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4 ABSTRACT 

Gestational diabetes mellitus (GDM) is defined as any degree of glucose intolerance first 

diagnosed during pregnancy. Many adverse pregnancy outcomes and long-term health 

implications exist for mothers with GDM, as well as their offspring. There is evidence of a 

genetic contribution to the risk of developing GDM; single nucleotide polymorphisms (SNPs) in 

Maturity Onset Diabetes of the Young (MODY) genes, and genes shown to influence type 2 

diabetes (T2D) susceptibility, attribute 4- 10% of GDM cases. This study focused on selected 

SNPs from five MODY genes and one T2D-associated gene, and aimed to investigate if these 

variants were associated with GDM in a black South African cohort. Genotyping was carried out 

for 23 SNPs in DNA samples from 80 GDM-positive and 160 GMD-negative women, and the 

correlations were statistically assessed using PLINK. Analysis revealed that, rs4581569, an 

intronic SNP in the Pancreatic and Duodenal Homeobox 1 (PDX1) gene was significantly 

associated with a decreased risk of GDM and low fasting glucose levels. Since rs4581569 tags 

one other SNP (rs9512918) in the gene region, and may be linked to other SNPs, the SNP might 

only be indirectly associated with GDM. The associated SNP is not specific to the South African 

population as the minor allele frequency was similar globally when compared to publicly 

available genetic variation data from the 1000 Genomes Project. The association found is a novel 

discovery and prompts further investigation to establish the significance of this SNP as a 

protective factor against GDM development.  
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1 LITERATURE REVIEW 

Chapter 1 provides a background on aspects of gestational diabetes mellitus (GDM), including 

the definition/ diagnosis, prevalence, health implications, pathophysiology and the role of 

genetics in the development thereof. In the second section, genes found to be associated with 

GDM are discussed and more information is given on genes causative of Maturity Onset Diabetes 

of the Young (MODY), as well as, genes associated with type 2 diabetes mellitus (T2D). The 

third section presents important concepts and considerations for conducting genetic association 

studies. The last section describes the principles and advantages of the genotyping technologies 

used in this study. Lastly, the study rationale, aims, and objectives, are stated at the end of the 

chapter. 

1.1 GESTATIONAL DIABETES MELLITUS   

Gestational diabetes mellitus is defined as “any degree of glucose intolerance diagnosed for the 

first time during pregnancy” (Buchanan and Xiang, 2005). The only exception is that the level of 

hyperglycaemia should not fall within the overt diabetes range, which refers to pre-existing 

diabetes that is only identified during pregnancy (WHO, 2013). The Oral Glucose Tolerance Test 

(OGTT) is the standard test for diagnosing GDM. The World Health Organization (WHO) 

recommend a two-hour, 75 g OGTT and the criteria state that one or all of the following must be 

equalled or exceeded in order for GDM to be diagnosed: fasting plasma glucose (FPG) 5.1-6.9 

mmol/l, 1-h plasma glucose ≥ 10.0 mmol/l and 2-hour plasma glucose 8.5-11.0 mmol/l (WHO, 

2013). Significant risk factors for GDM include having a family history of type 2 diabetes 

mellitus, belonging to a particular ethnic group (e.g. African, Asian, Hispanic), being over the 

age of 25 years, being obese, and having had a previous stillbirth or a macrosomic baby (birth 

weight of ≥ 4.0 kg) (American Diabetes Association, 2014).  

1.1.1 PREVALENCE OF GESTATIONAL DIABETES MELLITUS 

Gestational diabetes mellitus is regarded as one of the most common maternal conditions that have 

become a global epidemic (Guariguata et al., 2014). Global rates for GDM are shown in Table 1.1. 

Limited research has been performed on GDM in Africa, highlighting the necessity for further 
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studies. In a systemic review on GDM in Africa, only six countries (11% of the African continent) 

had recorded prevalence rates of GDM (Macaulay et al., 2014). A recent study reported a 9.1% 

GDM prevalence amongst black South African women in Johannesburg, South Africa (Macaulay 

et al., 2018).   

 

Table 1.1: Mean GDM prevalence in geographical regions and countries. Obtained from  

Zhu and Zhang (2016) 

Geographic regions and countries Mean prevalence   

Middle East and North Africa 

Southeast Asia 

Western Pacific 

South and Central America 

Africa 

North America and Caribbean 

Europe 

13% 

11.7% 

11.7% 

11.2% 

8.9% 

7.0% 

5.8% 

 

 

1.1.2 HEALTH IMPLICATIONS OF GESTATIONAL DIABETES MELLITUS 

Many adverse pregnancy outcomes and long-term health implications exist for the mother with 

GDM and her offspring. A primary short-term outcome is having a baby that is large for 

gestational age (>90th percentile) or one with macrosomia (≥4 kg). Secondary outcomes includes 

pre-eclampsia and other hypertensive-associated conditions (Coustan et al., 2010). 

Independently, these conditions could result in delivery complications such as preterm delivery 

and Caesarean section. Birth trauma is also a risk; shoulder dystocia or birth injury can occur as a 

result of labour obstruction. After delivery, medical complications of the infant may include 

respiratory distress syndrome, cardiomyopathy, hypoglycaemia, hypocalcaemia, polycythaemia 

and death (Beischer et al., 1996, Miller, 1946, Schmidt et al., 2001). Altogether this forms a 

group of conditions that significantly increase the health and financial burden in many countries 

(Ferrara, 2007).  

Offspring born to mothers with GDM, are at a higher risk of developing metabolic disorders, 

which manifest as T2D, obesity, and cardiovascular disease later in life (Dabelea, 2007). The 

exposure to high levels of glucose in utero is thought to have an impact on normal fetal 

development that can lead to permanent changes and altered fetal programming in glucose 

homeostasis. This concept has been derived from the Developmental Origins of Health and 
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Disease (DOHaD) hypothesis (Barker, 2007), introduced by Barker (1990), who found a link 

between low birth weight and increased rates of cardiovascular disease and hypertension. Since 

then, many studies have shown that non-communicable diseases, including T2D, are related to 

over- or under-nutrition in the unborn baby. The mechanism by which altered fetal programming 

occurs is possibly through epigenetic modifications of the fetal genome that alters the normal 

pattern of gene expression (Monteiro et al., 2016). Differential methylation signals between 

diabetes-exposed and unexposed babies have been observed in genes involved in satiety/appetite, 

energy regulation, pancreatic development and β-cell function, providing evidence for the 

involvement of epigenetics in obesity and T2D in adulthood (Bouchard et al., 2010, Carolan-

Olah et al., 2015, del Rosario et al., 2014). 

Women who have GDM are at risk of developing T2D in the future even though glucose 

metabolism usually reverts back to normal after delivery of their babies(Daly et al., 2018, 

Kitzmiller et al., 2007). Within five to 16 years of having been diagnosed with GDM, women 

have a 17-63% risk of developing T2D (Bellamy et al., 2009, Hanna and Peters, 2002, Li et al., 

2018). Gestational diabetes mellitus can be controlled and the consequences to the mother and the 

offspring can be prevented through lifestyle modification (weight control, diet, and exercise) 

and/or medication (Lindsay et al., 2017). Identifying women at increased risk for GDM is 

therefore important so that early preventative measures can be put into place as soon as 

hyperglycaemia is detected.  

1.1.3 PATHOPHYSIOLOGY OF GESTATIONAL DIABETES MELLITUS 

In pregnancy there is a normal increase in insulin resistance, due to the release of insulin-

desensitizing hormones to accommodate for fetal nutritional demands (Reyes‐López et al., 2014, 

Sonagra et al., 2014). Gestational diabetes mellitus arises when women are unable to lower the 

rising blood glucose through insulin secretion, which generally results from dysfunction of the 

pancreatic β-islet cells (Buchanan and Xiang, 2005). Pre-existing abnormal insulin resistance 

may also cause a greater change in insulin sensitivity. The precise pathophysiology of GDM, 

however, is still not fully understood. Nevertheless, insulin resistance and insulin secretion 

remains the two known factors responsible for the development of GDM (Retnakaran, 2017). 
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1.1.4 THE ROLE OF GENETICS IN THE DEVELOPMENT OF GESTATIONAL 

DIABETES MELLITUS  

Gestational diabetes mellitus is established as a multifactorial condition. Thus, numerous genetic 

variants, together with environmental factors, collectively contribute to the development of the 

condition. Since a family history of diabetes increases the risk for developing GDM, a genetic 

contribution towards GDM development is plausible (Solomon et al., 1997). Gestational diabetes 

mellitus also has a tendency to reoccur in subsequent pregnancies. A recurrence of 30% has been 

estimated amongst Hispanic women and a higher rate amongst other population groups (Latina, 

African American, Japanese and Asian); suggesting that these women belonging to particular 

ethnicities may be genetically predisposed to GDM (Kim et al., 2007). Heritability estimates of a 

Danish twin study showed that both etiological factors, insulin secretion and insulin action, can 

be explained by 75-84% and 53-55% of genetic components, respectively (Poulsen et al., 2005). 

Moreover, significant associations have been found between GDM and genetic loci in several 

genes that are also associated with T2D development (Robitaille and Grant, 2008). In genetic 

association studies, candidate genes are chosen based on biological plausibility (Lowe Jr et al., 

2016). For example, genes identified to be associated with GDM are known to be involved in 

insulin secretion, insulin resistance, and lipid and glucose metabolism. Many variants in the 

MODY genes and T2D-associated genes are also proven to occur in association with GDM 

(Shaat et al., 2006, Watanabe, 2011). 

1.2 GENES ASSOCIATED WITH GESTATIONAL DIABETES MELLITUS 

The most recent systemic reviews, meta-analyses, and case-control studies have reported variants 

in four MODY genes, including HNF1A, GCK, HNF4A, and KCNJ11, that are significantly 

associated with an increased risk for GDM (Table 1.2). Most of these variants are recognized as 

T2D-associated variants, rather than MODY-associated variants, even though they are present in 

one of the many genes known to be responsible for monogenic diabetes (Vaxillaire et al., 2012). 

Strong evidence also suggests that the PDX1 gene, also known as IPF1, might be associated with 

GDM since four coding variants have been found in pregnant women with GDM and diabetes, 

and within individuals from families with clinical phenotypes of GDM, MODY, and T2D 

(Doddabelavangala Mruthyunjaya et al., 2017, Gragnoli et al., 2005a, Weng et al., 2002). A 
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common practice in finding variants associated with GDM is to choose candidate genes that have 

already been associated with T2D, as they share an identical pathophysiology (Ding et al., 2018).  

 

Table 1.2: MODY-linked gene functions (Firdous et al., 2018, Wheeler et al., 2013) and variants 

associated with gestational diabetes mellitus 

Gene Gene Function  Variants References 

HNF4A Nuclear transcription factor that 

regulates hepatic and 

pancreatic beta cell gene expression 

rs4812829 (Kanthimathi et al., 2017) 

GCK Enzyme that catalyses the 

conversions of glucose to glucose-

6-phosphate 

rs1799884 (-30 G > A) (Rosta et al., 2017, Yang 

and Du, 2014, Zhang et al., 

2013)  
 rs4607517 (Mao et al., 2012) 

 HNF1A  Nuclear transcription factor that 

regulates insulin gene transcription 

and glucose transport metabolism  

rs1169288 (I27L) (Shaat et al., 2006) 

 PDX1 Regulates transcription of genes: 

insulin, glucagon, glucose  

rs137852787 (Glu224Lys) (Doddabelavangala 

Mruthyunjaya et al., 2017) 

 transporter (GLUT2) and GCK 

enzymes. 

rs199644078 (Pro239Glu) (Weng et al., 2002) 

  rs192902098 (Pri33Thr) (Gragnoli et al., 2005a) 

KCNJ11 Regulate the potassium inward 

rectifier current and, thereby, beta 

cell depolarisation, the trigger for 

insulin release. 

rs5219  (Mao et al., 2012, Zhang et 

al., 2013) 

 

Table 1.3 shows T2D-related genes and variants, that have been reported to be associated with 

GDM in more than one study. Only one genome-wide association study (GWAS) for GDM has 

been conducted thus far, on a Korean population, where rs10830962 near MTNR1B and 

rs7754840 in CDKAL1 achieved genome-wide significance (Kwak et al., 2012). A more recent 

genetic association study on GDM in Europeans tested GWAS-confirmed T2D-associated genes, 

in two independent cohorts, consisting of 8722 women. Out of the 112 single nucleotide 

polymorphisms (SNPs), eleven variants (eight novel and three known GDM-associated variants) 

were identified in the following genes: HNF1A, GLIS3, SLC30A8, RREB1, TCF7L2, MTNR1B, 

and GPSM1 (Ding et al., 2018). Among the previously GDM-associated variants were 

rs10830963 (MTNR1B), rs1387153 (MTNR1B), and rs4506565 (TCF7L2); as well as rs7903146 

(TCFL2), which was incorrectly determined as a novel discovery as it has been found before in 

association with GDM (Table 1.3). More and stronger association signals have been observed for 

genes related to the insulin secretory function, rather than those involved in insulin resistance. 
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This is in support of the understanding that a defective β-cell function is what causes the 

development of GDM, as reduced insulin secretion would be insufficient to overcome the 

increase in insulin resistance (Ding et al., 2018, Voight et al., 2010, Zhang et al., 2013).  

 

Table 1.3: Type 2 diabetes-associated genes associated with gestational diabetes 

Gene Variants References 

Genes and genetic variants related to insulin secretion 

TCF7L2 rs7903146 (Chang et al., 2017, Ding et al., 2018, Rosta et al., 2017, Wu et 

al., 2016, Zhang et al., 2013) 

 rs12255372 (Chang et al., 2017, Zhang et al., 2013) 

 rs7901695 (Chang et al., 2017) 

MTNR1B rs10830963 (Ren et al., 2014, Rosta et al., 2017, Wu et al., 2016, Zhang et 

al., 2013) 

 rs1387153 (Liu et al., 2016, Zhang et al., 2013, Zhang et al., 2014) 

 rs10830962 (Kim et al., 2011, Kwak et al., 2012) 

CDKAL1 rs7754840 (Kanthimathi et al., 2017, Rosta et al., 2017, Zhang et al., 2013) 

 rs7756992 (Cho et al., 2009, Kanthimathi et al., 2017) 

KCNQ1 rs2237892 (Ao et al., 2015, Huerta-Chagoya et al., 2015) 

 rs2237895 (Fatima et al., 2016, Shin et al., 2010, Zhou et al., 2009) 

IGF2BP2 rs4402960 (Kwak et al., 2012, Mao et al., 2012, Zhang et al., 2013) 

Genes and genetic variants related to insulin resistance 

IRS1 rs1801278 (Wu et al., 2016, Zhang et al., 2013, Zhang et al., 2014) 

SLC30A8 rs13266634 (Cho et al., 2009) 

 rs3802177 (Ding et al., 2018, Kwak et al., 2012) 

ADIPOQ rs266729 (Kasuga et al., 2017, Pawlik et al., 2017) 

 

1.2.1 MODY GENES 

Fourteen MODY types have been characterized thus far (Firdous et al., 2018). They account for 

1–2% of all cases of diabetes. The MODY subtypes are numerically categorized, from MODY 1 

to MODY 14 (Table 1.4), each representing a single gene containing identified mutations causal 

to diabetes. The most commonly described MODY genes are the glucokinase gene (GCK), and 

two hepatocyte nuclear factor genes, HNF1A (also known as TCF1) and HNF4A, accounting for 

32%, 52%, and 10% of MODY cases in the UK, respectively (Shields et al., 2010). Other MODY 

types are uncommon in studied populations. 
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Table 1.4: Categories of MODY types and the single genes associated with each type (adapted 

from Firdous et al., 2018) 

Type Gene 
Chromosomal 

locus 

Year of 

recognition 

MODY1 Hepatocyte nuclear factor 4A (HNF4A)/ Transcription 

Factor 14 (TCF14) 

20q13 1991 

MODY2 Glucokinase (GCK) 7p13 1993 

MODY3 Hepatocyte nuclear factor 1A (HNF1A)/ Transcription 

factor 1 (TCF1) 

12q24 1996 

MODY4 Pancreatic and Duodenal Homeobox 1 (PDX1)/ Insulin 

promoter factor 1 (IPF1) 

13q12.2 1997 

MODY5 Hepatocyte nuclear factor 1B (HNF1B) 17q12 1997 

MODY6 Neuronal Differentiation 1 (NeuroD1)/ Beta-cell E-box 

transactivator 2 (BETA2) 

2q31 1999 

MODY7 Kruppel Like Factor 11 (KLF11) 2p25 2005 

MODY8 Carboxyl Ester Lipase (CEL) 9q34 2006 

MODY9 Paired Box 4 (PAX4) 7q32 2007 

MODY10 Insulin (INS) 11p15 2008 

MODY11 BLK Proto-oncogene, Src family tyrosine kinase (BLK) 8p23.1 2009 

MODY12 ATP binding cassette transporter subfamily C member 8 

(ABCC8) 

11p15 2012 

MODY13 Potassium inwardly rectifying channel subfamily J 

member 11 (KCNJ11) 

11p15.1 2012 

MODY14 Adaptor protein, phosphotyrosine interacting with PH 

domain and leucine zipper 1 (APPL1) 

3p14.3 2015 

 

Recent reviews have reported over 414 different HNF1A mutations in 1247 families, 103 HNF4A 

mutations in 173 families, and 620 GCK mutations in 1441 families of white European ethnicity 

(Colclough et al., 2013, Colclough et al., 2014, Osbak et al., 2009). Approximately 60-65% of 

mutations identified in MODY genes are novel with only a handful of common mutations found 

within mutational hotspots and founder populations (Colclough et al., 2014). These genes have 

been associated with T2D and GDM, they are highly polymorphic and many variants within these 

genes are of uncertain clinical significance (Vaxillaire and Froguel, 2008). With the advent of 

next generation sequencing, large amount of genetic variation data has become available, 

bringing about challenges in pathogenicity prediction and characterization, and disruption in the 

previous understanding of Mendelian disease inheritance. Some variants previously thought to be 

rare and disease-causing have recently been discovered to be more prevalent and sometimes 

harmless when studied in larger cohorts, including previously understudied populations (Auer et 

al., 2012, Karki et al., 2015, Myles et al., 2008). When taking all the possible biophysical 
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mechanisms responsible for disease into account, it can be difficult to classify genetic variants as 

neutral or deleterious. Upon re-evaluation of previously reported MODY causing mutations, 

some have been found to be less penetrant and related to a more complex form of diabetes with 

varying expressivity within the context of the whole population rather than within a specific 

family (Althari and Gloyn, 2015, Flannick et al., 2016).  

1.2.2 TYPE 2 DIABETES-ASSOCIATED GENES  

To date, more than 80 genetic variants have shown robust signals in association with T2D 

(Fuchsberger et al., 2016, Prasad and Groop, 2015). These loci explain only a limited part of the 

expected heritability of T2D. Effect sizes are determined to be relatively small with some 

significant variants only reaching an maximum odds ratio (OR) of 1.3, with the exception of 

variants within TCF7L2 and KCNQ1, having estimated ORs at 1.37 and 1.40, respectively (Ali, 

2013). Some of the most important T2D-associated genes includes: TCF7L2, HHEX, SLC30A8, 

CDKN2A/B, and IGF2BP2, which have been identified through genome-wide association studies. 

Linkage studies have only revealed two T2D-associated genes, namely: TCF7L2 and CAPN10. 

Candidate gene association studies focusing on genes known to be involved in glucose 

metabolism, insulin secretion, insulin receptors, post-receptor signalling and lipid metabolism, 

have also produced some strong associated genes: PPARG, IRS1, IRS2, WFS1, and some MODY 

genes; KCNJ11 HNF1A, HNF1B, and HNF4A (Ali, 2013). Current research efforts trying to 

replicate these associations in different populations have been relatively successful. Many 

associations initially detected in Caucasian populations have been replicated in Asian 

populations, and vice versa, showing fairly good transferability of T2D-association loci across 

populations (Prasad and Groop, 2015).  

 

A genome-wide analysis on T2D has only recently been published for sub-Saharan Africans from 

Nigeria, Ghana, and Kenya as part of the Africa America Diabetes Mellitus (AADM) study 

(Adeyemo et al., 2015, Adeyemo et al., 2019). The first analysis on 1035 cases and 740 controls, 

showed transferability of 11 loci, including rs7903146 SNP within TCF7L2, a genetic variant 

which is also associated with GDM. The TCF7L2 SNP rs7903146 showed the strongest 

association (p = 1.61 × 10−8, OR 1.50, 95% CI 1.26–2.15) from all the variants assessed that have 

been genotyped by the Affymetrix Axiom® PanAFR array and imputed into the 1000 Genomes 
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phase 1v3 reference panel (Adeyemo et al., 2015). In the follow up analysis of ~18 million SNPs 

in 5231 individuals, TCF7L2 was again the most strongly associated SNP (Adeyemo et al., 

2019). This T2D-associated SNP, along with two others; a novel genome-wide significant locus 

for T2D – the Zinc Finger RANBP2-Type Containing 3 (ZRANB3), and HMGA2, a known T2D-

associated gene in Europeans and African Americans, achieved genome-wide significance 

(Adeyemo et al., 2019).  

1.3 GENETIC ASSOCIATION STUDIES 

Genetic association studies are used to study the genetic contributors of a disease by finding a 

statistical correlation between a genetic variant and clinical disease phenotype (Balding, 2006, 

Bush and Moore, 2012, Carlson et al., 2004). By finding a significant difference in allele 

frequencies between cases and controls, an allele’s link to disease susceptibility can be inferred. 

