

NUMERICAL ANALYSIS OF
TEMPERATURE DEVELOPMENT IN
CONCRETE AT AN EARLY AGE

Anthony Patini

A research report submitted to the Faculty of Engineering and the Built
Environment, University of the Witwatersrand, Johannesburg, in partial
fulfilment of the requirements for the degree of Master of Science in
Engineering

Johannesburg, 2011

I

DECLARATION

I declare that this research report is my own unaided work. It is being submitted

for the Degree of Masters of Science in Engineering at the University of the

Witwatersrand, Johannesburg. It has not been submitted before for any degree or

examination at any other University.

 Anthony Patini

_________________ day of _________________________________

II

ABSTRACT

The exothermic reaction associated with hydrating Portland Cement releases a

significant amount of heat within concrete elements. These raised temperatures

could give rise to thermal cracking which is a function of temperature differential

and concrete stiffness.

In recent years computer-based modelling has become an intrinsic part of

engineering. It has been employed to simulate the rise in temperature and

distribution of heat within concrete elements. The prediction model developed in

this project is based on the numerical finite element theory in combination with

heat evolution curves obtained from adiabatic calorimetry. Predicted results are

compared with two sets of measured data and comparisons are drawn. This model

is also evaluated against the pre-existing finite difference numerical simulation

(Ballim, 2004a). The finite element simulation provides engineers with

temperature differentials from which generalised rules for cracking potential may

be applied.

The implemented finite element model provides superior predictions to those of

existing simulations and allows for future developments due to the advanced

capabilities of the finite element theory.

III

ACKNOWLEDGEMENTS

The work described in this report was carried out at the School of Civil and

Environmental Engineering at the University of the Witwatersrand, Johannesburg.

I would like to thank my supervisor, Professor Yunus Ballim, for his advice,

guidance and patience.

I would also like to extend my thanks to the staff of the School of Civil and

Environmental Engineering, especially Mr. David Blitenthall, for his support and

encouragement towards completion of this project.

IV

TABLE OF CONTENTS

Page

DECLARATION I

ABSTRACT II

ACKNOWLEDGEMENTS III

TABLE OF CONTENTS IV

LIST OF FIGURES VI

LIST OF TABLES VIII

LIST OF SYMBOLS IX

1 INTRODUCTION 1.1

1.1 Background 1.1
1.2 Thermal Cracking of Concrete 1.1
1.3 Temperature Prediction 1.3
1.4 Scope and Layout of Report 1.5

2 LITERATURE REVIEW 2.1

2.1 Introduction 2.1
2.2 Adiabatic Calorimeter 2.3
2.3 Modelling Temperatures in Concrete Elements 2.6

2.3.1 Cement Hydration Models 2.6

2.3.2 Temperature Prediction Models 2.8

2.4 Evolution of the Finite Element Method 2.12
2.5 Thermal Cracking of Concrete 2.14
2.6 Conclusion 2.16

3 DEVELOPMENT OF THE FINITE ELEMENT MODEL FOR HEAT

FLOW IN CONCRETE 3.1
3.1 Introduction 3.1
3.2 Principle of the Finite Element Method 3.3
3.3 Application of the Finite Element Method 3.9
3.4 Conclusion 3.44

V

4 MODEL OUTPUT AND DISCUSSION 4.1
4.1 Introduction 4.1
4.2 Finite Element Numerical Model 4.2

4.2.1 Input Data 4.2

4.2.2 Output Data 4.6

4.3 Experimental and Numerical Results Comparison 4.8
4.3.1 Temperature - Time Profiles: Katse Verification 4.8

4.3.2 Temperature - Time Profiles: Laboratory Verification 4.20

4.4 Experimental and Numerical Results Discussion 4.31
4.4.1 Katse Verification 4.31

4.4.2 Laboratory Verification 4.33
4.4.3 Conclusion 4.36
4.4.4 Thermal Cracking Propensity and Control 4.37

4.5 Sensitivity Analysis 4.39
4.6 FEM Example of an Irregular Shaped Cross-Section 4.50

5 CONCLUSION 5.1

6 RECOMMENDATIONS 6.1

6.1 Piped Water Cooling in Concrete Dams 6.1
6.2 Maturity Effects in Concrete Dams 6.2
6.3 Modelling Surface Heat Exchanges from a Concrete Block into the

Environment 6.3
6.4 Industry Standard Database Generation 6.3

7 REFERENCES 7.1

8 APPENDIX A A.1

8.1 Global FEM Matlab Code A.1
8.2 Selected Functions – FEM Matlab Code A.19
8.3 Microsoft Visual Basic Code A.38

8.3.1 Co-ordinates.xls A.38

8.3.2 Elements.xls A.42

9 APPENDIX B: WORKED EXAMPLE B.1

9.1 Input data generation B.1
9.2 Executing the Finite Element Numerical Model in Matlab B.8

VI

LIST OF FIGURES
Page

Figure 2.1 Adiabatic Calorimeter schematic arrangement 2.4

Figure 2.2 Example of a hydration temperature rise curve obtained from an

Adiabatic Calorimeter experiment 2.5

Figure 2.3 Example of a rate of heat evolution curve obtained from an Adiabatic

Calorimeter experiment 2.5

Figure 2.4 Archimedes piece-wise solution to calculate π 2.13

Figure 3.1 Finite difference and finite element discretisations of a machine part 3.3

Figure 3.2 Stepwise finite element process 3.5

Figure 3.3 Approximate solution as a patchwork of solutions over the elements 3.7

Figure 3.4 Curve sided elements – Isoparametric elements 3.10

Figure 3.5 Isoparametric “parent” element 3.11

Figure 3.6 Curved sided eight noded quadrilateral isoparametric elements 3.12

Figure 3.7 Curved sided eight noded quadrilateral isoparametric elements 3.13

Figure 3.8 Eight noded quadrilateral isoparametric element 3.14

Figure 3.9 Form of interpolation function N1 3.15

Figure 3.10 Temperature distribution when nodal values of temperature are

prescribed 3.16

Figure 3.11 Form of the interpolation functions and temperature distribution

when the nodal values of the temperature are prescribed 3.17
Figure 3.12 General continuum (Ω) and boundary (Γ) 3.18

Figure 3.13 Modelled atmospheric temperatures using equation 3.13 3.21

Figure 3.14 Heat transfer between Surfaces 1 to 4 and the environment 3.22

Figure 3.15 Segment s of a boundary which forms one side of an eight noded

quadrilateral element 3.37

Figure 3.16 Four elements connected producing 21 nodes 3.39

Figure 3.17 Element 4, global and local numbering scheme 3.40

Figure 3.18 Combining three noded quadratic elements with eight noded

quadrilateral isoparametric elements 3.41

Figure 4.1 An example of the Finite element discretisation over a specified cross-

 section (only element nodes are shown) showing all four peripheral

surfaces 4.3

Figure 4.2 An example of the finite element numerical model graphical output 4.7

Figure 4.3 Positions of the thermal probes within the 8m3 concrete element cast

 on the Katse Dam site 4.8

Figure 4.4 Finite element discretisation over the specified cross-section 4.10

Figure 4.5 Finite element numerical model graphical output for the Katse

 verification 4.11

VII

Figure 4.6 Temperature profile plot at position 1 4.12

Figure 4.7 Temperature profile plot at position 2 4.14

Figure 4.8 Temperature profile plot at position 3 4.15

Figure 4.9 Temperature profile plot at position 4 4.16

Figure 4.10 Temperature profile plot at position 5 4.17

Figure 4.11 Temperature profile plot at position 6 4.19

Figure 4.12 Positions of the thermal probes within the concrete element that

was cast in the University of the Witwatersrand’s concrete laboratory 4.21

Figure 4.13 Finite element discretisation over the specified cross-section 4.22

Figure 4.14 Finite element numerical model graphical output for the laboratory

 verification 4.23
Figure 4.15 Temperature profile plot at position 1 4.24

Figure 4.16 Temperature profile plot at position 2 4.25

Figure 4.17 Temperature profile plot at position 3 4.26

Figure 4.18 Temperature profile plot at position 4 4.27

Figure 4.19 Temperature profile plot at position 5 4.28

Figure 4.20 Temperature profile plot at position 6 4.29

Figure 4.21 Temperature profile plot at position 7 4.30

Figure 4.22 Measured temperature profiles – Katse verification 4.31

Figure 4.23 FEM temperature profiles – Katse verification 4.32

Figure 4.24 FD temperature profiles – Katse verification 4.32

Figure 4.25 Measured temperature profiles – Laboratory verification 4.34

Figure 4.26 FEM temperature profiles – Laboratory verification 4.34

Figure 4.27 FD temperature profiles – Laboratory verification 4.35

Figure 4.28 An example of the finite element numerical model graphical output 4.37

Figure 4.29 Sensitivity analysis 1 relative to the Katse verification 4.40

Figure 4.30 Sensitivity analysis 2 relative to the Katse verification 4.41

Figure 4.31 Sensitivity analysis 3 relative to the Katse verification 4.42

Figure 4.32 Sensitivity analysis 4 relative to the Katse verification 4.43

Figure 4.33 Sensitivity analysis at position 1 4.44

Figure 4.34 Sensitivity analysis at position 2 4.45

Figure 4.35 Sensitivity analysis at position 3 4.46

Figure 4.36 Sensitivity analysis at position 4 4.47

Figure 4.37 Sensitivity analysis at position 5 4.48

Figure 4.38 Sensitivity analysis at position 6 4.49

Figure 4.39 FEM Example of an Irregular Shaped Cross-Section 4.50

Figure 6.1 Temperature profile for the lower block of concrete 6.2

Figure B.1 Worked example: 2000 mm x 1000 mm concrete element B.1

VIII

LIST OF TABLES

Page
Table 2.1 Archimedes piece-wise solution to calculate π 2.13

Table 4.1 Input required for the mesh generator 4.2

IX

LIST OF SYMBOLS

ε = surface emissivity
Γ = boundary of continuum
η = x coordinate in a local coordinate system
σ = Stefan-Boltzmann constant
ρ = density of concrete
Ω = continuum of element
ξ = y coordinate in a local coordinate system
B = temperature gradient interpolation function
b = specification for boundary conditions
C = unknown functions of the independent variable
c = specific heat capacity
E = activation energy
G = differential operator
h = convective heat transfer coefficient
i = arbitrary finite element node number
j = arbitrary finite element node number
k = thermal conductivity
M = maturity of concrete
m = number of unknowns (counter)
N = interpolation functions
n = cosines of the outward normal vector
Q l = internal heat generation rate per unit volume
Q l M = maturity heat rate
q = heat flow rate vector
R = residual
Rg = universal gas constant
T = temperature
Ts = surface temperature
Te = atmospheric temperature
Tmax = maximum daily atmospheric temperature
Tmin = minimum daily atmospheric temperature
Tn = temperature at current time step
Tn+1 = temperature at next time step
t = time
t20 = equivalent maturity time
td = clock time of day
tw = time at which minimum overnight temperature occurs
u = field variable
W = weighting functions

 1.1

1 INTRODUCTION

1.1 BACKGROUND

The determination of heat evolved and temperature distribution in hardening and

hydrating concrete is essential to designers and contractors. Potential for thermal

cracking, deformation control and the evaluation of concrete strength

development are of importance.

The hydration of cement in concrete is an exothermic reaction which liberates up

to 500 joules of heat per gram of cement (Neville, 1981). Temperature variations

within a concrete element can lead to the development of thermal stresses and

strains which can result in cracking. The relatively low thermal conductivity of a

concrete mass slows the rate of heat dissipation to the surroundings. Consequently

a significant temperature rise is observed in large elements at an early age.

Ambient environmental conditions may further contribute to heat gain in the

concrete by solar radiation or high temperature curing. With an increase in

concrete stiffness (i.e. gain in Young’s Modulus), fluctuations in temperature

cause strains to be induced in the concrete. If these thermally applied strains are

greater than the allowed, deformation that results in cracking within the concrete

element will occur. Conversely, if the rate of strain during the hydration period is

larger than the creep capacity, restraint cracking arises. In mass concrete elements

at an early age (defined as concrete after the first few days subsequent to casting)

thermal cracking is a common problem that requires specific consideration at the

design and construction phase.

1.2 THERMAL CRACKING OF CONCRETE

During early hydration (the first few days after casting a concrete element) the

core of the concrete element increases in temperature, while the surface remains

relatively cool. This disparity is associated with heat dissipation to the

 1.2

surrounding environment (Ballim, 2004a). The internal concrete is hotter,

resulting in a greater potential for expansion than for the cooler surface concrete.

This probable difference produces tensile stresses and strains in the surface zone.

If these are greater than the tensile capacity of the early age concrete, surface

cracks will occur. Generally these cracks are reasonably shallow due to the steep

temperature gradient existing close to the surface. This temperature differential is

attributed to the low thermal conductivity of concrete. The surface cracks may

close substantially after the cooling phase but could potentially have deleterious

effects on durability of the concrete element. Once the concrete has reached its

maximum temperature, the core of the element will enter a cooling phase as the

liberated heat is dissipated to the surrounding environment. The cooler surface

zone now acts as a restraint to the thermal shrinkage of the internal concrete. Thus

the internal concrete is subjected to tensile stresses and strains which could lead to

cracking at the core of the element. This internal cracking is more substantial than

the surface cracks. In massive elements such as dam walls, the formation of

internal cracks could result in leakage and thus failure of the wall.

The rate of a chemical reaction increases with an increase in temperature for

exothermic processes. Therefore cement hydrates more rapidly when the

temperature is elevated. Concrete at the core of a structure will experience a rise

in thermal energy faster than that near the exposed surfaces at early age. Internal

concrete cannot dissipate the induced heat efficiently due to the high thermal

inertia of concrete. With this build up of heat, the internal concrete gains strength

and stiffness whilst the creep capacity reduces at a rate higher than that of the

surface concrete. As the internal concrete undergoes the cooling or contraction

phase through the transfer of heat to the surrounding environment, it experiences a

tensile load due to the restraint provided by the surface layer. Conversely, the

surface stratum also experiences a compressive load on account of the contraction

of the inner core. Thermal shrinkage can be resisted by the surface concrete as the

ratio of tension to compression strength is approximately 1:10. The surface cracks

that appear during early hydration will thus tend to close after the cooling phase as

a result of the induced compressive stresses. Although the internal concrete can be

 1.3

said to be stronger (i.e. due to the faster rate of hydration whereas the surface zone

loses heat and moisture to the surrounding environment that hinders the advance

of hydration and strength development) it is subjected to a tensile strain that can

exceed the tensile strain capacity of the concrete, thus causing cracks to develop.

Depending on the dimensions of the concrete element and other prevailing

conditions, namely concrete mixture and boundary conditions, cracks appear over

weeks, months or even years, in extreme cases, after the concrete element was

cast. Factors affecting temperature development and distribution can be classified

as either intrinsic or extrinsic conditions. Intrinsic conditions include; binder and

aggregate type, quantity and grading, water to cement ratio and admixture and

extender type and quantity. While extrinsic conditions comprise; formwork type

and removal time, construction sequencing, initial concrete temperature, ambient

temperature, radiation, solar radiation, size of the concrete element, wind and any

possible thermal insulation.

1.3 TEMPERATURE PREDICTION

Heat distribution within a concrete element is generally modelled using numerical

techniques such as the finite difference method or the finite element method. Both

techniques attempt to predict the flow of heat in concrete through the solution of

the Fourier equation, generally in two dimensions.

The finite difference method is one of the oldest and simplest methods used to

solve differential equations (Cope et al., 1984; Ugural, 1999). The domain in

which the solution is sought is replaced by a finite set of points forming a regular

grid. Approximate temperature values are then sought for each point. These values

are required to satisfy finite difference equations in terms of partial difference

quotients or through direct heat flow considerations. The equations for each point

constitute a system of equations, the solution to which yields values for

temperature. Provided exact boundary and initial conditions have been entered,

solutions converge towards experimental solutions as the spacing between the grid

 1.4

points contract. Despite the relative ease of formulation of the system of

differential equations, the finite difference method is limited by the fact that

irregular geometric shapes, unusual boundaries and extrinsic conditions cannot be

modelled.

With the finite element method the domain is replaced with an assemblage of

discreet elements rather than a grid of points. The temperature is then

approximated over each individual element by way of an assumed function. This

interpolation function is defined in terms of the temperature at specified points

called nodes. Nodes are typically located on element boundaries where individual

elements are connected to one another. The governing differential equation and its

individual matrices can then be formulated for every element using the method of

weighted residuals. Matrices associated with each individual element can then be

assembled to form a system of equations for the entire domain. Consequently, the

temperature throughout the domain can then be solved using this system of

equations.

The fundamental difference between the two numerical techniques is that the

finite difference method provides a point-wise approximation while the finite

element method generates a piecewise approximation for the governing

differential equations.

Despite the more complex formulation of differential equations, the finite element

method has numerous advantages over other methods, the most important being

that irregular geometric shapes (elements can be put together in a variety of

ways), unusual boundaries and extrinsic conditions can be represented. Boundary

conditions, selected as the most appropriate conditions for common problems, are

convection and radiation.

 1.5

1.4 SCOPE AND LAYOUT OF REPORT

This research project will attempt to improve and expand upon a pre-existing two-

dimensional model (Ballim et al., 2005) which predicts the temperature

development and distribution in setting concrete. Ballim (2005) employs the finite

difference method as an approximate mathematical solution while this research

report will endeavour to utilise the finite element method. The two-dimensional

finite element numerical model uses various intrinsic and extrinsic factors upon

which heat liberated and distributed are dependent.

The computer based package, Matlab®, was employed to generate the finite

element numerical model. Matlab® is a high-level language (mainly applicable to

engineering and science) and interactive environment that enables users to

perform computationally intensive tasks faster than with conventional

programming languages such as C, C++, or Fortran.

The main objective of this research project is to develop a numerical model that

will be able to predict accurately the heat liberated in hardening concrete in order

to assess the possibility of thermal cracking in the final structure. This proposed

model could be used in the selection of both intrinsic and extrinsic factors, thus

ensuring that thermal cracking does not occur or is at least controlled, limited or

reduced.

Results generated by the finite element numerical model, could be used to predict

the stresses and strains within a mass concrete element and thus the cracking

potential. This research project is seen as the first step in an overall design tool

requiring the accurate prediction of temperature gradients in mass concrete

elements.

2.1

2 LITERATURE REVIEW

2.1 INTRODUCTION

Concrete is a material extensively used in the construction industry, consisting of

a solid particulate substance known as aggregate (typically different types of

crushed rock and gravel) that is cemented together using a binder and water.

Cements utilised in the construction industry generally display similar chemical

compositions to one another. They contain limestone and siliceous clays as the

principal ingredients.

Assyrian and Babylonian civilisations were among the earliest recorded users of

clay as the binding material in ancient times. In 1756, John Smeaton is credited

with the creation of the first modern concrete which he achieved by adding

pebbles as a coarse aggregate and mixing powered brick into the cement. This was

the earliest discovery of the benefits of limestone as a cementitious binder (White,

1977). In 1824, Joseph Aspdin invented Portland Cement, which has remained the

principal binder used in concrete production, although in present times cement

composition is chemically far different. Aspdin created the first artificial cement

by burning ground limestone and clay together at high temperatures. This burning

process modified the chemical properties of the materials, resulting in stronger

cement than that which plain crushed limestone would generate (Ghosh, 1991).

Following Joseph Aspdin’s patent, vast literature concerning the characteristics of

cement and concrete have been published. The fundamental concept relevant in

this research report is the reaction between cement and water. These chemical

components combine in an exothermic process to produce a cement hydrate that

releases thermal energy known as “heat of hydration”. The heat evolving

properties of cement are thoroughly documented from practical experience and

theoretical considerations (van Breugel, 1998). It is well known that early age

temperatures and temperature-induced stresses have far-reaching implications for

2.2

the durability, functionality and overall performance of concrete structures.

Control over these temperatures and the associated thermal stresses are crucial in

the development of concrete with improved properties.

Numerical modelling techniques can be used to address suspected thermal quality

issues. These techniques are used to predict the heat liberation and distribution

within a concrete element in order to assess the risk of early age cracking.

Tetmayer (1883) was one of the first researchers to apply experimental techniques

to document the significance of temperature effects in early age concrete. In the

1920’s and 1930’s several researchers discussed the issue of thermal problems in

relation to the optimization of concrete casting sequences. Their findings were

applied in the reduction of maximum hydration temperatures in mass concrete

structures to predict and prevent thermal cracking.

Harrison (1981) also corroborates the finding that early age thermal cracking

associated with concrete quality is caused by resistance to contraction on cooling.

During the hydration process thermal energy is retained in the concrete which

results in a rise in temperature within the body of the concrete element. As this

heat begins to dissipate to the surrounding environment, the restraint provided by

the stiff surface layer induces the potential for thermal cracking.

Recently, the focus of research has turned towards the pre-construction phase and

how concrete mixture design affects the amount of heat liberated and the final

temperature reached within a concrete element. Developments have been made

with the introduction of simulation models which are able to predict the rise in

temperature within a concrete element relative to concrete mixture composition

and environmental conditions (i.e. intrinsic and extrinsic factors). One piece of

information required by these simulation models is the rate of heat liberated for a

particular concrete mixture. Various experimental methods have been introduced

to determine this rate. Most of the computer models that have been generated to

address thermal problems in hardening concrete require the adiabatic hydration

curve (heat liberated plot) of the proposed concrete mixture (Koenders et al.,

1994).

2.3

2.2 ADIABATIC CALORIMETER

Several methods of measuring the heat of hydration for specific concrete mixtures

are available, namely:

 The Heat of Solution Method

 Adiabatic Calorimetry

 Isothermal Calorimetry

 Conduction Calorimetry

Each of these methods measure the heat released from a specific concrete mixture

from which the heat of hydration can be calculated. Only the adiabatic calorimetry

method will be discussed as it was the only test facility available to the

investigation reported in this research report. Interested readers should consult

relevant literature for further information regarding the other possible methods of

measuring heat of hydration.

As a means of determining the heat of hydration of a specific concrete mixture,

adiabatic calorimetry has significant advantages over other calorimetric methods

(Morabito et al., 1993). An adiabatic calorimeter is an apparatus used to examine

a runaway reaction. A runaway reaction in this instance can be defined as a

reaction in which none of the energy produced by the reaction is lost and allows

the maximum rate of hydration to be obtained. Since the calorimeter runs in an

adiabatic environment (no heat is lost or gained in the system), any heat generated

by the specific concrete sample under test causes the sample to increase in

temperature, thus fuelling the reaction. No adiabatic calorimeter is truly adiabatic

as some heat will always be lost by the sample to the sample holder. This method

closely replicates the hydration temperatures in actual mass concrete elements.

Figure 2.1 shows the components of the adiabatic calorimeter test apparatus. The

principle of the apparatus is to eliminate the effects of the surrounding

environment in order to accurately assess the heat produced by a specific concrete

mixture.

2.4

Figure 2.1 Adiabatic Calorimeter schematic arrangement (after Greensmith, 2005)

Figures 2.2 shows an example of a temperature plot produced from the adiabatic

calorimeter experiment and Figure 2.3 is an example of the heat evolution curve

Enlarged Detail

2.5

calculated from the experimental results. The heat evolution data is fundamentally

the key input data in most macro-level numerical modelling techniques.

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

Time (hrs)

T
em

p
er

at
u

re
 (

d
eg

 C
)

Figure 2.2 Example of a hydration temperature rise curve obtained from an

 Adiabatic Calorimeter experiment

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60 70 80 90 100

Time (hrs)

H
ea

t
R

at
e

W
/k

g
 o

f
B

in
d

er

Figure 2.3 Example of a rate of heat evolution curve obtained from an Adiabatic

 Calorimeter experiment

2.6

2.3 MODELLING TEMPERATURES IN CONCRETE ELEMENTS

An accurate assessment of the rate of heat evolution from hydrating cement over

time is required to correctly predict the temperature profile within a concrete

element. Previous researchers have provided direction on the rate of heat

evolution for use as input into numerical temperature prediction models.

Estimated and generalised values of the total heat released over the early

hydration period for different binder types (Addis, 1986) or cement constituents

(Scanlon et al., 1994) have been published. Guide equations were introduced by

Wang (1994), following which prediction models founded on the chemistry and

crystallography of cement (Maekawa et al., 1999), referred to as hydration models

were also developed to present the heat released from hydrating cement. These

hydration models are discussed following which more reliable laboratory-based

measurements of the rate of heat evolution coupled with numerical analysis

techniques are reviewed.

2.3.1 Cement Hydration Models

Typically, cement hydration models deal directly with the microstructural

elements found in specific concrete mixtures. The aim of these microstructural

models is to predict the time-dependent behaviour of concrete with respect to heat

production, thermal deformation, autogenous and drying shrinkage, creep

behaviour. The models simulate the cement particles as spheres packed into an

“analysis box” of known size and employ periodic boundary conditions. The

positioning of the cement spheres is carried out by a specific mathematical or

statistical process. The four most commonly discussed microstructural models are:

 HYMOSTRUC (Koenders et al., 1994)

 CEMHYD3D (Bentz et al., 1993)

 DuCOM (Maekawa et al., 1999)

 CCBM (Maruyama et al., 2007)

2.7

The first model, HYMOSTRUC, predicts the degree of hydration utilising the

information of water to cement ratio, chemical components of cement, particle

size distribution and curing condition. The programme uses a statistical approach

in obtaining the particle size distribution. The programme functions by assuming a

spherical shape for the cement particles that grow during the hydration reaction

and interconnect or make contact with other particles. The rate of hydration is

determined by the amount of available C3S and C2S, taking into account the

density of the hydrates, residual water and relative humidity in the pore structure.

CEMHYD3D creates a local chemical reaction rule which is a function of the

density of substances in target and neighbouring cells. This prediction model can

take into account many chemical reactions at once. This method measures the

accumulation of the reactions in local cells to represent the total reaction of the

cement paste and provides a 3-dimensional cement paste structure. The cement

particles, once positioned, can be optionally moved closer together to represent a

flocculated state or can be placed during positioning in a manner that achieves a

minimum separation. The method has successfully been interfaced with many

engineering problems.

DuCOM is a finite element programme developed to determine the hydration of

concrete at any given time step and boundary conditions. The heat generation rate

per unit volume of blended cements is represented as the sum of the specific heat

generation rates of the individual clinker components. The temperature dependent

heat generation ratio of each clinker (unrefined cement) component is based on

the Arrhenius law. It also provides results for porosity shrinkage and strength

gain. With the use of finite elements, the heat transfer and distribution occurs on a

macro scale rather than the microstructural scale used to model the time

dependent behaviour of the cement. The limitation of the programme is that the

pore structure is simulated by a consistent distribution of average sized binder

grains. Blaine air permeability values are then used to calculate the distance

between grains.

2.8

CCBM is based on a kinetic model expressed as a single equation composed of

four rate-determining coefficients which represent the rate of surface solution,

formation and destruction of the initial impermeable layer, and the resulting

diffusion-controlled process. The model assumes the cement as spherical bodies

that keep their shape during hydration. The model also focuses on the problem of

early age thermal cracking in concrete elements. The model parameters of

hydration are determined according to the experimental data of X-ray

diffraction/Rietvelt analysis.

In the above models, aggregate influence may be considered but the

representation is often in a weak fashion using a surface of voxels (volumetric

pixels) a single layer thick. The assignment of spherical shapes to the cement

particles generates a continuum far removed from reality. The angular shape

associated with the impact during grinding is far more regularly found in cement

particle analysis. This obvious disparity between the actual and modelled shapes

constitutes an initial error for all the models concerned. Thus the attempts to

modify models to incorporate more realistic cement particle shapes are underway.

A further assumption that departs from reality is the fact that fresh cement paste

tends to be densely flocculated unless heavily superplasticized. Only

CEMHYD3D can account for this flocculation.

2.3.2 Temperature Prediction Models

The hydration, microstructure, moisture states and time-dependent deformation in

fine pores have been extensively studied over the past decades, but difficulty has

been observed in verifying the theories particularly at microstructural levels

(Mihashi, 2007). Thus, it has been proposed that modelling must be postulated

from macroscopic and empirical information.

2.9

The macrostructural models and associated numerical methods used for

temperature prediction of importance to this research report are:

 Finite Difference Model (Ballim and Graham, 2005)

 Finite Element Model (Wang and Dilger, 1994)

The Finite Difference Model (Ballim and Graham, 2005) is a two-dimensional

model as it assumes that the structure’s length dimension is much larger than the

width or thickness. This simplifies a three-dimensional structure to two

dimensions by assuming that the heat does not vary over the length of the

structure. The model utilizes the finite difference method of analysis. The

distribution or flow of heat through a two-dimensional structure can be described

by the Fourier equation (Holman 1986):

'Q
y

T

x

T
k

t

T
c 






















2

2

2

2
 (2.1)

where, T = temperature; t = time; k = thermal conductivity; Q
l = rate of internal

heat evolution;  = density of the concrete; c = specific heat capacity;

x, y = coordinates at a particular point in the structure.

The finite difference model resolves much of the complexity of heat models by

using as input, the results of a heat rate determination using an adiabatic

calorimeter together with the Arrhenius maturity function. This indicates the rate

and degree of hydration at any position and time in the concrete element, based on

the time-temperature history at that point. This is executed by expressing the heat

evolved as measured in the adiabatic test in terms of “maturity heat rate” as a

function of the cumulative maturity, rather than a time rate. The maturity heat rate

is expressed as:

dM

dQ
'Q M  (2.2)

2.10

The time based heat rate as required by the Fourier equation (equation 2.1) is then

determined as follows:

dt

dQ
'Q  (2.3)

Applying the chain rule from differential calculus:

dt

dM
'Q'Q M (2.4)

The finite difference model maintains a measure of both the development of

maturity and the time based rate of change of maturity at each point under

consideration in the concrete element. An appropriate maturity heat rate is

selected during each calculation step based on the cumulative maturity at the

position under consideration. The time based rate of change of maturity is

multiplied by the appropriate maturity heat rate to yield the time based heat rate

required by equation 2.1. This approach allows the rate of heat evolution

determined from the adiabatic calorimeter test to be expressed in a form that is

independent of the starting temperature of the test. It has been shown that the

starting temperature of adiabatic calorimeter tests greatly influences both the

magnitude and time distribution of the heat rate (Ballim and Graham, 2003).

The Arrhenius maturity function was used to normalise the results obtained from a

adiabatic calorimeter test for a specific concrete sample, and takes the following

form:

   1
1 1

20 50273
1

293
1





 











































  ii

ni

i iig
tt

TT.R

E
expt (2.5)

where, t20 = equivalent maturity time (in hours); E = activation energy; Rg =

universal gas constant; Ti = temperature (°C) at the end of the ith time

interval, ti

2.11

Previous research into the model shows that it is fairly accurate but that it has

some limitations. It showed good correlation with the temperature as measured in

a laboratory test. A rectangular concrete block which had a length dimension

significantly larger than the other two dimensions, instrumented with thermal

probes was cast in the laboratory. The results obtained were satisfactory with a

maximum temperature difference of only 2C between the measured and the

predicted results.

Ballim and Graham (2005) identify the following limitations with the model:

• The model cannot deal with structures that are not rectangular.

• The problem of early drying on the exposed surfaces and in general the

definition of the boundary conditions needs to be overcome and more

precisely defined to include the effects of sunlight, humidity, wind and cloud

cover.

• The model cannot allow for:

1. Sequential construction (i.e. casting fresh concrete onto concrete

that has not dissipated all of its hydration heat);

2. The analysis of the concrete temperature where conduits, which

have chilled water flowing through them, are cast into the concrete

in order to reduce the overall temperature within the concrete

element;

The finite element method of analysis has previously been implemented to

calculate the heat liberated and distributed through a concrete element

(Wang et al., 1994). However, the appropriateness of their approach for

determining the rate of heat evolution is questionable. The following approach

was used:

cQ/ct = 0.5 + 0.54M 0.5 for M ≤ 10 hours (2.6)

cQ/ct = 2.2 exp [-0.0286(M – 10)] for M ≥ 10 hours (2.7)

where M is the maturity of the concrete in hours with reference to concrete cured

at 20C.

2.12

When the temperature of the test concrete is constantly equal to 20C, the

maturity time is equal to the clock time. The appropriateness of equations 2.6 and

2.7 for a temperature prediction model is problematic since:

• The maximum heat rate is fixed at 2.2W/kg. This is not appropriate since

measured heat rates have been shown to vary significantly from this value

(Ballim and Graham, 2004, 2009), particularly when cement extenders are

used in concrete.

• The equations are not true if the environmental conditions cause the

temperature within the concrete to drop to -10C. At this temperature

hydration is deemed to stop, whereas the above equations indicate a finite rate

of heat evolution.

• The approach ignores the temperature at which the adiabatic test was

conducted. The temperature at which an adiabatic test is started greatly

influences the rate of hydration.

The two-dimensional model that was undertaken in this research project uses the

finite element method of calculation rather than the finite difference method due

to its number of shortcomings. The finite difference method is unsuitable for

systems with irregular geometry, unusual boundary conditions, or heterogeneous

compositions. The finite element method provides an alternative that is better

suited to such systems as it breaks down a structure’s cross section into small

elements (either rectangular or triangular shaped elements) to create a better

approximation of irregularly shaped sections. Further, values of the unknown

variable can be generated continuously across the entire solution domain rather

than at isolated points.

2.4 EVOLUTION OF THE FINITE ELEMENT METHOD

The principles of finite element theory, as it is known today, can be dated back as

far as 250 B.C. The Greek mathematician Archimedes calculated the ratio of a

circle’s circumference to its diameter by the restructuring of a circle as a limit of

inscribed regular polygons. This piece-wise solution is refined to an acceptable

2.13

approximation as the number of regular polygons is increased. Figure 2.4 shows

the principle of this piece-wise solution and Table 2.1 indicates how the solution

is refined towards the exact value of  as the number of regular polygons is

increased.

d

r

1

2

3

4

5

6

7

8

5

4

2
n

r

i j

2 sin / r n 

Figure 2.4 Archimedes piece-wise solution to calculate 

Table 2.1 Archimedes piece-wise solution to calculate 

n n = 2 r n sin (/ n) /d

1 0,0000
2 2,0000
4 2,8284
8 3,0615
16 3,1214
32 3,1365
64 3,1403

128 3,1413
256 3,1415
512 3,1416

n = 512 to 9
decimal places 3.141572940

Exact  to 9
decimal places 3,141592654

It is difficult to document the exact origin of the finite element method, because

the basic concepts have evolved over a period of 150 years or more.

Courant (1943) was the first to develop the Finite Element Analysis by utilizing

the Ritz method of numerical analysis and minimization of variational calculus to

obtain approximate solutions to vibration systems. Soon thereafter, a paper

2.14

published by Turner (1956) determined a broader definition of numerical analysis.

The paper centred on the "stiffness and deflection of complex structures".

The term finite element was first created by Clough (1960). In the early 1960’s,

scientists used the method for the approximate solution of problems in stress

analysis, fluid flow, heat transfer, and many other areas. The first book published

on the finite element method was by Zienkiewicz (1967).

In 1970's, Finite Element Analysis was limited to expensive mainframe computers

generally owned by the aeronautics, automotive, defence, and nuclear industries

due to the sizeable processing power required by the analysis. Following the

decline in the cost of computers and the increase in computing power, the finite

element method has developed into a useful numerical analysis technique. Present

day supercomputers are now able to produce accurate results for all kinds of

parameters. Thus continued research into different types of elements and

convergence studies are presently under development.

2.5 THERMAL CRACKING OF CONCRETE

In attempting to control the risk of thermal cracking in concrete elements,

knowledge of the expected temperature rise during hydration of cement is

desirable (Morabito, 1998). Due to increased accessibility of aggressive agents

like chloride ions, CO2 and other harmful agents into concrete as well as increased

potential leakage of liquid retaining structures, the effect of thermal cracking can

lead to reduction of the durability and serviceability of concrete. The long term

effect of thermal cracking can therefore be of significant consequence and control

is essential.

Harrison (1981) discusses practical solutions to prevent early age thermal

cracking in concrete. Section thickness, cement type, concrete mixture

proportions, formwork, insulation, restraint and ambient conditions were

2.15

discussed. Data is provided with respect to concrete tensile strain capacity and

anticipated heat evolution of different binder types.

Emborg (1992) computes the risk of cracking with respect to different structural

and environmental scenarios. The proposed procedures have regularly been used

in Sweden for producing concrete in massive structures intended to be free of

cracks. The emphasis on the theory is placed on calculations pertaining to the

cracking risk. The critical maximum temperature differential is limited to 20

degrees Celsius. A useful finding by Emborg is the relationship between ambient

air temperature and initial concrete temperature in relation to surface cracking in

very early age concrete. He notes that favourable conditions for placing of

concrete exist when the ambient temperature is much lower than the placing

temperature of the concrete. This condition decreases the risk of early age surface

cracking.

Taylor and Addis (1994) also confirm that the maximum allowable temperature

differential should not exceed 20 degrees Celsius for ordinary concrete structures.

An important fact to note is that during the temperature rising phase of a hydrating

concrete mixture, the reinforcement does little to prevent cracking because of the

weak bond between the concrete and steel.

Recently an analytical system labelled JCMAC3 (Suzuki et al., 1990) has been

developed to not only deal with thermal strain but also other initial strains within

concrete at an early age (i.e. heat of hydration, autogeneous shrinkage and drying

shrinkage). The model computes drying shrinkage from the moisture transport

analysis. A non-linear finite element analysis is the global solver for the strain

model. JCMAC3 is expected to be a useful tool for simulation of cracking in

concrete, since it reproduces recent research results and has an essential practical

aspect.

2.16

2.6 CONCLUSION

Portland Cement Concrete has been shown to be a complex material that has been

researched extensively with numerous methods for understanding this material

being proposed. The sophistication of proposed simulation models indicates this

complexity of the material and requires introduction of model assumptions which

in turn limit the functionality of the models.

The introduction of adiabatic calorimeter results into a temperature prediction

model therefore has benefits of reducing theoretical and scientific inaccuracies.

The adiabatic test combined with the Arrhenius maturity function expresses the

rate of heat evolution from the hydrating cement in a rational and normalised form

required by numerical models.

The finite element temperature prediction model presented in this research report

will therefore, with the use of adiabatic calorimeter results, be restricted to a

macrostructural model controlled by factors related to the chemistry of cement.

The model is unique in that the powerful finite element theory has been combined

with a reliable method of describing the amount of heat liberated from a specific

concrete mixture.

The model however, is limited with respect to cracking potential as it is not able

to predict the consumption of water by the hydration reaction which results in a

change of concrete stiffness. The problem regarding stiffness gain with respect to

time can however be dealt with statically at a specific point in time with empirical

Young’s modulus values. This relationship will not be dealt with in this research

report, but the finite element model allows for a future possibility of this

development.

