
Multi-Pass Deep Q-Networks for
Reinforcement Learning with Parameterised

Action Spaces

Craig James Bester
783135

Supervised by:
Pravesh Ranchod

Steven James
George Konidaris

A dissertation submitted to the Faculty of Science, University of the Witwatersrand,
Johannesburg, in fulfilment of the requirements for the degree of Master of Science.

June, 2019
Johannesburg

Abstract

Parameterised actions in reinforcement learning are composed of discrete actions with continuous action-
parameters. This provides a framework capable of solving complex domains that require learning high-
level action policies with flexible control. Recently, deep Q-networks have been extended to learn over
such action spaces with the P-DQN algorithm. However, the method treats all action-parameters as a
single joint input to the Q-network, invalidating its theoretical foundations. We demonstrate the disad-
vantages of this approach and propose two solutions: using split Q-networks, and a novel multi-pass tech-
nique. We also propose a weighted-indexed action-parameter loss function to address issues related to the
imbalance of sampling and exploration between different parameterised actions. We empirically demon-
strate that both our multi-pass algorithm and weighted-indexed loss significantly outperform P-DQN and
other previous algorithms in terms of data efficiency and converged policy performance on the Platform,
Robot Soccer Goal, and Half Field Offense domains.

i

Declaration

I, Craig James Bester, hereby declare this dissertation to be my own, unaided work. It is being submitted
for the Degree of Master of Science at the University of the Witwatersrand, Johannesburg. It has not
been submitted before for any degree or examination at any other University.

Signature Date

ii

2019/09/06

Acknowledgements

This research has been supported in part by the National Research Foundation of South Africa
(Grant Number: 113737).

iii

Contents

Preface
Abstract . i
Declaration . ii
Acknowledgements . iii
Table of Contents . iv
List of Figures . vi
List of Tables . vii

1 Introduction 1

2 Background and Related Work 3
2.1 Reinforcement Learning . 3

2.1.1 Value Function Approximation . 5
2.1.2 Continuous Action Spaces . 7
2.1.3 Parameterised Action Spaces . 10

2.2 Deep Reinforcement Learning . 12
2.2.1 Deep Q-Networks . 13
2.2.2 Deep Deterministic Policy Gradients . 15
2.2.3 PA-DDPG . 17
2.2.4 Exploration Strategies . 18
2.2.5 Action-Parameter Bounding . 19

2.3 Domains . 20
2.3.1 Platform . 20
2.3.2 Robot Soccer Goal . 22
2.3.3 Half Field Offense . 23

2.4 Related Work . 24
2.5 Summary . 25

3 Parameterised Deep Q-Networks 26
3.1 P-DQN . 26

3.1.1 Multi-Step Returns . 29
3.2 Comparison Study . 31

3.2.1 Experimental Methodology . 31
3.2.2 Results . 33

3.3 Summary . 36

4 Addressing Action Sampling Imbalance 37
4.1 Indexed Action-Parameter Loss . 38

4.1.1 Gradient-Zeroing for Action-Parameter Update Independence 39
4.2 Weighted Action-Parameter Loss . 40
4.3 Experiments . 41

4.3.1 (E1) Indexed Loss . 41
4.3.2 (E2) Weighted Loss . 44
4.3.3 (E3) Weighted-Indexed Loss . 46

iv

4.4 Summary . 49

5 Independent Action-Parameter Methods 50
5.1 Q-Value Action-Parameter Sensitivity . 50
5.2 Problems with Q-Value Sensitivity to Unassociated Action-Parameters 52

5.2.1 False Action-Parameter Gradients . 52
5.2.2 Discrete Action Policy Perturbation . 52

5.3 Split Q-Networks . 54
5.3.1 Split Q-Networks with Shared Layers . 55

5.4 Multi-Pass Q-Networks . 56
5.5 Experiments . 58

5.5.1 (E1) Separate Q-Networks . 58
5.5.2 (E2) Split Q-Networks with Shared Layers . 61
5.5.3 (E3) Multi-Pass Q-Networks . 63
5.5.4 (E4) Computational Overhead . 67
5.5.5 (E5) Weighted-Indexed Loss Ablation Study 69

5.6 Summary . 71

6 Conclusion and Future Work 72
6.1 Future Work . 73

Appendix A Hyperparameters 75

Appendix B Alternating Actor-Critic Updates 79

Appendix C Action-Parameter Scaling 82

Appendix D Initial Action-Parameter Policies for Platform and Robot Soccer Goal 86
D.1 Passthrough Layer . 87
D.2 Comparison to Uninitialised Policies . 90

Appendix E Effects of βββ Parameter for Mixed nnn-Step Targets 93

Appendix F Network Size Sensitivity 95

References 97

v

List of Figures

2.1 Reinforcement learning agent-environment interaction cycle. 3
2.2 Example of an artificial neural network with a single fully connected hidden layer 12
2.3 Abstraction of a deep Q-network . 13
2.4 Illustration of the actor-critic network architecture for DDPG 15
2.5 Illustration of the PA-DDPG network architecture. 17
2.6 Different types of noise used for exploration . 19
2.7 Platform domain . 21
2.8 Successful episode of the Platform domain . 21
2.9 Robot Soccer Goal domain . 22
2.10 Half Field Offense domain . 23

3.1 Illustration of the network architectures for P-DQN and PA-DDPG 27
3.2 Results of Q-PAMDP, P-DQN, and PA-DDPG on Platform, Robot Soccer Goal, and HFO 35

4.1 Plot of action selection ratios for P-DQN on Platform, Robot Soccer Goal and HFO . . . 37
4.2 Results of indexed action-parameter loss . 43
4.3 Results of weighted action-parameter loss . 45
4.4 Results of combined weighted-indexed action-parameter loss 48

5.1 Sensitivity of Q-values to their own action-parameters versus those of other actions . . . 51
5.2 Example of sensitivity to unrelated action-parameters affecting discrete action selection . 53
5.3 Separate Q-networks architecture for P-DQN . 54
5.4 Split Q-network architecture with shared feature extraction layers for P-DQN 55
5.5 Multi-pass Q-network architecture . 57
5.6 Results of separate Q-networks . 60
5.7 Results of split Q-networks with shared layers on Half Field Offense 61
5.8 Results of split Q-networks with shared layers on Platform and Robot Soccer Goal 62
5.9 Results of multi-pass Q-networks . 64
5.10 Comparison between multi-pass and separate Q-network results 66
5.11 Computational overhead comparison . 67
5.12 Results of multi-pass Q-network with weighted-indexed loss ablation study 70

B.1 Graphs of results for simulataneous versus alternating actor-critic updates for P-DQN . . 81

C.1 Results of scaled versus unscaled action-parameters for P-DQN 84
C.2 Results of scaled versus unscaled action-parameters for Q-PAMDP 85

D.1 Passthrough layer architecture . 87
D.2 Results of using a static versus a dynamic passhtrough layer for P-DQN 89
D.3 Results of initialised versus uninitialised action-parameters for P-DQN 91
D.4 Results of initialised versus uninitialised action-parameters for Q-PAMDP 92

E.1 Learning curves and trend lines of P-DQN and PA-DDPG over different values of β . . . 94

F.1 Results of P-DQN and PA-DDPG using different network sizes on HFO 96

vi

List of Tables

3.1 Results of Q-PAMDP, P-DQN, and PA-DDPG on Platform, Robot Soccer Goal, and HFO 33

4.1 Results of indexed action-parameter loss function . 42
4.2 Results of weighted action-parameter loss comparison 44
4.3 Results of weighted-indexed action-parameter loss . 47

5.1 Results of separate Q-networks . 59
5.2 Results of split Q-networks with shared layers . 61
5.3 Results of multi-pass Q-networks . 63
5.4 Comparison between multi-pass and separate Q-network results 65
5.5 Timing comparison between split and multi-pass Q-networks 68
5.6 Results of multi-pass Q-network with weighted-indexed loss ablation study 69

A.1 Hyperparameter search ranges . 75
A.2 Hyperparameters for Platform . 76
A.3 Hyperparameters for Robot Soccer Goal . 77
A.4 Hyperparameters for Half Field Offense . 78

B.1 Results of simultaneous versus alternating actor-critic updates for P-DQN 80

C.1 Results of using scaled versus unscaled action-parameters for P-DQN and Q-PAMDP . . 83

D.1 Results of using a static versus a dynamic passhtrough layer for P-DQN 88
D.2 Results of uninitialised versus intialised action-parameters for P-DQN and Q-PAMDP . . 90

E.1 Results of P-DQN and PA-DDPG using different values of β on HFO 94

F.1 Results of P-DQN and PA-DDPG on HFO using different network sizes 96

vii

Chapter 1

Introduction

Reinforcement learning (RL) is a machine learning paradigm for control problems which aims to mimic
how humans learn tasks by trial-and-error. It involves learning to solve tasks by selecting actions that
maximise some reward structure. Previous work in reinforcement learning has focused on problems with
either discrete or continuous actions, which often do not adequately reflect real-world tasks.

Consider the task of learning to score a goal in soccer. This problem requires knowing how to kick
the ball to a certain position, inside the goals. A human would practise kicking the ball, experimenting
with kicking at different angles and with different forces until some combination of angle and force
results in the ball going into the goals. One would then try to perform subsequent kicks with a similar
angle and force that previously resulted in a goal. Consider another soccer task: passing the ball to a
teammate. While the basic action of kicking the ball to a certain position is the same as scoring a goal,
we know that the position kicked to must intersect the trajectory of the teammate if they are moving,
and the force applied, in general, should be less than when trying to score a goal. So while both tasks
have the same underlying action—kicking the ball—how it is kicked changes depending on the task we
want to achieve. If we had only discrete actions, each kick with a different angle and force would be
considered a separate action and learning would be slow, since there is no generalisation or knowledge
transfer between these similar actions. With continuous actions, a learning agent would try optimise the
angle and force components of the kick in all possible cases, but would not easily be able to distinguish a
goal-kick from a pass, and so the learned parameters would be unlikely to achieve either task. The kick
action can instead be split into two parameterised actions: pass and goal-kick, each having their own
angle and force parameters.

Parameterised actions thus combine discrete and continuous actions: they comprise a set of discrete ac-
tions where each is associated with one or more continuous action-parameters providing fine-grained
control. This creates a more robust representation capable of solving complex problems, without nec-
essarily having to search an entire continuous action space. In particular, such a parameterisation lends
itself well to robotics, where actuators require a mix of different high-level actions with flexible control
in order to perform different tasks. Learning with such parameterised actions has been shown to result
in better control policies than using discrete or continuous actions alone [Masson et al. 2016].

The recent P-DQN deep reinforcement learning algorithm [Xiong et al. 2018] has demonstrated state-of-
the-art performance with parameterised actions on tasks such as playing soccer and controlling agents
in the complex multiplayer-online-battle-arena game, King of Glory. The focus of this research is to
identify and improve aspects of P-DQN specific to how it handles action-parameters.

We briefly review the foundational concepts and techniques of modern reinforcement learning in Chap-
ter 2. We discuss several RL algorithms for discrete, continuous, and parameterised action spaces in
Section 2.1, and the extensions of those algorithms to use artificial neural networks for deep function
approximation in Section 2.2. Chapter 3 details the P-DQN algorithm and our initial modifications to it

1

for improved stability, followed by a comparison study against prior methods. In Chapter 4, we explore
how the imbalance between actions explored during training detrimentally affects P-DQN and propose
two modifications to its action-parameter loss function to account for this imbalance. Chapter 5 discusses
issues resulting from the over-parameterisation of Q-values in P-DQN, which use all action-parameters
as input, and propose a solution in the form of a novel multi-pass method. Finally, Chapter 6 discusses
our findings and summarises our contributions.

2

Chapter 2

Background and Related Work

In this chapter we discuss modern reinforcement learning techniques for Markov decision processes and
approaches for several different action spaces: discrete, continuous, and parameterised. For discrete ac-
tions, we focus on value-function based learning methods. In Section 2.1.1, we discuss the use of function
approximation to deal with continuous state spaces, which are the norm for most modern domains. Pol-
icy search methods for continuous action spaces are briefly discussed in Section 2.1.2. Section 2.1.3
details the formulation of parameterised action spaces and the Q-PAMDP algorithm. We then discuss
how these techniques have been extended with deep function approximation in Section 2.2, specifically
by the DQN, DDPG, and PA-DDPG methods. Lastly, we discuss research related to parameterised action
spaces in Section 2.4.

2.1 Reinforcement Learning

Reinforcement learning (RL) is a form of trial-and-error learning in which an agent learns to perform
a task by maximising numeric rewards based on the actions it executes in an environment. The agent
repeatedly executes an action, transitions to a new state of the environment, and receives a reward, until a
terminal state is reached. A state refers to the information given by the environment at a certain timestep
and we refer to the sequence of steps from an initial state to a terminal state as an episode or trajectory.

Figure 2.1: Reinforcement learning agent-environment interaction cycle.

Reinforcement learning algorithms typically consider domains where the state information sent to the
agent contains all relevant information required to determine the next transition. This is the Markov prop-
erty, which ensures the transition to a future state is dependent only on the action taken in the present state,
and not on any preceding states. Such domains are formulated as Markov decision processes (MDPs)

3

[Sutton and Barto 1998]. An MDP is a tuple,M = (S,A, P,R) where S is the set of possible states,A is
the set of actions available to the agent, P (s′|s, a) is the probability of transitioning to state s′ after taking
action a in state s, and R(s, a, s′) is the reward r obtained by taking action a in state s and transitioning
to state s′.

The actions of an agent are determined by its action policy π(a|s), which gives the probability of choosing
action a in state s. Deterministic policies are denoted π(s), the action chosen in state s. The aim of
reinforcement learning algorithms is to find an action policy that maximises the cumulative discounted
reward of the agent,

∞∑
t=0

γtR(st, at, st+1),

where 0 ≤ γ ≤ 1 is a discount factor chosen by the algorithm that determines the importance of future
rewards. State values, denoted by V π(s), represent the expected cumulative discounted reward under
action policy π beginning from state s. This reward can be maximised by finding a solution to the
Bellman optimality equation [Sutton and Barto 1998]:

V ∗(s) = max
a

∑
s′

P (s′|s, a)
(
R(s, a, s′) + γV ∗(s′)

)
, (2.1)

where V ∗ = V π∗ is an optimal value function, and π∗ is an optimal action policy.

Value iteration is an algorithm that iteratively learns such an optimal value function. Starting from an
arbitrary initialisation of V , the algorithm sweeps across all state values and updates them according to
the Bellman optimality equation (2.1) at each iteration. A deterministic, optimal action policy is then
given by greedily selecting the action that maximises V ∗:

π(s) = argmax
a

∑
s′

P (s′|s, a)
(
R(s, a, s′) + γV ∗(s′)

)
.

Using this method, the greedy policy is guaranteed to converge in a finite number of steps even if the
value function has yet to converge [Bertsekas 1987].

Clearly, iterating over all possible states is slow, usually infeasible and assumes explicit knowledge of
the state transition and reward functions. State-action values, named Q-values and denoted by Qπ(s, a),
are similar to state values except they map state-action pairs. They represent the expected cumulative
discounted reward for executing action a in state s and following the policy π thereafter. The Bellman
optimality equation then becomes:

Q∗(s, a) = E
r,s′

[
r + γmax

a′
Q∗(s′, a′)

∣∣∣s, a] (2.2)

=
∑
s′

P (s′|s, a)
(
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

)
. (2.3)

Using Q-values, one can learn a value function using samples gathered by the agent directly acting in the
environment, without knowing the transition or reward functions of the domain. An optimal policy then,
for a state s, greedily selects the action that maximises Q∗(s, a).

Q-learning [Watkins and Dayan 1992] is a model-free temporal-difference (TD) algorithm that itera-
tively learns the optimal Q-value function for an MDP. The update rule is derived from the Bellman

4

Equation (2.3): for each new sample (st, at, rt+1, st+1) from the environment at time step t,

Qπt+1(st, at) = Qπt (st, at) + αt
(
rt+1 + γmax

a′
Qπt (st+1, a

′)−Qπt (st, at)
)
, (2.4)

where 0 < αt ≤ 1 is the learning rate, or step-size. This update is independent of the next action chosen
by the agent, hence Q-learning is off-policy. The purpose of the learning rate to prevent overshooting the
optimal value by bounding the magnitude of updates. This is particularly important to prevent divergence
during value-function approximation updates, which are covered in the next section.

2.1.1 Value Function Approximation

Value functions for finite discrete state spaces can usually be represented and learned using tabular meth-
ods. Continuous state spaces, on the other hand, are composed of real-valued state variables, S ⊆ Rn,
making the number of states infinite.

Linear value-function approximation [Parr et al. 2008] is an approach for cases where the value function
cannot be represented exactly. A linear combination of features is used to represent the value-function:

V̂ (s) =
m∑
i=1

wiφi(s) = w>Φ(s),

where Φ = {φ1, φ2, ..., φm}> is a set of features, φi(s) is the value of feature i in state s, and w ∈ Rm
is the parameter or weight vector. The approximation for Q̂π is similarly defined by making the features
functions of state and action. Practically, this results in the features being indexed by action. Parametric
function approximation generalises to unexplored states since similar states produce similar values from
the function, so fewer training samples are required. Hence function approximation avoids the time,
memory, and data requirements of large value tables [Sutton and Barto 1998].

The representational power of the features determines the quality of the approximation, and hence the
performance of the derived policy. Most value functions are too complex to be represented as combina-
tions of the state variables alone, so functions of the variables are used to form some basis. The Fourier
basis proposed by Konidaris et al. [2011] is one option, where terms of the Fourier series over different
combinations of the state variables are used up to some order.

The next problem is finding a parameter vector w such that V̂ ≈ V ∗. In general, a perfect set of weights
cannot be found to exactly approximate the function over all states since the basis has limited resolution.
Gradient descent methods such as TD(λ) are typically employed for iterative learning of w by minimising
the TD error. Assuming a fixed number of features and that the approximate value function V̂ is a
smooth differentiable function of w for all s ∈ S, the update rule for TD(λ) at time step t with sample
(st, at, rt+1, st+1) is

wt+1 = wt + αtδtet, (2.5)

where δ is the TD error:
δt = rt+1 + γV̂ (st+1)− V̂ (st),

and e ∈ Rk is the vector of eligibility traces for each component of wt. Eligibility traces are a technique
of increasing the learning rate by temporal credit assignment, updating the previous states encountered

5

along the trajectory of samples to the current state. The update rule for e is

et+1 = λet +∇wt V̂ (st),

where e0 = 0 and 0 ≤ λ ≤ 1 is the exponential eligibility trace decay. When λ = 0, the update rule for
TD(0) reduces to a more familiar form of gradient descent:

wt+1 = wt + αtδ∇wt V̂ (st).

A useful property of linear function approximation is that the derivative of V̂ (st) with respect to the
weight vector w is just the feature vector at that state:

∇wt V̂ (s) = Φ(s).

This property greatly simplifies update computations and is one reason for the former popularity of linear
function approximation [Sutton and Barto 1998], along with convergence guarantees.

Sarsa(λ)

Sarsa(λ) is an iterative learning algorithm that applies TD(λ) to Q-values. Samples used in updates now
include the action chosen for the next state, (st, at, rt+1, st+1, at+1). The parameter vector update step
is the same as in Equation (2.5) but the calculations for δ and the eligibility traces change to

δt = rt+1 + γQ̂πt (st+1, at+1)− Q̂πt (st, at)

and
et+1 = γλet +∇wtQ̂

π(st, at).

The main distinction between this and Watkin’s Q-learning, which can similarly be extended with el-
igibility traces and TD(λ) updates for value function approximation, is that Sarsa(λ) is on-policy: the
update rule depends on the next action chosen by the agent. This affects the learned policy because it
takes into account any randomness of the agent’s action selection, such as with ε-greedy policies [Sutton
and Barto 1998].

Multi-Step Returns

TD(λ) methods use λ to more quickly backpropagate credit assignment to transitions experienced earlier
in a trajectory. It can be seen as incorporating the total discounted future return from a state at time t,

r
(∞)
t = rt + γrt+1 + γ2rt+2 + · · · . (2.6)

However, one can also explicitly store the trajectory of transitions during learning and use the return
directly in updates. In n-step Q-learning [Peng and Williams 1996] for instance, a finite horizon n-step
return target is constructed of exponentially decayed rewards:

r
(n)
t = rt + γrt+1 + γ2rt+2 + · · ·+ γnrt+n−1 (2.7)

=
t+n−1∑
i=t

γi−tri (2.8)

6

Algorithm 1 Sarsa(λ) with function approximation
Input: Φ, α, γ, λ, initial w
Output: w

e = 0
s = initial state from environment
a = action selected by policy π(s)
repeat

Execute action a
Observe reward r, state s′
a′ = π(s′)
e = γλe + Φ(s, a)
δ = r + γw>Φ(s′, a′)− w>Φ(s, a)
w = w + αδe
s = s′

a = a′

until s is a terminal state

which is then used as a target for the Q-value function during temporal difference updates

Q(st, at) = Q(st, at) + α

t+n−1∑
i=t

γi−tri + γn max
a′

Q(st+n, a
′)−Q(st, at)

 . (2.9)

This is particularly impactful for long-running tasks or domains with sparse rewards because it can more
quickly backpropagate the reward than with one-step lookahead updates. However, this does introduce
bias and makes the algorithm on-policy.

2.1.2 Continuous Action Spaces

Value-function based reinforcement learning algorithms usually consider discrete actions, where select-
ing an action is the process of scanning through each possible action to determine which one maximises
the current value or state-action value function. This is no longer possible with continuous action spaces,
where actions lie in some real-valued and possibly multidimensional range, a ∈ Rm.

Policy Search

Policy search [Deisenroth et al. 2013] uses a different approach to value-function methods. Instead of
learning a value function that determines state quality and using it to derive a policy, an action policy is
learned directly without discretising the action value range. Like value function approximations, however,
the policy can be represented as as a linear combination of features: θ>Φ(s). We use θ to represent
the parameter vector for the action policy to distinguish it from the value-function parameter vector w,
although it serves a similar purpose. We denote a policy π using such a representation under weight
vector θ by πθ. Continuous action policies are often made stochastic by, for one example, effectively

7

representing the policy as a normal distribution around such a linear combination of features with some
standard deviation σ, which may be fixed or learned:

πθ(a|s) =
1

σ
√

2π
exp

(
− (a− θ>Φ(s)2)

2σ2

)
. (2.10)

A trajectory, denoted τ , is a collection of samples (s, a, r, s′) gathered over an episode. The accumulated
reward, or return, for a trajectory is given by

R(τ) =

T∑
t=0

rt(st, at).

Policy search methods attempt to update the policy’s parameter vector based on these sampled trajectories
such that trajectories with higher accumulated rewards become more likely. This increases the expected
return given by

J(θ) = E
[
R(τ)|θ

]
=

∫
τ
Pπ(τ)R(τ) dτ, (2.11)

where Pπ(τ) is the distribution over the trajectories based on the current action policy:

Pπ(τ) = P (s0)

T−1∏
t=0

P (st+1|st, πθ(st)).

Policy Gradient

In order to find an optimal θ∗, we can use iterative gradient ascent to maximise the expected return Jθ.
This approach is known as policy gradient [Deisenroth et al. 2013; Sutton et al. 1999]. The update rule
for θ at time t is

θt+1 = θt + α∇θJ(θ), (2.12)

where∇θJ(θ) is the policy gradient defined in this case by

∇θJ(θ) =

∫
τ
∇θPθ(τ)R(τ) dτ. (2.13)

The next problem is how to calculate ∇θJ(θ). The Episodic Natural Actor Critic (eNAC) algorithm
[Peters et al. 2005] estimates it using the natural gradient, which optimises parameterised probability
distributions faster than using the traditional gradient. The natural gradient uses a Fisher information
matrix to account for successive policies possibly causing large differences to the trajectory distribution:

Fθ = EP (τ)

[
∇θ logPθ(τ)∇θ logPθ(τ)>

]
= EP (τ)

[(T−1∑
t=0

∇θ log πθ(at|st)
)(T−1∑

t=0

∇θ log πθ(at|st)
)>]

.

