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ABSTRACT 

The use of the finite element method in the design of reinforced concrete slabs and beams has 

become a generally accepted practice in recent times and when designing structural members, 

both ultimate and serviceability limit states are required to be considered in the consequent 

analyses.  The nonlinear analysis of reinforced concrete, using plates and shells, may be 

defined into two broader categories with the first being the layered approach and the second 

being the effective stiffness approach. 

Common commercial finite element software do not all provide the facilities for the nonlinear 

analysis of reinforced concrete beams and slabs.  Although there are currently nonlinear 

models provided through literature these can be seen as complex to certain engineers and 

only applicable to the specialist engineer able to understand and implement the theory 

correctly.   

The more complex methods are also aimed at predicting the wider range of failure 

mechanisms.  Unless carrying out forensic engineering, the design engineer might not be 

interested in the actual failure load but rather, dependant on design philosophy, a cautious 

yield line load or similar. 

This report presents a simplified method, based on an effective stiffness approach, to the 

nonlinear analysis of reinforced concrete slabs and beams for serviceability and ultimate limit 

states.  The method allows for the use of simple design equations familiar to all structural 

engineers undertaking reinforced concrete designs.    

Using the finite element method, plate elements and simplified constitutive properties a 

nonlinear algorithm is developed which results in the accurate estimation of the displacements 

during loading as well as a design ultimate loading.  The proposed method is intended for 

reinforced concrete beams and slabs under transverse loading leading to bending with no axial 

forces present. 

The proposed model and nonlinear algorithm is validated against four experimental case 

studies which show the accuracy and relevance of the given nonlinear solution.  The results 

provide evidence that the proposed nonlinear model is valid for all loading and boundary 

conditions considered.  The application can be for displacement serviceability checks or the 

ultimate load design of a slab or beam.  The nonlinear model and algorithm presented can be 

easily integrated into a commercial finite element package, with API capabilities, for use in the 

design of reinforced concrete slabs and beams. 
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 INTRODUCTION 

1.1 OBJECTIVES OF THE RESEARCH 

Much of current reinforced concrete slab and beam design is undertaken using results 

obtained through analysis utilising the finite element method with plate or shells elements.  In 

the more common cases, these analyses comprise linear elastic material and linear geometry.  

As the reinforced concrete members are designed using ultimate loading it can be expected 

that the flexure members would undergo a certain degree of cracking. 

As the structural member undergoes cracking, the flexural stiffness changes and nonlinear 

behaviour is experienced.  There are however commercial finite element software currently 

available that carry out linear elastic analysis combined with an empirically derived reduced 

stiffness value based on a cracked section as per design codes. 

Nonlinear numerical methods have been established to estimate the nonlinear behaviour of 

reinforced concrete using plate or shell elements.  These methods can be split into two 

approaches namely the layered approach or effective stiffness approach.  The layered 

approach is seen as numerically complex for the general design engineer to practically be able 

to use in everyday works.  The effective stiffness approach may not be as precise as the 

layered approach but is efficient, less complex and provides accurate results for design 

purposes. 

The approach proposed in this research report, based on the effective stiffness method, is one 

which can be used to obtain accurate rotations and displacements based on a user input 

stress-strain relationship, calculated from the reinforced concrete section configuration.  This 

proposed method is seen as practical and would enable the appropriate simulation of the 

nonlinear behaviour of conventionally shaped reinforced concrete slabs / beams throughout 

the loading process.   

The proposed method introduces the use of common design and structural mechanics 

equations which all structural engineers are extensively familiar with and can easily employ.  

A nonlinear algorithm is established so that the proposed method can be easily implemented 

into current linear elastic commercial finite element software with API capabilities.   

The method established through this research would enable a wider audience of structural 

engineer to carry out the nonlinear analysis of reinforced concrete slabs and beams with 

confidence and with full knowledge of the numerical process, design assumptions and analysis 

limitations. 
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1.2 SCOPE OF THE RESEARCH 

The research will cover aspects relevant to the understanding of where the proposed method 

fits into the greater picture of nonlinear analysis of reinforced concrete using plate and shells.   

Following this, the technical aspects of how the proposed method is formulated is covered, 

including the plate element formulation and theoretical approach to the development of the 

proposed nonlinear material model. 

To validate the proposed method, well known experimental test cases are studied to be 

analysed using the proposed method.  Results obtained in the current research are compared 

to that of the experimental data.  Discussion and interpretation of the results is covered and 

concluding recommendations provided.   

1.3 RESTRICTIONS OF THE STUDY 

Firstly it is noted that the research is restricted to reinforced concrete members subjected to 

flexure with negligible in-plane action.  There are two reasons for this, firstly in the formulation 

of plate elements no consideration to axial stiffness is given and secondly no axial forces are 

considered present when calculating the nonlinear material properties to be used in analysis. 

The proposed method is intended for short term behaviour and does not include creep, 

shrinkage and temperature effects.  The proposed method is also not intended for forensic 

engineering, but can rather be seen as a method of design assuming tension steel yielding in 

flexure with no in-plane forces considered. 

With regards to the nonlinear analysis, material nonlinearity is considered and nonlinear 

geometry is not considered. This is a valid assumption for standard analysis and design of 

reinforced concrete beams and slabs. 

It should be noted that the proposed method is also intended for and may be applied to 

continuous slabs and beams although this form of structural system has not been covered in 

this research and may need to be and validated against experimental data where required. 

1.4 OUTLINE OF THE RESEARCH REPORT  

The overall objective of the research is to present a simplified method for the nonlinear analysis 

of reinforced concrete beams and slabs which produces results suitable for design and 

serviceability checks.  The research report is structured such that: 
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Chapter 2 gives a background to the various material aspects involved in the nonlinear 

assessment of reinforced concrete.  A brief literature review on the topic of nonlinear analysis 

of reinforced concrete using plates and shells is also presented. 

Chapter 3 provides a brief history and background to the generalised finite element method.  

As in this research plate elements are used to represent the reinforced concrete, the 

formulation thereof is established. 

Chapter 4 provides a detailed description of the derivation of the material properties 

represented using a stress-strain diagram for use in the present research. 

Chapter 5 runs through the methodology used to formulate the finite element program written 

in MatLab.  The development of the yield criteria and nonlinear solver is also explained. 

Chapter 6 gives details of the test cases used to validate the proposed nonlinear model.  Brief 

descriptions of the experimentation process as well as important values and observations are 

provided. 

Chapter 7 provides the results obtained from analytical studies carried out using the present 

proposed nonlinear model. 

Chapter 8 comprises a discussion and conclusion of the results obtained from the studies 

compared to that of the experimental results. 

Pre-processing calculations and finite element program code are provided as annexes to the 

research report. 
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 BACKGROUND AND LITERATURE REVIEW 

2.1 PROPERTIES INFLUENCING REINFORCED CONCRETE BEHAVIOUR 

The nonlinear behaviour of reinforced concrete is complex in nature and has been under 

consideration since mid-1960 through till today.  When analysing the nonlinear behaviour of 

reinforced concrete using the finite element method either solid, shell or plate elements are 

generally used.   

The following discussion is intended to give an overview of the aspects influencing to the 

nonlinear behaviour of reinforced concrete to enable the reader to understand the positioning 

of proposed method in light of the overall subject.  This section will include only a high level 

discussion of the various aspects of nonlinear behaviour of reinforced concrete. 

2.1.1 Concrete 

In general concrete comprises three parts namely cement, water, and aggregate. Aggregate 

is further subdivided into two parts, fine aggregate (sand) and course aggregate (stone).  As 

can be seen there is a number of different materials making up concrete and therefore concrete 

itself is in actual fact not homogenous but rather heterogeneous.  Despite the fact that concrete 

is in essence not homogenous, it is assumed for convince’ sake to be homogenous in analysis 

with relatively little error in results. This assumption is valid during stages of low to moderate 

loading prior to the onset of discrete cracking.  

2.1.1.1 Creep and shrinkage 

In the long term analysis of concrete one would also need to consider the effect of creep and 

shrinkage.  Creep is a time dependent variable which attributed to an increase in strain under 

a constant applied stress.  Shrinkage can broadly be defined as the change in volume due to 

loss of moisture in the concrete which is also a time dependent variable.  This research only 

considers the short term behaviour of concrete but creep and shrinkage are mentioned as they 

too hold a large degree of importance in overall long term behaviour of concrete. 

2.1.1.2 Temperature 

Another factor to consider is thermal effects.  Thermal effects could result from the exothermic 

heat of hydration process, environmental exposure or heat due to fire loading.  The thermal 

properties of concrete include thermal conductivity, specific heat capacity and thermal 

diffusivity.   
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Stresses from temperature effects can be due to heat gradients, the concrete structural 

system’s ability to react without cracking and the structural system restraint conditions.  As 

with creep and shrinkage thermal effects are not considered in this research but are mentioned 

as important factors to consider in design. 

2.1.1.3 Concrete compressive strength 

Concrete strength is directly dependant on time and in general it can be stated that the strength 

increases over time.  The compressive strength of concrete is dependent on many variables 

including water:cement ratio, aggregate strength, cement paste aggregate interface, porosity, 

admixtures etc.  As it can be seen that the concrete strength and strength development is 

dependent on many variables Figure 1 can only depict a typical relationship of concrete 

compressive strength gain as a ratio of strength to 28 day strength against time. 

 

 

Figure 1:  Typical compressive strength gain in concrete 

 

For design purposes the strength of concrete is termed the characteristic strength and is 

defined as the compressive strength of concrete below which no more than 5% of the valid 

test results obtained from test cubes / cylinders taken from the same mixture should fall. 

A typical tress-strain diagram for concrete under uniaxial loading is given in Figure 2.  In 

compression the concrete behaves linearly till what one could see as yield stress.  Following 

this stiffness softening and permanent plastic deformation occurs and the loading continues till 

peak stress is reached.  Following peak stress compression softening occurs whereby the 

concrete is significantly damaged but can still take loading till ultimate strain. 

Concrete tensile strength is minimal compared to the compressive strength and not ductile in 

failure.  The concrete in tension can be defined by a peak tensile strength and tension softening 

gradient which then produces the uniaxial tension zone of the stress-strain diagram.  The 
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tensile strength given in the diagram can either be the direct tensile strength or modulus of 

rupture dependant on the required application. 

 

Figure 2:  Typical uniaxial plain concrete stress-strain relationship 

 

Under most circumstances concrete structures can be seen to be under a state of biaxial or 

triaxial stress.  There are various nonlinear failure models that have been successfully 

established for analyses of concrete structures exposed to these stress state conditions. 

 

2.1.1.4 Tensile strength 

Plain concrete as a material is in all cases stronger in compression than tension.  Tensile 

strength can be seen as either direct tensile strength or modulus of rupture which latter relates 

to the flexural strength of concrete.  In standard beam and slab design the tensile strength is 

taken equal to zero although the tensile flexural capacity of concrete could be taken equal to 

the modulus of rupture.  Many equations exist as to the modulus of rupture but for this research 

an equation given in ACI 318M-05 [1] is used, equation 1-1. 

 

	 ′� =  0,62 . �	 ′� 

1-1 

 

2.1.1.5 Elastic modulus 

One of the more influential factors in determining the structural behaviour of concrete is the 

Elastic modulus of the hardened concrete mixture.  The Elastic modulus of harden concrete 

can be defined as the ration of uniaxial stress to the resultant axial strain [13].  The Elastic 

modulus is a direct measure of the concrete’s stiffness properties but is highly variable from 

one mix to another.  The Elastic modulus of concrete is manly affected by three components 

namely the concrete strength, type of aggregate and aggregate paste interface connection. 
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Concrete Elastic modulus can be given in three ways, Figure 3.  The Elastic modulus can be 

defined as the initial tangent modulus, where concrete behaviour in a linear manner up to 

approximately 30-40% of ultimate strength.  The secant modulus is the slope of the stress-

strain diagram from the origin to a specific point and usually taken at about 0.45 x f ‘c.  The 

tangent modulus is the slope taken at any specified point along the curve. 

 

 

Figure 3:  Elastic modulus of concrete graphical definition 
 

A simplified formula for the secant Elastic modulus at 0.45 x f ‘c as given in ACI 318M-05 [1] for 

concrete with an assumed density of 2300 kg/m3 is given in equation 1-2 in MPa. 

 

�� =  4700. �	 ′� 

1-2 

2.1.1.6 Poisson’s ratio 

Poisson’s ratio is the ratio of lateral strain to the axial strain of a specimen caused by uniaxial 

strain alone.  Poison’s ratio is effected by factors including aggregate:cement ratio and type of 

aggregate.  Through test it has been shown that the Poisson’s ratio can vary from 0.11 to 0.23 

but for design purposes is usually taken as 0.2. 

2.1.2 Reinforcing Steel 

Reinforcement with regard to reinforced concrete is meant to provide sufficient tensile strength 

to the resisting mechanism which is lacking in the concrete material itself.  Tensile 

reinforcement in theory may be any material that provides the tensile strength, stiffness, 
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bondage and movement behaviour to sufficiently resist the applied loading conditions.  It has 

been established that steel reinforcement has the properties to form a strong and robust 

structural mechanism with concrete. 

Standard steel reinforcement used in reinforced concrete can be separated into mild and high-

yield bars.  Where, in South Africa, the steel has a manufacturer guaranteed minimum yield 

strength of 250 MPa and 450 MPa for mild and high-yield bars respectively.  Figure 4  shows 

the difference in strength and stiffness behaviour between mild and high-yield steel 

reinforcement. 

 

 

Figure 4:  Stiffness behaviour of steel reinforcement 
 

The nonlinear behaviour of steel reinforcement can be identified to comprise four main stages, 

Figure 5.  In the first stage the steel behaves in a linear manner according to Hooke’s law prior 

to point A.  Between points A and B is stage two where the steel undergoes permanent plastic 

deformation and, although not always the case, can be seen to behave in a perfectly plastic 

state.  Stage three between points B and C is termed strain hardening where the steel is 

strengthened due to plastic deformation.   

The strengthening occurs because of movements caused by dislocation of different planes 

within the crystal structure of the material.  The dislocations pile up against one another, and 

can become interwoven thereby preventing further deformation and “strengthening” the steel.  

Following strain hardening stage four begins, between points C and D, where necking occurs.  

Necking can simply be defined as the visible reduction of cross-sectional area of the 

reinforcement due to extreme axial strain. 
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Figure 5:  Stages of stiffness in steel reinforcement 

 

Although steel comprises different proportions of metal alloys, it can theoretically be seen as 

an isotropic material.  It is therefore much simpler to model the nonlinear behaviour of the steel 

reinforcement compared to modelling the nonlinear behaviour of concrete.  Two common 

methods of representing the nonlinear behaviour of steel reinforcement is with either a bilinear 

(a) or elastic perfectly plastic (b) stress and strain relationship as shown in Figure 6. 

 

 

Figure 6:  (a) Bilinear, (b) Elastic perfectly plastic stress and strain relationship 
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2.1.3 Bond between Concrete and Reinforcement 

For the reinforced concrete section to behave as one mechanism, transfer of the tensile 

stresses in the reinforcement to the concrete needs to take place.  This transfer is done through 

bond stress.  In reinforced concrete design it is assumed that there is a perfect bond between 

the reinforcement and the concrete.  To validate this assumption one needs to ensure that 

there is a sufficient bond stress development length and / or mechanical anchorage. 

Bond stress can be transferred through friction, adhesion or bearing on deformations of the 

steel reinforcing bar.  Generally friction and adhesion have limited transfer ability due to 

Poisson’s effect causing a reduction in bar diameter when the steel bar is in tension.  The 

majority of bond stress is therefore developed through bearing on deformation of the bar.  As 

the deformations are angled the stress transfer comprises a radial component as well as a 

longitude bearing component. The bond stress is not constant with the length of the beam but 

follows the bending moment magnitudes.   

To understand true bond stress one must review the process of crack development. When a 

simply supported beam is loaded past the cracking moment capacity the concrete tensile 

stress capacity is exceeded which causes cracking.  When the beam cracks there are still 

however portions between the cracks where the concrete still carries tension.  As the loading 

increases, the tensile stress in the concrete between the existing cracks increases until the 

discrete portion of concrete’s tensile capacity is reached and secondary cracks are formed.  

The true bond stress distribution for a central portion of a cracked beam is given in Figure 7. 

 

Figure 7:  Tension stiffening mechanism 
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This action of true bond stress distribution is important when considering the effect on the 

nonlinear displacement behaviour.  The increased rigidity due to these uncracked portions 

between the primary and, with increased loading, secondary cracks is termed tension 

stiffening.  Tension stiffening is not explicitly taken into account under the proposed nonlinear 

model. 

2.2 NONLINEAR ANALYSIS USING PLATES AND SHELLS 

As previously mentioned reinforced concrete can be modelled using solid, shell or plate 

elements but the following paragraphs are focussed on the nonlinear analysis applicable to 

plate and shell representation of reinforced concrete.   

The formulation of plate and shell elements began to be established in the mid-1960 and 

formulations improved rapidly through till late 1980.  During this period where the formulation 

of the plate and shell elements evolved so did the investigation and application of nonlinear 

reinforced concrete behaviour and analysis.   

As the development of both topics have taken place over a similar period and with the increase 

in computing power over the late 1980 early 1990 many researchers have developed separate 

constitutive numerical relations combined with plate and shell element formulations to mimic 

the nonlinear behaviour of reinforced concrete slabs. 

When carrying out analysis using plate or shell elements the formulation can be dived into two 

main categories namely the layered and effective stiffness approaches.  The layered method 

subdivides the cross-section of the element into imaginary discrete layers isolating the 

concrete and steel materials enabling the assessment of the concrete and reinforcement to be 

carried out separately.  The effective stiffness approach seeks to combine the behaviour of the 

concrete and reinforcement into one material only capturing changes in structural stiffness as 

a whole which allows for a more simple solution. 

McNeice (1967) [27] carried out a series of experimentations on transversely loaded square 

slabs supported vertically at the corners.  McNeice employed plate elements and bilinear 

moment curvature graph to depict the nonlinear reinforced concrete behaviour.  He included a 

derived yield criteria to enable the assessment of two-way spanning slabs.  His approach is in 

essence an effective stiffness approach which was used to correlate the analytical results to 

the experimental study comparing elastic-plastic behaviour of the experimental specimens.  

McNeice’s innovative work proved that the nonlinear response of reinforced concrete could be 

represented using the effective stiffness approach. 
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Jofriet and McNeice (1971) [21] established an effective stiffness analytical method taking into 

account the orientation of the cracks, the rigidity of a cracked regions and the effect on rigidity 

of steel orientation with respect to the crack direction.  They derived a yield criteria and 

established two analytical models using two methods of calculating effective stiffness 

empirically derived by Beeby (1968) and Branson (1963).  This paper proved that empirically 

derived stiffness equations can be combined with numerical methods using an appropriate 

yield criteria to effectively capture nonlinear behaviour. 

Hand, Pecknold and Schnobrich (1972) [19] used the layered method approach to determine 

the load-deflection history of reinforced concrete slabs up to failure represented by plates and 

shells.  As the layered method allows for the steel and concrete to be assessed separately an 

elastic-plastic model was used for the steel and modified the yield criteria proposed by Kupfer, 

Hilsdorf and Rusch (1969) to be used for concrete.  The proposed method did not include 

geometric nonlinearity.  This research established the layered method approach.  The 

reinforcement and concrete behaviour could now be evaluated using separate material 

models.  Final results were not completely accurate but did adequately capture the nonlinear 

behaviour including in-plane loading. 

Rahman (1982) [37] established nonlinear models based on the layered approach with plate 

elements.  The models allow for cracking in one or two directions and accounts for tension 

stiffening effects.  Other aspects of nonlinearity such as yielding and crushing of concrete in 

compression and yielding or strain hardening of steel reinforcement were also considered.  

Rahman also used the Kupfer, Hilsdorf and Rusch (1969) concrete yield criteria but utilised a 

bilinear steel stress-strain relationship.  The research also evaluated a number nonlinear 

algorithms to establish the stability and efficiency of each.  When considering solid slabs, 

analytical results were compared to Cardenas (1968), Duddeck (1978), McNeice (1971) and 

Taylor (1966) experiments.  An important aspect to this research is that the models could be 

applied to solid slabs, T – Beams, Bridge composites and prestressed concrete void slabs.  In 

general, appropriate agreement with experimental results were obtained. 

Milford and Schnobrich (1984) [28] used the layered approach with shell elements to establish 

nonlinear behaviour necessary for the analysis of reinforced concrete cooling towers.  The 

objective of the work was to establish a model which deals with the failure analysis of reinforced 

concrete cooling towers subjected to wind loading, studies include the effect of cracking and 

yielding of reinforcement at failure and failure mode.  The study also covered effects of large 

displacement geometric nonlinearity.  A different approach to the representation of cracked 

concrete is formed using a rotating crack model developed by Gupta and Habibollah (1982) in 

which the direction of the crack is not fixed after the formation of the crack.  It was assumed 

that the crack direction is normal to the current direction of the maximum principal strain caused 

by a change in stiffness and load redistribution.  The cracks thus defined are not in essence 
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cracks, but can be seen as a mechanism defining the average crack direction.  The rotating 

crack model produced significantly better results than the conventional fixed crack model.  This 

research was able to accurately capture the nonlinear behaviour of a complex structural 

system such as a cooling tower using the layered approach and an updated concrete crack 

model. 

Hu and Schnobrich (1990) [19] carried out similar research to the work carried out by Milford 

and Schnobrich (1984) [28].  This research however concentrated on extending the work of the 

nonlinear concrete rotating crack model.  Due to an improved concrete model, excellent results 

were obtained when analytical values were compared to Cardenas-Sozen (1968) experimental 

values which included out of plane and in-plane loading.   

Polak and Vecchio (1993) [35] undertook research which included an experimental program to 

a better understanding of the nonlinear behaviour of reinforced concrete slabs subjected to out 

of plane and in-plane loading.  The objectives included the development of a simple and 

sufficiently accurate method for predicting the capacity of simply supported slabs including 

tension stiffening as well as geometric and material nonlinear effects.  Polak and Vecchio used 

a layered finite element approach combined with shell elements.  The concrete cracking was 

represented by modified compression field theory established by Vecchio and Collins (1986).  

