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Abstract: 

Entomopathogenic nematodes in the genera Heterorhabditis and Steinernema have 

emerged excellent as non-chemical alternatives for control of insect pest population. They 

have a specific mutualistic symbioses with bacterial symbionts in the genera 

Photorhabdus and Xenorhabdus, respectively. Native EPN species that are able to tolerate 

environmental stress including desiccation are of great interest for application. The aim 

of this study was to isolate indigenous EPN species from soil samples collected from Brits, 

North West province in South Africa, and to investigate their ability to tolerate 

desiccation stress. The second aim was to isolate the bacterial symbiont and sequence, 

assemble and annotate its whole genomic DNA. Insect baiting technique and White trap 

method proved useful in the recovery of nematodes from collected soil samples and 

infected cadaver, respectively. Molecular identification based on the amplification of the 

18S rDNA and phylogenetic relationships revealed high affinity of the unknown EPN 

isolate 10 to Steinernema species and due to variation in evolutionary divergence distance, 

the unknown isolate was identified as Steinernema spp. isolate 10 . Isolates 35 and 42 

revealed high similarity to Heterorhabditis zealandica strain Bartow (accession number: 

GU174009.1), Heterorhabditis zealandica strain NZH3 (accession number: EF530041.1) 

and the South African isolate Heterorhabditis zealandica strain SF41 (EU699436.1). Both 

Steinernema spp. isolate 10 and Heterorhabditis species could tolerate desiccation. 

Steinernema spp. isolate 10 was tolerant up to 11 days of desiccation exposure in loamy 

sand and up to 9 days of exposure in river sand, causing 26, 6% and 13, 4% cumulative 

larval mortality after 96 hours, post resuscitation by rehydration, respectively. 

Heterorhabditis spp. could tolerate desiccation up to 13 days of exposure and induced 

26.6% cumulative larval mortality on both loamy and river sand after 96 hours post 

resuscitation. Swarming, aggregation, coiling and clumping behavioural characteristics 

were observed when Steinernema spp. isolate 10 was exposed to desiccation and 

Heterorhabditis species displayed no similar behavioural characteristics associated with 

desiccation tolerance. Morphological characteristics of the unknown Steinernema spp. 

isolate 10 have been described, and the thick cuticle and sheath which are both associated 

with tolerance to desiccation stress have been noted.  The bacterial symbiont was isolated 

from larval hosts infected with Steinernema spp. isolate 10 and molecular identification 

through NCBI Blastn based on the 16S rDNA revealed high affinity to Xenorhabdus 

bacterial species. Phylogenetic relationships and evolutionary divergence estimates 
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revealed genetic variation and the species was identified as Xenorhabdus bacterial isolate.  

The genome assembly of Xenorhabdus bacterial isolate using CLC Bio revealed a total 

length of 4, 183, 779 bp with 231 contigs (>=400bp), GC content of 44.7% and N50 of 

57,901 bp. Annotation of the assembled genome through NCBI PGAAP annotation 

pipeline revealed 3,950 genes (3,601 protein coding sequences (CDS) and 266 

pseudogenes), 12 rRNAs and 70 tRNAs. RAST annotation revealed 55 of virulence, 

disease and defense subsystem features which are involved in the pathogenicity of 

Xenorhabdus bacterial isolate. The ability of EPNs to tolerate environmental stress is 

highly crucial and one of the determining factors for biocontrol potential and successful 

application, thus the indigenous desiccation tolerant EPN isolate, Steinernema spp. isolate 

10 holds great potential as a biological control agent. The genome sequencing and 

annotation reveals insight to behavioural and physiological attributes of bacterial 

symbionts and this study will contribute to the understanding of pathogenicity and 

evolution of the bacteria–nematode complex. 
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CHAPTER1: Literature Review 

1.1 INTRODUCTION 

1.1.1 Agriculture and chemical pesticides 

Environmentally sustainable protection of agricultural crops from insect pests is highly 

essential for the production of food. The high demand of food is growing almost exponentially 

due to increasing world population. South Africa also plays a pivotal role in the global food 

supply chain through its agricultural exports. Agriculture contributes about 3% to South 

Africa’s gross domestic product (GDP). Every crop has its complex of insect pests which have 

and will develop resistance to conventional chemical pesticides. Synthetic chemical 

insecticides also have a negative impact on the environment and human health, and without the 

application of synthetic chemical insecticides to crops, yield loses are more or less guaranteed 

(Kiniuki, 2001). The development of alternative pest control agents which are sustainable and 

environmentally friendly is a necessity. Different kinds of biocontrol agents have been 

developed as alternatives to the conventional chemical based pesticides. Chemical pesticides 

including fungicides, herbicides and insecticides have long been employed since 1818s to 

combat pests which feed on plants, however, for chemical pesticides to be effective they need 

to be biologically active and toxic (Kuniuki, 2001). Because they are toxic, they are potentially 

hazardous to human beings, animals and the environment. 

Health effects can either be acute or severe, and includes irritation of eyes and skin, nervous 

system affection and mimicking of hormones causing reproductive problems and cancer. 

Association with pesticides has been reported to cause non-Hodgkin leukemia and lymphoma. 

Environmental effects include air, soil and water pollution (Kuniuki, 2001). Another major 

problem with pesticides is that insects develop resistance against them within a short period of 

time resulting in amplification of pest population and destruction of natural enemies, hence the 

need for the application of entomopathogenic nematodes (EPNs) as biocontrol agents of insect 

pests. 

1.1.2 Biocontrol control  

Biological control (BC) is the control of pests by disrupting their ecological status through the 

use of organisms that are natural predators, parasites, or pathogens (Pionar, 1979). The natural 

enemies include bacteria, fungi and nematodes. Sustainable pest management is an essential 
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input activity for successful crop production hence there is a need to make greater and more 

effective utilization of all the natural enemies of insect crop pests that only target the selected 

pest host and not the other beneficial insects associated with agricultural cropping systems 

(Webster, 1973). Parasitism of insects by nematodes has long been known since 17th century 

but it was only in the 1930’s that serious consideration was given to using nematodes as 

biological control agents to control insect pests (Grewal et al, 2006).  

There are three distinct methods of BC namely inoculative, augmentation and conservation 

method (Cook, 1993). The interest is in the conservation method which involves the 

conservation of existing natural enemies in an environment. Natural enemies are already 

adapted to the habitat and to the target pest, and their conservation can be simple and cost-

effective (Smart, 1995).  This is because it is best to use indigenous enemies than foreign for 

population control purposes. BC agents are advantageous over pesticides because they are 

environmentally friendly and non-polluting. Biological control processes can be properly 

understood if chemical, physical and biological interactions are understood in the soil, in order 

to directly understand how entomopathogenic nematodes react when applied on agricultural 

fields with the aim to attack and kill insect pests, (Georgis et al, 2006). 

1.1.3 Entomopathogenic nematodes 

Nematodes are non-segmented, colourless roundworms. They are characterized by their 

excretory, secretory, nervous, digestive, reproductive and muscular systems. They neither have 

a circulatory nor respiratory systems. Many microorganisms form mutualistic relationships 

with high order organisms such as animals and plants. It has been hypothesized that coevolution 

has resulted in the development of beneficial microbial mutualistic associations between plants 

and animals. Coevolution of mutualistic partners leads to speciation or co-speciation 

(Maneesakom et al, 2011). The nematode-endosymbiotic bacterial-insect host association 

represents an attractive model system for evolutionary studies. In addition nematodes also 

represent one of the most diverse and specious animals on earth (O’Leary et al, 2011). 

Nematodes that are vectors for bacteria and are able to penetrate and parasitize the insect larvae 

are referred to as entomopathogenic nematodes (EPNs). They fall in the genera Steinernema 

and Heterorhabditis which are associated with bacterial endosymbionts of the genera 

Xenorhabdus and Photorhabdus, respectively. (O’Leary et al, 2011). The mutualistic 

relationship which has evolved between EPNs and their bacterial endosymbionts is highly 

complex and is under multiple gene co-regulations (Georgis et al, 2006). EPN and its bacterial 

http://en.wikipedia.org/wiki/Habitat
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symbiont are thought to have co-evolved from an association that first involved the nematode 

as a bacteriovor that fed on an enterobacterial species (Maneesakom et al, 2011).  From this 

association the nematode evolved into a vector for the bacteria which it fed on and the bacteria 

evolved into an insect pathogen that could parasitize a wide range of different species of insect 

larvae (Maneesakom et al, 2011). The EPN-bacterial symbiotic relationship is essential for the 

lethal infection of insects, especially of insects that attack plants. EPNs infect the larval stage 

of a diverse range of insects and release their bacterial endosymbiont into the larval haemocoel. 

The bacterial endosymbionts which are insect pathogens multiply and secrete proteins and 

secondary metabolites that are lethal to the insect larva and suppress the growth of other 

competing environmental bacteria, fungi, nematodes and protists while providing a suitable 

environment for EPNs reproduction and growth (Maneesakom et al, 2011).  

1.1.4 EPN Taxonomy 

Nematodes belong to the phylum Nematoda. The families, Mermithidae, Allantonematidae, 

Neotylenchidae, Sphaerularidae, Rhabditidae, Steinernematidae and Heterorhabditidae are 

more popular in most researches carried by various scientists. However, the nematodes from 

the families Steinernematidae and Heterorhabditidae have become the most important 

nematode species for the development of biocontrol agents (Perez et al, 2003). The 

Steinernematidae family consists of Sixty-one species of Steinernema and the family 

Heterorhabditidae consists of 24 species of Heterorhabditis nematodes which have been 

identified to date (Thanwisai et al, 2012). Nematodes of the genera, Steinernema and 

Heterorhabditis are associated symbiotically with the enterobacteria, Xenorhabdus spp. and 

Photorhabdus spp, respectively. The symbionts are gram negative bacterial species and belong 

to the Enterobactericeae family (Thanwisai et al, 2012). 

1.1.5 Parasitism of insect larvae by entomopathogenic nematode and bacterial symbiont  

Free-living and non-feeding infective juveniles (IJs) are metabolically and developmentally 

arrested and carry symbiotic bacteria (Kaya and Stock, 1997).  Photorhabdus and 

Xenorhabdus bacterial endosymbionts are carried by Heterorhabditis and Steinernema 

infective juveniles, respectively. These bacterial endosymbionts are genus of bioluminescent 

enterobacteria under the family Enterobacteraceae and normally colonizes the gut of IJs.  

IJs actively search for insects in the soil; they then enter the insect host larvae through natural 

openings such as the anus, mouth or respiratory spiracles by using mechanical and enzymatic 

means (Poinar, 1975). Heterorhabditis IJs does not only depend on natural openings for entry, 
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they possess small tooth-like appendages which enables them to tear the cuticle of the insect 

larvae and gain direct access to the haemolymph. The IJs actively penetrate through the 

tracheae into the insect body cavity (haemocoel) and releases the symbiotic bacteria from its 

intestine to the insect haemolymph. The signals that stimulate the IJs to regurgitate the 

bacteria into the haemolymph post entry have not been identified. The bacteria avoid or 

silence the immune response of the insect larvae. The bacteria start multiplying and grow 

exponentially in the nutrient-rich haemolymph while secreting toxins and hydrolytic enzymes 

including proteases and lipases that hydrolyses the cadaver of the insect larvae until the insect 

succumbs to septicaemia within 48-72 hours of infection. The IJs recover from their arrested 

state (dauer stage) and start feeding on multiplying bacteria and disintegrated host tissues 

(Ciche et al, 2006). Toxins produced by the multiplying bacteria kill the insect host. These 

bacteria also produce a plethora of metabolites, toxins and antibiotics with bactericidal, 

fungicidal and nematicidal properties, which ensures monoxetic conditions for nematode 

development and reproduction in insect cadaver (Ciche et al, 2006). Heterorhabditid and 

steinernematid nematodes differ in their mode of reproduction. In heterorhabditid nematodes, 

the first generation individuals are produced by self-fertile hermaphrodites (hermaphroditic) 

but subsequent generation individuals are produced by cross fertilization involving males and 

females (amphimictic) (Pirez-daSilva, 2007). In steinernematid nematodes with an exception 

of one species, all generations are produced by cross fertilization involving males and females 

(amphimictic).  Prior leaving the cadaver of the insect, the bacteria must colonize the IJ and 

the transmission of the bacteria to the nematode is a complex process which is not fully 

understood. IJs emerge from infected larvae in search for new hosts. 
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Figure 1.1: The life cycle of entomopathogenic nematodes 

 (Adapted from Stock and Goodrich-Blair, 2008) 

 

1.1.6 The biology of bacterial symbionts: Photorhabdus and Xenorhabdus 

Xenorhabdus and Photorhabdus are members of the family Enterobacteriaceae and phylum 

Proteobacteria. They are facultative anaerobic gram negative bacteria and are rod shaped and 

non sporulating. They are lethal to insect pests with the ability to depress their innate immune 

system. Insects have both cellular and humoral based immune response mechanisms triggered 

by recognition of foreign particles (Goodrich-Blair and Clarke, 2007). The insect’s eicosanoid 

pathway is induced by phospholipase A2 enzyme and in turn, haemocyte aggregation and 

nodulation (Kim et al, 2005). Cell based immunity involves the encapsulation of invading 

organisms by circulating haemocytes and subsequent menalization of the capsule by the 
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enzyme phenoloxidase (Goodrich-Blair and Clarke, 2007). Humoral response involves the 

production of cationic antimicrobial peptides (CAMPs) that target bacterial membranes.  

Photorhabdus and Xenorhabdus are not inherently resistant to insect immune system, however 

both species have developed mechanisms to counteract the immune response of the insect 

larvae and induce mortality. Photorhabdus counteract the immune response of the larval host 

by the production of a signalling molecule AI-2 that incur resistance to reactive oxygen species 

(ROS) (Krin et al, 2006). ROS is a component of an early immune response in insect larvae. 

Photorhabdus also relies on the modification of the lipopolysaccharide to counteract humoral 

CAMP response.  Xenorhabdus species avoid the humoral response through the suppression of 

CAMPs expression (Park et al, 2007).  

 

The bacterial symbionts in the genera Photorhabdus and Xenorhabdus represent divergent 

evolution but portray convergent lifestyles. They are both lethal to insect pests and have a 

specific mutualistic relationship with nematodes in the genera Heterorhabditis and 

Steinernema, respectively. This is an obligate EPN-bacterium interaction and there has been 

no cases where Photorhabdus was associated with Steinernema or Xenorhabdus with 

Heterorhabditis. How can closely related bacterial symbionts which are both pathogenic to 

insects be specific with their choice of nematode for colonization? 

They colonize different sites in their respective nematode associates. The bacterial symbionts 

are released into the haemolymph of the host and induce mortality. Upon emergence of EPNs 

from the cadaver of larval host, a key stage involves re-colonization of the nematodes by the 

bacteria. Events occurring at molecular and cellular interface between the bacteria and 

nematode are thought to regulate the colonization process, however little is known at genetic 

level. Photorhabdus colonize a substantial fraction of the alimentary lumen of the nematode 

gut and Xenorhabdus are harboured in specialized vesicles known as receptacles. 

Photorhabdus colonizing bacteria are reported to be maternally transmitted to infective 

juveniles during endotika matricida (EM) (Gaudriault et al, 2006). The rectal glands of the 

adult female EPN becomes infected with Photorhabdus cells and serves as the source of 

inoculum for the IJs. Stages involved in nematode colonization are 1. Adult female EPN 

colonization by Photorhabdus cells in the rectal glands, 2. IJ colonization and 3. Outgrowth 

(Easom et al, 2010). 
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The molecular biology of Steinernema colonization by X. nematophila is better understood, 

however the source of colonization have not yet been elucidated. Steinernema IJs are colonized 

in specialized pockets with intravesicular structures (IVS) which have the mucus like substance 

within the interstitial space which is reported to represent specific adhesion site for colonizing 

bacteria. The genes that have been predicted to encode membrane proteins for initiation of 

colonization in X. nematophila are Nil A, B and C (nematode intestinal colonization) and these 

proteins are thought to interact directly with the nematode milieu to facilitate colonization 

(Goodrich-Blair, 2007).  

The genome sequence of P. luminescens subsp. luminescens strain TT01 revealed a high 

number of genes encoding proteins potentially pivotal or involved in host-bacterium 

interaction. A study by Gaudrault et al (2006) aimed at identifying bacterial genomic regions 

that are possibly involved in nematode specificity by comparing two strains of bacteria (P. 

luminescens subsp. laumondi TT01 and P. temperata subsp. temperata XINach) harbored by 

two nematode species H. bacteriophora and H. megidis, respectively. Their work showed that 

DNA microarrays procedure is a powerful tool for selecting some genes or genomic regions 

potentially involved in bacterium-EPN interaction. In their findings, locus 6 was similar to 

Salmonella enterica, Serovar typhimurium and Escherichia coli lsr region which encodes an 

inner ABC transporter and a cytoplasmic phosphorylation processing system of the autoinducer 

A1-2 involved in quorum sensing (Gaudrault et al, 2006). The lsr locus was similar in 3 

bacterial strains carried by H. bacteriophora including P. luminescens TT01. In Xenorhabdus 

strains and XINach, the lsr A, C and D were missing, however various lsr A, B and R remnants 

were observed, showing that the lsr locus underwent independent deletions in these latter 

strains and suggesting that the lsr locus is an ancestral locus in the Photorhabdus and 

Xenorhabdus strains. Bacterial association with EPNs is suggested to possibly be a selective 

pressure for the conservation of the lsr locus, whereas association with other nematode hosts 

leads to lsr locus loss by genomic decay. These data suggest that the lsr locus is possibly 

involved in the specific interaction with EPNs. In S. enterica, Serovar typhimurium and E. coli, 

it was suggested that the lsr transporter has a role in removing the AI-2 signal from the external 

environment in order to terminate cell-cell signalling (Xavier and Bassler, 2005). In nematode 

interaction, the termination of cell-cell signalling could be an important signal that allows a 

bacterial physiological shift, for example, in the insect cadaver, when bacteria recolonize the 

nematode intestinal tract. 
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1.1.7 Nematode host range and behaviour 

EPNs and their bacterial symbionts rapidly kill the insects and do not represent a closely and 

highly adapted host-parasite relationship characteristics and this allows EPNs to parasitize a 

wide variety of insect pests. The insects are highly susceptible in a controlled environment such 

as the laboratory but are seldom impacted in the fields as nematodes tend to be affected by 

environmental factors such as desiccation, ultraviolet (UV) radiation and temperature 

fluctuations. Extensive studies have been conducted using S. carpocapsae and the results 

revealed acceptable control of field populations of strawberry root weevils, citrus root weevil 

and cutworms (Kaya, 1993). Other studies have been conducted using S. glaseri and 

Heterorhabditis spp. and positive results have been obtained for black weevil larvae and white 

grubs using the former species and with the latter species, positive encouraging results have 

also been obtained in soil treatment against black vine weevil, mole crickets (Cobb and Geogis, 

1987), wireworms (Kovacs et al, 1980), colorado potato beetles (Wright et al, 1987), root 

maggots (Van Sloun and Sikora, 1986) and cutworms (Lossbroek and Theuiseen, 1985). It is 

highly crucial to use native EPNs for application as exotic nematode species might not be well 

adapted to the environment and the target pest and may lead to exclusion of natural biodiversity.   

EPNs respond to both physical and chemical stimuli. The foraging ability of the nematode to 

locate the host is of fundamental importance for biocontrol efficacy (Shapiro-Ilan et al, 2006). 

Species which are ideal for biocontrol application are cruisers (e.g H. bacteriophora and S. 

glaseri) as they respond strongly to chemo attractants and are able to search deeper in the soil, 

whereas ambushers search for host on the soil surface  (e.g S. carpocapsae). Carbon dioxide 

(CO2) have been reported to elicit host seeking behaviour in EPNs, however, this cannot 

explain host adaptation as CO2 is a non-specific, volatile metabolite produced by roots, soil 

microbes and insects (Stock 1993).  Host associated materials such as faeces and cuticle play 

a role in host recognition (Stock, 1993). 
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Figure 1.2: Variety of insect pests susceptible to entomopathogenic nematodes. 