 3.1

3 DEVELOPMENT OF THE FINITE ELEMENT MODEL
FOR HEAT FLOW IN CONCRETE

3.1 INTRODUCTION

The finite element method is a numerical analysis technique for obtaining

approximate solutions to a wide variety of engineering problems. In engineering

situations today it is necessary to obtain approximate numerical solutions to

problems due to the unavailability of exact closed-form solutions. Such examples

are: finding the load carrying capacity of a steel plate that has several stiffeners

and odd-shaped holes, evaluating the concentration of pollutants during non-

uniform atmospheric conditions, determining the rate of fluid flow through a

passage of arbitrary space configuration. With relative ease, governing equations

and boundary conditions for these situations can be resolved, although no simple

analytical solution may be found. The difficulty in these three examples lies in the

fact that either the geometry or some other feature of the problem may be irregular

or poorly quantified. Analytical solutions to problems of this type seldom exist

even though these situations are commonly encountered by engineers. One

possible way to overcome this problem is to make simplifying assumptions, which

ignore inherent complexities. Occasionally this procedure yields adequate results.

However, more often than not, serious inaccuracies and incorrect solutions are

encountered. A more viable alternative is to retain the complexities of the problem

and find an approximate numerical solution.

Many numerical analysis techniques have been developed, but the most easily

accessible technique is the finite difference scheme. This analysis tool gives a

point-wise solution to the governing equations of the problem. The continuum in

which the solution is sought is replaced by a finite set of points and an attempt is

made to find approximate values for these points by the use of difference

equations. This model improves in accuracy as more points are used within the

continuum. The finite difference technique can solve fairly difficult problems and,

 3.2

with the ease of implementation, the method is commonly employed. However,

when irregular geometries or unusual boundary conditions are encountered the

finite difference technique becomes difficult to implement and the results are

unreliable in their accuracy.

In recognition of the shortcomings of the finite difference method other numerical

analysis techniques have been developed. The most powerful technique emerging

in recent years is the finite element method. Unlike the finite difference method,

which envisions the continuum as a region of grid points, the finite element

method envisions the continuum as a region built up of small interconnected sub-

regions or elements. Therefore the finite element method gives a piece-wise

approximation to the governing equations. The basic principle of the finite

element method is that the continuum can be analytically modelled or

approximated by replacing it with an assemblage of discrete elements. These

elements can be assembled in a variety of ways and can thus be used to represent

extremely complex geometric shapes.

As an example, Figure 3.1 shows a part for an industrial machine. This complex

geometric shape is modelled using both the finite difference and finite element

methods. The uniform finite difference mesh approximates the irregular shape

well except at the boundaries where the series of steps give a rough estimate. On

the other hand the finite element method (using a combination of triangular and

quadrilateral elements) improves the approximation of the continuum and requires

fewer nodes. This example illustrates the fact that the finite element method is

better suited as a numerical analysis technique for problems with irregular

geometries.

 3.3

Figure 3.1 Finite difference and finite element discretisations of a machine part

3.2 PRINCIPLE OF THE FINITE ELEMENT METHOD

In a continuum problem (body of matter or simply a region of space in which a

particular phenomenon is occurring) of any dimension, the field variable

(temperature in the case of a heat transfer problem) possesses infinitely many

values because it is a function of each generic point in the body or solution region.

Therefore the problem is one with an infinite number of unknowns. The

discretisation procedure reduces the problem to a finite number of unknowns by

dividing the continuum into elements and by expressing the unknown field

variable in terms of assumed approximating functions within each element. The

approximating functions or interpolation functions are defined at specified points

called nodes. Nodes are generally positioned on the element boundaries where

adjacent elements are connected. For the finite element representation of a

Finite difference
discretisation

Finite element
discretisation

 = Node

 3.4

problem the nodal values of the field variable are the unknowns. Once the

unknowns are found the interpolation functions define the distribution of the field

variable throughout the assemblage of elements. Thus, the nature of the solution

and the degree of accuracy depend not only on the size and number of elements

used but also on the interpolation functions selected. Interpolation functions

cannot be chosen arbitrarily due to certain compatibility conditions that need to be

satisfied.

The finite element method differs from other numerical analysis techniques due to

the ability of formulating solutions for individual elements before putting them

together to represent the entire problem. In essence, a complex problem reduces to

considering a series of greatly simplified problems.

The formulation of the properties of individual elements can be done in a variety

of ways. There are three different approaches, namely:

 Direct approach

This approach is used for relatively simple problems and is traceable to the

direct stiffness method of structural analysis.

 Variational approach

This approach relies on the calculus of variations and involves extremizing

the functional. For problems in solid mechanics the functional turns out to

be the potential energy.

 Weighted residuals approach

This approach is the most versatile approach to deriving element

properties. It starts with the governing equations of the problem and

proceeds without relying on a variational statement. This method is widely

used to derive element properties for non-structural applications such as

heat transfer and fluid mechanics.

 3.5

Whichever of the above approaches is used to formulate the properties of an

individual element, the process of finding the solution to a continuum problem is a

step-by-step procedure shown below.

Figure 3.2 Stepwise finite element process

2. Select interpolation functions

1. Discretise the continuum

3. Find the element properties

4. Assemble the element properties to
obtain the global equations

5. Impose the boundary conditions

6. Solve the global equations

7. Perform additional computations

 3.6

1 Discretising the continuum:

This initial step involves subdividing the continuum into a suitable number of

small bodies, called finite elements, as shown in Figure 3.1. Different element

shapes can be used in order to obtain a better approximate of the continuum. For

many cases an irregular boundary can be approximated by a number of straight

lines. Alternatively, it may be necessary to use mathematical functions of

sufficient order to approximate the boundary. If the boundary is a parabolic shape,

a second order quadratic function can be used to approximate that boundary. This

method is used in the concept of isoparametric elements, and will be discussed in

further detail in the application of the finite element method.

2 Selecting interpolation functions:

In this step, we allocate nodes to each element and then choose an interpolation

function to represent the variation of the field variable over the element.

Polynomials are often selected as interpolation functions because of the ease with

which they can be integrated or differentiated. The degree of the polynomial

depends on the number of nodes assigned to the element (i.e. the greater the

number of nodes the higher the degree of the polynomial). The nodal points of the

element provide strategic points for writing mathematical functions to describe the

shape of the distribution of the field variable over the domain of the element. If

we denote u as the field variable, the polynomial interpolation function can be

expressed as:

u = N1u1 + N2u2 + N3u3 + ... + Nmum (3.1)

In the above expression u1, u2, u3,..., um are the values of the field variable at the

nodal points 1, 2, 3,..., m and N1, N2, N3,..., Nm are the interpolation functions. It

should be noted here that after all the steps of the finite element method are

accomplished, the values of the field variable at all of the nodes is established.

However, to initiate action towards obtaining the solution, an interpolation or

shape function needs to be assumed in advance. Figure 3.3 shows that the final

solution is a combination of solutions in each element patched together at the

 3.7

common boundaries. This is further illustrated by sketching a cross-section along

section P-P. From this figure, it can be observed that the computed solution is not

necessarily the same as the exact solution shown by the solid curve. The statement

that the finite element discretisation yields approximate solutions can be

visualized from this schematic representation.

Figure 3.3 Approximate solution as a patchwork of solutions over the elements

Finite element
approximation

Equal

Exact

x

z
y

P P

Section P-P

Continuum Exploded view of 4
contiguous elements

Common
boundary

Common boundary

 3.8

3 Finding the element properties:

Once the type of elements and their interpolation functions have been selected, the

matrix equations expressing the properties of the individual elements may be

formulated. The formulation of the properties of individual elements can be done

in any one of the three ways mentioned previously (viz. the direct approach, the

variational approach, or the weighted residuals approach).

4 Assembling the element properties to obtain the global equations:

The final aim is to obtain equations for the overall system modelled by the

network of elements. Fundamentally, the matrix equations expressing the

behaviour of the elements are combined to form the matrix equations expressing

the behaviour of the entire system of elements. In other words we are assembling

the element equations into system equations, otherwise known as global

equations, for the entire system. The global matrix equations have the same form

as the individual element equations except that they contain many more terms

since they include all the nodes. The principle of this assemblage process stems

from the fact that at a common node, where elements are interconnected, the value

of the field variable is identical for each element sharing the node.

5 Imposing the boundary conditions:

This step accounts for the boundary conditions which are imposed on the global

matrix equations. The boundary conditions need to be applied before a solution to

the problem can be found. Thus, known nodal values of the dependent variable are

imposed on the boundary.

6 Solving the global equations:

The assemblage process of step four results in a set of simultaneous equations that

can be solved to obtain the unknown nodal values of the field variable for the

specific problem. If the problem describes steady behaviour, it will be necessary

to solve linear or non-linear algebraic equations. However, if the problem is

unsteady, the nodal values are a function of time and it is therefore necessary to

solve linear or non-linear ordinary differential equations.

 3.9

7 Performing additional computations if required:

The solution of the system equations can very often be used to calculate various

other parameters. For example, in structural engineering application involving a

load-deformation problem, the primary solution is deformation. These

deformations can be used to calculate secondary solutions such as the element

stresses and strains.

3.3 APPLICATION OF THE FINITE ELEMENT METHOD

The application of the finite element method can be divided into three main

categories, each dependent on the nature of the problem needing to be solved.

The first category deals with problems known as equilibrium problems or time-

independent problems. Most applications of the finite element method fall into

this category. The second category is concerned with problems known as

eigenvalue problems of solid or fluid mechanics. These types of problems are

steady state. The third category deals with problems which are time dependent and

are known as propagation problems of continuum mechanics. This is a category

of problems composed of the previous two problems with an added time

dimension, thus it is defined as a transient problem. Recognizing that heat transfer

finite element analysis is a transient problem the third category of problems is

applicable to the problem of temperature development in concrete.

The application of the finite element method to a transient heat transfer problem

has been simplified into the following stepwise method:

In general all the subsequent equations are taken or developed from Huebner et al.

(1995) and Lewis et al. (1996). It is important to note that the parentheses [] refer

to a matrix that contains more than one row and one column, { } refer to a column

vector and   refer to a row vector.

 3.10

Step 1:

A subject of paramount importance in finite element analysis is the selection of

the particular finite elements to be used to discretise the continuum. Fitting a

curved boundary with straight sided elements generally leads to a satisfactory

representation of the boundary, but improved fitting would be possible if curved

sided elements could be formulated. With the use of curve sided elements it would

be possible to use a smaller number of larger elements and still obtain a close

boundary representation. Thus for large complex continuums, the amount of

computer time required to obtain a solution to the problem can be considerably

reduced.

The principle of curved sided elements centres on mapping or transforming simple

geometric shapes (particularly quadrilaterals) in some local coordinate system into

distorted shapes in the global Cartesian coordinate system and then evaluating the

element equations for the curved sided elements that result. These types of

elements are known as isoparametric elements.

Figure 3.4 Curve sided elements – Isoparametric elements

y

x

 3.11

Three nodes must be associated with each side of the quadrilateral element if it is

required to represent a continuum in x-y Cartesian coordinates by a network of

curved sided quadrilateral elements, and furthermore it is required that the field

variable T (temperature in this case) has a quadratic variation within each element.

The continuum and the desired finite element model might appear as shown in

Figure 3.4. To construct one typical element of this assemblage it is required to

relate this one element to a simpler “parent” element in the - local coordinate

system shown in Figure 3.5.

Figure 3.5 Isoparametric “parent” element

This element is part of the serendipity family of rectangular elements. The nodes

in the - plane may be mapped into corresponding nodes in the x-y plane as

follows:

 



8

1
,

i
ii xNx  (3.2)

 



8

1
,

i
ii yNy  (3.3)





 = 1

 = -1

 = 1  = -1

 3.12

In the above equations the mapping functions, Ni, are the element interpolation

functions and these will be defined in Step 2. These interpolation functions need

to be quadratic since the curved boundaries of the element in the x-y plane need

three points for their unique specification, and the interpolation functions should

take on the proper values of unity and zero when evaluated at the nodes in the -

plane.

When writing equations such as equations 3.2 and 3.3, we assume that the

transformation between the local - coordinates and the global x-y coordinates is

unique (i.e. we assume that each point in one coordinate system relates to a unique

corresponding point in the other coordinate system). It is also important that

continuity between curved elements is upheld when the elements are assembled

(i.e. the slope between adjacent elements is constant).

These mapping equations result in curved sided quadrilateral elements of the type

shown in Figures 3.6 and 3.7. These figures were produced using equations 3.2

and 3.3 and the element interpolation functions.

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0 2.5

Figure 3.6 Curved sided eight noded quadrilateral isoparametric elements

 3.13

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0 2.5

Figure 3.7 Curved sided eight noded quadrilateral isoparametric elements

Step 2:

In the finite element procedure, once the element mesh for the solution continuum

has been decided, the behaviour of the unknown field variable over each element

is approximated by continuous functions expressed in terms of the nodal values of

the field variable. The functions defined over each finite element are called

interpolation functions or shape functions.

Interpolation functions cannot be chosen arbitrarily as certain continuity

requirements must be met to ensure that the convergence criteria are satisfied. Due

to the fact that the field variable is continuous at the element faces, it can be said

that the current problem has C0 continuity.

The type of elements to be used in the proposed heat transfer analysis is eight

noded quadrilateral isoparametric elements with the nodes located as shown in

Figure 3.8.

 3.14

Figure 3.8 Eight noded quadrilateral isoparametric element

These elements possess interpolation functions associated with any arbitrary

node j and can be determined directly from the requirement:








jkkNodeat

jNodeat
N j ;0

1

For this type of element the corresponding nodal interpolation functions are:

    41111  N    211 2
2  N

    41113  N    211 2
4  N

    41115  N    211 2
6  N

    41117  N    211 2
8  N





1

8

7 6

2

5

4

3

(3.4)

 3.15

The form of the interpolation functions is illustrated in Figure 3.9, specifically for

node 1. The form of the interpolation functions, N1 to N8, produce similar plots.

Figure 3.9 Form of interpolation function N1

Figure 3.10 shows the temperature distribution due to the interpolation functions

within an individual element when the nodal values of temperature T1, T2,…, T8

are prescribed.





1

1

1

-1

-1

-1

0

0

0

N
1(
,
)

N
1(
,
)

0

1

-1





 3.16

Figure 3.10 Temperature distribution when nodal values of temperature are

 prescribed

If the edge of an eight noded quadrilateral isoparametric element coincides with

the boundary of a region with surface heat transfer, an additional conductance

matrix and heat load vector are required. The heat load vectors are the essential

boundary conditions to which the surface of the continuum is subjected. The

curved edge of a typical eight noded quadrilateral isoparametric element

resembles the quadratic rod element and therefore we can use the corresponding

matrices for the rod element, provided the proper surface is employed.

T
(

,
)

T
(

,
)









1

1

4

4

-1

-4

-4

0

0

0

0

-1

 3.17

The three noded quadratic rod element has interpolation functions of the form:

    211  N

   2
2 1  N

    213  N

These interpolation functions are shown in Figure 3.11, as well as the form of the

field variable T when the nodal values T1, T2, and T3 are prescribed.

Figure 3.11 Form of the interpolation functions and temperature distribution when

 the nodal values of the temperature are prescribed

1 2 3

N1()

N2()

N3()

+ 

2 3 1

+ 

T
T1

T2
T3

(3.5)

 3.18

The 3 noded quadratic rod element is also part of the serendipity family of

elements. Therefore the nodes in the  plane are mapped onto corresponding

nodes in the x-y plane. This is accomplished by again mapping the region

-1    1 into the region of interest by the isoparametric mapping condition:

  i
i

i xNx 



3

1
 (3.6)

  i
i

i yNy 



3

1
 (3.7)

These elements are assembled with the eight noded quadrilateral isoparametric

elements as shown in step 4.

Step 3:

Figure 3.12 General continuum () and boundary ()





 3.19

Considering a transient heat transfer problem in a two-dimensional solid, ,

bounded by a surface, , (Figure 3.12). The problem is governed by the energy

equation:

t

T
cQ

y

q

x

q yx



















 ' (3.8)

Where Q’ is the internal heat generation rate per unit volume,  is the density, c is

the specific heat, t is the time and qx and qy are components of the heat flow rate

vector per unit area in Cartesian coordinates. For an anisotropic continuum

Fourier’s law is:

















y

T
k

x

T
kqx 1211

















y

T
k

x

T
kqy 2221

With k being the thermal conductivity, the heat conduction equation is derived for

non-linear material properties. Note: Thermal conductivity k can be considered

constant for concrete, while assuming it to be an isotropic medium.

The heat conduction equation is solved subject to initial and boundary conditions.

The initial condition stipulates the temperature within the continuum when time is

zero (i.e. the placing temperature of the concrete).

   yxTyxT ,0,, 0 (3.10)

The boundary conditions may incorporate specified surface temperature, specified

surface heat flow, convective heat exchange and radiation.

(3.9)

 3.20

The latter two boundary conditions were selected as being the most appropriate

conditions for the problem; thus the boundary conditions are:

 esyyxx TThnqnq  Convection on all surfaces (3.11)

 44
esyyxx TTnqnq   Radiation on all surfaces (3.12)

except bottom surface

Where nx and ny are the direction cosines of the outward normal to the surface, h

is the convective heat transfer coefficient, Ts is the unknown surface temperature,

Te is the known atmospheric temperature,  is the Stefan-Boltzmann constant and

 is the surface emissivity.

The convection heat transfer coefficient, h, is dependent on whether the concrete

is still contained by the formwork. The formwork generally is constructed of

timber, and the heat transfer coefficient is taken as approximately 5 W/m2K

compared with the approximate value of 30 W/m2K for concrete without

formwork (Holman, 1986). The heat transfer coefficient is a measure of how

much heat can be transmitted between the surface and the environment.

The surface temperature, Ts, is the temperature at the nodes on each of the

surfaces and is unknown. The atmospheric temperature, Te, is the temperature of

the surrounding environment and is approximated by the following sinusoidal

function (Ballim, 2004a):

 






 







 






 


2224

2sin minmaxminmax TTTTtt
T wd

e

 (3.13)

Where td is the clock time of day at which the approximation is being made (0 to

24 hours), tw is the time at which the minimum overnight temperature occurs, Tmax

is the maximum temperature for the day under consideration and Tmin is the

minimum temperature for the day under consideration.

 3.21

An important benefit of this equation is that it can approximate the ambient

temperature at any time using only the daily maximum and minimum

temperatures which can be obtained from the local meteorological office. This

ensures that at the design stage of a construction project, the ambient temperatures

can be predicted on an hourly basis as required for the numerical heat transfer

analysis. However, the model does have a disadvantage. It has been simplified and

does not incorporate factors such as cloud cover, wind or direct sunlight. It should

be noted that direct sunlight could be included in the radiation boundary condition

as solar radiation if required. The presence of wind could also be included within

the convection heat transfer coefficient. The greater the wind speed the higher the

coefficient value and vice versa. Thus, with the above arguments the ambient

temperature model can be said to be fairly accurate and has been shown to give

acceptable results (Ballim, 2004a). Figure 3.13 shows the sinusoidal function for

prescribed maximum and minimum temperatures (Ballim, 2004a).

0

5

10

15

20

25

0 50 100 150 200 250
Time (hrs)

T
e

m
p

e
ra

tu
re

 (
o
C

)

Figure 3.13 Modelled atmospheric temperatures using equation 3.13

 3.22

The radiation boundary condition shows that energy will be emitted at a rate

proportional to the fourth power of the absolute temperature of the body. The

emissivity of the grey concrete surface is equal to the ratio of emission from a

grey surface to that from a perfect radiator at the same temperature and can be

taken as 0.9 for most cases (Isgor, 2004). The Stefan-Boltzmann constant, , is

the proportionality constant and has a value of 5.669 x 10-8 W/m2K4.

Figure 3.14 Heat transfer between Surfaces 1 to 4 and the environment

For a typical cross-section as shown in Figure 3.14, the boundaries are specified

as Surface 1 to Surface 4. Each of the surfaces undergoes convection into the

surface or convection out of the surface from the surrounding environment. It is

assumed that the bottom surface (Surface 4) will lose or gain heat from the casting

surface (generally rock or concrete) through convection. Conceptually this is

incorrect but this assumption will not have a large effect on the results (refer to

Chapter 4 of this report). A proposed solution to this problem would be to model

the casting surface as a separate mesh. This would then lead to more accurate

results although the computation time required to obtain a solution would increase

significantly. It is also assumed that radiation into or out of the cross-section

occurs on surfaces 1, 2 and 3 only.

y

x



S
ur

fa
ce

 1
 S

urface 3

Surface 2

Surface 4

Heat transfer between the concrete
and the surrounding atmosphere

Heat transfer between the concrete
and the bottom surface

 3.23

The material properties, specifically thermal conductivity, and boundary

conditions are non-linear as they change with incremental time. It can therefore be

stated that the problem is inherently non-linear. Although the derivation of the

finite element equation is for non-linear problems it can be assumed at a later

stage that these material properties are actually linear. This is done for simplicity

since consideration of non-linear material properties would have high demand on

the computation time required to obtain a solution to a particular problem. The

internal heat generation rate per unit volume (Q’) is inherently non-linear as a

result of the exothermic hydration reaction. This non-linearity is resolved through

the use of an iterative solution as it cannot be regarded as linear.

Following the derivation of the initial and boundary conditions, the formulation of

the finite element equation for a single element is required. Knowing that the

continuum has been divided into M number of elements each containing eight

nodes, the temperature and temperature gradients within each element can be

expressed as:

      



8

1
,,,

i
ii

e tTyxNtyxT (3.14)

       



8

1
,,,

i
ii

e tTyxxNtyxxT (3.15)

       



8

1
,,,

i
ii

e tTyxyNtyxyT (3.16)

or in matrix notation

        tTyxNtyxT e ,,,  (3.17)

 
       tTtyxB

tyxyT

tyxxT
,,

,,
,,













 (3.18)

 3.24

Where the superscript e denotes a single element, [N] is the temperature

interpolation matrix, [B] is the temperature gradient interpolation matrix, Ti(t) is

the value of the temperature at each node and {T(t)} is a single column vector

with eight rows of nodal temperatures.

    87654321, NNNNNNNNyxN  (3.19)

   











yNyNyN

xNxNxN
yxB

821

821,



 (3.20)

The method of weighted residuals is now employed to formulate the individual

element equations. This method is a global technique for obtaining approximate

solutions to linear and non-linear partial differential equations. It allows the finite

element equations to be derived directly from the governing differential equations.

The method employs two steps, the first of which is to assume the general

functional behaviour of the dependent field variable (temperature), in such a way

as to satisfy the governing differential equation and boundary conditions. This

assumption will result in an error when it is substituted into the governing

differential equation. This error is known as a residual. In order to cancel out this

residual, the error is averaged over the entire continuum ensuring an insignificant

error.

If it is required to find an approximate functional representation for the field

variable, T, governed by the differential equation (equation 3.21) in a continuum,

, bounded by the surface , step one can be illustrated.

  0 bTG (3.21)

Where b is a known function of the independent variable (i.e. b specifies the

boundary conditions) and G is the differential operator. The first step in the

 3.25

method of weighted residuals requires that the unknown exact solution T is

approximated by T’ and is shown in equation 3.22.





m

i
iiCNTT

1
' (3.22)

Where Ni are the assumed interpolation functions, Ci are the unknown functions of

the independent variable (function of time for transient problems) and m is the

number of unknown Ci values. Substituting T’ (equation 3.22) into the governing

differential equation (equation 3.21) results in the following:

  0'  RbTG (3.23)

Where R is the error or residual that is obtained with the approximation of T with

T’. As mentioned previously the method of weighted residuals attempts to

determine the m unknown Ci values such that the residual over the entire

continuum is small. A weighted average of the residual is then created which

fades away over the entire continuum. Therefore, m linearly independent

weighting functions, Wi, are chosen and the following weighting is then

performed:

   midRWdWbTG
T ii ,...,3,2,10'   (3.24)

Therefore R  0. With the specification of the weighting functions, the above

equation represents a set of m algebraic or ordinary differential equations.

The second step involves solving the equation resulting from the first step and to

find a general functional form for the governing differential equation which will

then become the approximate solution to the problem. This is done by solving

equation 3.24 for Ci and hence obtaining an approximate solution for the field

 3.26

variable T from equation 3.22. It has been shown that as m increases towards

infinity the approximate temperature T’ approaches the actual temperature T.

The selection of the weighting functions now becomes important due to the wide

variety of functions that can be used. The Galerkin method is the most common

method used to derive the weighting functions which are required to obtain the

finite element equations. In particular the Bubnov-Galerkin method is employed

and thus the chosen weighting functions are the same as the interpolation

functions given in Step 2. Therefore Wi = Ni for i = 1, 2, 3,…, 8. There are many

other choices for the weighting functions such as the Pertov-Galerkin method (e.g.

least-squares method and collocation method), however these are far more

complex than the Bubnov-Galerkin method.

The Bubnov-Galerkin method is now implemented on the governing differential

equation (equation 3.21).

    0' dNbTG i (3.25)

This equation deals with the entire continuum, although it also holds for an

arbitrary subdomain or element within the continuum. Therefore the above

equation will be formulated for a single element as Step 3 of the application of the

finite element method is only concerned with single element equations. The

weighting functions Ni are now the interpolation functions for the type of element

concerned (eight noded quadrilateral isoparametric element) and the Ci unknown

values are the nodal values of the field variable (i.e. temperature). Equation 3.25

now becomes:

       
  ridNbTGe

e
i

ee ,...,3,2,10'  (3.26)

Where the superscript e indicates that equation 3.26 is for a single element and r is

the number of nodes assigned to the element.

 3.27

With equation 3.27 the temperature at each node within the element can then be

solved.

      eee TNT  (3.27)

Now that the method of weighted residuals has been briefly introduced, the

differential equation used to illustrate the method (equation 3.21) can now be

replaced in equation 3.26 with the governing heat transfer differential equation

(equation 3.8).

   e dNtTcQyqxq iyx 0 (3.28)

For simplicity the superscript e has been omitted. The above equation is now

expanded in order to obtain a solution.

        
e ee dNtTcdQNdNyqxq iiiyx 0 (3.29)

It is now required to simplify equation 3.29 with part A of the equation simplified

by applying integration of parts. When integration of parts is used to find the

element equations it offers a convenient way to introduce the natural boundary

conditions that must be satisfied on some portion of the boundary. Although the

boundary terms containing the natural boundary conditions appear in the

equations for each element, in the assembly of the element equations only the

boundary elements give contributions that do not disappear.

A B C

 3.28

Integration by parts for a two-dimensional continuum  with boundary  is:

   
jqiqvandNuLet

udvdnvudvu

yxi
ˆˆ

ˆ



   (3.30)

Applying integration of parts on part A of equation 3.29 yields:

A      dNyqxq iyxe

A           
dyNxNqqdnqnqN iiyxyyxxi ee

A       








  
d

q

q
yNxNdnq ee

y

x
iiˆ (3.31)

Now equation 3.29 is re-written in a simplified form:

 

        



 
















e ee

e

dNnqdQNd
q

q
yNxN

dNtTc

ii
y

x
ii

i

ˆ



 (3.32)

The surface integral is now expressed in terms of the relevant surface and the

boundary conditions are introduced. As previously mentioned, each surface

experiences convection (i.e. Surface 1 to Surface 4) and surfaces 1 to 3 experience

radiation.

Boundary Conditions

 3.29

Therefore equation 3.32 becomes:

     








   ee d
q

q
yNxNdNtTc

y

x
iii

     

     
   











3
44

2
44

1
44

43

21

S iesS ies

S iesS iesS ies

S iesS iesi

dNTTdNTT

dNTTdNTThdNTTh

dNTThdNTThdQNe



 (3.33)

Where S1 to S4 refer to Surfaces 1 to 4 respectively.

From equation 3.9, knowing that the material properties are assumed to be non-

linear:

    Tkq

yT

xT

kk

kk

q

q

y

x
































2221

1211

 (3.34)

From equations 3.15 and 3.16:

      tTBT  (3.35)

Therefore:


















































8

2

1

821

821

2221

1211

T

T

T

yNyNyN

xNxNxN

kk

kk

q

q

y

x




 (3.36)

Now we will assume that the material properties are linear, therefore:

  









2221

1211

kk

kk
k (3.37)

Where k is the constant thermal conductivity for the concrete.

 3.30

      

     











































e

e

dT
yNyNyN

xNxNxN
k

yNxN

yNxN

yNxN

dttTNcN i

821

821

88

22

11









 
















3
4

3
4

2
4

2
4

1
4

1
4

4433

2211

S ieS is

S ieS isS ieS is

S ieS isS ieS is

S ieS isS ieS isi

dNTdNT

dNTdNTdNTdNT

dNhTdNhTdNhTdNhT

dNhTdNhTdNhTdNhTdQNe




(3.38)

Where:























8

2

1

N

N

N

Ni 
 (3.39)

    tTNT  (3.40)

Simplifying:

                  eee dNQdTBkBdtTNNc T

           

           

             

         













3
4

3
4

2
4

2
4

1
4

1
4

4433

2211

S eSS e

SS eS

S eSS eS

S eSS eS

dNTdTNNdNT

dTNNdNTdTNN

dNhTdTNNhdNhTdTNNh

dNhTdTNNhdNhTdTNNh




 (3.41)

 3.31

Equation 3.41 reduces to:

                   
         
       
      321

3214

3214

321

SrSrSr

SSSSh

ShShShSh

ShShShQc

RRR

RRRR

RRRTk

TkTkTkRTktTC










 (3.42)

Where:

       e dNNcC 

         e dBkBk T
c

       dNQR eQ

     
11 SSh dNNhk      

22 SSh dNNhk

     
33 SSh dNNhk      

44 SSh dNNhk

    
11 S eSh dNhTR     

22 S eSh dNhTR

    
33 S eSh dNhTR     

44 S eSh dNhTR

        
1

4
1 SS dTNNR          

2
4

2 SS dTNNR 

        
3

4
3 SS dTNNR 

      dNTR
S eSr 1

4
1        dNTR

S eSr 2
4

2 

      dNTR
S eSr 3

4
3 

 3.32

Where [C] is the element capacitance matrix and relates to conduction and [kc]

and [kh] are the element conductance matrices which relate to convection. The

convection matrix [kh] is only formulated for elements on the boundaries where

convection takes place. The matrices RQ, Rh, R and Rr are the matrices due to the

internal heat generation, surface convection and surface radiation respectively (the

latter two matrices are both for surface radiation).

The formulation of the finite element equation for a single element has now been

completed. This equation (equation 3.42) however, is formulated for elements

with interpolation functions that are defined in Cartesian coordinates. These

elements have relatively low accuracy because of the low order interpolation

functions. In step 2 of the application of the finite element method eight noded

quadrilateral isoparametric elements were chosen to discretise the continuum.

These elements have higher order interpolation functions thus they provide higher

accuracy and can better approximate curved boundaries. The disadvantage of

utilizing isoparametric elements is that the elements are required to be mapped

into the Cartesian coordinate system. This principle requires the matrices in

equation 3.42 to be modified.

The element matrices involving volume integrals (i.e. [C], [kc] and {RQ}) are

integrated with respect to the volume of an element in Cartesian coordinates.

dydxtd 

Where t is the thickness of the element.

These integrals now need to be modified such that the integration is with respect

to the - coordinate system. This is done such that numerical integration is

possible.

 3.33

The introduction of the Jacobian matrix is required to carry out this

transformation. From equations 3.15 and 3.16 it is required to express Ni/x and

Ni/y in terms of  and . Due to the inverse form of equations 3.2 and 3.3 it is

possible to utilize the chain rule of differentiation such that:

       yyNxxNN iii

       yyNxxNN iii

These equations can now be written in matrix notation:



































yN

xN

yx

yx

N

N

i

i

i

i







 (3.44)

The Jacobian [J] is now defined as:

  














yx

yx
J (3.45)

Equations 3.2 and 3.3 are now rewritten and differentiated accordingly:

 



8

1
,

i
ii xNx  (3.2)

 



8

1
,

i
ii yNy  (3.3)

(3.43)

 3.34

The Jacobian therefore becomes:

  
     

     

































8

1

8

1

8

1

8

1

,,

,,
,

i
ii

i
ii

i
ii

i
ii

yNxN

yNxN

J





 (3.46)

Equation 3.44 can be rearranged in the following form:

 





















 




i

i

i

i

N

N
J

yN

xN 1 (3.47)

Now this transformation process can be illustrated using equations 3.15 and 3.16:












































3

2

1

821

821

T

T

T

yNyNyN

xNxNxN

yT

xT




 (3.48)

The above equation can be transformed into:

 









































 

3

2

1

821

8211

T

T

T

NNN

NNN
J

yT

xT








 (3.49)

The element matrices are integrated with respect to the volume of the element

relative to the Cartesian coordinates. This can now also be transformed as follows:

   ddJtdydxtd , (3.50)

 3.35

The Jacobian matrix is also useful for checking whether the mapping is acceptable

(i.e. the elements do not overlap). If J  0 and the sign of J does not change in

the continuum, acceptable mapping can be assured (J is the determinate of J).

This transformation allows the element integrals to be evaluated by integration

over the unit square of the isoparametric parent element. The element matrices

involving volume integrals ([C], [kc] and {RQ}) can now be transformed into:

Capacitance matrix:

          
 


1

1

1

1

,,,  ddJNNtcC (3.51)

This double integral can now be evaluated using a numerical integration

technique. The commonly used method is Gauss-Legendre quadrature. Using this

technique the capacitance matrix becomes:

          
 


NG

i

NG

j
jijijiji JNNtcWWC

1 1
,,,  (3.52)

Where NG is the number of Gauss points in each integration direction and can

range between 1 and 8, Wi and Wj are the Gauss weights and i and j are the

coordinates of the Gauss points.

This numerical integration technique (Gauss-Legendre quadrature) was however

not used in the Matlab programme code, due to the vast number of built-in

integration functions in Matlab.

 3.36

Conductance matrix:

The element conductance matrix is formulated in a similar manner, except the

temperature gradient matrix [B] is evaluated in terms of  and . Using equations

3.20 and 3.47 the equation for [B] in terms of  and  is derived:

      










 





821

8211,,
NNN

NNN
JB




 (3.53)

The element conductance matrix therefore is:

             ddJBkBtk T
c ,,,

1

1

1

1
 
 

 (3.54)

The conductance matrix can also be evaluated by Gauss-Legendre quadrature:

            
 


NG

i

NG

j
jiji

T
jijic JBkBtWWk

1 1
,,,  (3.55)

Heat liberated matrix:

        ddJNtQRQ ,,
1

1

1

1
 
 

 (3.56)

The heat liberated matrix can also be evaluated by Gauss-Legendre quadrature:

       
 


NG

i

NG

j
jijijiQ JNQtWWR

1 1
,,  (3.57)

 3.37

The remaining element matrices ([kh]S1 to S4, {Rh}S1 to S4, {R}S1 to S4 and {Rr}S1 to S4)

can be evaluated similarly by Gauss-Legendre quadrature in the  plane. These

element matrices are due to the existence of the three noded quadratic rod elements

that are used to incorporate the boundary conditions. Integrals along an element

edge (integration with respect to ) are evaluated using a local coordinate system s.

The distance d along an element edge can be expressed in terms of ds:

     ddddyddxds  22 (3.58)

Considering a side s of an element that connects three nodes, as shown in

Figure 3.15, the Pythagoras theorem is used for this derivation.

Figure 3.15 Segment s of a boundary which forms one side of an eight noded

 quadrilateral element

This transformation allows the element integrals to be evaluated by integration

over the isoparametric parent element. The element matrices involving surface

integrals ([kh]S1 to S4, {Rh}S1 to S4, {R}S1 to S4 and {Rr}S1 to S4) can now be

transformed into:

y

x

I

J

K

d dy

dx

 3.38

Additional conductance matrix:

           



1

1

22
41  dddyddxtNNhk StoSh (3.59)

Using Gauss-Legendre quadrature:

           



NG

i
iiiStoSh ddyddxNNthWk

1

22
41  (3.60)

Additional heat load matrices:

        



1

1

22
41  dddyddxtNThR eStoSh (3.61)

             



1

1

224
41  dddyddxtTNNR StoS (3.62)

        



1

1

224
41  dddyddxtNTR eStoSr (3.63)

Gauss-Legendre quadrature can also be applied to the above three matrices.

Now that the finite element equation has been defined and modified due to the use

of isoparametric elements, the assemblage of the elements is required.

 3.39

Step 4:

The assembly procedure is in principle a general procedure that applies to all

finite element systems. The general procedure can be summarized in the following

steps:

1 Create n x n and n x 1 all zero matrices, where n is the total number of

nodes required to discretise a continuum. In Figure 3.16, n = 21. Due to

temperature being the only unknown (degree of freedom) at each node the

number of nodes is equal to the number of unknowns required to be solved

throughout the continuum. Therefore the number of unknown temperature

values is equal to n.

Figure 3.16 Four elements connected producing 21 nodes

2 Transform the element equations from the local to the global numbering

system if the two numbering systems are not coincident. In Figure 3.17 the

local and global numbering systems are shown for element 4 from

Figure 3.16. The process of assemblage is a stepwise process, thus only

one element is considered presently.

1

6

5 432

9
10 11 12

13

8 7

201817

15

21

16 14

1 2

3 4

19

 3.40

Figure 3.17 Element 4, global and local numbering scheme

3 Using this established correspondence between local and global numbering

systems, change from the local to the global indices. Further, it requires

that a subscript referencing the position of each and every term in the

element matrices be created. The square element matrices will have a

double subscript to indicate the row and column in which the term is

located. The column matrices require only a single subscript. It must be

emphasized that these subscripts are global node numbers not local node

numbers.

4 These terms are now inserted into the corresponding n x n and n x 1 all

zero matrices in the locations designated by their indices. If for instance

there is already a term in a certain position where another term is required

to be placed, the terms are added.

5 It is now required to return to step 2 of the assemblage process and repeat

this procedure until all the elements have been considered. The final result

will be n x n global capacitance, conductance and additional conductance

matrices and n x 1 global column heat liberated and heat load matrices.

This then results in a global finite element equation for the entire

Element 4

21 20 19

16 15

13 11

1 2

4

3

5 6 7

8

Bold = Global Node
 Numbers
Italic = Local Node
 Numbers

12

 3.41

continuum containing M number of elements. This equation is then solved

to obtain the temperature distribution throughout the continuum (refer to

step 6).

This assembling process is based on the law of compatibility or continuity as it

requires that the body remain continuous. Due to the fact that temperature is a

scalar quantity, it must be assured that continuity will be upheld.

There is however the issue of combining the three noded quadratic rod elements

with the eight noded quadrilateral isoparametric elements. Figure 3.18 shows four

quadrilateral elements and eight rod elements plus the relative global node

numbering of the quadrilateral elements.

Figure 3.18 Combining three noded quadratic elements with eight noded

 quadrilateral isoparametric elements

1

6

5432

9
10 11 12

13

87

20191817

15

21

1614

1 2

3 4

1 2 3 4 5

11

1

2 2

2

3 3

3

4 4

4

5 5

5

a

f

e

dc

b

h g

One three noded
quadratic rod element

 3.42

Element a in Figure 3.18 shares common nodes with element 1 (i.e. node 2 of

element a shares a node with node 6 of element 1). This sharing of nodes is

fundamental to the assemblage process. The node numbering of the three-noded

rod elements is in terms of the local numbering system, and therefore these

elements will adopt the global node numbering from the eight noded

quadrilaterals in the assemblage process due to node sharing. The heat load

vectors will therefore only have entries in the rows relating to the common global

node numbers.