The eNAC policy gradient is then

∇eNACθ J(θ) = F−1θ ∇θJθ = F−1θ EP (τ)

[T−1∑
t=0

∇θ log πθ(at|st)R(τ)

]
.

8

The eNAC algorithm estimates the expectations of these terms by averaging the summations over multiple
episodes using the current action policy πθ. This requirement of episodic rollouts to perform each update,
as opposed to TD methods which update at each time step of an episode, makes algorithms such as eNAC
data inefficient and ill-suited to domains with very long episodes or unending tasks. One can instead
incorporate value functions in a similar fashion to Q-learning for incremental updates, as we see in the
next section.

Deterministic Policy Gradients

A more convenient definition of the policy gradient uses a state-action value function to estimate the
expected return, rather than rollouts [Sutton et al. 1999]:

∇θJ(θ) =

∫
S
ρπ(s)

∫
A
∇θπθ(a|s)Qπ(s, a) ds da (2.14)

= Es∼ρπ ,a∼πθ
[
∇θ log πθ(a|s)Qπ(s, a)

]
, (2.15)

where ρπ(s) is the discounted state visitation distribution for π. This is a different form of the policy
gradient shown in Equation (2.13), where terms are defined over trajectory distributions due to the lack
of an explicitly learned state-value function encoding the expected return.

Policy gradient methods based on the above are typically on-policy with stochastic action policies, how-
ever Silver et al. [2014] introduce a more efficient variant for deterministic policies which integrates only
over the state space, rather than the state and action spaces. The deterministic policy gradient (DPG) is
defined as follows:

∇θJd(θ) =

∫
S
ρβ∇θπθ(a|s)Qπ(s, a) ds da (2.16)

= Es∼ρβ
[
∇θπθ(s)∇aQπ(s, a)|a=πθ(s)

]
, (2.17)

where β = β(a|s) is a stochastic policy corresponding to πθ with added noise used for exploration during
training. Silver et al. [2014] show that by re-parametrising a stochastic policy πθ(a|s) by a deterministic
policy πθ(s) with a variation variable σ, Equation (2.16) is in fact a special case of the stochastic policy
gradient in equation (2.14) when σ → 0.

Actor-critic style algorithms can be employed to learn with the above. Such algorithms are comprised
of two components: an actor which adjusts the parameters of policy πθ(s), and a critic which estimates
a differentiable action-value function Qω(s, a) ≈ Qπ(s, a). For example, the off-policy deterministic
actor-critic (OPDAC) algorithm [Silver et al. 2014] uses Q-learning updates for the critic while the de-
terministic policy gradient (2.17) is used to update the actor:

δt = rt + γQω(st+1, πθ(st+1)−Qω(st, at)), (2.18)
ωt+1 = ωt + αωδt∇ωQω(st, at), (2.19)
θt+1 = θt + αθ∇θπθ(st)∇aQω(st, at)|a=πθ(s), (2.20)

where αθ and αω are the learning rates for the actor and critic respectively. The use of incremental
updates makes this more data efficient than rollout-based methods such as eNAC.

9

2.1.3 Parameterised Action Spaces

Parameterised action spaces [Masson et al. 2016] consist of a set of discrete actions, Ad = [K] =
{k1, k2, ..., kK}, where each k has a corresponding continuous action-parameter xk ∈ Xk ⊆ Rmk ,
where mk is the dimensionality. Adopting the notation of Xiong et al. [2018], the parameterised action
space is thus:

A =
⋃
k∈[K]

{(k, xk)|xk ∈ Xk}. (2.21)

A Markov decision processes with such an action space is referred to as a parameterised action Markov
decision process (PAMDP). For a PAMDPM = (S,A, P,R), the action spaceA is composed of actions
with their parameter spaces, and the transition probability function P (s′|s, k, xk) and reward function
R(s, k, xk, s

′) now depend on the given action and its parameter.

Q-PAMDP

Q-PAMDP(κ), proposed by Masson et al. [2016], is a model-free reinforcement learning method for
parameterised action spaces. Instead of directly learning the policy π(k, xk|s) to select both a discrete
action and its parameter at once, the policy is split into a policy for discrete action selection, denoted
πd(k|s), and another policy for action-parameter selection, πk(xk|s), which is indexed by the action
k. A parametric value-function approximation with weight vector w is used for the discrete action pol-
icy, so the action policy using w is denoted πdw(k|s). Similarly, a parametric function approximation
with weight vector θ is used for the action-parameter policy, denoted πkθ (xk|s). Then for a PAMDP,
M = (S,A, P,R), the discrete MDP using a fixed action-parameter policy with a certain weight vector
θ is given by Mθ = (S,Ad, Pθ, Rθ), where Ad is the discrete action set. The transition and reward
functions Pθ(s′|s, k) and Rθ(s, k, s′) act as their parameterised action counterparts P (s′|s, k, xk) and
R(s, k, xk, s

′), but with xk determined by the fixed action-parameter policy πkθ .

Q-PAMDP (Algorithm 2) comprises a Q-learning algorithm for learning w, and an algorithm such as
policy search for learning the parameter policy weight vector θ by optimising the expected discounted
return:

J(θ,w) = Es0
[
V π(s0)

]
, (2.22)

where s0 is a state sampled according to the initial state distribution of the MDP, and V is a value function.
With w fixed, Equation (2.22) is denoted Jw(θ). The algorithms are alternated each iteration, with the
action policy fixed while the parameter is updated for κ steps before fixing the parameter policy and
updating the action policy to convergence. In Algorithm 2, P-UPDATE denotes the algorithm chosen for
updating the parameter policy weight vector θwith respect to Jw(θ), and Q-LEARN denotes a Q-learning
algorithm.

The algorithm is proven to converge to a locally optimal solution for κ = 1, provided the choice of
P-UPDATE algorithm converges to a local or global optimum. For κ = ∞, where θ is updated to con-
vergence each iteration, P-UPDATE must to converge to a global optimum for the algorithm to converge
locally.

10

Algorithm 2 Q-PAMDP(κ)
Input: θ0, w0

w = Q-LEARN(∞)(Mθ,w0)
repeat
θ = P-UPDATE(κ)(Jw(θ), θ)
w = Q-LEARN(∞)(Mθ,w)

until θ converges

Using Sarsa(λ) for Q-LEARN and eNAC for P-UPDATE, Masson et al. [2016] empirically show that Q-
PAMDP(1) and Q-PAMDP(∞) outperform both a discrete Sarsa(λ) agent using a fixed action-parameter
policy, and a direct policy search agent using eNAC over the entire space on the Platform domain (Sec-
tion 2.3.1) and Robot Soccer Goal domain (Section 2.3.2). This result indicates that a full search over
the action-parameter space is not necessary to learn a good policy. Interestingly, eNAC on its own was
shown to converge early to a very suboptimal policy on Platform.

11

2.2 Deep Reinforcement Learning

Deep learning is an alternative to basis functions and linear function approximation in reinforcement
learning. It involves using artificial neural networks characterised by feedforward processing layers with
non-linear transformations, or activation functions, between successive layers. This allows for high-level
features to be learned from state variables directly, avoiding extensive feature engineering. The simplest
layer representation is a set of dense, fully connected artificial neurons as shown in Figure 2.2. The
capacity of a network is controlled by the number of hidden layers and artificial neurons used per layer,
or depth and width respectively.

Hidden Layer

hInputs

x

Outputs

y

W1 W2

Figure 2.2: Example of a feedforward artificial neural network with a single fully connected hidden layer. The
parameters of the network are given by the layer weights, θ = {W1,W2}.

The network parameters are typically trained using some form of stochastic gradient descent but more
complex and efficient optimisers such as RMSProp [Hinton et al. 2012] or Adam [Kingma and Ba 2014]
have seen wide use. Other forms of artificial neural networks exist that account for different types of
input data. Convolutional neural networks (CNNs) [Krizhevsky et al. 2012], for instance, exploit spa-
cial information over input data typically from pixels in images, and recurrent neural networks (RNNs)
[Medsker and Jain 1999] account for temporal correlations in sequences of data. For further information
on the extensive topic of deep learning we refer the reader to Goodfellow et al. [2016].

Deep reinforcement learning has achieved super-human performance on tasks with high-dimensional
spaces such as playing Atari games from pixels [Mnih et al. 2015], the game of Go [Silver et al. 2016],
as well as robotic control [Levine et al. 2016; Lillicrap et al. 2015]. We now discuss several particular
deep RL algorithms used for discrete, continuous, and parameterised action spaces.

12

2.2.1 Deep Q-Networks

Mnih et al. [2013 2015] extend Q-learning for discrete actions by using an artificial neural network to
approximate the state-action value function Q(s, a; θQ) ≈ Q∗(s, a), yielding a deep Q-network (DQN)
with parameters θQ, illustrated in Figure 2.3.

θQ
Q
N
et
w
or
k

State s

, … ,Q1 QK

Figure 2.3: Abstraction of a deep Q-network. Given a state s as input, the network outputs a Q-value for each
discrete action ai, i = 1, . . . ,K.

Minibatch updates are performed during training by sampling a number of transitions uniformly randomly
from experience replay memory—a finite buffer storing the last N transitions experienced by the agent.
This is done to enhance data efficiency and helps avoid oscillation and divergence during learning by
averaging updates over a number of samples. The network is trained using stochastic gradient methods to
minimise the following least-squares loss function based on the Bellman Equation (2.2) at every iteration:

L(θQ) = E
(s,a,r,s′)∼D

[
1

2

(
y −Q(s, a; θQ)

)2]
, (2.23)

where
y = r + γmax

a′∈A
Q(s′, a′; θ−Q) (2.24)

is the update target and D is the replay memory. A clone of the Q-network with parameters θ−Q is used
to calculate the update targets. This target network is synchronised with the latest parameters θ−Q = θQ
everyC iterations; this reduces oscillations and the chance of divergence during learning. The derivative
of the loss function with respect to the network weights gives the following gradient:

∇θQL(θQ) = E(s,a,r,s′)∼D

[(
r + γmax

a′∈A
Q(s′, a′; θ−Q)−Q(s, a; θQ)

)
∇θQQ(s, a; θQ)

]
. (2.25)

The full DQN method is detailed in Algorithm 3. While standard Q-learning converges to an optimal
policy, this approach lacks any theoretical convergence guarantees as a result of using non-linear function
approximation.

13

Algorithm 3 Deep Q-Learning with Experience Replay [Mnih et al. 2015]
Input: Learning rate α, target network update frequency C, exploration parameter ε, minibatch size
B, probability distribution ξ, replay memory capacityN , discount factor γ, maximum episodesEmax.
Initialise replay memory D to capacity N
Initialise network weights θQ
Initialise target network weights θ−Q = θQ
Initialise counters t = 0, e = 0
repeat
st = initial state from environment
repeat

Select action at =

{
argmaxa∈AQ(st, a; θQ) with probability 1− ε
random sample from distribution ξ with probability ε

Execute action at, observe reward rt and next state st+1

Store transition {st, at, rt, st+1} in D
Sample a minibatch of B transitions {sb, ab, rb, sb+1}b∈[B] randomly from D

Set yb =

{
rb if sb+1 is terminal
rb + maxa′∈A γQ(sb+1, a

′; θ−Q) otherwise
With {sb, ab, yb}b∈[B]:

Compute ∇θQLQ according to Equation (2.25) and update θQ
Every C steps, update target network: θ−Q = θQ
t = t+ 1

until st is terminal
e = e+ 1

until e ≥ Emax

14

2.2.2 Deep Deterministic Policy Gradients

Lillicrap et al. [2015] present an actor-critic method with deep function approximation for high dimen-
sional, continuous action spaces. Their Deep Deterministic Policy Gradient (DDPG) algorithm extends
DPG (Section 2.1.2) by using artificial neural networks to represent the actor and critic policies.

θμ

Q

θQC
rit
ic

A
ct
or

s, a

, … ,a1 a
m

State s

Figure 2.4: Illustration of the actor-critic network architecture for DDPG. Given a state, the actor network produces
an m-dimensional continuous action vector and the critic predicts a scalar Q-value for that particular state and
action.

The actor determines the continuous action policy π(s; θµ) with parameters θµ while, like DQN, the
critic minimises least squares Bellman error to learn an estimate of the state-action value function:

L(θQ) = E
(s,a,r,s′)∼D

[
1

2

(
r + γQ(s′, π(s′; θµ); θ−Q)−Q(s, a; θQ)

)2]
. (2.26)

The gradient for the critic loss is the same as in DQN, Equation (2.23). Updates to the actor network
aim to find a policy that maximises the expected return, which is equivalent to minimising the negative
Q-value function in the following loss:

Lµ(θµ) = E
s

[
−Q

(
s, π(s; θµ); θQ

)]
. (2.27)

Gradients with respect to the actions are backpropagated through the critic network and used to update
the actor network with the policy gradient, based on (2.17):

∇θµL(θµ) = Es
[
∇aQ(s, π(s; θµ); θµ)∇θµπ(s; θµ)

]
. (2.28)

Similar to DQN, target networks for the actor and critic are used for stability during training. Instead of
synchronising the weights every few steps, however, Polyak averaging is used to soft update the target
networks every iteration:

θ− = τθ + (1− τ)θ−, (2.29)
where the averaging factor τ ∈ (0, 1] determines the mixing proportion between the weights of the
original and target networks, with τ = 1 corresponding to copying the weights of the original network.

15

Algorithm 4 DDPG [Lillicrap et al. 2015]
Input: Learning rates {αQ, αµ}, target networks averaging factor τ , exploration noise N , minibatch
size B, replay memory capacity N , discount factor γ, maximum episodes Emax.
Initialise replay memory D to capacity N
Initialise network weights θQ, θµ
Initialise target network weights θ−Q = θQ, θ−µ = θµ
Initialise counters t = 0, e = 0
repeat
st = initial state from environment
repeat

Select action at = π(st; θµ) +Nt according to the current policy and exploration noise
Execute action at, observe reward rt and next state st+1

Store transition {st, at, rt, st+1} in D
Sample a minibatch of B transitions {sb, ab, rb, sb+1}b∈[B] randomly from D

Set yb =

{
rb if sb+1 is terminal
rb + γQ(sb+1, π(sb+1; θ

−
µ); θ−Q) otherwise

With {sb, ab, yb}b∈[B]:
Update the critic parameters θQ by minimising LQ according to Equation (2.26)
Update the actor parameters θµ using the policy gradient Equation (2.28)

Update target networks θ−Q = τθQ + (1− τQ)θ−Q, θ−µ = τθµ + (1− τ)θ−µ
t = t+ 1

until st is terminal
e = e+ 1

until e ≥ Emax

16

2.2.3 PA-DDPG

Hausknecht and Stone [2016a] present the first method of applying deep reinforcement learning to param-
eterised action spaces. They do so by treating both the discrete actions and continuous action-parameters
as a single continuous action vector. The discrete action policy is represented by continuous values
f1, f2, . . . , fK where fi ∈ [−1, 1]. An ε-greedy or softmax policy is then used to select a discrete action.
This essentially relaxes a parameterised action space (2.21) into a continuous one:

A = {(f1:K , x1:K)|f ∈ R, xk ∈ Xk∀k ∈ [K]}. (2.30)

The standard DDPG algorithm can then be applied, with the actor network outputting the joint policy
vector (f1, . . . , fK , x1, . . . , xK) and the critic network providing Q-values for the entire policy vector.
Following Wei et al. [2018], we henceforth refer to this method as parameterised action DDPG (PA-
DDPG).

θμ

Q

k = argmax
i
fi

θQC
rit
ic

A
ct
or

, . . . ,f1 fK , . . . ,x1 xK

State ss, f, x

Figure 2.5: Illustration of the PA-DDPG network architecture.

No information is given to the network regarding which action is executed during training, nor which
action-parameter is associated with which action. Optimisation is therefore performed over the entire
joint policy vector (f ,x). Despite this, PA-DDPG still demonstrates good performance when learning to
score goals in Half Field Offense (Section 2.3.3).

Mixed nnn-Step Return Targets

Hausknecht and Stone [2016b] further extend PA-DDPG to use n-step returns (Section 2.1.1) to improve
learning. However, sincen-step returns makes updates on-policy, samples are required to be decorrelated.
While experience replay memory—which is commonly employed by off-policy algorithms with neural

17

network function approximation such as DQN—does decorrelate updates to some extent, it is unsuitable
for on-policy algorithms because it includes data generated by older policies.

Hausknecht and Stone [2016b] therefore propose mixed n-step return targets: a technique that compro-
mises between off-policy and on-policy updates by introducing a mixing ratio β ∈ [0, 1]. An update
target is then constructed out of both one-step and n-step returns:

yt = β

[t+n−1∑
i=t

γi−tri

]
+ (1− β)

[
rt + γmax

a′
Q(st, a

′)
]
. (2.31)

The first term represents the on-policy discounted return computed over the agent’s trajectory up to n
steps from the current state (to account for long or unending tasks), while the second term is the standard
off-policy one-step lookahead target. The choice of n and β can be seen as deciding the trade-off between
bias and variance, similar to λ in TD(λ) [Watkins 1989]. In general, values of β closer to zero are found
to be better, which we discuss further in Section 3.1.1 and Appendix E.

2.2.4 Exploration Strategies

Exploration is essential in reinforcement learning to learn accurate value function estimates; ensuring
different state and action combinations are adequately visited during training avoids agents getting stuck
exploiting suboptimal policies. Different exploration strategies are employed depending on the type of
action space used. We detail several common approaches in this section, particularly those used for
parameterised action spaces.

Discrete actions: An ε-greedy strategy is typically employed for exploration, where the agent uniformly
randomly chooses a discrete action with probability ε, and acts greedily with probability 1− ε. Another
options is to use softmax exploration, where actions are selected based on a Boltzmann distribution over
the Q-values:

π(a|s) =
exp(Q(s, a)/τ)∑
a′ exp(Q(a′)/τ)

,

where τ ∈ R+ in this case represents a temperature parameter dictating the spread of probabilities over
the actions: a large temperature tends towards a more uniform probability distribution, while in the limit
τ → 0, softmax exploration tends to a greedy action selection. The main difference between this and
ε-greedy is that softmax exploration picks actions with higher Q-values more often, while ε-greedy is as
likely to pick the worst action as the best during exploration.

Continuous actions: Policies with Gaussian noiseN (µ, σ2) are commonly used for exploration when
using continuous actions [Deisenroth et al. 2013; Silver et al. 2014]. However, Lillicrap et al. [2015]
found that using an Ornstein-Uhlenbeck (OU) process [Uhlenbeck and Ornstein 1930] to generate noise
for exploration resulted in better performance on physical control tasks with momentum. The OU process
models the velocity of a Brownian particle with friction, which results in temporally correlated values
centred around 0. The process is characterised by three variables: θ > 0, σ > 0, and a drift term µ
(typically 0).

18

(a) Gaussian (b) Ornstein-Uhlenbeck (c) ε-uniform

Figure 2.6: Different types of noise used for exploration. The scale of the Gaussian and Ornstein-Uhlenbeck noise
samples is exaggerated for illustrative purposes, since they produce small deviations from the mean while the
ε-uniform approach selects values over the entire range.

Parameterised actions: The discrete action and continuous action-parameter policies can be treated
separately for exploration. This was the approach by Masson et al. [2016], where a softmax discrete action
policy is chosen with additive Gaussian noise for the action-parameters. Hausknecht and Stone [2016ab]
and Xiong et al. [2018], on the other hand, use an ε-greedy discrete action policy with uniform random
exploration for the continuous action-parameters. So with probability ε, choose a random discrete action
with its action-parameter sampled uniformly randomly within its range, and act greedily otherwise. For
brevity, we refer to this strategy as ε-uniform exploration. A visual comparison between Gaussian noise,
OU noise, and ε-uniform exploration is shown above in Figure 2.6.

2.2.5 Action-Parameter Bounding

Action-parameters, and continuous actions in general, typically have well-defined bounds on the range
of values available to them. These usually reflect physical limitations, for example maximum actuator
torques or joint rotation angles for robots in the real world. We discuss the three strategies used to enforce
these bounds for parameterised actions in deep reinforcement learning methods.

Squashing Functions

The most common way of enforcing these bounds is by applying an invertible squashing function, usu-
ally the hyperbolic tangent (tanh), to the action vector chosen by the agent. While this ensures the
agent can never exceed the boundaries of its actions, this approach can be problematic if the squashing
function becomes saturated. When this occurs, the gradient of the squashing function tends to 0, mak-
ing updates have very small impact on the policy. This strategy is used by Wei et al. [2018] to bound
action-parameters.

19

Inverting Gradients

Another approach is to alter the update gradients such that they push the policy to within valid ranges.
The inverting gradients method [Hausknecht and Stone 2016a] downscales gradients as they approach
the action boundaries, and inverts their direction if the boundaries are exceeded:

∇x = ∇x ·

{
(xmax − x)/(xmax − xmin) if ∇x suggests increasing x
(x− xmin)/(xmax − xmin) otherwise.

(2.32)

This avoids the problem of saturation and thus allows for faster policy changes. For example, if the critic
indicates that the action-parameter should decrease when its at the upper bound, inverting gradients
would respond immediately while a saturated squashing function would require many updates to actually
change the policy. While the inverting gradients approach does not explicitly limit the range of values
available, Hausknecht and Stone [2016a] found that agents did not exceed the maximum or minimum
values in their experiments.

Squared-Loss Penalty

A simpler alternative used by Xiong et al. [2018] is to add a term to the loss function that discourages
values exceeding the given bounds. For instance, a squared-loss penalty on out-of-bounds values:

Lx +

(xmax − x)2 if x > xmax

(x− xmin)2 if x < xmin

0 otherwise,
(2.33)

where Lx is the original loss. In practice this penalty term is calculated per dimension for each action-
parameter, as with inverting gradients. This has the benefit of avoiding the problems associated with
squashing functions without complicated gradient tinkering. At the time of writing there has been no
study on the effectiveness of this approach compared to inverting gradients or squashing functions.

2.3 Domains

Unlike the set of Atari games for discrete actions [Mnih et al. 2015], and MuJoCo for continuous actions
[Todorov et al. 2012], there is not yet any widely accepted set of benchmark domains for parameterised
action spaces. However, the Platform and Robot Soccer Goal domains introduced by Masson et al. [2016],
along with the more complex Half Field Offense used by Hausknecht and Stone [2016a], form a decent
set of tasks with varying levels of difficulty and number of state features between them.

2.3.1 Platform

The Platform domain, introduced by Masson et al. [2016], consists of a 2-dimensional game world with
stationary platforms, moving enemies, and the agent. Two basic actions are available to the agent: run

20

and jump, which continue for a fixed period or until the agent lands again respectively. The jump is
parameterised into two separate actions: a hop to get over enemies, and a leap to traverse the gaps between
platforms. Initially, the leap parameter is too small to clear the gaps between the platforms. The reward
function is based on the normalised distance the agent moves towards the goal. Each platform has a
single enemy which patrols back and forth at a constant speed. The enemies cannot jump and move only
when the agent is within the horizontal range of the platform; this is a simplification that s the feature set
to consider only a single enemy’s horizontal position and velocity, (xe, ẋe), at a time. An episode ends
when the agent touches an enemy, falls into a gap between two platforms, or reaches the goal.