 

1.1.8 EPNs as biological control agents 

EPNs occur naturally in the soil and are distributed worldwide, with distinctive species and 

clusters in different geographical regions, and this indicates their genetic ability to adapt and 

survive environmental stresses such as high temperature and desiccation (Grewal, 2000). 

Limited shelf-life is a major obstacle to large-scale use of entomopathogenic nematodes in 

biological control. Anhydrobiosis is induced by dehydration and is considered a vital means of 

achieving storage stability and increases shelf life of entomopathogenic nematodes as it reduces 

oxygen and lipid reserve utilization by infective juveniles (Grewal et al, 2006). Anhydrobiosis 

occurs naturally in nematodes and other invertebrates and is believed to be a good survival 

strategy during drought conditions. True anhydrobiotes can lose up to 95 ± 98% of their body 

water and, as desiccation persists, they lower their metabolism to below detectable levels, 

entering a state of cryptobiosis.  However a study by Grewal and colleagues (2006) indicated 
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that entomopathogenic nematodes are partial anhydrobiotes and are referred to as quiescent 

anyhydrobiotes.  

It is important to study the effect of desiccation on EPNs and to identify the genes which are 

upregulated during desiccation conditions, as environmental stress might have a negative 

impact on motility, infectivity and longevity of EPNs. Also, controlled desiccation and the 

induction of dehydration tolerance may be important processes for the formulation of EPNs as 

biocontrol agents. Soil is an important habitat for nematodes and the EPNs importance as 

biocontrol agents in agriculture depends on the the IJs ability to survive, disperse and persist 

in soil that undergo repeated cycles of dehydration and rehydration (Ngoma, 2009). In order 

for the nematodes to be effective the conditions for growth and amplification are required. 

These include optimum temperature, moisture content and the type of soil texture (Kopenhofer 

and Fuzy, 2006). Understanding the natural predator-prey behaviour that is essential for the 

successful infection of target hosts is vital for developing procedures for the application on 

EPNs as biocontrol agents, hence the need for behavioural studies to be taken into 

consideration. For infectivity, nematodes are required to be motile, and be able to search for 

and infect the host and infectivity is used as an indicator of biological control potential 

(O’Leary et al, 2001). Foraging strategies are used by the nematodes to search for prey in the 

soil and they vary from species to species (O’Leary et al, 2001). Screening for nematodes that 

have good foraging strategies and tolerance to environmental extremes such as desiccation 

could lead to application of genetics as a powerful means to enhance the desired traits in 

nematodes and application of competent and effective strains (Segal and Glazer, 2000). 

Previous studies on behaviour have shown EPNs to be potential biocontrol agents and might 

be of use and eliminate the use of chemical pesticides completely. 

1.1.9 Gene induction by desiccation stress in EPNs 

Whether quiescent or motile, IJs of a parasite are usually adapted for resistance to unfavourable 

environmental conditions. The dauer juvenile (DJ) stage of the free-living C. elegans has been 

extensively studied. It is a modified third stage juvenile (J3) formed under unfavourable 

conditions including overcrowding, limited food and high temperatures. C. elegans DJs are 

developmentally arrested with a reduced metabolic rate and can survive for up to 8 times 

normal life span of approximately 16 days (Klass, 1976). 

The infective J3 (DJ) of Heterorhabditis and Steinernema has received much attention 

regarding their environmental tolerance and host range. When exposed to moderate levels of 
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desiccation, EPN DJs respond by aggregating into large clumps and by forming tight individual 

coils which reduce surface area and slow down the rate of desiccation (O leary et al, 2001). 

The fully anhydrobiotic Aphelenchus avenae have been reported to synthesize large amounts 

of trehalose in response to desiccation (Madin and Crowe, 1975). DJs of both Heterorhabditis 

and Steinernema are not full anhydriobites but quiescent anhydrobites, and have been reported 

to synthesise moderate levels of trehalose that replaces water in the cell membranes of 

desiccated cells, maintaining spaces between the phospholipids and retaining the phospholipid 

bilayer in the liquid crystalline state (Crowe et al, 1984). 

Recent gene and protein expression studies have identified some of the molecular mechanisms 

which EPNs use to tolerate desiccation stress. Gal et al (2003) used cDNA subtraction to 

identify expressed sequence tags (ESTs) up-regulated in response to desiccation in DJs of S. 

feltiae 156 strain which are capable of surviving exposure to 75% RH. Among the up-regulated 

gene classes identified by Gal and his colleagues were transcriptional regulators, molecular 

chaperones, antioxidants and hydrophilic proteins. This correlates to the findings of the study 

conducted by Chen et al (2005, 2006) where the 2D gels and peptide mass mapping were used 

to identify proteins whose synthesis was increased in response to desiccation and the proteins 

included transcriptional regulators, molecular chaperones, antioxidants, proteins involved in 

cell cycle regulation and actin (a component of cytoskeleton) . 

Tyson et al (2007) investigated the molecular basis of anhydrobiosis and desiccation tolerance 

by constructing and analyzing a panel of ESTs that are upregulated in response to desiccation 

in DJs of the S. carpocapsae. S. capocapsae is produced commercially and is widely used for 

biocontrol of insect pests and have been found to have high levels of desiccation tolerance 

when compared with other species of Steinernema (Patel et al, 1997). The study showed that 

the molecular response to desiccation in EPN DJs is complex and parallels many of the adaptive 

changes which occur in draught tolerant plants during exposure to desiccation (Tyson et al, 

2007). The study of the complex molecular response of EPNs to different environmental stress 

conditions continues to be of interest to identify all the genes which are up-regulated during 

stress and enables the nematodes to overcome or tolerate the stress.  

1.1.10 Application technology of nematodes  

The application of a strain that is well suited to agricultural fields is of importance following 

good storage condition. Efficient and effective delivery of EPNs is a necessity. Nematodes can 

be applied with commercially available ground or aerial spray equipment including pressurized 
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sprayers, mist blowers and electrostatic sprayers (Georgis, 1990). The equipment for 

application is highly dependent on cropping system with careful considerations including 

pressure, spray distribution pattern and environmental conditions (Shapiro-Ilan et al, 2006). 

High pressure sprayer equipment is reported to result in reduced nematode viability due to 

mechanical stress from the pump and temperature effects in the liquid after passes through the 

pump. Recommended sprayers are nozzle type sprayers with openings larger than 50µl and 

pressure less than 2000KPa (290psi) (Geogis, 1990). However, these recommendations are 

supported with information obtained on the most well studied EPN, S. carpocapsae and may 

differ from species to species.  

EPNs may experience physical stress during flow through the spray system and it is highly 

crucial to comprehend effects of different stress inducing compartments or factors within the 

spray system in order to identify the best possible equipment that is least detrimental to EPNs 

viability. Pressure and temperature are the well-known physical stresses that affect EPN 

viability during application. Soil is a natural habitat of EPNs and several biotic and abiotic 

factors must be taken into consideration for successful application (Shapiro-Ilan et al, 2006). 

EPNs are highly effective in sandy soil with pH of 4-8. Other environmental factors that may 

affect persistence and viability of applied EPNs are UV radiation and desiccation. No matter 

how well suited a nematode is to the target pest, if it is not delivered in a manner that ensures 

viability and that ensures access to and infection to the host, application will fail (Shapiro-Ilan 

et al, 2006) 

1.1.11 Next generation sequencing 

Next generation sequencing which is also referred to as high-throughput sequencing, is used to 

describe various modern sequencing technologies including Illumina, Rosche 454, Ion torrent: 

Proton/PGM and SOLiD sequencing. Whole genome sequencing (WGS) advances knowledge 

at genetic level in the physiological, morphological and metabolic characteristics of organisms 

(Dillman et al, 2012). Next generation sequencing, assembly and annotation of both the 

bacterial symbionts and the nematode will advance knowledge to comprehend the 

pathogenicity and symbiosis of nematode-bacterium species, as well to understand the 

divergent evolution represented by Xenorhabdus and Photorhabdus species (Gaudriault et al, 

2006 and Hao et al, 2010).  
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Illumina whole genome sequencing involves isolation of the whole genomic DNA, shearing of 

genomic DNA, preparation of the library and sequencing using Illumina Miseq for prokaryotes 

and Illumina Hi-seq for eukaryotes. The genomic library is sequenced on Illumina genome 

analyzer sequencer in either single or paired-end mode. These reads are then assembled into 

hundreds up to thousands of larger contigs (contiguous sequence) using assembler programs. 

 

Short read sequencing technology is quick and cheap compared to Sanger sequencing used for 

whole genome sequencing of C. elegans (Sandhu et al, 2006). Read assembly is facilitated by 

knowing the approximate distance between the paired end reads, helping to overcome issues 

of repeats and homopolymeric regions and the accuracy of next generation sequencing and 

assembly is improved by high coverage and mate pair data.  

 

Figure 1.3: Overview of whole genome sequencing and assembly 

(http://www.nature.com/nmeth/journal/v9/n4/images/nmeth.1935-I2.jpg) 

 

http://www.nature.com/nmeth/journal/v9/n4/images/nmeth.1935-I2.jpg
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1.1.12 Research motivation 

 The application of EPNs as biocontrol agents requires knowledge of the occurrence, 

species diversity, biology, ecology, distribution and insect host range of native EPN 

species. Application of native EPNs as insect biological control agents would be 

preferable over exotic EPNs which may not be suitably adapted to the South African 

environment. Non-native EPNs may also have negative impacts on native 

populations of EPNs. In addition, non-native EPNs may not be able to target local 

insect pests as they may not be adapted to local environmental conditions.    

 

 Identification by establishing taxonomic and phylogenetic affinities through the 

application of molecular based techniques based on the PCR amplification and 

sequencing of the ribosomal DNA has proven to be an efficient and rapid method 

for identifying EPNS and their bacterial symbionts. This molecular approach to 

EPN characterization was adopted in this investigation.  

 

 Nematodes that are adapted to the environment with good foraging behavioural 

characteristics and which are tolerant to environmental stress conditions such as 

desiccation are ideal for application for effective control of insect pests. 

Understanding desiccation tolerance attributes of indigenous EPNs will aid in the 

understanding of the nature of requirements necessary for ensuring good storage 

conditions and long shelf life of EPNs prior application. 

 

 Genome sequencing and annotation gives insight into the behavioural and 

physiological attributes of bacterial symbionts and thus their study will contribute 

to the understanding of pathogenicity, evolution and the specific colonization of 

bacterial symbionts with respect to their association with selected nematode 

species.  

Aims 

 To isolate, identify and assess desiccation tolerance of native South African 

entomopathogenic nematode species.   

 The second aim was to isolate, identify, and do whole genome sequencing and 

annotation of the associated entomopathogenic bacterial endosymbiont. 
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Objectives: 

 Isolation, molecular and morphological characterization of native South African 

EPNs   

 Isolation and molecular identification of bacterial symbionts 

 Desiccation tolerance of EPNs 

 Whole genomic DNA sequencing, assembly and annotation of bacterial 

symbiont 

 

Research experimental design 

1. Soil samples were collected from Brits, North West province, South Africa. 

2. Nematodes were isolated from soil samples using the Galleria mellonella insect baiting 

technique 

3. Isolation of EPNs from infected larvae was achieved by White trap method 

4. Reinfections for confirmation of Koch’s postulates and for in vivo culturing of EPNs based 

on consistency of induced symptoms  

5. Molecular identification of EPNs through the amplification and sequencing of the 18S and 

28S rDNA amplification 

6. Morphological characterization of EPNs 

7.  Isolation of bacterial symbionts from the haemolymph of larvae infected with EPNs using 

NBTA plates 

8. Molecular identification of bacterial symbionts through amplification and sequencing of 

the 16S rDNA 

9. Confirmation of the dependency of EPNs growth and development on bacterial symbionts:  

culturing of EPNs on bacterial lawns on lipid agar (in vitro culturing) 

10. Desiccation tolerance of EPNs 

11. Whole genomic DNA sequencing of bacterial symbiont 

12. De novo genome assembly using CLC Bio and SPAdes 

13. Genome annotation: National Center for Biotechnology Information (NCBI) prokaryotic 

genome automatic annotation pipeline (PGAAP) and rapid annotation using systemic 

technology (RAST)  
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Figure 1.4: Outline of the methodology used in this study. 
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CHAPTER 2: Isolation of entomopathogenic nematodes 

2.1 INTRODUCTION 

Nematodes are inhabitants of virtually every environment and are adapted to both living and 

non-living substrates (Wright and Perry, 2002). They are the most ubiquitous organisms on 

earth and most of them are free living and occur in non-living substrates. Free living nematodes 

inhabit soil, marine, fresh water and estuarine environments whereas parasitic nematodes 

inhabit plants, vertebrates or invertebrates. Extraordinary and extensive fundamental advances 

and discoveries on the most well studied nematode Caenorhabditis elegans, have made it easier 

to comprehend the physiology, ecological and behavioural adaptations of nematodes. 

Nematodes perceive and respond to signals from the environment and from each other which 

enables them to locate a host or a mate, undergo development and survive stress (Pionar et al, 

1990; Gaugler, 2002). A group of specialised nematodes that have received the considerable 

attention due to their potential as biocontrol agents are entomopathogenic nematodes (EPNs) 

(Kaya and Gaugler, 1993). These are non-segmented roundworms that harbour bacterial 

symbionts which are insect pathovars.   

EPNs are parasitic to insect pests and kill their hosts with the aid of the bacterial symbiont 

carried in their alimentary canal (Burnell and Stock, 2000). EPN species belonging to the two 

genera Steinernema and Heterorhabditis have emerged as excellent biological control agents 

and have a specific obligatory association with bacterial symbionts in the genera Xenorabdus 

and Photorhabdus (Adams and Nguyen, 2002; Boemare, 2002; Emeliahoff et al, 2008). They 

gained status in the late 1970s as one of the best non-chemical alternatives for control of insect 

pest population due to 1. Their ability to reach insect pests 2. High reproductive ability 3. Ease 

of mass production and 4. Harmless to vertebrates and plants (Bemare, 2002). A new genera, 

Oscheius have recently been discovered to be parasitic to insect pests hence EPN, and have 

been reported to be associated with bacterial symbionts in the genus Serratia. 

2.1.1 The life cycle of EPNs 

The third stage infective juvenile (IJ) is the only free living non-feeding stage that is able to 

persist in the soils for lengthy periods. When conditions are favourable, IJs are able to search 

the soil environment for susceptible arthropod hosts. Generally, IJs enter the host larval 

digestive tract or haemocoel through natural openings such as the mouth, anus and respiratory 

spiracles. Some species are able to gain direct ingress by penetrating through the insects’ outer 
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integument. Upon entry, the nematodes penetrate into the haemocoel of the larval host and 

subsequently regurgitate their associated bacterial symbiont. The bacterial endosymbionts 

produces secondary metabolites that depress the immune system of the insect larvae. The 

metabolites are also lethal to the larvae which succumb to septicaemia within 48 hours post 

infection. The bacterial endosymbionts also produces antimicrobial products that elicit toxicity 

towards other microorganisms thereby resulting in monoxetic conditions within the larval 

cadaver.  

Bacterial enzymatic digested cadaver tissues and the actual bacterial symbiont serve as sources 

of nutrients for nematode growth, development and reproduction. After two to three 

reproduction cycles and when the nutrient supply within the cadaver becomes limiting, the 

juvenile nematode within the martenal body re-associate with bacterial symbionts and develop 

into its non-feeding infective juvenile and emerge from the insect carcass in search for new 

susceptible larval hosts. 

 

 

Figure 2.1: The general life cycle of EPNs 
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2.1.2 Distribution, biological control and host range 

Soil is a more suitable habitat for targeting or isolating EPNs. The undisturbed soil profile is 

the natural reservoir for both steinernematids and heterorhabditids. EPNs naturally inhabit soil 

and factors that allow for their adaptation to and long term persistence in the soil environment 

includes soil texture, pH and temperature. They are widely distributed in soils throughout the 

world and this indicate their genetic ability to adapt to various environmental stresses that they 

experience in the soil environment (Hominick et al, 1996; Adams et al, 2006).  

Steinernema glaseri is considered to be sub-tropical or possibly tropical in origin and 

Steinernema carpocapsae is widely distributed in temperate areas of the world and have 

extensively been tested for their potency against soil pests (Pionar, 1986). S. glaseri was first 

used against the Japanese beetle grubs, Popillia japonica in the 1930s, however tests gave 

encouraging results initially and were ultimately unsuccessful, which was followed by a 

suspension of further on this nematode for 20 years (Gaugler, 1988; Klein and Geogis, 1992). 

The unsuccessful results was presumably attributed to the researchers being unaware of the 

nematode's symbiotic bacterial partner with the bacteria being eliminated through the 

incorporation of antimicrobials into the rearing media. The efficacy of this nematode species 

have been re-evaluated in recent years with positive results obtained for the black vine weevil 

larvae and white grubs (Villani and Wright, 1988).  

 

Favourable results have been obtained against soil inhabiting insects where Heterorhabditis 

spp regularly reduced black vine weevil population densities by 90% (Bedding and Miller, 

1981 and Stimman et al, 1985). Positive encouraging results have also been obtained in soil 

treatment against mole crickets (Cobb and Geogis, 1987), wireworms (Kovacs et al, 1980), 

colorado potato beetles (Wright et al, 1987), root maggots (Van Sloun and Sikora, 1986) and 

cutworms (Lossbroek and Theuiseen, 1985). The nematodes have not had to adapt to specific 

host life cycle stages and were able to parasitize hundreds of insect pests. They have 

demonstrated to have a wide insect host range; while showing high virulence characteristics 

towards their arthropod hosts and no mammalian pathogenicity have been observed. Numerous 

surveys have provided evidence of the omnipresence of these nematodes in both natural and 

agricultural soils (Hominick, 2002). The application of EPNs as biocontrol agents requires 

knowledge of the occurrence and presence of native EPN species as introduction of exotic 

species may induce exclusion of natural species and may not be able to target local insect pest 
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as they may not be adapted to local environmental conditions (Miller and Barbercheck, 2001). 

Surveys have been conducted in South Africa and throughout African countries for EPN 

recovery (Malan et al, 2006). Steinernematids including S. karii, S. taysaerae, and S. 

yirgalemense have been isolated from Kenya, Egypt from Ethiopia, respectively (Shamseldean 

et al,1996 and Nguyen et al, 2004) . 

In South Africa steinernematids including S. khoisanae, S. citrae, S. yirgalemense, S. sacchari 

and heterorhabditids including H. safricana, H. bacteriophora, H zealandica and H. 

noeniputensis  have been discovered and described (pionar, 1986; Stokwe et al, 2011; Malan 

et al, 2008; Hatting et al, 2009). Generally, South Afican climate conditions range from 

subtropical in the North East, temperate in the interior plateau and Mediterranean in the South 

Western areas. The North West province is characterized by hot and dry conditions, have an 

average rainfall of 300 to 700 mm annualy and contribute about 13% to the agricultural sector 

of the country’s provincial GDP. The primary objective of the current study was to isolate 

South African native EPNs through the insect baiting technique using the model organism 

Galleria mellonella from soil samples collected from the Brits area, in the North West 

province. The secondary objective was to recover infective juvenile nematodes through White 

trap method from infected dead larvae. 

2.2 MATERIALS AND METHODS 

2.2.1 In vivo rearing of Galleria mellonella larvae 

Kingdom: Animalia, Phylum: Arthropoda, Class: Insecta, Order: Lepidoptera, Family: 

Pyralidae, Subfamily: Galleriinae, Genus: Galleria, Species: G. mellonella 

 

 

Figure 2.2 A) G. mellonella insect moths and B) G. mellonella larvae. 

