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Abstract

Ensembles of artificial neural networks combining the outputs of individual time series
models may have the potential to improve overall predictive performance. Deep and modular
artificial neural networks are among recently developed machine learning techniques that
have been successfully applied across various domains ranging from speech recognition to
image classification.

Climate change prediction information is important for planning and managing the im-
pact of global change. However, the generation of climate change predictions from physical
or numerical models is computationally very intensive, often requiring supercomputing pro-
cessing capabilities and producing very large volumes of data.

This research focuses on the application of various ensembles of architectures of artificial
neural networks (ANNs) to time series. These ensembles are applied to the outputs of six
different physical climate change prediction models.

The output of these ensembles can be viewed as the consensual output of the individual
artificial neural network prediction models. Six different climate change prediction models
are considered for the area, Addis Ababa in Ethiopia. A single parameter, namely, the
maximum predicted temperature (MaxTemp) aggregated over a quarterly period is studied.
An artificial neural network is individually trained on the output of one of the six climate
change prediction models. The predictive performance of different ensembles of these trained
ANNs are compared to the actual averaged outputs of the climate change models. Results
show that some ensembles have good predictive fidelity compared with the individual model
outputs.
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Chapter 1

Introduction

Summary

The aims and objectives of this research are described in this chapter. The problem state-
ment, research hypothesis and research questions are presented, together with a brief de-
scription of the remaining chapters of this dissertation. The concept of time series and
importance of climate change prediction is introduced as application area.

This research focuses on the study of various ensembles of architectures of artificial neural
networks (ANNs) for time series prediction. To study their performance, these ensembles are
applied to the outputs of six different physical climate change prediction models. Various
artificial neural network (ANN) architectures for time series prediction are considered, in-
cluding deep and convolutional neural networks. A single climate change parameter, namely,
the maximum predicted temperature (MaxTemp) aggregated over quarterly periods is stud-
ied. For a given architecture, an ANN is individually trained on the output of each of the
six climate change prediction models. These trained networks are combined into various
ensembles of ANNs. The performance of different tightly and loosely coupled ensembles
of these trained ANNs are compared to the actual outputs of the climate change models.
Results show that the predictive performance of some ensembles compares favourably with
individual predictions.

1.1 Time Series Prediction

A time series is a sequence of data points usually over a time interval, t, such as the sales
figures of a certain commodity and the number of births in a certain location. The time in-
terval can represent any period from seconds, hours, days or even years. Time series provides
information about the past and time series prediction models use this history of the time
series to provide future predictions for the variable of study.

At the basic level time series can be divided into four components, namely, secular trend,
cyclical, seasonal and irregular variation [13]. A secular trend represents a trend of change
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over the long-term. A seasonal time series represents changes within a year such as seasonal
weather conditions [14]. A cyclical variation is a case where the variable of concern rises
or falls over a period of time such as telecommunications traffic for a company during the
business day [15]. Irregular variations describe cases where there are unexpected random
changes that do not follow a certain pattern but which still have an influence on the time
series [14]. Different techniques such as machine leaning and stochastic processes are used
to analyse time series data. These techniques can produce time series prediction models and
are described in greater detail in the following chapter.

ANNs have been extensively used over the past years for time series prediction [14]. Adhikari
et al. for example, indicated that the non-linear nature of ANN models make them more ac-
curate than linear models when applied to complex data patterns. This is also supported by
the work of Basheer et al. which showed that ANNs give better predictive performance than
traditional statistical modelling techniques [16]. Support vector machines, Hiddden Markov
models and radial basis functions are examples of other machine learning techniques which
have been used successfully for prediction tasks [14]. These machine learning algorithms are
not considered but ANNs are described in further detail in a following chapter.

1.2 Climate Change

Climate change has been shown to have a major influence on the environment [17]. Examples
of such impacts are droughts and floods as shown in Figure 1.1. Climate change is not only
affected by natural factors like physical and chemical processes of the atmosphere but also by
anthropomorphic activities such as the burning of fossil fuels and deforestation. The effect
of climate change has sparked interest by different researchers of different specialities like
climatologists, geographers, sociologists, economists, computer scientists and statisticians in
efforts to understand and share knowledge on how to effectively deal with the challenges
posed by climate change [18].

Interest in the study of climate change started over 190 years ago when the French math-
ematician, Joseph Fourier attempted to understand the different elements that impact the
earth’s temperature [19]. From this time, other researchers followed with different obser-
vations and discoveries that eventually led to the development of various climate change
prediction techniques. These techniques are primarily based on environmental and numer-
ical models and are reviewed in detail in the following chapter.

1.2.1 Climate Change Prediction

Climate change prediction involves the forecasting of weather and environmental conditions
such as the change in temperature, rainfall and humidity over long periods of time. These
predictions are important for providing information for planning and managing the impact
of global change on the environment. Various climate change prediction models have been
developed but since they are based on different initial assumptions, the predictions of these
models differ slightly from each other. The generation of predictions from these models is
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Figure 1.1: Examples of the different effects of climate change on the environment from [1]
and [2].

computationally very intensive, requiring supercomputing processing capabilities and pro-
ducing very large volumes of data.

The data used in this study was produced by six different climate change prediction mod-
els [12]. These are all regarded as Conformal-Cubic Atmospheric Models (CCAM), and are
discussed in further detail in Section 2.3.1.

1.3 Aims of Study

Machine learning techniques like deep neural networks (DNNs) and ensembles of DNNs can
improve the prediction accuracy of the combined models outputs. There is much interest
in combining ANNs with the intention of improving their performance [20]. Two main ap-
proaches of combining ANNs can be identified, namely modular neural networks (MNN) and
ensembles of neural networks. These two approaches are similar in some respects but there
are differences.

The main aim of this research is to explore and compare ensembles of various ANNs ar-
chitectures for time series modeling. Some of the ANN architectures studied are feedforward
neural (FFNNs), convolutional neural networks (CNNs), Elman recurrent neural networks
(ERNNs), Jordan recurrent neural networks (JRNNs), partially recurrent neural networks
(PRNNs), cascaded neural networks (CasNNs) and long-short term memory recurrent net-
works (LSTM).

1.3.1 Problem Statement

Information about the future climate is important for planning and reducing the impact of
climate change. Such impacts include food security, floods and drought. Different climate
change prediction models have been used to forecast important atmospheric variables.

The generation of climate change predictions generally requires high performance computing
resources and produces large volumes of data. Developing countries are more vulnerable to
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climate change, particularly urban areas in African countries. Their increased vulnerability
is due to the fact that they are not as capable to deal with the impact of climate change.
However, such countries usually do not have the computational or storage resources to gener-
ate outputs from climate change prediction models. Due to network connectivity limitations
it is also not feasible to transmit such large data sets from other locations.

The prediction accuracy of the various climate change models differ, since each one is based
on different assumptions and initial conditions. The combination of the outputs of different
models could provide more accurate predictions to plan for, and manage the impacts of
climate change. Trained artificial neural networks can provide an efficient means to repro-
duce the outputs of climate change models. The development of these ANNs do not require
expertise in the climate change disciplines, and ensembles of such ANNs could represent a
good overall approximation of the combined climate change prediction models.

1.3.2 Research Questions and Objectives

The following research questions have been formulated for this study:

1. Can different configurations of ANNs be trained to simulate climate change prediction
models?

2. Can various ensembles of ANNs as trained previously be combined to approximate or
improve the prediction accuracy of the individual model outputs?

The first objective of this research is thus to determine whether individually trained ANNs
can approximate or improve the accuracy of time series generated by different prediction
models. The second objective is to determine whether ensembles of trained neural networks
can provide an overall prediction by combining the outputs of such individually trained
ANNs. The outputs of individual climate change prediction models are considered for this
purpose.

1.3.3 Research Hypothesis

The research questions stated above can be presented as the following hypothesis:

Machine learning methods such as ensembles of deep neural networks
can be applied to provide improved climate change predictions by
combining individual outputs of prediction models.

This research is motivated by the successful use of artificial neural networks as a power-
ful pattern recognition, classification and prediction method. Based on the performance
of ANNs on similar problems and the likelihood to approximate time series, ensembles of
ANNs for climate change prediction is considered worthy of study. Various combinations
of architectures of ANNs will be explored to find ensembles that yield the best prediction
performance.
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1.3.4 Study Area

The main academic area of study of this research is artificial neural network ensembles as a
machine learning approach to time series. The application case study is climate change pre-
diction time series. Climate change time series were generated from six different numerical
prediction models. Addis Ababa in Ethiopia (shown in Figures 1.2 and 1.3) was selected as
the area of study.

Addis Ababa is the largest city in Ethiopia, and it is also the capital city of the coun-
try [21]. The residential population of the city is reported to be more than three million [21]
and has the area of about 540 km2 [22].

Figure 1.2: Map of Africa showing Ethiopia [3].
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Figure 1.3: Map of Ethiopia showing the location of Addis Ababa [3].

1.4 Dissertation Outline

The remainder of this dissertation is structured as follows. In Chapter 2 the background
and related work is described in the form of a literature review. The concepts of time series
and climate change are presented and artificial neural networks are described. The specific
ANN architectures is presented in some detail. Other machine learning methods for time
series are noted but are not described.

Chapter 3 outlines the research methodology and describes the empirical process that was
followed in this research. The preparation of data sets, training process for the ANNs and
the selection and parametric configurations of different architectures are described, together
with the different ensembling techniques.The results of training simulations for the various
ANN architectures are presented in Chapter 4, together with various ensembles applied to
each ANN architecture.

The experimental findings are discussed in Chapter 5 as well as the conclusions together
with further possible areas of research.
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Chapter 2

Literature Review

Summary

This chapter presents an overview of the literature relevant to this study. The concepts
of climate change and time series prediction are presented. Artificial neural networks are
described as a machine learning approach to time series prediction, with the focus on the
particular architectures that are used in this research. Last, ensembles of neural networks
are described together with various loosely and tightly coupled configurations.

2.1 Introduction

The main objective of this research is to study ensembles of artificial neural networks as an
approach to improve time series prediction. Time series modelling has been studied for many
years and has been applied in diverse fields such as business, economics, finance, science and
engineering [23]. Climate change time series modeling is important for a number of reasons
and is used in this research as application area.

The primary purpose of time series modelling is to study past observations in order to de-
velop appropriate models which describe the structural pattern of the series. These models
can then be used to generate future values for the series. While statistics have traditionally
been used, machine learning techniques such as support vector machines, hidden Markov
models and artificial neural networks have also been successfully applied to time series mod-
elling [24]. The following sections present the concepts of time series, climate change, and
artificial neural networks (ANNs).

There are two main approaches to combining ANNs, namely, modular neural networks
(MNNs) and ensembles of neural networks. In MNNs a task is divided into subtasks and
each neural network module is trained on a subtask. These modules are then combined to
solve the main task in a divide and conquer manner [25]. When implemented in predic-
tion problems, MNNs are regarded to produce more rigorous and precise models than single
ANNs [26]. The modules of the MNN can be arranged in tightly and loosely coupled manner.
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In ensembles of neural networks, each neural network module tackles the whole task and
the outputs of the modules are then combined. The ensemble network structure can then
be trained further [20]. As for MNNs, the modules of ensembles can be tightly or loosely
coupled.

2.2 Machine Learning Approaches to Time Series Pre-

diction

There has been much interest in the use of machine learning techniques for time series pre-
dictions [27]. Some of the models that were studied in Ahmed et al. included multilayer
perceptrons, Bayesian neural networks, radial basis functions, artificial neural networks, K-
nearest neighbour regression, support vector machines and decision trees [28]. These models
have been applied to real-world problems like weather forecasting, stock trading and com-
modity sales, among others.

Two broad categories of machine learning approaches to time series modelling can be dis-
tinguished, namely supervised and unsupervised learning. Supervised learning involves the
use of a set of observations - a set of input variables, each labelled in relation to an actual
or desired output variable. This set of input-output values is termed the training set and
learning amounts to determining the mapping that will produce the desired output for a
given input. In unsupervised learning there is no target output and the learning algorithm
usually tries to cluster similar inputs together [28].

Basheer et al. indicated that machine learning techniques such as ANNs play an important
role and that these techniques can outperform traditional time series prediction methods
such as the Box-Jenkins statistical model [16]. Nicholas et al. showed that another machine
learning technique that accurately forecast time series data is support vector machines [29].
The accuracy of these techniques is very important for future planning in any case of fore-
casting study. These models are capable of learning and recognising the pattern in the time
series and use this knowledge to predict future patterns [30]. In addition to the capabilit-
ies of the ANNs mentioned thus far, Thomas et al. indicates that ANNs are able to learn
even when there is missing data or data is noisy and that ANNs can also represent and
approximate non-linear time series functions [31].

2.3 Climate Change

Climate can be described as the weather conditions at a specific location over a long period
of time [32] whereas climate change is regarded as consistent changes in weather conditions.
These changes are said to be caused mainly by the concentration of greenhouse gases and
the emission of carbon dioxide [32]. Climate change has a major influence on many activities
which directly depend on weather conditions, such as agriculture [30]. As has been stated,
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the effects of climate change have led to the invention of different climate change prediction
models.

2.3.1 Climate Change Prediction Models

Climate change models provide important information for planning and managing the impact
of climate change on the environment and their predictions differ slightly from each other.
Typically the generation of predictions from these models is computationally very intensive,
requiring supercomputing processing capabilities and producing very large volumes of data.

These models forecast a number of atmospheric variables such as temperature, pressure,
wind, humidity and rainfall at different temporal and spatial intervals. These models are
primarily based on environmental and numerical models. In the former case the models
predict climate change based on the physical and chemical processes of the atmosphere
and oceans. In numerical models, mathematical equations specifically describe atmospheric
variables like moisture, air motion and behavior of temperature based on their physical prop-
erties.

Environmental climate change models forecast climate change based on the physical and
chemical processes of the atmosphere and oceans, whereas numerical methods have no de-
pendence on historical weather conditions. That is, numerical methods rely only on current
weather conditions and are based on attempts to simulate climate change for a specified
period using mathematical models of the atmosphere and ocean [33]. Because these models
are based on different assumptions, these models produce time series that diverge over time
even if they start from the same initial conditions. A ‘consensual’ output combining the
outputs of individual models would be useful.

The data used in this study are the outputs generated by the six different models listed
below. This data was also used as part of a European Union Framework Seven programme
(FP7) entitled Climate Change and Urban Vulnerability in Africa (CLUVA).

• CCAM model developed by Commonwealth Scientific and Industrial Research Organ-
ization in Australia, denoted CCAM-CSIRO version mk3.5 [34]

• CCAM model developed by United Kingdom’s Met Office (UKMO), denoted CCAM-
UKHADcm3, third version [35]

• CCAM-ECHAM5 by the Max Planck Institute in Germany [36]

• CCAM model developed by the Japanese Agency for Marine-Earth Science and Tech-
nology, denoted CCAM-MIROmr, medium resolution version [37]

• Versions 2.0 and 2.1 of CCAM models developed by by the Geophysical Fluid Dynamics
Laboratory of the National Oceanic and Atmospheric Administration in USA, denoted
CCAM-GFDLcm2.0 and CCAM-GFDLcm2.1 [38]
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2.3.2 Climate Change and Urban Vulnerability in Africa

De Rissi et al. indicated that about half of the world’s population live in urban areas and
this support the fact that climate change poses an enormous challenge to the environment
and the people occupying such spaces [39]. It is further stated that the number of occupants
in the urban areas is expected to rise to about 70% by 2050 [39].

The CLUVA project was conducted in the following five different cities in Africa and fo-
cused on the vulnerability of these urban areas to climate change:

• Addis Adeba (Ethiopia)

• Dar es Salaam (Tanzania)

• Douala (Cameroon)

• Ouagadougou (Burkina Faso)

• Saint Louis (Senegal)

The purpose of the project was to develop ways that could be used to manage climate risk,
reduce vulnerability, improve coping capacity and resilience towards climate changes in the
urban areas of Africa [40]. The atmospheric variables predicted are, latitude, longitude,
rainfall, time, maximum temperature and minimum temperature.

The time series of these models was studied for two cases the period 1961 to 2025 in six
hourly time steps over 8 km resolution in the above listed cities. The same models were
implemented in South Africa for the 1961 to 2050 at the same resolution and time steps as
for the CLUVA project.

2.4 Artificial Neural Networks

Artificial neural networks have been widely applied as machine learning method in fields like
business, science and engineering [41] to solve problems in regression and classification [42].
The history of ANNs dates back to 1943, after being inspired by the structure of the neur-
ons of the brain. Warren McCulloch and Walter Pitts modelled a simple neural network
structure using electrical circuits in order to understand how the biological neurons might
work [43].

From their work, Warren McCulloch and Walter Pitts identified the flexibility and the ability
of ANNs to simulate arithmetic and logical functions [44]. Based on these properties Basheer
et al. concluded that this is the reason why ANNs can computationally learn [16].

Figure 2.1 shows the basic building block of an ANN which is a called neuron or node.
The input signals, xi for i = 1, ..,m and m being the number of input signals, are connec-
ted to the output node by connection weights, wi for i = 1, ..,m. The product of wixi is
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calculated for the neuron and summed to obtain the value s in equation (2.1), which is the
mathematical representation of the weighted sum of the neuron in Figure 2.1.

s =
m∑
i=1

xiwi + b (2.1)

The variable b is the bias term and is responsible for shifting the weighted sum s [5]. The
output of the neuron is represented by y which is calculated by equation (2.2):

y = f(s) (2.2)

The function f(.) is the activation function. The inputs and the weights can be represented
as vectors, x and w, respectively, where

w =


w1

w2
...
wm


and

x =


x1
x2
...
xm


Thus, s = w · x = wTx, where · is the dot product of the two vectors. Several activation
functions can be used and the sigmoidal function in equation (2.3) is the most commonly
used one.

f(s) =
1

1 + e−αS
(2.3)

where α is the slope parameter of the sigmoid function [5].

Figure 2.1: Model of a simple neuron from [4].
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The architecture of an ANN consists of at least two layers, the input layer and the output
layer. This structure is referred to as a single-layer neural network.

2.4.1 Single Layer Neural Networks

A single layer neural network consists of a layer of input neurons and a layer of output
neurons as shown in Figure 2.2. It is called single layer since the input layer does not process
information. The signals are projected strictly from the input layer onto the output layer,
i.e., in a “forward” direction.

Figure 2.2: Single layer neural network.

2.4.2 Multilayer Neural Network

The introduction of more layers to the single layer neural network forms what is called
multilayer neural network, as shown in Figure 2.3. A multilayer neural network thus have
additional layers in between the input and output layer and these layers are referred to
as a hidden layers. These hidden layers are responsible for transforming the outputs of the
preceding layer as input to the succeeding layer. The output of each layer is the output of the
activation function [45] which is the input to the subsequent layer as shown in equation (2.4)
for the k-th layer.

hk = f(bk +W khk−1) (2.4)

The output of layer (k-1) is used as an input into the kth layer where W k is the matrix of
the weights, bk is the is the bias term , hk−1 is the output of the (k − 1)th hidden layer and
f(.) is the activation function [45].
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2.4.3 Feedforward Neural Network

Two broad classes of ANNs can be distinguished, namely, feedforward neural networks
(FFNN) and recurrent neural networks (RNN). In a FFNN the signals are transmitted
strictly in a ’forward’ direction from the previous (input) layer to the following (output)
layer. No signals are fed back to preceding layers. Figure 2.3 below shows a structure of the
FFNN that consists of an input layer with four nodes, one hidden layer with four nodes and
an output layer with one node. The topology (connection arrangement) of this network is
referred as 4-4-1 network [5].

Figure 2.3: Structure of a feedforward neural network with one hidden layer.

The analytical description of Figure 2.3 is shown in Equation (2.5) and (2.6).

hj = fj(
4∑
i=1

fj(w
(1)
ij xi)− bj) for all h (2.5)

y = g(
4∑
j=1

hjw
(2)
j ) (2.6)

In w(k), k refers to the weights layer numbered from the input layer, w = [wij] is the weight
matrix, x = [xi] for i = 1, ..4, j = 1, ..., 4, f(.) the activation function and the neural network
output is represented by y.

2.4.3.1 Cascaded Neural Network

A cascaded neural network (CasNN) is a FFNN in which each layer is connected to all
the succeeding layers. For instance in case of a four layered neural network, the first layer
is connected to the second, third and fourth layer, the second layer is connected to the
third and forth layer and the third layer is connected to the forth layer. This architecture
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was developed by Fahlman and Lebiere [46] to solve the limitations of the backpropagation
algorithm. Fahlman et al. indicated that CasNN has an ability to learn faster and does not
need backpropagation of error through the connections of the ANN [47]. In the initial stages
of training of this architecture there are no hidden units. These units are added during the
training until the training error is minimized to a certain degree [48].

Figure 2.4: Structure of a feedforward cascaded neural network.

2.4.4 Recurrent Neural Network

A recurrent neural network (RNN) transmits signals back i.e from the succeeding layer to the
previous layer. This feedback signal helps to maintain state information in the neural network
[49]. There are various types of RNN architectures based on their connection topology and
learning algorithm. Examples are Hopfield, Elman, Jordan, Partial recurrent, LSTM and bi-
directional neural networks [50]. Figure 2.5 shows the structure of a RNN with a unit-time
delay operator represented by z−1.

Figure 2.5: Structure of a recurrent neural network [5].

Some specific recurrent neural networks are briefly described in the following subsections.
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2.4.4.1 Elman Recurrent Network

The Elman RNN (shown in Figure 2.6) contains a context layer. Elman added this context
layer to connect from the hidden layer back to the hidden layer. The context layer receives
the output of the hidden units as its inputs and returns its output to the hidden units as
inputs. Pham et al. describes the context layer as a one step time delay as it copies and
remembers the prior activations of the hidden units [51]. The hidden units compute their
value from weighted sum of inputs and context inputs.

Figure 2.6: Structure of the Elman recurrent neural network.

2.4.4.2 Jordan Recurrent Network

Both the Elman and Jordan RNN contain a context layer but contrary to Elman, the Jordan’s
context layer receives input from the output layer then feeds it to the hidden layer as an
input (as in Figure 2.7).

Figure 2.7: Structure of the Jordan recurrent neural network.
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2.4.4.3 FIR and IIR Neural Networks

The Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) neural network
architectures, proposed by Back and Tsoi [52], derive their names from similar concepts in
digital filter theory. The architecture involves either a time-delayed feedforward sequence
of inputs (FIR) or time delayed feedforward and recurrent connections (IIR). These archi-
tectures, as shown in Figure 2.8 and 2.9, were successfully used in time series modelling
applications. However, they are not considered in this study since in the case of FIR, there
is similarity with the architecture of a feedforward neural network with windowed input.
The case of IIR can be viewed as a version of an architecture that combines the Elman and
Jordan type feedback connections.

Figure 2.8: Example of a Finite Impulse Response neural network structure from [6].