The surface integrals can now be combined for the appropriate like terms and

equation 3.42 becomes the global finite element heat transfer equation:

                rhQhc RRRRTkktTC   (3.64)

Step 5:

The general stepwise procedure of finding a solution to a continuum problem with

the use of the finite element method includes a separate step for the inclusion of

the boundary conditions. This step however, has already been taken into account

in Step 3. The process of solving for an individual element equation involves the

method of weighted residuals and related integration by parts. As mentioned

previously, the integration by parts incorporates the boundary conditions

automatically and thus they have already been considered.

Step 6:

The transient global finite element heat transfer equation (equation 3.64) is solved

in this step. This is an ordinary differential equation that is required to be solved

iteratively. This numerical integration procedure relies on recursion formulas

which permit the solution to be “marched out” in time, starting from an initial

temperature distribution. The algorithm to be used is the implicit one-parameter

 3.43

“ ” scheme where -1    1. This scheme computes temperatures at time tn+1

from a set of coupled algebraic equations.

                rhQhc RRRRTkktTC   (3.64)

                rhQhc RRRRTkkTC  
 (3.65)

The following approximations can be formulated:

       tT~tTTT nn  1
 (3.66)

       11  nn TTT  (3.67)

Where t is the time step through which the solution will be iterated, {T}n+1 is the

temperature at the next time step and {T}n is the temperature at the current time

step.

Substituting equations 3.66 and 3.67 into equation 3.65 yields:

                 HTTkktTTC nnhcnn   11 1  (3.68)

Equation 3.68 then simplifies to provide a time marching scheme to be used to

obtain a solution to the transient global finite element heat transfer equation.

                    
       rhQ

nhcnhc

RRRR

TkkCtTkkCt



 



 111 1 (3.69)

H

 3.44

The parameter  was chosen to be ½, which represents the Crank-Nicolson

algorithm. This algorithm is unconditionally stable, but a time step that is too

large may introduce oscillations that could cause the solution to diverge from the

exact solution. Equation 3.69 is programmed in Matlab such that a solution to the

temperature after each time step (t) throughout the continuum is established.

Step 7:

No additional computations are required for the finite element heat transfer

analysis, although a proposed additional computation would be to calculate the

stresses and strains that are generated within a continuum due to the differential

temperatures within the medium.

3.4 CONCLUSION

This chapter considered the fundamental steps required to obtain a transient

solution to a heat transfer problem. A general formulation was presented based on

the method of weighted residuals. This theory was used to create a programme

written in Matlab to predict the heat liberated and distributed over a two-

dimensional continuum. Chapter 4 presents the results obtained from the

numerical model and compares this data to experimental results. Appendix A

gives the Matlab code for the fundamental functions.

 4.1

4 MODEL OUTPUT AND DISCUSSION

4.1 INTRODUCTION

This chapter deals with the results produced by the finite element numerical

model. Comparisons between the predicted and measured results obtained from

two different experiments are then drawn. The two available measured

temperature profiles that were utilized for a comparison/verification exercise are:

1 Temperature measurement exercise that was conducted during the

construction of the Katse Dam in Lesotho (Ballim, 2004a).

2 Temperature verification exercise that was conducted for the previously

mentioned finite difference numerical model: An instrumented block of

concrete was cast in the University of the Witwatersrand’s laboratory from

which temperature profiles were obtained (Ballim, 2004b).

Furthermore, this chapter presents a detailed comparison between the predicted

two dimensional temperature profiles using finite element and finite difference

analysis techniques. Comments and proposed solutions to errors within the

modelling techniques are also discussed.

This section will commence with an explanation of the input variables required to

obtain a solution from the finite element numerical model - accurate input

variables are the fundamental basis for the prediction of valid solutions. The

results of the finite element numerical model, including a comparison with the

measured and finite difference model results, are then presented. A sensitivity

analysis, demonstrating the effect of various element configurations on the

predicted results, will bring the model output portion to a close.

 4.2

4.2 FINITE ELEMENT NUMERICAL MODEL

4.2.1 Input Data

Microsoft Excel spreadsheets were used to generate the input data essential for the

finite element numerical model. Various code written in Microsoft Visual Basic,

were implemented to create input files that specify the geometry of the finite

element discretisation. The Microsoft Excel file “Co-ordinates.xls” (refer to

attached compact disk) generates the discretised continuum with the following

input data:

Table 4.1 Input required for the mesh generator

x Dimension = 2 m

Number of

elements in the

x direction =

20

Element width

in the x

direction (m) =

0.1

Number of

nodes in the x

direction =

41

y Dimension = 1 m

Number of

elements in the

y direction =

10

Element width

in the y

direction (m) =

0.1

Number of

nodes in the y

direction =

21

Total number of elements = 200 Aspect ratio = 1
Total number

of nodes =
661

The cells highlighted in green (i.e. the x and y dimensions of the cross-section and

the number of elements in the x and y directions) are the only input values

required by the user for this discretisation procedure. This procedure produces a

finite element mesh as shown as an example in Figure 4.1.

The spreadsheet also creates the global node numbers and corresponding

Cartesian co-ordinates of each node. However it must be emphasized, that this

particular mesh generator can only discretise a continuum with regular 8 noded

rectangular elements of equal size.

The cell highlighted in blue in Table 4.1 represents an individual element’s aspect

ratio. This is a relationship of the element width (m or mm) to its height (m or

mm) (i.e. the proportion of the maximum dimension to the minimum dimension).

 4.3

As an approximate guideline, elements with an aspect ratio exceeding three

should be used with caution and those exceeding ten are viewed as an

inappropriate approximation of a continuum (i.e. the elements become excessively

elongated and thus the finite element approximation in the extended direction is a

rough estimate) (Kumar, 1996). Therefore, in order to obtain comparatively

reliable results an aspect ratio of one is maintained (i.e. the elements are square).

A sensitivity analysis found in Section 4.5, was performed with a variation of the

element’s aspect ratio to illustrate the above phenomenon.

Co-ordinates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

x Dimension (m)

y
 D

im
e

n
s

io
n

 (
m

)m

Figure 4.1 An example of the Finite element discretisation over a specified cross-

 section (only element nodes are shown) showing all four peripheral

 surfaces

This Microsoft Excel file (Co-ordinates.xls) also creates arrays of global node

numbers and their relative x and y co-ordinates for the respective surfaces (i.e.

Surface 1 to Surface 4 as shown in Figure 4.1).

A supplementary Microsoft Excel file titled “Elements.xls” (refer to attached

compact disk) generates further input files with the same input data as the

Single Element

 Surface 1
 Surface 2
 Surface 3
 Surface 4

 4.4

previous file. The function of this spreadsheet is to specify how the elements are

linked together, and to present the data from the previous spreadsheet in a format

compatible with the finite element numerical model.

The spreadsheets within both of the Microsoft Excel files or parts thereof are then

saved as data files, such that they can be imported into Matlab.

The general geometric input data produced by the Microsoft Excel files are:

 ElementCoord: The x and y co-ordinates for each node of

every 8 noded quadrilateral element.

 NodesXElements: Global node numbers for each 8 noded

quadrilateral element.

 NodesXElementsS1: Global node numbers for each 3 noded

quadratic rod element on Surface 1.

 NodesXElementsS2: Global node numbers for each 3 noded

quadratic rod element on Surface 2.

 NodesXElementsS3: Global node numbers for each 3 noded

quadratic rod element on Surface 3.

 NodesXElementsS4: Global node numbers for each 3 noded

quadratic rod element on Surface 4.

 S1: The x and y co-ordinates for each node of

every 3 noded quadratic rod element

on Surface 1.

 S2: The x and y co-ordinates for each node of

every 3 noded quadratic rod element

on Surface 2.

 S3: The x and y co-ordinates for each node of

every 3 noded quadratic rod element

on Surface 3.

 S4: The x and y co-ordinates for each node of

every 3 noded quadratic rod element

on Surface 4.

 4.5

These arrays are also required to assemble the individual elements into a global

system for the finite element numerical model assemblage process. Each array is

formulated such that the element matrices are assembled relative to the

discretisation of the continuum.

Furthermore, additional input arrays are required to define the ambient

temperature and the amount of heat liberated within the concrete:

 AmbientTemp: Specifies daily maximum and minimum ambient

temperatures (C) for the use of the sinusoidal temperature

variation function programmed in Matlab

 Maturity: Tabulated values of the heat rate curve as calculated using

the experimental data obtained from the adiabatic

calorimeter test. The values tabulated are: Time (t20 hours)

with respect to the Maturity Heat Rate (W/kg)

Additional data such as; material properties, initial conditions, specific boundary

conditions and time increment and duration are required as input for the finite

element numerical model. These input variables must be entered at the

commencement of the finite element programme:

 Total number of elements

 Total number of nodes

 Total number of elements in the y-direction

 Total number of elements in the x-direction

 Initial concrete temperature (C)

 Time of day when concrete is cast (hrs)

 Thermal conductivity of concrete (W/m.K)

 Concrete density (kg/m3)

 Concrete specific heat (J/kg.K)

 Formwork removal time (hrs)

 Convective heat transfer coefficient for the exposed concrete surface

(W/m2.K)

 4.6

 Convective heat transfer coefficient for the surfaces covered with formwork

(W/m2.K)

 Thermal conductivity of founding rock (W/m.K)

 Stefan Boltzman constant (W/m2.K4)

 Emissivity of the grey concrete surface

 Time at which the minimum overnight temperature occurs (hrs)

 Binder content (kg/m3)

 Apparent activation energy (kJ/mol)

 Universal gas constant (kJ/mol.K)

 Time increment (hrs)

 Time period (hrs)

4.2.2 Output data

The finite element numerical model produces graphical output as shown in

Figure 4.2. Temperature profiles from individual nodes within the discretised

continuum may be extracted from the analysis results, converted and then copied

into a Microsoft Excel spreadsheet. These arrays can then be plotted with respect

to measured temperatures with relative simplicity. Due to the limited range of the

experimental results, only certain points within the cross-section are compared.

Figure 4.2(a) shows a plot of temperature (C) versus time (hrs) for each

individual node within the cross-section and Figure 4.2(b) illustrates a contour

plot of the temperature over the cross-section at the specified time period. An

envelope plot of the maximum and minimum temperatures, encompassing all the

nodal temperatures is also depicted in Figure 4.2(c). This is a practical illustration

of the maximum temperature gradient within the concrete element and the time at

which it occurs. The envelope plot is the primary purpose of the temperature

prediction model as it indicates, for a given concrete material and environmental

conditions, the temperature gradients that are likely to be achieved for a given

concrete structural configuration. This information is essential for determining the

 4.7

thermally induced stresses that may develop and, the likelihood of such stresses

inducing cracks in the concrete.

Figure 4.2 An example of the finite element numerical model graphical output

Appendix B should be consulted for a worked example that describes in detail the

functionality and procedure required to implement and obtain results from the finite

element numerical model.

Temperature
(deg C)

(a)

(b)

Single Element

(c) 29.8 C

 4.8

4.3 EXPERIMENTAL AND NUMERICAL RESULTS COMPARISON

This section is divided into two parts; verification of the finite element model

against data obtained from the Katse Dam measurements (Ballim, 2004b),

followed by a further validation against data obtained from the laboratory

experiment reported by Ballim (2004a).

4.3.1 Temperature – time profiles: Katse verification

Introduction

An unreinforced concrete cube, with dimensions 2m x 2m x 2m, instrumented

with thermal probes was cast on the Katse Dam site. The concrete block was cast

over a three hour time period with thermal probes numbered 1 to 6 held in

position as shown in Figure 4.3.

Figure 4.3 Positions of the thermal probes within the 8 m3 concrete element

 cast on the Katse Dam site

1

6

5 4

3

2 North

East

2m

2m

2m Centre Lines of Cube

y

x

z

Positive
Directions

 4.9

The coordinates of the centre of the concrete element in millimetres (x, y, z) = (0, 0, 0).

Prior to the casting of concrete, thermal probes were laid out inside the cube. The

relative positions were:

1: At the centre of the rock and concrete interface (bottom). (x, y, z) = (0, -1000, 0)

2: 250 mm above the bottom probe. (x, y, z) = (0, -750, 0)

3: 500 mm above the bottom probe. (x, y, z) = (0, -500, 0)

4: At the centre of the concrete cube. (x, y, z) = (0, 0, 0)

5: 500 mm north of the central probe. (x, y, z) = (0, 0, 500)

6: 50 mm from the east face level with the central probe. (x, y, z) = (-950, 0, 0)

Figure 4.4 illustrates the finite element discretisation through a central cross-

section of the 8 m3 cube. Relative numbering of thermal probe positions (numbers

in italics) and finite element global node numbers are included.

 4.10

Co-ordinates

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

x Dimension (m)

y
 D

im
e

n
s

io
n

 (
m

)m

176

331

21

641 651 660

Figure 4.4 Finite element discretisation over the specified cross-section

Temperature versus time profiles are constructed and compared with the measured

results by extracting relative data from the finite element numerical model. Each

position (positions 1 to 6) within the cross-section has a specific temperature

versus time profile that was plotted using the Microsoft Excel Chart Wizard. A

plot of measured results and results obtained from the finite difference numerical

model are included in every graph.

The finite element numerical model, evaluated over a time period of 107 hours,

(this is the time at which the maximum temperature within the cross-section is

produced relative to the finite element numerical model) produces the graphical

output as shown in Figure 4.5.

 = Verification Points/
 Points of Comparison

5 4

3

2

1

6

 4.11

Figure 4.5 Finite element numerical model graphical output for the Katse

 verification

Predicted temperatures obtained from the finite element numerical model and

finite difference numerical model (as determined by Ballim (2004b)) including the

measured data are now presented at all six positions throughout the cross-section.

(a)

(b)
Temp

(deg C)

Thermal Probe Positions

1
2
3

4 5 6

 4.12

Position 1: At the centre of the rock and concrete interface

Measured results were recorded over a 210 hour time span. Thus, for this

comparison, the same time period is utilized for the numerical models.

Bottom

0

5

10

15

20

25

0 50 100 150 200

Time (hrs)

T
e

m
p

e
ra

tu
re

 (
°C

)

FEM MODEL
MEASURED
FD MODEL

Figure 4.6 Temperature profile plot at position 1

Figure 4.6 reveals that the predicted and measured results are comparatively close.

However, the finite element numerical model appears to overestimate the

temperature for the greater part of the time period. This inaccuracy can be

attributed to convection theory rather than conduction theory being employed to

model the interface between the rock and the concrete. Discretising the rock and

including it within the finite element analysis, thus treating the surface between

the rock and concrete element as a thermal conduction problem rather than the

assumed thermal convection problem would significantly improve the results of

the finite element numerical model. It is important to note that the proposed

technique will substantially increase the amount of computer time required to

obtain a solution to the heat transfer problem. Nevertheless, it is argued that this

Maximum Temperatures (C)
FEM MODEL 19.9
MEASURED 18.7
FD MODEL 17.6

Time to attain Max Temp. (hrs)
FEM MODEL 122
MEASURED 144
FD MODEL 84

 4.13

compromise in computer runtime will not greatly influence the accuracy of the

results throughout the cross-section.

The maximum measured temperature was 18.7C compared with 19.9C for the

finite element model and 17.6C for the finite difference model. This translates to

an absolute error of 1.2C for the finite element model and 1.1C for the finite

difference model. Relatively small absolute errors indicate that the numerical

modelling techniques predict the maximum temperatures that evolve at position 1

with reasonable accuracy. Furthermore, overall temperature predictions remained

within an acceptable range throughout the time period.

Additional information such as the time taken for the maximum temperature to be

reached can also be deduced from the plots in Figure 4.6. This is an important

factor as it specifies the time frame at which maximum thermal stresses, owing to

external restraints, are likely to occur within the concrete element. Furthermore it

also provides another point of comparison required in the assessment of accuracy

for the two numerical modelling techniques.

The measured time period for the maximum temperature to develop at position 1

is 144 hours, compared with the predicted durations of 122 hours for the finite

element model and 84 hours for the finite difference model. This translates to an

absolute error of 22 hours for the finite element model and 60 hours for the finite

difference model. Consequently the finite element numerical model predicts the

time period required for the maximum temperature to develop at position 1 to a

greater level of accuracy than the finite difference model. It can therefore be

deduced that the finite element method is an improved prediction technique at

position 1 relative to the finite difference method.

 4.14

Position 2: 250 mm above the bottom probe

250mm from bottom face

0

5

10

15

20

25

0 50 100 150 200

Time (hrs)

T
em

p
er

at
u

re
 (

°C
)

FEM MODEL
MEASURED
FD MODEL

Figure 4.7 Temperature profile plot at position 2

Figure 4.7 shows that the modelled and measured results correlate well, although

the finite element numerical model slightly overestimates the temperature for a

greater portion of the time period, as with Position 1. This finding can be

attributed to inaccuracies carried over from the modelling of the temperature

profile at position 1. However, it can be expected that the margin of error will

decrease with the proposed improvements to the modelling technique mentioned

for position 1.

The absolute difference between the maximum measured temperature and the

maximum predicted temperatures is 1.7C for the finite element model and 0.4C

for the finite difference model. Although the finite difference model predicts the

maximum temperature more accurately, the profile of the finite element curve

better approximates that of the measured curve. Thus, with a decrease in

temperature (i.e. the finite element numerical model plot shifts downwards) the

finite element numerical model will yield an improved approximation of the

Maximum Temperatures (C)
FEM MODEL 21.4
MEASURED 19.7
FD MODEL 20.1

Time to attain Max Temp. (hrs)
FEM MODEL 122
MEASURED 124
FD MODEL 96

 4.15

measured results, in addition to providing a better approximation of the time

required to reach the maximum temperature. The time at which the maximum

measured temperature occurs is 124 hours compared with the predicted durations

of 122 hours for the finite element model and 96 hours for the finite difference

model. This translates to an absolute error of 2 hours for the finite element model

and 28 hours for the finite difference model.

Position 3: 500 mm above the bottom probe

500mm above bottom face

0

5

10

15

20

25

0 50 100 150 200

Time (hrs)

T
em

p
er

at
u

re
 (

°C
)

FEM MODEL
MEASURED
FD MODEL

Figure 4.8 Temperature profile plot at position 3

Figure 4.8 shows that the modelled and measured results are similar to the

temperature profiles at position 2. The maximum measured temperature was

21.0C compared with 22.4C for the finite element model and 21.6C for the

finite difference model. This translates to an absolute error of 1.4C for the finite

element model and 0.6C for the finite difference model. The measured time

period for the maximum temperature to develop at position 3 is 124 hours

compared with 119 hours for the finite element model and 98 hours for the finite

Maximum Temperatures (C)
FEM MODEL 22.4
MEASURED 21.0
FD MODEL 21.6

Time to attain Max Temp. (hrs)
FEM MODEL 119
MEASURED 124
FD MODEL 98

 4.16

difference model. This translates to an absolute error of 5 hours for the finite

element model and 26 hours for the finite difference model. The evident

inaccuracy and conclusions that can be drawn are rationalised in the same way as

for position 2.

Position 4: At the centre of the concrete cube

Centre

0

5

10

15

20

25

0 50 100 150 200

Time (hrs)

T
em

p
er

at
u

re
 (

°C
)

FEM MODEL
MEASURED
FD MODEL

Figure 4.9 Temperature profile plot at position 4

Figure 4.9 reveals a good correlation between the predicted and measured

temperature profiles. The maximum temperature should arise at the centre of the

concrete block or close to the centre depending on the boundary conditions. From

the above figure both the numerical models produce similar temperature profiles.

The absolute difference between the maximum measured and predicted

temperatures is 1.6C for the finite element model and 1.2C for the finite

difference model. This error could be attributed to the 3 hour time period that was

required to cast the 8 m3 concrete block. If the concrete block could have been

cast instantaneously or more specifically at the rate of placing the test sample in

Maximum Temperatures (C)
FEM MODEL 22.8
MEASURED 21.2
FD MODEL 22.4

Time to attain Max Temp. (hrs)
FEM MODEL 107
MEASURED 108
FD MODEL 104

 4.17

the adiabatic calorimeter, the measured temperature curve would shift higher and

thus yield an improved correlation with the predicted results. A decrease in the

finite element numerical model plot (i.e. shift closer to the measured plot) with an

increase in accuracy of the predicted temperature at position 1 is also expected.

The absolute difference between the measured and predicted time periods for the

maximum temperature to develop at position 4, is 1 hour for the finite element

model and 4 hours for the finite difference model. It can therefore be concluded

that neither of the numerical models predicts the temperature profile at the centre

of the concrete block to a higher accuracy than the other, but that both produce

acceptable results.

Position 5: 500 mm north of the central probe

500mm from side face

0

5

10

15

20

25

0 50 100 150 200

Time (hrs)

T
em

p
er

at
u

re
 (

°C
)

FEM MODEL
MEASURED
FD MODEL

Figure 4.10 Temperature profile plot at position 5

Both the numerical model plots in Figure 4.10 overestimate the temperature for

the time period below 100 hours and underestimate the temperature for the time

range greater than 100 hours. The presence of small oscillations in the numerical

Maximum Temperatures (C)
FEM MODEL 21.2
MEASURED 21.4
FD MODEL 20.8

Time to attain Max Temp. (hrs)
FEM MODEL 113
MEASURED 116
FD MODEL 88

 4.18

model plots is due to variations in atmospheric temperature. These oscillations

become more prominent closer to the surface of the concrete exposed to the

atmosphere.

The absolute difference between the maximum measured and predicted

temperatures is 0.2C for the finite element model and 0.6C for the finite

difference model. The absolute difference between the measured and predicted

time periods for the maximum temperature to develop at position 5, is 3 hours for

the finite element model and 28 hours for the finite difference model.

A phenomenon readily observed on the graph occurs when the concrete begins to

dry and the moisture content decreases (i.e. water is consumed by the hydration

reaction and lost by surface evaporation). Consequently the thermal conductivity

decreases. This process of evaporation begins from the surface and gradually

progresses into the concrete whereas the water consumed by hydration occurs

over time throughout the cross-section. Due to the resulting decrease in thermal

conductivity, the heat liberated within the concrete cannot dissipate to the

surrounding environment as efficiently. This effect has not been taken into

account in either of the numerical modelling techniques. Therefore the

temperature prediction for the time period greater than 100 hours is lower than the

measured temperatures. A reduced thermal conductivity will also dampen the

oscillations induced by the atmospheric temperature. This is attributed to a

decrease in heat transfer between the concrete and the surrounding environment.

The finite element numerical model does not account for the relationship between

moisture content and thermal conductivity due to the exponential increase in

computer time required when solving a heat transfer problem. Van Breugle (1998)

however, does give a linear relationship between moisture content and thermal

conductivity relative to the initial concrete temperature and aggregate type. This

relationship could be roughly implemented in order to refine the solutions

obtained from the finite element numerical model. However, it was decided that

the results obtained are currently acceptable as an optimization between computer

run time and accuracy.

 4.19

Position 6: 50 mm from the east face level with the central probe

The numerical modelling techniques estimate the temperature profile just below

the surface of the concrete to a low degree of accuracy. As shown in Figure 4.11

the finite element numerical model gives a better approximation than that of the

finite difference numerical model. This is revealed through the use of trend lines

(i.e. the finite element numerical models’ trend line approximates that of the

measured values to a greater accuracy).

50mm from side face

0

5

10

15

20

25

0 50 100 150 200

Time (hrs)

T
em

p
er

at
u

re
 (

°C
)

FEM MODEL MEASURED

FD MODEL Trend line FD MODEL
Trend line FEM MODEL Trend line MEASURED

Figure 4.11 Temperature profile plot at position 6

As mentioned previously, the thermal conductivity of concrete should be taken

relative to a varying moisture content. As the concrete loses water due to

evaporation (occurs rapidly, as position 6 is near to the surface), the moisture

content and thermal conductivity decrease, which in turn reduces the amount of

heat dissipated to the surrounding environment. Consequently, the predicted

temperatures would increase and the oscillations would dampen, resulting in an

improved approximation of the measured values.

 4.20

It should be noted that the major motivation for utilising the finite element

approach for the heat transfer analysis was to obtain a more apt definition of the

boundary conditions. Even though the varying thermal conductivity of the

concrete was not included in the finite element numerical model, the predicted

temperatures are closer than those of the finite difference numerical model to the

measured temperatures at the boundaries. These boundary conditions can be

significantly improved by introducing the moisture content versus thermal

conductivity relationship into the finite element numerical model. Refinement of

the element mesh would also improve the accuracy of the results.

A significant advantage of the finite element numerical model is that the boundary

conditions can encompass a large range of variables and conditions that are

difficult or impossible to model with the finite difference numerical model.

In the subsequent verification process, a concrete block was cast under laboratory

conditions which ultimately reduces the combined effect of wind and cloud cover.

Thus it was expected that the predicted results will correlate to a higher degree of

accuracy than those obtained from the Katse verification process.

4.3.2 Temperature – time profiles: Laboratory verification

Introduction

An unreinforced concrete block, with dimensions 1m x 0.7m x 0.7m high, was

cast in the University of the Witwatersrand’s concrete laboratory with thermal

probes held in position as shown in Figure 4.12. The concrete block was cast onto

a thin plastic sheet directly on the concrete floor of the laboratory. Due to the

controlled environment in the laboratory, the impact of ambient environmental

conditions on the test block should be significantly reduced. Therefore wind,

cloud cover, solar radiation and environmental temperatures had a negligible

impact on the boundary conditions as opposed to the situation for the Katse

 4.21

verification process. It was expected that the numerical modelling techniques

would predict the temperatures to a greater degree of accuracy relative to the

previous verification process due to the controlled boundary conditions.

Surface A and Surface B of the concrete block in Figure 4.12 were insulated with

a 20 mm thick sheet of high density Styrofoam and a 15 mm layer of timber form-

board to simulate a long dimension in the z direction. This was done to reproduce

effectively a two dimensional heat transfer problem.

The coordinates of the centre of the concrete element in millimetres (x, y, z) = (0, 0, 0)

Figure 4.12 Positions of the thermal probes within the concrete element that was

 cast in the University of the Witwatersrand’s concrete laboratory

Prior to casting of the concrete element, the thermal probes were fixed inside the

formwork at the positions shown in Figure 4.12. The relative positions were:

1: At the centre of the floor and concrete interface (bottom). (x, y, z) = (0, -350, 0)

2: 150 mm above the bottom probe. (x, y, z) = (0, -200, 0)

1

6

5

4

3

2

700 mm

700 mm

1000 mm

7

y

x

z

Surface A

Surface B

Centre Lines of
Element

Positive
Directions

 4.22

3: At the centre of the concrete element. (x, y, z) = (0, 0, 0)

4: 250 mm in the x direction from the central probe. (x, y, z) = (250, 0, 0)

5: 450 mm in the x direction from the central probe. (x, y, z) = (450, 0, 0)

6: 150 mm above the central probe. (x, y, z) = (0, 150, 0)

7: 50 mm below the top surface above the central probe. (x, y, z) = (0, 300, 0)

Figure 4.13 illustrates the finite element discretisation through a central cross-

section of the concrete block. The relative numbering of the thermal probe

positions (numbers in italics) and finite element global node numbers are

included.

Co-ordinates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x Dimension (m)

y
 D

im
e
n

s
io

n
 (
m

)m

21

207

455 473465

641

827

Figure 4.13 Finite element discretisation over the specified cross-section

Temperature versus time profiles can be produced by extracting the relative data

from the finite element numerical model. Each position, within the finite element

discretisation (positions 1 to 7), has a temperature versus time profile that was

plotted using Microsoft Excel Chart Wizard. In addition, each graph includes a

1

2

5 4 3

6

7

 = Verification Points/
 Points of Comparison

 4.23

plot of the measured results together with the results obtained from the finite

difference numerical model.

The finite element numerical model, evaluated over a time period of 23 hours,

(this is the time at which the maximum temperature within the cross-section is

produced by the finite element numerical model) produces the graphical output as

shown in Figure 4.14. Notably the nodal temperature profile plots

(Figure 4.14 (a)) do not oscillate in the sinusoidal fashion as with the previous

verification exercise. This is attributed to the stable surrounding environmental

conditions.

Figure 4.14 Finite element numerical model graphical output for the laboratory

 verification

Predicted temperatures obtained from the finite element numerical model and

finite difference numerical model (as determined by Ballim (2004a)) including the

measured data are now presented at all seven positions throughout the cross-

section.

(a)

(b)
Temp

(deg C)

Thermal Probe Positions

1

2

3 4 5

7

6

 4.24

Position 1: At the centre of the floor and concrete interface

Measured results were recorded over a 100 hour time span. Thus, for this

comparison, the same time period is utilized for the numerical models.

Bottom

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

Time (hrs)

T
em

p
er

at
u

re
 (

°C
)

FEM MODEL
MEASURED
FD MODEL

Figure 4.15 Temperature profile plot at position 1

The finite element numerical model in Figure 4.15 produces the same errors as the

Katse verification process at position 1. The modelling of the interface between

the concrete and the concrete floor is not well formulated in the finite element

model. The absolute difference between the maximum measured temperature and

the maximum predicted temperatures is 4.1C for the finite element model and

0.1C for the finite difference model. This error may seem significant but the

temperature versus time profiles for the subsequent six positions is within an

acceptable range, indicating that this error does not greatly influence the

temperature distribution. It is expected that this modelling error will become more

pronounced with a relative decrease in area of the cross-section (i.e. the zone of

maximum temperature coincides with the surface that has been incorrectly

modelled). This is observed when comparing the absolute differences between the

 Maximum Temperatures (C)
FEM MODEL 28.5
MEASURED 24.4
FD MODEL 24.5

 Time to attain Max Temp. (hrs)
FEM MODEL 23
MEASURED 22
FD MODEL 23

 4.25

maximum temperatures of the Katse and laboratory predictions (i.e. the

percentage error for the 4 m2 Katse cross-section is 6.5% and for the 0.7 m2

laboratory cross-section is 16.9%).

Position 2: 150 mm above the bottom probe

150mm from bottom face

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

Time (hrs)

T
em

p
er

at
u

re
 (

°C
)

FEM MODEL
MEASURED
FD MODEL

Figure 4.16 Temperature profile plot at position 2

Figure 4.16 shows a good correlation between the predicted and measured

temperature profiles. The maximum measured temperature was 27.6C compared

with 28.7C for the finite element model and 26.9C for the finite difference

model. This translates to an absolute error of 1.1C for the finite element model

and 0.7C for the finite difference model. The measured time period for the

maximum temperature to develop at position 2 is 21 hours, compared with

23 hours for the finite element model and 24 hours for the finite difference model.

This translates to an absolute error of 2 hours for the finite element model and

3 hours for the finite difference model.

 Maximum Temperatures (C)
FEM MODEL 28.7
MEASURED 27.6
FD MODEL 26.9

 Time to attain Max Temp. (hrs)
FEM MODEL 23
MEASURED 21
FD MODEL 24

 4.26

Position 3: At the centre of the concrete element

Centre

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

Time (hrs)

T
em

p
er

at
u

re
 (

°C
)

FEM MODEL
MEASURED
FD MODEL

Figure 4.17 Temperature profile plot at position 3

Figure 4.17 shows that the modelled and measured temperature profiles are in

good correlation. The absolute difference between the maximum measured and

predicted temperatures is 0.5C for the finite element model and 0.4C for the

finite difference model. The absolute difference between the measured and

predicted time periods for the maximum temperature to develop at position 3, is

2 hours for the finite element model and 4 hours for the finite difference model.

Small absolute differences indicate a precise solution for the temperature profile at

the centre of the concrete element. One notable discrepancy occurring between the

modelled and measured profiles is the rate of increase in temperature during the

time range, 0 to 20 hours. Within this period of time the measured results increase

at a greater rate than the predicted results. This error is most likely due to an

inaccuracy associated with the rate of heat liberated existing in either the

measured or predicted methods.

 Maximum Temperatures (C)
FEM MODEL 27.8
MEASURED 28.3
FD MODEL 27.9

 Time to attain Max Temp. (hrs)
FEM MODEL 22
MEASURED 20
FD MODEL 24

 4.27

Position 4: 250 mm in the x direction from the central probe

250mm from side face

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

Time (hrs)

T
em

p
e

ra
tu

re
 (

°C
)

FEM MODEL
MEASURED
FD MODEL

Figure 4.18 Temperature profile plot at position 4

Figure 4.18 reveals a strong correlation between the predicted and measured

temperature profiles. The maximum measured temperature was 27.6C compared

with 26.9C for the finite element model and 27.0C for the finite difference

model. This translates to an absolute error of 0.7C for the finite element model

and 0.6C for the finite difference model. The measured time period for the

maximum temperature to develop at position 4 is 19 hours, compared with

20 hours for the finite element model and 22 hours for the finite difference model.

This translates to an absolute error of 1 hour for the finite element model and

3 hours for the finite difference model.

 Maximum Temperatures (C)
FEM MODEL 26.9
MEASURED 27.6
FD MODEL 27.0

 Time to attain Max Temp. (hrs)
FEM MODEL 20
MEASURED 19
FD MODEL 22

 4.28

Position 5: 450 mm in the x direction from the central probe

50mm from side face

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

Time (hrs)

T
em

p
e

ra
tu

re
 (

°C
)

FEM MODEL
MEASURED
FD MODEL

Figure 4.19 Temperature profile plot at position 5

In Figure 4.19, it is evident that the finite element numerical model predicts the

temperature profile to a higher level of accuracy. The oscillations of the finite

element temperature profile after approximately 40 hours can be attributed to the

moisture content versus thermal conductivity relationship referred to previously.

The absolute difference between the maximum measured and predicted

temperatures is 0.3C for the finite element model and 0.5C for the finite

difference model. The absolute difference between the measured and predicted

time periods for the maximum temperature to develop at position 5, is 2 hours for

the finite element model and 1 hour for the finite difference model.

Due to the removal of the formwork, inadvertently providing thermal insulation to

the concrete element, a notable drop in temperature occurs from around 18 hours.

Note that the removal of the formwork can be observed as a sudden decrease in

temperature across all the temperature plots. The measured results show that the

formwork removal time was 19 hours after casting, whereas the finite element

 Maximum Temperatures (C)
FEM MODEL 25.1
MEASURED 25.4
FD MODEL 24.9

 Time to attain Max Temp. (hrs)
FEM MODEL 17
MEASURED 19
FD MODEL 18

 4.29

results reveal the drop-off from 17 hours (as stipulated with the input data

obtained from the personnel who conducted the laboratory test). As expected, this

difference in formwork removal time causes a divergence between the results

obtained from the measured and predicted temperatures.

The results in Figure 4.19 demonstrate that the finite element numerical model is

better able to describe and account for the boundary conditions in the heat flow

analysis.

Position 6: 150 mm above the central probe

200mm from top face

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

Time (hrs)

T
e

m
p

er
a

tu
re

 (
°C

)

FEM MODEL
MEASURED
FD MODEL

Figure 4.20 Temperature profile plot at position 6

Figure 4.20 shows a narrow discrepancy between the predicted and measured

temperature profiles. The maximum measured temperature was 26.7C compared

with 25.8C for the finite element model and 27.1C for the finite difference

model. This translates to an absolute error of 0.9C for the finite element model

and 0.4C for the finite difference model. The measured time period for the

maximum temperature to develop at position 6 is 20 hours, compared with

 Maximum Temperatures (C)
FEM MODEL 25.8
MEASURED 26.7
FD MODEL 27.1

 Time to attain Max Temp. (hrs)
FEM MODEL 22
MEASURED 20
FD MODEL 24

 4.30

22 hours for the finite element model and 24 hours for the finite difference model.

This translates to an absolute error of 2 hours for the finite element model and

4 hours for the finite difference model.

Position 7: 50 mm below the top surface above the central probe

50mm from top face

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

Time (hrs)

T
e

m
p

er
at

u
re

 (
°C

)

FEM MODEL
MEASURED
FD MODEL

Figure 4.21 Temperature profile plot at position 7

A strong correlation between the modelled and measured temperature profiles is

observed in Figure 4.21. The maximum measured temperature was 23.4C

compared with 22.4C for the finite element model and 24.9C for the finite

difference model. This translates to an absolute error of 1.0C for the finite

element model and 1.5C for the finite difference model. The measured time

period for the maximum temperature to develop at position 7 is 25 hours,

compared with 24 hours for the finite element model and 24.5 hours for the finite

difference model. This translates to an absolute error of 1 hour for the finite

element model and 0.5 hours for the finite difference model. Oscillations due to

variations in ambient temperature appear after a time period of approximately

40 hours.

 Maximum Temperatures (C)
FEM MODEL 22.4
MEASURED 23.4
FD MODEL 24.9

 Time to attain Max Temp. (hrs)
FEM MODEL 24
MEASURED 25

 FD MODEL 24.5

 4.31

4.4 EXPERIMENTAL AND NUMERICAL RESULTS DISCUSSION

4.4.1 Katse verification

Figures 4.22 to 4.24 illustrate the temperature profiles for all the comparison

positions with respect to the measured and predicted temperatures of the finite

element and finite difference models. The purpose of these plots is to portray the

maximum temperature gradient within the concrete element against the time at

which it occurs. This is the primary purpose of the temperature prediction models,

as it gives an indication of the extent of thermal stresses that could arise in a

particular concrete element with a specified concrete mixture.

Figure 4.22 presents all measured results throughout the concrete element’s cross-

section, followed by the predicted results of the finite element (Figure 4.23) and

finite difference (Figure 4.24) numerical models.

Measured Temperature Profiles at all Nodal Positions

0

5

10

15

20

25

0 50 100 150 200

Time (hrs)

T
em

p
er

at
u

re
 (

°C
)

Node 1 (Bottom probe) Node 2 (250mm above bottom probe)

Node 3 (500mm above bottom probe) Node 4 (Central probe)

Node 5 (500mm north of central probe) Node 6 (50mm from east face at level of central probe)

Maximum Temperature Gradient = 6.7 deg C
Corresponding time = 161 hrs

Figure 4.22 Measured temperature profiles – Katse verification

 4.32

Finite Element Numerical Model Temperature Profiles at all Nodal Positions

0

5

10

15

20

25

0 50 100 150 200

Time (hrs)

T
em

p
er

at
u

re
 (

°C
)

Node 1 (Bottom probe) Node 2 (250mm above bottom probe)

Node 3 (500mm above bottom probe) Node 4 (Central probe)

Node 5 (500mm north of central probe) Node 6 (50mm from east face at level of central probe)

Maximum Temperature Gradient = 10.7 deg C
Corresponding time = 161 hrs

Figure 4.23 FEM temperature profiles – Katse verification

Finite Difference Numerical Model Temperature Profiles at all Nodal Positions

0

5

10

15

20

25

0 50 100 150 200

Time (hrs)

T
em

p
er

at
u

re
 (

°C
)

Node 1 (Bottom probe) Node 2 (250mm above bottom probe)

Node 3 (500mm above bottom probe) Node 4 (Central probe)

Node 5 (500mm north of central probe) Node 6 (50mm from east face at level of central probe)

Maximum Temperature Gradient = 12.3 deg C
Corresponding time = 88 hrs

Figure 4.24 FD temperature profiles – Katse verification

The maximum measured temperature gradient was 6.7C compared with 10.7C

for the finite element model and 12.3C for the finite difference model. This

 4.33

translates to an absolute error of 4.0C for the finite element model and 5.6C for

the finite difference model. The measured time period for the maximum

temperature gradient to develop is 161 hours, compared with 161 hours for the

finite element model and 88 hours for the finite difference model. This translates

to an absolute error of 73 hours for the finite difference model, while the finite

element model is an exact prediction. The finite difference model generates a

temperature gradient of 11.3C at 161 hours which is marginally less accurate

than that produced by the finite element model.