Modified compression field theory is based on a smeared, rotating crack logic that, based on 

average stresses and average strains, considers equilibrium and compatibility conditions.  

When carrying out the analyses positive stability and convergence was achieved when using 

the iterative, full-load secant stiffness solution technique.  Considering the complex structural 

response being evaluated, satisfactory results were obtained when comparing behaviour 

history of the analytical and experimental specimens.   

Polak (1996) [32] used the effective stiffness approach to establish a simple procedure to 

calculate serviceability deflections in reinforced concrete one and two-way spanning slabs 

using the finite element method.  The proposed model used the empirically derived effective 

stiffness equation established by Branson (1963).  Polak proposed the use of simple yield 

criteria equations to incorporate the twisting moments experienced in two-way spanning slabs.  

Results obtained were accurate to the experimental results of Polak (1993), McNeice (1967), 

Ghoneim (1992) and Aghayere & MacGregor (1991).  The disadvantage of the proposed 

method is that a design ultimate loading or actual failure mode load is not established and the 

method can only be used for serviceability checks. 

Agbossou and Mougin (2005) [2] established a method for the nonlinear dynamic analyses of 

reinforced concrete slabs.  The method was based on the layered approach.  The research 

was specifically carried out to create models to analyse and design slabs required to resist 

impact from rock falls. The results from these models compared well with those of 
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experimental.  The analyses revealed the influence of anisotropy effects on natural frequencies 

and mode shapes of slabs which are highly reinforced in one direction only.  The research into 

nonlinear dynamic analysis using plates and shells was new and therefore more work should 

be carried out prior to any final conclusions being draw on the adequateness of the 

representation of the nonlinear dynamic behaviour of reinforced concrete slabs. 

Zhang and Bradford and Gilbert (2007) [45] undertook to develop a comprehensive and 

numerically stable 4-node, 24-degree of freedom rectangular shell element formulation.  The 

formulation is carried out using the layered approach.  The formulation is appropriate for thin 

to moderately thick reinforced concrete slabs.  Both geometric nonlinearity and material 

nonlinearity are included.  Material nonlinearity combines effects due to concrete cracking and 

tension stiffening.  Results obtained are considered accurate and numerically stable but the 

formulation thereof is considered fairly complex.  The research was able to provide an element 

formulation capable of accurately capturing nonlinear response but with a computationally 

more efficient element as compared to earlier studies.  The proposed formulation should be 

validated against and used for more complex structural systems which includes out of plane 

and in-plane forces. 

The development of the nonlinear analysis using plate and shells has followed the philosophy 

of being able to, as accurately as possibly, replicate the nonlinear response of reinforced 

concrete using the finite element method.  This philosophy is correct if one would like to capture 

actual failure modes.  For design however the exact failure mode might not actually be required 

but would rather require a conservative analysis and design is preferred.  Another aspect to 

consider is that to capture the nonlinear response accurately, complex mathematical models 

which not all design engineers are familiar with would be required.  These mathematical 

models would also be required to form part of a commercial finite element software as few 

engineers would practically be able to program it themselves.  It can therefore be seen that the 

proposed methods requiring complex formulation have limited scope as to their applicability.  

They are however invaluable when carrying out forensic analysis and design of complex 

structures which are not common. 

Reinforced concrete slabs and beams can be seen as an extremely common structural 

systems which are familiar to all design engineers.  There is therefore a need for a simplified 

design approach to the nonlinear analysis and design of reinforced concrete slabs and beams.  

The approach proposed allows for standard stress-strain relationships to be established using 

common reinforced concrete design equations and assumptions which all design engineers 

are familiar with.  These stress-strain relations can be defined for each direction of 

reinforcement and used in the nonlinear analysis as would be done for typical orthotropic 

ductile materials.  The method will allow for easy implementation into most commercial finite 

element software packages with API capability. 
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 FEM OVERVIEW AND PLATE ELEMENT 

FORMULATION 

3.1 OVERVIEW OF THE GENERALISED FINITE ELEMENT METHOD 

The generalised finite element method has become a standard method of structural analysis 

in recent times.  The finite element method is based on the principle of virtual work, (virtual 

displacements), and states that the equilibrium of a body requires that for any compatible small 

virtual displacement imposed on a body in its state of equilibrium, the total internal virtual work 

is equal to the total external virtual work [5].  When using the finite element method with the 

required computing power, solutions to structural problems that were previously too 

complicated to solve are now effortlessly attained. 

The beginnings of the finite element method are not completely known but it is generally 

accepted that the application of the method in practical engineering was initially developed by 

M.J. Turner carrying out work for Boeing from 1950-1962.  Two persons working under Turner 

at Boeing had a significant contribution namely M.B. Irons and R.J. Melosh with the former 

having primary input into the development of isoparametric schemes, shape functions, the 

patch test and frontal solvers.  Melosh went on to show that conforming displacement based 

formulations are a form of Rayleigh-Ritz which is based on the minimum potential energy 

principal.   

As this work was carried out for Boeing it is not unexpected that the developments were first 

made in the aerospace industry.  The transferal of the generalised finite element method to 

other fields of engineering can mainly be attributed to four persons involved in academia 

namely J.H. Argyris, R.W. Clough, H.C. Martin, and O.C. Zienkiewicz.  This transfer took place 

between the 1950s and 1960s.  The finite element method began to be introduced to the civil 

engineering field in the early 1960s mainly through the workings of R.W. Clough having the 

link between Boeing and University of California, Berkley. 

From 1970 the existing method began to be consolidated and improved upon rather than 

formulated.  Publications by T.J.R Huges and K.J. Bathe further established and improved 

upon the foundations of the generalised finite element method.  Along with this establishment 

and improvement of formulations the rapid development of computing ability, on which the 

finite element method is so reliant upon, also took place.  Commercial finite element code 

began to be established for use in industry.   

Recent developments have moved more toward usability and involve the increased efficiency 

of the mathematical solutions, automeshing capabilities, automation and graphical user 
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interface capabilities.  These advances enable the relatively complex method of analysis to be 

readily available to a wider audience of user.  This is both a good and a bad thing. 

In spite of the great power of the finite element method, the disadvantages of automated 

computer solutions must be kept in mind.  The analysis is in modern times a generally graphical 

method and does not implicitly show how the analysis results are affected by a variation in 

structural properties like materials and geometric features to name but a few.  Errors in input 

data which are not picked up by the analyst might not be evident in the final result and can 

easily be overlooked by the person carrying out the analysis.  

The finite element method should be viewed as a method to give an accurate approximation 

of the real life situation rather than an exact solution of the real life situation.  All solutions 

obtained should firstly be reviewed to see if the results “make sense” and therefore no matter 

what the application is, all analyses require a degree of engineering judgement.  Where 

possible, verification results should be used to “calibrate” models which can then be expanded 

upon for use in applications of similar conditions. 

3.2 PLATE ELEMENT FORMULATION 

As in this study in-plane axial stiffness is not to be considered due to the assumption of pure 

bending, plate elements are used having 3 degrees of freedom per node as can be seen in 

Figure 8.  The MATLAB program created to demonstrate the simplified method of analysis 

enables analysis via 8-noded plate elements using Mindlin-Reissner theory. 

 

 

Figure 8:  Nodal degrees of freedom [5] 

 

The displacements and rotations of interest for this study are the out of plane z displacement 

and θx, θy rotations.  The Mindlin-Reissner theory assumes that the particles of the plate 

element that are in a straight line normal to the mid-plane of the plate prior to deformation 

remain in a straight line but not necessarily normal to the mid-plane during deformation as 

shown in Figure 9.  
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Figure 9:  Shear deformations 

 

 

Figure 10:  Deformation assumptions of plate including shear deformation, 
figure 5.25 [5] 

 

The displacement components of co-ordinates x, y and z obtained from the plate element 

including shear deformation and small displacement theory are as follows: 

 

u = -z.β�(x,y) 

v = -z.β"(x,y) 
w = w(x,y) 

3-1 
 

The βx and βy are the rotations of the normal to the mid-plane in the xz and yz planes 

respectively, Figure 10.  In the formulation of the isoparametric plate elements the x and y 

components are represented by r and s respectively.  The displacement interpolation functions 

are represented by hi, with i being the applicable node number.  The vertical displacement and 

rotations in the xz and yz planes are given by: 
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w(r,s) =      & h((r,s)w(
)

(*+  

β�(r,s) =  - & h((r,s)θ"(
)

(*+  

β"(r,s) =     & h((r,s)θ�(
)

(*+  

3-2 

 

The interpolation functions are obtained from literature by K.J. Bathe (1996) [5].  Shape 

functions used in the 8-noded plate elements are shown in Figure 11. 

 

 

Figure 11:  Shape interpolation functions, figure 5.4 [5] 

 

The element bending strains are assumed to vary linearly through the element thickness and 

the transverse shear strains to remain constant through the element thickness.  The curvature, 

bending strain and shear strains are defined by each of the following equations respectively: 
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� =  -�..�//�./
0 =  - 12./1412//1512./15 + 12//140 

3-3 

 

7 =  87..7//�./9 =  −;. ∅ 

3-4 

 

� =  =�.>�/>? =  @1A/14 −  2.1A/15 − 2/B 

3-5 

 

Using the strain matrices, element stresses can be determined.  The in-plane and shear 

stresses are calculated as described in the following equations: 

 

�� =  C� . 7  
3-6 

 

�� =  �. C�. � 

3-7 

 

Where Cb and Cs are the bending and shear constitutive material relationships respectively.  

These values are obtained using equations 3-8 and 3-9 where in equation 3-7 κ = 5/6 is the 

commonly used shear correction factor to convert the parabolic shear distribution to a uniform 

distribution. 

 

C� =  
DE
EEE
F �.G1 − �. . �/I �/. �.G1 − �. . �/I 0

�. . �/G1 − �. . �/I �/G1 − �. . �/I 0
0 0 JKL

LLL
M
 

 

3-8 
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C� =  NJ 00 JO 
 

3-9 
 

J =  �. . �/�. . (1 + �.) + �/. G1 + �/I 

 

3-10 

 

To obtain the nodal displacements and resulting strains, stresses and forces, the global 

stiffness matrix is required to solve the equation K.u = R.  The global stiffness matrix is merely 

an assemblage of the systems element stiffness matrices.   

The element matrix comprises two parts, namely the contribution from bending and secondly 

the contribution from shear.  The element stiffness matrix is thus summarised as: 

 

PQ = R ℎT 12⁄  . VW�XYZ[ . C� . W�\] +  R �. ℎ. VW�XYZ[ . C�. W�\]  

3-11 

 

The strain interpolation matrices for bending and shear shown in equation 3-15 are given in 

equations 3-12 and 3-13 respectively. 

 

B_ = `0 0 -∂h+/∂x0 ∂h+/∂y 00 ∂h+/∂x -∂h+/∂y  b    …    b 0 0 -∂h)/∂x0 ∂h)/∂y 00 ∂h)/∂x -∂h)/∂yd 
3-12 

 

Be = `∂h+/∂x 0 h+∂h+/∂y -h+ 0   b    …    b ∂h)/∂x 0 h)∂h)/∂y -h) 0 d 
3-13 

 

To enable ease of numerical integration from -1 to 1, the Jacobian matrix, J, is used which 

maps a differential component from the isoparametric coordinates to the global coordinates.  

Using the Jacobian operator (1ℎf/14),  (1ℎf/15) are calculated by:  
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g∂h)/∂x∂h)/∂yh  = J-+ g∂h)/∂r∂h)/∂sh   

3-14 

Where the Jacobian matrix is defined as: 

 

J = g∂x/∂r ∂y/∂r∂x/∂s ∂y/∂sh 
3-15 

with 

∂x/∂r  = & ∂h(∂r *x(
)

(*+  

∂x/∂s  = & ∂h(∂s *x(
)

(*+  

∂y/∂r  = & ∂h(∂r *y(
)

(*+  

∂y/∂s  = & ∂h(∂s *y(
)

(*+  

3-16 

 

With the strain interpolation matrices now determined the element stiffness matrix is formulated 

as a function of natural co-ordinates r and s.  The integral is mapped to the global co-ordinate 

system using the determinant of the Jacobian. 

 

PQ =  k k ℎT 12⁄  . VW�(l, m)XY . C� .+
n+

W�(l, m). |p|+
n+

\l\m +   k k �. ℎ. VW�(l, m)XY .+
n+

C�. W�(l, m)+
n+

. |p|. \l\m 

3-17 

 

Although the pure displacement based Mindlin-Reissner plate element is subject to “shear 

locking”, the simplest means of circumventing this is through reduced or selective reduced 

integration.  With guidance from documentation by Bletzinger (2001) [8], it was established that 

for the 8-noded plate elements selective reduced integration be utilised with the bending terms 

integrated using 3x3 Gauss point integration and the shear terms integrated using 2x2 Gauss 

point integration.  By using selective reduced integration errors in the integration scheme lead 

to a “softening” of the shear term thus avoiding the problem of “shear locking”.  This also has 

the added benefit of lower computational cost but a large disadvantage is that reduced 

integration may lead to zero-energy displacement modes. 
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 SIMPLIFIED NONLINEAR MATERIAL 

PROPERTIES 

4.1 RATIONALE 

The nonlinear material constitutive relations are established with two objectives in mind.  Firstly 

the material properties presented must have the required level of accuracy so as to validate 

its use in design methods and secondly to enable ease of formulation for the design engineer. 

The simplified method of analysis presented in this report is based on provisions given in the 

American concrete design code, ACI 318–05 [1] to calculate section capacity.  The tensile 

strength of concrete is therefore not taken into account.  In the derivation of the nonlinear 

material properties of reinforced concrete, with regard to this research, the following 

assumptions are made:  

• Simple beam theory:  Cross sections normal to the mid-plane of an element that are plane 

prior to loading remain plane during stress development process.  This assumption is made 

for the formulation of thin plates.  Thick plate theory is used in the finite element formulation 

in this research and this assumption may affect final results.  But as the research is carried 

out for use in slab elements, shear deformations are not expected to contribute significantly 

to the overall deformation of an element.  

• Tension controlled reinforced concrete:  Structural elements considered in the scope of 

this report are tension controlled whereby the tensile reinforcement will reach yield strain 

prior to the onset of maximum concrete compressive strain.  The assumption is valid as 

slab designs should be carried out so as to ensure ductile failure modes.  Tension control 

should in any case be checked in the design process. 

• Linear strain distribution:  Strains throughout the cross sectional depth are assumed to 

have a linear distribution.  This has been shown to be a valid assumption when carrying 

out the analysis and design of reinforced concrete structures. 

• Compatible strains:  the reinforcement is assumed to have a perfect bond with the 

surrounding concrete.  This is a common assumption in the design of reinforced concrete 

slabs. 

4.2 MATERIAL PROPERTY CALCULATIONS 

Moment curvature relationships are a convenient way to represent the nonlinear behaviour of 

reinforced concrete.  Figure 12 depicts a typical moment curvature relationship for a reinforced 

concrete structural element designed so as to give ductile yield failure.  Moment curvature 

relationships can, with the available computing facilities, effortlessly be formulated for a given 
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arrangement of a reinforced concrete section.  For this study three significant points are 

identified to form the basis of the nonlinear evaluation.   

The first the point is where the concrete section reaches its tensile capacity at the extreme 

outer fibre.  Prior to this point the section acts as a conventional linear elastic element.   

The second point is where the reinforced concrete section reaches yield.  It is assumed that 

the tension reinforcement reaches yield strain prior to the concrete reaching ultimate 

compressive strain.  

The third point is where the reinforced concrete section reaches the ultimate section moment 

capacity.  This is generally the strain state which is used in design under ultimate loading 

conditions. 

 

Figure 12:  Typical Moment Curvature Diagram 
 

For the purposes of this research, it is required that an equivalent stress-strain diagram be 

used to represent the nonlinear behaviour of the reinforced concrete section.  This however 

cannot be carried out naturally.   

In the real behaviour of reinforced concrete members the neutral axis shifts in depth as the 

section is exposed to increasing loads and, as the strain distribution is assumed to be linear 

throughout the section, strains will not be equal at either side of the element. 

When carrying out finite element analysis using plates to represent the reinforced concrete 

element, strains are also assumed to vary linearly throughout the section but the element does 

not physically mimic the vertical crack propagation and therefore the “neutral axis” remains at 

the mid-plane of the element confirming that strains are equal at either edge of the element 

section.  

It is proposed that the equivalent stress-strain diagram is formulated by ensuring strain 

compatibility using curvature relations and that the associated stress point is calculated using 

the moment related to the relevant curvature value. 
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Points 1, 2 and 3, given in Figure 13, can be thought of as a nonlinear behaviour begin point, 

yield point and ultimate strength point respectively.  It is noted that extra sub-points are to be 

calculated between points 1 and 2 as this will give a much more accurate description of the 

nonlinear behaviour. 

 

 

Figure 13:  Typical Calculated Stress vs. Strain Diagram 
 

To determine point 1 on the stress-strain diagram a simple equation to determine the cracking 

stress is used as given in 4-1 and 4-2.  

 

q�r =  0,62 . �s�t . 0,8        

            4-1 
 7�r =  q�r / ��           

            4-2 
 

Following point 1 of the stress-strain diagram, the member is considered to be cracked and 

nonlinear behaviour begins.  Curvature for the finite element program can be estimated using 

equation 4-3. 

 ∅vQw =  G7Qx . 2I / ℎ           

            4-3 
 

As can be seen in Figure 14 curvature of the actual behaviour may be calculated using 

equation 4-4.  

 ∅yQ�z{f =  7��  / 4            

            4-4 
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Figure 14:  Relevant strain distribution to calculate curvature  

 

To ensure curvature compatibility between the finite element program and actual behaviour 

4-3 and 4-4 are equated giving rise to equation 4-5 which is used to calculate the equivalent 

strain point (εeq) on the a typical stress-strain diagram. 

 7Qx =  (7��  . ℎ) / (2 . 4)           

            4-5 
 

When calculating the strain point using 4-5 the neutral axis depth (x) is required.  This neutral 

axis value is associated to the section moment at that particular strain distribution.  The 

equivalent stress σeq is estimated using 4-6. 

 

qQx =  |�Q��z}f .  ℎ2 . ~{ . (1 − ��)  =  |�Q��z}f . 6ℎ� . (1 − ��) 
4-6 

 

The three main strain states which should be considered in the formulation of a typical stress-

strain diagram are shown in Figure 15. 

 

 

Figure 15:  Three major design strain states to be considered 
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The proposed method for constructing the typical stress-strain diagram is set out in the steps 

given below: 

1. Calculate ultimate moment and ensure tension controlled member. 

2. Calculate Cracking Stress.         – Point 1 

3. Calculate associated Cracking Strain.       – Point 1 

4. Calculate section equilibrium where strain in the tension steel is at yield strain. 

5. Calculate equivalent strain at yield.        – Point 2 

6. Calculate equivalent stress at yield.        – Point 2 

7. Using information from step 1 calculate equivalent strain at ultimate.   – Point 3 

8. Calculate equivalent stress at ultimate.       – Point 3 

9. Using information from step 4 calculate section equilibrium where curvature = 1/2 of yield 

called Point 1a. 

10. Calculate equivalent strain.               – Point 1a* 

11. Calculate equivalent stress.                – Point 1a* 

 

*It is noted that closely following the reaching of cracking stress a large degree of nonlinearity 

is experienced.  Between the cracking moment and the yielding moment the upward crack 

propagation has a significant nonlinear effect on the bending stiffness and, dependant on 

reinforcement ratios, therefore this portion of the stress-strain graph is represented using a 

bilinear relationship with an intermediate point being defined as the point whereby the 

curvature is 1/2 that of the yielding moment state curvature.  Through this research it has been 

seen that for members with a tension steel area to gross cross sectional area ratio < 1% only 

one extra point between points 1 and 2 is required to be calculated.   
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 MATLAB PROGRAM & NONLINEAR SOLVER 

5.1 ANALYSIS PROGRAM BASIS 

To validate the proposed method a custom written finite element program is developed using 

MatLab 2011b.  The program considers only 8-noded plate elements as given in Section 3.2.  

This section gives a brief description on the high level approach to a finite element solution 

using any given programming language. 

To perform a complete finite element analysis, certain stages are identified which are 

necessary for carrying out the finite element analysis.  The following stages were considered 

in the development of the finite element program: 

• Physical Problem Definition   

As the finite element method is in essence an approximation of a real life situation, the 

analyst is required to understand the real life situation and express this in a finite element 

simulation.  For the current research it is identified that the behaviour in question is 

predominantly bending against traverse loading and therefore any loading and stiffness 

contributions in the in-plane direction are considered negligible.   

With regards to the required nonlinear behaviour it is assumed that large displacement 

nonlinearity is not of concern as in the design of a reinforced concrete beam / slab it is 

assumed that the beam / slab not deflect excessively.  Therefore when carrying out the 

nonlinear analysis only material nonlinearity, using Cauchy stress tensors, is considered. 

• Geometric Modelling 

Once one has carried out the problem definition, the question of how the physical problem 

will be represented geometrically.  For instance should one model a reinforced concrete 

beam / slab under bending using 1D, 2D or 3D elements?  This all depends on what 

behaviour the analyst is trying to capture, how accurate the results need to be and the level 

of computational cost.  For this research it is decided that the modelling of the reinforced 

concrete beams / slabs will be done using 2D plate elements and is seen as sufficient for 

the behaviour, accuracy and computational cost in question. 

• Element type 

Refers to the nature of element used to represent the structural behaviour of the identified 

simulation required to denote the real life problem.  Elements can vary from truss, beam, 

plane strain, plane stress, plate, shell, solid and many others.  The element type is also 

defined by the interpolation functions which are commonly defined by the number of nodes.  

For example a 4-noded plate element is defined by linear interpolation functions whereas 
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an 8-noded plate element is defined by a quadratic polynomial interpolation function.  For 

the current research, and as mentioned in Section 3.2, 8-noded plate elements are used. 

