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Abstract 

South Africa’s news headlines are dominated by controversial stories of corruption, crime and 

politics. This research report investigates if people always accept these events as a "normal” part of 

the country’s history, or if these factors influence or are influenced by expenditure decisions of 

businesses and consumers. The variables included in the investigation are household consumption, 

business capital formation, consumer confidence and business confidence. The investigation 

establishes that these variables are non-stationary and cointegrated, with the cointegrating 

relationship assessed using Johansen’s procedure. The short-run and long run dynamics between 

the variables are determined using vector error correction models. Granger causality tests were 

used to explore the causal relationship between the variables. 

 

The Granger Causal relationship between confidence and consumption is assessed using quarterly 

data from June 1982 to March 2017. It showed that changes in household consumption Granger 

cause changes in consumer consumption, and no such relationship exists between business 

confidence and capital formation.  The Granger Causal relationship between confidence indicators 

was also explored, which found that a bi-directional Granger causality relationship existed between 

business confidence and consumer confidence.  

 

The results of variance decomposition (VDC) and impulse response functions (IRFs) were applied 

thereafter to further examine the causal relationship between the variables. The former determines 

the amount each variable contributes to each other while latter assess the impact on the dependent 

variable given a shock to the system. The results supported the outcome of the Granger causality 

tests. The variance decomposition found in most cases that a shock to the dependent variable can 

explain more of the forecast error in the dependent variable than a shock to the other predictor 

variable. This was observed in the short and long run. The impulse response functions found that 

confidence measures, both for consumers and businesses, may respond in the initial periods to 

impulses but the increments of the increase reduce after 1 to 2 periods. 
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Chapter 1: Introduction 

1.1 Background 

The 2017 first quarter Gross Domestic Product (GDP) growth figures that Statistics South Africa 

released, revealed that the country’s economy contracted 0.7% during the period. This preceded by 

a contraction of 0.3% reported in the last quarter of 2016. Consecutive contractions in growth over 

two quarters is an indication of the country entering a technical recession. Events such as electricity 

outages, strike activity in the platinum and motor sectors, the state capture report released by the 

Public Protector, the Cabinet reshuffle and the credit ratings downgrade have led to a lack in 

confidence by households and businesses over the years. This lack in confidence translated into 

delayed purchase decisions by both households and businesses which ultimately put the economy 

into recession. More stable economic environments help improve confidence levels (Fin24, 2017).  

Over the last 5 years, South Africa’s GDP growth rate was on average half that of neighbouring 

countries. This has led to South Africa being in danger of sliding backwards towards third world 

status from a promising market-leading position in Southern Africa (Yeo, 2017). GDP growth is at 

risk of approaching the 1% year-on-year mark in 2017 after recording 2.5% and 3.6% for 2012 and 

2011 respectively (Mabena, 2017).  The South African Reserve Bank (SARB) also noted, in the final 

2016 Quarterly Bulletin, that subdued business and consumer confidence levels that suppressed 

fixed investment was among the influential attributes which resulted in the lacklustre performance 

of the South African economy in 2016 (South African Reserve Bank, 2017). 

The focus of this research report is to determine if associations exist between confidence and 

consumption components of the GDP using South African economic data from June 1982 to March 

2017. This research report will investigate if people always accept the above events as a "normal” 

part of the country’s history, or if these factors influence or are influenced by consumption 

behaviour.   

The time series data, which will be used in this research report, are subject to local trends, highs 

and lows (cyclical variation) which may not be regular. Methods for analysing a single time series 

were developed by Box and Jenkins (1970). Following the work of Granger and his co-authors, the 

joint analysis of a pair or more of such series is now well established (Granger and Ghysels, 2001). 

Often, the linear combination of a pair of integrated series may be stationary and this property is 

known as cointegration. The cointegration property can be explained by considering a drunk walking 

his dog (Murray, 1994). Though the drunk and the dog each follow a random path, they stay close 
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to each other. Thus, the distance between the random paths would likely give a stationary series. 