Player Enemies Goal

Platforms

Figure 2.7: Initial configuration of the Platform domain. The agent starts on the edge of the left platform and has
to traverse over enemies and gaps to reach the goal on the far right.

The basic feature set is composed of the agent’s horizontal position and velocity and that of the enemy on
the current platform: (x, ẋ, xe, ẋe). The enhanced feature set, (x, ẋ, xe, ẋe, xp, wp, wp′ , g, h), includes
the horizontal position of the current platform, xp, the widths of the current and next platforms, wp and
wp′ , and the gap and height between the current and next platforms, g and h respectively.

Figure 2.8: Successful episode of the Platform domain.

Based on the source code generously released by Masson et al. [2016], we reimplemented the Platform
domain using the OpenAI Gym interface [Brockman et al. 2016]. Source code for our version is publicly
available online.1

1https://github.com/cycraig/gym-platform

21

https://github.com/cycraig/gym-platform

2.3.2 Robot Soccer Goal

The Robot Soccer Goal domain is adapted by Masson et al. [2016] from 2D RoboCup [Kitano et al.
1997], a robot soccer challenge domain. It focuses on a particular task in soccer: a striker scoring by
shooting the ball past a defensive goal keeper and into the goals. Two basic actions are available to the
agent: kick-to(x, y), which kicks to ball towards position (x, y) on the field; and shoot-goal(h), which
shoots the ball towards a position h along the goal line. Gaussian noise is added to each action. The
shoot-goal action is split into two parameterised actions: shoot-goal-left and shoot-goal-right. This is
because the agent has to shoot around the keeper to score a goal, either to the left or right of it but never
directly at it. The agent automatically moves towards the ball whenever it is not in possession of it. The
keeper either moves towards the ball or, if the agent shoots at the goal, moves to intercept it.

Player

Field

Goals

Keeper

Ball

Figure 2.9: Robot Soccer Goal domain.

The agent starts in possession of the ball, at a random position along the left bound of the field. The
keeper is positioned between the ball and the goal. The agent has a position (x, y), velocity (ẋ, ẏ) and
orientation (θ), as does the keeper. The ball also has a position and velocity, so each state has 14 variables:
(x, y, ẋ, ẏ, θ, xk, yk, ẋk, ẏk, θk, xb, yb, ẋb, ẏb), where the subscripts k and b distinguish the variables of
the keeper and ball respectively. An episode ends when the keeper intercepts the ball, the agent scores
a goal, or the ball leaves the field. The agent receives a reward of 50 scoring a goal, −d(b, g) when the
ball is intercepted or leaves the field, where d(b, g) is the distance of the ball to the goal, and 0 otherwise.
Based on the version by Masson et al. [2016], source code for our Open AI Gym implementation of
Robot Soccer Goal is available online.2

2https://github.com/cycraig/gym-goal

22

https://github.com/cycraig/gym-goal

2.3.3 Half Field Offense

The Half Field Offense (HFO) domain is a more general abstraction of 2D RoboCup. Hausknecht and
Stone [2016a] use HFO to simulate the task of a single agent learning to score a goal in soccer without
a goalie.

At the beginning of each episode, the agent and ball are randomly positioned on the offensive (right)
half of the field. The agent must learn to approach and kick the ball into the goals using three parame-
terised actions: dash, turn, and kick. The state space is composed of 58 continuously-valued variables,
describing the position, velocity, orientation, and stamina of the agent, the ball’s location and velocity,
the relative distance to landmark features such as the goals and so on.3

Figure 2.10: Half Field Offense domain. The agent is tasked with learning to kick the ball into the rightmost goals
without a goalie present.

Hausknecht and Stone [2016a] use a dense, hand-crafted reward function:

rt = dt−1(a, b)− dt(a, b) + Ikick
t+1 + 3

(
dt−1(a, b)− dt(b, g)

)
+ 5Igoal

t , (2.34)

where d(a, b) and d(b, g) are the distances between the ball and agent or centre of goals respectively, and
Ikick is a binary reward given the first time the agent is within kicking distance of the ball, and Igoal is a
terminal reward for scoring a goal.

3A full description of the environment can be found at https://github.com/mhauskn/HFO/blob/master/
doc/manual.pdf.

23

https://github.com/mhauskn/HFO/blob/master/doc/manual.pdf
https://github.com/mhauskn/HFO/blob/master/doc/manual.pdf

While the task appears simpler than Robot Soccer Goal at first, the relatively large number of state vari-
ables and finer-grain control required, with the agent first having to learn to approach the ball using the
turn and dash actions rather than moving towards it automatically, result in HFO being more difficult.

2.4 Related Work

Several recent deep reinforcement learning approaches for parameterised actions follow the strategy by
Hausknecht and Stone [2016a] of collapsing the parameterised action space into a continuous one.

Hussein et al. [2018], for instance, present a deep imitation learning approach for parameterised actions
using long-short-term-memory (LSTM) networks with a joint action and action-parameter policy. They
demonstrate their method learns to score goals on HFO with less task-specific knowledge than PA-DDPG
when using a less complex reward function.

Agarwal [2018] introduces skills for multi-goal environments with parameterised action spaces to achieve
multiple related goals. They similarly treat the parameterised actions as continuous and demonstrate
success on robotic manipulation tasks by combining PA-DDPG with hindsight experience replay and
their skill library.

One can alternatively view parameterised actions as a two-level hierarchy: Klimek et al. [2017] use this
approach to learn a reach-and-grip task using a single network to represent a distribution over macro
(discrete) actions and their lower-level action-parameters. Wei et al. [2018] also take a hierarchical ap-
proach but instead condition the action-parameter policy on the discrete action chosen to avoid predicting
all action-parameters at once. The authors use this strategy to develop a parameterised action version of
Trust Region Policy Optimisation (TRPO) [Schulman et al. 2015], yielding PATRPO. While their pre-
liminary results show the method achieves good performance on the Platform domain, it fails to learn to
score goals on HFO.

At the time of writing, we note that only one of the deep reinforcement learning approaches discussed
above, PATRPO, explicitly treats parameterised actions as separate. We further note that none of these
works compare against Q-PAMDP and, while some use HFO, most define their own domains to use as
benchmarks.

24

2.5 Summary

We briefly covered modern reinforcement learning and deep RL techniques for Markov decision pro-
cesses with discrete action spaces (Sarsa(λ), DQN) and continuous action spaces (eNAC, DDPG). Mas-
son et al. [2016] formalised the notion of parameterised action spaces, a combination of discrete and
continuous actions, and introduced the Q-PAMDP algorithm. Hausknecht and Stone [2016a] proposed
PA-DDPG to learn in a parameterised action space by collapsing the space into a continuous one, a
method employed by most subsequent deep RL approaches for parameterised actions. Three benchmark
domains for parameterised actions were presented: Platform, Robot Soccer Goal, and Half Field Of-
fense. In the next chapter, we detail the P-DQN algorithm for parameterised actions, along with our
modifications to it, and compare it to previous methods.

25

Chapter 3

Parameterised Deep Q-Networks

The initial deep reinforcement learning approaches for parameterised action spaces treat both the discrete
actions and their action-parameters as a joint continuous action vector [Hausknecht and Stone 2016ab;
Hussein et al. 2018], allowing for standard continuous action algorithms such as DDPG to be applied
directly. As discussed in Section 2.2.3, this can be seen as relaxing the parameterised action space

A =
⋃
k∈[K]

{(k, xk)|xk ∈ Xk}. (3.1)

into a continuous action space:

A = {(f1:K , x1:K)|f ∈ R, xk ∈ Xk∀k ∈ [K]}. (3.2)

However, not only does this fail to exploit the disjoint nature of different parameterised actions, but opti-
mising over the joint action and action-parameter space can lead to premature convergence to suboptimal
policies, as occurred in experiments by Masson et al. [2016]; Wei et al. [2018].

To address this, Xiong et al. [2018] introduce a method that works in the parameterised action space
directly, without relaxing it into a continuous action space, by combining DQN and DDPG. Their Pa-
rameterised Deep Q-Network (P-DQN) algorithm uses a standard Q-network to approximate Q-values
used for discrete action selection, in addition to providing critic gradients for an actor network that de-
termines the continuous action-parameter values for all actions. While Xiong et al. [2018] show that
P-DQN outperforms PA-DDPG on Half Field Offense, they do so using asynchronous parallel workers
which are not present in PA-DDPG or other previous algorithms for parameterised actions. In this chap-
ter, we discuss the original P-DQN algorithm and our modifications to it before concluding with a fair
comparison study against prior methods.

3.1 P-DQN

By framing the problem as a PAMDP directly, rather than alternating between a discrete and continuous
action MDP as with Q-PAMDP [Masson et al. 2016] or a single continuous action MDP as with PA-
DDPG [Hausknecht and Stone 2016a], P-DQN necessitates a change to the Bellman Equation (2.2) to
incorporate continuous action-parameters:

Q(s, k, xk) = E
r,s′

[
r + γ max

k′∈[K]
sup

xk′∈Xk′
Q(s′, k′, xk′)

∣∣∣s, k, xk]. (3.3)

26

θx

,… ,Q1 QK

θQ

Q
N
et
w
or
k

A
ct
or

State ss, x

, . . . ,x1 xK

k = argmax
i
Qi

(a) P-DQN

θμ

Q

k = argmax
i
fi

θQC
rit
ic

A
ct
or

, . . . ,f1 fK , . . . ,x1 xK

State ss, f, x

(b) PA-DDPG

Figure 3.1: Illustration of the P-DQN [Xiong et al. 2018] and PA-DDPG [Hausknecht and Stone 2016a] artificial
neural network architectures for parameterised action spaces. The primary difference is that PA-DDPG predicts a
scalar Q-value and uses a continuous parameterisation of discrete actions fi, i = 1, . . . ,K, while P-DQN selects
discrete actions by maximising the Q-values explicitly. Take special note that the entire action-parameter vector
x = (x1, . . . , xK) is fed into the Q-network of P-DQN, as we show this becomes an issue in later chapters.

To avoid the computationally intractable calculation of the supremum over Xk, Xiong et al. [2018] state
that when the Q function is fixed, one can view argsupxk∈XkQ(s, k, xk) as a function xQk : S → Xk for
any state s ∈ S and k ∈ [K]. This allows the Bellman Equation for parameterised actions (3.3) to be
rewritten as:

Q(s, k, xk) = E
r,s′

[
r + γ max

k′∈[K]
Q(s′, k′, xQk′(s

′))
∣∣∣s, k, xk]. (3.4)

P-DQN uses a deep neural network with parameters θQ to represent Q(s, k, xk; θQ), and a second deter-
ministic actor network with parameters θx to represent the action-parameter policy xk(s; θx) : S → Xk,
an approximation of xQk (s). With this formulation it is easy to apply the standard DQN approach of
minimising the mean-squared Bellman error to update the Q-network using minibatches sampled from
replay memory D, replacing a with (k, xk):

LQ(θQ) = E
(s,k,xk,r,s′)∼D

[1

2

(
y −Q(s, k, xk; θQ)

)2]
, (3.5)

where y = r + γmaxk′∈[K]Q(s′, k′, xk′(s
′; θx); θQ) is the update target derived from Equation (3.4).

Then, the loss for the actor network in P-DQN is given by the negative sum of Q-values:

Lx(θx) = E
s∼D

[
−

K∑
k=1

Q
(
s, k, xk(s; θx); θQ

)]
, (3.6)

and although this choice was not motivated by Xiong et al. [2018], it resembles the deterministic policy
gradient loss used by PA-DDPG where a scalar critic value is used over all action-parameters [Hausknecht

27

and Stone 2016a]:
Lµ(θµ) = E

s∼D

[
−Q

(
s, π(s; θµ); θQ

)]
. (3.7)

This interlinks the actor and critic networks since the estimated Q-values are backpropagated through
the critic to the actor, producing gradients indicating how the action-parameters should be updated to
increase the Q-values. A comparison between the networks used by P-DQN and PA-DDPG is shown in
Figure 3.1.

The complete P-DQN algorithm with experience replay is shown in Algorithm 5. Although not originally
employed by Xiong et al. [2018], we added target networks with soft updates (Polyak averaging) [Lillicrap
et al. 2015] to improve stability, as in PA-DDPG and DQN [Mnih et al. 2015]. This changes the update
target calculation in Equation (3.5) to:

y = r + γ max
k′∈[K]

Q(s′, k′, xk′(s
′; θ−x); θ−Q), (3.8)

where θ−Q, θ
−
x are the parameters of the target networks.

Algorithm 5 Parameterised Deep Q-Network (P-DQN) with Experience Replay and Target Networks
Input: Learning rates {αQ, αx}, target network averaging factors {τQ, τx}, exploration parameter ε,
minibatch size B, probability distribution ξ, replay memory capacity N , discount factor γ, maximum
episodes Emax.
Initialise replay memory D to capacity N
Initialise network weights θQ, θx
Initialise target network weights θ−Q = θQ, θ−x = θx
Initialise counters t = 0, e = 0
repeat
st = initial state from environment
repeat

Compute all action parameters xk(st; θx)

Select action at =

{
(kt, xkt) : kt = argmaxk∈[K]Q(st, k, xkt ; θQ) with probability 1− ε
random sample from distribution ξ with probability ε

Execute action at, observe reward rt and next state st+1

Store transition {st, at, rt, st+1} in D
Sample B transitions {sb, ab, rb, sb+1}b∈[B] randomly from D

Set yb =

{
rb if sb+1 is terminal
rb + maxk∈[K] γQ(sb+1, k, xk(sb+1; θ

−
x); θ−Q) otherwise

With minibatch {sb, ab, yb}b∈[B]:
Compute ∇θQLQ and update θQ # using Adam or any other optimiser
Compute ∇θxLx and update θx

Update target networks θ−Q = τQθQ + (1− τQ)θ−Q, θ−x = τxθx + (1− τx)θ−x
t = t+ 1

until st is terminal
e = e+ 1

until e ≥ Emax

28

3.1.1 Multi-Step Returns

Xiong et al. [2018] also introduce a version of P-DQN using n-step returns (Section 2.1.1). We dis-
cuss two approaches to incorporating n-step return targets below, both of which have been used in the
parameterised action-space context.

Parallel Workers

The approach used by asynchronous P-DQN [Xiong et al. 2018] is to gather samples from multiple
instances of the environment using parallel agents to decorrelate samples from the current policy. In
asynchronous algorithms with n-step returns, each worker independently collects samples and performs
updates to a global shared network, with which workers synchronise at the start of each local episode.
This technique has been used to great effect by algorithms such as asynchronous advantage actor-critic
(A3C) [Mnih et al. 2016], which surpassed state-of-the-art algorithms of the time on Atari games and
significantly reduced the training time required. However, we note that implementing parallel sample
collection requires that the environment can be duplicated, which is impossible when learning online
in most real-world scenarios, and complex environments may require powerful hardware to simulate in
parallel. Moreover, the performance of such parallel algorithms is strongly correlated with the number
workers used [Mnih et al. 2016]. Thus with limited hardware or real-world environments, implementing
n-step returns by means of parallel workers is infeasible.

Mixed Targets

An alternative to parallel workers is using mixed n-step return targets. As discussed in Section 2.2.3, by
using an update target constructed out of both one-step and n-step return targets,

yt = β

[t+n−1∑
i=t

γi−tri

]
+ (1− β)

[
rt + γmax

a′
Q(st, a

′)
]
, (3.9)

one can incorporate data-efficient n-step returns using a single agent while retaining a replay memory
buffer. This approach was proposed by Hausknecht and Stone [2016b] and applied to PA-DDPG on HFO.
However, the value of the mixing ratio β has a massive impact on performance and appears to depend
on the domain as well as the algorithm used; see Appendix E for our analysis on the effect of different β
values on HFO.

Based on the PA-DDPG algorithm by Hausknecht and Stone [2016b], we present our own version of P-
DQN with mixed n-step return targets in Algorithm 6. This includes a sample-to-update ratio parameter
u, which makes the algorithm perform one update every 1/u samples instead of for every transition. This
is done to reduce training time and to be consistent with PA-DDPG.

29

Algorithm 6 P-DQN with Mixed n-Step Return Targets
Input: Learning rates {αQ, αx}, target network averaging factors {τQ, τx}, exploration parameter ε,
minibatch sizeB, probability distribution ξ, replay memory capacityN , maximum length of multistep
returns n, discount factor γ, maximum episodes Emax, sample-to-update ratio u.
Initialise replay memory D to capacity N
Initialise network weights θQ, θx
Initialise target network weights θ−Q = θQ, θ−x = θx
Initialise counters t = 0, e = 0
repeat
tstart = t
st = initial state from environment
repeat

Compute all action parameters xk(st; θx)

Select action at =

{
(kt, xkt) : kt = argmaxk∈[K]Q(st, k, xkt ; θQ) with probability 1− ε
random sample from distribution ξ with probability ε

Execute action at, observe reward rt and next state st+1

t = t+ 1
until st is terminal or t− tstart ≥ n
yacc = 0
for i = t− 1 . . . tstart do
yacc = ri + γyacc
ŷi = yacc
Store {si, ai, ri, ŷi, si+1} in D

end for
for j = 1 . . . u(t− tstart) do

Sample B transitions {sb, ab, rb, ŷb, sb+1}b∈[B] randomly from D

Set yb =

βŷb + (1− β)rb if sb+1 is terminal
βŷb + (1− β)

(
rb + maxk∈[K] γQ(sb+1, k, xk(sb+1; θ

−
x); θ−Q)

)
otherwise

With minibatch {sb, ab, yb}b∈[B]:
Compute ∇θQLQ and update θQ # using Adam or any other optimiser
Compute ∇θxLx and update θx

Update target networks θ−Q = τQθQ + (1− τQ)θ−Q, θ−x = τxθx + (1− τx)θ−x
end for
e = e+ 1

until e ≥ Emax

30

3.2 Comparison Study

We compare our modified P-DQN against Q-PAMDP and PA-DDPG on the Platform, Robot Soccer
Goal, and Half Field Offense domains. Previously, Xiong et al. [2018] compared only against the results
reported by Hausknecht and Stone [2016a] for PA-DDPG on HFO without reproducing them. This com-
parison is not quite fair, however, since Xiong et al. [2018] use asynchronous P-DQN with 24 parallel
workers and dueling networks [Wang et al. 2016] while PA-DDPG uses a single worker with mixing
n-step returns. The dueling networks technique is an enhancement for DQN that decomposes Q-values
as a sum of the state value and advantage functions; it is not part of the core P-DQN algorithm. Although
Wei et al. [2018] present preliminary results for PA-TRPO on Platform and HFO, we exclude it from our
comparison as it failed to learn to score goals on HFO.

3.2.1 Experimental Methodology

For each of the chosen benchmark domains we perform a hyperparameter search for P-DQN and PA-
DDPG to determine the best performing network size, learning rate, target network Polyak averaging
factor, and minibatch update size. The values searched and final hyperparameters are given in Appendix
A; these are used in all experiments unless otherwise specified. Adam [Kingma and Ba 2014] is used to
optimise the neural network parameters for P-DQN and PA-DDPG. Layer weights are initialised following
the Kaiming normal strategy of He et al. [2015] with rectified linear unit (ReLU) [Glorot et al. 2011]
activation functions applied after every layer except the last. We employ the inverting gradients approach
to account for bounded action-parameters, the ranges of which are scaled to [−1, 1] in all domains as we
found this improves the performance in general; see Appendix C for more information. Experiments with
the final hyperparameters decided by grid search are performed over 30 uniquely seeded random runs per
algorithm in each domain. At the end of training, agents are evaluated without random exploration over
an additional 1000 episodes. We use somewhat more episodes than necessary to train all agents to ensure
sufficient time for convergence, since we are as interested in the training dynamics of each algorithm as the
final performance during evaluation. Performance is measured in terms of area under the training curve
of episodic scores, average mean evaluation score, and median agent evaluation score. We include the
median because several outliers occur where agents fail to complete the given task, pulling down the mean
score significantly. We use the mixing n-step returns variants of PA-DDPG and P-DQN (Algorithm 6)
on HFO, and regular one-step lookahead targets (Algorithm 5) on Platform and Robot Soccer Goal. The
following hardware is used for our experiments: Intel Core i7-7700 CPU, 16GB DRAM, NVidia GTX
1060 GPU. Our experiments are implemented in Python using the PyTorch framework [Paszke et al.
2017] and OpenAI Gym interface [Brockman et al. 2016]. Our source code is publicly available online
at https://github.com/cycraig/MP-DQN to encourage reproducibility.

Platform

Agents are trained on the Platform domain over 80 000 episodes. We use the same hyperparameters for
Q-PAMDP as Masson et al. [2016] except we reduce the learning rate for eNAC from 1 to 0.1 to account
for the scaled action-parameters. The additive Gaussian noise variance is also reduced from 0.1 to 0.0001
for the same reason.

31

https://github.com/cycraig/MP-DQN

For P-DQN, a shallow network consisting of a single hidden layer of 128 neurons was found to perform
best with a minibatch size of 128, and learning rates of 10−3 and 10−4 for the critic and actor networks
respectively. The Polyak averaging factors for the target networks were chosen to be 0.1 and 0.001,
although changing them had a minor impact on performance compared to the learning rate during the
search. A larger network of two hidden layers with 256 and 128 neurons respectively was found to
be better for PA-DDPG, with coincidentally the same learning rates of 10−3 and 10−4 as used for P-
DQN, a minibatch size of 32, and Polyak averaging factors of 0.01 and 0.01. The same replay memory
size of 10 000 samples was used for both algorithms. We use an ε-greedy discrete action policy with
additive Ornstein-Uhlenbeck noise for action-parameter exploration, as we found this gives slightly better
performance than using Gaussian noise. A passthrough layer is used to initialise the action-parameter
policy of the actor networks for P-DQN and PA-DDPG to the same as Q-PAMDP, see Appendix D.

Robot Soccer Goal

Training consists of 100 000 episodes on Robot Soccer Goal. We again use the same hyperparameters
for Q-PAMDP as Masson et al. [2016] except we reduce the eNAC learning rate from 0.1 to 0.06 and the
noise variance from 0.01 to 0.0001.

P-DQN seems to perform better with shallower networks as a single hidden layer of 128 neurons was
also the best choice for this domain, with learning rates of 10−3 and 10−5, Polyak averaging factors of
0.1 and 0.001, and a minibatch size of 128. Similar to Platform, PA-DDPG uses a larger network of two
hidden layers of 128 and 64 neurons, learning rates of 10−4 and 10−5, Polyak averaging factors of 0.01
and 0.01, and a minibatch size of 64. Both algorithms use a replay memory size of 20 000 and the same
action-parameter policy initialisation as Q-PAMDP with additive Ornstein-Uhlenbeck noise.

Half Field Offense

We use 30 000 episodes for training on HFO. This is more than the 20 000 episodes (or roughly 3 million
transitions) used by Hausknecht and Stone [2016a] and Xiong et al. [2018] because, as mentioned before,
we want to give enough opportunity for the algorithms to converge in order to fairly evaluate the final
policy performance. We use the same network structure as previous works with hidden layers of 256-
128-64 neurons for P-DQN and 1024-512-256-128 neurons for PA-DDPG. The ReLU activation function
with negative slope 10−2 is used on HFO because of these deeper networks. We also use the same
hyperparameters as Hausknecht and Stone [2016b] apart from the β value, which we set to 0.25, and the
network learning rates which are adjusted due to using scaled action-parameters: 10−3, 10−5 for P-DQN
and 10−3, 10−3 for PA-DDPG. In absence of an initial action-parameter policy, we use the ε-greedy with
uniform random action-parameter exploration strategy. In general we keep as many factors consistent
between the two algorithms as possible for a fair comparison.