• Discretization 

To correctly capture the necessary displacement behaviour of a simulated problem the 

correct fineness of discretization should be employed.  One of the statements relevant to 

the degree of discretization is that the finer the discretization the higher the computational 

cost, the more coarse the discretization the lower the computational cost.   

The point at which the level of accuracy achieved compared with computational cost 

incurred is satisfactory will be termed geometric discretisation convergence.  There are 

many ways to decide on this point of convergence but for this research the relationship of 

displacement and associated mesh density is considered.  As a secondary convergence 

measure, for the McNeice and C1 slabs, the change in moment result is also evaluated to 

ensure a satisfactory mesh density is used.  For the one way spanning Polak slab, the 

applied moment at the ends of the slab is compared to that of the moment result obtained 

through analysis to establish a satisfactory mesh density. 

Table 1 gives the percentage of change in deflection associated with an increase in mesh 

density as well as stipulated moment result comparison.  Only boundary conditions and 

loading type for the experimental case studies used in this research are considered.  Slab 

A3 has the same loading and boundary conditions as slab C1 and therefore discretisation 

convergence is judged from results of slab C1. 

 

Table 1:  Geometric Discretisation Convergence 

Test 
Specimen 

Mesh 1  Mesh 2 Displ 1 Displ 2 
Δ Displ 

% 

My 
(kN.m) 

1 

My 
(kN.m) 

2 
Δ My % 

McNeice 3x3 4x4 -0.0065 -0.0065 0.17% 13.637 14.164 3.70% 

C1 3x3 4x4 -0.0079 -0.0079 0.01% 14.838 14.777 0.42% 

Test 
Specimen 

Mesh 1  Mesh 2 Displ 1 Displ 2 
Δ Displ 

% 

1x1 M 
(kN.m) 
Applied 

1x1 M 
(kN.m) 
Result 

Variance 

SM1 1x1 1x3 -0.0020 -0.0021 4.18% 10.000 10.053 0.51% 

 

For the McNeice, Ghomein & MacGregor and Aghayere & MacGregor slabs only a quarter 

symmetry model is used and the finite element discretisation is shown in Figure 16.  
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Figure 16:  Discretisation for McNeice, Ghomein & MacGregor and Aghayere & 
MacGregor slabs 

 

• Constitutive relations 

The strains induced by externally applied loads are required to be converted into stresses.  

The transformation of these strains into stresses are done by using the correct constitutive 

relations.  The required material properties for this particular analysis are assigned in the 

form of an initial E-Modulus, stress-strain graph as per Section 4.2, plate thickness and 

Poisson’s ratio. 

• Boundary conditions 

Two types of boundary conditions are identified namely, essential and natural boundary 

conditions.  The naming convention originates from the weak form formulation whereby the 

essential boundary, displacement, conditions are required prior to the derivation of the 

system equations.  Natural, force, boundary conditions are not needed for the formulation 

process but are naturally derived during the formulation process. 

For the current research plate elements having three degrees of freedom per node are 

used.  Only essential boundary conditions are considered by restraining either vertical 

displacement or rotations or both dependant on the support conditions of each respective 

test case. 

• Loading 

There is a large variation of load types including transverse surface pressure, nodal point, 

side traction, body force loads to name but a few.  All loads are eventually converted into 

equivalent nodal loads and load vector either using consistent or lumped methods.  

Lumping loads is not recommended as numerical errors are generally incurred dependant 

on element and analysis type.  For the current research only transverse nodal point loads 

and nodal moments are required which are simple to apply. 
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• Solution 

Can be defined as the method of obtaining the required analysis outputs given the system 

boundary, loading, initial and stiffness input conditions.  Solutions can vary in type from a 

simple linear A.x = b solution to nonlinear implicit or explicit solutions.  Solution methods 

can vary further in terms of the mathematical procedure employed in each type of solution 

process. 

One of the strengths of the current method is the required solution process is simple in 

nature taking the form of a repetitive A.x = b solution.  By using this method, a finite element 

program only having a standard A.x = b solution will be capable of carrying out the, herein 

presented, nonlinear problem. 

• Result output 

Refers to the type of results and how these results are given to the analyst / engineer 

following the completion of the analysis.  For the current research analysis results were 

output into Microsoft Excel where the required post-processing was carried out. 

5.2 SIMPLIFIED NONLINEAR SOLVER 

The proposed nonlinear solution considers only material nonlinearities and does not consider 

geometric nonlinearities which is valid as large displacements are not of concern for this 

particular application. 

As discussed in Section 4.2 the E-modulus of the material can be changed to give an 

equivalent bending stiffness to the plate formulation as discussed in section 3.2.  Using the 

reinforcement properties of the concrete member, control points making up a typical stress-

strain diagram, Figure 13, can be established.  This is assuming that the local x and y co-

ordinates of the plate elements are aligned with the two directions of reinforcement which are 

orthogonal to one another as shown in Figure 17. 

 

Figure 17:  Reinforcement orientation 
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If one assesses a pure one way spanning system only moments in the bending direction are 

to be evaluated, but for a two way spanning system the twisting moments are required to be 

considered.  Methods established by Wood and Armer (1968) [44] allow for the accounting of 

the twisting moments in the design.  Johansen (1962) [20] established modern day Yield-Line 

theory which is widely used today.   

Using this theory as a basis, similar design equations have been be established for the x and 

y directions independently.  Take Figure 18 (a) depicting portion of slab showing Johansen’s 

stepped yield criteria.  Figure 18 (b) takes an infinitesimal portion of that stepped yield criteria.  

It will be considered that the crack developed in the reinforced concrete slab will being taken 

at a direction normal to the principal moment defined as θ. 

 

 

 

Figure 18:  Johansen’s stepped yield criteria discretisation 

 

 

Figure 19:  (a) Applied section moments, (b) Resisting section moments 
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Figure 19 (a) shows a discretised portion intersecting the yield line of a given slab.  Using this 

configuration of applied moments an equilibrium equation is established and as given in 

equation 5-1.  Simplifying equation 5-1 leads to the development of an equation expressing 

the principal 1 moment in terms of mx, my, mxy and θ, equation 5-2. 

 ��1. \ℎ = G�44. \5 + �45. ����. \5I. ��m� + G�55. ����. \5 + �45. \5I. m��� 

5-1 

 

��1  =  \5\ℎ . ��m�. �G�44 + �45. ����I + G�55. ���� + �45I. ����� 
 

          =  @\5\ℎB� . G�.. +  �//. ����� + 2. �./. ����I 

5-2 

 

An equation to evaluate the reinforced concrete slab moment capacity needs to be established 

to ensure the slab has sufficient capacity to resist the applied moments.  By using the condition 

as illustrated in Figure 19 (b), orthogonal reinforcement, and following a similar method as 

previously equation 5-3 is developed giving the principal 1 moment resistance capacity in terms 

of moment capacity in the xx and yy directions. 

 

���1 =  �\5\ℎ�2 . G�\4 + �\5. ���2�I 

5-3 

 

Solving for the conditions at the point where the applied moment equals the resisting moment 

produces the common ‘normal’ yield criterion for slabs.  Equations 5-2 and 5-3 are set equal 

to one another and solved for the minimum by differentiating with respect to theta.   

To ensure that the applied moment is never greater than that of the design moment the sign 

of the twisting moment is assigned that of the associated in-plane moment thus producing 

equations 5-4 and 5-5.  For design theta is generally taken as equal to 45° to cater for a wide 

range of moment values thus making tan(θ) equal to unity.  These equations are only suitable 

for reinforcement arrangements which are orthogonal in the x and y directions as shown in 

Figure 17. 

 

|y. =  |.. +  ����. �|./� ∗ || ..|/ | .. 

5-4 
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|y/ =  |// +  1���� . �|./� ∗ �| //�/ | // 

5-5 

 

The proposed algorithm requires for the design moments given by equations 5-4 and 5-5 to be 

represented by a strain quantity.  The strain quantity will then be compared to the strain as 

given in the typical stress-strain diagram.  The stress contributing to the moment in the xx and 

yy directions can be expressed using equations 5-6 and 5-7. 

 

 

q.. =  7.. . � �.G1 − �.. �/I� +  7//. � �/. �.G1 − �. . �/I� 

5-6 

 

q// =  7... � �. . �/G1 − �. . �/I� + 7//. � �/G1 − �.. �/I� 

5-7 

 

The twisting stress contributing to the twisting moment is calculated using equation 5-8. 

 

q./ =  7./. � �. . �/�. . (1 + �.) + �/. G1 + �/I� 

5-8 

 

Using these equations the total strain contribution in the xx and yy directions can be calculated 

in terms of εxx and εyy respectively.  Firstly the strain contributions for σxx and σyy in terms of εxx 

and εyy respectively are defined by equations 5-9 and 5-10. 

 

7�.+ =  �1 + �/. �.. �7//��. . |7..| � . 7.. 

5-9 
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7�/+ =  �1 + �. . �/. |7..|�/. �7//� � . 7// 

5-10 

 

The contribution of twisting strain is required to be considered and is carried out by calculating 

the twisting strain as a portion of the strain contributions given in equations 5-9 and 5-10.  The 

contribution of twisting strain can be expressed using equations 5-11 and 5-12 .  

 

7�.� =  � J. �7./�. G1 − �.. �/I��. . 7.. + �/. �.. 7//�� . 7�.+ 

5-11 

 

7�/� =  � J. �7./�. G1 − �.. �/I��. . �/. 7.. + �/. 7//�� . 7�/+ 

5-12 

 

The total design strain quantity for the xx direction is established by combining equations 5-9 

and 5-11, where the total design strain quantities for the yy direction is obtained by combining 

equations 5-10 and 5-12.  The total design strain quantities for the xx and yy directions are 

given in equations 5-13 and 5-14. 

 

7�. =  �@1 + �/. �. . 7//�. . 7.. B . -1 + � J. �7./�. G1 − �. . �/I��. . 7..  + �/. �.. 7//��0� . 7.. 

5-13 

 

7�/ =  ��1 + �. . �/. 7..�/. 7// � . -1 + � J. �7./�. G1 − �. . �/I��/. 7//  +  �. . �/. 7..��0� . 7// 

5-14 

 

Following the cracking strain and under the assumption of a cracked Poisson’s ratio equal to 

zero equations 5-13 and 5-14 reduce to equations 5-15 and 5-16 respectively. 
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7�. =  �1 + - �/. �7./�=�.  +  �/. G1 +  �/I? . |7..|0� . 7.. 

5-15 

 

7�/ =  �1 + - �. . �7./�=�/  + �. . (1 + �.)? . �7//�0� . 7// 

5-16 

 

Now that the design strain quantities at any given load step have been established the method 

of nonlinear analysis is considered.  Although the analysis process presented in this report 

considers the nonlinearity of the material properties, the solution technique is in essence a 

repetitive linear static solution updating the stiffness matrix after each converged load step.  

During the analysis and solution, the strain at each converged load step and associated results 

are calculated.  For the first increment, the ratio of stress over strain, E1, must be equal to EC.  

The subsequent steps are linear between the points on the curve and a generalised 

convergence check to evaluate adherence can be defined as: 

 

0.01 ≥ -7�}f − �- & 7{
�

{ * + 0 + 7f�0  7�}f� ≥ −0.01 

5-17 

 

Where εcon is controlling strain point given by points making up the graph in Figure 13 and εg 
is the cumulative calculated design strain quantity for all current converged load steps, (k), and εn is current iteration calculated design strain quantity.  Considering equation 5-17 cannot be 

completely satisfied due to rounding off errors or formulated design strain quantity equation, 

an acceptance error chosen by the user but defaulted to 1.0% for this research is employed.  

Should any point in the system fall below -0.01 using the convergence criteria given in equation 

5-17 it can be seen that one or more strain control points have been exceeded and load 

reduction would be required to take place.   

Should no points in the system fall below 0.01 using the convergence criteria it can be seen 

that the load is required to be increased.  Should the system not pass the criteria given in 
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equation 5-17, the load increment can be increased / reduced and a new loading magnitude 

assigned by using equation 5-18 with logic defined using Figure 20. 

 

�f�+ = �f. �-7�}f − �- & 7{
�

{ * + 0 + 7f�0  7f� � 
5-18 

 

 

Figure 20:  Acceptance criteria and load increase / reduction 
 

This check can be carried out for all elements at each gauss point in the εx and εy in a given 

problem.  From checking the strain limits at Gauss points and if one or more of these points 

have passed convergence requirements, stresses and other required results can be calculated 

and saved for the current load step, Ln.  Following the saving of the incremental results, the 

new modified E-modulus must be assigned for the Gauss points within convergence limits or 

equal to strain limits as dictated by the input stress-strain graph. 

The modified E-modulus can be calculated using equation 5-19: 

 

�� =  q� − q�n+7� − 7�n+  

5-19 

 

Where t is the number of the control points given in the calculated input stress-strain graph.  

All required E-modulus values are calculated prior to analysis, the element stiffness matrices 
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can be reformulated and global stiffness matrix reassembled.  With smaller systems, the total 

global stiffness matrix is reformulated as there is little computational cost. 

The reassembly process can become time-consuming with a large model and it would be a 

great advantage to simplify this step and manipulate the global stiffness matrix with minimal 

computational cost.  A simple method to reduce the cost of reformulation is proposed for larger 

systems. 

The global stiffness matrix can be updated directly by only considering the elements which 

have reached yield.  This can also be further extended to only include elements of a greater 

model which have been identified as critical for nonlinear design checks.  

The idea is to formulate three separate stiffness matrices, the first being the current global 

system stiffness matrix, Ksys, at load step x and iteration i.  The second matrix would be the 

current stiffness matrix, Kf, of only the elements which have been identified as yielding under 

load step x and contributing to the global system stiffness matrix.  The third stiffness matrix, 

Kg, is the updated stiffness matrix of those elements which have been considered as yielding. 

The three matrices are combined to give the updated global system stiffness matrix.  The 

summation of the three stiffness matrices which allow for updated global stiffness matrix is 

given by equation 5-20. 

 

��/�z =  ��/�zn+  −  �vz + �{z  
5-20 

Where: 

Ksys = System stiffness matrix of iteration i 

Kf = Pre-modification stiffness matrix of iteration i 

Kg = Modification stiffness matrix of iteration i 

The above method is seen as efficient, especially for the large assemblies, as not all element 

stiffness matrices are reformulated and reassembled.  The algorithm flow charts for the small 

and large systems are given in Figure 21 and Figure 22 respectively. 
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Figure 21:  Small system nonlinear solver algorithm  
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Figure 22:  Large system nonlinear solver algorithm 
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 TEST CASE STUDIES 

6.1 EXPERIMENTAL TEST CASE OVERVIEW  

To validate the simplified analysis procedure four experimental test cases were evaluated.  The 

four cases presented were the same as used by Polak (1996) [32]. A summary of the test cases 

is given in Table 2. 

 

Table 2:  Experimental Data Summary 

Testers Date 
Test 

Specimen 
Loading Type Action Support 

Support 

Type 

Polak 1994 SM1 Edge Moment One-Way Edge Simple 

McNeice 1967 TWS Middle Point Load Two-Way Corner Simple 

Ghomein & MacGregor 1994 C1 UDL Two-Way Edge Simple 

Aghayere & MacGregor 1990 A3 UDL Two-Way Edge Simple 

 

6.2 PROPERTIES OF CASE STUDIES 

The following section gives a brief description of the test cases considered when validating the 

proposed methodology.  The test specimens’ properties are given along with a brief description 

on the test methodology.  Certain important aspects of the experimental findings are pointed 

out which are used for later comparison. 

6.2.1 Polak SM1 

Polak and Vecchio (1994) [34] carried out a series of experiments on reinforced concrete slabs 

subject to bending and in-plane forces.  One of these experiments was carried out on a slab 

test specimen SM1.  In the experiment, a simply supported one-way spanning slab is subjected 

to an increasing edge moment loading in one direction only, Figure 23.  

During the experiment cracking was reported at an applied moment of 75 kN.m/m with first 

yielding at a moment of 440 kN.m/m and the testing stopped at moment of 464 kN.m/m due to 

excessive deflections.  It is further noted that a maximum ultimate moment loading of 

477 kN.m/m was observed.  Moment curvature results were established and are used for the 

current evaluation.  The validity of the present effective stiffness approach can be established 

by comparing these experimental curvature results against results obtained through analysis.  
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Figure 23:  Polak and Vecchio (1994) SM1 
 

For the nonlinear analysis, the SM1 slab was modelled using one 8-noded element.  The 

element is modelled as simply supported at its ends as shown in Figure 24.  The moment 

loading was applied at the simply supported ends as a nodal moment and proportioned based 

on a parabolic interpolation function. 

 

    

Figure 24:  SM1 finite element model restraints 

 

Using the proposed method given in Section 4.2 and material properties given in Table 3 a 

typical stress-strain diagram is developed for the SM1 Slab and shown in Figure 25. 
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Table 3:  Slab SM1 Material Properties 

Polak & Vecchio 

h (mm) 316 

L (mm) 1 524 

B (mm) 1 524 

ν 0.20 

Ec  (MPa) 34 278 

Es  (MPa) 200 000 

fc'  (MPa) 47 

ft'  (MPa) 4.46** 

fy  (MPa) 425 

fu  (MPa) 611 

Ast-x (mm2/m) 3 950 

Asc-x (mm2/m) 3 950 

Ast-y (mm2/m) 1 327 

Asc-y (mm2/m) 1 327 

d'x (mm) 35 

d'y (mm) 55 

dx (mm) 281 

dy (mm) 261 

**Back calculated from recorded experimental values 

 

Cracking is calculated to occur at an equivalent stress of 4.46 MPa.  The yielding equivalent 

stress is calculated at 25.37 MPa and the ultimate equivalent stress is calculated at 27.30 MPa.  

The intermediate stress point is calculated at a stress of 12.69 MPa. 

 

 

Figure 25:  Slab SM1 stress-strain diagram 
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6.2.2 McNeice 

McNeice (1967) [27] carried out a series of experiments on four reinforced concrete slabs.  From 

these studies, Slab No. 1 was chosen for use in the research.  The experiment comprised a 

square slab simply supported at each corner and subjected to a point load in the centre of the 

slab, Figure 26.  As the point load magnitude is increased, deflection measurements are taken 

at four different points of the slab.   

It is noted that the measurements are taken prior to the onset of yielding.  Crack patterns were 

drawn at elastic limit stages of 0.557 and 0.855 of the analytical collapse load calculated by 

the method presented by McNeice.  These patterns give insight as to the pattern and extent of 

cracking between the real behaviour and computer simulation behaviour. 

 

 

Figure 26:  McNeice (1967) [27] slab No. 1 

 

For the nonlinear analysis, the McNeice slab was modelled using quarter symmetry model.  

The quarter symmetry model comprises a 3x3 8-noded plate element mesh.  The McNeice 

No. 1 slab is modelled with restraints as shown in Figure 27.  The out of plane nodal point 

loading was applied at node 7 as given in Figure 16.   
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Figure 27:  McNeice finite element model restraints 

 

Material properties used in the analysis are given in Table 4 with the associated stress-strain 

diagram is for the McNeice Slab and shown in Figure 28. 

 

Table 4:  McNeice Slab Material Properties 

McNiece Slab No. 1 

h (mm) 44 

L (mm) 914 

B (mm) 914 

ν 0.15 

Ec  (MPa) 28 613 

Es  (MPa) 199 948 

fc'  (MPa) 37.92 

ft'  (MPa) 3.82 

fy  (MPa) 380** 

fu  (MPa) 485** 

Ast-x (mm2/m) 380 

Asc-x (mm2/m) 0 

Ast-y (mm2/m) 380 

Asc-y (mm2/m) 0 

d'x (mm) 0 

d'y (mm) 0 

dx (mm) 33 

dy (mm) 33 

**Back calculated from recorded experimental values 
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Cracking is calculated to occur at an equivalent stress of 3.82 MPa.  The yielding equivalent 

stress is calculated at 13.00 MPa and the ultimate equivalent stress is calculated at 17.02 MPa.  

The intermediate stress point is calculated at a stress of 6.50 MPa. 

 

 

Figure 28:  McNeice slab stress-strain diagram X & Y directions 
 

6.2.3 Ghomein & MacGregor 

Another experimental test case is that of a two-way spanning slab, specimen C1, tested by 

Ghomein and MacGregor (1992) [16].  The slab was simply supported along all four edges with 

the uniformly distributed loading being simulated using nine concentrated loads over the slab 

surface as shown in Figure 29.  Cracking was first observed at a load of 9.1 kPa.   

Fully developed yield lines were predicted to occur at a loading of 42.8 kPa.  The fully 

developed yield lines predictions were based on a 0.2% offset yield neglecting the effects of 

corner levers.   

It was reported that although the yield lines were present, load carrying capacity was not 

inhibited.  The increase in load carrying capacity was seen to be attributed to an increased 

combined bending and tensile membrane actions.  An experimental ultimate loading of 

approximately 73.9 kPa was observed. 
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Figure 29:  Ghomein & MacGregor (1992) [16] C1 slab 

 

For the nonlinear analysis, the C1 slab was modelled using quarter symmetry model.  The 

quarter symmetry model comprises a 3x3 8-noded plate element mesh.  The C1 slab is 

modelled with restraints as shown in Figure 30.  The experimental loading is represented by 

applying an out of plane proportional nodal point loading at nodes 7, 3, 25 and 29 as given in 

Figure 16.   