Case-control studies can be used to explore the genetic associations for complex disease, and can 

be either family- or population based. Family-based study designs are usually employed for 

detecting genes or genomic regions linked to a disease that have an identifiable segregation 

pattern within a family. Studying disease in related individuals eliminates the chance of 

population stratification, as the family would have the same genetic background and disease 

susceptibility loci (Ott et al., 2011). This type of design, however, falls short in pinpointing 

genetic variants that have a small to moderate effect on the disease phenotype. The sample size 

obtained from family pedigrees is generally too small to achieve significant power necessary to 

detect such associations. Therefore, to increase numbers, a sample is rather taken from unrelated 

individuals in a population-based case control design (Witte, 2010).  Alternatively, when 

categorical variables of the binary case-control are not well defined, a quantitative trait-based 

approach would be more appropriate to follow in order to avoid arbitrary dichotomization. Using 

continuous phenotype measurements in this case is more informative, especially when the disease 

diagnosis is made based on quantitative trait cut-off values, such as body mass index (BMI), 

blood glucose levels, or blood pressure measurements (Newton-Cheh and Hirschhorn, 2005). 



10 
 

 

1.3.1 CONSIDERATIONS IN THE DESIGN OF A CASE-CONTROL STUDY  

There are a number of important aspects to consider when designing a case-control study. These 

include the selection criteria for cases and controls, the sample size, the type of genetic variation, 

functionally significant genetic variation, and the extent to which the genome will be studied 

(candidate gene or a genome-wide association approach) (Zondervan and Cardon, 2007).  

Strict criteria for the selection of case-control participants should be applied to ensure nearly 

homogenous groups; different and comparable only in two aspects - disease status, and the 

genetic difference under investigation. This is important in order to avoid selection bias and 

population stratification (or population admixture); the two main causes leading to false positive 

results or reduced power to detect genetic-disease associations. Hence, confounding factors (such 

as age, weight, ethnicity) potentially involved in disease susceptibility, should be excluded by 

cohort selection, case to control matching, or accounted for by statistical analysis methods. A less 

obvious phenotypic variable is that of ethnicity and the population substructure. Since the allele 

frequencies differ in various populations, spurious results can be obtained if the cases and 

controls are selected disproportionately from groups with different genetic ancestry, or groups 

that have undergone recent admixture (Clarke et al., 2011). In terms of selecting the two groups, 

the cases selected should have tested positive for the disease and vice versa for controls in order 

to exclude the bias of misclassification (McCarthy et al., 2008). Only in the situation where the 

disease is rare, and/or clearly identifiable, can the controls be randomly selected from the 

population. 

1.3.2 GENETIC VARIATION  

There are several types of genetic variation. The most common variations are SNPs, which are 

defined as loci with alleles that differ at a single base (Brookes, 1999). Biallelic SNPs are the 

predominant type within the genome. However, tri-allelic SNPs has also been found to present at 

sites beyond the expectant frequency (Hodgkinson and Eyre-Walker, 2010). To be able to 

identify a SNP within a population, the rarer allele should have a frequency of at least 1% in a 

random set of individuals. The rare allele is referred to as the minor allele, whereas the common 

allele is referred to as the major allele. The minor or major allele frequency is generally compared 

between case and control groups to assess the SNP’s possible relation to disease. Due to the 
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abundance of SNPs within the genome, high throughput genotyping technologies, and the amount 

of catalogues of SNP data available, SNPs are the simplest, and also the most commonly studied 

genetic variation in genetic association studies. Other variants that exist include: Micro-

duplications and -deletions, microsatellite markers (or short tandem repeats, which are repetitive 

units of one to six base pairs), larger copy number variants (CNVs), transposable elements (e.g. 

Alu elements), and complex structural rearrangements (such as inversions) (Ku et al., 2010). 

1.3.3 LINKAGE DISEQUILIBRIUM AND TAGSNPS 

Variation within the genome is structured in blocks of linkage disequilibrium (LD), meaning that 

variants within these regions are found together and thus inherited together more often than 

would occur by chance (Teare and Barrett, 2005). Linked variants usually occur in close 

proximity to one another, and the combination of alleles (termed haplotypes) are therefore less 

likely to be disrupted by recombination or mutational events that occur over time. The 

measurement of LD is based on the frequencies of alleles observed for the population, and the 

probability of the variants being dependent (in linkage disequilibrium) versus the probability of 

them being independent from one another (or randomly associated). Mathematically, the strength 

of LD is commonly calculated by D’ or r2. The equation of D (below) simplistically describes the 

definition of LD as the difference between the frequency of the pair of alleles at two loci (pAB), 

and the product of the two frequencies (pA and pB). A calculated value of zero (0) implies that the 

alleles are independent, while a value of one (1) indicates that they are in linkage disequilibrium 

and have not been separated by recombination (Slatkin, 2008). 

 

DΑΒ = pΑΒ − pΑpΒ  

 

The information on LD-blocks has brought some important applications for the study of variation 

in association studies. Since the linked variants co-occur within a specific population, it is 

possible to select only a couple of SNPs, called tagSNPs, to represent the variation present within 

a gene. Selecting tagSNPs is a cost-effective way to reduce the number of SNPs necessary to 

genotype (de Bakker et al., 2005, Jorgensen et al., 2009). TagSNPs, however, should be chosen 
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from the LD data generated for a specific population, because populations have different degrees 

and patterns of LD (Sawyer et al., 2005). Populations of African descent, for example, have 

undergone more recombination events, and therefore have more and smaller linkage equilibrium 

blocks than founder populations or more recently established populations. In this case, more 

tagSNPs would be required to account for all the genetic variation found within the population 

(Bush and Moore, 2012) 

1.3.4 CANDIDATE GENE VERSUS GENOME-WIDE ASSOCIATION STUDIES 

Two approaches, either a candidate gene or GWAS, are most often used when conducting an 

association study.  With the candidate gene approach, genes are chosen based on prior knowledge 

of the genes’ biological functions related to the disease of interest. In comparison, a GWAS is a 

hypothesis-free approach that studies variants commonly seen within the genome of the 

population (hence the word “genome-wide”) (Amos et al., 2011). Both approaches are based on 

the “common disease, common variant” hypothesis and make use of tagSNPs, representative of 

the common variation within the genome. A common SNP present in more than 1-5% of the 

population is identified through various sources, such as Hapmap and 1000 Genomes (Bush and 

Moore, 2012, Schork et al., 2009, Shameer et al., 2016). The consequence of the “common 

disease, common variant” concept is that important rare variants, that may explain remaining 

genetic contributors or the missing heritability of disease, are largely left unexplored (Wilkening 

et al., 2009). 

The candidate gene approach is advantageous in prioritizing a limited number of variants suited 

to the budget of a study. The disadvantage, however, is that potential causal genes that have 

limited biological information could be excluded when selecting only the most biologically 

plausible genes. Hence, novel gene-disease associations are unlikely to be discovered through the 

use of a candidate gene approach, and more likely by a GWAS. Candidate gene association 

studies are useful in replicating and validating genetic associations with disease in unexplored 

populations (Jorgensen et al., 2009).   

A GWAS on the other hand, also has some study design implications and limitations. Due to the 

multiple comparison nature of a GWAS, a high number of false-positive and false-negative 

results are likely. Therefore, more stringent significance thresholds allowing for multiple testing 
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(such as the Bonferonni correction), are applied, and a larger sample size is required in order to 

achieve significance in GWAS compared to candidate gene association studies (Bush and Moore, 

2012).  

Currently, most GWAS are performed using data obtained by SNP arrays. Commercial arrays are 

constructed to include both common and rare variants (Tam et al., 2019). However, the reference 

sequences used to select genotypes for the construction of commercial arrays are mostly of 

European descent. GWAS by the use of these arrays are thus limiting for the study of non-

European populations (Wilkening et al., 2009). For instance, coverage of only 43.3% of common 

variants was achieved for a T2D GWAS conducted on African Americans. Even though progress 

has been made to shift the focus of research to unrepresented populations, the increase in 

coverage and the inclusion of non-European samples have remained minimal (Bentley et al., 

2017).  

1.4 GENOTYPING TECHNOLOGIES 

Multiple technologies are available for genotyping SNPs in genetic association studies. For most 

technologies, an initial amplification of the target sequence by polymerase chain reaction (PCR) 

is required to achieve sensitivity and specificity. Thereafter, the methods by which the alleles are 

discriminated and detected differs between technologies (Kim and Misra, 2007). Critical factors 

that determine suitability of the technology involves the cost, the level of throughput (or 

multiplexing), accuracy, and the time required for assay design and optimization. No single 

technology satisfies the needs of every study. However, high throughput technologies, such as 

microarray, are usually utilized by GWAS for the genotyping of many SNPs within a large 

sample population. In contrast, technologies with lower through-put that allow for customization 

are preferred for smaller targeted studies, especially for replication and validation of associations 

found (Ellis and Ong, 2017). Custom assays,  such as Taqman and MassARRAY, have the 

advantage of being robust and cost-effective with a sufficient level of through-put, flexible design 

and assay conversion rate for the genotyping of user-defined SNPs (Ragoussis, 2009). 
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1.4.1 MASSARRAY MALDI-TOF 

MassARRAY differentiates alleles based on the mass of the allele-specific products that are 

generated by the methodology. This technology employs an initial amplification of the target 

region containing the SNP of interest, followed by single base extension (SBE) for allele 

discrimination, and matrix-assisted laser desorption/ionization time-of flight (MALDI-TOF) for 

allele detection. The workflow is outlined in Figure 1.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The SBE reaction, or the discrimination assay, is constructed to incorporate a single mass-

modified nucleotide at the polymorphic region, immediately upstream of the designed primer. 

The mass-extended products are then spotted onto a matrix-containing chip, which is loaded onto 

the MassARRAY instrument. The steps of MALDI-TOF involve vaporization and ionization of 

the sample, which is triggered by a short laser pulse. The matrix assisted sample molecules in 

vacuum are then electrostatically transferred, allowing for the separation of the sample molecules 

from the matrix ions, and acceleration towards the detector. The time taken for the sample ions to 

reach the detector (time-of-flight), are proportional to the square root of the molecules mass-to 

charge (m/z) ratio, which are the units recorded by the analysis software. By design, the mass of 

Figure 1.1: Genotyping of SNPs using Agena MassARRAY SpectroCHIP workflow 

(http://agenabio.com/products/massarray-system/). 
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each allele is expected to occupy a unique position within the mass-spectrum (Gabriel et al., 

2009, Nakai et al., 2002, Storm et al., 2003).  

MassARRAY is advantageous technique when it comes to multiplexing, since a wide mass 

spectrum range can be used to simultaneously distinguish and detect up to 40 SNPs (Gabriel et 

al., 2009). With the utilization of the MassARRAY® Analyzer 4, oligonucleotides with a 

minimum difference of 16 Da can be detected within a mass range, ranging from 4500 Da to 

9000 Da; illustrating the theoretical infinite multiplexing capability (Ellis and Ong, 2017). Due to 

the development of improved algorithms for multiplex assay design, the assay conversion rate is 

>80%, providing a success rate of 95% or higher, with an accuracy of more than 99% (depending 

on the sample quality). The iPlex technology also comes with an automated system, utilizing 

liquid handling instruments and PCR blocks, necessary for increased through-put, and reducing 

the risk of contamination (Ragoussis, 2009). The technology is very price competitive as a 

genotyping technology that could also be used for other applications, such as DNA methylation 

analysis, expression profiling, and proteomics (Jurinke et al., 2002). 

1.4.2 QUANTITATIVE REAL-TIME POLYMERASE CHAIN REACTION  

Quantitative polymerase chain reaction (qPCR), or real-time polymerase chain reaction (real-time 

PCR), is a technology used to quantify and detect DNA sequence fragments, using fluorescence 

probes as they are being amplified in real time. Two reporter systems exist, namely, the 

intercalating SYBR (Synergy Brands Inc.) Green assay (Wittwer et al., 1997) and the TaqMan 

probe system (Holland et al., 1991, Livak et al., 1995). The SYBR Green assay is based on a 

fluorescent probe binding to double-stranded DNA (dsDNA) of any sequence being amplified, 

and is more unspecific in comparison to the TaqMan method. However, specificity is achievable 

through proper primer design and optimization. The Taqman method is generally more expensive 

due to increased specificity obtained through the Taqman probe being used. Taqman is based on 

the complementary hybridization of fluorescent probes to the target sequence, and the 

exonuclease activity of the Taq polymerase enzyme. 

Quantitative PCR has the advantage of precise quantification of nucleic acids, even in the case 

where the starting material is of low concentration. The time it takes for the fluorescence 

intensity to reach the detection threshold, correlates to the amount of starting material. Therefore, 
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this technology is not only used for distinguishing one base pair differences in similar sequences, 

but is also used for quantifying viral load in patients (Ward et al., 2004), assessing gene copy 

number in cancer tissue (Biecheet al., 1998; Kindichet al., 2005; Konigshoffet al., 2003), and for 

studying gene expression levels when coupled with reverse transcription PCR. 

1.4.2.1 TAQMAN 5’EXONUCLEASE ASSAY 

The TaqMan® assay utilizes sequence-specific probes that hybridize to the DNA target region 

containing either the wild-type or the alternative allele. The probes contain a fluorescent dye on 

the 5’end and a quencher molecule at the 3’end (Figure 1.2). Before and during the hybridization 

step, while the probe is still intact, the fluorescence emitted by the flurophore is absorbed by the 

quencher molecule by fluorescence resonance energy transfer (FRET). The quencher is chosen 

based on the spectra fluorescence it can absorb, and is positioned from the fluorescence at a 

specific distance to maximize the amount of light captured. Different types of fluorescent dyes 

can be utilized, which permits allele detection of multiple SNPs in one reaction. During the 

synthesis of the complementary strand, the Taq polymerase cleaves the probe hybridized to the 

target site. At this stage, the reporter molecule gets separated from the quencher, resulting in the 

fluorescence being emitted and recorded by the detection instrument. The cycling of 

amplification causes an accumulation of fluorescence signal. Genotypic calls can be made at 

endpoint, by comparing the total fluorescence emitted by each probe (Holland et al., 1991, Koch, 

2004, Livak et al., 1995). 
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1.5 STUDY RATIONALE 

Genetic variants associated with GDM development have been studied in many populations, 

especially European and Asian populations. Limited studies have been conducted on the black 

South African population to identify genes and genetic variants associated with GDM. Therefore, 

this study focussed on previously identified GDM-associated genes, especially genes causing 

MODY, and their association with GDM development in the black South African population. 

MODY genes were good candidates, since pathogenic variants in the MODY genes are known to 

cause the monogenic form of diabetes, and therefore there was a higher likelihood of finding an 

association with a strong genetic effect. A better understanding of the putative genetic factors 

Figure 1.2: Schematic of the TaqMan SNP genotyping assay process. After initial denaturation, the 

intact probe anneals to the target region. The thermostable polymerases extend the primer and cleave 

the hybridize probes with 5’-nuclease activity. The reporter fluorophore (R) separated from the 

quencher (Q) and emit fluorescence when it is excited by an external light source (hv) (Obtained 

from Koch, 2004). 
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contributing to GDM risk and impaired glucose tolerance amongst black South African women 

could possibly aid in the screening and identification of at risk individuals.  

1.6 AIM AND OBJECTIVES 

This project aimed to identify genetic factors associated with GDM risk in an urban black South 

African cohort. To achieve this the following objectives were set: 

i) To select candidate genes to investigate, through literature review.  

ii) To select SNPs to investigate, including African specific tagSNPs in candidate genes. 

iii) To genotype GDM patients (n=80) and healthy controls (n=160) for the selected variants in 

the specific candidate genes.  

iv) To assess the association of genotypes with GDM, and fasting blood glucose concentrations 

from the 75 g 2h OGTT as a measure of GDM risk. 

v) To characterize any associated variants identified in terms of frequency, type of mutation, and 

putative functional effect, and compare to other global populations.  
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2 METHODOLOGY 

This chapter describes the sample collection and selection used for this study, and the main 

methodology employed to achieve the objectives. An in-depth description is given on the 

methods used for selecting tagSNPs, the genotyping platforms, the quality control measures, and 

the statistical tests used. The approach to characterize the SNP found to be significantly 

associated is also described. The ethical considerations regarding the permission to use biological 

specimens and phenotypic data from participants, as well as using African-specific SNP data, are 

addressed. The laboratory work and analyses were executed at the Division of Human Genetics, 

National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, 

University of the Witwatersrand, South Africa. Each step of the methodology executed by the 

relevant parties is outlined in the flow diagram (Figure 2.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Flow diagram of methodology executed by different parties. 
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2.1 STUDY SAMPLES 

Study samples and phenotypic data were obtained from the Soweto First 1000 Days Study 

(S1000), a study conducted at the MRC/Wits Developmental Pathways for Health Research Unit 

(DPHRU) in Soweto (Johannesburg, South Africa) from June 2013 to April 2017. The 

overarching aim of the S1000 study was to investigate maternal factors influencing fetal 

development and birth outcomes. Participants were recruited early in pregnancy (≤14 weeks, but 

no later than 20 weeks pregnant) and followed up closely through to delivery. At 24-28 weeks’ 

gestation all women underwent a two-hour 75 g OGTT as per the WHO 2013 diagnostic criteria 

for the diagnosis of GDM (Metzger et al., 2010). Participants were self-reported black South 

African females residing in Soweto, an urban metropolitan area in Johannesburg (Macaulay et 

al., 2018). The full set of criteria for the inclusion and exclusion of participants are outlined in 

Table 2.1. 

 

Table 2.1: The inclusion and exclusion criteria of participants in the S1000 study 

Inclusion Criteria Exclusion Criteria 

Black South African females 

Residing in Soweto 

≥18 years of age 

≤20 weeks pregnant at time of recruitment 

Pregnant with singleton pregnancies 

Non-diabetic at time of recruitment 

Able to give informed consent 

Known diabetic women (at the time of 

recruitment) 

Multiple pregnancies (twins, triplets etc) 

Fetal abnormalities detected on ultrasound 

 

Phenotypic data obtained from the women in the S1000 study included the woman’s age and 

body mass index (BMI) at enrolment, number of previous pregnancies (gravidity), level of 

education and household socioeconomic status (SES). The household asset score was used as a 

proxy to determine a woman’s SES, and was based on the number of household items a woman 

owned (a total of nine items described in more detail under Section 2.2.4). Body mass index was 

classified into the WHO categories for underweight (< 18.5 kg/m2), normal weight (≥ 18.5-24.9 

kg/m2), overweight (≥ 25-29.9 kg/m2) and obese (≥ 30 kg/m2) (WHO, 2017). Whole blood 

samples for DNA extraction were available on 80 women with GDM and 160 controls (women 

who tested negative for GDM).  
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2.2 ETHICAL CONSIDERATIONS  

This study received clearance by the Human Research Ethics Committee (Medical) (HREC (M)) 

of the University of the Witwatersrand (certificate no. M170851, Appendix A). Similarly, the 

S1000 study was also approved (certificate no: M120524), and a letter of permission for the use 

of data and specimens collected were given by the director of the DPHRU, Professor Shane 

Norris (Appendix B). All participants from the S1000 study had given informed consent for 

blood extraction and DNA analysis. Samples had been code labelled by the S1000 study to 

maintain the confidentiality of the participants. Any other information was strictly limited for the 

use by the investigator and supervisors. To achieve the objective of selecting African-specific 

SNPs, the Zulu dataset from the African Genome Variation Project (AGVP) was accessed under 

pre-approved data access permission given to the Sydney Brenner Institute for Molecular 

Bioscience (SBIMB), University of the Witwatersrand.  

2.3 POWER ANALYSIS 

An initial power analysis was performed using Quanto (version 1.2.4, May 2009). The power for 

this study, that consisted of 80 cases and 160 controls (1:2 ratio), was calculated for the study 

population under the log-additive inheritance model and using a population-level GDM risk value 

of 9%, based on the GDM prevalence observed in the study by Macaulay et al. (2018). As the 

minor allele frequency (MAF) and the effect size of the alleles were unknown at the time, alleles 

with a frequency of 0.05 to 0.45 at a two-sided α of 0.05 (i.e. opposite direction of effect) for 

odds ratio (OR) ranging from 0.1 to 6.0, were used to survey the spectrum of power expected. 

Figure 2.2 shows the graph depicting the power against the ORs obtained for alleles with 

different MAF in the population. In this study, there was a power of 80% to detect an association 

of an allele with an effect (or OR) of 2 with an allele frequency of at least 0.16. In the opposite 

direction, a power of 80% could be achieved for a SNP with an effect of 0.4 with an allele 

frequency greater or equal to 0.15. In order to achieve a power of 80% for rarer alleles, the allele 

must have a large effect on the disease phenotype, as indicated by extreme ORs away from 1.   
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Figure 2.2: A graph depicting the power (%) over odds ratio for SNPs with different allele 

frequencies. 
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2.4  COHORT CHARACTERIZATION  

Data analysis tools from the free add-in, Real Statistics (http://www.real-statistics.com/) on 

Microsoft© Excel© for Office 365 were used to summarize and assess the distribution of the 

phenotypic data (Table 2.2) obtained from the study participants. Variables were compared by the 

use of R Project for statistical computing v.3.5.3 (R Core Team, 3.5.3), and the user-friendly 

interphase RStudio (RStudio Team, 2015). Body mass index, the number of previous pregnancies 

(gravidity), and the level of education were represented as categorical variables as described in 

Table 2.2. Body mass index was assessed as both a categorical and a continuous variable. The 

Shapiro-Wilk test (Shapiro and Wilk, 1965) was used to test for normality of the phenotypic data. 