That is, any pair of integrated series are cointegrated provided a linear combination between them 

is stationary. 

If confidence and consumption are cointegrated, then they share a stationary equilibrium relation.  

In this context, cointegration resembles the presence of a long run equilibrium to which the system 

converges. If there is a deviation from this long run equilibrium, then it will only be temporary since 

the linear combination between them will ultimately return to its equilibrium. Consequently, the 

relationship between a pair of cointegrated series is that of error correction and can therefore be 

modelled by a vector error correction model (𝑉𝐸𝐶𝑀) (Engle and Granger, 1987). It follows from the 

idea of cointegration that given a pair of cointegrated series, at least one of them must cause the 

other. This leads to the concept of causality. 

There is however no widely accepted definition of “true causality”. All refer to the relationship 

between events, processes or entities such that when one occurs, the other follows. That is, one has 

the tendency to produce or alter another and without one, the other could not occur. Granger 

(1969) defined causality as a statistical concept that is focussed on prediction. That is, a time series 

𝑋𝑡 causes 𝑌𝑡 if past values of 𝑋𝑡 contain information that is useful when predicting 𝑌𝑡 in addition to 

the information that previous values of 𝑌𝑡 contain. It is this definition of causality (Granger causality 

henceforth) which will be adopted in this research report. 

1.2 Aim and Objectives of the research report 

The aim of this research report is to determine the appropriate causal relations between confidence 

and consumption using South African data. The specific objectives are as follows: 

1. Determine if a causal relationship exists between: 

a. consumer confidence and consumer consumption, 

b. business confidence and business consumption and 

c. consumer confidence and business confidence. 

2. Determine the direction of the causal relationship based on the above outcomes. 

3. Determine the amount of information each variable contributes to the other variables in the 

defined model using variance decomposition (VDC). 

4. Describe how consumption reacts over time to shocks in confidence using impulse response 

functions (IRFs). 
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1.3 Data 

Data for this research report has been sourced from EasyData, an online resource host that provides 

access to South African economic and financial data. The household final consumption expenditure 

(HFCE) is the largest part of the expenditure-based gross domestic product (GDP(E)) and represents 

consumption of consumers. Gross fixed capital formation (𝐶𝐹 henceforth) by private enterprises is 

a part of GDP that categorises transactions on the net acquisitions of new as well as existing capital 

assets. 𝐶𝐹 is an indication of consumption behaviour of businesses to keep operating (Statistics 

South Africa, 2016). The consumption and confidence data are publicly available from SARB and the 

Bureau of Economic Research (BER) websites respectively and are made available by EasyData too. 

The quarterly FNB/BER Consumer Confidence Index (CCI) will be the measure of confidence 

representing households in this research report. Similarly, the quarterly Business Confidence Index 

(BCI), also published by BER, will be used as the measure of confidence for businesses. A more 

comprehensive description of the variables is provided in Appendix A. 

1.4 Organisation of the Research Report 

The rest of the research report is organised as follows. Time series models which will be considered 

when analysing Granger causality are set out in Chapter 2. Chapter 3 gives a review of the related 

literature. The implementation of the possible methodologies is the subject of Chapter 4 and the 

results of the study are presented and discussed in Chapter 5. Detailed results of the stability tests 

and lag length selection are provided in the appendix. Chapter 6 concludes the work. 
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Chapter 2: Background Theory 

2.1 Time Series Models 

Consumption and confidence, the time series of interest in this research report, are evaluated on a 

quarterly basis. An autoregressive (𝐴𝑅(𝑝)) model is a time series regression model in which the 

regressors are the past values 𝑌𝑡−1, 𝑌𝑡−2, …, 𝑌𝑡−𝑝 of the dependent variable 𝑌𝑡. The general 𝐴𝑅(𝑝) 

model has the form: 

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + ⋯ + 𝛽𝑝𝑌𝑡−𝑝 + 𝜀𝑡 ,                     (1) 

 where  𝑡 ∈ ℤ+, 𝑝 is the order of the model determined using 𝐹 test, 𝑡 test, Akaike information 

criteria (𝐴𝐼𝐶) or Schwarz Bayesian Criterion (𝑆𝐵𝐶); and 𝜀𝑡 represents the error term which is 

assumed to have a normal distribution with mean zero and a constant variance. The autocovariance 

and autocorrelation are measures of dependence between observations in a time series. 