A B 
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Aseptic rearing of G. mellonella was conducted by placing adult female and male moths in 3L 

glass bottles (11cm diameter and 23cm height) and allowed to mate. The strips of wax paper 

on which the eggs can stick were inserted into the glass jars to facilitate the recovery of the 

eggs (oviposition). Larval growth and development was maintained by continuous supply of 

Galleria medium (wheat, honey and glycerol, see appendix I) in 7 days interval. The metal 

Consol lids were modified by incorporating stainless meshes into the lid so as to facilitate air 

exchange while preventing larvae from escaping from jar. The jars were kept in the incubator 

at 25 C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: In vivo rearing of G. mellonella larvae  
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2.2.2 Isolation of EPNs from collected soil samples 

2.2.2.1 Soil sampling 

A total of 50 soil samples (10 -20cm deep) were collected in 2L plastic tubs from Brits, North 

West province, South Africa. The soil samples were kept at 22-25ºC during transport to the 

laboratory. Prior to insect baiting technique, the soil samples were sieved to remove the grass 

tufts. Tap water was added to give moisture content of 8%. The plastic tubs were stored at 25 

ºC for 24 hours. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: The South African Map showing North West Province, Brits – town where the 

soil samples were collected 

(http://www.johannesburg-venues.co.za/magaliesberg-map.htm) 

 

2.2.2.2 Insect baiting technique 

Insect-baiting technique of soil samples is a widely used technique for the isolation of EPNs 

from soil samples. Nematodes were recovered from collected soil samples by baiting with 10 

insect larvae of G. mellonella. To maximize recovery, second and third baitings were 

conducted with fresh G. mellonella larvae in the same soil. The boxes were inverted and kept 

at 25 ºC to facilitate or favour infection by EPNs.  The boxes were monitored and checked for 

the presence of dead larvae periodically 48 hours post baiting. Parasitized cadavers were 

http://www.johannesburg-venues.co.za/magaliesberg-map.htm
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recognized by change in colour (usually red/purple for heterorhabditids and ocher/brown/black 

for steinernematids) (Kaya and Stock, 1997). Dead larvae were collected and the symptoms 

were analysed and used for provisional identification.  

 

Figure 2.5: Insect baiting technique used for isolation of nematodes from soil samples using 

G. mellonella larvae 

2.2.2.3 Nematode recovery from infected larvae: White trap method 

Infected larvae were surface sterilized by spraying with 70% ethanol. Nematodes were isolated 

from infected dead larvae by modified White trap method (Kaya and Stock, 1997).   

White Trap Method 

 A lid of a small Petri dish (50 mm) was placed in a large Petri dish plate (90 mm). The former 

was covered with a 54 mm Whatman No1 filter paper disc and the surface sterilized dead larvae 

was placed on the filter paper. Water was added into the latter dish until it reaches the edge of 

the filter paper which remains moist by absorbing the water. The lid of the larger Petri dish was 

replaced and the white traps were incubated at 25 ºC to facilitate emergence of nematodes. 
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Figure 2.6: White trap method for isolation of nematodes from infected cadaver 

2.2.2.4 Koch's Postulates and maintenance of EPN culture 

Nematodes were collected by sedimentation in a 50mL Falcon tube and were surface sterilized 

with 0.1% sodium hypochlorite. Autoclaved river sand in 90 mm Petri dishes with 8% moisture 

content were inoculated with sterilized nematodes. Ten G. mellonella larvae were placed on 

top of the sand to confirm pathogenicity based on consistent symptomatic analysis (Koch's 

postulates). 

Koch's postulates 

Four criteria established by Robert Koch to identify a pathogen of a particular disease: 

1. The microorganism or other pathogen must be present in all cases of the disease 

2. The pathogen can be isolated from the diseased host and grown in pure culture 

3. The pathogen from the pure culture must cause the disease when inoculated into a healthy, 

susceptible laboratory animal 

4. The pathogen must be re-isolated from the new host and shown to be the same as the 

originally inoculated pathogen   

Nematodes were maintained both in vitro and in vivo. In vivo maintenance of nematodes 

entailed using the insect baiting technique involving the Petri dish river sand soil procedure 

Tap water 

Filter paper 

Infected larvae 
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that was applied in Koch’s Postulates test. EPNs were maintained in vitro by culturing on lipid 

agar bacterial lawn plates.  

 

Figure 2.7: In vivo maintenance of EPNs. 

2.3. RESULTS 

2.3.1 Symptom variation and emergence of nematodes on white trap 

Entomopathogenic nematodes were successfully isolated from the collected soil samples. 

Symptoms induced by heterorhabitids varied from those induced by steinernematids. Insect 

larvae infected by the former were associated with the development of green pigmented larvae 

change and those infected by the latter turned dark brown. Symptom colour or pigment 

variations following larval infection and mortality were used as preliminary markers for EPN 

identification. The nematodes were successfully isolated from infected cadavers by white trap 

method and successful reinfections favoured Koch’s postulates. The steinernematids made full 

use of the host’s tissues and upon IJ emergence the cadaver collapsed and appeared flat. It took 

4-5 days for steinernematids to emerge from the cadaver and 7-14 days for heterorhabditids.  

Healthy G. mellonella 

larvae 

River sand inoculated 

with EPNs 
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Figure 2.8: Symptom variation of insect larvae infected by A) Heterorhabditids and B) 

Steinernematids 

A 
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Figure 2.9: White trap method used to isolate EPNs from infected cadavers. A) Nematodes 

are visibly clear in the white trap water. B) Emergence of nematodes from larvae infected by 

Steinernema species. 
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Table 2.1: Recovery of nematodes from soil samples collected at different regions at Brits, 

North West province, South Africa. 

Region Isolate # Soil type Larval symptoms Preliminary 

species 

identification 

Wild fig tree 

(WFT) 

10 Sandy loam Dark brown Steinernema spp 

Emoe 1 35 Sandy loam Green Heterorhabditis 

spp 

Emoe 2 42 Sandy loam Green  Heterorhabditis 

spp 

Red Ivory, 

Tuscaloosa, 

Boundry road 

No recovery Clay loam, Sandy 

loam and Clay 

loam  

No recovery None 

 

2.4 DISCUSSION 

Soil is an important habitat for nematodes and various soil properties appear to play a critical 

role in contributing to the survival and longevity of infective juveniles within the soil profile. 

The moisture content of soil sample is an important factor for recovery of nematodes and 8% 

is reported to be sufficient for isolation of heterorhabditids and steinernematids from dry soil 

samples collected from the field. Of the 50 soil samples collected, nematode isolates were only 

recovered from 3 regions namely Wild fig tree (isolate #10), Emoe 1 (isolate #35) and Emoe2 

(Isolate #42) (table 2.1). Preliminary identification was based on symptom variation post 

confirmation of Koch's postulates. Steinenematids infection was associated with black, brown 

and beige larval colour change while infection by heterorhabditids was associated with marron, 

brick red and green larval colour change. Insect larvae infected by isolate 10 were dark brown 

in colour and those infected by isolate 35 and 42 were green suggesting that isolate 10 was a 

steinernematid nematode and both isolate 35 and 42 were heterorhabditids.  

G. mellonella larvae used as a model organism for isolation of nematodes is a widely used 

organism as it is highly susceptible to most steinernematids and heterorhabditids, however 

species including S. scapterisci are incapable of reproducing within G. mellonella and isolation 

of such nematodes may have been missed in this study.  
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Greater sample size increases chances of positive sites for isolation. An extensive study which 

was conducted in Turkey for isolation of nematodes involved a sample size of 1080 and of 

those, 22 were positive for nematode isolation. In South Africa the most abundant species 

isolated from soil samples has been reported to be those belonging to the genus 

Heterorhabditis, with only few Steinernema species isolated and described. Malan et al, 2011 

collected 202 soil samples (129 samples from the Western Cape with 20 positive sites, 52 

samples with 8 testing positive, and 21 from Mpumalanga with 7 testing positive)  of which 35 

tested positive for nematode isolation and of those 89% were heterorhabditids. A study 

conducted by Hatting et al (2009) recovered nematodes in soil samples collected from different 

habbitats across seven regions of South Africa. 1506 samples were collected and nematodes 

were recovered from only 5% of total sample size. Four steinernematids ( S. khoisanae, S. sp1, 

2 and 3 were recovered from humid subtropical and semi-arid regions, with 80% of all 

steinerenematid isolates recovered from semi-arid climate zones which characterized by sandy 

and acidic soils (Hatting et al, 2009). Another study which was conducted by Stock and Gress 

(2006) from soil samples collected from oak woodlands in mountain ranges of Coronado 

national forest in Southern Arizona involved 120 total sample size and recovered nematodes 

from 28 samples of which 78.5% were steinernematids and only 21.5% were heterorhabditids, 

suggesting the greater abundance of steinernematids in this instance.   In this study, about 50 

samples were collected and only 3 tested positive with 2 heterorhabitids and only 1 

steinernematid isolated from Brits, North West province in South Africa.  

  

Steinernematids are reported to be found in temperate regions and heterorhabditids throughout 

much of the tropics and subtropics. Brits is a large district situated in a fertile citrus producing 

area that is irrigated by the water of the Hartbeespoort Dam in the North West province. EPNs 

have been isolated from soil samples from different parts of the world. Persistence and 

occurrence has been reported to be in areas infested with insect pests including agricultural and 

forested vegetation as infective juveniles are dependent on larval hosts for reproduction. In 

South Africa, diversity of EPNs have been established in Citrus orchards and two new species 

have been identified (Malan et al, 2011). Previous studies have also reported presence of EPNs 

in oak woodlands and also organic cultured vines suggesting native biodiversity of EPNs which 

should be taken into consideration for EPN-based biocontrol programs. 
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EPNs recovered in this study were recovered from sandy loam samples with no recovery from 

clay loam samples. This suggest that soil texture plays a pivotal role in persistence of EPNs as 

pore size and space influence the movement of EPNs to search for insect larval hosts. Clay soil 

interfere with movement and parasitism of nematodes hence no recovery in clay soil samples. 

Possibly the effects of high percentages of clay on soil texture also interferes with the IJs 

capacity to adapt to soil dehydration. 

 

Insect baiting technique and White trap method proved to be effective methods in isolation of 

nematodes from soil samples. Preliminary identification based on symptoms is limited to genus 

level and requires validation through molecular based and microscopy techniques for 

identification to species level. 
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Chapter3: Molecular Characterization of 

Entomopathogenic Nematodes 

3.1 INTRODUCTION 

Entomopathogenic nematodes (EPNs) belong to the genera Steinernema, Heterorhabditis and 

the newly discovered Oscheius and hold great potential as biological control agents of 

economically important insect pests (Gaugler, 1988; Kaya, 1985; Bedding and Akhurst, 1975). 

They have a mutualistic relationship with bacterial symbionts in the genera Xenorhabdus, 

Photorhabdus and Serratia, respectively. The bacteria produces toxins that are lethal to insect 

host larvae and the nematodes serves as vectors for protecting the bacterial symbiont from 

harsh environmental conditions and for transportation to the target host larvae (Klein et al, 

1990).  

 

The EPN-bacteria symbiont complex holds great potential as a biological control agent of soil-

borne insect pests (Ehlers, 1996; Kaya and Gaugler, 1993; Shapiro-Ilan, 2005). New species 

and strains are constantly being isolated and discovered, however, their identification is not 

always straight forward as taxonomic relationships are usually based on morphological 

identification. Identification that is solely based on morphological characterization is not 

necessarily sufficient for identification of nematodes. 

 

There has been a considerable debate about the unambiguous reliability of identification 

methods of EPNs (Curran and Webster, 1989; Gaugler and Kaya, 1990; Pionar, 1990). Prior to 

our current knowledge on the molecular genetic diversity of nematodes within species and 

populations, the taxonomic relationships of nematodes have usually been based on 

morphological characteristics for heterorhabditids as they are hermaphrodites and for 

steinernematids, morphological characters were combined with cross-breeding data as they are 

amphimictic (Akhurst and Bedding, 1978; Pionar, 1986, 1990). 

Due to morphological similarities amongst numerous strains it has become difficult to 

accurately identify species based purely on morphology. Researchers have now adopted more 

reliable methods which include the use of molecular techniques in identifying nematodes, 

which are not only able to distinguish between the two genera, but also between species within 
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each genus where phenotypic variation can be low (Omar et al, 2014; Stock et al, 2008). The 

benefits from the application of molecular approaches to study the phylogenetic relationships 

and taxonomic affinities amongst EPNs have been greatly appreciated (Curran, 1990; 

Emeliahoff et al, 2008; Liu et al, 1999). These techniques include the polymerase chain 

reaction (PCR), restriction fragment length polymorphisms (RFLP) and random amplified 

polymorphic DNA (RAPD (Liu and Berry, 1995; Liu et al, 1997; Hashmi et al, 1996). PCR 

and RFLP have been used extensively for the genetic characterization of Heterorhabditis and 

Steinernema species (Smith et al, 1991, Reid and Hominik, 1992; Joyce et al, 1994). The 

isoenzyme banding patterns have also been used to detect variability amongst species of both 

genera. (Akhurst, 1987; Curran, 1990). RADP detects polymorphisms and has been used to 

study genetic diversity and genetic relationships in EPNs (Williams et al 1990; Welsh and 

McClellan, 1990). 

 

The ribosomal DNA (rDNA) has been the targeted region used in identification of many 

organisms including EPNs, as it is present in high copy numbers in the form of multi-tandem 

repeat (Susurluk et al, 2007; Hasmi et al, 1995). The repeat contains both highly conserved 

regions and potentially highly variable region. The conserved regions allows for amplification 

using universal primers and the highly variable region referred to as the internal transcribed 

spaces (ITS) allows for identification of new species. 

 

EPNs have 18S and 28S rDNA regions which are highly conserved and the more polymorphic 

ITS regions (ITS1 and ITS2) which are found in between the 18S and 28S. The two spacers 

flank a highly conserved region, 5.8S, which is the ribosomal RNA gene having low levels of 

variation and thus represents a region with slow evolutionary rates. Identification of new 

species and determination of the variability amongst species and strains requires the 

amplification and sequencing of the 18S, ITS and 28S rDNA regions. Sequence analysis of 

these regions have proved to be accurate in the assessment of phylogenetic relationships at 

taxonomic and species level (Adams et al, 1998; Darissa and Iraki, 2014). The ITS is an ideal 

region for molecular taxonomic studies and due to the conserved genes flanking this region, 

universal primers are generated to allow for amplification. (Reid et al, 1997). This study aimed 

at applying molecular techniques for identification of EPN isolates. 
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3.2 MATERIALS AND METHODS 

3.2.1 Molecular Identification of Nematodes 

3.2.1.1 Genomic DNA extraction 

Infective Juveniles (IJs) collected from White traps were allowed to settle under gravity in 

50mL Falcon tubes. The IJs were sterilized by incubating for 3 hours in 0.1% sodium 

hypochlorite. The IJs were rinsed 3 times with 4mL of sterile distilled water post surface 

sterilization in a laminar flow. The nematodes were pelleted in microfuge tubes by spinning at 

13 400rpm for 10 minutes. The tubes were placed on ice for 30 seconds and excess water was 

discarded. The nematodes were re-suspended in 1mL distilled water and centrifuged at 13 400 

rpm for 3 minutes. After removing the supernatant, 600 µL of cell lysis solution and 3ul of 

proteinase k solution were added into the microfuge tube with EPNs and the tube was inverted 

25 times. The samples were incubated at 55ºC for 24 hours to allow for nematode cell lysis and 

degradation of cytoplasmic proteins. 

About 3µl of RNAse was added to the cell lysate and incubated at 37ºC for 30 minutes for 

catalysis of RNA degradation. Post incubation, 200µl of protein precipitation solution was 

added to the proteinase-k and RNAse treated cell lysate followed by centrifugation at 13 400 

rpm to precipitate degraded proteins. The supernatant containing the DNA was transferred into 

a clean centrifuge tube containing 600µl of 100% isopropanol and centrifuged to pellet the 

genomic DNA and the supernatant was discarded. The DNA pellet was subsequently washed 

with 70% ethanol via centrifugation and the supernatant was discarded. About 100ul of DNA 

was added into the tube followed by incubation at 65ºC. The genomic DNA was stored at 4ºC. 

3.2.1.2 PCR: amplification of the 18S and 28S rDNA  

Polymerase chain reaction for the amplification of the 18S rDNA was conducted for 

identification of the nematode species. The universal primers (TW81-forward primer and 

AB28-reverse primer) were used for the amplification of the 18S and 28S rDNA. The reaction 

mixture was prepared by adding the reagents Master Mix, genomic DNA, forward primer, 

reverse primer and nuclease free water, with the exception of addition of genomic DNA in the 

control tube as illustrated in table3.2.  
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Table 3.1: The 2 universal forward and reverse oligonucleotide primers used to amplify the 

ITS regions found between the 18S and 28S rDNA region of the nematode genomic DNA 

(Joyce et al. 1994). 

Oligonucleotide 

primer 

Sequence Tm (°C) Ta 

(°C) 

TW81 Forward 

Primer 

5’-GCGGATCCGTTTCCGTAGGTGAACCTGC -

3’ 

 

71.94 66.4 

AB28 Reverse 

Primer 

5’-GCGGATCCATATGCTTAAGTTCAGCGGGT 

-3’ 

68.87 63.87 

 

Table 3.2 PCR reaction mixture for amplification of the 18S and 28S rDNA. 

Reagent/sample Volume  ( µl )  

Experiment    

Volume  ( µl )  

Control 

Master Mix 25 25 

Nematode genomic DNA 3 0 

Forward primer 3 3 

Reverse primer 3 3 

Nuclease free water 16 19 

TOTAL 50 50 

Amplification cycle 

25 cycle amplification series: 

Denaturation at 95°C for 60 seconds 

Annealing at 64°C for 60 seconds 

Extension at 72°C for 120 seconds 

Final extension after cycling: 72°C for 10 minutes 
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3.2.1.3 Sequencing of the 18S and 28S rDNA 

The PCR products of the 18S rDNA amplification were purified and sequenced using Sanger 

sequencing technology at Inqaba Biotechnical Industries. The rDNA sequences were edited 

and error corrected using FinchTV. 

3.2.1.4 Identification: NCBI BLASTn 

The National Centre for Biotechnology Information (NCBI) database, basic local alignment 

search (BLASTn) algorithm was used for identifying the nematode species through local 

alignment by finding species that have high similarity percentage to the query sequence. 

3.2.1.5 Multiple alignment: MEGA 6.1 CLUSTAL W 

The query sequence and other sequences for the partial 18S, ITS1, 5.8S, ITS2 and partial 28S 

rDNA of the already existing, identified and known species from the NCBI-BLASTn search 

results were loaded onto MEGA 6.1 (molecular evolutionary genetics analysis, version 6.1) 

program and were multi-aligned with clustalW using the default parameters. This was 

conducted for unidentified species of Heterorhabditis and Steinernema species that had been 

isolated, respectively. Caenorhabditis elegans was used as the outgroup. The evolutionary 

divergence between aligned sequences was analysed by MEGA 6.1 pairwise distance. 

3.2.1.6 Phylogenetic analysis: MEGA 6.1  

Phylogenetic relationships between the aligned isolates were established using MEGA 6.1 

following the Maximum Likelihood method. Evolutionary distances between the unknown and 

known isolates were computed using the Kimura-2 parameter which is favourable for 

phylogenetic analysis of sequences with different base composition such as for the ITS regions. 

Phylogenetic trees were constructed by clustering of associated taxa based on 1000 replicates 

in the bootstrap statistical test. 

The following taxa were used for phylogenetic tree construction of Heterorhabditis: 

Caenorhabditis elegans isolate X5005 (FJ589008.1), Heterorhabditis zealandica strain Bartow 

(GU174009.1), Heterorhabditis zealandica strain NZH3 (EF530041.1), Heterorhabditis 

marelatus (AY321479.1), Heterorhabditis megidis (AY321480.1), Heterorhabditis 

bacteriophora (AY321477.1), Heterorhabditis amazonensis (DQ665222.1) and 

Heterorhabditis bacteriophora isolate IRA24 (EU598232.1), Heterorhabditis safricana 

(EF488006.1)**, Heterorhabditis noenieputensis strain WS17 (KP335198.1)**, 
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Heterorhabditis noenieputensis strain SF669 (JN620538.1)**, Heterorhabditis bacteriophora 

strain J172 (EU716335.2)**, Heterorhabditis zealandica strain SF41 (EU699436.1)** and  

Caenorhabditis elegans isolate X5005 (FJ589008.1) 

The following taxa were used for phylogenetic tree construction of Steinernema : 

Steinernema nyetense (JX985266.1), Steinernema cameroonense (JX985267.1), Steinernema 

carpocapsae (LN624759.1), Steinernema carpocapsae strain Dok83 (KJ950293.1), 

Steinernema carpocapsae strain NCR (KJ950292.1), Steinernema glaseri (AF122015.1), 

Steinernema cubanum (AY230166.1), Steinernema thermophilum (EF431958.1), Steinernema 

yirgalemense (AY748450.1), Steinernema oregonense (GU569055.1), Steinernema 

oregonense strain OS-10 (AF331891.1), Steinernema poinari strain 1160 (KF241749.1), 

Steinernema poinari strain 1093 (KF241751.1), Steinernema poinari strain tomsk 

(KF241750.1), Steinernema arenarium (AF331892.1), Steinernema intermedium 

(AF331916.1), Steinernema everestense (HM000103.1), Caenorhabditis elegans isolate 

X5005 (FJ589008.1), Steinernema khoisanae strain 106-C (EU683802.1)**, Steinernema 

yirgalemense strain 157-C (EU625295.1) **, Steinernema sacchari strain SB10 

(KC633096.1)**, Steinernema tophus isolate ROOI-352 (KJ701241.1)**, Steinernema 

innovationi isolate SGI-60 (KJ578793.1)**.  