Figure 2.9: Example of a Infinite Impulse Responset neural network structure from [6].

2.4.4.4 Long Short Term Memory (LSTM) Neural Network

The LSTM RNN architecture differs from the other ANNs in that it has a new structure
called a memory cell. The memory cell is composed of four elements namely, an input gate,
self-recurrent connection neuron, a forget gate and an output gate [53]. These elements
enable the LSTMs to remember information for a longer period.

The forget gate is responsible for deciding which information the cell state should forget
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whereas the input gate is responsible for deciding the values which should get updated in
the cell [54]. The input gate is responsible for the flow of information into the memory cell,
whereas the output gate is responsible for the flow of information into the whole network [55].

Figure 2.10: Structure of the long short term memory (LSTM) recurrent neural network
from [7].

Given an input xt and output yt for t=1,2,..,T, the LSTM uses the following equations
to calculate the mapping between the input and the output [55]:

it = f(Wixxt +Wimmt−1 +Wicct−1 + bi) (2.7)

Lt = f(WLxxt +WLmmt−1 +WLcct−1 + bL) (2.8)

ct = Lt � ct−1 + it � g(Wcxxt +Wcmmt−1 + bc) (2.9)

ot = f(Woxxt +Wommt−1 +Wocct + bo) (2.10)

mt = ot � h(ct) (2.11)

yt = φ(Wymmt + by) (2.12)

Wix is the weight matrix from input gate to the input, Wic is the weight matrix from the
input gate to the cell, WLc is the weight matrix from the forget gate to the cell and Woc is the
weight matrix from the output gate to the cell and � is the element-wise product, whereas
i, L, o and c are the input gate, forget gate, output gate and cell activations of vector size
m, with b representing the bias term. Lastly g, h and φ, representing cell input, cell output
and network output activation functions, respectively.

2.4.5 Deep Neural Networks

The connection structure of the neural networks can be classified into deep and shallow, de-
pending on the number of hidden layers implemented. Bengio et al. has shown that DNNs

17



have shown to have a good performance in pattern recognition [53]. The architecture of the
DNNs has proved to be more effective and capable of learning more complex models than
shallow neural networks architectures [56,57].

The deep neural network structure was developed by Hinton, Bengio and LeCun in 2005.
They contain several hidden layers (as shown in Figure 2.11) compared to a shallow neural
network which usually has only one hidden layer. DNNs have been very successfully used re-
cently to solve many problems in image recognition, speech recognition and natural language
processing [58].

Figure 2.11: Architecture of a DNN with three hidden layers.

2.4.5.1 Convolutional Neural Networks

Convolutional neural network (CNN) is another form of ANN which is mostly applied to solve
difficult image-based pattern recognition problems [8]. Application of this ANN architecture
has shown a great success in computer vision and machine learning problems [59]. The
difference between ordinary ANNs and CNNs is that the neurons in the CNN layers are
arranged in a three dimensional pattern of height, width and depth. Unlike the normal
ANN whose layers are called input, hidden and output layer, the CNN layers are called
convolutional, pooling and fully-connected layers [8].

Usually, a CNN is composed of two elements, namely, the feature extractor and fully con-
nected multilayer perceptron which is mainly focused on learning the features and classifying
the learned features [60].

2.5 Learning Paradigm

Neural networks solve problems by being trained to model a set of examples [42] using a
specified learning algorithm. There are two main categories of learning in ANNs:

Supervised learning: During this process a desired or target (correct) output is known.
The network is propagated to produce its own output which is then compared to
the correct answer until the difference between the two is equal to or less than a
predetermined threshold. If this fails then the internal state of the network, the weights
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Figure 2.12: Structure of the convolutional neural network from [8].

are adjusted to ensure that network approximates the correct answer. The process is
repeated until the difference is less than the threshold or the number of learning epochs
run out. This process is also called learning with a teacher [61].

Unsupervised learning: In this case the network is only presented with input data and
no target output provided. The network is expected to learn from itself by means of
using similarities among the input data and assigning them to the same output unit,
i.e., clustering, during the adjustment of the weights.

Learning in ANNs is achieved by implementing different learning algorithms. The back-
propagation algorithm is the most commonly used one. This algorithm minimizes the error
function during the training process by constantly adjusting the connection weights between
the layers as follows:

Given, is a set of of training examples D=(xi, ti), i = 1,2,...,N where xi=[xi1, ..., xid]
T , ∈

Rd is the the input vector and ti=[ti1, ..., tip]
T ∈ Rp is the the target output. The algorithm

proceeds by minimizing the partial derivative of the error (cost) function E with respect
to the network weights, i.e., ∂E/∂w [62]. Equation (2.13) shows how the error function is
calculated.

E(w) =
1

2

N∑
i

(ti − yi)2 (2.13)

where ti is the target or desired output, yi is the actual output over a set of N training
samples.

2.6 Modular Neural Networks

Modular neural networks is combination of several ANN modules. Each of these modules
perform a sub-task of the main problem [25]. This approach is based on a divide-and-conquer
principle. Figure 2.13 shows the general structure of a modular neural network. In Auda
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et al. three steps are outlined which can be considered when designing modular neural
networks [25]:

1. Task decomposition
In this step the problem is divided into manageable subtasks which will be carried out
by each module forming part of the modular neural network [25].

2. Training modules
During the learning process the modules can be aligned or arranged in different ways,
i.e. sequentially or in parallel. The connection arrangement of MNNs can be classified
into two classes, namely tightly coupled models and loosely coupled models.

3. Multi module decision making
Once the individual modules have made decisions, i.e. provided outputs, the decisions
get combined to form the general solution in a multi-module-decision-making neural
network.

Figure 2.13: General structure of modular neural networks from [9].

2.7 Ensembles of Neural Networks

Both modular, and ensembles of neural networks can be viewed as cases of multi-neural
network systems and both of these structures have been applied to improve performance
results of individual neural networks [63], [64], [65], [66], [67]. Ensembles of neural networks
have been successfully used in face recognition, optical character recognition, scientific image
analysis and medical diagnosis [68]. The technique originates from the work done by Hansen
and Salamon on ensemble of neural networks to improve the generalization ability [64]. This
concept is believed to be useful only when the outputs of the individual models are not
identical [69].

One of the crucial aspects of the design of ensembles of neural networks is how the in-
puts from individual neural networks should be combined to give the best estimate. In the
basic case, a simplistic statistical aggregation such as averaging or consensual approaches
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e.g., elimination of ‘outlier’ results can be applied. Such approaches are collectively termed
loosely coupled ensembles. A different approach would be to apply a form of training, such
as neural network training, in the ensembling method. In this case, the outputs of the indi-
vidual networks can be regarded as inputs to the ensemble network – thus, a neural network
trained on inputs from previously trained neural networks. The dilemma here, is that there
are no predefined target outputs for the combined neural inputs, and this is the case in this
study. Forms of unsupervised learning could be applied but this approach is not within the
scope of this study.

The approach in this study is different since each individual neural network in the ensemble
is trained on one of six distinct and different data sets, although on the same feature variable
(namely predicted MaxTemp). Since there are no predetermined labels (target outputs for
the combined climate change outputs, the performance accuracy of the ensembles are eval-
uated against the average of the six climate change model outputs. This average may not
be an accurate measure since each climate change model generates outputs based on differ-
ent assumptions, each having unknown errors. As such, the performance of the ensembles
compared with the average of the six combined climate change models is not necessarily an
indicator of the performance of the ensemble. Rather, the ensembling method applied in
this study should be regarded as a consensual technique, i.e., the objective is to obtain a
consensual output for the combined climate change models.

In ensemble neural networks, each neural network module is trained on the entire task
and the outputs of the modules are combined to improve their individual performance [20].
PáDraig et al. indicated that the application of ensemble techniques to ANNs improves
generalization performance [70]. Figure 2.14 shows the general structure of the ensemble of
neural networks. The modules operate on the principle of “more heads are better than one”.
Sharkey et al. has indicated that the combined output of these modules performs better
than the individually trained neural networks. This is also shown by Bates et al. where it
was concluded that combined forecasts outperforms an individual forecast [71]. Ensembles
are developed in three steps:

1. Training of the ANNs modules

2. Selection of the best ANNs modules

3. Integration of the modules

Ensemble techniques have been successfully used for time series prediction [72] and can be
divided into two types namely tightly coupled and loosely coupled ensembles. Some techniques
are shown in Figure 2.15 for each type.

Perrone and Cooper [63] approach the “optimal combination of ensembles” by considering
various statistical resampling techniques of bootstrapping, jackknifing and cross validation
for training individual neural networks in the ensemble. These techniques are useful in the
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Figure 2.14: Structure of ensemble of neural networks from [9].

case where a small or limited training data is available. A Basic Ensemble Method (BEM)
is proposed in which a naive estimator fN(x) is defined such that the mean square error is
minimized:

MSE[fi] = E[(ym − fi(xm))2]

and

fn(x) = arg min{MSE[fi]}

where ym are the target labels, fi(xm) are the neural network estimate output for the cor-
responding inputs xm over the set of m training instances, for some error function E. The
average mean square error over n trained neural networks would thus be:

MSE =
1

N

N∑
i=1

E(f(x)− f)i(x)

A Generalized Ensemble Method (GEM), fG, is proposed where

fG = f(x) +
N∑
i=1

αiεi(x)

where αi are real and
∑
αi = 1, and εi = f(x)− fi(x). From this, it can be shown that:

MSE[fG] =

[∑
ij

C−1
ij

]−1
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Figure 2.15: Examples of ensemble methods from [10].

and Cij is the symmetric correlation matrix E[εi(x)εj(x)]. The difficulty with this error
indicator is that if there are linearly dependent rows and columns in C, the inversion process
will be very unstable and the estimate of C−1 will be unreliable. Thus, for the case where
outputs of the individual neural networks are similar, this approach will not be very useful.

2.8 Tightly Coupled Ensembles

In tightly coupled ensembles, modules are trained simultaneously on the same training data-
set and each module learns different features of the data thus, facilitating learning on the
whole dataset [73]. Examples of these ensembles are mixture of experts, negative correlation
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and dynamically averaged networks. Like modular networks, these methods implement the
divide-and-conquer concept where each module solve a sub-problem of the main problem
and the solutions get integrated into one final solution.

2.8.1 Mixture of Experts

A mixture of experts model is composed of a number of “expert” artificial neural networks
modules and a gating neural network. Figure 2.16 shows the model of mixture of experts.
These networks are trained together typically using the backpropagation algorithm with the
gating neural network playing a role of judge by evaluating the performance of the modules.
The model learns the parameters of both the experts and the gating networks. The model
is primarily composed of i expert networks where each expert produces an output vector, yi,
given an input vector x as given in equation (2.14).

Figure 2.16: Mixture of Experts model from [11].

yi = f(Wix) (2.14)

where Wi is the weight matrix and f (.) is the activation function. The gating network
uses the same input, x, as the experts and produces a softmax function for each ith gating
network [10] as in equation (2.15):

g(x, vi) =
evi

T x

N∑
k=1

evkT x

(2.15)

The overall output is given by

y =
N∑
k=1

g(x, vi)yi (2.16)

where vi is the ith column of the matrix v in the gating network.
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2.8.2 Dynamically Averaged Networks

Instead of choosing static weights derived from the neural network performance on certain in-
put, this method allows the weight adjustments to be proportional to the certainties assigned
to the respective network outputs. In contrast to static averaged networks which doesn’t
take into consideration the fact that some models could be more accurate than others this
method ensures that the models’ weights are adjusted in such a way that they achieve a
more probable final predicted output.

2.8.3 Negative Correlation Learning

Liu et al. describes the objective of Negative Correlation Learning to be the introduction of
a correlation penalty term function, pi to the error function of each module [73] as shown in
equation (2.17).

Ei =
1

N

N∑
i=1

[
1

2
(Fi(n))− y(n))2 + λpi(n)] (2.17)

where N is the number of training patterns, Ei is the error function of the ith network at the
nth training pattern, y(n) is the desired output of the nth training pattern and Fi(n) is the
ith network output on the nth training pattern.

2.9 Loosely Coupled Ensembles

In loosely coupled models, the individual modules are trained separately with no interaction
during the learning process. Several methods of this type of model can be identified namely,
Linear Combination, Elimination of Outliers, Median, Voting, Minimum, Average, Max-
imum, Min-Max Average, Product and Sum. The modules’ weighted outputs are combined
for the final output.

2.9.1 Soft Competition

Soft competition, also known as Voting, entails the modules competing by working together
on the same task and in the end, unlike the winner-takes-all concept, having the winner
playing a more important role than the other losing modules. For this method the predicted
outputs of each model are assigned randomly generalized probabilities according to their
rankings of their performances:

p = p1, p2, ..., pn (2.18)

where p is the randomized probabilities for the n models arranged in increasing order. The
model outputs are combined linearly to compute:

µvot = y1 × pn + y2 × pn−1 + y3 × pn−2 + ...+ yn × p1 (2.19)
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where yi is arranged in decreasing order and µvot is the voting output of the models. The
final solution is:

y = f(µvot) (2.20)

2.9.2 Elimination of Outliers

The Elimination of Outliers method eliminates the maximum and minimum outputs of the
models and only implements the remaining outputs for the deciding neural network.

2.9.3 Linear Combination

In the case of Linear Combination, the errors of all the models are summed and used for
calculating the linear combination to use as an input into the ensemble model:

Etot =
n∑
i=1

ei (2.21)

µlin =
1

Etot

n∑
i=1

eiyi (2.22)

Where Etot is the sum of the errors of the models and yi is the output of each model for
i = 1, .., n where n is the number of models and µlin is the linear combination of the models.
And the final solution is achieved by, Final solution is:

y = f(µlin) (2.23)

2.9.4 Sum

The outputs of all the models are summed together and used as an input into the ensemble
model:

µsum =
n∑
i=1

yi (2.24)

where yi is the ith models outputs and µsum is the sum of the model outputs. Then the final
solution is achieved by:

y = f(µsum) (2.25)

2.9.5 Maximum

In this method only the maximum output of all the models get used as an input into the
ensemble model:

µmax = maximum(y1, y2, ..., yn) (2.26)

Then the final solution is achieved by:

y = f(µmax) (2.27)
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2.9.6 Minimum

In this method only the minimum output of all the models get used as an input into the
ensemble model:

µmin = minimum(y1, y2, ..., yn) (2.28)

Then the final solution is achieved by:

y = f(µmin) (2.29)

2.9.7 Min-Max Average

This method is the combination of Minimum and Maximum. The minimum and maximum
of the six models are averaged and used as an input into the ensemble model:

µMinMaxAve = (µmin + µmax)/2 (2.30)

Then the final solution is achieved by:

y = f(µMinMaxAve) (2.31)

2.9.8 Median

In this method only the median output of all the models gets used as an input into the
ensemble model:

µmed = median(y1, y2, ..., yn) (2.32)

Then the final solution is achieved by:

y = f(µmed) (2.33)

2.9.9 Average

The outputs of all the models are averaged and the average is used as an input into the
ensemble model:

µave =
1

n

n∑
i=1

yi (2.34)

where µave is the average of the model outputs. Then the final solution is achieved by:

y = f(µave) (2.35)

2.9.10 Product

The geometric mean of all the models outputs is computed using equation (2.36).

µpro =

(
n∏
i=1

yi

) 1
n

= n
√
y1y2 · · · yn (2.36)

where µpro is the geometric mean of the model outputs. Then the final solution is achieved
by:

y = f(µpro) (2.37)
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2.9.11 Small Deviation Mean

The outputs of the models are compared against each to find their difference and form the
following matrix:

A =


|y1 − y1| |y1 − y2| ... |y1 − y6|
|y2 − y1| |y2 − y2| ... |y2 − y6|

: :
|y6 − y1| |y6 − y2| ... |y6 − y6|


The rows are summed together using the following formula:

Sj =
6∑
i=1

|yj − yi| (2.38)

Three smallest sums are chosen, i.e. S2, S3 and S5. So in this case, only the outputs of
models y2, y3 and y5 are considered. Then the average of these models is used as an input
to achieve the final solution.

2.9.12 Small Deviation Median

The outputs of the models are compared against each to find their difference and form the
following matrix:

A =


|y1 − y1| |y1 − y2| ... |y1 − y6|
|y2 − y1| |y2 − y2| ... |y2 − y6|

: :
|y6 − y1| |y6 − y2| ... |y6 − y6|


The rows are summed together using the following formula:

Sj =
6∑
i=1

|yj − yi| (2.39)

Three smallest sums are chosen, i.e. S2, S3 and S5. So in this case, only the outputs of
models y2, y3 and y5 are considered. Then the median of these models is used as an input
to achieve the final solution.

2.9.13 Bucket of Models

In this method the best performing models are bucketed together while trained and tested
one at the time for a specified k constant times. The model that obtains the highest average
score is selected as the best model for the final solution.

During the design phase of the neural network the most important factors to be taken
into consideration are the data preprocessing method, the choice of training algorithm, and
the structure of the neural network in terms of the number of input neurons, hidden layers,
and outputs as well as the activation or transfer functions [74].
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Chapter 3

Research Methodology

Summary

This chapter presents the methodology and the process followed in conducting this research.
The methods of data collection, data preprocessing and individual artificial neural networks
configuration and training are presented, together with the construction of neural networks
ensembles and the generation of experimental results for all the ANNs and ensembles con-
sidered.

3.1 Introduction

The main aims of the research process were two-phased: firstly, to identify the individual
ANNs that yielded the best performance, i.e, whose outputs with the least mean squared
error when compared with the actual value of a given climate change prediction model.
Secondly, to combine these as modules to determine the ensemble method that gave the best
performance – again, in terms of mean squared error. The method followed comprises the
following steps. These are described in further subsections:

1. Variable selection: The MaxTemp variable selected for study

2. Data collection: Climate change data generated from six prediction models

3. Data preprocessing: MaxTemp values extracted and used to construct training, testing
and validation sets

4. Individual neural network training: configure architecture and topologies and train 20
ANNs for each

5. Ensemble neural network training: Select best performing networks and construct
ensembles

6. Evaluation criteria: Use mean squared error (MSE) averaged over the number of ANNs
trained and select best performing ensembles
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These steps form the methodology followed in this research, and are described in more
detail.

3.2 Variable Selection

The data sets provided consisted of the variables Maximum Temperature (MaxTemp), Min-
imum Temperature, Rainfall, Humidity, Latitude and Longitude. The selection of the
MaxTemp variable was based on the premise that this variable is regarded to be the most
relevant or influential in terms of climate change. The mean of the two variables, MaxTemp
and Minimum Temperature have been considered. However, this was ignored because the
mean of these two variables causes some misrepresentation of information (mean of max-
imum and minimum is not a good indicator of the actual mean). The option of using the
median of the two variables was also excluded as the median of two readings is as good as
the mean.

Literature indicates that temperature is the most studied weather variable in terms of fore-
casting [75]. Variables like humidity are not given much attention, although this does not
make these variables less important. Furthermore, the experimental process would be similar
for any other variable. It was not intended to study the effect of combinations of variables
although this, as extension of this work, could provide further insight into the selection of
salient variables for ANN ensembles for climate change.

3.3 Data Collection

The datasets used for this study were used in an European Union funded research project
termed CLUVA (Climate Change and Urban Vulnerability in Africa). The original datasets
produced by the six climate change models covered a wide range of atmospheric and weather
variables. These datasets were utilised in the Fourth Assessment Report of the Intergovern-
mental Panel on Climate Change (IPCC AR4) [76] as well as CLUVA [40]. The objective of
CLUVA was to come up with ways to reduce and manage the risks associated with climate
change in the urban areas of Africa [40].

The datasets covered the time period from 1961 to 2050 at six hourly time steps. Geo-
spatially, values are generated for each point at a 50 km intervals on a conformal grid that
covered the entire earth (see Figure 3.1). These six datasets were approximately 80 TB
in storage volume. The portion of the data covering the geographic areas of study (Addis
Ababa) was extracted from these datasets and were then downscaled to 8 km intervals and
then to 1 km intervals. Five environmental variables were then extracted from these data-
sets. These variables are temperature, humility, rainfall, longitude and latitude.

The maximum temperature was selected to train different artificial neural networks con-
figurations on the six different datasets. The reason why the MaxTemp variable was used, is
because the change in this variable is of greater interest to climate change researchers. The
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maximum temperature gives an indication of the extent to which climate change will impact
global warming, for example, sea level rise and agriculture.

Figure 3.1: CCAM grid with 200km horizontal resolution from [12].

3.4 Data Preprocessing

Amongst the measured atmospheric variables, the maximum temperature (MaxTemp) value
was chosen for study. The data was provided in a NetCDF (Network Common Data Form)
format. It was then extracted into text file using a bash script. To improve predictive qual-
ity, the preprocessing included trend reduction by averaging six hourly raw data points.

For the period 1961 to 2050, approximately 129940 (i.e., (2050-1961)*365*4) data points for
the MaxTemp variable were available. These points are too many for training and were then
aggregated to provide 365 quarterly values for each location. While this aggregation does not
completely eliminate seasonal variability, they do reduce daily and monthly variations. The
raw data is preprocessed prior being fed into the neural network to improve predictive quality
as well as removing trends which might hamper performance. There are quite a few data
preprocessing techniques to choose from for time series analysis such as Moving Average,
principal component analysis, singular spectrum analysis, Logarithmic Absolute Difference,
Box-Jenkins seasonal ARIMA, Autocorrelation and Periodic Autoregressive models. The
Moving Average is essentially the succession of averages, whereas Autocorrelation is the cor-
relation between values of the same variable.

The min-max data preprocessing method was implemented on the quarterly data because of
its ability to provide linear transformation on the original range of data [77]. This method
calculates the difference between each data point and the minimum point in the set, then
divide the difference by the difference between the maximum and minimum data points.
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The data was scaled to within −0.9 to 0.9 range using the formula in equation (3.1) as the
output of the sigmoid function approaches 1 for for all inputs greater than or equal to 1 and
approaches 0 when the input is less than or equal -1.

z = (
Ti −min
max−min

) ∗ 1.8− 0.9 (3.1)

where Ti is the measured temperature data point i, min and max is the minimum and max-
imum temperature readings, respectively.

The resulting time series were then partitioned into nine datasets of 180 data points each.
Each comprised training, validation and testing sets of 108, 27 and 45 data values, respect-
ively, which is 60%, 15% and 25% of each partitioned set. The following dataset is composed
by skipping the first 20 data points in the current training set as shown in Table 3.1. These
sets were constructed for each of the six climate change model outputs.

Although the number of instances seem minimal, this was influenced by the number used
when partitioning the data into nine data sets. There is also a lot of training to be done per
architecture. For each architecture there are about 1080 ANN training simulations, given
that there are six models, 20 different configurations and nine instances (data partitions) for
each configuration. Overall, the number of training simulations done, is 7560, i.e. 1080*7
(architectures).