Autocorrelation or serial correlation is defined as the correlation of a series with its own lagged 

values. A plot of the autocorrelation function (𝐴𝐶𝐹) against time 𝑡 is called a correlogram. The 𝐴𝐶𝐹 

can be used to identify the possible structure of time series data. The partial correlation is a 

correlation between two lagged values of a time series while controlling for the effects of the 

intervening lagging values. A plot of the partial autocorrelation function (𝑃𝐴𝐶𝐹) against time 𝑡 is 

called the partial correlogram. The ACF not decreasing to zero or decaying slowly suggests non-

stationarity (Box and Jenkins, 1970).  

A Vector Autoregression (𝑉𝐴𝑅) is a generalisation of the univariate 𝐴𝑅(𝑝) model by allowing for 

more than one evolving variable. It is best explained by starting with an expansion of the 𝐴𝑅(𝑝).  

The expansion entails adding more variables to improve the prediction of 𝑌𝑡 model yielding an 

autoregressive distributed lag (𝐴𝐷𝐿) model. An 𝐴𝐷𝐿 model with 𝑝 lags of 𝑌 and 𝑞 lags of 𝑋, as 

determined by the 𝐴𝐶𝐹 and 𝑃𝐴𝐶𝐹, has the form: 

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + ⋯ + 𝛽𝑝𝑌𝑡−𝑝 + 𝛿1𝑋𝑡−1 + ⋯ + 𝛿𝑞𝑋𝑡−𝑞 + 𝜀𝑡                                   (2) 

where  𝑡 ∈ ℤ+, 𝑝 ∈ ℤ+, 𝑞 ∈ ℤ+ and is denoted by 𝐴𝐷𝐿(𝑝, 𝑞). 

A bivariate 𝑉𝐴𝑅 model for 𝑡 = 1,2, … , 𝑛 has the form: 

𝑌𝑡 = 𝛼1 + 𝛽11𝑌𝑡−1 + ⋯ + 𝛽1𝑝𝑌𝑡−𝑝 + 𝛿11𝑋𝑡−1 + ⋯ + 𝛿1𝑞𝑋𝑡−𝑞 + 𝜀1𝑡 

𝑋𝑡 = 𝛼2 + 𝛽21𝑌𝑡−1 + ⋯ + 𝛽2𝑝𝑌𝑡−𝑝 + 𝛿21𝑋𝑡−1 + ⋯ + 𝛿2𝑞𝑋𝑡−𝑞 + 𝜀2𝑡                       (3) 

In general, 𝑝-variable 𝑉𝐴𝑅 has 𝑝 equations for each dependent variable, and each equation uses as 

its explanatory variables, some lags of all the variables under study. The coefficients of a VAR are 
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estimated by estimating each equation using ordinary least squares (OLS) while the optimal lag 

lengths 𝑝 and 𝑞 are selected using information criteria (Stock and Watson, 2006). 