All species marked with “**” are isolates recovered in South Africa and C elegans was used 

as an output.  

 

3.3 RESULTS 

3.3.1 Sequencing of the 18S and 28S rDNA of the isolates. 

Successful amplification of the 18S and 28S rDNA of isolate 10, 35 and 42 was followed by 

successful sequencing and the sequences obtained from the Inqaba biotechnical laboratories 

are illustrated in figure 3.1 -3.3. 
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CGGGGTGTATGGAACATCGATTAAGTTCACAATGCGTCCGCTGATCAACGAAAC

GTGTTAAATCAATGACATGGTTACCGACTCTTCAAGAAACGATTACGCACAAAG

CAGAAGCTTAGTACAAGTCAGCTGGCAAGAGACACGCCAAAACCACTAACGCAC

CGAACCGATATGATAGCAGCGACACAGAGAGCAATCTCGCGAAAGAAACGCTCG

CAAGAATGAAACTGCGCGCCATTAAACTATCGCACAAAAGCGCAATCACACCGA

AAAGGTACTCTTTGCAGAGTAGCTCATCGAAAAAACAGTCCAAGCTGACTGCAA

GTAACTAGTTAATCGACCCTCAACCAAACATACTATCAGATATAAACCTGATAGT

GCCATTTGCGTTCAAAATTTTAGCGTTCAATATGTCTGCAATTCACGCCAAATAA

CGGTTTTTGCCCCGTTTTTCATCGAACTACGAACCGAGTGATCCACCGATAAGAC

TTGATAAAGATTGTTGGTTACGCTACCATACGCATGGAGCATAATCAATGTAAAA

AATGTTAATAGTAGGGTTGGCCATGGGGGGTCCCCCAATGGACTCCTTTATTTCC

ATCCCCCGATGGTCCAGAAACTGGCCGAACCCACCGGAAAAAGAAGGTAAAAGT

CCCTTATAACACCCCCTCTCATTCAGGTGCCCCCTAAGCCTATAAAAACCATTAA

AAGCCGATCCAGACCAAATTCACTTTAAAAACACCACCCGGCCCCGTTCCATCCT

TCAAACCCTTATGGGAATAGCTTCATAATGGTCCTTCCCCAGTCCCCCCCGGGAA

ACAA 

Figure 3.1: The sequence of isolate #10. The NCBI BLASTn results revealed high affinity to 

Steinernema species. 

  

GGGAGGTGCCAAGTAAGATAGCATAAGAAGCACCTCCTAGCCATGTATGGGAAG

CATCATATTTCATACGCGACACATCCATAGGTACAGACTTATACTCTCTACGGCG

TCTTCACGAAGAAGACATGTTGCCAATATTCGGAACTAGAACGGGGCCAGTAGT

AACACTAACGCCGCTCGACATTCGGCGTTGCCACTTTCGCAGCAACACCGCAGTA

CTTTAAGCAACCCTGAGCCAGACGTGCCGAAGGGAAAACCCAACGGCGCTGTGC

GTTCAAAACTTCACCACTCTAAGCGTCTGCAATTCGTGGTAAATAACGCAGCTAG

CTGCGTTTTTCATCGATACGCGAATCAACCGATCCATCGCTGAAGCTAATACATT

GTGCCAAAATGTATTAACACGTATCCAAGAGACAAGATAACGATACGTACCCAA

AAATCAAATATCGCAAGGCGGTTGACGGAACAACTCATTGAGGCTCTCCGCATA

GCGGATCTCGATGTGACCGAAGTCACATCACAGCCACCGGTCCACGATAGTTTG

GCTGAGGCAACAGTCCGAGAGTACTGTTCATTAAGTCTATGCGCCACCCATACGG

GCAACACACCCAATCATCACTGCCGTCACTCCAAGCGACTCCAATTGGGAATAG

ACACCTCACCAAGAGCTTAGATGGGGTGAGCTACCGATTGAAATCAAACGTGAG

CCTGATTCCATGAGCACCGATAGCTCGTGACCAAAGCATAACCATTAAGGTTTTC

AGCGATGATCCATCTGCAGGTTCACCATACGGAAAAC 

Figure 3.2: The sequence of isolate #35. The NCBI BLASTn results revealed high affinity to 

Heterorhabditis species 
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CCAGTAAGATAGCATAAGAAGCACCTCCTAGCCATGTATGGGAAGCATCATATT

TCATACGCGACACATCCATAGGTACAGACTTATACTCTCTACGGCGTCTTCACGA

AGAAGACATGTTGCCAATATTCGGAACTAGAACGGGGCCAGTAGTAACACTAAC

GCCGCTCGACATTCGGCGTTGCCACTTTCGCAGCAACACCGCAGTACTTTAAGCA

ACCCTGAGCCAGACGTGCCGAAGGGAAAACCCAACGGCGCTGTGCGTTCAAAAC

TTCACCACTCTAAGCGTCTGCAATTCGTGGTAAATAACGCAGCTAGCTGCGTTTT

TCATCGATACGCGAATCAACCGATCCATCGCTGAAGCTAATACATTGTGCCAAAA

TGTATTAACACGTATCCAAGAGACAAGATAACGATACGTACCCAAAAATCAAAT

ATCGCAAGGCGGTTGACGGAACAACTCATTGAGGCTCTCCGCATAGCGGATCTC

GATGTGACCGAAGTCACATCACAGCCACCGGTCCACGATAGTTTGGCTGAGGCA

ACAGTCCGAGAGTACTGTTCATTAAGTCTATGCGCCACCCATACGGGCAACACAC

CCAATCATCACTGCCGTCACTCCAAGCGACTCCAATTGGGAATAGACACCTCACC

AAGAGCTTAGATGGGGTGAGCTACCGATTGAAATCAAACGTGAGCCTGATTCCA

TGAGCACCGATAGCTCGTGACCAAAGCATAACCATAAAGGTTTTCAGCGATGAT

CCATCTGCAGGTTCACCAAGGGAAAACCA 

Figure 3.3: The sequence of isolate #42. The NCBI BLASTn results revealed high affinity to 

Heterorhabditis species. 

 

 

3.3.2 Evolutionary divergence 

Evolutionary divergence based on genetic variation of the ITS region was analysed using 

MEGA6 pairwise distance using multi-aligned ITS sequences of species obtained from NCBI 

and the undescribed isolates (table 3.3 and 3.4). The lowest evolutionary divergence was 

observed between isolate 10 and Steinernema khoisanae strain 106-C** (0.187), and between 

undescribed isolate 35 and 42 with Heterorhabditis zealandica strain Bartow (0.00; 0.00),  H. 

zealandica strain NZH3 (0.002;0.002) and the South African isolate H. zealandica strain SF41 

(0.002;0.002) respectively, suggesting close relation. There was no divergence between 

Heterorhabditis zealandica strain Bartow and isolates (35 and 42) suggesting that they are of 

the same species. 
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Table 3.3: Estimates of evolutionary divergence between CLUSTALW multi-aligned 

Steinernema species and the undescribed isolate 10 ITS sequences. The number of base 

substitutions per site from between sequences are shown. Standard error estimate(s) are shown 

above the diagonal and were obtained by a bootstrap procedure (1000 replicates). Analyses 

were conducted using the Tajima-Nei model (Tajima and Nei, 1984). The analysis involved 24 

nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions 

containing gaps and missing data were eliminated. There were a total of 527 positions in the 

final dataset. Evolutionary analyses were conducted in MEGA6 (Tamura et al, 2013) 

 

 

Table 3.4: Estimates of evolutionary divergence between CLUSTALW multi-aligned 

Heterorhabditis species and the undescribed isolates (35 and 42) ITS sequences. The number 

of base substitutions per site from between sequences are shown. Standard error estimate(s) are 

shown above the diagonal and were obtained by a bootstrap procedure (1000 replicates). 

Analyses were conducted using the Tajima-Nei model (Tajima and Nei, 1984). The analysis 

involved 15 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. 

All positions containing gaps and missing data were eliminated. There were a total of 643 

positions in the final dataset. Evolutionary analyses were conducted in MEGA6 (Tamura et al, 
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2013) 

 

 
 

3.3.3 Phylogenetic relationships 

Phylogenetic relationships analysis was conducted by MEGA6 and Maximum Likelihood 

method was used to identify the isolates to species level. Isolate 10 clustered with Steinernema 

khoisanae strain 106-C ** on the same clade (figure 3.3.1d) which was isolated by Mallan, 

2006 in South Africa, however the branch length indicates evolutionary distance between the 

two species, suggesting that isolate 10 diverged from S. khoisanae and is a different species.  

Close relation was observed with other two South African species S. tophus ** and S 

innovationi **. A great evolutionary divergence is observed between Isolate 10 and S. sacchari 

**. Both isolates 35 and 42 clustered with Heterorhabditis zealandica strain Bartow, NZH3 

and the SA heterorhabditid H. zealandica strain SF41** on the same clade and were identified 

to be Heterorhabditis zealndica strain 35 and 42. 
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Figure 3.4: Phylogenetic relationships between Steinernema species based on 18S rDNA 

sequences. C. elegans isolate X5005 was used as an out-group and the NCBI accession numbers 

of the species used to generate the tree are given next to species name. The numbers shown 

next to the tree branches are bootstrap percentages. The evolutionary history was inferred by 

using the Maximum Likelihood method based on the Kimura 2-parameter model (Kimura 

1980). The tree with the highest log likelihood (-6408.5986) is shown. The percentage of trees 

in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for 

the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ 

algorithms to a matrix of pairwise distances estimated using the Maximum Composite 

Likelihood (MCL) approach, and then selecting the topology with superior log likelihood 

value. The tree is drawn to scale, with branch lengths measured in the number of substitutions 

per site. The analysis involved 24 nucleotide sequences. Codon positions included were 

1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. 

There were a total of 524 positions in the final dataset. Evolutionary analyses were conducted 

in MEGA6 (Tamura et al, 2013). 

 Steinernema oregonense GU569055.1

 Steinernema oregonense strain OS-10 AF331891.1

 Steinernema arenarium AF331892.1

 Steinernema sacchari strain SB10 KC633096.1 **

 Steinernema poinari strain 1093 KF241751.1

 Steinernema poinari strain 1160 KF241749.1

 Steinernema poinari strain tomsk KF241750.1

 Steinernema carpocapsae strain Dok83 KJ950293.1

 Steinernema carpocapsae strain NCR KJ950292.1

 Steinernema thermophilum EF431958.1

 Steinernema yirgalemense AY748450.1

 Steinernema yirgalemense strain 157-C EU625295.1 **

 Steinernema carpocapsae LN624759.1

 Steinernema everestense HM000103.1

 Steinernema nyetense JX985266.1
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 Steinernema glaseri AF122015.1

 Steinernema cubanum AY230166.1

 Undescribed Steinernema species (Isolate 10)

 Steinernema khoisanae strain 106-C EU683802.1 **

 Steinernema tophus isolate ROOI-352 KJ701241.1 **

 Steinernema innovationi isolate SGI-60 KJ578793.1 **

 Steinernema intermedium AF331916.1

 Caenorhabditis elegans isolate X5005 FJ589008.1

0.2
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Figure 3.5: Phylogenetic relationship analysis between Heterorhabditis species obtained from NCBI 

and isolate 35 and 45 based on 18S rDNA sequences. C. elegans X5005 was used as an out-group and 

the NCBI accession numbers of the species used to generate the tree are given next to species name. 

The numbers shown next to the tree branches are bootstrap percentages. Isolate 35 and 45 were both 

identified to be Heterorhabditis zealandica strain 35 and 42. The evolutionary history was inferred 

by using the Maximum Likelihood method based on the Kimura 2-parameter model [Kimura, 

1980). The tree with the highest log likelihood (-3065.2315) is shown. The percentage of trees 

in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for 

the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ 

algorithms to a matrix of pairwise distances estimated using the Maximum Composite 

Likelihood (MCL) approach, and then selecting the topology with superior log likelihood 

value. The tree is drawn to scale, with branch lengths measured in the number of substitutions 

per site. The analysis involved 15 nucleotide sequences. Codon positions included were 

1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. 

There were a total of 643 positions in the final dataset. Evolutionary analyses were conducted 

in MEGA6 (Tamura et al, 2013). 

 Heterorhabditis bacteriophora (AY321477.1)

 Heterorhabditis bacteriophora strain J172 (EU716335.2)**

 Heterorhabditis bacteriophora isolate IRA24 (EU598232.1)

 Heterorhabditis amazonensis (DQ665222.1)

 Heterorhabditis noenieputensis strain WS17 (KP335198.1)**

 Heterorhabditis noenieputensis strain SF669 (JN620538.1)**

 Heterorhabditis marelatus (AY321479.1)

 Heterorhabditis safricana (EF488006.1)**

 Heterorhabditis megidis (AY321480.1)

 Heterorhabditis zealandica strain SF41 (EU699436.1)**

 Heterorhabditis zealandica strain NZH3 (EF530041.1)

 Undescribed Heterorhabditis species (isolate 42)

 Heterorhabditis zealandica strain Bartow (GU174009.1)

 Undescribed Heterorhabditis species (isolate 35)

 Caenorhabditis elegans isolate X5005 (FJ589008.1)

0.05
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3.4 DISCUSSION 

Accurate identification of nematode isolates is crucial for understanding geographical 

distribution, habitat preference and occurrence of EPNs. It also has vital implications for 

population genetics and is important for selection of species for use in biological control 

(Valadas et al, 2011). Molecular identification allows researchers to identify organisms to 

genus and species level and is also important in identification of new species. In this study, 

molecular based techniques were employed for the identification of isolates 10, 22 and 35 

isolated from Brits in the North West province. 

The 18S rDNA sequences of isolates obtained from Inqaba Biotechnical laboratories were 

subjected to BLASTn tool on NCBI and results revealed 83% similarity percentage between 

isolate 10 and Steinernema khoisanae 106-C** (accession number EU683802), and isolate 35 

and 42 both revealed a 98% similarity to Heterorhabditis zealandica strain Bartow (accession 

number GU174009.1) and NZH3 (accession number EF530041.1). 

Pairwise distances revealed that isolate 10 differs from its closest relatives with evolutionary 

divergence of  0.187 observed between isolate 10 and Steinernema khoisanae 106-C suggesting 

divergent evolution hence isolate 10 was identified to be an unknown Steinernema species 

(table 3.3). Evolutionary divergence estimates between isolate 35 and  42 with Heterorhabditis 

zealandica strain Bartow were revealed to be 0.000; 0.000, strain NZH3 0.002;0.002 and the 

South African heterorhabditid H. zealandica strain SF41 0.002;0.002, respectively, suggesting 

close relation. There was no divergence (0.000) between Heterorhabditis zealandica strain 

Bartow and both isolates suggesting that they are of the same species. These results were futher 

confirmed by phylogenetic tree construction to analyse phylogenetic relationships. 

Phylogenetic tree construction is a method that is reliable for assessing phylogenetic 

relationships between undescribed isolates and described isolates.  Phylogenetic tree was 

constructed using multi-aligned ITS regions of the related Steinernema species obtained from 

NCBI and the isolates. Steinernema khoisanae 106-C and isolate 10 clustered on the same clade 

with bootstrap percentage support of 67%. The branch length between the two species further 

confirms genetic variation. Isolate 35 and 42 clustered on the same clade with Heterorhabditis 

zealandica strain Bartow, NZH3 and SF41 with clade bootstrap percentage of 100%. These 

results validated preliminary identification of nematodes based on symptom variation. 

Steinernematids including S. khoisanae strain 106-C (EU683802.1), S. yirgalemense strain 

157-C (EU625295.1) , S. sacchari strain SB10 (KC633096.1), S. tophus isolate ROOI-352 

(KJ701241.1), S. innovationi isolate SGI-60 (KJ578793.1) have been recovered in different 
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habitats of South Africa and have shown a great level of adaptation (Hatting et al, 2009; Malan 

et al, 2011). 

Heterorhbditis zealandica isolated in this study have also been isolated in the Western Cape 

and Mpumalanga provinces in South Africa. Heterorhabditis bacteriophora has been reported 

to be the most abundant in SA, however was not isolated in the present study (Hatting et al, 

2009; Malan et al, 2011). Heterorhabditids that have been recovered so far include H. safricana 

(EF488006.1), H. noenieputensis strain WS17 (KP335198.1), H. noenieputensis strain SF669 

(JN620538.1), H. bacteriophora strain J172 (EU716335.2), H. zealandica strain SF41 

(EU699436.1). 

Evolutionary relationships amongst Steinernema and Heterorhabditis species are recently 

assessed by DNA sequence analysis of the mitochondrial genes including cytochrome oxidase 

II (COII) (Szlanski et al, 2002),  the 12S rDNA and cox I genes (Nadler et al, 2006) in 

conjunction with nuclear genes such as ITS, 18S and 28S rRNA genes (Nguyen et al, 2001; 

Stock and Hunt, 2005). In the present study, the ITS region of isolates were compared with 

those of described nematodes and have proven and confirmed to be an ideal candidate for 

identification purposes. 
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Chapter4: Isolation and Molecular Characterization of 

Bacterial Endosymbiont 

4.1 INTRODUCTION 

Xenorhabdus and Photorhabdus bacterial species are members of the family 

Enterobacteriaceae. They are motile, gram-negative gamma proteobacteria and are highly 

virulent and pathogenic to a wide variety of insect host larvae. (Goodrich-Blair and Clarke, 

2007). These bacterial species have an obligate specific mutualistic symbioses with rhabditoid 

nematodes belonging to the genus Sternernema and Heterorhabditis. Photorhabdus and 

Xenorhabdus species have a broad host range and a dose of less than 5 colony forming unit 

(CFU) directly injected into the haemolymph of insect larvae is sufficient to induce mortality 

within 48 hours post inoculation. 

The bacteria is dependent on the nematode as it vectors the symbiont to the new larval host. 

All of the Xenorhabdus and most of the Photorhabdus isolates studied so far have been 

obtained from nematodes recovered from soil samples (Rainey et al, 1995). The free living 

forms of the bacterial endosymbionts have not yet been isolated from soil or water sources 

which suggest that symbionts are dependent on the nematode for survival in the soil 

environment (Forst et al, 1997). 

4.1.1Taxonomy 

Xenorhabdus and Photorhabdus are members of the family Enterobacteriaceae and phylum 

Proteobacteria. They are facultative anaerobic gram negative bacteria and are rod shaped and 

non sporulating. They have been reported to be oxidase negative and are chemoorganotrophic 

heterotrophs with respiratory and fermentative metabolisms. They belong to group 5 and 

subgroup1 of the family Enterobacteriaceae (Akhurst and Boemare, 1990; Forst et al, 1997) 

4.1.2 The life cycle of the bacterial symbiont 

 Phase I and II bacteria are released into the haemolymph of the host larvae and Phase I bacteria 

begin to secrete secondary metabolites and toxins which are lethal to the host. Only Phase I 

bacteria have been reported to produce antimicrobial compounds which are toxic to 

microorganisms and this ensures monoxetic conditions within the infected larvae (Akhurst, 

1980, 1982; Brown et al, 2004). The bacterial symbionts establish and maintain suitable 

conditions for nematode growth and development (Liu et al, 2001). Re-association of the 
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bacterial symbionts and nematodes occur after two to three reproduction cycle to form infective 

juveniles which emerge from an insect cadaver in search for new hosts. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: General life cycle of entomopathogenic bacterial symbionts associated with 

nematodes. (Adapted from Owuama, 2001) 

4.1.3 Insect larval host immune system depression  

The larval innate immune system comprises of both cellular and humoral components that are 

targeted upon recognition of foreign particles (Leulier et al, 2003). These include haemocytes 

that are able to recognize invading particles and encapsulate them to protect the insect larvae. 