Set No. Training Validation Testing
1 1 – 108 109 – 135 136 – 180
2 21 – 128 129 – 155 156 – 200
...

...
...

...
9 161 – 269 270 – 296 297 – 341

Table 3.1: Ranges of the training, validation and testing data points used for each of the
two locations.

3.5 Artificial Neural Networks Training

The ANN architectures studied were FFNN, ERNN, JRNN, PRNN, LSTM, CasNN and
CNN. For training, a moving window of seven contiguous values was used as input vec-
tor. The target output was the following (8th) quarterly MaxTemp value in the time series.
Sigmoid activation functions were used at all hidden layers and a linear activation at the
output layer for both the shallow and deep architectures. The Backpropagation algorithm
was applied throughout.

The purpose of this study was not to develop a new code for neural network training.
Several application program interfaces (APIs) and libraries were used as there is currently
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none which supports all the architectures. These APIs enable us to configure, train neural
networks as well as evaluate their performance. The python library, pyBrain [78] was used
initially to configure, train and test FFNNs with time window, partial RNNs and Cascaded
Neural Networks. This API is easy to implement and sufficed for training simple architec-
tures. In addition, this library does not have the functionality to configure ERNNs, JRNNs,
CNNs and LSTMs.

Other APIs considered are listed below. These APIs were more suitable for specific ar-
chitectures as described below. It is noted that the use of different APIs could result in
slightly different results for a given architecture. However, the purpose of this work did not
focus on developing programming code for training or evaluating different APIs.

• Keras and Tensorflow Keras, [79] a python API leveraging the TensorFlow libraries [80]
were used to configure the convolutional and LSTM neural networks, since the pyBrain
API did not have built-in functions for these architectures. Five convolution kernels
of four units in length were implemented. Other variables such as maxpooling and
dropout were fixed at 3 and 0.2, respectively. The sigmoid activation function was
implemented.

• The PyNeurGen [81] libraries have built-in functions for Elman and Jordan archi-
tectures and was hence selected for training these architectures. Sigmoidal activated
hidden layers and linear activated output layers were used in this case.

Training was stopped when 500 epochs was reached. This threshold was selected following
results of initial training experiments. Nine instances were trained for each type of ANN.
Although this number of instances was below a statistically significant value, the number of
configurations and results for each configuration provided sufficiently reliable results.

The number of topologies was chosen based on the initial experiments with various hid-
den layer dimensions and found that the range of 5 to 11 for single layers produced the most
promising results, i.e., smaller dimensions (smaller than 5) and larger dimensions (greater
than 10) did not yield good results. Similarly, for two hidden layers, the ranges outside 5-5
to 11-6 did not produce significantly improved results, where the first numbers, 5 and 11
represent the number of nodes in the first hidden layer whereas the second numbers, 5 and
6 represent the number of nodes in the second hidden layer.

The connection topologies listed in Table 3.2 were configured for each architecture. The
configurations vary by the number of hidden layers and the number of nodes in each hidden
layer. For example, in the case of the 7-5-1 configuration, 7 represents the input layer di-
mension, 5 represents the hidden layer dimension and 1 represents the single output neuron.
In the instance of 7-8-5-1, two hidden layers of dimension 8 and 5 were implemented. The
input dimension of 7 was decided based on trial and error experiments of input sizes of 5 to
11. Based on the performance outcome of these different input sizes 7 was chosen. Networks
for each of these topologies were trained on the nine datasets. The input dimension and
output node were kept constant throughout all training simulations. The data set sizes in
Table 3.1 were used since they provided the best results during initial experiments.
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ANN Models Topology
1 7-5-1
2 7-6-1
3 7-7-1
4 7-8-1
5 7-9-1
6 7-10-1
7 7-11-1
8 7-5-5-1
9 7-6-5-1
10 7-7-5-1
11 7-8-5-1
12 7-9-5-1
13 7-10-5-1
14 7-11-5-1
15 7-6-6-1
16 7-7-6-1
17 7-8-6-1
18 7-9-6-1
19 7-10-6-1
20 7-11-6-1

Table 3.2: Artificial neural networks topologies used in training simulations.

3.5.1 Ensemble Configurations

The performance of individually trained neural networks was determined by the Mean
Squared Error, MSE, on the test set as in equation (3.2)

MSE =
1

n

n∑
i=1

(t− y)2 (3.2)

where n = 45, is the test set size; t is the target output and y, the actual neural network
output).

For each architecture, the trained ANNs which produced the least predictive error based
on mean squared error (MSE) were then combined with the intention of improving the over-
all performance of the combined trained ANNs models outputs. The ensemble methods
described in Sections 2.8 and 2.9 (page 23 and 25) were implemented i.e, Bucket of Models,
Negative Correlation, Linear Combination, Voting, Elimination of Outliers, Sum, Maximum,
Minimum, Min-Max Average, Median, Product, Smallest Deviation Average, Smallest De-
viation Median and average.

For the ensembles, the same python libraries were used as the ones used for individual
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ANN training. For instance, Keras was used for all the ensembles of LSTMs and of CNNs.
The same applies to the other architectures.

3.6 Results and Performance

Nine ANN instances were trained for each of the 20 topologies (table 3.2), for each of the
six data sets (models) and for each ANN architecture. The MSE was evaluated for each
individual trained ANN based on the test set.

This MSE was averaged over the nine instances (Figure 3.2). Thus, the average MSE for
each dataset was used as a performance indicator for a given topology and a given ANN ar-
chitecture. Furthermore, as has been stated in section 3.4 that the data was scaled to within

Figure 3.2: The mean squared error for each artificial neural network architecture.

-0.9 to 0.9 prior training. The absolute error, E between the target, t and the actual neural
network output, y was calculated, which was then converted into degree Kelvin, EK to give
a realistic indication of the performance of the ANN. This EK was compared with different
thresholds ranging from 0.5 to 1.5 Kelvin incremented by 0.1 on the test set results. The
EK less than the threshold at the specific test point was given the value of 1 which indicates
that the ANN output differed by less than the threshold value from the actual output as in
equation 3.3. Otherwise the value of zero was given. The number of times the configuration
got it right were calculated and divided by the number of test set data points.

P (y) =

{
1 if |tK − yK |< τ,

0 if |tK − yK |> τ,
(3.3)

where P (y) is the performance accuracy and τ is the threshold.
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Chapter 4

Results

Summary

Presented in this Chapter, are the results for the configured ANN training simulations and the
ensembles implemented by the methodology outlined in Chapter 3. Shown first, are results
for individual ANNs in terms of performance accuracy, followed by results for ensembles in
Section 4.3.

4.1 Introduction

Summarized test set results for trained individual FFNN, followed by those for the ERNN,
JRNN, PRNN, CasNN, CNN and LSTM architectures are presented in this Chapter. These
results are further discussed in Chapter 5. The performance accuracy is based on the Mean
Squared Error (MSE), i.e., indicating the correctly classified ANN output compared with
actual values, is used as a performance criterion.

Climate change researchers would be interested in the performance in terms of degrees Kelvin
deviation from actual results. For this reason, the performance accuracy is scaled to the cor-
responding Kelvin temperatures with error deviations ranging from 0.5 to 1.5 Kelvin in
increments of 0.1 Kelvin in order to give a practical indication of performance. Detailed
and complete results of all the models are presented in tabular and graphical forms in Ap-
pendices A to G. Given further, are performance results for various ensemble methods used
to combine results of the best performing individual architectures for each climate change
model. All the results given, are averaged over nine training simulations for each individual
ANN topology.

4.2 Individual Neural Networks

The performance results of different individually trained ANNs are presented in this section.
The detailed results for the first ANN architecture the feedforward neural network with win-
dowed input are given first. To improve readability, summarized results are given for other
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ANN architectures with the detailed results presented in appendices. These results are for
the performance accuracy of the trained ANNs in terms of Kelvin threshold criteria. This
criterion measures the percentage of correctly predicted ANN outputs after these outputs
have been scaled to the corresponding degree in Kelvin. The scaled Kelvin output yk is
correctly classified if |yk − tk|< τk, where tk is the target output and τk is some performance
threshold in degrees Kelvin. Performance accuracy testing was evaluated for values of τk of
0.5 to 1.5 degrees Kelvin to give an indication of the usefulness of the trained ANN.

Results for τK values of 0.6 and 1.2 Kelvin were chosen to show performance at or near
the limits of the range 0.5 to 1.5 Kelvin. During the evaluation of results it was noted
that the smallest threshold that provided significant performance was 1.2 Kelvin. Anything
less than this threshold showed a poor performance or too much variability in the perform-
ance results. For climate change researchers, a smaller threshold (0.6) would be preferable.
However results at this threshold were relatively poor (below 50% in general) and results
for the larger value (1.2) show whether the performance of the trained networks would be
satisfactory at that threshold.

4.2.1 Feedforward Neural Networks

Performance results using the 1.2 Kelvin threshold (i.e., for outputs deviating by less than
1.2 Kelvin) are given in Table 4.1 for various FFNN configurations and for each climate
change model. This threshold was chosen because it was the least that produced signific-
ant results within the experimented range. The performance results for the CSIRO climate
change model turned out to be significantly different from those of the other models, as
shown in Figures 4.1, and in the appendices A.1, C.1, D.1 and E.1. Given these results it
was suspected that the data for this model was erroneous and this was confirmed in con-
sultations with the research group who generated the results (CSIR Natural Resources and
Environment unit) [82].

In general, the performance accuracy of the FFNN models decreased when the number of
hidden layers was increased from one to two. The best results for each climate change model
are shown in bold in Table 4.1 with the results for the UKMO model giving a performance
accuracy of 73% when using the 7-10-1 configuration. On average, the 7-5-1 and 7-11-1 con-
figurations performed better than the other topologies across all models. The corresponding
MSE results are shown in Table 4.2. From both Tables 4.1 and 4.2 it can be clearly seen
that the results for the CSIRO model are entirely different from those of the other climate
change models. This same situation is evident for other ANN architectures.

4.2.2 Elman Recurrent Neural Networks

Table 4.3 shows the average performance and the configurations of ERNNs that produced
the best results in terms of the Kelvin threshold of 0.6 and 1.2. As for the FFNN results,
the accuracy of these models decreases when the number of hidden layers is increased from
one to two. Appendix B contains detailed results for this ANN model. The simulations for
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Topology CSIRO GFDLcm2.0 GFDLcm2.1 MIROC MPI UKMO Average

[7-5-1] 34% 67% 60% 69% 67% 70% 61%
[7-6-1] 34% 68% 59% 68% 61% 67% 60%
[7-7-1] 31% 68% 59% 70% 61% 68% 60%
[7-8-1] 32% 68% 63% 71% 61% 68% 60%
[7-9-1] 33% 68% 58% 69% 63% 69% 60%

[7-10-1] 31% 66% 50% 71% 60% 73% 58%
[7-11-1] 32% 70% 58% 71% 64% 69% 61%
[7-5-5-1] 32% 52% 44% 56% 51% 57% 49%
[7-6-5-1] 33% 54% 44% 56% 51% 58% 49%
[7-7-5-1] 33% 53% 47% 56% 53% 57% 50%
[7-8-5-1] 32% 51% 46% 57% 65% 56% 51%
[7-9-5-1] 33% 52% 45% 56% 52% 63% 50%
[7-10-5-1] 32% 52% 43% 56% 51% 57% 49%
[7-11-5-1] 32% 52% 46% 57% 51% 57% 49%
[7-6-6-1] 31% 51% 44% 56% 52% 56% 48%
[7-7-6-1] 33% 52% 44% 57% 53% 57% 49%
[7-8-6-1] 34% 57% 46% 57% 51% 58% 51%
[7-9-6-1] 32% 54% 46% 56% 52% 59% 50%
[7-10-6-1] 31% 51% 49% 58% 51% 57% 49%
[7-11-6-1] 33% 54% 45% 57% 52% 56% 50%

Table 4.1: FFNN performance accuracy results for each of the six climate change models
using the 1.2 Kelvin threshold as performance criterion. The best performing configurations
and best results are shown in bold font.

the MIROC and UKMO climate change models produced the best accuracy of 75% with the
7-9-1 and 7-11-1 configurations, respectively. Overall the 7-9-1 configuration produced the
best performance of 64% for all climate change models.

4.2.3 Jordan Recurrent Neural Networks

The best average performance accuracy and best configurations of JRNNs are shown in
Table 4.4. The results for this architecture was similar to the results of the FFNN, and
the accuracy of these models also decreases when the number of hidden layers is increased
from one to two. Detailed results for this ANN architecture are given in Appendix C. The
simulation results for the GFDLcm2.0 produced the best accuracy of 78% with the 7-9-1
configuration. On average, the 7-11-1 configuration yielded the best performance of 65%
across all six climate change models.
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Topology CSIRO GFDLcm2.0 GFDLcm2.1 MIROC MPI UKMO

[7-5-1] 4.288 1.257 1.841 1.268 1.442 1.226
[7-6-1] 4.324 1.220 1.828 1.263 1.734 1.278
[7-7-1] 5.724 1.214 1.873 1.205 1.729 1.234
[7-8-1] 5.558 1.217 1.778 1.169 1.708 1.236
[7-9-1 4.963 1.201 1.901 1.273 1.726 1.225

[7-10-1] 5.850 1.262 2.267 1.108 1.714 1.235
[7-11-1] 4.262 1.123 1.922 1.171 1.670 1.205
[7-5-5-1] 4.961 1.999 2.661 1.638 2.307 1.696
[7-6-5-1] 5.015 1.960 2.660 1.705 2.295 1.655
[7-7-5-1] 4.444 1.921 2.585 1.750 2.248 1.685
[7-8-5-1] 4.531 1.928 2.585 1.738 1.735 1.675
[7-9-5-1] 4.570 2.014 2.629 1.786 2.297 1.468
[7-10-5-1] 4.626 1.931 2.621 1.713 2.361 1.696
[7-11-5-1] 5.235 1.953 2.695 1.719 2.238 1.718
[7-6-6-1] 6.039 1.990 2.670 1.732 2.263 1.688
[7-7-6-1] 5.323 1.953 2.640 1.716 2.252 1.660
[7-8-6-1] 4.564 1.763 2.579 1.716 2.338 1.671
[7-9-6-1] 4.693 1.845 2.626 1.729 2.248 1.642
[7-10-6-1] 5.278 1.983 2.504 1.697 2.248 1.682
[7-11-6-1] 5.586 1.852 2.560 1.623 2.362 1.723

Table 4.2: Mean squared error for feedforward neural networks for the six climate change
models.

CC Model CSIRO GFDLcm2.0 GFDLcm2.1 MIROC MPI UKMO Mean

Topology 7-7-1 7-10-1 7-9-1 7-9-1 7-9-1 7-11-1 7-9-1
1.2 Threshold 40% 73% 64% 75% 67% 75% 64%
0.6 Threshold 25% 39% 34% 38% 39% 39% 36%

Table 4.3: Elman recurrent neural network showing topologies that produced the best results
for each climate change model and for the 0.6 and 1.2 Kelvin thresholds.

CC Model CSIRO GFDLcm2.0 GFDLcm2.1 MIROC MPI UKMO Mean

Topology 7-6-1 7-9-1 7-8-1 7-9-1 7-9-1 7-9-1 7-11-1
1.2 Threshold 37% 78% 65% 74% 68% 76% 65%
0.6 Threshold 21% 41% 33% 41% 43% 40% 36%

Table 4.4: Performance results for Jordan recurrent networks for the six climate change
models and for the 1.2 and 0.6 Kelvin thresholds.
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Figure 4.1: Performance accuracy of the Elman recurrent neural network configurations for
the six climate change prediction models based on the 1.2 Kelvin threshold. Shown clearly,
is the difference between performance results for the CSIRO model and the other climate
change models.

4.2.4 Partial Recurrent Neural Networks

The best average performance accuracy and the configurations that yielded the best results
for PRNNs are shown in Table 4.5. There seems to be little variation difference among
FFNN, JRNN , ERNN and JRNN in terms of their performance behaviour when the number
of hidden layers is increased from one to two. Appendix D provides detailed results for this
ANN architecture. The simulation results for the UKMO model yielded the best accuracy
of 71% with the 7-9-1 configuration. On average, the 7-5-1 configuration showed the best
performance of 60% across all models.

CC Model CSIRO GFDLcm2.0 GFDLcm2.1 MIROC MPI UKMO Mean

Topology 7-6-6-1 7-6-1 7-6-1 7-9-1 7-5-1 7-9-1 7-5-1
1.2 Threshold 34% 70% 59% 70% 67% 71% 60%
0.6 Threshold 18% 34% 27% 39% 40% 38% 33%

Table 4.5: Performance results for the six models and for 1.2 and 0.6 Kelvin threshold partial
recurrent networks.
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4.2.5 Cascaded Neural Networks

The best average performance accuracy and best configurations of CasNNs are shown in
Table 4.6. In contrast to previous ANNs architectures evaluated thus far, the accuracy of
this architecture seems to increase when the number of hidden layers is increased from one
to two (Appendix E contains detailed results). Once again, the simulation results for the
UKMO model produced the best accuracy of 71% with the 7-6-6-1 configuration. Overall,
the 7-6-6-1 configuration also showed the best performance of 60% across all climate change
models.

CC Model CSIRO GFDLcm2.0 GFDLcm2.1 MIROC MPI UKMO Mean

Topology 7-11-5-1 7-6-6-1 7-11-6-1 7-10-6-1 7-10-6-1 7-6-6-1 7-6-6-1
1.2 Threshold 39% 68% 60% 70% 64% 71% 60%
0.6 Threshold 21% 35% 26% 40% 32% 38% 32%

Table 4.6: Performance results for the six models and the 1.2 and 0.6 Kelvin thresholds for
the cascaded neural networks.

4.2.6 Convolutional Neural Networks

The best average performance accuracy and the configurations for CNNs are shown in
Table 4.7. In contrast to the initial ANNs architectures, the accuracy of this ANN architec-
ture increases when the number of hidden layers is increased from one to two (Appendix F).
The simulation results for the GFDLcm2.0, MIROC and MPI models produced the best ac-
curacy of 69% with 7-11-6-1, 7-8-1, 7-6-6-1 configurations, respectively. Overall, the 7-11-6-1
configuration showed the best performance of 61% across all climate change models.

CC Model CSIRO GFDLcm2.0 GFDLcm2.1 MIROC MPI UKMO Mean

Topology 7-6-1 7-11-6-1 7-11-6-1 7-8-1 7-6-6-1 7-10-1 7-11-6-1
1.2 Threshold 39% 69% 62% 69% 69% 61% 61%
0.6 Threshold 22% 38% 33% 36% 37% 34% 31%

Table 4.7: Performance results for the six models and the 1.2 and 0.6 Kelvin thresholds for
the convolutional neural networks.

4.2.7 Long-Short Term Memory Neural Networks

Table 4.8 shows the average performance and the configurations of LSTMs that produced
the best results in terms of the Kelvin threshold of 0.6 and 1.2. In most cases the accuracy
of these models seems to increase when the number of hidden layers is increased from one
to two (Appendix G). The simulations for the MIROC and UKMO climate change models
produced the best accuracy of 72% with the 7-9-1 and 7-11-1 configurations, respectively.
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Overall the 7-9-1 configuration produced the best performance of 57% for all climate change
models.

CC Model CSIRO GFDLcm2.0 GFDLcm2.1 MIROC MPI UKMO Mean

Topology 7-9-1 7-9-6-1 7-5-5-1 7-8-5-1 7-9-1 7-9-1 7-9-1
1.2 Threshold 32% 61% 59% 72% 62% 72% 57%
0.6 Threshold 17% 37% 38% 37% 28% 47% 33%

Table 4.8: Performance results for the six models and for the 1.2 and 0.6 Kelvin thresholds
for the long-short term memory neural networks.

4.2.8 Individual Neural Networks: Best Results

The results for the best performing architectures based on percentage accuracy and best
topology structures for each architecture are summarized in Tables 4.9 and 4.10. The
results shown in Table 4.9 indicate that the GFDLcm2.0, GFDLcm2.1 and MPI models, had
the best prediction accuracy using the JRNN architecture. In general, the ERNN and JRNN
are shown to give better performance than the other architectures.

Architecture CSIRO GFDLcm2.0 GFDLcm2.1 MIROC MPI UKMO

ERNN 40% 73% 64% 75% 69% 75%
FFNN 34% 70% 63% 71% 67% 73%
JRNN 37% 78% 65% 74% 68% 76%
PRNN 34% 70% 59% 70% 67% 71%
CasNN 39% 68% 60% 70% 64% 71%
CNN 39% 69% 62% 69% 69% 61%

LSTM 32% 61% 59% 72% 62% 72%

Table 4.9: Best overall results based on the 1.2 Kelvin performance accuracy threshold for
all architectures.

4.2.9 Auto Regressive Moving Average

In addition to the different ANNs architectures configured to simulate the climate change
prediction models, the simulation of the auto regressive moving average (ARMA(1,1)) was
also considered. Tables 4.11 and 4.12 show the results of the ARMA for all the climate
change prediction models. The performance of the ARMA models when compared to that
of the ANNs architecture (see table 4.9) had a lower performance. This is supported by the
literature which indicates ANNs have a better performance than ARMA [83].
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Architecture CSIRO GFDLcm2.0 GFDLcm2.1 MIROC MPI UKMO

ERNN 7-7-1 7-10-1 7-9-1 7-9-1 7-9-1 7-11-1
FFNN 7-5-1 7-11-1 7-8-1 7-10-1 7-5-1 7-10-1
JRNN 7-6-1 7-9-1 7-8-1 7-9-1 7-9-1 7-9-1
PRNN 7-6-6-1 7-6-1 7-6-1 7-9-1 7-5-1 7-9-1
CasNN 7-11-5-1 7-6-6-1 7-11-6-1 7-10-6-1 7-10-6-1 7-6-6-1
CNN 7-6-1 7-11-6-1 7-11-6-1 7-8-1 7-6-6-1 7-10-1

LSTM 7-9-1 7-9-6-1 7-5-5-1 7-8-5-1 7-9-1 7-9-1

Table 4.10: Best performing topologies for all architectures, based on the 1.2 Kelvin threshold
criterion.

Architecture CSIRO GFDLcm2.0 GFDLcm2.1 MIROC MPI UKMO

ARMA 33% 43% 48% 51% 42% 52%

Table 4.11: ARMA results based on the 1.2 Kelvin performance accuracy threshold for all
models.

Architecture CSIRO GFDLcm2.0 GFDLcm2.1 MIROC MPI UKMO

ARMA 17% 22% 21% 27% 23% 28%

Table 4.12: ARMA results based on the 0.6 Kelvin performance accuracy threshold for all
models.