Q-PAMDP on the other hand, having never been applied to HFO before to the best of our knowledge,
requires some feature engineering and manual tuning. Since the full state observation space consists of 58
features, we selectively choose 10 of the most relevant ones to avoid intractable Fourier basis calculations
over the entire space. These features include: player orientation, stamina, proximity to ball, ball angle,

32

ball-kickable, goal centre position, and goal centre proximity. Orientations are encoded as two values:
the sin and cos of the angle. Even with this significantly reduced feature space, we found at most a
2nd-order Fourier basis could be used. The same alpha scaling strategy as Masson et al. [2016] is used
for Sarsa(λ) with an eNAC learning rate of 0.2. The Q-PAMDP agent initially learns with Sarsa(λ) for a
period of 1000 episodes before alternating between k = 50 eNAC updates of 25 rollouts each, and 1000
episodes of discrete action re-exploration with Sarsa(λ).

3.2.2 Results

The results of training P-DQN, PA-DDPG, and Q-PAMDP on the benchmark domains are shown in
Table 3.1 and Figure 3.2.

Platform
Mean Median Area Under Curve

Q-PAMDP 0.789± 0.188 0.795 50 397
P-DQN 0.964± 0.068 0.997 64 705
PA-DDPG 0.284± 0.061 0.308 23 247

Robot Soccer Goal
Mean Median Area Under Curve

Q-PAMDP 0.452± 0.093 0.456 39 340
P-DQN 0.668± 0.062 0.656 61 445
PA-DDPG 0.006± 0.020 0.000 1791

Half Field Offense
Mean Median Avg. Steps to Goal Area Under Curve

Q-PAMDP 0± 0 0 n/a 15 924
P-DQN (ours) 0.883± 0.085 0.917 111± 11 182 573
PA-DDPG (ours) 0.875± 0.182 0.945 95± 7 193 687

Asynchronous P-DQN1 0.989± 0.006 0.991 81± 3 -
PA-DDPG2 0.923± 0.073 0.960 112± 5 -

Table 3.1: Results of the comparison study between Q-PAMDP, P-DQN, and DDPG on Platform (top), Robot
Soccer Goal (middle) and HFO (bottom). We include previously published results from Hausknecht and Stone
[2016a] and Xiong et al. [2018] on HFO, although they are not directly comparable with ours as we use a longer
training period and have a much larger sample size of agents—30 versus 7 and 9 respectively—and asynchronous
P-DQN, as mentioned before, uses 24 parallel workers to implement n-step returns rather than the mixing strategy
of PA-DDPG. Our results are similar to those of Hausknecht and Stone [2016a] for PA-DDPG, except we observe
more outliers where agents fail to score reliably, shown in Figure 3.2b.

1Reported average over 9 runs with 24 parallel workers for n-step returns [Xiong et al. 2018].
2Reported average over 7 runs with mixing n-step returns [Hausknecht and Stone 2016a].

33

While Q-PAMDP shows learns slightly faster than P-DQN in the first few thousand episodes, particularly
on Robot Soccer Goal, P-DQN quickly outperforms Q-PAMDP and reaches a significantly higher average
return by the end of training. On Platform, for example, the mean P-DQN evaluation score is 0.964 versus
0.789 for Q-PAMDP, indicating almost all P-DQN agents manage to reach the final platform consistently,
bar one or two outliers. PA-DDPG, on the other hand, fails to learn to traverse past the first platform
with a mean score of 0.284; this is similar to the results reported by Wei et al. [2018]. Upon closer
inspection, PA-DDPG consistently learns to leap over the first enemy into the gap because this gives a
greater immediate reward than hopping over the enemy.3 Similarly on Robot Soccer Goal, PA-DDPG
completely fails to optimise discrete action selection and changes the action-parameter policy such that
it is almost impossible to score goals. This behaviour highlights the problem with updating the action
and action-parameter policies at the same time leading to premature convergence to suboptimal policies.
This problem is also observed when using direct policy search with eNAC in experiments by Masson et
al. [2016].

In Half Field Offense, the most complex of the benchmark domains, PA-DDPG agents learn faster on
average and score goals more consistently than P-DQN agents. This confirms that the use of asynchronous
parallel workers was a major factor influencing the performance of P-DQN on HFO in the experiments
by Xiong et al. [2018], and under similar conditions with a single worker using mixing n-step returns it
is somewhat inferior to PA-DDPG. However, we note that PA-DDPG produces outliers with poorer goal-
scoring capabilities than the worst performing agents of P-DQN. This leads P-DQN to have a higher
mean evaluation score but a lower median evaluation score. Q-PAMDP learns to approach the ball but
otherwise fails to score any goals, which is not unexpected given that agents do not have access to the full
feature space and the action-parameter policy is restricted to a linear combination of features rather than
a non-linear neural network function approximator. Further feature engineering would likely improve the
performance of Q-PAMDP but the fact that P-DQN and PA-DDPG learn without complex hand-crafted
features is a major practical advantage.

3There is no negative reward for the agent dying in Platform, only a positive reward based on the distance traversed.

34

0 20000 40000 60000 80000
0.0

0.2

0.4

0.6

0.8

1.0
Re

tu
rn

Platform

Q-PAMDP
P-DQN
PA-DDPG

0 20000 40000 60000 80000 100000
0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

Q-PAMDP
P-DQN
PA-DDPG

0 5000 10000 15000 20000 25000 30000
Episodes

0

2

4

6

8

Re
tu

rn

HFO

Q-PAMDP
P-DQN
PA-DDPG

(a) Learning curves

Q-PAMDP P-DQN PA-DDPG
0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Platform

Q-PAMDP P-DQN PA-DDPG
0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

Q-PAMDP P-DQN PA-DDPG
0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

No goals

HFO

(b) Evaluation scores

Figure 3.2: Results of Q-PAMDP, P-DQN, and PA-DDPG on Platform (top), Robot Soccer Goal (middle) and
HFO (bottom) over 30 seeded-random runs per algorithm per domain. The learning curves during training (a)
show the running average scores—episodic return for Platform and HFO, and goal scoring probability for Robot
Soccer Goal—smoothed over 5000 episodes including random exploration of the agents; shaded areas represent
the standard deviation of the running averages over the different agents. The violin plots in (b) show the distribution
of mean scores over 1000 evaluation episodes post-training. Note that the average goal probability is reported for
evaluation on HFO instead of the episodic return, as done by Hausknecht and Stone [2016a]; Xiong et al. [2018].
The inner box plot of each violin shows the interquartile range (IQR) with whiskers representing data within 1.5
times the IQR above and below the first and third quartiles; anything outside of that range is considered an outlier,
as is convention [Tukey 1977]. Mean average scores are indicated by white dots, and white lines show the median
agent’s average score.

35

3.3 Summary

We detailed the core P-DQN algorithm and presented our own version using mixing n-step returns, an
alternative to the multi-worker asynchronous P-DQN. Our comparison study shows that P-DQN out-
performs Q-PAMDP in general, the previous state-of-the-art algorithm on Platform and Robot Soccer
Goal, while PA-DDPG prematurely converges to poor action policies on those domains. Furthermore,
our results show that P-DQN with mixing n-step returns performs slightly worse than PA-DDPG on
HFO, indicating that the results of the comparison by Xiong et al. [2018] were largely due to the use of
asynchronous parallel workers and that there is room for improvement for P-DQN on HFO.

36

Chapter 4

Addressing Action Sampling Imbalance

One of the main differences between P-DQN and PA-DDPG is the learning of a Q-value per action
instead of a single critic value over a combined action and action-parameter vector. This difference
introduces potential problems stemming from the natural imbalance in the distribution between actions
taken by agents during learning. Figure 4.1 shows that such action sampling imbalance occurs on all
three benchmark domains.

0 20000 40000 60000 80000
0.0
0.2
0.4
0.6
0.8
1.0

Run
Hop
Leap

0 20000 40000 60000 80000 100000
0.0
0.2
0.4
0.6
0.8
1.0

Ac
tio

n
Ra

tio

Kick-To
Shoot-Goal-Left
Shoot-Goal-Right

0 10000 20000 30000
Episodes

0.0
0.2
0.4
0.6
0.8
1.0

Dash
Turn
Kick

Platform
Robot Soccer Goal

HFO

Figure 4.1: Plot of action selection ratios for P-DQN over the course of training on Platform (top), Robot Soccer
Goal (middle) and HFO (bottom). The action counts are averaged over 100 episode intervals recorded from a single
agent per domain, including any random exploration. There is clearly a significant imbalance between actions on
all three domains: for example on HFO, 70% of the agent’s actions are dashes because most of an episode consists
of moving towards the ball, while on Platform the agent eventually chooses the leap action less than 3% of the
time.2

0This is a consequence of the hop action having a higher apogee than the leap action, thus allowing the agent to jump
somewhat further. This is likely unintentional but we retain this behaviour in our version of Platform for consistency.

37

The main issue with this imbalance for P-DQN is that each Q-value is only updated using transitions
corresponding to their associated action, leading to some Q-values possibly being less accurate than
others. This is primarily a problem when novel states are first explored by the agent, since if not all
Q-values have sufficiently generalised to similar states they could provide incorrect gradients to their
associated action-parameters in the summation loss function. Only the Q-value of the action taken in the
novel state, say Qk for action k, contains valuable information for xk, but all xj , j 6= k are still updated
even though the agent has never executed those actions in that state. As exploration decreases during
training, the actions chosen by the agent favour exploitation which further entrenches the imbalance of
actions chosen. While all Q-values would theoretically provide accurate critic estimates for the action-
parameters if all actions were explored an infinite number of times in all states, this is not the case in
practice due to limited time and resources, and the imbalance would still be an issue early on in training
during exploration. To address this, we propose two alternatives to the summation action-parameter loss
used by P-DQN: the indexed loss, and the weighted loss.

4.1 Indexed Action-Parameter Loss

Recall the original summation action-parameter loss function for P-DQN:

Lx(θx) = E
s

[
−

K∑
k=1

Q
(
s, k, xk(s; θx); θQ

)]
. (4.1)

When using minibatch updates, Equation (4.1) can be written as:

Lx(θx) =
1

|B|
∑
sb∈B

[
−

K∑
k=1

Q
(
s, k, xk(sb; θx); θQ

)]
, (4.2)

where B is a minibatch of transitions sampled from replay memory D. Because action sampling im-
balance causes potential for inaccurate gradients from Q-values for actions other than the one taken in
an update sample, we propose changing the loss function to use only the Q-value corresponding to the
action chosen per sample in the minibatch. This gives us the indexed loss:

Lx(θx) =
1

|B|
∑

sb,kb∈B

[
−Q

(
s, kb, xkb(sb; θx); θQ

)]
. (4.3)

The loss now depends on the action kb from each sample in the minibatch as well as the state, removing
the summation over all actions. This is similar to the Q-value loss, Equation (3.5), in that only the value
corresponding to a single action is used per sample in the minibatch. Under the assumption that each
action is explored infinitely many times in every state, using the indexed loss should converge to the
same policy as the summation loss. Note that there are no guarantees of convergence to globally optimal
solutions when non-linear function approximation is used in DQN or DDPG, and the same is true for
P-DQN. One potential disadvantage of the indexed loss is that if each Q-value is relatively accurate in the
states sampled from a minibatch, then the summation loss could update the policy faster since it affects all
action-parameters. However, this is unlikely in most situations due to the aforementioned action sampling
imbalance.

38

4.1.1 Gradient-Zeroing for Action-Parameter Update Independence

We now take a small detour to highlight a different problem with P-DQN and how it affects our proposed
indexed loss function. Recall that the P-DQN architecture inputs the joint action-parameter vector over
all actions to the Q-network, as illustrated in Figure 3.1a. While this may seem like an inconsequential
implementation detail at first, it in fact changes the formulation of the Bellman Equation for parameterised
actions (3.4) such that each Q-value is a function of the joint action-parameter vector x = (x1, . . . , xK),
rather than only the action-parameter xk corresponding to the associated action:

Q(s, k,x) = E
r,s′

[
r + γ max

k′∈[K]
Q(s′, k′,xQ(s′))

∣∣∣s, k,x]. (4.4)

This in turn affects both the updates to the Q-values and the action-parameters. For now, we consider
only the effect on the action-parameter loss, specifically that each Q-value produces gradients for all
action-parameters. Consider for demonstration purposes the summation loss taken over a single sample
with state s:

Lx(θx) = −
K∑
k=1

Q
(
s, k,x(s; θx); θQ

)
. (4.5)

The policy gradient is then given by:

∇θxx(s; θx) = −
K∑
k=1

∇xQ
(
s, k,x(s; θx); θQ

)
∇θxx(s; θx). (4.6)

Expanding the gradients with respect to the action-parameters,

∇xQ =
(
∂Q1

∂x1
+ ∂Q2

∂x1
+ · · ·+ ∂QK

∂x1
, · · · , ∂Q1

∂xK
+ ∂Q2

∂xK
+ · · ·+ ∂QK

∂xK

)
, (4.7)

where Qk := Q(s, k,x(s; θx); θQ). Theoretically, if each Q-value were a function of just xk as the
original P-DQN formulation intended, then ∂Qk/∂xj = 0 ∀j, k ∈ [K], j 6= k and ∇xQ simplifies to

∇xQ =
(
∂Q1

∂x1
, ∂Q2

∂x2
, · · · , ∂QK∂xK

)
. (4.8)

However this is not the case in P-DQN, so the gradients with respect to other action-parameters are not
zero in general. This is a problem because each Q-value is only updated when its corresponding action
is sampled, as per Equation (3.5), and thus has no information on what effect other action-parameters
xj , j 6= k have on transitions or how they should be updated to maximise the expected return. They
therefore produce what we term false gradients. This effect may be mitigated by the summation loss
function, since the gradients from each Q-value are summed and then averaged over a minibatch, hope-
fully causing the signal from the true gradient to overpower the conflating false gradients. When using
the proposed indexed loss, however, it is possible that the false gradients become more prominent since
the loss is a function of a single Q-value per sample, but still averaged over a minibatch.

One approach to overcome this is by explicitly setting the gradients of Q-values for action-parameters
other than their own to zero during updates: ∂Qk

∂xj
← 0 ∀k, j ∈ [K], j 6= k. This is not trivial when using

the summation loss function because the gradients are summed. Using the indexed loss, on the other
hand, one can simply use the same index as the sampled action to exclude other gradients. We refer
to this technique as gradient-zeroing. Note that this only solves the issue introduced by having joint
inputs for action-parameter updates, and only for the indexed loss function thus far. The Q-value issues
we alluded to before are discussed and addressed in Chapter 5, with solutions applicable to any loss
function. For the purposes of this chapter, however, gradient-zeroing suffices.

39

4.2 Weighted Action-Parameter Loss

The second action-parameter loss function we propose addresses a different aspect of the action sampling
imbalance. The transitions stored in replay memory will obviously mimic the distribution of actions taken
by the agent in the environment. The imbalance between actions thus also extends to minibatches that
are sampled uniformly randomly from replay memory. This means that not all actions are represented
equally during an update.

Consider running P-DQN on Half Field Offense. There are three parameterised actions available: dash,
turn, and kick. As seen in Figure 4.1, the dash action is chosen around 70% of the time, turn 18%, and
kick 12%. Thus with a minibatch size of 32, on average one would expect roughly 22 of the samples to
be transitions where the dash action was taken, 6 for the turn action, and 4 for the kick action. During
updates, the dash action-parameter gradient is therefore likely to be a better estimate since it is averaged
over more samples, whereas the gradients for the turn and kick action-parameters might be misled by a
few states that suggest an incorrect or suboptimal direction of increase.

Explicitly balancing the number of transitions sampled from replay memory to be equal for each action is
unwise as it can prioritise outdated transitions if a certain action is seldom taken, such as the leap action
on the Platform domain. Prioritised experience replay [Schaul et al. 2015] could be employed to bias
sampling towards transitions where the critic has high error, but that would not address the imbalance of
samples possibly leading to poor gradient estimates. So, instead of changing the replay memory sam-
pling strategy, we propose a simple change to the loss function to incorporate knowledge of the action
distribution imbalance. Using the summation loss from Equation (4.1), we weight each Q-value accord-
ing to the ratio of transitions from the current minibatch where that action is executed. Our proposed
proportionally weighted loss, or simply weighted loss, is defined as follows:

Lx(θx) =
1

|B|
∑
sb∈B

[
−

K∑
k=1

ckQ
(
s, k, xk(sb; θx); θQ

)]
, (4.9)

where ck =
∑

kb∈B[kb = k]/|B| is the proportion of transitions where action k is taken in the current
minibatch B. Note that

∑K
k=1 ck = 1, meaning the magnitude of the loss is only ever decreased. This

has the effect of asymmetrically downscaling the loss generated by each Q-value, creating a more con-
servative estimate of the gradient for each action-parameter based on how confident we are in the loss.
This is not the same as reducing the learning rate since the ck weighting terms change per minibatch and
in general differ per action. We can also extend the indexed loss function proposed in Section 4.1 with
weighting terms, forming the weighted-indexed loss:

Lx(θx) =
1

|B|
∑

sb,kb∈B

[
− ckQ

(
s, kb, xkb(sb; θx); θQ

)]
, (4.10)

where ck is the same as in Equation (4.9).

The potential disadvantages of how ck is defined are that it makes action-parameter gradients strictly
more conservative, even when the Q-values become accurate enough to provide useful estimates over
fewer transitions, and the weightings would decrease if the number of actions increased, since the ratio
of samples corresponding to each action would be smaller. Ideally, one would calculate the confidence

40

interval of each Q-value, for example by bootstrapping [White and White 2010], and scale the action-
parameter gradients accordingly. However more complex techniques would introduce additional com-
putational complexity, whereas our weighted loss function has negligible overhead and will be shown to
have a positive impact on performance despite its simplicity.

4.3 Experiments

We devise three sets of experiments to empirically evaluate the performance of the proposed action-
parameter loss functions for P-DQN:

(E1) Indexed loss

(E2) Weighted loss

(E3) Weighted-indexed loss

In all cases, we use the same experimental configuration for P-DQN detailed in Section 3.2.1 on the three
benchmark domains.

4.3.1 (E1) Indexed Loss

We first examine the impact of the indexed action-parameter loss, with and without gradient-zeroing, on
the performance of P-DQN versus the summation loss as a baseline. The results, shown in Table 4.1
and Figure 4.2, indicate a clear improvement in terms of training and evaluation performance when
using the indexed loss over the baseline P-DQN agents on Platform and HFO. Using the gradient-zeroing
technique shows an even greater improvement due to the removal of false gradients, confirming not only
their existence in practice but that they are detrimental. On Robot Soccer Goal, however, agents with
the indexed loss function have reduced performance, with an 11% lower probability of scoring goals on
average compared to baseline agents. Even with gradient-zeroing, the area under the curve is lower than
that of P-DQN, although the average evaluation performance is higher than the baseline by the end of
training.

So why is the indexed loss beneficial on some domains while reducing performance on others? We sus-
pect this can be attributed to the difference in the visitation of states by agents between the domains. On
Platform, the agent continues to see novel states as training progresses, traversing past enemies to new
platforms until it learns to reach the goal. Similarly on HFO, the agent does not experience states or
rewards where the ball moves until it learns to approach and kick it. On Robot Soccer Goal, however, the
agent has access to almost all states at the beginning of training because each of its actions are related to
kicking the ball in a different manner. The agent’s initial position at the beginning of each episode is ran-
domised, so most states are visited during initial exploration. Thus P-DQN possibly learns to generalise
its Q-values more quickly than on Platform and HFO due to the relative lack of novel states. This is sup-
ported by the fact that the learning curve starts to plateau relatively early in Robot Soccer Goal, around

41

20 000 episodes. This explains the decrease in performance since, as mentioned in Section 4.1, the in-
dexed loss is less efficient than the summation loss when the Q-values of all actions produce accurate
gradients in most states. There is also a larger difference between the indexed loss with gradient-zeroing
and without on Robot Soccer Goal, indicating the magnitude of false gradients is greater on that domain
than the other two: this is confirmed by our sensitivity analysis in Chapter 5.

The fact that the indexed loss without gradient-zeroing significantly reduces performance of P-DQN on
Robot Soccer Goal, and causes worse outliers on Platform and HFO, serves to highlight the problem of
false gradients caused by each Q-value depending on all action-parameters. While gradient-zeroing can
be employed to eliminate false gradients, this technique is specific to the indexed loss function because
it relies on the action taken in the sampled transition.

Platform
Mean Median Area Under Curve

P-DQN (baseline) 0.964± 0.068 0.997 64 705

Indexed with Gradient-Zeroing 0.990± 0.016 0.996 73 567
Indexed 0.945± 0.150 0.995 66 998

Robot Soccer Goal
Mean Median Area Under Curve

P-DQN (baseline) 0.668± 0.062 0.656 61 445

Indexed with Gradient-Zeroing 0.700± 0.073 0.720 60 119
Indexed 0.558± 0.147 0.578 52 140

Half Field Offense
Mean Median Avg. Steps to Goal Area Under Curve

P-DQN (baseline) 0.883± 0.085 0.917 111± 11 182 573

Indexed with Gradient-Zeroing 0.915± 0.066 0.936 106± 10 199 747
Indexed 0.910± 0.092 0.943 106± 11 190 742

Table 4.1: Results of using the proposed indexed action-parameter loss function for P-DQN with and without
gradient-zeroing. We observe the indexed loss alone achieves a mean score lower than the baseline on Platform
and Robot Soccer Goal, but a higher mean on HFO.

42

0 20000 40000 60000 80000
0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Platform

P-DQN (baseline)
Indexed + Gradient-Zeroing
Indexed

0 20000 40000 60000 80000 100000
0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

0 5000 10000 15000 20000 25000 30000
Episodes

0

2

4

6

8

Re
tu

rn

HFO

(a) Learning curves

P-DQN Indexed + G.Z. Indexed
0.6

0.7

0.8

0.9

1.0

Re
tu

rn

Platform

P-DQN Indexed + G.Z. Indexed
0.2

0.4

0.6

0.8

1.0
Go

al
 P

ro
ba

bi
lit

y

Robot Soccer Goal

P-DQN Indexed + G.Z. Indexed
0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

HFO

(b) Evaluation scores

Figure 4.2: Graphs of the results of training P-DQN agents with the proposed indexed action-parameter loss func-
tion with and without gradient-zeroing, compared to baseline P-DQN using the original summation loss.

43

4.3.2 (E2) Weighted Loss

Our second set of experiments evaluates the proposed weighted action-parameter loss function. We com-
pare three different choices of the ck weighting terms to determine whether any change in performance is
due to selectively conservative gradients or smaller losses in general. The three choices of ck we evaluate
are:

1. Proportional: ck =
∑

kb∈B[kb = k]/|B|. This is the same version we propose in Section 4.2.

2. Average: ck = 1/K. This is equivalent to simply lowering the learning rate, since the loss is
downscaled by a constant factor.

3. Random: ck = U([0, 1])/
∑K

k=1 ck. In this case the weightings are uniformly randomly sampled
from the range [0, 1] in each update, then normalised such that

∑K
k=1 ck = 1 to be consistent with

the other two approaches.

We compare these variants of the weighted loss against P-DQN with the summation action-parameter
loss as a baseline. We present the results of this comparison in Table 4.2 and Figure 4.3.