Normally distributed continuous data were presented as means and standard deviations, and non-

normally distributed data were presented as medians and interquartile ranges (IQRs). For 

categorical variables, the data were presented as frequencies and percentages. The continuous 

data that were normally distributed and those that were not normally distributed for GDM 

positive women and women without GDM (control group) were compared using the Student’s t-

test, and the nonparametric Mann–Whitney U test, respectively. The differences between the 

categorical variables between cases and controls were assessed using the Pearson’s Chi Square 

test. A statistically significant finding was defined as p < 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.real-statistics.com/
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Table 2.2: Phenotypic data used to describe the study participants   

Characteristics Description (Continuous or categorized variables)  

Age  In years  

 

BMI at enrolment in early pregnancy 

 

0 Normal (≤24.9 kg/m2) 

1 Overweight (25-29.9 kg/m2) 

2 Obese (≥30 kg/m2) 

Gravidity 

 

0 None  

1 One to two 

2 Three or more 

Level of Education 

 

0 No schooling/ primary school 

1 Secondary school 

2 Tertiary education 

Socio-economic status: Sum of 

household items 

 

1 Electricity 

2 Radio 

3 Television 

4 Refrigerator 

5 Cellphone 

6 Personal computes 

7 Farm animals 

8 Agricultural land 

9 Bicycle 

10 Motorcycle/ scooter 

11 Car/truck/tractor 
 

2.5 DNA EXTRACTION 

The isolation of DNA was performed from approximately 5 ml of whole blood in 

ethylenediamine tetraacetic acid (EDTA) tubes. Two different extraction methods were 

employed, a magnetic bead-based technology using the Chemagic 360 instrument (Perkin Elmer, 

Baesweiler, Germany) and a single-tube precipitation method technology utilized by the 

Flexigene DNA kit (Qiagen, Novato, CA). The kit-based method was only used for a few 

extractions, whereas the automated method was used for the majority of samples.  

2.5.1 CHEMAGIC 360 

The purification protocol and kit (Product no CMG-703) for 5 ml of human blood for the 

ChemagicTM 360 instrument from PerkinElmer (Germany) was used for DNA extraction. The 

instrumentation is equipped with liquid handling robots, magnetic rods, and QA software in an 
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enclosed automated system. The PerkinElmer Chemagen Technology employs a unique 

separation method whereby nucleic acids bind to functionalized magnetic particles (M-PVA 

Magnetic Beads), that are subsequently attracted to transiently magnetized metal rods (Hübner et 

al., 2017). The bound nucleic acids are then transferred through the different process solutions 

and finally resuspended and washed by the deactivated electromagnet and the concerted rotation 

of the magnetic rods (Berensmeier, 2006).  

Only a few manual steps were required for sample and equipment preparation, and final purified 

sample retrieval. Set-up included placing rod covers, empty 50 ml, and pre-filled 50 ml tubes and 

30 ml elution tubes in their respective positions on tube racks on the apparatus. Blood samples 

were decanted into 50 ml tubes with the addition of 20 µl protease. 600 μl Magnetic beads were 

added to the second set of 50 ml tubes, and 300 µl elution buffer were added to the 30 ml elution 

tubes. Buffers in Table 2.3 were automatically resuspended during the operation, with the supply 

being checked and refilled as required. The minimum filling volumes for each buffer container is 

also stipulated in Table 2.3.  

 

Table 2.3: Minimum filing volume for each buffer container to process 12 samples 

Buffer Position Minimum Filling Volume for 12 samples 

Lysis Buffer 1 1 175 ml 

Binding Buffer 2 2 300 ml 

Wash Buffer 3 3 200 ml 

Wash Buffer 4 4 200 ml 

Wash Buffer 5 5 200 ml 

Wash Buffer 6 6 200 ml 

 

The final manual step was to pipette the purified product out from the 13 ml elution tubes, placed 

on a magnetic block, to allow for the remaining magnetic beads to stick to the bottom of the 

vessel. A schematic diagram showing the steps of this technique is represented in Figure 2.3. 
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2.5.2 FLEXIGENE DNA KIT 

The Flexigene DNA kit (Qiagen, Novato, CA, USA) uses a single tube precipitation method 

technology, requiring centrifugation steps as indicated in Figure 2.4. In the first step, cell 

membrane lipids were broken down by the addition of 10 ml lysis buffer to blood decanted into 

50 ml tubes, and mixed by vortexing and inverting the tubes. Thereafter, the samples were 

centrifuged for 5 min at 2000g at room temperature with the Allegra® X-30 Series Benchtop 

Centrifuge (Beckman Coulter, Brea, CA, USA) to pellet cell nuclei and mitochondria. The 

supernatant was then gently discarded, preventing backflow of supernatant while recovering the 

pellet. To remove proteins, the pellet was resuspended in freshly prepared 2 ml denaturation 

buffer, containing QIAGEN Protease and chaotropic salts. The samples were immediately vortex 

after each single addition of denaturation buffer until completely homogenized. The samples 

were incubated for 25 min at 65°C, until a colour change from red to olive green was observed. 

After incubation, 2 ml 100% isopropanol was added and mixed by inversion, which caused DNA 

precipitate to appear. The DNA precipitate was pelleted by centrifuging the samples for 5 min at 

2000g at room temperature and discarding the supernatant. Lastly, the DNA aggregate was 

washed by adding 2 ml 70% ethanol and repeating the last centrifugation step. DNA was 

dissolved and stored in 200-400 µl Tris-EDTA (TE) buffer.  

 

 

 

 

 

Figure 2.3: A schematic procedure for the isolation of nucleic acids by magnetic bead-based 

technology (illustration by Chemagen Biopolymer-technology AG, Germany). 
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2.6 QUALITY ASSESMENT OF EXTRACTED GENOMIC DNA 

Spectrophotometric analysis was performed to measure the DNA quality and quantity of the 

extracted genomic DNA, using the Thermo Scientific NanoDrop 2000 Spectrophotometer 

(Thermo Fisher Scientific, USA). Spectroscopy is based on the principle that molecules absorbs 

light at certain wavelengths. When a DNA sample is exposed to 260 nm ultraviolet (UV) light 

(the maximum absorbance of DNA), some light will be absorbed, and the other fraction will 

move through the nucleic acid. The amount of light that reaches the photodetector on the other 

end depends on the DNA concentration of the sample. By applying the Beer-Lambert Law, the 

DNA concentration can be determined. To detect unwanted molecules (RNA, proteins, 

nucleotides, and aromatic compounds) that can also absorb at or near 260 nm, the sample is also 

excited with light at 230 nm and 280 nm. Before the sample was measured, the 

spectrophotometer was blanked with TE buffer, to obtain a zero reference to which the sample 

was compared in the analysis. Thereafter, the optical measurement surface was wiped off with 

double distilled water and a paper towel, and 1 µl of DNA sample was pipetted onto the surface. 

The DNA concentration was measured in ng/µl. The ratio of absorbance at 230 nm, 260 nm, and 

Figure 2.4: The FlexiGene procedure for extracting genomic DNA from variety of samples 

(Illustration from the FlexiGene Handbook). 
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280 nm (A260/A280 and A260/A230, respectively) were used to assess the purity of the DNA. A 

A260/A280 ratio of ~1.8 , and a A260/A230 ratio of ~2.0 were regarded as “pure” based on the 

general practise (Green and Sambrook, 2018, Koetsier and Cantor, 2019). If the ratios were 

remarkably lower or higher in either case, it indicated the presence of contaminants. For instance, 

the presence of protein can be inferred based on a low A260/280 ratio, whereas RNA 

contamination can be inferred based on the increase of this ratio. Contaminants, including 

chaotropic salts, EDTA, non-ionic detergents, etc. can be inferred by A260/A230 <1.8 (Koetsier 

and Cantor, 2019).  

In addition to verify the integrity and quality of the DNA, agarose gel electrophoresis was also 

performed. Agarose gel electrophoresis is a method routinely used for separating DNA 

molecules. When DNA is subjected to an electric field, the negatively charged DNA move 

through the porous gel to the positive anode at a rate proportional to its size. Small fragments 

migrate faster, whereas larger DNA molecules migrate slower (Green and Sambrook, 2019). In 

this study, a 0.8 w/v agarose gel were used, TBE (Tris-borate-EDTA) buffer solution, and 

ethidium bromide (EtBr), an intercalating agent, were used to stain the DNA. For loading of 

DNA, 5 µl of loading dye, containing ficoll, were mixed with 1 µl of the DNA sample, and 

loaded onto the gel submerged in TBE buffer. The DNA ladder, consisting of 1 µl of 1 kb 

molecular weight marker and 5 ul loading dye, were loaded into the first well on the gel. The gel 

tank was connected to an electric current of 10 V/cm for about 1-1.5 hours until the DNA have 

fully migrated out of the wells. The Omega Fluor™ Gel Documentation Systems (Vacutec, 

Alpegen) was used to illuminate and produce images of the stained gels for visualization. The 

intensity of the fluorescence observed gave a rough estimate of the amount of genomic DNA 

present in the samples. A single bright band indicated that DNA extraction was successful in 

producing good quality DNA of a high concentration. As genomic DNA has a high molecular 

weight, it moves slower in comparison to smaller DNA fragments, and therefore, its position on 

the gel was expected to be above the top band of the 1kb molecular weight marker. Any other 

bands on the gel indicated contamination or DNA fragmentation.  



29 
 

 

2.7 CANDIDATE GENE SELECTION 

An extensive literature review was conducted to identify common MODY genes and MODY 

gene variants significantly associated with increased GDM risk in other populations. Based on 

the most recent systemic reviews, meta-analysis and case-control studies, four MODY genes, and 

one T2D-associated gene were selected for investigation in this study (shown in Table 2.4). Table 

2.4 also shows the specific variants within each gene that were previously found to be 

significantly associated with GDM risk by the respective studies. The positions of the GDM-

associated variants were used for the selection of tagSNPs, described in the following section.  

 

Table 2.4: Gene and gene variants significantly associated with increased GDM risk 

Type Gene Variants References 

MODY 1 Hepatocyte nuclear factor 4α 

(HNF4A)  

rs4812829 (Kanthimathi et al., 2017) 

MODY 2 Glucokinase (GCK) rs1799884      

 

rs4607517 

(Rosta et al., 2017, Yang and Du, 

2014, Zhang et al., 2013) 

(Mao et al., 2012) 

MODY 3 Hepatocyte nuclear factor 1α 

(HNF1A)  

rs1169288  (Shaat et al., 2006) 

MODY 4 Pancreatic And Duodenal 

Homeobox 1 (PDX1)/ Insulin 

promoter factor 1 (IPF1) 

rs13785278

7 

rs19964407

8  

rs19290209

8  

(Doddabelavangala Mruthyunjaya et 

al., 2017) 

(Weng et al., 2002) 

(Gragnoli et al., 2005a) 

MODY 13 Potassium Voltage-Gated 

Channel Subfamily J Member 

11 (KCNJ11) 

rs5219  (Mao et al., 2012, Zhang et al., 

2013) 

T2D-

associated 

gene 

Transcription Factor 7-Like 2 

(TCF7L2) 

rs7903146 

rs12255372 

rs7901695 

(Chang et al., 2017, Rosta et al., 

2017, Wu et al., 2016, Zhang et al., 

2013) 

(Chang et al., 2017, Zhang et al., 

2013) 

(Chang et al., 2017) 
 

2.8 TAGSNP SELECTION 

The SNP data of the selected genes were extracted for the Zulu population from the AGVP 

dataset (Gurdasani et al., 2015) with assistance from Dr Ananyo Choudhury, at SBIMB at the 
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University of the Witwatersrand, Johannesburg. Data from the AGVP were obtained from the 

European Genome-phenome Archive (accession number EGAS00001000363), with permission 

granted to the SBIMB for use. The GRCh37/hg19 coordinates for the genes were used for data 

retrieval, and was obtained from the following sources: Ensembl (GRCh37.p13 release 75 - 

August 2017), National Center for Biotechnology Information (NCBI, 

https://www.ncbi.nlm.nih.gov/gene), University of California Santa Cruz (UCSC) Genome 

Browser on Human Feb. 2009 (GRCh37/hg19) Assembly (https://genome.ucsc.edu); all accessed 

on September 2017. Because the coordinates varied slightly between the sources, the coordinates 

that spanned all three sources were used for data retrieval (Table 2.5).   

 

Table 2.5: GRCh37/hg19 coordinates of selected genes 

Gene NCBI UCSC Genome 

Browser 

Ensembl Altogether 

 HNF4A   20: 42 984 441 -  

43 061 485 

 20: 42 984 441 -  

43 061 485 

 20: 42 984 340 -  

43 061 485 

20: 42 984 340 -  

43 061 485 

GCK  7: 44 183 870 -  

44 229 022 

 7: 44 182 812 -  

44 229 038 

 7: 44 183 872 -  

44 237 769 

7: 44 183 870 -  

44 237 769 

HNF1A  12: 121 415 861 - 

121 440 315 

 12: 121 416 371 - 

121 440 314 

 12: 121 416 346 - 

121 440 315 

12: 121 416 346 - 

121 440 315 

PDX1  13: 28 494 168 - 

285 00 451 

 13: 28 494 168 -  

28 500 451 

 13: 28 494 157 -  

28 500 368 

13: 28 494 157 -  

28 500 451 

KCNJ11  11: 17 406 795 -  

17 410 878 

 11: 17 406 796 -  

17 410 878 

 11: 17 407 406 -  

17 410 878 

11: 17 406 795 -  

17 410 878 

 

TCF7L2 

 10: 114 709 978 - 

114 927 437 

10: 114 886 392 - 

114 927 436 

 10: 114 710 009 - 

114 927 437 

10: 114 709 978 -  

114 927 437 

NCBI = National Center for Biotechnology Information University of California Santa Cruz 

(UCSC), coordinates are provided as chromosome number: starting nucleotide to ending 

nucleotide within the GRCh37/hg19 genome assembly 

 

The SNP data were originally packaged into individual/sample (.ped) and SNP information 

(.map) file formats. The individual information (.ped) file contained columns with the following 

information: Family ID, sample ID, paternal ID, maternal ID, sex (1 = male; 2 = female; other = 

unknown), disease  phenotype (0 = GDM negative; 1 = GDM positive), and genotypes (2 for 

each marker; 0 = missing). Included in the SNP information (.map) file was the chromosomes on 

which the SNPs are located, the marker IDs, genetic distances and physical positions. To 

condense SNP information into appropriately sized files for storage and use in PLINK, standard 

https://www.ncbi.nlm.nih.gov/gene
https://genome.ucsc.edu/
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PLINK files (.ped and .map) were converted to binary files (.bed, .bim and .fam). The .bed file 

contained the genotype calls for each individual (from the .ped file), whereas the .fam file 

contained the first six columns of the .ped file (as stated above). The .bim file contained all the 

SNP information (obtained from the .map file), including the two SNP alleles (Clarke et al., 

2011). Figure 2.5 shows examples of the format of each file type.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For file conversion of the SNP dataset for each selected gene, PLINK 1.9 and a graphic user 

interface for common PINK operations, called gPLINK 

(http://zzz.bwh.harvard.edu/plink/gplink.shtml), was used in conjunction with PLINK command-

line. In gPLINK, the “generate fileset” tool under the data management tab was used to perform 

this function. The exact method was followed for the preparation of files for genotype data 

generated in this study. In addition to data management, functions such as summary statistics and 

association analysis from PLINK was also used, as described in Chapter 2, Section 11 Data 

analysis  (Purcell and Chang, 2017, Purcell et al., 2007).  

In further preparation of the dataset, SNPs with more than two alleles were excluded from the 

SNP data. This was done by sorting and exporting the multi-allelic information from the .bim file 

to a new text file using Excel. Two or more alleles in any of the two allele columns (Allele 1 and 

Figure 2.5: Examples of plink files illustrating the format and the type of information 

included (Marees et al., 2018). 

http://zzz.bwh.harvard.edu/plink/gplink.shtml
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Allele 2) per SNP (or per row) in the .bim file indicated that SNP had multiple alleles; the 

columns had to be sorted separately. In PLINK, a fileset was generated, excluding the multiallelic 

SNP and its information compiled in the text file by using the following command:  

PLINK –bfile <BINARY INPUT FILENAME>--exclude <MULTIALLELIC SNPS 

FILENAME> --make-bed –out <OUTPUT FILENAME> 

Similar to the exclusion of multiple allelic SNPs, SNPs falling outside of a specific selected 

region within each gene were also excluded. Only the CEU (Northern Europeans from Utah, a 

European population included in the 1000 Genomes Project) LD-block, containing the GDM-

associated SNP, were used as input for tagSNP selection (Table 2.6) to ultimately minimise the 

amount of tagSNPs captured. Positional coordinates of the LD-blocks were retrieved using the 

location-based displays for linkage data, specific for the CEU European population, on Ensembl 

(GRCh37.p13 release 90 - August 2017; accessed on: November 2017). The whole gene of PDX1 

and KCNJ11 were used for capturing tagSNPs, as they were relatively small genes, in 

comparison to the others. 

 

Table 2.6: CEU LD Blocks, containing significant GDM-associated SNP, for capturing TagSNPs 

*LD Block Location coordinates – chromosome: start-stop position from GRCh37-release 90 

 

After exclusion of multiallelic SNPs and SNPs that fell outside the CEU LD-block region, the 

binary files were converted to Haploview/Linkage format in the form of a data (.ped) and a locus 

information file (.info). In gPLINK, the files were generated under data management and 

selecting the Haploview format option as an output. 

Gene  GDM-associated SNP CEU LD Block Location Size 

HNF4A rs4812829 20:42988767-42989767 1 kb 

GCK rs1799884  7:44228636-442293207 684 kb  
rs4607517 7:44235536-44235668 133 bp 

HNF1A rs1169288  12:121416650-121416988 339 bp 

PDX1 No significant associated 

SNP 

 6.21 kb 

KCNJ11 rs5219   4.08 kb 

TCF7L2 rs7903146 10:114758349-114758779 431 bp  
rs12255372 10:114808566-114809149 584 bp 

  rs7901695 10:114753800-114754088 289 bp 
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In Haploview (Barrett, 2009), the tagger algorithm was used to assesses the level of LD within 

the SNP dataset, and to choose the minimum amount of SNPs that adequately tags all the genetic 

information within the region of interest. The parameters used for tagSNP selection was a MAF 

cut-off of 5%, and SNPs only in complete LD with other SNPs (r2 = 1). The output data produced 

was a list of positional coordinates of the tagSNPs and the SNPs that each tagSNP captures. To 

retrieve the SNPs corresponding rs numbers (the universal SNP identification tag assigned by 

NCBI), a search was conducted on Ensembl in the variant table under genetic variation option on 

gene-based displays.  Table 2.7 shows rs numbers and positional coordinates of the tagSNPs and 

the SNPs captured by this study. 

 

Table 2.7: The rs numbers and positional coordinates of the TagSNPs selected and the SNPs 

accounted for by each TagSNP 

 TagSNPs SNPs Captured 

 rs numer Location rs numer Location 

 HNF4A 

1 rs80276513 20:42989218 rs80276513 20:42989218 

2 rs6031551 20:42989714 rs6031551 20:42989714 

 GCK 

3 rs112257899 7:44229079 rs112257899, rs111560203 7:44229079,7:44235544 

4 rs4607517 7:44235668 rs4607517 7:44235668 

5 rs758983 7:44235536 rs758983 7:44235536 

6 rs1799884 7:44229068 rs1799884 7:44229068 

 HNF1A 

7 rs2244608 12:121416988 rs2244608 12:121416988 

 PDX1f 

8 rs61944006 13:28496419 rs61944006, rs57247118, 

rs60353775, rs4002828 

13:28496419, 13:28497828, 

13:28498265, 13:28496119 

9 rs73169687 13:28498102 rs73169687, rs75034644 13:28498102, 13:28498325 

10 rs7981781 13:28499962 rs7981781, rs4430606 13:28499962, 13:28495193 

11 rs4581569 13:28497621 rs4581569, rs9512918 13:28497621,13:28494949 

12 rs9554205 13:28499741 rs9554205 13:28499741 

13 rs4415872 13:28497159 rs4415872 13:28497159 

 KCNJ11 

14 rs5210 11:17408251 rs5210, rs2285676, rs5222 11:17408251, 11:17408025, 

11:17410283 

15 rs5214 11:17408550 rs5214, rs112070496 11:17408550, 11:17409531 

16 rs5215 11:17408630 rs5215 11:17408630 

 TCF7L2 

17 rs34872471 10:114754071 rs34872471 10:114754071 

18 rs7903146 10:114758349 rs7903146 10:114758349 

19 rs7901695 10:114754088 rs7901695 10:114754088 

20 rs34347733 10:114753800 rs34347733 10:114753800 

21 rs12255372 10:114808902 rs12255372 10:114808902 

22 rs115626858 10:114758520 rs115626858 10:114758520 

23 rs115758892 10:114808835 rs11575889f2 10:114808835 
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2.9 MASSARRAY GENOTYPING 

Genotyping was performed using the MassARRAY® System by Agena Bioscience (San Diego, 

CA). Genotyping and training on this system are provided as a commercial service by Inqaba 

Biotec (Pretoria, South Africa). MassARRAY determines the alleles based on the mass of the 

generated allele-specific products. The technology allows for multiplexing of up to 40 SNPs due 

to the use of a wide mass spectrum range. This technology employs an initial amplification of the 

target region containing the SNP of interest, followed by SBE for allele discrimination, and 

MALDI-TOF for allele detection (Gabriel et al., 2009, Nakai et al., 2002, Storm et al., 2003). 

 

The MassARRAY® Typer 4.0.20 Software (Agena Bioscience, San Diego, CA) was used to 

assess if all the selected SNPs could be genotyped in a single multiplex reaction through an in 

silico test. This included designing primers (two for PCR, and one for extension) and assessing 

them for specificity to the target region and for potential interference with one another (Ellis and 

Ong, 2017). When the assay design was finalized, information was generated on the unique mass 

that could be expected for each extension primer and the specific nucleotide.  

 

After confirming SNPs that could be genotyped, the process followed as illustrated in Figure 2.6. 