4.3 Ensembles

Outputs produced by the best performing individual ANN for a given climate change model
were combined using specific ensemble techniques. Figure 4.2 shows how this ensemble
method was applied. Based on the erroneousness of the CSIRO model stated in section
4.2.1, a decision to perform the ensembles in two parts was taken:

1. Ensembles with the model included

2. Ensembles with the model excluded

4.3.1 Ensembles with the CSIRO model included

Tables 4.13 and 4.14 show the best performing ensemble methods across all architectures for
the 1.2 and 0.6 Kelvin thresholds.

The results of ensembles of each ANN architecture are discussed in the following sub-
sections. The best performing individual ANN configuration and the climate change model
that produced the best results are considered in each case.
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Figure 4.2: Ensembling method implemented using the outputs of the best performing ANN
architecture for each climate change model.

Ensemble Method ERNN FFNN JRNN PRNN CasNN CNN LSTM Mean

Average 45% 32% 42% 28% 29% 30% 37% 35%

Bucket of Models 79% 82% 77% 84% 83% 86% 82% 82%

Negative Correlation 82% 83% 82% 28% 82% 86% 86% 76%

Elimination of Outliers 80% 84% 79% 81% 82% 44% 85% 76%

Linear Combination 23% 47% 25% 44% 46% 44% 44% 39%

Maximum 4% 3% 2% 3% 3% 5% 3% 3%

Minimum 4% 1% 6% 2% 1% 2% 3% 3%

Min-Max Average 23% 71% 58% 70% 75% 46% 52% 57%

Mixture of Experts 71% 70% 71% 72% 70% 81% 89% 75%

Median 35% 16% 35% 14% 11% 25% 29% 24%

Product 23% 23% 38% 23% 19% 55% 56% 34%

Sum 24% 55% 62% 24% 24% 27% 21% 34%

Voting 23% 7% 21% 7% 5% 6% 6% 11%

Smallest Deviation Average 34% 15% 33% 15% 11% 26% 26% 23%

Smallest Deviation Median 32% 15% 33% 15% 11% 24% 25% 22%

Table 4.13: Average performace accuracy of the ensembles of the different neural networks
architectures for 1.2 Kelvin threshold. The best performing ensembles are shown in bold
font.

4.3.1.1 Feedforward Neural Networks

For this architecture, the best individual simulation was obtained for the UKMO model
with a performance accuracy of 73%. The Bucket of Models, Negative Correlation and
Elimination of Outliers ensemble methods, produced improved results with an accuracy of
82%, 83% and 84%, respectively for the 1.2 threshold. The mixture of experts method
yielded a performance which is roughly similar to the individual ANN models.

4.3.1.2 Elman Recurrent Neural Networks

Similar to the ensembles of FFNN the ERNN architectures provided improved results using
the Bucket of Models, Negative Correlation and Elimination of Outliers ensemble methods,
with accuracy of 79%, 82% and 80%, respectively. This is an improvement over the 75% of
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Ensemble Method ERNN FFNN JRNN PRNN CasNN CNN LSTM Mean

Average 21% 13% 20% 11% 8% 16% 19% 16%

Bucket of Models 51% 50% 49% 51% 50% 52% 53% 51%

Negative Correlation 47% 50% 47% 11% 49% 52% 52% 44%

Elimination of Outliers 43% 49% 42% 50% 47% 24% 54% 44%

Linear Combination 14% 26% 15% 25% 21% 24% 24% 21%

Maximum 0% 0% 0% 0% 0% 1% 0% 0%

Minimum 1% 0% 2% 1% 0% 1% 1% 1%

Min-Max Ave 8% 44% 32% 44% 46% 23% 27% 32%

Mixture of Experts 34% 36% 35% 36% 35% 47% 52% 39%

Median 18% 8% 16% 8% 5% 13% 14% 12%

Product 8% 8% 15% 8% 5% 26% 33% 15%

Sum 10% 30% 33% 10% 10% 14% 7% 16%

Voting 11% 3% 11% 3% 2% 3% 3% 5%

Smallest Deviation Average 16% 7% 15% 6% 7% 13% 15% 11%

Smallest Deviation Median 17% 7% 15% 6% 6% 14% 15% 11%

Table 4.14: Average performace accuracy of the ensembles of the different neural networks
architectures for 0.6 Kelvin threshold. The best performing ensembles are shown in bold
font.

the individual ANN configurations for MIROC and UKMO models The mixture of experts
method produced a performance which is roughly similar to that of the individual ANN
models.

4.3.1.3 Jordan Recurrent Neural Networks

Likewise, the JRNN architectures showed improved results under the Negative Correlation
and Elimination of Outliers methods with performance accuracy of 82% and 79%, respect-
ively. This is an improvement from 78% of the individual ANN configurations for the GF-
DLcm2.0 model. The Bucket of Models and Mixture of Experts methods also produced a
performance which is roughly similar to the individual ANNs models.

4.3.1.4 Partial Recurrent Neural Networks

The Bucket of Models, Elimination of Outliers and Mixture of Experts ensemble methods
showed an improved performance with an accuracy of 84%, 81% and 72%, respectively,
as shown in Table 4.13. This was also an improvement over the individual ANNs models
particularly for the UKMO model results which produced the best prediction accuracy of
71%.
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4.3.1.5 Cascaded Neural Networks

Three of the methods, Bucket of Models, Negative Correlation and Elimination of Outliers
gave an improved performance with an accuracy of 83%, 82% and 82%, respectively over the
individual ANNs. In addition to these ensemble methods, Min-Max Average also produced
an improved accuracy of 75%. This is also the case for the UKMO climate change model
which produced a prediction accuracy of 71%. The mixture of experts method gives a
performance which is approximately similar to the individual ANNs models.

4.3.1.6 Convolutional Neural Networks

In contrast to the ensembles of the previous architectures, Mixture of Experts ensemble
methods showed an improved performance with the accuracy of 81%. The Bucket of Models
and Negative Correlation methods maintained its performance advantage over the other
methods across all configurations and in this case they both produced an accuracy of 86%.

4.3.1.7 Long-Short Term Memory Neural Networks

The two methods which are classified as tightly coupled methods, namely Mixture of Experts
and Negative Correlation showed improved accuracy. The same goes for Bucket of Models
and Elimination of Outliers methods. Mixture of experts, Bucket of Models, Elimination
of Outlier and Negative Correlation produced the accuracy of 89%, 82%, 85% and 86%, re-
spectively. In general, the ensemble method results for the UKMO model outputs are shown
to produce the best predictive performance compared to the other models. Furthermore,
the performance of the LSTM architecture produces a greater predictive error compared to
CasNN, CNN and PRNN architectures.

4.3.2 Ensembles with the CSIRO model excluded

Tables 5.3 and 4.16 show the best performing ensemble methods across all architectures for
the 1.2 and 0.6 Kelvin thresholds with the exclusion of the CSIRO model. The results of
ensembles of each ANN architecture are discussed in the following subsections. The best
performing individual ANN configuration and the climate change model (with the exclusion
of CSIRO mode) that produced the best results are considered in each case.

4.3.2.1 Feedforward Neural Networks

For this architecture, the best individual simulation was obtained for the UKMO model
with a performance accuracy of 73%. The Negative Correlation ensemble method produced
slightly improved results with an accuracy of 74% for the 1.2 threshold. The Bucket of
Models and Elimination of Outliers methods yielded a performance which is similar to the
individual ANN models.
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Ensemble Method ERNN FFNN JRNN PRNN CasNN CNN LSTM Mean

Average 36% 30% 33% 30% 24% 24% 32% 30%

Bucket of Models 73% 73% 73% 73% 74% 78% 71% 73%

Negative Correlation 76% 74% 67% 30% 73% 73% 73% 66%

Elimination of Outliers 75% 73% 77% 70% 73% 73% 73% 74%

Linear Combination 39% 22% 22% 21% 19% 44% 44% 30%

Maximum 53% 44% 41% 44% 56% 46% 30% 45%

Minimum 9% 7% 8% 6% 7% 7% 9% 8%

Min-Max Average 49% 31% 31% 29% 24% 22% 31% 31%

Mixture of Experts 70% 72% 72% 72% 71% 73% 70% 72%

Median 38% 30% 33% 28% 26% 23% 29% 30%

Product 49% 41% 50% 23% 19% 56% 59% 42%

Sum 19% 51% 60% 19% 19% 19% 14% 29%

Voting 16% 12% 18% 13% 14% 23% 23% 17%

Small Deviation Average 38% 28% 34% 15% 32% 27% 29% 29%

Small Deviation Median 37% 28% 34% 15% 68% 24% 29% 33%

Table 4.15: Average performace accuracy of the ensembles of the different neural networks
architectures for 1.2 Kelvin threshold excluding the CSIRO model. The best performing
ensembles are shown in bold font.

Ensemble Method ERNN FFNN JRNN PRNN CasNN CNN LSTM Mean

Average 19% 16% 19% 14% 13% 12% 16% 16%

Bucket of Models 45% 45% 44% 44% 45% 50% 43% 45%

Negative Correlation 44% 46% 33% 14% 45% 34% 34% 36%

Elimination of Outliers 41% 46% 44% 34% 47% 33% 33% 40%

Linear Combination 22% 10% 10% 8% 11% 23% 23% 15%

Maximum 28% 21% 23% 21% 30% 23% 17% 23%

Minimum 2% 1% 4% 1% 1% 3% 4% 2%

Min-Max Ave 26% 15% 17% 15% 12% 10% 18% 16%

Mixture of Experts 34% 36% 34% 36% 34% 34% 34% 34%

Median 18% 15% 19% 14% 14% 14% 13% 15%

Product 26% 19% 28% 8% 15% 28% 35% 23%

Sum 8% 26% 34% 8% 8% 8% 7% 14%

Voting 8% 4% 9% 6% 4% 10% 10% 7%

Small Deviation Average 20% 15% 17% 6% 16% 14% 14% 14%

Small Deviation Median 18% 15% 17% 6% 37% 12% 13% 17%

Table 4.16: Average performace accuracy of the ensembles of the different neural networks
architectures for 0.6 Kelvin threshold excluding the CSIRO model. The best performing
ensembles are shown in bold font.

4.3.2.2 Elman Recurrent Neural Networks

Similar to the ensembles of FFNN the ERNN architectures provided improved results using
the Negative Correlation ensemble method, with accuracy of 76%. This is a slight improve-
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ment over the 75% of the individual ANN configurations for MIROC and UKMO models.
The Elimination of Outliers methods yielded a performance which is similar to the individual
ANN models.

4.3.2.3 Jordan Recurrent Neural Networks

For this architecture, the best individual simulation was obtained for the GFDLcm2.0 model
with a performance accuracy of 78%. None of the ensemble methods showed improvement
in this case. The Elimination of Outliers method produced a performance which is roughly
similar to the individual ANNs models with an accuracy of 77%.

4.3.2.4 Partial Recurrent Neural Networks

For this architecture, the best individual simulation was obtained for the UKMO model with
a performance accuracy of 71%. The Bucket of Models and Mixture of Experts ensemble
methods produced slightly improved results with an accuracy of 73% and 72%, respectively.
The Elimination of Outliers method yielded a performance which is roughly similar to the
individual ANN models.

4.3.2.5 Cascaded Neural Networks

Three of the methods, Bucket of Models, Negative Correlation and Elimination of Outliers
gave an improved performance with an accuracy of 74%, 73% and 73%, respectively over the
individual ANNs. This is also the case for the UKMO climate change model which produced
a prediction accuracy of 71%. The mixture of experts method gives a performance which is
similar to the individual ANNs models.

4.3.2.6 Convolutional Neural Networks

Three of methods, Negative Correlation, Elimination of Outliers and Mixture of Experts
produced similar improved performance with an accuracy of 73%. In addition to these three
methods, the Bucket of Models showed an improved performance accuracy of 78%. This is an
improvement over the 69% of the individual ANN configurations for GFDLcm2.0, MIROC
and MPI models.

4.3.2.7 Long-Short Term Memory Neural Networks

For this architecture, the best individual simulation was obtained for the MIROC and UKMO
models with a performance accuracy of 72%. The Negative Correlation and Elimination of
Outliers ensemble methods produced slightly improved results with an accuracy of 73%. The
Mixture of Experts method yielded a performance which is roughly similar to the individual
ANN models.
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4.3.3 Conclusion

The performance results indicate that some ensemble methods outperform the individual
ANN architectures that were studied. From the average results, it can be seen that four
ensemble methods, namely, Bucket of Models, Negative Correlation, Elimination of Outliers
and Mixture of Experts produced results that were superior to the other ensemble methods.
They also give improved results, on average, when compared with those of the individual
ANNs.

The above mentioned four ensemble methods maintained their performance advantage over
the other methods even when the CSIRO model was excluded during the ensemble stage.
However, the performance of these methods decreased compared to when the CSIRO was
included in the ensemble phase.

Deep neural networks (with more than two hidden layers) have not been considered since
there was no significant improvement in performance when increasing the number of hidden
layers from one to two. Furthermore, the literature indicates that deep neural networks are
more suitable for image processing problems than for time series modelling. For convolu-
tional neural networks this is also the case and some researchers have pointed out that the
deeper and larger CNNs perform better than shallow networks for classification and detection
tasks rather than for time series applications [84].

49



Chapter 5

Discussion and Conclusions

Summary

The results presented in Chapter 4 are discussed in this chapter. The conclusions and the
limitations of this research are presented, together with possible ways that this research can
be extended.

5.1 Introduction

The aim of this research was to explore whether ensembles of individually trained neural
networks would improve the performance of the individual neural for time series modeling.
The outputs of six different climate change models were used as application use case. Several
ensemble techniques were studied using the outputs of neural networks trained on climate
change prediction datasets. The average output of the six climate change models were used
as performance criterion, i.e., to identify the ensemble methods that mostly closely approx-
imate the mean of the six climate change model outputs.

Seven different neural network architectures, FFNN, ERNN, JRNN, PRNN, LSTM, CasNN
and CNN, were individually trained on the climate change prediction data sets. The time
series data for the MaxTemp climate variable for Addis Ababa was aggregated into quarterly
values over the period 1961 to 2050 and scaled to be used as training, validation and test
sets. For each architecture, various connection configurations were trained to obtain the best
performing individual ANN.

The performance of the trained ANNs was evaluated based on the mean square error when
comparing their outputs to the actual values for the following MaxTemp value. The ANN
performance is represented in terms of the deviation in degrees Kelvin from the target value
in order to provide a realistic view of the accuracy of the trained ANNs.
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5.2 Analysis

5.2.1 Individual Neural Networks

The results of the first phase of the research, i.e., the individual ANN architectures that
produced the best performance, are summarised in Table 5.1. The best configuration and
performance accuracy in terms of 1.2 Kelvin threshold is given for each architecture and for
each climate change model data set. With the exception of the CSIRO model, the JRNN
and ERNN architectures produced the best performance compared to the other architectures.
Given that the data for the CSIRO model was erroneous, this result can be discounted. The
addition of a hidden layer did not yield improved results in most cases.

It is concluded that the presence of the context layer with the recurrent connection on
the ERNN affords it an advantage over FFNN. This is supported by the literature which
indicates that some of the advantages of ERNN include the capability to converge faster,
improved non-linear prediction as well as the ability to produce more accurate mappings [85].
In their study, Hell et al. also showed that the ERNN produced improved results over the
FFNN [86]. As shown in Table 4.9, a similar result is observed in this study when compar-
ing the performance of ERNN and FFNN. Likewise, the performance of the JRNN can be
explained based on the argument of the presence of the context layer.

The LSTM neural network has been shown to overcomes some modelling weaknesses of
RNNs for learning context-free and context-sensitive languages. Given this advantage, there
was an expectation that the LSTM neural networks would perform well but these archi-
tectures produced comparatively fair results. Given the performance results of the LSTM
architecture in the literature [53], it was surprising to find results of other architectures out-
perform the LSTM architecture. Schmidhuber in [87] showed that the LSTM outperformed
the ERNN for embedded grammars. A possible explanation for the poor performance of
LSTM in this case is that the time series data for climate change predictions do not have the
same characteristics as the series for which the LSTM architectures perform well. Another
possibility could be that since the LSTMs have a complex structure and requires more data
whereas in this case the data presented was minimal. It is also arguable whether convo-
lutional neural networks are suitable architectures for time series modeling since they are
mostly used for image processing applications.

5.2.2 Ensembles

The performance of the ensemble methods are shown in Tables 5.2 and 5.3. Overall there
is a significant improvement for three of the ensemble methods, namely, the Bucket of Mod-
els, Negative Correlation and the Elimination of Outliers methods. Besides the CNN and
LSTM architectures, the Mixture of Experts models showed a performance comparable with
the results for the individually trained architectures. Methods like the Average, Minimum,
Maximum, Voting, Median, Smallest Deviation Average, Smallest Deviation Median and
Linear Combination showed a relatively poor performance. The Min-Max Average method
was introduced by taking the average of the two ensemble methods, Minimum and Max-
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CC Model CSIRO GFDLcm2.0 GFDLcm2.1 MIROC MPI UKMO
Architecture

FFNN 7-5-1 7-11-1 7-8-1 7-10-1 7-5-1 7-10-1
34% 70% 63% 71% 67% 73%

ERNN 7-7-1 7-10-1 7-9-1 7-9-1 7-9-1 7-11-1
40% 73% 64% 75% 69% 75%

JRNN 7-6-1 7-9-1 7-8-1 7-9-1 7-9-1 7-9-1
37% 78% 65% 74% 68% 76%

PRNN 7-6-6-1 7-6-1 7-6-1 7-9-1 7-5-1 7-9-1
34% 70% 59% 70% 67% 71%

CasNN 7-11-5-1 7-6-6-1 7-11-6-1 7-10-6-1 7-10-6-1 7-6-6-1
39% 68% 60% 70% 64% 71%

CNN 7-6-1 7-11-6-1 7-11-6-1 7-8-1 7-6-6-1 7-6-1
39% 69% 62% 69% 69% 71%

LSTM 7-5-5-1 7-8-6-1 7-11-6-1 7-8-5-1 7-5-1 7-5-5-1
48% 31% 35% 50% 45% 52%

Table 5.1: Performance accuracy and topologies for different architectures that produced
the best individual performance. The best performing ANN and its configuration is shown
in bold font for each climate change model.

imum. The performance of this method produced different results ranging from poor, fair,
comparable and best relative to the results for the individually trained architectures.

5.2.2.1 Own Methods

Two simple ensemble methods, Smallest Deviation Average (SDA) and Smallest Deviation
Median (SDM), were developed. The former, measures the spread between the models out-
puts. It basically takes one model at the time and finds absolute differences against all other
models, generating a matrix of absolute differences. Carrying this out ends up with a square
diagonal matrix since spread between a model and itself will always be zero.

The rows of this matrix are summed and choosing the smallest three. These sums are
used to find the corresponding model in terms of index or positioning. In an instance where
the sums are S2, S3 and S5, only the outputs of models y2, y3 and y5 are considered and aver-
aged. For the Smallest Deviation Median, the median of the models is considered instead of
the average. The results of these methods are shown in Tables 5.4 and 5.5. Results for these
methods were worse than those of the best performing ensemble methods. However, the ex-
clusion of the CSIRO model showed a slight improvement from when the model was included.

A further search for a method that works better was to combine the best performing meth-
ods, Elimination of Outliers and Negative Correlation (EO & NC). This was done by literally
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Ensemble Method ERNN FFNN JRNN PRNN CasNN CNN LSTM

Average 45% 32% 42% 28% 29% 30% 34%
Bucket of Models 79% 82% 77% 84% 83% 86% 82%
Negative Correlation 82% 83% 82% 28% 82% 86% 86%
Elimination of Outliers 80% 84% 79% 81% 82% 44% 85%
Linear Combination 23% 47% 25% 44% 46% 44% 44%
Maximum 4% 3% 2% 3% 3% 5% 3%
Minimum 4% 1% 6% 2% 1% 2% 1%
Min-Max Average 23% 71% 58% 70% 82% 87% 52%
Mixture of Experts 71% 70% 71% 72% 70% 81% 80%
Median 35% 16% 35% 14% 11% 25% 28%
Product 23% 23% 38% 23% 19% 55% 55%
Sum 24% 55% 62% 24% 24% 27% 16%
Voting 23% 7% 21% 7% 5% 6% 6%

Table 5.2: Average performace accuracy of the ensembles of the different neural network
architectures and for the 1.2 Kelvin threshold. The best performing ensembles are shown in
bold font.

Ensemble Method ERNN FFNN JRNN PRNN CasNN CNN LSTM Mean

Average 36% 30% 33% 30% 24% 24% 32% 30%

Bucket of Models 73% 73% 73% 73% 74% 78% 71% 73%

Negative Correlation 76% 74% 67% 30% 73% 73% 73% 66%

Elimination of Outliers 75% 73% 77% 70% 73% 73% 73% 74%

Linear Combination 39% 22% 22% 21% 19% 44% 44% 30%

Maximum 53% 44% 41% 44% 56% 46% 30% 45%

Minimum 9% 7% 8% 6% 7% 7% 9% 8%

Min-Max Average 49% 31% 31% 29% 24% 22% 31% 31%

Mixture of Experts 70% 72% 72% 72% 71% 73% 70% 72%

Median 38% 30% 33% 28% 26% 23% 29% 30%

Product 49% 41% 50% 23% 19% 56% 59% 42%

Sum 19% 51% 60% 19% 19% 19% 14% 29%

Voting 16% 12% 18% 13% 14% 23% 23% 17%

Table 5.3: Average performace accuracy of the ensembles of the different neural networks
architectures for 1.2 Kelvin threshold excluding the CSIRO model. The best performing
ensembles are shown in bold font.

combining the two methods in logical order, i.e. first Elimination of Outliers and further
applying the Negative Correlation on the outcome. The method showed to perform precisely
like the individually combined methods, there is a slight improvement in some cases which
are shown in bold in table 5.4.
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Ensemble Method ERNN FFNN JRNN PRNN CasNN CNN LSTM Mean

SDA 34% 15% 33% 15% 11% 26% 26% 23%

SDM 32% 15% 33% 15% 11% 24% 25% 22%

EO & NC 83% 84% 84% 78% 83% 79% 87% 83%

Table 5.4: Average performace accuracy of the Smallest Deviation Average and Smallest
Deviation Median of the different neural networks architectures for 1.2 Kelvin threshold.

Ensemble Method ERNN FFNN JRNN PRNN CasNN CNN LSTM Mean

SDA 38% 28% 34% 15% 32% 27% 29% 29%

SDM 37% 28% 34% 15% 68% 24% 29% 33%

EO & NC 77% 73% 76% 73% 74% 72% 75% 74%

Table 5.5: Average performace accuracy of the Smallest Deviation Average and Smallest
Deviation Median of the different neural networks architectures for 1.2 Kelvin threshold
with the exclusion of CSIRO model.

5.3 Observations and Limitations

The purpose of this study was two-fold:

1. To identify the ANN architecture and its configuration that is most suitable for one-
step-ahead time series modelling: the conclusion is that ERNN and JRNN architectures
are determined to be the best performing architectures for application to the sets of
data used in this research.