Platform
Mean Median Area Under Curve

P-DQN (baseline) 0.964± 0.068 0.997 64 705

Proportional 0.972± 0.057 0.997 65 587
Average 0.971± 0.054 0.996 65 260
Random 0.943± 0.137 0.993 66 901

Robot Soccer Goal
Mean Median Area Under Curve

P-DQN (baseline) 0.668± 0.062 0.656 61 445

Proportional 0.683± 0.069 0.666 60 312
Average 0.682± 0.083 0.680 61 006
Random 0.624± 0.063 0.625 56 135

Half Field Offense
Mean Median Avg. Steps to Goal Area Under Curve

P-DQN (baseline) 0.883± 0.085 0.917 111± 11 182 573

Proportional 0.894± 0.116 0.934 110± 9 191 873
Average 0.852± 0.113 0.885 116± 12 184 620
Random 0.879± 0.125 0.910 114± 15 187 618

Table 4.2: Results of training P-DQN agents with each of the weighted action-parameter loss function variants
compared to baseline P-DQN. The highest mean scores are achieved by the loss with proportional ck weightings.

44

0 20000 40000 60000 80000
0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Platform

P-DQN (baseline)
Proportional
Average
Random

0 20000 40000 60000 80000 100000
0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

0 5000 10000 15000 20000 25000 30000
Episodes

0

2

4

6

8

Re
tu

rn

HFO

(a) Learning curves

P-DQN Proportional Average Random
0.6

0.7

0.8

0.9

1.0

Re
tu

rn

Platform

P-DQN Proportional Average Random
0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

P-DQN Proportional Average Random
0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

HFO

(b) Evaluation scores

Figure 4.3: Graphs of the results of using each of the weighted action-parameter loss function variants for P-DQN
compared to the summation loss as a baseline. There is little difference between the learning curves of the different
approaches in (a), although a slight increase in average evaluation scores for the proportional weighted loss function
is observed in (b).

45

We observe no significant changes in training performance when using any of the weighted loss functions:
the proportional and average weightings have roughly the same area under the curve as baseline P-DQN,
while agents with random weightings learn slightly faster on Platform and slower on Robot Soccer Goal.
There is a difference in evaluation scores, however, where we see proportional weightings produce higher
mean and median scores than the baseline on all three domains. Average weightings are competitive
with proportional weightings on Platform and Robot Soccer Goal but have lower-than-baseline scores
on HFO. Random weightings, on the other hand, produce significantly worse evaluation scores than the
other variants and baseline in all cases. The similarity between scores of agents using the average and
proportional weightings on Platform and Robot Soccer Goal may indicate that a lower action-parameter
learning rate would show similar improvements. The hyperparameter search only included learning rates
in decreasing powers of 10—10−1, 10−2, 10−3, 10−4, 10−5—so it is possible that the ideal learning rate
is between these. However this is not the case on HFO, where we see proportional weightings outperform
the baseline while average weightings reduce performance. This seems to indicate that while having more
conservative gradient estimates may be a factor, asymmetrically and proportionally downscaling action-
parameter gradients to account for the imbalance of actions in minibatch samples is the main reason for
the observed increase in average evaluation scores.

We suspect that an unintended effect of having asymmetric weightings for the Q-values is that the balance
of false gradients in the summation loss function, discussed in Section 4.1.1, is changed. This could
lead to the true action-parameter gradient becoming less or more prominent depending on how often
the associated action is sampled. This might then explain why using random weightings increases the
learning speed on Platform, but decreases it on Robot Soccer Goal where we suspect the effects of action
sampling imbalance not to be as significant, as mentioned in Section 4.3.1. Despite this, the loss with
proportional ck weightings, henceforth simply referred to as the weighted loss, still shows an increase in
evaluation performance overall.

4.3.3 (E3) Weighted-Indexed Loss

Finally, we evaluate whether the combination of the proposed weighted and indexed action-parameter
losses—the weighted-indexed loss, Equation (4.10)—further increases the performance of P-DQN. We
compare against results from previous experiments for the indexed loss with gradient-zeroing and the
proportionally weighted loss, and P-DQN with the summation loss again used as a baseline. We only
test the weighted-indexed loss when also using gradient-zeroing, as this was shown in Section 4.3.1 to
be strictly better than the indexed loss without gradient-zeroing and this removes any impact of false
gradients. We present the results of this experiment in Table 4.3 and Figure 4.4.

46

Platform
Mean Median Area Under Curve

P-DQN (baseline) 0.964± 0.068 0.997 64 705

W 0.972± 0.057 0.997 65 587
I+GZ 0.990± 0.016 0.996 73 567
W+I+GZ 0.989± 0.019 0.995 72 144

Robot Soccer Goal
Mean Median Area Under Curve

P-DQN (baseline) 0.668± 0.062 0.656 61 445

W 0.683± 0.069 0.666 60 312
I+GZ 0.700± 0.073 0.720 60 119
W+I+GZ 0.734± 0.073 0.756 63 429

Half Field Offense
Mean Median Avg. Steps to Goal Area Under Curve

P-DQN (baseline) 0.883± 0.085 0.917 111± 11 182 573

W 0.894± 0.116 0.934 110± 9 191 873
I+GZ 0.915± 0.066 0.936 106± 11 199 747
W+I+GZ 0.904± 0.100 0.940 107± 9 204 382

Table 4.3: Results of using the combined weighted-indexed action-parameter loss with gradient-zeroing (W+I+GZ)
compared to using either the weighted loss (W), or indexed loss with gradient-zeroing (I+GZ) alone. The difference
between the weighted-indexed and indexed losses with gradient-zeroing on Platform is negligible because almost
all agents learn to reach the goal consistently in the first place, leaving little room for improvement bar the reduction
of outliers. Robot Soccer Goal shows the clearest increase in performance when using the weighted-indexed loss
both in terms of evaluation scores and area under the curve. It also achieves the best performance on HFO across
all measures except the mean score, which is due to an outlier shown in Figure 4.4b reducing the average.

We see that the combined weighted-indexed loss with gradient-zeroing achieves the highest median eval-
uation scores across all domains. The mean score on HFO is lower than that of just the indexed loss with
gradient-zeroing but we see in Figure 4.4b that this is due to a single outlier pulling down the average.
Surprisingly, the addition of weighting terms to the indexed loss with gradient-zeroing shows an increase
in area under the curve on Robot Soccer Goal, contrary to the results of the previous experiment with the
weighted loss alone. The gradient-zeroing technique removes any problems related to the balance of true
and false action-parameter gradients that may have been an issue for the weighted loss in the previous
experiment. The results of this experiment demonstrate that both the indexed and weighted loss func-
tions are complementary and beneficial in addressing different problems associated with action sampling
imbalance, since the combined weighted-indexed loss shows greater performance than using either loss
alone.

47

0 20000 40000 60000 80000
0.2

0.4

0.6

0.8

1.0
Re

tu
rn

Platform

P-DQN (baseline)
W
I+GZ
W+I+GZ

0 20000 40000 60000 80000 100000
0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

0 5000 10000 15000 20000 25000 30000
Episodes

0

2

4

6

8

Re
tu

rn

HFO

(a) Learning curves

P-DQN W I+GZ W+I+GZ
0.6

0.7

0.8

0.9

1.0

Re
tu

rn

Platform

P-DQN W I+GZ W+I+GZ
0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

P-DQN W I+GZ W+I+GZ
0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

HFO

(b) Evaluation scores

Figure 4.4: Graphs of the results of using the combined weighted-indexed action-parameter loss with gradient-
zeroing (W+I+GZ) compared to using either the weighted loss (W), or indexed loss with gradient-zeroing (I+GZ)
alone. The learning curves in (a) show a negligible difference between the weighted-indexed and indexed losses on
Platform and HFO during training, but the learning curve for Robot Soccer Goal is notably higher. The evaluation
scores in (b) indicate a more significant increase as a result of the combined weighted-indexed loss than during
training.

48

4.4 Summary

We discussed two of the problems associated with the summation action-parameter loss function for P-
DQN as a result of the imbalance between actions experienced by agents during learning. To address
this, we proposed the indexed and weighted loss functions as alternatives. Our experiments empirically
show that the use of these loss functions improves the performance of P-DQN in general, and that the
combined weighted-indexed loss function is better than using either the weighted or indexed loss alone.
Furthermore, we showed that the dependence of the Q-network in P-DQN on the joint action-parameter
vector over all actions can cause what we term false gradients during updates. Our gradient-zeroing
technique for the indexed loss eliminates this problem, improving performance on all domains.

49

Chapter 5

Independent Action-Parameter Methods

Recall that the joint vector x = (x1, . . . , xK) over all action-parameters is input to the Q-network for
P-DQN (Figure 3.1a), causing the Q-values to become dependent on the parameters of all actions, not
just their own. In this chapter, we explore the detrimental effects this has not only on the action-parameter
gradients, as was seen in Chapter 4, but the discrete action policy too. We then propose two solutions for
P-DQN to ensure that Q-values depend only on their associated action-parameters.

5.1 Q-Value Action-Parameter Sensitivity

To investigate whether the Q-network in P-DQN learns to compensate and discount the impact of unasso-
ciated action-parameters, we measure the sensitivity of each Q-value to its own action-parameter versus
others. To do so, we employ a technique similar to Grad-CAM [Selvaraju et al. 2017], whereby we record
the magnitude of the gradients each Q-value produces with respect to the action-parameters during back-
ward passes of the Q-network. We define the sensitivity of a Q-value in our case as the L2-norm over its
gradient vector. This can be calculated separately over the associated action-parameter,

sensitivity (Qk, xk) :=

∥∥∥∥(∂Qk∂xk

)∥∥∥∥
2

, (5.1)

and unassociated action-parameters,

sensitivity
(
Qk, x1,...,k−1,k+1,...,K

)
:=

∥∥∥∥(∂Qk∂x1
, · · · , ∂Qk

∂xk−1
, ∂Qk

∂xk+1
, · · · , ∂Qk∂xK

)∥∥∥∥
2

. (5.2)

These two values can then be used to quantify how sensitive a Q-value is to changes in its own action-
parameter relative to those of other actions. We record these sensitivities while training a P-DQN agent
for each of the benchmark domains; plots of these values are shown in Figure 5.1. We observe a strong
correlation between the sensitivities of the associated and other action-parameters on Platform and HFO.
While there is a downward trend of sensitivity over time on Platform, there is instead an upward trend
on HFO. The correlation is not as prominent on Robot Soccer Goal but there is still no indication of
the sensitivity to other action-parameters decreasing during training. We can therefore infer from these
results that the learned Q-values do not, in general, become independent of other action-parameters. In
fact, we observe that the Q-values of some actions—hop on Platform, kick-to on Robot Soccer Goal, and
dash on HFO—actually become more sensitive to the parameters of other actions.

50

0 80k
0.0

0.2

0.4

0.6

0.8
Run

0 80k

Hop

Own Action-Parameter

Other Action-Parameters

0 80k

P
la

tfo
rm

Leap

0 100k
0

1

2

3

4

Q
-V

a
lu

e
 S

e
n
si

ti
v
it

y

Kick-To

0 100k

Shoot-Goal-Left

0 100k

R
o
b

o
t S

o
cce

r G
o
a
l

Shoot-Goal-Right

0 30k
0.0

0.1

0.2

0.3

0.4
Dash

0 30k

Episodes

Turn

0 30k

H
a
lf Fie

ld
 O

ffe
n
se

Kick

Figure 5.1: Sensitivity of each Q-value to its own action-parameter (black) versus those of other actions (red),
sampled every 1000 episodes from a single agent over the course of training on Platform (top), Robot Soccer Goal
(middle), and HFO (bottom). Each sensitivity calculation is averaged over 10 episodes. Despite the unassociated
action-parameters having no bearing on the resulting transition when any action other than their own is executed,
Q-values under P-DQN do not become independent of these conflating values in general. Instead, we see several
cases (highlighted in green) where the Q-value of an action becomes more sensitive to the action-parameters of
other actions. We can see from the range of values that P-DQN on Robot Soccer Goal is far more sensitive to
its action-parameters than on Platform and HFO. This may be a factor in why the indexed loss function without
gradient-zeroing performs worse only on Robot Soccer Goal in Section 4.3.1.

51

5.2 Problems with Q-Value Sensitivity to Unassociated Action-Parameters

We now know that the P-DQN Q-network does not learn to discount the impact of unassociated action-
parameters for each Q-value. We identify and discuss two problems with Q-values being dependent on
the combined action-parameter vector x instead of xk.

5.2.1 False Action-Parameter Gradients

We saw in Section 4.1.1 how each Q-value,Qk, produces false gradients for unassociated action-parameters
xj , j ∈ [K] j 6= k. We also saw how explicitly removing the impact of these false gradient by setting
them to zero, ∂Qk/∂xj ← 0 ∀k, j ∈ [K], j 6= k, improves performance of P-DQN. The sensitivity analysis
in Figure 5.1 gives additional insight into this as it shows that some Q-values, particularly the kick-to ac-
tion on Robot Soccer Goal, contribute more to other action-parameters than the Q-values of those actions
themselves.

Recall that false gradients are produced by Q-values that have no information on how those action-
parameters affect transitions from any given state. One may argue, however, that feeding xj , j 6= k
as input toQk gives it information on the current action-parameter policy in future states and how it may
affect the expected future return which the Q-value encodes. However, Q(s, k, x) only gives an estimate
of the expected return from the current state s, and there is not necessarily any correlation between the
xj chosen in state s and the xj chosen in some future state s′ in general. This argument is further re-
futed by the fact that, again, Qk is only updated with samples where action (k, xk) is executed and not
(j, xj). This is the key difference between PA-DDPG and P-DQN: while PA-DDPG also uses a joint
action-parameter vector as input to its critic, the Q-value it calculates is over all actions representing both
action and action-parameter policies. The critic in PA-DDPG is also updated using samples from all
actions, unlike the action-specific Q-values in P-DQN.

5.2.2 Discrete Action Policy Perturbation

The second problem with Q-value sensitivity to all action-parameters is with the discrete action policy.
Specifically, updating the continuous action-parameter policy of any action can affect the discrete action
policy by perturbing the Q-values of all actions, and not just of the action associated with that parameter.
This can lead to the relative ordering of Q-values changing, which in turn changes any greedy action
policy to be possibly suboptimal. We demonstrate a situation where this occurs on the Platform domain
in Figure 5.2.

52

Run

Hop

Leap

(a) Agent in the Platform domain near the edge of the
second platform. Only the run action is optimal in this
situation as the maximum hop or leap distance is insuffi-
cient to traverse the gap without moving closer to the edge
first, and hopping slightly forward is slower than running.
Leaping in this state will always result in the agent falling
into the gap and dying.

0.25

0.00

0.25

After 10 000 episodes

1.0

0.5

0.0

Q
-V

a
lu

e

After 20 000 episodes

Run

Hop

Leap

1 0 1

Leap Action-Parameter

0.1

0.2

0.3

After 80 000 episodes

Greedy action changes

(b) Predicted Q-values for the state in (a) shown varying
with the leap action-parameter at different points during
training while the run and hop action-parameters are kept
fixed. The vertical lines indicate the leap value actually
chosen by the policy. Crossover points where the maxi-
mum Q-value changes are circled.

Figure 5.2: Example of sensitivity to unrelated action-parameters affecting discrete action selection on the Platform
domain. In a particular state (a), the optimal action is to run forward to be able to traverse a gap. Choosing to leap
here is suboptimal and would result in the agent dying irrespective of the associated action-parameter. The Q-value
of the leap action changes with its action-parameter, however (b) shows that varying the leap action-parameter
changes the Q-values predicted by P-DQN for all actions. Near the start of training, changing the leap value can
alter the discrete policy such that a suboptimal action is chosen. At the end of training, after 80 000 episodes, the
agent correctly learns to choose the optimal action regardless of the unrelated leap value; the other Q-values still
vary but to a lesser extent than during training.

The observation that Q-values are learned such that they retain relative ordering when one of the action-
parameters is perturbed may suggest that the false gradients ∂Qk/∂xj, j 6= k are not based on an expected
improvement in the state-action value function with respect to action-parameter policy, but rather to
correct or maintain the discrete action policy: changing the action-parameters similar to the weights of
the Q-network to better fit the Q-value function.

53

5.3 Split Q-Networks

The obvious solution to joint action-parameter inputs in P-DQN is to split the Q-network, maintaining a
separate, identical Q-network for each action. Then, one can input only the relevant action-parameter xk
to the network corresponding to action k. The resulting architecture is illustrated below in Figure 5.3.

θx

k = argmax
i
Qi

θQ1

Se
pa
ra
te
 Q
N
et
w
or
ks

A
ct
or

, . . . ,x1 xK
Q1

θQK

QK

. . .
θQ2

Q2

s, x1 s, x2 s, xK

State s

Figure 5.3: Separate Q-networks used for P-DQN. Each action has its own corresponding Q-network, which takes
only the state s and associated action-parameter xk as input.

With this change, each Qk is reliant only on its action-parameter xk and no others, since the inputs are
explicitly separated between the different networks. This addresses both of the problems detailed in
Section 5.2 as Q-values are not influenced by unassociated action-parameters nor produce any gradients
for them. There are, however, other consequences that come from duplicating and separating the Q-
network:

1. There is no shared feature extraction learned between the separate Q-networks.

2. Additional computational complexity is introduced.

Having no shared layers between the networks could be advantageous as the network capacity is in-
creased: each Q-network then learns only the feature extraction and Q-value approximation specific to
a single action, rather than having to generalise over all actions. On the other hand, having to learn
a separate feature representations could lead to some Q-values taking longer to learn than with a joint
representation, if their associated actions are seldom explored for instance. This can occur as a result

54

of action sampling imbalance, or the fact that certain actions have no effect until the agent is in specific
states explored later in training—the kick action in HFO is one such example, as it requires the agent first
learns to approach the ball before the kick has any effect on the environment.

With regards to computational complexity: for a standard DQN, only the weights of the last hidden layer
are duplicated based on the number of actions, but in our approach we duplicate the entire Q-network for
each action. This worsens with the number of hidden layers and neurons used, so the storage and memory
requirements of the Q-network portion of P-DQN increase from O(W) to O(KW), where W is the
total number of weights. Duplicating the trainable network parameters also increases the computational
requirements of predicting Q-values and optimising the networks, thus the cost of inference and updates
similarly scales with the number of actions to a greater extent than with a single Q-network.

5.3.1 Split Q-Networks with Shared Layers

We can partially address these concerns by introducing shared layers to the split Q-network, allowing a
partial feature representation to be shared and reducing the number of duplicated parameters. The action-
parameters are then input after the shared layers to the separate Q-value heads. The proposed architecture
is shown below in Figure 5.4.

θx

k = argmax
i
Qi

θQ1

Sp
lit
 Q
N
et
w
or
k

A
ct
or

, . . . ,x1 xK
Q1

θQK

QK

. . .θQ2

Q2

ϕ, x1

State s

θϕ

ϕ, x2 ϕ, xK

Shared Layers

Figure 5.4: Split Q-network architecture with shared feature extraction layers for P-DQN. The shared layers com-
pute a feature representation φ from the state variables s before being fed into separate Q-value heads along with
the corresponding action-parameter xi for each action.

This introduces a new design choice: how many layers should be shared and how many should be split?

55

There is a trade-off between the capacity of the network dedicated to shared feature representation and
Q-value function approximation. The further along the network the action-parameters are input, the less
representational capacity there is available to model the Q-values in relation to the action-parameters.
This forms an upper limit on the number of shared layers: at most ` − 1 hidden layers can be shared,
where ` is the total number of hidden layers, because inputting the action-parameters at the output layer
of each head assumes a strictly linear relationship between the Q-values and action-parameters. This is
an unreasonable assumption that does not apply in general.

5.4 Multi-Pass Q-Networks

Even with shared layers, the approach of having split or separate Q-networks significantly increases
the computational complexity of the algorithm. So we consider an alternative approach that does not
involve architectural changes to the network structure of P-DQN. Instead of splitting the network in order
to separate the joint action-parameter vector, we can perform multiple forward passes over a single Q-
network. We refer to this as the multi-pass, or multi-pass Q-network, technique.

Separating the action-parameters in a single forward pass of a single Q-network with fully connected
layers is impossible. So instead, we perform a forward pass once per action k with the state s and action-
parameter vector xek as input, where ek is the standard basis vector for dimension k. Then xek =
(0, . . . , 0, xk, 0, . . . , 0) is the joint action-parameter vector where each xj , j 6= k is set to zero. This
firstly causes all false gradients to be zero, ∂Qk/∂xj = 0, and secondly, it completely negates the impact
of the network weights for unassociated action-parameters xj from the input layer, making Qk only
depend on xk, that is,

Q (s, k,xek) = Q (s, k, xk) . (5.3)

Thus both of the problems in Section 5.2 are addressed without introducing any additional neural network
parameters.

This requires a total of K forward passes to predict all Q-values instead of one. However, we can make
use of the parallel minibatch processing capabilities of artificial neural networks, provided by libraries
such as PyTorch and Tensorflow, to perform this in a single parallel pass, or multi-pass. A multi-pass
with K actions is processed in the same manner as a minibatch of size K. Because a forward pass of
the Q-network cannot avoid generating all Q-values, some unnecessary computation is introduced: each
pass still generates all K Q-values even though only one is used. In fact, a total of K2 Q-values are
generated from this method:

Q
(
s, · ,xe1; θQ

)
...

Q
(
s, · ,xeK ; θQ

)
 =

Q11 Q12 · · · Q1K

...
...

QK1 QK2 · · · QKK

 , (5.4)

where Qij is the Q-value for action j generated on the ith pass where xi is non-zero. Thus only the
diagonal elements Qii are valid and used in the final output Qi ← Qii. This process is illustrated in
Figure 5.5. Note that a single forward pass of the Q-network produces K Q-values regardless. The only
unnecessary computation is at the output layer for Q-values where i 6= j, so the overhead does not scale
quadratically but rather linearly with the number of actions.

56

For a concrete example, consider using the multi-pass technique with P-DQN on HFO. There are three
actions available, K = 3. During environment interaction, the agent receives a single state at a time and
uses a multi-pass of size three to predict the Q-values for the discrete action policy:Q

(
s, · ,xe1; θQ

)
Q
(
s, · ,xe2; θQ

)
Q
(
s, · ,xe3; θQ

)
 =

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 ,

from which we extract the diagonal elements Q1 ← Q11, Q2 ← Q22, Q3 ← Q33. During updates on
HFO, a minibatch of size 32 is used. This is similarly duplicated 3 times to form a multi-pass minibatch
of size 96 during forward passes. However since a multi-pass only extracts a single Q-value from each
of the duplicates, the backward pass to calculate gradients is still over 32 samples, not 96. In practice,
the computation graph used for automatic differentiation would include extra operations but the gradient
accumulation is performed only for those Q-values used in the loss functions, and never Qij , j 6= i.

θx

k = argmax
i
Qi

θQ A
ct
or

State s

, . . . ,x1 xK

s, xe1

s, xeK

{ ←Qi Qii}
K

1

,… ,Q11 Q1K

,… ,QK1 QKK

M
ul
ti
Pa
ss
 Q
N
et
w
or
k

…

……

…

Figure 5.5: Multi-pass Q-network architecture for P-DQN. The input to the network is duplicated K times, once
for each action, to form a minibatch. The row for action k uses xek as the action-parameter input, where only xk
is non-zero, instead of the full joint action-parameter vector x.

Compared to split Q-networks, our multi-pass technique introduces a relatively minor amount of overhead
during forward passes. The computational complexity of this overhead scales linearly with the number
of actionsO(K) for inference on a single state, and also scales with the minibatch sizeB during updates,
O(KB). This is because multi-passes are efficiently processed in parallel as regular minibatches. So
unlike split Q-networks, even when a larger Q-network with more hidden layers and neurons is used, if

57

the number of actions does not change then the overhead of multi-passes would be the same as with a
smaller Q-network. This is shown empirically in Section 5.5.4.

