maximum temperatures that evolve at position 1 

with reasonable accuracy. Furthermore, overall temperature predictions remained 

within an acceptable range throughout the time period. 

 

Additional information such as the time taken for the maximum temperature to be 

reached can also be deduced from the plots in Figure 4.6. This is an important 

factor as it specifies the time frame at which maximum thermal stresses, owing to 

external restraints, are likely to occur within the concrete element. Furthermore it 

also provides another point of comparison required in the assessment of accuracy 

for the two numerical modelling techniques.  

 

The measured time period for the maximum temperature to develop at position 1 

is 144 hours, compared with the predicted durations of 122 hours for the finite 

element model and 84 hours for the finite difference model. This translates to an 

absolute error of 22 hours for the finite element model and 60 hours for the finite 

difference model. Consequently the finite element numerical model predicts the 

time period required for the maximum temperature to develop at position 1 to a 

greater level of accuracy than the finite difference model. It can therefore be 

deduced that the finite element method is an improved prediction technique at 

position 1 relative to the finite difference method. 
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Position 2: 250 mm above the bottom probe 
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Figure 4.7 Temperature profile plot at position 2 

 

Figure 4.7 shows that the modelled and measured results correlate well, although 

the finite element numerical model slightly overestimates the temperature for a 

greater portion of the time period, as with Position 1. This finding can be 

attributed to inaccuracies carried over from the modelling of the temperature 

profile at position 1. However, it can be expected that the margin of error will 

decrease with the proposed improvements to the modelling technique mentioned 

for position 1.  

 

The absolute difference between the maximum measured temperature and the 

maximum predicted temperatures is 1.7C for the finite element model and 0.4C 

for the finite difference model. Although the finite difference model predicts the 

maximum temperature more accurately, the profile of the finite element curve 

better approximates that of the measured curve. Thus, with a decrease in 

temperature (i.e. the finite element numerical model plot shifts downwards) the 

finite element numerical model will yield an improved approximation of the 

Maximum Temperatures (C) 
FEM MODEL 21.4 
MEASURED 19.7 
FD MODEL 20.1 

Time to attain Max Temp. (hrs) 
FEM MODEL 122 
MEASURED 124 
FD MODEL 96 
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measured results, in addition to providing a better approximation of the time 

required to reach the maximum temperature.  The time at which the maximum 

measured temperature occurs is 124 hours compared with the predicted durations 

of 122 hours for the finite element model and 96 hours for the finite difference 

model. This translates to an absolute error of 2 hours for the finite element model 

and 28 hours for the finite difference model. 

 

Position 3: 500 mm above the bottom probe 
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Figure 4.8 Temperature profile plot at position 3 

 

Figure 4.8 shows that the modelled and measured results are similar to the 

temperature profiles at position 2. The maximum measured temperature was 

21.0C compared with 22.4C for the finite element model and 21.6C for the 

finite difference model. This translates to an absolute error of 1.4C for the finite 

element model and 0.6C for the finite difference model. The measured time 

period for the maximum temperature to develop at position 3 is 124 hours 

compared with 119 hours for the finite element model and 98 hours for the finite 

Maximum Temperatures (C) 
FEM MODEL 22.4 
MEASURED 21.0 
FD MODEL 21.6 

Time to attain Max Temp. (hrs) 
FEM MODEL 119 
MEASURED 124 
FD MODEL 98 
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difference model. This translates to an absolute error of 5 hours for the finite 

element model and 26 hours for the finite difference model. The evident 

inaccuracy and conclusions that can be drawn are rationalised in the same way as 

for position 2. 

 

Position 4: At the centre of the concrete cube 
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Figure 4.9 Temperature profile plot at position 4 

 

Figure 4.9 reveals a good correlation between the predicted and measured 

temperature profiles. The maximum temperature should arise at the centre of the 

concrete block or close to the centre depending on the boundary conditions. From 

the above figure both the numerical models produce similar temperature profiles. 

The absolute difference between the maximum measured and predicted 

temperatures is 1.6C for the finite element model and 1.2C for the finite 

difference model. This error could be attributed to the 3 hour time period that was 

required to cast the 8 m3 concrete block. If the concrete block could have been 

cast instantaneously or more specifically at the rate of placing the test sample in 

Maximum Temperatures (C) 
FEM MODEL 22.8 
MEASURED 21.2 
FD MODEL 22.4 

Time to attain Max Temp. (hrs) 
FEM MODEL 107 
MEASURED 108 
FD MODEL 104 
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the adiabatic calorimeter, the measured temperature curve would shift higher and 

thus yield an improved correlation with the predicted results.  A decrease in the 

finite element numerical model plot (i.e. shift closer to the measured plot) with an 

increase in accuracy of the predicted temperature at position 1 is also expected.  

 

The absolute difference between the measured and predicted time periods for the 

maximum temperature to develop at position 4, is 1 hour for the finite element 

model and 4 hours for the finite difference model. It can therefore be concluded 

that neither of the numerical models predicts the temperature profile at the centre 

of the concrete block to a higher accuracy than the other, but that both produce 

acceptable results. 

 

Position 5: 500 mm north of the central probe 
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Figure 4.10 Temperature profile plot at position 5 

 

Both the numerical model plots in Figure 4.10 overestimate the temperature for 

the time period below 100 hours and underestimate the temperature for the time 

range greater than 100 hours. The presence of small oscillations in the numerical 

Maximum Temperatures (C) 
FEM MODEL 21.2 
MEASURED 21.4 
FD MODEL 20.8 

Time to attain Max Temp. (hrs) 
FEM MODEL 113 
MEASURED 116 
FD MODEL 88 
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model plots is due to variations in atmospheric temperature. These oscillations 

become more prominent closer to the surface of the concrete exposed to the 

atmosphere.  

 

The absolute difference between the maximum measured and predicted 

temperatures is 0.2C for the finite element model and 0.6C for the finite 

difference model. The absolute difference between the measured and predicted 

time periods for the maximum temperature to develop at position 5, is 3 hours for 

the finite element model and 28 hours for the finite difference model. 

 

A phenomenon readily observed on the graph occurs when the concrete begins to 

dry and the moisture content decreases (i.e. water is consumed by the hydration 

reaction and lost by surface evaporation). Consequently the thermal conductivity 

decreases. This process of evaporation begins from the surface and gradually 

progresses into the concrete whereas the water consumed by hydration occurs 

over time throughout the cross-section. Due to the resulting decrease in thermal 

conductivity, the heat liberated within the concrete cannot dissipate to the 

surrounding environment as efficiently. This effect has not been taken into 

account in either of the numerical modelling techniques. Therefore the 

temperature prediction for the time period greater than 100 hours is lower than the 

measured temperatures. A reduced thermal conductivity will also dampen the 

oscillations induced by the atmospheric temperature. This is attributed to a 

decrease in heat transfer between the concrete and the surrounding environment. 

The finite element numerical model does not account for the relationship between 

moisture content and thermal conductivity due to the exponential increase in 

computer time required when solving a heat transfer problem. Van Breugle (1998) 

however, does give a linear relationship between moisture content and thermal 

conductivity relative to the initial concrete temperature and aggregate type. This 

relationship could be roughly implemented in order to refine the solutions 

obtained from the finite element numerical model. However, it was decided that 

the results obtained are currently acceptable as an optimization between computer 

run time and accuracy. 
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Position 6: 50 mm from the east face level with the central probe 
 

The numerical modelling techniques estimate the temperature profile just below 

the surface of the concrete to a low degree of accuracy. As shown in Figure 4.11 

the finite element numerical model gives a better approximation than that of the 

finite difference numerical model. This is revealed through the use of trend lines 

(i.e. the finite element numerical models’ trend line approximates that of the 

measured values to a greater accuracy). 
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Figure 4.11 Temperature profile plot at position 6 

 

As mentioned previously, the thermal conductivity of concrete should be taken 

relative to a varying moisture content. As the concrete loses water due to 

evaporation (occurs rapidly, as position 6 is near to the surface), the moisture 

content and thermal conductivity decrease, which in turn reduces the amount of 

heat dissipated to the surrounding environment. Consequently, the predicted 

temperatures would increase and the oscillations would dampen, resulting in an 

improved approximation of the measured values.  
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It should be noted that the major motivation for utilising the finite element 

approach for the heat transfer analysis was to obtain a more apt definition of the 

boundary conditions. Even though the varying thermal conductivity of the 

concrete was not included in the finite element numerical model, the predicted 

temperatures are closer than those of the finite difference numerical model to the 

measured temperatures at the boundaries. These boundary conditions can be 

significantly improved by introducing the moisture content versus thermal 

conductivity relationship into the finite element numerical model. Refinement of 

the element mesh would also improve the accuracy of the results. 

 

A significant advantage of the finite element numerical model is that the boundary 

conditions can encompass a large range of variables and conditions that are 

difficult or impossible to model with the finite difference numerical model.  

 

In the subsequent verification process, a concrete block was cast under laboratory 

conditions which ultimately reduces the combined effect of wind and cloud cover. 

Thus it was expected that the predicted results will correlate to a higher degree of 

accuracy than those obtained from the Katse verification process.  

 

 

4.3.2 Temperature – time profiles: Laboratory verification 
 

Introduction 
 

An unreinforced concrete block, with dimensions 1m x 0.7m x 0.7m high, was 

cast in the University of the Witwatersrand’s concrete laboratory with thermal 

probes held in position as shown in Figure 4.12. The concrete block was cast onto 

a thin plastic sheet directly on the concrete floor of the laboratory. Due to the 

controlled environment in the laboratory, the impact of ambient environmental 

conditions on the test block should be significantly reduced. Therefore wind, 

cloud cover, solar radiation and environmental temperatures had a negligible 

impact on the boundary conditions as opposed to the situation for the Katse 
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verification process. It was expected that the numerical modelling techniques 

would predict the temperatures to a greater degree of accuracy relative to the 

previous verification process due to the controlled boundary conditions.  

 

Surface A and Surface B of the concrete block in Figure 4.12 were insulated with 

a 20 mm thick sheet of high density Styrofoam and a 15 mm layer of timber form-

board to simulate a long dimension in the z direction. This was done to reproduce 

effectively a two dimensional heat transfer problem. 

 

The coordinates of the centre of the concrete element in millimetres (x, y, z) = (0, 0, 0) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.12   Positions of the thermal probes within the concrete element that was  

                       cast in the University of the Witwatersrand’s concrete laboratory 

 

Prior to casting of the concrete element, the thermal probes were fixed inside the 

formwork at the positions shown in Figure 4.12. The relative positions were: 

 

1:   At the centre of the floor and concrete interface (bottom).  (x, y, z) = (0, -350, 0) 

2:   150 mm above the bottom probe.         (x, y, z) = (0, -200, 0) 
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3:   At the centre of the concrete element.        (x, y, z) = (0, 0, 0) 

4:   250 mm in the x direction from the central probe.      (x, y, z) = (250, 0, 0) 

5:   450 mm in the x direction from the central probe.         (x, y, z) = (450, 0, 0) 

6:   150 mm above the central probe.         (x, y, z) = (0, 150, 0) 

7:   50 mm below the top surface above the central probe.      (x, y, z) = (0, 300, 0) 

 

Figure 4.13 illustrates the finite element discretisation through a central cross-

section of the concrete block. The relative numbering of the thermal probe 

positions (numbers in italics) and finite element global node numbers are 

included. 
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Figure 4.13 Finite element discretisation over the specified cross-section 

 

Temperature versus time profiles can be produced by extracting the relative data 

from the finite element numerical model. Each position, within the finite element 

discretisation (positions 1 to 7), has a temperature versus time profile that was 

plotted using Microsoft Excel Chart Wizard. In addition, each graph includes a 
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plot of the measured results together with the results obtained from the finite 

difference numerical model.  

 

The finite element numerical model, evaluated over a time period of 23 hours, 

(this is the time at which the maximum temperature within the cross-section is 

produced by the finite element numerical model) produces the graphical output as 

shown in Figure 4.14. Notably the nodal temperature profile plots 

(Figure 4.14 (a)) do not oscillate in the sinusoidal fashion as with the previous 

verification exercise. This is attributed to the stable surrounding environmental 

conditions.   

 

 
Figure 4.14 Finite element numerical model graphical output for the laboratory  

                           verification 
 

Predicted temperatures obtained from the finite element numerical model and 

finite difference numerical model (as determined by Ballim (2004a)) including the 

measured data are now presented at all seven positions throughout the cross-

section.  

(a) 

(b) 
Temp 

(deg C) 

Thermal Probe Positions 
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Position 1: At the centre of the floor and concrete interface 
 

Measured results were recorded over a 100 hour time span. Thus, for this 

comparison, the same time period is utilized for the numerical models. 
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Figure 4.15 Temperature profile plot at position 1 

 

The finite element numerical model in Figure 4.15 produces the same errors as the 

Katse verification process at position 1. The modelling of the interface between 

the concrete and the concrete floor is not well formulated in the finite element 

model. The absolute difference between the maximum measured temperature and 

the maximum predicted temperatures is 4.1C for the finite element model and 

0.1C for the finite difference model. This error may seem significant but the 

temperature versus time profiles for the subsequent six positions is within an 

acceptable range, indicating that this error does not greatly influence the 

temperature distribution. It is expected that this modelling error will become more 

pronounced with a relative decrease in area of the cross-section (i.e. the zone of 

maximum temperature coincides with the surface that has been incorrectly 

modelled). This is observed when comparing the absolute differences between the 

        Maximum Temperatures (C) 
FEM MODEL 28.5 
MEASURED 24.4 
FD MODEL 24.5 

    Time to attain Max Temp. (hrs) 
FEM MODEL          23 
MEASURED          22 
FD MODEL          23 
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maximum temperatures of the Katse and laboratory predictions (i.e. the 

percentage error for the 4 m2 Katse cross-section is 6.5% and for the 0.7 m2 

laboratory cross-section is 16.9%). 

 

Position 2: 150 mm above the bottom probe 
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Figure 4.16 Temperature profile plot at position 2 

 

Figure 4.16 shows a good correlation between the predicted and measured 

temperature profiles. The maximum measured temperature was 27.6C compared 

with 28.7C for the finite element model and 26.9C for the finite difference 

model. This translates to an absolute error of 1.1C for the finite element model 

and 0.7C for the finite difference model. The measured time period for the 

maximum temperature to develop at position 2 is 21 hours, compared with 

23 hours for the finite element model and 24 hours for the finite difference model. 

This translates to an absolute error of 2 hours for the finite element model and 

3 hours for the finite difference model.  

        Maximum Temperatures (C) 
FEM MODEL 28.7 
MEASURED 27.6 
FD MODEL 26.9 

     Time to attain Max Temp. (hrs) 
FEM MODEL          23 
MEASURED          21 
FD MODEL          24 
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Position 3: At the centre of the concrete element 
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Figure 4.17 Temperature profile plot at position 3 

 

Figure 4.17 shows that the modelled and measured temperature profiles are in 

good correlation. The absolute difference between the maximum measured and 

predicted temperatures is 0.5C for the finite element model and 0.4C for the 

finite difference model. The absolute difference between the measured and 

predicted time periods for the maximum temperature to develop at position 3, is 

2 hours for the finite element model and 4 hours for the finite difference model. 

Small absolute differences indicate a precise solution for the temperature profile at 

the centre of the concrete element. One notable discrepancy occurring between the 

modelled and measured profiles is the rate of increase in temperature during the 

time range, 0 to 20 hours. Within this period of time the measured results increase 

at a greater rate than the predicted results. This error is most likely due to an 

inaccuracy associated with the rate of heat liberated existing in either the 

measured or predicted methods.  

 

        Maximum Temperatures (C) 
FEM MODEL 27.8 
MEASURED 28.3 
FD MODEL 27.9 

     Time to attain Max Temp. (hrs) 
FEM MODEL          22 
MEASURED          20 
FD MODEL          24 
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Position 4: 250 mm in the x direction from the central probe 
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Figure 4.18 Temperature profile plot at position 4 

 

Figure 4.18 reveals a strong correlation between the predicted and measured 

temperature profiles. The maximum measured temperature was 27.6C compared 

with 26.9C for the finite element model and 27.0C for the finite difference 

model. This translates to an absolute error of 0.7C for the finite element model 

and 0.6C for the finite difference model. The measured time period for the 

maximum temperature to develop at position 4 is 19 hours, compared with 

20 hours for the finite element model and 22 hours for the finite difference model. 

This translates to an absolute error of 1 hour for the finite element model and 

3 hours for the finite difference model. 

 

 

 

 

 

        Maximum Temperatures (C) 
FEM MODEL 26.9 
MEASURED 27.6 
FD MODEL 27.0 

     Time to attain Max Temp. (hrs) 
FEM MODEL          20 
MEASURED          19 
FD MODEL          22 
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Position 5: 450 mm in the x direction from the central probe 
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Figure 4.19 Temperature profile plot at position 5 

 

In Figure 4.19, it is evident that the finite element numerical model predicts the 

temperature profile to a higher level of accuracy. The oscillations of the finite 

element temperature profile after approximately 40 hours can be attributed to the 

moisture content versus thermal conductivity relationship referred to previously. 

The absolute difference between the maximum measured and predicted 

temperatures is 0.3C for the finite element model and 0.5C for the finite 

difference model. The absolute difference between the measured and predicted 

time periods for the maximum temperature to develop at position 5, is 2 hours for 

the finite element model and 1 hour for the finite difference model. 

 

Due to the removal of the formwork, inadvertently providing thermal insulation to 

the concrete element, a notable drop in temperature occurs from around 18 hours. 

Note that the removal of the formwork can be observed as a sudden decrease in 

temperature across all the temperature plots. The measured results show that the 

formwork removal time was 19 hours after casting, whereas the finite element 

        Maximum Temperatures (C) 
FEM MODEL 25.1 
MEASURED 25.4 
FD MODEL 24.9 

     Time to attain Max Temp. (hrs) 
FEM MODEL          17 
MEASURED          19 
FD MODEL          18 
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results reveal the drop-off from 17 hours (as stipulated with the input data 

obtained from the personnel who conducted the laboratory test). As expected, this 

difference in formwork removal time causes a divergence between the results 

obtained from the measured and predicted temperatures.  

 

The results in Figure 4.19 demonstrate that the finite element numerical model is 

better able to describe and account for the boundary conditions in the heat flow 

analysis.  
 

Position 6: 150 mm above the central probe 
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Figure 4.20 Temperature profile plot at position 6 

 

Figure 4.20 shows a narrow discrepancy between the predicted and measured 

temperature profiles. The maximum measured temperature was 26.7C compared 

with 25.8C for the finite element model and 27.1C for the finite difference 

model. This translates to an absolute error of 0.9C for the finite element model 

and 0.4C for the finite difference model. The measured time period for the 

maximum temperature to develop at position 6 is 20 hours, compared with 

        Maximum Temperatures (C) 
FEM MODEL 25.8 
MEASURED 26.7 
FD MODEL 27.1 

     Time to attain Max Temp. (hrs) 
FEM MODEL          22 
MEASURED          20 
FD MODEL          24 
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22 hours for the finite element model and 24 hours for the finite difference model. 

This translates to an absolute error of 2 hours for the finite element model and 

4 hours for the finite difference model. 
 

Position 7: 50 mm below the top surface above the central probe 
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Figure 4.21 Temperature profile plot at position 7 

 

A strong correlation between the modelled and measured temperature profiles is 

observed in Figure 4.21. The maximum measured temperature was 23.4C 

compared with 22.4C for the finite element model and 24.9C for the finite 

difference model. This translates to an absolute error of 1.0C for the finite 

element model and 1.5C for the finite difference model. The measured time 

period for the maximum temperature to develop at position 7 is 25 hours, 

compared with 24 hours for the finite element model and 24.5 hours for the finite 

difference model. This translates to an absolute error of 1 hour for the finite 

element model and 0.5 hours for the finite difference model. Oscillations due to 

variations in ambient temperature appear after a time period of approximately 

40 hours.  

        Maximum Temperatures (C) 
FEM MODEL 22.4 
MEASURED 23.4 
FD MODEL 24.9 

      Time to attain Max Temp. (hrs) 
FEM MODEL          24 
MEASURED          25 

  FD MODEL          24.5 
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4.4 EXPERIMENTAL AND NUMERICAL RESULTS DISCUSSION 
 

4.4.1 Katse verification 
 

Figures 4.22 to 4.24 illustrate the temperature profiles for all the comparison 

positions with respect to the measured and predicted temperatures of the finite 

element and finite difference models. The purpose of these plots is to portray the 

maximum temperature gradient within the concrete element against the time at 

which it occurs. This is the primary purpose of the temperature prediction models, 

as it gives an indication of the extent of thermal stresses that could arise in a 

particular concrete element with a specified concrete mixture.  

 

Figure 4.22 presents all measured results throughout the concrete element’s cross-

section, followed by the predicted results of the finite element (Figure 4.23) and 

finite difference (Figure 4.24) numerical models.  

 

Measured Temperature Profiles at all Nodal Positions
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Figure 4.22 Measured temperature profiles – Katse verification 
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Finite Element Numerical Model Temperature Profiles at all Nodal Positions
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Figure 4.23 FEM temperature profiles – Katse verification 

 

Finite Difference Numerical Model Temperature Profiles at all Nodal Positions
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Figure 4.24 FD temperature profiles – Katse verification 

 

The maximum measured temperature gradient was 6.7C compared with 10.7C 

for the finite element model and 12.3C for the finite difference model. This 
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translates to an absolute error of 4.0C for the finite element model and 5.6C for 

the finite difference model. The measured time period for the maximum 

temperature gradient to develop is 161 hours, compared with 161 hours for the 

finite element model and 88 hours for the finite difference model. This translates 

to an absolute error of 73 hours for the finite difference model, while the finite 

element model is an exact prediction. The finite difference model generates a 

temperature gradient of 11.3C at 161 hours which is marginally less accurate 

than that produced by the finite element model. 

 

Evidently the finite element numerical model predicts the maximum temperature 

gradient and corresponding time to attain this gradient with a higher degree of 

accuracy than the finite difference numerical model. This comparison 

substantiates the previous nodal point temperature assessment and confirms that 

the finite element numerical model is an improved modeling technique.  

 

 

4.4.2 Laboratory verification 
 

Figure 4.25 represents all measured results throughout the concrete element’s 

cross-section, followed by the predicted results of the finite element (Figure 4.26) 

and finite difference (Figure 4.27) numerical models.  
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Measured Temperature Profiles at all Nodal Positions
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Figure 4.25 Measured temperature profiles – Laboratory verification 

 

Finite Element Numerical Model Temperature Profiles at all Nodal Positions
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Figure 4.26 FEM temperature profiles – Laboratory verification 
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Finite Difference Numerical Model Temperature Profiles at all Nodal Positions
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Figure 4.27 FD temperature profiles – Laboratory verification 

 

The maximum measured temperature gradient was 6.5C compared with 6.4C for 

the finite element model and 3.7C for the finite difference model. This translates 

to an absolute error of 0.1C for the finite element model and 2.8C for the finite 

difference model. The measured time period for the maximum temperature 

gradient to develop is 19 hours, compared with 23 hours for the finite element 

model and 37 hours for the finite difference model. This renders an absolute error 

of 4 hours for the finite element model and 18 hours for the finite difference 

model. The temperature gradient calculated by the finite difference model at 

19 hours is 3.1C which is less accurate than that of the finite element model. 

  

Once again the finite element numerical model distinctly predicts the maximum 

temperature gradient and corresponding time with superior accuracy. Making use 

of the results obtained from the finite difference numerical model leads to an 

underestimation of the potential stress and its effect on the likelihood of cracking 

in the concrete.  
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4.4.3 Conclusion 
 

The finite element numerical model predicts the temperature profiles within the 

concrete elements to an acceptable degree of accuracy. The maximum absolute 

error relative to the highest liberated temperature within the concrete elements is 

1.7C (excluding the temperature profile at position 6) and 4.1C for the Katse 

and laboratory verifications respectively. Suggestions to reduce further the 

inaccuracies of the finite element numerical model are: to include a function that 

relates moisture content to thermal conductivity, and to implement a more 

accurate modelling technique at the interface of the concrete element and 

founding substrate.  

 

A further concern pertaining to the validity of the predicted results is the accuracy 

of the measured results. As mentioned previously, casting of the instrumented 

concrete block at Katse occurred over a period of three hours. Therefore a certain 

amount of liberated heat was not accounted for. With the high rate of temperature 

increase arising during the early stages of hydration, the three hour time period 

could have had an impact on the measured results. Consequently, the experimental 

data is likely to be higher at the early stages and would thus correlate better with 

both numerical modelling techniques.  

 

Furthermore, after reviewing the measured results for the Katse verification 

exercise, it is evident that the temperature versus time plots decrease from around 

the 15 hour time interval and deviate from the predicted results. No measured 

results are available for the 15 to 20 hour time period after casting. This gap in 

collected readings was most likely a consequence of the time required to remove 

the formwork.  

 

An additional reason for the observed deviation between the measured and 

predicted results could be the incorrect specification of the heat transfer 

coefficient between the concrete and the atmosphere following formwork 

removal. The acquired value of 30W/m2K could be regarded as an 
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underestimation resulting from factors such as wind speed. This factor is of great 

importance if better approximations of the temperatures are to be achieved. A 

means of solving this problem is the development of a statistical model which 

could predict boundary conditions such as wind speed, cloud cover and solar 

radiation from meteorological data, which could then operate in tandem with the 

finite element numerical model.  

 

Moreover, the temperature measurements, attained in the Katse verification, 

originated from a three dimensional block of concrete that was not insulated in the 

third dimension. This results in the dissipation of thermal energy in the third 

dimension, leading to a possible deviation from the predicted results.  
 

4.4.4 Thermal cracking propensity and control 
 

Based on the output produced from a random example shown in Figure 4.28 (A), 

the application of the finite element numerical model is an iterative process if the 

temperature differentials predicted are greater than those allowed.  
 

 
Figure 4.28 An example of the finite element numerical model graphical output 

Temperature 
(deg C) 

(A) 29.8ºC 
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The figure shows a maximum temperature differential of 29.8 °C, which is greater 

than the “rule of thumb” value of 20 °C. Consequently, the likelihood of thermal 

cracking occurring in the concrete element is high.   
 