 

   

Figure 30:  C1 and A3 finite element model restraints 
 

Material properties used in the analysis are given in Table 5 with the associated stress-strain 

diagrams for the x and y directions of reinforcement of the C1 Slab are shown in Figure 31 and 

Figure 32 respectively. 
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Table 5:  C1 Slab Material Properties 

Ghomein & MacGregor (C1) 

h (mm) 68 

L (mm) 1 830 

B (mm) 1 830 

ν 0.20 

Ec  (MPa) 21 300 

Es  (MPa) 181 500 

fc'  (MPa) 25.21 

ft'  (MPa) 1.76** 

fy  (MPa) 450 

fu  (MPa) 620 

Ast-x (mm2/m) 260 

Asc-x (mm2/m) 260 

Ast-y (mm2/m) 260 

Asc-y (mm2/m) 260 

d'x (mm) 22 

d'y (mm) 16 

dx (mm) 57 

dy (mm) 51 

**Back calculated from recorded experimental values 

 

When evaluating the X-direction, cracking is calculated to occur at an equivalent stress of 

1.69 MPa.  The yielding equivalent stress is calculated at 8.36 MPa and the ultimate equivalent 

stress is calculated at 10.61 MPa.  The intermediate stress point is calculated at a stress of 

4.18 MPa. 

 

 

Figure 31:  C1 slab stress-strain diagram X directions 
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When evaluating the Y-direction, cracking is calculated to occur at an equivalent stress of 

1.69 MPa.  The yielding equivalent stress is calculated at 7.14 MPa and the ultimate equivalent 

stress is calculated at 8.48 MPa.  The intermediate stress point is calculated at a stress of 

3.57 MPa. 

 

 

Figure 32:  C1 slab stress-strain diagram Y directions 

 

6.2.4 Aghayere & MacGregor 

Prior to the experimentation carried out by Ghomein and MacGregor (1992) [16], Aghayere & 

MacGregor (1990) [3] carried out similar experimentation also to evaluate effects of in-plane 

forces.  Slab specimen A3 from these experiments was chosen as the final test case becuase 

this slab was tested with no in-plane forces applied.  The testing equipment and methodology 

is the same as given in Section 6.2.3 as these were carried out in the same laboratory.  The 

slab dimensions were the same but reinforcement details were different.  This then serves as 

a good method of comparison of the proposed nonlinear model to two separate slabs tested 

under the same conditions but with differing properties.  

As with the C1 slab, the A3 slab was simply supported along all four edges with uniformly 

distributed loading being simulated using nine concentrated loads over the slab surface as 

shown in Figure 33.  Through the evaluation of the load deflection graph given from the 

experimentation, cracking was first observed at a load of approximately 10.2 kPa.   

It is noted that the A3 slab was not tested to final failure.  The experimentation was terminated 

before the ultimate loading due to excessive deflections and rotations of the supports.  A 

maximum experimental centre point deflection of 95 mm was obtained.  The yield line load of 

the slab is calculated to be 43.6 kPa.  The experimental loading reached a maximum of 

approximately 56.7 kPa. 
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Figure 33:  Aghayere & MacGregor (1990) [3] A3 slab 
 

Material properties used in the analysis are given in Table 6 with the associated stress-strain 

diagrams for the x and y directions of reinforcement of the A3 Slab are shown in Figure 34 and 

Figure 35 respectively. 

 

Table 6:  A3 Slab Material Properties 

Aghayere & MacGregor (A3) 

h (mm) 65 

L (mm) 1 830 

B (mm) 1 830 

ν 0.20 

Ec  (MPa) 23 150 

Es  (MPa) 197 300 

fc'  (MPa) 32.20 

ft'  (MPa) 2.27** 

fy  (MPa) 504 

fu  (MPa) 670 

Ast-x (mm2/m) 225 

Asc-x (mm2/m) 225 

Ast-y (mm2/m) 260 

Asc-y (mm2/m) 260 

d'x (mm) 19 

d'y (mm) 12 

dx (mm) 50 

dy (mm) 56 

**Back calculated from recorded experimental values 
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The A3 slab was modelled the same as the C1 slab and is shown in Figure 30. 

When evaluating the X-direction, cracking is back calculated to occur at an equivalent stress 

of 2.27 MPa.  The yielding equivalent stress is calculated at 7.61 MPa and the ultimate 

equivalent stress is calculated at 10.03 MPa.  The intermediate stress point is calculated at a 

stress of 3.81 MPa. 

 

 

Figure 34:  A3 slab stress-strain diagram X directions 
 

When evaluating the Y-direction, cracking is back calculated to occur at an equivalent stress 

of 2.27 MPa.  The yielding equivalent stress is calculated at 9.51 MPa and the ultimate 

equivalent stress is calculated at 11.49 MPa.  The intermediate stress point is calculated at a 

stress of 4.76 MPa. 

 

 

Figure 35:  A3 slab stress-strain diagram Y directions 
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 RESULTS 

7.1 INCREMENTAL ASSESSMENT OF NONLINEAR ALGORITHM 

Incremental results are extracted and hand calculations performed to evaluate whether the 

algorithm has been correctly implemented according to the proposed method.  The hand 

calculations solve for the relevant equations as given in Section 5.2 using the incremental 

results as inputs.  The resulting solution is then compared to the input strain and stress values 

as well as the expected moment.  

The hand calculations were carried out for the one-way spanning Polak slab and two-way 

spanning McNeice slab in the X direction only.  This is seen as sufficient to evaluate the correct 

implementation of the proposed method.  To enable the incremental evaluation the effective 

E-modulus in the X and Y directions as well as Poisson’s ratio are required to be extracted at 

the relevant stages of analysis. 

The expected design strain value is then calculated according to equation 5-13 and compared 

to the input strain control point as given in the input stress-strain data.  The design moments 

are calculated using equation 5-4 with tan(θ) equal to unity.  These design moments are then 

compared to the section moment capacity as used in equation 4-6.  The design stress is 

calculated in the same manner as the design moments and compared to the stress value as 

given in the input stress-strain data.  The hand calculated design strain and stress values are 

also plotted and compared to the input stress-strain diagram to obtain a visual on the variance 

under the proposed algorithm. 

Results for the evaluation of the Polak slab are taken from Gauss point number 5 as shown in 

Figure 36.  When reviewing the analysis of the Polak slab the incremental E-modulus for the 

X and Y directions are shown only to change in the direction of loading, X direction.  The 

change in effective E-modulus and Poisson’s ratio is given in Table 7. 

Table 8 shows the incremental strain, stress and moment results for the Polak slab as given 

by the finite element analysis.  These results are then used as inputs for the calculation of 

design values.  The design strain, stress and moment quantities are given in columns (1), (4) 

and (7) of Table 9 respectively.  The design quantities are compared to the input strain, stress 

and moments quantities given in columns (2), (5) and (8) of Table 9 respectively.  The variance 

of the strain, stress and moment values using the input quantities as a base are given in 

columns (3), (6) and (9) of Table 9 respectively. 
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The variance of the strain values can also be seen as the convergence value as defined by 

equation 5-17.  It can therefore be expected that this value should never exceed the input 

strain value or be less than the input strain value by more than 1%. 

 

 

Figure 36:  Polak slab Gauss points 

 

For the Polak slab the strain variance has a peak of 0.406% which indicates the automatic 

convergence check equation 5-17 and loading equation 5-18 are being carried out correctly.  

The design stress and design moment quantities do not vary significantly from the expected 

input stress and moments values.  For the Polak slab Figure 37 shows an illustrative 

comparative of the variance between the input stress-strain values and those calculated from 

the results obtained from the nonlinear analysis. The variance is seen to be insignificant in a 

global evaluation. 

 

 

Figure 37:  Stress-strain comparative analysis vs input – Polak slab 
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Table 7:  Incremental E-moduli and Poisson’s Ratio – Polak slab 

Polak   XX-Direction (SI Units) 

  (1) (2) (3) (4) 

  Ex  Ey  vx vy 

Cracking 3.43E+10 3.43E+10 0.20 0.20 

Half Point 1.15E+10 3.43E+10 0 0.20 

Yield 1.50E+10 3.43E+10 0 0.20 

Ultimate 2.13E+08 3.43E+10 0 0.20 
 

Table 8:  Incremental strain, stress and moment results – Polak slab 

Polak   XX-Direction (SI Units) 

  (1) (2) (3) (4) (5) (6) (7) 

  εxx εyy εxy σxx σxy mxx mxy 

Cracking 1.30E-04 -4.39E-06 8.60E-21 4.62E+06 1.23E-10 7.69E+04 2.36E-12 

Half Point 7.18E-04 -1.35E-05 1.33E-19 8.23E+06 9.92E-10 1.37E+05 1.65E-11 

Yield 8.49E-04 -1.75E-05 1.71E-19 1.27E+07 1.58E-09 2.11E+05 2.63E-11 

Ultimate 9.05E-03 -9.56E-06 9.04E-18 1.93E+06 1.52E-09 3.21E+04 2.53E-11 
 

Table 9:  Cumulative design strain, stress and moment with variance – Polak slab 

Polak   XX-Direction (SI Units) 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

  Σεtx εix %Δεx Σσtx σix %Δσx Σmtx mix %Δmx 

Cracking 1.29E-04 1.30E-04 0.406 4.62E+06 4.46E+06 3.744 7.69E+04 7.73E+04 0.405 

Half Point 8.47E-04 8.48E-04 0.094 1.29E+07 1.27E+07 1.348 2.14E+05 2.11E+05 1.349 

Yield 1.70E-03 1.70E-03 0.004 2.55E+07 2.54E+07 0.659 4.25E+05 4.22E+05 0.660 

Ultimate 1.07E-02 1.07E-02 0.002 2.75E+07 2.73E+07 0.623 4.57E+05 4.54E+05 0.624 

 

 

The McNeice slab results were also inspected to confirm the algorithm was operating correctly 

for the two-way spanning slab cases.  Results are extracted from Gauss point 9, element 3, 

for the evaluation of the algorithm as shown in Figure 38.  This point is chosen as it was 

expected that yielding of the slab would initially begin at this location. 

The same method of result evaluation was followed for the McNeice as was followed for the 

Polak slab.  The incremental E-modulus and Poisson’s ratio is shown in Table 10 with 

incremental analysis strain, stress and moment results given in Table 11.  The hand calculated 

design strains, stresses and moments with associated input values and variances are shown 

in Table 12. 
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Figure 38:  McNeice slab Gauss points, Reference Figure 16 and Figure 27 

 

The results from the McNeice slab confirm conclusions drawn from the Polak slab incremental 

analysis and evaluation.  The design strain is seen to never exceed the input strain values with 

the related variance never greater than 0.605%.  The design stress and moments values again 

do not vary considerably from the expected input values.  The incremental evaluation of the 

McNeice slab therefore also shows that the nonlinear algorithm is operating as expected 

according to the proposed methodology. 

 

Table 10:  Incremental E-moduli and Poisson’s Ratio – McNeice slab 

McNeice   XX-Direction (SI Units) 

  (1) (2) (3) (4) 

  Ex  Ey  vx vy 

Cracking 2.86E+10 2.86E+10 0.15 0.15 

Half Point 3.31E+09 3.31E+09 0 0 

Yield 6.88E+09 6.88E+09 0 0 

Ultimate 5.59E+08 5.59E+08 0 0 

 

Table 11:  Incremental strain, stress and moment results – McNeice slab 

McNeice   XX-Direction (SI Units) 

  (1) (2) (3) (4) (5) (6) (7) 

  εxx εyy εxy σxx σxy mxx mxy 

Cracking 1.13E-04 1.13E-04 -8.08E-06 3.79E+06 -1.01E+05 1.25E+03 -3.32E+01 

Half Point 7.64E-04 7.64E-04 -8.20E-05 2.52E+06 -1.35E+05 8.33E+02 -4.47E+01 

Yield 9.16E-04 9.16E-04 -5.19E-05 6.35E+06 -1.81E+05 2.10E+03 -5.97E+01 

Ultimate 6.88E-03 6.88E-03 -6.39E-04 3.85E+06 -1.79E+05 1.27E+03 -5.89E+01 
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Table 12:  Cumulative design strain, stress and moment with variance – McNeice slab 

McNeice   XX-Direction (SI Units) 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

  Σεtx εix %Δεx Σσtx σix %Δσx Σmtx mix %Δmx 

Cracking 1.33E-04 1.33E-04 0.323 3.79E+06 3.82E+06 0.663 1.25E+03 1.29E+03 2.601 

Half Point 9.38E-04 9.44E-04 0.605 6.32E+06 6.50E+06 2.801 2.09E+03 2.14E+03 2.489 

Yield 1.88E-03 1.89E-03 0.431 1.27E+07 1.30E+07 2.542 4.18E+03 4.28E+03 2.253 

Ultimate 9.08E-03 9.08E-03 0.014 1.65E+07 1.70E+07 2.990 5.45E+03 5.61E+03 2.701 

 

The results for the McNeice slab are also expressed graphically to determine the effectiveness 

of the algorithm in implementing the proposed nonlinear model.  Figure 39 shows a comparison 

of the input stress-strain values to that of the values calculated from results obtained through 

analysis.  It is noted that there is not a large variation between the two instances. 

 

 

Figure 39:  Stress-strain comparative analysis vs input – McNeice slab 

 

7.2 POLAK RESULTS 

Following the analysis of the SM1 slab the moment and curvature results are extracted and 

plotted as shown in Figure 40.  Through the analysis initial cracking occurred at a moment of 

77 kN.m/m varying by 2.6% when compared to the experimental value of 75 kN.m/m. The 

analytical yielding moment was seen to occur at a moment of 425 kN.m/m.  The analytical 

yielding moment, 425 kN.m/m, varies by 3.4% as that given by the Polak slab experiment, 

440 kN.m/m.  The analytical model continues to take loading until the design ultimate moment 

capacity, 457 kN.m/m, is reached.  Curvatures for the Polak slab analysis are seen to be 

accurate throughout the analysis.    
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Figure 40:  Polak SM1 slab moment-curvature comparison 

 

7.3 MCNEICE RESULTS 

The McNeice slab analysis was carried out assuming an ultimate steel stress almost equal to 

that of the yield steel stress producing a slight increase in moment capacity and therefore a 

close to perfectly plastic behaviour following the reaching of slab yield moment capacity.  Point 

load magnitudes and vertical nodal translation at node 6 is given in Figure 41.  

Significant initial cracking is seen to have occurred at a point load of 5.3 kN with ultimate 

loading being reached at 22.4 kN.  Displacement accuracy is assessed at serviceability points 

where L/w equals 180 and 360.  

In both cases the analytical model predicted these points at a loading approximately 12% lower 

than that of the experiment.  The theoretical model therefore exhibited a less stiff behaviour to 

that of the experiment.  At higher loading the theoretical model predicts the displacements of 

the McNeice slab more closely. 
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Figure 41:  McNeice node 6 load vs displacement 

 

Another aspect which is evaluated is the pattern and extent of yield line development.  McNeice 

established a sketch of the crack pattern at the end of elastic behaviour where the ratio of 

loading to predicted ultimate loading was 0.56.  This sketch, from his research, is compared to 

the current model at the end of elastic behaviour which was through this study calculated at a 

loading to predicted ultimate loading ratio equal to 0.52.  

As each of the Gauss points are given a unique equivalent E-modulus, the cracking pattern 

can be established by inspecting the equivalent E-modulus at the end of elastic behaviour 

where ultimate loading has occurred.  When interpreting the crack patterns, a value of 1 

indicates to E-modulus given by points 0 and 1 on the typical stress-strain graph, Figure 13, a 

value of 2 therefore indicates an E-modulus given by points 1 and 1a on the typical stress-

strain graph, a value of 3 indicates a point between 1a and 2.  When a gauss point has reached 

ultimate strength, i.e. the point 3 on the typical stress-strain diagram, a value of 4 will be 

specified.   

Figure 42 gives the equivalent E-modulus for Gauss points in the slab in the x and y directions 

respectively.  This equivalent E-modulus for Gauss points is indicative of the actual crack 

pattern to be expected.  The cracking will be normal to the specified axis.  Therefore moments 

in the x-axis will cause cracking normal to this direction and vice versa. 
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Figure 42:  McNeice slab cracking in the x and y directions 

 

Figure 43 is formulated by superimposing the crack patterns in the x and y directions and 

comparing this to the observed crack pattern established by McNeice and given in Figure 5.1 

of reference [27]. 

 

 

Figure 43:  McNeice yield line development pattern and extent 

 

As can be seen the cracking pattern and extent of cracking at the end of elastic behaviour in 

the x and y directions is seen to be accurate when compared to the McNeice experiment. 

 

7.4 GHOMEIN & MACGREGOR C1 SALB RESULTS 

The C1 slab experimentation was carried out to onset of possible failure, the C1 slab analysis 

produced interesting but expected results which require further explanation.  

Two analyses were carried out, where the first is carried out by considering the section ultimate 

capacity equal to that of the yield moment capacity for evaluation against predicted yield line 

load given by Ghomein and MacGregor (1992) [15].  The second analysis was carried out by 

considering the section ultimate capacity equal to that of the design ultimate moment capacity.  

Figure 44 shows the load displacement results of the two C1 slab analyses. 
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Figure 44:  C1 slab centre point load vs deflection 

 

For both analyses the substantial initial cracking and change in stiffness was shown to occur 

at a loading of approximately 9 kPa.  When reviewing the first analysis loading continued to 

increase and analytical slab yielding was seen and eventual ultimate yield line loading 

identified as 40.95 kPa.  The predetermined yield line load was calculated as 42.80 kPa which 

gives a difference of 4.3% when compared with the current model’s results.  

When reviewing the results of the second analysis it should be restated that in the C1 slab 

experimentation it was reported that the load carrying capacity was not inhibited following the 

reaching of the predicted yield line load due to an increase in combined bending and tensile 

membrane actions.  

The current analytical theory is based on the premise that the system failure mechanism is 

considered to be section yielding.  It is therefore expected that a difference in the predicted 

ultimate load and actual ultimate load exist.  As can be seen in Figure 44, through the analysis 

the predicted ultimate load is established at 49.5 kPa where the experimental ultimate load 

was recorded as 73.9 kPa 

Differences in results are considered acceptable when considering displacements at 

serviceability limits of L / w equal to 180 and 360 with differences in loading at each 

displacement ratio being 6.5% and 3.6% respectively.  The current model can therefore be 

seen as an accurate representation of the experimental behaviour in these ranges. 
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Figure 45:  Ghomein & Macgregor slab directional cracking 

 

Although the experimental crack pattern was not visually recorded as with McNeice, an 

evaluation of the analytical crack pattern is still useful.  Through the analysis it was established 

that the end of elastic behaviour occurred at a loading of 28.26 kPa.  The extracted crack 

pattern in the x and y directions is representative of what would be expected in an experiment 

comprising the same loading and boundary conditions, Figure 45. 

 

7.5 AGHAYERE & MACGREGOR A3 SLAB RESULTS 

The A3 slab was assessed using the same analysis and results evaluation methodology as 

that of the C1 slab.  The resulting behaviour patterns and conclusions follow closely to what 

was observed with the C1 slab.  As with the C1 slab the same two types of analyses were 

carried out with the first considering the ultimate section capacity and the second considering 

only the yield line capacity.  Figure 46 shows the load displacement results of the two A3 slab 

analyses. 

For both analyses the substantial initial cracking and change in stiffness was shown to occur 

at a loading of approximately 10 kPa.  When reviewing the first analysis loading continued to 

increase and analytical slab yielding was seen and eventual ultimate yield line loading 

identified as 41.10 kPa.  The predetermined yield line load was calculated as 43.60 kPa which 

gives a difference of 5.7% when compared with the current model’s results.  

As is the case with the C1 slab, the A3 slab continued to carrying loading beyond the predicted 

yield line load.  Using the current theory which considers section yielding to be the failure mode 

an ultimate loading capacity of 51 kPa is determined whereas the experimental ultimate 

loading can be seen as 56.7 kPa as shown in Figure 46. 

Consistency in the accuracy of the analytical model when considering serviceability limits is 

established when reviewing results obtained from the A3 slab and C1 slab.  As with the C1 

slab, differences in results obtained from the A3 slab compared to the experimental results are 

considered acceptable when considering displacements at serviceability limits of L / w equal 
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to 180 and 360 with differences in loading at each displacement ratio being 1.7% and 4.8% 

respectively.   

 

 

Figure 46:  A3 slab centre point load vs deflection 

 

As with the C1 slab, the evaluation of the analytical crack pattern is also carried out for the A3 

slab to evaluate the expected pattern to that of the analysis.  Through the analysis it was 

established that the end of elastic behaviour occurred at a loading of 27.65 kPa.  The extracted 

crack pattern in the x and y directions is representative of what would be expected in an 

experiment comprising the same loading and boundary conditions, Figure 47. 

 

 

Figure 47:  Aghayere & Macgregor slab directional cracking  
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 DISCUSSION AND CONCLUSION 

Through reviewing previous studies and establishing the current theory, many important 

aspects of the proposed method are identified.  This section will summarise the noteworthy 

findings and conclusions with regard to the current proposed nonlinear model. 

The reinforced concrete slab nonlinear material properties given in this research are based on 

design code calculations.  The proposed method is intended for reinforced concrete beams 

and slabs under transverse loading leading to bending with no axial forces present or axial 

forces being considered negligible.  The nonlinear material properties are established for the 

x and y orthogonal directions of reinforcement independent of one another.  Using these 

quantities a typical stress-strain relationship is formulated for use in a nonlinear finite element 

analysis. 

A solution algorithm considering material nonlinearity is presented giving a simple linear finite 

element program, with API capabilities, the ability to solve the nonlinear problem described in 

this report.  Although any existing nonlinear algorithm may be utilised for the solution, it should 

ensure that the updating of the stiffness matrix is carried out using the methods and criteria 

described in this report. 

The validation is carried out considering four experimental case studies.  These experimental 

case studies ensured that a variety of loading types and boundary conditions are tested against 

the proposed analytical model.  The overall displacement results obtained through the various 

analyses can be considered sufficiently accurate for serviceability checks under design 

conditions. 

The nonlinear behaviour under the current model is significantly influenced by the assumption 

of the cracking stress of the concrete.  As concrete properties from different batches of 

concrete are not homogenous, one equation covering all types of concrete for the estimation 

of the modulus of rupture may not be applicable.  It is therefore suggested that this be taken 

into account when carrying out design serviceability checks by possibly carrying out a 

sensitivity analysis using varying values of modulus of rupture. 

If the design of reinforced concrete slabs is to be carried out assuming ductile yield failure as 

would usually be done, the proposed model would produce valuable and accurate moment 

distribution and displacement predictions.  The method is however not suitable for forensic 

structural analysis where failure mechanisms other than tension steel yielding under bending 

alone is required. 
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Although results and stiffness values were checked and assigned at element Gauss points 

independently, a different approach may be followed whereby the Gauss point results are 

checked and an average element stiffness value calculated and assigned at element level for 

each direction of reinforcement respectively. This decision would depend on the fineness of 

the discretisation which should be able to sufficiently represent the distribution of yielding 

throughout the slab. 