5.5 Experiments

We design four sets of experiments to evaluate different aspects of the two proposed methods, and a fifth
to re-evaluate the weighted and indexed action-parameter loss functions from Chapter 4 in combination
with the multi-pass technique:

(E1) Separate Q-Networks

(E2) Split Q-Networks with Shared Layers

(E3) Multi-Pass Q-Networks

(E4) Computational Overhead

(E5) Weighted-Indexed Loss Ablation Study

In each experiment, we use the same configuration for P-DQN from Section 3.2.1 on the three benchmark
domains.

5.5.1 (E1) Separate Q-Networks

We first evaluate P-DQN with the use of separate Q-networks without shared layers versus a single Q-
network as the baseline. To determine whether any changes are due to the independence of Q-values
from unassociated action-parameters or simply a result of having separate networks, we also evaluate
using duplicate Q-networks. For this, we use an identical Q-network for each action but input the joint
action-parameter vector x, instead of only the corresponding xk as done for separate Q-networks. Our
results are shown in Table 5.1 and Figure 5.6.

We observe significant improvements in the learning efficiency and evaluation scores of P-DQN when
using separate Q-networks on Platform and Robot Soccer Goal. Duplicate Q-networks, on the other
hand, produce similar results to baseline P-DQN with a single, standard Q-network: the learning curve
is slightly higher on Platform but almost identical on Robot Soccer Goal. This shows that an increased
network capacity and lack of shared features does not improve performance on the toy domains, but
that the separation of action-parameter inputs does, as expected. The results on the more complex HFO
domain, however, show that agents using separate Q-networks learn faster initially but eventually taper off
and achieve significantly lower evaluation scores than the baseline. Agents using duplicate Q-networks
show even worse performance, with a lower average score and a reduction in learning speed compared
to the baseline.

58

Platform
Mean Median Area Under Curve

P-DQN (baseline) 0.964± 0.068 0.997 64 705

Separate Q-Networks 0.941± 0.164 0.999 70 358
Duplicate Q-Networks 0.951± 0.109 0.994 66 315

Robot Soccer Goal
Mean Median Area Under Curve

P-DQN (baseline) 0.668± 0.062 0.656 61 445

Separate Q-Networks 0.762± 0.070 0.780 71 121
Duplicate Q-Networks 0.667± 0.100 0.657 61 791

Half Field Offense
Mean Median Avg. Steps to Goal Area Under Curve

P-DQN (baseline) 0.883± 0.085 0.917 111± 11 182 573

Separate Q-Networks 0.718± 0.131 0.754 99± 7 189 916
Duplicate Q-Networks 0.653± 0.174 0.695 119± 15 154 756

Table 5.1: Results of using the proposed architecture with separate Q-networks versus duplicate Q-networks for
P-DQN. Separate Q-networks achieve a higher median score and area under the curve on Platform but a lower-
than-baseline mean score; this is a result of a few outliers shown in Figure 5.6b. On Robot Soccer Goal the scores
are significantly higher across the board for separate Q-networks. In both these domains, duplicate Q-networks
perform very similarly to the baseline. HFO, however, shows both separate and duplicate Q-networks achieve
evaluation scores significantly lower than the baseline.

This raises the question of why the observed behaviour of separate Q-networks on HFO is different than on
Platform and Robot Soccer Goal. Our hyperparameter search found that P-DQN on the two toy domains
performs best with a relatively small network of one hidden layer, while three hidden layers are best for
HFO. This indicates that less complex feature representations and Q-value function approximations are
required on Platform and Robot Soccer Goal, so the lack of shared layers may not be detrimental. HFO
has far more state variables—51 versus 9 and 14—and thus more complex features, requiring a wider
and deeper network for function approximation. Thus we suspect the observed decrease in performance
is primarily due to the lack of a shared feature representation between the separate Q-networks on HFO.
This is supported by the fact that duplicate Q-networks perform poorly on HFO to a much worse extent
than separate Q-networks in both training and evaluation. So while separating the action-parameter inputs
is definitely beneficial, it is not enough to overcome the lack of a shared feature representation. To further
investigate this claim, we assess the use of split Q-networks with shared layers for P-DQN on HFO in
Section 5.5.2.

59

0 20000 40000 60000 80000
0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Platform

P-DQN (baseline)
Separate Q-Networks
Duplicate Q-Networks

0 20000 40000 60000 80000 100000
0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

0 5000 10000 15000 20000 25000 30000
Episodes

0

2

4

6

8

Re
tu

rn

HFO

(a) Learning curves

P-DQN Separate
Q-Networks

Duplicate
Q-Networks

0.6

0.7

0.8

0.9

1.0

Re
tu

rn

Platform

P-DQN Separate
Q-Networks

Duplicate
Q-Networks

0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

P-DQN Separate
Q-Networks

Duplicate
Q-Networks

0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

HFO

(b) Evaluation scores

Figure 5.6: Graphs of the results of using separate Q-networks compared to duplicate Q-networks for P-DQN, with
a single Q-network as a baseline. The learning curves of agents with separate Q-networks on Platform and Robot
Soccer Goal show a significant improvement over the baseline during training, but a reduction in performance
on HFO; the evaluation scores in (b) similarly reflect this. Note that more outliers are observed on Platform for
separate and duplicate Q-networks.

60

5.5.2 (E2) Split Q-Networks with Shared Layers

P-DQN on HFO uses a Q-network with three hidden layers of 256, 128, 64 neurons respectively. This
means at most two hidden layers should be shared when splitting the Q-network; sharing three hidden
layers would mean inputting the action-parameters at the output layers in order to still keep them separate,
which as we mentioned before would assume a linear relationship between the Q-values and action-
parameters. In this experiment, however, we examine the performance of P-DQN using a split Q-network
in the case of zero (separate Q-networks), one, two, and three shared hidden layers. The results are shown
below in Table 5.2 and Figure 5.7.

Half Field Offense
Mean Median Avg. Steps to Goal Area Under Curve

P-DQN (baseline) 0.883± 0.085 0.917 111± 11 182 573

Separate Q-Networks 0.718± 0.131 0.754 99± 7 189 916
Split (1 Shared Layer) 0.661± 0.148 0.706 107± 10 191 242
Split (2 Shared Layers) 0.871± 0.086 0.885 109± 10 170 643
Split (3 Shared Layers) 0± 0 0 n/a 29 289

Table 5.2: Results of using separate and split Q-networks with varying numbers of shared feature extraction layers
compared to baseline P-DQN with a single Q-network. The baseline P-DQN agents still achieve the highest mean
and median evaluation scores. Agents using split Q-networks with three shared layers completely fail to score any
goals, as expected.

0 5000 10000 15000 20000 25000 30000
Episodes

0

2

4

6

8

Re
tu

rn

P-DQN (baseline)
Separate Q-Networks
1 shared layer
2 shared layers
3 shared layers

(a) Learning curves

P-DQN Separate
Q-Networks

1 shared
layer

2 shared
layers

3 shared
layers

0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

No goals

(b) Evaluation scores

Figure 5.7: Graphs of the results of using split Q-networks with shared layers on Half Field Offense.

Unexpectedly, the learning curves in Figure 5.7a show that increasing the number of shared layers beyond
one decreases the learning speed, yet using two shared layers results in the highest evaluation scores
second only to the baseline. This shows that a shared feature representation is important but the trade-
off between shared layers and the representational capacity with respect to the action-parameters harms
performance the later the action-parameters are input to the network.

61

Linear Action-Parameter Relationship Assumption

To reinforce our assertion that the poor performance of split Q-networks with three shared layers on HFO
is due to the assumption of a linear relationship between Q-values and action-parameters forced by the
network architecture, we perform similar experiments on Platform and Robot Soccer Goal. Since the
Q-networks used for P-DQN on those domains have only one hidden layer, sharing just that layer means
the action-parameters are introduced at the output layer of the Q-network.

0 20000 40000 60000 80000
0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Platform

P-DQN (baseline)
Separate Q-Networks
Split (1 Shared Layer)

0 20000 40000 60000 80000 100000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

(a) Learning curves

P-DQN Separate
Q-Networks

Split
(1 Shared Layer)

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Platform

P-DQN Separate
Q-Networks

Split
(1 Shared Layer)

0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

(b) Evaluation scores

Figure 5.8: Graphs of the results of using split Q-networks with shared layers on Platform and Robot Soccer Goal.
The agents with split Q-networks do not show any improvement during training and fail to solve either task.

It is clear from Figure 5.8 that P-DQN agents using split Q-networks with all hidden layers shared com-
pletely fail to learn on these domains. To avoid this situation, one could expand the network by adding
extra hidden layers to the separate sub-networks for each action. However, that would be an unsatisfac-
tory solution as it introduces another architectural design choice and unnecessarily increases the number
of parameters, which we want to avoid.

62

5.5.3 (E3) Multi-Pass Q-Networks

We now evaluate our second proposed solution, the multi-pass technique. Similar to our first experi-
ment, we investigate whether any performance changes from using multi-pass Q-networks are due to the
separation of action-parameter inputs to the Q-value functions or the change in method. In this case,
we compare against duplicate passes, where samples are duplicated as with multi-passes but the joint
action-parameter vector x is used instead of xek, leaving all duplicates identical. What we expect is that
using duplicate passes produce similar results to the baseline, since the loss functions should average out
to be the same as without duplicates. The results of our experiments compared to baseline P-DQN are
shown in Table 5.3 and Figure 5.9.

Platform
Mean Median Area Under Curve

P-DQN (baseline) 0.964± 0.068 0.997 64 705

Multi-Pass 0.987± 0.039 0.999 72 390
Duplicate Passes 0.956± 0.052 0.979 67 716

Robot Soccer Goal
Mean Median Area Under Curve

P-DQN (baseline) 0.668± 0.062 0.656 61 445

Multi-Pass 0.738± 0.076 0.742 67 116
Duplicate Passes 0.672± 0.103 0.711 60 828

Half Field Offense
Mean Median Avg. Steps to Goal Area Under Curve

P-DQN (baseline) 0.883± 0.085 0.917 111± 11 182 573

Multi-Pass 0.913± 0.070 0.936 99± 12 213 125
Duplicate Passes 0.882± 0.084 0.898 113± 9 188 591

Table 5.3: Graphs of the results of training P-DQN using Q-networks with multi-passes compared to duplicate
passes, and baseline P-DQN with single passes. We see that agents using the multi-pass technique achieve the best
scores across the board on Platform, Robot Soccer Goal, and HFO. Duplicate passes achieve mean scores similar
to the baseline.

The multi-pass technique clearly demonstrates significantly improved performance on all three bench-
mark domains, including HFO where a much higher learning curve is observed, unlike with split Q-
networks. Contrary to our expectation, the use of duplicate passes appears to affect evaluation scores in
Figure 5.9b. This could simply be a result of random deviation, however, and we note that the learning
curves in Figure 5.9a are largely unaffected and the mean scores from Table 5.3 for duplicate passes
and baseline P-DQN are almost identical on all three domains. This indicates that the difference in per-
formance when using the multi-pass technique is due to the independence of Q-values from unrelated
action-parameters and not the duplication of passes.

63

0 20000 40000 60000 80000
0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Platform

P-DQN (baseline)
Multi-Pass
Duplicate Passes

0 20000 40000 60000 80000 100000
0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

0 5000 10000 15000 20000 25000 30000
Episodes

0

2

4

6

8

Re
tu

rn

HFO

(a) Learning curves

P-DQN Multi-Pass Duplicate Passes
0.6

0.7

0.8

0.9

1.0

Re
tu

rn

Platform

P-DQN Multi-Pass Duplicate Passes
0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

P-DQN Multi-Pass Duplicate Passes
0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

HFO

(b) Evaluation scores

Figure 5.9: Graphs of the results of training P-DQN using Q-networks with multi-passes compared to duplicate
passes, and baseline P-DQN with single passes. The learning curves of multi-pass P-DQN agents are consistently
higher than the baseline on all three domains. This is reflected by the evaluation scores, where the multi-pass tech-
nique on average achieves the highest scores with fewer outliers and a lower variance between agents, particularly
on Platform.

64

Comparison to Separate Q-Networks

We now use the results from experiments in Sections 5.5.1 and 5.5.3 to directly compare the performance
of multi-passes and separate Q-networks. We exclude the results of split Q-networks with shared layers
on HFO, as both the training performance and evaluation scores were still inferior to baseline P-DQN.

Platform
Mean Median Area Under Curve

P-DQN (baseline) 0.964± 0.068 0.997 64 705

Multi-Pass Q-Network 0.987± 0.039 0.999 72 390
Separate Q-Networks 0.941± 0.164 0.999 70 358

Robot Soccer Goal
Mean Median Area Under Curve

P-DQN (baseline) 0.668± 0.062 0.656 61 445

Multi-Pass Q-Network 0.738± 0.076 0.742 67 116
Separate Q-Networks 0.762± 0.070 0.780 71 121

Half Field Offense
Mean Median Avg. Steps to Goal Area Under Curve

P-DQN (baseline) 0.883± 0.085 0.917 111± 11 182 573

Multi-Pass Q-Network 0.913± 0.070 0.936 99± 12 213 125
Separate Q-Networks 0.718± 0.131 0.754 99± 7 189 916

Table 5.4: Comparison between the results of multi-pass and separate Q-networks for P-DQN. While the multi-pass
technique achieve higher scores on Platform and HFO, separate Q-networks beat it on Robot Soccer Goal. Note
the smaller standard deviation of the multi-pass Q-network on Platform and HFO.

We see in Table 5.4 and Figure 5.10 that the multi-pass technique beats separate Q-networks on Platform
and, more importantly, HFO. There is a minor difference in performance between the two methods on
Robot Soccer Goal but both still beat the baseline. This difference can possibly be attributed to a greater
network capacity being dedicated to approximating each Q-value when using separate Q-networks. On
both Platform and HFO, we also observe fewer outliers and a smaller variance between agents using
the multi-pass technique. We can reasonably conclude then that the multi-pass technique is more stable
and consistent, allowing Q-values to be independent of unrelated action-parameters without suffering the
disadvantages of duplicating network parameters, which demonstrably reduces performance with larger
networks.

65

0 20000 40000 60000 80000
0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Platform

P-DQN (baseline)
Multi-Pass Q-Network
Separate Q-Networks

0 20000 40000 60000 80000 100000
0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

0 5000 10000 15000 20000 25000 30000
Episodes

0

2

4

6

8

Re
tu

rn

HFO

(a) Learning curves

P-DQN Multi-Pass
Q-Network

Separate
Q-Networks

0.6

0.7

0.8

0.9

1.0

Re
tu

rn

Platform

P-DQN Multi-Pass
Q-Network

Separate
Q-Networks

0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

P-DQN Multi-Pass
Q-Network

Separate
Q-Networks

0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

HFO

(b) Evaluation scores

Figure 5.10: Graphs comparing the learning curves and evaluation scores of P-DQN with multi-pass Q-networks
versus separate Q-networks from previous experiments. The learning curves are similar between the two methods
on Platform. On Robot Soccer Goal, the learning curve of agents using separate Q-networks is initially similar
to that of multi-pass P-DQN, but converges to a somewhat higher average score. The converse is true on HFO,
where both methods show faster-than-baseline learning initially, except P-DQN with separate Q-networks starts
plateauing at a lower score than the baseline, whereas multi-pass P-DQN continues to improve.

66

5.5.4 (E4) Computational Overhead

Both the proposed multi-pass and split Q-network approaches introduce computational overhead to the
P-DQN algorithm to different extents. To quantify this additional computation, we examine the total time
taken for each technique to process 100 000 independent samples from Platform, Robot Soccer Goal, and
HFO. Specifically, we record the cumulative wall time taken to infer an action and perform an update
once per sample. Action inference and update timings are performed separately. This methodology is
preferred over reporting the training times from our previous experiments as episodes can vary in length
based on agent performance—for example on the Platform domain where dying to the first enemy ends
an episode with fewer transitions than making it to the goal. This methodology eliminates any influence
of the environment on timings other than the number of actions and state variables. The timing results
along with the number of trainable neural network parameters are listed in Table 5.5. The cumulative
overhead, calculated as the difference in wall time of the proposed methods versus baseline P-DQN, is
illustrated in Figure 5.11.

Platform Robot Soccer Goal Half Field Offense
0

10

20

30

40

50

Cu
m

ul
at

iv
e

Ov
er

he
ad

 (s
)

16 16

26 26

18 19

26

19

35

16

44

Inference

Multi-Pass Q-Network
Separate Q-Networks
Split (1 shared layer)
Split (2 shared layers)
Split (3 shared layers)

Platform Robot Soccer Goal Half Field Offense
0

100

200

300

400

500

Cu
m

ul
at

iv
e

Ov
er

he
ad

 (s
)

102 102

268 263

161 162

313

134

355

81

481

Updates

Figure 5.11: Comparison of the cumulative overhead in seconds for inference (top) and updates (bottom) using
100 000 samples for the multi-pass technique compared to separate and split Q-networks. The overhead is cal-
culated as the difference in time taken to process all samples versus baseline P-DQN from the measurements in
Table 5.5; lower is better. Using a multi-pass Q-network clearly introduces less computational overhead than using
separate Q-networks, which have an overhead roughly 3 times higher for inference on HFO and 6 times higher
for updates. Even the smallest split Q-network on HFO with 3 shared layers has higher overhead. The update
overhead for a multi-pass Q-network on HFO is slightly lower than on Platform and Robot Soccer Goal due to a
smaller minibatch size—32 instead of 128.

67

Platform
Inference Time (s) Update Time (s) No. Trainable Parameters

Single Q-Network (baseline) 32 387 3718
Multi-Pass Q-Network 48 489 3718
Separate Q-Networks 58 655 6278
Split (1 Shared Layer) 50 548 33371

Robot Soccer Goal
Inference Time (s) Update Time (s) No. Trainable Parameters

Single Q-Network (baseline) 32 393 6023
Multi-Pass Q-Network 48 495 6023
Separate Q-Networks 59 656 10 631
Split (1 Shared Layer) 51 555 55151

Half Field Offense
Inference Time (s) Update Time (s) No. Trainable Parameters

Single Q-Network (baseline) 52 614 114 824
Multi-Pass Q-Network 68 695 114 824
Separate Q-Networks 96 1095 227 848
Split (1 Shared Layer) 87 969 196 488
Split (2 Shared Layers) 78 927 130 376
Split (3 Shared Layers) 71 748 113 5491

Table 5.5: Total time taken in seconds for P-DQN with single, multi-pass, separate, and split Q-networks to process
100 000 action inference calculations and updates on each domain (lower is better). The number of trainable neural
network parameters is also listed, giving an indication of the storage and memory requirements of each method
(lower is better).

The increase in time taken during inference and updates using separate or split Q-networks is signifi-
cantly greater than when using the multi-pass technique, which is expected since the former duplicates
the number of network parameters per action. This difference is more pronounced on HFO where a
larger network is used, although the use of split networks with shared layers does alleviate this due to
fewer network parameters being duplicated. Multi-passes, on the other hand, add a seemingly constant
cumulative overhead of 16 seconds during inference over 100 000 samples on each domain, even with
a larger network on HFO; this is because all domains have the same number of parameterised actions.
Due to a smaller minibatch size of 32 being used on HFO rather than 128, the increase in update time
from using multi-pass Q-network (81s) is actually lower than on Platform and Robot Soccer Goal (102s),
despite a much larger network.

These results confirm that the computational overhead of the multi-pass technique is not influenced by the
network size, and instead scales with the number of discrete actions and minibatch size used for updates.

1The number of trainable parameters for a split Q-network with all hidden layers shared is less than when using a single
Q-network because the action-parameters are introduced at the output layer rather than to a hidden layer.

68

5.5.5 (E5) Weighted-Indexed Loss Ablation Study

Our final experiment re-evaluates the weighted-indexed action-parameter loss function proposed in Chap-
ter 4. We test multi-pass P-DQN with each of the weighted, indexed, and weighted-indexed losses in
turn. The multi-pass technique is selected because previous experiments showed it to be the more con-
sistent in improving performance across all benchmark domains than split Q-networks. We also compare
against the weighted-indexed loss with gradient-zeroing. This is done to examine the difference in perfor-
mance with and without the influence of unrelated action-parameters on the discrete action policy, since
gradient-zeroing only resolves the issue of false gradients. The results of this experiment are shown in
Table 5.6 and Figure 5.12.

Platform
Mean Median Area Under Curve ∆ Mean ∆ Area

P-DQN 0.964± 0.068 0.997 64 705 - -

W+I+GZ 0.989± 0.019 0.995 72 144 2.6% 11.5%
MP+I 0.961± 0.134 0.999 72 690 −0.3% 12.3%
MP+W 0.971± 0.060 0.999 73 071 0.7% 12.9%
MP+W+I 0.990± 0.024 0.999 72 751 2.7% 12.4%

Robot Soccer Goal
Mean Median Area Under Curve ∆ Mean ∆ Area

P-DQN 0.668± 0.062 0.656 61 445 - -

W+I+GZ 0.734± 0.073 0.756 63 429 9.9% 3.2%
MP+I 0.762± 0.060 0.771 69 644 14.1% 13.3%
MP+W 0.756± 0.073 0.739 68 530 13.2% 11.5%
MP+W+I 0.769± 0.066 0.770 69 665 15.1% 13.4%

Half Field Offense
Mean Median Avg. Steps to Goal Area Under Curve ∆ Mean ∆ Area

P-DQN 0.883± 0.085 0.917 111± 11 182 573 - -

W+I+GZ 0.904± 0.100 0.940 107± 9 204 382 2.4% 11.9%
MP+I 0.923± 0.069 0.947 99± 9 218 653 4.5% 19.7%
MP+W 0.931± 0.068 0.950 97± 7 217 150 5.4% 18.9%
MP+W+I 0.953± 0.045 0.971 97± 6 219 192 7.9% 20.0%

Table 5.6: Results of using multi-passes (MP) for P-DQN with the indexed (I), weighted (W), and weighted-indexed
(W+I) action-parameter loss functions. We also report the difference in mean scores and area under the curve as a
percentage relative to baseline P-DQN. We see multi-passes with the weighted-indexed loss (MP+W+I) achieves
the highest mean and median scores on all three domains. There is a notable difference in performance, particularly
area under the curve, between the weighted-indexed loss with gradient-zeroing (W+I+GZ) and with multi-passes
(MP+W+I); this is most significant on Robot Soccer Goal and Half Field Offense. Performance between the two is
almost identical on Platform likely because there is not much room for improvement compared to baseline P-DQN
anyway.

69

0 20000 40000 60000 80000
0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Platform

Baseline
W+I+GZ
MP+W
MP+I
MP+W+I

0 20000 40000 60000 80000 100000
0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

0 5000 10000 15000 20000 25000 30000
Episodes

0

2

4

6

8

Re
tu

rn

HFO

(a) Learning curves

Baseline W+I+GZ MP+W MP+I MP+W+I
0.6

0.7

0.8

0.9

1.0

Re
tu

rn

Platform

Baseline W+I+GZ MP+W MP+I MP+W+I
0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

Baseline W+I+GZ MP+W MP+I MP+W+I
0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

HFO

(b) Evaluation scores

Figure 5.12: Graphs of the learning curves and evaluation scores of P-DQN with multi-passes (MP) and the
weighted (W), indexed (I), and weighted-indexed (W+I) action-parameter loss functions. There is no observable
difference between the learning curves when using the various loss functions. The curve of the weighted-indexed
loss with gradient-zeroing (W+I+GZ), however, is lower than those agents using multi-passes. The evaluation
scores in (b) indicate a trend of improvement with each loss function. The individual losses (MP+I and MP+W)
appear to worsen the effects of outliers on Platform, however the combination does not suffer from this problem.