Preventative measures must be implemented if the concrete mixture design cannot 

be altered. Options available to engineers include: 

 Covering the exposed surfaces of the concrete element using 

polystyrene blocks or other insulating materials as soon as possible 

after casting. This would increase the surface temperature and reduce 

the temperature differential between the surface and the core. Care 

must be taken however, in assessing the appropriate time for the 

removal of the coverings to ensure that no thermal shock is 

experienced by the concrete. This would result in multiple hairline 

surface cracks. Thermal probes cast into the concrete element, linked 

to a data logger, are used to measure the temperature differentials in 

order to obtain insulation striking times. The finite element model can 

account for insulated surfaces through the adjustment of the convective 

heat transfer coefficient. 

 Lowering the casting temperature of the concrete through the use of 

chilled water reduces the cooling effect of the surrounding 

environment, resulting in lower temperature differentials. The use of 

liquid nitrogen for cooling fresh concrete prior to casting is practiced 

although only in very limited cases.  

 Introducing conduits within mass concrete elements that transport 

chilled water is commonly used in dam structures where extremely 

large concrete blocks are cast. The principle of this process is to 

withdraw heat from the centre of the block to minimise the temperature 

differential. The temperature of the chilled water should be controlled 

as large temperature differentials potentially occur around these 

conduits, resulting in extensive cracking.  

 The use of plywood as insulating formwork assists in lowering the 

temperature differentials. The current simulation allows various types 

of thermal conductivities for formwork material to be modelled.  



 4.39

 Formwork striking times can be extended to minimise the cooling 

effect of the surrounding environment, thus reducing the temperature 

differential. This is also accounted for in the present model. 

 Reinforcing the concrete element in three directions with a dense mesh 

can limit the amount of cracking. However, with the bond strength still 

developing, the amount of reinforcing required is substantial, resulting 

in significant cost implications. 

 Modifications to the water-cement ratio will shift the maximum 

temperature peak and assist in balancing the temperature gradient. 

Adiabatic calorimetry would be required to track the changes of water-

cement ratios and the corresponding time required to attain maximum 

temperatures. 

 If none of the above methods are acceptable or possible, the engineer 

would be required to change the concrete mixture design and re-apply 

the model, resulting in an iterative process. It is proposed that a cement 

extender be introduced. This assists with the design of a concrete 

mixture with low early strength development.  

 

Future developments of the finite element numerical model may incorporate several 

of the above measures. These modifications will be discussed in chapter 6.  

 

4.5 SENSITIVITY ANALYSIS 
 

A sensitivity analysis was performed to determine the effects of varying the 

element aspect ratio, element size and orientation. These results were then plotted 

against measured data to demonstrate the importance of selecting an aspect ratio 

as close to unity as possible with elements that are sufficiently small.  

 

This analysis was executed with the Katse verification results only. Figures 4.29 

to 4.32 indicate different element arrangements for the 2 m x 2 m cross-section of 

the Katse verification process.  
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Sensitivity Analysis 1:  
 

Evidently the eight noded quadrilateral isoparametric elements are excessively 

elongated in the x direction. Therefore, it is anticipated that the finite element 

numerical model will represent a poor approximation. 
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Figure 4.29 Sensitivity analysis 1 relative to the Katse verification 

 

 Element size in the x direction = 0.667 m 

 Element size in the y direction = 0.0667 m 

 Aspect ratio = 0.667 m ÷ 0.0667 m = 10 

 Number of elements in the x direction = 3 

 Number of elements in the y direction = 30 

 Total number of elements = 90 
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Sensitivity Analysis 2: 
 

Once more the eight noded quadrilateral isoparametric elements are markedly 

stretched in the y direction. Consequently the finite element numerical model is 

expected to be a substandard estimation.  
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Figure 4.30 Sensitivity analysis 2 relative to the Katse verification 

 

 Element size in the x direction = 0.0667 m 

 Element size in the y direction = 0.667 m 

 Aspect ratio = 0.667 m ÷ 0.0667 m = 10 

 Number of elements in the x direction = 30 

 Number of elements in the y direction = 3 

 Total number of elements = 90 
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Sensitivity Analysis 3: 
 

The eight noded quadrilateral isoparametric elements can be viewed as large with 

respect to the cross-section. Hence, it is anticipated that the finite element 

numerical model will typify a poor approximation. 
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Figure 4.31 Sensitivity analysis 3 relative to the Katse verification 

 

 Element size in the x direction = 0.5 m 

 Element size in the y direction = 0.5 m 

 Aspect ratio = 0.5 m ÷ 0.5 m = 1 

 Number of elements in the x direction = 4 

 Number of elements in the y direction = 4 

 Total number of elements = 16 
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Sensitivity Analysis 4: 
 

The eight noded quadrilateral isoparametric elements are small with respect to the 

cross-section. Accordingly it is anticipated that the finite element numerical model 

will provide a suitable approximation. This analysis can be compared with the 

previous analysis to demonstrate the effect of element size in relation to the 

accuracy of the obtained solutions. 
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Figure 4.32 Sensitivity analysis 4 relative to the Katse verification 

 

 Element size in the x direction = 0.0667 m 

 Element size in the y direction = 0.0667 m 

 Aspect ratio = 0.0667 m ÷ 0.0667 m = 1 

 Number of elements in the x direction = 30 

 Number of elements in the y direction = 30 

 Total number of elements = 900 
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Sensitivity analysis - Position 1: At the centre of the rock and concrete interface 
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Figure 4.33 Sensitivity analysis at position 1 

 

The temperature variation between each sensitivity analysis plot is minor, except 

for slight oscillations occurring for sensitivity analysis 1 to sensitivity analysis 3. 

Sensitivity analysis 1 oscillates more than all the other plots due to an insufficient 

number of elements covering the bottom surface. Thus, it is important to note, that 

all boundaries must be specified with a relatively large number of elements or 

elements not greater than 200 mm.  
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Sensitivity analysis - Position 2: 250 mm above the bottom probe 
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Figure 4.34 Sensitivity analysis at position 2 

 

Following this analysis, it can be deduced that element orientation can alter the 

relative output of two analyses even if the elements are identical in aspect ratio 

and size. Referring to sensitivity analysis 1 and 2, the number of elements and 

aspect ratios are equivalent. However, these analyses will predict alternative 

temperatures throughout the cross-section due to a variation in the number of 

nodes in the x and y directions. In an effort to avoid this inaccuracy, aspect ratios 

nearest to unity should be adhered to. 
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Sensitivity analysis - Position 3: 500 mm above the bottom probe 
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Figure 4.35 Sensitivity analysis at position 3 

 

The preceding discussion for position 2 can be applied to the sensitivity analysis 

at position 3.  
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Sensitivity analysis - Position 4: At the centre of the concrete cube 
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Figure 4.36 Sensitivity analysis at position 4 

 

The likewise discussion for position 2 can be applied to the sensitivity analysis at 

position 4. 
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Sensitivity analysis - Position 5: 500 mm north of the central probe 
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Figure 4.37 Sensitivity analysis at position 5 

 

This analysis demonstrates the effect of element orientation. The graph clearly 

shows that sensitivity analysis 2 predicts the temperature profile to a greater 

degree of accuracy than sensitivity analysis 1. An insufficient number of nodes in 

the y-direction, for sensitivity analysis 2, produces the observed error. Another 

important factor to consider in this analysis is the element aspect ratio. As the 

aspect ratio approaches unity and the elements become smaller it becomes simpler 

to obtain a node within the finite element discretisation corresponding to a thermal 

probe position within the concrete block (i.e. for sensitivity analysis 2 the closest 

point within the discretised cross-section has coordinates of x = 0.667 m and         

y = 0.5 m compared to the actual coordinates of x = 0.5 m and y = 0.5 m). 

Consequently errors are generated which become evident when the results are 

compared.   
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Sensitivity analysis - Position 6: 50 mm from the east face level with the  
        central probe 
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Figure 4.38 Sensitivity analysis at position 6 

 

The role that element size plays is illustrated in the above temperature profile. 

Sensitivity analyses 1 to 3 included elements that are insufficiently small. As a 

result, no node exists at a distance of 50 mm from the side face. Sensitivity 

analysis 4 does have adequately small elements to obtain the predicted 

temperatures. Subsequently the temperature prediction is more accurate. Expected 

temperatures for sensitivity analyses 1 to 3 have been taken as surface 

temperatures. Nonetheless, sensitivity analyses 1 to 3 predict the same 

temperatures with different aspect ratios and element orientations.  
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4.6 FEM EXAMPLE OF AN IRREGULAR SHAPED CROSS-SECTION 
 

An important advantage of the finite element numerical model over other 

numerical methods is that irregular cross-sectional shapes can be represented. An 

example of an irregular shaped cross-section is shown below to indicate the 

functionality of the finite element numerical model. A comparison with measured 

results is not possible due to the unavailability of this type of measured data. 

 

 
Figure 4.39 FEM Example of an Irregular Shaped Cross-Section 
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5 CONCLUSION 
 

The finite element numerical model, designed to predict the rise in temperature 

and distribution of thermal energy in a concrete element, generates satisfactorily 

accurate estimations and correlates well with experimental results. An absolute 

maximum difference of 1.7ºC is achieved between the maximum predicted and 

measured temperatures, excluding all temperature profiles on the concrete 

elements’ surfaces. The maximum temperature gradient attained within the 

concrete element and the time at which it occurs are also predicted to a high 

degree of accuracy. The maximum temperature gradient is predicted to within 

4.0ºC and the time at which it occurs to within 4 hours. An accurate estimation of 

the potential stress and therefore the likelihood of cracking within the concrete 

element can be achieved with the well-defined finite element numerical model’s 

temperature gradients.   

 

Nevertheless, the finite difference numerical model is more user-friendly and 

operates on the generally available Microsoft Excel software package. Research 

has shown that the finite difference method produces satisfactory predictions 

under standard laboratory conditions. Thus, for controlled environments, this 

numerical model is preferred to the more complex finite element numerical model 

written in Matlab. However, when boundary conditions are intricate, the finite 

element numerical model generates more accurate temperature predictions when 

compared with the finite difference numerical model.  

 

Enhancements of the finite element numerical model are possible, which could 

improve upon or entirely eliminate the shortcomings referred to in Chapter 4. The 

major enhancements that would need to be incorporated are: 
 

 Moisture content versus thermal conductivity relationship 

 Statistical model to predict boundary conditions and associated 

modifications to the finite element model  
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 Development of an improved modelling technique for the rock and 

concrete interface 

 

The accuracy of the finite element numerical model’s temperature predictions can 

also be improved if the aspect ratio of the elements is equal to unity and a finer 

mesh is generated. With an increased number of elements, refinement of the 

numerical model’s mesh density will require an increase in the computer time 

required to solve the prediction model. Therefore, expansion of the concrete body 

increases the number of elements, resulting in extended computer runtime. 

 

The research conducted in this project can be further developed into a practical 

application to industry through the creation of a global model that allows for the 

prediction and prevention of cracking by accounting for temperature differentials 

attained in the concrete mass.  This would require the construction of a simulation 

that predicts a gain in stiffness as a function of heat liberated for a specific 

concrete mixture and relates a change in stiffness to a thermal strain model. Input 

data for such a stiffness model could be implemented empirically to avoid the use 

of broad assumptions.  

 

The principal use of the finite element numerical model will be limited in practice 

to complex or water-retaining engineering structures where thermal cracking 

could lead to structural failure or loss of integrity. The application would be 

limited because of the time-consuming adiabatic calorimeter tests necessary for 

each concrete mixture design.  

 

It is highly likely that the average value of multiple calorimeter tests would be 

required for all concrete mixtures. The limitation of this process is that each 

calorimeter test necessarily involves a time-period of approximately five days. 

Implementation of this model, particularly for large-scale projects, will necessitate 

the assembly of a purpose-built laboratory with adiabatic calorimeters and the 

employment of skilled laboratory technicians.  
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6 RECOMMENDATIONS 
 

 

It is recommended that a cracking potential model be developed which can be 

applied to complex structures with compound boundary conditions. Potential 

future improvements will now be expanded upon. 

 

Following the Mathematics in Industry Study Group South Africa (MISGSA) held 

at the University of the Witwatersrand from the 19th to the 23rd of January 2004, 

Charpin et al., 2004a, 2004b and Fowkes et al., 2004 proposed theoretical 

calculations which have become relevant and are briefly discussed in the 

subsequent sub-sections. Researchers intending to develop the current finite 

element model should refer to the relevant literature. Each of the discussed topics 

below is well suited for future postgraduate research.  

 

6.1 PIPED WATER COOLING IN CONCRETE DAMS 
 

Due to the low thermal conductivity of concrete, the rate of heat transferred to the 

surrounding environment occurs slowly. Casting of very large concrete elements 

results in a relatively small amount of heat being lost to the surroundings. A 

network of pipes is often cast into large concrete elements through which chilled 

water is pumped. This method is employed to extract some of the heat of 

hydration in order to reduce temperatures more quickly and minimise the 

temperature differential.  

 

Explicit expressions for a simple cylindrical model have been produced for the 

maximum concrete temperature as a function of the dependent variables; flow rate 

through the piping, pipe length and inlet temperature et cetera. Expressions have 

also been determined for the pipe length and separation distance required to 

restrict the temperature rise in the concrete elements to a defined level. It has been 
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proposed that a financial model be incorporated to obtain an optimized solution 

that minimises cost. 

 

6.2 MATURITY EFFECTS IN CONCRETE DAMS 
 

In water-retaining, mass concrete structures such as dam walls, an allowance for 

shrinkage movement in the design is necessary to prevent excessive leakage. 

Thus, sequential concrete blocks are cast after sufficient stiffness has been 

attained in the preceding layer. Ballim and Graham (2003) observed that the heat 

of hydration is transferred across the contact surface from the upper block 

resulting in an increase in the heat of hydration within the first block, as shown in 

Figure 6.1. This is due to the dependence of hydration rate on temperature.  

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6.1 Temperature profile for the lower block of concrete   

 

 

The proposed analysis to predict the above phenomenon is still in investigation 

phases, however a starting point has been put in place for future research work.  
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6.3 MODELLING SURFACE HEAT EXCHANGES FROM A CONCRETE 
BLOCK INTO THE ENVIRONMENT 

 

Modelling the impact of environmental conditions on early age concrete provides 

an indication of the durability and strength of a concrete structure. These factors 

are directly related to thermal cracking.  

 

The cooling conditions proposed by MISGSA are suitable replacements for the 

current modelling techniques. However, further development and testing of these 

conditions are required. It has been proposed that variations in the convective heat 

transfer coefficient (h) with respect to wind speed be investigated experimentally.  

 

6.4 INDUSTRY STANDARD DATABASE GENERATION 
 

It is highly recommended that a database containing common heat rate curves be 

generated for varying binder types and aggregate classification and grade. A 

comprehensive database will assist engineers in their selection of concrete mixture 

compositions.  
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8 APPENDIX A:   
 
 

8.1 GLOBAL FEM MATLAB CODE 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%                                                                                                                                               %% 
%%                         %-----------------------------INPUT----------------------------%                        %%  
%%                                                                                                                                               %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
NoOfElements = input('Total number of elements  = '); 
NoOfNodes = input('Total number of nodes  = '); 
NoOfElementsYDirection = input('Total number of elements in the y-Direction  = '); 
NoOfElementsXDirection = input('Total number of elements in the x-Direction  = '); 
InitialTemp = input('Initial concrete temperature - deg C  = '); 
CastTime = input('Time of day when concrete is cast - hrs  = '); 
k = input('Thermal conductivity of concrete - W/m.K  = '); 
rho = input('Concrete density - kg/m3 =  '); 
cp = input('Concrete specific heat - J/kg.K  = '); 
Ft = input('Formwork removal time - hrs  = '); 
hE = input('Convective heat transfer coefficient for exposed concrete surface - W/K.m2  = '); 
hC = input('Convective heat transfer coefficient for surfaces covered with formwork-W/K.m2 ='); 
kr = input('Thermal conductivity of rock - W/K.m2  = '); 
Sigma = input('Stefan Boltzman constant - W/K4.m2  = '); 
Emissivity = input('Emissivity of grey concrete surface  = '); 
tm = input('Time at which the minimum overnight temperature occurs - hrs  = '); 
bin = input('Binder content - kg/m3  = '); 
E = input('Apparent activation energy - kJ/mol  = '); 
R = input('Universal gas constant - kJ/mol.K  = '); 
TimeIncrement = input('Time increment - hrs  = '); 
FinalTime = input('Time duration - hrs  = '); 
 
A = 2; 
CDMHolder = zeros(NoOfNodes,1); 
TimeStepFinal = zeros((FinalTime/TimeIncrement)+1,1); 
TimeStep = zeros((FinalTime/TimeIncrement)+1,1); 
Tfinal = zeros((FinalTime/TimeIncrement)+1,NoOfNodes); 
Mx = zeros(FinalTime,1); 
Mn = zeros(FinalTime,1); 
 
%____________________________________________________________________________ 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%                                                                                                                                               %% 
%%                         %--------------C----------C----------C----------C-------------%                         %%  
%%                                                                                                                                               %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
global e; 
    e = 1; 
    C = rho.*cp.*(1/3600).*[dblquad(@CapMatrix1,-1,1,-1,1), dblquad(@CapMatrix2,-1,1,-1,1),  

dblquad(@CapMatrix3,-1,1,-1,1),... 
            dblquad(@CapMatrix4,-1,1,-1,1), dblquad(@CapMatrix5,-1,1,-1,1),  

dblquad(@CapMatrix6,-1,1,-1,1),... 
            dblquad(@CapMatrix7,-1,1,-1,1), dblquad(@CapMatrix8,-1,1,-1,1);  

dblquad(@CapMatrix9,-1,1,-1,1),... 
            dblquad(@CapMatrix10,-1,1,-1,1), dblquad(@CapMatrix11,-1,1,-1,1),  

dblquad(@CapMatrix12,-1,1,-1,1),... 
            dblquad(@CapMatrix13,-1,1,-1,1), dblquad(@CapMatrix14,-1,1,-1,1),  

dblquad(@CapMatrix15,-1,1,-1,1),... 
dblquad(@CapMatrix16,-1,1,-1,1); dblquad(@CapMatrix17,-1,1,-1,1),  
dblquad(@CapMatrix18,-1,1,-1,1),... 
dblquad(@CapMatrix19,-1,1,-1,1), dblquad(@CapMatrix20,-1,1,-1,1),  
dblquad(@CapMatrix21,-1,1,-1,1),... 

            dblquad(@CapMatrix22,-1,1,-1,1), dblquad(@CapMatrix23,-1,1,-1,1),  
dblquad(@CapMatrix24,-1,1,-1,1);... 

            dblquad(@CapMatrix25,-1,1,-1,1), dblquad(@CapMatrix26,-1,1,-1,1),  
dblquad(@CapMatrix27,-1,1,-1,1),... 

            dblquad(@CapMatrix28,-1,1,-1,1), dblquad(@CapMatrix29,-1,1,-1,1),  
dblquad(@CapMatrix30,-1,1,-1,1),... 

            dblquad(@CapMatrix31,-1,1,-1,1), dblquad(@CapMatrix32,-1,1,-1,1);  
dblquad(@CapMatrix33,-1,1,-1,1),... 

            dblquad(@CapMatrix34,-1,1,-1,1), dblquad(@CapMatrix35,-1,1,-1,1),  
dblquad(@CapMatrix36,-1,1,-1,1),... 

            dblquad(@CapMatrix37,-1,1,-1,1), dblquad(@CapMatrix38,-1,1,-1,1),  
dblquad(@CapMatrix39,-1,1,-1,1),... 

            dblquad(@CapMatrix40,-1,1,-1,1); dblquad(@CapMatrix41,-1,1,-1,1),  
dblquad(@CapMatrix42,-1,1,-1,1),... 

            dblquad(@CapMatrix43,-1,1,-1,1), dblquad(@CapMatrix44,-1,1,-1,1),  
dblquad(@CapMatrix45,-1,1,-1,1),... 

            dblquad(@CapMatrix46,-1,1,-1,1), dblquad(@CapMatrix47,-1,1,-1,1),  
dblquad(@CapMatrix48,-1,1,-1,1);... 

            dblquad(@CapMatrix49,-1,1,-1,1), dblquad(@CapMatrix50,-1,1,-1,1),  
dblquad(@CapMatrix51,-1,1,-1,1),... 

            dblquad(@CapMatrix52,-1,1,-1,1), dblquad(@CapMatrix53,-1,1,-1,1),  
dblquad(@CapMatrix54,-1,1,-1,1),... 

            dblquad(@CapMatrix55,-1,1,-1,1), dblquad(@CapMatrix56,-1,1,-1,1);  
dblquad(@CapMatrix57,-1,1,-1,1),... 
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            dblquad(@CapMatrix58,-1,1,-1,1), dblquad(@CapMatrix59,-1,1,-1,1),  
dblquad(@CapMatrix60,-1,1,-1,1),... 

            dblquad(@CapMatrix61,-1,1,-1,1), dblquad(@CapMatrix62,-1,1,-1,1),  
dblquad(@CapMatrix63,-1,1,-1,1),... 

            dblquad(@CapMatrix64,-1,1,-1,1)]; 
 
load NodesXElements.dat 
NodesXElementsTranspose = transpose(NodesXElements); 
AssembledCapacitanceMatrix = zeros(NoOfNodes,NoOfNodes); 
 
for e = 1:NoOfElements 
    for i = 1:8                                                                  %(8 Nodes per element) 
        for j = 1:8                                                              %(8 Nodes per element) 
        rem = i;                                                                  %(rem = row element matrix) 
        cem = j;                                                                 %(cem = column element matrix) 
        ram = NodesXElementsTranspose(i,e);                %(ram = row assembled matrix) 
        cam = NodesXElementsTranspose(j,e);                %(cam = column assembled matrix) 
        ElementCapacitanceMatrix = C;                           %(3D Capacitance Matrix) 
        AssembledCapacitanceMatrix(ram,cam) = AssembledCapacitanceMatrix(ram,cam) +  

ElementCapacitanceMatrix(rem,cem); 
    end; 
end; 
end; 
CAP = AssembledCapacitanceMatrix; 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%                                                                                                                                               %% 
%%                       %-----------Kc----------Kc----------Kc----------Kc----------%                           %%  
%%                                                                                                                                               %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
global ek; 
    ek = 1; 
    Kc  =   [dblquad(@CondMatrix1,-1,1,-1,1), dblquad(@CondMatrix2,-1,1,-1,1),  

 dblquad(@CondMatrix3,-1,1,-1,1),... 
             dblquad(@CondMatrix4,-1,1,-1,1), dblquad(@CondMatrix5,-1,1,-1,1),  

 dblquad(@CondMatrix6,-1,1,-1,1),... 
             dblquad(@CondMatrix7,-1,1,-1,1), dblquad(@CondMatrix8,-1,1,-1,1);  

 dblquad(@CondMatrix9,-1,1,-1,1),... 
             dblquad(@CondMatrix10,-1,1,-1,1), dblquad(@CondMatrix11,-1,1,-1,1),  

 dblquad(@CondMatrix12,-1,1,-1,1),... 
             dblquad(@CondMatrix13,-1,1,-1,1), dblquad(@CondMatrix14,-1,1,-1,1),  
   dblquad(@CondMatrix15,-1,1,-1,1),... 
             dblquad(@CondMatrix16,-1,1,-1,1); dblquad(@CondMatrix17,-1,1,-1,1),  
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 dblquad(@CondMatrix18,-1,1,-1,1),... 
             dblquad(@CondMatrix19,-1,1,-1,1), dblquad(@CondMatrix20,-1,1,-1,1),  
   dblquad(@CondMatrix21,-1,1,-1,1),... 
             dblquad(@CondMatrix22,-1,1,-1,1), dblquad(@CondMatrix23,-1,1,-1,1),  

 dblquad(@CondMatrix24,-1,1,-1,1);... 
             dblquad(@CondMatrix25,-1,1,-1,1), dblquad(@CondMatrix26,-1,1,-1,1),  

 dblquad(@CondMatrix27,-1,1,-1,1),... 
             dblquad(@CondMatrix28,-1,1,-1,1), dblquad(@CondMatrix29,-1,1,-1,1),  
   dblquad(@CondMatrix30,-1,1,-1,1),... 
             dblquad(@CondMatrix31,-1,1,-1,1), dblquad(@CondMatrix32,-1,1,-1,1);  

 dblquad(@CondMatrix33,-1,1,-1,1),... 
             dblquad(@CondMatrix34,-1,1,-1,1), dblquad(@CondMatrix35,-1,1,-1,1),  

 dblquad(@CondMatrix36,-1,1,-1,1),... 
             dblquad(@CondMatrix37,-1,1,-1,1), dblquad(@CondMatrix38,-1,1,-1,1),  

 dblquad(@CondMatrix39,-1,1,-1,1),... 
             dblquad(@CondMatrix40,-1,1,-1,1); dblquad(@CondMatrix41,-1,1,-1,1),  

 dblquad(@CondMatrix42,-1,1,-1,1),... 
             dblquad(@CondMatrix43,-1,1,-1,1), dblquad(@CondMatrix44,-1,1,-1,1),  

 dblquad(@CondMatrix45,-1,1,-1,1),... 
             dblquad(@CondMatrix46,-1,1,-1,1), dblquad(@CondMatrix47,-1,1,-1,1),  

 dblquad(@CondMatrix48,-1,1,-1,1);... 
             dblquad(@CondMatrix49,-1,1,-1,1), dblquad(@CondMatrix50,-1,1,-1,1),  

 dblquad(@CondMatrix51,-1,1,-1,1),... 
             dblquad(@CondMatrix52,-1,1,-1,1), dblquad(@CondMatrix53,-1,1,-1,1),  

 dblquad(@CondMatrix54,-1,1,-1,1),... 
             dblquad(@CondMatrix55,-1,1,-1,1), dblquad(@CondMatrix56,-1,1,-1,1);  

 dblquad(@CondMatrix57,-1,1,-1,1),... 
             dblquad(@CondMatrix58,-1,1,-1,1), dblquad(@CondMatrix59,-1,1,-1,1),  

 dblquad(@CondMatrix60,-1,1,-1,1),... 
             dblquad(@CondMatrix61,-1,1,-1,1), dblquad(@CondMatrix62,-1,1,-1,1),  

 dblquad(@CondMatrix63,-1,1,-1,1),... 
             dblquad(@CondMatrix64,-1,1,-1,1)];   
     
load NodesXElements.dat 
NodesXElementsTranspose = transpose(NodesXElements); 
AssembledConductanceMatrix = zeros(NoOfNodes,NoOfNodes); 
 
for e = 1:NoOfElements 
    for i = 1:8                                                                 %(8 Nodes per element) 
        for j = 1:8                                                             %(8 Nodes per element) 
        rem = i;                                                                 %(rem = row element matrix) 
        cem = j;                                                                %(cem = column element matrix) 
        ram = NodesXElementsTranspose(i,e);                       %(ram = row assembled matrix) 
        cam = NodesXElementsTranspose(j,e);                      %(cam = column assembled matrix) 
        ElementConductanceMatrix = Kc;                              %(3D Conductance Matrix) 
        AssembledConductanceMatrix(ram,cam) = AssembledConductanceMatrix(ram,cam) +  
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ElementConductanceMatrix(rem,cem); 
    end; 
end; 
end; 
 