Evidently the finite element numerical model predicts the maximum temperature

gradient and corresponding time to attain this gradient with a higher degree of

accuracy than the finite difference numerical model. This comparison

substantiates the previous nodal point temperature assessment and confirms that

the finite element numerical model is an improved modeling technique.

4.4.2 Laboratory verification

Figure 4.25 represents all measured results throughout the concrete element’s

cross-section, followed by the predicted results of the finite element (Figure 4.26)

and finite difference (Figure 4.27) numerical models.

 4.34

Measured Temperature Profiles at all Nodal Positions

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

Time (hrs)

T
em

p
er

at
u

re
 (

°C
)

Node 1 (Bottom Probe) Node 2 (150 mm from bottom) Node 3 (Centre) Node 4 (250 mm from side)

Node 5 (50 mm from side) Node 6 (200 mm from top) Node 7 (50 mm from top)

Maximum Temperature Gradient = 6.5 deg C
Corresponding time = 19 hrs

Figure 4.25 Measured temperature profiles – Laboratory verification

Finite Element Numerical Model Temperature Profiles at all Nodal Positions

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

Time (hrs)

T
em

p
er

at
u

re
 (

°C
)

Node 1 (Bottom Probe) Node 2 (150 mm from bottom) Node 3 (Centre) Node 4 (250 mm from side)

Node 5 (50 mm from side) Node 6 (200 mm from top) Node 7 (50 mm from top)

Maximum Temperature Gradient = 6.4 deg C
Corresponding time = 23 hrs

Figure 4.26 FEM temperature profiles – Laboratory verification

 4.35

Finite Difference Numerical Model Temperature Profiles at all Nodal Positions

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

Time (hrs)

T
em

p
er

at
u

re
 (

°C
)

Node 1 (Bottom Probe) Node 2 (150 mm from bottom) Node 3 (Centre) Node 4 (250 mm from side)

Node 5 (50 mm from side) Node 6 (200 mm from top) Node 7 (50 mm from top)

Maximum Temperature Gradient = 3.7 deg C
Corresponding time = 37 hrs

Figure 4.27 FD temperature profiles – Laboratory verification

The maximum measured temperature gradient was 6.5C compared with 6.4C for

the finite element model and 3.7C for the finite difference model. This translates

to an absolute error of 0.1C for the finite element model and 2.8C for the finite

difference model. The measured time period for the maximum temperature

gradient to develop is 19 hours, compared with 23 hours for the finite element

model and 37 hours for the finite difference model. This renders an absolute error

of 4 hours for the finite element model and 18 hours for the finite difference

model. The temperature gradient calculated by the finite difference model at

19 hours is 3.1C which is less accurate than that of the finite element model.

Once again the finite element numerical model distinctly predicts the maximum

temperature gradient and corresponding time with superior accuracy. Making use

of the results obtained from the finite difference numerical model leads to an

underestimation of the potential stress and its effect on the likelihood of cracking

in the concrete.

 4.36

4.4.3 Conclusion

The finite element numerical model predicts the temperature profiles within the

concrete elements to an acceptable degree of accuracy. The maximum absolute

error relative to the highest liberated temperature within the concrete elements is

1.7C (excluding the temperature profile at position 6) and 4.1C for the Katse

and laboratory verifications respectively. Suggestions to reduce further the

inaccuracies of the finite element numerical model are: to include a function that

relates moisture content to thermal conductivity, and to implement a more

accurate modelling technique at the interface of the concrete element and

founding substrate.

A further concern pertaining to the validity of the predicted results is the accuracy

of the measured results. As mentioned previously, casting of the instrumented

concrete block at Katse occurred over a period of three hours. Therefore a certain

amount of liberated heat was not accounted for. With the high rate of temperature

increase arising during the early stages of hydration, the three hour time period

could have had an impact on the measured results. Consequently, the experimental

data is likely to be higher at the early stages and would thus correlate better with

both numerical modelling techniques.

Furthermore, after reviewing the measured results for the Katse verification

exercise, it is evident that the temperature versus time plots decrease from around

the 15 hour time interval and deviate from the predicted results. No measured

results are available for the 15 to 20 hour time period after casting. This gap in

collected readings was most likely a consequence of the time required to remove

the formwork.

An additional reason for the observed deviation between the measured and

predicted results could be the incorrect specification of the heat transfer

coefficient between the concrete and the atmosphere following formwork

removal. The acquired value of 30W/m2K could be regarded as an

 4.37

underestimation resulting from factors such as wind speed. This factor is of great

importance if better approximations of the temperatures are to be achieved. A

means of solving this problem is the development of a statistical model which

could predict boundary conditions such as wind speed, cloud cover and solar

radiation from meteorological data, which could then operate in tandem with the

finite element numerical model.

Moreover, the temperature measurements, attained in the Katse verification,

originated from a three dimensional block of concrete that was not insulated in the

third dimension. This results in the dissipation of thermal energy in the third

dimension, leading to a possible deviation from the predicted results.

4.4.4 Thermal cracking propensity and control

Based on the output produced from a random example shown in Figure 4.28 (A),

the application of the finite element numerical model is an iterative process if the

temperature differentials predicted are greater than those allowed.

Figure 4.28 An example of the finite element numerical model graphical output

Temperature
(deg C)

(A) 29.8ºC

 4.38

The figure shows a maximum temperature differential of 29.8 °C, which is greater

than the “rule of thumb” value of 20 °C. Consequently, the likelihood of thermal

cracking occurring in the concrete element is high.

Preventative measures must be implemented if the concrete mixture design cannot

be altered. Options available to engineers include:

 Covering the exposed surfaces of the concrete element using

polystyrene blocks or other insulating materials as soon as possible

after casting. This would increase the surface temperature and reduce

the temperature differential between the surface and the core. Care

must be taken however, in assessing the appropriate time for the

removal of the coverings to ensure that no thermal shock is

experienced by the concrete. This would result in multiple hairline

surface cracks. Thermal probes cast into the concrete element, linked

to a data logger, are used to measure the temperature differentials in

order to obtain insulation striking times. The finite element model can

account for insulated surfaces through the adjustment of the convective

heat transfer coefficient.

 Lowering the casting temperature of the concrete through the use of

chilled water reduces the cooling effect of the surrounding

environment, resulting in lower temperature differentials. The use of

liquid nitrogen for cooling fresh concrete prior to casting is practiced

although only in very limited cases.

 Introducing conduits within mass concrete elements that transport

chilled water is commonly used in dam structures where extremely

large concrete blocks are cast. The principle of this process is to

withdraw heat from the centre of the block to minimise the temperature

differential. The temperature of the chilled water should be controlled

as large temperature differentials potentially occur around these

conduits, resulting in extensive cracking.

 The use of plywood as insulating formwork assists in lowering the

temperature differentials. The current simulation allows various types

of thermal conductivities for formwork material to be modelled.

 4.39

 Formwork striking times can be extended to minimise the cooling

effect of the surrounding environment, thus reducing the temperature

differential. This is also accounted for in the present model.

 Reinforcing the concrete element in three directions with a dense mesh

can limit the amount of cracking. However, with the bond strength still

developing, the amount of reinforcing required is substantial, resulting

in significant cost implications.

 Modifications to the water-cement ratio will shift the maximum

temperature peak and assist in balancing the temperature gradient.

Adiabatic calorimetry would be required to track the changes of water-

cement ratios and the corresponding time required to attain maximum

temperatures.

 If none of the above methods are acceptable or possible, the engineer

would be required to change the concrete mixture design and re-apply

the model, resulting in an iterative process. It is proposed that a cement

extender be introduced. This assists with the design of a concrete

mixture with low early strength development.

Future developments of the finite element numerical model may incorporate several

of the above measures. These modifications will be discussed in chapter 6.

4.5 SENSITIVITY ANALYSIS

A sensitivity analysis was performed to determine the effects of varying the

element aspect ratio, element size and orientation. These results were then plotted

against measured data to demonstrate the importance of selecting an aspect ratio

as close to unity as possible with elements that are sufficiently small.

This analysis was executed with the Katse verification results only. Figures 4.29

to 4.32 indicate different element arrangements for the 2 m x 2 m cross-section of

the Katse verification process.

 4.40

Sensitivity Analysis 1:

Evidently the eight noded quadrilateral isoparametric elements are excessively

elongated in the x direction. Therefore, it is anticipated that the finite element

numerical model will represent a poor approximation.

Co-ordinates

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

x Dimension (m)

y
 D

im
e
n
s
io

n
 (
m

)

Figure 4.29 Sensitivity analysis 1 relative to the Katse verification

 Element size in the x direction = 0.667 m

 Element size in the y direction = 0.0667 m

 Aspect ratio = 0.667 m ÷ 0.0667 m = 10

 Number of elements in the x direction = 3

 Number of elements in the y direction = 30

 Total number of elements = 90

1 Element

x

y

 4.41

Sensitivity Analysis 2:

Once more the eight noded quadrilateral isoparametric elements are markedly

stretched in the y direction. Consequently the finite element numerical model is

expected to be a substandard estimation.

Co-ordinates

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

x Dimension (m)

y
 D

im
e
n
s
io

n
 (
m

)

Figure 4.30 Sensitivity analysis 2 relative to the Katse verification

 Element size in the x direction = 0.0667 m

 Element size in the y direction = 0.667 m

 Aspect ratio = 0.667 m ÷ 0.0667 m = 10

 Number of elements in the x direction = 30

 Number of elements in the y direction = 3

 Total number of elements = 90

1 Element

x

y

 4.42

Sensitivity Analysis 3:

The eight noded quadrilateral isoparametric elements can be viewed as large with

respect to the cross-section. Hence, it is anticipated that the finite element

numerical model will typify a poor approximation.

Co-ordinates

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

x Dimension (m)

y
 D

im
e
n
s
io

n
 (
m

)

Figure 4.31 Sensitivity analysis 3 relative to the Katse verification

 Element size in the x direction = 0.5 m

 Element size in the y direction = 0.5 m

 Aspect ratio = 0.5 m ÷ 0.5 m = 1

 Number of elements in the x direction = 4

 Number of elements in the y direction = 4

 Total number of elements = 16

1 Element

x

y

 4.43

Sensitivity Analysis 4:

The eight noded quadrilateral isoparametric elements are small with respect to the

cross-section. Accordingly it is anticipated that the finite element numerical model

will provide a suitable approximation. This analysis can be compared with the

previous analysis to demonstrate the effect of element size in relation to the

accuracy of the obtained solutions.

Co-ordinates

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

x Dimension (m)

y
 D

im
e
n
s
io

n
 (
m

)

Figure 4.32 Sensitivity analysis 4 relative to the Katse verification

 Element size in the x direction = 0.0667 m

 Element size in the y direction = 0.0667 m

 Aspect ratio = 0.0667 m ÷ 0.0667 m = 1

 Number of elements in the x direction = 30

 Number of elements in the y direction = 30

 Total number of elements = 900

1 Element

x

y

 4.44

Sensitivity analysis - Position 1: At the centre of the rock and concrete interface

Bottom

10

12

14

16

18

20

22

0 20 40 60 80 100 120 140 160 180 200
Time (hrs)

T
em

p
er

at
u

re
 (

°C
)

Sensitivity Analysis 1 Sensitivity Analysis 2 Sensitivity Analysis 3 Sensitivity Analysis 4 Measured

Figure 4.33 Sensitivity analysis at position 1

The temperature variation between each sensitivity analysis plot is minor, except

for slight oscillations occurring for sensitivity analysis 1 to sensitivity analysis 3.

Sensitivity analysis 1 oscillates more than all the other plots due to an insufficient

number of elements covering the bottom surface. Thus, it is important to note, that

all boundaries must be specified with a relatively large number of elements or

elements not greater than 200 mm.

 4.45

Sensitivity analysis - Position 2: 250 mm above the bottom probe

250mm from bottom face

10

12

14

16

18

20

22

0 20 40 60 80 100 120 140 160 180 200
Time (hrs)

T
em

p
er

at
u

re
 (

°C
)

Sensitivity Analysis 1 Sensitivity Analysis 2 Sensitivity Analysis 3 Sensitivity Analysis 4 Measured

Figure 4.34 Sensitivity analysis at position 2

Following this analysis, it can be deduced that element orientation can alter the

relative output of two analyses even if the elements are identical in aspect ratio

and size. Referring to sensitivity analysis 1 and 2, the number of elements and

aspect ratios are equivalent. However, these analyses will predict alternative

temperatures throughout the cross-section due to a variation in the number of

nodes in the x and y directions. In an effort to avoid this inaccuracy, aspect ratios

nearest to unity should be adhered to.

 4.46

Sensitivity analysis - Position 3: 500 mm above the bottom probe

500mm from bottom face

10

12

14

16

18

20

22

24

0 20 40 60 80 100 120 140 160 180 200
Time (hrs)

T
em

p
er

at
u

re
 (

°C
)

Sensitivity Analysis 1 Sensitivity Analysis 2 Sensitivity Analysis 3 Sensitivity Analysis 4 Measured

Figure 4.35 Sensitivity analysis at position 3

The preceding discussion for position 2 can be applied to the sensitivity analysis

at position 3.

 4.47

Sensitivity analysis - Position 4: At the centre of the concrete cube

Centre

10

12

14

16

18

20

22

24

0 20 40 60 80 100 120 140 160 180 200
Time (hrs)

T
em

p
er

at
u

re
 (

°C
)

Sensitivity Analysis 1 Sensitivity Analysis 2 Sensitivity Analysis 3 Sensitivity Analysis 4 Measured

Figure 4.36 Sensitivity analysis at position 4

The likewise discussion for position 2 can be applied to the sensitivity analysis at

position 4.

 4.48

Sensitivity analysis - Position 5: 500 mm north of the central probe

500mm from side face

10

12

14

16

18

20

22

0 20 40 60 80 100 120 140 160 180 200
Time (hrs)

T
em

p
er

at
u

re
 (

°C
)

Sensitivity Analysis 1 Sensitivity Analysis 2 Sensitivity Analysis 3 Sensitivity Analysis 4 Measured

Figure 4.37 Sensitivity analysis at position 5

This analysis demonstrates the effect of element orientation. The graph clearly

shows that sensitivity analysis 2 predicts the temperature profile to a greater

degree of accuracy than sensitivity analysis 1. An insufficient number of nodes in

the y-direction, for sensitivity analysis 2, produces the observed error. Another

important factor to consider in this analysis is the element aspect ratio. As the

aspect ratio approaches unity and the elements become smaller it becomes simpler

to obtain a node within the finite element discretisation corresponding to a thermal

probe position within the concrete block (i.e. for sensitivity analysis 2 the closest

point within the discretised cross-section has coordinates of x = 0.667 m and

y = 0.5 m compared to the actual coordinates of x = 0.5 m and y = 0.5 m).

Consequently errors are generated which become evident when the results are

compared.

 4.49

Sensitivity analysis - Position 6: 50 mm from the east face level with the
 central probe

50mm from side face

8

10

12

14

16

18

20

22

0 20 40 60 80 100 120 140 160 180 200
Time (hrs)

T
em

p
er

at
u

re
 (

°C
)

Sensitivity Analysis 1 Sensitivity Analysis 2 Sensitivity Analysis 3 Sensitivity Analysis 4 Measured

Figure 4.38 Sensitivity analysis at position 6

The role that element size plays is illustrated in the above temperature profile.

Sensitivity analyses 1 to 3 included elements that are insufficiently small. As a

result, no node exists at a distance of 50 mm from the side face. Sensitivity

analysis 4 does have adequately small elements to obtain the predicted

temperatures. Subsequently the temperature prediction is more accurate. Expected

temperatures for sensitivity analyses 1 to 3 have been taken as surface

temperatures. Nonetheless, sensitivity analyses 1 to 3 predict the same

temperatures with different aspect ratios and element orientations.

 4.50

4.6 FEM EXAMPLE OF AN IRREGULAR SHAPED CROSS-SECTION

An important advantage of the finite element numerical model over other

numerical methods is that irregular cross-sectional shapes can be represented. An

example of an irregular shaped cross-section is shown below to indicate the

functionality of the finite element numerical model. A comparison with measured

results is not possible due to the unavailability of this type of measured data.

Figure 4.39 FEM Example of an Irregular Shaped Cross-Section

5.1

5 CONCLUSION

The finite element numerical model, designed to predict the rise in temperature

and distribution of thermal energy in a concrete element, generates satisfactorily

accurate estimations and correlates well with experimental results. An absolute

maximum difference of 1.7ºC is achieved between the maximum predicted and

measured temperatures, excluding all temperature profiles on the concrete

elements’ surfaces. The maximum temperature gradient attained within the

concrete element and the time at which it occurs are also predicted to a high

degree of accuracy. The maximum temperature gradient is predicted to within

4.0ºC and the time at which it occurs to within 4 hours. An accurate estimation of

the potential stress and therefore the likelihood of cracking within the concrete

element can be achieved with the well-defined finite element numerical model’s

temperature gradients.

Nevertheless, the finite difference numerical model is more user-friendly and

operates on the generally available Microsoft Excel software package. Research

has shown that the finite difference method produces satisfactory predictions

under standard laboratory conditions. Thus, for controlled environments, this

numerical model is preferred to the more complex finite element numerical model

written in Matlab. However, when boundary conditions are intricate, the finite

element numerical model generates more accurate temperature predictions when

compared with the finite difference numerical model.

Enhancements of the finite element numerical model are possible, which could

improve upon or entirely eliminate the shortcomings referred to in Chapter 4. The

major enhancements that would need to be incorporated are:

 Moisture content versus thermal conductivity relationship

 Statistical model to predict boundary conditions and associated

modifications to the finite element model

5.2

 Development of an improved modelling technique for the rock and

concrete interface

The accuracy of the finite element numerical model’s temperature predictions can

also be improved if the aspect ratio of the elements is equal to unity and a finer

mesh is generated. With an increased number of elements, refinement of the

numerical model’s mesh density will require an increase in the computer time

required to solve the prediction model. Therefore, expansion of the concrete body

increases the number of elements, resulting in extended computer runtime.

The research conducted in this project can be further developed into a practical

application to industry through the creation of a global model that allows for the

prediction and prevention of cracking by accounting for temperature differentials

attained in the concrete mass. This would require the construction of a simulation

that predicts a gain in stiffness as a function of heat liberated for a specific

concrete mixture and relates a change in stiffness to a thermal strain model. Input

data for such a stiffness model could be implemented empirically to avoid the use

of broad assumptions.

The principal use of the finite element numerical model will be limited in practice

to complex or water-retaining engineering structures where thermal cracking

could lead to structural failure or loss of integrity. The application would be

limited because of the time-consuming adiabatic calorimeter tests necessary for

each concrete mixture design.

It is highly likely that the average value of multiple calorimeter tests would be

required for all concrete mixtures. The limitation of this process is that each

calorimeter test necessarily involves a time-period of approximately five days.

Implementation of this model, particularly for large-scale projects, will necessitate

the assembly of a purpose-built laboratory with adiabatic calorimeters and the

employment of skilled laboratory technicians.

6.1

6 RECOMMENDATIONS

It is recommended that a cracking potential model be developed which can be

applied to complex structures with compound boundary conditions. Potential

future improvements will now be expanded upon.

Following the Mathematics in Industry Study Group South Africa (MISGSA) held

at the University of the Witwatersrand from the 19th to the 23rd of January 2004,

Charpin et al., 2004a, 2004b and Fowkes et al., 2004 proposed theoretical

calculations which have become relevant and are briefly discussed in the

subsequent sub-sections. Researchers intending to develop the current finite

element model should refer to the relevant literature. Each of the discussed topics

below is well suited for future postgraduate research.

6.1 PIPED WATER COOLING IN CONCRETE DAMS

Due to the low thermal conductivity of concrete, the rate of heat transferred to the

surrounding environment occurs slowly. Casting of very large concrete elements

results in a relatively small amount of heat being lost to the surroundings. A

network of pipes is often cast into large concrete elements through which chilled

water is pumped. This method is employed to extract some of the heat of

hydration in order to reduce temperatures more quickly and minimise the

temperature differential.

Explicit expressions for a simple cylindrical model have been produced for the

maximum concrete temperature as a function of the dependent variables; flow rate

through the piping, pipe length and inlet temperature et cetera. Expressions have

also been determined for the pipe length and separation distance required to

restrict the temperature rise in the concrete elements to a defined level. It has been

6.2

proposed that a financial model be incorporated to obtain an optimized solution

that minimises cost.

6.2 MATURITY EFFECTS IN CONCRETE DAMS

In water-retaining, mass concrete structures such as dam walls, an allowance for

shrinkage movement in the design is necessary to prevent excessive leakage.

Thus, sequential concrete blocks are cast after sufficient stiffness has been

attained in the preceding layer. Ballim and Graham (2003) observed that the heat

of hydration is transferred across the contact surface from the upper block

resulting in an increase in the heat of hydration within the first block, as shown in

Figure 6.1. This is due to the dependence of hydration rate on temperature.

Figure 6.1 Temperature profile for the lower block of concrete

The proposed analysis to predict the above phenomenon is still in investigation

phases, however a starting point has been put in place for future research work.

Temperature

Time

Temperature profile without
sequential construction

Temperature distributed from
upper layer of concrete during
sequential construction

Casting of
upper block

6.3

6.3 MODELLING SURFACE HEAT EXCHANGES FROM A CONCRETE
BLOCK INTO THE ENVIRONMENT

Modelling the impact of environmental conditions on early age concrete provides

an indication of the durability and strength of a concrete structure. These factors

are directly related to thermal cracking.

The cooling conditions proposed by MISGSA are suitable replacements for the

current modelling techniques. However, further development and testing of these

conditions are required. It has been proposed that variations in the convective heat

transfer coefficient (h) with respect to wind speed be investigated experimentally.

6.4 INDUSTRY STANDARD DATABASE GENERATION

It is highly recommended that a database containing common heat rate curves be

generated for varying binder types and aggregate classification and grade. A

comprehensive database will assist engineers in their selection of concrete mixture

compositions.

7.1

7 REFERENCES

Addis, B.J. (ed.) (1986) Fulton’s Concrete Technology, 6th Revised Edition, Portland
Cement Institute, Midrand, South Africa

Ballim, Y. (2004a) A numerical model and associated calorimeter for predicting
temperature profiles in mass concrete, Cement and Concrete Composites, Elsevier,
vol. 26

Ballim, Y. (2004b) Temperature rise in mass concrete elements – Model development
and experimental verification using concrete at Katse dam. Journal of the SAICE, vol.
46, No. 1

Ballim, Y. and Graham, P.C. (2003) A maturity approach to the rate of heat evolution
in concrete, Magazine of Concrete Research, Thomas Telford, vol. 55

Ballim, Y. and Graham, P.C. (2004) Early-age heat evolution of clinker cements in
relation to microstructure and composition: implications for temperature development
in large concrete elements, Cement and Concrete Composites, Elsevier, vol. 26

Ballim, Y. and Graham, P.C. (2005) A numerical model for predicting early age
time-dependant profiles in large concrete structures, Research Monograph, No. 8,
Department of Civil Engineering, University of the Witwatersrand, South Africa

Ballim, Y. and Graham, P.C. (2009) The effects of supplementary cementing
materials in modifying the heat of hydration of concrete, RILEM Materials and
Structures, vol. 42

Bentz, D.P. and Garboczi, E.J. (1993) Digital-Image Base Computer Modeling of
Cement-Based Materials, In: Frost, J.D. et al. (ed.) Digital Image Processing:
Techniques and Application in Civil Engineering, ASCE, New York, USA

Charpin, J.P.F. and Myers, T.G. and Fitt, A.D. and Ballim, Y. and Patini, A. (2004a)
Modeling surface heat exchanges from a concrete block into the environment, Proc. of

7.2

the Mathematics in Industry Study Group, University of the Witwatersrand,
Johannesburg, RSA

Charpin, J.P.F. and Myers, T.G. and Fitt, A.D. and Fowkes, N.D. and Ballim, Y. and
Patini, A. (2004b) Piped water cooling of concrete dams, Proc. of the Mathematics in
Industry Study Group, University of the Witwatersrand, Johannesburg, RSA

Clough, R.W. (1960) The finite element method in plane stress analysis, Proceedings
of the 2nd ASCE conference on electronic computation, Pittsburgh, PA

Cope, R.J. and Clark, L.A. (1984) Concrete slabs: Analysis and Design. Elsevier
Applied Science

Courant, R. (1943) Variational methods for the solutions of problems of equilibrium
and vibrations, Bulletin of the American Mathematical Society, vol. 49

Emborg, M. and Bernander, S. (1994) Avoidance of Early Age Thermal Cracking in
Concrete Structures – Predesign, Measure, Follow-up, In: Springenschmid, R (ed.)
Thermal Cracking in Concrete at Early Ages, E&FN Spon, London, UK

Fowkes, N.D. and Mambili Mamboundou, H. and Makinde, O.D. and Ballim, Y. and
Patini, A. (2004) Maturity effects in concrete dams, Proc. of the Mathematics in
Industry Study Group, University of the Witwatersrand, Johannesburg, RSA

Ghosh, S.N. (1991) Cement and concrete science technology, Thomas Telford,
London, UK

Gibbon, G.J. and Ballim, Y. and Grieve, G.R.H. (1997) A low-cost, computer-
controlled adiabatic calorimeter for determining the heat of hydration of concrete,
ASTM Journal of Testing and Evaluation, vol. 25, no. 2

Greensmith, C.G. (2005) The effects of cement extenders and water to binder ratio on
the heat evolution characteristics of concrete, MSc Research Report, University of the
Witwatersrand, Johannesburg, RSA

7.3

Harrison, T.A. (1981) Early-Age Thermal Crack Control in Concrete, Construction
Industry Research and Information Association, Report No 91, London, UK

Holman, J.P. (1986) Heat transfer, 6th Edition, McGraw Hill Inc., New York, USA

Huebner, K.H. and Thornton, E.A. and Byrom, T.G. (1995) The Finite Element
Method for Engineers, 3rd Edition, John Wiley and Sons, New York, USA

Isgor, O.B. and Razaqpur, A.G. (2004) Finite element modeling of coupled heat
transfer, moisture transport and carbonation processes in concrete structures, Cement
and Concrete Composites, Elsevier, vol. 26

Koenders, E.A.B and Van Breugel, K. (1994) Numerical and Experimental adiabatic
Hydration Curve Determination, In: Springenschmid, R. (ed.) Thermal Cracking in
Concrete at Early Ages, E&FN Spon, London, UK

Kumar, B. (1996) Information processing in civil and structural engineering design,
Civil-Comp Press, Stirling, UK

Lewis, R.W. and Morgan, K. and Thomas, H.R. and Seetharamu, K.N. (1996) The
Finite Element Method in Heat Transfer Analysis, John Wiley and Sons, West
Sussex, UK

Maekawa, K. and Chaube, R. and Kishi, T. (1999) Modeling of Concrete Performance
– Hydration, Microstructure formation and Mass Transport, E&FN Spon, London,
UK

Maruyama, I. and Matsushita, T. and Noguchi, T. (2007) Kinetics and Phase
Composition Model for Portland Cement Hydration, In: Sato, R. (ed) Proc. Of Int.
Sem. On Durability and Lifecycle Evaluation of Concrete Structures, Hagashi,
Hiroshima, Japan

Morabitu, P. (1998) Methods to Determine the Heat of Hydration of Concrete, In:
Springenschmid, R. (ed.) Prevention of Thermal Cracking in Concrete at Early Ages,
E&FN Spon, London, UK

7.4

Morabitu, P. and Barberis, F. (1993) Measurement of Adiabatic Temperature Rise in
Concrete, In: Dhir , R.K. and Jones, M.R. Proceedings Concrete 2000, E&FN Spon,
London, UK

Neville, A.M. (1981) Properties of Concrete, 3rd Edition, Pitman Publishing Ltd.,
London, UK.

Rogers, G.F.C. and Mayhew, Y.R. (1992) Engineering Thermodynamics – Work and
Heat Transfer, 4th Edition, Longman Singapore Publishers, Singapore

Scanlon, J.M. and McDonald, J.E. (1994) Thermal Properties, In: Kleiger, P. and
Lamond, J.F. (eds.) Significance of tests and properties of concrete and concrete-
making materials, ASTM-STP 169C. American Society for Testing and Materials,
Philadelphia, USA

Suzuki, Y. and Tsuji, Y. and Maekawa, K. and Okamura, H. (1990) Quantification of
Heat Evolution During Hydration Process of Cement in Concrete, Proc. Of JSCE,
JSCE

Taylor, P.C. and Addis, B.J. (1994) Concrete at Early Ages, In: Addis, B.J. (ed.)
Fulton’s Concrete Technology, 6th Revised Edition, Portland Cement Institute,
Midrand, South Africa

Tetmayer, T. (1883) Deutsche Topfer-und Ziegler-Ztg., 234

Turner, M.J. and Clough, R.W. and Martin, H.C. and Topp, L.J. (1956) Stiffness and
deflection analysis of complex structures, Journal of Aeronautical Sciences, vol. 23,
no. 9

Ugural, A.C. (1999) Stresses in Plates and Shells, 2nd edition, McGraw Hill, Boston,
USA

Wang, C.H. and Dilger, W.H. (1994) Prediction of Temperature Distribution in
Hardening Concrete, In: Springenschmid, R (ed.) Thermal Cracking in Concrete at
Early Ages, E&FN Spon, London, UK

7.5

White, G.R. (1977) Concrete technology, 3rd Edition, Van Nostrand Reinhold Co.,
New York, USA

Van Breugel, K. (1998) Prediction of Temperature Development in Hardening
Concrete, Rilem Report 15, Rilem Technical Committee 119, E&FN Spon, London,
UK

Zienkiewicz, O.C. and Cheung, Y.K. (1967) The finite element method in structural
and continuum mechanics, McGraw Hill Book Co., London, UK

A.1

8 APPENDIX A:

8.1 GLOBAL FEM MATLAB CODE

%%%
%% %%
%% %-----------------------------INPUT----------------------------% %%
%% %%
%%%

NoOfElements = input('Total number of elements = ');
NoOfNodes = input('Total number of nodes = ');
NoOfElementsYDirection = input('Total number of elements in the y-Direction = ');
NoOfElementsXDirection = input('Total number of elements in the x-Direction = ');
InitialTemp = input('Initial concrete temperature - deg C = ');
CastTime = input('Time of day when concrete is cast - hrs = ');
k = input('Thermal conductivity of concrete - W/m.K = ');
rho = input('Concrete density - kg/m3 = ');
cp = input('Concrete specific heat - J/kg.K = ');
Ft = input('Formwork removal time - hrs = ');
hE = input('Convective heat transfer coefficient for exposed concrete surface - W/K.m2 = ');
hC = input('Convective heat transfer coefficient for surfaces covered with formwork-W/K.m2 =');
kr = input('Thermal conductivity of rock - W/K.m2 = ');
Sigma = input('Stefan Boltzman constant - W/K4.m2 = ');
Emissivity = input('Emissivity of grey concrete surface = ');
tm = input('Time at which the minimum overnight temperature occurs - hrs = ');
bin = input('Binder content - kg/m3 = ');
E = input('Apparent activation energy - kJ/mol = ');
R = input('Universal gas constant - kJ/mol.K = ');
TimeIncrement = input('Time increment - hrs = ');
FinalTime = input('Time duration - hrs = ');

A = 2;
CDMHolder = zeros(NoOfNodes,1);
TimeStepFinal = zeros((FinalTime/TimeIncrement)+1,1);
TimeStep = zeros((FinalTime/TimeIncrement)+1,1);
Tfinal = zeros((FinalTime/TimeIncrement)+1,NoOfNodes);
Mx = zeros(FinalTime,1);
Mn = zeros(FinalTime,1);

%__

A.2

%%%
%% %%
%% %--------------C----------C----------C----------C-------------% %%
%% %%
%%%

global e;
 e = 1;
 C = rho.*cp.*(1/3600).*[dblquad(@CapMatrix1,-1,1,-1,1), dblquad(@CapMatrix2,-1,1,-1,1),

dblquad(@CapMatrix3,-1,1,-1,1),...
 dblquad(@CapMatrix4,-1,1,-1,1), dblquad(@CapMatrix5,-1,1,-1,1),

dblquad(@CapMatrix6,-1,1,-1,1),...
 dblquad(@CapMatrix7,-1,1,-1,1), dblquad(@CapMatrix8,-1,1,-1,1);

dblquad(@CapMatrix9,-1,1,-1,1),...
 dblquad(@CapMatrix10,-1,1,-1,1), dblquad(@CapMatrix11,-1,1,-1,1),

dblquad(@CapMatrix12,-1,1,-1,1),...
 dblquad(@CapMatrix13,-1,1,-1,1), dblquad(@CapMatrix14,-1,1,-1,1),

dblquad(@CapMatrix15,-1,1,-1,1),...
dblquad(@CapMatrix16,-1,1,-1,1); dblquad(@CapMatrix17,-1,1,-1,1),
dblquad(@CapMatrix18,-1,1,-1,1),...
dblquad(@CapMatrix19,-1,1,-1,1), dblquad(@CapMatrix20,-1,1,-1,1),
dblquad(@CapMatrix21,-1,1,-1,1),...

 dblquad(@CapMatrix22,-1,1,-1,1), dblquad(@CapMatrix23,-1,1,-1,1),
dblquad(@CapMatrix24,-1,1,-1,1);...

 dblquad(@CapMatrix25,-1,1,-1,1), dblquad(@CapMatrix26,-1,1,-1,1),
dblquad(@CapMatrix27,-1,1,-1,1),...

 dblquad(@CapMatrix28,-1,1,-1,1), dblquad(@CapMatrix29,-1,1,-1,1),
dblquad(@CapMatrix30,-1,1,-1,1),...

 dblquad(@CapMatrix31,-1,1,-1,1), dblquad(@CapMatrix32,-1,1,-1,1);
dblquad(@CapMatrix33,-1,1,-1,1),...

 dblquad(@CapMatrix34,-1,1,-1,1), dblquad(@CapMatrix35,-1,1,-1,1),
dblquad(@CapMatrix36,-1,1,-1,1),...

 dblquad(@CapMatrix37,-1,1,-1,1), dblquad(@CapMatrix38,-1,1,-1,1),
dblquad(@CapMatrix39,-1,1,-1,1),...

 dblquad(@CapMatrix40,-1,1,-1,1); dblquad(@CapMatrix41,-1,1,-1,1),
dblquad(@CapMatrix42,-1,1,-1,1),...

 dblquad(@CapMatrix43,-1,1,-1,1), dblquad(@CapMatrix44,-1,1,-1,1),
dblquad(@CapMatrix45,-1,1,-1,1),...

 dblquad(@CapMatrix46,-1,1,-1,1), dblquad(@CapMatrix47,-1,1,-1,1),
dblquad(@CapMatrix48,-1,1,-1,1);...

 dblquad(@CapMatrix49,-1,1,-1,1), dblquad(@CapMatrix50,-1,1,-1,1),
dblquad(@CapMatrix51,-1,1,-1,1),...

 dblquad(@CapMatrix52,-1,1,-1,1), dblquad(@CapMatrix53,-1,1,-1,1),
dblquad(@CapMatrix54,-1,1,-1,1),...

 dblquad(@CapMatrix55,-1,1,-1,1), dblquad(@CapMatrix56,-1,1,-1,1);
dblquad(@CapMatrix57,-1,1,-1,1),...