70

The change in loss functions has a negligible effect on learning efficiency. They do, however, improve
the average evaluation scores on all three benchmark domains. We can conclude then that the combined
weighted-indexed action-parameter loss function still complements multi-passes in increasing perfor-
mance of P-DQN. This is expected since the loss function addresses action sampling imbalance, which
is separate to the problems presented by joint action-parameter inputs and the multi-pass solution. The
second observation of note is the difference between the weighted-indexed loss with gradient-zeroing
versus multi-passes, the latter of which is better in terms of both learning speed and evaluation scores.
This shows that the influence of unassociated action-parameters on the discrete action policy has a tan-
gible impact on performance, and that addressing false gradients alone by means of gradient-zeroing is
insufficient.

Although we used the synchronous, single worker version of P-DQN throughout our experiments, none
of the techniques we propose are restricted to this setting and can be readily applied to asynchronous
version of P-DQN with parallel workers.

5.6 Summary

We showed that the sensitivity of Q-values to unrelated action-parameters as a result of the joint action-
parameter input to the Q-network in P-DQN is problematic. Two solutions to separate the action-parameters
inputs were proposed: split Q-networks, and a novel multi-pass technique. Our experiments show that
split Q-networks improve performance on Platform and Robot Soccer Goal, but reduce performance on
HFO as a result of changes to the network architecture. Furthermore, the computational complexity of
split Q-networks scales poorly with larger networks. Our multi-pass technique, on the other hand, was
shown to significantly improve performance on all three benchmark domains with minimal overhead. Fi-
nally, we further improved the performance of P-DQN by using the weighted-indexed action-parameter
loss function from Chapter 4 in conjunction with multi-passes.

71

Chapter 6

Conclusion and Future Work

Parameterised action spaces are gaining momentum in the reinforcement learning community for their
ability to naturally represent complex high-level actions with fine-grained control, allowing for more
difficult tasks to be tackled such as learning to play soccer.

We presented an improved version of the recent P-DQN deep reinforcement learning algorithm for pa-
rameterised action spaces [Xiong et al. 2018], the state-of-the-art approach at the time of writing. Our
modified version includes mixed n-step return updates and employs target networks for stability. Our
comparison study shows that P-DQN outperforms previous methods Q-PAMDP [Masson et al. 2016]
and PA-DDPG [Hausknecht and Stone 2016ab] on Platform and Robot Soccer Goal, but fails to beat PA-
DDPG on HFO outright without asynchronous parallel workers and dueling networks. We also observe
that PA-DDPG prematurely converges to poor action policies on the simpler Platform and Robot Soccer
Goal domains, which we blame on the algorithm’s simultaneous optimisation of both the discrete action
and action-parameter policies.

We explored how the imbalance of sampling and exploration between actions can negatively affect learn-
ing when using parameterised actions. In particular, we discussed how the action-parameter loss function
used by the original P-DQN algorithm can lead to inaccurate updates and proposed our indexed action-
parameter loss function as an alternative. We further proposed a weighted loss to address the imbalance
of transitions per action in minibatch samples. Both individual losses and the combination of the two,
which we call the weighted-indexed loss, were demonstrated to achieve higher average evaluation scores
when applied to P-DQN.

The major contribution of our work, however, is the identification that the over-parameterisation of Q-
values in P-DQN—that Q-values are a function of all action-parameters—changes the Bellman Equation
for parameterised actions that Xiong et al. [2018] introduced. We showed that this causes two problems:
false gradients for action-parameters from unrelated Q-values during updates, and that changing unrelated
action-parameters can cause the discrete action policy to become suboptimal.

Two solutions were proposed for this problem: naı̈vely splitting the deep Q-network used by P-DQN to
separate action-parameter inputs, and a novel multi-pass technique that exploits minibatch processing to
separate action-parameter inputs to Q-values using parallel passes. The change in network architecture
by splitting Q-networks is disadvantageous as it significantly increases the computational complexity of
P-DQN and causes issues relating to the lack of a shared feature extraction layer. In particular, split Q-
networks were shown to be inferior to original P-DQN on HFO. Our multi-pass technique, which does
not alter the structure of the Q-network, does not suffer from these issues and substantially improved both
the learning efficiency and converged performance of P-DQN across all domains. The average evaluation

72

scores of our multi-pass P-DQN algorithm were further improved by incorporating the weighted-indexed
loss function.

Overall, our work indicates that reinforcement learning algorithms should exploit the separate nature of
parameterised actions, and that they should not simply be treated as continuous actions.

6.1 Future Work

There have been many recent advancements in deep reinforcement learning for continuous actions. Meth-
ods such as Soft Actor-Critic [Haarnoja et al. 2018] and Twin Delayed DDPG [Fujimoto et al. 2018]
could be applied directly to parameterised actions using the collapsing strategy of Hausknecht and Stone
[2016a]. However, as our results indicate, such a strategy is inferior to learning with parameterised ac-
tions directly. Thus such algorithms should be altered to account for parameterised actions, similar to
how Wei et al. [2018] developed PATRPO by extending TRPO [Schulman et al. 2015] with hierarchical
reinforcement learning techniques. The relation between parameterised and hierarchical action spaces,
as noted by Klimek et al. [2017] and Wei et al. [2018], also warrants further exploration to see how
methods for hierarchical actions can be applied to parameterised action spaces or vice-versa.

The imbalance of sampling and exploration between different actions is a problem that seems largely
unaddressed hitherto, particularly in relation to parameterised action spaces. Our proposal of a weighted-
indexed loss function for P-DQN, while improving performance, does not solve the problem entirely.
As we mentioned in Section 4.2, enhanced replay memory sampling methods specific to parameterised
actions could be explored, for example by balancing the portion of samples per action. More advanced
techniques such as confidence weightings in the loss function using model-based methods could also
possibly be used.

The lack of widely accepted and varied benchmark domains with parameterised action spaces have led
to limited comparison against well-established prior methods in published works. Many authors instead
choose to test their proposed methods only on novel domains with limited comparison to other algo-
rithms. At the time of writing, Half Field Offense is the most commonly used domain in publications
with parameterised actions [Hausknecht and Stone 2016ab; Hussein et al. 2018; Wei et al. 2018; Xiong
et al. 2018]. However, PA-DDPG failed to learn on Platform and Robot Soccer Goal, despite performing
well on HFO. This demonstrates the need for both simple toy domains and more complex tasks. Another
issue is that Platform, Robot Soccer Goal, and HFO all use exactly three parameterised actions. New
domains are needed that test a wider range of parameterised actions, preferably with the ability to vary
the number of actions to facilitate the examination of scaling characteristics in algorithms.

Several parameterised action space domains can naturally be extended with multi-agent tasks. While
Hausknecht and Stone [2016ab] train a lone soccer agent in HFO, the environment can be scaled up to
include multiple agents on both offence and defence. King of Glory can also incorporate up to five players
on each opposing team, although Xiong et al. [2018] use solo mode in their experiments. Multi-agent RL
with parameterised actions would come with unique considerations, as Q-values and policies for discrete
actions and continuous action-parameters could be jointly or separately learned between the agents.

73

Many real-world application areas stand to benefit from parameterised actions. Beyond robotic control
challenges where separate actions or tasks are required, such as human-robot interaction and sports like
soccer, we note that operating self-driving cars would be a natural extension. Different manoeuvres such
as driving straight, turning, and reversing could be modelled as parameterised actions straightforwardly
and combined to achieve different tasks such as lane following, changing lanes and parking. It has also
been noted that parameterised action spaces may suit stock trading algorithms [Spooner et al. 2018], but
they have yet to be extended to such an application. The main problems currently limiting real-world
applications are inherent to deep reinforcement learning in general, where neural networks typically
take hundreds of thousands to millions of samples to train, which is infeasible when dealing with real
equipment.

We note that current reinforcement learning methods for parameterised action spaces, to the best of
our knowledge at the time of writing, are all model-free. Data efficiency is a major issue with deep
reinforcement learning and parameterised action algorithms could stand to benefit from model-based
methods, hopefully reducing the number of samples required for learning from millions, as with HFO,
to something manageable and able to be used in real-world applications.

74

Appendix A

Hyperparameters

We test each combination of hyperparameters in the grid search and select the one with the highest
average area under the curve and evaluation score over 5 random runs. Adam [Kingma and Ba 2014] with
β1 = 0.9, β2 = 0.999 is used to optimise the neural network parameters; this differs from Hausknecht
and Stone [2016b] who use Adam with β1 = 0.95, and Xiong et al. [2018] who use RMSProp [Hinton
et al. 2012]. For P-DQN and PA-DDPG, the following hyperparameters are tested over 60 000 episodes
on Platform and 50 000 episodes on Robot Soccer Goal:

Hyperparameter Search Range

hidden neurons (256, 128), (128, 64), (128)
αQ/αx 10−1, 10−2, 10−3, 10−4, 10−5

τQ/τx 0.1, 0.01, 0.001
minibatch size 128, 64, 32

Table A.1: Hyperparameter search ranges.

Only combinations where αQ ≥ αx and τQ ≥ τx are tested since in general the actor should be up-
dated slower than the critic. For Half Field Offense, we default to most of the same hyperparameters
as Hausknecht and Stone [2016b]: τQ = τx = 0.001, sample-to-update ratio u = 0.1, and a replay
memory size of 500 000. However we do perform a search over the actor and critic learning rates in
{10−1, 10−2, 10−3, 10−4, 10−5} to account for our scaling of action-parameters. We also briefly analyse
the sensitivity of P-DQN and PA-DDPG to the number of hidden layers used for HFO in Appendix F.

Tables A.2 to A.4 list the final hyperparameters used for P-DQN, PA-DDPG, and Q-PAMDP in experi-
ments on the Platform, Robot Soccer Goal, and Half Field Offense domains respectively. Unless other-
wise indicated, the hyperparameters listed for P-DQN are used across all variants of the algorithm. An
ε-greedy exploration strategy with additive Ornstein-Uhlenbeck noise for the action-parameters is used
for P-DQN and PA-DDPG on the Platform and Robot Soccer Goal domains due to the action-parameters
being initialised to particular values, while an ε-greedy with uniform-random exploration strategy is used
on HFO.

75

Hyperparameter P-DQN PA-DDPG

hidden neurons 128 256, 128

αQ/αx 10−3/10−4

τQ/τx 0.1/0.001 0.01/0.01

γ 0.9

εfinal 0.01

µou, θou, σou 0, 0.15, 0.0001

exploration episodes 1000

minibatch size 128 32

gradient clip threshold 10

initial memory threshold 500

replay memory capacity 10 000

activation function ReLu
weight initialisation Kaiming normal
output layer initialisation N (0, 0.00012)

Hyperparameter Q-PAMDP

κ 180

γ 0.999

initial action learning episodes 10 000

action relearn episodes 1000

eNAC rollouts 50

Fourier basis order 6

λ 0.5

SARSA(λ) α-scaling Yes
αSARSA 1.0

αeNAC 0.2

normalised eNAC gradient No
action exploration Softmax
exploration annealing factor 0.995

action-parameter noise N (0, 0.012)

Table A.2: Hyperparameters for Platform.

76

Hyperparameter P-DQN PA-DDPG

hidden neurons 128 128, 64

αQ/αx 10−3/10−5 10−4/10−5

τQ/τx 0.1/0.001 0.01/0.01

γ 0.95

εfinal 0.01

µou, θou, σou 0, 0.15, 0.0001

exploration episodes 1000

minibatch size 128 64

gradient clip threshold 1

initial memory threshold 128

replay memory capacity 20 000

activation function ReLu
weight initialisation Kaiming normal
output layer initialisation N (0, 0.000012)

Hyperparameter Q-PAMDP

κ 100

γ 0.9

initial action learning episodes 4000

action relearn episodes 2000

eNAC rollouts 50

Fourier basis order 7

λ 0.1

SARSA(λ) α-scaling No
αSARSA 0.01

αeNAC 0.06

normalised eNAC gradient Yes
action exploration Softmax
exploration annealing factor 1.0

action-parameter noise N (0, 0.012)

Table A.3: Hyperparameters for Robot Soccer Goal.

77

Hyperparameter P-DQN PA-DDPG

hidden neurons 256, 128, 64 1024, 512, 256, 128

αQ/αx 10−3/10−5 10−3/10−3

τQ/τx 0.001/0.001

β 0.25

u 0.1

γ 0.99

εfinal 0.1

exploration episodes 1000

minibatch size 32

gradient clip threshold 1

initial memory threshold 1000

replay memory capacity 500 000

activation function leaky ReLu, negative slope 0.01

weight initialisation Kaiming normal for leaky ReLu
output layer initialisation N (0, 0.012)

Hyperparameter Q-PAMDP

κ 50

γ 0.99

initial action learning episodes 1000

action relearn episodes 1000

eNAC rollouts 25

Fourier basis order 2

λ 0.5

SARSA(λ) α-scaling Yes
αSARSA 1.0

αeNAC 0.2

normalised eNAC gradient No
action exploration ε-greedy
exploration annealing factor 0.996

action-parameter noise N (0, 0.12)

Table A.4: Hyperparameters for Half Field Offense.

78

Appendix B

Alternating Actor-Critic Updates

Actor-critic algorithms generally calculate the losses for both components then update the actor and critic
together [Bhatnagar et al. 2009; Silver et al. 2014], or less commonly update the critic prior to calculating
the actor loss [Lillicrap et al. 2015]. We refer to these different approaches as simultaneous updates and
alternating updates respectively. Algorithms that use the critic from the previous timestep to update
the actor effectively use simultaneous updates. While the distinction between these two approaches is
disregarded in most publications, Schulman et al. [2016] state that they update the value function after
the action policy—falling into the simultaneous update category since their value function update is
independent of the policy—to prevent additional bias or overfitting the value function to the point where
the policy gradient becomes zero. However the latter concern is an extreme case and unlikely to occur
in most complex domains with the use of artificial neural networks for function approximation.

We compare using alternating and simultaneous updates for P-DQN on Platform, Robot Soccer Goal,
and HFO. The results presented in Table B.1 and Figure B.1 show a negligible difference in training
efficiency between the two techniques overall, but agents using alternating updates on average achieve
slightly better evaluation scores across all three domains. While part of the observed difference can be
attributed to random variation between runs, the consistent improvement in evaluation scores indicate
alternating updates have some empirical benefit. We argue this is because the critic is updated with the
most recent information from the current timestep, whereas performing simultaneous updates using the
critic from the previous timestep may provide outdated or inaccurate information when calculating the
actor loss. For instance, if the current update uses a previously unexplored transition that the critic has yet
to generalise to, the actor’s gradient—which is calculated using values from the critic—may in the worst
case be completely inaccurate without updating the critic first. However the effect of this disadvantage
would diminish once the critic has adequately generalised to the available samples. It is also possible that
the use of target networks to calculate the critic loss mitigates the effect of any additional bias introduced
by alternating updates. Based on these results, we choose alternating updates for our implementations of
P-DQN in Algorithms 5 and 6.

79

Platform

Mean Median Area Under Curve

Alternating Updates 0.964± 0.068 0.997 64 705
Simultaneous Updates 0.955± 0.060 0.985 66 998

Robot Soccer Goal

Mean Median Area Under Curve

Alternating Updates 0.668± 0.062 0.656 61 445
Simultaneous Updates 0.661± 0.071 0.646 60 350

Half Field Offense

Mean Median Avg. Steps to Goal Area Under Curve

Alternating Updates 0.883± 0.085 0.917 111± 11 182 573
Simultaneous Updates 0.831± 0.157 0.869 114± 14 182 372

Table B.1: Results of using simultaneous versus alternating actor-critic updates for P-DQN. Alternating updates
achieve the highest evaluation scores.

80

0 20000 40000 60000 80000
0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Platform

Alternating
Simultaneous

0 20000 40000 60000 80000 100000
0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

0 5000 10000 15000 20000 25000 30000
Episodes

0

2

4

6

8

Re
tu

rn

HFO

(a) Learning curves

Alternating Simultaneous
0.6

0.7

0.8

0.9

1.0

Re
tu

rn

Platform

Alternating Simultaneous
0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

Alternating Simultaneous
0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

HFO

(b) Evaluation scores

Figure B.1: Graphs of results using simultaneous versus alternating actor-critic updates for P-DQN over 30 seeded-
random runs on each domain. From the learning curves shown in (a), simultaneous updates lead to slightly faster
initial learning on Platform but there is almost no difference compared to alternating updates on Robot Soccer
Goal and HFO. The average evaluation performance show in (b), on the other hand, indicates agents using alter-
nating updates converge to policies with slightly higher scores in general over those using simultaneous updates,
particularly on Platform and HFO.

81

Appendix C

Action-Parameter Scaling

We choose to scale the action-parameters used by all algorithms in our experiments to [−1, 1] with the
aim of avoiding exploding gradients [Goodfellow et al. 2016] and enhancing learning speed. This range
was chosen over [0, 1] so policies with zero-mean random initialisations start in the middle of the range,
rather than at the lower extremum. Our choice matches the tanh squashing function commonly used to
bound continuous outputs in neural networks, which is also zero-centred and has a range of [−1, 1] by
default.

We evaluate the effect of action-parameter scaling for P-DQN and Q-PAMDP on Platform, Robot Soccer
Goal, and HFO. We manually tuned the eNAC learning rate for Q-PAMDP, setting it at 0.1 for Platform
and 0.06 for Robot Soccer Goal compared to 1 and 0.1 used by Masson et al. [2016] without scaling.
Altering the learning rate for the action-parameter network of P-DQN did not appear to improve perfor-
mance when using unscaled action-parameters, so we present the results of using the same learning rates
detailed in Appendix A for both cases. We did not test Q-PAMDP without scaling on HFO as it failed to
score goals despite extensive manual tuning.

The results of our comparisons between scaled and unscaled action-parameters are shown in Table C.1,
with graphs for P-DQN in Figure C.1 and Q-PAMDP in Figure C.2. Clearly, downscaling the action-
parameters has a massive impact on both the learning and evaluation performance for P-DQN. Without
scaling, the algorithm on average learns slower and results in inferior policies across all three domains.
The same was found to be true for PA-DDPG, although we did not test to the same extent as P-DQN and
thus omit its results. The performance of Q-PAMDP is similarly improved when using scaled action-
parameters on Platform, where it learns significantly faster compared to the unscaled version initially
used by Masson et al. [2016]. The learning speed on Robot Soccer Goal is similar with and without
scaling, with a minor increase in evaluation performance.

Overall, our results indicate that action-parameter scaling is beneficial and important for neural network
based approaches such as P-DQN to learn efficiently. The faster learning is likely because scaling allows
gradients to have a larger impact on the policy with fewer updates. It also complements the gradient
clipping strategy in avoiding problems relating to the scale of input variables such as exploding gradients,
which can cause divergence during learning.

82

Platform

Algorithm Scaled Mean Median Area Under Curve

P-DQN Yes 0.964± 0.069 0.997 64 705
No 0.385± 0.176 0.356 15 270

Q-PAMDP Yes 0.789± 0.188 0.795 50 397
No 0.608± 0.175 0.552 39 520

Robot Soccer Goal

Algorithm Scaled Mean Median Area Under Curve

P-DQN Yes 0.668± 0.062 0.656 61 445
No 0.399± 0.124 0.417 33 599

Q-PAMDP Yes 0.452± 0.093 0.456 39 340
No 0.428± 0.084 0.445 38 724

Half Field Offense

Algorithm Scaled Mean Median Avg. Steps to Goal Area Under Curve

P-DQN Yes 0.883± 0.085 0.917 111± 11 182 573
No 0.787± 0.309 0.922 119± 23 118 448

Table C.1: Results of using scaled versus unscaled action-parameters for P-DQN and Q-PAMDP on Platform,
Robot Soccer Goal, and Half Field Offense. For both algorithms, the agents using action-parameters rescaled to
[−1, 1] perform better on all domains.

83

0 20000 40000 60000 80000
0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Platform

P-DQN (Scaled)
P-DQN (Unscaled)

0 20000 40000 60000 80000 100000
0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

0 5000 10000 15000 20000 25000 30000
Episodes

0

2

4

6

8

Re
tu

rn

HFO

(a) Learning curves

Scaled Unscaled
0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Platform

Scaled Unscaled
0.0

0.2

0.4

0.6

0.8

1.0
Go

al
 P

ro
ba

bi
lit

y

Robot Soccer Goal

Scaled Unscaled
0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

HFO

(b) Evaluation scores

Figure C.1: Graphs of the learning curves and evaluation scores of P-DQN with unscaled action-parameters versus
scaling to the range [−1, 1].

84

0 20000 40000 60000 80000
0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Platform

Q-PAMDP (Scaled)
Q-PAMDP (Unscaled)

0 20000 40000 60000 80000 100000
0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

(a) Learning curves

Scaled Unscaled
0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Platform

Scaled Unscaled
0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

(b) Evaluation scores

Figure C.2: Graphs of the learning curves and evaluation scores of Q-PAMDP with unscaled action-parameters
versus scaling to the range [−1, 1].

85

Appendix D

Initial Action-Parameter Policies for Platform and
Robot Soccer Goal

Masson et al. [2016] initialise the action-parameter policy for Q-PAMDP on their Platform and Robot
Soccer Goal domains to make it easier to learn rather than starting from scratch. The following informa-
tion is from the source code generously released by Masson et al. [2016].12 The initial policy used for
Platform is simple, with each action-parameter being initialised to a constant:

xrun = 3,

xhop = 10,

xleap = 400.

This initialisation causes the leap distance to start close to the maximum but still be less than the gap
between platforms. The hop and run distances are initialised just above the minimum of 0 so the agent
has some forward motion to start with, otherwise those actions would leave the agent at the same position.
For Robot Soccer Goal, a combination of state features is used for the initial action-parameter policy:

xkick-to =

 2.5 + xb + (50
PL) (xb−xk)
‖pb−pk‖

1 +
(

1− 5
PW

)
yb + (50

PW) (yb−yk)
‖pb−pk‖

 ,

xshoot-goal-left =
GW

2
− 1,

xshoot-goal-right = −GW
2

+ 1,

where PL = 40 is the pitch length, PW = 30 is the pitch width, and GW = 14.02 is the goal
width. The normalised distance between the keeper and ball along each axis, (xb − xk)/‖pb − pk‖ and
(yb − yk)/‖pb − pk‖, is added to the feature space for all methods, where pb = (xb, yb) and pk = (xk, yk)
are the positions of the ball and keeper respectively. The rest of the features are explained in Section 2.3.2.
Since xkick-to dictates a position to kick the ball towards, it is represented as a 2-dimensional vector giv-
ing the x and y position. This policy causes the kick-to action to start off always kicking the ball away
from the keeper towards the bottom of the field. The shoot-goal-left and shoot-goal-right actions kick
the ball towards the edges of the goals, rather than the centre. Learning is far more difficult without this
initialisation as the kick-to action would start off always kicking the ball to the centre of the pitch, and

1https://github.com/WarwickMasson/aaai-platformer
2https://github.com/WarwickMasson/aaai-goal

86

https://github.com/WarwickMasson/aaai-platformer
https://github.com/WarwickMasson/aaai-goal

the shoot-goal actions would kick towards the centre of the goals, almost always resulting in the keeper
catching the ball.