COND = AssembledConductanceMatrix; 
 
 
%____________________________________________________________________________ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%                                                                                                                                               %% 
%%     %-----ODE SOLVER---ODE SOLVER---ODE SOLVER---ODE SOLVER----%        %%  
%%                                                                                                                                               %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%____________________________________________________________________________ 
 
Theta = 1/2;    %Crank Nicolson 
 
for t = 0:TimeIncrement:FinalTime 
 
    if t == 0 
    Tprevious = InitialTemp*ones(NoOfNodes,1); 
    else 
    Tprevious = T; 
    end 
 
load AmbientTemp.dat 
TempAmbient = (-sin(((2*pi*((((t/24)- 

floor(t/24))*24+(CastTime))+tm))/24)).*((interp1(AmbientTemp(:,1),AmbientTe 
mp(:,3),(ceil(t/24)*24))-... 
interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)+... 
((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))+interp1(Ambient
Temp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)); 

           
           
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%                                                                                                                               %% 
%%                      %-------------Rq----------Rq----------Rq----------Rq------------%                      %% 
%%                                                                                                                               %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
global eq; 
load Maturity.dat 
eq = 1; 
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    RQ = bin.*[dblquad(@Heating1,-1,1,-1,1);... 
                dblquad(@Heating2,-1,1,-1,1);... 
                dblquad(@Heating3,-1,1,-1,1);... 
                dblquad(@Heating4,-1,1,-1,1);... 
                dblquad(@Heating5,-1,1,-1,1);... 
                dblquad(@Heating6,-1,1,-1,1);... 
                dblquad(@Heating7,-1,1,-1,1);... 
                dblquad(@Heating8,-1,1,-1,1)]; 
 
load NodesXElements.dat 
NodesXElementsTranspose = transpose(NodesXElements); 
AssembledHeatLiberatedMatrix = zeros(NoOfNodes,1); 
 
for erq = 1:NoOfElements 
    for iq = 1:8                                                                %(8 Nodes per element) 
        remq = iq;                                                              %(rem = row element matrix) 
        cemq = 1;                                                               %(cem = column element matrix) 
        ramq = NodesXElementsTranspose(iq,erq);                 %(ram = row assembled matrix) 
        camq = 1;                                                               %(cam = column assembled matrix) 
        ElementHeatLiberatedMatrix = RQ;                             %(3D Heat Liberated Matrix) 
        AssembledHeatLiberatedMatrix(ramq,camq) = AssembledHeatLiberatedMatrix(ramq,camq)  

+ ElementHeatLiberatedMatrix(remq,cemq); 
    end; 
end; 
 
if A == 2 
    DeltaM(1,1) = 0; 
end     
 
DeltaM(A,1) = t; 
 
Deltat = DeltaM(A,1)-DeltaM(A-1,1); 
 
for ete = 1:NoOfNodes             
        CumulativeMaturity(ete,1) = (exp((E/R)*((1/293)-(1/(Tprevious(ete,1)+273)))))*Deltat +  

CDMHolder(ete,1);         
        MaturityAtNode = (interp1(Maturity(:,1),Maturity(:,2),CumulativeMaturity));        
        MaturityChange(ete,1) = (exp((E/R)*((1/293)-(1/(Tprevious(ete,1)+273))))); 
end; 
 
CDMHolder = CumulativeMaturity; 
 
A = A + 1; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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RQT = (AssembledHeatLiberatedMatrix.*MaturityAtNode).*(MaturityChange); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%                                                                                                                                %% 
%%                    %--------------Kh----------Kh----------Kh----------Kh-------------%                     %%  
%%                                                                                                                                %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
if t < Ft 
    h = hC; 
else 
    h = hE; 
end 
 
global esS1; 
esS1 = 1;    
    KhS1 = h.*[quad(@SurConvS11,-1,1),quad(@SurConvS12,-1,1),quad(@SurConvS13,-1,1);... 
                quad(@SurConvS14,-1,1),quad(@SurConvS15,-1,1),quad(@SurConvS16,-1,1);... 
                quad(@SurConvS17,-1,1),quad(@SurConvS18,-1,1),quad(@SurConvS19,-1,1)]; 
 
load NodesXElementsS1.dat 
NodesXElementsS1Transpose = transpose(NodesXElementsS1); 
AssembledBoundCond1MatrixS1 = zeros(NoOfNodes,NoOfNodes); 
 
for ekh1 = 1:NoOfElementsYDirection 
    for ikh1 = 1:3                                                                  %(8 Nodes per element) 
        for jkh1 = 1:3                                                              %(8 Nodes per element) 
        remkh1 = ikh1;                                                              %(rem = row element matrix) 
        cemkh1 = jkh1;                                                              %(cem = column element matrix) 
        ramkh1 = NodesXElementsS1Transpose(ikh1,ekh1);   %(ram = row assembled matrix) 
        camkh1 = NodesXElementsS1Transpose(jkh1,ekh1);   %(cam = column assembled matrix) 
        ElementBoundCond1MatrixS1 = KhS1;                    %(3D Boundary Conductance 1 Matrix) 
        AssembledBoundCond1MatrixS1(ramkh1,camkh1) =  

AssembledBoundCond1MatrixS1(ramkh1,camkh1) +  
ElementBoundCond1MatrixS1(remkh1,cemkh1); 

    end; 
end; 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
global esS2; 
esS2 = 1;    
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  KhS2 = hE.*[quad(@SurConvS21,-1,1),quad(@SurConvS22,-1,1),quad(@SurConvS23,-1,1);... 
                quad(@SurConvS24,-1,1),quad(@SurConvS25,-1,1),quad(@SurConvS26,-1,1);... 
                quad(@SurConvS27,-1,1),quad(@SurConvS28,-1,1),quad(@SurConvS29,-1,1)]; 
 
load NodesXElementsS2.dat 
NodesXElementsS2Transpose = transpose(NodesXElementsS2); 
AssembledBoundCond1MatrixS2 = zeros(NoOfNodes,NoOfNodes); 
 
for ekh2 = 1:NoOfElementsXDirection 
    for ikh2 = 1:3                                                                  %(8 Nodes per element) 
        for jkh2 = 1:3                                                              %(8 Nodes per element) 
        remkh2 = ikh2;                                                              %(rem = row element matrix) 
        cemkh2 = jkh2;                                                              %(cem = column element matrix) 
        ramkh2 = NodesXElementsS2Transpose(ikh2,ekh2);    %(ram = row assembled matrix) 
        camkh2 = NodesXElementsS2Transpose(jkh2,ekh2);   %(cam = column assembled matrix) 
        ElementBoundCond1MatrixS2 = KhS2;                    %(3D Boundary Conductance 1 Matrix) 
        AssembledBoundCond1MatrixS2(ramkh2,camkh2) =  

AssembledBoundCond1MatrixS2(ramkh2,camkh2) +  
ElementBoundCond1MatrixS2(remkh2,cemkh2); 

    end; 
end; 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
global esS3; 
esS3 = 1;    
    KhS3 = h.*[quad(@SurConvS31,-1,1),quad(@SurConvS32,-1,1),quad(@SurConvS33,-1,1);... 
                quad(@SurConvS34,-1,1),quad(@SurConvS35,-1,1),quad(@SurConvS36,-1,1);... 
                quad(@SurConvS37,-1,1),quad(@SurConvS38,-1,1),quad(@SurConvS39,-1,1)]; 
 
load NodesXElementsS3.dat 
NodesXElementsS3Transpose = transpose(NodesXElementsS3); 
AssembledBoundCond1MatrixS3 = zeros(NoOfNodes,NoOfNodes); 
 
for ekh3 = 1:NoOfElementsYDirection 
    for ikh3 = 1:3                                                                  %(8 Nodes per element) 
        for jkh3 = 1:3                                                              %(8 Nodes per element) 
        remkh3 = ikh3;                                                              %(rem = row element matrix) 
        cemkh3 = jkh3;                                                              %(cem = column element matrix) 
        ramkh3 = NodesXElementsS3Transpose(ikh3,ekh3);  %(ram = row assembled matrix) 
        camkh3 = NodesXElementsS3Transpose(jkh3,ekh3);   %(cam = column assembled matrix) 
        ElementBoundCond1MatrixS3 = KhS3;                    %(3D Boundary Conductance 1 Matrix) 
        AssembledBoundCond1MatrixS3(ramkh3,camkh3) =  

AssembledBoundCond1MatrixS3(ramkh3,camkh3) +  
ElementBoundCond1MatrixS3(remkh3,cemkh3); 
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    end; 
end; 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
global esS4; 
esS4 = 1;   
   KhS4 = kr.*[quad(@SurConvS41,-1,1),quad(@SurConvS42,-1,1),quad(@SurConvS43,-1,1);... 
                quad(@SurConvS44,-1,1),quad(@SurConvS45,-1,1),quad(@SurConvS46,-1,1);... 
                quad(@SurConvS47,-1,1),quad(@SurConvS48,-1,1),quad(@SurConvS49,-1,1)]; 
 
load NodesXElementsS4.dat 
NodesXElementsS4Transpose = transpose(NodesXElementsS4); 
AssembledBoundCond1MatrixS4 = zeros(NoOfNodes,NoOfNodes); 
 
for ekh4 = 1:NoOfElementsXDirection 
    for ikh4 = 1:3                                                                  %(8 Nodes per element) 
        for jkh4 = 1:3                                                              %(8 Nodes per element) 
        remkh4 = ikh4;                                                              %(rem = row element matrix) 
        cemkh4 = jkh4;                                                              %(cem = column element matrix) 
        ramkh4 = NodesXElementsS4Transpose(ikh4,ekh4);   %(ram = row assembled matrix) 
        camkh4 = NodesXElementsS4Transpose(jkh4,ekh4);   %(cam = column assembled matrix) 
        ElementBoundCond1MatrixS4 = KhS4;                    %(3D Boundary Conductance 1 Matrix) 
        AssembledBoundCond1MatrixS4(ramkh4,camkh4) =  

AssembledBoundCond1MatrixS4(ramkh4,camkh4) +  
ElementBoundCond1MatrixS4(remkh4,cemkh4); 

    end; 
end; 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
AssembledBoundCond1MatrixTOTAL = AssembledBoundCond1MatrixS1 +  

AssembledBoundCond1MatrixS2 + AssembledBoundCond1MatrixS3 + ... 
                                  AssembledBoundCond1MatrixS4; 
 
KH = AssembledBoundCond1MatrixTOTAL; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%                                                                                                                                %% 
%%                      %-------------Rh----------Rh----------Rh----------Rh------------%                      %%      
%%                                                                                                                                %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
global ecS1; 
 
load AmbientTemp.dat 
                 
ecS1 = 1;        
    RhS1 = h.*((-sin(((2*pi*((((t/24)- 

floor(t/24))*24+(CastTime))+tm))/24)).*((interp1(AmbientTemp(:,1), 
AmbientTemp(:,3),(ceil(t/24)*24))-... 

                 interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)+... 
((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))+interp1( 
AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2))).*... 

                 [quad(@BoundConvS11,-1,1);... 
                   quad(@BoundConvS12,-1,1);... 
                   quad(@BoundConvS13,-1,1)]; 
 
load NodesXElementsS1.dat 
NodesXElementsS1Transpose = transpose(NodesXElementsS1); 
AssembledBoundCond2MatrixS1 = zeros(NoOfNodes,1); 
 
for erh1 = 1:NoOfElementsYDirection 
    for irh1 = 1:3                                                               %(3 Nodes per element) 
        remrh1 = irh1;                                                           %(rem = row element matrix) 
        cemrh1 = 1;                                                              %(cem = column element matrix) 
        ramrh1 = NodesXElementsS1Transpose(irh1,erh1);     %(ram = row assembled matrix) 
        camrh1 = 1;                                                              %(cam = column assembled matrix) 
        ElementBoundCond2MatrixS1 = RhS1;                    %(3D Boundary Conductance 2 Matrix) 
        AssembledBoundCond2MatrixS1(ramrh1,camrh1) =  

AssembledBoundCond2MatrixS1(ramrh1,camrh1) +  
ElementBoundCond2MatrixS1(remrh1,cemrh1); 

    end; 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
global ecS2; 
 
ecS2 = 1;    
RhS2 = hE.*((-sin(((2*pi*((((t/24)- 

floor(t/24))*24+(CastTime))+tm))/24)).*((interp1(AmbientTemp(:,1), 
AmbientTemp(:,3),(ceil(t/24)*24))-... 
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interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)+... 
((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))+interp1( 
AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2))).*... 

                 [quad(@BoundConvS21,-1,1);... 
                   quad(@BoundConvS22,-1,1);... 
                   quad(@BoundConvS23,-1,1)]; 
 
load NodesXElementsS2.dat 
NodesXElementsS2Transpose = transpose(NodesXElementsS2); 
AssembledBoundCond2MatrixS2 = zeros(NoOfNodes,1); 
 
for erh2 = 1:NoOfElementsXDirection 
    for irh2 = 1:3                                                               %(3 Nodes per element) 
        remrh2 = irh2;                                                           %(rem = row element matrix) 
        cemrh2 = 1;                                                              %(cem = column element matrix) 
        ramrh2 = NodesXElementsS2Transpose(irh2,erh2);    %(ram = row assembled matrix) 
        camrh2 = 1;                                                              %(cam = column assembled matrix) 
        ElementBoundCond2MatrixS2 = RhS2;                    %(3D Boundary Conductance 2 Matrix) 
        AssembledBoundCond2MatrixS2(ramrh2,camrh2) =  

AssembledBoundCond2MatrixS2(ramrh2,camrh2) + 
ElementBoundCond2MatrixS2(remrh2,cemrh2); 

    end; 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
global ecS3; 
 
ecS3 = 1;       
    RhS3 = h.*((-sin(((2*pi*((((t/24)- 

floor(t/24))*24+(CastTime))+tm))/24)).*((interp1(AmbientTemp(:,1), 
AmbientTemp(:,3),(ceil(t/24)*24))-... 
interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)+... 
((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))+interp1( 
AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2))).*... 

                 [quad(@BoundConvS31,-1,1);... 
                   quad(@BoundConvS32,-1,1);... 
                   quad(@BoundConvS33,-1,1)]; 
 
load NodesXElementsS3.dat 
NodesXElementsS3Transpose = transpose(NodesXElementsS3); 
AssembledBoundCond2MatrixS3 = zeros(NoOfNodes,1); 
 
for erh3 = 1:NoOfElementsYDirection 
    for irh3 = 1:3                                                               %(3 Nodes per element) 
        remrh3 = irh3;                                                           %(rem = row element matrix) 
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        cemrh3 = 1;                                                              %(cem = column element matrix) 
        ramrh3 = NodesXElementsS3Transpose(irh3,erh3);    %(ram = row assembled matrix) 
        camrh3 = 1;                                                              %(cam = column assembled matrix) 
        ElementBoundCond2MatrixS3 = RhS3;                    %(3D Boundary Conductance 2 Matrix) 
        AssembledBoundCond2MatrixS3(ramrh3,camrh3) =  

AssembledBoundCond2MatrixS3(ramrh3,camrh3) + 
ElementBoundCond2MatrixS3(remrh3,cemrh3); 

    end; 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
global ecS4; 
 
TimePreviousDay = t - 24; 
TempRock = interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(TimePreviousDay/24)*24)); 
 
ecS4 = 1;       
    RhS4 = kr.*(TempRock).*... 
               [quad(@BoundConvS41,-1,1);... 
                quad(@BoundConvS42,-1,1);... 
                quad(@BoundConvS43,-1,1)]; 
 
load NodesXElementsS4.dat 
NodesXElementsS4Transpose = transpose(NodesXElementsS4); 
AssembledBoundCond2MatrixS4 = zeros(NoOfNodes,1); 
 
for erh4 = 1:NoOfElementsXDirection 
    for irh4 = 1:3                                                               %(3 Nodes per element) 
        remrh4 = irh4;                                                           %(rem = row element matrix) 
        cemrh4 = 1;                                                              %(cem = column element matrix) 
        ramrh4 = NodesXElementsS4Transpose(irh4,erh4);    %(ram = row assembled matrix) 
        camrh4 = 1;                                                              %(cam = column assembled matrix) 
        ElementBoundCond2MatrixS4 = RhS4;                    %(3D Boundary Conductance 2 Matrix) 
        AssembledBoundCond2MatrixS4(ramrh4,camrh4) =  

AssembledBoundCond2MatrixS4(ramrh4,camrh4) + 
ElementBoundCond2MatrixS4(remrh4,cemrh4); 

    end; 
end; 
 
AssembledBoundCond2MatrixS4Rock = AssembledBoundCond2MatrixS4; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
AssembledBoundCond2MatrixTOTAL = (AssembledBoundCond2MatrixS1 +  

AssembledBoundCond2MatrixS2 + AssembledBoundCond2MatrixS3) + ... 
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                   (AssembledBoundCond2MatrixS4Rock); 
 
RH = AssembledBoundCond2MatrixTOTAL;    
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%                                                                                                                                %% 
%%                      %-------------Rr----------Rr----------Rr----------Rr------------%                         %%  
%%                                                                                                                                %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
global ewS1; 
 
load AmbientTemp.dat 
ewS1 = 1;      
    RrS1 = Sigma.*Emissivity.*(((-sin(((2*pi*((((t/24)-floor(t/24))*24+(CastTime))+tm))/24)).*... 
               ((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))-... 
               interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)+... 
               ((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))+... 
               interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)))^4).*... 
               [quad(@BoundRadS11,-1,1);... 
                quad(@BoundRadS12,-1,1);... 
                quad(@BoundRadS13,-1,1)]; 
 
load NodesXElementsS1.dat 
NodesXElementsS1Transpose = transpose(NodesXElementsS1); 
AssembledBoundRad2MatrixS1 = zeros(NoOfNodes,1); 
 
for e = 1:NoOfElementsYDirection 
    for i = 1:3                                                               %(8 Nodes per element) 
        rem = i;                                                              %(rem = row element matrix) 
        cem = 1;                                                              %(cem = column element matrix) 
        ram = NodesXElementsS1Transpose(i,e);         %(ram = row assembled matrix) 
        cam = 1;                                                              %(cam = column assembled matrix) 
        ElementBoundRad2MatrixS1 = RrS1;              %(3D Boundary Radiation 2 Matrix) 
        AssembledBoundRad2MatrixS1(ram,cam) = AssembledBoundRad2MatrixS1(ram,cam) +  

ElementBoundRad2MatrixS1(rem,cem); 
    end; 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
global ewS2; 
 
ewS2 = 1;       
    RrS2 = Sigma.*Emissivity.*(((-sin(((2*pi*((((t/24)-floor(t/24))*24+(CastTime))+tm))/24)).*... 
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               ((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))-... 
               interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)+... 
               ((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))+... 
               interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)))^4).*... 
               [quad(@BoundRadS21,-1,1);... 
                quad(@BoundRadS22,-1,1);... 
                quad(@BoundRadS23,-1,1)]; 
 
load NodesXElementsS2.dat 
NodesXElementsS2Transpose = transpose(NodesXElementsS2); 
AssembledBoundRad2MatrixS2 = zeros(NoOfNodes,1); 
 
for e = 1:NoOfElementsXDirection 
    for i = 1:3                                                               %(8 Nodes per element) 
        rem = i;                                                              %(rem = row element matrix) 
        cem = 1;                                                              %(cem = column element matrix) 
        ram = NodesXElementsS2Transpose(i,e);       %(ram = row assembled matrix) 
        cam = 1;                                                              %(cam = column assembled matrix) 
        ElementBoundRad2MatrixS2 = RrS2;              %(3D Boundary Radiation 2 Matrix) 
        AssembledBoundRad2MatrixS2(ram,cam) = AssembledBoundRad2MatrixS2(ram,cam) +  

ElementBoundRad2MatrixS2(rem,cem); 
    end; 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
global ewS3; 
 
ewS3 = 1;        
    RrS3 = Sigma.*Emissivity.*(((-sin(((2*pi*((((t/24)-floor(t/24))*24+(CastTime))+tm))/24)).*... 
               ((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))-... 
               interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)+... 
               ((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))+... 
               interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)))^4).*... 
               [quad(@BoundRadS31,-1,1);... 
                quad(@BoundRadS32,-1,1);... 
                quad(@BoundRadS33,-1,1)]; 
 
load NodesXElementsS3.dat 
NodesXElementsS3Transpose = transpose(NodesXElementsS3); 
AssembledBoundRad2MatrixS3 = zeros(NoOfNodes,1); 
 
for e = 1:NoOfElementsYDirection 
    for i = 1:3                                                               %(8 Nodes per element) 
        rem = i;                                                              %(rem = row element matrix) 
        cem = 1;                                                              %(cem = column element matrix) 
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        ram = NodesXElementsS3Transpose(i,e);        %(ram = row assembled matrix) 
        cam = 1;                                                              %(cam = column assembled matrix) 
        ElementBoundRad2MatrixS3 = RrS3;             %(3D Boundary Radiation 2 Matrix) 
        AssembledBoundRad2MatrixS3(ram,cam) = AssembledBoundRad2MatrixS3(ram,cam) +  

ElementBoundRad2MatrixS3(rem,cem); 
    end; 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
global ewS4; 
 
ewS4 = 1;        
    RrS4 = Sigma.*(1).*(((-sin(((2*pi*((((t/24)-floor(t/24))*24+(CastTime))+tm))/24)).*... 
               ((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))-... 
               interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)+... 
               ((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))+... 
               interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)))^4).*... 
               [quad(@BoundRadS41,-1,1);... 
                quad(@BoundRadS42,-1,1);... 
                quad(@BoundRadS43,-1,1)]; 
 
load NodesXElementsS4.dat 
NodesXElementsS4Transpose = transpose(NodesXElementsS4); 
AssembledBoundRad2MatrixS4 = zeros(NoOfNodes,1); 
 
for e = 1:NoOfElementsXDirection 
    for i = 1:3                                                               %(3 Nodes per element) 
        rem = i;                                                              %(rem = row element matrix) 
        cem = 1;                                                              %(cem = column element matrix) 
        ram = NodesXElementsS4Transpose(i,e);     %(ram = row assembled matrix) 
        cam = 1;                                                              %(cam = column assembled matrix) 
        ElementBoundRad2MatrixS4 = RrS4;               %(3D Boundary Conductance 2 Matrix) 
        AssembledBoundRad2MatrixS4(ram,cam) = AssembledBoundRad2MatrixS4(ram,cam) +  

ElementBoundRad2MatrixS4(rem,cem); 
    end; 
end; 
 
AssembledBoundRad2MatrixS4Rock = AssembledBoundRad2MatrixS4;    
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
AssembledBoundRad2MatrixTOTAL = (AssembledBoundRad2MatrixS1 +  

AssembledBoundRad2MatrixS2 + AssembledBoundRad2MatrixS3) + ... 
                                  AssembledBoundRad2MatrixS4Rock; 
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RR = AssembledBoundRad2MatrixTOTAL; 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%                                                                                                                                %% 
%%                     %--------------Rs----------Rs----------Rs----------Rs-------------%                      %%  
%%                                                                                                                                %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
global elS1; 
 
elS1 = 1;    
    RsS1 = Sigma.*Emissivity.*[quad(@SurRadS11,-1,1);... 
                                    quad(@SurRadS12,-1,1);... 
                                    quad(@SurRadS13,-1,1)]; 
 
load NodesXElementsS1.dat 
NodesXElementsS1Transpose = transpose(NodesXElementsS1); 
AssembledBoundRad1MatrixS1 = zeros(NoOfNodes,1); 
 
for e = 1:NoOfElementsYDirection 
    for i = 1:3                                                               %(8 Nodes per element) 
        rem = i;                                                              %(rem = row element matrix) 
        cem = 1;                                                              %(cem = column element matrix) 
        ram = NodesXElementsS1Transpose(i,e);        %(ram = row assembled matrix) 
        cam = 1;                                                              %(cam = column assembled matrix) 
        ElementBoundRad1MatrixS1 = RsS1;               %(3D Boundary Radiation 1 Matrix) 
       AssembledBoundRad1MatrixS1(ram,cam) = AssembledBoundRad1MatrixS1(ram,cam) +  

ElementBoundRad1MatrixS1(rem,cem); 
   end; 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
global elS2; 
 
elS2 = 1;    
    RsS2 = Sigma.*Emissivity.*[quad(@SurRadS21,-1,1);... 
                                    quad(@SurRadS22,-1,1);... 
                                    quad(@SurRadS23,-1,1)]; 
 
load NodesXElementsS2.dat 
NodesXElementsS2Transpose = transpose(NodesXElementsS2); 
AssembledBoundRad1MatrixS2 = zeros(NoOfNodes,1); 
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for e = 1:NoOfElementsXDirection 
    for i = 1:3                                                               %(8 Nodes per element) 
        rem = i;                                                              %(rem = row element matrix) 
        cem = 1;                                                              %(cem = column element matrix) 
        ram = NodesXElementsS2Transpose(i,e);   %(ram = row assembled matrix) 
        cam = 1;                                                              %(cam = column assembled matrix) 
        ElementBoundRad1MatrixS2 = RsS2;             %(3D Boundary Radiation 1 Matrix) 
        AssembledBoundRad1MatrixS2(ram,cam) = AssembledBoundRad1MatrixS2(ram,cam) +  

ElementBoundRad1MatrixS2(rem,cem); 
    end; 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
global elS3; 
 
elS3 = 1;    
    RsS3 = Sigma.*Emissivity.*[quad(@SurRadS31,-1,1);... 
                                    quad(@SurRadS32,-1,1);... 
                                    quad(@SurRadS33,-1,1)]; 
 
load NodesXElementsS3.dat 
NodesXElementsS3Transpose = transpose(NodesXElementsS3); 
AssembledBoundRad1MatrixS3 = zeros(NoOfNodes,1); 
 
for e = 1:NoOfElementsYDirection 
    for i = 1:3                                                               %(8 Nodes per element) 
        rem = i;                                                              %(rem = row element matrix) 
        cem = 1;                                                              %(cem = column element matrix) 
        ram = NodesXElementsS3Transpose(i,e);       %(ram = row assembled matrix) 
        cam = 1;                                                              %(cam = column assembled matrix) 
        ElementBoundRad1MatrixS3 = RsS3;              %(3D Boundary Radiation 1 Matrix) 
        AssembledBoundRad1MatrixS3(ram,cam) = AssembledBoundRad1MatrixS3(ram,cam) +  