Firstly, the target regions were amplified in 5 µl PCR reactions. The PCR consisted of 2.5 ng/µl 

of genomic DNA, 100 nmol of each amplification primer, 500 µM dNTPs, 2 mM MgCl2, and 1 U 

of HotStarTaq Plus DNA polymerase. The PCR conditions included initial heating at 94°C for 2 

min, 45 cycles of amplification (30 sec at 94°C, 30 sec at 56°C,60 sec at 72°C), and a final 

extension for 5 min at 72°C. Unincorporated dNTPs were removed from the PCR product, by 

adding 2µl Shrimp Alkaline Phosphatase (SAP, 0.24X SAP buffer and 0.51 U SAP enzyme) and 

subjecting it to 37˚C for 40 min, and then 85˚C for 5 min. Single base pair extension was 

performed on the SAP-treated plate to incorporate a single mass-modified nucleotide at the 

polymorphic region, immediately upstream of the designed extension primer. The extension 

reaction was made up to a total volume of 9 µl, containing 1X iPlex Buffer Plus, iPlex dNTPs, 

and iPlex polymerase, 1150 nM of the primer pool and the entire cleaned PCR product. Single 

base extension was facilitated by five cycles of the following conditions; denaturation at 95˚C for 

5 sec, annealing for 52˚C for 3 sec, extension at 80˚C for 3 sec. Initial heating was done at 94˚C 

for 30 sec, and the final extensions step at 72˚C for 3 min (single cycle). The extension reaction 
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products were treated with a cation exchange resin to remove salts (Na+, K+, and Mg2+ ions) that 

can result in high background noise in the mass spectra. Using a nanoliter dispenser, 25 µl of 

analytes were transferred to the MassARRAY chip, containing matrix that assists in desorption 

and ionization. At the final step, the chip was loaded onto the mass spectrometer, and detection 

and analysis were performed by using the real-time detection software (Gabriel et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Process of MassARRAY genotyping. The target region was amplified, and the 

unincorporated nucleotides were removed from the PCR product by Shrimp Alkaline Phosphatase 

(SAP). Subsequently, single base extension (SBE) extended a primer with one nucleotide. 
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The steps of MALDI-TOF involve vaporization and ionization of the sample, which is triggered 

by a short laser pulse. The matrix assisted sample molecules in vacuum are then electrostatically 

transferred, allowing for the separation of the sample molecules from the matrix ions, and 

acceleration towards the detector. The time taken for the sample ions to reach the detector (time-

of-flight), are proportional to the square root of the molecules mass-to charge (m/z) ratio, which 

were the units recorded by the analysis software. By design, the mass of each allele was expected 

to occupy a unique position within the mass-spectrum. 

2.10 TAQMAN GENOTYPING 

The SNPs that were not compatible with the MassARRAY protocol were genotyped by using 

Applied Biosystems® TaqMan SNP genotyping assays. TaqMan is based on the complementary 

hybridization of fluorescent probes to the target sequence, and the exonuclease activity of the Taq 

polymerase enzyme. The technology uses a probe that hybridizes to a specific SNP allele and 

emits fluorescence upon amplification of the region when released from the quencher molecule 

(Holland et al., 1991, Livak et al., 1995). Different colours of fluorescent dyes can be used to 

label the probe, which permits simultaneous detection of different alleles and SNPs. 

 

The assay mixture consisted of PCR primers, and SNP-specific probes labeled with FAM™ or 

VIC® dye, that were diluted to 20X from the 40X stock concentration before use. Reactions with 

a total volume of 5 µl were set-up according to TaqMan® SNP Genotyping Assay’s User Guide 

for single-tube assays, and consisted of 1-20 ng/µl DNA,TaqMan SNP Assay, and Taqpath 

ProAmp Mastermix. End-point PCR and fluorescence detection was done by using the 

Quantudio® 5 Real-Time PCR System (Applied Biosystems®). By comparing the total 

fluorescence emitted by each probe, genotypic calls were made by QuantStudio Design & 

Analysis Software. Analysis was conducted by using the QuantStudio Design & Analysis 

Software that generated real time amplification plots, allelic discrimination cluster plots, and 

quality control summaries. For verification of genotypes, at least 10% of the samples from the 

first two plates were re-genotyped on the last plate. Each assay had one sample that did not 

cluster well with the three genotypic groups (n = 4), and were therefore also added in addition to 

the 10% of samples to the last plate for re-genotyping. The result that fell in a distinct cluster, 
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were taken as the true genotype call. For each plate a non-template control was included as a 

negative control.  

2.11 DATA ANALYSIS 

Data quality control and association testing was carried out using PLINK v1.9 (Purcell and 

Chang, 2017, Purcell et al., 2007), and gPLINK. Genotype data generated was originally 

compiled into the format of .ped and .map files (as described in Chapter 2, 8. TagSNP selection). 

Thereafter, SNPs were converted into the appropriate binary. bed, .bim, and .fam files, while also 

excluding SNPs by applying certain data quality thresholds, as discussed in 11.1 Genotype data 

quality control. The “Data Management”, “Summary Statistics” and “Association” tools in 

gPLINK were primarily used for data analysis. 

 

2.11.1 GENOTYPE DATA QUALITY CONTROL  

Summary statistics were performed to calculate the genotype failure per SNP and individual, to 

calculate the MAF of each SNP, and to test for Hardy-Weinberg equilibrium (HWE) for all 

SNPs. Based on this, per-SNP quality control was performed to avoid false positive results due to 

poor genotyping of SNPs and systemic genotype errors (Namipashaki et al., 2015). The SNPs 

that failed to be genotyped in more than 5% of the samples and SNPs that were not in HWE (p < 

0.01), were excluded from the analysis. HWE testing was only applied to control samples, as 

deviation from HWE in cases may indicate selection, an event that is possible for SNPs that have 

an effect on the phenotype of interest (Anderson et al., 2010). Homogeneity, the accuracy of the 

genetic representation of the population within the cohort, and therefore also population 

substructure, has been partly addressed by ensuring that the observed genotypic frequencies of 

selected SNPs are in accordance with HWE predictions (Namipashaki et al., 2015). Furthermore, 

SNPs that had a MAF < 0.05 were also excluded, as to avoid for the possibility of false positive 

findings due to the low frequency and a relatively small sample size. Finally, the allelic 

discrimination cluster plots were manually inspected to verify the accuracy of the genotypes 

identified. A plot clustering well within a cluster was regarded as an accurate call, and one that 

fell outside a distinct cluster was regarded as an incorrectly identified genotype.    
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2.11.2 ASSOCIATION TESTING  

The association of the minor allele of each SNP with GDM was assessed by using logistic 

regression analysis. Logistic regression analysis was also used to assess the genotypic association 

of individual SNPs (in reference to the minor allele) with GDM. The association analysis 

between SNPs and fasting glucose levels was performed by using linear regression. Since the 

core assumptions of linear regression is normally distributed residuals, and the fasting glucose 

measurements were not significantly normally distributed, the data was log-transformed before 

proceeding with the analysis (Fusi et al., 2014).   

The files included for the analysis were covariate, .cov files (containing phenotypic continuous 

variables of age and BMI) together with the binary PLINK files (.bed, .bim and .fam). 

Permutation testing for 1000 permutations were performed to empirically generate pointwise p 

values (EMP1) for an individual SNP, and p values (EMP2) that are corrected for multiple 

testing.  

Logistic regression analysis was applied as it is the method used to evaluate the relationship 

between one or more independent variables (SNPs and/or confounders that are either continuous 

or categorical), with a dichotomous dependent variable (such as GDM positive women and 

controls). In contrast linear regression is used when the dependent variable is continuous (such as 

fasting glucose), and when there is also more than one independent variable. These statistical 

methods are predictive as they can estimate the odds or probability of the outcome, based on the 

genotype data modelled under the logistic or the linear function (Bush and Moore, 2012, Walker 

and Duncan, 1967). In comparison to the univariate Chi-square based tests, regression analyses 

has the advantage of incorporating covariates into the analysis in an additive (logistic/ linear) 

manner, making it a method by which one can control for numerous confounders (Beyene and 

Pare, 2013, Clarke et al., 2011, Pourhoseingholi et al., 2012).  

The OR and the beta coefficient, numerical values generated by logistic and linear regression, 

respectively represented the direction and the magnitude of the effect the allele has on the 

phenotype. The beta regression coefficient is defined as the log odds of the outcome associated 

with a one-unit increase in the exposure (Szumilas, 2010). The OR/ regression coefficient thus 

represents the relationship of the two variables, and therefore predict the phenotype outcome 
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based on the increase in allele or genotype. The OR is the odds of having GDM when exposed to 

a variable (minor allele) in comparison to the odds of the occurrence without the exposure 

variable (the alternative or major allele). An OR=1 indicates that there is no difference in the 

odds of having GDM between the groups of women carrying two different SNP alleles. An OR > 

1 indicates the minor allele is associated with higher odds of having GDM. For the opposite, OR 

<1.0, indicates a decrease in the odds of having GDM when carrying the minor allele 

(Ranganathan et al., 2015, Szumilas, 2010). 

Permutation is a re-sampling approach used to create new datasets, assumed to be under the null 

hypothesis by randomly rearranging labels (i.e. breaking up phenotype-genotype relationships) of 

the non-permuted study data. The number of datasets, as specified by the number of 

permutations, are then used for testing against the observed test statistic, thereby generating 

significance levels empirically. The empirical significance level is estimated as the proportion of 

randomization samples with a test statistic at least as large as the one observed. Labels for data 

are interchangeable under the null hypothesis of no association. A significant p value (p < 0.5) 

would therefore indicate that label is accordant with the data showing an association and that it is 

not interchangeable (Bush and Moore, 2012, Knijnenburg et al., 2009, Marees et al., 2018).  

For permutation, the resolution of obtainable p values is determined by the number of 

permutations performed (1/N). A number of a 1000 permutations was chosen, as the smallest 

achievable p value would be 0.001 for rejecting the null hypothesis (Knijnenburg et al., 2009). 

Due to this procedure being computationally intensive, permutation is preferred for studies of 

smaller sample sizes such as this one (Clarke et al., 2011). 

Multiple testing should be corrected for in an association testing, since more than one comparison 

is conducted. For a single test, the probability of detecting a false positive is usually set to 0.05. 

In other words, five percent of the time the null hypothesis of no association is rejected when it is 

true (Type I error). As the number of tests increases, the cumulative probability of a Type I error 

also increases (Beyene and Pare, 2013). In this study, permutation was the method used to correct 

for multiple testing, as it is less stringent than the Bonferonni correction.  
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2.12 SNP CHARACTERIZATION  

The functional significance of the SNPs found to be associated with GDM were explored by 

using two online bioinformatic tools: Variant Effect Predictor (VEP) from Ensembl (McLaren et 

al., 2016), and RegulomeDB (Boyle et al., 2012). These tools asses and predict the functional 

effect of the variants based on multiple input reference datasets from various sources. The rs IDs 

of SNPs are recognized on both platforms and were thus used as input to retrieve the information 

specific to the SNPs of interest.   

2.12.1 VARIANT EFFECT PREDICTOR  

Variant Effect Predictor can be used for most types of genomic variation in the coding and non-

coding regions of the genome, and provide actively curated information on the function, mutation 

type, location and clinical significance. Variant Effect Predictor annotate variants based on their 

positions within the genome, and thus, VEP may provide multiple annotations for a single variant 

that overlap more than one gene, transcript, or genomic feature. Variant Effect Predictor 

classifies variants according to consequence or variant types, and provide the predefined impact 

ranked according to the specific consequent type (i.e. low, moderate and high). Variant 

consequences are described by a standardized set of annotation terms as defined by sequence 

ontology (Figure 2.7). These terms help to describe the features related to the sequences taking 

part in biological processes. To enhance prediction capabilities, the VEP web interface can be 

configured to incorporate several pathogenicity prediction programmes. In this study, Combined 

Annotation Dependent Depletion (CADD) v1.4 (Kircher et al., 2014, Rentzsch et al., 2019) was 

used to annotate the coding and noncoding variants found to be associated with GDM or fasting 

glucose levels in this study. 
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2.12.2 COMBINED ANNOTATION DEPENDENT DEPLETION  

Combined Annotation Dependent Depletion is a scoring tool used to measure the deleteriousness 

of SNPs and small insertions or deletions by integrating diverse genome annotations. The 

framework is based on identifying differences between observed human derived changes, that are 

assumed to be fixed or nearly fixed, and simulated variants, serving as controls. The “fixed” 

changes in the human genome were identified by comparing the human genome to an ancestral 

genome constructed from human and chimpanzee sequences. Variation in regions deemed to be 

fixed or nearly fixed due to selective constraint is considered to be more functional in comparison 

to variation in regions that have not been conserved throughout evolution. Therefore, a 

deleterious SNP will likely be amongst the simulated variation rather than the “fixed” variation. 

By applying various annotations methods and integrating information from regulatory datasets, 

such as ENCODE, all possible variants are assigned a raw C-score. For interpretation purposes, a 

C-score of each variant is further ranked relative to all other possible variants and are called 

phred-like C scores. Variants scoring a value of 10 or greater are within the top 10% of all scores, 

meaning that they are least likely to be observed in humans under this model and thus amongst 

the variants that are the most deleterious. C score values of 20 or greater, are the top 1%, and C 

Figure 2.7: A diagram showing the set of consequence terms for variants located in certain gene 

regions (obtained from https://m.ensembl.org/info/genome/variation/prediction/predicted_data.html). 
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scores of 30 and greater are within the top 0.1%. The higher the C score value, the greater the 

functional impact of the variant. Table 2.8 shows the prediction score interpretation for CADD.  

 

Table 2.8: CADD score prediction and interpretation 

Score Prediction Interpretation 

30 < x < 40 Top 0.1% most deleterious Greatest functional impact 

20 < x < 20 Top 1% most deleterious Greater functional impact 

10 < x < 20 Top 10% most deleterious Functional impact 

x < 10 Irrelevant score Unpredictive range 25% - 75% 

 

2.12.3 REGULOMEDB 

To assist in the functional consequence prediction of non-coding variants, RegulomeDB was used 

in addition to the other bioinformatic tools. RegulomeDB is a database that annotates variants 

based on the known and predicted regulatory elements in the intergenic regions of the genome. 

Multiple data sources are used to identify regions containing signatures/elements indicating a 

potential function in regulation. These signatures include sites with DNAse hypersensitivity, 

transcription factor (TF) binding sites, and promoter regions with biochemical evidence of 

regulation. A heuristic scoring system has also been developed that represent the confidence that 

the variant of interest lies within a regulator region that could have a functional impact when 

altered.  The top ranked variants in Category 1 are known expression quantitative trait loci 

(eQTLs) for genes, and thus have been found to be associated with expression. Other unknown 

eQTLs not associated with regulation are classified in Category 6. Categories are also further 

subcategorized according to the confidence in regulatory information as shown in Table 2.9.  
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Table 2.9: RegulomeDB variant classification scheme (Boyle et al., 2012) 

Category Scheme 

Category Description 

 Likely to affect binding and linked to expression of gene target 

1a eQTL + TF binding + matched TF motif + matched DNase footprint + DNase 

peak 

1b eQTL + TF binding + any motif + DNase footprint + DNase peak 

1c eQTL + TF binding + matched TF motif + DNase peak 

1d eQTL + TF binding + any motif + DNase peak 

1e eQTL + TF binding + matched TF motif 

1f eQTL + TF binding/DNase peak 

 Likely to affect binding 

2a TF binding + matched TF motif + matched DNase footprint + DNase peak 

2b TF binding + any motif + DNase footprint + DNase peak 

2c TF binding + matched TF motif + DNase peak 

 Less likely to affect binding 

3a TF binding + any motif + DNase peak 

3b TF binding + matched TF motif 

 Minimal binding evidence 

4 TF binding + DNase peak 

5 TF binding or DNase peak 

6 Motif hit 

 

2.13 POPULATION ALLELE FREQUENCY COMPARISON 

PLINK was used to calculate MAF data for each SNP from the generated genotype data. This 

was done by using the summary statistics function in gPLINK. The .ped and .map files 

previously formatted for genotype quality assessment were used as input. The allele frequency 

data was then compared to other publicly available allele frequency data available from the 1000 

Genomes Project (Abecasis et al., 2010). Allele frequency data were retrieved from Ensembl 

(GRCh38.p12 release 95 - Jan 2019) for the European CEU population and the following African 

populations: Gambian (GWD) in Western Divisions in the Gambia, the Mende (MSL) in Sierra 

Leone, Yoruba (YRI) and Esan (ESN) in Nigeria, and the Luhya (LWK) in Webuye, Kenya, as 

shown in Figure 2.8. The Chi-square test and the Fisher’s exact test were used to assess if the 

allele frequencies were significantly different using R Project for statistical computing v.3.5.3 (R 

Core Team,3.5.3), and RStudio (RStudio Team, 2015). The Fisher’s exact test was used in the 

case of rare variants, where the allele count was less than five. 
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Figure 2.8: Geographic origin of African populations used in this study for allele frequency 

comparison 
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3 RESULTS 

In this chapter, a summary of the characteristics of the cohort are provided, as well as, a 

description of the selected SNPs that were genotyped, and the SNPs excluded from the 

association analyses. In the following sections, the summary statistics of the assessed SNPs, and 

results of the association analyses, are presented. The association analysis section includes the 

results for logistic regression analyses conducted to assess the allele and genotype associations 

with GDM, and the linear regression analysis conducted to assess the association of each SNP 

with fasting glucose levels. Lastly, the information obtained on the SNPs found to be associated 

with GDM and fasting glucose levels, are presented, including their annotated or predicted 

functional impact, and the allele frequencies of the tagSNP within other populations. 

3.1 COHORT CHARACTERIZATION 

Table 3.1 summarizes the phenotypic variables for the whole cohort, as well as for the cases and 

controls separately. The continuous phenotypic variables (age, BMI, fasting glucose, and 

household asset score) were not normally distributed, and were therefore presented as medians 

and IQRs. The categorical variables were described in terms of frequencies and percentages. 

There were no significant differences between the cases and controls for any of the 

characteristics, except for fasting glucose. As expected, most women with GDM had a 

significantly higher fasting glucose concentration in comparison to women without GDM. A high 

BMI was seen for the whole cohort with most women (42.9%) falling into the obese category. 
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Table 3.1: Participant characteristics 

Characteristics 

GDM Cohort 

(n=240) 

Women with 

GDM (n=80) 

Women without 

GDM (n =160)  p value 

Age (years) 31.0 (27.0 - 36.0) 31.0 (27.0 - 36.0) 31.0 (27.0 - 36.0) 0.989 

BMI (kg/m2) 28.6 (25.0 - 32.4) 29.1 (25.4 - 34.2) 28.1 (24.3 - 32.0) 0.088 

Fasting glucose (mmol/L) 4.4 (3.9 - 5.1) 5.2 (5.1 - 5.5) 4.1 (3.7 - 4.5) < 2.2 x 10-16 

Household asset score 5.0 (5.0 - 6.0) 6.0 (5.0 - 6.3) 5.0 (5.0 - 6.0) 0.129 

BMI categories     

Normal (≤24.9 kg/m2) 60 (25.0%) 17 (21.3%) 43 (26.9%) 0.609 

Overweight (25-29.9kg/m2) 77 (32.1%) 26 (32.5%) 51 (31.9%)   

Obese (≥ 30 kg/m2) 103 (42.9%) 37 (46.3%) 66 (41.3%)   

Previous pregnancies      

None 8 (3.3%) 3 (3.8%) 5 (3.1%) 0.597  

One to two 152 (63.3%) 47 (58.8%) 105 (65.6%)  

Three or more  80 (33.3%) 30 (37.5%) 50 (31.3%)   

Education     

No schooling/ primary school 4 (1.7%) 3 (3.8%) 1 (0.6%) 0.226  

Secondary school 183 (76.3%) 60 (75.0%) 123 (76.9%)  

Tertiary education 53 (22.1%) 17 (21.3%) 36 (22.5%)   

 

3.2 SNPS SELECTED FOR GENOTYPING 

Due to the criteria of selecting tagSNPs, only seven tagSNPs were selected. An additional 16 

SNPs (that could not be tagged by a proxy SNP) were also included and were selected for 

genotyping to ensure coverage of the CEU block region containing the GDM-associated SNP. 

The following five SNPs had previously been found to be significantly associated with GDM and 

were also assessed in this study: rs1799884 and rs4607517 within GCK; and rs7901695, 

rs7903146, and rs12255372 within TCF7L2 (indicated in bold in Table 3.2). 
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Table 3.2: List of SNPs and tagSNPs selected for genotyping 

Captured SNPs  tagSNPs 

HNF4A rs80276513 GCK rs112257899 

HNF4A rs6031551 PDX1 rs73169687 

GCK rs4607517 PDX1 rs7981781 

GCK rs758983 PDX1 rs4581569 

GCK rs1799884 PDX1 rs61944006 

HNF1A rs2244608 KCNJ11 rs5210 

PDX1 rs9554205 KCNJ11 rs5214 

PDX1 rs4415872  

KCNJ11 rs5215  

TCF7L2 rs34872471  

TCF7L2 rs7903146  

TCF7L2 rs7901695  

TCF7L2 rs34347733  

TCF7L2 rs12255372  

TCF7L2 rs115626858  

TCF7L2 rs115758892  

 

3.3 QUALITY CONTROL  

The quality of the genotyped data per SNP was assessed based on their genotype success in 

individuals, HWE, and MAF. Five SNPs (rs758983, rs34347733, rs7981781, rs73169687, and 

rs4415872) were removed from analyses because they failed to be genotyped in more than 5% of 

the samples (> 0.5 failure rate). A sixth SNP (TCF7L2 rs7903146), was removed because it was 

not in HWE when looking only at the HWE p value in the controls. The SNPs that were excluded 

were all genotyped using Mass-ARRAY System by Agena Bioscience (San Diego, CA). All 

SNPs had a MAF > 0.01 and were thus not excluded based on the MAF cut-off of 0.05. Table 3.3 

shows the SNPs excluded due to a high genotype failure rate in the participants, and having a 

HWE p value < 0.01.  