Although not considered in this report, continuous slabs can be seen to be analysed by 

extending the typical stress-strain graph to include the reinforced concrete slab section 

negative moment capacities for cracking, yield and ultimate in the same manner as described 

in the report. By extending the typical stress-strain diagram any negative moments 

experienced by the slab, whereby the top of the slab is in tension, can be considered 

independently and with ease. By using this method accurate moment redistribution results can 

be established. This should however still be validated with experimental data prior to 

implementation.   

The benefit of the proposed model is that the nonlinear behaviour of a slab is based on a 

design code approach which closely relates analytical results to the real-life structural system 

behaviour. The simplified method can therefore easily form part of a design report with 

engineer’s calculations and not merely a theoretical model built into a finite element program 

which the design engineer is not fully comfortable with or knowledgeable about. 

Further research could be carried out covering the following topics: 

• Application of the current method to continuous indeterminate slabs / beams; 

• Application to the current method irregular shaped slabs; 

• Application to the current method slabs with openings; 

• Application to the current method slabs supported by beams; 

• Development of the current approach to enable the consideration of in-plane forces; 

• Include a yield criteria for slabs with reinforcement which is not orthogonal in the x and y 

directions. 
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APPENDIX A: MATERIAL PROPERTY CALCULATIONS 

Polak SM1 Slab: 

 

Specimen Data 

h 316 mm 

b 1 000 mm 

Es 200 000.00 MPa 

Ec-Actual 34 278.00 MPa 

Ec-Theory 32 447.81 MPa 

η 5.83   

Asc 3 950.00 mm2/m 

Ast 3 950.00 mm2/m 

fult 611.00 MPa 

fy 425.00 MPa 

fc' 47.00 MPa 

ft' 4.46 MPa 

d' 35.00 mm 

d 281.00 mm 

Mcr 77.253 kN.m 

Icr 1.323E+09 mm4 

Ig-v 2.739E+09 mm4 

Ig 2.630E+09   

Icr/Ig 0.483   

Φcr 0.823   

v 0.2   

 

Curvature NA Strain (ε) Stress (σ) 

Φ x Conc Sc St Conc Sc St 

5.369 83.10 0.000446 0.000258 -0.001063 15.29 51.64 -212.50 

10.738 83.10 0.000892 0.000516 -0.002125 30.58 103.29 -425.00 

68.011 44.11 0.003000 0.000620 -0.016111 39.95 123.93 -442.59 

 

Force Lever Arm 

Conc Sc St ΣF = 0 Conc Sc St 

635 379 203 996 -839 375 0 0.253 0.246 0.000 

1 270 758 407 992 -1 678 750 0 0.253 0.246 0.000 

1 258 732 489 506 -1 748 238 0 0.265 0.246 0.000 
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Moment Total Moment 

Conc Sc St β1 M 

160.94 50.18 0.00 1 211.13 

321.88 100.37 0.00 1 422.25 

333.87 120.42 0.00 0.71 454.29 

 

σ ε 

0.00 0.00000 

4.46 0.00013 

12.69 0.00085 

25.37 0.00170 

27.30 0.01075 

 

McNeice Slab: 

 

Specimen Data 

h 44.45 mm 

b 1 000 mm 

Es 200 000.00 MPa 

Ec-Actual 28 613.24 MPa 

Ec-Theory 29 145.44 MPa 

η 6.99   

Asc 0.00 mm2/m 

Ast 380.05 mm2/m 

fult 485.00 MPa 

fy 380.00 MPa 

fc' 37.92 MPa 

ft' 3.82 MPa 

d' 0.01 mm 

d 33.27 mm 

Mcr 1.286 kN.m 

Icr 1.917E+06 mm4 

Ig-v 7.487E+06 mm4 

Ig 7.319E+06 mm4 

Icr/Ig 0.256   

Φcr 6.004   

v 0.15   
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Curvature NA Strain (ε) Stress (σ) 

Φ x Conc Sc St Conc Sc St 

42.470 10.90 0.000463 0.000463 -0.000950 13.25 92.51 -190.00 

84.941 10.90 0.000926 0.000925 -0.001900 26.50 185.03 -380.00 

408.739 7.34 0.003000 0.002996 -0.010599 32.23 485.00 -485.00 

 

Force Lever Arm 

Conc Sc St ΣF = 0 Conc Sc St 

72 209 0 -72 209 0 0.030 0.033 0.000 

144 418 0 -144 418 0 0.030 0.033 0.000 

184 323 0 -184 323 0 0.030 0.033 0.000 

 

Moment Total Moment 

Conc Sc St β1 M 

2.14 0.00 0.00 1 2.14 

4.28 0.00 0.00 1 4.28 

5.61 0.00 0.00 0.78 5.61 

 

σ ε 

0.00 0.00000 

3.82 0.00013 

6.50 0.00094 

13.00 0.00189 

17.02 0.00908 

 

 

 

 

 

 

 

 

 

 

 



 

 

Page   70  
 

Ghomein & MacGregor X Direction: 

 

Specimen Data 

h 67.8 mm 

b 1 000 mm 

Es 181 500.00 MPa 

Ec-Actual 21 300.00 MPa 

Ec-Theory 23 764.19 MPa 

η 8.52   

Asc 260.00 mm2/m 

Ast 260.00 mm2/m 

fult 620.00 MPa 

fy 450.00 MPa 

fc' 25.21 MPa 

ft' 1.76 MPa 

d' 21.90 mm 

d 56.80 mm 

Mcr 1.346 kN.m 

Icr 5.186E+06 mm4 

Ig-v 2.705E+07 mm4 

Ig 2.597E+07 mm4 

Icr/Ig 0.200   

Φcr 2.434   

v 0.2   

 

Curvature NA Strain (ε) Stress (σ) 

Φ x Conc Sc St Conc Sc St 

29.489 14.76 0.000435 -0.000211 -0.001240 9.27 -38.21 -225.00 

58.978 14.76 0.000871 -0.000421 -0.002479 18.54 -76.41 -450.00 

238.467 12.58 0.003000 -0.002222 -0.010545 21.43 -403.37 -477.95 

 

Force Lever Arm 

Conc Sc St ΣF = 0 Conc Sc St 

68 434 -9 934 -58 500 0 0.052 0.035 0.000 

136 868 -19 868 -117 000 0 0.052 0.035 0.000 

229 142 -104 876 -124 266 0 0.051 0.035 0.000 
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Moment Total Moment 

Conc Sc St β1 M 

3.55 -0.35 0.00 1 3.20 

7.10 -0.69 0.00 1 6.41 

11.79 -3.66 0.00 0.85 8.13 

 

σ ε 

0.00 0.00000 

1.69 0.00008 

4.18 0.00100 

8.36 0.00200 

10.61 0.00808 

 

Ghomein & MacGregor Y Direction: 

 

Specimen Data 

h 68 mm 

b 1 000 mm 

Es 181 500.00 MPa 

Ec-Actual 21 300.00 MPa 

Ec-Theory 23 764.19 MPa 

η 8.52   

Asc 260.00 mm2/m 

Ast 260.00 mm2/m 

fult 620.00 MPa 

fy 450.00 MPa 

fc' 25.21 MPa 

ft' 1.76 MPa 

d' 15.60 mm 

d 50.50 mm 

Mcr 1.346 kN.m 

Icr 3.981E+06 mm4 

Ig-v 2.705E+07  

Ig 2.597E+07 mm4 

Icr/Ig 0.153   

Φcr 2.434   

v 0.2   
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Curvature NA Strain (ε) Stress (σ) 

Φ x Conc Sc St Conc Sc St 

33.277 13.25 0.000441 -0.000078 -0.001240 9.39 -14.21 -225.00 

66.555 13.25 0.000882 -0.000157 -0.002479 18.78 -28.42 -450.00 

283.945 10.57 0.003000 -0.001430 -0.011339 21.43 -259.46 -480.70 

 

Force Lever Arm 

Conc Sc St ΣF = 0 Conc Sc St 

62 195 -3 695 -58 500 0 0.046 0.035 0.000 

124 389 -7 389 -117 000 0 0.046 0.035 0.000 

192 441 -67 460 -124 981 0 0.046 0.035 0.000 

 

Moment Total Moment 

Conc Sc St β1 M 

2.87 -0.13 0.00 1 2.74 

5.73 -0.26 0.00 1 5.47 

8.85 -2.35 0.00 0.85 6.50 

 

σ ε 

0.00 0.00000 

1.69 0.00008 

3.57 0.00113 

7.15 0.00226 

8.48 0.00963 
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Aghayere & MacGregor X Direction: 

 

Specimen Data 

h 65 mm 

b 1 000 mm 

Es 197 300.00 MPa 

Ec-Actual 23 150.00 MPa 

Ec-Theory 26 857.43 MPa 

η 8.52   

Asc 224.63 mm2/m 

Ast 224.63 mm2/m 

fult 670.00 MPa 

fy 504.00 MPa 

fc' 32.20 MPa 

ft' 2.27 MPa 

d' 18.60 mm 

d 49.80 mm 

Mcr 2.520 kN.m 

Icr 3.484E+06 mm4 

Ig-v 2.417E+07 mm4 

Ig 2.320E+07 mm4 

Icr/Ig 0.144   

Φcr 3.003   

v 0.2   

 

Curvature NA Strain (ε) Stress (σ) 

Φ x Conc Sc St Conc Sc St 

34.521 12.80 0.000442 -0.000200 -0.001277 10.23 -39.50 -252.00 

69.042 12.80 0.000884 -0.000400 -0.002554 20.46 -78.99 -504.00 

292.402 10.26 0.003000 -0.002439 -0.011562 27.37 -481.15 -543.93 

 

Force Lever Arm 

Conc Sc St ΣF = 0 Conc Sc St 

65 479 -8 872 -56 607 0 0.046 0.031 0.000 

130 959 -17 744 -113 215 0 0.046 0.031 0.000 

230 266 -108 082 -122 184 0 0.046 0.031 0.000 
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Moment Total Moment 

Conc Sc St β1 M 

2.98 -0.28 0.00 1 2.70 

5.96 -0.55 0.00 1 5.41 

10.50 -3.37 0.00 0.82 7.13 

 

σ ε 

0.00 0.00000 

2.27 0.00010 

3.81 0.00113 

7.61 0.00225 

10.03 0.00955 

 

Aghayere & MacGregor Y Direction: 

 

Specimen Data 

h 65 mm 

b 1 000 mm 

Es 197 300.00 MPa 

Ec-Actual 23 150.00 MPa 

Ec-Theory 26 857.43 MPa 

η 8.52   

Asc 261.20 mm2/m 

Ast 261.20 mm2/m 

fult 670.00 MPa 

fy 504.00 MPa 

fc' 32.20 MPa 

ft' 2.27 MPa 

d' 12.20 mm 

d 56.10 mm 

Mcr 2.520 kN.m 

Icr 5.203E+06 mm4 

Ig-v 2.417E+07 mm4 

Ig 2.320E+07 mm4 

Icr/Ig 0.215   

Φcr 4.504   

v 0.2   
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Curvature NA Strain (ε) Stress (σ) 

Φ x Conc Sc St Conc Sc St 

30.014 13.55 0.000407 0.000040 -0.001277 9.41 7.97 -252.00 

60.028 13.55 0.000813 0.000081 -0.002554 18.82 15.93 -504.00 

333.452 9.00 0.003000 -0.001068 -0.015707 27.37 -210.74 -562.30 

 

Force Lever Arm 

Conc Sc St ΣF = 0 Conc Sc St 

63 742 2 081 -65 822 0 0.052 0.044 0.000 

127 483 4 162 -131 645 0 0.052 0.044 0.000 

201 919 -55 045 -146 874 0 0.052 0.044 0.000 

 

Moment Total Moment 

Conc Sc St β1 M 

3.29 0.09 0.00 1 3.38 

6.58 0.18 0.00 1 6.76 

10.58 -2.42 0.00 0.82 8.17 

  

σ ε 

0.00 0.00000 

2.27 0.00010 

4.76 0.00098 

9.51 0.00196 

11.49 0.01089 

 

Yield line load calculation: 

 

Experimental Slab  Mx My 
Length = 

Breadth 

Internal 

Work 

External 

Work / qf 
qf kN 

Aghayere & MacGregor (A3) 5.41 6.76 1.83 48.67 1.12 43.60 146.02 

Ghomein & MacGregor (C1) 6.41 5.47 1.83 47.53 1.12 42.58 142.58 
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APPENDIX B: MATLAB CODE 

Polak Input: 

%Input Data for the analysis of the slab/beam (All in SI Units) 

% 

% 

clear; 

%Mesh / Material Settings 

totl=1.5;                             %Total Length of member 

totb=1.5;                             %Total Breadth of member 

h=0.316;                              %Depth of member 

numdivl=1;                            %Number of Divisions Length 

numdivb=1;                            %Number of Divisions Breadth  

elel=totl/numdivl;                    %Element length 

eleb=totb/numdivb;                    %Element breadth 

aspectr=elel/eleb;                    %Aspect ratio 

eltype=8;                             %Element type 

ExI=34.278e9;                         %Ex-Modulus 

EyI=34.278e9;                         %Ey-Modulus 

vxI=0.2;                               %Poisson Ratio x 

vyI=0.2;                               %Poisson Ratio y 

numgpr=3; numgps=3;                   %3x3 Gauss Integration for bending 

%------------------------------------------------------------- 

nel=numdivl*numdivb;                  %Total number of elements 

nnel=8;                               %Total number of nodes per element & total Number of nodes  

nnode=(numdivl+1)*(numdivb+1)+(numdivl)*(numdivb+1)... 

+(numdivl+1)*(numdivb);    

ndof=3;                               %Number of degrees of freedom                                                     

sdof=nnode*ndof;                      %System degrees of freedom 

edof=nnel*ndof;                       %Degrees of freedom per element 

%------------------------------------------------------------- 

%Obtain Reduced Integration Points for shear 

%------------------------------------------------------------- 

ngprshear=2; 

ngpsshear=2; 

 

%------------------------------------------------------------- 

%Obtain nodes co-ordinates for all nodes in the system 

%------------------------------------------------------------- 

[gcoord] = nodecoord(numdivb,numdivl,eleb,elel,eltype,nnode); 

 

%------------------------------------------------------------- 

%Obtain nodal conectivity for elements in the system 

%------------------------------------------------------------- 

[nodes, index] = connect(numdivb,numdivl,eltype,nel,ndof); 

 

%------------------------------------------------------------- 

%Input boundary conditions 

%------------------------------------------------------------- 

bcdof=[1,2,4,5,7,8,16,17,19,20,22,23]; 

bcval=[0,0,0,0,0,0,0,0,0,0,0,0]; 



 

 

Page   77  
 

 

%------------------------------------------------------------- 

%Obtain local element co-ordinates 

%------------------------------------------------------------- 

[elcoord] = localcoord(eltype,nel,gcoord,nodes); 

 

%--------------------------------------------- 

%Load Vector (Nodal Moment) 

%--------------------------------------------- 

fvec=zeros(sdof,1); 

TMom=-100; 

Mom=TMom/2; 

 

fvec(6,1)=Mom*4/3; 

fvec(21,1)=-Mom*4/3; 

fvec(3,1)=Mom/3; 

fvec(9,1)=Mom/3; 

fvec(18,1)=-Mom/3; 

fvec(24,1)=-Mom/3; 

 

McNeice Input: 

%Input Data for the analysis of the slab/beam (All in SI Units) 

% 

% 

clear; 

%Mesh / Material Settings 

totl=0.457;                           %Total Length of member 

totb=0.457;                           %Total Breadth of member 

h=0.0445;                             %Depth of member 

numdivl=3;                            %Number of Divisions Length 

numdivb=3;                            %Number of Divisions Breadth  

elel=totl/numdivl;                    %Element length 

eleb=totb/numdivb;                    %Element breadth 

aspectr=elel/eleb;                    %Aspect ratio 

eltype=8;                             %Element type 

ExI=28.613e9;                         %Ex-Modulus 

EyI=28.613e9;                         %Ey-Modulus 

vxI=0.15;                              %Poisson Ratio x 

vyI=0.15;                              %Poisson Ratio y 

numgpr=3; numgps=3;                   %3x3 Gauss Integration for bending 

%------------------------------------------------------------- 

nel=numdivl*numdivb;                  %Total number of elements 

nnel=8;                               %Total number of nodes per element & total Number of nodes 

nnode=(numdivl+1)*(numdivb+1)+(numdivl)*(numdivb+1)... 

+(numdivl+1)*(numdivb);    

ndof=3;                               %Number of degrees of freedom                                                     

sdof=nnode*ndof;                      %System degrees of freedom 

edof=nnel*ndof;                       %Degrees of freedom per element 

%------------------------------------------------------------- 

%Obtain Reduced Integration Points for shear 

%------------------------------------------------------------- 

ngprshear=2; 
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ngpsshear=2; 

 

%------------------------------------------------------------- 

%Obtain nodes co-ordinates for all nodes in the system 

%------------------------------------------------------------- 

[gcoord] = nodecoord(numdivb,numdivl,eleb,elel,eltype,nnode); 

 

%------------------------------------------------------------- 

%Obtain nodal conectivity for elements in the system 

%------------------------------------------------------------- 

[nodes, index] = connect(numdivb,numdivl,eltype,nel,ndof); 

 

%------------------------------------------------------------- 

%Input boundary conditions 

%------------------------------------------------------------- 

bcdof=[3,6,9,12,15,18,20,21,32,53,65,86,98,100,119]; 

bcval=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; 

 

%------------------------------------------------------------- 

%Obtain local element co-ordinates 

%------------------------------------------------------------- 

[elcoord] = localcoord(eltype,nel,gcoord,nodes); 

 

%--------------------------------------------- 

%Load Vector (Nodal Moment) 

%--------------------------------------------- 

fvec=zeros(sdof,1); 

fvec(19,1)=-10;  

 

Ghomein & MacGregor Input: 

%Input Data for the analysis of the slab/beam (All in SI Units) 

% 

% 

clear; 

%Mesh / Material Settings 

totl=0.915;                           %Total Length of member 

totb=0.915;                           %Total Breadth of member 

h=0.068;                              %Depth of member 

numdivl=3;                            %Number of Divisions Length 

numdivb=3;                            %Number of Divisions Breadth  

elel=totl/numdivl;                    %Element length 

eleb=totb/numdivb;                    %Element breadth 

aspectr=elel/eleb;                    %Aspect ratio 

eltype=8;                             %Element type 

ExI=21.3e9;                           %Ex-Modulus 

EyI=21.3e9;                           %Ey-Modulus 

vxI=0.2;                               %Poisson Ratio x 

vyI=0.2;                               %Poisson Ratio y 

numgpr=3; numgps=3;                   %3x3 Gauss Integration for bending 

%------------------------------------------------------------- 

nel=numdivl*numdivb;                  %Total number of elements 

nnel=8;                               %Total number of nodes per element & total Number of nodes 

nnode=(numdivl+1)*(numdivb+1)+(numdivl)*(numdivb+1)... 
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+(numdivl+1)*(numdivb);    

ndof=3;                               %Number of degrees of freedom                                                     

sdof=nnode*ndof;                      %System degrees of freedom 

edof=nnel*ndof;                       %Degrees of freedom per element 

%------------------------------------------------------------- 

%Obtain Reduced Integration Points for shear 

%------------------------------------------------------------- 

ngprshear=2; 

ngpsshear=2; 

 

%------------------------------------------------------------- 

%Obtain nodes co-ordinates for all nodes in the system 

%------------------------------------------------------------- 

[gcoord] = nodecoord(numdivb,numdivl,eleb,elel,eltype,nnode); 

 

%------------------------------------------------------------- 

%Obtain nodal conectivity for elements in the system 

%------------------------------------------------------------- 

[nodes, index] = connect(numdivb,numdivl,eltype,nel,ndof); 

 

%------------------------------------------------------------- 

%Input boundary conditions 

%------------------------------------------------------------- 

bcdof=[1,22,34,55,67,88,3,24,36,57,69,90,6,9,12,15,18,21,20,32,53,65,86,98,100,101,102,103,104,106,107,109,110,112,113,1

15,116,118,119]; 

bcval=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; 

 

%------------------------------------------------------------- 

%Obtain local element co-ordinates 

%------------------------------------------------------------- 

[elcoord] = localcoord(eltype,nel,gcoord,nodes); 

 

%--------------------------------------------- 

%Load Vector (Nodal Force) 

%--------------------------------------------- 

fvec=zeros(sdof,1); 

fvec(7,1)=-50; 

fvec(19,1)=-25; 

fvec(73,1)=-100; 

fvec(85,1)=-50; 

 

Aghayere & MacGregor Input: 

%Input Data for the analysis of the slab/beam (All in SI Units) 

% 

% 

clear; 

%Mesh / Material Settings 

totl=0.915;                           %Total Length of member 

totb=0.915;                           %Total Breadth of member 

h=0.0653;                             %Depth of member 

numdivl=3;                            %Number of Divisions Length 

numdivb=3;                            %Number of Divisions Breadth  

elel=totl/numdivl;                    %Element length 
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eleb=totb/numdivb;                    %Element breadth 

aspectr=elel/eleb;                    %Aspect ratio 

eltype=8;                             %Element type 

ExI=23.15e9;                         %Ex-Modulus 

EyI=23.15e9;                         %Ey-Modulus 

vxI=0.2;                              %Poisson Ratio x 

vyI=0.2;                              %Poisson Ratio y 

numgpr=2; numgps=2;                   %3x3 Gauss Integration for bending 

%------------------------------------------------------------- 

nel=numdivl*numdivb;                  %Total number of elements 

nnel=8;                               %Total number of nodes per element & total Number of nodes 

nnode=(numdivl+1)*(numdivb+1)+(numdivl)*(numdivb+1)... 