ElementBoundRad1MatrixS3(rem,cem); 
    end; 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
AssembledBoundRad1MatrixTOTAL = AssembledBoundRad1MatrixS1 +  

AssembledBoundRad1MatrixS2 + AssembledBoundRad1MatrixS3; 
 
RS = (AssembledBoundRad1MatrixTOTAL.*(Tprevious.^4)); 
%____________________________________________________________________________ 
%____________________________________________________________________________ 
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Res1 = (((1/TimeIncrement)*CAP)+(((k.*COND)+KH)*Theta)); 
Res2 = inv(Res1); 
Res3 = ((((1/TimeIncrement)*CAP)-(((k.*COND)+KH)*(1-Theta)))*Tprevious) + (RQT + RH +  

RR - RS); 
T = Res2*Res3; 
 
Mx(t+1,:) = max(T); 
Mn(t+1,:) = min(T); 
 
ram = A-2; 
TimeStep(ram,1) = (ram-1)*TimeIncrement; 
TimeStepFinal(ram,1) = TimeStepFinal(ram,1)+TimeStep(ram,1); 
 
Tfinal(ram,:) =  transpose(T); 
 
end; 
 
 
%____________________________________________________________________________ 
%                                                                                                                             % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%                                                                                                                                    %% 
%%     %------------- END ODE SOLVER--------------END ODE SOLVER---------------%      %%  
%%                                                                                                                                %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                                                                             % 
%____________________________________________________________________________ 
 
load ElementCoord.dat 
for eplot = 1:NoOfElements 
     PlotCoordsX(:,eplot) = ElementCoord(((eplot*8)-7):(eplot*8),1); 
     PlotCoordsY(:,eplot) = ElementCoord(((eplot*8)-7):(eplot*8),2); 
end; 
 
load NodesXElements.dat 
NodesXElementsTranspose = transpose(NodesXElements); 
Tplot = zeros(8,NoOfElements); 
 
for eplotT = 1:NoOfElements 
    for i = 1:8 
            ram = NodesXElementsTranspose(i,eplotT); 
            rem = i; 
            Tplot(rem,eplotT) = Tplot(rem,eplotT) + T(ram,1); 
    end; 
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end; 
 
Md = Mx - Mn; 
Maxdiff = max(Md) 
MaxTimeT = find(Md == Maxdiff) 
 
subplot(3,1,1); plot(TimeStepFinal,Mx,TimeStepFinal,Mn); 
leg1 = text(1,10,['Maximum Temperature Difference (deg C) = ',num2str(Maxdiff)]); 
leg2 = text(1,5,['Time at Maximum Temperature Difference (hrs) = ',num2str(MaxTimeT)]); 
subplot(3,1,2); plot(TimeStepFinal,Tfinal);  
subplot(3,1,3); patch(PlotCoordsX,PlotCoordsY,Tplot,'Tag','T') 
colorbar 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
 

8.2 SELECTED FUNCTIONS – FEM MATLAB CODE 
 
 
Example of one capacitance matrix entry: 
 
function C1 = CapMatrix1(Xi, Eta); 
 
global e; 
load ElementCoord.dat 
 
    X = ElementCoord(((e*8)-7):(e*8),1); 
    Y = ElementCoord(((e*8)-7):(e*8),2); 
    N1A = (0.25*(1-Xi).*(1-Eta).*(-1-Xi-Eta)) .* (((((0.5*Xi)-(0.5*Xi.*Eta)- 

    (0.25*Eta.^2)+(0.25*Eta))*X(1,1) + ... 
                                               (-Xi + (Xi.*Eta))*X(2,1) + ... 
                                               ((0.5*Xi)-(0.5*Xi.*Eta)+(0.25*Eta.^2)-(0.25*Eta))*X(3,1) + ... 
                                               (0.5-(0.5*Eta.^2))*X(4,1) + ... 
                                               ((0.5*Xi)+(0.5*Xi.*Eta)+(0.25*Eta.^2)+(0.25*Eta))*X(5,1) + ... 
                                               (-Xi - (Xi.*Eta))*X(6,1) + ... 
                                               ((0.5*Xi)+(0.5*Xi.*Eta)-(0.25*Eta.^2)-(0.25*Eta))*X(7,1) + ... 
                                               (-0.5+(0.5*Eta.^2))*X(8,1)).* ... 
                                               (((0.5*Eta)-(0.5*Xi.*Eta)-(0.25*Xi.^2)+(0.25*Xi))*Y(1,1) + ... 
                                               (-0.5+(0.5*Xi.^2))*Y(2,1) + ... 
                                               ((0.5*Eta)+(0.5*Xi.*Eta)-(0.25*Xi.^2)-(0.25*Xi))*Y(3,1) + ... 
                                               (-Eta - (Xi.*Eta))*Y(4,1) + ... 
                                               ((0.5*Eta)+(0.5*Xi.*Eta)+(0.25*Xi.^2)+(0.25*Xi))*Y(5,1) + ... 
                                               (0.5-(0.5*Xi.^2))*Y(6,1) + ... 
                                               ((0.5*Eta)-(0.5*Xi.*Eta)+(0.25*Xi.^2)-(0.25*Xi))*Y(7,1) + ... 
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                                               (-Eta + (Eta.*Xi))*Y(8,1))) - ... 
                                               ((((0.5*Xi)-(0.5*Xi.*Eta)-(0.25*Eta.^2)+(0.25*Eta))*Y(1,1) + ... 
                                               (-Xi + (Xi.*Eta))*Y(2,1) + ... 
                                               ((0.5*Xi)-(0.5*Xi.*Eta)+(0.25*Eta.^2)-(0.25*Eta))*Y(3,1) + ... 
                                               (0.5-(0.5*Eta.^2))*Y(4,1) + ... 
                                               ((0.5*Xi)+(0.5*Xi.*Eta)+(0.25*Eta.^2)+(0.25*Eta))*Y(5,1) + ... 
                                               (-Xi - (Xi.*Eta))*Y(6,1) + ... 
                                               ((0.5*Xi)+(0.5*Xi.*Eta)-(0.25*Eta.^2)-(0.25*Eta))*Y(7,1) + ... 
                                               (-0.5+(0.5*Eta.^2))*Y(8,1)).* ... 
                                               (((0.5*Eta)-(0.5*Xi.*Eta)-(0.25*Xi.^2)+(0.25*Xi))*X(1,1) + ... 
                                               (-0.5+(0.5*Xi.^2))*X(2,1) + ... 
                                               ((0.5*Eta)+(0.5*Xi.*Eta)-(0.25*Xi.^2)-(0.25*Xi))*X(3,1) + ... 
                                               (-Eta - (Xi.*Eta))*X(4,1) + ... 
                                               ((0.5*Eta)+(0.5*Xi.*Eta)+(0.25*Xi.^2)+(0.25*Xi))*X(5,1) + ... 
                                               (0.5-(0.5*Xi.^2))*X(6,1) + ... 
                                               ((0.5*Eta)-(0.5*Xi.*Eta)+(0.25*Xi.^2)-(0.25*Xi))*X(7,1) + ... 
                                               (-Eta + (Eta.*Xi))*X(8,1)))); 
    N1B = 0.25*(1-Xi).*(1-Eta).*(-1-Xi-Eta); 
    C1 = (N1A.*N1B); 
 
 
Example of one conductance matrix entry: 
 
 
function Kc1 = CondMatrix1(Xi, Eta); 
 
global ek; 
load ElementCoord.dat 
 
    X = ElementCoord(((ek*8)-7):(ek*8),1); 
    Y = ElementCoord(((ek*8)-7):(ek*8),2);     
 
    N1N1Xi = (((2*((2*Y(3,1)-4*Y(4,1)+2*Y(1,1)-2*Y(1,1)*Xi-
4*Y(4,1)*Xi+2*Y(5,1)+2*Y(7,1)-2*Y(7,1)*Xi+2*Y(3,1)*Xi+2*Y(5,1)*Xi-4*Y(8,1)... 
 +4*Y(8,1)*Xi)*Eta-2*Y(2,1)+Y(5,1)*Xi.^2-Y(1,1)*Xi.^2+Y(1,1)*Xi-
Y(3,1)*Xi.^2+2*Y(2,1)*Xi.^2+Y(7,1)*Xi.^2+... 
 2*Y(6,1)-Y(3,1)*Xi+Y(5,1)*Xi-2*Y(6,1)*Xi.^2-Y(7,1)*Xi)/(2*Y(2,1)*Xi.^2*X(1,1)-
2*Y(2,1)*Xi.^2*X(3,1)+2*Y(2,1)*Xi.^2*X(5,1)... 
 -2*Y(2,1)*Xi.^2*X(7,1)+4*X(6,1)*Xi.^3*Y(1,1)-2*X(6,1)*Xi.^2*Y(1,1)-
8*X(6,1)*Xi.^3*Y(2,1)+4*X(6,1)*Xi.^3*Y(3,1)... 
 +2*X(6,1)*Xi.^2*Y(3,1)-2*X(6,1)*Xi.^2*Y(5,1)+2*X(6,1)*Xi.^2*Y(7,1)-
2*X(7,1)*Xi.^3*Y(1,1)+2*X(7,1)*Xi.^2*Y(1,1)... 
 +4*X(7,1)*Xi.^3*Y(2,1)-2*X(7,1)*Xi.^3*Y(3,1)+2*X(7,1)*Xi.^2*Y(5,1)-
2*Y(8,1)*X(2,1)+2*Y(8,1)*X(6,1)+X(8,1)*Y(7,1)*Xi+2*Y(1,1)*Xi*X(2,1)... 
 -2*Y(1,1)*Xi*X(6,1)-2*Y(3,1)*Xi*X(6,1)+2*X(8,1)*Y(2,1)-
2*X(8,1)*Y(6,1)+2*X(2,1)*Xi.^2*Y(7,1)+2*X(3,1)*Xi.^2*Y(1,1)... 
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 +2*X(3,1)*Xi.^3*Y(5,1)+2*X(3,1)*Xi.^2*Y(5,1)-
4*X(3,1)*Xi.^3*Y(6,1)+2*X(3,1)*Xi.^3*Y(7,1)-2*X(5,1)*Xi.^3*Y(1,1)... 
 +4*X(5,1)*Xi.^3*Y(2,1)-2*X(5,1)*Xi.^3*Y(3,1)-2*X(5,1)*Xi.^2*Y(3,1)-
2*X(5,1)*Xi.^2*Y(7,1)+2*Y(4,1)*X(2,1)-2*Y(4,1)*X(6,1)... 
 +(2*X(5,1)*Y(1,1)-2*X(7,1)*Y(5,1)-
4*Y(8,1)*X(3,1)+4*X(8,1)*Y(3,1)+2*X(3,1)*Y(1,1)+2*X(3,1)*Y(7,1)+4*X(8,1)*Y(5,1)-
2*X(1,1)*Y(5,1)... 
 -4*X(4,1)*Y(7,1)+8*X(4,1)*Y(8,1)+4*Y(4,1)*X(1,1)-4*X(4,1)*Y(1,1)+2*X(5,1)*Y(7,1)-
4*Y(8,1)*X(5,1)-2*X(1,1)*Y(3,1)+4*Y(4,1)*X(7,1)... 
 -8*X(8,1)*Y(4,1)-2*X(7,1)*Y(3,1))*Eta.^3+(2*X(5,1)*Y(7,1)-
X(1,1)*Y(6,1)+2*X(4,1)*Y(1,1)+3*Y(2,1)*Xi.^2*X(1,1)-3*Y(2,1)*Xi.^2*X(3,1)... 
 -3*Y(2,1)*Xi.^2*X(5,1)+3*Y(2,1)*Xi.^2*X(7,1)+3*X(6,1)*Xi.^2*Y(1,1)-
3*X(6,1)*Xi.^2*Y(3,1)-3*X(6,1)*Xi.^2*Y(5,1)+3*X(6,1)*Xi.^2*Y(7,1)... 
 -3*X(7,1)*Xi.^2*Y(1,1)+3*X(7,1)*Xi.^2*Y(5,1)+2*Y(8,1)*X(2,1)-
2*Y(8,1)*X(6,1)+2*X(5,1)*Y(3,1)... 
 +5*X(8,1)*Y(7,1)*Xi-X(3,1)*Y(2,1)+4*Y(1,1)*Xi*X(2,1)-4*Y(1,1)*Xi*X(6,1)-
4*Y(3,1)*Xi*X(6,1)+8*Y(2,1)*Xi*X(4,1)... 
 +8*Y(2,1)*Xi*X(8,1)-5*X(3,1)*Xi*Y(5,1)-3*X(3,1)*Xi*Y(7,1)+8*X(6,1)*Xi*Y(8,1)-
3*X(1,1)*Xi*Y(5,1)-5*X(1,1)*Xi*Y(7,1)... 
 -8*Y(6,1)*Xi*X(8,1)-8*X(2,1)*Xi*Y(4,1)-8*X(2,1)*Xi*Y(8,1)-
2*X(8,1)*Y(2,1)+2*X(8,1)*Y(6,1)-3*X(2,1)*Xi.^2*Y(7,1)... 
 +3*X(3,1)*Xi.^2*Y(1,1)-3*X(3,1)*Xi.^2*Y(5,1)+3*X(5,1)*Xi.^2*Y(3,1)-
3*X(5,1)*Xi.^2*Y(7,1)-2*X(3,1)*Y(5,1)+Y(3,1)*X(2,1)... 
 -2*Y(4,1)*X(2,1)+2*Y(4,1)*X(6,1)+4*X(1,1)*Xi*Y(6,1)-
3*X(4,1)*Y(1,1)*Xi+6*X(4,1)*Y(2,1)*Xi.^2-3*X(4,1)*Y(3,1)*Xi.^2-... 
 
5*X(4,1)*Y(3,1)*Xi+3*X(4,1)*Y(5,1)*Xi.^2+5*X(4,1)*Y(5,1)*Xi+3*X(4,1)*Y(7,1)*Xi.^2+3*
X(4,1)*Y(7,1)*Xi+4*X(5,1)*Xi*Y(6,1)... 
 -4*X(7,1)*Xi*Y(2,1)+4*X(7,1)*Xi*Y(6,1)+3*X(8,1)*Y(1,1)*Xi.^2-5*X(8,1)*Y(1,1)*Xi-
6*X(8,1)*Y(2,1)*Xi.^2+3*X(8,1)*Y(3,1)*Xi.^2-... 
 3*X(8,1)*Y(3,1)*Xi-2*X(3,1)*Y(1,1)+3*X(8,1)*Y(5,1)*Xi-Y(3,1)*X(6,1)+2*X(4,1)*Y(2,1)-
2*X(4,1)*Y(6,1)+2*Y(8,1)*X(7,1)... 
 +Y(1,1)*X(6,1)-3*X(1,1)*Xi.^2*Y(3,1)+3*X(1,1)*Xi.^2*Y(7,1)-
3*X(2,1)*Xi.^2*Y(1,1)+3*X(2,1)*Xi.^2*Y(3,1)+3*X(2,1)*Xi.^2*Y(5,1)... 
 -2*X(8,1)*Y(7,1)-Y(1,1)*X(2,1)-2*Y(8,1)*X(5,1)+2*Y(8,1)*X(3,1)-4*X(1,1)*Xi*Y(2,1)-
2*X(7,1)*Y(5,1)-3*Y(6,1)*Xi.^2*X(1,1)... 
 +3*Y(6,1)*Xi.^2*X(3,1)+3*Y(6,1)*Xi.^2*X(5,1)-3*Y(6,1)*Xi.^2*X(7,1)-
2*Y(8,1)*X(1,1)+5*X(7,1)*Xi*Y(1,1)+3*X(7,1)*Xi*Y(3,1)... 
 +3*X(5,1)*Xi*Y(1,1)+5*X(5,1)*Xi*Y(3,1)+Y(5,1)*X(2,1)-Y(5,1)*X(6,1)-
2*X(7,1)*Y(1,1)+2*Y(4,1)*X(7,1)+8*X(6,1)*Xi*Y(4,1)... 
 -8*Y(6,1)*Xi*X(4,1)+X(1,1)*Y(2,1)-
2*Y(4,1)*X(5,1)+4*Y(3,1)*Xi*X(2,1)+6*X(8,1)*Y(6,1)*Xi.^2-3*X(8,1)*Y(5,1)*Xi.^2-... 
 4*X(3,1)*Xi*Y(2,1)-3*X(4,1)*Y(1,1)*Xi.^2-4*Y(7,1)*Xi*X(6,1)-
3*X(8,1)*Y(7,1)*Xi.^2+4*X(3,1)*Xi*Y(6,1)+4*Y(7,1)*Xi*X(2,1)... 
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 -4*X(5,1)*Xi*Y(2,1)-
6*X(4,1)*Y(6,1)*Xi.^2+2*Y(4,1)*X(3,1)+2*X(1,1)*Y(7,1)+2*X(1,1)*Y(3,1)-
2*X(8,1)*Y(3,1)+2*X(8,1)*Y(5,1)-... 
 2*Y(4,1)*X(1,1)+3*Y(4,1)*X(1,1)*Xi.^2+3*Y(4,1)*X(1,1)*Xi-
6*Y(4,1)*X(2,1)*Xi.^2+3*Y(4,1)*X(3,1)*Xi.^2+5*Y(4,1)*X(3,1)*Xi... 
 -3*Y(4,1)*X(5,1)*Xi.^2-5*Y(4,1)*X(5,1)*Xi+6*Y(4,1)*X(6,1)*Xi.^2-3*Y(4,1)*X(7,1)*Xi.^2-
3*Y(4,1)*X(7,1)*Xi+4*Y(5,1)*Xi*X(2,1)... 
 -4*Y(5,1)*Xi*X(6,1)-3*Y(8,1)*X(1,1)*Xi.^2+5*Y(8,1)*X(1,1)*Xi+6*Y(8,1)*X(2,1)*Xi.^2-
3*Y(8,1)*X(3,1)*Xi.^2+... 
 3*Y(8,1)*X(3,1)*Xi+3*Y(8,1)*X(5,1)*Xi.^2-3*Y(8,1)*X(5,1)*Xi-
6*Y(8,1)*X(6,1)*Xi.^2+3*Y(8,1)*X(7,1)*Xi.^2-5*Y(8,1)*X(7,1)*Xi... 
 +X(3,1)*Y(6,1)-X(7,1)*Y(6,1)-Y(7,1)*X(2,1)-
X(5,1)*Y(2,1)+2*X(8,1)*Y(1,1)+X(7,1)*Y(2,1)+Y(7,1)*X(6,1)+2*X(4,1)*Y(5,1)-
2*X(4,1)*Y(7,1)... 
 +X(5,1)*Y(6,1)-2*X(4,1)*Y(3,1))*Eta.^2+(X(1,1)*Y(6,1)+2*X(4,1)*Y(1,1)-
5*Y(2,1)*Xi.^2*X(1,1)+5*Y(2,1)*Xi.^2*X(3,1)... 
 +3*Y(2,1)*Xi.^2*X(5,1)-3*Y(2,1)*Xi.^2*X(7,1)+3*X(6,1)*Xi.^2*Y(1,1)-
3*X(6,1)*Xi.^2*Y(3,1)-5*X(6,1)*Xi.^2*Y(5,1)... 
 +5*X(6,1)*Xi.^2*Y(7,1)+5*X(7,1)*Xi.^2*Y(5,1)+6*X(8,1)*Y(7,1)*Xi+X(3,1)*Y(2,1)-
6*Y(1,1)*Xi*X(2,1)-2*Y(1,1)*Xi*X(6,1)... 
 -2*Y(3,1)*Xi*X(6,1)-8*X(4,1)*Y(8,1)+8*X(8,1)*Y(4,1)-8*Y(2,1)*Xi*X(4,1)-
8*Y(2,1)*Xi*X(8,1)+8*X(6,1)*Xi*Y(8,1)... 
 +3*X(1,1)*Xi.^2*Y(5,1)-
8*Y(6,1)*Xi*X(8,1)+8*X(2,1)*Xi*Y(4,1)+8*X(2,1)*Xi*Y(8,1)+3*X(2,1)*Xi.^2*Y(7,1)-
5*X(3,1)*Xi.^2*Y(1,1)... 
 -5*X(5,1)*Xi.^2*Y(7,1)-Y(3,1)*X(2,1)+2*X(1,1)*Xi*Y(6,1)+2*X(4,1)*Y(1,1)*Xi-
8*X(4,1)*Y(2,1)*Xi.^2+... 
 
4*X(4,1)*Y(3,1)*Xi.^2+6*X(4,1)*Y(3,1)*Xi+4*X(4,1)*Y(5,1)*Xi.^2+6*X(4,1)*Y(5,1)*Xi+4*
X(4,1)*Y(7,1)*Xi.^2+2*X(4,1)*Y(7,1)*Xi... 
 +6*X(5,1)*Xi*Y(6,1)+2*X(7,1)*Xi*Y(2,1)+6*X(7,1)*Xi*Y(6,1)-
4*X(8,1)*Y(1,1)*Xi.^2+6*X(8,1)*Y(1,1)*Xi... 
 +8*X(8,1)*Y(2,1)*Xi.^2-
4*X(8,1)*Y(3,1)*Xi.^2+2*X(8,1)*Y(3,1)*Xi+2*X(8,1)*Y(5,1)*Xi+Y(3,1)*X(6,1)+2*Y(8,1)*X
(7,1)-Y(1,1)*X(6,1)... 
 +5*X(1,1)*Xi.^2*Y(3,1)+5*X(2,1)*Xi.^2*Y(1,1)-5*X(2,1)*Xi.^2*Y(3,1)-
3*X(2,1)*Xi.^2*Y(5,1)-2*X(8,1)*Y(7,1)... 
 +Y(1,1)*X(2,1)+2*Y(8,1)*X(5,1)+2*Y(8,1)*X(3,1)+6*X(1,1)*Xi*Y(2,1)-
3*Y(6,1)*Xi.^2*X(1,1)+3*Y(6,1)*Xi.^2*X(3,1)... 
 +5*Y(6,1)*Xi.^2*X(5,1)-5*Y(6,1)*Xi.^2*X(7,1)+2*Y(8,1)*X(1,1)-
3*X(5,1)*Xi.^2*Y(1,1)+Y(5,1)*X(2,1)-Y(5,1)*X(6,1)-2*Y(4,1)*X(7,1)... 
 -3*X(3,1)*Xi.^2*Y(7,1)+8*X(6,1)*Xi*Y(4,1)-8*Y(6,1)*Xi*X(4,1)-X(1,1)*Y(2,1)-
2*Y(4,1)*X(5,1)+3*X(7,1)*Xi.^2*Y(3,1)... 
 -6*Y(3,1)*Xi*X(2,1)+8*X(8,1)*Y(6,1)*Xi.^2-
4*X(8,1)*Y(5,1)*Xi.^2+6*X(3,1)*Xi*Y(2,1)+4*X(4,1)*Y(1,1)*Xi.^2-6*Y(7,1)*Xi*X(6,1)... 



A.23 

 -4*X(8,1)*Y(7,1)*Xi.^2+2*X(3,1)*Xi*Y(6,1)-2*Y(7,1)*Xi*X(2,1)+2*X(5,1)*Xi*Y(2,1)-
8*X(4,1)*Y(6,1)*Xi.^2-2*Y(4,1)*X(3,1)... 
 -2*X(8,1)*Y(3,1)-2*X(8,1)*Y(5,1)-2*Y(4,1)*X(1,1)-4*Y(4,1)*X(1,1)*Xi.^2-
2*Y(4,1)*X(1,1)*Xi+8*Y(4,1)*X(2,1)*Xi.^2-... 
 4*Y(4,1)*X(3,1)*Xi.^2-6*Y(4,1)*X(3,1)*Xi-4*Y(4,1)*X(5,1)*Xi.^2-
6*Y(4,1)*X(5,1)*Xi+8*Y(4,1)*X(6,1)*Xi.^2-4*Y(4,1)*X(7,1)*Xi.^2-... 
 2*Y(4,1)*X(7,1)*Xi-2*Y(5,1)*Xi*X(2,1)-6*Y(5,1)*Xi*X(6,1)+4*Y(8,1)*X(1,1)*Xi.^2-
6*Y(8,1)*X(1,1)*Xi... 
 -8*Y(8,1)*X(2,1)*Xi.^2+4*Y(8,1)*X(3,1)*Xi.^2-2*Y(8,1)*X(3,1)*Xi+4*Y(8,1)*X(5,1)*Xi.^2-
2*Y(8,1)*X(5,1)*Xi-8*Y(8,1)*X(6,1)*Xi.^2+... 
 4*Y(8,1)*X(7,1)*Xi.^2-6*Y(8,1)*X(7,1)*Xi-X(3,1)*Y(6,1)-X(7,1)*Y(6,1)-Y(7,1)*X(2,1)-
X(5,1)*Y(2,1)-2*X(8,1)*Y(1,1)... 
 