 

The 10% of SNPs that have been genotyped and re-genotyped using Taqman assays, were 

verified to be the correct genotype call with no discrepancies in their genotype cluster position 

between the initial results and repeated results. Of the four repeated samples with initial 

uninformative results (falling outside of a distinct cluster), three had results that clustered well 

within a distinct genotype cluster and were regarded as the true genotype call.   
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Table 3.3: SNPs removed due to failing quality control measures 

a previously reported GDM-associated SNP, HWE = Hardy-Weinberg Equilibrium 

 

Of the five SNPs that had a > 0.5 failure rate, one SNP (rs4415872) had no results for most of the 

samples (209/240) and indicated that the assay failed for that particular SNP. As for the other 

SNPs, the service provider reported that genotyping failed due to poor quality of at least 15 

samples with a failure rate of > 0.10 (sample failed for more than two out of 22 SNPs). Table 3.4 

shows the number of SNPs with missing data and the DNA quality for each participant sample 

that could have contributed to genotyping failure. The A260/230 ratios were missing for some 

samples, whereas A260/280 ratios were available for all the samples. 

 

 

 

 

 

 

 

 

Gene  SNPs 

Number of failed 

samples (n)  Failure rate HWE p value 

GCK rs758983 14 0.06 1.00 

TCF7L2 rs34347733 14 0.06 1.00 

 rs7903146 a 8 0.03 6.21e-23 

PDX1 rs7981781 14 0.06 0.03 

PDX1 rs73169687 15 0.06 1.00 

PDX1 rs4415872 209 0.87 0.63 



49 
 

 

Table 3.4: Participant samples with a high genotype failure rate (>10%) and their A230/A280 and 

A260/A230 ratios indicating DNA purity 

 

 

 

 

 

 

 

 

 

 

 

In total, the genotype data of seven of the 23 SNPs originally selected were not tested for 

association with GDM due to failing quality control and/ or design error. Only 18 SNPs of the 

initial 23 variants were compatible with the MassARRAY system and thus genotyped using the 

technology in a single multiplex reaction. Taqman assays were used to genotype the remaining 

four SNPs; two SNPs by pre-designed assays and two by custom designed assays. One Taqman 

assay failed to be designed by the manufacturer for the genotyping of rs9554205. Figure 3.1 

shows a flow-diagram of the steps leading up to the statistical analyses. 

 

 

 

 

 

Sample ID 

Number of 

failed SNPs 

Failure 

rate  

260/28

0 260/230 

14-10413 3 0.14 1.94 - 

14-10562 3 0.14 1.76 1.93 

14-10569 3 0.14 1.76 1.82 

14-10203 4 0.18 2.01 - 

14-10256 6 0.27 1.72 1.21 

3G5913407 6 0.27 1.71 1.52 

SFG1301 8 0.36 1.75 1.76 

14-10508 10 0.45 1.83 2.17 

14-10501 11 0.50 1.80 2.13 

14-10487 13 0.59 1.64 2.23 

SFG1310 13 0.59 1.83 1.85 

14-10329 15 0.68 2.05 - 

SFG1240 16 0.73 1.81 2.08 

14-10464 18 0.82 1.77 - 

SFG1062 18 0.82 1.42 - 

A260/A280 ratio of ~1.8 and A260/A230 ratio of ~2 is considered good quality and “pure” 

DNA 

 

 

Figure 3.1: Flow-diagram illustrating the steps before the association analysisA260/A280 ratio 

of ~1.8 and A260/A230 ratio of ~2 is considered good quality and “pure” DNA 

 



50 
 

 

 

3.4 GENOTYPING 

The genotype data for SNPs included for statistical analyses is summarized in Table 3.5. For the 

complete summary of genotype data, refer to Appendix C. 

.

TagSNPs Selected 
(n=23) 

 

2 SNPs genotyped by 
custom assays 

 

2 SNPs genotyped by 
predesigned assays 

 

Genotype data quality control 
 

SNP genotypic 
failure <0.05 

 

HWE Testing  
(p> 0.01) 

 

Customization of Taqman 
assay failed for rs9554205  
 

18 SNPs 
genotyped by 
MassARRAY 

 

4 SNPs 
genotyped by 

Taqman assays 
 

TagSNPS genotyped (n=22) 
 

rs7903146 
was not in HWE (p<0.01)  

 

5 SNPs failed to be 
genotyped in more than 

5% of the samples 
 

Association 
testing  
(n= 16) 

 
Figure 3.1: Flow-diagram illustrating the steps before the association analysis 
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Table 3.5: Summary statistics of the genotype results obtained from the 22 SNPs analysed 

Gene SNP ID F
ai

lu
re

 R
at

e 

N
o
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o
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fa
il

ed
 

sa
m

p
le

s 

M
in

o
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el
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(A
1

) 

GDM Positive Cases GDM Negative Controls 

A1/A1 

(n) 

A1/A2 

(n) 

A2/A2 

(n) MAF 

A1/A1 

(n) 

A1/A2 

(n) 

A2/A2 

(n) MAF HWE 

GCK 

rs1799884a 0.03 7 T 2 28 48 0.21 7 48 100 0.20 0.62 

rs112257899 0.00 0 T 1 15 64 0.11 0 22 138 0.07 1.00 

rs4607517a 0.03 8 A 0 6 71 0.04 1 22 132 0.08 1.00 

TCF7L2 

rs34872471 0.00 1 C 12 39 29 0.39 27 79 53 0.42 0.87 

rs7901695a 0.00 0 C 15 49 16 0.49 39 82 39 0.50 0.87 

rs115626858 0.05 12 T 1 14 63 0.10 1 23 126 0.08 1.00 

rs115758892 0.03 7 A 0 9 70 0.06 3 15 136 0.07 0.02 

rs12255372a 0.03 7 T 6 28 45 0.25 13 56 85 0.27 0.41 

KCNJ11 

rs5210 0.05 11 G 11 33 33 0.36 21 70 61 0.37 0.86 

rs5214 0.00 1 C 0 6 74 0.04 1 24 134 0.08 1.00 

rs5215 0.03 6 C 0 10 68 0.06 0 16 140 0.05 1.00 

HNF1A rs2244608 0.05 12 G 0 6 70 0.04 0 23 129 0.08 1.00 

PDX1 
rs61944006 0.02 4 C 4 40 36 0.30 6 62 88 0.24 0.27 

rs4581569 0.02 5 T 3 27 48 0.21 18 63 76 0.32 0.36 

HNF 4A 
rs80276513 0.01 3 A 4 6 70 0.09 2 15 140 0.06 0.10 

rs6031551 0.03 7 C 2 21 55 0.16 5 41 109 0.17 0.57 

SNP = single nucleotide polymorphism, SNP ID = universal SNP identification tag (rs number) assigned by National Center for 

Biotechnology Information (NCBI), A1 = minor allele, A2 = major allele, A1/A1, A1/A2, A2/A2 (n) = genotype counts, MAF = 

Minor Allele Frequency, HWE = Hardy-Weinberg Equilibrium, a previously reported GDM-associated SNP 
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3.5 ASSOCIATION ANALYSIS 

When assessing the allelic association of 16 SNPs with GDM risk through logistic regression 

analysis, only one SNP (PDX1 rs4581569) was significantly associated with GDM, with a p 

value (EMP1) of < 0.05, even after adjusting for covariates. The OR result for the 

significantly associated SNP was lower than 1, which indicated that this SNP was associated 

with a lower risk of GDM. However, when the association was adjusted for multiple testing 

by permutation, the p value (EMP2) was no longer significant. Table 3.6 shows the 

association results for the SNPs tested, with the SNP significantly associated with GDM 

indicated in bold. As only SNPs and no samples were excluded from the analyses, the number 

of successfully genotyped samples (n out of a total of 240 participants) for each SNP is also 

indicated in the table. 

 

Table 3.6: Allelic association results for SNPs obtained via logistic regression analysis 

 

Gene  SNP ID n 

Unadjusted for BMI & Age Adjusted for BMI & Age 

OR [95% CI] EMP1 EMP2 OR [95% CI] EMP1 EMP2 

GCK rs1799884a 233 1.03 [0.63-1.67] 0.878 1.000 1.02 [0.62 - 0.67] 0.935 1.000 

  rs112257899 240 1.64 [0.83-3.24] 0.110 0.964 1.71 [0.86 - 3.43] 0.104 0.911 

  rs4607517a 232 0.48 [0.19-1.21] 0.130 0.917 0.48 [0.19 - 1.21] 0.127 0.901 

TCF7L2 rs34872471 239 0.90 [0.61-1.33] 0.609 1.000 0.92 [0.62 - 1.39] 0.709 1.000 

  rs7901695a 240 0.97 [0.65-1.45] 0.862 1.000 1.00 [0.67 - 1.51] 0.983 1.000 

  rs115626858 228 1.26 [0.65-2.42] 0.465 1.000 1.14 [0.58 - 2.23] 0.706 1.000 

  rs115758892 233 0.85 [0.40-1.80] 0.644 1.000 0.75 [0.34 - 1.63] 0.456 1.000 

  rs12255372a 233 0.94 [0.61-1.44] 0.784 1.000 0.92 [0.60 - 1.43] 0.719 1.000 

KCNJ11 rs5210 229 0.95 [0.64-1.42] 0.806 1.000 0.94 [0.63 - 1.41] 0.777 1.000 

  rs5214 239 0.43 [0.17-1.09] 0.062 0.756 0.44 [0.17 - 1.12] 0.088 0.813 

  rs5215 234 1.29 [0.55-2.99] 0.582 1.000 1.36 [0.57 - 3.25] 0.461 1.000 

HNF1A rs2244608 228 0.48 [0.19-1.24] 0.134 0.929 0.48 [0.18 - 1.25] 0.115 0.921 

PDX1 rs61944006 236 1.45 [0.91-2.30] 0.118 0.909 1.34 [0.84 - 2.15] 0.209 0.993 

  rs4581569 235 0.59 [0.38-0.93] 0.015 0.32 0.62 [0.40 - 0.98] 0.031 0.505 

HNF4A rs80276513 237 1.35 [0.72-2.53] 0.402 0.999 1.31 [0.70 - 2.48] 0.418 1.000 

  rs6031551 233 0.97 [0.58-1.63] 0.915 1.000 0.99 [0.59 - 1.67] 0.977 1.000 

SNP = single nucleotide polymorphism, SNP ID = universal SNP identification tag (rs 

number) assigned by National Center for Biotechnology Information (NCBI), BMI = body 

mass index, OR = odds ratio, CI = confidence interval, EMP1 = pointwise p value, EMP2 = p 

value corrected for multiple testing, a previously reported GDM-associated SNP, the SNP 

significantly associated with GDM is indicated in bold  
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Figure 3.2 is a forest plot that visually illustrates the ORs and 95% confidence interval values 

of the logistic regression (Table 3.6). The forest plot shows that the minor allele of PDX1 

rs4581569 was significantly associated with GDM as the confidence interval for this SNP 

does not cross the OR threshold of 1. The rest of the SNPs had confidence intervals that 

ranged over OR=1, indicating no significant association to either low or high GDM risk.  

 

 

Table 3.7 shows the genotype association results for the SNPs analyzed under the additive 

model. The genotypes (T/T and T/C) of rs4581569 (indicated in bold in Table 3.7), including 

the minor allele T, were significantly associated with GDM after adjusting for BMI and age. 

The calculation of OR values failed, due to insufficient distributions for genotype 

combinations for some SNPs, where there were zero participants in either the case or control 

group having at least one genotype.  
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Figure 3.2: Forest plot of odds ratios (ORs) for the SNPs genotyped and tested for association with 

GDM. The SNP significantly associated with GDM is indicated in bold. 
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Table 3.7: Genotype association results for SNPs obtained via logistic regression analysis 

Gene  SNP ID n 

Unadjusted for BMI & Age Adjusted for BMI & Age 

OR [95% CI] EMP1 EMP2 OR [95% CI] EMP1 EMP2 

GCK rs1799884a 233 0.77 [0.34-1.73] 0.606 1.000 0.74 [0.33-1.69] 0.487 0.998 

  rs112257899 240 - 0.037 1.000 - 0.326 1.000 

  rs4607517a 232 - 0.429 1.000 - 0.316 1.000 

TCF7L2 rs34872471 239 0.01 [0.60-1.36] 0.601 1.000 0.93 [0.21-0.62] 0.752 1.000 

  rs7901695a 240 0.97 [0.64-1.47] 0.843 1.000 1.00 [0.65-1.52] 0.998 1.000 

  rs115626858 228 1.41 [0.35-5.70] 0.239 1.000 1.33 [0.32-5.45] 0.448 1.000 

  rs115758892 233 - 0.839 1.000 - 0.739 1.000 

  rs12255372a 233 0.93 [0.56-1.57] 0.798 1.000 0.90 [0.53-1.53] 0.687 1.000 

KCNJ11 rs5210 229 0.99 [0.65-1.50] 0.921 1.000 0.96 [0.62-1.48] 0.851 1.000 

  rs5214 239 - 0.350 1.000 - 0.359 1.000 

  rs5215 234 - 1.000 1.000 - 1.000 1.000 

HNF1A rs2244608 228 - 1.000 1.000 - 1.000 1.000 

PDX1 rs61944006 236 1.28 [0.66-2.47] 0.483 0.999 1.22 [0.63-2.40] 0.551 1.000 

  rs4581569 235 0.51 [0.27-0.97] 0.029 0.208 0.52 [0.28-1.00] 0.033 0.267 

HNF4A rs80276513 237 2.00 [0.85-4.73] 0.077 0.577 1.90 [0.80-4.54] 0.106 0.697 

  rs6031551 233 0.89 [0.39-2.05] 0.792 1.000 0.84 [0.36-1.95] 0.624 1.000 

 

Assessing the association of SNPs with fasting glucose measurements yielded a significant 

result for the SNP, rs4581569 (indicated in bold in Table 3.8), which was also found to be 

associated with a low GDM risk in this study. However, the p value was no longer significant 

when adjusting for covariates, causing the p value to fall to 0.050, a value on the significance 

threshold. The SNP, rs61944006, also assessed within the same gene (PDX1) as the 

significantly associated SNP, was the closest to the significance threshold in comparison to all 

the other SNPs assessed with a p value of 0.085.  

 

 

SNP = single nucleotide polymorphism, SNP ID = universal SNP identification tag (rs number) assigned 

by National Center for Biotechnology Information (NCBI), BMI = body mass index, OR = odds ratio, CI 

= confidence interval, EMP1 = pointwise p value, EMP2 = p value corrected for multiple testing,  

a previously reported GDM-associated SNP, the SNP significantly associated with GDM is indicated in 

bold  
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Table 3.8: Linear regression results for assessing SNPs with fasting glucose measurements 

from the 75 g 2h OGTT 

Gene  SNP ID n 

Unadjusted for BMI & Age Adjusted for BMI & Age 

OR [95% CI] EMP1 EMP2 OR [95% CI] EMP1 EMP2 

GCK rs1799884a 233 0.005 [-0.012 - 0.023] 0.551 1.000 0.005 [-0.012 - 0.022] 0.570 1.000 

  rs112257899 240 0.013 [-0.013 - 0.038] 0.309 1.000 0.014 [-0.011 - 0.039] 0.262 0.999 

  rs4607517a 232 0.000 [-0.028 - 0.028] 0.981 1.000 0.000 [-0.027 - 0.028] 0.986 1.000 

TCF7L2 rs34872471 239 0.005 [-0.019 - 0.009] 0.477 1.000 0.004 [-0.018 - 0.010] 0.550 1.000 

  rs7901695a 240 0.002 [-0.017 - 0.012] 0.747 1.000 0.001 [-0.016 - 0.013] 0.845 1.000 

  rs115626858 228 0.002 [-0.026 - 0.022] 0.879 1.000 0.006 [-0.030 - 0.018] 0.669 1.000 

  rs115758892 233 0.012 [-0.038 - 0.015] 0.419 1.000 0.016 [-0.042 - 0.010] 0.231 0.998 

  rs12255372a 233 0.001 [-0.014 - 0.016] 0.931 1.000 0.000 [-0.015 - 0.015] 0.977 1.000 

KCNJ11 rs5210 229 0.001 [-0.013 - 0.015] 0.913 1.000 0.000 [-0.014 - 0.014] 0.971 1.000 

  rs5214 239 0.021 [-0.049 - 0.006] 0.136 0.928 0.021 [-0.049 - 0.007] 0.126 0.942 

  rs5215 234 0.012 [-0.019 - 0.043] 0.459 1.000 0.012 [-0.019 - 0.044] 0.457 1.000 

HNF1A rs2244608 228 0.023 [-0.052 - 0.007] 0.127 0.935 0.022 [-0.051 - 0.007] 0.129 0.942 

PDX1 rs61944006 236 0.015 [-0.001 - 0.032] 0.085 0.801 0.012 [-0.005 - 0.029] 0.157 0.965 

  rs4581569 235 0.016 [-0.031 - 0.001] 0.036 0.487 0.015 [-0.029 - 0.000] 0.050 0.683 

HNF4A rs80276513 237 0.004 [-0.028 - 0.020] 0.744 1.000 0.005 [-0.029 - 0.018] 0.668 1.000 

  rs6031551 233 0.005 [-0.014 - 0.023] 0.613 1.000 0.005 [-0.013 - 0.024] 0.567 1.000 

 

3.6 SNP FUNCTIONALITY PREDICTION  

The function annotation and the predicted functional information gathered for rs4581569 and 

the linked SNP are shown in Table 3.9. The variant/consequence type from RegulomeDB and 

VEP for both variants is jointly displayed in the table. If the variant was predicted to be in a 

regulatory region it was also indicated in Table 3.9 as a “regulatory_variant”. The impact, as 

defined by Ensembl’s VEP, was “MODIFIER” for both SNPs which is usually assigned to 

non-coding variants where the impact is unknown or difficult to determine. These variants 

have also not been reported on Clinvar. There is thus no information with regards to their 

pathogenicity and clinical health impact on individuals, classifying them as variants of 

uncertain clinical significance.  

SNP = single nucleotide polymorphism, SNP ID = universal SNP identification tag (rs number) 

assigned by National Center for Biotechnology Information (NCBI), BMI = body mass index, OR = 

odds ratio, CI = confidence interval, EMP1 = pointwise p value, EMP2 = p value corrected for 

multiple testing, a previously reported GDM-associated SNP, the SNP significantly associated with 

GDM is indicated in bold  
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According to the interpretation of the CADD and RegulomeDB scores, both SNPs fell under 

the threshold values, which indicate that there is little to no information related to their 

functional impact. The CADD scores were below 10, which fell into the irrelevant/ 

unpredictive score range. Similarly, RegulomeDB yielded a score of four with the following 

interpretation; “minimal binding evidence”. 

 

Table 3.9: Functional prediction information obtained from Variant Effect Predictor (VEP) 

and RegulomeDB 

SNPs Variant (from RegulomeDB)/ Consequence 

Type (from VEP) 

Impact (VEP) Clinical 

Significance 

CADD 

Score 

RegulomeDB 

Score 

rs4581569 intron_variant MODIFIER unknown 0.224 4 

rs9512918 intron_variant. regulatory_region_variant                                                                            MODIFIER unknown 2.900 4 

 

3.7 POPULATION ALLELE FREQUENCIES OF THE SIGNIFICANTLY 

ASSOCIATED SNP 

Figure 3.3 shows the allele frequency across a set of global populations for rs4581569, the 

SNP found to be associated with GDM risk in this study (labelled as GDM cohort). When 

comparing the allele frequency of the South African cohort to that of other populations, only 

the ESN population differed from the current cohort (p = 0.016).  

 

  

Figure 3.3: Pie charts illustrating the allele frequencies (T/ C-allele) for rs4581569. The p values 

were generated from comparing the allele frequencies between GDM cohort and each respective 

African population (ESN, ARI, MSL, LWK or GWD) and the CEU European population. 
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4 DISCUSSION 

The aim of this study was to investigate the genetic risk of GDM in a South African cohort. 

Genes with variants previously reported as being associated with GDM in other populations 

were selected and investigated to see if they were similarly associated with GDM in a black 

South African cohort. Due to the scarcity of GDM genetic studies, and the similarity in 

pathophysiology of GDM to T2D, this study focused on genes that were previously linked to 

monogenic diabetes, and genes that have been repeatedly and strongly associated with T2D. 

After an extensive literature review, five MODY genes (HNF4A, GCK, HNF1A, PDX1, and 

KCNJ11) and one T2D-associated gene (TCF7L) were selected for investigation.  

4.1 COHORT CHARACTERIZATION 

No significant differences were detected between GDM positive and GDM negative women 

for all the continuous and categorical variables, except for fasting glucose levels. The 

characteristics for which no significant differences were found include age, continues BMI 

measurements, BMI categories, household asset scores, number of previous pregnancies, and 

education. All these characteristics, especially BMI and age, are known factors that influence 

GDM risk. Hence, these cofactors can be excluded as having an impact on the genetic 

association results.  