A.3

 dblquad(@CapMatrix58,-1,1,-1,1), dblquad(@CapMatrix59,-1,1,-1,1),
dblquad(@CapMatrix60,-1,1,-1,1),...

 dblquad(@CapMatrix61,-1,1,-1,1), dblquad(@CapMatrix62,-1,1,-1,1),
dblquad(@CapMatrix63,-1,1,-1,1),...

 dblquad(@CapMatrix64,-1,1,-1,1)];

load NodesXElements.dat
NodesXElementsTranspose = transpose(NodesXElements);
AssembledCapacitanceMatrix = zeros(NoOfNodes,NoOfNodes);

for e = 1:NoOfElements
 for i = 1:8 %(8 Nodes per element)
 for j = 1:8 %(8 Nodes per element)
 rem = i; %(rem = row element matrix)
 cem = j; %(cem = column element matrix)
 ram = NodesXElementsTranspose(i,e); %(ram = row assembled matrix)
 cam = NodesXElementsTranspose(j,e); %(cam = column assembled matrix)
 ElementCapacitanceMatrix = C; %(3D Capacitance Matrix)
 AssembledCapacitanceMatrix(ram,cam) = AssembledCapacitanceMatrix(ram,cam) +

ElementCapacitanceMatrix(rem,cem);
 end;
end;
end;
CAP = AssembledCapacitanceMatrix;

%%%
%% %%
%% %-----------Kc----------Kc----------Kc----------Kc----------% %%
%% %%
%%%

global ek;
 ek = 1;
 Kc = [dblquad(@CondMatrix1,-1,1,-1,1), dblquad(@CondMatrix2,-1,1,-1,1),

 dblquad(@CondMatrix3,-1,1,-1,1),...
 dblquad(@CondMatrix4,-1,1,-1,1), dblquad(@CondMatrix5,-1,1,-1,1),

 dblquad(@CondMatrix6,-1,1,-1,1),...
 dblquad(@CondMatrix7,-1,1,-1,1), dblquad(@CondMatrix8,-1,1,-1,1);

 dblquad(@CondMatrix9,-1,1,-1,1),...
 dblquad(@CondMatrix10,-1,1,-1,1), dblquad(@CondMatrix11,-1,1,-1,1),

 dblquad(@CondMatrix12,-1,1,-1,1),...
 dblquad(@CondMatrix13,-1,1,-1,1), dblquad(@CondMatrix14,-1,1,-1,1),
 dblquad(@CondMatrix15,-1,1,-1,1),...
 dblquad(@CondMatrix16,-1,1,-1,1); dblquad(@CondMatrix17,-1,1,-1,1),

A.4

 dblquad(@CondMatrix18,-1,1,-1,1),...
 dblquad(@CondMatrix19,-1,1,-1,1), dblquad(@CondMatrix20,-1,1,-1,1),
 dblquad(@CondMatrix21,-1,1,-1,1),...
 dblquad(@CondMatrix22,-1,1,-1,1), dblquad(@CondMatrix23,-1,1,-1,1),

 dblquad(@CondMatrix24,-1,1,-1,1);...
 dblquad(@CondMatrix25,-1,1,-1,1), dblquad(@CondMatrix26,-1,1,-1,1),

 dblquad(@CondMatrix27,-1,1,-1,1),...
 dblquad(@CondMatrix28,-1,1,-1,1), dblquad(@CondMatrix29,-1,1,-1,1),
 dblquad(@CondMatrix30,-1,1,-1,1),...
 dblquad(@CondMatrix31,-1,1,-1,1), dblquad(@CondMatrix32,-1,1,-1,1);

 dblquad(@CondMatrix33,-1,1,-1,1),...
 dblquad(@CondMatrix34,-1,1,-1,1), dblquad(@CondMatrix35,-1,1,-1,1),

 dblquad(@CondMatrix36,-1,1,-1,1),...
 dblquad(@CondMatrix37,-1,1,-1,1), dblquad(@CondMatrix38,-1,1,-1,1),

 dblquad(@CondMatrix39,-1,1,-1,1),...
 dblquad(@CondMatrix40,-1,1,-1,1); dblquad(@CondMatrix41,-1,1,-1,1),

 dblquad(@CondMatrix42,-1,1,-1,1),...
 dblquad(@CondMatrix43,-1,1,-1,1), dblquad(@CondMatrix44,-1,1,-1,1),

 dblquad(@CondMatrix45,-1,1,-1,1),...
 dblquad(@CondMatrix46,-1,1,-1,1), dblquad(@CondMatrix47,-1,1,-1,1),

 dblquad(@CondMatrix48,-1,1,-1,1);...
 dblquad(@CondMatrix49,-1,1,-1,1), dblquad(@CondMatrix50,-1,1,-1,1),

 dblquad(@CondMatrix51,-1,1,-1,1),...
 dblquad(@CondMatrix52,-1,1,-1,1), dblquad(@CondMatrix53,-1,1,-1,1),

 dblquad(@CondMatrix54,-1,1,-1,1),...
 dblquad(@CondMatrix55,-1,1,-1,1), dblquad(@CondMatrix56,-1,1,-1,1);

 dblquad(@CondMatrix57,-1,1,-1,1),...
 dblquad(@CondMatrix58,-1,1,-1,1), dblquad(@CondMatrix59,-1,1,-1,1),

 dblquad(@CondMatrix60,-1,1,-1,1),...
 dblquad(@CondMatrix61,-1,1,-1,1), dblquad(@CondMatrix62,-1,1,-1,1),

 dblquad(@CondMatrix63,-1,1,-1,1),...
 dblquad(@CondMatrix64,-1,1,-1,1)];

load NodesXElements.dat
NodesXElementsTranspose = transpose(NodesXElements);
AssembledConductanceMatrix = zeros(NoOfNodes,NoOfNodes);

for e = 1:NoOfElements
 for i = 1:8 %(8 Nodes per element)
 for j = 1:8 %(8 Nodes per element)
 rem = i; %(rem = row element matrix)
 cem = j; %(cem = column element matrix)
 ram = NodesXElementsTranspose(i,e); %(ram = row assembled matrix)
 cam = NodesXElementsTranspose(j,e); %(cam = column assembled matrix)
 ElementConductanceMatrix = Kc; %(3D Conductance Matrix)
 AssembledConductanceMatrix(ram,cam) = AssembledConductanceMatrix(ram,cam) +

A.5

ElementConductanceMatrix(rem,cem);
 end;
end;
end;

COND = AssembledConductanceMatrix;

%__
%%%
%%%
%% %%
%% %-----ODE SOLVER---ODE SOLVER---ODE SOLVER---ODE SOLVER----% %%
%% %%
%%%
%%%
%__

Theta = 1/2; %Crank Nicolson

for t = 0:TimeIncrement:FinalTime

 if t == 0
 Tprevious = InitialTemp*ones(NoOfNodes,1);
 else
 Tprevious = T;
 end

load AmbientTemp.dat
TempAmbient = (-sin(((2*pi*((((t/24)-

floor(t/24))*24+(CastTime))+tm))/24)).*((interp1(AmbientTemp(:,1),AmbientTe
mp(:,3),(ceil(t/24)*24))-...
interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)+...
((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))+interp1(Ambient
Temp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2));

%%%
%% %%
%% %-------------Rq----------Rq----------Rq----------Rq------------% %%
%% %%
%%%

global eq;
load Maturity.dat
eq = 1;

A.6

 RQ = bin.*[dblquad(@Heating1,-1,1,-1,1);...
 dblquad(@Heating2,-1,1,-1,1);...
 dblquad(@Heating3,-1,1,-1,1);...
 dblquad(@Heating4,-1,1,-1,1);...
 dblquad(@Heating5,-1,1,-1,1);...
 dblquad(@Heating6,-1,1,-1,1);...
 dblquad(@Heating7,-1,1,-1,1);...
 dblquad(@Heating8,-1,1,-1,1)];

load NodesXElements.dat
NodesXElementsTranspose = transpose(NodesXElements);
AssembledHeatLiberatedMatrix = zeros(NoOfNodes,1);

for erq = 1:NoOfElements
 for iq = 1:8 %(8 Nodes per element)
 remq = iq; %(rem = row element matrix)
 cemq = 1; %(cem = column element matrix)
 ramq = NodesXElementsTranspose(iq,erq); %(ram = row assembled matrix)
 camq = 1; %(cam = column assembled matrix)
 ElementHeatLiberatedMatrix = RQ; %(3D Heat Liberated Matrix)
 AssembledHeatLiberatedMatrix(ramq,camq) = AssembledHeatLiberatedMatrix(ramq,camq)

+ ElementHeatLiberatedMatrix(remq,cemq);
 end;
end;

if A == 2
 DeltaM(1,1) = 0;
end

DeltaM(A,1) = t;

Deltat = DeltaM(A,1)-DeltaM(A-1,1);

for ete = 1:NoOfNodes
 CumulativeMaturity(ete,1) = (exp((E/R)*((1/293)-(1/(Tprevious(ete,1)+273)))))*Deltat +

CDMHolder(ete,1);
 MaturityAtNode = (interp1(Maturity(:,1),Maturity(:,2),CumulativeMaturity));
 MaturityChange(ete,1) = (exp((E/R)*((1/293)-(1/(Tprevious(ete,1)+273)))));
end;

CDMHolder = CumulativeMaturity;

A = A + 1;

%%%

A.7

RQT = (AssembledHeatLiberatedMatrix.*MaturityAtNode).*(MaturityChange);

%%%

%%%
%% %%
%% %--------------Kh----------Kh----------Kh----------Kh-------------% %%
%% %%
%%%

if t < Ft
 h = hC;
else
 h = hE;
end

global esS1;
esS1 = 1;
 KhS1 = h.*[quad(@SurConvS11,-1,1),quad(@SurConvS12,-1,1),quad(@SurConvS13,-1,1);...
 quad(@SurConvS14,-1,1),quad(@SurConvS15,-1,1),quad(@SurConvS16,-1,1);...
 quad(@SurConvS17,-1,1),quad(@SurConvS18,-1,1),quad(@SurConvS19,-1,1)];

load NodesXElementsS1.dat
NodesXElementsS1Transpose = transpose(NodesXElementsS1);
AssembledBoundCond1MatrixS1 = zeros(NoOfNodes,NoOfNodes);

for ekh1 = 1:NoOfElementsYDirection
 for ikh1 = 1:3 %(8 Nodes per element)
 for jkh1 = 1:3 %(8 Nodes per element)
 remkh1 = ikh1; %(rem = row element matrix)
 cemkh1 = jkh1; %(cem = column element matrix)
 ramkh1 = NodesXElementsS1Transpose(ikh1,ekh1); %(ram = row assembled matrix)
 camkh1 = NodesXElementsS1Transpose(jkh1,ekh1); %(cam = column assembled matrix)
 ElementBoundCond1MatrixS1 = KhS1; %(3D Boundary Conductance 1 Matrix)
 AssembledBoundCond1MatrixS1(ramkh1,camkh1) =

AssembledBoundCond1MatrixS1(ramkh1,camkh1) +
ElementBoundCond1MatrixS1(remkh1,cemkh1);

 end;
end;
end;

%%%

global esS2;
esS2 = 1;

A.8

 KhS2 = hE.*[quad(@SurConvS21,-1,1),quad(@SurConvS22,-1,1),quad(@SurConvS23,-1,1);...
 quad(@SurConvS24,-1,1),quad(@SurConvS25,-1,1),quad(@SurConvS26,-1,1);...
 quad(@SurConvS27,-1,1),quad(@SurConvS28,-1,1),quad(@SurConvS29,-1,1)];

load NodesXElementsS2.dat
NodesXElementsS2Transpose = transpose(NodesXElementsS2);
AssembledBoundCond1MatrixS2 = zeros(NoOfNodes,NoOfNodes);

for ekh2 = 1:NoOfElementsXDirection
 for ikh2 = 1:3 %(8 Nodes per element)
 for jkh2 = 1:3 %(8 Nodes per element)
 remkh2 = ikh2; %(rem = row element matrix)
 cemkh2 = jkh2; %(cem = column element matrix)
 ramkh2 = NodesXElementsS2Transpose(ikh2,ekh2); %(ram = row assembled matrix)
 camkh2 = NodesXElementsS2Transpose(jkh2,ekh2); %(cam = column assembled matrix)
 ElementBoundCond1MatrixS2 = KhS2; %(3D Boundary Conductance 1 Matrix)
 AssembledBoundCond1MatrixS2(ramkh2,camkh2) =

AssembledBoundCond1MatrixS2(ramkh2,camkh2) +
ElementBoundCond1MatrixS2(remkh2,cemkh2);

 end;
end;
end;

%%%

global esS3;
esS3 = 1;
 KhS3 = h.*[quad(@SurConvS31,-1,1),quad(@SurConvS32,-1,1),quad(@SurConvS33,-1,1);...
 quad(@SurConvS34,-1,1),quad(@SurConvS35,-1,1),quad(@SurConvS36,-1,1);...
 quad(@SurConvS37,-1,1),quad(@SurConvS38,-1,1),quad(@SurConvS39,-1,1)];

load NodesXElementsS3.dat
NodesXElementsS3Transpose = transpose(NodesXElementsS3);
AssembledBoundCond1MatrixS3 = zeros(NoOfNodes,NoOfNodes);

for ekh3 = 1:NoOfElementsYDirection
 for ikh3 = 1:3 %(8 Nodes per element)
 for jkh3 = 1:3 %(8 Nodes per element)
 remkh3 = ikh3; %(rem = row element matrix)
 cemkh3 = jkh3; %(cem = column element matrix)
 ramkh3 = NodesXElementsS3Transpose(ikh3,ekh3); %(ram = row assembled matrix)
 camkh3 = NodesXElementsS3Transpose(jkh3,ekh3); %(cam = column assembled matrix)
 ElementBoundCond1MatrixS3 = KhS3; %(3D Boundary Conductance 1 Matrix)
 AssembledBoundCond1MatrixS3(ramkh3,camkh3) =

AssembledBoundCond1MatrixS3(ramkh3,camkh3) +
ElementBoundCond1MatrixS3(remkh3,cemkh3);

A.9

 end;
end;
end;

%%%

global esS4;
esS4 = 1;
 KhS4 = kr.*[quad(@SurConvS41,-1,1),quad(@SurConvS42,-1,1),quad(@SurConvS43,-1,1);...
 quad(@SurConvS44,-1,1),quad(@SurConvS45,-1,1),quad(@SurConvS46,-1,1);...
 quad(@SurConvS47,-1,1),quad(@SurConvS48,-1,1),quad(@SurConvS49,-1,1)];

load NodesXElementsS4.dat
NodesXElementsS4Transpose = transpose(NodesXElementsS4);
AssembledBoundCond1MatrixS4 = zeros(NoOfNodes,NoOfNodes);

for ekh4 = 1:NoOfElementsXDirection
 for ikh4 = 1:3 %(8 Nodes per element)
 for jkh4 = 1:3 %(8 Nodes per element)
 remkh4 = ikh4; %(rem = row element matrix)
 cemkh4 = jkh4; %(cem = column element matrix)
 ramkh4 = NodesXElementsS4Transpose(ikh4,ekh4); %(ram = row assembled matrix)
 camkh4 = NodesXElementsS4Transpose(jkh4,ekh4); %(cam = column assembled matrix)
 ElementBoundCond1MatrixS4 = KhS4; %(3D Boundary Conductance 1 Matrix)
 AssembledBoundCond1MatrixS4(ramkh4,camkh4) =

AssembledBoundCond1MatrixS4(ramkh4,camkh4) +
ElementBoundCond1MatrixS4(remkh4,cemkh4);

 end;
end;
end;

%%%

AssembledBoundCond1MatrixTOTAL = AssembledBoundCond1MatrixS1 +

AssembledBoundCond1MatrixS2 + AssembledBoundCond1MatrixS3 + ...
 AssembledBoundCond1MatrixS4;

KH = AssembledBoundCond1MatrixTOTAL;

A.10

%%%
%% %%
%% %-------------Rh----------Rh----------Rh----------Rh------------% %%
%% %%
%%%

global ecS1;

load AmbientTemp.dat

ecS1 = 1;
 RhS1 = h.*((-sin(((2*pi*((((t/24)-

floor(t/24))*24+(CastTime))+tm))/24)).*((interp1(AmbientTemp(:,1),
AmbientTemp(:,3),(ceil(t/24)*24))-...

 interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)+...
((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))+interp1(
AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2))).*...

 [quad(@BoundConvS11,-1,1);...
 quad(@BoundConvS12,-1,1);...
 quad(@BoundConvS13,-1,1)];

load NodesXElementsS1.dat
NodesXElementsS1Transpose = transpose(NodesXElementsS1);
AssembledBoundCond2MatrixS1 = zeros(NoOfNodes,1);

for erh1 = 1:NoOfElementsYDirection
 for irh1 = 1:3 %(3 Nodes per element)
 remrh1 = irh1; %(rem = row element matrix)
 cemrh1 = 1; %(cem = column element matrix)
 ramrh1 = NodesXElementsS1Transpose(irh1,erh1); %(ram = row assembled matrix)
 camrh1 = 1; %(cam = column assembled matrix)
 ElementBoundCond2MatrixS1 = RhS1; %(3D Boundary Conductance 2 Matrix)
 AssembledBoundCond2MatrixS1(ramrh1,camrh1) =

AssembledBoundCond2MatrixS1(ramrh1,camrh1) +
ElementBoundCond2MatrixS1(remrh1,cemrh1);

 end;
end;

%%%

global ecS2;

ecS2 = 1;
RhS2 = hE.*((-sin(((2*pi*((((t/24)-

floor(t/24))*24+(CastTime))+tm))/24)).*((interp1(AmbientTemp(:,1),
AmbientTemp(:,3),(ceil(t/24)*24))-...

A.11

interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)+...
((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))+interp1(
AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2))).*...

 [quad(@BoundConvS21,-1,1);...
 quad(@BoundConvS22,-1,1);...
 quad(@BoundConvS23,-1,1)];

load NodesXElementsS2.dat
NodesXElementsS2Transpose = transpose(NodesXElementsS2);
AssembledBoundCond2MatrixS2 = zeros(NoOfNodes,1);

for erh2 = 1:NoOfElementsXDirection
 for irh2 = 1:3 %(3 Nodes per element)
 remrh2 = irh2; %(rem = row element matrix)
 cemrh2 = 1; %(cem = column element matrix)
 ramrh2 = NodesXElementsS2Transpose(irh2,erh2); %(ram = row assembled matrix)
 camrh2 = 1; %(cam = column assembled matrix)
 ElementBoundCond2MatrixS2 = RhS2; %(3D Boundary Conductance 2 Matrix)
 AssembledBoundCond2MatrixS2(ramrh2,camrh2) =

AssembledBoundCond2MatrixS2(ramrh2,camrh2) +
ElementBoundCond2MatrixS2(remrh2,cemrh2);

 end;
end;

%%%

global ecS3;

ecS3 = 1;
 RhS3 = h.*((-sin(((2*pi*((((t/24)-

floor(t/24))*24+(CastTime))+tm))/24)).*((interp1(AmbientTemp(:,1),
AmbientTemp(:,3),(ceil(t/24)*24))-...
interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)+...
((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))+interp1(
AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2))).*...

 [quad(@BoundConvS31,-1,1);...
 quad(@BoundConvS32,-1,1);...
 quad(@BoundConvS33,-1,1)];

load NodesXElementsS3.dat
NodesXElementsS3Transpose = transpose(NodesXElementsS3);
AssembledBoundCond2MatrixS3 = zeros(NoOfNodes,1);

for erh3 = 1:NoOfElementsYDirection
 for irh3 = 1:3 %(3 Nodes per element)
 remrh3 = irh3; %(rem = row element matrix)

A.12

 cemrh3 = 1; %(cem = column element matrix)
 ramrh3 = NodesXElementsS3Transpose(irh3,erh3); %(ram = row assembled matrix)
 camrh3 = 1; %(cam = column assembled matrix)
 ElementBoundCond2MatrixS3 = RhS3; %(3D Boundary Conductance 2 Matrix)
 AssembledBoundCond2MatrixS3(ramrh3,camrh3) =

AssembledBoundCond2MatrixS3(ramrh3,camrh3) +
ElementBoundCond2MatrixS3(remrh3,cemrh3);

 end;
end;

%%%

global ecS4;

TimePreviousDay = t - 24;
TempRock = interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(TimePreviousDay/24)*24));

ecS4 = 1;
 RhS4 = kr.*(TempRock).*...
 [quad(@BoundConvS41,-1,1);...
 quad(@BoundConvS42,-1,1);...
 quad(@BoundConvS43,-1,1)];

load NodesXElementsS4.dat
NodesXElementsS4Transpose = transpose(NodesXElementsS4);
AssembledBoundCond2MatrixS4 = zeros(NoOfNodes,1);

for erh4 = 1:NoOfElementsXDirection
 for irh4 = 1:3 %(3 Nodes per element)
 remrh4 = irh4; %(rem = row element matrix)
 cemrh4 = 1; %(cem = column element matrix)
 ramrh4 = NodesXElementsS4Transpose(irh4,erh4); %(ram = row assembled matrix)
 camrh4 = 1; %(cam = column assembled matrix)
 ElementBoundCond2MatrixS4 = RhS4; %(3D Boundary Conductance 2 Matrix)
 AssembledBoundCond2MatrixS4(ramrh4,camrh4) =

AssembledBoundCond2MatrixS4(ramrh4,camrh4) +
ElementBoundCond2MatrixS4(remrh4,cemrh4);

 end;
end;

AssembledBoundCond2MatrixS4Rock = AssembledBoundCond2MatrixS4;

%%%

AssembledBoundCond2MatrixTOTAL = (AssembledBoundCond2MatrixS1 +

AssembledBoundCond2MatrixS2 + AssembledBoundCond2MatrixS3) + ...

A.13

 (AssembledBoundCond2MatrixS4Rock);

RH = AssembledBoundCond2MatrixTOTAL;

%%%
%% %%
%% %-------------Rr----------Rr----------Rr----------Rr------------% %%
%% %%
%%%

global ewS1;

load AmbientTemp.dat
ewS1 = 1;
 RrS1 = Sigma.*Emissivity.*(((-sin(((2*pi*((((t/24)-floor(t/24))*24+(CastTime))+tm))/24)).*...
 ((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))-...
 interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)+...
 ((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))+...
 interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)))^4).*...
 [quad(@BoundRadS11,-1,1);...
 quad(@BoundRadS12,-1,1);...
 quad(@BoundRadS13,-1,1)];

load NodesXElementsS1.dat
NodesXElementsS1Transpose = transpose(NodesXElementsS1);
AssembledBoundRad2MatrixS1 = zeros(NoOfNodes,1);

for e = 1:NoOfElementsYDirection
 for i = 1:3 %(8 Nodes per element)
 rem = i; %(rem = row element matrix)
 cem = 1; %(cem = column element matrix)
 ram = NodesXElementsS1Transpose(i,e); %(ram = row assembled matrix)
 cam = 1; %(cam = column assembled matrix)
 ElementBoundRad2MatrixS1 = RrS1; %(3D Boundary Radiation 2 Matrix)
 AssembledBoundRad2MatrixS1(ram,cam) = AssembledBoundRad2MatrixS1(ram,cam) +

ElementBoundRad2MatrixS1(rem,cem);
 end;
end;

%%%

global ewS2;

ewS2 = 1;
 RrS2 = Sigma.*Emissivity.*(((-sin(((2*pi*((((t/24)-floor(t/24))*24+(CastTime))+tm))/24)).*...

A.14

 ((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))-...
 interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)+...
 ((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))+...
 interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)))^4).*...
 [quad(@BoundRadS21,-1,1);...
 quad(@BoundRadS22,-1,1);...
 quad(@BoundRadS23,-1,1)];

load NodesXElementsS2.dat
NodesXElementsS2Transpose = transpose(NodesXElementsS2);
AssembledBoundRad2MatrixS2 = zeros(NoOfNodes,1);

for e = 1:NoOfElementsXDirection
 for i = 1:3 %(8 Nodes per element)
 rem = i; %(rem = row element matrix)
 cem = 1; %(cem = column element matrix)
 ram = NodesXElementsS2Transpose(i,e); %(ram = row assembled matrix)
 cam = 1; %(cam = column assembled matrix)
 ElementBoundRad2MatrixS2 = RrS2; %(3D Boundary Radiation 2 Matrix)
 AssembledBoundRad2MatrixS2(ram,cam) = AssembledBoundRad2MatrixS2(ram,cam) +

ElementBoundRad2MatrixS2(rem,cem);
 end;
end;

%%%

global ewS3;

ewS3 = 1;
 RrS3 = Sigma.*Emissivity.*(((-sin(((2*pi*((((t/24)-floor(t/24))*24+(CastTime))+tm))/24)).*...
 ((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))-...
 interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)+...
 ((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))+...
 interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)))^4).*...
 [quad(@BoundRadS31,-1,1);...
 quad(@BoundRadS32,-1,1);...
 quad(@BoundRadS33,-1,1)];

load NodesXElementsS3.dat
NodesXElementsS3Transpose = transpose(NodesXElementsS3);
AssembledBoundRad2MatrixS3 = zeros(NoOfNodes,1);

for e = 1:NoOfElementsYDirection
 for i = 1:3 %(8 Nodes per element)
 rem = i; %(rem = row element matrix)
 cem = 1; %(cem = column element matrix)

A.15

 ram = NodesXElementsS3Transpose(i,e); %(ram = row assembled matrix)
 cam = 1; %(cam = column assembled matrix)
 ElementBoundRad2MatrixS3 = RrS3; %(3D Boundary Radiation 2 Matrix)
 AssembledBoundRad2MatrixS3(ram,cam) = AssembledBoundRad2MatrixS3(ram,cam) +

ElementBoundRad2MatrixS3(rem,cem);
 end;
end;

%%%

global ewS4;

ewS4 = 1;
 RrS4 = Sigma.*(1).*(((-sin(((2*pi*((((t/24)-floor(t/24))*24+(CastTime))+tm))/24)).*...
 ((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))-...
 interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)+...
 ((interp1(AmbientTemp(:,1),AmbientTemp(:,3),(ceil(t/24)*24))+...
 interp1(AmbientTemp(:,1),AmbientTemp(:,2),(ceil(t/24)*24)))/2)))^4).*...
 [quad(@BoundRadS41,-1,1);...
 quad(@BoundRadS42,-1,1);...
 quad(@BoundRadS43,-1,1)];

load NodesXElementsS4.dat
NodesXElementsS4Transpose = transpose(NodesXElementsS4);
AssembledBoundRad2MatrixS4 = zeros(NoOfNodes,1);

for e = 1:NoOfElementsXDirection
 for i = 1:3 %(3 Nodes per element)
 rem = i; %(rem = row element matrix)
 cem = 1; %(cem = column element matrix)
 ram = NodesXElementsS4Transpose(i,e); %(ram = row assembled matrix)
 cam = 1; %(cam = column assembled matrix)
 ElementBoundRad2MatrixS4 = RrS4; %(3D Boundary Conductance 2 Matrix)
 AssembledBoundRad2MatrixS4(ram,cam) = AssembledBoundRad2MatrixS4(ram,cam) +

ElementBoundRad2MatrixS4(rem,cem);
 end;
end;

AssembledBoundRad2MatrixS4Rock = AssembledBoundRad2MatrixS4;

%%%

AssembledBoundRad2MatrixTOTAL = (AssembledBoundRad2MatrixS1 +

AssembledBoundRad2MatrixS2 + AssembledBoundRad2MatrixS3) + ...
 AssembledBoundRad2MatrixS4Rock;

A.16

RR = AssembledBoundRad2MatrixTOTAL;

%%%
%% %%
%% %--------------Rs----------Rs----------Rs----------Rs-------------% %%
%% %%
%%%

global elS1;

elS1 = 1;
 RsS1 = Sigma.*Emissivity.*[quad(@SurRadS11,-1,1);...
 quad(@SurRadS12,-1,1);...
 quad(@SurRadS13,-1,1)];

load NodesXElementsS1.dat
NodesXElementsS1Transpose = transpose(NodesXElementsS1);
AssembledBoundRad1MatrixS1 = zeros(NoOfNodes,1);

for e = 1:NoOfElementsYDirection
 for i = 1:3 %(8 Nodes per element)
 rem = i; %(rem = row element matrix)
 cem = 1; %(cem = column element matrix)
 ram = NodesXElementsS1Transpose(i,e); %(ram = row assembled matrix)
 cam = 1; %(cam = column assembled matrix)
 ElementBoundRad1MatrixS1 = RsS1; %(3D Boundary Radiation 1 Matrix)
 AssembledBoundRad1MatrixS1(ram,cam) = AssembledBoundRad1MatrixS1(ram,cam) +

ElementBoundRad1MatrixS1(rem,cem);
 end;
end;

%%%

global elS2;

elS2 = 1;
 RsS2 = Sigma.*Emissivity.*[quad(@SurRadS21,-1,1);...
 quad(@SurRadS22,-1,1);...
 quad(@SurRadS23,-1,1)];

load NodesXElementsS2.dat
NodesXElementsS2Transpose = transpose(NodesXElementsS2);
AssembledBoundRad1MatrixS2 = zeros(NoOfNodes,1);

A.17

for e = 1:NoOfElementsXDirection
 for i = 1:3 %(8 Nodes per element)
 rem = i; %(rem = row element matrix)
 cem = 1; %(cem = column element matrix)
 ram = NodesXElementsS2Transpose(i,e); %(ram = row assembled matrix)
 cam = 1; %(cam = column assembled matrix)
 ElementBoundRad1MatrixS2 = RsS2; %(3D Boundary Radiation 1 Matrix)
 AssembledBoundRad1MatrixS2(ram,cam) = AssembledBoundRad1MatrixS2(ram,cam) +

ElementBoundRad1MatrixS2(rem,cem);
 end;
end;

%%%

global elS3;

elS3 = 1;
 RsS3 = Sigma.*Emissivity.*[quad(@SurRadS31,-1,1);...
 quad(@SurRadS32,-1,1);...
 quad(@SurRadS33,-1,1)];

load NodesXElementsS3.dat
NodesXElementsS3Transpose = transpose(NodesXElementsS3);
AssembledBoundRad1MatrixS3 = zeros(NoOfNodes,1);

for e = 1:NoOfElementsYDirection
 for i = 1:3 %(8 Nodes per element)
 rem = i; %(rem = row element matrix)
 cem = 1; %(cem = column element matrix)
 ram = NodesXElementsS3Transpose(i,e); %(ram = row assembled matrix)
 cam = 1; %(cam = column assembled matrix)
 ElementBoundRad1MatrixS3 = RsS3; %(3D Boundary Radiation 1 Matrix)
 AssembledBoundRad1MatrixS3(ram,cam) = AssembledBoundRad1MatrixS3(ram,cam) +

ElementBoundRad1MatrixS3(rem,cem);
 end;
end;

%%%

AssembledBoundRad1MatrixTOTAL = AssembledBoundRad1MatrixS1 +

AssembledBoundRad1MatrixS2 + AssembledBoundRad1MatrixS3;

RS = (AssembledBoundRad1MatrixTOTAL.*(Tprevious.^4));
%__
%__

A.18

Res1 = (((1/TimeIncrement)*CAP)+(((k.*COND)+KH)*Theta));
Res2 = inv(Res1);
Res3 = ((((1/TimeIncrement)*CAP)-(((k.*COND)+KH)*(1-Theta)))*Tprevious) + (RQT + RH +

RR - RS);
T = Res2*Res3;

Mx(t+1,:) = max(T);
Mn(t+1,:) = min(T);

ram = A-2;
TimeStep(ram,1) = (ram-1)*TimeIncrement;
TimeStepFinal(ram,1) = TimeStepFinal(ram,1)+TimeStep(ram,1);

Tfinal(ram,:) = transpose(T);

end;

%__
% %
%%%
%%%
%% %%
%% %------------- END ODE SOLVER--------------END ODE SOLVER---------------% %%
%% %%
%%%
%%%
% %
%__

load ElementCoord.dat
for eplot = 1:NoOfElements
 PlotCoordsX(:,eplot) = ElementCoord(((eplot*8)-7):(eplot*8),1);
 PlotCoordsY(:,eplot) = ElementCoord(((eplot*8)-7):(eplot*8),2);
end;

load NodesXElements.dat
NodesXElementsTranspose = transpose(NodesXElements);
Tplot = zeros(8,NoOfElements);

for eplotT = 1:NoOfElements
 for i = 1:8
 ram = NodesXElementsTranspose(i,eplotT);
 rem = i;
 Tplot(rem,eplotT) = Tplot(rem,eplotT) + T(ram,1);
 end;

A.19

end;

Md = Mx - Mn;
Maxdiff = max(Md)
MaxTimeT = find(Md == Maxdiff)

subplot(3,1,1); plot(TimeStepFinal,Mx,TimeStepFinal,Mn);
leg1 = text(1,10,['Maximum Temperature Difference (deg C) = ',num2str(Maxdiff)]);
leg2 = text(1,5,['Time at Maximum Temperature Difference (hrs) = ',num2str(MaxTimeT)]);
subplot(3,1,2); plot(TimeStepFinal,Tfinal);
subplot(3,1,3); patch(PlotCoordsX,PlotCoordsY,Tplot,'Tag','T')
colorbar

%%%

8.2 SELECTED FUNCTIONS – FEM MATLAB CODE

Example of one capacitance matrix entry:

function C1 = CapMatrix1(Xi, Eta);

global e;
load ElementCoord.dat

 X = ElementCoord(((e*8)-7):(e*8),1);
 Y = ElementCoord(((e*8)-7):(e*8),2);
 N1A = (0.25*(1-Xi).*(1-Eta).*(-1-Xi-Eta)) .* (((((0.5*Xi)-(0.5*Xi.*Eta)-

 (0.25*Eta.^2)+(0.25*Eta))*X(1,1) + ...
 (-Xi + (Xi.*Eta))*X(2,1) + ...
 ((0.5*Xi)-(0.5*Xi.*Eta)+(0.25*Eta.^2)-(0.25*Eta))*X(3,1) + ...
 (0.5-(0.5*Eta.^2))*X(4,1) + ...
 ((0.5*Xi)+(0.5*Xi.*Eta)+(0.25*Eta.^2)+(0.25*Eta))*X(5,1) + ...
 (-Xi - (Xi.*Eta))*X(6,1) + ...
 ((0.5*Xi)+(0.5*Xi.*Eta)-(0.25*Eta.^2)-(0.25*Eta))*X(7,1) + ...
 (-0.5+(0.5*Eta.^2))*X(8,1)).* ...
 (((0.5*Eta)-(0.5*Xi.*Eta)-(0.25*Xi.^2)+(0.25*Xi))*Y(1,1) + ...
 (-0.5+(0.5*Xi.^2))*Y(2,1) + ...
 ((0.5*Eta)+(0.5*Xi.*Eta)-(0.25*Xi.^2)-(0.25*Xi))*Y(3,1) + ...
 (-Eta - (Xi.*Eta))*Y(4,1) + ...
 ((0.5*Eta)+(0.5*Xi.*Eta)+(0.25*Xi.^2)+(0.25*Xi))*Y(5,1) + ...
 (0.5-(0.5*Xi.^2))*Y(6,1) + ...
 ((0.5*Eta)-(0.5*Xi.*Eta)+(0.25*Xi.^2)-(0.25*Xi))*Y(7,1) + ...

A.20

 (-Eta + (Eta.*Xi))*Y(8,1))) - ...
 ((((0.5*Xi)-(0.5*Xi.*Eta)-(0.25*Eta.^2)+(0.25*Eta))*Y(1,1) + ...
 (-Xi + (Xi.*Eta))*Y(2,1) + ...
 ((0.5*Xi)-(0.5*Xi.*Eta)+(0.25*Eta.^2)-(0.25*Eta))*Y(3,1) + ...
 (0.5-(0.5*Eta.^2))*Y(4,1) + ...
 ((0.5*Xi)+(0.5*Xi.*Eta)+(0.25*Eta.^2)+(0.25*Eta))*Y(5,1) + ...
 (-Xi - (Xi.*Eta))*Y(6,1) + ...
 ((0.5*Xi)+(0.5*Xi.*Eta)-(0.25*Eta.^2)-(0.25*Eta))*Y(7,1) + ...
 (-0.5+(0.5*Eta.^2))*Y(8,1)).* ...
 (((0.5*Eta)-(0.5*Xi.*Eta)-(0.25*Xi.^2)+(0.25*Xi))*X(1,1) + ...
 (-0.5+(0.5*Xi.^2))*X(2,1) + ...
 ((0.5*Eta)+(0.5*Xi.*Eta)-(0.25*Xi.^2)-(0.25*Xi))*X(3,1) + ...
 (-Eta - (Xi.*Eta))*X(4,1) + ...
 ((0.5*Eta)+(0.5*Xi.*Eta)+(0.25*Xi.^2)+(0.25*Xi))*X(5,1) + ...
 (0.5-(0.5*Xi.^2))*X(6,1) + ...
 ((0.5*Eta)-(0.5*Xi.*Eta)+(0.25*Xi.^2)-(0.25*Xi))*X(7,1) + ...
 (-Eta + (Eta.*Xi))*X(8,1))));
 N1B = 0.25*(1-Xi).*(1-Eta).*(-1-Xi-Eta);
 C1 = (N1A.*N1B);

Example of one conductance matrix entry:

function Kc1 = CondMatrix1(Xi, Eta);

global ek;
load ElementCoord.dat

 X = ElementCoord(((ek*8)-7):(ek*8),1);
 Y = ElementCoord(((ek*8)-7):(ek*8),2);

 N1N1Xi = (((2*((2*Y(3,1)-4*Y(4,1)+2*Y(1,1)-2*Y(1,1)*Xi-
4*Y(4,1)*Xi+2*Y(5,1)+2*Y(7,1)-2*Y(7,1)*Xi+2*Y(3,1)*Xi+2*Y(5,1)*Xi-4*Y(8,1)...
 +4*Y(8,1)*Xi)*Eta-2*Y(2,1)+Y(5,1)*Xi.^2-Y(1,1)*Xi.^2+Y(1,1)*Xi-
Y(3,1)*Xi.^2+2*Y(2,1)*Xi.^2+Y(7,1)*Xi.^2+...
 2*Y(6,1)-Y(3,1)*Xi+Y(5,1)*Xi-2*Y(6,1)*Xi.^2-Y(7,1)*Xi)/(2*Y(2,1)*Xi.^2*X(1,1)-
2*Y(2,1)*Xi.^2*X(3,1)+2*Y(2,1)*Xi.^2*X(5,1)...
 -2*Y(2,1)*Xi.^2*X(7,1)+4*X(6,1)*Xi.^3*Y(1,1)-2*X(6,1)*Xi.^2*Y(1,1)-
8*X(6,1)*Xi.^3*Y(2,1)+4*X(6,1)*Xi.^3*Y(3,1)...
 +2*X(6,1)*Xi.^2*Y(3,1)-2*X(6,1)*Xi.^2*Y(5,1)+2*X(6,1)*Xi.^2*Y(7,1)-
2*X(7,1)*Xi.^3*Y(1,1)+2*X(7,1)*Xi.^2*Y(1,1)...
 +4*X(7,1)*Xi.^3*Y(2,1)-2*X(7,1)*Xi.^3*Y(3,1)+2*X(7,1)*Xi.^2*Y(5,1)-
2*Y(8,1)*X(2,1)+2*Y(8,1)*X(6,1)+X(8,1)*Y(7,1)*Xi+2*Y(1,1)*Xi*X(2,1)...
 -2*Y(1,1)*Xi*X(6,1)-2*Y(3,1)*Xi*X(6,1)+2*X(8,1)*Y(2,1)-
2*X(8,1)*Y(6,1)+2*X(2,1)*Xi.^2*Y(7,1)+2*X(3,1)*Xi.^2*Y(1,1)...

A.21

 +2*X(3,1)*Xi.^3*Y(5,1)+2*X(3,1)*Xi.^2*Y(5,1)-
4*X(3,1)*Xi.^3*Y(6,1)+2*X(3,1)*Xi.^3*Y(7,1)-2*X(5,1)*Xi.^3*Y(1,1)...
 +4*X(5,1)*Xi.^3*Y(2,1)-2*X(5,1)*Xi.^3*Y(3,1)-2*X(5,1)*Xi.^2*Y(3,1)-
2*X(5,1)*Xi.^2*Y(7,1)+2*Y(4,1)*X(2,1)-2*Y(4,1)*X(6,1)...
 +(2*X(5,1)*Y(1,1)-2*X(7,1)*Y(5,1)-
4*Y(8,1)*X(3,1)+4*X(8,1)*Y(3,1)+2*X(3,1)*Y(1,1)+2*X(3,1)*Y(7,1)+4*X(8,1)*Y(5,1)-
2*X(1,1)*Y(5,1)...
 -4*X(4,1)*Y(7,1)+8*X(4,1)*Y(8,1)+4*Y(4,1)*X(1,1)-4*X(4,1)*Y(1,1)+2*X(5,1)*Y(7,1)-
4*Y(8,1)*X(5,1)-2*X(1,1)*Y(3,1)+4*Y(4,1)*X(7,1)...
 -8*X(8,1)*Y(4,1)-2*X(7,1)*Y(3,1))*Eta.^3+(2*X(5,1)*Y(7,1)-
X(1,1)*Y(6,1)+2*X(4,1)*Y(1,1)+3*Y(2,1)*Xi.^2*X(1,1)-3*Y(2,1)*Xi.^2*X(3,1)...
 -3*Y(2,1)*Xi.^2*X(5,1)+3*Y(2,1)*Xi.^2*X(7,1)+3*X(6,1)*Xi.^2*Y(1,1)-
3*X(6,1)*Xi.^2*Y(3,1)-3*X(6,1)*Xi.^2*Y(5,1)+3*X(6,1)*Xi.^2*Y(7,1)...
 -3*X(7,1)*Xi.^2*Y(1,1)+3*X(7,1)*Xi.^2*Y(5,1)+2*Y(8,1)*X(2,1)-
2*Y(8,1)*X(6,1)+2*X(5,1)*Y(3,1)...
 +5*X(8,1)*Y(7,1)*Xi-X(3,1)*Y(2,1)+4*Y(1,1)*Xi*X(2,1)-4*Y(1,1)*Xi*X(6,1)-
4*Y(3,1)*Xi*X(6,1)+8*Y(2,1)*Xi*X(4,1)...
 +8*Y(2,1)*Xi*X(8,1)-5*X(3,1)*Xi*Y(5,1)-3*X(3,1)*Xi*Y(7,1)+8*X(6,1)*Xi*Y(8,1)-
3*X(1,1)*Xi*Y(5,1)-5*X(1,1)*Xi*Y(7,1)...
 -8*Y(6,1)*Xi*X(8,1)-8*X(2,1)*Xi*Y(4,1)-8*X(2,1)*Xi*Y(8,1)-
2*X(8,1)*Y(2,1)+2*X(8,1)*Y(6,1)-3*X(2,1)*Xi.^2*Y(7,1)...
 +3*X(3,1)*Xi.^2*Y(1,1)-3*X(3,1)*Xi.^2*Y(5,1)+3*X(5,1)*Xi.^2*Y(3,1)-
3*X(5,1)*Xi.^2*Y(7,1)-2*X(3,1)*Y(5,1)+Y(3,1)*X(2,1)...
 -2*Y(4,1)*X(2,1)+2*Y(4,1)*X(6,1)+4*X(1,1)*Xi*Y(6,1)-
3*X(4,1)*Y(1,1)*Xi+6*X(4,1)*Y(2,1)*Xi.^2-3*X(4,1)*Y(3,1)*Xi.^2-...