2. To identify if ANNs ensembles can improve the performance of the architectures pro-
duced in the first phase: the conclusion for this phase is that the Negative Correlation
and Elimination of Outliers methods are found to improve the performance of indi-
vidual ANN architectures.

The ANN configurations which produced improved performance accuracy were chosen for
all architectures and then used in ensembles with the purpose of improving their combined
prediction outputs. The implemented ensemble methods are Bucket of Models, Negative Cor-
relation, Linear Combination, Voting, Elimination of Outliers Sum, Maximum, Minimum,
Min-Max Average, Median, Average, Product, Smallest Deviation Average, Smallest Devi-
ation Median and Mixture of Experts. Three of these methods, namely Bucket of Models,
Elimination of Outliers and Negative Correlation showed a significant improvement accuracy
over other ensemble methods.

The relatively good performance of the Elimination of Outliers method performance can
be because the outputs of the ANN models are evaluated against the mean of the six climate
change model outputs. Since some of the outputs of the climate change models diverge over
time, the mean might not be a suitable measure of their combined output. Eliminating
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outlier results would reduce effects of climate change outputs with the largest deviation from
the mean.

Mixture of Experts produced results that were comparable to those of the individually trained
ANNs. The Mixture of Experts only showed an improved performance when applied to the
CNN and LSTM configurations. Ensemble methods such as Linear Combination, Voting,
Maximum, Minimum, Median and Product performed poorly and are not considered to suit-
able as ensemble methods for the climate change time series application used in this research.
Further observations from the results obtained in this research and from the overall conclu-
sions above, are discussed below.

ANN configurations The performance of the architectures for various configurations var-
ied significantly. This implies that there would be an advantage in determining the
best configuration for a specific architecture. The configurations studied in this re-
search are not exhaustive and the choice of configurations to study was largely guided
by the results from preliminary training simulations for various simulations. A more
comprehensive approach to find the best configuration can be a future extension of this
work.

ANN architectures Seven different architectures were studied and while the ERNN and
JRNN architectures showed the best performance among this seven, there are other
recurrent neural network architectures such as the Hopfield and Bidirectional Associ-
ative Memory that were not studied. Self-organising maps were previously used for
climate change modeling [Hewitson and Crane, 2002] but these architectures are not
usually regarded to be the most suitable for time series modeling.

Consistent results The performance of the FFNN, CasNN, PRNN and CNN architectures
did not vary substantially from one climate change model to another. In other words,
if a particular architecture performed well on the data from one model, it usually also
did so for the other models. Conversely, if a given architecture performed poorly, it
did so for all climate change models. The implication is that a given ANN architecture
will perform consistently for an arbitrary set of climate change data.

Modeling CC models In application to climate change model outputs the results showed
that the ANNs can approximate the patterns in large climate change data sets to some
extent. The difficulty with developing ensembles for this was that there were no target
outputs for the combination of the different climate change data sets and the mean
value used in this case, may not be a good measure of the combined outputs of the six
climate change models.

Variables Only one climate change variable, MaxTemp, was used in this study. While sim-
ilar results are expected for other variables, the performance of the ANN architectures
could improve if they are trained on more than one variable. The study of ANNs using
more than one variable would be a useful way to extend this research.

55



Time step and window The preceding seven inputs of data aggregated over quarterly
periods were used to reduce the effects of trends. However, it is possible to use different
time steps (monthly, weekly) and statistical methods such as Analysis of Variance
(ANOVA) to reduce seasonal or periodic effects. Only the next time step value was
predicted and while it expected to decrease, it may be useful to study the behaviour
of the prediction accuracy over more time steps.

5.4 Future Work

For future work it would be beneficial to simulate multivariate ANNs models and to further
experiment with atmospheric variables such as rainfall and humility in addition to temperat-
ure. The study of other ANN models such as Hopfield neural networks, Boltzmann machine
and Echo neural networks can provide more information about suitable architectures for this
research.

Although the increase of hidden layers did not give improved performance it would be useful
to experiment further with deep neural networks in order to see if this trend continues when
using three, four or more hidden layers. From the literature, deep convolutional neural net-
works are not typically used for time series analysis. However, classification systems have
demonstrated the usefulness of deep learning techniques for tackling climate pattern detec-
tion problems. The study of such architectures could be useful for time series analysis. A
‘vanilla’ form of backpropagation learning was applied throughout this research and other
forms of learning such as Boltzman machines, momentum and different activation functions
(e.g., tanh) might improve the learning ability of the ANNs that were studied.

The loosely coupled ensemble methods applied consisted of very basic statistical approaches
(average, median, sum, etc.) and more sophisticated methods such as Gaussian techniques
could provide improved performance. Furthermore, the ensemble approach consisted of mod-
els taken from a single class of machine learning model, e.g neural networks. It would be
interesting to combine other machine learning models such as Support Vector Machines and
Hidden Markov Models into ensembles for time series modelling. This aspect was not in the
scope of this research.

In conclusion, there are a number of ways in which this research can be extended. This
work showed that ensembles of neural networks have the potential to improve time series
prediction and is a basis for a deeper study.

— End of Thesis —
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Appendix A

Feedforward Neural Networks

The following tables show detailed results for individual FFNNs for error thresholds ranging
from 0.5 to 1.5 Kelvin on 0.1 Kelvin increments. Each table shows results for a specific
climate change model.

Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 79% 78% 73% 69% 63% 59% 53% 48% 44% 39% 33%
7-6-1 80% 77% 73% 68% 64% 58% 52% 48% 42% 38% 33%
7-7-1 82% 80% 75% 70% 66% 62% 54% 51% 45% 39% 34%
7-8-1 83% 80% 76% 71% 66% 62% 56% 49% 45% 39% 32%
7-9-1 80% 76% 72% 69% 64% 59% 53% 47% 41% 37% 32%
7-10-1 85% 81% 75% 71% 68% 63% 59% 54% 47% 40% 35%
7-11-1 83% 80% 75% 71% 66% 61% 56% 52% 46% 43% 36%
7-5-5-1 74% 68% 62% 56% 52% 49% 44% 39% 35% 28% 24%
7-6-5-1 73% 65% 61% 56% 53% 48% 45% 38% 32% 28% 23%
7-7-5-1 71% 65% 60% 56% 52% 48% 43% 37% 32% 27% 23%
7-8-5-1 71% 65% 60% 57% 52% 46% 42% 38% 33% 28% 23%
7-9-5-1 68% 65% 61% 56% 51% 46% 42% 36% 34% 28% 24%
7-10-5-1 71% 66% 62% 56% 53% 48% 44% 38% 33% 29% 24%
7-11-5-1 72% 67% 61% 57% 53% 48% 45% 39% 34% 30% 25%
7-6-6-1 70% 66% 62% 56% 53% 50% 44% 39% 32% 28% 22%
7-7-6-1 73% 66% 60% 57% 53% 48% 42% 38% 34% 28% 25%
7-8-6-1 73% 66% 60% 57% 53% 48% 42% 38% 34% 28% 25%
7-9-6-1 72% 66% 61% 56% 53% 47% 44% 39% 34% 29% 24%
7-10-6-1 73% 68% 61% 58% 53% 47% 42% 36% 33% 29% 25%
7-11-6-1 74% 70% 63% 57% 53% 49% 45% 41% 35% 30% 26%

Table A.2: Feedforward neural network average performance accuracy for the CSIRO model
for different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 82% 77% 72% 67% 61% 57% 53% 44% 37% 33% 27%
7-6-1 82% 77% 73% 68% 63% 58% 52% 45% 38% 31% 27%
7-7-1 81% 77% 72% 68% 63% 58% 53% 46% 40% 35% 28%
7-8-1 82% 77% 73% 68% 64% 59% 53% 46% 40% 33% 26%
7-9-1 82% 79% 73% 68% 63% 59% 53% 47% 40% 33% 27%
7-10-1 80% 76% 71% 66% 61% 56% 51% 46% 39% 32% 28%
7-11-1 85% 80% 76% 70% 65% 61% 57% 49% 45% 37% 29%
7-5-5-1 65% 58% 56% 52% 48% 45% 41% 37% 32% 28% 22%
7-6-5-1 66% 61% 57% 54% 48% 43% 40% 37% 32% 27% 23%
7-7-5-1 66% 62% 57% 53% 48% 44% 41% 38% 32% 28% 23%
7-8-5-1 68% 64% 56% 51% 48% 44% 40% 36% 32% 27% 22%
7-9-5-1 64% 61% 55% 52% 47% 42% 39% 36% 32% 28% 22%
7-10-5-1 66% 60% 56% 52% 47% 44% 41% 37% 33% 27% 22%
7-11-5-1 65% 63% 58% 52% 48% 43% 38% 37% 32% 27% 23%
7-6-6-1 65% 60% 56% 51% 48% 44% 41% 35% 32% 27% 20%
7-7-6-1 67% 62% 58% 52% 47% 44% 40% 37% 32% 29% 23%
7-8-6-1 70% 66% 61% 57% 54% 50% 45% 42% 40% 36% 30%
7-9-6-1 69% 65% 57% 54% 50% 45% 41% 37% 33% 28% 21%
7-10-6-1 67% 61% 56% 51% 46% 43% 38% 35% 33% 30% 24%
7-11-6-1 69% 64% 61% 54% 49% 46% 42% 36% 32% 28% 23%

Table A.4: Feedforward neural network average performance accuracy for the GFDLcm2.0
model for different thresholds in Kelvin.

Figure A.1: Accuracy of the feedforward neural network configurations for the six climate
change prediction models based on 1.2 Kelvin threshold.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 79% 78% 73% 69% 63% 59% 53% 48% 44% 39% 33%
7-6-1 80% 77% 73% 68% 64% 58% 52% 48% 42% 38% 33%
7-7-1 82% 80% 75% 70% 66% 62% 54% 51% 45% 39% 34%
7-8-1 83% 80% 76% 71% 66% 62% 56% 49% 45% 39% 32%
7-9-1 80% 76% 72% 69% 64% 59% 53% 47% 41% 37% 32%
7-10-1 85% 81% 75% 71% 68% 63% 59% 54% 47% 40% 35%
7-11-1 83% 80% 75% 71% 66% 61% 56% 52% 46% 43% 36%
7-5-5-1 74% 68% 62% 56% 52% 49% 44% 39% 35% 28% 24%
7-6-5-1 73% 65% 61% 56% 53% 48% 45% 38% 32% 28% 23%
7-7-5-1 71% 65% 60% 56% 52% 48% 43% 37% 32% 27% 23%
7-8-5-1 71% 65% 60% 57% 52% 46% 42% 38% 33% 28% 23%
7-9-5-1 68% 65% 61% 56% 51% 46% 42% 36% 34% 28% 24%
7-10-5-1 71% 66% 62% 56% 53% 48% 44% 38% 33% 29% 24%
7-11-5-1 72% 67% 61% 57% 53% 48% 45% 39% 34% 30% 25%
7-6-6-1 70% 66% 62% 56% 53% 50% 44% 39% 32% 28% 22%
7-7-6-1 73% 66% 60% 57% 53% 48% 42% 38% 34% 28% 25%
7-8-6-1 73% 66% 60% 57% 53% 48% 42% 38% 34% 28% 25%
7-9-6-1 72% 66% 61% 56% 53% 47% 44% 39% 34% 29% 24%
7-10-6-1 73% 68% 61% 58% 53% 47% 42% 36% 33% 29% 25%
7-11-6-1 74% 70% 63% 57% 53% 49% 45% 41% 35% 30% 26%

Table A.6: Feedforward neural network average performance accuracy for the MIROC model
for different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 80% 75% 71% 67% 61% 59% 54% 49% 46% 42% 36%
7-6-1 73% 70% 65% 61% 56% 49% 45% 41% 36% 30% 25%
7-7-1 73% 71% 67% 61% 56% 49% 45% 41% 38% 32% 25%
7-8-1 75% 73% 67% 61% 55% 51% 47% 42% 37% 32% 27%
7-9-1 75% 69% 65% 63% 58% 52% 45% 42% 38% 31% 25%
7-10-1 73% 69% 65% 60% 54% 49% 46% 40% 35% 31% 25%
7-11-1 75% 73% 68% 64% 57% 50% 45% 42% 37% 31% 25%
7-5-5-1 63% 59% 55% 51% 47% 44% 38% 33% 27% 22% 18%
7-6-5-1 63% 58% 55% 51% 47% 43% 41% 34% 28% 22% 18%
7-7-5-1 63% 58% 55% 53% 48% 45% 38% 32% 27% 23% 19%
7-8-5-1 74% 70% 68% 65% 62% 58% 54% 51% 48% 43% 39%
7-9-5-1 61% 58% 55% 52% 48% 44% 36% 32% 28% 24% 20%
7-10-5-1 63% 59% 55% 51% 47% 43% 38% 33% 26% 23% 18%
7-11-5-1 64% 59% 55% 51% 49% 44% 40% 33% 28% 23% 19%
7-6-6-1 64% 60% 55% 52% 49% 45% 39% 34% 28% 23% 19%
7-7-6-1 65% 60% 56% 53% 49% 45% 40% 35% 27% 23% 18%
7-8-6-1 63% 59% 55% 51% 48% 44% 38% 32% 27% 23% 18%
7-9-6-1 65% 61% 55% 52% 49% 44% 40% 35% 30% 25% 20%
7-10-6-1 64% 61% 56% 51% 49% 44% 38% 32% 28% 23% 19%
7-11-6-1 63% 59% 57% 52% 47% 42% 37% 32% 26% 22% 19%

Table A.8: Feedforward neural network average performance accuracy for the MPI model
for different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 82% 78% 73% 70% 63% 58% 53% 50% 44% 39% 34%
7-6-1 80% 77% 73% 67% 63% 58% 51% 46% 42% 38% 33%
7-7-1 81% 77% 75% 68% 65% 59% 53% 48% 43% 39% 33%
7-8-1 80% 77% 73% 68% 64% 58% 54% 49% 45% 38% 33%
7-9-1 81% 77% 72% 69% 63% 59% 55% 50% 44% 39% 33%
7-10-1 81% 79% 75% 73% 63% 57% 54% 49% 44% 39% 34%
7-11-1 82% 78% 74% 69% 65% 60% 54% 49% 43% 38% 33%
7-5-5-1 72% 67% 61% 57% 52% 47% 42% 37% 33% 28% 23%
7-6-5-1 71% 68% 64% 58% 53% 49% 44% 40% 35% 30% 23%
7-7-5-1 72% 69% 62% 57% 52% 48% 42% 39% 35% 29% 24%
7-8-5-1 72% 67% 61% 56% 53% 47% 42% 40% 34% 27% 22%
7-9-5-1 78% 72% 65% 63% 58% 54% 49% 46% 41% 36% 32%
7-10-5-1 73% 68% 62% 57% 51% 47% 42% 38% 34% 30% 24%
7-11-5-1 71% 66% 60% 57% 52% 47% 43% 39% 34% 29% 23%
7-6-6-1 73% 68% 62% 56% 52% 48% 44% 40% 34% 29% 25%
7-7-6-1 73% 67% 62% 57% 53% 49% 45% 40% 34% 29% 25%
7-8-6-1 72% 67% 62% 58% 52% 49% 44% 40% 35% 30% 24%
7-9-6-1 74% 68% 63% 59% 54% 49% 44% 39% 32% 29% 24%
7-10-6-1 75% 68% 62% 57% 52% 47% 44% 38% 34% 30% 25%
7-11-6-1 69% 64% 61% 56% 53% 50% 44% 39% 34% 29% 23%

Table A.10: Feedforward neural network average performance accuracy for the UKMO model
for different thresholds in Kelvin.
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Appendix B

Elman Recurrent Neural Networks

The following tables show detailed results for individual ERNNs for error thresholds ranging
from 0.5 to 1.5 Kelvin on 0.1 Kelvin increments. Each table shows results for a specific
climate change model.

Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 48% 42% 38% 35% 32% 30% 27% 22% 20% 16% 13%
7-6-1 43% 40% 37% 34% 30% 26% 22% 21% 18% 16% 12%
7-7-1 49% 46% 43% 40% 37% 33% 31% 30% 27% 25% 19%
7-8-1 42% 40% 38% 33% 30% 27% 26% 22% 20% 18% 14%
7-9-1 47% 44% 41% 38% 35% 32% 30% 26% 23% 21% 19%
7-10-1 40% 38% 34% 32% 29% 26% 25% 23% 20% 18% 14%
7-11-1 44% 42% 39% 36% 34% 32% 29% 27% 25% 21% 18%
7-5-5-1 40% 37% 34% 32% 29% 27% 24% 21% 18% 17% 14%
7-6-5-1 41% 38% 37% 35% 32% 30% 29% 25% 21% 17% 14%
7-7-5-1 42% 39% 38% 36% 33% 30% 27% 24% 21% 18% 15%
7-8-5-1 42% 39% 36% 34% 32% 29% 26% 24% 19% 17% 14%
7-9-5-1 41% 39% 37% 34% 32% 28% 26% 24% 22% 19% 15%
7-10-5-1 41% 39% 36% 34% 34% 31% 29% 26% 23% 19% 16%
7-11-5-1 42% 39% 37% 33% 32% 27% 25% 23% 19% 16% 13%
7-6-6-1 42% 40% 37% 35% 31% 28% 26% 24% 22% 17% 13%
7-7-6-1 38% 36% 34% 32% 29% 28% 25% 23% 20% 18% 16%
7-8-6-1 42% 39% 37% 34% 31% 29% 25% 23% 21% 18% 14%
7-9-6-1 42% 39% 37% 35% 32% 29% 26% 24% 21% 18% 16%
7-10-6-1 42% 39% 37% 35% 31% 30% 27% 24% 21% 17% 14%
7-11-6-1 43% 41% 39% 37% 35% 32% 28% 25% 22% 19% 15%

Table B.2: Elman recurrent neural network average performance accuracy for the CSIRO
model for different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 82% 78% 73% 70% 63% 58% 53% 50% 44% 39% 34%
7-6-1 80% 77% 73% 67% 63% 58% 51% 46% 42% 38% 33%
7-7-1 81% 77% 75% 68% 65% 59% 53% 48% 43% 39% 33%
7-8-1 80% 77% 73% 68% 64% 58% 54% 49% 45% 38% 33%
7-9-1 81% 77% 72% 69% 63% 59% 55% 50% 44% 39% 33%
7-10-1 81% 79% 75% 73% 63% 57% 54% 49% 44% 39% 34%
7-11-1 82% 78% 74% 69% 65% 60% 54% 49% 43% 38% 33%
7-5-5-1 72% 67% 61% 57% 52% 47% 42% 37% 33% 28% 23%
7-6-5-1 71% 67% 63% 58% 53% 49% 44% 40% 35% 31% 23%
7-7-5-1 72% 69% 62% 57% 52% 48% 42% 39% 35% 29% 24%
7-8-5-1 72% 67% 61% 56% 53% 47% 42% 40% 34% 27% 22%
7-9-5-1 78% 72% 65% 63% 58% 54% 49% 46% 41% 36% 32%
7-10-5-1 73% 68% 62% 57% 51% 47% 42% 38% 34% 30% 24%
7-11-5-1 72% 67% 61% 58% 53% 49% 44% 40% 35% 30% 25%
7-6-6-1 77% 74% 68% 61% 57% 52% 46% 42% 37% 32% 26%
7-7-6-1 73% 67% 61% 55% 53% 48% 43% 39% 35% 30% 24%
7-8-6-1 70% 65% 60% 57% 52% 49% 45% 42% 36% 31% 23%
7-9-6-1 78% 74% 68% 65% 61% 58% 51% 44% 38% 33% 27%
7-10-6-1 75% 72% 65% 61% 54% 50% 44% 40% 35% 30% 26%
7-11-6-1 74% 69% 65% 60% 56% 51% 49% 43% 38% 35% 29%

Table B.4: Elman recurrent neural network average performance accuracy for the GF-
DLcm2.0 model for different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 75% 70% 65% 59% 51% 48% 42% 38% 32% 27% 24%
7-6-1 75% 70% 66% 61% 56% 54% 51% 48% 39% 35% 29%
7-7-1 76% 73% 67% 62% 59% 53% 47% 44% 38% 33% 27%
7-8-1 75% 72% 69% 62% 58% 55% 50% 45% 37% 31% 24%
7-9-1 75% 72% 68% 64% 61% 56% 52% 47% 39% 34% 28%
7-10-1 77% 73% 69% 64% 59% 54% 50% 46% 41% 34% 27%
7-11-1 73% 67% 65% 60% 57% 54% 52% 46% 42% 37% 32%
7-5-5-1 66% 60% 55% 52% 45% 39% 37% 32% 29% 23% 19%
7-6-5-1 62% 59% 53% 48% 45% 41% 37% 32% 27% 22% 17%
7-7-5-1 63% 59% 56% 51% 45% 41% 36% 33% 27% 22% 18%
7-8-5-1 64% 58% 56% 51% 46% 42% 37% 32% 28% 24% 19%
7-9-5-1 67% 61% 57% 53% 49% 44% 39% 34% 30% 25% 22%
7-10-5-1 66% 63% 58% 53% 47% 42% 38% 32% 27% 24% 20%
7-11-5-1 68% 63% 58% 52% 47% 44% 41% 33% 29% 23% 20%
7-6-6-1 63% 59% 54% 50% 46% 39% 35% 30% 27% 23% 18%
7-7-6-1 63% 60% 56% 53% 48% 42% 37% 34% 30% 26% 20%
7-8-6-1 68% 63% 59% 55% 50% 44% 42% 36% 31% 25% 19%
7-9-6-1 67% 63% 60% 56% 51% 45% 41% 35% 30% 25% 20%
7-10-6-1 66% 63% 60% 53% 49% 44% 39% 35% 30% 27% 22%
7-11-6-1 68% 63% 59% 54% 49% 45% 39% 34% 28% 23% 19%

Table B.6: Elman recurrent neural network average performance accuracy for the GF-
DLcm2.1 model for different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 83% 78% 75% 72% 68% 62% 56% 51% 47% 42% 35%
7-6-1 80% 77% 72% 68% 63% 59% 54% 49% 44% 38% 32%
7-7-1 83% 80% 76% 73% 67% 61% 56% 51% 46% 37% 32%
7-8-1 81% 78% 73% 72% 68% 62% 55% 50% 45% 38% 34%
7-9-1 86% 83% 79% 75% 67% 62% 56% 51% 44% 38% 32%
7-10-1 83% 81% 77% 71% 67% 63% 58% 54% 47% 42% 34%
7-11-1 82% 79% 76% 72% 69% 65% 57% 52% 46% 42% 36%
7-5-5-1 76% 72% 65% 62% 58% 53% 48% 45% 40% 35% 27%
7-6-5-1 82% 79% 76% 72% 67% 62% 56% 51% 46% 40% 34%
7-7-5-1 74% 69% 64% 59% 54% 51% 46% 41% 37% 34% 28%
7-8-5-1 76% 70% 65% 61% 58% 54% 48% 44% 38% 34% 27%
7-9-5-1 77% 74% 68% 64% 61% 56% 52% 48% 45% 41% 36%
7-10-5-1 78% 74% 68% 65% 59% 55% 49% 44% 39% 36% 31%
7-11-5-1 80% 75% 69% 65% 60% 55% 50% 46% 42% 37% 33%
7-6-6-1 78% 74% 70% 66% 61% 56% 51% 46% 42% 36% 32%
7-7-6-1 75% 70% 66% 61% 56% 52% 48% 43% 37% 34% 29%
7-8-6-1 76% 70% 67% 62% 59% 54% 49% 44% 39% 36% 30%
7-9-6-1 76% 71% 67% 61% 57% 53% 49% 46% 40% 35% 31%
7-10-6-1 76% 72% 69% 63% 58% 54% 51% 46% 42% 37% 31%
7-11-6-1 73% 70% 67% 60% 57% 53% 48% 44% 39% 33% 27%

Table B.8: Elman recurrent neural network average performance accuracy for the MIROC
model for different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 73% 70% 66% 62% 58% 54% 49% 43% 41% 36% 32%
7-6-1 74% 69% 66% 62% 57% 51% 47% 44% 39% 35% 30%
7-7-1 77% 74% 69% 65% 61% 56% 51% 46% 41% 35% 30%
7-8-1 79% 75% 72% 67% 63% 59% 54% 49% 45% 39% 32%
7-9-1 80% 75% 72% 69% 63% 58% 55% 50% 46% 39% 31%
7-10-1 77% 74% 71% 64% 62% 58% 52% 47% 44% 39% 32%
7-11-1 79% 76% 72% 69% 62% 58% 54% 49% 43% 37% 30%
7-5-5-1 68% 63% 58% 54% 51% 48% 42% 34% 32% 28% 22%
7-6-5-1 68% 63% 59% 55% 53% 49% 44% 37% 32% 27% 24%
7-7-5-1 66% 64% 58% 55% 49% 43% 40% 33% 29% 25% 21%
7-8-5-1 65% 62% 58% 55% 51% 47% 40% 36% 31% 25% 21%
7-9-5-1 70% 65% 61% 57% 54% 49% 45% 39% 31% 27% 24%
7-10-5-1 67% 63% 59% 56% 53% 47% 42% 38% 31% 26% 23%
7-11-5-1 69% 66% 61% 54% 51% 46% 40% 36% 30% 28% 24%
7-6-6-1 68% 65% 61% 57% 53% 49% 45% 41% 35% 28% 25%
7-7-6-1 68% 63% 61% 54% 50% 45% 40% 35% 31% 26% 21%
7-8-6-1 66% 64% 58% 57% 52% 49% 43% 38% 33% 28% 22%
7-9-6-1 66% 62% 58% 54% 48% 44% 41% 34% 28% 25% 20%
7-10-6-1 66% 63% 58% 54% 51% 47% 43% 38% 31% 26% 21%
7-11-6-1 69% 65% 59% 55% 51% 46% 42% 35% 29% 26% 23%

Table B.10: Elman recurrent neural network average performance accuracy for the MPI
model for different thresholds in Kelvin.