Most women in the cohort were overweight and obese (75%). The prevalence of overweight 

and obesity is increasing in populations, such as the Sowetan population, that are 

experiencing rapid urbanization (Kruger et al., 2002, Mfenyana et al., 2006, Micklesfield et 

al., 2018). The most evident reason for this increase in BMI is the transition to a lifestyle that 

includes reduced levels of physical activity and increased intake of energy-dense foods 

(Popkin and Gordon-Larsen, 2004). This trend makes the population more vulnerable to non-

communicable diseases, such as diabetes, that might be further exacerbated by genetic factors 

(Tibazarwa et al., 2009).  
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4.2 SIGNIFICANT FINDINGS BETWEEN THE PDX1 GENE, GDM, AND FASTING 

GLUCOSE LEVELS  

The PDX1 gene was found to be significantly associated with women who tested negative for 

GDM (controls). The PDX1 gene is known to have a major role in the development of the 

pancreas and the functioning of the pancreatic cells for glucose metabolism. During 

embryogenesis, PDX1 is expressed in proliferative progenitor cells, giving rise to the 

pancreatic buds, and eventual differentiation into the exocrine, endocrine and ductal portions 

of the pancreas (Cox and Kushner, 2017, Guz et al., 1995, Jonsson et al., 1994, Offield et al., 

1996). After development, the gene is primarily responsible for the maintenance and the 

function of the islet cells, through regulating related genes, such as insulin, glucose 

transporter 2, GCK, somatostatin, and islet amyloid polypeptide (Ashizawa et al., 2004, 

Kropp et al., 2018).  

In this study, a significant association was detected between the minor allele of rs4581569 in 

the PDX1 gene and GDM risk after adjusting for BMI and age (EMP1 = 0.031). The 

genotypic association for this SNP and GDM was also found to be significant under the 

additive model (adjusted EMP1 = 0.033). The OR values of <1, shows that the minor T- 

allele, and the homozygous T/T, and heterozygous T/C genotypes, were negatively associated 

with the risk of GDM. The SNP was determined to have a moderate effect on GDM, with the 

genotypic association having a slightly stronger effect in comparison to the allelic association 

(adjusted OR = 0.51 vs 0.62). The overall result, however, showed that carrying a minor T-

allele of rs4581569 decreased the odds of having GDM for women in this cohort.  

The association was still significant after adjusting for BMI and age. Only a minor change 

was observed after correcting for the two cofactors for both the allele (EMP1 = 0.015 vs 

0.031) and genotypic association (EMP1 = 0.029 vs 0.033). The allelic and genotypic 

association with GDM are therefore more likely to be due to genetic variation, captured by the 

rs4581569 tagSNP, within PDX1 than the combination of cofactors, BMI and age.  

This is a novel discovery for GDM-association studies considering the gene and genetic 

variant involved, and the inverse association with GDM detected. Genetic variation within the 

PDX1 gene has not been reported before in association with a lower risk of GDM. With 

regard to lower GDM-risk, only one other study has reported associated variants; one in the 

LOC646736/IRS1 region and another in the SLC30A8 gene (Rosta et al., 2017). PDX1 

variants reported to be implicated in diabetes within the literature are either rare and highly 
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penetrant, segregating in families with a strong family history of diabetes, or are contained 

within coding regions, which have been functionally proven to result in a defective PDX1 

protein (Doddabelavangala Mruthyunjaya et al., 2017, Gragnoli et al., 2005b, Weng et al., 

2002, Yang and Chan, 2016). Other studies have not found GDM-associated PDX1 variants 

with moderate effect sizes similar to what have been determined by this study. 

After finding the rs4581569-GDM association, an association with fasting glucose could have 

been expected, as the majority of women with GDM in the cohort were diagnosed on fasting 

glucose alone (Macaulay et al., 2018). As such, this SNP was significantly associated with 

women who had lower fasting glucose readings, however, only with a minor effect (beta = -

0.015). The inverse of the beta value (due to data that has been transformed), showed that 

carrying a T-allele decreased fasting glucose readings by ~1 mmol/L (0.966) for women in the 

GDM cohort.  

Once covariates were added to the association testing model, there were no significant 

findings between rs4581569 and fasting glucose. The p value was borderline significant (at 

0.050), and could be due to the fact that the study might have been underpowered to detect the 

small effect of the SNP while accounting for other factors.  BMI, however, has been 

suggested to mediate the genetic association of the PDX1 gene with fasting glucose. Within 

the Meta-Analyses of Glucose- and Insulin-related traits Consortium (MAGIC), the PDX1 

gene has been identified as a factor effecting fasting glucose, and was included in a joint 

meta-analysis, which simultaneously tested for the genetic main effect, adjusted for BMI, and 

the potential interaction with BMI. In the meta-analysis of 52 studies, comprising of more 

than 96,496 non-diabetic individuals of European decent, the PDX1 gene and its interaction 

with BMI, achieved a genome-wide significance at P<5×10−8 (Manning et al., 2012). In a 

follow-up study in Korean individuals, the index SNP identified in PDX1 (rs2293941) was 

significantly associated in lean participants (p value = 0.001), and marginally associated with 

dichotomized BMI (p value = 0.04) (Hong et al., 2014). The majority of women in our cohort 

were overweight or obese, and thus BMI might be a contributing factor influencing fasting 

glucose levels in black South African women.  

The SNP, rs4581569, found to be associated with GDM and fasting glucose, was selected as a 

tagSNP, and was completely linked (r2 =1) to one other SNP, rs9512918. Since rs4581569 is 

linked to rs9512918, the genotyped SNP might only be indirectly associated with GDM and 

fasting glucose. The linked SNP could therefore be inferred to be associated with a lower risk 
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of GDM and lower fasting glucose, and potentially have a protective role against the 

development of GDM. 

4.3 SNP CHARACTERIZATION 

The functions of the associated SNPs (rs4571569, and the linked SNP, rs9512918) and their 

relevance to disease or phenotypes, have not been reported before on Clinvar and Ensembl. 

These two SNPs are known intronic SNPs with functions or consequences that are either non-

existent or not yet discovered, as annotated by VEP with the impacted described as 

“MODIFIER”. The chance of having a functional impact was also predicted to be low, with a 

CADD score (<10) in the irrelevant/unpredictive range, and a regulomeDB score of 4, 

indicating that there is no evidence of binding with elements and factors for gene regulation. 

The variants may very well be of no biological significance, or information is just lacking in 

regard to their possible functional impact. 

The little information on functionality for these SNPs is not unusual, the functionality of the 

majority of non-coding SNPs is difficult to determine due to incomplete knowledge on the 

variety of mechanisms by which they are considered to regulate gene expression (Rojano et 

al., 2018). Regulatory effects are also specific to certain cell- and tissue types, development 

stages or environmental conditions, making them harder to predict and to experimentally 

identify in functional studies (Nishizaki and Boyle, 2017, Zappala and Montgomery, 

2016).The SNPs associated with a protective effect provides another challenge, as functional 

prediction tools are specifically designed to distinguish pathogenic SNPs from those that are 

benign. Ultimately, the tools used have their own limitations, which involve the availability of  

information, and/or the algorithms used to rate the strength of evidence (Nishizaki and Boyle, 

2017).  

The linked SNP, rs9512918, has been annotated by VEP to be located within a promoter, a 

regulatory element, whereas the tagSNP, rs4571569, has been annotated to be contained in an 

intronic region only. The linked SNP is therefore more likely to be functional (or be the 

causative SNP) than the tagSNP genotyped in this study. The higher CADD score between 

the two, also indicates that rs9512818 has a greater chance of having a functional impact. 

Prioritizing rs9512818 with better evidence of being functional is recommended to reduce 

time and resources spent to explore the biological significance of the association found even 

further (Nishizaki and Boyle, 2017, Shen et al., 2010).  
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4.4 POPULATION ALLELE FREQUENCY 

Allele frequency data of rs4581569 has revealed that the minor allele is common amongst 

global populations, including populations across the African continent (GWD in Western 

Divisions in the Gambia, MSL in Sierra Leone, the ESN and YRI in Nigeria, and the Luhya in 

Webuye, Kenya) and the CEU population, representing people of European ancestry. The 

allele frequency for the T-allele ranged between 0.38 and 0.22, with no significant differences 

detected between the South African cohort and the other examined populations, except for the 

ESN population from Nigeria (p = 0.016). The SNP is therefore not specific to the black 

South African population, and we could expect the SNP to be present in most populations. 

Since the SNP is common, and GDM is relatively prevalent worldwide, the association found 

is in agreement with the “common variant, common disease” hypothesis. If the SNP indeed 

has a protective effect against GDM, it could have a selective advantage, which could have 

resulted in the allele to rise in frequency to become a common variant (Butler et al., 2017). 

The allele frequency data are therefore in support of assessing this SNP in association with 

GDM in other populations.  

Common and naturally occurring SNPs, such as rs4581569, could be particularly important 

for developing genetic therapies, as it is relevant to a greater portion of individuals and could 

be assumed to be harmless and advantageous due to its high allele frequency. The S447X 

variant of the lipoprotein lipase (LPL), is a well-documented example of a common variant 

identified to significantly lower risk of cardiovascular diseases and hypertension, which has 

been utilized in a genetic therapy approach to treat people with LPL-deficiency (Gaudet et al., 

2013, Niu and Qi, 2011). 

  

4.5 INSIGNIFICANT FINDINGS 

Sixteen SNPs, including four previously GDM-associated SNPs within the literature 

(rs1799884 and rs4607517 in GCK, and rs7901695 and rs12255372 in TCF7L2) were not 

significantly associated with GDM or fasting glucose levels in this study. Insignificant 

findings and replication failure are evident in small-scale gene association studies that have 

some disadvantages with regard to small sample size, and the under evaluation of gene-gene 

and gene-environment risk factors, which is different for various populations (Buzdugan et 

al., 2016, Patnala et al., 2013). Therefore, either the black South African population does not 

harbour these associations, or there is a chance that true associations have been missed (the 

possibility of a type II error) (Jorgensen et al., 2009). 
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The power to detect SNPs with minor effects and small allele frequencies is low in studies 

having a small sample size  (Jorgensen et al., 2009, Kraft et al., 2009). This study, consisting 

of 240 women (80 cases and 160 controls) was underpowered to detect SNPs with a MAF < 

15% and a minor effect between 0.6 and 2.0 (close to an OR of 1), as demonstrated in Section 

2.3 in Chapter 2. Power decreased slightly more for SNPs that failed to be genotyped in some 

individuals, causing the reduction in sample size for each SNP association analysis (the 

lowest being a 5% reduction).  

Genetic epistasis and architecture are also a cause for non-reproducibility and an increased 

type II error, which includes factors such as the allele frequency and counter effects of other 

genetic variants (Chen et al., 2019, Greene et al., 2009). A difference in allele frequency of 

less than 0.01 at a second interacting variant has been shown to dramatically reduce the power 

to replicate the main effect of a significantly associated variant. Even a reversal of allelic 

effects has been noted, where an allele identified as being protective becomes associated with 

increased risk in follow up replication (Greene et al., 2009). The interplay between genetic 

variants are thus important to take into consideration when conducting genetic association 

studies, especially in African populations that have a high degree of genetic variation (Bryc et 

al., 2010, Tishkoff et al., 2009). 

4.6 THE MATTER OF CORRECTING FOR MULTIPLE TESTING  

The association between rs4581569, GDM, and fasting glucose, became insignificant after 

correcting for multiple testing (EMP2 > 0.05). Multiple testing correction is used to filter out 

possible false positive associations (thus the occurrence of a type I error), and is usually 

performed in GWAS that test thousands of SNPs simultaneously. In this study it was used as 

a measure of the validity of the associations found. If the association was able to uphold 

significance, this would have provided evidence of a true and strong detected genetic 

association. 

Even though multiple testing correction is a standard approach, it is not always applied in 

candidate gene association studies (Qu et al., 2010). Correcting for multiple testing is 

sometimes seen as overly conservative when only testing a few candidate SNPs, and when 

there is no known major gene effects within the disease investigated (Patnala et al., 2013). 

Gene effects that are assessed for association with complex diseases are known to be very 

modest, which is also a concern for large studies that remain underpowered to reach very 

stringent levels of significance (Panagiotou et al., 2011). Therefore, there is a fine line 
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between avoiding false positive associations and not missing a true association, that could be 

affected by the power of the study. The associations found were therefore regarded as a 

notable finding despite not being supported by multiple testing correction. 

4.7 STRENGHTS AND LIMITATIONS  

The study had several strengths, but also some limitations. On the positive side, this study was 

one of the first to assess genetic factors in association with GDM in a black South African 

cohort. Investigating MODY genes increased the novelty of this research as these genes have 

been relatively understudied in people of African descent. The second strength was the 

selection of South African-specific tagSNPs which may be more relevant than using data from 

proxy populations. Using the Zulu population data from the AGVP (Gurdasani et al., 2015) 

provided additional specificity, an improvement from other South African-based studies that, 

in the past, only had HapMap reference data from geographically and genetically different 

populations, such as the Yoruba and Luhya, to use as a proxy (May et al., 2013, Teo et al., 

2010). 

There were four limitations to this study. The main limiting factor in this study was the 

sample size that consequently resulted in less power to detect certain associations. 

Nonetheless, the study was able to identify a genetic association, in a gene that can be 

explored further through studies on GDM in African populations.  

The second limitation was the approach taken for the selection of SNPs. The intent of using 

the Tagger algorithm was to select common tagSNPs (with a frequency of >5%). In order to 

reduce the amount of SNPs suited to the budget of the study, the CEU-block region, 

containing a SNP that has previously been significantly associated with GDM, were used as 

input. Following this approach yielded only seven tagSNPs, including rs112257899 in GCK, 

rs73169687, rs7981781, rs4581569, rs61944006 in PDX1, as well as, rs5210 and rs5214 in 

KCNJ11. Sixteen SNPs were not in LD with any other SNP. The small amount of tagSNPs 

captured was conceivable as LD stretches in African populations are shorter and more 

fragmented compared to that of Caucasian populations (Bush and Moore, 2012). The 

advantage of including non-tagSNPs however, was that it facilitated direct association testing 

(Jorgensen et al., 2009).  

The third limitation was the high genotyping failure rate and assay design challenges that 

caused seven SNPs not be analysed from the 23 SNPs that had originally been chosen for 
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investigation. Failure in genotyping SNPs in some individuals also caused a reduction in 

sample size for each allele and genotype association analysis. Taking these missing genotype 

and allele results into account could have had an influence on the results, and therefore to 

confirm the statistical findings, it is advisable to troubleshoot and thereby re-genotype the 

SNPs with a high genotyping failure rate of >0.5. 

Finally, the fourth limitation has to do with bioinformatic tools currently available for 

function prediction. There is still a large gap in our understanding of the functional impact of 

genetic variants found in the human genome. Bioinformatic tools are unable to distinguish 

most SNPs from being non-functional from those only lacking in functional information. 

Moreover, the tools also seem to be inadequate for the functional prediction of intronic 

variants, and variants possibly having protective functions. Combining a few functional 

prediction tools was thus necessary to pull as much information as possible and to confirm the 

prediction outputs. As the body of evidence grows, and functional prediction and annotation 

tools become more sophisticated, confidence in the biological significance or insignificance 

of rs4581569 and rs9512818 will likely become more calculable. 

4.8 FUTURE PROSPECTS 

To further, and more thoroughly, evaluate the contribution of genetic variation from the six 

genes of interest, each entire gene should be used for tagSNP selection. This would then 

determine more accurately what the contribution of genetic variation from each gene is 

relative to the risk of GDM. For this purpose, a larger budget would be necessary, and maybe 

the use of higher throughput technologies, to make it economically feasible. Sequencing could 

genotype a more comprehensive set of SNPs, also including the SNPs previously found to be 

associated with GDM in other populations.    

Increasing the sample size would have a beneficial impact on the power of future studies to 

identify rare variants of low or modest effect on the phenotype. Further investigating rs4581569 in 

a larger cohort could validate the genetic association found with GDM and fasting glucose. This is 

particularly necessary since the significance of the association with fasting glucose did not pass 

multiple testing correction. The contribution of the genetic variation, relative to the influence of 

BMI on the association with fasting glucose levels, would also become clearer in a larger study. A 

better representation of women of the population would be obtained in a bigger sample size, 

including women with characteristics, such as high and low BMI, in almost equal proportion. This 

would allow for increased comparison potential.  
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Considering the fact that BMI might mediate the genetic effect on GDM and fasting glucose, the 

genetic association and its interaction with BMI should be further investigated. It would be 

interesting to examine if the genetic association with fasting glucose is only present in a certain 

group of women having either normal (≤24.9 kg/m2) or high BMIs (>25 kg/m2). Further extending 

the research to the study of gene-gene and gene-environment effects could give comprehensive 

perspective on all the biological factors influencing GDM risk in the black South African 

population. 

5 CONCLUSION 

In this genetic association study, 16 SNPs in five MODY genes (HNF4A, GCK, HNF1A, 

PDX1, and KCNJ11) and one T2D-associated gene (TCF7L) were assessed in relation to 

GDM risk. In the black South African cohort, one tagSNP, rs4581569 in the PDX1 gene, was 

significantly associated with GDM and fasting glucose levels. Regression analyses revealed 

that carrying the minor T-allele of rs4581569 was associated with decreased GDM risk and 

low fasting glucose levels. The genetic variation captured by the tagSNP, including the linked 

SNP rs4581569, may have a potential protective effect in black South African women, by 

regulating glucose metabolism. The association with regard to GDM risk is a novel discovery, 

but due to a relatively small sample size and the finding not being supported by multiple 

testing correction, this finding requires validation. Studying this SNP in a bigger cohort is 

advised to increase the power to detect the moderate effect identified. 

The black South African population has been relatively understudied with regard to genetic 

factors contributing to the development of GDM, as well as T2D. This study has therefore 

raised awareness of the scarcity of genetic studies in this particular population group. The 

findings of this study and the allele frequency data generated for rs4581569 add to the 

research efforts that have recently begun to elucidate the genetic determinants of diabetes in 

Sub-Saharan African populations. In the future of personalised medicine, this could be used 

for developing treatment or preventative measures tailored to an individual’s genetic profile.  

 

 

 

 



66 
 

6 Reference list 

Abecasis, G. R., Altshuler, D., Auton, A., et al. (2010) A map of human genome variation 

from population-scale sequencing. Nature, 467 (7319), 1061-1073. doi: 

10.1038/nature09534 

Adeyemo, A. A., Tekola-Ayele, F., Doumatey, A. P., et al. (2015) Evaluation of Genome 

Wide Association Study Associated Type 2 Diabetes Susceptibility Loci in Sub 

Saharan Africans. Frontiers in Genetics, 6, 335. doi: 10.3389/fgene.2015.00335 

Adeyemo, A. A., Zaghloul, N. A., Chen, G., et al. (2019) ZRANB3 is an African-specific 

type 2 diabetes locus associated with beta-cell mass and insulin response. Nature 

communications, 10 (1), 3195-3195. doi: 10.1038/s41467-019-10967-7 

Ali, O. (2013) Genetics of type 2 diabetes. World Journal of Diabetes, 4 (4), 114-123. doi: 

10.4239/wjd.v4.i4.114 

Althari, S. & Gloyn, A. L. (2015) When is it MODY? Challenges in the Interpretation of 

Sequence Variants in MODY Genes. Review of Diabetic Studies, 12 (3-4), 330-348. 

doi: 10.1900/RDS.2015.12.330 

Amos, W., Driscoll, E. & Hoffman, J. (2011) Candidate genes versus genome-wide 

associations: which are better for detecting genetic susceptibility to infectious disease? 

Proceedings of the Royal Society B: Biological Sciences, 278 (1709), 1183-1188. doi: 

10.1098/rspb.2010.1920 

Anderson, C. A., Pettersson, F. H., Clarke, G. M., et al. (2010) Data quality control in genetic 

case-control association studies. Nature protocols, 5 (9), 1564-1573. doi: 

10.1038/nprot.2010.116 

Ao, D., Wang, H.-J., Wang, L.-F., et al. (2015) The rs2237892 Polymorphism in KCNQ1 

influences gestational diabetes mellitus and glucose levels: A case-control study and 

meta-analysis. PloS ONE, 10 (6), e0128901. doi: 10.1371/journal.pone.0128901 

Ashizawa, S., Brunicardi, F. C. & Wang, X.-P. (2004) PDX-1 and the pancreas. Pancreas, 28 

(2), 109-120. doi: 10.1097/00006676-200403000-00001 

Auer, P. L., Johnsen, J. M., Johnson, A. D., et al. (2012) Imputation of exome sequence 

variants into population- based samples and blood-cell-trait-associated loci in African 

Americans: NHLBI GO Exome Sequencing Project. American Journal of Human 

Genetics, 91 (5), 794-808. doi: 10.1016/j.ajhg.2012.08.031 

Balding, D. J. (2006) A tutorial on statistical methods for population association studies. Nat 

Rev Genet, 7 (10), 781-791. doi: 10.1038/nrg1916 



67 
 

Barker, D. J. (1990) The fetal and infant origins of adult disease. BMJ (Clinical Research 

Ed.), 301 (6761), 1111. doi: 10.1136/bmj.301.6761.1111 

Barker, D. J. (2007) The origins of the developmental origins theory. Journal of Internal 

Medicine, 261 (5), 412-417. doi: 10.1111/j.1365-2796.2007.01809.x 

Barrett, J. C. (2009) Haploview: Visualization and analysis of SNP genotype data. Cold 

Spring Harbor Protocols, 2009 (10), pdb. ip71. doi: 10.1101/pdb.ip71 

Beischer, N. A., Wein, P., Sheedy, M. T., et al. (1996) Identification and treatment of women 

with hyperglycaemia diagnosed during pregnancy can significantly reduce perinatal 

mortality rates. Australian and New Zealand Journal of Obstetrics and Gynaecology, 

36 (3), 239-247. doi: 10.1111/j.1479-828X.1996.tb02703.x 

Bellamy, L., Casas, J.-P., Hingorani, A. D., et al. (2009) Type 2 diabetes mellitus after 

gestational diabetes: a systematic review and meta-analysis. Lancet, 373 (9677), 1773-

1779. doi: 10.1016/S0140-6736(09)60731-5 

Bentley, A. R., Callier, S. & Rotimi, C. N. (2017) Diversity and inclusion in genomic 

research: why the uneven progress? Journal of Community Genetics, 8 (4), 255-266. 

doi: 10.1007/s12687-017-0316-6 

Berensmeier, S. (2006) Magnetic particles for the separation and purification of nucleic acids. 