+(numdivl+1)*(numdivb);    

ndof=3;                               %Number of degrees of freedom                                                     

sdof=nnode*ndof;                      %System degrees of freedom 

edof=nnel*ndof;                       %Degrees of freedom per element 

%------------------------------------------------------------- 

%Obtain Reduced Integration Points for shear 

%------------------------------------------------------------- 

ngprshear=2; 

ngpsshear=2; 

 

%------------------------------------------------------------- 

%Obtain nodes co-ordinates for all nodes in the system 

%------------------------------------------------------------- 

[gcoord] = nodecoord(numdivb,numdivl,eleb,elel,eltype,nnode); 

 

%------------------------------------------------------------- 

%Obtain nodal conectivity for elements in the system 

%------------------------------------------------------------- 

[nodes, index] = connect(numdivb,numdivl,eltype,nel,ndof); 

 

%------------------------------------------------------------- 

%Input boundary conditions 

%------------------------------------------------------------- 

bcdof=[1,22,34,55,67,88,3,24,36,57,69,90,6,9,12,15,18,21,20,32,53,65,86,98,100,101,102,103,104,106,107,109,110,112,113,1

15,116,118,119]; 

bcval=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; 

 

%------------------------------------------------------------- 

%Obtain local element co-ordinates 

%------------------------------------------------------------- 

[elcoord] = localcoord(eltype,nel,gcoord,nodes); 

 

%--------------------------------------------- 

%Load Vector (Nodal Force) 

%--------------------------------------------- 

fvec=zeros(sdof,1); 

fvec(7,1)=-50; 

fvec(19,1)=-25; 

fvec(73,1)=-100; 

fvec(85,1)=-50;  
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Linear Solver: 

%------------------------------------------------------------- 

%Linear solver 

%------------------------------------------------------------- 

 

%------------------------------------------------------------- 

%Obtain material matrices 

%------------------------------------------------------------- 

[Cb,Cs] = Lmatmatrix(ExI,EyI,vx,vy,nel,numgpr,numgps); 

 

%------------------------------------------------------------- 

%Obtain Strain Interpolation matrices 

%------------------------------------------------------------- 

[Bb,Bs,BbRes,BsRes] = bmatrix(elcoord,eltype,nel,numgpr,numgps,ndof,ngprshear,ngpsshear); 

 

%------------------------------------------------------------- 

%Obtain elements stiffness matrix 

%------------------------------------------------------------- 

[Kel] = kmatrix(elcoord,eltype,nel,numgpr,numgps,ndof,Cb,Cs,Bb,Bs,h,ngprshear,ngpsshear); 

 

%------------------------------------------------------------- 

%Obtain system stiffness matrix 

%-------------------------------------------------------------  

[Ksys] = assemble(sdof,index,Kel,nel); 

 

%------------------------------------------------------------- 

%Obtain modified system stiffness matrix and force vector 

%------------------------------------------------------------- 

[Kmod, fvecmod] = applybc(bcdof,fvec,Ksys); 

 

%------------------------------------------------------------- 

%Obtain increment displacement solution 

%------------------------------------------------------------- 

d=Kmod\fvecmod; 

 

%---------------------------------------------------------------------- 

%Obtain iteration curvatures, in-plane strain & out-plane shear strain 

%---------------------------------------------------------------------- 

[del,curvstr,inplstr,shearstr] = esmatrix(BbRes,BsRes,d,nel,nnel,ndof,index... 

    ,numgpr,numgps,ngprshear,ngpsshear,h); 

 

%------------------------------------------------------------- 

%Obtain load step stresses, moments and forces 

%------------------------------------------------------------- 

[inplstress,shearstress,pltmom,pltshear] = stressmatrix(inplstr,shearstr,nel... 

    ,Cb,Cs,numgpr,numgps,h,ngprshear,ngpsshear); 

 

%------------------------------------------------------------- 

%Write out results 

%------------------------------------------------------------- 

for t=1:nnode 

 dw(t,1)=d(t*ndof-2,1); 

 rxw(t,1)=d(t*ndof-1,1); 
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 ryw(t,1)=d(t*ndof,1); 

end 

pltmomres=zeros(nel,1); 

for dd=1:nel 

 for x=1:(numgpr*numgps)    

  pltmomresx(dd,x)=pltmom(1,1,x,dd); 

  pltmomresy(dd,x)=pltmom(2,1,x,dd); 

  ipstressX(dd,x)=inplstress(1,1,x,dd); 

  ipstressY(dd,x)=inplstress(2,1,x,dd); 

  ipstressXY(dd,x)=inplstress(3,1,x,dd); 

 end 

end     

 

xlswrite('LResults.xls', pltmomresx, 'mx_Result', 'A2'); 

xlswrite('LResults.xls', pltmomresy, 'my_Result', 'A2'); 

xlswrite('LResults.xls', ipstressX, 'SX_Result', 'A2'); 

xlswrite('LResults.xls', ipstressY, 'SY_Result', 'A2'); 

xlswrite('LResults.xls', ipstressXY, 'SXY_Result', 'A2'); 

xlswrite('LResults.xls', ryw, 'ryw_Result', 'A2'); 

xlswrite('LResults.xls', rxw, 'rxw_Result', 'A2'); 

xlswrite('LResults.xls', dw, 'dw_Result', 'A2'); 

 

Nonlinear Solver: 

%------------------------------------------------------------- 

%Non-Linear solver 

%------------------------------------------------------------- 

%strconx=[0.000133,0.000944,0.001888,0.009084,0.1,1];                %McNeice 

%stressconx=[3.82e6,6.4986e6,12.99725e6,17.02211e6,17.03e6,17.2e6]; 

%strcony=[0.000133,0.000944,0.001888,0.009084,0.1,1]; 

%stresscony=[3.82e6,6.4986e6,12.99725e6,17.02211e6,17.03e6,17.2e6]; 

 

%strconx=[0.00013,0.000848,0.001697,0.010746,0.1,0.15];              %Polak 

%stressconx=[4.45618e6,12.69e6,25.372e6,27.3e6,27.4e6,27.5e6]; 

%strcony=[0.00013,0.000848,0.001697,0.010746,0.1,0.15]; 

%stresscony=[4.45618e6,12.69e6,25.372e6,27.3e6,27.4e6,27.5e6]; 

 

%strconx=[0.000083,0.001,0.001999,0.1,1];                            %Ghomein & MacGregor - Yield 

%stressconx=[1.687e6,4.181509e6,8.363017e6,8.4e6,10e6]; 

%strcony=[0.000083,0.001128,0.002256,0.1,1]; 

%stresscony=[1.687e6,3.572779e6,7.14556e6,7.2e6,10e6]; 

 

%strconx=[0.000083,0.001,0.001999,0.008084,0.1,1];                   %Ghomein & MacGregor - Ult 

%stressconx=[1.687e6,4.181509e6,8.363017e6,10.612e6,10.65e6,10.7e6]; 

%strcony=[0.000083,0.001128,0.002256,0.009626,0.1,1]; 

%stresscony=[1.687e6,3.572779e6,7.14556e6,8.4838e6,8.5e6,10e6]; 

 

%strconx=[0.000098,0.001127,0.002254,0.1,1];                         %Aghayere & MacGregor - Yield 

%stressconx=[2.27e6,3.81e6,7.61e6,7.65e6,7.7e6]; 

%strcony=[0.000098,0.00098,0.00196,0.1,1]; 

%stresscony=[2.27e6,4.76e6,9.51e6,9.55e6,9.6e6]; 

 

%strconx=[0.000098,0.001127,0.002254,0.009547,0.1,1];                %Aghayere & MacGregor - Ult 

%stressconx=[2.27e6,3.81e6,7.61e6,10.03e6,10.1e6,10.2e6]; 
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%strcony=[0.000098,0.00098,0.00196,0.01089,0.1,1]; 

%stresscony=[2.27e6,4.76e6,9.51e6,11.49e6,11.55e6,12e6]; 

 

 

lx=numgpr*numgps; 

lxx=ngprshear*ngpsshear; 

k=ndof*eltype; 

tol=0.01;                                           %Convergence tolerance 

n=1;                                                %Initialise increment  

ncp=length(strconx);                                %Get the number of control points 

maxls=500;                                          %Maximum number of load steps 

maxitr=50;                                          %Maximum number of iterations 

Lstp=0; 

 

%------------------------------------------------------------- 

%Initialise Matrices 

%------------------------------------------------------------- 

econtx=zeros(lx,nel); 

econty=zeros(lx,nel); 

 

strchkTx=zeros(lx,nel); 

strchkTy=zeros(lx,nel); 

 

del=zeros(k,1,nel,10); 

curvstr=zeros(3,1,lx,nel,10); 

inplstr=zeros(3,1,lx,nel,10); 

shearstr=zeros(2,1,lxx,nel,10); 

 

delf=zeros(k,1,nel,500); 

curvstrf=zeros(3,1,lx,nel,500); 

inplstrf=zeros(3,1,lx,nel,500); 

shearstrf=zeros(2,1,lxx,nel,500); 

 

inplstressf=zeros(3,1,lx,nel,500); 

shearstressf=zeros(2,1,lxx,nel,500); 

pltmomf=zeros(3,1,lx,nel,500); 

pltshearf=zeros(3,1,lxx,nel,500); 

 

%------------------------------------------------------------- 

%Initial val of E-Modulus to initial 

%------------------------------------------------------------- 

Ex=zeros(nel,lx); 

Ey=zeros(nel,lx); 

vx=zeros(nel,lx); 

vy=zeros(nel,lx); 

logX=zeros(lx,nel); 

logY=zeros(lx,nel); 

Ex(:,:)=ExI; 

Ey(:,:)=EyI; 

vx(:,:)=vxI; 

vy(:,:)=vyI; 

 

%------------------------------------------------------------- 
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%Initial val of e-control point = 1 

%------------------------------------------------------------- 

for s=1:nel 

 econtx(:,s)=1; 

 econty(:,s)=1; 

end     

  

%---------------------------------------------------------------------- 

%Get various E-Modulus values for non-linear material properties 

%---------------------------------------------------------------------- 

[Econx,Econy] = econ(strconx,stressconx,strcony,stresscony); 

 

%------------------------------------------------------------- 

%Obtain Strain Interpolation matrices 

%------------------------------------------------------------- 

[Bb,Bs,BbRes,BsRes] = bmatrix(elcoord,eltype,nel,numgpr,numgps,ndof,ngprshear,ngpsshear); 

  

%------------------------------------------------------------- 

%Start non-linear solver as a while loop 

%------------------------------------------------------------- 

ex=0; 

maxecon=0; 

fvec1=fvec;       %Baseline load vector 

Ls=fvec;          %Initialise load vector  

 

while Lstp<=maxls && n<=maxitr && maxecon<ncp  

 ex=ex+1; 

 fvec=Ls;  

  

 %------------------------------------------------------------- 

 %Obtain initial material matrices 

 %------------------------------------------------------------- 

 [Cb,Cs] = NLmatmatrix(Ex,Ey,vx,vy,nel,numgpr,numgps); 

 

  

 %------------------------------------------------------------- 

 %Obtain elements stiffness matrix 

 %------------------------------------------------------------- 

 [Kel] = kmatrix(elcoord,eltype,nel,numgpr,numgps,ndof,Cb,Cs,Bb,Bs,h,ngprshear,ngpsshear); 

 

 %------------------------------------------------------------- 

 %Obtain system stiffness matrix 

 %-------------------------------------------------------------  

 [Ksys] = assemble(sdof,index,Kel,nel); 

 

 %------------------------------------------------------------- 

 %Obtain modified system stiffness matrix and force vector 

 %------------------------------------------------------------- 

 [Kmod, fvecmod] = applybc(bcdof,fvec,Ksys); 

 

 %------------------------------------------------------------- 

 %Obtain increment displacement solution 

 %------------------------------------------------------------- 
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 d=Kmod\fvecmod; 

  

 %---------------------------------------------------------------------- 

 %Obtain iteration curvatures, in-plane strain & out-plane shear strain 

 %---------------------------------------------------------------------- 

 [~,~,inplstrt,~]... 

     = esmatrix(BbRes,BsRes,d,nel,nnel,ndof,index,numgpr,numgps,ngprshear,ngpsshear,h); 

    inplstr=inplstrt; 

 %---------------------------------------------------------------------- 

 %Check for convergence and increment non-linear material properties 

 %---------------------------------------------------------------------- 

 [itr,L,n,maxecon,Ex,Ey,econtx,econty,vx,vy,logX,logY] = 

matchk(Lstp,Ls,inplstr,nel,numgpr,numgps,strconx,strcony,tol,n,econtx,econty,Ex,Ey,fvec1,vx,vy,strchkTx,strchkTy,logX,logY); 

 

 if itr==0  

   %------------------------------------------------------------- 

   %Load step has converged and increment load step 

   %-------------------------------------------------------------    

   Lstp=Lstp+1; 

   if Lstp==1 

    dres(:,1)=d(:,1); 

   else 

    dres(:,Lstp)=d(:,1)+dres(:,Lstp-1);    

   end     

   %---------------------------------------------------------------------- 

   %Obtain load step curvatures, in-plane strain & out-plane shear strain 

   %---------------------------------------------------------------------- 

   [delt,curvstrt,inplstrt,shearstrt]... 

        = esmatrix(BbRes,BsRes,d,nel,nnel,ndof,index,numgpr,numgps,ngprshear,ngpsshear,h); 

         

        %------------------------------------------------------------- 

        %Obtain load step stresses, moments and forces 

        %------------------------------------------------------------- 

        [inplstresst,shearstresst,pltmomt,pltsheart]...   

                = stressmatrix(inplstrt,shearstrt,nel,Cb,Cs,numgpr,numgps,h,ngprshear,ngpsshear); 

         

        inplstressf(:,:,:,:,Lstp)=inplstresst; 

        shearstressf(:,:,:,:,Lstp)=shearstresst; 

        pltmomf(:,:,:,:,Lstp)=pltmomt; 

        pltshearf(:,:,:,:,Lstp)=pltsheart; 

 

        if Lstp>1 

            inplstressf(:,:,:,:,Lstp)=inplstressf(:,:,:,:,Lstp)+inplstressf(:,:,:,:,Lstp-1); 

            shearstressf(:,:,:,:,Lstp)=shearstressf(:,:,:,:,Lstp)+shearstressf(:,:,:,:,Lstp-1);   

            pltmomf(:,:,:,:,Lstp)=pltmomf(:,:,:,:,Lstp)+pltmomf(:,:,:,:,Lstp-1);   

            pltshearf(:,:,:,:,Lstp)=pltshearf(:,:,:,:,Lstp)+pltshearf(:,:,:,:,Lstp-1); 

        end  

        %------------------------------------------------------------- 

    

   delf(:,:,:,Lstp)=delt; 

   curvstrf(:,:,:,:,Lstp)=curvstrt; 

   inplstrf(:,:,:,:,Lstp)=inplstrt; 

   shearstrf(:,:,:,:,Lstp)=shearstrt; 
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   for yg=1:nel 

   gg=0;    

    for xg=1:numgpr 

     for zg=1:numgps 

      gg=gg+1; 

       

      Gx=(Ex(yg,gg)*Ey(yg,gg))/(Ex(yg,gg)*(1+vx(yg,gg))+Ey(yg,gg)*(1+vy(yg,gg))); 

      Gy=Gx; 

      exx=inplstrt(1,1,gg,yg); 

      eyy=inplstrt(2,1,gg,yg); 

      exy=inplstrt(3,1,gg,yg); 

     

      portx1= Ey(yg,gg)*vx(yg,gg)*eyy/(Ex(yg,gg)*exx);  

      portx2= abs((Gx*exy*(1-vx(yg,gg)*vy(yg,gg))/... 

            (Ex(yg,gg)*exx+Ey(yg,gg)*vx(yg,gg)*eyy))*(1+portx1)); 

         

      porty1= Ex(yg,gg)*vy(yg,gg)*exx/(Ey(yg,gg)*eyy);  

      porty2= abs((Gy*exy*(1-vx(yg,gg)*vy(yg,gg))/... 

            (Ey(yg,gg)*eyy+Ex(yg,gg)*vy(yg,gg)*exx))*(1+porty1)); 

       

      strchkTx(gg,yg)= exx*(1+portx1+portx2)+strchkTx(gg,yg); 

      strchkTy(gg,yg)= eyy*(1+porty1+porty2)+strchkTy(gg,yg);   

       

      if logX(gg,yg)==1 

       econtx(gg,yg)=econtx(gg,yg)+1; 

       Ex(yg,gg)=Econx(econtx(gg,yg)); 

       vx(yg,gg)=0; 

      end 

       

      if logY(gg,yg)==1 

       econty(gg,yg)=econty(gg,yg)+1; 

       Ey(yg,gg)=Econy(econty(gg,yg)); 

       vy(yg,gg)=0; 

      end 

     end 

    end 

   end  

     

   if Lstp>1 

    delf(:,:,:,Lstp)=delf(:,:,:,Lstp)+delf(:,:,:,Lstp-1); 

    curvstrf(:,:,:,:,Lstp)=curvstrf(:,:,:,:,Lstp)+curvstrf(:,:,:,:,Lstp-1); 

    inplstrf(:,:,:,:,Lstp)=inplstrf(:,:,:,:,Lstp)+inplstrf(:,:,:,:,Lstp-1); 

    shearstrf(:,:,:,:,Lstp)=shearstrf(:,:,:,:,Lstp)+shearstrf(:,:,:,:,Lstp-1); 

   end   

    

 

   %------------------------------------------------------------- 

   %Recalculate material matrices with updated E-modulus 

   %------------------------------------------------------------- 

   if Lstp==1 

    fvecT(:,1,Lstp)=fvec; 

   else 
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    fvecT(:,1,Lstp)=fvec+fvecT(:,1,Lstp-1);    

   end     

   %------------------------------------------------------------- 

   %Recalculate material matrices with updated E-modulus 

   %------------------------------------------------------------- 

   [Cb,Cs] = NLmatmatrix(Ex,Ey,vx,vy,nel,numgpr,numgps); 

     

   %------------------------------------------------------------- 

   %Initialise load and increment values 

   %-------------------------------------------------------------     

   Ls=L; 

   n=1; 

   

 else 

   %---------------------------------------------------------- 

   %Load step has not converged and increment load iteration 

   %-------------------------------------------------------------    

   Ls=L; 

   n=n+1; 

  

 end     

 

end 

Function Nonlinear Material Check: 

function [itr,L,n,maxecon,Ex,Ey,econtx,econty,vx,vy,logX,logY] = 

matchk(Lstp,Ls,inplstr,nel,numgpr,numgps,strconx,strcony,tol,n,econtx,econty,Ex,Ey,fvec1,vx,vy,strchkTx,strchkTy,logX,logY) 

%Check for convergence and reduce stiffness 

 

%------------------------------------------------------------- 

%Initialise values 

%------------------------------------------------------------- 

cmin=0; 

cmax=1; 

itr=2; 

L=Ls; 

logX=zeros(numgpr*numgps,nel); 

logY=zeros(numgpr*numgps,nel); 

 

for y=1:nel 

 xx=0;    

 for x=1:numgpr 

   for z=1:numgps 

    xx=xx+1; 

     

    %------------------------------------------------------------- 

    %Calculate convergence criteria value 

    %------------------------------------------------------------- 

    Gx=(Ex(y,xx)*Ey(y,xx))/(Ex(y,xx)*(1+vx(y,xx))+Ey(y,xx)*(1+vy(y,xx))); 

    Gy=Gx; 

    exx=inplstr(1,1,xx,y); 

    eyy=inplstr(2,1,xx,y); 

    exy=inplstr(3,1,xx,y); 
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    portx1= Ey(y,xx)*vx(y,xx)*eyy/(Ex(y,xx)*exx);  

    portx2= abs((Gx*exy*(1-vx(y,xx)*vy(y,xx))/... 

            (Ex(y,xx)*exx+Ey(y,xx)*vx(y,xx)*eyy))*(1+portx1)); 

         

    porty1= Ex(y,xx)*vy(y,xx)*exx/(Ey(y,xx)*eyy);  

    porty2= abs((Gy*exy*(1-vx(y,xx)*vy(y,xx))/... 

            (Ey(y,xx)*eyy+Ex(y,xx)*vy(y,xx)*exx))*(1+porty1)); 

     

    

    strchkx= exx*(1 + portx1 + portx2); 

    strchky= eyy*(1 + porty1 + porty2); 

    

    if Lstp>0 

     strconpx=strconx(1,econtx(xx,y))-abs(strchkTx(xx,y)); 

     strconpy=strcony(1,econty(xx,y))-abs(strchkTy(xx,y)); 

    else 

     strconpx=strconx(1,econtx(xx,y)); 

     strconpy=strcony(1,econty(xx,y)); 

    end 

 

    cvergx = (strconpx-abs(strchkx))... 

        /(strconx(1,econtx(xx,y))); 

    cvergy = (strconpy-abs(strchky))... 