67



Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 81% 78% 74% 70% 65% 62% 55% 50% 46% 39% 34%
7-6-1 84% 82% 77% 72% 66% 60% 55% 51% 48% 42% 35%
7-7-1 81% 79% 77% 72% 68% 61% 55% 48% 44% 38% 33%
7-8-1 80% 77% 73% 68% 64% 60% 55% 47% 42% 38% 32%
7-9-1 84% 80% 76% 70% 67% 61% 58% 54% 46% 42% 36%
7-10-1 87% 83% 80% 75% 70% 65% 58% 53% 47% 42% 35%
7-11-1 85% 82% 79% 75% 70% 64% 60% 53% 47% 39% 34%
7-5-5-1 74% 70% 65% 59% 56% 52% 48% 43% 38% 33% 28%
7-6-5-1 72% 67% 63% 58% 56% 51% 47% 43% 37% 34% 28%
7-7-5-1 76% 70% 65% 59% 56% 52% 47% 43% 39% 33% 28%
7-8-5-1 76% 71% 65% 60% 58% 54% 47% 42% 38% 33% 26%
7-9-5-1 75% 72% 68% 62% 58% 55% 51% 45% 42% 37% 31%
7-10-5-1 77% 73% 68% 64% 60% 56% 50% 46% 41% 35% 28%
7-11-5-1 78% 75% 69% 63% 61% 56% 51% 46% 40% 36% 30%
7-6-6-1 74% 70% 65% 60% 56% 52% 48% 43% 39% 35% 28%
7-7-6-1 79% 74% 68% 65% 60% 55% 51% 47% 40% 35% 29%
7-8-6-1 76% 71% 66% 63% 58% 55% 50% 47% 42% 34% 30%
7-9-6-1 76% 73% 68% 63% 60% 53% 49% 45% 42% 38% 31%
7-10-6-1 75% 71% 68% 62% 58% 54% 50% 45% 42% 35% 30%
7-11-6-1 74% 68% 64% 59% 55% 51% 47% 44% 39% 35% 28%

Table B.12: Elman recurrent neural network average performance accuracy for the UKMO
model for different thresholds in Kelvin.
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Appendix C

Jordan Recurrent Neural Networks

The following tables show detailed results for individual JRNNs for error thresholds ranging
from 0.5 to 1.5 Kelvin on 0.1 Kelvin increments. Each table shows results for a specific
climate change model.

Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 41% 40% 38% 35% 32% 30% 27% 25% 23% 21% 15%
7-6-1 47% 45% 41% 37% 33% 30% 28% 27% 25% 21% 17%
7-7-1 46% 44% 40% 36% 32% 29% 26% 25% 23% 20% 16%
7-8-1 40% 38% 35% 32% 31% 28% 24% 21% 19% 16% 13%
7-9-1 42% 38% 35% 32% 31% 27% 26% 24% 21% 18% 17%
7-10-1 43% 41% 40% 36% 32% 28% 24% 22% 19% 18% 14%
7-11-1 43% 40% 38% 35% 33% 32% 27% 25% 23% 20% 19%
7-5-5-1 41% 39% 37% 34% 31% 29% 25% 23% 20% 17% 13%
7-6-5-1 41% 39% 37% 34% 31% 29% 25% 23% 20% 17% 13%
7-7-5-1 41% 39% 37% 35% 33% 30% 28% 25% 22% 18% 15%
7-8-5-1 40% 39% 37% 35% 33% 30% 27% 24% 20% 16% 14%
7-9-5-1 41% 39% 37% 35% 32% 29% 25% 23% 20% 16% 15%
7-10-5-1 41% 39% 37% 35% 32% 29% 25% 23% 20% 16% 15%
7-11-5-1 41% 39% 37% 34% 31% 29% 26% 22% 18% 16% 14%
7-6-6-1 41% 38% 36% 34% 32% 29% 25% 22% 19% 15% 14%
7-7-6-1 42% 39% 37% 33% 32% 31% 27% 26% 20% 18% 15%
7-8-6-1 42% 39% 37% 34% 32% 29% 26% 23% 21% 18% 14%
7-9-6-1 41% 37% 36% 34% 32% 29% 25% 24% 20% 18% 13%
7-10-6-1 43% 41% 38% 35% 32% 29% 26% 22% 19% 17% 15%
7-11-6-1 41% 40% 36% 34% 31% 29% 27% 25% 21% 20% 16%

Table C.2: Jordan recurrent neural network average performance accuracy for the CSIRO
model for different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 84% 79% 77% 73% 67% 60% 55% 51% 44% 39% 30%
7-6-1 85% 80% 76% 71% 67% 63% 58% 50% 42% 35% 31%
7-7-1 84% 79% 78% 73% 70% 65% 58% 52% 47% 40% 34%
7-8-1 84% 80% 77% 72% 68% 63% 60% 52% 44% 38% 31%
7-9-1 85% 83% 80% 78% 74% 68% 62% 55% 48% 41% 34%
7-10-1 85% 82% 77% 75% 72% 68% 61% 54% 47% 40% 35%
7-11-1 85% 82% 79% 76% 72% 68% 64% 56% 51% 42% 36%
7-5-5-1 72% 67% 61% 56% 51% 47% 42% 39% 36% 31% 25%
7-6-5-1 72% 68% 63% 58% 53% 48% 44% 39% 34% 29% 23%
7-7-5-1 73% 69% 62% 57% 54% 48% 43% 38% 34% 30% 24%
7-8-5-1 70% 66% 59% 55% 51% 46% 43% 38% 35% 31% 24%
7-9-5-1 71% 68% 64% 59% 51% 46% 43% 39% 35% 30% 23%
7-10-5-1 73% 67% 64% 59% 53% 49% 44% 41% 36% 29% 26%
7-11-5-1 75% 71% 67% 65% 58% 53% 47% 39% 34% 30% 23%
7-6-6-1 70% 67% 64% 59% 54% 49% 43% 40% 36% 31% 27%
7-7-6-1 75% 72% 69% 63% 58% 53% 47% 41% 37% 32% 27%
7-8-6-1 76% 71% 68% 63% 61% 56% 51% 46% 38% 32% 25%
7-9-6-1 83% 80% 77% 74% 67% 64% 57% 52% 48% 45% 42%
7-10-6-1 75% 71% 66% 64% 59% 56% 51% 45% 39% 35% 27%
7-11-6-1 76% 71% 65% 63% 58% 53% 47% 43% 38% 32% 24%

Table C.4: Jordan recurrent neural network average performance accuracy for the GF-
DLcm2.0 model for different thresholds in Kelvin.

Figure C.1: Accuracy of the Jordan recurrent neural network configurations for the six
climate change prediction models based on 1.2 Kelvin threshold.

70



Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 74% 69% 65% 61% 56% 50% 46% 42% 36% 30% 26%
7-6-1 75% 71% 68% 64% 61% 55% 49% 45% 40% 35% 29%
7-7-1 75% 71% 68% 64% 61% 55% 49% 45% 40% 35% 29%
7-8-1 76% 71% 69% 65% 61% 56% 50% 45% 39% 33% 28%
7-9-1 76% 71% 67% 63% 58% 55% 49% 45% 39% 34% 27%
7-10-1 75% 71% 68% 61% 58% 53% 47% 45% 39% 32% 25%
7-11-1 78% 76% 71% 65% 61% 56% 52% 48% 42% 37% 31%
7-5-5-1 63% 59% 55% 52% 47% 40% 37% 32% 28% 23% 18%
7-6-5-1 65% 62% 58% 52% 46% 42% 38% 32% 27% 24% 22%
7-7-5-1 67% 64% 58% 54% 49% 45% 39% 35% 31% 25% 22%
7-8-5-1 67% 63% 58% 53% 47% 44% 41% 36% 30% 25% 20%
7-9-5-1 66% 63% 59% 53% 46% 42% 38% 32% 27% 23% 18%
7-10-5-1 60% 55% 51% 47% 44% 39% 36% 31% 25% 22% 18%
7-11-5-1 65% 60% 54% 50% 45% 40% 35% 30% 25% 21% 19%
7-6-6-1 65% 61% 58% 52% 46% 43% 39% 33% 27% 23% 18%
7-7-6-1 65% 61% 55% 50% 47% 43% 39% 35% 31% 25% 19%
7-8-6-1 65% 63% 60% 55% 49% 44% 39% 35% 30% 25% 20%
7-9-6-1 69% 63% 58% 53% 47% 42% 38% 34% 30% 25% 23%
7-10-6-1 69% 63% 60% 57% 50% 46% 42% 37% 33% 28% 22%
7-11-6-1 68% 65% 61% 57% 54% 49% 44% 38% 34% 27% 22%

Table C.6: Jordan recurrent neural network average performance accuracy for the GF-
DLcm2.1 model for different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 82% 78% 76% 73% 68% 62% 56% 51% 46% 40% 34%
7-6-1 84% 82% 77% 72% 66% 61% 58% 52% 46% 38% 31%
7-7-1 82% 80% 77% 73% 69% 63% 54% 49% 45% 39% 34%
7-8-1 85% 82% 78% 73% 69% 63% 59% 53% 47% 40% 34%
7-9-1 84% 81% 77% 74% 70% 67% 61% 54% 46% 41% 35%
7-10-1 85% 80% 77% 71% 68% 64% 59% 53% 47% 40% 36%
7-11-1 85% 81% 78% 74% 67% 62% 57% 51% 46% 41% 33%
7-5-5-1 73% 70% 66% 59% 54% 51% 48% 45% 41% 34% 27%
7-6-5-1 73% 68% 64% 61% 58% 53% 47% 43% 39% 33% 27%
7-7-5-1 74% 70% 67% 63% 57% 53% 49% 44% 39% 33% 26%
7-8-5-1 75% 68% 64% 61% 58% 53% 48% 45% 39% 34% 29%
7-9-5-1 75% 71% 68% 65% 60% 55% 49% 45% 39% 36% 30%
7-10-5-1 76% 70% 67% 62% 58% 54% 50% 45% 40% 35% 30%
7-11-5-1 75% 70% 67% 64% 59% 56% 50% 47% 43% 38% 34%
7-6-6-1 77% 72% 66% 60% 56% 53% 47% 43% 37% 30% 27%
7-7-6-1 76% 72% 67% 63% 57% 54% 49% 44% 38% 33% 27%
7-8-6-1 77% 72% 68% 65% 62% 56% 48% 43% 39% 34% 30%
7-9-6-1 75% 69% 65% 59% 55% 52% 48% 43% 39% 31% 26%
7-10-6-1 79% 75% 70% 67% 62% 57% 52% 48% 43% 37% 31%
7-11-6-1 78% 74% 70% 66% 60% 56% 55% 50% 46% 36% 32%

Table C.8: Jordan recurrent neural network average performance accuracy for the MIROC
model for different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 75% 73% 69% 65% 60% 55% 51% 45% 41% 37% 34%
7-6-1 77% 75% 72% 66% 62% 56% 54% 49% 44% 38% 33%
7-7-1 76% 73% 70% 65% 60% 55% 51% 44% 39% 33% 29%
7-8-1 77% 72% 70% 67% 63% 60% 56% 51% 45% 39% 33%
7-9-1 77% 75% 72% 68% 61% 58% 54% 50% 47% 43% 34%
7-10-1 77% 71% 68% 63% 62% 58% 53% 48% 44% 39% 34%
7-11-1 78% 75% 72% 68% 65% 58% 52% 49% 45% 38% 35%
7-5-5-1 65% 61% 57% 54% 50% 45% 41% 34% 30% 24% 20%
7-6-5-1 66% 62% 57% 54% 50% 48% 44% 38% 33% 29% 23%
7-7-5-1 68% 65% 60% 57% 52% 45% 42% 36% 30% 27% 23%
7-8-5-1 67% 63% 57% 52% 50% 45% 41% 35% 29% 26% 23%
7-9-5-1 68% 64% 60% 57% 52% 48% 41% 37% 35% 30% 23%
7-10-5-1 70% 65% 61% 57% 55% 50% 46% 40% 35% 32% 26%
7-11-5-1 68% 65% 62% 56% 52% 48% 43% 39% 33% 27% 25%
7-6-6-1 69% 65% 61% 58% 53% 48% 42% 38% 32% 27% 23%
7-7-6-1 69% 65% 61% 58% 53% 48% 42% 38% 32% 27% 23%
7-8-6-1 69% 65% 61% 55% 51% 47% 42% 37% 33% 27% 23%
7-9-6-1 69% 65% 61% 55% 51% 47% 42% 37% 33% 27% 23%
7-10-6-1 71% 68% 64% 59% 55% 50% 45% 40% 37% 30% 26%
7-11-6-1 71% 68% 64% 59% 55% 50% 45% 40% 37% 30% 26%

Table C.10: Jordan recurrent neural network average performance accuracy for the MPI
model for different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 78% 74% 70% 65% 62% 57% 53% 47% 42% 33% 28%
7-6-1 84% 80% 78% 73% 68% 63% 58% 54% 48% 41% 33%
7-7-1 83% 78% 75% 70% 65% 60% 55% 49% 44% 39% 33%
7-8-1 83% 80% 77% 71% 68% 63% 58% 51% 47% 39% 33%
7-9-1 86% 82% 81% 76% 70% 63% 56% 51% 46% 40% 32%
7-10-1 86% 82% 80% 74% 68% 63% 58% 54% 49% 41% 35%
7-11-1 86% 82% 78% 75% 68% 60% 55% 51% 45% 40% 32%
7-5-5-1 75% 71% 64% 63% 58% 53% 47% 43% 40% 35% 29%
7-6-5-1 73% 70% 65% 60% 57% 54% 49% 43% 39% 35% 30%
7-7-5-1 78% 72% 65% 62% 59% 54% 49% 44% 38% 33% 27%
7-8-5-1 75% 70% 66% 60% 58% 53% 49% 45% 39% 34% 29%
7-9-5-1 77% 72% 68% 64% 59% 55% 51% 46% 41% 37% 30%
7-10-5-1 77% 73% 71% 65% 62% 56% 53% 48% 42% 38% 33%
7-11-5-1 77% 72% 68% 62% 59% 57% 51% 47% 42% 37% 28%
7-6-6-1 74% 69% 64% 62% 56% 52% 49% 44% 41% 34% 30%
7-7-6-1 75% 70% 65% 60% 58% 54% 48% 43% 37% 34% 29%
7-8-6-1 80% 73% 69% 65% 61% 57% 52% 48% 41% 33% 30%
7-9-6-1 77% 74% 68% 62% 57% 54% 50% 44% 37% 31% 27%
7-10-6-1 77% 72% 67% 63% 58% 53% 48% 42% 38% 32% 27%
7-11-6-1 77% 74% 69% 65% 61% 57% 51% 45% 41% 38% 31%

Table C.12: Jordan recurrent neural network average performance accuracy for the UKMO
model for different thresholds in Kelvin.

74



Appendix D

Partial Recurrent Neural Networks

The following tables show detailed results for individual PRNNs for error thresholds ranging
from 0.5 to 1.5 Kelvin on 0.1 Kelvin increments. Each table shows results for a specific
climate change model.

Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 38% 36% 34% 32% 30% 27% 25% 23% 20% 18% 16%
7-6-1 40% 37% 36% 33% 30% 27% 23% 22% 20% 18% 15%
7-7-1 38% 36% 33% 32% 28% 27% 24% 22% 20% 17% 15%
7-8-1 39% 37% 34% 32% 29% 26% 21% 19% 16% 14% 12%
7-9-1 39% 36% 33% 31% 29% 27% 22% 19% 17% 14% 13%
7-10-1 42% 38% 35% 32% 30% 27% 25% 23% 19% 15% 14%
7-11-1 40% 38% 36% 33% 31% 28% 25% 23% 21% 17% 14%
7-5-5-1 39% 36% 33% 32% 30% 26% 22% 20% 18% 16% 13%
7-6-5-1 40% 39% 36% 32% 30% 28% 25% 22% 20% 18% 15%
7-7-5-1 38% 35% 33% 31% 27% 26% 25% 21% 19% 18% 15%
7-8-5-1 40% 36% 33% 32% 28% 27% 24% 21% 18% 16% 14%
7-9-5-1 40% 37% 36% 34% 31% 28% 25% 21% 19% 17% 14%
7-10-5-1 39% 37% 36% 32% 29% 27% 25% 21% 17% 16% 12%
7-11-5-1 40% 38% 36% 33% 30% 27% 24% 22% 20% 17% 14%
7-6-6-1 40% 38% 37% 34% 30% 28% 26% 23% 20% 18% 15%
7-7-6-1 40% 38% 36% 32% 31% 26% 22% 20% 16% 15% 12%
7-8-6-1 38% 37% 34% 32% 27% 25% 22% 20% 18% 16% 14%
7-9-6-1 39% 37% 35% 33% 30% 27% 24% 23% 20% 17% 13%
7-10-6-1 38% 36% 35% 33% 30% 25% 23% 19% 18% 14% 12%
7-11-6-1 41% 38% 36% 33% 30% 26% 23% 20% 17% 15% 14%

Table D.2: Partial recurrent neural network average performance accuracy for the CSIRO
model for different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 81% 78% 73% 68% 64% 60% 55% 48% 41% 35% 29%
7-6-1 83% 78% 73% 70% 63% 60% 56% 48% 40% 34% 28%
7-7-1 82% 78% 73% 69% 63% 58% 54% 47% 40% 34% 27%
7-8-1 83% 80% 73% 69% 63% 60% 56% 48% 41% 32% 26%
7-9-1 82% 77% 74% 68% 61% 58% 53% 46% 40% 32% 26%
7-10-1 81% 77% 72% 69% 65% 60% 53% 47% 40% 33% 27%
7-11-1 82% 77% 73% 70% 63% 56% 51% 45% 38% 31% 26%
7-5-5-1 66% 62% 56% 51% 47% 44% 41% 35% 31% 26% 21%
7-6-5-1 67% 61% 57% 52% 48% 45% 40% 37% 32% 27% 22%
7-7-5-1 69% 64% 58% 52% 48% 45% 41% 37% 34% 30% 25%
7-8-5-1 66% 60% 56% 51% 45% 42% 38% 35% 32% 27% 23%
7-9-5-1 66% 61% 58% 54% 48% 43% 40% 37% 32% 29% 22%
7-10-5-1 67% 62% 57% 53% 48% 43% 40% 37% 32% 28% 25%
7-11-5-1 71% 65% 62% 56% 52% 47% 42% 37% 34% 29% 24%
7-6-6-1 66% 61% 56% 51% 48% 42% 39% 36% 31% 27% 23%
7-7-6-1 65% 60% 57% 51% 48% 44% 41% 37% 32% 28% 22%
7-8-6-1 66% 62% 58% 54% 48% 44% 41% 38% 34% 30% 25%
7-9-6-1 67% 62% 59% 54% 47% 44% 42% 38% 34% 28% 24%
7-10-6-1 69% 62% 58% 52% 48% 43% 39% 36% 33% 29% 22%
7-11-6-1 68% 63% 59% 52% 50% 46% 43% 37% 32% 28% 24%

Table D.4: Partial recurrent neural network average performance accuracy for the GF-
DLcm2.0 model for different thresholds in Kelvin.