Applied Microbiology and Biotechnology, 73 (3), 495-504. doi: 10.1007/s00253-006-

0675-0 

Beyene, J. & Pare, G. (2013) Statistical genetics with application to population-based study 

design: a primer for clinicians. European Heart Journal, 35 (8), 495-500. doi: 

10.1093/eurheartj/eht272 

Bouchard, L., Thibault, S., Guay, S. P., et al. (2010) Leptin gene epigenetic adaptation to 

impaired glucose metabolism during pregnancy. Diabetes Care, 33 (11), 2436-2441. 

doi: 10.2337/dc10-1024 

Boyle, A. P., Hong, E. L., Hariharan, M., et al. (2012) Annotation of functional variation in 

personal genomes using RegulomeDB. Genome Research, 22 (9), 1790-1797. doi: 

10.1101/gr.137323.112 

Brookes, A. J. (1999) The essence of SNPs. Gene, 234 (2), 177-186. doi: 10.1016/S0378-

1119(99)00219-X 

Bryc, K., Auton, A., Nelson, M. R., et al. (2010) Genome-wide patterns of population 

structure and admixture in West Africans and African Americans. Proceedings of the 

National Academy of Sciences, 107 (2), 786-791. doi: 10.1073/pnas.0909559107 



68 
 

Buchanan, T. A. & Xiang, A. H. (2005) Gestational diabetes mellitus. The Journal of Clinical 

Investigation, 115 (3), 485-491. doi: 10.1172/JCI24531 

Bush, W. S. & Moore, J. H. (2012) Chapter 11: Genome-Wide Association Studies. PLoS 

Computational Biology, 8 (12), e1002822. doi: 10.1371/journal.pcbi.1002822 

Butler, J. M., Hall, N., Narendran, N., et al. (2017) Identification of candidate protective 

variants for common diseases and evaluation of their protective potential. BMC 

Genomics, 18 (1), 575. doi: 10.1186/s12864-017-3964-3 

Buzdugan, L., Kalisch, M., Navarro, A., et al. (2016) Assessing statistical significance in 

multivariable genome wide association analysis. Bioinformatics, 32 (13), 1990-2000. 

doi: 10.1093/bioinformatics/btw128 

Carlson, C. S., Eberle, M. A., Rieder, M. J., et al. (2004) Selecting a maximally informative 

set of single-nucleotide polymorphisms for association analyses using linkage 

disequilibrium. American Journal of Human Genetics, 74 (1), 106-120. doi: 

10.1086/381000 

Carolan-Olah, M., Duarte-Gardea, M. & Lechuga, J. (2015) A critical review: early life 

nutrition and prenatal programming for adult disease. Journal of Clinical Nursing, 24 

(23-24), 3716-3729. doi: 10.1111/jocn.12951 

Chang, S., Wang, Z., Wu, L., et al. (2017) Association between TCF7L2 polymorphisms and 

gestational diabetes mellitus: A meta‐analysis. Journal of Diabetes Investigation, 8 

(4), 560-570. doi: 10.1111/jdi.12612 

Chen, A. H., Ge, W., Metcalf, W., et al. (2019) An assessment of true and false positive 

detection rates of stepwise epistatic model selection as a function of sample size and 

number of markers. Heredity, 122 (5), 660-671. doi: 10.1038/s41437-018-0162-2 

Cho, Y., Kim, T., Lim, S., et al. (2009) Type 2 diabetes-associated genetic variants 

discovered in the recent genome-wide association studies are related to gestational 

diabetes mellitus in the Korean population. Diabetologia, 52 (2), 253-261. doi: 

10.1007/s00125-008-1196-4 

Clarke, G. M., Anderson, C. A., Pettersson, F. H., et al. (2011) Basic statistical analysis in 

genetic case-control studies. Nature Protocols, 6 (2), 121-133. doi: 

10.1038/nprot.2010.182 

Colclough, K., Bellanne‐Chantelot, C., Saint‐Martin, C., et al. (2013) Mutations in the genes 

encoding the transcription factors hepatocyte nuclear factor 1 alpha and 4 alpha in 

maturity‐onset diabetes of the young and hyperinsulinemic hypoglycemia. Human 

Mutation, 34 (5), 669-685. doi: 10.1002/humu.22279 



69 
 

Colclough, K., Saint-Martin, C., Timsit, J., et al. (2014) Clinical utility gene card for: 

Maturity-onset diabetes of the young. European Journal of Human Genetics, 22 (9), 

1153. doi: 10.1038/ejhg.2014.14 

Coustan, D. R., Lowe, L. P., Metzger, B. E., et al. (2010) The HAPO Study: Paving The Way 

For New Diagnostic Criteria For GDM. American Journal of Obstetrics and 

Gynecology, 202 (6), 654.e1-654.e6. doi: 10.1016/j.ajog.2010.04.006 

Cox, A. R. & Kushner, J. A. (2017) Area IV Knockout Reveals How Pdx1 Is Regulated in 

Postnatal β-Cell Development. Diabetes, 66 (11), 2738-2740. doi: 10.2337/dbi17-

0036 

Dabelea, D. (2007) The predisposition to obesity and diabetes in offspring of diabetic 

mothers. Diabetes Care, 30 (Suppl. 2), S169-S174. doi: 10.2337/dc07-s211 

Daly, B., Toulis, K. A., Thomas, N., et al. (2018) Increased risk of ischemic heart disease, 

hypertension, and type 2 diabetes in women with previous gestational diabetes 

mellitus, a target group in general practice for preventive interventions: A population-

based cohort study. PLoS Medicine, 15 (1), e1002488. doi: 

10.1371/journal.pmed.1002488 

De Bakker, P. I. W., Yelensky, R., Pe'er, I., et al. (2005) Efficiency and power in genetic 

association studies. Nature Genetics, 37 (11), 1217-1223. doi: 10.1038/ng1669 

Del Rosario, M. C., Ossowski, V., Knowler, W. C., et al. (2014) Potential epigenetic 

dysregulation of genes associated with MODY and type 2 diabetes in humans exposed 

to a diabetic intrauterine environment: an analysis of genome-wide DNA methylation. 

Metabolism, 63 (5), 654-660. doi: 10.1016/j.metabol.2014.01.007 

Ding, M., Chavarro, J., Olsen, S., et al. (2018) Genetic variants of gestational diabetes 

mellitus: a study of 112 SNPs among 8722 women in two independent populations. 

Diabetologia, 61 (8), 1758-1768. doi: 10.1007/s00125-018-4637-8 

Doddabelavangala Mruthyunjaya, M., Chapla, A., Hesarghatta Shyamasunder, A., et al. 

(2017) Comprehensive Maturity Onset Diabetes of the Young (MODY) Gene 

Screening in Pregnant Women with Diabetes in India. PLoS ONE, 12 (1), e0168656. 

doi: 10.1371/journal.pone.0168656 

Ellis, J. A. & Ong, B. (2017) The MassARRAY® System for targeted SNP genotyping. In: S. 

J. White & S. Cantsilieris, (eds.). Genotyping. Methods in Molecular Biology. NY: 

Humana Press, pp. 77-94. doi: 10.1007/978-1-4939-6442-0_5 



70 
 

Fatima, S. S., Chaudhry, B., Khan, T. A., et al. (2016) KCNQ1 rs2237895 polymorphism is 

associated with Gestational Diabetes in Pakistani Women. Pakistan Journal of 

Medical Sciences, 32 (6), 1380-1385. doi: 10.12669/pjms.326.11052 

Ferrara, A. (2007) Increasing prevalence of gestational diabetes mellitus. Diabetes Care, 30 

(Suppl. 2), S141-S146. doi: 10.2337/dc07-s206 

Firdous, P., Nissar, K., Ali, S., et al. (2018) Genetic Testing of Maturity-Onset Diabetes of 

the Young Current Status and Future Perspectives. Frontiers in Endocrinology, 9, 253. 

doi: 10.3389/fendo.2018.00253 

Flannick, J., Johansson, S. & Njolstad, P. R. (2016) Common and rare forms of diabetes 

mellitus: towards a continuum of diabetes subtypes. Nature Reviews Endocrinology, 

12 (7), 394-406. doi: 10.1038/nrendo.2016.50 

Fuchsberger, C., Flannick, J., Teslovich, T. M., et al. (2016) The genetic architecture of type 

2 diabetes. Nature, 536 (7614), 41-47. doi: 10.1038/nature18642 

Fusi, N., Lippert, C., Lawrence, N. D., et al. (2014) Warped linear mixed models for the 

genetic analysis of transformed phenotypes. Nature Communications, 5 (1), 4890. doi: 

10.1038/ncomms5890 

Gabriel, S., Ziaugra, L. & Tabbaa, D. (2009) SNP genotyping using the Sequenom 

MassARRAY iPLEX platform. Current Protocols in Human Genetics, 60 (1), 2.12.1-

2.12.18. doi: 10.1002/0471142905.hg0212s60 

Gaudet, D., Méthot, J., Déry, S., et al. (2013) Efficacy and long-term safety of alipogene 

tiparvovec (AAV1-LPL S447X) gene therapy for lipoprotein lipase deficiency: an 

open-label trial. Gene Therapy, 20 (4), 361–369. doi: 10.1038/gt.2012.43 

Gragnoli, C., Stanojevic, V., Gorini, A., et al. (2005a) IPF-1/MODY4 gene missense mutation 

in an Italian family with type 2 and gestational diabetes. Metabolism, 54 (8), 983-8. 

doi: 10.1016/j.metabol.2005.01.037 

Gragnoli, C., Stanojevic, V., Gorini, A., et al. (2005b) IPF-1/MODY4 gene missense 

mutation in an Italian family with type 2 and gestational diabetes. Metabolism, 54 (8), 

983-988. doi: 10.1016/j.metabol.2005.01.037 

Green, M. R. & Sambrook, J. (2018) Isolation and Quantification of DNA. Cold Spring 

Harbor Protocols, 2018 (6), pdb. top093336. doi: 10.1101/pdb.top093336 

Green, M. R. & Sambrook, J. (2019) Analysis of DNA by agarose gel electrophoresis. Cold 

Spring Harbor Protocols, 2019 (1), pdb. top100388. doi: 10.1101/pdb.top100388 



71 
 

Greene, C. S., Penrod, N. M., Williams, S. M., et al. (2009) Failure to replicate a genetic 

association may provide important clues about genetic architecture. PloS ONE, 4 (6), 

e5639. doi: 10.1371/journal.pone.0005639 

Guariguata, L., Whiting, D. R., Hambleton, I., et al. (2014) Global estimates of diabetes 

prevalence for 2013 and projections for 2035. Diabetes Research and Clinical 

Practice, 103 (2), 176-185. doi: 10.1016/j.diabres.2013.11.002 

Gurdasani, D., Carstensen, T., Tekola-Ayele, F., et al. (2015) The African Genome Variation 

Project shapes medical genetics in Africa. Nature, 517 (7534), 327-332. doi: 

10.1038/nature13997 

Guz, Y., Montminy, M. R., Stein, R., et al. (1995) Expression of murine STF-1, a putative 

insulin gene transcription factor, in beta cells of pancreas, duodenal epithelium and 

pancreatic exocrine and endocrine progenitors during ontogeny. Development, 121 (1), 

11-18.   

Hanna, F. W. & Peters, J. R. (2002) Screening for gestational diabetes; past, present and 

future. Diabetic Medicine, 19 (5), 351-358. doi: 10.1046/j.1464-5491.2002.00684.x 

Hodgkinson, A. & Eyre-Walker, A. (2010) Human triallelic sites: evidence for a new 

mutational mechanism? Genetics, 184 (1), 233-241. doi: 10.1534/genetics.109.110510 

Holland, P. M., Abramson, R. D., Watson, R., et al. (1991) Detection of specific polymerase 

chain reaction product by utilizing the 5'----3'exonuclease activity of Thermus 

aquaticus DNA polymerase. Proceedings of the National Academy of Sciences, 88 

(16), 7276-7280. doi: 10.1073/pnas.88.16.7276 

Hong, K.-W., Chung, M. & Cho, S. B. (2014) Replication of Interactions between Genome-

Wide Genetic Variants and Body Mass Index in Fasting Glucose and Insulin Levels. 

Genomics & Informatics, 12 (4), 236. doi: 10.5808/GI.2014.12.4.236 

Hübner, J., Heinzler, R., Arlt, C., et al. (2017) An automated and compartmented fluidic 

reactor device for multi-step sample-to-answer processes using magnetic particles. 

Reaction Chemistry & Engineering, 2 (3), 349-365. doi: 10.1039/C6RE00219F  

Huerta-Chagoya, A., Vázquez-Cárdenas, P., Moreno-Macías, H., et al. (2015) Genetic 

determinants for gestational diabetes mellitus and related metabolic traits in Mexican 

women. PloS ONE, 10 (5), e0126408. doi: 10.1371/journal.pone.0126408 

Jonsson, J., Carlsson, L., Edlund, T., et al. (1994) Insulin-promoter-factor 1 is required for 

pancreas development in mice. Nature, 371 (6498), 606-609. doi: 10.1038/371606a0 



72 
 

Jorgensen, T. J., Ruczinski, I., Kessing, B., et al. (2009) Hypothesis-Driven Candidate Gene 

Association Studies: Practical Design and Analytical Considerations. American 

Journal of Epidemiology, 170 (8), 986-993. doi: 10.1093/aje/kwp242 

Jurinke, C., Van Den Boom, D., Cantor, C. R., et al. (2002) The use of MassARRAY 

technology for high throughput genotyping. In: J. Hoheisel, (ed.). Chip Technology. 

Advances in Biochemical Engineering/Biotechnology. Heidelberg, DE: Springer, pp. 

57-74. doi: 10.1007/3-540-45713-5_4 

Kanthimathi, S., Chidambaram, M., Bodhini, D., et al. (2017) Association of recently 

identified type 2 diabetes gene variants with Gestational Diabetes in Asian Indian 

population. Molecular Genetics and Genomics, 292 (3), 585–591. doi: 

10.1007/s00438-017-1292-6 

Karki, R., Pandya, D., Elston, R. C., et al. (2015) Defining "mutation" and "polymorphism" in 

the era of personal genomics. BMC Medical Genomics, 8 (1), 37. doi: 

10.1186/s12920-015-0115-z 

Kasuga, Y., Hata, K., Tajima, A., et al. (2017) Association of common polymorphisms with 

gestational diabetes mellitus in Japanese women: A case-control study. Endocrine 

Journal, 64 (4), 463-475. doi: 10.1507/endocrj.EJ16-0431 

Kim, C., Berger, D. K. & Chamany, S. (2007) Recurrence of gestational diabetes mellitus. 

Diabetes Care, 30 (5), 1314-1319. doi: 10.2337/dc06-2517 

Kim, J. Y., Cheong, H. S., Park, B.-L., et al. (2011) Melatonin receptor 1 B polymorphisms 

associated with the risk of gestational diabetes mellitus. BMC Medical Genetics, 12 

(1), 82. doi: 10.1186/1471-2350-12-82 

Kim, S. & Misra, A. (2007) SNP genotyping: technologies and biomedical applications. 

Annual Review of Biomedical Engineering, 9, 289-320. doi: 

10.1146/annurev.bioeng.9.060906.152037 

Kircher, M., Witten, D. M., Jain, P., et al. (2014) A general framework for estimating the 

relative pathogenicity of human genetic variants. Nature Genetics, 46 (3), 310-315. 

doi: 10.1038/ng.2892 

Kitzmiller, J. L., Dang-Kilduff, L. & Taslimi, M. M. (2007) Gestational diabetes after 

delivery: short-term management and long-term risks. Diabetes Care, 30 (Suppl. 2), 

S225-S235. doi: 10.2337/dc07-s221 

Knijnenburg, T. A., Wessels, L. F. A., Reinders, M. J. T., et al. (2009) Fewer permutations, 

more accurate P-values. Bioinformatics, 25 (12), i161-i168. doi: 

10.1093/bioinformatics/btp211 



73 
 

Koch, W. H. (2004) Technology platforms for pharmacogenomic diagnostic assays. Nature 

Reviews Drug Discovery, 3 (9), 749–761 doi: 10.1038/nrd1496 

Koetsier, G. & Cantor, E. (2019) A Practical Guide to Analyzing Nucleic Acid Concentration 

and Purity with Microvolume Spectrophotometers. Ipswich, MA: New England 

BioLabs Inc. Available: https://www.neb.com/-/media/catalog/application-

notes/mvs_analysis_of_na_concentration_and_purity.pdf [Accessed: 15 June 2019]  

Kraft, P., Zeggini, E. & Ioannidis, J. P. A. (2009) Replication in genome-wide association 

studies. Statistical Science, 24 (4), 561-573. doi: 10.1214/09-STS290 

Kropp, P. A., Dunn, J. C., Carboneau, B. A., et al. (2018) Cooperative function of Pdx1 and 

Oc1 in multipotent pancreatic progenitors impacts postnatal islet maturation and 

adaptability. American Journal of Physiology-Endocrinology and Metabolism, 314 

(4), E308-E321. doi: 10.1152/ajpendo.00260.2017 

Kruger, H. S., Venter, C. S., Vorster, H. H., et al. (2002) Physical inactivity is the major 

determinant of obesity in black women in the North West Province, South Africa: the 

THUSA study. Transition and Health During Urbanisation of South Africa. Nutrition, 

18 (5), 422-427. doi: 10.1016/s0899-9007(01)00751-1 

Ku, C. S., Loy, E. Y., Salim, A., et al. (2010) The discovery of human genetic variations and 

their use as disease markers: past, present and future. Journal of Human Genetics, 55 

(7), 403-415. doi: 10.1038/jhg.2010.55 

Kwak, S. H., Kim, S. H., Cho, Y. M., et al. (2012) A genome-wide association study of 

gestational diabetes mellitus in Korean women. Diabetes, 61 (2), 531-541. doi: 

10.2337/db11-1034 

Li, L.-J., Aris, I. M., Su, L. L., et al. (2018) Effect of gestational diabetes and hypertensive 

disorders of pregnancy on postpartum cardiometabolic risk. Endocrine Connections, 7 

(3), 433-442. doi: 10.1530/EC-17-0359 

Lindsay, R. S., Mackin, S. T. & Nelson, S. M. (2017) Gestational diabetes mellitus—right 

person, right treatment, right time? BMC Medicine, 15 (1), 163. doi: 10.1186/s12916-

017-0925-2 

Liu, Q., Huang, Z., Li, H., et al. (2016) Relationship between melatonin receptor 1B 

(rs10830963 and rs1387153) with gestational diabetes mellitus: a case-control study 

and meta-analysis. Archives of Gynecology and Obstetrics, 294 (1), 55-61. doi: 

10.1007/s00404-015-3948-y 

https://www.neb.com/-/media/catalog/application-notes/mvs_analysis_of_na_concentration_and_purity.pdf
https://www.neb.com/-/media/catalog/application-notes/mvs_analysis_of_na_concentration_and_purity.pdf


74 
 

Livak, K. J., Flood, S., Marmaro, J., et al. (1995) Oligonucleotides with fluorescent dyes at 

opposite ends provide a quenched probe system useful for detecting PCR product and 

nucleic acid hybridization. Genome Research, 4 (6), 357-362. doi: 10.1101/gr.4.6.357 

Lowe Jr, W. L., Scholtens, D. M., Sandler, V., et al. (2016) Genetics of gestational diabetes 

mellitus and maternal metabolism. Current Diabetes Reports, 16 (2), 15. doi: 

10.1007/s11892-015-0709-z 

Macaulay, S., Dunger, D. B. & Norris, S. A. (2014) Gestational Diabetes Mellitus in Africa: 

A Systematic Review. PLoS ONE, 9 (6), e97871. doi: 10.1371/journal.pone.0097871 

Macaulay, S., Ngobeni, M., Dunger, D. B., et al. (2018) The prevalence of gestational 

diabetes mellitus amongst black South African women is a public health concern. 