5*X(4,1)*Y(3,1)*Xi+3*X(4,1)*Y(5,1)*Xi.^2+5*X(4,1)*Y(5,1)*Xi+3*X(4,1)*Y(7,1)*Xi.^2+3*
X(4,1)*Y(7,1)*Xi+4*X(5,1)*Xi*Y(6,1)...
 -4*X(7,1)*Xi*Y(2,1)+4*X(7,1)*Xi*Y(6,1)+3*X(8,1)*Y(1,1)*Xi.^2-5*X(8,1)*Y(1,1)*Xi-
6*X(8,1)*Y(2,1)*Xi.^2+3*X(8,1)*Y(3,1)*Xi.^2-...
 3*X(8,1)*Y(3,1)*Xi-2*X(3,1)*Y(1,1)+3*X(8,1)*Y(5,1)*Xi-Y(3,1)*X(6,1)+2*X(4,1)*Y(2,1)-
2*X(4,1)*Y(6,1)+2*Y(8,1)*X(7,1)...
 +Y(1,1)*X(6,1)-3*X(1,1)*Xi.^2*Y(3,1)+3*X(1,1)*Xi.^2*Y(7,1)-
3*X(2,1)*Xi.^2*Y(1,1)+3*X(2,1)*Xi.^2*Y(3,1)+3*X(2,1)*Xi.^2*Y(5,1)...
 -2*X(8,1)*Y(7,1)-Y(1,1)*X(2,1)-2*Y(8,1)*X(5,1)+2*Y(8,1)*X(3,1)-4*X(1,1)*Xi*Y(2,1)-
2*X(7,1)*Y(5,1)-3*Y(6,1)*Xi.^2*X(1,1)...
 +3*Y(6,1)*Xi.^2*X(3,1)+3*Y(6,1)*Xi.^2*X(5,1)-3*Y(6,1)*Xi.^2*X(7,1)-
2*Y(8,1)*X(1,1)+5*X(7,1)*Xi*Y(1,1)+3*X(7,1)*Xi*Y(3,1)...
 +3*X(5,1)*Xi*Y(1,1)+5*X(5,1)*Xi*Y(3,1)+Y(5,1)*X(2,1)-Y(5,1)*X(6,1)-
2*X(7,1)*Y(1,1)+2*Y(4,1)*X(7,1)+8*X(6,1)*Xi*Y(4,1)...
 -8*Y(6,1)*Xi*X(4,1)+X(1,1)*Y(2,1)-
2*Y(4,1)*X(5,1)+4*Y(3,1)*Xi*X(2,1)+6*X(8,1)*Y(6,1)*Xi.^2-3*X(8,1)*Y(5,1)*Xi.^2-...
 4*X(3,1)*Xi*Y(2,1)-3*X(4,1)*Y(1,1)*Xi.^2-4*Y(7,1)*Xi*X(6,1)-
3*X(8,1)*Y(7,1)*Xi.^2+4*X(3,1)*Xi*Y(6,1)+4*Y(7,1)*Xi*X(2,1)...

A.22

 -4*X(5,1)*Xi*Y(2,1)-
6*X(4,1)*Y(6,1)*Xi.^2+2*Y(4,1)*X(3,1)+2*X(1,1)*Y(7,1)+2*X(1,1)*Y(3,1)-
2*X(8,1)*Y(3,1)+2*X(8,1)*Y(5,1)-...
 2*Y(4,1)*X(1,1)+3*Y(4,1)*X(1,1)*Xi.^2+3*Y(4,1)*X(1,1)*Xi-
6*Y(4,1)*X(2,1)*Xi.^2+3*Y(4,1)*X(3,1)*Xi.^2+5*Y(4,1)*X(3,1)*Xi...
 -3*Y(4,1)*X(5,1)*Xi.^2-5*Y(4,1)*X(5,1)*Xi+6*Y(4,1)*X(6,1)*Xi.^2-3*Y(4,1)*X(7,1)*Xi.^2-
3*Y(4,1)*X(7,1)*Xi+4*Y(5,1)*Xi*X(2,1)...
 -4*Y(5,1)*Xi*X(6,1)-3*Y(8,1)*X(1,1)*Xi.^2+5*Y(8,1)*X(1,1)*Xi+6*Y(8,1)*X(2,1)*Xi.^2-
3*Y(8,1)*X(3,1)*Xi.^2+...
 3*Y(8,1)*X(3,1)*Xi+3*Y(8,1)*X(5,1)*Xi.^2-3*Y(8,1)*X(5,1)*Xi-
6*Y(8,1)*X(6,1)*Xi.^2+3*Y(8,1)*X(7,1)*Xi.^2-5*Y(8,1)*X(7,1)*Xi...
 +X(3,1)*Y(6,1)-X(7,1)*Y(6,1)-Y(7,1)*X(2,1)-
X(5,1)*Y(2,1)+2*X(8,1)*Y(1,1)+X(7,1)*Y(2,1)+Y(7,1)*X(6,1)+2*X(4,1)*Y(5,1)-
2*X(4,1)*Y(7,1)...
 +X(5,1)*Y(6,1)-2*X(4,1)*Y(3,1))*Eta.^2+(X(1,1)*Y(6,1)+2*X(4,1)*Y(1,1)-
5*Y(2,1)*Xi.^2*X(1,1)+5*Y(2,1)*Xi.^2*X(3,1)...
 +3*Y(2,1)*Xi.^2*X(5,1)-3*Y(2,1)*Xi.^2*X(7,1)+3*X(6,1)*Xi.^2*Y(1,1)-
3*X(6,1)*Xi.^2*Y(3,1)-5*X(6,1)*Xi.^2*Y(5,1)...
 +5*X(6,1)*Xi.^2*Y(7,1)+5*X(7,1)*Xi.^2*Y(5,1)+6*X(8,1)*Y(7,1)*Xi+X(3,1)*Y(2,1)-
6*Y(1,1)*Xi*X(2,1)-2*Y(1,1)*Xi*X(6,1)...
 -2*Y(3,1)*Xi*X(6,1)-8*X(4,1)*Y(8,1)+8*X(8,1)*Y(4,1)-8*Y(2,1)*Xi*X(4,1)-
8*Y(2,1)*Xi*X(8,1)+8*X(6,1)*Xi*Y(8,1)...
 +3*X(1,1)*Xi.^2*Y(5,1)-
8*Y(6,1)*Xi*X(8,1)+8*X(2,1)*Xi*Y(4,1)+8*X(2,1)*Xi*Y(8,1)+3*X(2,1)*Xi.^2*Y(7,1)-
5*X(3,1)*Xi.^2*Y(1,1)...
 -5*X(5,1)*Xi.^2*Y(7,1)-Y(3,1)*X(2,1)+2*X(1,1)*Xi*Y(6,1)+2*X(4,1)*Y(1,1)*Xi-
8*X(4,1)*Y(2,1)*Xi.^2+...

4*X(4,1)*Y(3,1)*Xi.^2+6*X(4,1)*Y(3,1)*Xi+4*X(4,1)*Y(5,1)*Xi.^2+6*X(4,1)*Y(5,1)*Xi+4*
X(4,1)*Y(7,1)*Xi.^2+2*X(4,1)*Y(7,1)*Xi...
 +6*X(5,1)*Xi*Y(6,1)+2*X(7,1)*Xi*Y(2,1)+6*X(7,1)*Xi*Y(6,1)-
4*X(8,1)*Y(1,1)*Xi.^2+6*X(8,1)*Y(1,1)*Xi...
 +8*X(8,1)*Y(2,1)*Xi.^2-
4*X(8,1)*Y(3,1)*Xi.^2+2*X(8,1)*Y(3,1)*Xi+2*X(8,1)*Y(5,1)*Xi+Y(3,1)*X(6,1)+2*Y(8,1)*X
(7,1)-Y(1,1)*X(6,1)...
 +5*X(1,1)*Xi.^2*Y(3,1)+5*X(2,1)*Xi.^2*Y(1,1)-5*X(2,1)*Xi.^2*Y(3,1)-
3*X(2,1)*Xi.^2*Y(5,1)-2*X(8,1)*Y(7,1)...
 +Y(1,1)*X(2,1)+2*Y(8,1)*X(5,1)+2*Y(8,1)*X(3,1)+6*X(1,1)*Xi*Y(2,1)-
3*Y(6,1)*Xi.^2*X(1,1)+3*Y(6,1)*Xi.^2*X(3,1)...
 +5*Y(6,1)*Xi.^2*X(5,1)-5*Y(6,1)*Xi.^2*X(7,1)+2*Y(8,1)*X(1,1)-
3*X(5,1)*Xi.^2*Y(1,1)+Y(5,1)*X(2,1)-Y(5,1)*X(6,1)-2*Y(4,1)*X(7,1)...
 -3*X(3,1)*Xi.^2*Y(7,1)+8*X(6,1)*Xi*Y(4,1)-8*Y(6,1)*Xi*X(4,1)-X(1,1)*Y(2,1)-
2*Y(4,1)*X(5,1)+3*X(7,1)*Xi.^2*Y(3,1)...
 -6*Y(3,1)*Xi*X(2,1)+8*X(8,1)*Y(6,1)*Xi.^2-
4*X(8,1)*Y(5,1)*Xi.^2+6*X(3,1)*Xi*Y(2,1)+4*X(4,1)*Y(1,1)*Xi.^2-6*Y(7,1)*Xi*X(6,1)...

A.23

 -4*X(8,1)*Y(7,1)*Xi.^2+2*X(3,1)*Xi*Y(6,1)-2*Y(7,1)*Xi*X(2,1)+2*X(5,1)*Xi*Y(2,1)-
8*X(4,1)*Y(6,1)*Xi.^2-2*Y(4,1)*X(3,1)...
 -2*X(8,1)*Y(3,1)-2*X(8,1)*Y(5,1)-2*Y(4,1)*X(1,1)-4*Y(4,1)*X(1,1)*Xi.^2-
2*Y(4,1)*X(1,1)*Xi+8*Y(4,1)*X(2,1)*Xi.^2-...
 4*Y(4,1)*X(3,1)*Xi.^2-6*Y(4,1)*X(3,1)*Xi-4*Y(4,1)*X(5,1)*Xi.^2-
6*Y(4,1)*X(5,1)*Xi+8*Y(4,1)*X(6,1)*Xi.^2-4*Y(4,1)*X(7,1)*Xi.^2-...
 2*Y(4,1)*X(7,1)*Xi-2*Y(5,1)*Xi*X(2,1)-6*Y(5,1)*Xi*X(6,1)+4*Y(8,1)*X(1,1)*Xi.^2-
6*Y(8,1)*X(1,1)*Xi...
 -8*Y(8,1)*X(2,1)*Xi.^2+4*Y(8,1)*X(3,1)*Xi.^2-2*Y(8,1)*X(3,1)*Xi+4*Y(8,1)*X(5,1)*Xi.^2-
2*Y(8,1)*X(5,1)*Xi-8*Y(8,1)*X(6,1)*Xi.^2+...
 4*Y(8,1)*X(7,1)*Xi.^2-6*Y(8,1)*X(7,1)*Xi-X(3,1)*Y(6,1)-X(7,1)*Y(6,1)-Y(7,1)*X(2,1)-
X(5,1)*Y(2,1)-2*X(8,1)*Y(1,1)...

+X(7,1)*Y(2,1)+Y(7,1)*X(6,1)+2*X(4,1)*Y(5,1)+2*X(4,1)*Y(7,1)+X(5,1)*Y(6,1)+2*X(4,1)*Y
(3,1))*Eta+2*X(1,1)*Xi*Y(6,1)...
 -8*X(2,1)*Xi*Y(6,1)+X(4,1)*Y(1,1)*Xi+2*X(4,1)*Y(2,1)*Xi.^2-X(4,1)*Y(3,1)*Xi.^2-
X(4,1)*Y(3,1)*Xi+X(4,1)*Y(5,1)*Xi.^2+X(4,1)*Y(5,1)*Xi...
 +X(4,1)*Y(7,1)*Xi.^2-X(4,1)*Y(7,1)*Xi+2*X(5,1)*Xi*Y(6,1)+8*X(6,1)*Xi*Y(2,1)-
2*X(7,1)*Xi*Y(2,1)+2*X(7,1)*Xi*Y(6,1)...
 +X(8,1)*Y(1,1)*Xi.^2-X(8,1)*Y(1,1)*Xi-
2*X(8,1)*Y(2,1)*Xi.^2+X(8,1)*Y(3,1)*Xi.^2+X(8,1)*Y(3,1)*Xi-X(8,1)*Y(5,1)*Xi-
2*X(4,1)*Y(2,1)...
 +2*X(4,1)*Y(6,1)-2*X(1,1)*Xi.^2*Y(3,1)+2*X(1,1)*Xi.^3*Y(5,1)-
4*X(1,1)*Xi.^3*Y(6,1)+2*X(1,1)*Xi.^3*Y(7,1)-2*X(1,1)*Xi.^2*Y(7,1)...
 -2*X(2,1)*Xi.^2*Y(1,1)+2*X(2,1)*Xi.^2*Y(3,1)-4*X(2,1)*Xi.^3*Y(5,1)-
2*X(2,1)*Xi.^2*Y(5,1)...
 +8*X(2,1)*Xi.^3*Y(6,1)-4*X(2,1)*Xi.^3*Y(7,1)-2*X(1,1)*Xi*Y(2,1)+2*Y(6,1)*Xi.^2*X(1,1)-
2*Y(6,1)*Xi.^2*X(3,1)+2*Y(6,1)*Xi.^2*X(5,1)...
 -2*Y(6,1)*Xi.^2*X(7,1)+2*Y(3,1)*Xi*X(2,1)+2*X(8,1)*Y(6,1)*Xi.^2-X(8,1)*Y(5,1)*Xi.^2-...
 2*X(3,1)*Xi*Y(2,1)-X(4,1)*Y(1,1)*Xi.^2-2*Y(7,1)*Xi*X(6,1)-
X(8,1)*Y(7,1)*Xi.^2+2*X(3,1)*Xi*Y(6,1)+2*Y(7,1)*Xi*X(2,1)...
 -2*X(5,1)*Xi*Y(2,1)-2*X(4,1)*Y(6,1)*Xi.^2+Y(4,1)*X(1,1)*Xi.^2-Y(4,1)*X(1,1)*Xi-
2*Y(4,1)*X(2,1)*Xi.^2+...
 Y(4,1)*X(3,1)*Xi.^2+Y(4,1)*X(3,1)*Xi-Y(4,1)*X(5,1)*Xi.^2-
Y(4,1)*X(5,1)*Xi+2*Y(4,1)*X(6,1)*Xi.^2-Y(4,1)*X(7,1)*Xi.^2+...
 Y(4,1)*X(7,1)*Xi+2*Y(5,1)*Xi*X(2,1)-2*Y(5,1)*Xi*X(6,1)-
Y(8,1)*X(1,1)*Xi.^2+Y(8,1)*X(1,1)*Xi+2*Y(8,1)*X(2,1)*Xi.^2-...
 Y(8,1)*X(3,1)*Xi.^2-Y(8,1)*X(3,1)*Xi+Y(8,1)*X(5,1)*Xi.^2+Y(8,1)*X(5,1)*Xi-
2*Y(8,1)*X(6,1)*Xi.^2+Y(8,1)*X(7,1)*Xi.^2-Y(8,1)*X(7,1)*Xi)*...
 (0.5*(Xi-(Xi.*Eta))+0.25*(-(Eta.^2)+Eta)))...
 +(-2*((-2*Y(4,1)-Y(1,1)-Y(7,1)+Y(3,1)+Y(5,1)+2*Y(8,1))*Eta.^2+(-2*Y(3,1)*Xi-
2*Y(1,1)*Xi+Y(5,1)+2*Y(7,1)*Xi-Y(7,1)+2*Y(5,1)*Xi...
 +4*Y(2,1)*Xi+Y(1,1)-4*Y(6,1)*Xi-Y(3,1))*Eta+2*Y(1,1)*Xi+2*Y(7,1)*Xi+2*Y(3,1)*Xi...
 -4*Y(6,1)*Xi-4*Y(2,1)*Xi-2*Y(8,1)+2*Y(4,1)+2*Y(5,1)*Xi)/(2*Y(2,1)*Xi.^2*X(1,1)-
2*Y(2,1)*Xi.^2*X(3,1)+2*Y(2,1)*Xi.^2*X(5,1)...

A.24

 -2*Y(2,1)*Xi.^2*X(7,1)+4*X(6,1)*Xi.^3*Y(1,1)-2*X(6,1)*Xi.^2*Y(1,1)-
8*X(6,1)*Xi.^3*Y(2,1)...
 +4*X(6,1)*Xi.^3*Y(3,1)+2*X(6,1)*Xi.^2*Y(3,1)-
2*X(6,1)*Xi.^2*Y(5,1)+2*X(6,1)*Xi.^2*Y(7,1)-2*X(7,1)*Xi.^3*Y(1,1)...
 +2*X(7,1)*Xi.^2*Y(1,1)+4*X(7,1)*Xi.^3*Y(2,1)-
2*X(7,1)*Xi.^3*Y(3,1)+2*X(7,1)*Xi.^2*Y(5,1)-2*Y(8,1)*X(2,1)+2*Y(8,1)*X(6,1)...
 +X(8,1)*Y(7,1)*Xi+2*Y(1,1)*Xi*X(2,1)-2*Y(1,1)*Xi*X(6,1)-
2*Y(3,1)*Xi*X(6,1)+2*X(8,1)*Y(2,1)-2*X(8,1)*Y(6,1)...

+2*X(2,1)*Xi.^2*Y(7,1)+2*X(3,1)*Xi.^2*Y(1,1)+2*X(3,1)*Xi.^3*Y(5,1)+2*X(3,1)*Xi.^2*Y(5
,1)-4*X(3,1)*Xi.^3*Y(6,1)+2*X(3,1)*Xi.^3*Y(7,1)-...
 2*X(5,1)*Xi.^3*Y(1,1)+4*X(5,1)*Xi.^3*Y(2,1)-2*X(5,1)*Xi.^3*Y(3,1)-
2*X(5,1)*Xi.^2*Y(3,1)-2*X(5,1)*Xi.^2*Y(7,1)...
 +2*Y(4,1)*X(2,1)-2*Y(4,1)*X(6,1)+(2*X(5,1)*Y(1,1)-2*X(7,1)*Y(5,1)-
4*Y(8,1)*X(3,1)+4*X(8,1)*Y(3,1)+2*X(3,1)*Y(1,1)+2*X(3,1)*Y(7,1)...
 +4*X(8,1)*Y(5,1)-2*X(1,1)*Y(5,1)-4*X(4,1)*Y(7,1)+8*X(4,1)*Y(8,1)+4*Y(4,1)*X(1,1)-
4*X(4,1)*Y(1,1)+2*X(5,1)*Y(7,1)...
 -4*Y(8,1)*X(5,1)-2*X(1,1)*Y(3,1)+4*Y(4,1)*X(7,1)-8*X(8,1)*Y(4,1)-
2*X(7,1)*Y(3,1))*Eta.^3+(2*X(5,1)*Y(7,1)-X(1,1)*Y(6,1)+2*X(4,1)*Y(1,1)...
 +3*Y(2,1)*Xi.^2*X(1,1)-3*Y(2,1)*Xi.^2*X(3,1)-
3*Y(2,1)*Xi.^2*X(5,1)+3*Y(2,1)*Xi.^2*X(7,1)+3*X(6,1)*Xi.^2*Y(1,1)...
 -3*X(6,1)*Xi.^2*Y(3,1)-3*X(6,1)*Xi.^2*Y(5,1)+3*X(6,1)*Xi.^2*Y(7,1)-
3*X(7,1)*Xi.^2*Y(1,1)+3*X(7,1)*Xi.^2*Y(5,1)...
 +2*Y(8,1)*X(2,1)-2*Y(8,1)*X(6,1)+2*X(5,1)*Y(3,1)+5*X(8,1)*Y(7,1)*Xi-
X(3,1)*Y(2,1)+4*Y(1,1)*Xi*X(2,1)-4*Y(1,1)*Xi*X(6,1)...
 -4*Y(3,1)*Xi*X(6,1)+8*Y(2,1)*Xi*X(4,1)+8*Y(2,1)*Xi*X(8,1)-5*X(3,1)*Xi*Y(5,1)-
3*X(3,1)*Xi*Y(7,1)+8*X(6,1)*Xi*Y(8,1)...
 -3*X(1,1)*Xi*Y(5,1)-5*X(1,1)*Xi*Y(7,1)-8*Y(6,1)*Xi*X(8,1)-8*X(2,1)*Xi*Y(4,1)-
8*X(2,1)*Xi*Y(8,1)-2*X(8,1)*Y(2,1)...
 +2*X(8,1)*Y(6,1)-3*X(2,1)*Xi.^2*Y(7,1)+3*X(3,1)*Xi.^2*Y(1,1)-
3*X(3,1)*Xi.^2*Y(5,1)+3*X(5,1)*Xi.^2*Y(3,1)...
 -3*X(5,1)*Xi.^2*Y(7,1)-2*X(3,1)*Y(5,1)+Y(3,1)*X(2,1)-
2*Y(4,1)*X(2,1)+2*Y(4,1)*X(6,1)+4*X(1,1)*Xi*Y(6,1)...
 -3*X(4,1)*Y(1,1)*Xi+6*X(4,1)*Y(2,1)*Xi.^2-3*X(4,1)*Y(3,1)*Xi.^2-
5*X(4,1)*Y(3,1)*Xi+3*X(4,1)*Y(5,1)*Xi.^2+5*X(4,1)*Y(5,1)*Xi...
 +3*X(4,1)*Y(7,1)*Xi.^2+3*X(4,1)*Y(7,1)*Xi+4*X(5,1)*Xi*Y(6,1)-
4*X(7,1)*Xi*Y(2,1)+4*X(7,1)*Xi*Y(6,1)+3*X(8,1)*Y(1,1)*Xi.^2-...
 5*X(8,1)*Y(1,1)*Xi-6*X(8,1)*Y(2,1)*Xi.^2+3*X(8,1)*Y(3,1)*Xi.^2-3*X(8,1)*Y(3,1)*Xi-
2*X(3,1)*Y(1,1)...
 +3*X(8,1)*Y(5,1)*Xi-Y(3,1)*X(6,1)+2*X(4,1)*Y(2,1)-
2*X(4,1)*Y(6,1)+2*Y(8,1)*X(7,1)+Y(1,1)*X(6,1)-3*X(1,1)*Xi.^2*Y(3,1)...
 +3*X(1,1)*Xi.^2*Y(7,1)-
3*X(2,1)*Xi.^2*Y(1,1)+3*X(2,1)*Xi.^2*Y(3,1)+3*X(2,1)*Xi.^2*Y(5,1)-2*X(8,1)*Y(7,1)-
Y(1,1)*X(2,1)...
 -2*Y(8,1)*X(5,1)+2*Y(8,1)*X(3,1)-4*X(1,1)*Xi*Y(2,1)-2*X(7,1)*Y(5,1)-
3*Y(6,1)*Xi.^2*X(1,1)+3*Y(6,1)*Xi.^2*X(3,1)...

A.25

 +3*Y(6,1)*Xi.^2*X(5,1)-3*Y(6,1)*Xi.^2*X(7,1)-
2*Y(8,1)*X(1,1)+5*X(7,1)*Xi*Y(1,1)+3*X(7,1)*Xi*Y(3,1)+3*X(5,1)*Xi*Y(1,1)...
 +5*X(5,1)*Xi*Y(3,1)+Y(5,1)*X(2,1)-Y(5,1)*X(6,1)-
2*X(7,1)*Y(1,1)+2*Y(4,1)*X(7,1)+8*X(6,1)*Xi*Y(4,1)-8*Y(6,1)*Xi*X(4,1)...
 +X(1,1)*Y(2,1)-2*Y(4,1)*X(5,1)+4*Y(3,1)*Xi*X(2,1)+6*X(8,1)*Y(6,1)*Xi.^2-
3*X(8,1)*Y(5,1)*Xi.^2-4*X(3,1)*Xi*Y(2,1)-3*X(4,1)*Y(1,1)*Xi.^2-...
 4*Y(7,1)*Xi*X(6,1)-3*X(8,1)*Y(7,1)*Xi.^2+4*X(3,1)*Xi*Y(6,1)+4*Y(7,1)*Xi*X(2,1)-
4*X(5,1)*Xi*Y(2,1)-6*X(4,1)*Y(6,1)*Xi.^2+...
 2*Y(4,1)*X(3,1)+2*X(1,1)*Y(7,1)+2*X(1,1)*Y(3,1)-2*X(8,1)*Y(3,1)+2*X(8,1)*Y(5,1)-
2*Y(4,1)*X(1,1)+3*Y(4,1)*X(1,1)*Xi.^2+...
 3*Y(4,1)*X(1,1)*Xi-6*Y(4,1)*X(2,1)*Xi.^2+3*Y(4,1)*X(3,1)*Xi.^2+5*Y(4,1)*X(3,1)*Xi-
3*Y(4,1)*X(5,1)*Xi.^2-5*Y(4,1)*X(5,1)*Xi...
 +6*Y(4,1)*X(6,1)*Xi.^2-3*Y(4,1)*X(7,1)*Xi.^2-3*Y(4,1)*X(7,1)*Xi+4*Y(5,1)*Xi*X(2,1)-
4*Y(5,1)*Xi*X(6,1)...
 -3*Y(8,1)*X(1,1)*Xi.^2+5*Y(8,1)*X(1,1)*Xi+6*Y(8,1)*X(2,1)*Xi.^2-
3*Y(8,1)*X(3,1)*Xi.^2+3*Y(8,1)*X(3,1)*Xi+3*Y(8,1)*X(5,1)*Xi.^2-...
 3*Y(8,1)*X(5,1)*Xi-6*Y(8,1)*X(6,1)*Xi.^2+3*Y(8,1)*X(7,1)*Xi.^2-
5*Y(8,1)*X(7,1)*Xi+X(3,1)*Y(6,1)...
 -X(7,1)*Y(6,1)-Y(7,1)*X(2,1)-
X(5,1)*Y(2,1)+2*X(8,1)*Y(1,1)+X(7,1)*Y(2,1)+Y(7,1)*X(6,1)+2*X(4,1)*Y(5,1)-
2*X(4,1)*Y(7,1)...
 +X(5,1)*Y(6,1)-2*X(4,1)*Y(3,1))*Eta.^2+(X(1,1)*Y(6,1)+2*X(4,1)*Y(1,1)-
5*Y(2,1)*Xi.^2*X(1,1)+5*Y(2,1)*Xi.^2*X(3,1)+3*Y(2,1)*Xi.^2*X(5,1)...
 -3*Y(2,1)*Xi.^2*X(7,1)+3*X(6,1)*Xi.^2*Y(1,1)-3*X(6,1)*Xi.^2*Y(3,1)-
5*X(6,1)*Xi.^2*Y(5,1)+5*X(6,1)*Xi.^2*Y(7,1)+...
 5*X(7,1)*Xi.^2*Y(5,1)+6*X(8,1)*Y(7,1)*Xi+X(3,1)*Y(2,1)-6*Y(1,1)*Xi*X(2,1)-
2*Y(1,1)*Xi*X(6,1)-2*Y(3,1)*Xi*X(6,1)...
 -8*X(4,1)*Y(8,1)+8*X(8,1)*Y(4,1)-8*Y(2,1)*Xi*X(4,1)-
8*Y(2,1)*Xi*X(8,1)+8*X(6,1)*Xi*Y(8,1)+3*X(1,1)*Xi.^2*Y(5,1)...
 -8*Y(6,1)*Xi*X(8,1)+8*X(2,1)*Xi*Y(4,1)+8*X(2,1)*Xi*Y(8,1)+3*X(2,1)*Xi.^2*Y(7,1)-
5*X(3,1)*Xi.^2*Y(1,1)-5*X(5,1)*Xi.^2*Y(7,1)...
 -Y(3,1)*X(2,1)+2*X(1,1)*Xi*Y(6,1)+2*X(4,1)*Y(1,1)*Xi-
8*X(4,1)*Y(2,1)*Xi.^2+4*X(4,1)*Y(3,1)*Xi.^2+6*X(4,1)*Y(3,1)*Xi...

+4*X(4,1)*Y(5,1)*Xi.^2+6*X(4,1)*Y(5,1)*Xi+4*X(4,1)*Y(7,1)*Xi.^2+2*X(4,1)*Y(7,1)*Xi+6
*X(5,1)*Xi*Y(6,1)+2*X(7,1)*Xi*Y(2,1)...
 +6*X(7,1)*Xi*Y(6,1)-4*X(8,1)*Y(1,1)*Xi.^2+6*X(8,1)*Y(1,1)*Xi+8*X(8,1)*Y(2,1)*Xi.^2-
4*X(8,1)*Y(3,1)*Xi.^2+2*X(8,1)*Y(3,1)*Xi...
 +2*X(8,1)*Y(5,1)*Xi+Y(3,1)*X(6,1)+2*Y(8,1)*X(7,1)-
Y(1,1)*X(6,1)+5*X(1,1)*Xi.^2*Y(3,1)+5*X(2,1)*Xi.^2*Y(1,1)...
 -5*X(2,1)*Xi.^2*Y(3,1)-3*X(2,1)*Xi.^2*Y(5,1)-
2*X(8,1)*Y(7,1)+Y(1,1)*X(2,1)+2*Y(8,1)*X(5,1)+2*Y(8,1)*X(3,1)...
 +6*X(1,1)*Xi*Y(2,1)-
3*Y(6,1)*Xi.^2*X(1,1)+3*Y(6,1)*Xi.^2*X(3,1)+5*Y(6,1)*Xi.^2*X(5,1)-
5*Y(6,1)*Xi.^2*X(7,1)+2*Y(8,1)*X(1,1)...

A.26

 -3*X(5,1)*Xi.^2*Y(1,1)+Y(5,1)*X(2,1)-Y(5,1)*X(6,1)-2*Y(4,1)*X(7,1)-
3*X(3,1)*Xi.^2*Y(7,1)+8*X(6,1)*Xi*Y(4,1)...
 -8*Y(6,1)*Xi*X(4,1)-X(1,1)*Y(2,1)-2*Y(4,1)*X(5,1)+3*X(7,1)*Xi.^2*Y(3,1)-
6*Y(3,1)*Xi*X(2,1)+8*X(8,1)*Y(6,1)*Xi.^2-4*X(8,1)*Y(5,1)*Xi.^2+...
 6*X(3,1)*Xi*Y(2,1)+4*X(4,1)*Y(1,1)*Xi.^2-6*Y(7,1)*Xi*X(6,1)-
4*X(8,1)*Y(7,1)*Xi.^2+2*X(3,1)*Xi*Y(6,1)-2*Y(7,1)*Xi*X(2,1)...
 +2*X(5,1)*Xi*Y(2,1)-8*X(4,1)*Y(6,1)*Xi.^2-2*Y(4,1)*X(3,1)-2*X(8,1)*Y(3,1)-
2*X(8,1)*Y(5,1)-2*Y(4,1)*X(1,1)...
 -4*Y(4,1)*X(1,1)*Xi.^2-2*Y(4,1)*X(1,1)*Xi+8*Y(4,1)*X(2,1)*Xi.^2-4*Y(4,1)*X(3,1)*Xi.^2-
6*Y(4,1)*X(3,1)*Xi-4*Y(4,1)*X(5,1)*Xi.^2-...
 6*Y(4,1)*X(5,1)*Xi+8*Y(4,1)*X(6,1)*Xi.^2-4*Y(4,1)*X(7,1)*Xi.^2-2*Y(4,1)*X(7,1)*Xi...
 -2*Y(5,1)*Xi*X(2,1)-6*Y(5,1)*Xi*X(6,1)+4*Y(8,1)*X(1,1)*Xi.^2-6*Y(8,1)*X(1,1)*Xi-
8*Y(8,1)*X(2,1)*Xi.^2+4*Y(8,1)*X(3,1)*Xi.^2-...
 2*Y(8,1)*X(3,1)*Xi+4*Y(8,1)*X(5,1)*Xi.^2-2*Y(8,1)*X(5,1)*Xi-8*Y(8,1)*X(6,1)*Xi.^2+...
 4*Y(8,1)*X(7,1)*Xi.^2-6*Y(8,1)*X(7,1)*Xi-X(3,1)*Y(6,1)-X(7,1)*Y(6,1)-Y(7,1)*X(2,1)-
X(5,1)*Y(2,1)-2*X(8,1)*Y(1,1)...

+X(7,1)*Y(2,1)+Y(7,1)*X(6,1)+2*X(4,1)*Y(5,1)+2*X(4,1)*Y(7,1)+X(5,1)*Y(6,1)+2*X(4,1)*Y
(3,1))*Eta+2*X(1,1)*Xi*Y(6,1)-8*X(2,1)*Xi*Y(6,1)...
 +X(4,1)*Y(1,1)*Xi+2*X(4,1)*Y(2,1)*Xi.^2-X(4,1)*Y(3,1)*Xi.^2-
X(4,1)*Y(3,1)*Xi+X(4,1)*Y(5,1)*Xi.^2+X(4,1)*Y(5,1)*Xi...
 +X(4,1)*Y(7,1)*Xi.^2-X(4,1)*Y(7,1)*Xi+2*X(5,1)*Xi*Y(6,1)+8*X(6,1)*Xi*Y(2,1)-
2*X(7,1)*Xi*Y(2,1)+2*X(7,1)*Xi*Y(6,1)...
 +X(8,1)*Y(1,1)*Xi.^2-X(8,1)*Y(1,1)*Xi-
2*X(8,1)*Y(2,1)*Xi.^2+X(8,1)*Y(3,1)*Xi.^2+X(8,1)*Y(3,1)*Xi-X(8,1)*Y(5,1)*Xi...
 -2*X(4,1)*Y(2,1)+2*X(4,1)*Y(6,1)-2*X(1,1)*Xi.^2*Y(3,1)+2*X(1,1)*Xi.^3*Y(5,1)-
4*X(1,1)*Xi.^3*Y(6,1)+2*X(1,1)*Xi.^3*Y(7,1)...
 -2*X(1,1)*Xi.^2*Y(7,1)-2*X(2,1)*Xi.^2*Y(1,1)+2*X(2,1)*Xi.^2*Y(3,1)-
4*X(2,1)*Xi.^3*Y(5,1)-2*X(2,1)*Xi.^2*Y(5,1)...
 +8*X(2,1)*Xi.^3*Y(6,1)-4*X(2,1)*Xi.^3*Y(7,1)-2*X(1,1)*Xi*Y(2,1)+2*Y(6,1)*Xi.^2*X(1,1)-
2*Y(6,1)*Xi.^2*X(3,1)...
 +2*Y(6,1)*Xi.^2*X(5,1)-
2*Y(6,1)*Xi.^2*X(7,1)+2*Y(3,1)*Xi*X(2,1)+2*X(8,1)*Y(6,1)*Xi.^2-X(8,1)*Y(5,1)*Xi.^2-
2*X(3,1)*Xi*Y(2,1)...
 -X(4,1)*Y(1,1)*Xi.^2-2*Y(7,1)*Xi*X(6,1)-
X(8,1)*Y(7,1)*Xi.^2+2*X(3,1)*Xi*Y(6,1)+2*Y(7,1)*Xi*X(2,1)...
 -2*X(5,1)*Xi*Y(2,1)-2*X(4,1)*Y(6,1)*Xi.^2+Y(4,1)*X(1,1)*Xi.^2-Y(4,1)*X(1,1)*Xi-
2*Y(4,1)*X(2,1)*Xi.^2+Y(4,1)*X(3,1)*Xi.^2+...
 Y(4,1)*X(3,1)*Xi-Y(4,1)*X(5,1)*Xi.^2-Y(4,1)*X(5,1)*Xi+2*Y(4,1)*X(6,1)*Xi.^2-
Y(4,1)*X(7,1)*Xi.^2+Y(4,1)*X(7,1)*Xi...
 +2*Y(5,1)*Xi*X(2,1)-2*Y(5,1)*Xi*X(6,1)-
Y(8,1)*X(1,1)*Xi.^2+Y(8,1)*X(1,1)*Xi+2*Y(8,1)*X(2,1)*Xi.^2-Y(8,1)*X(3,1)*Xi.^2-...
 Y(8,1)*X(3,1)*Xi+Y(8,1)*X(5,1)*Xi.^2+Y(8,1)*X(5,1)*Xi-
2*Y(8,1)*X(6,1)*Xi.^2+Y(8,1)*X(7,1)*Xi.^2-Y(8,1)*X(7,1)*Xi)*...
 (0.5*(Eta-(Xi.*Eta))+0.25*(-(Xi.^2)+Xi)))).^2)...
 .*(((((0.5*Xi)-(0.5*Xi.*Eta)-(0.25*Eta.^2)+(0.25*Eta))*X(1,1) + ...