There is a decrease in forecast accuracy if too few lags are used and an increase in estimation 

uncertainty by adding too many lags. The choice of lags must balance the benefit of using additional 

information against the cost of estimating the additional coefficients. Akaike information criteria 

(𝐴𝐼𝐶) and Schwarz Bayesian Criterion (𝑆𝐵𝐶) information criteria are generally used when selecting 

the optimal lag length 𝑝. They are expressed as 

𝐴𝐼𝐶(𝑝 + 𝑞) = ln (
𝑆𝑆𝑅(𝑝 + 𝑞)

𝑛
) + (𝑝 + 𝑞 + 1)

2

𝑉
 

𝑆𝐵𝐶(𝑝 + 𝑞) = ln (
𝑆𝑆𝑅(𝑝 + 𝑞)

𝑛
) + (𝑝 + 𝑞 + 1)

ln(𝑉)

𝑉
                                 (4) 

where 𝑆𝑆𝑅(𝑝 + 𝑞) is the sum of squared residuals of the estimated 𝐴𝑅(𝑝 + 𝑞), 𝑝 = 1, … , 𝑛 , 𝑞 =

1, … , 𝑛 and 𝑉 is the total parameters being considered. The (𝑝 + 𝑞) which minimises the information 

criteria among the possible choices is selected. The variance of the forecast error due to estimation 

error increases with (𝑝 + 𝑞) and thus a forecasting model with too many coefficients is not 

preferred. The 𝑆𝐵𝐶 has a penalty for using more parameters (𝐼𝑛(𝑉)) and increasing forecast 

variance. The 𝐴𝐼𝐶 has a smaller penalty term than 𝐵𝐼𝐶 (i.e. 2 < ln (𝑉)). The 𝐴𝐼𝐶 will therefore 

estimate more lags than the 𝐵𝐼𝐶 which may result in an overestimate of (𝑝 + 𝑞). The 𝐴𝐼𝐶 may 

therefore only be desirable when longer lags may be important to consider for the model (Stock and 

Watson, 2006). 

 

2.2 Stationarity 

In time series analysis, there is only one finite realisation (or sample path), called a time series from 

the data generating process. Thus, unless one assumes time homogeneity of the data generating 

process, there will be no basis for inference and prediction from a time series variable. Time series 

analysis uses stationarity as its form of time homogeneity. It is defined as time invariance of the 

entire probability distribution of the data generating process (strict stationarity), or that of the first 

and second moment (known as weak-sense stationary, covariance stationary or second-order 

stationary).  

The process  {𝑌𝑡} is strictly stationary if for all 𝑘 ∈ ℕ, ℎ ∈ ℤ+, and (𝑡1, 𝑡2, … , 𝑡𝑘) ∈ ℤ𝑘,               

(𝑌𝑡1
, … , 𝑌𝑡𝑘

) (𝑌𝑡1+ℎ, … , 𝑌𝑡𝑘+ℎ) where  denotes equality in distribution and ℎ a point in time in the 

future. It is weakly (or covariance) stationary if for all ℎ, 𝑡 ∈ ℤ+, 𝐸(𝑌𝑡) = 𝜇, a constant and 
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𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡+𝑘) = 𝛾𝑘 with 𝜎𝑌
2 = 𝛾0 < ∞. Unless stated otherwise, the term stationary will be used to 

mean weak or covariance stationary in this research report. 

An important example of a weakly stationary process is the white noise process. A stochastic process 

{𝜀𝑡, 𝑡 𝜖 ℤ} is defined as zero mean white noise (Triacca, 2014) if 

• 𝐸(𝜀𝑡) =  0 ∀ 𝑡 

• 𝑉𝑎𝑟(𝜀𝑡) =  𝜎𝜀
2 < ∞ ∀ 𝑡 and  

• 𝐶𝑜𝑣(𝜀𝑡, 𝜀τ ) = 0 for 𝑡 ≠ τ.  

White noise processes usually arise as residual series when fitting time series models (Dettling, 

2013).  

 

2.3 Trends and Unit Root Tests 

Several observed economic and financial time series data reveal trends in their behaviour or non-

stationarity in the mean. Two popular models for non-stationary time series with a trending mean 

are trend stationarity and difference stationary processes. For such series, some form of trend 

removal is required. In the former case the underlying trend can be removed (detrended) leaving a 

stationary process, i.e. the series does not possess unit roots while in the latter differencing is 

required once or more for a process possessing unit roots. 