Humoral response, involves the production of cationic antimicrobial peptides that directly 

target the bacterial membranes. Photorhabdus and Xenorhabdus species have developed 

mechanisms to depress the immune system of the insect larvae (Goodrich-Blair and Clarke, 

2007). Photorhabdus is reported to produce Al-2, a signalling molecule which results in 

resistance to the reactive oxygen species (ROS) which is a component of the early insect 

immune response (Krin et al, 2006). Photorhabdus also incurs resistance through the 

modification of the lipopolysaccharides (LPS). Xenorhabdus in contrast to Photorhabdus, 

suppresses the expression of CAMPs (Park et al, 2007; Ji and Kim, 2004). 
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4.1.4 Divergent evolution and convergent lifestyles 

The bacterial endosymbionts, Photorhabdus and Xenorhabdus species have divergenced 

evolutionarily wise but evolved convergently similar lifestyles. They are both associated with 

nematodes and are insect pathogens but their mode of pathogenicity is different. They colonize 

different sites in the alimentary canal of their associated nematodes. Both bacterial species are 

located just posterior to the pharynx in both nematodes, however, Photorhabdus colonizes a 

substantial fraction of the lumen of the nematode gut whereas Xenorhabdus appears to be 

located within vesicles or pockets (Bird and Akhurst, 1983)  

4.1.5 Molecular identification of bacterial symbionts 

The ribosomal DNA (rDNA) has been employed in molecular characterization of taxonomic 

relationships and identification of new bacterial species and strains (Tailliez et al, 2006). 

Amplification of the 16S and 23S ribosomal genes which are highly conserved have proved 

extremely useful for species identification and comparison of phylogenetic relationships of 

closely related species (Reney et al, 1995; Suzuki et al, 1996; Brunel et al, 1997). This study 

focused on isolation and molecular characterization of the entomopathogenic bacterial 

symbiont associated with a novel Steinernema species (isolate #10).  

4.2 MATERIALS AND METHODS 

Two techniques were carried out for the isolation of bacterial endosymbiont associated with a 

novel nematode species. 

4.2.1a isolation from the haemolymph of infected larvae 

About 5 instar G. mellonella larvae were placed in a Petri dish plate with river sand inoculated 

with EPN infective juveniles (IJs). This was to allow for infection of larvae with EPNS. The 

bacterial endosymbiont is released into the haemolymph and initiate infection post EPN entry. 

At 48 hours post infection, infected and dead larvae were collected and prepared for dissection. 

Infected G. mellonella larvae were primarily surface sterilized by spraying with 70% ethanol. 

Secondary surface sterilization was conducted prior dissecting by dipping the larvae in 70% 

ethanol followed by slight heating of the larval surface for 2-3 seconds to avoid heat-killing 

the bacteria.  

 



72 
 

Sterilized larvae were cut open or dissected using sterile scissors and scalpel, working 

aseptically. The syringe was used to draw the sticky fluid or haemolymph from the cadaver 

into an Eppendorf tube containing Nutrient Broth or sterile distilled water. The haemolymph 

containing the bacterial endosymbiont was streaked on NBTA (nutrient bromothymol 

triphenyltetrazolium agar) plates for the isolation of bacteria.  

4.2.1b Isolation from infective juveniles 

Infective juveniles (IJs) were collected from white traps and allowed to settle under gravity in 

a 50ml Falcon tube. The IJs were surface sterilized with 0.1% sodium hypochlorite for 3 hours 

to get rid of any possible bacterial and fungal contaminants on the surface of the nematodes. 

The sterilized nematodes were rinsed with Ringer's solution (pH 7.3) under the laminar flow 

to avoid contamination and were allowed to settle and were transferred into Eppendorf tubes. 

 

Using a sterile plastic pestle, the nematodes were crushed and homogenized. The homogenate 

was then transferred into sterile 1.0ml of Nutrient Broth and was incubated at 25ºC for 24 

hours. 24 hours post incubation, the broth containing the bacterial endosymbiont culture was 

streaked onto NBTA plates. 

 

The NBTA plates for both protocols were incubated at 25ºC for 2-3 days. The blue-green Phase 

I colonies were screened for and sub-cultured 6-7 times to obtain a pure culture. The plates 

were stored at 4ºC until required for analysis. Nutrient Broth supplemented with 10% glycerine 

was inoculated with bacterial colonies and stored at -70ºC to preserve the culture.  

4.2.2 Confirmation of the dependency of nematode growth and development on lipid agar 

bacterial lawns 

The Phase I blue green colonies from NBTA plates were inoculated in 1.0ml sterile Nutrient 

Broth in 2.0ml Eppendorf tubes and incubated for 24 hours at 25ºC. Spread plates of the 

bacterial endosymbiont broth culture (0.1ml) were prepared on lipid agar plates and incubated 

at 25ºC for 48 hours. Nematodes collected by white traps were sterilized for 1 hour in 0.1% 

hypochlorite and about 200IJs/ml were inoculated onto bacterial lawn lipid agar plates. The 

plates were incubated at 25ºC and inspected daily for EPN propagation and development. 
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4.2.3 DNA isolation 

Colonies of pure bacterial endosymbiont culture were picked from NBTA plates and re-

suspended in 200µl of distilled water. Isolation of genomic DNA was conducted using the ZR 

fungal/ bacterial DNA kit (catalog #D6005) 

4.2.4 Polymerase Chain Reaction: amplification of the 16S rDNA 

PCR was conducted to amplify the 16S rDNA using universal primers EUB968 and 

UNIV1382. The reaction mixture reagents were prepared to make up a total of 50ul of the 

sample which was allowed to run on the PCR machine (GeneAmp PCR system 2700). 

Table 4.1: The forward and reverse universal oligonucleotide primers used to amplify the 16S 

rDNA region of the bacterial isolate (Brunel et al, 1997). 

Oligonucleotide 

primer 

Sequence Tm (°C) Ta (°C) 

EUB968 Forward 

primer 

5’-ACGGGCGGTGTGTRC-3’ 

 

62 57 

UNIV1382 Reverse 

primer 

5’-AACGCGAAGAACCTTAC-3’ 66 61 

 

Table 4.2: PCR reaction mixture for amplification of the 16S rDNA 

Reagent/sample Volume  ( µl )  

Experiment    

Volume  ( µl )  

Control 

Master Mix 25 25 

Bacterial genomic DNA 2 0 

Forward primer 3 3 

Reverse primer 3 3 

Nuclease free water 17 19 

TOTAL 50 50 
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16S rDNA amplification cycle 

35 cycle amplification series: 

Denaturation at 94ºC for 30 seconds 

Annealing at 57°C for 45 seconds 

Extension at 72ºC for 90 seconds 

Final extension after cycling:  72ºC for 7 minutes 

4.2.5 Sequencing of the 16S rDNA 

The PCR products were sequenced at the Inqaba Biotechnical Industries (pty) (LTD). The 

generated sequence of the undescribed bacterial endosymbiont species was edited and error 

corrected using FinchTV. The edited sequence was subjected to NCBI BLASTn algorithm for 

identification based on similarity percentage with existing species in the database.  

4.2.6 Multiple alignment: CLUSTALW 

Using the NCBI BLASTn search results, the 16S rDNA sequences with the highest similarity 

percentage to the query sequence were uploaded on MEGA 6.1 and multi-aligned using 

clustalW. Escherichia coli was used as the out-group. 

4.2.7 Phylogenetic analysis 

Aligned sequences of closely related Xenorhabdus species and the undescribed Xenorhabdus 

species as well as E. coli as the out-group were subjected to phylogenetic analysis for 

establishment of phylogenetic relationships. This was achieved through MEGA 6.1 Maximum 

Likelihood tree construction tool using the Kimura-2 parameter. Bootstrap analysis was carried 

out with 1000 datasets. 

The following taxa were used for phylogenetic tree construction of bacterial species: 

Xenorhabdus griffiniae (GU480979), Xenorhabdus sp. MY8 KsSu155 (AB507812), 

Xenorhabdus ishibashii (AB243427), Xenorhabdus poinarii (GU480978), Xenorhabdus 

poinarii strain Iran 2 (EU250472), Xenorhabdus szentirmaii (GU480989), Xenorhabdus 

magdalenensis strain IMI (NR 109326), Xenorhabdus khoisanae strain 

SF87(NR_117921.1)**, Xenorhabdus khoisanae strain SF362(JX623978.1)**, Xenorhabdus 
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khoisanae strain 106-C (JX623972.1)** and Escherichia coli strain EcSC4 (KC504011.1). All 

species marked with “**” have been isolated in South Africa. 

 

4.3 RESULTS 

4.3.1 Isolation of bacterial endosymbiont from the haemolymph of infected larvae 

The bacterial endosymbiont was successfully isolated from the cadaver of G. mellonella insect 

host larvae that had been infected with Steinernema spp. isolate 10. Phase I colonies were blue 

green and deep blue on NBTA plates with bromothymol blue concentration of 0.025g/L and 

0.06g/L (figure 4.1). Phase II colonies were rust on NBTA plates (plates not shown). The Phase 

I bacterial colonies were granulated, convex, opaque and circular with irregular margins and a 

colony diameter of 1-2.5 mm. The Phase II colonies were flat and translucent with irregular 

margins and a colony diameter of 2-4mm.  

 

Table 4.3: Comparison of Phase I and Phase II bacterial endosymbiont BMMCB colony 

morphological characteristic with other Xenorhabdus species (Kaya and Stock, 1997) 

Organism Phase I colony 

Morphology 

Colony colour on 

NBTA 

Phase II colony 

Morphology 

Colony colour on 

NBTA 

Xenorhabdus isolate Granulated, convex, 

opaque and circular 

with irregular 

margins 

 

Colony diameter = 

1-2.5mm 

 

Sticky consistency 

blue-green Flat, transluscent 

with irregular 

margins 

 

Colony diameter  = 

2-4mm 

shaded from red to 

rust 

X. bedingii Blue rust 

X. pionar Red rust 

X. nematophilus Blue to deep purple rust 
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Figure 4.2: Bacterial colonies of bacterial endosymbiont isolated from Steinernema spp. 

isolate 10 A) blue green colonies on NBTA plate with bromothymol blue concentration of 

0.025g/L and B) deep blue colonies on NBTA with bromothymol blue concentration of 0.06g/L 

 

 

B

 

A 
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4.3.2. Confirmation of the dependency of nematode growth and development on lipid agar 

bacterial lawn 

The bacterial symbiont was spread on lipid agar plates and allowed to grow in a lawn. The 

sterilized IJs were inoculated onto the bacterial lawn and the nematodes developed into adults 

suggesting that nematodes depend on the bacterial symbionts for growth and development. 

 

 

 

 

A 
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Figure 4.3: Confirmation of the dependency of nematodes on bacterial endosymbiont A) 

increased nematode reproduction and B) nematodes developed from infective juvenile stage to 

adult stage.  

 

 

 

B 
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4.3.3 Molecular identification of isolated bacterial symbiont 

Sequencing of the 16S rDNA was subsequently achieved post successful PCR amplification. 

The sequence obtained from Inqaba Biotechnical Industries is illustrated in figure 4.4. The 

sequence was subjected to NCBI and revealed high affinity to Xenorhabdus griffiniae species. 

Phylogenetic relationships were assessed and the isolate clustered on the same clade with 

Xenorhabdus griffiniae species and were supported by bootstrap percentage of 98%, however 

estimate of evolutionary divergence revealed genetic variation. 

GAAACATTCTGATCTACGATTACTAGCGATTCCGACTTCATGGAGTCGAGTTGCAGACTC

CAATCCGGACTACGACAGACTTTATGAGGTCCGCTTGCTCTCGCGAGGTCGCTTCTCTTT

GTATCTGCCATTGTAGCACGTGTGTAGCCCTACTCGTAAGGGCCATGATGACTTGACGTC

ATCCCCACCTTCCTCCGGTTTATCACCGGCAGTCTCCCTTGAGTTCCCACCATCACGTGCT

GGCAACAAAGGATAAGGGTTGCGCTCGTTGCGGGACTTAACCCAACATTTCACAACACG

AGCTGACGACAGCCATGCAGCACCTGTCTCACGGGTCCCGAAGGCACTTCCGCATCTCTG

CAGAATTCCGTGGATGTCAAGAGTAGGTAAGGTTCTTCGCGTTGCATCGAATTAAACCAC

ATGCTCCACCGCTTGTGCGGGCCCCCGTCAATTCATTTGAGTTTTAATCTTGCGACCGTAC

TCCCCAGGCGGTCGATTTAACGCGTTAGCTCCGGAAGCCACAGCTCAAGGCCACAACCTC

CAAATCGACATCGTTTACAGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCACG

CTTTCGCACCTGAGCGTCAGTCTTCGTCCAGGGGGCCGCCTTCGCCACCGGTATTCCTCC

ACATCTCTACGCATTTCACCGCTACACGTGGAATTCTACCCCCCTCTACGAGACTCTAGTC

AACCAGTCTTAGATGCCATTCCCGGGTTAAGCCCGGGATTTCACATCTAACTTAATTGAC

CGCCTGCGTGCGCTTTACGCCCAGTAATTCCGATTAACGCTTGCACCCTCCGTATTACCGC

GGCTGCTGGCACGGAGTTAGCCGGTGCTTCTTCTGTGGGTAACGTCAATCACAGGGTGTA

TTCAACCCTGTGCCTTCCTCCCCACTGAAAGTACTTTACAACCCGAAAGGCCTTCTTCATA

CACGCGGCATGGCTGCATCAGGCTTGCGCCCATTGTGCAATATTCCCCCACTGCTGCCTC

CCGTAGGAGTCTGGGCCGTGTCTCAGTCCCAGTGTGCTGGTCATCCTCTCAGACAGCTAG

GATCGTCGACTAAGTGAGCATAACCCCACTACTAGCTATTCCCATCTGGGATTCCTTCCC

GGAATTG 

 

Figure 4.4: 16S rDNA sequence of the undescribed bacterial endosymbiont isolated from 

larval haemolymph of insect larvae infected with Steinernema spp. isolate 10. 

Evolutionary divergence was also assessed using MEGA 6.1 pairwise distance and revealed 

genetic variation between the bacterial isolate and its closest relatives.  The bacterial isolate 

identified belongs to the genera Xenorhabdus. The isolate clustered on the same clade with 

Xenorhabdus griffiniae (accession number GU480979) and Xenorhabdus sp. MY8 KsSu155 

(AB507812),  with evolutionary distance of 0.022 and 0.024 suggesting divergent evolution 

and the isolate was identified to be Xenorhabdus bacterial isolate. A great evolutionary 

divergence (1.019; 1.012 and 1020)  was observed between the isolated bacterial symbiont and 

South African isolates  X. khoisanae strain SF87, SF362 and 106-C , respectively. 
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Table 4.4 Estimates of evolutionary divergence between sequences of undescribed bacterial 

isolate and its closely related species. The number of base substitutions per site from between 

sequences are shown. Standard error estimate(s) are shown above the diagonal and were 

obtained by a bootstrap procedure (1000 replicates). Analyses were conducted using the 

Kimura 2-parameter model (Kimura, 1980). The analysis involved 12 nucleotide sequences. 

Codon positions1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were 

eliminated. There were a total of 1122 positions in the final dataset. Evolutionary analyses were 

conducted in MEGA6 (Tamura et al, 2013). 
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Figure 4.5: Phylogenetic relationship analysis of 16S rDNA sequences of described species 

obtained from NCBI and the undescribed Xenorhabdus isolate using MEGA 6.1. The accession 

numbers are shown next to species name. The numbers shown next to the tree branches are 

bootstrap percentages. The tree with the highest log likelihood (-4086.1469) is shown. The 

percentage of trees in which the associated taxa clustered together is shown next to the 

branches. Initial tree(s) for the heuristic search were obtained automatically by applying 

Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the 

Maximum Composite Likelihood (MCL) approach, and then selecting the topology with 

superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the 

number of substitutions per site. The analysis involved 12 nucleotide sequences. Codon 

positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing 

data were eliminated. There were a total of 1122 positions in the final dataset. The evolutionary 

history was inferred by using the Maximum Likelihood method based on the Kimura 2-

parameter model (Kimura, 1980). 

 Xenorhabdus poinarii (GU480978)

 Xenorhabdus poinarii strain Iran2 (EU250472)

 Xenorhabdus ishibashii (AB243427)

 Xenorhabdus szentirmaii (GU480989)

 Xenorhabdus khoisanae strain SF87 (NR 117921.1)**

 Xenorhabdus khoisanae strain SF362 (JX623978.1)**

 Xenorhabdus khoisanae strain 106-C (JX623972.1)**

 Xenorhabdus magdalenensis strain IMI (NR 109326)

 Undescribed Xenorhabdus species

 Xenorhabdus griffiniae (GU480979)

 Xenorhabdus sp. MY8 KsSu155 (AB507812)

 Escherichia coli strain EcSC4 (KC504011.1)

0.1



82 
 

4.4 DISCUSSION 

The bacterial endosymbiont isolation was achieved by streaking the haemolymph of dead 

larvae infected by Steinernema spp. isolate 10, on NBTA plates. Pure culture of the bacterial 

symbiont was obtained by multiple streak sub-culturing and was used for molecular based 

techniques for identification. 

Bacterial symbiont appears in two phases, Phase I and Phase II. No major DNA rearrangements 

between the two Phases have been reported, however phase II colonies are reported to lack 

morphological traits and have reduced levels of numerous biochemical and physiological 

characteristics (Brunel et al, 1997). Phase II appears during the stationary phase of in vitro 

culture or during nematode rearing on artificial diet (Brunel et al, 1997). 

Xenorhabdus species colony colour on NBTA range from blue, blue-green and deep purple 

depending on the species and the concentration of BTB on the media.  All Xenorhabdus species 

are known for their ability to adsorb bromothymol blue except for Xenorhabdus pionar which 

exhibit red colonies on NBTA for both Phase I and II (Kaya and Stock, 1997; Hurlbert et al, 

1989; Nealson et al, 1990). Xenorhabdus bacterial isolate Phase I colonies were blue-green for 

normal BTB concentration (0.025g/1L) and were deep blue when the concentration was higher 

(0.06g/1L) on NBTA plates (Figure 4.1). The colonies were surrounded by clearing around the 

colonies due to adsorption of BTB. The colony morphology was convex, opaque and circular 

with irregular margins. Phase I colonies were small to middle sized (1-2.5mm colony diameter) 

and displayed a sticky consistency. Colonies were sometimes reddish on NBTA which is a 

result of absorption and reduction of triphenyltetrazolium chloride (TTC) in the media (Kaya 

and Stock, 1997). Phase II colonies were flat, translucent with irregular margins and a greater 

diameter (2-5mm). Colonies were shaded from red to rust from adsorption and reduction of 

TTC. There were no clear zones around phase II colonies as they are incapable of adsorbing 

BTB. 

The 16S rDNA sequence obtained from Inqaba Biotechnical Industries were subjected to 

BLASTn tool on NCBI to compare with organisms already described and stored on the 

database. NCBI BLASTn results revealed high affinity to Xenorhabdus griffiniae (accession 

number GU480979) and Xenorhabdus sp. MY8 KsSu155 (accession number AB507812),  with 

evolutionary distance of 0.022 and 0.024 suggesting divergent evolution and the isolate was 

identified to be Xenorhabdus bacterial isolate. Phylogenetic relationships were assessed using 

Maximum likelihood method in MEGA 6 and the isolate clustered with X. griffinae and X. sp. 
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MY8 KsSu155 strains with bootstrap percentage of 100%. Despite clustering on the same 

clade, results revealed high evolutionary distance or variation between the Xenorhabdus 

isolate, Xenorhabdus griffiniae and X. sp. MY8 KsSu155 suggesting evolutionary divergence 

and the isolate was identified to be Xenorhabdus bacterial isolate. Despite the close relation 

between Steinernema isolate 10 and S. khoisanae 106-C, their bacterial symbionts reveal 

distant relation and great level of evolutionary divergence. 