+X(7,1)*Y(2,1)+Y(7,1)*X(6,1)+2*X(4,1)*Y(5,1)+2*X(4,1)*Y(7,1)+X(5,1)*Y(6,1)+2*X(4,1)*Y
(3,1))*Eta+2*X(1,1)*Xi*Y(6,1)... 
 -8*X(2,1)*Xi*Y(6,1)+X(4,1)*Y(1,1)*Xi+2*X(4,1)*Y(2,1)*Xi.^2-X(4,1)*Y(3,1)*Xi.^2-
X(4,1)*Y(3,1)*Xi+X(4,1)*Y(5,1)*Xi.^2+X(4,1)*Y(5,1)*Xi... 
 +X(4,1)*Y(7,1)*Xi.^2-X(4,1)*Y(7,1)*Xi+2*X(5,1)*Xi*Y(6,1)+8*X(6,1)*Xi*Y(2,1)-
2*X(7,1)*Xi*Y(2,1)+2*X(7,1)*Xi*Y(6,1)... 
 +X(8,1)*Y(1,1)*Xi.^2-X(8,1)*Y(1,1)*Xi-
2*X(8,1)*Y(2,1)*Xi.^2+X(8,1)*Y(3,1)*Xi.^2+X(8,1)*Y(3,1)*Xi-X(8,1)*Y(5,1)*Xi-
2*X(4,1)*Y(2,1)... 
 +2*X(4,1)*Y(6,1)-2*X(1,1)*Xi.^2*Y(3,1)+2*X(1,1)*Xi.^3*Y(5,1)-
4*X(1,1)*Xi.^3*Y(6,1)+2*X(1,1)*Xi.^3*Y(7,1)-2*X(1,1)*Xi.^2*Y(7,1)... 
 -2*X(2,1)*Xi.^2*Y(1,1)+2*X(2,1)*Xi.^2*Y(3,1)-4*X(2,1)*Xi.^3*Y(5,1)-
2*X(2,1)*Xi.^2*Y(5,1)... 
 +8*X(2,1)*Xi.^3*Y(6,1)-4*X(2,1)*Xi.^3*Y(7,1)-2*X(1,1)*Xi*Y(2,1)+2*Y(6,1)*Xi.^2*X(1,1)-
2*Y(6,1)*Xi.^2*X(3,1)+2*Y(6,1)*Xi.^2*X(5,1)... 
 -2*Y(6,1)*Xi.^2*X(7,1)+2*Y(3,1)*Xi*X(2,1)+2*X(8,1)*Y(6,1)*Xi.^2-X(8,1)*Y(5,1)*Xi.^2-... 
 2*X(3,1)*Xi*Y(2,1)-X(4,1)*Y(1,1)*Xi.^2-2*Y(7,1)*Xi*X(6,1)-
X(8,1)*Y(7,1)*Xi.^2+2*X(3,1)*Xi*Y(6,1)+2*Y(7,1)*Xi*X(2,1)... 
 -2*X(5,1)*Xi*Y(2,1)-2*X(4,1)*Y(6,1)*Xi.^2+Y(4,1)*X(1,1)*Xi.^2-Y(4,1)*X(1,1)*Xi-
2*Y(4,1)*X(2,1)*Xi.^2+... 
 Y(4,1)*X(3,1)*Xi.^2+Y(4,1)*X(3,1)*Xi-Y(4,1)*X(5,1)*Xi.^2-
Y(4,1)*X(5,1)*Xi+2*Y(4,1)*X(6,1)*Xi.^2-Y(4,1)*X(7,1)*Xi.^2+... 
 Y(4,1)*X(7,1)*Xi+2*Y(5,1)*Xi*X(2,1)-2*Y(5,1)*Xi*X(6,1)-
Y(8,1)*X(1,1)*Xi.^2+Y(8,1)*X(1,1)*Xi+2*Y(8,1)*X(2,1)*Xi.^2-... 
 Y(8,1)*X(3,1)*Xi.^2-Y(8,1)*X(3,1)*Xi+Y(8,1)*X(5,1)*Xi.^2+Y(8,1)*X(5,1)*Xi-
2*Y(8,1)*X(6,1)*Xi.^2+Y(8,1)*X(7,1)*Xi.^2-Y(8,1)*X(7,1)*Xi)*... 
              (0.5*(Xi-(Xi.*Eta))+0.25*(-(Eta.^2)+Eta)))... 
 +(-2*((-2*Y(4,1)-Y(1,1)-Y(7,1)+Y(3,1)+Y(5,1)+2*Y(8,1))*Eta.^2+(-2*Y(3,1)*Xi-
2*Y(1,1)*Xi+Y(5,1)+2*Y(7,1)*Xi-Y(7,1)+2*Y(5,1)*Xi... 
 +4*Y(2,1)*Xi+Y(1,1)-4*Y(6,1)*Xi-Y(3,1))*Eta+2*Y(1,1)*Xi+2*Y(7,1)*Xi+2*Y(3,1)*Xi... 
 -4*Y(6,1)*Xi-4*Y(2,1)*Xi-2*Y(8,1)+2*Y(4,1)+2*Y(5,1)*Xi)/(2*Y(2,1)*Xi.^2*X(1,1)-
2*Y(2,1)*Xi.^2*X(3,1)+2*Y(2,1)*Xi.^2*X(5,1)... 



A.24 

 -2*Y(2,1)*Xi.^2*X(7,1)+4*X(6,1)*Xi.^3*Y(1,1)-2*X(6,1)*Xi.^2*Y(1,1)-
8*X(6,1)*Xi.^3*Y(2,1)... 
 +4*X(6,1)*Xi.^3*Y(3,1)+2*X(6,1)*Xi.^2*Y(3,1)-
2*X(6,1)*Xi.^2*Y(5,1)+2*X(6,1)*Xi.^2*Y(7,1)-2*X(7,1)*Xi.^3*Y(1,1)... 
 +2*X(7,1)*Xi.^2*Y(1,1)+4*X(7,1)*Xi.^3*Y(2,1)-
2*X(7,1)*Xi.^3*Y(3,1)+2*X(7,1)*Xi.^2*Y(5,1)-2*Y(8,1)*X(2,1)+2*Y(8,1)*X(6,1)... 
 +X(8,1)*Y(7,1)*Xi+2*Y(1,1)*Xi*X(2,1)-2*Y(1,1)*Xi*X(6,1)-
2*Y(3,1)*Xi*X(6,1)+2*X(8,1)*Y(2,1)-2*X(8,1)*Y(6,1)... 
 
+2*X(2,1)*Xi.^2*Y(7,1)+2*X(3,1)*Xi.^2*Y(1,1)+2*X(3,1)*Xi.^3*Y(5,1)+2*X(3,1)*Xi.^2*Y(5
,1)-4*X(3,1)*Xi.^3*Y(6,1)+2*X(3,1)*Xi.^3*Y(7,1)-... 
 2*X(5,1)*Xi.^3*Y(1,1)+4*X(5,1)*Xi.^3*Y(2,1)-2*X(5,1)*Xi.^3*Y(3,1)-
2*X(5,1)*Xi.^2*Y(3,1)-2*X(5,1)*Xi.^2*Y(7,1)... 
 +2*Y(4,1)*X(2,1)-2*Y(4,1)*X(6,1)+(2*X(5,1)*Y(1,1)-2*X(7,1)*Y(5,1)-
4*Y(8,1)*X(3,1)+4*X(8,1)*Y(3,1)+2*X(3,1)*Y(1,1)+2*X(3,1)*Y(7,1)... 
 +4*X(8,1)*Y(5,1)-2*X(1,1)*Y(5,1)-4*X(4,1)*Y(7,1)+8*X(4,1)*Y(8,1)+4*Y(4,1)*X(1,1)-
4*X(4,1)*Y(1,1)+2*X(5,1)*Y(7,1)... 
 -4*Y(8,1)*X(5,1)-2*X(1,1)*Y(3,1)+4*Y(4,1)*X(7,1)-8*X(8,1)*Y(4,1)-
2*X(7,1)*Y(3,1))*Eta.^3+(2*X(5,1)*Y(7,1)-X(1,1)*Y(6,1)+2*X(4,1)*Y(1,1)... 
 +3*Y(2,1)*Xi.^2*X(1,1)-3*Y(2,1)*Xi.^2*X(3,1)-
3*Y(2,1)*Xi.^2*X(5,1)+3*Y(2,1)*Xi.^2*X(7,1)+3*X(6,1)*Xi.^2*Y(1,1)... 
 -3*X(6,1)*Xi.^2*Y(3,1)-3*X(6,1)*Xi.^2*Y(5,1)+3*X(6,1)*Xi.^2*Y(7,1)-
3*X(7,1)*Xi.^2*Y(1,1)+3*X(7,1)*Xi.^2*Y(5,1)... 
 +2*Y(8,1)*X(2,1)-2*Y(8,1)*X(6,1)+2*X(5,1)*Y(3,1)+5*X(8,1)*Y(7,1)*Xi-
X(3,1)*Y(2,1)+4*Y(1,1)*Xi*X(2,1)-4*Y(1,1)*Xi*X(6,1)... 
 -4*Y(3,1)*Xi*X(6,1)+8*Y(2,1)*Xi*X(4,1)+8*Y(2,1)*Xi*X(8,1)-5*X(3,1)*Xi*Y(5,1)-
3*X(3,1)*Xi*Y(7,1)+8*X(6,1)*Xi*Y(8,1)... 
 -3*X(1,1)*Xi*Y(5,1)-5*X(1,1)*Xi*Y(7,1)-8*Y(6,1)*Xi*X(8,1)-8*X(2,1)*Xi*Y(4,1)-
8*X(2,1)*Xi*Y(8,1)-2*X(8,1)*Y(2,1)... 
 +2*X(8,1)*Y(6,1)-3*X(2,1)*Xi.^2*Y(7,1)+3*X(3,1)*Xi.^2*Y(1,1)-
3*X(3,1)*Xi.^2*Y(5,1)+3*X(5,1)*Xi.^2*Y(3,1)... 
 -3*X(5,1)*Xi.^2*Y(7,1)-2*X(3,1)*Y(5,1)+Y(3,1)*X(2,1)-
2*Y(4,1)*X(2,1)+2*Y(4,1)*X(6,1)+4*X(1,1)*Xi*Y(6,1)... 
 -3*X(4,1)*Y(1,1)*Xi+6*X(4,1)*Y(2,1)*Xi.^2-3*X(4,1)*Y(3,1)*Xi.^2-
5*X(4,1)*Y(3,1)*Xi+3*X(4,1)*Y(5,1)*Xi.^2+5*X(4,1)*Y(5,1)*Xi... 
 +3*X(4,1)*Y(7,1)*Xi.^2+3*X(4,1)*Y(7,1)*Xi+4*X(5,1)*Xi*Y(6,1)-
4*X(7,1)*Xi*Y(2,1)+4*X(7,1)*Xi*Y(6,1)+3*X(8,1)*Y(1,1)*Xi.^2-... 
 5*X(8,1)*Y(1,1)*Xi-6*X(8,1)*Y(2,1)*Xi.^2+3*X(8,1)*Y(3,1)*Xi.^2-3*X(8,1)*Y(3,1)*Xi-
2*X(3,1)*Y(1,1)... 
 +3*X(8,1)*Y(5,1)*Xi-Y(3,1)*X(6,1)+2*X(4,1)*Y(2,1)-
2*X(4,1)*Y(6,1)+2*Y(8,1)*X(7,1)+Y(1,1)*X(6,1)-3*X(1,1)*Xi.^2*Y(3,1)... 
 +3*X(1,1)*Xi.^2*Y(7,1)-
3*X(2,1)*Xi.^2*Y(1,1)+3*X(2,1)*Xi.^2*Y(3,1)+3*X(2,1)*Xi.^2*Y(5,1)-2*X(8,1)*Y(7,1)-
Y(1,1)*X(2,1)... 
 -2*Y(8,1)*X(5,1)+2*Y(8,1)*X(3,1)-4*X(1,1)*Xi*Y(2,1)-2*X(7,1)*Y(5,1)-
3*Y(6,1)*Xi.^2*X(1,1)+3*Y(6,1)*Xi.^2*X(3,1)... 



A.25 

 +3*Y(6,1)*Xi.^2*X(5,1)-3*Y(6,1)*Xi.^2*X(7,1)-
2*Y(8,1)*X(1,1)+5*X(7,1)*Xi*Y(1,1)+3*X(7,1)*Xi*Y(3,1)+3*X(5,1)*Xi*Y(1,1)... 
 +5*X(5,1)*Xi*Y(3,1)+Y(5,1)*X(2,1)-Y(5,1)*X(6,1)-
2*X(7,1)*Y(1,1)+2*Y(4,1)*X(7,1)+8*X(6,1)*Xi*Y(4,1)-8*Y(6,1)*Xi*X(4,1)... 
 +X(1,1)*Y(2,1)-2*Y(4,1)*X(5,1)+4*Y(3,1)*Xi*X(2,1)+6*X(8,1)*Y(6,1)*Xi.^2-
3*X(8,1)*Y(5,1)*Xi.^2-4*X(3,1)*Xi*Y(2,1)-3*X(4,1)*Y(1,1)*Xi.^2-... 
 4*Y(7,1)*Xi*X(6,1)-3*X(8,1)*Y(7,1)*Xi.^2+4*X(3,1)*Xi*Y(6,1)+4*Y(7,1)*Xi*X(2,1)-
4*X(5,1)*Xi*Y(2,1)-6*X(4,1)*Y(6,1)*Xi.^2+... 
 2*Y(4,1)*X(3,1)+2*X(1,1)*Y(7,1)+2*X(1,1)*Y(3,1)-2*X(8,1)*Y(3,1)+2*X(8,1)*Y(5,1)-
2*Y(4,1)*X(1,1)+3*Y(4,1)*X(1,1)*Xi.^2+... 
 3*Y(4,1)*X(1,1)*Xi-6*Y(4,1)*X(2,1)*Xi.^2+3*Y(4,1)*X(3,1)*Xi.^2+5*Y(4,1)*X(3,1)*Xi-
3*Y(4,1)*X(5,1)*Xi.^2-5*Y(4,1)*X(5,1)*Xi... 
 +6*Y(4,1)*X(6,1)*Xi.^2-3*Y(4,1)*X(7,1)*Xi.^2-3*Y(4,1)*X(7,1)*Xi+4*Y(5,1)*Xi*X(2,1)-
4*Y(5,1)*Xi*X(6,1)... 
 -3*Y(8,1)*X(1,1)*Xi.^2+5*Y(8,1)*X(1,1)*Xi+6*Y(8,1)*X(2,1)*Xi.^2-
3*Y(8,1)*X(3,1)*Xi.^2+3*Y(8,1)*X(3,1)*Xi+3*Y(8,1)*X(5,1)*Xi.^2-... 
 3*Y(8,1)*X(5,1)*Xi-6*Y(8,1)*X(6,1)*Xi.^2+3*Y(8,1)*X(7,1)*Xi.^2-
5*Y(8,1)*X(7,1)*Xi+X(3,1)*Y(6,1)... 
 -X(7,1)*Y(6,1)-Y(7,1)*X(2,1)-
X(5,1)*Y(2,1)+2*X(8,1)*Y(1,1)+X(7,1)*Y(2,1)+Y(7,1)*X(6,1)+2*X(4,1)*Y(5,1)-
2*X(4,1)*Y(7,1)... 
 +X(5,1)*Y(6,1)-2*X(4,1)*Y(3,1))*Eta.^2+(X(1,1)*Y(6,1)+2*X(4,1)*Y(1,1)-
5*Y(2,1)*Xi.^2*X(1,1)+5*Y(2,1)*Xi.^2*X(3,1)+3*Y(2,1)*Xi.^2*X(5,1)... 
 -3*Y(2,1)*Xi.^2*X(7,1)+3*X(6,1)*Xi.^2*Y(1,1)-3*X(6,1)*Xi.^2*Y(3,1)-
5*X(6,1)*Xi.^2*Y(5,1)+5*X(6,1)*Xi.^2*Y(7,1)+... 
 5*X(7,1)*Xi.^2*Y(5,1)+6*X(8,1)*Y(7,1)*Xi+X(3,1)*Y(2,1)-6*Y(1,1)*Xi*X(2,1)-
2*Y(1,1)*Xi*X(6,1)-2*Y(3,1)*Xi*X(6,1)... 
 -8*X(4,1)*Y(8,1)+8*X(8,1)*Y(4,1)-8*Y(2,1)*Xi*X(4,1)-
8*Y(2,1)*Xi*X(8,1)+8*X(6,1)*Xi*Y(8,1)+3*X(1,1)*Xi.^2*Y(5,1)... 
 -8*Y(6,1)*Xi*X(8,1)+8*X(2,1)*Xi*Y(4,1)+8*X(2,1)*Xi*Y(8,1)+3*X(2,1)*Xi.^2*Y(7,1)-
5*X(3,1)*Xi.^2*Y(1,1)-5*X(5,1)*Xi.^2*Y(7,1)... 
 -Y(3,1)*X(2,1)+2*X(1,1)*Xi*Y(6,1)+2*X(4,1)*Y(1,1)*Xi-
8*X(4,1)*Y(2,1)*Xi.^2+4*X(4,1)*Y(3,1)*Xi.^2+6*X(4,1)*Y(3,1)*Xi... 
 
+4*X(4,1)*Y(5,1)*Xi.^2+6*X(4,1)*Y(5,1)*Xi+4*X(4,1)*Y(7,1)*Xi.^2+2*X(4,1)*Y(7,1)*Xi+6
*X(5,1)*Xi*Y(6,1)+2*X(7,1)*Xi*Y(2,1)... 
 +6*X(7,1)*Xi*Y(6,1)-4*X(8,1)*Y(1,1)*Xi.^2+6*X(8,1)*Y(1,1)*Xi+8*X(8,1)*Y(2,1)*Xi.^2-
4*X(8,1)*Y(3,1)*Xi.^2+2*X(8,1)*Y(3,1)*Xi... 
 +2*X(8,1)*Y(5,1)*Xi+Y(3,1)*X(6,1)+2*Y(8,1)*X(7,1)-
Y(1,1)*X(6,1)+5*X(1,1)*Xi.^2*Y(3,1)+5*X(2,1)*Xi.^2*Y(1,1)... 
 -5*X(2,1)*Xi.^2*Y(3,1)-3*X(2,1)*Xi.^2*Y(5,1)-
2*X(8,1)*Y(7,1)+Y(1,1)*X(2,1)+2*Y(8,1)*X(5,1)+2*Y(8,1)*X(3,1)... 
 +6*X(1,1)*Xi*Y(2,1)-
3*Y(6,1)*Xi.^2*X(1,1)+3*Y(6,1)*Xi.^2*X(3,1)+5*Y(6,1)*Xi.^2*X(5,1)-
5*Y(6,1)*Xi.^2*X(7,1)+2*Y(8,1)*X(1,1)... 
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 -3*X(5,1)*Xi.^2*Y(1,1)+Y(5,1)*X(2,1)-Y(5,1)*X(6,1)-2*Y(4,1)*X(7,1)-
3*X(3,1)*Xi.^2*Y(7,1)+8*X(6,1)*Xi*Y(4,1)... 
 -8*Y(6,1)*Xi*X(4,1)-X(1,1)*Y(2,1)-2*Y(4,1)*X(5,1)+3*X(7,1)*Xi.^2*Y(3,1)-
6*Y(3,1)*Xi*X(2,1)+8*X(8,1)*Y(6,1)*Xi.^2-4*X(8,1)*Y(5,1)*Xi.^2+... 
 6*X(3,1)*Xi*Y(2,1)+4*X(4,1)*Y(1,1)*Xi.^2-6*Y(7,1)*Xi*X(6,1)-
4*X(8,1)*Y(7,1)*Xi.^2+2*X(3,1)*Xi*Y(6,1)-2*Y(7,1)*Xi*X(2,1)... 
 +2*X(5,1)*Xi*Y(2,1)-8*X(4,1)*Y(6,1)*Xi.^2-2*Y(4,1)*X(3,1)-2*X(8,1)*Y(3,1)-
2*X(8,1)*Y(5,1)-2*Y(4,1)*X(1,1)... 
 -4*Y(4,1)*X(1,1)*Xi.^2-2*Y(4,1)*X(1,1)*Xi+8*Y(4,1)*X(2,1)*Xi.^2-4*Y(4,1)*X(3,1)*Xi.^2-
6*Y(4,1)*X(3,1)*Xi-4*Y(4,1)*X(5,1)*Xi.^2-... 
 6*Y(4,1)*X(5,1)*Xi+8*Y(4,1)*X(6,1)*Xi.^2-4*Y(4,1)*X(7,1)*Xi.^2-2*Y(4,1)*X(7,1)*Xi... 
 -2*Y(5,1)*Xi*X(2,1)-6*Y(5,1)*Xi*X(6,1)+4*Y(8,1)*X(1,1)*Xi.^2-6*Y(8,1)*X(1,1)*Xi-
8*Y(8,1)*X(2,1)*Xi.^2+4*Y(8,1)*X(3,1)*Xi.^2-... 
 2*Y(8,1)*X(3,1)*Xi+4*Y(8,1)*X(5,1)*Xi.^2-2*Y(8,1)*X(5,1)*Xi-8*Y(8,1)*X(6,1)*Xi.^2+... 
 4*Y(8,1)*X(7,1)*Xi.^2-6*Y(8,1)*X(7,1)*Xi-X(3,1)*Y(6,1)-X(7,1)*Y(6,1)-Y(7,1)*X(2,1)-
X(5,1)*Y(2,1)-2*X(8,1)*Y(1,1)... 
 
+X(7,1)*Y(2,1)+Y(7,1)*X(6,1)+2*X(4,1)*Y(5,1)+2*X(4,1)*Y(7,1)+X(5,1)*Y(6,1)+2*X(4,1)*Y
(3,1))*Eta+2*X(1,1)*Xi*Y(6,1)-8*X(2,1)*Xi*Y(6,1)... 
 +X(4,1)*Y(1,1)*Xi+2*X(4,1)*Y(2,1)*Xi.^2-X(4,1)*Y(3,1)*Xi.^2-
X(4,1)*Y(3,1)*Xi+X(4,1)*Y(5,1)*Xi.^2+X(4,1)*Y(5,1)*Xi... 
 +X(4,1)*Y(7,1)*Xi.^2-X(4,1)*Y(7,1)*Xi+2*X(5,1)*Xi*Y(6,1)+8*X(6,1)*Xi*Y(2,1)-
2*X(7,1)*Xi*Y(2,1)+2*X(7,1)*Xi*Y(6,1)... 
 +X(8,1)*Y(1,1)*Xi.^2-X(8,1)*Y(1,1)*Xi-
2*X(8,1)*Y(2,1)*Xi.^2+X(8,1)*Y(3,1)*Xi.^2+X(8,1)*Y(3,1)*Xi-X(8,1)*Y(5,1)*Xi... 
 -2*X(4,1)*Y(2,1)+2*X(4,1)*Y(6,1)-2*X(1,1)*Xi.^2*Y(3,1)+2*X(1,1)*Xi.^3*Y(5,1)-
4*X(1,1)*Xi.^3*Y(6,1)+2*X(1,1)*Xi.^3*Y(7,1)... 
 -2*X(1,1)*Xi.^2*Y(7,1)-2*X(2,1)*Xi.^2*Y(1,1)+2*X(2,1)*Xi.^2*Y(3,1)-
4*X(2,1)*Xi.^3*Y(5,1)-2*X(2,1)*Xi.^2*Y(5,1)... 
 +8*X(2,1)*Xi.^3*Y(6,1)-4*X(2,1)*Xi.^3*Y(7,1)-2*X(1,1)*Xi*Y(2,1)+2*Y(6,1)*Xi.^2*X(1,1)-
2*Y(6,1)*Xi.^2*X(3,1)... 
 +2*Y(6,1)*Xi.^2*X(5,1)-
2*Y(6,1)*Xi.^2*X(7,1)+2*Y(3,1)*Xi*X(2,1)+2*X(8,1)*Y(6,1)*Xi.^2-X(8,1)*Y(5,1)*Xi.^2-
2*X(3,1)*Xi*Y(2,1)... 
 -X(4,1)*Y(1,1)*Xi.^2-2*Y(7,1)*Xi*X(6,1)-
X(8,1)*Y(7,1)*Xi.^2+2*X(3,1)*Xi*Y(6,1)+2*Y(7,1)*Xi*X(2,1)... 
 -2*X(5,1)*Xi*Y(2,1)-2*X(4,1)*Y(6,1)*Xi.^2+Y(4,1)*X(1,1)*Xi.^2-Y(4,1)*X(1,1)*Xi-
2*Y(4,1)*X(2,1)*Xi.^2+Y(4,1)*X(3,1)*Xi.^2+... 
 Y(4,1)*X(3,1)*Xi-Y(4,1)*X(5,1)*Xi.^2-Y(4,1)*X(5,1)*Xi+2*Y(4,1)*X(6,1)*Xi.^2-
Y(4,1)*X(7,1)*Xi.^2+Y(4,1)*X(7,1)*Xi... 
 +2*Y(5,1)*Xi*X(2,1)-2*Y(5,1)*Xi*X(6,1)-
Y(8,1)*X(1,1)*Xi.^2+Y(8,1)*X(1,1)*Xi+2*Y(8,1)*X(2,1)*Xi.^2-Y(8,1)*X(3,1)*Xi.^2-... 
 Y(8,1)*X(3,1)*Xi+Y(8,1)*X(5,1)*Xi.^2+Y(8,1)*X(5,1)*Xi-
2*Y(8,1)*X(6,1)*Xi.^2+Y(8,1)*X(7,1)*Xi.^2-Y(8,1)*X(7,1)*Xi)*... 
                                   (0.5*(Eta-(Xi.*Eta))+0.25*(-(Xi.^2)+Xi)))).^2)... 
                                               .*(((((0.5*Xi)-(0.5*Xi.*Eta)-(0.25*Eta.^2)+(0.25*Eta))*X(1,1) + ... 
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                                               (-Xi + (Xi.*Eta))*X(2,1) + ... 
                                               ((0.5*Xi)-(0.5*Xi.*Eta)+(0.25*Eta.^2)-(0.25*Eta))*X(3,1) + ... 
                                               (0.5-(0.5*Eta.^2))*X(4,1) + ... 
                                               ((0.5*Xi)+(0.5*Xi.*Eta)+(0.25*Eta.^2)+(0.25*Eta))*X(5,1) + ... 
                                               (-Xi - (Xi.*Eta))*X(6,1) + ... 
                                               ((0.5*Xi)+(0.5*Xi.*Eta)-(0.25*Eta.^2)-(0.25*Eta))*X(7,1) + ... 
                                               (-0.5+(0.5*Eta.^2))*X(8,1)).* ... 
                                               (((0.5*Eta)-(0.5*Xi.*Eta)-(0.25*Xi.^2)+(0.25*Xi))*Y(1,1) + ... 
                                               (-0.5+(0.5*Xi.^2))*Y(2,1) + ... 
                                               ((0.5*Eta)+(0.5*Xi.*Eta)-(0.25*Xi.^2)-(0.25*Xi))*Y(3,1) + ... 
                                               (-Eta - (Xi.*Eta))*Y(4,1) + ... 
                                               ((0.5*Eta)+(0.5*Xi.*Eta)+(0.25*Xi.^2)+(0.25*Xi))*Y(5,1) + ... 
                                               (0.5-(0.5*Xi.^2))*Y(6,1) + ... 
                                               ((0.5*Eta)-(0.5*Xi.*Eta)+(0.25*Xi.^2)-(0.25*Xi))*Y(7,1) + ... 
                                               (-Eta + (Eta.*Xi))*Y(8,1))) - ... 
                                               ((((0.5*Xi)-(0.5*Xi.*Eta)-(0.25*Eta.^2)+(0.25*Eta))*Y(1,1) + ... 
                                               (-Xi + (Xi.*Eta))*Y(2,1) + ... 
                                               ((0.5*Xi)-(0.5*Xi.*Eta)+(0.25*Eta.^2)-(0.25*Eta))*Y(3,1) + ... 
                                               (0.5-(0.5*Eta.^2))*Y(4,1) + ... 
                                               ((0.5*Xi)+(0.5*Xi.*Eta)+(0.25*Eta.^2)+(0.25*Eta))*Y(5,1) + ... 
                                               (-Xi - (Xi.*Eta))*Y(6,1) + ... 
                                               ((0.5*Xi)+(0.5*Xi.*Eta)-(0.25*Eta.^2)-(0.25*Eta))*Y(7,1) + ... 
                                               (-0.5+(0.5*Eta.^2))*Y(8,1)).* ... 
                                               (((0.5*Eta)-(0.5*Xi.*Eta)-(0.25*Xi.^2)+(0.25*Xi))*X(1,1) + ... 
                                               (-0.5+(0.5*Xi.^2))*X(2,1) + ... 
                                               ((0.5*Eta)+(0.5*Xi.*Eta)-(0.25*Xi.^2)-(0.25*Xi))*X(3,1) + ... 
                                               (-Eta - (Xi.*Eta))*X(4,1) + ... 
                                               ((0.5*Eta)+(0.5*Xi.*Eta)+(0.25*Xi.^2)+(0.25*Xi))*X(5,1) + ... 
                                               (0.5-(0.5*Xi.^2))*X(6,1) + ... 
                                               ((0.5*Eta)-(0.5*Xi.*Eta)+(0.25*Xi.^2)-(0.25*Xi))*X(7,1) + ... 
                                               (-Eta + (Eta.*Xi))*X(8,1)))); 
                                            