 

2.3.1 Trend Stationarity 

A series which fluctuates around a deterministic trend is called trend stationary. The simplest form 

of a trend stationary model for the time series process {𝑌𝑡} is 

                                                                  𝑌𝑡 = 𝛾 + 𝛽𝑡 + 𝜀𝑡                                                                            (5) 

where, 𝛾 is a constant, 𝛽 ≠ 0 and 𝜀𝑡 is white noise. The mean of the series (deterministic trend), 

𝐸(𝑌𝑡) =  𝛾 + 𝛽𝑡 is time dependent and accounts for sustained increase (or decrease) in the series 

over time. For example, consumption is expected to have an upward trend on average due to the 

yearly inflationary increase in the cost of goods and services. Because of the time varying mean, the 

series cannot be stationary. Consequently, if the variation in the mean can be adequately explained 

by some form of deterministic trend term estimated from the data, then the detrended series  𝑌𝑡
∗ =

𝜀𝑡 where 𝑌𝑡
∗ = 𝑌𝑡 − 𝛾 − 𝛽𝑡 will be stationary. 

 

2.3.2 Difference Stationary Series 

A series can be made stationary by differencing an appropriate number of times. Such a series is 

called a difference stationary series. For a series  {𝑌𝑡}, consider the model 
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                                                               𝑌𝑡 = 𝛾 + 𝜑1𝑌𝑡−1 + 𝛽𝑡 + 𝜀𝑡 .                                                             (6) 

The model in equation (2) has several special cases. When 𝛾 ≠ 0, φ1 = 1, 𝛽 ≠ 0, 𝑌𝑡 is both a trend 

and difference stationary series. When 𝛾 = 0, φ1 = 1, 𝛽 = 0, 𝑌𝑡 is a random walk which is 

represented as 𝑌𝑡 = 𝑌𝑡−1 + 𝜀𝑡. Observe that 𝑌𝑡 − 𝑌𝑡−1 = ∆𝑌𝑡 = 𝜀𝑡 is stationary. That is, {𝑌𝑡} is a 

differenced stationary process. It is called integrated of first order, 𝐼(1) process (possesses a unit 

root) since it becomes stationary after being differenced once. Starting the process at 𝑡 = 0 with a 

fixed initial value 𝑌0 results in 𝑌𝑡 = 𝑌0 + ∑ 𝜀𝑖
𝑡
𝑖=1  with moments 𝐸(𝑌𝑡) = 𝑌0 and 𝑉𝑎𝑟(𝑌𝑡) = 𝑡. 𝜎2, and 

therefore cannot be stationary. In addition, the shocks will have permanent effects. When 𝛾 ≠

0, φ1 = 1, 𝛽 = 0, 𝑌𝑡 is a random walk with drift. 

 

2.3.3 Stationarity Tests 

The presence of unit roots in time series variables results in standard distribution theory not being 

valid as the shape of the distribution changes over time. Testing for stationarity of the time series 

variables before any analysis is therefore necessary. 

 

a) Dickey-Fuller (DF) test 

This test considers an 𝐴𝑅(1) model 𝑌𝑡 = 𝜌𝑌𝑡−1 + 𝜀𝑡 where 𝜀𝑡 is white noise. If 𝜌 = 1, 𝑌𝑡 is defined 

as a simple random walk which is non-stationary. The null hypothesis when testing if a series has 

non-stationary properties is 𝐻0: 𝜌 = 1. It is tested against the alternative hypothesis 𝐻1: 𝜌 < 1. 

|𝜌| > 1 is not considered since this is an explosive process and, would unlikely occur for economic 

and financial data (Boero, 2009). 

Alternatively, the 𝐴𝑅(1) model can be specified as  

                                                    ∆𝑌𝑡 = 𝛾𝑌𝑡−1 + 𝜀𝑡 where 𝛾 = 𝜌 − 1                                                         (7) 

The null hypothesis 𝐻0: 𝜌 = 1 becomes equivalent to 𝐻0: 𝛾 = 0 (the series has a unit root), and the 

alternative hypothesis is 𝐻1: 𝛾 < 0 (a stationary series). 