Figure D.1: Accuracy of the partial recurrent neural network configurations for the six
climate change prediction models based on 1.2 Kelvin threshold.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 71% 67% 63% 58% 54% 49% 42% 37% 35% 31% 23%
7-6-1 71% 67% 63% 59% 54% 47% 41% 37% 32% 27% 22%
7-7-1 70% 66% 61% 56% 54% 49% 42% 38% 33% 28% 25%
7-8-1 68% 65% 61% 54% 49% 45% 42% 37% 32% 28% 23%
7-9-1 71% 66% 63% 59% 54% 48% 44% 39% 33% 27% 23%
7-10-1 70% 67% 63% 58% 53% 49% 44% 36% 30% 25% 22%
7-11-1 68% 64% 60% 56% 52% 47% 43% 37% 32% 28% 22%
7-5-5-1 59% 53% 50% 46% 40% 37% 32% 29% 26% 22% 19%
7-6-5-1 58% 54% 50% 45% 39% 36% 32% 27% 24% 21% 18%
7-7-5-1 60% 57% 52% 45% 40% 36% 33% 27% 25% 21% 17%
7-8-5-1 57% 54% 51% 45% 41% 35% 31% 29% 25% 23% 17%
7-9-5-1 59% 54% 49% 45% 39% 35% 31% 28% 25% 21% 18%
7-10-5-1 58% 53% 49% 45% 42% 37% 34% 28% 24% 22% 18%
7-11-5-1 58% 54% 49% 44% 39% 37% 32% 28% 23% 20% 17%
7-6-6-1 62% 58% 53% 49% 43% 37% 33% 29% 25% 23% 19%
7-7-6-1 59% 55% 51% 46% 38% 34% 32% 29% 25% 22% 17%
7-8-6-1 58% 54% 49% 45% 41% 37% 32% 28% 23% 21% 17%
7-9-6-1 58% 54% 49% 45% 39% 34% 32% 30% 25% 22% 15%
7-10-6-1 60% 54% 50% 46% 42% 37% 34% 30% 25% 21% 18%
7-11-6-1 59% 55% 52% 47% 43% 37% 33% 30% 25% 23% 16%

Table D.6: Partial recurrent neural network average performance accuracy for the GF-
DLcm2.1 model for different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 80% 77% 73% 67% 64% 58% 52% 48% 44% 37% 33%
7-6-1 81% 78% 74% 70% 65% 62% 56% 49% 46% 38% 33%
7-7-1 80% 76% 73% 67% 63% 58% 54% 49% 43% 39% 34%
7-8-1 80% 76% 72% 67% 62% 57% 54% 49% 43% 37% 34%
7-9-1 82% 79% 75% 70% 63% 60% 55% 49% 45% 39% 33%
7-10-1 81% 77% 73% 68% 63% 58% 52% 49% 42% 38% 33%
7-11-1 78% 75% 70% 66% 61% 58% 52% 48% 42% 37% 32%
7-5-5-1 70% 66% 60% 56% 52% 46% 42% 38% 34% 29% 23%
7-6-5-1 72% 67% 61% 56% 52% 47% 43% 38% 32% 27% 23%
7-7-5-1 68% 64% 60% 56% 51% 46% 42% 38% 34% 28% 25%
7-8-5-1 72% 68% 61% 56% 50% 47% 43% 38% 33% 27% 24%
7-9-5-1 71% 67% 61% 57% 52% 47% 43% 39% 35% 29% 24%
7-10-5-1 68% 65% 61% 57% 52% 48% 43% 38% 32% 29% 24%
7-11-5-1 71% 66% 62% 57% 52% 49% 43% 38% 35% 28% 23%
7-6-6-1 73% 66% 61% 57% 52% 48% 43% 38% 34% 27% 24%
7-7-6-1 74% 69% 62% 56% 52% 49% 43% 38% 34% 30% 25%
7-8-6-1 73% 67% 62% 57% 54% 49% 45% 40% 35% 30% 26%
7-9-6-1 71% 64% 60% 57% 51% 46% 42% 38% 34% 28% 24%
7-10-6-1 72% 67% 61% 57% 52% 47% 42% 38% 35% 28% 25%
7-11-6-1 70% 65% 61% 57% 54% 50% 44% 39% 33% 28% 25%

Table D.8: Partial recurrent neural network average performance accuracy for the MIROC
model for different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 78% 74% 70% 67% 63% 58% 53% 50% 45% 40% 35%
7-6-1 74% 69% 67% 61% 58% 52% 46% 40% 37% 31% 25%
7-7-1 75% 70% 66% 62% 59% 52% 46% 41% 36% 32% 27%
7-8-1 74% 71% 65% 62% 58% 52% 45% 41% 36% 30% 25%
7-9-1 75% 73% 69% 64% 56% 50% 46% 43% 37% 31% 25%
7-10-1 76% 72% 67% 62% 57% 50% 47% 42% 36% 29% 24%
7-11-1 74% 70% 65% 62% 55% 51% 46% 42% 35% 30% 25%
7-5-5-1 63% 58% 54% 51% 48% 43% 39% 34% 28% 22% 18%
7-6-5-1 65% 61% 58% 53% 49% 44% 40% 33% 29% 24% 19%
7-7-5-1 63% 60% 56% 52% 49% 43% 38% 31% 27% 22% 19%
7-8-5-1 73% 69% 67% 65% 63% 59% 55% 50% 47% 43% 39%
7-9-5-1 62% 58% 54% 52% 48% 43% 38% 33% 26% 23% 18%
7-10-5-1 64% 59% 55% 52% 48% 43% 39% 32% 26% 23% 19%
7-11-5-1 64% 58% 55% 52% 48% 43% 39% 33% 27% 22% 18%
7-6-6-1 63% 58% 55% 52% 47% 42% 37% 32% 27% 24% 20%
7-7-6-1 61% 58% 55% 52% 47% 41% 35% 30% 27% 24% 19%
7-8-6-1 65% 61% 56% 53% 49% 45% 38% 34% 27% 23% 20%
7-9-6-1 64% 60% 56% 52% 49% 45% 39% 33% 27% 23% 19%
7-10-6-1 62% 59% 56% 53% 47% 44% 37% 34% 26% 23% 19%
7-11-6-1 61% 57% 55% 51% 47% 43% 35% 30% 27% 23% 19%

Table D.10: Partial recurrent neural network average performance accuracy for the MPI
model for different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 81% 77% 72% 68% 62% 57% 51% 48% 42% 39% 34%
7-6-1 80% 77% 74% 70% 64% 60% 55% 49% 45% 40% 35%
7-7-1 80% 76% 73% 68% 65% 61% 54% 48% 43% 37% 35%
7-8-1 81% 78% 75% 70% 65% 60% 55% 50% 43% 39% 35%
7-9-1 82% 79% 75% 71% 67% 61% 56% 51% 45% 38% 32%
7-10-1 81% 78% 75% 70% 66% 60% 53% 49% 44% 38% 34%
7-11-1 82% 77% 72% 69% 63% 57% 54% 50% 44% 38% 33%
7-5-5-1 70% 65% 60% 56% 51% 48% 42% 38% 33% 27% 23%
7-6-5-1 73% 66% 62% 57% 53% 50% 45% 40% 35% 28% 23%
7-7-5-1 74% 66% 60% 57% 53% 48% 42% 38% 35% 29% 25%
7-8-5-1 74% 70% 63% 58% 52% 47% 44% 39% 34% 30% 24%
7-9-5-1 74% 70% 66% 63% 58% 52% 49% 46% 40% 37% 34%
7-10-5-1 70% 64% 59% 57% 50% 46% 41% 35% 32% 28% 23%
7-11-5-1 74% 69% 63% 57% 51% 47% 43% 38% 34% 28% 24%
7-6-6-1 71% 63% 59% 55% 52% 46% 42% 38% 32% 27% 23%
7-7-6-1 72% 67% 62% 59% 54% 50% 44% 38% 33% 29% 25%
7-8-6-1 74% 65% 60% 56% 52% 47% 42% 38% 34% 30% 26%
7-9-6-1 71% 67% 61% 56% 53% 48% 44% 39% 33% 28% 23%
7-10-6-1 73% 68% 62% 57% 53% 49% 44% 39% 33% 28% 25%
7-11-6-1 74% 70% 65% 60% 55% 50% 45% 41% 37% 30% 26%

Table D.12: Partial recurrent neural network average performance accuracy for the UKMO
model for different thresholds in Kelvin.
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Appendix E

Cascaded Neural Networks

The following tables show detailed results for individual CasNNs for error thresholds ranging
from 0.5 to 1.5 Kelvin on 0.1 Kelvin increments. Each table shows results for a specific climate
change model.

Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 42% 41% 38% 35% 33% 30% 28% 26% 23% 21% 18%
7-6-1 41% 37% 34% 32% 29% 29% 26% 24% 20% 16% 14%
7-7-1 41% 38% 36% 34% 32% 30% 26% 24% 21% 18% 16%
7-8-1 38% 35% 33% 31% 27% 25% 21% 20% 18% 17% 14%
7-9-1 40% 37% 36% 33% 30% 29% 27% 26% 20% 17% 14%
7-10-1 38% 37% 35% 32% 29% 27% 25% 23% 21% 19% 14%
7-11-1 42% 41% 37% 35% 32% 30% 29% 24% 22% 19% 17%
7-5-5-1 43% 41% 39% 36% 35% 33% 30% 29% 27% 23% 20%
7-6-5-1 42% 39% 37% 36% 33% 32% 29% 26% 23% 20% 18%
7-7-5-1 45% 43% 39% 36% 35% 31% 28% 25% 22% 20% 16%
7-8-5-1 44% 42% 39% 37% 35% 32% 28% 26% 23% 22% 20%
7-9-5-1 39% 36% 34% 32% 29% 28% 26% 23% 19% 15% 14%
7-10-5-1 41% 38% 35% 34% 32% 31% 28% 25% 23% 21% 18%
7-11-5-1 44% 42% 40% 39% 35% 31% 29% 25% 23% 21% 18%
7-6-6-1 43% 40% 38% 37% 34% 32% 28% 25% 23% 20% 15%
7-7-6-1 39% 37% 35% 33% 29% 26% 24% 22% 20% 17% 15%
7-8-6-1 42% 39% 37% 34% 30% 28% 25% 22% 20% 18% 15%
7-9-6-1 42% 39% 35% 34% 32% 29% 27% 25% 22% 18% 15%
7-10-6-1 40% 39% 36% 35% 32% 30% 28% 24% 21% 19% 16%
7-11-6-1 39% 37% 35% 32% 29% 26% 23% 20% 18% 15% 12%

Table E.2: Cascaded neural network average performance accuracy for the CSIRO model for
different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 78% 76% 72% 66% 60% 54% 49% 44% 38% 30% 26%
7-6-1 80% 74% 69% 62% 58% 54% 47% 42% 37% 32% 26%
7-7-1 81% 77% 70% 63% 58% 55% 50% 44% 38% 32% 26%
7-8-1 82% 77% 70% 67% 63% 57% 51% 44% 36% 32% 28%
7-9-1 82% 79% 72% 67% 60% 58% 53% 44% 38% 34% 27%
7-10-1 80% 74% 70% 65% 61% 55% 49% 43% 36% 31% 27%
7-11-1 80% 77% 71% 64% 60% 54% 49% 42% 37% 32% 27%
7-5-5-1 81% 74% 68% 63% 60% 55% 49% 42% 37% 34% 27%
7-6-5-1 81% 76% 70% 65% 61% 56% 49% 41% 38% 32% 25%
7-7-5-1 82% 77% 70% 66% 62% 56% 50% 44% 40% 35% 28%
7-8-5-1 80% 77% 71% 65% 59% 53% 48% 43% 38% 32% 26%
7-9-5-1 78% 74% 68% 65% 60% 55% 49% 43% 38% 32% 26%
7-10-5-1 80% 78% 72% 65% 59% 56% 49% 43% 38% 32% 25%
7-11-5-1 81% 76% 71% 67% 62% 56% 50% 43% 36% 32% 27%
7-6-6-1 82% 77% 71% 68% 64% 59% 53% 47% 40% 35% 29%
7-7-6-1 80% 75% 68% 64% 60% 55% 49% 42% 37% 32% 28%
7-8-6-1 81% 74% 68% 62% 57% 53% 47% 43% 35% 32% 26%
7-9-6-1 81% 77% 70% 65% 61% 56% 51% 44% 39% 34% 26%
7-10-6-1 78% 74% 69% 63% 57% 52% 47% 40% 35% 31% 25%
7-11-6-1 80% 75% 70% 64% 60% 54% 48% 42% 35% 30% 25%

Table E.4: Cascaded neural network average performance accuracy for the GFDLcm2.0
model for different thresholds in Kelvin.

Figure E.1: Accuracy of the cascaded neural network configurations for the six climate
change prediction models based on 1.2 Kelvin threshold.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 68% 64% 60% 54% 51% 46% 40% 37% 31% 25% 20%
7-6-1 68% 64% 59% 54% 52% 47% 42% 36% 32% 30% 24%
7-7-1 67% 64% 59% 56% 51% 46% 42% 37% 33% 28% 24%
7-8-1 73% 69% 63% 57% 55% 50% 44% 40% 35% 28% 23%
7-9-1 68% 63% 58% 54% 50% 44% 39% 36% 33% 30% 23%
7-10-1 69% 67% 62% 58% 52% 47% 42% 38% 34% 27% 23%
7-11-1 70% 66% 62% 57% 54% 49% 43% 38% 32% 27% 23%
7-5-5-1 70% 67% 62% 58% 53% 48% 44% 37% 33% 27% 23%
7-6-5-1 69% 65% 60% 56% 53% 47% 41% 37% 34% 29% 25%
7-7-5-1 71% 65% 60% 56% 54% 49% 42% 39% 35% 30% 25%
7-8-5-1 72% 67% 63% 57% 54% 50% 47% 40% 35% 30% 25%
7-9-5-1 70% 65% 61% 58% 53% 49% 43% 35% 29% 25% 22%
7-10-5-1 70% 67% 63% 58% 54% 48% 44% 39% 35% 29% 26%
7-11-5-1 68% 64% 60% 54% 49% 45% 39% 38% 34% 29% 23%
7-6-6-1 70% 66% 62% 58% 51% 47% 42% 37% 34% 28% 22%
7-7-6-1 69% 65% 63% 58% 51% 46% 44% 39% 33% 27% 20%
7-8-6-1 68% 65% 59% 54% 50% 45% 40% 36% 32% 27% 22%
7-9-6-1 70% 65% 61% 59% 55% 49% 44% 38% 32% 28% 24%
7-10-6-1 70% 67% 63% 57% 51% 46% 43% 38% 31% 27% 22%
7-11-6-1 71% 68% 63% 60% 56% 50% 46% 39% 33% 26% 22%

Table E.6: Cascaded neural network average performance accuracy for the GFDLcm2.1
model for different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 80% 76% 71% 67% 63% 57% 52% 48% 43% 38% 32%
7-6-1 80% 77% 73% 68% 64% 57% 53% 49% 44% 39% 33%
7-7-1 80% 75% 72% 68% 64% 58% 53% 49% 44% 39% 34%
7-8-1 82% 77% 73% 69% 64% 59% 55% 50% 44% 39% 34%
7-9-1 82% 79% 74% 69% 66% 61% 55% 52% 46% 39% 32%
7-10-1 82% 77% 73% 68% 63% 58% 55% 50% 45% 39% 35%
7-11-1 79% 75% 72% 67% 62% 57% 53% 46% 41% 37% 31%
7-5-5-1 78% 74% 70% 65% 59% 54% 51% 45% 41% 36% 31%
7-6-5-1 80% 77% 73% 68% 63% 57% 53% 48% 43% 39% 33%
7-7-5-1 80% 75% 71% 67% 63% 58% 53% 49% 43% 38% 32%
7-8-5-1 80% 75% 72% 67% 60% 54% 49% 45% 42% 37% 32%
7-9-5-1 83% 80% 75% 68% 65% 60% 55% 52% 45% 39% 34%
7-10-5-1 80% 76% 71% 66% 61% 58% 53% 47% 44% 39% 34%
7-11-5-1 80% 76% 71% 66% 61% 56% 52% 48% 42% 37% 31%
7-6-6-1 80% 77% 73% 68% 63% 60% 54% 50% 44% 39% 33%
7-7-6-1 80% 77% 73% 68% 63% 58% 53% 49% 44% 38% 33%
7-8-6-1 81% 76% 73% 68% 64% 57% 52% 48% 42% 37% 33%
7-9-6-1 80% 76% 71% 68% 63% 59% 54% 49% 42% 37% 32%
7-10-6-1 81% 77% 74% 70% 64% 59% 54% 49% 45% 40% 35%
7-11-6-1 82% 78% 71% 68% 64% 58% 53% 49% 43% 39% 33%

Table E.8: Cascaded neural network average performance accuracy for the MIROC model
for different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 76% 70% 65% 61% 55% 52% 46% 42% 37% 30% 27%
7-6-1 74% 69% 66% 61% 55% 51% 45% 42% 37% 31% 25%
7-7-1 74% 70% 67% 61% 55% 51% 45% 42% 39% 34% 27%
7-8-1 75% 70% 65% 60% 54% 51% 46% 40% 35% 29% 26%
7-9-1 76% 69% 65% 61% 56% 50% 46% 41% 36% 30% 26%
7-10-1 75% 71% 67% 61% 55% 49% 45% 41% 36% 33% 27%
7-11-1 72% 68% 63% 60% 56% 50% 46% 41% 36% 30% 25%
7-5-5-1 74% 70% 67% 61% 57% 51% 46% 41% 35% 31% 27%
7-6-5-1 72% 68% 63% 60% 55% 49% 45% 42% 39% 31% 27%
7-7-5-1 75% 72% 66% 61% 57% 50% 46% 41% 37% 32% 26%
7-8-5-1 75% 69% 65% 61% 58% 51% 47% 41% 36% 29% 26%
7-9-5-1 75% 70% 64% 61% 54% 50% 45% 42% 37% 30% 26%
7-10-5-1 74% 70% 65% 59% 55% 51% 45% 41% 36% 32% 26%
7-11-5-1 74% 71% 66% 60% 54% 50% 46% 41% 38% 32% 27%
7-6-6-1 73% 70% 65% 60% 56% 49% 45% 41% 36% 32% 25%
7-7-6-1 75% 73% 69% 61% 55% 49% 45% 42% 38% 33% 29%
7-8-6-1 75% 72% 66% 61% 56% 52% 46% 40% 37% 32% 27%
7-9-6-1 73% 70% 65% 61% 54% 49% 45% 41% 37% 31% 26%
7-10-6-1 77% 71% 68% 64% 58% 55% 50% 44% 39% 32% 27%
7-11-6-1 73% 70% 66% 60% 56% 50% 47% 40% 36% 30% 25%

Table E.10: Cascaded neural network average performance accuracy for the MPI model for
different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 80% 77% 73% 69% 62% 59% 54% 50% 44% 39% 35%
7-6-1 81% 77% 73% 68% 64% 59% 54% 49% 45% 40% 34%
7-7-1 81% 77% 72% 67% 63% 57% 53% 49% 44% 39% 33%
7-8-1 79% 76% 74% 69% 62% 58% 54% 47% 43% 38% 34%
7-9-1 80% 76% 71% 67% 63% 56% 53% 47% 42% 38% 34%
7-10-1 81% 78% 75% 70% 66% 62% 55% 51% 44% 40% 34%
7-11-1 82% 77% 74% 68% 63% 61% 55% 50% 45% 39% 34%
7-5-5-1 80% 77% 72% 68% 63% 58% 55% 49% 44% 37% 32%
7-6-5-1 80% 77% 71% 67% 62% 57% 52% 47% 43% 37% 32%
7-7-5-1 79% 75% 72% 67% 63% 58% 54% 49% 44% 39% 32%
7-8-5-1 79% 75% 70% 65% 62% 57% 52% 46% 41% 37% 32%
7-9-5-1 83% 79% 74% 69% 64% 58% 54% 51% 46% 39% 35%
7-10-5-1 82% 77% 73% 68% 64% 58% 53% 50% 44% 39% 33%
7-11-5-1 80% 76% 71% 67% 59% 56% 52% 48% 41% 36% 32%
7-6-6-1 81% 79% 73% 71% 63% 58% 55% 49% 44% 38% 34%
7-7-6-1 81% 79% 76% 69% 62% 58% 54% 47% 44% 39% 34%
7-8-6-1 79% 75% 70% 68% 63% 58% 53% 48% 43% 37% 32%
7-9-6-1 80% 77% 71% 68% 62% 57% 53% 49% 45% 38% 32%
7-10-6-1 80% 76% 70% 65% 63% 58% 55% 49% 43% 38% 30%
7-11-6-1 80% 76% 72% 69% 63% 57% 52% 46% 41% 37% 32%

Table E.12: Cascaded neural network average performance accuracy for the UKMO model
for different thresholds in Kelvin.
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Appendix F

Convolutional Neural Networks

The following tables show detailed results for individual CNNs for error thresholds ranging
from 0.5 to 1.5 Kelvin on 0.1 Kelvin increments. Each table shows results for a specific
climate change model.

Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 42% 41% 38% 35% 33% 30% 28% 26% 23% 21% 18%
7-6-1 41% 37% 34% 32% 29% 29% 26% 24% 20% 16% 14%
7-7-1 41% 38% 36% 34% 32% 30% 26% 24% 21% 18% 16%
7-8-1 38% 35% 33% 31% 27% 25% 21% 20% 18% 17% 14%
7-9-1 40% 37% 36% 33% 30% 29% 27% 26% 20% 17% 14%
7-10-1 38% 37% 35% 32% 29% 27% 25% 23% 21% 19% 14%
7-11-1 42% 41% 37% 35% 32% 30% 29% 24% 22% 19% 17%
7-5-5-1 43% 41% 39% 36% 35% 33% 30% 29% 27% 23% 20%
7-6-5-1 42% 39% 37% 36% 33% 32% 29% 26% 23% 20% 18%
7-7-5-1 45% 43% 39% 36% 35% 31% 28% 25% 22% 20% 16%
7-8-5-1 44% 42% 39% 37% 35% 32% 28% 26% 23% 22% 20%
7-9-5-1 39% 36% 34% 32% 29% 28% 26% 23% 19% 15% 14%
7-10-5-1 41% 38% 35% 34% 32% 31% 28% 25% 23% 21% 18%
7-11-5-1 44% 42% 40% 39% 35% 31% 29% 25% 23% 21% 18%
7-6-6-1 43% 40% 38% 37% 34% 32% 28% 25% 23% 20% 15%
7-7-6-1 39% 37% 35% 33% 29% 26% 24% 22% 20% 17% 15%
7-8-6-1 42% 39% 37% 34% 30% 28% 25% 22% 20% 18% 15%
7-9-6-1 42% 39% 35% 34% 32% 29% 27% 25% 22% 18% 15%
7-10-6-1 40% 39% 36% 35% 32% 30% 28% 24% 21% 19% 16%
7-11-6-1 39% 37% 35% 32% 29% 26% 23% 20% 18% 15% 12%

Table F.2: Convolutional neural network average performance accuracy for the CSIRO model
for different thresholds in Kelvin.