    N1N1Eta = (((2*((-2*X(3,1)+4*X(4,1)-2*X(1,1)+2*X(1,1)*Xi+4*X(4,1)*Xi-2*X(5,1)-
2*X(7,1)+2*X(7,1)*Xi-2*X(3,1)*Xi-2*X(5,1)*Xi... 
 +4*X(8,1)-4*X(8,1)*Xi)*Eta+2*X(2,1)-X(5,1)*Xi.^2+X(1,1)*Xi.^2-X(1,1)*Xi+X(3,1)*Xi.^2-
2*X(2,1)*Xi.^2-... 
 X(7,1)*Xi.^2-2*X(6,1)+X(3,1)*Xi-
X(5,1)*Xi+2*X(6,1)*Xi.^2+X(7,1)*Xi)/(2*Y(2,1)*Xi.^2*X(1,1)-2*Y(2,1)*Xi.^2*X(3,1)... 
 +2*Y(2,1)*Xi.^2*X(5,1)-2*Y(2,1)*Xi.^2*X(7,1)+4*X(6,1)*Xi.^3*Y(1,1)-
2*X(6,1)*Xi.^2*Y(1,1)... 
 -8*X(6,1)*Xi.^3*Y(2,1)+4*X(6,1)*Xi.^3*Y(3,1)+2*X(6,1)*Xi.^2*Y(3,1)-
2*X(6,1)*Xi.^2*Y(5,1)+2*X(6,1)*Xi.^2*Y(7,1)... 
 -2*X(7,1)*Xi.^3*Y(1,1)+2*X(7,1)*Xi.^2*Y(1,1)+4*X(7,1)*Xi.^3*Y(2,1)-
2*X(7,1)*Xi.^3*Y(3,1)... 
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 +2*X(7,1)*Xi.^2*Y(5,1)-
2*Y(8,1)*X(2,1)+2*Y(8,1)*X(6,1)+X(8,1)*Y(7,1)*Xi+2*Y(1,1)*Xi*X(2,1)-
2*Y(1,1)*Xi*X(6,1)... 
 -2*Y(3,1)*Xi*X(6,1)+2*X(8,1)*Y(2,1)-
2*X(8,1)*Y(6,1)+2*X(2,1)*Xi.^2*Y(7,1)+2*X(3,1)*Xi.^2*Y(1,1)... 
 +2*X(3,1)*Xi.^3*Y(5,1)+2*X(3,1)*Xi.^2*Y(5,1)-
4*X(3,1)*Xi.^3*Y(6,1)+2*X(3,1)*Xi.^3*Y(7,1)-2*X(5,1)*Xi.^3*Y(1,1)... 
 +4*X(5,1)*Xi.^3*Y(2,1)-2*X(5,1)*Xi.^3*Y(3,1)-2*X(5,1)*Xi.^2*Y(3,1)-
2*X(5,1)*Xi.^2*Y(7,1)... 
 +2*Y(4,1)*X(2,1)-2*Y(4,1)*X(6,1)+(2*X(5,1)*Y(1,1)-2*X(7,1)*Y(5,1)-
4*Y(8,1)*X(3,1)+4*X(8,1)*Y(3,1)+2*X(3,1)*Y(1,1)... 
 +2*X(3,1)*Y(7,1)+4*X(8,1)*Y(5,1)-2*X(1,1)*Y(5,1)-
4*X(4,1)*Y(7,1)+8*X(4,1)*Y(8,1)+4*Y(4,1)*X(1,1)-4*X(4,1)*Y(1,1)+2*X(5,1)*Y(7,1)... 
 -4*Y(8,1)*X(5,1)-2*X(1,1)*Y(3,1)+4*Y(4,1)*X(7,1)-8*X(8,1)*Y(4,1)-
2*X(7,1)*Y(3,1))*Eta.^3+(2*X(5,1)*Y(7,1)... 
 -X(1,1)*Y(6,1)+2*X(4,1)*Y(1,1)+3*Y(2,1)*Xi.^2*X(1,1)-3*Y(2,1)*Xi.^2*X(3,1)-
3*Y(2,1)*Xi.^2*X(5,1)... 
 +3*Y(2,1)*Xi.^2*X(7,1)+3*X(6,1)*Xi.^2*Y(1,1)-3*X(6,1)*Xi.^2*Y(3,1)-
3*X(6,1)*Xi.^2*Y(5,1)+3*X(6,1)*Xi.^2*Y(7,1)... 
 -3*X(7,1)*Xi.^2*Y(1,1)+3*X(7,1)*Xi.^2*Y(5,1)+2*Y(8,1)*X(2,1)-2*Y(8,1)*X(6,1)... 
 +2*X(5,1)*Y(3,1)+5*X(8,1)*Y(7,1)*Xi-X(3,1)*Y(2,1)+4*Y(1,1)*Xi*X(2,1)-
4*Y(1,1)*Xi*X(6,1)-4*Y(3,1)*Xi*X(6,1)... 
 +8*Y(2,1)*Xi*X(4,1)+8*Y(2,1)*Xi*X(8,1)-5*X(3,1)*Xi*Y(5,1)-
3*X(3,1)*Xi*Y(7,1)+8*X(6,1)*Xi*Y(8,1)... 
 -3*X(1,1)*Xi*Y(5,1)-5*X(1,1)*Xi*Y(7,1)-8*Y(6,1)*Xi*X(8,1)-8*X(2,1)*Xi*Y(4,1)-
8*X(2,1)*Xi*Y(8,1)-2*X(8,1)*Y(2,1)... 
 +2*X(8,1)*Y(6,1)-3*X(2,1)*Xi.^2*Y(7,1)+3*X(3,1)*Xi.^2*Y(1,1)-3*X(3,1)*Xi.^2*Y(5,1)... 
 +3*X(5,1)*Xi.^2*Y(3,1)-3*X(5,1)*Xi.^2*Y(7,1)-2*X(3,1)*Y(5,1)+Y(3,1)*X(2,1)-
2*Y(4,1)*X(2,1)+2*Y(4,1)*X(6,1)... 
 +4*X(1,1)*Xi*Y(6,1)-3*X(4,1)*Y(1,1)*Xi+6*X(4,1)*Y(2,1)*Xi.^2-3*X(4,1)*Y(3,1)*Xi.^2-
5*X(4,1)*Y(3,1)*Xi... 
 
+3*X(4,1)*Y(5,1)*Xi.^2+5*X(4,1)*Y(5,1)*Xi+3*X(4,1)*Y(7,1)*Xi.^2+3*X(4,1)*Y(7,1)*Xi+4
*X(5,1)*Xi*Y(6,1)... 
 -4*X(7,1)*Xi*Y(2,1)+4*X(7,1)*Xi*Y(6,1)+3*X(8,1)*Y(1,1)*Xi.^2-5*X(8,1)*Y(1,1)*Xi-
6*X(8,1)*Y(2,1)*Xi.^2+... 
 3*X(8,1)*Y(3,1)*Xi.^2-3*X(8,1)*Y(3,1)*Xi-2*X(3,1)*Y(1,1)+3*X(8,1)*Y(5,1)*Xi-
Y(3,1)*X(6,1)+2*X(4,1)*Y(2,1)... 
 -2*X(4,1)*Y(6,1)+2*Y(8,1)*X(7,1)+Y(1,1)*X(6,1)-
3*X(1,1)*Xi.^2*Y(3,1)+3*X(1,1)*Xi.^2*Y(7,1)-3*X(2,1)*Xi.^2*Y(1,1)... 
 +3*X(2,1)*Xi.^2*Y(3,1)+3*X(2,1)*Xi.^2*Y(5,1)-2*X(8,1)*Y(7,1)-Y(1,1)*X(2,1)-
2*Y(8,1)*X(5,1)+2*Y(8,1)*X(3,1)... 
 -4*X(1,1)*Xi*Y(2,1)-2*X(7,1)*Y(5,1)-
3*Y(6,1)*Xi.^2*X(1,1)+3*Y(6,1)*Xi.^2*X(3,1)+3*Y(6,1)*Xi.^2*X(5,1)... 
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 -3*Y(6,1)*Xi.^2*X(7,1)-
2*Y(8,1)*X(1,1)+5*X(7,1)*Xi*Y(1,1)+3*X(7,1)*Xi*Y(3,1)+3*X(5,1)*Xi*Y(1,1)+5*X(5,1)*Xi
*Y(3,1)... 
 +Y(5,1)*X(2,1)-Y(5,1)*X(6,1)-2*X(7,1)*Y(1,1)+2*Y(4,1)*X(7,1)+8*X(6,1)*Xi*Y(4,1)-
8*Y(6,1)*Xi*X(4,1)... 
 +X(1,1)*Y(2,1)-2*Y(4,1)*X(5,1)+4*Y(3,1)*Xi*X(2,1)+6*X(8,1)*Y(6,1)*Xi.^2-
3*X(8,1)*Y(5,1)*Xi.^2-4*X(3,1)*Xi*Y(2,1)... 
 -3*X(4,1)*Y(1,1)*Xi.^2-4*Y(7,1)*Xi*X(6,1)-3*X(8,1)*Y(7,1)*Xi.^2+4*X(3,1)*Xi*Y(6,1)... 
 +4*Y(7,1)*Xi*X(2,1)-4*X(5,1)*Xi*Y(2,1)-
6*X(4,1)*Y(6,1)*Xi.^2+2*Y(4,1)*X(3,1)+2*X(1,1)*Y(7,1)+2*X(1,1)*Y(3,1)... 
 -2*X(8,1)*Y(3,1)+2*X(8,1)*Y(5,1)-
2*Y(4,1)*X(1,1)+3*Y(4,1)*X(1,1)*Xi.^2+3*Y(4,1)*X(1,1)*Xi... 
 -6*Y(4,1)*X(2,1)*Xi.^2+3*Y(4,1)*X(3,1)*Xi.^2+5*Y(4,1)*X(3,1)*Xi-3*Y(4,1)*X(5,1)*Xi.^2-
5*Y(4,1)*X(5,1)*Xi... 
 +6*Y(4,1)*X(6,1)*Xi.^2-3*Y(4,1)*X(7,1)*Xi.^2-3*Y(4,1)*X(7,1)*Xi+4*Y(5,1)*Xi*X(2,1)... 
 -4*Y(5,1)*Xi*X(6,1)-3*Y(8,1)*X(1,1)*Xi.^2+5*Y(8,1)*X(1,1)*Xi+6*Y(8,1)*X(2,1)*Xi.^2-
3*Y(8,1)*X(3,1)*Xi.^2+3*Y(8,1)*X(3,1)*Xi... 
 +3*Y(8,1)*X(5,1)*Xi.^2-3*Y(8,1)*X(5,1)*Xi-6*Y(8,1)*X(6,1)*Xi.^2+... 
 3*Y(8,1)*X(7,1)*Xi.^2-5*Y(8,1)*X(7,1)*Xi+X(3,1)*Y(6,1)-X(7,1)*Y(6,1)-Y(7,1)*X(2,1)-
X(5,1)*Y(2,1)+2*X(8,1)*Y(1,1)... 
 +X(7,1)*Y(2,1)+Y(7,1)*X(6,1)+2*X(4,1)*Y(5,1)-2*X(4,1)*Y(7,1)+X(5,1)*Y(6,1)-
2*X(4,1)*Y(3,1))*Eta.^2+(X(1,1)*Y(6,1)+2*X(4,1)*Y(1,1)... 
 -5*Y(2,1)*Xi.^2*X(1,1)+5*Y(2,1)*Xi.^2*X(3,1)+3*Y(2,1)*Xi.^2*X(5,1)-
3*Y(2,1)*Xi.^2*X(7,1)+3*X(6,1)*Xi.^2*Y(1,1)... 
 -3*X(6,1)*Xi.^2*Y(3,1)-5*X(6,1)*Xi.^2*Y(5,1)+5*X(6,1)*Xi.^2*Y(7,1)... 
 +5*X(7,1)*Xi.^2*Y(5,1)+6*X(8,1)*Y(7,1)*Xi+X(3,1)*Y(2,1)-6*Y(1,1)*Xi*X(2,1)-
2*Y(1,1)*Xi*X(6,1)-2*Y(3,1)*Xi*X(6,1)... 
 -8*X(4,1)*Y(8,1)+8*X(8,1)*Y(4,1)-8*Y(2,1)*Xi*X(4,1)-
8*Y(2,1)*Xi*X(8,1)+8*X(6,1)*Xi*Y(8,1)... 
 +3*X(1,1)*Xi.^2*Y(5,1)-
8*Y(6,1)*Xi*X(8,1)+8*X(2,1)*Xi*Y(4,1)+8*X(2,1)*Xi*Y(8,1)+3*X(2,1)*Xi.^2*Y(7,1)-
5*X(3,1)*Xi.^2*Y(1,1)... 
 -5*X(5,1)*Xi.^2*Y(7,1)-Y(3,1)*X(2,1)+2*X(1,1)*Xi*Y(6,1)+2*X(4,1)*Y(1,1)*Xi... 
 -
8*X(4,1)*Y(2,1)*Xi.^2+4*X(4,1)*Y(3,1)*Xi.^2+6*X(4,1)*Y(3,1)*Xi+4*X(4,1)*Y(5,1)*Xi.^2+
6*X(4,1)*Y(5,1)*Xi+4*X(4,1)*Y(7,1)*Xi.^2+... 
 2*X(4,1)*Y(7,1)*Xi+6*X(5,1)*Xi*Y(6,1)+2*X(7,1)*Xi*Y(2,1)+6*X(7,1)*Xi*Y(6,1)... 
 -4*X(8,1)*Y(1,1)*Xi.^2+6*X(8,1)*Y(1,1)*Xi+8*X(8,1)*Y(2,1)*Xi.^2-
4*X(8,1)*Y(3,1)*Xi.^2+2*X(8,1)*Y(3,1)*Xi+2*X(8,1)*Y(5,1)*Xi... 
 +Y(3,1)*X(6,1)+2*Y(8,1)*X(7,1)-
Y(1,1)*X(6,1)+5*X(1,1)*Xi.^2*Y(3,1)+5*X(2,1)*Xi.^2*Y(1,1)... 
 -5*X(2,1)*Xi.^2*Y(3,1)-3*X(2,1)*Xi.^2*Y(5,1)-
2*X(8,1)*Y(7,1)+Y(1,1)*X(2,1)+2*Y(8,1)*X(5,1)+2*Y(8,1)*X(3,1)+6*X(1,1)*Xi*Y(2,1)... 
 -3*Y(6,1)*Xi.^2*X(1,1)+3*Y(6,1)*Xi.^2*X(3,1)+5*Y(6,1)*Xi.^2*X(5,1)-
5*Y(6,1)*Xi.^2*X(7,1)... 



A.30 

 +2*Y(8,1)*X(1,1)-3*X(5,1)*Xi.^2*Y(1,1)+Y(5,1)*X(2,1)-Y(5,1)*X(6,1)-2*Y(4,1)*X(7,1)-
3*X(3,1)*Xi.^2*Y(7,1)+8*X(6,1)*Xi*Y(4,1)... 
 -8*Y(6,1)*Xi*X(4,1)-X(1,1)*Y(2,1)-2*Y(4,1)*X(5,1)+3*X(7,1)*Xi.^2*Y(3,1)-
6*Y(3,1)*Xi*X(2,1)... 
 +8*X(8,1)*Y(6,1)*Xi.^2-
4*X(8,1)*Y(5,1)*Xi.^2+6*X(3,1)*Xi*Y(2,1)+4*X(4,1)*Y(1,1)*Xi.^2-6*Y(7,1)*Xi*X(6,1)-
4*X(8,1)*Y(7,1)*Xi.^2+... 
 2*X(3,1)*Xi*Y(6,1)-2*Y(7,1)*Xi*X(2,1)+2*X(5,1)*Xi*Y(2,1)-8*X(4,1)*Y(6,1)*Xi.^2-... 
 2*Y(4,1)*X(3,1)-2*X(8,1)*Y(3,1)-2*X(8,1)*Y(5,1)-2*Y(4,1)*X(1,1)-4*Y(4,1)*X(1,1)*Xi.^2-
2*Y(4,1)*X(1,1)*Xi+8*Y(4,1)*X(2,1)*Xi.^2-... 
 4*Y(4,1)*X(3,1)*Xi.^2-6*Y(4,1)*X(3,1)*Xi-4*Y(4,1)*X(5,1)*Xi.^2-6*Y(4,1)*X(5,1)*Xi... 
 +8*Y(4,1)*X(6,1)*Xi.^2-4*Y(4,1)*X(7,1)*Xi.^2-2*Y(4,1)*X(7,1)*Xi-2*Y(5,1)*Xi*X(2,1)-
6*Y(5,1)*Xi*X(6,1)+4*Y(8,1)*X(1,1)*Xi.^2-... 
 6*Y(8,1)*X(1,1)*Xi-8*Y(8,1)*X(2,1)*Xi.^2+4*Y(8,1)*X(3,1)*Xi.^2-2*Y(8,1)*X(3,1)*Xi... 
 +4*Y(8,1)*X(5,1)*Xi.^2-2*Y(8,1)*X(5,1)*Xi-8*Y(8,1)*X(6,1)*Xi.^2+4*Y(8,1)*X(7,1)*Xi.^2-
6*Y(8,1)*X(7,1)*Xi-X(3,1)*Y(6,1)... 
 -X(7,1)*Y(6,1)-Y(7,1)*X(2,1)-X(5,1)*Y(2,1)-
2*X(8,1)*Y(1,1)+X(7,1)*Y(2,1)+Y(7,1)*X(6,1)+2*X(4,1)*Y(5,1)+2*X(4,1)*Y(7,1)... 
 +X(5,1)*Y(6,1)+2*X(4,1)*Y(3,1))*Eta+2*X(1,1)*Xi*Y(6,1)-
8*X(2,1)*Xi*Y(6,1)+X(4,1)*Y(1,1)*Xi+2*X(4,1)*Y(2,1)*Xi.^2-... 
 X(4,1)*Y(3,1)*Xi.^2-
X(4,1)*Y(3,1)*Xi+X(4,1)*Y(5,1)*Xi.^2+X(4,1)*Y(5,1)*Xi+X(4,1)*Y(7,1)*Xi.^2-
X(4,1)*Y(7,1)*Xi... 
 +2*X(5,1)*Xi*Y(6,1)+8*X(6,1)*Xi*Y(2,1)-
2*X(7,1)*Xi*Y(2,1)+2*X(7,1)*Xi*Y(6,1)+X(8,1)*Y(1,1)*Xi.^2-X(8,1)*Y(1,1)*Xi... 
 -2*X(8,1)*Y(2,1)*Xi.^2+X(8,1)*Y(3,1)*Xi.^2+X(8,1)*Y(3,1)*Xi-X(8,1)*Y(5,1)*Xi-
2*X(4,1)*Y(2,1)+2*X(4,1)*Y(6,1)... 
 -2*X(1,1)*Xi.^2*Y(3,1)+2*X(1,1)*Xi.^3*Y(5,1)-
4*X(1,1)*Xi.^3*Y(6,1)+2*X(1,1)*Xi.^3*Y(7,1)-2*X(1,1)*Xi.^2*Y(7,1)... 
 -2*X(2,1)*Xi.^2*Y(1,1)+2*X(2,1)*Xi.^2*Y(3,1)-4*X(2,1)*Xi.^3*Y(5,1)-
2*X(2,1)*Xi.^2*Y(5,1)... 
 +8*X(2,1)*Xi.^3*Y(6,1)-4*X(2,1)*Xi.^3*Y(7,1)-2*X(1,1)*Xi*Y(2,1)+2*Y(6,1)*Xi.^2*X(1,1)-
2*Y(6,1)*Xi.^2*X(3,1)... 
 +2*Y(6,1)*Xi.^2*X(5,1)-
2*Y(6,1)*Xi.^2*X(7,1)+2*Y(3,1)*Xi*X(2,1)+2*X(8,1)*Y(6,1)*Xi.^2-X(8,1)*Y(5,1)*Xi.^2-... 
 2*X(3,1)*Xi*Y(2,1)-X(4,1)*Y(1,1)*Xi.^2-2*Y(7,1)*Xi*X(6,1)-
X(8,1)*Y(7,1)*Xi.^2+2*X(3,1)*Xi*Y(6,1)+2*Y(7,1)*Xi*X(2,1)... 
 -2*X(5,1)*Xi*Y(2,1)-2*X(4,1)*Y(6,1)*Xi.^2+Y(4,1)*X(1,1)*Xi.^2-Y(4,1)*X(1,1)*Xi-
2*Y(4,1)*X(2,1)*Xi.^2+... 
 Y(4,1)*X(3,1)*Xi.^2+Y(4,1)*X(3,1)*Xi-Y(4,1)*X(5,1)*Xi.^2-
Y(4,1)*X(5,1)*Xi+2*Y(4,1)*X(6,1)*Xi.^2-Y(4,1)*X(7,1)*Xi.^2+... 
 Y(4,1)*X(7,1)*Xi+2*Y(5,1)*Xi*X(2,1)-2*Y(5,1)*Xi*X(6,1)-
Y(8,1)*X(1,1)*Xi.^2+Y(8,1)*X(1,1)*Xi+2*Y(8,1)*X(2,1)*Xi.^2-... 
 Y(8,1)*X(3,1)*Xi.^2-Y(8,1)*X(3,1)*Xi+Y(8,1)*X(5,1)*Xi.^2+Y(8,1)*X(5,1)*Xi-
2*Y(8,1)*X(6,1)*Xi.^2+Y(8,1)*X(7,1)*Xi.^2-Y(8,1)*X(7,1)*Xi)... 
           *(0.5*(Xi-(Xi.*Eta))+0.25*(-(Eta.^2)+Eta)))... 