A.27

 (-Xi + (Xi.*Eta))*X(2,1) + ...
 ((0.5*Xi)-(0.5*Xi.*Eta)+(0.25*Eta.^2)-(0.25*Eta))*X(3,1) + ...
 (0.5-(0.5*Eta.^2))*X(4,1) + ...
 ((0.5*Xi)+(0.5*Xi.*Eta)+(0.25*Eta.^2)+(0.25*Eta))*X(5,1) + ...
 (-Xi - (Xi.*Eta))*X(6,1) + ...
 ((0.5*Xi)+(0.5*Xi.*Eta)-(0.25*Eta.^2)-(0.25*Eta))*X(7,1) + ...
 (-0.5+(0.5*Eta.^2))*X(8,1)).* ...
 (((0.5*Eta)-(0.5*Xi.*Eta)-(0.25*Xi.^2)+(0.25*Xi))*Y(1,1) + ...
 (-0.5+(0.5*Xi.^2))*Y(2,1) + ...
 ((0.5*Eta)+(0.5*Xi.*Eta)-(0.25*Xi.^2)-(0.25*Xi))*Y(3,1) + ...
 (-Eta - (Xi.*Eta))*Y(4,1) + ...
 ((0.5*Eta)+(0.5*Xi.*Eta)+(0.25*Xi.^2)+(0.25*Xi))*Y(5,1) + ...
 (0.5-(0.5*Xi.^2))*Y(6,1) + ...
 ((0.5*Eta)-(0.5*Xi.*Eta)+(0.25*Xi.^2)-(0.25*Xi))*Y(7,1) + ...
 (-Eta + (Eta.*Xi))*Y(8,1))) - ...
 ((((0.5*Xi)-(0.5*Xi.*Eta)-(0.25*Eta.^2)+(0.25*Eta))*Y(1,1) + ...
 (-Xi + (Xi.*Eta))*Y(2,1) + ...
 ((0.5*Xi)-(0.5*Xi.*Eta)+(0.25*Eta.^2)-(0.25*Eta))*Y(3,1) + ...
 (0.5-(0.5*Eta.^2))*Y(4,1) + ...
 ((0.5*Xi)+(0.5*Xi.*Eta)+(0.25*Eta.^2)+(0.25*Eta))*Y(5,1) + ...
 (-Xi - (Xi.*Eta))*Y(6,1) + ...
 ((0.5*Xi)+(0.5*Xi.*Eta)-(0.25*Eta.^2)-(0.25*Eta))*Y(7,1) + ...
 (-0.5+(0.5*Eta.^2))*Y(8,1)).* ...
 (((0.5*Eta)-(0.5*Xi.*Eta)-(0.25*Xi.^2)+(0.25*Xi))*X(1,1) + ...
 (-0.5+(0.5*Xi.^2))*X(2,1) + ...
 ((0.5*Eta)+(0.5*Xi.*Eta)-(0.25*Xi.^2)-(0.25*Xi))*X(3,1) + ...
 (-Eta - (Xi.*Eta))*X(4,1) + ...
 ((0.5*Eta)+(0.5*Xi.*Eta)+(0.25*Xi.^2)+(0.25*Xi))*X(5,1) + ...
 (0.5-(0.5*Xi.^2))*X(6,1) + ...
 ((0.5*Eta)-(0.5*Xi.*Eta)+(0.25*Xi.^2)-(0.25*Xi))*X(7,1) + ...
 (-Eta + (Eta.*Xi))*X(8,1))));

 N1N1Eta = (((2*((-2*X(3,1)+4*X(4,1)-2*X(1,1)+2*X(1,1)*Xi+4*X(4,1)*Xi-2*X(5,1)-
2*X(7,1)+2*X(7,1)*Xi-2*X(3,1)*Xi-2*X(5,1)*Xi...
 +4*X(8,1)-4*X(8,1)*Xi)*Eta+2*X(2,1)-X(5,1)*Xi.^2+X(1,1)*Xi.^2-X(1,1)*Xi+X(3,1)*Xi.^2-
2*X(2,1)*Xi.^2-...
 X(7,1)*Xi.^2-2*X(6,1)+X(3,1)*Xi-
X(5,1)*Xi+2*X(6,1)*Xi.^2+X(7,1)*Xi)/(2*Y(2,1)*Xi.^2*X(1,1)-2*Y(2,1)*Xi.^2*X(3,1)...
 +2*Y(2,1)*Xi.^2*X(5,1)-2*Y(2,1)*Xi.^2*X(7,1)+4*X(6,1)*Xi.^3*Y(1,1)-
2*X(6,1)*Xi.^2*Y(1,1)...
 -8*X(6,1)*Xi.^3*Y(2,1)+4*X(6,1)*Xi.^3*Y(3,1)+2*X(6,1)*Xi.^2*Y(3,1)-
2*X(6,1)*Xi.^2*Y(5,1)+2*X(6,1)*Xi.^2*Y(7,1)...
 -2*X(7,1)*Xi.^3*Y(1,1)+2*X(7,1)*Xi.^2*Y(1,1)+4*X(7,1)*Xi.^3*Y(2,1)-
2*X(7,1)*Xi.^3*Y(3,1)...

A.28

 +2*X(7,1)*Xi.^2*Y(5,1)-
2*Y(8,1)*X(2,1)+2*Y(8,1)*X(6,1)+X(8,1)*Y(7,1)*Xi+2*Y(1,1)*Xi*X(2,1)-
2*Y(1,1)*Xi*X(6,1)...
 -2*Y(3,1)*Xi*X(6,1)+2*X(8,1)*Y(2,1)-
2*X(8,1)*Y(6,1)+2*X(2,1)*Xi.^2*Y(7,1)+2*X(3,1)*Xi.^2*Y(1,1)...
 +2*X(3,1)*Xi.^3*Y(5,1)+2*X(3,1)*Xi.^2*Y(5,1)-
4*X(3,1)*Xi.^3*Y(6,1)+2*X(3,1)*Xi.^3*Y(7,1)-2*X(5,1)*Xi.^3*Y(1,1)...
 +4*X(5,1)*Xi.^3*Y(2,1)-2*X(5,1)*Xi.^3*Y(3,1)-2*X(5,1)*Xi.^2*Y(3,1)-
2*X(5,1)*Xi.^2*Y(7,1)...
 +2*Y(4,1)*X(2,1)-2*Y(4,1)*X(6,1)+(2*X(5,1)*Y(1,1)-2*X(7,1)*Y(5,1)-
4*Y(8,1)*X(3,1)+4*X(8,1)*Y(3,1)+2*X(3,1)*Y(1,1)...
 +2*X(3,1)*Y(7,1)+4*X(8,1)*Y(5,1)-2*X(1,1)*Y(5,1)-
4*X(4,1)*Y(7,1)+8*X(4,1)*Y(8,1)+4*Y(4,1)*X(1,1)-4*X(4,1)*Y(1,1)+2*X(5,1)*Y(7,1)...
 -4*Y(8,1)*X(5,1)-2*X(1,1)*Y(3,1)+4*Y(4,1)*X(7,1)-8*X(8,1)*Y(4,1)-
2*X(7,1)*Y(3,1))*Eta.^3+(2*X(5,1)*Y(7,1)...
 -X(1,1)*Y(6,1)+2*X(4,1)*Y(1,1)+3*Y(2,1)*Xi.^2*X(1,1)-3*Y(2,1)*Xi.^2*X(3,1)-
3*Y(2,1)*Xi.^2*X(5,1)...
 +3*Y(2,1)*Xi.^2*X(7,1)+3*X(6,1)*Xi.^2*Y(1,1)-3*X(6,1)*Xi.^2*Y(3,1)-
3*X(6,1)*Xi.^2*Y(5,1)+3*X(6,1)*Xi.^2*Y(7,1)...
 -3*X(7,1)*Xi.^2*Y(1,1)+3*X(7,1)*Xi.^2*Y(5,1)+2*Y(8,1)*X(2,1)-2*Y(8,1)*X(6,1)...
 +2*X(5,1)*Y(3,1)+5*X(8,1)*Y(7,1)*Xi-X(3,1)*Y(2,1)+4*Y(1,1)*Xi*X(2,1)-
4*Y(1,1)*Xi*X(6,1)-4*Y(3,1)*Xi*X(6,1)...
 +8*Y(2,1)*Xi*X(4,1)+8*Y(2,1)*Xi*X(8,1)-5*X(3,1)*Xi*Y(5,1)-
3*X(3,1)*Xi*Y(7,1)+8*X(6,1)*Xi*Y(8,1)...
 -3*X(1,1)*Xi*Y(5,1)-5*X(1,1)*Xi*Y(7,1)-8*Y(6,1)*Xi*X(8,1)-8*X(2,1)*Xi*Y(4,1)-
8*X(2,1)*Xi*Y(8,1)-2*X(8,1)*Y(2,1)...
 +2*X(8,1)*Y(6,1)-3*X(2,1)*Xi.^2*Y(7,1)+3*X(3,1)*Xi.^2*Y(1,1)-3*X(3,1)*Xi.^2*Y(5,1)...
 +3*X(5,1)*Xi.^2*Y(3,1)-3*X(5,1)*Xi.^2*Y(7,1)-2*X(3,1)*Y(5,1)+Y(3,1)*X(2,1)-
2*Y(4,1)*X(2,1)+2*Y(4,1)*X(6,1)...
 +4*X(1,1)*Xi*Y(6,1)-3*X(4,1)*Y(1,1)*Xi+6*X(4,1)*Y(2,1)*Xi.^2-3*X(4,1)*Y(3,1)*Xi.^2-
5*X(4,1)*Y(3,1)*Xi...

+3*X(4,1)*Y(5,1)*Xi.^2+5*X(4,1)*Y(5,1)*Xi+3*X(4,1)*Y(7,1)*Xi.^2+3*X(4,1)*Y(7,1)*Xi+4
*X(5,1)*Xi*Y(6,1)...
 -4*X(7,1)*Xi*Y(2,1)+4*X(7,1)*Xi*Y(6,1)+3*X(8,1)*Y(1,1)*Xi.^2-5*X(8,1)*Y(1,1)*Xi-
6*X(8,1)*Y(2,1)*Xi.^2+...
 3*X(8,1)*Y(3,1)*Xi.^2-3*X(8,1)*Y(3,1)*Xi-2*X(3,1)*Y(1,1)+3*X(8,1)*Y(5,1)*Xi-
Y(3,1)*X(6,1)+2*X(4,1)*Y(2,1)...
 -2*X(4,1)*Y(6,1)+2*Y(8,1)*X(7,1)+Y(1,1)*X(6,1)-
3*X(1,1)*Xi.^2*Y(3,1)+3*X(1,1)*Xi.^2*Y(7,1)-3*X(2,1)*Xi.^2*Y(1,1)...
 +3*X(2,1)*Xi.^2*Y(3,1)+3*X(2,1)*Xi.^2*Y(5,1)-2*X(8,1)*Y(7,1)-Y(1,1)*X(2,1)-
2*Y(8,1)*X(5,1)+2*Y(8,1)*X(3,1)...
 -4*X(1,1)*Xi*Y(2,1)-2*X(7,1)*Y(5,1)-
3*Y(6,1)*Xi.^2*X(1,1)+3*Y(6,1)*Xi.^2*X(3,1)+3*Y(6,1)*Xi.^2*X(5,1)...

A.29

 -3*Y(6,1)*Xi.^2*X(7,1)-
2*Y(8,1)*X(1,1)+5*X(7,1)*Xi*Y(1,1)+3*X(7,1)*Xi*Y(3,1)+3*X(5,1)*Xi*Y(1,1)+5*X(5,1)*Xi
*Y(3,1)...
 +Y(5,1)*X(2,1)-Y(5,1)*X(6,1)-2*X(7,1)*Y(1,1)+2*Y(4,1)*X(7,1)+8*X(6,1)*Xi*Y(4,1)-
8*Y(6,1)*Xi*X(4,1)...
 +X(1,1)*Y(2,1)-2*Y(4,1)*X(5,1)+4*Y(3,1)*Xi*X(2,1)+6*X(8,1)*Y(6,1)*Xi.^2-
3*X(8,1)*Y(5,1)*Xi.^2-4*X(3,1)*Xi*Y(2,1)...
 -3*X(4,1)*Y(1,1)*Xi.^2-4*Y(7,1)*Xi*X(6,1)-3*X(8,1)*Y(7,1)*Xi.^2+4*X(3,1)*Xi*Y(6,1)...
 +4*Y(7,1)*Xi*X(2,1)-4*X(5,1)*Xi*Y(2,1)-
6*X(4,1)*Y(6,1)*Xi.^2+2*Y(4,1)*X(3,1)+2*X(1,1)*Y(7,1)+2*X(1,1)*Y(3,1)...
 -2*X(8,1)*Y(3,1)+2*X(8,1)*Y(5,1)-
2*Y(4,1)*X(1,1)+3*Y(4,1)*X(1,1)*Xi.^2+3*Y(4,1)*X(1,1)*Xi...
 -6*Y(4,1)*X(2,1)*Xi.^2+3*Y(4,1)*X(3,1)*Xi.^2+5*Y(4,1)*X(3,1)*Xi-3*Y(4,1)*X(5,1)*Xi.^2-
5*Y(4,1)*X(5,1)*Xi...
 +6*Y(4,1)*X(6,1)*Xi.^2-3*Y(4,1)*X(7,1)*Xi.^2-3*Y(4,1)*X(7,1)*Xi+4*Y(5,1)*Xi*X(2,1)...
 -4*Y(5,1)*Xi*X(6,1)-3*Y(8,1)*X(1,1)*Xi.^2+5*Y(8,1)*X(1,1)*Xi+6*Y(8,1)*X(2,1)*Xi.^2-
3*Y(8,1)*X(3,1)*Xi.^2+3*Y(8,1)*X(3,1)*Xi...
 +3*Y(8,1)*X(5,1)*Xi.^2-3*Y(8,1)*X(5,1)*Xi-6*Y(8,1)*X(6,1)*Xi.^2+...
 3*Y(8,1)*X(7,1)*Xi.^2-5*Y(8,1)*X(7,1)*Xi+X(3,1)*Y(6,1)-X(7,1)*Y(6,1)-Y(7,1)*X(2,1)-
X(5,1)*Y(2,1)+2*X(8,1)*Y(1,1)...
 +X(7,1)*Y(2,1)+Y(7,1)*X(6,1)+2*X(4,1)*Y(5,1)-2*X(4,1)*Y(7,1)+X(5,1)*Y(6,1)-
2*X(4,1)*Y(3,1))*Eta.^2+(X(1,1)*Y(6,1)+2*X(4,1)*Y(1,1)...
 -5*Y(2,1)*Xi.^2*X(1,1)+5*Y(2,1)*Xi.^2*X(3,1)+3*Y(2,1)*Xi.^2*X(5,1)-
3*Y(2,1)*Xi.^2*X(7,1)+3*X(6,1)*Xi.^2*Y(1,1)...
 -3*X(6,1)*Xi.^2*Y(3,1)-5*X(6,1)*Xi.^2*Y(5,1)+5*X(6,1)*Xi.^2*Y(7,1)...
 +5*X(7,1)*Xi.^2*Y(5,1)+6*X(8,1)*Y(7,1)*Xi+X(3,1)*Y(2,1)-6*Y(1,1)*Xi*X(2,1)-
2*Y(1,1)*Xi*X(6,1)-2*Y(3,1)*Xi*X(6,1)...
 -8*X(4,1)*Y(8,1)+8*X(8,1)*Y(4,1)-8*Y(2,1)*Xi*X(4,1)-
8*Y(2,1)*Xi*X(8,1)+8*X(6,1)*Xi*Y(8,1)...
 +3*X(1,1)*Xi.^2*Y(5,1)-
8*Y(6,1)*Xi*X(8,1)+8*X(2,1)*Xi*Y(4,1)+8*X(2,1)*Xi*Y(8,1)+3*X(2,1)*Xi.^2*Y(7,1)-
5*X(3,1)*Xi.^2*Y(1,1)...
 -5*X(5,1)*Xi.^2*Y(7,1)-Y(3,1)*X(2,1)+2*X(1,1)*Xi*Y(6,1)+2*X(4,1)*Y(1,1)*Xi...
 -
8*X(4,1)*Y(2,1)*Xi.^2+4*X(4,1)*Y(3,1)*Xi.^2+6*X(4,1)*Y(3,1)*Xi+4*X(4,1)*Y(5,1)*Xi.^2+
6*X(4,1)*Y(5,1)*Xi+4*X(4,1)*Y(7,1)*Xi.^2+...
 2*X(4,1)*Y(7,1)*Xi+6*X(5,1)*Xi*Y(6,1)+2*X(7,1)*Xi*Y(2,1)+6*X(7,1)*Xi*Y(6,1)...
 -4*X(8,1)*Y(1,1)*Xi.^2+6*X(8,1)*Y(1,1)*Xi+8*X(8,1)*Y(2,1)*Xi.^2-
4*X(8,1)*Y(3,1)*Xi.^2+2*X(8,1)*Y(3,1)*Xi+2*X(8,1)*Y(5,1)*Xi...
 +Y(3,1)*X(6,1)+2*Y(8,1)*X(7,1)-
Y(1,1)*X(6,1)+5*X(1,1)*Xi.^2*Y(3,1)+5*X(2,1)*Xi.^2*Y(1,1)...
 -5*X(2,1)*Xi.^2*Y(3,1)-3*X(2,1)*Xi.^2*Y(5,1)-
2*X(8,1)*Y(7,1)+Y(1,1)*X(2,1)+2*Y(8,1)*X(5,1)+2*Y(8,1)*X(3,1)+6*X(1,1)*Xi*Y(2,1)...
 -3*Y(6,1)*Xi.^2*X(1,1)+3*Y(6,1)*Xi.^2*X(3,1)+5*Y(6,1)*Xi.^2*X(5,1)-
5*Y(6,1)*Xi.^2*X(7,1)...

A.30

 +2*Y(8,1)*X(1,1)-3*X(5,1)*Xi.^2*Y(1,1)+Y(5,1)*X(2,1)-Y(5,1)*X(6,1)-2*Y(4,1)*X(7,1)-
3*X(3,1)*Xi.^2*Y(7,1)+8*X(6,1)*Xi*Y(4,1)...
 -8*Y(6,1)*Xi*X(4,1)-X(1,1)*Y(2,1)-2*Y(4,1)*X(5,1)+3*X(7,1)*Xi.^2*Y(3,1)-
6*Y(3,1)*Xi*X(2,1)...
 +8*X(8,1)*Y(6,1)*Xi.^2-
4*X(8,1)*Y(5,1)*Xi.^2+6*X(3,1)*Xi*Y(2,1)+4*X(4,1)*Y(1,1)*Xi.^2-6*Y(7,1)*Xi*X(6,1)-
4*X(8,1)*Y(7,1)*Xi.^2+...
 2*X(3,1)*Xi*Y(6,1)-2*Y(7,1)*Xi*X(2,1)+2*X(5,1)*Xi*Y(2,1)-8*X(4,1)*Y(6,1)*Xi.^2-...
 2*Y(4,1)*X(3,1)-2*X(8,1)*Y(3,1)-2*X(8,1)*Y(5,1)-2*Y(4,1)*X(1,1)-4*Y(4,1)*X(1,1)*Xi.^2-
2*Y(4,1)*X(1,1)*Xi+8*Y(4,1)*X(2,1)*Xi.^2-...
 4*Y(4,1)*X(3,1)*Xi.^2-6*Y(4,1)*X(3,1)*Xi-4*Y(4,1)*X(5,1)*Xi.^2-6*Y(4,1)*X(5,1)*Xi...
 +8*Y(4,1)*X(6,1)*Xi.^2-4*Y(4,1)*X(7,1)*Xi.^2-2*Y(4,1)*X(7,1)*Xi-2*Y(5,1)*Xi*X(2,1)-
6*Y(5,1)*Xi*X(6,1)+4*Y(8,1)*X(1,1)*Xi.^2-...
 6*Y(8,1)*X(1,1)*Xi-8*Y(8,1)*X(2,1)*Xi.^2+4*Y(8,1)*X(3,1)*Xi.^2-2*Y(8,1)*X(3,1)*Xi...
 +4*Y(8,1)*X(5,1)*Xi.^2-2*Y(8,1)*X(5,1)*Xi-8*Y(8,1)*X(6,1)*Xi.^2+4*Y(8,1)*X(7,1)*Xi.^2-
6*Y(8,1)*X(7,1)*Xi-X(3,1)*Y(6,1)...
 -X(7,1)*Y(6,1)-Y(7,1)*X(2,1)-X(5,1)*Y(2,1)-
2*X(8,1)*Y(1,1)+X(7,1)*Y(2,1)+Y(7,1)*X(6,1)+2*X(4,1)*Y(5,1)+2*X(4,1)*Y(7,1)...
 +X(5,1)*Y(6,1)+2*X(4,1)*Y(3,1))*Eta+2*X(1,1)*Xi*Y(6,1)-
8*X(2,1)*Xi*Y(6,1)+X(4,1)*Y(1,1)*Xi+2*X(4,1)*Y(2,1)*Xi.^2-...
 X(4,1)*Y(3,1)*Xi.^2-
X(4,1)*Y(3,1)*Xi+X(4,1)*Y(5,1)*Xi.^2+X(4,1)*Y(5,1)*Xi+X(4,1)*Y(7,1)*Xi.^2-
X(4,1)*Y(7,1)*Xi...
 +2*X(5,1)*Xi*Y(6,1)+8*X(6,1)*Xi*Y(2,1)-
2*X(7,1)*Xi*Y(2,1)+2*X(7,1)*Xi*Y(6,1)+X(8,1)*Y(1,1)*Xi.^2-X(8,1)*Y(1,1)*Xi...
 -2*X(8,1)*Y(2,1)*Xi.^2+X(8,1)*Y(3,1)*Xi.^2+X(8,1)*Y(3,1)*Xi-X(8,1)*Y(5,1)*Xi-
2*X(4,1)*Y(2,1)+2*X(4,1)*Y(6,1)...
 -2*X(1,1)*Xi.^2*Y(3,1)+2*X(1,1)*Xi.^3*Y(5,1)-
4*X(1,1)*Xi.^3*Y(6,1)+2*X(1,1)*Xi.^3*Y(7,1)-2*X(1,1)*Xi.^2*Y(7,1)...
 -2*X(2,1)*Xi.^2*Y(1,1)+2*X(2,1)*Xi.^2*Y(3,1)-4*X(2,1)*Xi.^3*Y(5,1)-
2*X(2,1)*Xi.^2*Y(5,1)...
 +8*X(2,1)*Xi.^3*Y(6,1)-4*X(2,1)*Xi.^3*Y(7,1)-2*X(1,1)*Xi*Y(2,1)+2*Y(6,1)*Xi.^2*X(1,1)-
2*Y(6,1)*Xi.^2*X(3,1)...
 +2*Y(6,1)*Xi.^2*X(5,1)-
2*Y(6,1)*Xi.^2*X(7,1)+2*Y(3,1)*Xi*X(2,1)+2*X(8,1)*Y(6,1)*Xi.^2-X(8,1)*Y(5,1)*Xi.^2-...
 2*X(3,1)*Xi*Y(2,1)-X(4,1)*Y(1,1)*Xi.^2-2*Y(7,1)*Xi*X(6,1)-
X(8,1)*Y(7,1)*Xi.^2+2*X(3,1)*Xi*Y(6,1)+2*Y(7,1)*Xi*X(2,1)...
 -2*X(5,1)*Xi*Y(2,1)-2*X(4,1)*Y(6,1)*Xi.^2+Y(4,1)*X(1,1)*Xi.^2-Y(4,1)*X(1,1)*Xi-
2*Y(4,1)*X(2,1)*Xi.^2+...
 Y(4,1)*X(3,1)*Xi.^2+Y(4,1)*X(3,1)*Xi-Y(4,1)*X(5,1)*Xi.^2-
Y(4,1)*X(5,1)*Xi+2*Y(4,1)*X(6,1)*Xi.^2-Y(4,1)*X(7,1)*Xi.^2+...
 Y(4,1)*X(7,1)*Xi+2*Y(5,1)*Xi*X(2,1)-2*Y(5,1)*Xi*X(6,1)-
Y(8,1)*X(1,1)*Xi.^2+Y(8,1)*X(1,1)*Xi+2*Y(8,1)*X(2,1)*Xi.^2-...
 Y(8,1)*X(3,1)*Xi.^2-Y(8,1)*X(3,1)*Xi+Y(8,1)*X(5,1)*Xi.^2+Y(8,1)*X(5,1)*Xi-
2*Y(8,1)*X(6,1)*Xi.^2+Y(8,1)*X(7,1)*Xi.^2-Y(8,1)*X(7,1)*Xi)...
 (0.5(Xi-(Xi.*Eta))+0.25*(-(Eta.^2)+Eta)))...

A.31

 +(-2*((2*X(4,1)+X(1,1)+X(7,1)-X(3,1)-X(5,1)-2*X(8,1))*Eta.^2+(2*X(3,1)*Xi+2*X(1,1)*Xi-
X(5,1)-2*X(7,1)*Xi+X(7,1)-2*X(5,1)*Xi...
 -4*X(2,1)*Xi-X(1,1)+4*X(6,1)*Xi+X(3,1))*Eta-2*X(1,1)*Xi-2*X(7,1)*Xi...
 -2*X(3,1)*Xi+4*X(6,1)*Xi+4*X(2,1)*Xi+2*X(8,1)-2*X(4,1)-
2*X(5,1)*Xi)/(2*Y(2,1)*Xi.^2*X(1,1)-2*Y(2,1)*Xi.^2*X(3,1)...
 +2*Y(2,1)*Xi.^2*X(5,1)-2*Y(2,1)*Xi.^2*X(7,1)+4*X(6,1)*Xi.^3*Y(1,1)...
 -2*X(6,1)*Xi.^2*Y(1,1)-
8*X(6,1)*Xi.^3*Y(2,1)+4*X(6,1)*Xi.^3*Y(3,1)+2*X(6,1)*Xi.^2*Y(3,1)-
2*X(6,1)*Xi.^2*Y(5,1)...
 +2*X(6,1)*Xi.^2*Y(7,1)-
2*X(7,1)*Xi.^3*Y(1,1)+2*X(7,1)*Xi.^2*Y(1,1)+4*X(7,1)*Xi.^3*Y(2,1)...
 -2*X(7,1)*Xi.^3*Y(3,1)+2*X(7,1)*Xi.^2*Y(5,1)-
2*Y(8,1)*X(2,1)+2*Y(8,1)*X(6,1)+X(8,1)*Y(7,1)*Xi+2*Y(1,1)*Xi*X(2,1)...
 -2*Y(1,1)*Xi*X(6,1)-2*Y(3,1)*Xi*X(6,1)+2*X(8,1)*Y(2,1)-
2*X(8,1)*Y(6,1)+2*X(2,1)*Xi.^2*Y(7,1)...
 +2*X(3,1)*Xi.^2*Y(1,1)+2*X(3,1)*Xi.^3*Y(5,1)+2*X(3,1)*Xi.^2*Y(5,1)-
4*X(3,1)*Xi.^3*Y(6,1)+2*X(3,1)*Xi.^3*Y(7,1)...
 -2*X(5,1)*Xi.^3*Y(1,1)+4*X(5,1)*Xi.^3*Y(2,1)-2*X(5,1)*Xi.^3*Y(3,1)-
2*X(5,1)*Xi.^2*Y(3,1)...
 -2*X(5,1)*Xi.^2*Y(7,1)+2*Y(4,1)*X(2,1)-2*Y(4,1)*X(6,1)+(2*X(5,1)*Y(1,1)-
2*X(7,1)*Y(5,1)-4*Y(8,1)*X(3,1)...
 +4*X(8,1)*Y(3,1)+2*X(3,1)*Y(1,1)+2*X(3,1)*Y(7,1)+4*X(8,1)*Y(5,1)-2*X(1,1)*Y(5,1)-
4*X(4,1)*Y(7,1)+8*X(4,1)*Y(8,1)+4*Y(4,1)*X(1,1)...
 -4*X(4,1)*Y(1,1)+2*X(5,1)*Y(7,1)-4*Y(8,1)*X(5,1)-2*X(1,1)*Y(3,1)+4*Y(4,1)*X(7,1)-
8*X(8,1)*Y(4,1)-2*X(7,1)*Y(3,1))*Eta.^3+...
 (2*X(5,1)*Y(7,1)-X(1,1)*Y(6,1)+2*X(4,1)*Y(1,1)+3*Y(2,1)*Xi.^2*X(1,1)-
3*Y(2,1)*Xi.^2*X(3,1)...
 -3*Y(2,1)*Xi.^2*X(5,1)+3*Y(2,1)*Xi.^2*X(7,1)+3*X(6,1)*Xi.^2*Y(1,1)-
3*X(6,1)*Xi.^2*Y(3,1)-3*X(6,1)*Xi.^2*Y(5,1)...
 +3*X(6,1)*Xi.^2*Y(7,1)-3*X(7,1)*Xi.^2*Y(1,1)+3*X(7,1)*Xi.^2*Y(5,1)+2*Y(8,1)*X(2,1)-
2*Y(8,1)*X(6,1)...
 +2*X(5,1)*Y(3,1)+5*X(8,1)*Y(7,1)*Xi-X(3,1)*Y(2,1)+4*Y(1,1)*Xi*X(2,1)-
4*Y(1,1)*Xi*X(6,1)-4*Y(3,1)*Xi*X(6,1)...
 +8*Y(2,1)*Xi*X(4,1)+8*Y(2,1)*Xi*X(8,1)-5*X(3,1)*Xi*Y(5,1)-
3*X(3,1)*Xi*Y(7,1)+8*X(6,1)*Xi*Y(8,1)...
 -3*X(1,1)*Xi*Y(5,1)-5*X(1,1)*Xi*Y(7,1)-8*Y(6,1)*Xi*X(8,1)-8*X(2,1)*Xi*Y(4,1)-
8*X(2,1)*Xi*Y(8,1)-2*X(8,1)*Y(2,1)...
 +2*X(8,1)*Y(6,1)-3*X(2,1)*Xi.^2*Y(7,1)+3*X(3,1)*Xi.^2*Y(1,1)-
3*X(3,1)*Xi.^2*Y(5,1)+3*X(5,1)*Xi.^2*Y(3,1)...
 -3*X(5,1)*Xi.^2*Y(7,1)-2*X(3,1)*Y(5,1)+Y(3,1)*X(2,1)-
2*Y(4,1)*X(2,1)+2*Y(4,1)*X(6,1)+4*X(1,1)*Xi*Y(6,1)...
 -3*X(4,1)*Y(1,1)*Xi+6*X(4,1)*Y(2,1)*Xi.^2-3*X(4,1)*Y(3,1)*Xi.^2-
5*X(4,1)*Y(3,1)*Xi+3*X(4,1)*Y(5,1)*Xi.^2+...
 5*X(4,1)*Y(5,1)*Xi+3*X(4,1)*Y(7,1)*Xi.^2+3*X(4,1)*Y(7,1)*Xi+4*X(5,1)*Xi*Y(6,1)-
4*X(7,1)*Xi*Y(2,1)+4*X(7,1)*Xi*Y(6,1)...

A.32

 +3*X(8,1)*Y(1,1)*Xi.^2-5*X(8,1)*Y(1,1)*Xi-6*X(8,1)*Y(2,1)*Xi.^2+3*X(8,1)*Y(3,1)*Xi.^2-
...
 3*X(8,1)*Y(3,1)*Xi-2*X(3,1)*Y(1,1)+3*X(8,1)*Y(5,1)*Xi-Y(3,1)*X(6,1)+2*X(4,1)*Y(2,1)-
2*X(4,1)*Y(6,1)...
 +2*Y(8,1)*X(7,1)+Y(1,1)*X(6,1)-3*X(1,1)*Xi.^2*Y(3,1)+3*X(1,1)*Xi.^2*Y(7,1)-
3*X(2,1)*Xi.^2*Y(1,1)+3*X(2,1)*Xi.^2*Y(3,1)...
 +3*X(2,1)*Xi.^2*Y(5,1)-2*X(8,1)*Y(7,1)-Y(1,1)*X(2,1)-2*Y(8,1)*X(5,1)+2*Y(8,1)*X(3,1)-
4*X(1,1)*Xi*Y(2,1)...
 -2*X(7,1)*Y(5,1)-3*Y(6,1)*Xi.^2*X(1,1)+3*Y(6,1)*Xi.^2*X(3,1)+3*Y(6,1)*Xi.^2*X(5,1)-
3*Y(6,1)*Xi.^2*X(7,1)...
 -
2*Y(8,1)*X(1,1)+5*X(7,1)*Xi*Y(1,1)+3*X(7,1)*Xi*Y(3,1)+3*X(5,1)*Xi*Y(1,1)+5*X(5,1)*Xi
*Y(3,1)+Y(5,1)*X(2,1)-Y(5,1)*X(6,1)...
 -2*X(7,1)*Y(1,1)+2*Y(4,1)*X(7,1)+8*X(6,1)*Xi*Y(4,1)-8*Y(6,1)*Xi*X(4,1)+X(1,1)*Y(2,1)-
2*Y(4,1)*X(5,1)...
 +4*Y(3,1)*Xi*X(2,1)+6*X(8,1)*Y(6,1)*Xi.^2-3*X(8,1)*Y(5,1)*Xi.^2-4*X(3,1)*Xi*Y(2,1)-
3*X(4,1)*Y(1,1)*Xi.^2-4*Y(7,1)*Xi*X(6,1)...
 -3*X(8,1)*Y(7,1)*Xi.^2+4*X(3,1)*Xi*Y(6,1)+4*Y(7,1)*Xi*X(2,1)-4*X(5,1)*Xi*Y(2,1)-...
 6*X(4,1)*Y(6,1)*Xi.^2+2*Y(4,1)*X(3,1)+2*X(1,1)*Y(7,1)+2*X(1,1)*Y(3,1)-
2*X(8,1)*Y(3,1)+2*X(8,1)*Y(5,1)-2*Y(4,1)*X(1,1)...
 +3*Y(4,1)*X(1,1)*Xi.^2+3*Y(4,1)*X(1,1)*Xi-
6*Y(4,1)*X(2,1)*Xi.^2+3*Y(4,1)*X(3,1)*Xi.^2+5*Y(4,1)*X(3,1)*Xi...
 -3*Y(4,1)*X(5,1)*Xi.^2-5*Y(4,1)*X(5,1)*Xi+6*Y(4,1)*X(6,1)*Xi.^2-3*Y(4,1)*X(7,1)*Xi.^2-
3*Y(4,1)*X(7,1)*Xi+4*Y(5,1)*Xi*X(2,1)...
 -4*Y(5,1)*Xi*X(6,1)-3*Y(8,1)*X(1,1)*Xi.^2+5*Y(8,1)*X(1,1)*Xi+6*Y(8,1)*X(2,1)*Xi.^2-...
 3*Y(8,1)*X(3,1)*Xi.^2+3*Y(8,1)*X(3,1)*Xi+3*Y(8,1)*X(5,1)*Xi.^2-3*Y(8,1)*X(5,1)*Xi-
6*Y(8,1)*X(6,1)*Xi.^2+3*Y(8,1)*X(7,1)*Xi.^2-...
 5*Y(8,1)*X(7,1)*Xi+X(3,1)*Y(6,1)-X(7,1)*Y(6,1)-Y(7,1)*X(2,1)-
X(5,1)*Y(2,1)+2*X(8,1)*Y(1,1)+X(7,1)*Y(2,1)...
 +Y(7,1)*X(6,1)+2*X(4,1)*Y(5,1)-2*X(4,1)*Y(7,1)+X(5,1)*Y(6,1)-
2*X(4,1)*Y(3,1))*Eta.^2+(X(1,1)*Y(6,1)+2*X(4,1)*Y(1,1)...
 -5*Y(2,1)*Xi.^2*X(1,1)+5*Y(2,1)*Xi.^2*X(3,1)+3*Y(2,1)*Xi.^2*X(5,1)-
3*Y(2,1)*Xi.^2*X(7,1)+3*X(6,1)*Xi.^2*Y(1,1)...
 -3*X(6,1)*Xi.^2*Y(3,1)-
5*X(6,1)*Xi.^2*Y(5,1)+5*X(6,1)*Xi.^2*Y(7,1)+5*X(7,1)*Xi.^2*Y(5,1)+6*X(8,1)*Y(7,1)*Xi+
X(3,1)*Y(2,1)...
 -6*Y(1,1)*Xi*X(2,1)-2*Y(1,1)*Xi*X(6,1)-2*Y(3,1)*Xi*X(6,1)-
8*X(4,1)*Y(8,1)+8*X(8,1)*Y(4,1)...
 -8*Y(2,1)*Xi*X(4,1)-8*Y(2,1)*Xi*X(8,1)+8*X(6,1)*Xi*Y(8,1)+3*X(1,1)*Xi.^2*Y(5,1)-
8*Y(6,1)*Xi*X(8,1)+8*X(2,1)*Xi*Y(4,1)...
 +8*X(2,1)*Xi*Y(8,1)+3*X(2,1)*Xi.^2*Y(7,1)-5*X(3,1)*Xi.^2*Y(1,1)-
5*X(5,1)*Xi.^2*Y(7,1)...
 -Y(3,1)*X(2,1)+2*X(1,1)*Xi*Y(6,1)+2*X(4,1)*Y(1,1)*Xi-
8*X(4,1)*Y(2,1)*Xi.^2+4*X(4,1)*Y(3,1)*Xi.^2+6*X(4,1)*Y(3,1)*Xi...