D.1 Passthrough Layer

One can mimic this initialisation in P-DQN and PA-DDPG by adding the linear policy to the output of the
actor network externally. However, action-parameter bounding techniques require this to be done during
the internal update step too. We present a convenient way of incorporating policy initialisation into the
architecture of actor networks by adding a fully-connected passthrough layer to the network

Ws+ b,

where W are the layer weights and b is the bias term. This layer uses only the state features as input and
is added directly to the policy output, as illustrated in Figure D.1. Assuming the weights of the original
output layer are set close to zero, this allows any linear combination of state variables to be used as an
initial policy. The benefit of this method is that action boundaries are respected and include the initial
policy, as bounding methods are applied after the addition step on the output of the whole network. Note
that this only works with inverting gradients or similar bounding techniques where no activation function,
or one that is effectively the identity function within the valid range, is used on the output. Non-linear
activation functions such as tanh would skew the linear combination function.

Ws + b

θ
x

, . . . ,x1 xK

State s

Passthrough
Layer

A
ct
or

+

Figure D.1: Illustration of an actor network with the proposed passthrough layer

87

Since the passthrough layer is a direct linear combination of the input variables, performing updates on
the passthrough layer weights using the same learning rate as the rest of the neural network, which typi-
cally has multiple hidden layers, can have a greater impact on the policy. This can lead to oscillation or
divergence during learning. While one could use a separate learning rate for the passthrough layer, we
instead choose to keep the passthrough layer weights static. This avoids introducing another hyperpa-
rameter and any problems relating to updating the passthrough layer. Note that this does not reduce the
robustness of the action policy as the rest of the network simply learns to compensate, so the full action
range is still available.

We perform experiments on Platform and Robot Soccer Goal to compare the performance of P-DQN with
initialised action-parameters using a static passthrough layer versus a dynamic passthrough layer that is
updated with the rest of the network. Results over 30 seeded-random runs are presented in Table D.1
and Figure D.2, which show that sample efficiency is largely unaffected but on average more agents with
a dynamic passthrough layer fail to solve the Platform domain by the end of training. No agents appear
to diverge outright during learning; however, this is likely because gradient clipping is employed, which
limits large changes to the policy and keeps the scale of parameters in check. A slight increase in the
average agent evaluation score is noted on Robot Soccer Goal when using dynamic passthrough layers
but we argue the negative effects observed on the Platform domain outweigh this. Thus we use a static
passthrough layer throughout our experiments.

Platform

Passthrough Layer Mean Median Area Under Curve

Static 0.964± 0.068 0.997 64 705
Dynamic 0.935± 0.121 0.988 66 020

Robot Soccer Goal

Passthrough Layer Mean Median Area Under Curve

Static 0.668± 0.062 0.656 61 445
Dynamic 0.695± 0.071 0.714 61 408

Table D.1: Results of using a static versus a dynamic passthrough layer for P-DQN on Platform and Robot Soccer
Goal.

88

0 20000 40000 60000 80000
0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Platform

Static
Dynamic

0 20000 40000 60000 80000 100000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal
0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Platform

Static Dynamic
0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

Figure D.2: Results of using a static versus a dynamic passthrough layer for P-DQN on Platform and Robot Soccer
Goal. There is little difference between the learning curves of the two approaches in (a).

89

D.2 Comparison to Uninitialised Policies

To examine how much of an impact the initial policies used by Masson et al. [2016] have, we test the
performance of P-DQN and Q-PAMDP with and without action-parameter initialisation on Platform and
Robot Soccer Goal. We scale the action-parameters to [−1, 1] for P-DQN but keep them unscaled for
Q-PAMDP in this experiment, as the original algorithm did not use scaling. This means that the unini-
tialised, or rather zero-initialised, P-DQN agents start with policies in the middle of the range while unini-
tialised Q-PAMDP agents start at the minimum. For the uninitialised version of P-DQN, we use ε-greedy
with uniform-random action-parameter exploration. This was chosen over the Ornstein-Uhlenbeck noise
used for the scaled version since more exploration is required with an uninitialised policy. We present
the results in Table D.2, with graphs for P-DQN in Figure D.3 and for Q-PAMDP in Figure D.4.

We observe that P-DQN without initialisation quickly learns to solve Platform within 10 000 episodes.
This may be due to the agent requiring fewer updates to increase the run action-parameter since it starts
in the middle of the range, giving it enough forward momentum to traverse over gaps, although the
leap action-parameter starts off lower. On Robot Soccer Goal, however, the average performance is
significantly reduced. Uninitialised agents take much longer to first score goals and on average scoring
only 35% of the time by the end of training, compared to the 66% average with an initial policy. Q-
PAMDP agents without action-parameter initialisation also fail to solve Robot Soccer Goal and show
little improvement over the course of training. On Platform, uninitialised Q-PAMDP agents take longer
to learn than the initialised agents. This is because we do not use scaling for Q-PAMDP in this experiment,
so agents start off barely moving forward at all.

Platform

Algorithm Initialised Mean Median Area Under Curve

P-DQN Yes 0.964± 0.069 0.997 64 705
No 0.953± 0.137 0.994 73 392

Q-PAMDP Yes 0.608± 0.175 0.552 39 520
No 0.356± 0.252 0.273 16 641

Robot Soccer Goal

Algorithm Initialised Mean Median Area Under Curve

P-DQN Yes 0.668± 0.062 0.656 61 445
No 0.141± 0.211 0.000 7145

Q-PAMDP Yes 0.428± 0.084 0.445 38 724
No 0.011± 0.037 0.000 509

Table D.2: Results of uninitialised (zero-initialised) action-parameters versus using initial policies matching that
of Masson et al. [2016] on Platform and Robot Soccer Goal for P-DQN and Q-PAMDP.

Given the massive impact on learning performance these initial action-parameter policies have, authors
using Platform and Robot Soccer Goal as benchmark domains should explicitly state whether or not they
use the initialisation strategy from Masson et al. [2016] and how their action-parameters are normalised.

90

0 20000 40000 60000 80000
0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Platform

P-DQN (Initialised)
P-DQN (Uninitialised)

0 20000 40000 60000 80000 100000
0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

(a) Learning curves

Initialised Uninitialised
0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Platform

Initialised Uninitialised
0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

(b) Evaluation scores

Figure D.3: Graphs of the learning curves and evaluation scores of P-DQN with uninitialised (zero-initialised)
action-parameters versus using initial policies matching that of Masson et al. [2016] on Platform and Robot Soccer
Goal.

91

0 20000 40000 60000 80000
0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Platform

Q-PAMDP (Initialised)
Q-PAMDP (Uninitialised)

0 20000 40000 60000 80000 100000
0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

(a) Learning curves

Initialised Uninitialised
0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Platform

Initialised Uninitialised
0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

Robot Soccer Goal

(b) Evaluation scores

Figure D.4: Graphs of the learning curves and evaluation scores of Q-PAMDP with uninitialised (zero-initialised)
action-parameters versus using initial policies matching that of Masson et al. [2016] on Platform and Robot Soccer
Goal.

92

Appendix E

Effects of βββ Parameter for Mixed nnn-Step Targets

Hausknecht and Stone [2016b] successfully employ mixed n-step return update targets to improve the
performance of PA-DDPG on HFO, and of DQN on certain Atari games but decreasing performance on
others, suggesting that the effect of mixingn-step returns may be highly domain and algorithm dependent.
There is no definitive method on how to choose β, however the authors show that smaller values—roughly
below 0.5 for both DQN and PA-DDPG—appear to perform better.

We conduct our own reduced grid search on the β parameter over {0, 0.25, 0.5, 0.75, 1} to examine the
effects of mixing n-step returns on P-DQN and PA-DDPG on HFO. For each different value, we train 30
independent, randomly-seeded agents over 30 000 episodes. The results in Figure E.1a show that P-DQN
is much more sensitive to the value of β than PA-DDPG. While there is a significant increase in training
performance from 0 to 0.25, it decreases dramatically as β increases further, similarly with the evaluation
performance in Figure E.1a. A similar correlation between training performance and β is observed for
PA-DDPG but to a lesser extent. Surprisingly, the evaluation scores for PA-DDPG show a much greater
decrease as β increases, contrary to the learning curves which indicate a more minor decrease in learning
speed and average episodic return. This can be explained primarily by episodic return not being linearly
correlated with goal-scoring probability on HFO, as agents can theoretically achieve a return of up to 6
(out of a maximum of 11) by kicking the ball very close to the goal. The removal of exploration noise
during evaluation may also be a factor, leading to worse deterministic action policies than during training.

A β value of 0.25 performs best for both P-DQN and PA-DDPG, although it may not be optimal given
the limited scope of our search. P-DQN being detrimentally sensitive to high values of β is consistent
with the findings of Hausknecht and Stone [2016b] for regular DQN, although our results for PA-DDPG
appear lower than theirs due to a larger sample size of agents being evaluated for each value in our
experiments—30 as opposed to 1. Clearly the value of β for mixing n-step returns has a major impact
on performance for both algorithms, so picking the right value for the task is important.

93

Algorithm β Mean Median Avg. Steps to Goal Area Under Curve

P-DQN

0 0.571± 0.289 0.639 140± 34 119 724
0.25 0.883± 0.085 0.917 111± 11 182 573
0.50 0.664± 0.164 0.689 131± 12 144 473
0.75 0.390± 0.133 0.401 145± 18 107 084
1 0.301± 0.156 0.292 151± 16 76 525

PA-DDPG

0 0.586± 0.319 0.697 127± 32 87 350
0.25 0.875± 0.182 0.945 95± 7 193 687
0.50 0.505± 0.191 0.471 109± 6 176 491
0.75 0.305± 0.141 0.306 120± 12 159 715
1 0.238± 0.131 0.227 122± 10 153 952

Table E.1: Results of P-DQN and PA-DDPG trained using different values of β on HFO.

0 5000 10000 15000 20000 25000 30000
Episodes

0

2

4

6

8

Re
tu

rn

0 (one-step lookahead)
0.25
0.5
0.75
1 (n-step returns)

0 5000 10000 15000 20000 25000 30000
Episodes

0

2

4

6

8

Re
tu

rn

0 (one-step lookahead)
0.25
0.5
0.75
1 (n-step returns)

0 0.25 0.5 0.75 1
0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

(a) P-DQN

0 0.25 0.5 0.75 1
0.0

0.2

0.4

0.6

0.8

1.0

Go
al

 P
ro

ba
bi

lit
y

(b) PA-DDPG

Figure E.1: Learning curves (top) and trend lines (bottom) showing the mean agent evaluation scores of P-DQN
and PA-DDPG over different values of β on HFO. The error bars indicate one standard deviation above and below
the mean average score.

94

Appendix F

Network Size Sensitivity

Hausknecht and Stone [2016a] report using a relatively large and deep network architecture to train PA-
DDPG with parameterised actions on HFO, with the actor and critic networks each consisting of four
hidden layers (1024, 512, 256, 128). Xiong et al. [2018], on the other hand, use a much smaller network
consisting of three hidden layers (256, 128, 64) for P-DQN. To investigate how sensitive each algorithm
is to the number of hidden layers and neurons, we use P-DQN and PA-DDPG to train agents on HFO over
four network configurations: (1024, 512, 256, 128), (512, 256, 128), (256, 128, 64), and (128, 64). We
keep the actor and critic network architectures symmetric as in prior literature, and use the same hyper-
parameters across all network sizes per algorithm due to time and resource constraints. So while there is
room for fine-tuning, particularly of the learning rates, the results shown in Table F.1 and Figure F.1 still
depict interesting trends.

The performance of P-DQN appears to improve as the network size decreases, having the greatest area
under the curve when using just two hidden layers (128, 64). However, three hidden layers (256, 128, 64),
as used by Xiong et al. [2018], produces the highest mean and median evaluation scores for P-DQN.
The opposite is true for PA-DDPG, where agents with four hidden layers (1024, 512, 256, 128), as used
by Hausknecht and Stone [2016a], have the highest training and evaluation scores while the algorithm
suffers a significant decrease in evaluation scores with smaller networks. PA-DDPG appears somewhat
more sensitive to the number of hidden layers and neurons than P-DQN, which is evident from Figure F.1
and the difference in mean evaluation score between the best and worst performing network sizes—0.09
for PA-DDPG versus 0.046 for P-DQN. This could be explained due to PA-DDPG using all actions and
their action-parameters as input, thus requiring more representational power to learn the relationships
between a greater number of variables than P-DQN. Further investigation is needed for conclusive results,
however.

95

Algorithm Hidden Layers Mean Median Avg. Steps to Goal Area Under Curve

P-DQN

1024, 512, 256, 128 0.837± 0.165 0.871 120± 14 162 119
512, 256, 128 0.848± 0.145 0.897 116± 18 185 749
256, 128, 64 0.883± 0.085 0.917 111± 11 182 573
128, 64 0.870± 0.112 0.889 119± 14 185 836

PA-DDPG

1024, 512, 256, 128 0.875± 0.181 0.945 95± 7 188 782
512, 256, 128 0.864± 0.181 0.911 100± 7 185 072
256, 128, 64 0.880± 0.111 0.923 101± 5 173 571
128, 64 0.803± 0.198 0.862 111± 11 149 836

Table F.1: Results of P-DQN and PA-DDPG trained using different network sizes on HFO.

0 5000 10000 15000 20000 25000 30000
Episodes

0

2

4

6

8

Re
tu

rn

1024,512,256,128
512,256,128
256,128,64
128,64

0 5000 10000 15000 20000 25000 30000
Episodes

0

2

4

6

8

Re
tu

rn

1024,512,256,128
512,256,128
256,128,64
128,64

1024,512,256,128
512,256,128

256,128,64
128,64

Hidden Neurons

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Go
al

 P
ro

ba
bi

lit
y

(a) P-DQN

1024,512,256,128
512,256,128

256,128,64
128,64

Hidden Neurons

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Go
al

 P
ro

ba
bi

lit
y

(b) PA-DDPG

Figure F.1: Learning curves (top) and violin plots of mean evaluation scores (bottom) for P-DQN and PA-DDPG
using decreasing network sizes to train on HFO.

96

References

[Agarwal 2018] Arpit Agarwal. Deep Reinforcement Learning with Skill Library: Exploring with Tem-
poral Abstractions and coarse approximate Dynamics Models. Master’s thesis, Carnegie Mellon
University, Pittsburgh, PA, July 2018.

[Bertsekas 1987] Dimitri P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1987.

[Bhatnagar et al. 2009] Shalabh Bhatnagar, Richard S. Sutton, Mohammad Ghavamzadeh, and Mark
Lee. Natural actor-critic algorithms. Automatica, 45(11):2471 – 2482, 2009.

[Brockman et al. 2016] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. OpenAI gym. arXiv preprint arXiv:1606.01540,
2016.

[Deisenroth et al. 2013] Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters. A survey on policy
search for robotics. Foundations and Trends in Robotics, 2(1-2):1–142, 2013.

[Fujimoto et al. 2018] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approxi-
mation error in actor-critic methods. In International Conference on Machine Learning, pages
1582–1591, 2018.

[Glorot et al. 2011] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural
networks. In Proceedings of the fourteenth international conference on artificial intelligence and
statistics, pages 315–323, 2011.

[Goodfellow et al. 2016] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

[Haarnoja et al. 2018] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In Inter-
national Conference on Machine Learning, pages 1856–1865, 2018.

[Hausknecht and Stone 2016a] Matthew Hausknecht and Peter Stone. Deep reinforcement learning in
parameterized action space. In Proceedings of the International Conference on Learning Repre-
sentations (ICLR), San Juan, Puerto Rico, May 2016.

[Hausknecht and Stone 2016b] Matthew Hausknecht and Peter Stone. On-policy vs. off-policy updates
for deep reinforcement learning. In Deep Reinforcement Learning: Frontiers and Challenges,
IJCAI Workshop, July 2016.

[He et al. 2015] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

97

[Hinton et al. 2012] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Lecture 6a: overview of
mini-batch gradient descent. COURSERA: Neural Networks for Machine Learning, 2012.

[Hussein et al. 2018] Ahmed Hussein, Eyad Elyan, and Chrisina Jayne. Deep imitation learning with
memory for robocup soccer simulation. In Engineering Applications of Neural Networks, pages
31–43, Cham, 2018. Springer International Publishing.

[Kingma and Ba 2014] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, abs/1412.6980, 2014.

[Kitano et al. 1997] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, Eiichi Osawa, and
Hitoshi Matsubara. RoboCup: A challenge problem for AI. AI magazine, 18(1):73, 1997.

[Klimek et al. 2017] Maciej Klimek, Henryk Michalewski, and Piotr Miłoś. Hierarchical reinforcement
learning with parameters. In Conference on Robot Learning, pages 301–313, 2017.

[Konidaris et al. 2011] George D. Konidaris, Sarah Osentoski, and Philip S. Thomas. Value function
approximation in reinforcement learning using the Fourier basis. In Proceedings of the Twenty-
Fifth Conference on Artificial Intelligence, pages 380–385, August 2011.

[Krizhevsky et al. 2012] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classifi-
cation with deep convolutional neural networks. In Advances in Neural Information Processing
Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[Levine et al. 2016] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training
of deep visuomotor policies. (1):1334–1373, January 2016.

[Lillicrap et al. 2015] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015.

[Masson et al. 2016] Warwick Masson, Pravesh Ranchod, and George Konidaris. Reinforcement learn-
ing with parameterized actions. In Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, pages 1934–1940. AAAI Press, 2016.

[Medsker and Jain 1999] Larry R. Medsker and Lakhmi C. Jain. Recurrent Neural Networks: Design
and Applications. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1999.

[Mnih et al. 2013] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with deep reinforcement learn-
ing. arXiv preprint arXiv:1312.5602, abs/1312.5602, 2013.

[Mnih et al. 2015] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[Mnih et al. 2016] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep re-
inforcement learning. In Proceedings of the 33rd International Conference on Machine Learning,
pages 1928–1937, New York, New York, USA, June 2016. PMLR.

98

[Parr et al. 2008] Ronald Parr, Lihong Li, Gavin Taylor, Christopher Painter-Wakefield, and Michael L.
Littman. An analysis of linear models, linear value-function approximation, and feature selec-
tion for reinforcement learning. In Proceedings of the 25th International Conference on Machine
Learning, pages 752–759, New York, NY, USA, 2008. ACM.

[Paszke et al. 2017] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-
ferentiation in PyTorch. In NIPS 2017 Autodiff Workshop: The Future of Gradient-based Machine
Learning Software and Techniques, 2017.

[Peng and Williams 1996] Jing Peng and Ronald J. Williams. Incremental multi-step Q-learning. Ma-
chine Learning, 22(1):283–290, March 1996.

[Peters et al. 2005] Jan Peters, Sethu Vijayakumar, and Stefan Schaal. Natural Actor-Critic, pages 280–
291. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[Schaul et al. 2015] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experi-
ence replay. arXiv preprint arXiv:1511.05952, abs/1511.05952, 2015.

[Schulman et al. 2015] John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter
Abbeel. Trust region policy optimization. In Proceedings of the 32nd International Conference on
International Conference on Machine Learning - Volume 37, pages 1889–1897. JMLR.org, 2015.

[Schulman et al. 2016] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter
Abbeel. High-dimensional continuous control using generalized advantage estimation. In Pro-
ceedings of the International Conference on Learning Representations, 2016.

[Selvaraju et al. 2017] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-CAM: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEE International Conference on Computer
Vision, pages 618–626, 2017.

[Silver et al. 2014] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller. Deterministic policy gradient algorithms. In Proceedings of the 31st International
Conference on Machine Learning, number 1, pages 387–395, Bejing, China, June 2014. PMLR.

[Silver et al. 2016] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
et al. Mastering the game of go with deep neural networks and tree search. Nature, 529(7587):484,
2016.

[Spooner et al. 2018] Thomas Spooner, John Fearnley, Rahul Savani, and Andreas Koukorinis. Mar-
ket making via reinforcement learning. In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, pages 434–442, Richland, SC, 2018. International
Foundation for Autonomous Agents and Multiagent Systems.

[Sutton and Barto 1998] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, Cambridge, MA, USA, 1998.

[Sutton et al. 1999] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Pol-
icy gradient methods for reinforcement learning with function approximation. In Proceedings of

99

the 12th International Conference on Neural Information Processing Systems, pages 1057–1063,
Cambridge, MA, USA, 1999. MIT Press.

[Todorov et al. 2012] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for
model-based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 5026–5033. IEEE, 2012.

[Tukey 1977] John W Tukey. Exploratory data analysis. Addison-Wesley, 1977.

[Uhlenbeck and Ornstein 1930] George E. Uhlenbeck and Leonard S. Ornstein. On the theory of the
Brownian motion. Physical Review, 36:823–841, September 1930.

[Wang et al. 2016] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and
Nando De Freitas. Dueling network architectures for deep reinforcement learning. In Proceedings
of the 33rd International Conference on International Conference on Machine Learning - Volume
48, pages 1995–2003, 2016.

[Watkins and Dayan 1992] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learn-
ing, 8(3):279–292, 1992.

[Watkins 1989] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD thesis,
King’s College, Cambridge, 1989.

[Wei et al. 2018] Ermo Wei, Drew Wicke, and Sean Luke. Hierarchical approaches for reinforcement
learning in parameterized action space. In AAAI Spring Symposium Series, 2018.

[White and White 2010] Martha White and Adam White. Interval estimation for reinforcement-learning
algorithms in continuous-state domains. In Proceedings of the 23rd International Conference on
Neural Information Processing Systems, volume 2, pages 2433–2441, USA, 2010. Curran Asso-
ciates Inc.

[Xiong et al. 2018] Jiechao Xiong, Qing Wang, Zhuoran Yang, Peng Sun, Lei Han, Yang Zheng, Haobo
Fu, Tong Zhang, Ji Liu, and Han Liu. Parametrized deep Q-networks learning: Reinforcement
learning with discrete-continuous hybrid action space. arXiv preprint arXiv:1810.06394, 2018.

100

	Preface
	Abstract
	Declaration
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables

	Introduction
	Background and Related Work
	Reinforcement Learning
	Value Function Approximation
	Continuous Action Spaces
	Parameterised Action Spaces

	Deep Reinforcement Learning
	Deep Q-Networks
	Deep Deterministic Policy Gradients
	PA-DDPG
	Exploration Strategies
	Action-Parameter Bounding

	Domains
	Platform
	Robot Soccer Goal
	Half Field Offense

	Related Work
	Summary

	Parameterised Deep Q-Networks
	P-DQN
	Multi-Step Returns

	Comparison Study
	Experimental Methodology
	Results

	Summary

	Addressing Action Sampling Imbalance
	Indexed Action-Parameter Loss
	Gradient-Zeroing for Action-Parameter Update Independence

	Weighted Action-Parameter Loss
	Experiments
	(E1) Indexed Loss
	(E2) Weighted Loss
	(E3) Weighted-Indexed Loss

	Summary

	Independent Action-Parameter Methods
	Q-Value Action-Parameter Sensitivity
	Problems with Q-Value Sensitivity to Unassociated Action-Parameters
	False Action-Parameter Gradients
	Discrete Action Policy Perturbation

	Split Q-Networks
	Split Q-Networks with Shared Layers

	Multi-Pass Q-Networks
	Experiments
	(E1) Separate Q-Networks
	(E2) Split Q-Networks with Shared Layers
	(E3) Multi-Pass Q-Networks
	(E4) Computational Overhead
	(E5) Weighted-Indexed Loss Ablation Study

	Summary

	Conclusion and Future Work
	Future Work

	Appendix Hyperparameters
	Appendix Alternating Actor-Critic Updates
	Appendix Action-Parameter Scaling
	Appendix Initial Action-Parameter Policies for Platform and Robot Soccer Goal
	Passthrough Layer
	Comparison to Uninitialised Policies

	Appendix Effects of ß Parameter for Mixed n-Step Targets
	Appendix Network Size Sensitivity
	References