An 𝐴𝑅(1) model may contain a constant term 𝛼 yielding 

                                                                ∆𝑌𝑡 = 𝛼 + 𝛾𝑌𝑡−1 + 𝜀𝑡                                                        (8) 

or a constant term 𝛼 and a trend term 𝛽𝑡 to give 

                                                         ∆𝑌𝑡 = 𝛼 + 𝛽𝑡 + 𝛾𝑌𝑡−1 + 𝜀𝑡 .                                                                 (9) 

OLS is used to estimate equations 3, 4 and 5. The 𝑡-statistic of the coefficient 𝛾 is assessed against 

the appropriate critical values to determine its significance.  If 𝐻0 is rejected, then for 𝐴𝑅(1), 𝑌𝑡 is 
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stationary with zero mean. For 𝐴𝑅(1) with a constant term 𝛼,  𝑌𝑡 is stationary with a non-zero mean 

whereas for 𝐴𝑅(1) with a constant term 𝛼 and trend term 𝛽𝑡, 𝑌𝑡 is stationary around the mean of 

the series 𝛼 + 𝛽𝑡. 

b) The Augmented Dickey-Fuller (ADF) Test  

The Dickey-Fuller statistic applies only to an 𝐴𝑅(1) model. For some series, this model does not 

capture all the serial correlation in 𝑌𝑡 in which case a higher-order autoregression is more 

appropriate. An extension of the Dickey-Fuller test to the 𝐴𝑅(𝑝) model is the Augmented Dickey-

Fuller (ADF) test. The ADF test is used to test if the errors 𝜀𝑡 for an 𝐴𝑅(𝑝) model are serially 

correlated. The null hypothesis 𝐻0: 𝛾 = 0 (𝑌𝑡 has a stochastic trend) is tested against the alternative 

hypothesis 𝐻1: 𝛾 < 0 (𝑌𝑡 is stationary) in the regression 

 Δ𝑌𝑡 = 𝛽0 + 𝛾𝑌𝑡−1 + 𝛿1Δ𝑌𝑡−1 + ⋯ + 𝛿𝑝Δ𝑌𝑡−𝑝 + 𝜀𝑡                                   (10) 

If 𝑌𝑡 is stationary around a deterministic linear time trend, then this trend 𝛽0 + 𝛼𝑡 must be added, 

in which case the regression model becomes 

 Δ𝑌𝑡 = 𝛽0 + 𝛼𝑡 + 𝛾𝑌𝑡−1 + 𝛿1Δ𝑌𝑡−1 + ⋯ + 𝛿𝑝Δ𝑌𝑡−𝑝 + 𝜀𝑡                                  (11) 

where, 𝛼 is an unknown coefficient and the ADF statistic is the OLS t-statistic testing 𝛾 = 0 (Stock 

and Watson, 2006). 

c) Phillips and Perron test 

The Phillips and Perron (PP) test also tests the null hypothesis 𝛾 = 0 (unit root) but with no lagged 

difference terms Δ𝑌𝑡−𝑗. The 𝐴𝑅(𝑝) model is instead estimated by OLS (with the optional inclusion 

of the deterministic variables) and the Newey-West procedure (a nonparametric method) is used to 

address the serial correlation in 𝜀𝑡 for the t-statistic of the coefficient. This test can be more effective 

than the ADF test and it will not produce biased results with extra lags (Boero, 2009). 

The PP test can be used as an alternative or with the ADF tests based on the diagnostic statistics 

from the DF and ADF tests. The PP test does not require a decision to be made regarding lags (Boero, 

2009). 

d) Units Roots with Break Points 

ADF and PP unit root tests may not be successful to reject the unit root null hypothesis when the 

series has structural breaks. Breaks need to be recognised and accounted for in the model otherwise 

the OLS estimates will determine a relationship that holds on average leading to poor forecasts 

(Stock and Watson, 2006). Applying unit root tests which allow for the possible presence of 
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structural breaks avoids test results which may be biased towards non-rejection of the null 

hypothesis (Perron, 1989).  