A.33

+4*X(4,1)*Y(5,1)*Xi.^2+6*X(4,1)*Y(5,1)*Xi+4*X(4,1)*Y(7,1)*Xi.^2+2*X(4,1)*Y(7,1)*Xi+6
*X(5,1)*Xi*Y(6,1)...
 +2*X(7,1)*Xi*Y(2,1)+6*X(7,1)*Xi*Y(6,1)-
4*X(8,1)*Y(1,1)*Xi.^2+6*X(8,1)*Y(1,1)*Xi+8*X(8,1)*Y(2,1)*Xi.^2-
4*X(8,1)*Y(3,1)*Xi.^2+...
 2*X(8,1)*Y(3,1)*Xi+2*X(8,1)*Y(5,1)*Xi+Y(3,1)*X(6,1)+2*Y(8,1)*X(7,1)-
Y(1,1)*X(6,1)+5*X(1,1)*Xi.^2*Y(3,1)...
 +5*X(2,1)*Xi.^2*Y(1,1)-5*X(2,1)*Xi.^2*Y(3,1)-3*X(2,1)*Xi.^2*Y(5,1)-
2*X(8,1)*Y(7,1)+Y(1,1)*X(2,1)+2*Y(8,1)*X(5,1)...
 +2*Y(8,1)*X(3,1)+6*X(1,1)*Xi*Y(2,1)-
3*Y(6,1)*Xi.^2*X(1,1)+3*Y(6,1)*Xi.^2*X(3,1)+5*Y(6,1)*Xi.^2*X(5,1)...
 -5*Y(6,1)*Xi.^2*X(7,1)+2*Y(8,1)*X(1,1)-3*X(5,1)*Xi.^2*Y(1,1)+Y(5,1)*X(2,1)-
Y(5,1)*X(6,1)-2*Y(4,1)*X(7,1)-3*X(3,1)*Xi.^2*Y(7,1)...
 +8*X(6,1)*Xi*Y(4,1)-8*Y(6,1)*Xi*X(4,1)-X(1,1)*Y(2,1)-
2*Y(4,1)*X(5,1)+3*X(7,1)*Xi.^2*Y(3,1)-6*Y(3,1)*Xi*X(2,1)...
 +8*X(8,1)*Y(6,1)*Xi.^2-
4*X(8,1)*Y(5,1)*Xi.^2+6*X(3,1)*Xi*Y(2,1)+4*X(4,1)*Y(1,1)*Xi.^2-6*Y(7,1)*Xi*X(6,1)-
4*X(8,1)*Y(7,1)*Xi.^2+...
 2*X(3,1)*Xi*Y(6,1)-2*Y(7,1)*Xi*X(2,1)+2*X(5,1)*Xi*Y(2,1)-8*X(4,1)*Y(6,1)*Xi.^2-...
 2*Y(4,1)*X(3,1)-2*X(8,1)*Y(3,1)-2*X(8,1)*Y(5,1)-2*Y(4,1)*X(1,1)-4*Y(4,1)*X(1,1)*Xi.^2-
2*Y(4,1)*X(1,1)*Xi+8*Y(4,1)*X(2,1)*Xi.^2-...
 4*Y(4,1)*X(3,1)*Xi.^2-6*Y(4,1)*X(3,1)*Xi-4*Y(4,1)*X(5,1)*Xi.^2-6*Y(4,1)*X(5,1)*Xi...
 +8*Y(4,1)*X(6,1)*Xi.^2-4*Y(4,1)*X(7,1)*Xi.^2-2*Y(4,1)*X(7,1)*Xi-2*Y(5,1)*Xi*X(2,1)-
6*Y(5,1)*Xi*X(6,1)...
 +4*Y(8,1)*X(1,1)*Xi.^2-6*Y(8,1)*X(1,1)*Xi-8*Y(8,1)*X(2,1)*Xi.^2+4*Y(8,1)*X(3,1)*Xi.^2-
2*Y(8,1)*X(3,1)*Xi...
 +4*Y(8,1)*X(5,1)*Xi.^2-2*Y(8,1)*X(5,1)*Xi-8*Y(8,1)*X(6,1)*Xi.^2+4*Y(8,1)*X(7,1)*Xi.^2-
6*Y(8,1)*X(7,1)*Xi...
 -X(3,1)*Y(6,1)-X(7,1)*Y(6,1)-Y(7,1)*X(2,1)-X(5,1)*Y(2,1)-
2*X(8,1)*Y(1,1)+X(7,1)*Y(2,1)+Y(7,1)*X(6,1)+2*X(4,1)*Y(5,1)+2*X(4,1)*Y(7,1)...
 +X(5,1)*Y(6,1)+2*X(4,1)*Y(3,1))*Eta+2*X(1,1)*Xi*Y(6,1)-
8*X(2,1)*Xi*Y(6,1)+X(4,1)*Y(1,1)*Xi+2*X(4,1)*Y(2,1)*Xi.^2-...
 X(4,1)*Y(3,1)*Xi.^2-
X(4,1)*Y(3,1)*Xi+X(4,1)*Y(5,1)*Xi.^2+X(4,1)*Y(5,1)*Xi+X(4,1)*Y(7,1)*Xi.^2-
X(4,1)*Y(7,1)*Xi...
 +2*X(5,1)*Xi*Y(6,1)+8*X(6,1)*Xi*Y(2,1)-
2*X(7,1)*Xi*Y(2,1)+2*X(7,1)*Xi*Y(6,1)+X(8,1)*Y(1,1)*Xi.^2-X(8,1)*Y(1,1)*Xi-...
 2*X(8,1)*Y(2,1)*Xi.^2+X(8,1)*Y(3,1)*Xi.^2+X(8,1)*Y(3,1)*Xi-X(8,1)*Y(5,1)*Xi-
2*X(4,1)*Y(2,1)+2*X(4,1)*Y(6,1)...
 -2*X(1,1)*Xi.^2*Y(3,1)+2*X(1,1)*Xi.^3*Y(5,1)-
4*X(1,1)*Xi.^3*Y(6,1)+2*X(1,1)*Xi.^3*Y(7,1)-2*X(1,1)*Xi.^2*Y(7,1)...
 -2*X(2,1)*Xi.^2*Y(1,1)+2*X(2,1)*Xi.^2*Y(3,1)-4*X(2,1)*Xi.^3*Y(5,1)-
2*X(2,1)*Xi.^2*Y(5,1)...
 +8*X(2,1)*Xi.^3*Y(6,1)-4*X(2,1)*Xi.^3*Y(7,1)-2*X(1,1)*Xi*Y(2,1)+2*Y(6,1)*Xi.^2*X(1,1)-
2*Y(6,1)*Xi.^2*X(3,1)...

A.34

 +2*Y(6,1)*Xi.^2*X(5,1)-
2*Y(6,1)*Xi.^2*X(7,1)+2*Y(3,1)*Xi*X(2,1)+2*X(8,1)*Y(6,1)*Xi.^2-...
 X(8,1)*Y(5,1)*Xi.^2-2*X(3,1)*Xi*Y(2,1)-X(4,1)*Y(1,1)*Xi.^2-2*Y(7,1)*Xi*X(6,1)-
X(8,1)*Y(7,1)*Xi.^2+2*X(3,1)*Xi*Y(6,1)...
 +2*Y(7,1)*Xi*X(2,1)-2*X(5,1)*Xi*Y(2,1)-2*X(4,1)*Y(6,1)*Xi.^2+Y(4,1)*X(1,1)*Xi.^2-
Y(4,1)*X(1,1)*Xi...
 -2*Y(4,1)*X(2,1)*Xi.^2+Y(4,1)*X(3,1)*Xi.^2+Y(4,1)*X(3,1)*Xi-Y(4,1)*X(5,1)*Xi.^2-
Y(4,1)*X(5,1)*Xi+2*Y(4,1)*X(6,1)*Xi.^2-...
 Y(4,1)*X(7,1)*Xi.^2+Y(4,1)*X(7,1)*Xi+2*Y(5,1)*Xi*X(2,1)-2*Y(5,1)*Xi*X(6,1)-
Y(8,1)*X(1,1)*Xi.^2+...
 Y(8,1)*X(1,1)*Xi+2*Y(8,1)*X(2,1)*Xi.^2-Y(8,1)*X(3,1)*Xi.^2-
Y(8,1)*X(3,1)*Xi+Y(8,1)*X(5,1)*Xi.^2+Y(8,1)*X(5,1)*Xi...
 -2*Y(8,1)*X(6,1)*Xi.^2+Y(8,1)*X(7,1)*Xi.^2-Y(8,1)*X(7,1)*Xi)*...
 (0.5*(Eta-(Xi.*Eta))+0.25*(-(Xi.^2)+Xi)))).^2)...
 .*(((((0.5*Xi)-(0.5*Xi.*Eta)-(0.25*Eta.^2)+(0.25*Eta))*X(1,1) + ...
 (-Xi + (Xi.*Eta))*X(2,1) + ...
 ((0.5*Xi)-(0.5*Xi.*Eta)+(0.25*Eta.^2)-(0.25*Eta))*X(3,1) + ...
 (0.5-(0.5*Eta.^2))*X(4,1) + ...
 ((0.5*Xi)+(0.5*Xi.*Eta)+(0.25*Eta.^2)+(0.25*Eta))*X(5,1) + ...
 (-Xi - (Xi.*Eta))*X(6,1) + ...
 ((0.5*Xi)+(0.5*Xi.*Eta)-(0.25*Eta.^2)-(0.25*Eta))*X(7,1) + ...
 (-0.5+(0.5*Eta.^2))*X(8,1)).* ...
 (((0.5*Eta)-(0.5*Xi.*Eta)-(0.25*Xi.^2)+(0.25*Xi))*Y(1,1) + ...
 (-0.5+(0.5*Xi.^2))*Y(2,1) + ...
 ((0.5*Eta)+(0.5*Xi.*Eta)-(0.25*Xi.^2)-(0.25*Xi))*Y(3,1) + ...
 (-Eta - (Xi.*Eta))*Y(4,1) + ...
 ((0.5*Eta)+(0.5*Xi.*Eta)+(0.25*Xi.^2)+(0.25*Xi))*Y(5,1) + ...
 (0.5-(0.5*Xi.^2))*Y(6,1) + ...
 ((0.5*Eta)-(0.5*Xi.*Eta)+(0.25*Xi.^2)-(0.25*Xi))*Y(7,1) + ...
 (-Eta + (Eta.*Xi))*Y(8,1))) - ...
 ((((0.5*Xi)-(0.5*Xi.*Eta)-(0.25*Eta.^2)+(0.25*Eta))*Y(1,1) + ...
 (-Xi + (Xi.*Eta))*Y(2,1) + ...
 ((0.5*Xi)-(0.5*Xi.*Eta)+(0.25*Eta.^2)-(0.25*Eta))*Y(3,1) + ...
 (0.5-(0.5*Eta.^2))*Y(4,1) + ...
 ((0.5*Xi)+(0.5*Xi.*Eta)+(0.25*Eta.^2)+(0.25*Eta))*Y(5,1) + ...
 (-Xi - (Xi.*Eta))*Y(6,1) + ...
 ((0.5*Xi)+(0.5*Xi.*Eta)-(0.25*Eta.^2)-(0.25*Eta))*Y(7,1) + ...
 (-0.5+(0.5*Eta.^2))*Y(8,1)).* ...
 (((0.5*Eta)-(0.5*Xi.*Eta)-(0.25*Xi.^2)+(0.25*Xi))*X(1,1) + ...
 (-0.5+(0.5*Xi.^2))*X(2,1) + ...
 ((0.5*Eta)+(0.5*Xi.*Eta)-(0.25*Xi.^2)-(0.25*Xi))*X(3,1) + ...
 (-Eta - (Xi.*Eta))*X(4,1) + ...
 ((0.5*Eta)+(0.5*Xi.*Eta)+(0.25*Xi.^2)+(0.25*Xi))*X(5,1) + ...
 (0.5-(0.5*Xi.^2))*X(6,1) + ...
 ((0.5*Eta)-(0.5*Xi.*Eta)+(0.25*Xi.^2)-(0.25*Xi))*X(7,1) + ...
 (-Eta + (Eta.*Xi))*X(8,1))));

A.35

 Kc1 = (N1N1Xi + N1N1Eta);

Example of one liberated heat matrix entry:

function Q1 = Heating1(Xi, Eta);

global eq;
load ElementCoord.dat

 X = ElementCoord(((eq*8)-7):(eq*8),1);
 Y = ElementCoord(((eq*8)-7):(eq*8),2);
 Q1 = (0.25*(1-Xi).*(1-Eta).*(-1-Xi-Eta)) .* (((((0.5*Xi)-(0.5*Xi.*Eta)-

 (0.25*Eta.^2)+(0.25*Eta))*X(1,1) + ...
 (-Xi + (Xi.*Eta))*X(2,1) + ...
 ((0.5*Xi)-(0.5*Xi.*Eta)+(0.25*Eta.^2)-(0.25*Eta))*X(3,1) + ...
 (0.5-(0.5*Eta.^2))*X(4,1) + ...
 ((0.5*Xi)+(0.5*Xi.*Eta)+(0.25*Eta.^2)+(0.25*Eta))*X(5,1) + ...
 (-Xi - (Xi.*Eta))*X(6,1) + ...
 ((0.5*Xi)+(0.5*Xi.*Eta)-(0.25*Eta.^2)-(0.25*Eta))*X(7,1) + ...
 (-0.5+(0.5*Eta.^2))*X(8,1)).* ...
 (((0.5*Eta)-(0.5*Xi.*Eta)-(0.25*Xi.^2)+(0.25*Xi))*Y(1,1) + ...
 (-0.5+(0.5*Xi.^2))*Y(2,1) + ...
 ((0.5*Eta)+(0.5*Xi.*Eta)-(0.25*Xi.^2)-(0.25*Xi))*Y(3,1) + ...
 (-Eta - (Xi.*Eta))*Y(4,1) + ...
 ((0.5*Eta)+(0.5*Xi.*Eta)+(0.25*Xi.^2)+(0.25*Xi))*Y(5,1) + ...
 (0.5-(0.5*Xi.^2))*Y(6,1) + ...
 ((0.5*Eta)-(0.5*Xi.*Eta)+(0.25*Xi.^2)-(0.25*Xi))*Y(7,1) + ...
 (-Eta + (Eta.*Xi))*Y(8,1))) - ...
 ((((0.5*Xi)-(0.5*Xi.*Eta)-(0.25*Eta.^2)+(0.25*Eta))*Y(1,1) + ...
 (-Xi + (Xi.*Eta))*Y(2,1) + ...
 ((0.5*Xi)-(0.5*Xi.*Eta)+(0.25*Eta.^2)-(0.25*Eta))*Y(3,1) + ...
 (0.5-(0.5*Eta.^2))*Y(4,1) + ...
 ((0.5*Xi)+(0.5*Xi.*Eta)+(0.25*Eta.^2)+(0.25*Eta))*Y(5,1) + ...
 (-Xi - (Xi.*Eta))*Y(6,1) + ...
 ((0.5*Xi)+(0.5*Xi.*Eta)-(0.25*Eta.^2)-(0.25*Eta))*Y(7,1) + ...
 (-0.5+(0.5*Eta.^2))*Y(8,1)).* ...
 (((0.5*Eta)-(0.5*Xi.*Eta)-(0.25*Xi.^2)+(0.25*Xi))*X(1,1) + ...
 (-0.5+(0.5*Xi.^2))*X(2,1) + ...
 ((0.5*Eta)+(0.5*Xi.*Eta)-(0.25*Xi.^2)-(0.25*Xi))*X(3,1) + ...
 (-Eta - (Xi.*Eta))*X(4,1) + ...
 ((0.5*Eta)+(0.5*Xi.*Eta)+(0.25*Xi.^2)+(0.25*Xi))*X(5,1) + ...
 (0.5-(0.5*Xi.^2))*X(6,1) + ...
 ((0.5*Eta)-(0.5*Xi.*Eta)+(0.25*Xi.^2)-(0.25*Xi))*X(7,1) + ...
 (-Eta + (Eta.*Xi))*X(8,1))));

A.36

Example of one surface convection matrix entry:

function KhS11 = SurConvS11(Xi);

global esS1;
load S1.dat
if esS1 == 1
 x = S1(((esS1*3)-2):(esS1*3),1);
 y = S1(((esS1*3)-2):(esS1*3),2);
else
 x = S1(((esS1*3)-1-esS1):((esS1*3)-esS1+1),1);
 y = S1(((esS1*3)-1-esS1):((esS1*3)-esS1+1),2);
end

 NS1A = ((-0.5*Xi)+(0.5*(Xi.^2))).*((((((Xi-0.5)*x(1,1))-

 (2*Xi*(x(2,1)))+((Xi+0.5)*x(3,1))).^2) + ...
 ((((Xi-0.5)*y(1,1))-(2*Xi*(y(2,1)))+((Xi+0.5)*y(3,1))).^2)).^(0.5));

 NS1B = ((-0.5*Xi)+(0.5*(Xi.^2)));

 KhS11 = (NS1A.*NS1B);

Example of one boundary convection matrix entry:

function RhS11 = BoundConvS11(Xi);

global ecS1;
load S1.dat
if ecS1 == 1
 x = S1(((ecS1*3)-2):(ecS1*3),1);
 y = S1(((ecS1*3)-2):(ecS1*3),2);
else
 x = S1(((ecS1*3)-1-ecS1):((ecS1*3)-ecS1+1),1);
 y = S1(((ecS1*3)-1-ecS1):((ecS1*3)-ecS1+1),2);
end

 NS1 = ((-0.5*Xi)+(0.5*(Xi.^2))).*((((((Xi-0.5)*x(1,1))-(2*Xi*(x(2,1)))+

 ((Xi+0.5)*x(3,1))).^2) + ...
 ((((Xi-0.5)*y(1,1))-(2*Xi*(y(2,1)))+((Xi+0.5)*y(3,1))).^2)).^(0.5));

 RhS11 = (NS1);

A.37

Example of one boundary radiation matrix entry:

function RrS11 = BoundRadS11(Xi);

global ewS1;
load S1.dat
if ewS1 == 1
 x = S1(((ewS1*3)-2):(ewS1*3),1);
 y = S1(((ewS1*3)-2):(ewS1*3),2);
else
 x = S1(((ewS1*3)-1-ewS1):((ewS1*3)-ewS1+1),1);
 y = S1(((ewS1*3)-1-ewS1):((ewS1*3)-ewS1+1),2);
end

 NS1 = ((-0.5*Xi)+(0.5*(Xi.^2))).*((((((Xi-0.5)*x(1,1))-(2*Xi*(x(2,1)))+

 ((Xi+0.5)*x(3,1))).^2) + ...
 ((((Xi-0.5)*y(1,1))-(2*Xi*(y(2,1)))+((Xi+0.5)*y(3,1))).^2)).^(0.5));

 RrS11 = (NS1);

Example of one surface radiation matrix entry:

function RsS11 = SurRadS11(Xi);

global elS1;
load S1.dat
if elS1 == 1
 x = S1(((elS1*3)-2):(elS1*3),1);
 y = S1(((elS1*3)-2):(elS1*3),2);
else
 x = S1(((elS1*3)-1-elS1):((elS1*3)-elS1+1),1);
 y = S1(((elS1*3)-1-elS1):((elS1*3)-elS1+1),2);
end

 NS1 = ((-0.5*Xi)+(0.5*(Xi.^2))).*((((((Xi-0.5)*x(1,1))-(2*Xi*(x(2,1)))+

 ((Xi+0.5)*x(3,1))).^2) + ...
 ((((Xi-0.5)*y(1,1))-(2*Xi*(y(2,1)))+((Xi+0.5)*y(3,1))).^2)).^(0.5));

 NSS = (((((-0.5*Xi)+(0.5*(Xi.^2))))+(((1-(Xi.^2))))+((((0.5*Xi)+(0.5*(Xi.^2)))))).^4);

 RsS11 = (NS1.*NSS);

A.38

8.3 MICROSOFT VISUAL BASIC CODE

8.3.1 Co-ordinates.xls

Module: Coordinates

Sub Coordinates()
'
'XX

 Sheets("Sheet1").Select
 Range("A6").Select
 ActiveCell.Value = 0
 Range("A7").Select
 For Counter = 1 To Range("J4") Step 1
 ActiveCell.Value = Counter
 ActiveCell.Offset(1, 0).Range("A1").Select
 Next Counter
 XDist = Range("C2").Value
 YDist = Range("C3").Value
 NoXElements = Range("F2").Value
 NoYElements = Range("F3").Value
 DeltaX = XDist / (2 * NoXElements)
 DeltaY = YDist / (2 * NoYElements)
 NoCoordsX = (2 * NoXElements) + 1
 NoCoordsY = (2 * NoYElements) + 1
 Range("C6").Select
 For i = 1 To NoCoordsY
 For j = 1 To NoCoordsX
 XCoord = (DeltaX * (j - 1))
 YCoord = (DeltaY * (i - 1))
 checki = i Mod 2
 checkj = j Mod 2
 If (checki <> 0) Or (checkj <> 0) Then
 ActiveCell.Offset(1, -1).Range("A1").Select
 ActiveCell.Value = XCoord
 ActiveCell.Offset(0, 1).Range("A1").Select
 Value = YCoord
 End If
 Next j
 Next i

Range("A1").Select

A.39

ActiveSheet.ChartObjects("Chart 1").Activate
 ActiveChart.Axes(xlValue).Select
 With ActiveChart.Axes(xlValue)
 .MinimumScale = 0
 .MaximumScale = YDist
 .MinorUnitIsAuto = True
 .MajorUnitIsAuto = True
 .Crosses = xlAutomatic
 .ReversePlotOrder = False
 .ScaleType = xlLinear
 .DisplayUnit = xlNone
 End With

 ActiveChart.Axes(xlCategory).Select
 With ActiveChart.Axes(xlCategory)
 .MinimumScale = 0
 .MaximumScale = XDist
 .MinorUnitIsAuto = True
 .MajorUnitIsAuto = True
 .Crosses = xlAutomatic
 .ReversePlotOrder = False
 .ScaleType = xlLinear
 .DisplayUnit = xlNone
 End With

Range("A1").Select

End Sub

Module: SurfaceCoords

Sub SurfaceCoords()
'
'XX

 Sheets("Sheet1").Select
 Range("A7:C32000").Select
 Selection.Copy
 Range("A1").Select
 Sheets("S1").Select
 Range("A9").Select
 ActiveSheet.Paste
 Range("B9").Select
 Application.CutCopyMode = False
 Range("A8:C32002").AdvancedFilter Action:=xlFilterCopy, CriteriaRange:= _

A.40

 Range("A4:C5"), CopyToRange:=Range("E8:G32002"), Unique:=False
 Sheets("Sheet1").Select
 NoYNodes = Range("J3").Value
 Sheets("S1").Select
 Range("F9:G" & NoYNodes + 8).Select
 Selection.Interior.ColorIndex = 40
 Selection.Copy
 Sheets("S1.dat").Select
 Range("A1").Select
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False
 Sheets("S1").Select
 Range("A1").Select

 Sheets("Sheet1").Select
 Range("A7:C32000").Select
 Selection.Copy
 Range("A1").Select
 Sheets("S2").Select
 Range("A9").Select
 ActiveSheet.Paste
 Range("C9").Select
 Application.CutCopyMode = False
 Range("A8:C32002").AdvancedFilter Action:=xlFilterCopy, CriteriaRange:= _
 Range("A4:C5"), CopyToRange:=Range("E8:G32002"), Unique:=False
 Sheets("Sheet1").Select
 NoXNodes = Range("J2").Value
 Sheets("S2").Select
 Range("F9:G" & NoXNodes + 8).Select
 Selection.Interior.ColorIndex = 40
 Selection.Copy
 Sheets("S2.dat").Select
 Range("A1").Select
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False
 Sheets("S2").Select
 Range("A1").Select

 Sheets("Sheet1").Select
 Range("A7:C32000").Select
 Selection.Copy
 Range("A1").Select
 Sheets("S3").Select
 Range("A9").Select
 ActiveSheet.Paste
 Range("B9").Select

A.41

 Application.CutCopyMode = False
 Range("A8:C32002").AdvancedFilter Action:=xlFilterCopy, CriteriaRange:= _
 Range("A4:C5"), CopyToRange:=Range("E8:G32002"), Unique:=False
 Sheets("Sheet1").Select
 NoYNodes = Range("J3").Value
 Sheets("S3").Select
 Range("F9:G" & NoYNodes + 8).Select
 Selection.Interior.ColorIndex = 40
 Selection.Copy
 Sheets("S3.dat").Select
 Range("A1").Select
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False
 Sheets("S3").Select
 Range("A1").Select

 Sheets("Sheet1").Select
 Range("A7:C32000").Select
 Selection.Copy
 Range("A1").Select
 Sheets("S4").Select
 Range("A9").Select
 ActiveSheet.Paste
 Range("C9").Select
 Application.CutCopyMode = False
 Range("A8:C32002").AdvancedFilter Action:=xlFilterCopy, CriteriaRange:= _
 Range("A4:C5"), CopyToRange:=Range("E8:G32002"), Unique:=False
 Sheets("Sheet1").Select
 NoXNodes = Range("J2").Value
 Sheets("S4").Select
 Range("F9:G" & NoXNodes + 8).Select
 Selection.Interior.ColorIndex = 40
 Selection.Copy
 Sheets("S4.dat").Select
 Range("A1").Select
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False
 Sheets("S4").Select
 Range("A1").Select
 Application.CutCopyMode = False
 Sheets("Sheet1").Select
 Range("A1").Select

End Sub

A.42

8.3.2 Elements.xls

Module: Elements

Sub Elements()
'
'XX

Sheets("Sheet1").Select

NoXElements = Range("E3").Value
NoYElements = Range("E4").Value
NoXNodes = Range("I3").Value
NoYNodes = Range("I4").Value
Range("A8").Select

For ycount = 1 To NoYElements
 For xcount = 1 To NoXElements
 i = 1 + (2 * (xcount - 1)) + ((2 * NoXNodes - NoXElements) * (ycount - 1))
 j = i + 1
 k = j + 1
 l = k + (NoXNodes - xcount)
 m = k + (2 * NoXNodes - NoXElements)
 n = m - 1
 o = n - 1
 p = l - 1
 ActiveCell.Value = i
 ActiveCell.Offset(0, 1).Range("A1").Select
 ActiveCell.Value = j
 ActiveCell.Offset(0, 1).Range("A1").Select
 ActiveCell.Value = k
 ActiveCell.Offset(0, 1).Range("A1").Select
 ActiveCell.Value = l
 ActiveCell.Offset(0, 1).Range("A1").Select
 ActiveCell.Value = m
 ActiveCell.Offset(0, 1).Range("A1").Select
 ActiveCell.Value = n
 ActiveCell.Offset(0, 1).Range("A1").Select
 ActiveCell.Value = o
 ActiveCell.Offset(0, 1).Range("A1").Select
 ActiveCell.Value = p
 ActiveCell.Offset(1, -7).Range("A1").Select
 Next xcount
Next ycount

A.43

Range("A8:H" & (NoXElements * NoYElements) + 7).Select
Selection.Interior.ColorIndex = 40
Selection.Copy
Sheets("NodesXElements.dat").Select
Range("A1").Select
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False
Application.CutCopyMode = False

Sheets("Sheet1").Select
Range("A1").Select

End Sub

Module: ElementCoordinates

Sub ElementCoordinates()
'
'XX

 Sheets("Sheet1").Select
 Dim NoElements As Integer
 NoElements = Range("E5").Value

 For counter = 1 To NoElements
 Sheets("Sheet1").Select
 Range("A8").Select
 ActiveCell.Offset((counter - 1), 0).Range("A1:H1").Select
 Selection.Copy
 Sheets("Sheet2").Select
 Range("D4").Select
 ActiveCell.Offset((counter - 1) * 8, 0).Range("A1").Select
 Selection.PasteSpecial Paste:=xlAll, Operation:=xlNone, SkipBlanks:=False _
 , Transpose:=True
 Next counter

 Range("B4:C" & (NoElements * 8) + 3).Select
 Selection.Interior.ColorIndex = 40
 Selection.Copy
 Sheets("ElementCoord.dat").Select
 Range("A1").Select
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False

 Sheets("Sheet2").Select

A.44

 Range("D4:D10000").Select
 Selection.Interior.ColorIndex = 2

 Range("A1").Select
 Sheets("Sheet1").Select
 Range("A1").Select

End Sub

Module: BoundaryElements

Sub BoundaryElements()
'
'XX

 Windows("Elements.xls").Activate
 Sheets("S1").Select
 IntRow = Range("D1").Value
 Sheets("S1").Select
 Range("A5:C5").Select
 Selection.AutoFill Destination:=Range("A5:C" & IntRow + 3), Type:=xlFillDefault
 Range("A1").Select
 Range("G5:I5").Select
 Selection.Copy
 For i = 6 To IntRow + 3
 Range("G" & i).Select
 ActiveSheet.Paste
 Next i
 Range("A1").Select
 Range("G4:I" & IntRow + 3).Select
 Selection.Copy
 Sheets("NodesXElementsS1.dat").Select
 Range("A1").Select
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False
 Sheets("S1").Select
 Range("A1").Select

 Windows("Elements.xls").Activate
 Sheets("S2").Select
 IntRow = Range("D1").Value
 Sheets("S2").Select
 Range("A5:C5").Select
 Selection.AutoFill Destination:=Range("A5:C" & IntRow + 3), Type:=xlFillDefault
 Range("A1").Select

A.45

 Range("G5:I5").Select
 Selection.Copy
 For i = 6 To IntRow + 3
 Range("G" & i).Select
 ActiveSheet.Paste
 Next i
 Range("A1").Select
 Range("G4:I" & IntRow + 3).Select
 Selection.Copy
 Sheets("NodesXElementsS2.dat").Select
 Range("A1").Select
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False
 Sheets("S2").Select
 Range("A1").Select

 Windows("Elements.xls").Activate
 Sheets("S3").Select
 IntRow = Range("D1").Value
 Sheets("S3").Select
 Range("A5:C5").Select
 Selection.AutoFill Destination:=Range("A5:C" & IntRow + 3), Type:=xlFillDefault
 Range("A1").Select
 Range("G5:I5").Select
 Selection.Copy
 For i = 6 To IntRow + 3
 Range("G" & i).Select
 ActiveSheet.Paste
 Next i
 Range("A1").Select
 Range("G4:I" & IntRow + 3).Select
 Selection.Copy
 Sheets("NodesXElementsS3.dat").Select
 Range("A1").Select
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False
 Sheets("S3").Select
 Range("A1").Select

 Windows("Elements.xls").Activate
 Sheets("S4").Select
 IntRow = Range("D1").Value
 Sheets("S4").Select
 Range("A5:C5").Select
 Selection.AutoFill Destination:=Range("A5:C" & IntRow + 3), Type:=xlFillDefault
 Range("A1").Select

A.46

 Range("G5:I5").Select
 Selection.Copy
 For i = 6 To IntRow + 3
 Range("G" & i).Select
 ActiveSheet.Paste
 Next i
 Application.CutCopyMode = False
 Range("A1").Select
 Range("G4:I" & IntRow + 3).Select
 Selection.Copy
 Sheets("NodesXElementsS4.dat").Select
 Range("A1").Select
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False
 Sheets("S4").Select
 Range("A1").Select
 Application.CutCopyMode = False

 Sheets("Sheet1").Select
 Range("A1").Select

End Sub

B.1

9 APPENDIX B: WORKED EXAMPLE

A worked example is presented in a stepwise sequence to illustrate the functionality and

procedure required to implement and obtain results from the finite element numerical model.

Example: 2000 mm x 1000 mm concrete element cast directly onto rock

Figure B.1 Worked example: 2000 mm x 1000 mm concrete element

9.1 INPUT DATA GENERATION

This example assumes that the User has a general understanding of the functionality of Microsoft

Excel. Microsoft Excel 2003, with Windows XP Professional as the operating system is utilized

to describe this example.

All the Microsoft Excel files, data files and Matlab code can be found on the compact disc

attached to this research report. It is recommended that the entire content of the compact disc be

copied onto the User’s PC prior to commencing with this example.

1. Open “Co-ordinate.xls” in Microsoft Excel.

10
00

 m
m

2000 mm

ROCK ROCK

B.2

2. Click “Enable Macros” and the spreadsheet will continue to open. Upon opening a

security warning may be displayed depending on the PC’s security settings.

3. Click the “Run Macro” button in the Visual Basic toolbar.

4. Highlight the “ClearCoordinates” Macro, and click on the Run button. This Macro clears

all the cells in the worksheets except for the input cells as shown in Table 4.1 and various

other calculation cells.

Table 4.1 Input required for the mesh generator

x Dimension = 2 m

Number of

elements in the

x direction =

20

Element width

in the x

direction (m) =

0.1

Number of

nodes in the x

direction =

41

y Dimension = 1 m

Number of

elements in the

y direction =

10

Element width

in the y

direction (m) =

0.1

Number of

nodes in the y

direction =

21

Total number of elements = 200 Aspect ratio = 1
Total number

of nodes =
661

B.3

5. Enter the required cross-section size (x and y dimension) and the number of elements in

the x and y direction. Ensure that the input data is as shown in Table 4.1 or as otherwise

required. The User is requested to check and ensure that the aspect ratio is in close

proximity to unity.

6. Click the “Run Macro” button

7. Highlight the “Coordinates” Macro, and click on the Run button. This Macro generates all

the nodes and corresponding Cartesian coordinates for the 8 noded quadrilateral

isoparametric elements. The worksheet should look as follows:

8. Click the “Run Macro” button

9. Highlight the “SurfaceCoords” Macro, and click on the Run button. This Macro generates

all the nodes and corresponding Cartesian coordinates for the 3 noded surface quadratic

elements. The nodes are assigned the node numbers corresponding to the equivalent

nodes of the 8 noded quadrilateral isoparametric elements.

10. All the data within the worksheets that is highlighted in orange will become the input data

necessary for the finite element numerical model written in Matlab.

B.4

11. Convert worksheets named “S1.dat”, “S2.dat”, “S3.dat” and “S4.dat” into data files for

the purpose of importing into Matlab. The process is as follows:

 Copy the cells already selected in worksheet “S1.dat” (the executed macros

select all relevant cells) and paste into a blank workbook. Save the workbook

as a text file into the Matlab working folder such that the file name and

extension is “S1.txt”. (Note: For Microsoft Excel 2007, save the file as a tab

delimited text file.) Confirm all the information boxes during the “Save As”

procedure. The Matlab working folder is described as the folder copied onto

the User’s PC from the compact disc titled “Matlab”. Close the workbook just

saved as a text file and ignore the information box (i.e. Click “No” on the

information box requesting whether the User would like to save the file as a

Microsoft Excel file).

 Open the Matlab working folder and change the extension for the file named

“S1” from “S1.txt” to “S1.dat”. Confirm the information box. If the User

cannot view the file extensions in the Matlab working folder the User’s PC

folder settings necessitate changing. This is done by clicking the “Tools” tab

button, followed by the “Folder Options” in the dropdown menu. Click on the

“View” tab. The active screen should be as shown below.

B.5

Deselect the “Hide extensions for known file types” and click on “OK”. The

User can now continue with the required change to the extension.

 This process is to be repeated for worksheets “S2.dat”, “S3.dat” and “S4.dat”.

12. Open “Elements.xls” in Microsoft Excel. Do not close “Co-ordinates.xls” as links

between the two Microsoft Excel files exist.

13. Click “Enable Macros” and the spreadsheet will continue to open. Upon opening a

security warning may be displayed depending on the PC’s security settings.

14. Click the “Run Macro” button.

15. Highlight the “ClearElements” Macro, and click on the Run button. This Macro clears all

the cells in the worksheets except for the input cells as shown in Table 4.1 and various

other calculation cells.

16. Click the “Run Macro” button

B.6

17. Highlight the “Elements” Macro, and click on the Run button. This Macro generates all

the global node numbers for each individual 8 noded quadrilateral isoparametric element

from 1 to the “Total number of elements” in Table 4.1. The resulting output of the Macro

describes the global assemblage process of these elements.
.

18. Click the “Run Macro” button

19. Highlight the “ElementCoordinates” Macro, and click on the Run button. This Macro

extracts all the global node numbers and corresponding Cartesian coordinates for each

individual 8 noded quadrilateral isoparametric element from 1 to the “Total number of

elements” in Table 4.1. This Macro rearranges the computed data into a simpler form for

importing into Matlab.
.

20. Click the “Run Macro” button

21. Highlight the “BoundaryElements” Macro, and click on the Run button. This Macro

generates all the global node numbers for each individual 3 noded surface quadratic

element. The resulting output of the Macro describes the global assemblage process of

these elements.

22. Convert worksheets named “ElementCoord.dat”, “NodesXElements.dat”,

“NodesXElementsS1.dat”, “NodesXElementsS2.dat”, “NodesXElementsS3.dat” and

“NodesXElements S4.dat” into data files for the purpose of importing into Matlab. The

process is as per step 11.

23. Save and close both spreadsheets.

24. Open a blank Microsoft Excel workbook for the generation of the final two data files. The

first file will provide information on the maximum and minimum daily atmospheric

temperatures. Column A is standard to all problems and is an incremental 24 hour period.

Column B and C contain the minimum and maximum daily temperatures (in degrees

Celsius) respectively for the 24 hour period concerned. These daily temperatures are

easily available from the local meteorological office. Superfluous data is to be recorded

within this workbook such that finite element numerical model written in Matlab does not

become unstable or provide errors due to limited input data. The data in this example (as

seen in the figure on page B.7) has been generated for a time duration of 1440 hours

B.7

(60 days) to ensure sufficient available ambient temperatures. Convert this worksheet into

a data file titled “AmbientTemp.dat” through the method described previously.

 AmbientTemp.dat Maturity.dat

The second data file tabulates the heat rate curve as calculated using the experimental data

obtained from the adiabatic calorimeter test. The values in column A and column B are

the Time (t20 hours) and the Maturity Heat Rate (W/kg) respectively. Superfluous data is

to be recorded within this workbook such that finite element numerical model written in

Matlab does not become unstable or provide errors. Convert this worksheet into a data file

titled “Maturity.dat” through the method described previously.

B.8

9.2 EXECUTING THE FINITE ELEMENT NUMERICAL MODEL IN MATLAB

Open Matlab and ensure that the “Current Directory” is set to the Matlab working folder. In the

“Command Window” type in “FEMHeatTransferModel” followed by pressing the “Enter” key to

execute the finite element numerical model. The User is required to have Matlab installed on

their PC.

Current Directory Command Window

B.9

Enter the input data as shown below:

INPUT REQUIRED:

 User Input

NoOfElements = input('Total number of elements = '); 200

NoOfNodes = input('Total number of nodes = '); 661

NoOfElementsYDirection = input('Total number of elements in the y-Direction = '); 10

NoOfElementsXDirection = input('Total number of elements in the x-Direction = '); 20

InitialTemp = input('Initial concrete temperature - deg C = '); 26

CastTime = input('Time of day when concrete is cast - hrs = '); 9

k = input('Thermal conductivity of concrete - W/m.K = '); 2.2

rho = input('Concrete density - kg/m3 = '); 2500

cp = input('Concrete specific heat - J/kg.K = '); 1200

Ft = input('Formwork removal time - hrs = '); 12

hE = input('Convective heat transfer coefficient for exposed concrete surface - W/K.m2 = '); 30

hC = input('Convective heat transfer coefficient for surfaces covered with formwork-W/K.m2 ='); 5

kr = input('Thermal conductivity of rock - W/K.m2 = '); 1.2

Sigma = input('Stefan Boltzman constant - W/K4.m2 = '); 5.669e-8

Emissivity = input('Emissivity of grey concrete surface = '); 0.9

tm = input('Time at which the minimum overnight temperature occurs - hrs = '); 5

bin = input('Binder content - kg/m3 = '); 220

E = input('Apparent activation energy - kJ/mol = '); 33.5

R = input('Universal gas constant - kJ/mol.K = '); 8.31e-3

TimeIncrement = input('Time increment - hrs = '); 1

FinalTime = input('Time duration - hrs = '); 100

The “TimeIncrement” is the time step used in the model and represents the concrete age intervals

at which the analysis is undertaken and temperature results reported. The “FinalTime” is the time

or concrete age over which the analysis is undertaken.

The program runs automatically following the input of all the above information. The finite

element numerical model can take as long as half an hour to solve depending on the speed of the

User’s PC.

B.10

The results are graphically represented as shown below. The User can extract any nodal

temperatures throughout the concrete element (using the Matlab function “dlmwrite”) for

comparison purposes if required.

This example is now complete and the User is requested to check whether the “maximum

temperature difference” is within specification.

	Title Page
	Intro Pages
	Declaration
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols

	Chapter 1
	1 Introduction
	1.1 Background
	1.2 Thermal Cracking of Concrete
	1.3 Temperature Prediction
	1.4 Scope and Layout of Report

	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	7 references

	Appendix A
	Appendix B