87



Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 72% 70% 64% 58% 55% 50% 45% 41% 38% 33% 27%
7-6-1 72% 69% 64% 58% 55% 51% 46% 40% 38% 34% 28%
7-7-1 72% 69% 63% 59% 55% 50% 46% 41% 38% 34% 28%
7-8-1 72% 70% 62% 58% 55% 50% 46% 40% 37% 32% 27%
7-9-1 73% 69% 64% 60% 56% 50% 45% 41% 37% 34% 29%
7-10-1 72% 70% 63% 59% 55% 49% 46% 41% 37% 33% 28%
7-11-1 72% 70% 62% 58% 54% 50% 45% 41% 38% 33% 28%
7-5-5-1 71% 70% 67% 63% 57% 53% 48% 40% 34% 30% 25%
7-6-5-1 70% 71% 67% 63% 57% 53% 49% 40% 34% 30% 26%
7-7-5-1 71% 70% 67% 63% 57% 53% 48% 41% 35% 30% 26%
7-8-5-1 70% 70% 68% 64% 57% 52% 48% 41% 37% 30% 26%
7-9-5-1 70% 70% 67% 64% 58% 53% 49% 40% 36% 30% 26%
7-10-5-1 71% 70% 67% 63% 57% 53% 49% 40% 36% 30% 26%
7-11-5-1 70% 70% 68% 63% 57% 53% 48% 40% 35% 30% 26%
7-6-6-1 70% 70% 68% 64% 57% 53% 48% 41% 35% 29% 26%
7-7-6-1 70% 70% 67% 64% 58% 53% 48% 40% 36% 29% 26%
7-8-6-1 70% 70% 67% 63% 56% 52% 48% 40% 35% 30% 26%
7-9-6-1 70% 70% 68% 63% 57% 53% 48% 41% 35% 30% 26%
7-10-6-1 70% 71% 68% 63% 57% 52% 48% 41% 35% 29% 26%
7-11-6-1 74% 73% 71% 69% 63% 59% 54% 47% 42% 38% 34%

Table F.4: Convolutional neural network average performance accuracy for the GFDLcm2.0
model for different thresholds in Kelvin.

Figure F.1: Accuracy of the convolutional neural network configurations for the six climate
change prediction models based on 1.2 Kelvin threshold.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 69% 68% 64% 60% 57% 50% 46% 41% 39% 33% 30%
7-6-1 71% 70% 66% 60% 55% 49% 45% 43% 38% 32% 30%
7-7-1 69% 68% 64% 61% 55% 51% 45% 42% 39% 32% 29%
7-8-1 70% 68% 64% 60% 56% 50% 45% 42% 40% 33% 29%
7-9-1 70% 69% 64% 60% 55% 49% 45% 42% 39% 33% 29%
7-10-1 70% 68% 64% 60% 56% 50% 45% 42% 40% 33% 29%
7-11-1 70% 68% 64% 60% 55% 49% 45% 42% 39% 33% 27%
7-5-5-1 72% 72% 67% 61% 57% 53% 48% 42% 36% 27% 23%
7-6-5-1 72% 72% 68% 62% 57% 52% 48% 42% 34% 26% 23%
7-7-5-1 72% 72% 67% 61% 56% 53% 48% 41% 35% 25% 21%
7-8-5-1 71% 72% 68% 61% 57% 53% 48% 41% 35% 26% 22%
7-9-5-1 72% 71% 68% 62% 57% 52% 47% 41% 35% 26% 22%
7-10-5-1 72% 72% 68% 62% 57% 52% 48% 41% 35% 27% 22%
7-11-5-1 73% 72% 68% 62% 57% 53% 49% 42% 36% 27% 22%
7-6-6-1 72% 71% 67% 62% 57% 52% 47% 41% 36% 25% 21%
7-7-6-1 71% 71% 66% 62% 57% 52% 48% 41% 36% 26% 22%
7-8-6-1 73% 72% 68% 62% 57% 53% 49% 42% 36% 27% 23%
7-9-6-1 71% 72% 67% 61% 57% 53% 48% 41% 36% 27% 22%
7-10-6-1 71% 72% 68% 62% 57% 53% 47% 41% 36% 27% 22%
7-11-6-1 72% 72% 68% 62% 57% 53% 49% 42% 36% 27% 23%

Table F.6: Convolutional neural network average performance accuracy for the GFDLcm2.1
model for different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 75% 75% 72% 67% 63% 58% 54% 47% 41% 34% 30%
7-6-1 75% 74% 72% 69% 63% 58% 54% 48% 42% 36% 31%
7-7-1 76% 75% 72% 69% 62% 59% 54% 47% 40% 34% 29%
7-8-1 76% 75% 72% 69% 63% 59% 54% 47% 40% 35% 30%
7-9-1 75% 74% 72% 67% 62% 58% 54% 48% 40% 34% 29%
7-10-1 75% 75% 72% 68% 63% 59% 54% 47% 40% 33% 28%
7-11-1 76% 76% 72% 68% 63% 59% 54% 48% 43% 36% 31%
7-5-5-1 76% 75% 70% 66% 63% 58% 49% 43% 37% 34% 29%
7-6-5-1 75% 75% 72% 68% 63% 59% 54% 47% 41% 35% 30%
7-7-5-1 75% 73% 69% 66% 62% 57% 50% 45% 38% 33% 29%
7-8-5-1 75% 74% 70% 66% 62% 57% 51% 44% 38% 35% 29%
7-9-5-1 74% 74% 71% 66% 63% 57% 51% 46% 39% 33% 28%
7-10-5-1 75% 74% 70% 66% 62% 57% 51% 44% 38% 35% 29%
7-11-5-1 75% 75% 70% 67% 61% 56% 48% 42% 38% 35% 28%
7-6-6-1 75% 75% 70% 66% 62% 57% 50% 44% 38% 35% 29%
7-7-6-1 75% 74% 70% 65% 62% 57% 49% 43% 38% 33% 29%
7-8-6-1 75% 74% 70% 66% 62% 57% 50% 43% 38% 35% 29%
7-9-6-1 75% 74% 70% 66% 63% 57% 51% 45% 38% 34% 29%
7-10-6-1 76% 74% 70% 66% 62% 56% 49% 42% 38% 35% 29%
7-11-6-1 75% 74% 70% 66% 62% 58% 49% 43% 37% 34% 29%

Table F.8: Convolutional neural network average performance accuracy for the MIROC
model for different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 69% 67% 64% 62% 55% 51% 50% 48% 41% 37% 29%
7-6-1 69% 66% 63% 60% 56% 51% 50% 48% 41% 35% 28%
7-7-1 69% 68% 64% 61% 56% 51% 50% 47% 43% 36% 28%
7-8-1 69% 67% 64% 61% 56% 51% 50% 47% 40% 36% 29%
7-9-1 69% 66% 63% 61% 55% 51% 50% 48% 42% 36% 29%
7-10-1 68% 67% 64% 61% 56% 51% 50% 47% 41% 36% 28%
7-11-1 69% 68% 64% 62% 56% 52% 50% 48% 42% 35% 28%
7-5-5-1 75% 73% 70% 67% 60% 55% 52% 46% 40% 35% 32%
7-6-5-1 75% 74% 70% 67% 60% 54% 51% 45% 40% 35% 33%
7-7-5-1 76% 73% 70% 68% 61% 55% 52% 46% 41% 35% 33%
7-8-5-1 75% 74% 71% 67% 61% 56% 53% 46% 40% 35% 32%
7-9-5-1 75% 74% 71% 68% 60% 55% 51% 46% 40% 35% 33%
7-10-5-1 76% 74% 71% 68% 61% 55% 51% 45% 40% 35% 33%
7-11-5-1 75% 74% 71% 67% 61% 54% 51% 45% 40% 35% 33%
7-6-6-1 76% 75% 72% 69% 62% 56% 52% 46% 39% 35% 33%
7-7-6-1 75% 73% 71% 67% 61% 56% 51% 45% 40% 35% 32%
7-8-6-1 75% 74% 70% 68% 60% 54% 51% 46% 40% 35% 32%
7-9-6-1 75% 73% 71% 67% 61% 54% 51% 45% 39% 35% 33%
7-10-6-1 75% 73% 70% 68% 60% 55% 51% 46% 41% 35% 32%
7-11-6-1 75% 74% 71% 67% 61% 55% 51% 45% 40% 35% 33%

Table F.10: Convolutional neural network average performance accuracy for the MPI model
for different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 77% 76% 72% 68% 64% 58% 53% 47% 40% 34% 30%
7-6-1 76% 76% 72% 68% 63% 58% 53% 47% 41% 34% 30%
7-7-1 76% 75% 72% 67% 63% 58% 53% 47% 40% 35% 30%
7-8-1 76% 75% 72% 68% 63% 59% 55% 48% 40% 33% 28%
7-9-1 76% 75% 71% 68% 64% 59% 53% 47% 41% 34% 29%
7-10-1 76% 76% 72% 69% 64% 59% 54% 46% 41% 35% 30%
7-11-1 76% 76% 72% 68% 64% 57% 52% 47% 39% 34% 30%
7-5-5-1 75% 75% 70% 66% 62% 57% 50% 43% 38% 35% 30%
7-6-5-1 75% 73% 69% 66% 62% 57% 50% 44% 37% 34% 28%
7-7-5-1 76% 74% 71% 65% 62% 57% 49% 43% 38% 34% 29%
7-8-5-1 75% 75% 70% 66% 62% 57% 49% 43% 39% 35% 29%
7-9-5-1 75% 74% 70% 66% 63% 58% 50% 45% 38% 35% 29%
7-10-5-1 75% 74% 71% 67% 63% 57% 50% 45% 37% 34% 29%
7-11-5-1 76% 74% 69% 66% 62% 57% 50% 43% 38% 35% 29%
7-6-6-1 75% 75% 70% 66% 63% 56% 50% 43% 37% 35% 30%
7-7-6-1 75% 74% 69% 66% 61% 57% 49% 42% 37% 35% 29%
7-8-6-1 75% 73% 69% 65% 63% 57% 51% 43% 37% 34% 30%
7-9-6-1 74% 74% 70% 66% 63% 56% 51% 44% 38% 35% 30%
7-10-6-1 75% 75% 69% 66% 62% 57% 50% 44% 39% 35% 30%
7-11-6-1 75% 73% 69% 66% 62% 57% 50% 44% 38% 34% 29%

Table F.12: Convolutional neural network average performance accuracy for the UKMO
model for different thresholds in Kelvin.
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Appendix G

Long-short term memory Neural
Networks

The following tables show detailed results for individual LSTMs for error thresholds ranging
from 0.5 to 1.5 Kelvin on 0.1 Kelvin increments. Each table shows results for a specific
climate change model.

Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 23% 22% 20% 19% 18% 17% 15% 14% 13% 11% 9%
7-6-1 30% 29% 27% 24% 21% 19% 17% 16% 13% 12% 10%
7-7-1 28% 27% 25% 24% 21% 19% 17% 15% 13% 11% 10%
7-8-1 29% 27% 25% 22% 20% 18% 16% 15% 13% 11% 9%
7-9-1 39% 37% 36% 32% 31% 28% 25% 21% 20% 17% 14%
7-10-1 35% 33% 31% 27% 26% 24% 22% 19% 17% 15% 13%
7-11-1 28% 27% 25% 23% 22% 21% 17% 15% 13% 11% 8%
7-5-5-1 23% 23% 21% 20% 17% 15% 14% 12% 11% 10% 8%
7-6-5-1 15% 14% 13% 12% 10% 10% 9% 9% 8% 7% 6%
7-7-5-1 21% 19% 16% 16% 14% 13% 12% 10% 8% 6% 6%
7-8-5-1 24% 24% 21% 20% 18% 17% 15% 13% 11% 9% 9%
7-9-5-1 18% 18% 17% 16% 15% 14% 14% 13% 11% 10% 8%
7-10-5-1 20% 19% 19% 16% 15% 14% 13% 11% 10% 9% 6%
7-11-5-1 21% 19% 18% 15% 14% 12% 12% 11% 10% 8% 7%
7-6-6-1 17% 16% 15% 14% 12% 11% 10% 9% 8% 8% 6%
7-7-6-1 22% 22% 20% 17% 16% 14% 13% 12% 10% 9% 8%
7-8-6-1 21% 19% 17% 16% 15% 15% 13% 12% 9% 7% 5%
7-9-6-1 22% 21% 18% 17% 16% 15% 14% 10% 9% 8% 7%
7-10-6-1 22% 20% 18% 18% 16% 15% 12% 10% 10% 7% 6%
7-11-6-1 23% 23% 20% 19% 17% 16% 14% 13% 11% 10% 8%

Table G.2: LSTM neural network average performance accuracy for the CSIRO model for
different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 58% 57% 55% 53% 50% 47% 44% 40% 35% 29% 23%
7-6-1 57% 56% 54% 52% 49% 44% 41% 38% 34% 29% 24%
7-7-1 61% 59% 57% 54% 52% 49% 44% 40% 37% 31% 25%
7-8-1 61% 61% 58% 55% 52% 47% 44% 41% 37% 33% 26%
7-9-1 63% 63% 60% 58% 55% 50% 47% 44% 38% 33% 29%
7-10-1 63% 62% 58% 54% 51% 49% 43% 40% 35% 31% 26%
7-11-1 62% 61% 59% 55% 52% 48% 44% 41% 38% 32% 25%
7-5-5-1 63% 62% 59% 53% 50% 47% 45% 42% 37% 33% 28%
7-6-5-1 63% 62% 59% 54% 51% 48% 43% 41% 39% 33% 28%
7-7-5-1 61% 62% 58% 54% 51% 48% 46% 41% 38% 33% 28%
7-8-5-1 56% 58% 57% 54% 53% 47% 46% 40% 39% 33% 26%
7-9-5-1 63% 61% 58% 54% 52% 48% 46% 42% 37% 32% 27%
7-10-5-1 62% 61% 57% 55% 51% 47% 45% 41% 37% 31% 26%
7-11-5-1 62% 59% 57% 54% 51% 48% 44% 41% 38% 30% 26%
7-6-6-1 65% 64% 59% 56% 51% 49% 45% 43% 38% 35% 30%
7-7-6-1 67% 62% 60% 56% 52% 48% 44% 42% 38% 33% 27%
7-8-6-1 64% 61% 58% 55% 50% 47% 44% 41% 38% 34% 28%
7-9-6-1 68% 68% 65% 61% 56% 53% 49% 46% 41% 37% 30%
7-10-6-1 68% 68% 63% 60% 57% 53% 48% 47% 42% 38% 31%
7-11-6-1 64% 61% 59% 55% 51% 48% 44% 41% 37% 32% 26%

Table G.4: LSTM neural network average performance accuracy for the GFDLcm2.0 model
for different thresholds in Kelvin.

Figure G.1: Accuracy of the long-short term memory neural network configurations for the
six climate change prediction models based on 1.2 Kelvin threshold.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 59% 59% 57% 53% 51% 49% 47% 42% 37% 32% 26%
7-6-1 59% 58% 56% 55% 53% 50% 45% 40% 36% 33% 29%
7-7-1 61% 60% 59% 56% 52% 49% 46% 42% 38% 35% 31%
7-8-1 58% 59% 57% 55% 52% 50% 45% 42% 39% 36% 31%
7-9-1 60% 59% 58% 56% 54% 51% 47% 41% 37% 34% 29%
7-10-1 65% 64% 60% 57% 53% 50% 46% 42% 38% 33% 29%
7-11-1 64% 63% 60% 55% 52% 49% 45% 44% 40% 35% 29%
7-5-5-1 67% 65% 61% 59% 53% 50% 47% 43% 41% 38% 32%
7-6-5-1 63% 61% 58% 56% 54% 51% 47% 42% 40% 37% 33%
7-7-5-1 64% 63% 58% 56% 54% 51% 47% 42% 40% 37% 34%
7-8-5-1 63% 63% 59% 56% 54% 50% 45% 43% 40% 38% 34%
7-9-5-1 62% 61% 59% 56% 53% 50% 46% 41% 38% 35% 32%
7-10-5-1 65% 64% 60% 57% 53% 49% 47% 44% 41% 37% 33%
7-11-5-1 64% 64% 60% 58% 55% 51% 47% 43% 40% 35% 32%
7-6-6-1 63% 62% 59% 57% 53% 50% 47% 44% 40% 37% 35%
7-7-6-1 64% 64% 60% 59% 56% 52% 48% 43% 40% 37% 32%
7-8-6-1 66% 65% 61% 54% 52% 48% 44% 41% 38% 35% 30%
7-9-6-1 63% 61% 59% 56% 53% 49% 46% 44% 39% 33% 29%
7-10-6-1 64% 62% 58% 57% 54% 51% 47% 43% 38% 35% 31%
7-11-6-1 62% 61% 58% 56% 54% 51% 47% 43% 39% 34% 31%

Table G.6: LSTM neural network average performance accuracy for the GFDLcm2.1 model
for different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 66% 65% 63% 58% 56% 51% 49% 44% 37% 31% 26%
7-6-1 71% 70% 68% 63% 60% 56% 52% 50% 44% 40% 35%
7-7-1 66% 63% 61% 59% 57% 54% 47% 43% 38% 33% 26%
7-8-1 73% 72% 69% 66% 60% 57% 52% 47% 44% 38% 29%
7-9-1 73% 72% 69% 65% 62% 59% 54% 49% 45% 38% 34%
7-10-1 71% 70% 68% 64% 63% 59% 53% 47% 42% 36% 31%
7-11-1 74% 73% 69% 66% 65% 59% 53% 48% 42% 36% 31%
7-5-5-1 72% 72% 70% 67% 64% 61% 54% 50% 42% 39% 33%
7-6-5-1 75% 74% 70% 67% 64% 59% 55% 51% 43% 40% 33%
7-7-5-1 74% 74% 72% 68% 65% 60% 53% 47% 43% 38% 32%
7-8-5-1 77% 77% 74% 72% 69% 66% 61% 53% 46% 37% 29%
7-9-5-1 73% 73% 70% 68% 65% 60% 54% 48% 44% 38% 33%
7-10-5-1 82% 74% 71% 68% 64% 60% 56% 50% 44% 39% 33%
7-11-5-1 74% 73% 71% 67% 63% 60% 55% 49% 43% 39% 33%
7-6-6-1 75% 74% 72% 67% 64% 60% 54% 50% 45% 39% 33%
7-7-6-1 74% 74% 71% 68% 65% 60% 54% 48% 42% 37% 30%
7-8-6-1 75% 73% 71% 67% 64% 58% 55% 50% 46% 39% 34%
7-9-6-1 73% 74% 71% 68% 65% 59% 55% 49% 44% 38% 34%
7-10-6-1 73% 73% 70% 68% 63% 60% 53% 49% 45% 38% 32%
7-11-6-1 73% 72% 70% 68% 63% 58% 52% 47% 44% 38% 31%

Table G.8: LSTM neural network average performance accuracy for the MIROC model for
different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 59% 58% 55% 50% 46% 41% 36% 32% 27% 25% 21%
7-6-1 59% 59% 57% 53% 47% 43% 38% 36% 31% 25% 21%
7-7-1 60% 59% 57% 54% 50% 45% 40% 34% 30% 27% 22%
7-8-1 60% 59% 57% 56% 52% 47% 42% 37% 33% 28% 22%
7-9-1 61% 61% 58% 54% 51% 45% 41% 38% 32% 28% 24%
7-10-1 58% 57% 54% 50% 46% 43% 38% 34% 31% 27% 21%
7-11-1 61% 59% 58% 53% 50% 45% 42% 37% 32% 29% 23%
7-5-5-1 72% 60% 58% 53% 50% 46% 43% 39% 33% 30% 25%
7-6-5-1 61% 59% 57% 54% 50% 47% 42% 37% 32% 29% 22%
7-7-5-1 60% 60% 58% 55% 51% 47% 44% 38% 34% 29% 24%
7-8-5-1 61% 59% 58% 54% 51% 48% 42% 37% 32% 28% 24%
7-9-5-1 61% 61% 56% 52% 51% 48% 42% 37% 33% 29% 23%
7-10-5-1 58% 56% 53% 50% 47% 43% 39% 35% 30% 27% 22%
7-11-5-1 61% 58% 55% 53% 49% 44% 43% 37% 31% 26% 22%
7-6-6-1 61% 60% 58% 55% 52% 48% 43% 38% 34% 28% 22%
7-7-6-1 58% 57% 54% 51% 49% 45% 41% 38% 34% 30% 24%
7-8-6-1 63% 61% 57% 55% 53% 48% 43% 39% 34% 29% 24%
7-9-6-1 60% 60% 55% 53% 50% 46% 40% 37% 32% 28% 22%
7-10-6-1 61% 60% 56% 54% 51% 46% 41% 37% 32% 28% 22%
7-11-6-1 62% 60% 57% 55% 52% 49% 45% 38% 34% 31% 24%

Table G.10: LSTM neural network average performance accuracy for the MPI model for
different thresholds in Kelvin.
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Topology < 1.5 < 1.4 < 1.3 < 1.2 < 1.1 < 1.0 <0.9 <0.8 <0.7 <0.6 <0.5

7-5-1 75% 72% 70% 66% 61% 55% 50% 46% 44% 39% 33%
7-6-1 74% 72% 68% 65% 61% 57% 54% 48% 42% 36% 32%
7-7-1 75% 73% 71% 67% 64% 58% 52% 48% 40% 35% 30%
7-8-1 72% 71% 69% 67% 64% 58% 53% 48% 42% 36% 30%
7-9-1 78% 77% 76% 72% 69% 66% 59% 55% 52% 47% 40%
7-10-1 74% 73% 69% 66% 62% 57% 53% 46% 40% 37% 30%
7-11-1 73% 73% 70% 67% 64% 59% 52% 49% 42% 37% 30%
7-5-5-1 74% 74% 71% 67% 65% 61% 55% 49% 42% 38% 33%
7-6-5-1 75% 74% 71% 67% 64% 61% 56% 50% 44% 38% 33%
7-7-5-1 74% 74% 70% 67% 63% 60% 55% 50% 43% 38% 32%
7-8-5-1 75% 73% 71% 68% 64% 60% 55% 48% 44% 41% 33%
7-9-5-1 75% 76% 73% 71% 69% 63% 61% 55% 51% 46% 41%
7-10-5-1 71% 70% 68% 63% 62% 58% 53% 47% 39% 35% 29%
7-11-5-1 69% 69% 66% 63% 60% 56% 51% 45% 41% 37% 31%
7-6-6-1 75% 74% 71% 67% 62% 58% 53% 50% 42% 38% 32%
7-7-6-1 75% 73% 71% 66% 64% 61% 56% 49% 42% 38% 33%
7-8-6-1 74% 72% 70% 68% 64% 61% 56% 51% 42% 38% 33%
7-9-6-1 76% 74% 72% 69% 65% 59% 55% 51% 45% 38% 34%
7-10-6-1 75% 73% 70% 67% 65% 60% 54% 48% 43% 39% 34%
7-11-6-1 67% 66% 64% 61% 57% 53% 49% 45% 42% 35% 30%

Table G.12: LSTM neural network average performance accuracy for the UKMO model for
different thresholds in Kelvin.
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