        /(strcony(1,econty(xx,y))); 

     

    %----------------------------------------------------------------- 

    %Check if loading has caused exceededance of strain control point 

    %----------------------------------------------------------------- 

    if cvergx < -tol || cvergy < -tol                      

      if cvergx < cvergy 

       if cmin > cvergx 

        cmin = cvergx; 

        itr=1; 

        stconmin=strconpx; 

        strn= exx*(1 + portx1 + portx2); 

 

       end     

      elseif cvergy < cvergx 

       if cmin > cvergy 

        cmin = cvergy;  

        itr=1; 

        stconmin=strconpy; 

        strn= eyy*(1 + porty1 + porty2); 

 

       end       

      end 

 

    %-------------------------------------------------------------------- 

    %Can the load be automatically increased to increse convergence rate 

    %--------------------------------------------------------------------   

    elseif cvergx > tol && cvergy > tol && itr~=1    

      if cvergx < cvergy 

       if cmax > cvergx 
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        cmax = cvergx; 

        stconmax=strconpx; 

        strn= exx*(1 + portx1 + portx2); 

 

       end 

        

      elseif cvergy < cvergx 

       if cmax > cvergy 

        cmax = cvergy;  

        stconmax=strconpy; 

        strn= eyy*(1 + porty1 + porty2);   

 

       end 

      end       

 

    %---------------------------------------------------------------- 

    %Convergence for particular guass point and stiffness reduction 

    %----------------------------------------------------------------   

    elseif itr~=1 

      if abs(cvergx) <= tol  

       itr=0; 

       logX(xx,y)=1; 

      end 

     

      if abs(cvergy) <= tol  

       itr=0; 

       logY(xx,y)=1; 

      end 

       

    end 

     

   end 

 end 

end 

 

%-------------------------------------------------- 

%Total Convergence not achieved and load reduction 

%-------------------------------------------------- 

if itr==1  

 mecon(1)=max(econtx(:)); 

 mecon(2)=max(econty(:)); 

 maxecon=max(mecon(:)); 

 L=L*abs(stconmin/strn); 

 

%-------------------------------------------------- 

%Total Convergence not achieved and load increase 

%-------------------------------------------------- 

elseif itr==2  

 mecon(1)=max(econtx(:)); 

 mecon(2)=max(econty(:)); 

 maxecon=max(mecon(:));  

 L=L*abs(stconmax/strn); 
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%--------------------------------------------------- 

%Total Convergence is achieved and load initialised 

%--------------------------------------------------- 

else 

 mecon(1)=max(econtx(:)); 

 mecon(2)=max(econty(:)); 

 maxecon=max(mecon(:)); 

 L=fvec1; 

end 

 

Function Linear Material Matrix: 

function [Cb,Cs] = Lmatmatrix(Ex,Ey,vx,vy,nel,numgpr,numgps) 

%Obtain the stiffness matrix, shape and strain interpolation matrix for the four and nine noded 

%Ex, Ey, vx & vy are matrices setup by (Element Number, Guass point) 

%Cb is matrix setup by (:,:,Guass point, Element Number) 

%Cs is matrix setup by (:,:,Element Number) 

%------------------------------------------------------------- 

%Initialise matrices 

%------------------------------------------------------------- 

 

tnumgp=numgpr*numgps; 

Cb=zeros(3,3,tnumgp,nel); 

Cs=zeros(2,2,nel); 

 

%------------------------------------------------------------- 

%Bending and shear material matrix 

%------------------------------------------------------------- 

for y=1:nel 

   xx=0; 

  %------------------------------------------------------------- 

  %Bending material matrix 

  %-------------------------------------------------------------  

  for x=1:numgpr 

   for z=1:numgps 

    vxt=vx; 

    vyt=vy; 

    xx=xx+1; 

    G=(Ex*Ey)/(Ex*(1+vxt)+Ey*(1+vyt)); 

    Cb(:,:,xx,y)=[Ex/(1-vxt*vyt),Ey*vxt/(1-vxt*vyt),0;... 

    Ex*vyt/(1-vxt*vyt),Ey/(1-vxt*vyt),0;0,0,G];    

   end 

  end 

  %------------------------------------------------------------- 

  %Shear material matrix 

  %------------------------------------------------------------- 

  Cs(:,:,y)=[G,0;0,G]; 

end 

 

 

 

 

 



 

 

Page   91  
 

Function Nonlinear Material Matrix: 

function [Cb,Cs] = NLmatmatrix(Ex,Ey,vx,vy,nel,numgpr,numgps) 

%Obtain the stiffness matrix, shape and strain interpolation matrix for the four and nine noded 

%Ex, Ey, vx & vy are matrices setup by (Element Number, Guass point) 

%Cb is matrix setup by (:,:,Guass point, Element Number) 

%Cs is matrix setup by (:,:,Element Number) 

%------------------------------------------------------------- 

%Initialise matrices 

%------------------------------------------------------------- 

 

tnumgp=numgpr*numgps; 

Cb=zeros(3,3,tnumgp,nel); 

Cs=zeros(2,2,nel); 

Exnet=zeros(nel); 

Eynet=zeros(nel); 

Vxnet=zeros(nel); 

Vynet=zeros(nel); 

 

%------------------------------------------------------------- 

%Bending and shear material matrix 

%------------------------------------------------------------- 

for y=1:nel 

   xx=0; 

  %------------------------------------------------------------- 

  %Bending material matrix 

  %-------------------------------------------------------------  

  for x=1:numgpr 

   for z=1:numgps 

    xx=xx+1; 

    vxt=vx(y,xx); 

    vyt=vy(y,xx); 

 

    G=(Ex(y,xx)*Ey(y,xx))/(Ex(y,xx)*(1+vxt)+Ey(y,xx)*(1+vyt)); 

    Cb(:,:,xx,y)=[Ex(y,xx)/(1-vxt*vyt),Ey(y,xx)*vxt/(1-vxt*vyt),0;... 

    Ex(y,xx)*vyt/(1-vxt*vyt),Ey(y,xx)/(1-vxt*vyt),0;0,0,G]; 

   

    Exnet(y)=Exnet(y)+Ex(y,xx); 

    Eynet(y)=Eynet(y)+Ey(y,xx); 

    Vxnet(y)=Vxnet(y)+vxt; 

    Vynet(y)=Vynet(y)+vyt; 

     

   end 

  end 

   

  Exnet(y)=Exnet(y)/tnumgp; 

  Eynet(y)=Eynet(y)/tnumgp; 

  Vxnet(y)=Vxnet(y)/tnumgp; 

  Vynet(y)=Vynet(y)/tnumgp; 

%------------------------------------------------------------- 

%Shear material matrix 

%------------------------------------------------------------- 

  vxt=Vxnet(y); 

  vyt=Vynet(y); 
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  G=(Exnet(y)*Eynet(y))/(Exnet(y)*(1+vxt)+Eynet(y)*(1+vyt)); 

  Cs(:,:,y)=[G,0;0,G]; 

end 

 

Function Boundary Conditions: 

function [Kmod, fvecmod] = applybc(bcdof,fvec,Ksys) 

%Obtain modified stiffness matrix and force vector after aplication of  

%... zero boundary conditions 

 

%------------------------------------------------------------- 

%Modify System Stiffness Matrices and Force Vector 

%------------------------------------------------------------- 

q=length(bcdof);        %Length of zero boundary condition matrix 

Kmod=Ksys;              %Use a modified stifness matrix 

fvecmod=fvec;           %give the modified force vector the value of input force vector 

for y=1:q  

  i=bcdof(1,y);         %Extract degree of freedom 

    Kmod(i,:)=0;        %Change the row in the n-th row to zero 

    Kmod(:,i)=0;        %Change the column in the n-th column to zero 

  Kmod(i,i)=1;          %Change the diagonal in the n-th row to zero 

  fvecmod(i,1)=0;       %Change to force vector to 0 

end 

 

Function Assemble System Stiffness Matrix: 

function [Ksys] = assemble(sdof,index,Kel,nel) 

%Obtain system stiffness matrix 

%Assemble element matrix into system stifness matrix 

 

%----------------------------------------------------------------- 

%Initialise Matrices 

%----------------------------------------------------------------- 

Ksys=zeros(sdof,sdof); 

i=size(index,2); 

 

%----------------------------------------------------------------- 

%Assemble System Stiffness Matrices 

%----------------------------------------------------------------- 

 for y=1:nel     

  for x=1:i 

    a=index(y,x); 

     for w=1:i 

      b=index(y,w);     

      Ksys(a,b)=Kel(x,w,y)+Ksys(a,b); 

     end 

  end 

 end 

 

Function Strain Interpolation Matrix: 

function [Bb,Bs,BbRes,BsRes] = bmatrix(elcoord,eltype,nel,numgpr,numgps,ndof,ngprshear,ngpsshear) 

%Obtain the stiffness matrix, shape and strain interpolation matrix for the four and eight noded 

%Bb, Bs and H Matrix is size [nodf x ndof*eltype x numpgr*numgps x nel] 
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%Kel Matrix is size [nodf*eltype x ndof*eltype x nel] 

 

%----------------------------------------------------------------- 

%Obtain Intergration Points for bending 

%----------------------------------------------------------------- 

[gpvBb, ~] = ginter2(numgpr,numgps); 

 

%----------------------------------------------------------------- 

%Obtain Jacobian Matrix bending 

%----------------------------------------------------------------- 

[~, ijacobb] = jacobian(elcoord,eltype,nel,numgpr,numgps); 

 

%----------------------------------------------------------------- 

%Obtain Reduced Intergration Points for shear 

%----------------------------------------------------------------- 

[gpvBs, ~] = ginter2(ngprshear,ngpsshear); 

 

%----------------------------------------------------------------- 

%Obtain Jacobian Matrix shear 

%----------------------------------------------------------------- 

[~, ijacobs] = jacobian(elcoord,eltype,nel,ngprshear,ngpsshear); 

  

%----------------------------------------------------------------- 

%Initialise Matrices 

%----------------------------------------------------------------- 

j=ndof*eltype; 

k=numgpr*numgps; 

 

Bb=zeros(3,j,k,nel);                     %Bending Strain interpolation Matrix 

Bs=zeros(2,j,k,nel);                     %Shear Strain interpolation Matrix 

BbRes=zeros(3,j,k,nel);                  %Results Bending Strain interpolation Matrix 

BsRes=zeros(2,j,k,nel);                  %Results Shear Strain interpolation Matrix 

dhdrj=zeros(eltype,1); 

dhdsj=zeros(eltype,1); 

 

%----------------------------------------------------------------- 

%Obtain bending and shear strain interpolation matrices 

%----------------------------------------------------------------- 

for y=1:nel 

 q=0;   

 u=0; 

 for x=1:numgpr 

   r=gpvBb(x,1);   

   for z=1:numgps 

   s=gpvBb(z,2);       

   q=q+1; 

    [~, dhr, dhs] = shapefunctions(eltype,r,s); 

     

    for i=1:eltype 

     %-----------------------------------------------------------------    

     %Transfer derivatives natural to global 

     %----------------------------------------------------------------- 

     dhdrj(i)=ijacobb(1,1,q,y)*dhr(i,1)+ijacobb(1,2,q,y)*dhs(i,1); 
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     dhdsj(i)=ijacobb(2,1,q,y)*dhr(i,1)+ijacobb(2,2,q,y)*dhs(i,1); 

     g=(i-1)*ndof; 

      

     %----------------------------------------------------------------- 

     %Bending Strain Matrix 

     %----------------------------------------------------------------- 

     Bb(2,2+g,q,y)=dhdsj(i); 

     Bb(3,2+g,q,y)=dhdrj(i); 

     Bb(1,3+g,q,y)=-dhdrj(i); 

     Bb(3,3+g,q,y)=-dhdsj(i);     

     BbRes(:,:,q,y)=Bb(:,:,q,y); 

    end 

   end  

 end 

  

 

 for x=1:ngprshear 

  rshear=gpvBs(x,1);                            %replace with gauss point isoparametric r value 

  for z=1:ngpsshear 

    sshear=gpvBs(z,2);                          %replace with gauss point isoparametric s value 

    u=u+1; 

    [~, dhr, dhs] = shapefunctions(eltype,rshear,sshear); 

     

    [hs, ~, ~] = shapefunctions(eltype,rshear,sshear); 

     

    for i=1:eltype 

     %-----------------------------------------------------------------    

     %Transfer derivatives natural to global 

     %----------------------------------------------------------------- 

     dhdrj(i)=ijacobs(1,1,u,y)*dhr(i,1)+ijacobs(1,2,u,y)*dhs(i,1); 

     dhdsj(i)=ijacobs(2,1,u,y)*dhr(i,1)+ijacobs(2,2,u,y)*dhs(i,1); 

     g=(i-1)*ndof; 

      

     %----------------------------------------------------------------- 

     %Shear Strain Matrix 

     %----------------------------------------------------------------- 

     Bs(1,1+g,u,y)=dhdrj(i); 

     Bs(2,1+g,u,y)=dhdsj(i); 

     Bs(2,2+g,u,y)=-hs(i); 

     Bs(1,3+g,u,y)=hs(i); 

     BsRes(:,:,u,y)=Bs(:,:,u,y); 

    end   

  end 

 end 

  

end 
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Function Connectivity Matrix: 

function [nodes, index] = connect(numdivb,numdivl,eltype,nel,ndof) 

%Detail connectivity between elements 

%nodes Matrix is a nel x (4 / 8) matrix rows holding elment number &  

%...global node number relating to local node number  

 

%------------------------------------------------------------- 

%Connectivity for quad eight 

%------------------------------------------------------------- 

elseif eltype==8                

  nodes=zeros(nel,8); 

  index=zeros(1,8*ndof); 

   

  %--------------------------------------------------------------- 

  %Relate local element side node numbers to global nodal numbers 

  %--------------------------------------------------------------- 

  for x=1:numdivb               

    for y=1:numdivl 

     i=(x)+(numdivb*(y-1)); 

     inc=3*numdivb+2; 

     nodes(i,1)=(inc*(y))+((x*2)-1); 

     nodes(i,2)=(inc*(y-1))+((x*2)-1); 

     nodes(i,3)=(inc*(y-1))+((x*2)+1); 

     nodes(i,4)=(inc*(y))+((x*2)+1); 

     nodes(i,6)=(inc*(y-1))+((x*2)); 

     nodes(i,8)=(inc*(y))+((x*2)); 

    end 

  end 

   

  %---------------------------------------------------------------------- 

  %Relate local element upper/lower node numbers to global nodal numbers 

  %---------------------------------------------------------------------- 

  for x=1:numdivb               

   for y=1:numdivl 

    inc=3*numdivb+2; 

    strt=2*numdivb+1; 

    i=(x)+((numdivb)*(y-1)); 

    nodes(i,5)=(inc*(y-1))+(x+strt); 

    nodes(i,7)=(inc*(y-1))+(x+strt+1); 

   end 

   i=i+(2*numdivb+1); 

  end 

   

  %------------------------------------------------------------- 

  %Create index matrix for future use 

  %------------------------------------------------------------- 

  for y=1:nel 

    for x=1:8 

     i=nodes(y,x);            %Assign index 

     for df=1:ndof 

      j=(i*ndof-(ndof))+df;   %Obtain Dof 

      l=(x*ndof-(ndof))+df;   %Dof to index ref 

      index(y,l)=j;           %Add value to index Matrix 
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     end 

    end 

  end  

   

end     

 

Function Calculate Strain Control Points: 

function [Econx,Econy] = econ(strconx,stressconx,strcony,stresscony) 

%find the e-modulus of the control points 

 

%----------------------------------------------------------------- 

%Obtain young's modulus of the control points 

%----------------------------------------------------------------- 

nump=length(strconx); 

Econx=zeros(1,nump); 

Econy=zeros(1,nump); 

 

Econx(1)=0; 

Econy(1)=0; 

for x=2:nump 

 Econx(x)=(stressconx(1,x)-stressconx(1,(x-1)))/(strconx(1,x)-strconx(1,(x-1))); 

 Econy(x)=(stresscony(1,x)-stresscony(1,(x-1)))/(strcony(1,x)-strcony(1,(x-1))); 

end     

 

Function Calculate Curvatures and Strains: 

function [del,curvstr,inplstr,shearstr] = esmatrix(BbRes,BsRes,d,nel,nnel,ndof,index,numgpr,numgps,ngprshear,ngpsshear,h) 

%Obtain the strains from backsubstitution 

%curvstr,inplstr,shearstr Matrix is size [1 x ndof*eltype x numpgr*numgps x nel] 

 

%------------------------------------------------------------- 

%Initialise Matrices 

%------------------------------------------------------------- 

j=numgpr*numgps; 

jj=ngprshear*ngpsshear; 

k=ndof*nnel; 

 

del=zeros(k,1,nel); 

curvstr=zeros(3,1,j,nel); 

inplstr=zeros(3,1,j,nel); 

shearstr=zeros(2,1,jj,nel); 

 

%------------------------------------------------------------- 

%Obtain element local displacement values 

%------------------------------------------------------------- 

for x=1:nel 

 a=0;    

 for y=1:nnel    

  for z=1:ndof  

   a=a+1;    

   i=index(x,a); 

   del(a,1,x)=d(i); 

  end 
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 end  

end 

 

for y=1:nel 

 q=0;   

 u=0; 

 for x=1:numgpr 

   for z=1:numgps 

    q=q+1;   

     

    %------------------------------------------------------------- 

    %Obtain gauss point curvatures 

    %------------------------------------------------------------- 

    curvstr(1,1,q,y)=BbRes(1,:,q,y)*del(:,1,y); 

    curvstr(2,1,q,y)=BbRes(2,:,q,y)*del(:,1,y); 

    curvstr(3,1,q,y)=BbRes(3,:,q,y)*del(:,1,y); 

     

    %------------------------------------------------------------- 

    %Obtain gauss point in-plane strains 

    %------------------------------------------------------------- 

    inplstr(1,1,q,y)=BbRes(1,:,q,y)*del(:,1,y)*h/2; 

    inplstr(2,1,q,y)=BbRes(2,:,q,y)*del(:,1,y)*h/2; 

    inplstr(3,1,q,y)=BbRes(3,:,q,y)*del(:,1,y)*h/2;  

   end  

 end 

  for x2=1:ngprshear 

   for z2=1:ngpsshear 

    u=u+1;     

     

    %------------------------------------------------------------- 

    %Obtain gauss point shear strains 

    %------------------------------------------------------------- 

    shearstr(1,1,u,y)=BsRes(1,:,u,y)*del(:,1,y); 

    shearstr(2,1,u,y)=BsRes(2,:,u,y)*del(:,1,y); 

   end  

  end 

  

  

end  

 

Function Calculate Surface Pressure to Nodal Load: 

function [fvecS] = fvecS(elcoord,eltype,nel,numgpr,numgps,ndof,press,eleNo,sdof,index) 

%Obtain the surface force vector 

%H Matrix is size [nodf x ndof*eltype x numpgr*numgps x nel] 

%fvecS Matrix is size [nodf*eltype x 1 x nel] 

 

%----------------------------------------------------------------- 

%Obtain Intergration Points for force vector 

%----------------------------------------------------------------- 

[gpvBf, gpwBf] = ginter2(numgpr,numgps); 

 

%------------------------------------------------------------- 

%Obtain Jacobian Matrix Det 
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%------------------------------------------------------------- 

[djacobf, ~] = jacobian(elcoord,eltype,nel,numgpr,numgps); 

 

%----------------------------------------------------------------- 

%Initialise Matrices 

%----------------------------------------------------------------- 

j=ndof*eltype; 

k=numgpr*numgps; 

 

H=zeros(3,j,k,nel);                         %Shape Function Matrix 

fvecSe=zeros(j,1,nel);                      %Force Vector Element Matrix 

fvecS=zeros(sdof,1);                        %Force Vector Total Matrix 

%----------------------------------------------------------------- 

%Obtain H Matrix 

%----------------------------------------------------------------- 

 

for y=1:length(eleNo) 

 q=0;   

  for x=1:numgpr 

   r=gpvBf(x,1);   

   for z=1:numgps 

   s=gpvBf(z,2);       

   q=q+1; 

    [hs, ~, ~] = shapefunctions(eltype,r,s);   

    for i=1:eltype 

     %----------------------------------------------------------------- 

     %Construct H Matrix 

     %----------------------------------------------------------------- 

     g=(i-1)*ndof; 

      

     H(1,1+g,q,y)=hs(i); 

     H(2,2+g,q,y)=hs(i); 

     H(3,3+g,q,y)=hs(i);     

    end   

   end  

  end 

   

  u=0;  

 %------------------------------------------------------------- 

 %Surface Force Vector Component 

 %------------------------------------------------------------- 

 for x=1:numgpr 

  rwgtf=gpwBf(x,1);                             %replace with gauss point isoparametric r weight 

  for z=1:numgps 

   swgtf=gpwBf(z,2);                            %replace with gauss point isoparametric s weight 

   u=u+1; 

   fvecSe(:,1,y)=fvecSe(:,1,y)+transpose(H(1,:,u,y))*(press)... 