A.31 

 +(-2*((2*X(4,1)+X(1,1)+X(7,1)-X(3,1)-X(5,1)-2*X(8,1))*Eta.^2+(2*X(3,1)*Xi+2*X(1,1)*Xi-
X(5,1)-2*X(7,1)*Xi+X(7,1)-2*X(5,1)*Xi... 
 -4*X(2,1)*Xi-X(1,1)+4*X(6,1)*Xi+X(3,1))*Eta-2*X(1,1)*Xi-2*X(7,1)*Xi... 
 -2*X(3,1)*Xi+4*X(6,1)*Xi+4*X(2,1)*Xi+2*X(8,1)-2*X(4,1)-
2*X(5,1)*Xi)/(2*Y(2,1)*Xi.^2*X(1,1)-2*Y(2,1)*Xi.^2*X(3,1)... 
 +2*Y(2,1)*Xi.^2*X(5,1)-2*Y(2,1)*Xi.^2*X(7,1)+4*X(6,1)*Xi.^3*Y(1,1)... 
 -2*X(6,1)*Xi.^2*Y(1,1)-
8*X(6,1)*Xi.^3*Y(2,1)+4*X(6,1)*Xi.^3*Y(3,1)+2*X(6,1)*Xi.^2*Y(3,1)-
2*X(6,1)*Xi.^2*Y(5,1)... 
 +2*X(6,1)*Xi.^2*Y(7,1)-
2*X(7,1)*Xi.^3*Y(1,1)+2*X(7,1)*Xi.^2*Y(1,1)+4*X(7,1)*Xi.^3*Y(2,1)... 
 -2*X(7,1)*Xi.^3*Y(3,1)+2*X(7,1)*Xi.^2*Y(5,1)-
2*Y(8,1)*X(2,1)+2*Y(8,1)*X(6,1)+X(8,1)*Y(7,1)*Xi+2*Y(1,1)*Xi*X(2,1)... 
 -2*Y(1,1)*Xi*X(6,1)-2*Y(3,1)*Xi*X(6,1)+2*X(8,1)*Y(2,1)-
2*X(8,1)*Y(6,1)+2*X(2,1)*Xi.^2*Y(7,1)... 
 +2*X(3,1)*Xi.^2*Y(1,1)+2*X(3,1)*Xi.^3*Y(5,1)+2*X(3,1)*Xi.^2*Y(5,1)-
4*X(3,1)*Xi.^3*Y(6,1)+2*X(3,1)*Xi.^3*Y(7,1)... 
 -2*X(5,1)*Xi.^3*Y(1,1)+4*X(5,1)*Xi.^3*Y(2,1)-2*X(5,1)*Xi.^3*Y(3,1)-
2*X(5,1)*Xi.^2*Y(3,1)... 
 -2*X(5,1)*Xi.^2*Y(7,1)+2*Y(4,1)*X(2,1)-2*Y(4,1)*X(6,1)+(2*X(5,1)*Y(1,1)-
2*X(7,1)*Y(5,1)-4*Y(8,1)*X(3,1)... 
 +4*X(8,1)*Y(3,1)+2*X(3,1)*Y(1,1)+2*X(3,1)*Y(7,1)+4*X(8,1)*Y(5,1)-2*X(1,1)*Y(5,1)-
4*X(4,1)*Y(7,1)+8*X(4,1)*Y(8,1)+4*Y(4,1)*X(1,1)... 
 -4*X(4,1)*Y(1,1)+2*X(5,1)*Y(7,1)-4*Y(8,1)*X(5,1)-2*X(1,1)*Y(3,1)+4*Y(4,1)*X(7,1)-
8*X(8,1)*Y(4,1)-2*X(7,1)*Y(3,1))*Eta.^3+... 
 (2*X(5,1)*Y(7,1)-X(1,1)*Y(6,1)+2*X(4,1)*Y(1,1)+3*Y(2,1)*Xi.^2*X(1,1)-
3*Y(2,1)*Xi.^2*X(3,1)... 
 -3*Y(2,1)*Xi.^2*X(5,1)+3*Y(2,1)*Xi.^2*X(7,1)+3*X(6,1)*Xi.^2*Y(1,1)-
3*X(6,1)*Xi.^2*Y(3,1)-3*X(6,1)*Xi.^2*Y(5,1)... 
 +3*X(6,1)*Xi.^2*Y(7,1)-3*X(7,1)*Xi.^2*Y(1,1)+3*X(7,1)*Xi.^2*Y(5,1)+2*Y(8,1)*X(2,1)-
2*Y(8,1)*X(6,1)... 
 +2*X(5,1)*Y(3,1)+5*X(8,1)*Y(7,1)*Xi-X(3,1)*Y(2,1)+4*Y(1,1)*Xi*X(2,1)-
4*Y(1,1)*Xi*X(6,1)-4*Y(3,1)*Xi*X(6,1)... 
 +8*Y(2,1)*Xi*X(4,1)+8*Y(2,1)*Xi*X(8,1)-5*X(3,1)*Xi*Y(5,1)-
3*X(3,1)*Xi*Y(7,1)+8*X(6,1)*Xi*Y(8,1)... 
 -3*X(1,1)*Xi*Y(5,1)-5*X(1,1)*Xi*Y(7,1)-8*Y(6,1)*Xi*X(8,1)-8*X(2,1)*Xi*Y(4,1)-
8*X(2,1)*Xi*Y(8,1)-2*X(8,1)*Y(2,1)... 
 +2*X(8,1)*Y(6,1)-3*X(2,1)*Xi.^2*Y(7,1)+3*X(3,1)*Xi.^2*Y(1,1)-
3*X(3,1)*Xi.^2*Y(5,1)+3*X(5,1)*Xi.^2*Y(3,1)... 
 -3*X(5,1)*Xi.^2*Y(7,1)-2*X(3,1)*Y(5,1)+Y(3,1)*X(2,1)-
2*Y(4,1)*X(2,1)+2*Y(4,1)*X(6,1)+4*X(1,1)*Xi*Y(6,1)... 
 -3*X(4,1)*Y(1,1)*Xi+6*X(4,1)*Y(2,1)*Xi.^2-3*X(4,1)*Y(3,1)*Xi.^2-
5*X(4,1)*Y(3,1)*Xi+3*X(4,1)*Y(5,1)*Xi.^2+... 
 5*X(4,1)*Y(5,1)*Xi+3*X(4,1)*Y(7,1)*Xi.^2+3*X(4,1)*Y(7,1)*Xi+4*X(5,1)*Xi*Y(6,1)-
4*X(7,1)*Xi*Y(2,1)+4*X(7,1)*Xi*Y(6,1)... 



A.32 

 +3*X(8,1)*Y(1,1)*Xi.^2-5*X(8,1)*Y(1,1)*Xi-6*X(8,1)*Y(2,1)*Xi.^2+3*X(8,1)*Y(3,1)*Xi.^2-
... 
 3*X(8,1)*Y(3,1)*Xi-2*X(3,1)*Y(1,1)+3*X(8,1)*Y(5,1)*Xi-Y(3,1)*X(6,1)+2*X(4,1)*Y(2,1)-
2*X(4,1)*Y(6,1)... 
 +2*Y(8,1)*X(7,1)+Y(1,1)*X(6,1)-3*X(1,1)*Xi.^2*Y(3,1)+3*X(1,1)*Xi.^2*Y(7,1)-
3*X(2,1)*Xi.^2*Y(1,1)+3*X(2,1)*Xi.^2*Y(3,1)... 
 +3*X(2,1)*Xi.^2*Y(5,1)-2*X(8,1)*Y(7,1)-Y(1,1)*X(2,1)-2*Y(8,1)*X(5,1)+2*Y(8,1)*X(3,1)-
4*X(1,1)*Xi*Y(2,1)... 
 -2*X(7,1)*Y(5,1)-3*Y(6,1)*Xi.^2*X(1,1)+3*Y(6,1)*Xi.^2*X(3,1)+3*Y(6,1)*Xi.^2*X(5,1)-
3*Y(6,1)*Xi.^2*X(7,1)... 
 -
2*Y(8,1)*X(1,1)+5*X(7,1)*Xi*Y(1,1)+3*X(7,1)*Xi*Y(3,1)+3*X(5,1)*Xi*Y(1,1)+5*X(5,1)*Xi
*Y(3,1)+Y(5,1)*X(2,1)-Y(5,1)*X(6,1)... 
 -2*X(7,1)*Y(1,1)+2*Y(4,1)*X(7,1)+8*X(6,1)*Xi*Y(4,1)-8*Y(6,1)*Xi*X(4,1)+X(1,1)*Y(2,1)-
2*Y(4,1)*X(5,1)... 
 +4*Y(3,1)*Xi*X(2,1)+6*X(8,1)*Y(6,1)*Xi.^2-3*X(8,1)*Y(5,1)*Xi.^2-4*X(3,1)*Xi*Y(2,1)-
3*X(4,1)*Y(1,1)*Xi.^2-4*Y(7,1)*Xi*X(6,1)... 
 -3*X(8,1)*Y(7,1)*Xi.^2+4*X(3,1)*Xi*Y(6,1)+4*Y(7,1)*Xi*X(2,1)-4*X(5,1)*Xi*Y(2,1)-... 
 6*X(4,1)*Y(6,1)*Xi.^2+2*Y(4,1)*X(3,1)+2*X(1,1)*Y(7,1)+2*X(1,1)*Y(3,1)-
2*X(8,1)*Y(3,1)+2*X(8,1)*Y(5,1)-2*Y(4,1)*X(1,1)... 
 +3*Y(4,1)*X(1,1)*Xi.^2+3*Y(4,1)*X(1,1)*Xi-
6*Y(4,1)*X(2,1)*Xi.^2+3*Y(4,1)*X(3,1)*Xi.^2+5*Y(4,1)*X(3,1)*Xi... 
 -3*Y(4,1)*X(5,1)*Xi.^2-5*Y(4,1)*X(5,1)*Xi+6*Y(4,1)*X(6,1)*Xi.^2-3*Y(4,1)*X(7,1)*Xi.^2-
3*Y(4,1)*X(7,1)*Xi+4*Y(5,1)*Xi*X(2,1)... 
 -4*Y(5,1)*Xi*X(6,1)-3*Y(8,1)*X(1,1)*Xi.^2+5*Y(8,1)*X(1,1)*Xi+6*Y(8,1)*X(2,1)*Xi.^2-... 
 3*Y(8,1)*X(3,1)*Xi.^2+3*Y(8,1)*X(3,1)*Xi+3*Y(8,1)*X(5,1)*Xi.^2-3*Y(8,1)*X(5,1)*Xi-
6*Y(8,1)*X(6,1)*Xi.^2+3*Y(8,1)*X(7,1)*Xi.^2-... 
 5*Y(8,1)*X(7,1)*Xi+X(3,1)*Y(6,1)-X(7,1)*Y(6,1)-Y(7,1)*X(2,1)-
X(5,1)*Y(2,1)+2*X(8,1)*Y(1,1)+X(7,1)*Y(2,1)... 
 +Y(7,1)*X(6,1)+2*X(4,1)*Y(5,1)-2*X(4,1)*Y(7,1)+X(5,1)*Y(6,1)-
2*X(4,1)*Y(3,1))*Eta.^2+(X(1,1)*Y(6,1)+2*X(4,1)*Y(1,1)... 
 -5*Y(2,1)*Xi.^2*X(1,1)+5*Y(2,1)*Xi.^2*X(3,1)+3*Y(2,1)*Xi.^2*X(5,1)-
3*Y(2,1)*Xi.^2*X(7,1)+3*X(6,1)*Xi.^2*Y(1,1)... 
 -3*X(6,1)*Xi.^2*Y(3,1)-
5*X(6,1)*Xi.^2*Y(5,1)+5*X(6,1)*Xi.^2*Y(7,1)+5*X(7,1)*Xi.^2*Y(5,1)+6*X(8,1)*Y(7,1)*Xi+
X(3,1)*Y(2,1)... 
 -6*Y(1,1)*Xi*X(2,1)-2*Y(1,1)*Xi*X(6,1)-2*Y(3,1)*Xi*X(6,1)-
8*X(4,1)*Y(8,1)+8*X(8,1)*Y(4,1)... 
 -8*Y(2,1)*Xi*X(4,1)-8*Y(2,1)*Xi*X(8,1)+8*X(6,1)*Xi*Y(8,1)+3*X(1,1)*Xi.^2*Y(5,1)-
8*Y(6,1)*Xi*X(8,1)+8*X(2,1)*Xi*Y(4,1)... 
 +8*X(2,1)*Xi*Y(8,1)+3*X(2,1)*Xi.^2*Y(7,1)-5*X(3,1)*Xi.^2*Y(1,1)-
5*X(5,1)*Xi.^2*Y(7,1)... 
 -Y(3,1)*X(2,1)+2*X(1,1)*Xi*Y(6,1)+2*X(4,1)*Y(1,1)*Xi-
8*X(4,1)*Y(2,1)*Xi.^2+4*X(4,1)*Y(3,1)*Xi.^2+6*X(4,1)*Y(3,1)*Xi... 



A.33 

 
+4*X(4,1)*Y(5,1)*Xi.^2+6*X(4,1)*Y(5,1)*Xi+4*X(4,1)*Y(7,1)*Xi.^2+2*X(4,1)*Y(7,1)*Xi+6
*X(5,1)*Xi*Y(6,1)... 
 +2*X(7,1)*Xi*Y(2,1)+6*X(7,1)*Xi*Y(6,1)-
4*X(8,1)*Y(1,1)*Xi.^2+6*X(8,1)*Y(1,1)*Xi+8*X(8,1)*Y(2,1)*Xi.^2-
4*X(8,1)*Y(3,1)*Xi.^2+... 
 2*X(8,1)*Y(3,1)*Xi+2*X(8,1)*Y(5,1)*Xi+Y(3,1)*X(6,1)+2*Y(8,1)*X(7,1)-
Y(1,1)*X(6,1)+5*X(1,1)*Xi.^2*Y(3,1)... 
 +5*X(2,1)*Xi.^2*Y(1,1)-5*X(2,1)*Xi.^2*Y(3,1)-3*X(2,1)*Xi.^2*Y(5,1)-
2*X(8,1)*Y(7,1)+Y(1,1)*X(2,1)+2*Y(8,1)*X(5,1)... 
 +2*Y(8,1)*X(3,1)+6*X(1,1)*Xi*Y(2,1)-
3*Y(6,1)*Xi.^2*X(1,1)+3*Y(6,1)*Xi.^2*X(3,1)+5*Y(6,1)*Xi.^2*X(5,1)... 
 -5*Y(6,1)*Xi.^2*X(7,1)+2*Y(8,1)*X(1,1)-3*X(5,1)*Xi.^2*Y(1,1)+Y(5,1)*X(2,1)-
Y(5,1)*X(6,1)-2*Y(4,1)*X(7,1)-3*X(3,1)*Xi.^2*Y(7,1)... 
 +8*X(6,1)*Xi*Y(4,1)-8*Y(6,1)*Xi*X(4,1)-X(1,1)*Y(2,1)-
2*Y(4,1)*X(5,1)+3*X(7,1)*Xi.^2*Y(3,1)-6*Y(3,1)*Xi*X(2,1)... 
 +8*X(8,1)*Y(6,1)*Xi.^2-
4*X(8,1)*Y(5,1)*Xi.^2+6*X(3,1)*Xi*Y(2,1)+4*X(4,1)*Y(1,1)*Xi.^2-6*Y(7,1)*Xi*X(6,1)-
4*X(8,1)*Y(7,1)*Xi.^2+... 
 2*X(3,1)*Xi*Y(6,1)-2*Y(7,1)*Xi*X(2,1)+2*X(5,1)*Xi*Y(2,1)-8*X(4,1)*Y(6,1)*Xi.^2-... 
 2*Y(4,1)*X(3,1)-2*X(8,1)*Y(3,1)-2*X(8,1)*Y(5,1)-2*Y(4,1)*X(1,1)-4*Y(4,1)*X(1,1)*Xi.^2-
2*Y(4,1)*X(1,1)*Xi+8*Y(4,1)*X(2,1)*Xi.^2-... 
 4*Y(4,1)*X(3,1)*Xi.^2-6*Y(4,1)*X(3,1)*Xi-4*Y(4,1)*X(5,1)*Xi.^2-6*Y(4,1)*X(5,1)*Xi... 
 +8*Y(4,1)*X(6,1)*Xi.^2-4*Y(4,1)*X(7,1)*Xi.^2-2*Y(4,1)*X(7,1)*Xi-2*Y(5,1)*Xi*X(2,1)-
6*Y(5,1)*Xi*X(6,1)... 
 +4*Y(8,1)*X(1,1)*Xi.^2-6*Y(8,1)*X(1,1)*Xi-8*Y(8,1)*X(2,1)*Xi.^2+4*Y(8,1)*X(3,1)*Xi.^2-
2*Y(8,1)*X(3,1)*Xi... 
 +4*Y(8,1)*X(5,1)*Xi.^2-2*Y(8,1)*X(5,1)*Xi-8*Y(8,1)*X(6,1)*Xi.^2+4*Y(8,1)*X(7,1)*Xi.^2-
6*Y(8,1)*X(7,1)*Xi... 
 -X(3,1)*Y(6,1)-X(7,1)*Y(6,1)-Y(7,1)*X(2,1)-X(5,1)*Y(2,1)-
2*X(8,1)*Y(1,1)+X(7,1)*Y(2,1)+Y(7,1)*X(6,1)+2*X(4,1)*Y(5,1)+2*X(4,1)*Y(7,1)... 
 +X(5,1)*Y(6,1)+2*X(4,1)*Y(3,1))*Eta+2*X(1,1)*Xi*Y(6,1)-
8*X(2,1)*Xi*Y(6,1)+X(4,1)*Y(1,1)*Xi+2*X(4,1)*Y(2,1)*Xi.^2-... 
 X(4,1)*Y(3,1)*Xi.^2-
X(4,1)*Y(3,1)*Xi+X(4,1)*Y(5,1)*Xi.^2+X(4,1)*Y(5,1)*Xi+X(4,1)*Y(7,1)*Xi.^2-
X(4,1)*Y(7,1)*Xi... 
 +2*X(5,1)*Xi*Y(6,1)+8*X(6,1)*Xi*Y(2,1)-
2*X(7,1)*Xi*Y(2,1)+2*X(7,1)*Xi*Y(6,1)+X(8,1)*Y(1,1)*Xi.^2-X(8,1)*Y(1,1)*Xi-... 
 2*X(8,1)*Y(2,1)*Xi.^2+X(8,1)*Y(3,1)*Xi.^2+X(8,1)*Y(3,1)*Xi-X(8,1)*Y(5,1)*Xi-
2*X(4,1)*Y(2,1)+2*X(4,1)*Y(6,1)... 
 -2*X(1,1)*Xi.^2*Y(3,1)+2*X(1,1)*Xi.^3*Y(5,1)-
4*X(1,1)*Xi.^3*Y(6,1)+2*X(1,1)*Xi.^3*Y(7,1)-2*X(1,1)*Xi.^2*Y(7,1)... 
 -2*X(2,1)*Xi.^2*Y(1,1)+2*X(2,1)*Xi.^2*Y(3,1)-4*X(2,1)*Xi.^3*Y(5,1)-
2*X(2,1)*Xi.^2*Y(5,1)... 
 +8*X(2,1)*Xi.^3*Y(6,1)-4*X(2,1)*Xi.^3*Y(7,1)-2*X(1,1)*Xi*Y(2,1)+2*Y(6,1)*Xi.^2*X(1,1)-
2*Y(6,1)*Xi.^2*X(3,1)... 
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 +2*Y(6,1)*Xi.^2*X(5,1)-
2*Y(6,1)*Xi.^2*X(7,1)+2*Y(3,1)*Xi*X(2,1)+2*X(8,1)*Y(6,1)*Xi.^2-... 
 X(8,1)*Y(5,1)*Xi.^2-2*X(3,1)*Xi*Y(2,1)-X(4,1)*Y(1,1)*Xi.^2-2*Y(7,1)*Xi*X(6,1)-
X(8,1)*Y(7,1)*Xi.^2+2*X(3,1)*Xi*Y(6,1)... 
 +2*Y(7,1)*Xi*X(2,1)-2*X(5,1)*Xi*Y(2,1)-2*X(4,1)*Y(6,1)*Xi.^2+Y(4,1)*X(1,1)*Xi.^2-
Y(4,1)*X(1,1)*Xi... 
 -2*Y(4,1)*X(2,1)*Xi.^2+Y(4,1)*X(3,1)*Xi.^2+Y(4,1)*X(3,1)*Xi-Y(4,1)*X(5,1)*Xi.^2-
Y(4,1)*X(5,1)*Xi+2*Y(4,1)*X(6,1)*Xi.^2-... 
 Y(4,1)*X(7,1)*Xi.^2+Y(4,1)*X(7,1)*Xi+2*Y(5,1)*Xi*X(2,1)-2*Y(5,1)*Xi*X(6,1)-
Y(8,1)*X(1,1)*Xi.^2+... 
 Y(8,1)*X(1,1)*Xi+2*Y(8,1)*X(2,1)*Xi.^2-Y(8,1)*X(3,1)*Xi.^2-
Y(8,1)*X(3,1)*Xi+Y(8,1)*X(5,1)*Xi.^2+Y(8,1)*X(5,1)*Xi... 
 -2*Y(8,1)*X(6,1)*Xi.^2+Y(8,1)*X(7,1)*Xi.^2-Y(8,1)*X(7,1)*Xi)*... 
                                 (0.5*(Eta-(Xi.*Eta))+0.25*(-(Xi.^2)+Xi)))).^2)... 
                                               .*(((((0.5*Xi)-(0.5*Xi.*Eta)-(0.25*Eta.^2)+(0.25*Eta))*X(1,1) + ... 
                                               (-Xi + (Xi.*Eta))*X(2,1) + ... 
                                               ((0.5*Xi)-(0.5*Xi.*Eta)+(0.25*Eta.^2)-(0.25*Eta))*X(3,1) + ... 
                                               (0.5-(0.5*Eta.^2))*X(4,1) + ... 
                                               ((0.5*Xi)+(0.5*Xi.*Eta)+(0.25*Eta.^2)+(0.25*Eta))*X(5,1) + ... 
                                               (-Xi - (Xi.*Eta))*X(6,1) + ... 
                                               ((0.5*Xi)+(0.5*Xi.*Eta)-(0.25*Eta.^2)-(0.25*Eta))*X(7,1) + ... 
                                               (-0.5+(0.5*Eta.^2))*X(8,1)).* ... 
                                               (((0.5*Eta)-(0.5*Xi.*Eta)-(0.25*Xi.^2)+(0.25*Xi))*Y(1,1) + ... 
                                               (-0.5+(0.5*Xi.^2))*Y(2,1) + ... 
                                               ((0.5*Eta)+(0.5*Xi.*Eta)-(0.25*Xi.^2)-(0.25*Xi))*Y(3,1) + ... 
                                               (-Eta - (Xi.*Eta))*Y(4,1) + ... 
                                               ((0.5*Eta)+(0.5*Xi.*Eta)+(0.25*Xi.^2)+(0.25*Xi))*Y(5,1) + ... 
                                               (0.5-(0.5*Xi.^2))*Y(6,1) + ... 
                                               ((0.5*Eta)-(0.5*Xi.*Eta)+(0.25*Xi.^2)-(0.25*Xi))*Y(7,1) + ... 
                                               (-Eta + (Eta.*Xi))*Y(8,1))) - ... 
                                               ((((0.5*Xi)-(0.5*Xi.*Eta)-(0.25*Eta.^2)+(0.25*Eta))*Y(1,1) + ... 
                                               (-Xi + (Xi.*Eta))*Y(2,1) + ... 
                                               ((0.5*Xi)-(0.5*Xi.*Eta)+(0.25*Eta.^2)-(0.25*Eta))*Y(3,1) + ... 
                                               (0.5-(0.5*Eta.^2))*Y(4,1) + ... 
                                               ((0.5*Xi)+(0.5*Xi.*Eta)+(0.25*Eta.^2)+(0.25*Eta))*Y(5,1) + ... 
                                               (-Xi - (Xi.*Eta))*Y(6,1) + ... 
                                               ((0.5*Xi)+(0.5*Xi.*Eta)-(0.25*Eta.^2)-(0.25*Eta))*Y(7,1) + ... 
                                               (-0.5+(0.5*Eta.^2))*Y(8,1)).* ... 
                                               (((0.5*Eta)-(0.5*Xi.*Eta)-(0.25*Xi.^2)+(0.25*Xi))*X(1,1) + ... 
                                               (-0.5+(0.5*Xi.^2))*X(2,1) + ... 
                                               ((0.5*Eta)+(0.5*Xi.*Eta)-(0.25*Xi.^2)-(0.25*Xi))*X(3,1) + ... 
                                               (-Eta - (Xi.*Eta))*X(4,1) + ... 
                                               ((0.5*Eta)+(0.5*Xi.*Eta)+(0.25*Xi.^2)+(0.25*Xi))*X(5,1) + ... 
                                               (0.5-(0.5*Xi.^2))*X(6,1) + ... 
                                               ((0.5*Eta)-(0.5*Xi.*Eta)+(0.25*Xi.^2)-(0.25*Xi))*X(7,1) + ... 
                                               (-Eta + (Eta.*Xi))*X(8,1)))); 
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    Kc1 = (N1N1Xi + N1N1Eta); 
 
 
Example of one liberated heat matrix entry: 
 
 
function Q1 = Heating1(Xi, Eta); 
 
global eq; 
load ElementCoord.dat 
 
    X = ElementCoord(((eq*8)-7):(eq*8),1); 
    Y = ElementCoord(((eq*8)-7):(eq*8),2); 
    Q1 = (0.25*(1-Xi).*(1-Eta).*(-1-Xi-Eta)) .* (((((0.5*Xi)-(0.5*Xi.*Eta)- 

 (0.25*Eta.^2)+(0.25*Eta))*X(1,1) + ... 
                                               (-Xi + (Xi.*Eta))*X(2,1) + ... 
                                               ((0.5*Xi)-(0.5*Xi.*Eta)+(0.25*Eta.^2)-(0.25*Eta))*X(3,1) + ... 
                                               (0.5-(0.5*Eta.^2))*X(4,1) + ... 
                                               ((0.5*Xi)+(0.5*Xi.*Eta)+(0.25*Eta.^2)+(0.25*Eta))*X(5,1) + ... 
                                               (-Xi - (Xi.*Eta))*X(6,1) + ... 
                                               ((0.5*Xi)+(0.5*Xi.*Eta)-(0.25*Eta.^2)-(0.25*Eta))*X(7,1) + ... 
                                               (-0.5+(0.5*Eta.^2))*X(8,1)).* ... 
                                               (((0.5*Eta)-(0.5*Xi.*Eta)-(0.25*Xi.^2)+(0.25*Xi))*Y(1,1) + ... 
                                               (-0.5+(0.5*Xi.^2))*Y(2,1) + ... 
                                               ((0.5*Eta)+(0.5*Xi.*Eta)-(0.25*Xi.^2)-(0.25*Xi))*Y(3,1) + ... 
                                               (-Eta - (Xi.*Eta))*Y(4,1) + ... 
                                               ((0.5*Eta)+(0.5*Xi.*Eta)+(0.25*Xi.^2)+(0.25*Xi))*Y(5,1) + ... 
                                               (0.5-(0.5*Xi.^2))*Y(6,1) + ... 
                                               ((0.5*Eta)-(0.5*Xi.*Eta)+(0.25*Xi.^2)-(0.25*Xi))*Y(7,1) + ... 
                                               (-Eta + (Eta.*Xi))*Y(8,1))) - ... 
                                               ((((0.5*Xi)-(0.5*Xi.*Eta)-(0.25*Eta.^2)+(0.25*Eta))*Y(1,1) + ... 
                                               (-Xi + (Xi.*Eta))*Y(2,1) + ... 
                                               ((0.5*Xi)-(0.5*Xi.*Eta)+(0.25*Eta.^2)-(0.25*Eta))*Y(3,1) + ... 
                                               (0.5-(0.5*Eta.^2))*Y(4,1) + ... 
                                               ((0.5*Xi)+(0.5*Xi.*Eta)+(0.25*Eta.^2)+(0.25*Eta))*Y(5,1) + ... 
                                               (-Xi - (Xi.*Eta))*Y(6,1) + ... 
                                               ((0.5*Xi)+(0.5*Xi.*Eta)-(0.25*Eta.^2)-(0.25*Eta))*Y(7,1) + ... 
                                               (-0.5+(0.5*Eta.^2))*Y(8,1)).* ... 
                                               (((0.5*Eta)-(0.5*Xi.*Eta)-(0.25*Xi.^2)+(0.25*Xi))*X(1,1) + ... 
                                               (-0.5+(0.5*Xi.^2))*X(2,1) + ... 
                                               ((0.5*Eta)+(0.5*Xi.*Eta)-(0.25*Xi.^2)-(0.25*Xi))*X(3,1) + ... 
                                               (-Eta - (Xi.*Eta))*X(4,1) + ... 
                                               ((0.5*Eta)+(0.5*Xi.*Eta)+(0.25*Xi.^2)+(0.25*Xi))*X(5,1) + ... 
                                               (0.5-(0.5*Xi.^2))*X(6,1) + ... 
                                               ((0.5*Eta)-(0.5*Xi.*Eta)+(0.25*Xi.^2)-(0.25*Xi))*X(7,1) + ... 
                                               (-Eta + (Eta.*Xi))*X(8,1)))); 
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Example of one surface convection matrix entry: 
 
 
function KhS11 = SurConvS11(Xi); 
 
global esS1; 
load S1.dat 
if esS1 == 1 
    x = S1(((esS1*3)-2):(esS1*3),1); 
    y = S1(((esS1*3)-2):(esS1*3),2); 
else 
    x = S1(((esS1*3)-1-esS1):((esS1*3)-esS1+1),1); 
    y = S1(((esS1*3)-1-esS1):((esS1*3)-esS1+1),2); 
end 
 