Diabetes Research and Clinical Practice, 139, 278-287. doi: 

10.1016/j.diabres.2018.03.012 

Manning, A. K., Hivert, M.-F., Scott, R. A., et al. (2012) A genome-wide approach 

accounting for body mass index identifies genetic variants influencing fasting 

glycemic traits and insulin resistance. Nature Genetics, 44 (6), 659-669. doi: 

10.1038/ng.2274 

Mao, H., Li, Q. & Gao, S. (2012) Meta-analysis of the relationship between common type 2 

diabetes risk gene variants with gestational diabetes mellitus. PLoS ONE, 7 (9), 

e45882. doi: 10.1371/journal.pone.0045882 

Marees, A. T., De Kluiver, H., Stringer, S., et al. (2018) A tutorial on conducting genome‐

wide association studies: Quality control and statistical analysis. International Journal 

of Methods in Psychiatric Research, 27 (2), e1608. doi: 10.1002/mpr.1608 

May, A., Hazelhurst, S., Li, Y., et al. (2013) Genetic diversity in black South Africans from 

Soweto. BMC Genomics, 14 (1), 644. doi: 10.1186/1471-2164-14-644 

Mccarthy, M. I., Abecasis, G. R., Cardon, L. R., et al. (2008) Genome-wide association 

studies for complex traits: consensus, uncertainty and challenges. Nature Reviews 

Genetics, 9, 356-369. doi: 10.1038/nrg2344 

Mclaren, W., Gil, L., Hunt, S. E., et al. (2016) The Ensembl Variant Effect Predictor. Genome 

Biology, 17 (1), 122. doi: 10.1186/s13059-016-0974-4 

Metzger, B. E., Gabbe, S. G., Persson, B., et al. (2010) International association of diabetes 

and pregnancy study groups recommendations on the diagnosis and classification of 

hyperglycemia in pregnancy. Diabetes Care, 33 (3), 676-82. doi: 10.2337/dc09-1848 



75 
 

Mfenyana, K., Griffin, M., Yogeswaran, P., et al. (2006) Socio-economic inequalities as a 

predictor of health in South Africa--the Yenza cross-sectional study. South African 

Medical Journal, 96 (4), 323-330 

Micklesfield, L. K., Kagura, J., Munthali, R., et al. (2018) Demographic, socio-economic and 

behavioural correlates of BMI in middle-aged black men and women from urban 

Johannesburg, South Africa. Global Health Action, 11 (Suppl. 2), 1448250. doi: 

10.1080/16549716.2018.1448250 

Miller, H. C. (1946) The effect of diabetic and prediabetic pregnancies on the fetus and 

newborn infant. The Journal of Pediatrics, 29 (4), 455-461. doi: 10.1016/S0022-

3476(46)80164-1 

Monteiro, L. J., Norman, J. E., Rice, G. E., et al. (2016) Fetal programming and gestational 

diabetes mellitus. Placenta, 48 (Suppl. 1), S54-S60. doi: 

10.1016/j.placenta.2015.11.015 

Myles, S., Davison, D., Barrett, J., et al. (2008) Worldwide population differentiation at 

disease-associated SNPs. BMC Medical Genomics, 1 (1),  22. doi: 10.1186/1755-

8794-1-22 

Nakai, K., Habano, W., Fujita, T., et al. (2002) Highly multiplexed genotyping of coronary 

artery disease‐associated SNPs using MALDI‐TOF mass spectrometry. Human 

Mutation, 20 (2), 133-138. doi: 10.1002/humu.10099 

Namipashaki, A., Razaghi-Moghadam, Z. & Ansari-Pour, N. (2015) The Essentiality of 

Reporting Hardy-Weinberg Equilibrium Calculations in Population-Based Genetic 

Association Studies. Cell Journal, 17 (2), 187-192. doi: 10.22074/cellj.2016.3711 

Newton-Cheh, C. & Hirschhorn, J. N. (2005) Genetic association studies of complex traits: 

design and analysis issues. Mutation Research/Fundamental and Molecular 

Mechanisms of Mutagenesis, 573 (1-2), 54-69. doi: 10.1016/j.mrfmmm.2005.01.006 

Nishizaki, S. S. & Boyle, A. P. (2017) Mining the unknown: assigning function to noncoding 

single nucleotide polymorphisms. Trends in Genetics, 33 (1), 34-45. doi: 

10.1016/j.tig.2016.10.008 

Niu, W. & Qi, Y. (2011) Meta-based association of the lipoprotein lipase gene S447X variant 

with hypertension and blood pressure variation. Journal of Human Hypertension, 25 

(6), 383-390. doi: 10.1038/jhh.2010.68 

Offield, M. F., Jetton, T. L., Labosky, P. A., et al. (1996) PDX-1 is required for pancreatic 

outgrowth and differentiation of the rostral duodenum. Development, 122 (3), 983-995  



76 
 

Osbak, K. K., Colclough, K., Saint-Martin, C., et al. (2009) Update on mutations in 

glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent 

neonatal diabetes, and hyperinsulinemic hypoglycemia. Human Mutation, 30 (11), 

1512-1526. doi: 10.1002/humu.21110 

Ott, J., Kamatani, Y. & Lathrop, M. (2011) Family-based designs for genome-wide 

association studies. Nature Reviews Genetics, 12, 465-474. doi: 10.1038/nrg2989 

Panagiotou, O. A., Ioannidis, J. P. & Project, G.-W. S. (2011) What should the genome-wide 

significance threshold be? Empirical replication of borderline genetic associations. 

International Journal of Epidemiology, 41 (1), 273-286. doi: 10.1093/ije/dyr178 

Patnala, R., Clements, J. & Batra, J. (2013) Candidate gene association studies: a 

comprehensive guide to useful in silico tools. BMC Genetics, 14 (1), 39. doi: 

10.1186/1471-2156-14-39 

Pawlik, A., Teler, J., Maciejewska, A., et al. (2017) Adiponectin and leptin gene 

polymorphisms in women with gestational diabetes mellitus. Journal of Assisted 

Reproduction and Genetics, 34 (4), 511-516. doi: 10.1007/s10815-016-0866-2 

Popkin, B. M. & Gordon-Larsen, P. (2004) The nutrition transition: worldwide obesity 

dynamics and their determinants. International Journal of Obesity, 28 (3), S2-S9. doi: 

10.1038/sj.ijo.0802804 

Poulsen, P., Levin, K., Petersen, I., et al. (2005) Heritability of insulin secretion, peripheral 

and hepatic insulin action, and intracellular glucose partitioning in young and old 

Danish twins. Diabetes, 54 (1), 275-283. doi: 10.2337/diabetes.54.1.275 

Pourhoseingholi, M. A., Baghestani, A. R. & Vahedi, M. (2012) How to control confounding 

effects by statistical analysis. Gastroenterology and Hepatology from Bed to Bench, 5 

(2), 79-83. doi: 10.22037/ghfbb.v5i2.246 

Prasad, R. B. & Groop, L. (2015) Genetics of Type 2 Diabetes—Pitfalls and Possibilities. 

Genes, 6 (1), 87-123. doi: 10.3390/genes6010087 

Purcell, S. & Chang, C. (2017) PLINK 1.9. Available: 

http://pngu.mgh.harvard.edu/purcell/plink/ [Accessed: 15 November 2019]  

Purcell, S., Neale, B., Todd-Brown, K., et al. (2007) PLINK: a tool set for whole-genome 

association and population-based linkage analyses. The American Journal of Human 

Genetics, 81 (3), 559-575. doi: 10.1086/519795 

Qu, H.-Q., Tien, M. & Polychronakos, C. (2010) Statistical significance in genetic association 

studies. Clinical and Investigative Medicine, 33 (5), E266-E270 

http://pngu.mgh.harvard.edu/purcell/plink/


77 
 

Ragoussis, J. (2009) Genotyping technologies for genetic research. Annual Review of 

Genomics and Human Genetics, 10, 117-133. doi: 10.1146/annurev-genom-082908-

150116 

Ranganathan, P., Aggarwal, R. & Pramesh, C. S. (2015) Common pitfalls in statistical 

analysis: Odds versus risk. Perspectives in Clinical Research, 6 (4), 222-224. doi: 

10.4103/2229-3485.167092 

Ren, J., Xiang, A. H., Trigo, E., et al. (2014) Genetic variation in MTNR1B is associated with 

gestational diabetes mellitus and contributes only to the absolute level of beta cell 

compensation in Mexican Americans. Diabetologia, 57 (7), 1391-1399. doi: 

10.1007/s00125-014-3239-3 

Rentzsch, P., Witten, D., Cooper, G. M., et al. (2019) CADD: predicting the deleteriousness 

of variants throughout the human genome. Nucleic Acids Research, 47 (D1), D886-

D894. doi: 10.1093/nar/gky1016 

Retnakaran, R. (2017) Adiponectin and β-Cell Adaptation in Pregnancy. Diabetes, 66 (5), 

1121-1122. doi: 10.2337/dbi17-0001 

Reyes‐López, R., Pérez‐Luque, E. & Malacara, J. M. (2014) Metabolic, hormonal 

characteristics and genetic variants of TCF7L2 associated with development of 

gestational diabetes mellitus in Mexican women. Diabetes/Metabolism Research and 

Reviews, 30 (8), 701-706. doi: 10.1002/dmrr.2538 

Robitaille, J. & Grant, A. M. (2008) The genetics of gestational diabetes mellitus: evidence 

for relationship with type 2 diabetes mellitus. Genetics in Medicine, 10 (4), 240-250. 

doi: 10.1097/GIM.0b013e31816b8710 

Rojano, E., Seoane, P., Ranea, J. A., et al. (2018) Regulatory variants: from detection to 

predicting impact. Briefings in Bioinformatics, 20 (5), 1639–1654. doi: 

10.1093/bib/bby039 

Rosta, K., Al-Aissa, Z., Hadarits, O., et al. (2017) Association Study with 77 SNPs Confirms 

the Robust Role for the rs10830963/G of MTNR1B Variant and Identifies Two Novel 

Associations in Gestational Diabetes Mellitus Development. PLoS ONE, 12 (1), 

e0169781. doi: 10.1371/journal.pone.0169781 

Sawyer, S. L., Mukherjee, N., Pakstis, A. J., et al. (2005) Linkage disequilibrium patterns 

vary substantially among populations. European Journal of Human Genetics, 13 (5), 

677-686. doi: 10.1038/sj.ejhg.5201368 



78 
 

Schmidt, M. I., Duncan, B. B., Reichelt, A. J., et al. (2001) Gestational diabetes mellitus 

diagnosed with a 2-h 75-g oral glucose tolerance test and adverse pregnancy 

outcomes. Diabetes Care, 24 (7), 1151-1155. doi: 10.2337/diacare.24.7.1151 

Schork, N. J., Murray, S. S., Frazer, K. A., et al. (2009) Common vs. Rare Allele Hypotheses 

for Complex Diseases. Current Opinion in Genetics & development, 19 (3), 212-219. 

doi: 10.1016/j.gde.2009.04.010 

Shaat, N., Karlsson, E., Lernmark, A., et al. (2006) Common variants in MODY genes 

increase the risk of gestational diabetes mellitus. Diabetologia, 49 (7), 1545-1551. doi: 

10.1007/s00125-006-0258-8 

Shameer, K., Tripathi, L. P., Kalari, K. R., et al. (2016) Interpreting functional effects of 

coding variants: challenges in proteome-scale prediction, annotation and assessment. 

Briefings in Bioinformatics, 17 (5), 841-862. doi: 10.1093/bib/bbv084 

Shapiro, S. S. & Wilk, M. B. (1965) An analysis of variance test for normality (complete 

samples). Biometrika, 52 (3), 591-611. doi: 10.2307/2333709 

Shen, T. H., Tarczy-Hornoch, P., Detwiler, L. T., et al. (2010) Evaluation of probabilistic and 

logical inference for a SNP annotation system. Journal of biomedical informatics, 43 

(3), 407-418. doi: 10.1016/j.jbi.2009.12.002 

Shields, B., Hicks, S., Shepherd, M., et al. (2010) Maturity-onset diabetes of the young 

(MODY): how many cases are we missing? Diabetologia, 53 (12), 2504-2508. doi: 

10.1007/s00125-010-1799-4 

Shin, H. D., Park, B. L., Shin, H. J., et al. (2010) Association of KCNQ1 polymorphisms with 

the gestational diabetes mellitus in Korean women. Journal of Clinical Endocrinology 

& Metabolism, 95 (1), 445-449. doi: 10.1210/jc.2009-1393 

Slatkin, M. (2008) Linkage disequilibrium — understanding the evolutionary past and 

mapping the medical future. Nature Reviews Genetics, 9 (6), 477-485. doi: 

10.1038/nrg2361 

Solomon, C. G., Willett, W. C., Carey, V. J., et al. (1997) A prospective study of pregravid 

determinants of gestational diabetes mellitus. JAMA, 278 (13), 1078-1083. doi: 

10.1001/jama.1997.03550130052036 

Sonagra, A. D., Biradar, S. M., K, D., et al. (2014) Normal pregnancy- a state of insulin 

resistance. Journal of Clinical and Diagnostic Research, 8 (11), CC01-CC3. doi: 

10.7860/JCDR/2014/10068.5081 

Storm, N., Darnhofer-Patel, B., Van Den Boom, D., et al. (2003) MALDI-TOF mass 

spectrometry-based SNP genotyping. In: P. Kwok, (ed.). Nucleotide Polymorphisms. 



79 
 

Methods in Molecular Biology™. Totowa, NJ: Springer, pp. 241-262. doi: 10.1385/1-

59259-327-5:241 

Szumilas, M. (2010) Explaining odds ratios. Journal of the Canadian Academy of Child and 

Adolescent Psychiatry, 19 (3), 227-229 

Tam, V., Patel, N., Turcotte, M., et al. (2019) Benefits and limitations of genome-wide 

association studies. Nature Reviews Genetics, 20 (8), 467-484. doi: 10.1038/s41576-

019-0127-1 

Teare, M. D. & Barrett, J. H. (2005) Genetic linkage studies. Lancet, 366 (9490), 1036-1044. 

doi: 10.1016/S0140-6736(05)67382-5 

Teo, Y.-Y., Small, K. S. & Kwiatkowski, D. P. (2010) Methodological challenges of genome-

wide association analysis in Africa. Nature Reviews Genetics, 11 (2), 149-160. doi: 

10.1038/nrg2731 

Tibazarwa, K., Ntyintyane, L., Sliwa, K., et al. (2009) A time bomb of cardiovascular risk 

factors in South Africa: results from the Heart of Soweto Study “Heart Awareness 

Days”. International Journal of Cardiology, 132 (2), 233-239. doi: 

10.1016/j.ijcard.2007.11.067 

Tishkoff, S. A., Reed, F. A., Friedlaender, F. R., et al. (2009) The genetic structure and 

history of Africans and African Americans. Science, 324 (5930), 1035-1044. doi: 

10.1126/science.1172257 

Vaxillaire, M., Bonnefond, A. & Froguel, P. (2012) The lessons of early-onset monogenic 

diabetes for the understanding of diabetes pathogenesis. Best Practice & Research 

Clinical Endocrinology & Metabolism, 26 (2), 171-187. doi: 

10.1016/j.beem.2011.12.001 

Vaxillaire, M. & Froguel, P. (2008) Monogenic diabetes in the young, pharmacogenetics and 

relevance to multifactorial forms of type 2 diabetes. Endocrine Reviews, 29 (3), 254-

264. doi: 10.1210/er.2007-0024 

Voight, B. F., Scott, L. J., Steinthorsdottir, V., et al. (2010) Twelve type 2 diabetes 

susceptibility loci identified through large-scale association analysis. Nature Genetics, 

42 (7), 579-589. doi: 10.1038/ng.609 

Walker, S. H. & Duncan, D. B. (1967) Estimation of the probability of an event as a function 

of several independent variables. Biometrika, 54 (1-2), 167-179. doi: 

10.1093/biomet/54.1-2.167 

Watanabe, R. M. (2011) Inherited destiny? Genetics and gestational diabetes mellitus. 

Genome Medicine, 3 (3), 18. doi: 10.1186/gm232 



80 
 

Weng, J., Ekelund, M., Lehto, M., et al. (2002) Screening for MODY mutations, GAD 

antibodies, and type 1 diabetes–associated HLA genotypes in women with gestational 

diabetes mellitus. Diabetes Care, 25 (1), 68-71. doi: 10.2337/diacare.25.1.68 

Wheeler, B. J., Patterson, N., Love, D. R., et al. (2013) Frequency and genetic spectrum of 

maturity-onset diabetes of the young (MODY) in southern New Zealand. Journal of 

Diabetes & Metabolic Disorders, 12 (1), 46. doi: 10.1186/2251-6581-12-46 

Wilkening, S., Chen, B., Bermejo, J. L., et al. (2009) Is there still a need for candidate gene 

approaches in the era of genome-wide association studies? Genomics, 93 (5), 415-419. 

doi: 10.1016/j.ygeno.2008.12.011 

Witte, J. S. (2010) Genome-Wide Association Studies and Beyond. Annual Review of Public 

Health, 31, 9-20. doi: 10.1146/annurev.publhealth.012809.103723 

World Health Organization (2013) Diagnostic criteria and classification of hyperglycaemia 

first detected in pregnancy. Geneva, CH: World Health Organization. Available: 

https://www.who.int/diabetes/publications/Hyperglycaemia_In_Pregnancy/en/ 

[Accessed: 18 March 2018] 

World Health Organization (2018) Obesity and Overweight. Available: 

https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight [Accessed: 

15 February 2020] 

Wu, L., Cui, L., Tam, W. H., et al. (2016) Genetic variants associated with gestational 

diabetes mellitus: a meta-analysis and subgroup analysis. Scientific Reports, 6 (1), 

30539. doi: 10.1038/srep30539 

Yang, S. & Du, Q. (2014) Association of GCK -30G> a polymorphism with gestational 

diabetes mellitus and type 2 diabetes mellitus risk: a meta-analysis involving 18 case-

control studies. Genet Test Mol Biomarkers, 18 (5), 289-98. doi: 

10.1089/gtmb.2013.0427 

Yang, Y. & Chan, L. (2016) Monogenic Diabetes: What It Teaches Us on the Common 

Forms of Type 1 and Type 2 Diabetes. Endocrine Reviews, 37 (3), 190-222. doi: 

10.1210/er.2015-1116 

Zappala, Z. & Montgomery, S. B. (2016) Non-Coding Loss-of-Function Variation in Human 

Genomes. Human Heredity, 81 (2), 78-87. doi: 10.1159/000447453 

Zhang, C., Bao, W., Rong, Y., et al. (2013) Genetic variants and the risk of gestational 

diabetes mellitus: a systematic review. Human Reproduction Update, 19 (4), 376-390. 

doi: 10.1093/humupd/dmt013 



81 
 

Zhang, Y., Sun, C.-M., Hu, X.-Q., et al. (2014) Relationship between melatonin receptor 1B 

and insulin receptor substrate 1 polymorphisms with gestational diabetes mellitus: a 

systematic review and meta-analysis. Scientific Reports, 4 (1), 6113. doi: 

10.1038/srep06113 

Zhou, Q., Zhang, K., Li, W., et al. (2009) Association of KCNQ1 gene polymorphism with 

gestational diabetes mellitus in a Chinese population. Diabetologia, 52 (11), 2466–

2468. doi: 10.1007/s00125-009-1500-y 

Zhu, Y. & Zhang, C. (2016) Prevalence of Gestational Diabetes and Risk of Progression to 

Type 2 Diabetes: a Global Perspective. Current Diabetes Reports, 16 (1), 7. doi: 

10.1007/s11892-015-0699-x 

Zondervan, K. T. & Cardon, L. R. (2007) Designing candidate gene and genome-wide case-

control association studies. Nature Protocols, 2 (10), 2492-2501. doi: 

10.1038/nprot.2007.366 

 

 

 

  



82 
 

7 APPENDICES 

7.1 APPENDIX A: ETHICS CLEARANCE CERTIFICATE 

 



83 
 

7.2 APPENDIX B: PERMISSION FOR THE USE OF DATA AND SPECIMENS  



84 
 

7.3 APPEDIX C: ALL GENOTYPE RESULTS 

Summary statistics of the genotype results obtained from the 22 SNPs genotyped  
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GDM Positive  GDM Negative Controls 

A1/A1 

(n) 

A1/A2 

(n) 

A2/A2 

(n) MAF HWE 

A1/A1 

(n) 

A1/A2 

(n) 

A2/A2 

(n) MAF HWE 

GCK 

rs1799884b 0.03 7 T 1.00 0.20 2 28 48 0.21 0.50 7 48 100 0.20 0.62 

rs11225789

9 0.00 0 T 1.00 0.08 1 15 64 0.11 1.00 0 22 138 0.07 1.00 

rs758983a 0.06 14 T 0.53 0.20 1 29 47 0.20 0.28 6 47 96 0.20 1.00 

rs4607517b 0.03 8 A 1.00 0.07 0 6 71 0.04 1.00 1 22 132 0.08 1.00 

TCF7L2 

rs34347733a 0.06 14 T 0.79 0.15 0 16 60 0.10 1.00 4 43 103 0.17 1.00 

rs34872471 0.00 1 C 0.79 0.41 12 39 29 0.39 1.00 27 79 53 0.42 0.87 

rs7901695 0.00 0 C 0.20 0.50 15 49 16 0.49 0.07 39 82 39 0.50 0.87 

rs7903146a b 0.03 8 T 0.00 0.10 7 0 70 0.09 0.00 16 0 139 0.10 0.00 

rs11562685

8 0.05 12 T 0.70 0.09 1 14 63 0.10 0.58 1 23 126 0.08 1.00 

rs11575889

2 0.03 7 A 0.06 0.06 0 9 70 0.06 1.00 3 15 136 0.07 0.02 

rs12255372a 0.03 7 T 0.31 0.26 6 28 45 0.25 0.56 13 56 85 0.27 0.41 

KCNJ11 

rs5210 0.05 11 G 0.67 0.37 11 33 33 0.36 0.62 21 70 61 0.37 0.86 

rs5214 0.00 1 C 1.00 0.07 0 6 74 0.04 1.00 1 24 134 0.08 1.00 

rs5215 0.03 6 C 1.00 0.06 0 10 68 0.06 1.00 0 16 140 0.05 1.00 

HNF1A rs2244608 0.05 12 G 0.61 0.06 0 6 70 0.04 1.00 0 23 129 0.08 1.00 

PDX1 

rs61944006 0.02 4 C 0.06 0.26 4 40 36 0.30 0.12 6 62 88 0.24 0.27 

rs4581569 0.02 5 T 0.42 0.28 3 27 48 0.21 1.00 18 63 76 0.32 0.36 

rs73169687a 0.06 15 A 1.00 0.06 0 8 68 0.05 1.00 0 19 130 0.06 1.00 

rs4415872a 0.87 209 C 0.62 0.27       0.10 1.00       0.25 0.63 

rs7981781a 0.06 14 A 0.00 0.18 0 31 43 0.21 0.03 0 48 104 0.16 0.03 

HNF 4A 
rs80276513 0.01 3 A 0.00 0.07 4 6 70 0.09 0.00 2 15 140 0.06 0.10 

rs6031551 0.03 7 C 0.64 0.16 2 21 55 0.16 1.00 5 41 109 0.165 0.57 

SNP = single nucleotide polymorphism, SNP ID = universal SNP identification tag (rs number) assigned by National Center for Biotechnology 

Information (NCBI), A1 = minor allele, A2 = major allele, A1/A1, A1/A2, A2/A2 (n) = genotype counts, MAF = Minor Allele Frequency, HWE 

= Hardy-Weinberg Equilibrium, a previously reported GDM-associated SNP 
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