Nematodes are known to be dependent on Phase I bacterial symbiont for growth and 

development. To confirm this dependency, spread plates of Xenorhabdus bacterial isolate 

Phase I colonies on lipid agar were prepared and sterilized IJs (200IJs/ml) were cultured on the 

bacterial lawn. Nematodes were observed to develop from IJs to adults and this confirms their 

dependency on bacterial symbiont for development.  

This study revealed that PCR based techniques for amplification of the 16S rDNA and bacterial 

colony morphological characterization are accurate and reliable methods for identification of 

Xenorhabdus bacterial symbionts. 
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Chapter5: Morphological Observations of 

Entomopathogenic Nematodes 

5.1 INTRODUCTION 

Nematodes in the genera Steinernema and Heterorhabditis have physiologically and 

behaviourally adapted to different habitats for survival and longevity. Some species are specific 

with regard habitat preference due to prevalence of suitable host. Morphological characteristics 

of EPNs play a pivotal role in environmental adaptation (Hominick 2002; Smits and Ehlers, 

1991; Dolinski et al, 2008). Different species amongst both genera lack morphological 

variation and some valid characters such as the spicule and gubernaculum requires proper 

processing of nematodes samples and high definition observation methods. Morphometric 

measurements of special characters are currently used by researchers to differentiate between 

shape and size of species and are taken into consideration for identification of new species 

(Stock and Kaya, 1996; Phan et al, 2005) in addition to molecular identification. 

In Africa, the amount of information available for EPN taxonomy is currently limited (Malan 

et al, 2006; Nthenga et al, 2013). Thus, there is a need for isolation and accurate identification 

of indigenous EPN strains for application as biocontrol agents (Kanga et al, 2012). The first 

EPN to be isolated in South Africa, was by Hamington in Grahamstown, Eastern Cape. Three 

Steinernema and only one Heterorhabditis species were identified in 1988 in Kwazulu Natal 

(Spaull, 1988, 1990). In 1991, 15 steinernematids and 7 heterorhabditids were isolated however 

were not identified to species level. Heterorhabditids have been identified to be the most 

abundant species in South Africa (Malan et al, 2011; Hatting et al, 2009). Morphological 

identification using light microscopy and scanning electron microscope have proven to be the 

best and reliable methods for observation of both internal and external features (Kaya and 

Stock, 1997).  

Accurate identification requires morphological characterization and morphometric 

measurements of adult males, females and IJs. Currently, a total of four heterorhabditids (two 

of which are new descriptions for South Africa) and eight steinernematids (of which 7 are new 

descriptions for SA) have been reported (malan et al, 2011).  This study aimed at characterizing 

the morphological features of a novel Steinernema species using light microscopy (different 

observation methods) and scanning electron microscopy. 
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5.2 MATERIALS AND METHODS  

Morphological observations of infective juveniles was conducted using light microscopy and 

scanning electron microscopy. (modification of protocol by Courtney et al, 1995 and 

Steinhorst, 1959) 

5.2.1 Light microscopy 

5.2.1.1 Heat-killing and fixing nematodes 

Infective juveniles were collected from white traps, sterilized for 1 hour using 0.1 sodium 

hypochlorite and were rinsed with distilled water 3 times. The nematodes were transferred into 

a small Petri dish plate and were heat killed by suspension in 80 ºC distilled water. The water 

was discarded after 5 minutes and replaced with 85 ºC TAF. The TAF solution was replaced 

with double strength TAF and the samples were stored at 4 ºC to relax nematodes for 1 hour. 

The double strength TAF was replaced with 65ºC TAF and allowed to infiltrate for 24 hours 

to achieve fixation. 

5.2.1.2 Processing nematodes to pure glycerine 

Fixed nematodes were transferred into a clean small Petri Dish plate containing 0.5ml of 

solution I (20ml 95% ethanol, 1ml glycerine and 79ml distilled water). The plate was placed in 

a desiccator and was incubated in an oven at 35ºC for 24 hours. The nematodes were re-

suspended in solution II (15ml glycerine, 95ml 95% ethanol) and were incubated at 40ºC for 3 

hours and mount on microscopic slides. Images were captured using the Olympus BX63 

fluorescence microscope using different observations (BF – bright field, DF – dark field and 

DIC – differential interference contrast).  

5.2.2 Scanning electron microscopy 

5.2.2.1 Heat-killing, fixing and processing  

Sterilized nematodes were heat killed by suspending them in 65 ºC distilled water for 3 minutes. 

Heat killed nematodes were rinsed 3 times in Ringer's solution (pH 7.3) and were pre-fixed in 

TAF solution for 24 hours at 25 ºC. The nematodes were rinsed with distilled water and 

dehydrated with ethanol gradient of varying concentration (30, 50, 70, 90, 95 and 100% V/V) 

at 10 minutes interval. The nematode samples were left in 100% ethanol overnight prior freeze 

drying. 

5.2.2.2 Freeze-drying 
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Ethanol was allowed to evaporate for 48 hours and the nematodes were spread evenly using a 

needle in an Eppendorf tube. A hole was created on the lid using a dissecting needle to allow 

for drying. The samples were placed in a freeze drying machine and were allowed to freeze at 

-85.4 ºC.  The frozen samples were allowed to dry at a pressure of 101mT. 

5.2.2.3 SEM: Mounting and observation of samples  

The nematodes were picked from the tube using a needle and were mount on SEM stubs. The 

samples were coated with carbon and gold Palladium.  The samples were viewed and images 

were captured using the FEI Quanta 200 scanning electron microscope. 

5.3 RESULTS 

Description:  

Infective juveniles: Heat killing of the IJs resulted in straight body shaped nematodes. The 

nematodes retained the second stage cuticle. The stoma was closed and the oesophageal tract 

was observed with minimal characters of the pharynx. Excretory pore (EP) at mid pharynx-

level. The tail region showing the anal tract on the posterior region. The bacterial pouch 

showing the rod shaped bacterial symbionts and the thick cuticle. The scanning electron 

microscopy results of infective juveniles’ lateral view revealed 8 equally spaced ridges through 

the mid body region.     

First generation female adult: Remains curved after heat killing. Head region is rounded and 

continuous with body. Funnel shaped stoma with six labial papillae more prominent under light 

microscopy and only 4 visible under scanning electron microscopy. Pharynx with distinct 

isthmus, basal bulb enlarged and valvated. The nerve ring surrounds the isthmus just anterior 

to basal bulb. The pharingo-intestinal tract is prominent. The Excretory pore is positioned at 

mid basal bulb and the excretory tract is elongated from mid basal-bulb to close to the gut. 

Vulva protruding from the body with double flapped epiptygma. 

Second generation female adult: Body remains curved after heat killing. Vulva slightly 

protruded from body with double flapped epiptygma. Tail dome shaped with peg-like mucron 

present. 

First generation male: The funnel shaped stoma is observed at the anterior region. Spicules 

paired, light brown in colour. Head (manubrum) of spicules oblongate, each spicule with two 

internal ribs. Gubernaculum boat-shaped in lateral view, anterior end curved. The tail of male 

adult is mucronless. 
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Figure 5.1: Morphological observations of Steinernema sp. isolate 10 using the light 

microscope: 1. Infective juveniles  (A-F)- A) Anterior region showing the excretory pore (EP) 

and Oesophageal tract, B) Infective juvenile, C) Posterior region showing the anus position, D) 

tail region, E) Head region, F) rod shaped bacterial endosymbiont enclosed in a vesicle.  2. 

First generation female adult (G-K)- G) Posterior region showing the position of the a) stoma 

b) oesophageal tract, c) pharynx and d)basal bulb, H) Head region showing 6 labial papillae  

And the  EP, I) Excretory duct (ED) postion, J) Endotika matricida a) infective juveniles 

developing inside the adult female EPN and b) protruded vulva lips (VL), K) VL with double 

flapped epiptygma. 3. Second generation female adult (L-M) - L) VL showing the epiptygma, 

(M) tail region showing the anus. 4. Male adult EPN (N-Q)- N) Head region showing the stoma, 

O) male adult head, body and tail, P) tail region Q) Posterior region showing the position of 

the spicules (b) with manubrum (a) and  the gubernaculum (c). 
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Figure 5.2: Morphological observations of Steinernema spp. isolate 10 using the scanning 

electron microscope. 1. Infective juveniles (A-D) - A) and B) Head showing the stoma and mid 

body region showing the longitudinal striations and tessellate patterns. C) and D) 8 equally 

spaced ridges on mid body region. 2. Female adult (E-F) - E) 3 papillae on the anterior region 

and F)Tail region showing the anus. 

 

5.4 DISCUSSION 

Morphological chracacterization of Steinernema spp. isolate 10 resembled those of 

Steinernema khoisanae 106-C and the original description of Steinernema khoisanae (Nguyen, 

et al, 2006). The head region of Infective Juveniles (IJs) was truncated and slightly rounded 

and were located at the anterior region. The excretory pore was prominent at mid pharynx-

level. The rod shaped bacterial endosymbiont were observed in a pocket within the gut of IJs 

which further confirms the association of entomopathogenic nematodes with bacterial 

symbionts. The tail was pointed and differed with those of the adult female and males. The 

male tail was robust and curved with prominent spicules and gubernaculum present and the tail 

of the adult females were curved with a peg like mucron and anus located quite close to the 

end of the tail. The shape of the spicules and gubernaculum resembled those of Steinemema 

sacchari, a recently described entomopathogenic nematode from South Africa (Nthenga et al, 

2014). 
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The body length of the 1st generation adult females was twice the size of the 1st generation male 

and about four times the size of IJs. The vulva lips of the 1st generation females were protruded 

and that of 2nd generation females were somewhat slightly protruded and were both 

characterized by a double flapped epiptygma. Endotika matricida (EM) is a process whereby 

infective juveniles develop within the adult female EPN and upon emergence, the mother bursts 

and dies. EM was observed in both generations with IJs visible within adult EPNs. Six papillae 

were evident on the head stoma region of the adult female opening to the oesophageal tract 

which opens to the intestines just after the basal bulb of the pharynx. Both the excretory pore 

and the excretory tract aiding in the emission of waste products to the exterior were evident at 

the anterior region. 

Scanning electron microscopy aided in observation of surface characteristics of the IJs and 

females. Longitudinal striations and tessellate patterns were evident on both IJs and females on 

the head region and body. The anus and shape of the tails were observed. The 8 equally spaced 

and developed ridges on the surface of Ijs have been reported and is consistent with the 

Steinernematid spp “glaseri group” infective juveniles identified in Portugal (Nguyen and 

Smart, 1995; Valadas et al, 2011)   

Light and scanning electron microscopy revealed detailed important characteristics of 

Steinernema spp isolate 10. Special morphometric measurements such as body length (L), tail 

length (T) and the size of the spicule and gubernaculum should be considered for detailed 

morphometric identification (Nguyen et al, 1995). 
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CHAPTER6: Desiccation Tolerance of Entomopathogenic 

Nematodes 

6.1 INTRODUCTION 

Control of insect pests remains problematic to agricultural industries as they usually evolve 

resistance to chemical pesticides with time. This inevitable result necessitates an alternative 

approach to crop pest management involving the use of biocontrol agents in place of synthetic 

chemical pesticides. Entomopathogenic nematodes represent a possible alternative crop pest 

management biocontrol agent. The economic importance of EPNs in the genera Steinernema 

and Heterorhabditis is growing exponentially and generates a demand for application of 

suitable strains with high reproductive potential in vivo, longer shelf life or storage ability, and 

field efficacy against target pests (Tamalak, 1997). 

The third stage infective juvenile (IJ) is the only stage in the life cycle of EPNs that can survive 

outside the insect larval host. IJs are free living nematodes ensheathed by the second stage 

stage cuticle (Pionar, 1970). Nematodes have developed strategies to resist and tolerate adverse 

environmental conditions (Serwe-Rodriguez et al, 2004). They can tolerate both abiotic and 

biotic factors in the soil. Adaptation to permit survival include morphological specialization, 

behavioural and biochemical mechanisms. 

EPNs have chemoreceptors and are motile, which enables them to be able to locate susceptible 

hosts in the soil. They respond to both chemical and physical stimuli emitted by the potential 

prey, however some nematode species are able to search for hosts either at or near soil surface 

and are referred to as ambushers, whereas others are adapted to search deeper in the soil surface 

and we refer to them as cruisers (Koppenhofer et al, 1995).  The most important traits for a 

suitable strain include best behavioural adaptation as well as the ability to tolerate 

environmental factors such as desiccation (Rodriguez et al, 2004).  

Desiccation tolerance is a highly vital factor affecting the commercial use of nematodes from 

mass production to application and it has been stipulated to be important for storage and shelf 

life of nematodes prior application. Extensive research have been conducted on EPNs 

behavioural, biochemical and molecular mechanisms and has increased knowledge of their 

stress responses (Glazer, 2002; Gal et al, 2001 and Chen et al, 2006). Molecular studies have 

identified several genes that may be potential markers for desiccation tolerance in Steinernema 
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feltiae. Of the identified genes, some were known to be related to stress-response and some 

were homologues to C. elegans hypothetical proteins (Somvanshi et al, 2008). 

Survival under low moisture conditions is highly crucial for the persistence of EPNs in the soil. 

Soil is characterized by rapid desiccation on the surface and gradual desiccation within the soil 

hence it is highly important to commercialize strains that will be able to tolerate desiccation 

once applied to agricultural fields. The study aimed at investigating desiccation tolerance of 

both Steinernema and Heterorhabditis species. 

 

6.2 MATERIALS AND METHODS 

 

6.2.1 Desiccation studies 

The ability of Steinernema spp. isolate 10 and Heterorhabditis species to tolerate desiccation 

was assessed. The effect of soil texture on infectivity was also assessed. River sand and loamy 

sand were autoclaved at 121°C to get rid of contaminants and about 35g of soil samples were 

weighed and put in a Petri dish and rehydrated to 8% moisture. The IJs were collected from 

White traps and allowed to settle and were sterilized for 1 hour with 0.1% sodium hypochlorite. 

The IJs were rinsed with water and the soil samples were inoculated with 200IJs/ml. The 

control plates were kept at 8% moisture and experimental plates were allowed to undergo 

desiccation for different days. During the day of dehydration, the respective experimental 

plates were rehydrated to 8% moisture, 5th instar G. mellonella larvae were added and percent 

mortality was recorded daily for 96 hours. Infected larvae were put on White traps to confirm 

EPN induced mortality and Two way ANOVA-with replication was used to analyse the results. 
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Figure 6.1: Experimental design for dehydration studies 
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dehydration, 3 
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dehydration, 3 
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interval 

   Day1 

   Day3 

   Day5 

   Day7 

   Day9 

   Day11 

   Day13 

   Day15 

   Day20 

Days of 

dehydration 

1. Autoclave soil samples 

2. 35g of soil sample per plate, 3 replicates                        LS= Loamy sand 

3. Rehydrate soil in all petri dishes to 8% moisture            RS= River sand 

4. Add 200 sterilized IJs/ml in all the plates 

5. Add 5 larvae added during the day of dehydration and record mortality 

daily   

Heterorhabditis spp Steinernema khoisanae BMMCB                                   

Heterorhabditis spp 
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6.3 RESULTS  

Both Steinernema spp. isolate 10 and the Heterorhabditis species could tolerate desiccation. 

Steinernema spp. isolate 10 was tolerant up to 11 days of desiccation exposure in loamy sand 

and up to 9 days of exposure in river sand, causing 26, 6% and 13,4% cumulative larval 

mortality after 96 hours, post resuscitation by rehydration, respectively. Heterorhabditis spp. 

could tolerate desiccation up to 13 days of exposure and induced 26.6% cumulative larval 

mortality on both loamy and river sand after 96 hours post resuscitation. Both Steinernema spp. 

isolate 10 and Heterorhabditis spp were highly effective on loamy soil samples from which 

they were isolated from. The Two way ANOVA statistical analysis revealed no significant 

difference between the two species on infectivity as 0, 15211 = F < Fcritical= 3,125945 and 

and the p value = 0, 85945 < 0, 05.  

 

 

Figure 6.2: Average cumulative larval mortality percentage induced by Steinernema spp. 

isolate 10 post different days of desiccation exposure (LS = loamy sand, RS = river sand and 

C= control). 
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Figure 6.3: average cumulative larval mortality percentage induced by Heterorhabditis spp. 

post different days of desiccation exposure (LS = loamy sand, RS = river sand and C= control) 

 

Swarming, aggregation, coiling and clumping behavioural characteristics were observed when 

Steinernema spp. isolate 10 was exposed to desiccation (figure 6.4). Heterorhabditis species 

displayed no equivalent or similar behavioural characteristics associated with desiccation 

tolerance. The thick cuticle and sheath which are both known to lower the rate of water loss 

were observed using the light microscopy on infective juveniles of Steinernema spp. isolate 10 

(figure 6.5). 
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Figure 6.4: Behavioural characteristics of Steinernema spp. isolate 10 when exposed to 

desiccation conditions: A and B) coiling, clumping and aggregation C) swarming. 
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Figure 6.5: Thick cuticle and the retained sheath believed to aid in desiccation tolerance of 

Steinernema spp. isolate 10. 
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Table 6.1: Average percent cumulative larval mortality after 48, 72 and 96 hours post infection 

by Heterorhbditis and Steinernema species exposed to desiccation conditions for different days 

of dehydration. The control plates were kept at hydrated (8% moisture) conditions at all times. 

(LS= loamy sand, RS= river sand and C= control) 

 

 

6.4 DISCUSSION 

Steinernematids and heterorhabditids have developed mechanisms to tolerate environmental 

stress conditions including desiccation. Desiccation tolerance of Steinernema spp. isolate 10 

and Heterorhabditis species was investigated in the current study and both species were 

tolerant to desiccation stress. Steinernema spp. isolate 10 was tolerant up to 11 days of 

desiccation exposure in loamy sand and up to 9 days of exposure in river sand, causing 26, 6% 

and 13, 4% cumulative larval mortality after 96 hours, post resuscitation by rehydration, 

respectively. Heterorhabditis spp. could tolerate desiccation up to 13 days of exposure and 

induced 26.6% cumulative larval mortality on both loamy and river sand after 96 hours. 

Both species were highly effective on loamy sand for all days of desiccation exposure and this 

shows that habitat preference plays a pivotal role in infectivity and longevity. The control soil 

samples were maintained at 8% moisture at all times and were never exposed to desiccation, 

hence 100% infectivity was expected, however nematodes infectivity was drastically affected 

suggesting that desiccation conditions could be one of the most important factors for storage 

Heterorhabditis LS RS Control

Days of dehydration 48 hours 72 hours 96 hours 48 hours 72 hours 96 hours 48 hours 72 hours 96 hours

1 40 86,6 100 60 80 93,4 80 86,6 93,4

3 53,4 60 73,4 40 40 46,6 33,4 33,4 40

5 53,4 66,6 73,4 13,4 26,6 26,6 20 26,6 40

7 20 26,6 60 0 20 20 6,6 20 33,4

9 13,4 20 20 0 20 20 13,4 13,4 13,4

11 6,6 13,4 13,4 6,6 6,6 6,6 0 0 0

13 6,6 26,6 26,6 6,6 20 26,6 0 0 0

Steinernema LS RS Control

Days of dehydration 48 hours 72 hours 96 hours 48 hours 72 hours 96 hours 48 hours 72 hours 96 hours

1 46,6 93,4 100 53,4 100 100 53,4 93,4 100

3 33,4 66,6 73,4 13,4 33,4 66,6 13,4 40 40

5 26,6 40 53,4 33,4 33,4 80 20 33,4 40

7 13,4 33,4 33,4 6,6 6,6 20 13,4 20 20

9 0 13,4 20 6,6 13,4 13,4 0 6,6 6,6

11 13,4 13,4 26,6 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0

Average percent cumulative larval mortality  



110 
 

conditions. Both species could not infect post 13 days of exposure and this suggest that high 

levels of desiccation exposure affect infectivity and longevity of nematodes. 