     *swgtf*rwgtf*djacobf(:,:,u,y);  

  end 

 end  

 %------------------------------------------------------------- 

 %Modified Global Force Vector Component 

 %------------------------------------------------------------- 
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 for rr=1:eltype 

  yy=rr*3-2; 

  xx=index(eleNo(y),yy); 

  fvecS(xx,1)=fvecS(xx,1)+fvecSe(yy,1); 

 end     

end 

 

Function Gauss Integration 1D: 

function [gpval1, gpweight1] = ginter1(numgp) 

%Obtain guass point values and associated weights 

 

%------------------------------------------------------------- 

%Initialise Matrices 

%------------------------------------------------------------- 

gpval1=zeros(numgp,1);        %Inital Gauss point value matrix  

gpweight1=zeros(numgp,1);     %Inital Gauss point weight matrix  

 

%------------------------------------------------------------- 

%One point gauss integration 

%------------------------------------------------------------- 

if numgp==1 

 gpval1(1)=0; 

 gpweight1(1)=2; 

 

%------------------------------------------------------------- 

%Two point gauss integration 

%-------------------------------------------------------------  

elseif numgp==2 

 gpval1(1)=0.577350269189626; 

 gpweight1(1)=1; 

 gpval1(2)=-0.577350269189626; 

 gpweight1(2)=1; 

 

%------------------------------------------------------------- 

%Three point gauss integration 

%-------------------------------------------------------------  

elseif numgp==3 

 gpval1(1)=0.774596669241483; 

 gpweight1(1)=0.555555555555556; 

 gpval1(2)=0; 

 gpweight1(2)=0.888888888888889; 

 gpval1(3)=-0.774596669241483; 

 gpweight1(3)=0.555555555555556; 

  

end     
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Function Gauss Integration 2D: 

function [gpval2, gpweight2] = ginter2(numgpr,numgps) 

%2D gauss point integration 

 

%------------------------------------------------------------- 

%Find larger of r and s directional integeration 

%------------------------------------------------------------- 

if numgpr > numgps 

 numgp=numgpr; 

else 

 numgp=numgps;     

end 

 

%------------------------------------------------------------- 

%Initialise Matrices 

%------------------------------------------------------------- 

gpval2=zeros(numgp,2); 

gpweight2=zeros(numgp,2); 

 

[gpvalr,gpweightr]=ginter1(numgpr); 

[gpvals,gpweights]=ginter1(numgps); 

 

%------------------------------------------------------------- 

%Obtain values and weights for r direction 

%------------------------------------------------------------- 

for intr=1:numgpr 

 gpval2(intr,1)=gpvalr(intr);    

 gpweight2(intr,1)=gpweightr(intr);    

end     

 

%------------------------------------------------------------- 

%Obtain values and weights for s direction 

%------------------------------------------------------------- 

for ints=1:numgps 

 gpval2(ints,2)=gpvals(ints);    

 gpweight2(ints,2)=gpweights(ints);    

end     

 

Function Gauss Integration 3D: 

function [gpval3, gpweight3] = ginter3(numgpr,numgps) 

%3D gauss point integration 

 

%------------------------------------------------------------- 

%Find larger of r and s directional integeration 

%------------------------------------------------------------- 

if numgpr > numgps 

 numgp=numgpr; 

else 

 numgp=numgps;     

end 

 

%------------------------------------------------------------- 
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%Initialise Matrices 

%------------------------------------------------------------- 

gpval3=zeros(numgp,2); 

gpweight3=zeros(numgp,2); 

 

[gpvalr,gpweightr]=ginter1(numgpr); 

[gpvals,gpweights]=ginter1(numgps); 

 

%------------------------------------------------------------- 

%Obtain values and weights for r direction 

%------------------------------------------------------------- 

for intr=1:numgpr 

 gpval3(intr,1)=gpvalr(intr);    

 gpweight3(intr,1)=gpweightr(intr);    

end     

 

%------------------------------------------------------------- 

%Obtain values and weights for s direction 

%------------------------------------------------------------- 

for ints=1:numgps 

 gpval3(ints,2)=gpvals(ints);    

 gpweight3(ints,2)=gpweights(ints);    

end     

 

Function Jacobian Values: 

function [djacob, ijacob] = jacobian(elcoord,eltype,nel,numgpr,numgps) 

%Obtain the jacobian inverse and determinant matrix for the four and  

%...eight noded plate elements 

 

%------------------------------------------------------------- 

%Initialise Matrices 

%------------------------------------------------------------- 

[gpval2, ~] = ginter2(numgpr,numgps); 

k=numgpr*numgps; 

jacob=zeros(2,2,k,nel);         %jacobian matrix is a 2x2xGPxN matrix 

ijacob=zeros(2,2,k,nel);        %inverse jacobian matrix is a 2x2xGPxN matrix 

djacob=zeros(1,1,k,nel);        %inverse jacobian matrix is a 2x2xGPxN matrix 

 

%------------------------------------------------------------- 

%Obtain Jacobian inverses and determinants for gauss points 

%------------------------------------------------------------- 

for y=1:nel 

 q=0;    

 for x=1:numgpr 

  r=gpval2(x,1);    %replace with gauss point isoparametric r value 

  for z=1:numgps 

   s=gpval2(z,2);   %replace with gauss point isoparametric s value 

   q=q+1; 

   [~, dhr, dhs] = shapefunctions(eltype,r,s); 

   for i=1:eltype         

    jacob(1,1,q,y)=jacob(1,1,q,y)+dhr(i)*elcoord(1,i,y); 

    jacob(1,2,q,y)=jacob(1,2,q,y)+dhr(i)*elcoord(2,i,y); 

    jacob(2,1,q,y)=jacob(2,1,q,y)+dhs(i)*elcoord(1,i,y); 
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    jacob(2,2,q,y)=jacob(2,2,q,y)+dhs(i)*elcoord(2,i,y); 

   end  

   ijacob(:,:,q,y)=(jacob(:,:,q,y))^-1; 

   djacob(1,1,q,y)=det(jacob(:,:,q,y)); 

  end 

 end 

end 

 

Function Element Stiffness Matrix: 

function [Kel] = kmatrix(elcoord,eltype,nel,numgpr,numgps,ndof,Cb,Cs,Bb,Bs,h,ngprshear,ngpsshear) 

%Obtain the stiffness matrix for the four and nine noded 

%Kel Matrix is size [nodf*eltype x ndof*eltype x nel] 

 

%------------------------------------------------------------- 

%Shear Correction Factor 

%------------------------------------------------------------- 

ks=5/6; 

 

%------------------------------------------------------------- 

%Obtain Jacobian Matrix bending 

%------------------------------------------------------------- 

[djacobb, ~] = jacobian(elcoord,eltype,nel,numgpr,numgps); 

 

%------------------------------------------------------------- 

%Obtain Intergration Points for bending 

%------------------------------------------------------------- 

[~, gpwBb] = ginter2(numgpr,numgps); 

 

%------------------------------------------------------------- 

%Obtain Reduced Intergration Points for shear 

%------------------------------------------------------------- 

[~, gpwBs] = ginter2(ngprshear,ngpsshear); 

 

%------------------------------------------------------------- 

%Obtain Jacobian Matrix shear 

%------------------------------------------------------------- 

[djacobs, ~] = jacobian(elcoord,eltype,nel,ngprshear,ngpsshear); 

  

%------------------------------------------------------------- 

%Initialise Matrices 

%------------------------------------------------------------- 

j=ndof*eltype; 

Kel=zeros(j,j,nel);                                    %Element Stiffness Matrix 

Kelb=zeros(j,j,nel);                                   %Element Bending Stiffness Matrix 

Kels=zeros(j,j,nel);                                   %Element Shear Stiffness Matrix 

 

%------------------------------------------------------------- 

%Obtain bending and shear stiffness matrices 

%------------------------------------------------------------- 

for y=1:nel 

 q=0;   

 u=0;  

 %------------------------------------------------------------- 
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 %Bending Component 

 %------------------------------------------------------------- 

 for x=1:numgpr 

  rwgtb=gpwBb(x,1);                             %replace with gauss point isoparametric r weight 

  for z=1:numgps 

   swgtb=gpwBb(z,2);                            %replace with gauss point isoparametric s weight 

   q=q+1; 

   Kelb(:,:,y)=Kelb(:,:,y)+(h^3)/(12)*transpose(Bb(:,:,q,y))*Cb(:,:,q,y)*Bb(:,:,q,y)... 

     *swgtb*rwgtb*djacobb(:,:,q,y);  

  end 

 end  

 

 %------------------------------------------------------------- 

 %Shear Component 

 %------------------------------------------------------------- 

 for x=1:ngprshear 

  rwgts=gpwBs(x,1);                             %replace with gauss point isoparametric r weight 

  for z=1:ngpsshear 

   swgts=gpwBs(z,2);                            %replace with gauss point isoparametric s weight 

   u=u+1; 

   Kels(:,:,y)=Kels(:,:,y)+(h*ks)*transpose(Bs(:,:,u,y))*Cs(:,:,y)*Bs(:,:,u,y)... 

     *swgts*rwgts*djacobs(:,:,u,y);  

  end 

 end  

  %------------------------------------------------------------- 

  %Total element stiffness matrix 

  %------------------------------------------------------------- 

  Kel(:,:,y)=Kelb(:,:,y)+Kels(:,:,y); 

End 

 

Function Local Element Co-ords: 

function [elcoord] = localcoord(eltype,nel,gcoord,nodes) 

%Assign local co-ord in terms of x,y per node 1 to n 

%elcoord Matrix is a 2 x(4 / 8)x nel matrix rows holding x & y 

 

%------------------------------------------------------------- 

%Initialise Matrices 

%------------------------------------------------------------- 

avex=zeros(1,nel); 

avey=zeros(1,nel); 

g=eltype;   

elglcoord=zeros(2,g,nel);       %2x4/8xN Matrix holding global [x1 ... xn; y1 ... yn]  

elcoord=zeros(2,g,nel);         %2x4/8xN Matrix holding local [x1 ... xn; y1 ... yn] 

 

%------------------------------------------------------------- 

%Global node co-ordinates for element and centroid 

%------------------------------------------------------------- 

  for y=1:nel 

   for x=1:g 

     i=nodes(y,x);              %Assign index 

     a=gcoord(i,1);             %Obtain element global nodal coord 

     b=gcoord(i,2); 

     elglcoord(1,x,y)=a;        %Assign to global element coord Matrix 
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     elglcoord(2,x,y)=b;                  

     avex(1,y)=avex(1,y)+a; 

     avey(1,y)=avey(1,y)+b; 

   end 

   avex(1,y)=avex(1,y)/g;       %Get x value of the element centroid     

   avey(1,y)=avey(1,y)/g;       %Get y value of the element centroid 

  end 

  

%-------------------------------------------------------------- 

%Obtain local node co-ordinates for element and local centroid 

%-------------------------------------------------------------- 

  for w=1:nel 

   for z=1:g 

     i=nodes(w,z);              %Assign index 

     a=gcoord(i,1);             %Obtain element global nodal coord 

     b=gcoord(i,2); 

     a1= a-avex(1,w);           %Obtain element global nodal coord 

     b1= -b+avey(1,w); 

     elcoord(1,z,w)=a1;         %Assign to local element coord Matrix 

     elcoord(2,z,w)=-b1;   

   end  

  end  

   

Function Node Global Co-ords: 

function [gcoord] = nodecoord(numdivb,numdivl,eleb,elel,eltype,nnode) 

%Assign global co-ord in terms of x,y per node 1 to n 

%gcoord Matrix is a 2x(4 / 8) matrix rows holding x & y 

 

%------------------------------------------------------------- 

%Initialise Matrices 

%------------------------------------------------------------- 

gcoord=zeros(nnode,2); 

 

%------------------------------------------------------------- 

%Global node co-ordinates for quad four 

%------------------------------------------------------------- 

if eltype==4                 

  i=0; 

  for x=1:numdivl+1 

    for y=1:numdivb+1 

     i=i+1; 

     gcoord(i,1)=(x-1)*elel; 

     gcoord(i,2)=-(y-1)*eleb; 

    end  

  end 

 

%------------------------------------------------------------- 

%Global node co-ordinates for quad eight 

%-------------------------------------------------------------  

elseif eltype==8             

  i=0; 

  for x=1:numdivl+1         %Assign side node coord quad8 

    for y=1:2*numdivb+1 
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     i=i+1; 

     gcoord(i,1)=(x-1)*elel; 

     gcoord(i,2)=-(y-1)*eleb/2; 

    end 

    i=i+(numdivb+1); 

  end 

   

  i=2*numdivb+1; 

  for x=1:numdivl           %Assign upper and lower mid node coord quad8 

   for y=1:numdivb+1 

    i=(i+1); 

    gcoord(i,1)=(x-1)*elel+elel/2; 

    gcoord(i,2)=-(y-1)*eleb; 

   end 

   i=i+(2*numdivb+1); 

  end 

end     

 

Function Shape Functions: 

function [hs, dhr, dhs] = shapefunctions(eltype,r,s) 

%Obtain the shape function matrix for the four and eight noded 

%...plate elements 

 

%------------------------------------------------------------- 

%Initialise Matrices 

%------------------------------------------------------------- 

hs=zeros(eltype,1);    

dhr=zeros(eltype,1);    

dhs=zeros(eltype,1); 

 

%------------------------------------------------------------- 

%Shape functions and derivatives for eight noded element 

%------------------------------------------------------------- 

 

%------------------------------------------------------------- 

%Shape functions  

%-------------------------------------------------------------    

 hs(1)=  1/4*(s+1)*(r+1)*(r+s-1);              

 hs(2)=  1/4*(s+1)*(r-1)*(r-s+1); 

 hs(3)= -1/4*(s-1)*(r-1)*(r+s+1); 

 hs(4)=  1/4*(s-1)*(r+1)*(s-r+1); 

 hs(5)= -1/2*(r-1)*(r+1)*(s+1); 

 hs(6)=  1/2*(r-1)*(s-1)*(s+1); 

 hs(7)=  1/2*(r-1)*(r+1)*(s-1); 

 hs(8)= -1/2*(r+1)*(s-1)*(s+1); 

 

%------------------------------------------------------------- 

%Derivatives in terms of r 

%------------------------------------------------------------- 

 dhr(1)=  1/4*(s+1)*(2*r+s);                   

 dhr(2)=  1/4*(s+1)*(2*r-s); 

 dhr(3)= -1/4*(s-1)*(2*r+s); 

 dhr(4)= -1/4*(s-1)*(2*r-s); 
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 dhr(5)= -r*(s+1); 

 dhr(6)=  1/2*(s-1)*(s+1); 

 dhr(7)=  r*(s-1); 

 dhr(8)= -1/2*(s-1)*(s+1); 

 

%------------------------------------------------------------- 

%Derivatives in terms of s 

%------------------------------------------------------------- 

 dhs(1)=  1/4*(2*s+r)*(r+1);                            

 dhs(2)=  1/4*(-2*s+r)*(r-1); 

 dhs(3)= -1/4*(2*s+r)*(r-1); 

 dhs(4)= -1/4*(-2*s+r)*(r+1); 

 dhs(5)= -1/2*(r-1)*(r+1); 

 dhs(6)=  s*(r-1); 

 dhs(7)=  1/2*(r-1)*(r+1); 

 dhs(8)= -s*(r+1); 

 

Function Calculate Stresses, Forces and Moments: 

function [inplstress,shearstress,pltmom,pltshear] = 

stressmatrixNL(inplstr,shearstr,nel,Cb,Cs,numgpr,numgps,h,ngprshear,ngpsshear) 

%Obtain inplane stresses, moments and out of plane shear stress, force 

 

%------------------------------------------------------------- 

%Shear Correction Factor 

%------------------------------------------------------------- 

ks=5/6; 

 

%------------------------------------------------------------- 

%Initialise Matrices 

%------------------------------------------------------------- 

j=numgpr*numgps; 

jj=ngprshear*ngpsshear; 

a=nel; 

 

inplstress=zeros(3,1,j,a); 

shearstress=zeros(2,1,jj,a); 

pltmom=zeros(3,1,j,a); 

pltshear=zeros(3,1,jj,a); 

 

for y=1:nel 

 q=0;   

 u=0; 

 for x=1:numgpr                              

   for z=1:numgps   

    q=q+1;     

     

    %------------------------------------------------------------- 

    %Obtain gauss point in-plane stresses 

    %------------------------------------------------------------- 

    inplstress(1,1,q,y)=Cb(1,:,q,y)*inplstr(:,1,q,y); 

    inplstress(2,1,q,y)=Cb(2,:,q,y)*inplstr(:,1,q,y); 

    inplstress(3,1,q,y)=Cb(3,:,q,y)*inplstr(:,1,q,y); 
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    %------------------------------------------------------------- 

    %Obtain gauss point moments / m 

    %------------------------------------------------------------- 

    pltmom(1,1,q,y)=Cb(1,:,q,y)*inplstr(:,1,q,y)*(h^2)/6; 

    pltmom(2,1,q,y)=Cb(2,:,q,y)*inplstr(:,1,q,y)*(h^2)/6; 

    pltmom(3,1,q,y)=Cb(3,:,q,y)*inplstr(:,1,q,y)*(h^2)/6; 

   end  

 end 

  

for x2=1:ngprshear 

   for z2=1:ngpsshear 

    u=u+1;   

    %------------------------------------------------------------- 

    %Obtain gauss point out of plane stresses 

    %------------------------------------------------------------- 

    shearstress(1,1,u,y)=ks*Cs(1,:,y)*shearstr(:,1,u,y); 

    shearstress(2,1,u,y)=ks*Cs(2,:,y)*shearstr(:,1,u,y); 

     

    %------------------------------------------------------------- 

    %Obtain gauss point out of plane force / m 

    %------------------------------------------------------------- 

    pltshear(1,1,u,y)=shearstress(1,1,u,y)*h; 

    pltshear(2,1,u,y)=shearstress(2,1,u,y)*h; 

   end  

 end 

end 

 

 

 

Function Write Results for Nonlinear Solver: 

%Write Results to file 

 

xx=0; 

 

if Lstp<254 

mx=zeros((numgpr*numgps*nel),Lstp); 

my=zeros((numgpr*numgps*nel),Lstp); 

mxy=zeros((numgpr*numgps*nel),Lstp); 

 

sx=zeros((numgpr*numgps*nel),Lstp); 

sy=zeros((numgpr*numgps*nel),Lstp); 

sxy=zeros((numgpr*numgps*nel),Lstp); 

 

cx=zeros((numgpr*numgps*nel),Lstp); 

cy=zeros((numgpr*numgps*nel),Lstp); 

cxy=zeros((numgpr*numgps*nel),Lstp); 

 

ex=zeros((numgpr*numgps*nel),Lstp); 

ey=zeros((numgpr*numgps*nel),Lstp); 

exy=zeros((numgpr*numgps*nel),Lstp); 

 

dw=zeros(nnode,Lstp); 

drx=zeros(nnode,Lstp); 
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dry=zeros(nnode,Lstp); 

 

fw=zeros(nnode,Lstp); 

frx=zeros(nnode,Lstp); 

fry=zeros(nnode,Lstp); 

     

for z=1:Lstp 

 xx=0; 

 for x=1:nel 

  for y=1:(numgpr*numgps)  

   xx=xx+1; 

    

   mx(xx,z)=pltmomf(1,1,y,x,z); 

   my(xx,z)=pltmomf(2,1,y,x,z); 

   mxy(xx,z)=pltmomf(3,1,y,x,z); 

    

   sx(xx,z)=inplstressf(1,1,y,x,z); 

   sy(xx,z)=inplstressf(2,1,y,x,z); 

   sxy(xx,z)=inplstressf(3,1,y,x,z); 

    

   cx(xx,z)=curvstrf(1,1,y,x,z); 

   cy(xx,z)=curvstrf(2,1,y,x,z); 

   cxy(xx,z)=curvstrf(3,1,y,x,z); 

    

   ex(xx,z)=inplstrf(1,1,y,x,z); 

   ey(xx,z)=inplstrf(2,1,y,x,z); 

   exy(xx,z)=inplstrf(3,1,y,x,z); 

    

  end  

 end   

end 

 

 

for t=1:nnode 

 dw(t,:)=dres((t*3-2),:); 

 drx(t,:)=dres((t*3-1),:); 

 dry(t,:)=dres((t*3-0),:); 

  

 fw(t,:)=fvecT((t*3-2),:); 

 frx(t,:)=fvecT((t*3-1),:); 

 fry(t,:)=fvecT((t*3-0),:); 

end 

else 

mx=zeros((numgpr*numgps*nel),254); 

my=zeros((numgpr*numgps*nel),254); 

mxy=zeros((numgpr*numgps*nel),254); 

 

sx=zeros((numgpr*numgps*nel),254); 

sy=zeros((numgpr*numgps*nel),254); 

sxy=zeros((numgpr*numgps*nel),254); 

 

cx=zeros((numgpr*numgps*nel),254); 

cy=zeros((numgpr*numgps*nel),254); 
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cxy=zeros((numgpr*numgps*nel),254); 

 

ex=zeros((numgpr*numgps*nel),254); 

ey=zeros((numgpr*numgps*nel),254); 

exy=zeros((numgpr*numgps*nel),254); 

 

dw=zeros(nnode,254); 

drx=zeros(nnode,254); 

dry=zeros(nnode,254); 

 

fw=zeros(nnode,254); 

frx=zeros(nnode,254); 

fry=zeros(nnode,254); 

     

for z=1:254 

 xx=0; 

 for x=1:nel 

  for y=1:(numgpr*numgps)  

   xx=xx+1; 

    

   mx(xx,z)=pltmomf(1,1,y,x,z); 

   my(xx,z)=pltmomf(2,1,y,x,z); 

   mxy(xx,z)=pltmomf(3,1,y,x,z); 

    

   sx(xx,z)=inplstressf(1,1,y,x,z); 

   sy(xx,z)=inplstressf(2,1,y,x,z); 

   sxy(xx,z)=inplstressf(3,1,y,x,z); 

    

   cx(xx,z)=curvstrf(1,1,y,x,z); 

   cy(xx,z)=curvstrf(2,1,y,x,z); 

   cxy(xx,z)=curvstrf(3,1,y,x,z); 

    

   ex(xx,z)=inplstrf(1,1,y,x,z); 

   ey(xx,z)=inplstrf(2,1,y,x,z); 

   exy(xx,z)=inplstrf(3,1,y,x,z); 

    

  end  

 end   

end 

 

 

for t=1:nnode 

 dw(t,1:254)=dres((t*3-2),1:254); 

 drx(t,1:254)=dres((t*3-1),1:254); 

 dry(t,1:254)=dres((t*3-0),1:254); 

  

 fw(t,1:254)=fvecT((t*3-2),1:254); 

 frx(t,1:254)=fvecT((t*3-1),1:254); 

 fry(t,1:254)=fvecT((t*3-0),1:254); 

end 

end 

 

xlswrite('NLResults.xls', mx, 'mx_Result', 'B2'); 
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xlswrite('NLResults.xls', my, 'my_Result', 'B2'); 

xlswrite('NLResults.xls', mxy, 'mxy_Result', 'B2'); 

 

xlswrite('NLResults.xls', sx, 'sx_Result', 'B2'); 

xlswrite('NLResults.xls', sy, 'sy_Result', 'B2'); 

xlswrite('NLResults.xls', sxy, 'sxy_Result', 'B2'); 

 

xlswrite('NLResults.xls', cx, 'cx_Result', 'B2'); 

xlswrite('NLResults.xls', cy, 'cy_Result', 'B2'); 

xlswrite('NLResults.xls', cxy, 'cxy_Result', 'B2'); 

 

xlswrite('NLResults.xls', ex, 'ex_Result', 'B2'); 

xlswrite('NLResults.xls', ey, 'ey_Result', 'B2'); 

xlswrite('NLResults.xls', exy, 'exy_Result', 'B2'); 

 

xlswrite('NLResults.xls', dw, 'dw_Result', 'B2'); 

xlswrite('NLResults.xls', drx, 'drx_Result', 'B2'); 

xlswrite('NLResults.xls', dry, 'dry_Result', 'B2'); 

 

xlswrite('NLResults.xls', fw, 'fw_Result', 'B2'); 

xlswrite('NLResults.xls', frx, 'frx_Result', 'B2'); 

xlswrite('NLResults.xls', fry, 'fry_Result', 'B2'); 

 

 