    NS1A = ((-0.5*Xi)+(0.5*(Xi.^2))).*((((((Xi-0.5)*x(1,1))- 

       (2*Xi*(x(2,1)))+((Xi+0.5)*x(3,1))).^2) + ... 
                   ((((Xi-0.5)*y(1,1))-(2*Xi*(y(2,1)))+((Xi+0.5)*y(3,1))).^2)).^(0.5)); 
     
    NS1B = ((-0.5*Xi)+(0.5*(Xi.^2))); 
     
    KhS11 = (NS1A.*NS1B); 
 
 
Example of one boundary convection matrix entry: 
 
 
function RhS11 = BoundConvS11(Xi); 
 
global ecS1; 
load S1.dat 
if ecS1 == 1 
    x = S1(((ecS1*3)-2):(ecS1*3),1); 
    y = S1(((ecS1*3)-2):(ecS1*3),2); 
else 
    x = S1(((ecS1*3)-1-ecS1):((ecS1*3)-ecS1+1),1); 
    y = S1(((ecS1*3)-1-ecS1):((ecS1*3)-ecS1+1),2); 
end 
 
    NS1 = ((-0.5*Xi)+(0.5*(Xi.^2))).*((((((Xi-0.5)*x(1,1))-(2*Xi*(x(2,1)))+ 

    ((Xi+0.5)*x(3,1))).^2) + ... 
                ((((Xi-0.5)*y(1,1))-(2*Xi*(y(2,1)))+((Xi+0.5)*y(3,1))).^2)).^(0.5));     
     
    RhS11 = (NS1); 
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Example of one boundary radiation matrix entry: 
 
 
function RrS11 = BoundRadS11(Xi); 
 
global ewS1; 
load S1.dat 
if ewS1 == 1 
    x = S1(((ewS1*3)-2):(ewS1*3),1); 
    y = S1(((ewS1*3)-2):(ewS1*3),2); 
else 
    x = S1(((ewS1*3)-1-ewS1):((ewS1*3)-ewS1+1),1); 
    y = S1(((ewS1*3)-1-ewS1):((ewS1*3)-ewS1+1),2); 
end 
 
    NS1 = ((-0.5*Xi)+(0.5*(Xi.^2))).*((((((Xi-0.5)*x(1,1))-(2*Xi*(x(2,1)))+ 

    ((Xi+0.5)*x(3,1))).^2) + ... 
                ((((Xi-0.5)*y(1,1))-(2*Xi*(y(2,1)))+((Xi+0.5)*y(3,1))).^2)).^(0.5));     
     
    RrS11 = (NS1); 
 
 
Example of one surface radiation matrix entry: 
 
 
function RsS11 = SurRadS11(Xi); 
 
global elS1; 
load S1.dat 
if elS1 == 1 
    x = S1(((elS1*3)-2):(elS1*3),1); 
    y = S1(((elS1*3)-2):(elS1*3),2); 
else 
    x = S1(((elS1*3)-1-elS1):((elS1*3)-elS1+1),1); 
    y = S1(((elS1*3)-1-elS1):((elS1*3)-elS1+1),2); 
end 
 
    NS1 = ((-0.5*Xi)+(0.5*(Xi.^2))).*((((((Xi-0.5)*x(1,1))-(2*Xi*(x(2,1)))+ 

    ((Xi+0.5)*x(3,1))).^2) + ... 
                ((((Xi-0.5)*y(1,1))-(2*Xi*(y(2,1)))+((Xi+0.5)*y(3,1))).^2)).^(0.5)); 
         
    NSS = (((((-0.5*Xi)+(0.5*(Xi.^2))))+(((1-(Xi.^2))))+((((0.5*Xi)+(0.5*(Xi.^2)))))).^4); 
     
    RsS11 = (NS1.*NSS); 
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8.3 MICROSOFT VISUAL BASIC CODE 
 
 
8.3.1 Co-ordinates.xls 
 
 
Module: Coordinates 
 
Sub Coordinates() 
' 
'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
 
    Sheets("Sheet1").Select 
    Range("A6").Select 
         ActiveCell.Value = 0 
    Range("A7").Select 
    For Counter = 1 To Range("J4") Step 1 
         ActiveCell.Value = Counter 
         ActiveCell.Offset(1, 0).Range("A1").Select 
    Next Counter 
    XDist = Range("C2").Value 
    YDist = Range("C3").Value 
    NoXElements = Range("F2").Value 
    NoYElements = Range("F3").Value 
    DeltaX = XDist / (2 * NoXElements) 
    DeltaY = YDist / (2 * NoYElements) 
    NoCoordsX = (2 * NoXElements) + 1 
    NoCoordsY = (2 * NoYElements) + 1 
    Range("C6").Select 
    For i = 1 To NoCoordsY 
         For j = 1 To NoCoordsX 
             XCoord = (DeltaX * (j - 1)) 
             YCoord = (DeltaY * (i - 1)) 
             checki = i Mod 2 
             checkj = j Mod 2 
              If (checki <> 0) Or (checkj <> 0) Then 
                  ActiveCell.Offset(1, -1).Range("A1").Select 
                  ActiveCell.Value = XCoord 
                  ActiveCell.Offset(0, 1).Range("A1").Select 
                  Value = YCoord 
              End If 
         Next j 
    Next i 
 
Range("A1").Select 
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ActiveSheet.ChartObjects("Chart 1").Activate 
     ActiveChart.Axes(xlValue).Select 
     With ActiveChart.Axes(xlValue) 
          .MinimumScale = 0 
          .MaximumScale = YDist 
          .MinorUnitIsAuto = True 
          .MajorUnitIsAuto = True 
          .Crosses = xlAutomatic 
          .ReversePlotOrder = False 
          .ScaleType = xlLinear 
          .DisplayUnit = xlNone 
     End With 
 
     ActiveChart.Axes(xlCategory).Select 
     With ActiveChart.Axes(xlCategory) 
          .MinimumScale = 0 
          .MaximumScale = XDist 
          .MinorUnitIsAuto = True 
          .MajorUnitIsAuto = True 
          .Crosses = xlAutomatic 
          .ReversePlotOrder = False 
          .ScaleType = xlLinear 
          .DisplayUnit = xlNone 
     End With 
 
Range("A1").Select 
 
End Sub 
 
 
Module: SurfaceCoords 
 
Sub SurfaceCoords() 
' 
'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
 
    Sheets("Sheet1").Select 
    Range("A7:C32000").Select 
    Selection.Copy 
    Range("A1").Select 
    Sheets("S1").Select 
    Range("A9").Select 
    ActiveSheet.Paste 
    Range("B9").Select 
    Application.CutCopyMode = False 
    Range("A8:C32002").AdvancedFilter Action:=xlFilterCopy, CriteriaRange:= _ 
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    Range("A4:C5"), CopyToRange:=Range("E8:G32002"), Unique:=False 
    Sheets("Sheet1").Select 
    NoYNodes = Range("J3").Value 
    Sheets("S1").Select 
    Range("F9:G" & NoYNodes + 8).Select 
    Selection.Interior.ColorIndex = 40 
    Selection.Copy 
    Sheets("S1.dat").Select 
    Range("A1").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
    Sheets("S1").Select 
    Range("A1").Select 
     
    Sheets("Sheet1").Select 
    Range("A7:C32000").Select 
    Selection.Copy 
    Range("A1").Select 
    Sheets("S2").Select 
    Range("A9").Select 
    ActiveSheet.Paste 
    Range("C9").Select 
    Application.CutCopyMode = False 
    Range("A8:C32002").AdvancedFilter Action:=xlFilterCopy, CriteriaRange:= _ 
    Range("A4:C5"), CopyToRange:=Range("E8:G32002"), Unique:=False 
    Sheets("Sheet1").Select 
    NoXNodes = Range("J2").Value 
    Sheets("S2").Select 
    Range("F9:G" & NoXNodes + 8).Select 
    Selection.Interior.ColorIndex = 40 
    Selection.Copy 
    Sheets("S2.dat").Select 
    Range("A1").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
    Sheets("S2").Select 
    Range("A1").Select 
     
    Sheets("Sheet1").Select 
    Range("A7:C32000").Select 
    Selection.Copy 
    Range("A1").Select 
    Sheets("S3").Select 
    Range("A9").Select 
    ActiveSheet.Paste 
    Range("B9").Select 
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    Application.CutCopyMode = False 
    Range("A8:C32002").AdvancedFilter Action:=xlFilterCopy, CriteriaRange:= _ 
    Range("A4:C5"), CopyToRange:=Range("E8:G32002"), Unique:=False 
    Sheets("Sheet1").Select 
    NoYNodes = Range("J3").Value 
    Sheets("S3").Select 
    Range("F9:G" & NoYNodes + 8).Select 
    Selection.Interior.ColorIndex = 40 
    Selection.Copy 
    Sheets("S3.dat").Select 
    Range("A1").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
    Sheets("S3").Select 
    Range("A1").Select 
     
    Sheets("Sheet1").Select 
    Range("A7:C32000").Select 
    Selection.Copy 
    Range("A1").Select 
    Sheets("S4").Select 
    Range("A9").Select 
    ActiveSheet.Paste 
    Range("C9").Select 
    Application.CutCopyMode = False 
    Range("A8:C32002").AdvancedFilter Action:=xlFilterCopy, CriteriaRange:= _ 
    Range("A4:C5"), CopyToRange:=Range("E8:G32002"), Unique:=False 
    Sheets("Sheet1").Select 
    NoXNodes = Range("J2").Value 
    Sheets("S4").Select 
    Range("F9:G" & NoXNodes + 8).Select 
    Selection.Interior.ColorIndex = 40 
    Selection.Copy 
    Sheets("S4.dat").Select 
    Range("A1").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
    Sheets("S4").Select 
    Range("A1").Select 
    Application.CutCopyMode = False 
    Sheets("Sheet1").Select 
    Range("A1").Select 
         
End Sub 
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8.3.2 Elements.xls 
 
 
Module: Elements 
 
Sub Elements() 
' 
'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
 
Sheets("Sheet1").Select 
     
NoXElements = Range("E3").Value 
NoYElements = Range("E4").Value 
NoXNodes = Range("I3").Value 
NoYNodes = Range("I4").Value 
Range("A8").Select 
 
For ycount = 1 To NoYElements 
     For xcount = 1 To NoXElements 
          i = 1 + (2 * (xcount - 1)) + ((2 * NoXNodes - NoXElements) * (ycount - 1)) 
          j = i + 1 
          k = j + 1 
          l = k + (NoXNodes - xcount) 
          m = k + (2 * NoXNodes - NoXElements) 
          n = m - 1 
          o = n - 1 
          p = l - 1 
          ActiveCell.Value = i 
          ActiveCell.Offset(0, 1).Range("A1").Select 
          ActiveCell.Value = j 
          ActiveCell.Offset(0, 1).Range("A1").Select 
          ActiveCell.Value = k 
          ActiveCell.Offset(0, 1).Range("A1").Select 
          ActiveCell.Value = l 
          ActiveCell.Offset(0, 1).Range("A1").Select 
          ActiveCell.Value = m 
          ActiveCell.Offset(0, 1).Range("A1").Select 
          ActiveCell.Value = n 
          ActiveCell.Offset(0, 1).Range("A1").Select 
          ActiveCell.Value = o 
          ActiveCell.Offset(0, 1).Range("A1").Select 
          ActiveCell.Value = p 
          ActiveCell.Offset(1, -7).Range("A1").Select 
     Next xcount 
Next ycount 
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Range("A8:H" & (NoXElements * NoYElements) + 7).Select 
Selection.Interior.ColorIndex = 40 
Selection.Copy 
Sheets("NodesXElements.dat").Select 
Range("A1").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
    :=False, Transpose:=False 
Application.CutCopyMode = False 
 
Sheets("Sheet1").Select 
Range("A1").Select 
 
End Sub 
 
 
Module: ElementCoordinates 
 
Sub ElementCoordinates() 
' 
'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
    
    Sheets("Sheet1").Select 
    Dim NoElements As Integer 
    NoElements = Range("E5").Value 
      
    For counter = 1 To NoElements 
         Sheets("Sheet1").Select 
         Range("A8").Select 
         ActiveCell.Offset((counter - 1), 0).Range("A1:H1").Select 
         Selection.Copy 
         Sheets("Sheet2").Select 
         Range("D4").Select 
         ActiveCell.Offset((counter - 1) * 8, 0).Range("A1").Select 
         Selection.PasteSpecial Paste:=xlAll, Operation:=xlNone, SkipBlanks:=False _ 
             , Transpose:=True 
    Next counter 
     
    Range("B4:C" & (NoElements * 8) + 3).Select 
    Selection.Interior.ColorIndex = 40 
    Selection.Copy 
    Sheets("ElementCoord.dat").Select 
    Range("A1").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
    :=False, Transpose:=False 
     
    Sheets("Sheet2").Select 
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    Range("D4:D10000").Select 
    Selection.Interior.ColorIndex = 2 
     
    Range("A1").Select 
    Sheets("Sheet1").Select 
    Range("A1").Select 
     
End Sub 
 
 
Module: BoundaryElements 
 
Sub BoundaryElements() 
' 
'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
     
    Windows("Elements.xls").Activate 
    Sheets("S1").Select 
    IntRow = Range("D1").Value 
    Sheets("S1").Select 
    Range("A5:C5").Select 
    Selection.AutoFill Destination:=Range("A5:C" & IntRow + 3), Type:=xlFillDefault 
    Range("A1").Select 
    Range("G5:I5").Select 
    Selection.Copy 
         For i = 6 To IntRow + 3 
          Range("G" & i).Select 
          ActiveSheet.Paste 
         Next i 
    Range("A1").Select 
    Range("G4:I" & IntRow + 3).Select 
    Selection.Copy 
    Sheets("NodesXElementsS1.dat").Select 
    Range("A1").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
    :=False, Transpose:=False 
    Sheets("S1").Select 
    Range("A1").Select 
         
    Windows("Elements.xls").Activate 
    Sheets("S2").Select 
    IntRow = Range("D1").Value 
    Sheets("S2").Select 
    Range("A5:C5").Select 
    Selection.AutoFill Destination:=Range("A5:C" & IntRow + 3), Type:=xlFillDefault 
    Range("A1").Select 
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    Range("G5:I5").Select 
    Selection.Copy 
         For i = 6 To IntRow + 3 
          Range("G" & i).Select 
          ActiveSheet.Paste 
         Next i 
    Range("A1").Select 
    Range("G4:I" & IntRow + 3).Select 
    Selection.Copy 
    Sheets("NodesXElementsS2.dat").Select 
    Range("A1").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
    :=False, Transpose:=False 
    Sheets("S2").Select 
    Range("A1").Select 
     
    Windows("Elements.xls").Activate 
    Sheets("S3").Select 
    IntRow = Range("D1").Value 
    Sheets("S3").Select 
    Range("A5:C5").Select 
    Selection.AutoFill Destination:=Range("A5:C" & IntRow + 3), Type:=xlFillDefault 
    Range("A1").Select 
    Range("G5:I5").Select 
    Selection.Copy 
         For i = 6 To IntRow + 3 
          Range("G" & i).Select 
          ActiveSheet.Paste 
         Next i 
    Range("A1").Select 
    Range("G4:I" & IntRow + 3).Select 
    Selection.Copy 
    Sheets("NodesXElementsS3.dat").Select 
    Range("A1").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
    :=False, Transpose:=False 
    Sheets("S3").Select 
    Range("A1").Select 
     
    Windows("Elements.xls").Activate 
    Sheets("S4").Select 
    IntRow = Range("D1").Value 
    Sheets("S4").Select 
    Range("A5:C5").Select 
    Selection.AutoFill Destination:=Range("A5:C" & IntRow + 3), Type:=xlFillDefault 
    Range("A1").Select 
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    Range("G5:I5").Select 
    Selection.Copy 
         For i = 6 To IntRow + 3 
          Range("G" & i).Select 
          ActiveSheet.Paste 
         Next i 
    Application.CutCopyMode = False 
    Range("A1").Select 
    Range("G4:I" & IntRow + 3).Select 
    Selection.Copy 
    Sheets("NodesXElementsS4.dat").Select 
    Range("A1").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
    :=False, Transpose:=False 
    Sheets("S4").Select 
    Range("A1").Select 
    Application.CutCopyMode = False 
 
    Sheets("Sheet1").Select 
    Range("A1").Select 
 
End Sub 
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9 APPENDIX B:  WORKED EXAMPLE 
 
 

 

A worked example is presented in a stepwise sequence to illustrate the functionality and 

procedure required to implement and obtain results from the finite element numerical model. 

 

Example:  2000 mm x 1000 mm concrete element cast directly onto rock  
 

 

 

 

 

 

 

 

 

 
 

 
Figure B.1 Worked example: 2000 mm x 1000 mm concrete element 

 

9.1 INPUT DATA GENERATION 
 

This example assumes that the User has a general understanding of the functionality of Microsoft 

Excel. Microsoft Excel 2003, with Windows XP Professional as the operating system is utilized 

to describe this example.    

 

All the Microsoft Excel files, data files and Matlab code can be found on the compact disc 

attached to this research report. It is recommended that the entire content of the compact disc be 

copied onto the User’s PC prior to commencing with this example.  

 

1. Open “Co-ordinate.xls” in Microsoft Excel. 

10
00

 m
m

 

2000 mm 

ROCK ROCK 
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2. Click “Enable Macros” and the spreadsheet will continue to open. Upon opening a 

security warning may be displayed depending on the PC’s security settings.  

 

 
 

3. Click the “Run Macro” button in the Visual Basic toolbar. 

4. Highlight the “ClearCoordinates” Macro, and click on the Run button. This Macro clears 

all the cells in the worksheets except for the input cells as shown in Table 4.1 and various 

other calculation cells. 
 

 
 

Table 4.1 Input required for the mesh generator 

x Dimension = 2 m 

Number of 

elements in the 

x direction = 

20 

Element width 

in the x 

direction (m) = 

0.1 

Number of 

nodes in the x 

direction = 

41 

y Dimension = 1 m 

Number of 

elements in the 

y direction = 

10 

Element width 

in the y 

direction (m) = 

0.1 

Number of 

nodes in the y 

direction = 

21 

Total number of elements = 200 Aspect ratio = 1 
Total number 

of nodes = 
661 
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5. Enter the required cross-section size (x and y dimension) and the number of elements in 

the x and y direction. Ensure that the input data is as shown in Table 4.1 or as otherwise 

required. The User is requested to check and ensure that the aspect ratio is in close 

proximity to unity. 
 

6. Click the “Run Macro” button 
 

7. Highlight the “Coordinates” Macro, and click on the Run button. This Macro generates all 

the nodes and corresponding Cartesian coordinates for the 8 noded quadrilateral 

isoparametric elements. The worksheet should look as follows: 

 

 
 

8. Click the “Run Macro” button 

9. Highlight the “SurfaceCoords” Macro, and click on the Run button. This Macro generates 

all the nodes and corresponding Cartesian coordinates for the 3 noded surface quadratic 

elements. The nodes are assigned the node numbers corresponding to the equivalent 

nodes of the 8 noded quadrilateral isoparametric elements.  

10. All the data within the worksheets that is highlighted in orange will become the input data 

necessary for the finite element numerical model written in Matlab. 
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11. Convert worksheets named “S1.dat”, “S2.dat”, “S3.dat” and “S4.dat” into data files for 

the purpose of importing into Matlab. The process is as follows: 

 Copy the cells already selected in worksheet “S1.dat” (the executed macros 

select all relevant cells) and paste into a blank workbook. Save the workbook 

as a text file into the Matlab working folder such that the file name and 

extension is “S1.txt”. (Note: For Microsoft Excel 2007, save the file as a tab 

delimited text file.) Confirm all the information boxes during the “Save As” 

procedure. The Matlab working folder is described as the folder copied onto 

the User’s PC from the compact disc titled “Matlab”. Close the workbook just 

saved as a text file and ignore the information box (i.e. Click “No” on the 

information box requesting whether the User would like to save the file as a 

Microsoft Excel file).  

 Open the Matlab working folder and change the extension for the file named 

“S1” from “S1.txt” to “S1.dat”. Confirm the information box. If the User 

cannot view the file extensions in the Matlab working folder the User’s PC 

folder settings necessitate changing. This is done by clicking the “Tools” tab 

button, followed by the “Folder Options” in the dropdown menu. Click on the 

“View” tab. The active screen should be as shown below. 
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Deselect the “Hide extensions for known file types” and click on “OK”. The 

User can now continue with the required change to the extension.  

 This process is to be repeated for worksheets “S2.dat”, “S3.dat” and “S4.dat”.  

12.  Open “Elements.xls” in Microsoft Excel. Do not close “Co-ordinates.xls” as links 

between the two Microsoft Excel files exist. 

13. Click “Enable Macros” and the spreadsheet will continue to open. Upon opening a 

security warning may be displayed depending on the PC’s security settings.   

 

 
 

14. Click the “Run Macro” button. 

15. Highlight the “ClearElements” Macro, and click on the Run button. This Macro clears all 

the cells in the worksheets except for the input cells as shown in Table 4.1 and various 

other calculation cells. 

 

 
 

16. Click the “Run Macro” button 
 



B.6 

17. Highlight the “Elements” Macro, and click on the Run button. This Macro generates all 

the global node numbers for each individual 8 noded quadrilateral isoparametric element 

from 1 to the “Total number of elements” in Table 4.1. The resulting output of the Macro 

describes the global assemblage process of these elements. 
. 

18. Click the “Run Macro” button 
 

19. Highlight the “ElementCoordinates” Macro, and click on the Run button. This Macro 

extracts all the global node numbers and corresponding Cartesian coordinates for each 

individual 8 noded quadrilateral isoparametric element from 1 to the “Total number of 

elements” in Table 4.1. This Macro rearranges the computed data into a simpler form for 

importing into Matlab.  
. 

20. Click the “Run Macro” button 
 

21. Highlight the “BoundaryElements” Macro, and click on the Run button. This Macro 

generates all the global node numbers for each individual 3 noded surface quadratic 

element. The resulting output of the Macro describes the global assemblage process of 

these elements.  

22. Convert worksheets named “ElementCoord.dat”, “NodesXElements.dat”, 

“NodesXElementsS1.dat”, “NodesXElementsS2.dat”, “NodesXElementsS3.dat” and 

“NodesXElements S4.dat” into data files for the purpose of importing into Matlab. The 

process is as per step 11.  

23. Save and close both spreadsheets. 

24. Open a blank Microsoft Excel workbook for the generation of the final two data files. The 

first file will provide information on the maximum and minimum daily atmospheric 

temperatures. Column A is standard to all problems and is an incremental 24 hour period. 

Column B and C contain the minimum and maximum daily temperatures (in degrees 

Celsius) respectively for the 24 hour period concerned. These daily temperatures are 

easily available from the local meteorological office. Superfluous data is to be recorded 

within this workbook such that finite element numerical model written in Matlab does not 

become unstable or provide errors due to limited input data. The data in this example (as 

seen in the figure on page B.7) has been generated for a time duration of 1440 hours 
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(60 days) to ensure sufficient available ambient temperatures. Convert this worksheet into 

a data file titled “AmbientTemp.dat” through the method described previously.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          AmbientTemp.dat          Maturity.dat 

 

The second data file tabulates the heat rate curve as calculated using the experimental data 

obtained from the adiabatic calorimeter test. The values in column A and column B are 

the Time (t20 hours) and the Maturity Heat Rate (W/kg) respectively. Superfluous data is 

to be recorded within this workbook such that finite element numerical model written in 

Matlab does not become unstable or provide errors. Convert this worksheet into a data file 

titled “Maturity.dat” through the method described previously.  
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9.2 EXECUTING THE FINITE ELEMENT NUMERICAL MODEL IN MATLAB 
 

Open Matlab and ensure that the “Current Directory” is set to the Matlab working folder. In the 

“Command Window” type in “FEMHeatTransferModel” followed by pressing the “Enter” key to 

execute the finite element numerical model. The User is required to have Matlab installed on 

their PC. 
 

 
 

 

Current Directory Command Window 
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Enter the input data as shown below: 

 

INPUT REQUIRED: 

               User Input 

NoOfElements = input('Total number of elements  = ');       200 

NoOfNodes = input('Total number of nodes  = ');       661 

NoOfElementsYDirection = input('Total number of elements in the y-Direction  = ');   10 

NoOfElementsXDirection = input('Total number of elements in the x-Direction  = ');   20 

InitialTemp = input('Initial concrete temperature - deg C  = ');      26 

CastTime = input('Time of day when concrete is cast - hrs  = ');      9 

k = input('Thermal conductivity of concrete - W/m.K  = ');      2.2 

rho = input('Concrete density - kg/m3 =  ');        2500 

cp = input('Concrete specific heat - J/kg.K  = ');        1200 

Ft = input('Formwork removal time - hrs  = ');        12 

hE = input('Convective heat transfer coefficient for exposed concrete surface - W/K.m2  = ');  30 

hC = input('Convective heat transfer coefficient for surfaces covered with formwork-W/K.m2 =');  5 

kr = input('Thermal conductivity of rock - W/K.m2  = ');       1.2 

Sigma = input('Stefan Boltzman constant - W/K4.m2  = ');      5.669e-8 

Emissivity = input('Emissivity of grey concrete surface  = ');      0.9 

tm = input('Time at which the minimum overnight temperature occurs - hrs  = ');    5 

bin = input('Binder content - kg/m3  = ');        220 

E = input('Apparent activation energy - kJ/mol  = ');       33.5 

R = input('Universal gas constant - kJ/mol.K  = ');       8.31e-3 

TimeIncrement = input('Time increment - hrs  = ');       1 

FinalTime = input('Time duration - hrs  = ');        100 

 

The “TimeIncrement” is the time step used in the model and represents the concrete age intervals 

at which the analysis is undertaken and temperature results reported. The “FinalTime” is the time 

or concrete age over which the analysis is undertaken.  

 

The program runs automatically following the input of all the above information. The finite 

element numerical model can take as long as half an hour to solve depending on the speed of the 

User’s PC.  
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The results are graphically represented as shown below. The User can extract any nodal 

temperatures throughout the concrete element (using the Matlab function “dlmwrite”) for 

comparison purposes if required.  

 
This example is now complete and the User is requested to check whether the “maximum 

temperature difference” is within specification.  
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