Nematodes have been reported to tolerate desiccation through the process called anhydrobiosis. 

This is a reversible, physiologically and metabolically arrested state of dormancy that results 

due to water loss (Liu and Glazer, 2000). EPNs are referred to as quiescent anhydrobites as 

they are only capable of low level of dormancy. A study conducted by Liu and Glazer (2000) 

reported Heterorhabditis nematodes to be poor anhydrobiotes. Steinernema carpocapsae have 

been stipulated to survive low relative humidities from gradual desiccation (Simons and Pionar, 

1973; Campbell and Gaugler, 1991).  

The infective juveniles (IJs) of EPNs are ensheathed by the second stage cuticle (Pionar, 1979) 

of which is believed to protect them against both biotic (Timper and Kaya, 1989; Grewal et al, 

1994)) and abiotic factors (Womersley, 1990). The sheath is reported to act as a water loss 

barrier resulting in a very slow rate of water loss during desiccation. The nematode sheath has 

a restricted permeability, hence slow rate of water loss which enables the enclosed infective 

juveniles to survive anhydrobiotically (Wharton, 1980). High survival rate of nematodes 

exposed to desiccation is attributed to slow water removal from nematodes body and this is 

required to enable metabolic changes necessary to enter anhydrobiotic state (Crowe et al, 1992) 

Steinernema spp. isolate 10 IJs are ensheathed and the sheath enables the nematodes to be able 

to tolerate desiccation conditions. Aggregation, coiling and clumping behavioural 

characteristics have been observed for Steinernema spp. isolate 10 and no similar behaviour 

was observed for Heterhabditis species when exposed to desiccation conditions. Aggregation 

and swarming behaviour are reported to be associated with response to environmental stress, 

including desiccation (Womersly et al, 1990).  Least tolerant strains of nematodes does not 

show clumping behaviour hence Steinernema spp. isolate 10 is reported to be the most tolerant 

and Heterorhabditis spp least tolerant to desiccation stress (Solomon et al, 1999). A recent 

study conducted by Shapiro-Ilan and colleagues on desiccation tolerance of Steinernema and 

Heterorhabditis species revealed S. carpocapsae to have the highest level of desiccation 

tolerance among species followed by S. feltiae and S. rarum; the Heterorhabditid species 

exhibited the least desiccation tolerance (Shapiro-Ilan et al, 2014). This results are further 

supported by coiling behaviour that have been observed and reported for EPN species including 

S glaseri, S carpocapsae and S feltiae (Womersly et al, 1990; Partel et al, 1997). 
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The two way Anova-with replication statistical analysis was conducted to assess infectivity 

variation between Steinernema spp. isolate 10 and Heterorhabditis spp groups based on 

cumulative larval mortality for different days of desiccation exposure and the results revealed 

no significant difference as 0,15211 = F < Fcritical= 3,125945 and and the p value = 0,85945 

> 0,05. 

There are also biochemical and physiological responses attributed to desiccation stress 

tolerance. In their anhydrobiotic state, nematodes are reported to synthesize elevated levels of 

disaccharide trehalose which is believed to play a pivotal role in stress tolerance (Pellerone et 

al, 2003). Trehalose is thought to stabilize membranes by attaching to the head groups of the 

phospholipids and preventing phase changes that may cause the membrane to become leaky 

and this is referred to as the “water replacement hypothesis” (Behm, 1997).  By means of this 

association, trehalose protects biological membranes during desiccation by replacing the water 

that normally associates with the phospholipid bilayer (Hoekstra and Crowe, 1992). Other 

functions of trehalose associated with desiccation tolerance include prevention of protein 

denaturation and oxidative damage and provision of inert energy (Higa and Womersly, 1993). 

Steinernema spp. isolate 10 and Heterorhabditis species are both tolerant to desiccation stress. 
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CHAPTER7: Genome Sequencing and Annotation of 

Entomopathogenic Bacterial Symbiont 

7.1 INTRODUCTION 

Next generation sequencing which is also referred to as high-throughput sequencing, is used to 

describe various modern sequencing technologies including Illumina, Rosche 454, Ion torrent: 

Proton/PGM and SOLiD sequencing. These sequencing technologies enable researchers to 

sequence DNA and RNA quickly and cheaply than the previously used Sanger sequencing 

(Tatusova et al, 2013). NGS have radically transformed the study of genomics and molecular 

biology.  

Microbial whole genome sequencing (WGS) advances knowledge at genetic level in the 

physiological, morphological and metabolic characteristics of organisms.  The ability to 

sequence and analyse whole genomes has begun to provide insight into evolutionary patterns 

amongst organisms (Chaston et al, 2011). WGS allows for mapping genomes of novel 

organisms, finishing the genomes of known organisms as well as comparative genomics. 

Microbial divergent and convergent evolutionary relationships can be better understood 

through WGS by identification of shared protein families (Pfams) and evolutionary patterns 

generated from the 16S rDNA. Through sequencing, a number of approaches have been used 

to study how bacterial genomes reflect evolutionary divergence and convergence and these 

include phylogenetic relationships based on average amino acid identity and shared gene 

orthology. Sequencing of genomes is highly important for generation of reference genomes 

which can be used for reference guided sequencing and assembly. 

De novo WGS involves sequencing and assembling a genome without a guide of a genomic 

reference and is frequently used to sequence novel microbial genomes. The steps involved in 

genome sequencing are genomic DNA extraction, Library preparation, sequencing, assembly 

and interpretation. 

Bacterial genomes are susceptible to many alterations through genome reduction, gene 

duplication, divergence and horizontal gene transfer which are incurred by pressures such as 

envrionmental stress, mutation and competition. It is possible to detect results of these 

mechanisms, however it is difficult to characterize the evolutionary path. One example is that 

of endosymbionts in the genera Photorhabdus and Xenorhabdus, which have undergone 

divergent evolution but have convergent lifestyles. They are both associated with nematodes 
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in the genera Heterorhabditis and Steinernema, respectively. They are both insect pathogens 

and physiological and genetic studies have revealed that their colonization within nematodes 

varies, and that they use functionally different approaches for colonization and pathogenicity. 

Both Xenorhabdus and Photorbdus phase I variants have been tested against fungal species 

and revealed to produce antimicrobial compounds with antifungal activity (Chen et al, 1994). 

Several compounds with antibiotic activity secreted by Xenorhabdus spp. include 

benzylineacetone (Ji et al, 2004), xenorhabdins and xenocoumacin (McInerney et al, 1991), 

phenethylamides (Li et al, 1995), and cyclolipopeptide (Gualtien et al, 2009), xenortides and 

xenematide, as well as nematophin (Chen et al, 1994; Wang et al, 2014). Insecticidal proteins 

have also been identified and could be of important use in agriculture (Duchaud et al, 2003; 

Ffrench-Constant et al, 2007).  The tripartite nematode-bacteria-insect larvae system serves as 

the best model system to better understand evolutionary relationships, mutualism and 

pathogenic processes.  

In this study, Illumina Miseq whole genomic sequencing, assembly and annotation of 

Xenorhabdus bacterial endosymbiont is discussed. The assembly was done using CLC 

Genomics Workbench version 6.5.0 and SPAdes version 3.5.0. The best assembly based on the 

total length, N50 and number of contigs was submitted to National Centre for Biotechnology 

Information (NCBI) prokaryotic genome automatic annotation pipeline (PGAAP) and rapid 

annotation using systemic technology (RAST) for annotation.    

 

7.2 MATERIALS AND METHODS 

7.2.1 Genomic Sequencing  

Total genomic DNA was extracted from colony bacterial cultures of the Xenorhabdus bacterial 

endosymbiont using the ZR fungal/bacterial DNA kit (catalog #D6007).  Purification of 

isolated genomic DNA was conducted using the DNA clean and concentrator-5 kit. Illumina 

libraries were generated using the Illumina Nextera DNA sample preparation kit (FC-121-

1031) and paired-end sequencing was performed using Illumina Miseq instrument version 3, 

chemistry 300 x 300 bp. 

7.2.2 Quality 

The quality of generated reads was assessed using CLC Genomics Workbench 8.0.2 (CLC Bio) 

and FASTQC version 0.11.3.  
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7.2.3 Genome Assembly: CLC Bio 

7.2.3.1 Trimming of low quality bases and adaptors, and assembly 

 CLC Bio was used to trim the Illumina nextera transposase adaptor sequences, as well as the 

low quality reads at default parameters. The reads were merged and both the merged and not 

merged reads were used for assembly. The minimum contig length parameter was set to >/= 

400bp.   

7.2.4 Genome assembly: SPAdes 

7.2.4.1Trimming of low quality bases and adaptor sequences, and assembly 

The low quality reads (Phred score < 20, base calling duplicates and adaptors were trimmed 

using Trimmomatic version 0.32 with the parameters:  ILLUMINACLIP: NexteraPE-PE, 

MAXINFO: 50:0.8, MINLEN: 50 and LEADING: 20.  The quality of the trimmed reads was 

assessed using FASTQC. The trimmed reads of high quality (Phred score> 20) were assembled 

into contigs using SPADES version 3.5.0. The assembly was assessed using QUAST version 

2.3. 

7.2.5 Genome annotation 

The assembled reads (contigs) were submitted to national centre for biotechnology information 

(NCBI) (http://www.ncbi.nlm.nih.gov/genome/annotation_prok/), prokaryotic genome 

automatic annotation pipeline for annotation. Subsystem and functional annotation was 

conducted through rapid annotation using systemic technologies (RAST) 

(http://rast.nmpdr.org) web based pipeline. Genome comparison was conducted using E. coli 

as a reference and two Photorhabdus species. 

 

7.3 RESULTS 

7.3.1 Sequencing and quality analysis 

The Miseq-sequencing machine generated 6, 525, 888 sequences (in pairs) of 301 bases long. 

The total number of nucleotide bases generated 1, 964, 292, 288 bp. Distribution revealed all 

sequences of the same length represented by a single peak for 100% of sequences. The fragment 

length generated from the insert DNA fragment was specified and the generated sequences 

revealed expected fragment length for all the reads suggesting that the reads were successfully 

http://www.ncbi.nlm.nih.gov/genome/annotation_prok/
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generated. The GC content is a very important factor in genome analysis. It represents the sum 

of guanine and cytosine nucleotide bases compared to all bases including ambiguous bases in 

all the generated reads. The relative GC content of sequences in percentages ranged from 24% 

to 69%. About 506 sequences had the least GC content (24%) and about 430 sequences had 

the highest GC content (69%). Of all 6, 525, 288 sequences, 86% of those had a GC content 

that is </= 50% and which would result in average GC content being less than 50% which is 

favourable for generation of best assemblies. Ambiguity of base content was analysed and only 

0.07% (normalized to the total number of sequences) of sequences featured N-percentages. The 

ambiguous base percentages observed were 1%, 2%, 3%, 4% and 5% in 1, 702; 772; 650; 496; 

and 420 sequences, respectively. 

 

Figure 7.1: Length distribution of all sequences after sequencing 
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Figure 7.2: Distribution of GC content percentage across all sequences 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: Distribution of nucleotide bases other than ATGC (N-bases) across all sequences. 

The number of sequences featuring a particular N-bases percentage is normalised to the total 

number of sequences.  
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7.3.1.1 Quality distribution 

The average PHRED score quality distribution of nucleotide bases across the generated reads 

ranged between 9 and 38. The sequences were of good quality with 99,96% of all bases lying 

between an average Phred score of 15 and 38 and only 0.014% had a quality score of </=14. 

 

 

 

 

 

 

 

Figure 7.4: Average PHRED quality score distribution across all sequences. This illustrate the 

arithmetic mean of base qualities per sequence. 

7.3.1.2 Coverage  

The number of sequences that support (cover) the individual base positions was 100% for all 

sequences i.e. all individual bases were covered 100 times during sequencing to support the 

probability of that base being at the specified position. 

 

 

 

 

 

 

 

 

Figure 7.5:  Coverage of all bases across all sequences. All bases were covered 100X. 
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7.3.1.3 Duplication levels  

There were duplicated sequences observed in the generated sequences. About 43,84% of the 

sequences appeared only once and were not duplicated, with about 56,16% of the genome 

sequences duplicated with variation in duplicate count and of those, 34,15% had a duplicate 

count of less than 5. 

 

7.3.2 FASTQC Quality distribution before and after trimming 

FastQC is similar to CLC in terms of quality analysis of sequences, however FASTQC analyse 

the reads and identify the adapter contamination.  

7.3.2.1 Adaptor contamination 

There was a contamination of a sequencing universal adaptor nextera transposase sequence in 

all the generated reads. The adaptor sequence was trimmed off from all the sequences using 

Trimmomatic version 0.32.  

 

 

 

 

 

 

 

 

 

Figure 7.6: Adaptor contamination revealed by FASTQC quality analysis. 
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7.3.2.2 Trimming of adapters and low quality reads 

The reads were trimmed for adapters and low quality reads and FASTQC of trimmed sequences 

was evaluated. Only bases with a PHRED score >= 20 were kept and used for for genome 

assembly. FASTQC identified adaptor contamination of  nextera transposase sequence which 

was successfully trimmed using Trimmomatic (figure 7.8B).  

 

 

 

 

 

 

Figure 7.7: Average Phred score quality of the reads after trimming of low (<20 average Phred 

score) quality bases.  

 

 

Figure 7.8: A) Quality score distribution over all sequences and B) adaptor contamination 

sequence removed. 

A B 



122 
 

7.3.3 Genome assembly: CLC Bio 

The genome assembly of Xenorhabdus bacterial isolate using CLC Bio revealed a total length 

of 4, 183, 779 bp with 231 contigs (>=400bp), GC content of 44.7%, N50 of 57,901. 

 

Table 7.1: Nucleotide distribution revealing the frequency of each nucleotide base in all 

sequences: GC content of 44.7% 

Nucleotide Count Frequency 

Adenine (A) 1,159,054 27.7% 

Cytosine(C) 935,309 22.4% 

Guanine (G) 934,031 22.3% 

Thymine (T) 1,155,026 27.6% 

Any Nucleotide (N) 359 0 

 

 

Table 7.2: CLC assembly contig measurement of Xenorhabdus bacterial isolate  

Contig                                            Count 

N75 31,527 

N50 57,901 

N25 108,331 

Minimum 402 

Maximum 164,495 

Average 18,112 

Count 231 

Total 4,183,779 
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7.3.4 Genome Assembly: SPAdes 

The genome assembly of Xenorhabdus bacterial isolate using SPAdes revealed a total length 

of 4, 165,463 bp with 290 contigs (>=500bp), GC content of 44.62% and N50 of 64,801 

 

Table 7.3: SPAdes assembly contig measurement of Xenorhabdus bacterial isolate. Unless 

stated, all results represent contigs that are >= 500bp. 

Contigs Count 

# contigs (>= 0 bp)  419 

# contigs (>= 1000 bp) 185 

Total length (>= 0 bp) 4,202,961 

Total length (>= 1000 bp) 4,093,713 

#contigs  290 

Largest contig 204,152 

Total length 4,165463 

GC(%) 44.62 

N50 64,801 

N75 29,174 

L50 18 

L75 43 

Ns per 100kbp 0.00 

 

7.3.5 Genome annotation:  

Contigs were submitted to national centre for biotechnology information (NCBI), prokaryotic 

genome automatic annotation pipeline (PGAAP) for annotation and the results revealed 3,950 

genes (3,601  protein coding sequences (CDS) and 266 pseudogenes), 12 rRNAs and 70 

tRNAs.  
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Table 7.4: Annotation of Xenorhabdus bacterial isolate using NCBI PGAAP 

Annotation provider NCBI 

Annotation pipeline NCBI Prokaryotic Genome Annotation Pipeline 

Annotation method Best-placed reference protein set; GeneMarkS+ 

Annotation software revision 3.0 

Features annotated Gene; CDS; rRNA; tRNA; ncRNA; repeat 

region 

Genes 3,950 

CDS 3,601 

Pseudo Genes 266 

CRISPR Arrays 1 

RRNAs 4, 4, 4 (5S, 16S, 23S) 

Complete rRNAs 4, 1 (5S, 23S) 

Partial rRNAs 4, 3 (16S, 23S) 

TRNAs 70 

NcRNA 1 

Frameshifted Genes 62 

Frameshifted Genes on Monomer 

Runs 

1 

Frameshifted Genes Not on Monomer 

Runs 

1 

 

The contigs were also submitted to rapid annotation using systemic technology (RAST) 

annotation server for annotation. The results revealed 4,083 coding sequences, 487 subsystems 

and 80 RNAs. The subsystem features revealed 55 of virulence, disease and defense features 

which are involved in the pathogenicity of Xenorhabdus bacterial isolate.  
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Table 7.5: Overview of RAST annotation for Xenorhabdus bacterial isolate. 

Genome Xenorhabdus bacterial isolate 

Domain Bacteria 

Taxonomy Bacteria; Proteobacteria; Gammaproteobacteria; 

Enterobacteriaceae; Xenorhabdus, Xenorhabdus 

bacterial isolate 

Size 4,183,779 

Number of contigs (with 

PEGs) 

231 

Number of subsystems 487 

Number of coding sequences 4083 

Number of RNAs 80 

Figure 7.9: Representation of genes encoding for different physiological and metabolic 

systems 

The comparison organisms were aligned to the reference genome. The result list the genes of 

the reference organism in chromosomal order and display hits on the comparison organisms 

accordingly 
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Figure 7.10: Circle plot comparing percent protein sequence similarity of Xenorhabdus 

bacterial isolate (1), P. asymbiotica subsp. Asymbiotica(2) and P. luminescens subsp. 

Laumondii TT01(3) to the reference genome E. coli strain 0.42. The outer most map shows the 

comparison between organism 1 and reference and the middle and inner most map compares 

organism 2 and 3 with the reference, respectively. 

7.4 DISCUSSION 

The generated reads were successfully trimmed for adaptor sequences and low quality bases. 

The trimmed reads of 20 and above average Phred score were assembled using CLC genomics 

workbench (CLC Bio) version 6.5.0 and SPAdes version 3.5.0. The CLC Bio assembly 

revealed a   total length of 4, 183, 779 bp (minimum contig length >/= 400bp), with 231 contigs, 

an N50 of 57, 901 bp and a GC content (sum of guanine and cytosine nucleotide base pairs) of 

44, 7%. The results were compared with those of other Xenorhabdus species assemblies. X 

nematophila ATCC and X bovienii SS-2004 have been sequenced and their full assembled 

genome consist of 4, 432, 590 bp and 4, 225, 498bp, with GC content of 44.2% and 45%, 

respectively, which is quite similar to results of draft whole genome sequence of Xenorhabdus 
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bacterial isolate presented in this study. The results were also compared to the whole genome 

sequence of Photorhabdus luminescens strain TT01 which possess a single circular 

chromosome of length 5,688, 987 bp and a GC content of 42.8% with a total of 4, 839 protein 

coding genes, 157 pseudogenes, 7 complete sets of (23S, 5S and 16S) ribosomal RNA operons 

and 85tRNA genes (Duchaud et al, 2003) 

 

SPAdes assembly for Xenorhabdus bacterial isolate, revealed a total length of 4, 165, 463 bp 

with 290 contigs (minimum conting length >/= 500bp), N50 of 64, 801bp and GC content of 

44, 62. The best assembly was decided based on the N50 and total length. The CLC assembly 

comprised of both high total length, N50 and lesser number of contigs, whereas the SPAdes 

assembly had a high N50 but the total length was less than that of the CLC assembly and 

number of contigs were higher. This suggested that there might be important sequences missing 

on the SPAdes assembly which are present on the CLC assembly. 

 

The CLC draft sequence assembly of Xenorhabdus bacterial isolate was deposited to NCBI 

and submitted at prokaryotic genome automatic annotation pipeline (PGAAP 

(http://www.ncbi.nlm.nih.gov/genome/annotation_prok/) for annotation. PGAAP annotation 

revealed 3,970 genes and of those 3, 614 were protein coding (CDs) and 271 were pseudogenes. 

The genome has 12 rRNAs (5S, 16S and 23S), 70 tRNAs and 3 non coding RNAs. 

 

The CLC draft sequence assembly was also submitted to a web-based annotation server, rapid 

annotation using system technologies (RAST) (http://rast.nmpdr.org), for subsystem and 

functional annotation. RAST revealed 4083 coding sequences and 80 RNAs. The 

entomopathogenicity of Xenorhabdus bacterial isolate is dependent on the ability of the 

bacterial symbiont to avoid and silence humoral and cellular innate immunity of the insect 

larvae and to be able to produce toxins that are lethal to the larval host. About 55 coding counts 

was revealed for virulence, disease and defense. Of all classified systems, 105 counts was 

revealed for regulation and cell signalling which may be involved in colonization of the 

associated nematode gut. High subsystem feature count (373) was revealed for amino acids 

and  derivatives, 275 for cofactors, vitamins and pigments, 275 for carbohydrates and 219 for 

protein metabolism as well as 196 for RNA metabolism.  

http://www.ncbi.nlm.nih.gov/genome/annotation_prok/
http://www.ncbi.nlm.nih.gov/genome/annotation_prok/
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Using E. coli as a reference, genome sequences of Xenorhabdus bacterial isolate, Photorhabdus 

asymbiotica and Photorhabdus luminescens were compared using RAST compare sequences 

tool and the results revealed high protein similarity. The reference is not shown, only the map 

of the compared genomes showing different colour coding for percent similarity of the 

associated gene on the reference. The colour coding and percentage similar associated with that 

specific colour is shown in figure 7.10. 

Genome sequencing and annotation gives insight to behavioural and physiological attributes 

of bacterial symbionts and thus this study will contribute to the understanding of pathogenicity, 

evolution and specific colonization of bacterial symbionts to their associated nematodes.  
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RESEARCH SUMMARY 

Insect pests remains to be problematic in agricultural industries as insects evolve resistance 

towards the currently employed chemical pesticides, leading to low yield loss. The indigenous 

entomopathogenic nematodes isolated in this study, Steinernema spp. isolate 10 and 

Heterorhabditis species, holds great potential as biological control agents as they are able to 

tolerate environmental extremes such as desiccation. Soil is an important habitat for EPNs and 

undergoes gradual desiccation, hence the importance of application of desiccation tolerant 

EPNs. The EPNs identified in this study have only been tested against the G. mellonella larvae 

and would be interesting to further test their infectivity on South African problematic insect 

pests and conduct field trials. The limitations include different micro flora in the soil as in the 

lab it is only the host and the EPNs, which is different in the agricultural fields as all other 

organisms and competitors are part of the biodiversity and the temperature conditions keeps on 

changing which might have an effect.  

 

Xenorhabdus bacterial isolate have not yet been described and is a bacterial symbiont 

associated with Steinernema spp. isolate 10 and this bacterial-nematode complex hold great 

potential as biological control agent. Genomics of the bacterial symbiont will provide insights 

to pathogenicity of insect pests by Xenorhabdus bacterial isolate as annotation revealed the 

presence of genes involved in virulence, defense and disease. Future studies include the whole 

genome sequencing of Steinernema spp. isolate 10 to identify genes involved in environmental 

http://www.ncbi.nlm.nih.gov/genome/annotation_prok/
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stress tolerance and to understand the co-evolution between Xenorhabdus bacterial isolate and 

Steinernema spp. 10. Behavioural studies will need to be conducted to comprehend the foraging 

behaviour of Steinernema spp. 10 and Heterorhabditis species to assess they will be able to 

locate soil inhabiting insect larval pests and induce mortality. It is highly crucial to understand 

the behavioural and physiological characteristics of EPNs prior formulation, production and 

application. Steinernema spp. isolate 10 and Heterorhabditis species both isolated in this study 

holds potential as biological control agents of insect pests. 
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Appendix I 

Galleria mellonella media 

(Adapted from Woodring and Kaya, 1988) 

The following modifications were made: 

 Calcium propionate substituted with benzoate 

 Multivitamin bran substituted with ProNutro (banana flavour) 

Recipe: 

500g ProNutro 

200ml pure natural honey 

200ml glycerol 

5 teaspoon yeast extract 

200ml boiled distilled water 

1 teaspoon benzoate 

Protocol: 

1. Mix honey, glycerol and ProNutro together. 

2. Add yeast extract, boiling water and benzoate to ProNutro mixture. 

3. Mix contents thoroughly. 

4. Place mixture in tin foil and seal adequately. 

5. Autoclave at 121˚C and 15 psi for 25 min. 
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Appendix II 

Nematode Genomic DNA extraction  

(Protocol from Puregene® DNA Purification Kit, Gentra systems 2003) 

 

1) Rinse infective juveniles three times using approximately 4ml distilled water per wash. 

2) Pellet nematodes in a microfuge tube by spinning at 14000rpm for 10 minutes.  Place 

on ice for 30 seconds.  Remove excess water. 

3) Re-suspend nematode pellet in 1 ml distilled water and transfer the nematode 

suspension to a 1.5 ml microfuge tube on ice. 

4) Centrifuge at 13000-16000 rpm for 3 minutes than place the tube on ice for atleast 30 

seconds and discard the supernatant. 

5) Add 600µl Cell Lysis Solution (from kit) and invert several times. 

6) Add 3µl Proteinase K solution (from kit) and invert 25 times.  Incubate at 55˚C for 3 

hours to overnight, until the tissue particulates have dissolved.  Invert periodically. 

7) Add 3µl RNase A Solution (from kit) to the cell lysate, invert 25 times and incubate at 

37˚C for 15-30 minutes. 

8) Cool the sample to room temperature. 

9) Add 200µl Protein Precipitation Solution (from kit) to the RNase A treated cell lysate. 

10) Vortex at high speed for 20 seconds. 

11) Centrifuge at 13000-16000 rpm for 3 minutes.  A tight protein pellet should form.  If 

this pellet is not visible repeat step 10, followed by incubation on ice for 5 minutes, than 

repeat step 11. 

12) Pour the supernatant containing the DNA into a 1.5ml centrifuge tube containing 600µl 

100% Isopropanol. 

13) Invert gently 50 times. 

14) Centrifuge at 13000-16000 rpm for 1 minute, the DNA will be visible as a white pellet. 

15) Pour off the supernatant and drain the tube on clean absorbent paper. 

16) Add 600µl 70% Ethanol and invert the tube to wash the pellet. 

17) Centrifuge at 13000-16000 rpm for 1 minute and carefully pour off the ethanol.  Pour 

slowly as the pellet may be loose. 

18) Invert and drain the tube on absorbent paper again and allow to air dry for 10-15 

minutes. 
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19) Add 100µl DNA hydration Solution (from kit). 

20) Rehydrate the DNA by incubating the sample 1 hour at 65˚C.  Tap the tube to aid 

dispersing the DNA. 

21)  Store DNA at 4˚C. 
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Appendix III 

1. Isolation of bacterial symbionts from the haemolymph of larvae infected by EPNs  

1) Place 5 instar G. mellonella larvae in a Petri dish plate with river sand inoculated with 

EPN infective juveniles (IJs).  

2) At 48 hours post infection, collect infected and dead larvae.  

3) Surface sterilize infected G. mellonella larvae by spraying with 70% ethanol. 

4)  Secondary surface sterilization: dip the larvae in 70% ethanol followed by slight 

heating of the larval surface for 2-3 seconds to avoid heat-killing the bacteria.  

5) Cut open or dissect sterilized larvae using sterile scissors and sculpit, working 

aseptically.  

6) Use a syringe to draw the sticky fluid or haemolymph from the cardaver into an 

Eppendorf tube containing 200 µl of nutrient broth or distilled water.  

7) Streak on NBTA plate NBTA (nutrient bromothymol triphenyltetrazolium agar) and 

incubate for 48-72 hours at 25ºC.  

8) Screen for blue green colonies 

2. Isolation of bacterial symbionts from from EPNs 

1) Sterilize IJs  for 3 hours and suspended in 500µl of nutrient broth 

2)  Grind and crush the nematodes using a sterile pestle to form a homogenate 

3)  Transfer the homogenate aseptically to sterile tubes containing fresh Nutrient Broth. 

4) Incubate at 25 ˚C in the dark for 48 hours 

5)  Streak the broth culture in NBTA plates and incubate at 25 ˚C for 48-72 hours 

6) Screen for blue-green colonies 
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Appendix IV 

DNA isolation of bacterial cells associated with EPNs 

Bacterial genomic DNA isolated using DNA extraction kit (ZR Fungal/Bacterial DNA Kit, 

catalog no: D6005) 

1) Pick a colony of isolated bacteria from NBTA plate and suspend in a ZR 

BashingBeadTM Lysis Tube. 

2) Secure in bead beater and process at maximum speed for 5 minutes. 

3) Centrifuge the ZR BashingBeadTM Lysis Tube in a microcentrifuge at 10 000 x g 

(rpm) for 1 minute. 

4) Transfer up to 400μl supernatant to a Zymo-Spin TM IV Spin Filter in a Collection 

Tube and centrifuge at 7000 rpm for 1 minute. 

5) Add 1200μl of Fungal/ Bacterial DNA binding buffer to the filtrate in the Collection 

Tube from Step 4. 

6) Transfer 800μl of the mixture from Step 5 to a Zymo-SpinTM II Column in a 

Collection Tube and centrifuge at 10000rpm for 1 minute. 

7) Discard the flow through from the Collection Tube and Repeat Step 6. 

8) Add 200μl DNA Pre-Wash Buffer to the Zymo-SpinTM II Column in a new 

Collection Tube and centrifuge at 10000rpm for 1 minute. 

9) Add 500μl Fungal/Bacterial DNA Wash Buffer to the Zymo-SpinTM II Column and 

centrifuge at 10000rpm for 1 minute. 

10) Transfer the Zymo-SpinTM II Column to a clean 1.5 ml microcentrifuge tube and 

add 100μl DNA Elution Buffer directly to the column matrix. Centrifuge at 100000rpm 

for 30 seconds to elute the DNA. 
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Appendix V 

Protocol for confirmation of the dependency of EPNs on bacterial symbionts for growth 

and development 

1) Inoculate 1.0ml of  nutrient broth with Phase I blue green colonies from NBTA plates 

in 2.0ml Eppendorf tubes  

2) Incubate the tubes for 24 hours at 25ºC.  

3) Prepare spread plates using 0.1ml of broth culture on lipid agar plates and incubate for 

48 hours at 25ºC 

4) Sterilize nematodes for 1 hour in sodium hypochlorite and inoculate 100IJs/ml and 

inoculate onto bacterial lawn lipid agar plates.  

5) Incubate the plates (unsealed) at 25ºC and inspected daily for EPN propagation and 

development 
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Appendix VI 

Protocol for EPN specimen preparation for morphological identification: 

Light Microscopy 

Processing Nematode Specimens to Glycerin (Stock & Kaya, 1997)  

Killing and fixing nematodes  

1. Place nematodes in a Syracuse watch glass in 1ml distilled water.  

2. Add 3-4ml 100ºC TAF and leave for 24 hours.  

3. Replace TAF with double-strength TAF and store at 4ºC to relax nematodes for up to one 

hour.  

4. Add 65ºC TAF. Allow fixative to infiltrate for at least 24 hours. Remove most of the fixative.  

Processing nematodes to pure glycerine  

1. Transfer fixed nematodes to a Sycaruse watch glass containing 0.5ml of solution.  

2. Add 95% ethanol to a desiccator until the space below the holding shelf is half- full. Place 

the watch glass containing the nematodes in the desiccator.  

3. Place the desiccator in an oven preheated to 35ºC for 12 hours.  

4. Remove the watch glass/nematodes from the desiccator.  

5. Fill the watch glass with Solution II and place the watch glass in a glass Petri dish.  

The Petri dish is left partially open to allow for slow ethanol evaporation.  

6. Place the Petri dish containing the watch glass in an oven preheated to 40ºC for 3 hours.  

Solutions  

TAF  

8 ml 35% formaldehyde , 2.28 ml triethanolamine  and 104 ml distilled water 

Double-strength TAF  

8 ml 35% formaldehyde , 2.28 ml triethanolamine  and 52 ml distilled water  

Solution I  

20 ml 95% ethanol, 1 ml glycerine, 79 ml distilled water  

Solution II  

5 ml glycerine  

95 ml 95% ethanol 
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Appendix VII 

Protocol for EPN specimen preparation for morphological identification: 

Scanning electron Microscopy 

Preparation of Nematodes for Scanning Electron Microscopy (Kaya & Stock, 1997).  

1. Kill nematodes by placing them in a water bath at 60ºC for 2 minutes.  

2. Rinse three times (5 minutes each) in Ringer‟s solution (pH 7.3).  

3. Prefix in 8% gluteraldehyde (25% EM grad gluteraldehyde diluted in Ringer‟s Solution (pH 

7.3) overnight.  

4. Rinse three times (5 minutes each) in Ringer‟s solution (pH 7.3).  

5. Rinse once, for 5 minutes, in sterile double distilled water.  

6. Post-fix in 1% osmium tetroxide for 2 hours at 4ºC.  

7. Rinse three times (5 minutes each) in sterile double distilled water.  

8. Dehydrate with a series of ethanol washes (30%, 50%, 70%, 90%, 95% for 30 minutes each.  

9. Finally wash in several changes of 100% ethanol over 30-60 minutes.  

10. Freeze dry the nematodes at -85 ºC and 101mT for 48 hours. Alternatively,Dry nematodes 

to critical point with liquid CO2.   

11. Mount specimens immediately onto SEM stubs and coat with carbon and gold Palladium 

Solutions:  

Ringer‟s solution pH 7.3 (9g NaCl  and 0.4g KCl) 
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Appendix VIII 

In Vitro Media and sterilization solution 

1. Nutrient Broth 

4.0% (W/V) Canola oil 

25mg/ml glucose 

Protocol: 

1. Weigh out nutrient broth powder and suspend in desired volume of distilled water. 

2. Add glucose. 

3. Mix well and dispense adequate amounts into volumetric flasks. 

4. Add 4.0% (W/V) Canola oil to each volumetric flask containing nutrient broth. 

Autoclave at 121˚C and 15 psi for 15 min 

 

2. NBTA (adapted from Akhurst, 1980) 

1 litre nutrient agar 

0.04g triphenyltetrazolium chloride (TTC) 

0.025g bromothymol blue (BTB) 

Protocol: 

1. Mix nutrient agar and BTB.  

2. Autoclave at 121˚C and 15 psi for 15 min. 

3. Add TTC, just before pouring into Petri dishes, however ensure the autoclaved medium 

is less than 50˚C.  TTC will break down if added when medium is too hot. 

4. Swirl to mix. 

5. Dispense into sterile Petri dishes and leave to solidify. 

 

3. 0.1% jik solution for infective juvenile sterilization 

34ml distilled water 

1ml 3.5% jik 

Protocol: 

1. Autoclave distilled water at 121˚C and 15 psi for 15 min.. 

2. Mix jik and autoclaved distilled water in bottles. 
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Appendix IX 

ANOVA statistical analysis  

 

 

 

 

 

 

 

 

 

 

 

 

Anova: Two-Factor With Replication Anova: Two-Factor With ReplicationAnova: Two-Factor With ReplicationAnova: Two-Factor With ReplicationAnova: Two-Factor With Replication

SUMMARYLS RS C Total SUMMARYSUMMARYLS SUMMARYSUMMARY

Steinernema SteinernemaSteinernema SteinernemaSteinernema

Count 7 7 7 21 Count Count 21 Count Count

Sum 15,34 13,99667 10,33333 39,67 Sum Sum 37,16667 Sum Sum

Average 2,191429 1,999524 1,47619 1,889048 Average Average 1,531429 Average Average

Variance 2,923181 4,257779 3,142857 3,193077 Variance Variance 3,302915 Variance Variance

Heterorhabditis HeterorhabditisHeterorhabditis HeterorhabditisHeterorhabditis

Count 7 7 7 21 Count Count 21 Count Count

Sum 18,34 11,99 11,01 41,34 Sum Sum 37,675 Sum Sum

Average 2,62 1,712857 1,572857 1,968571 Average Average 1,445 Average Average

Variance 2,684133 2,05789 2,62159 2,435303 Variance Variance 2,404031 Variance Variance

Total Total Total Total Total

Count 14 14 14 Count Count 14 Count Count

Sum 33,68 25,98667 21,34333 Sum Sum 14,66667 Sum Sum

Average 2,405714 1,85619 1,524524 Average Average 1,047619 Average Average

Variance 2,637442 2,937049 2,66303 Variance Variance 2,771429 Variance Variance

ANOVA ANOVA ANOVA ANOVA ANOVA

Source of VariationSS df MS F P-value F critSource of VariationSource of VariationSSSource of VariationSource of Variation

Sample 0,066402 1 0,066402 0,022525 0,881536 4,113165 Sample Sample 3,00846 Sample Sample

Columns 5,546221 2 2,77311 0,940705 0,399737 3,259446 Columns Columns 0,67983 Columns Columns

Interaction 0,896783 2 0,448391 0,152105 0,859447 3,259446 InteractionInteraction 2,078899 InteractionInteraction

Within 106,1246 36 2,947905 Within Within -54,8192 Within Within

Total 112,634 41 Total Total -30,634 Total Total
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APPENDIX X: 

FASTQC and TRIMMOMATIC Scripts 

1. FastQC before trimming 

#!/bin/bash                                                                                                                                        

#PBS -N FastQCBac                                                                                                                              

#PBS -q medium                                                                                                                                  

#PBS -l walltime=01:00:00,mem=2gb                                                                                                               

#PBS -l nodes=1:ppn=1                                                                                                                           

#PBS -o /home/mothupib/fastqcbac_TEST/logs/output.log                                                                                           

#PBS -e /home/mothupib/fastqcbac_TEST/logs/error.log                                                                                            

WORK_DIR=/home/mothupib/fastqcbac_TEST 

cd $WORK_DIR 

 

fastqc $(ls /home/mothupib/fastqcbac_TEST/*fastq.gz) -o $WORK_DIR --noextract 

 

2. FastQC after trimming 

#!/bin/bash                                                                                                                                     

 

#PBS -N FastQC_trimmed_bac                                                                                                                      

#PBS -q WitsLong                                                                                                                                

#PBS -l walltime=03:00:00,mem=2gb                                                                                                               

#PBS -l nodes=1:ppn=1                                                                                                                           

#PBS -o /home/mothupib/fastqc_trimmed1_bac/logs/output.log                                                                                      

#PBS -e /home/mothupib/fastqc_trimmed1_bac/logs/error.log                                                                                        

 

WORK_DIR=/home/mothupib/fastqc_trimmed1_bac 

cd $WORK_DIR 

 

fastqc $(ls /home/mothupib/fastqc_trimmed1_bac/*fastq.gz) -o $WORK_DIR --noextract 
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3. Trimmomatic  

#!/bin/bash                                                                                                                                      

 

#PBS -N Trim_bac                                                                                                                                 

#PBS -q WitsLong                                                                                                                                 

#PBS -l walltime=03:00:00,mem=2gb                                                                                                                

#PBS -l nodes=1:ppn=1                                                                                                                            

#PBS -o /home/mothupib/Trim_bac/logs/output.log                                                                                                  

#PBS -e /home/mothupib/Trim_bac/logs/error.log                                                                                                   

 

WORK_DIR=/home/mothupib/Trim_bac 

OUT_DIR=$WORK_DIR/trimmed_bac 

 

cd $WORK_DIR 

 

count=0 

 

for file in $(ls *R1*fastq.gz) 

do 

    (( ++count )) 

    base_in=$file 

    base_out="Bacteria_trimmed_rep"$count".fastq.gz" 

 

    java -jar /opt/exp_soft/bioinf/trinity/trinity-plugins/Trimmomatic/trimmomatic.jar \ 

        PE -phred33 \ 

        -trimlog $OUT_DIR/trimmomatic.log \ 

        -basein $base_in \ 

        -baseout $OUT_DIR/$base_out \ 

        ILLUMINACLIP:NexteraPE-PE.fa:2:30:10:1:true \ 

        MAXINFO:50:0.7 \ 

        MINLEN:50 

        LEADING:20 
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Appendix XI 

Web based annotation server URL 

NCBI PGAAP: http://www.ncbi.nlm.nih.gov/genome/annotation_prok/ 

RAST: http://rast.nmpdr.org 
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