Splitting the time series into segments and running the ADF tests on each of them is a simple 

approach to test for stationarity in the presence of structural breaks. The problem with this 

approach is that prior knowledge about the location of the breaks is required. The Perron-Vogelsang 

and Clemente-Montanes-Reyes unit root tests are suitable when the break date(s) are unknown. 

These procedures detect the dates of structural breaks, and assist with identifying variables 

associated with events such as changes in fiscal policy, monetary policy, political turmoil, etc. The 

null hypothesis of a unit root with breaks is tested against the alternative that the series is stationary 

with breaks. The ADF and PP tests can rather be used if these tests do not detect structural breaks 

(Feridun, 2009). These tests use modified Dickey-Fuller (DF) unit root tests with the inclusion of 

dummy variables to account for structural breaks. 

The Perron-Vogelsang and Clemente-Montanes-Reyes unit root test models have two forms. The 

first form caters for a steady change in the series mean and is called the Innovation Outliers (IO) 

model. The second form captures sudden change (crash) in the series mean and is called the 

Additive Outliers (AO) model (Feridun, 2009). Perron (1994) discusses two Innovation Outliers (IO) 

models. The first handles for steady change in the intercept only and has the form: 

 𝑌𝑡 = 𝛽0 + 𝜃𝐷𝑈𝑡 + 𝛼𝑡 + 𝜚𝐷(𝑇𝑏)𝑡 + 𝛾𝑌𝑡−1 + 𝛿1𝑌𝑡−1 + ⋯ + 𝛿𝑝𝑌𝑡−𝑝 + 𝜀𝑡.                                (12) 

The second handles for steady change in the intercept and the slope of the trend function, and has 

the form: 

 𝑌𝑡 = 𝛽0 + 𝜃𝐷𝑈𝑡 + 𝛼𝑡 + 𝜓𝐷𝑇𝑡 + 𝜚𝐷(𝑇𝑏)𝑡 + 𝛾𝑌𝑡−1 + 𝛿1𝑌𝑡−1 + ⋯ + 𝛿𝑝𝑌𝑡−𝑝 + 𝜀𝑡              (13) 

where 𝑇𝑏 is the break date which is unknown and is determined using data within the model, 𝐷𝑈𝑡 

is the dummy variable for the intercept (𝐷𝑈𝑡 = 1 if 𝑡 > 𝑇𝑏 and zero otherwise), 𝐷𝑇𝑡 is the dummy 

variable for slope (𝐷𝑇𝑡 = 𝑇𝑡 if 𝑡 > 𝑇𝑏 and zero otherwise), and 𝐷(𝑇𝑏)𝑡 is the dummy variable for the 

crash (𝐷(𝑇𝑏)𝑡  = 1 if 𝑡 = 𝑇𝑏 + 1 and zero otherwise). The break date can be estimated by 

minimising the value of the t-statistic for testing 𝛼 = 1. It can also be estimated by maximising or 

minimising the absolute value of the t-statistic on the break parameters associated with either the 

intercept or slope (Harvin and Pahlavani, 2006). 

A two-step procedure is used to test for a unit root in an AO model. The series is first detrended by 

regressing it on the trend components (including constant, time-trend and dummy break): 

 𝑌𝑡 = 𝛽0 + 𝛼𝑡 + ∑ 𝑐𝑖Δ 𝑌𝑡−𝑖
𝑘
𝑖=1 + 𝜀𝑡 where 𝑘 = 1, … , 𝑛                               (14) 
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Like the IO methodology, these equations are estimated sequentially for all possible values of 𝑇𝑏  

(𝑇𝑏 = k + 2, … , T − 1) where 𝑇 is the total number of observations to minimise the t-statistic for 

𝛼 = 1. The detrended series is used to test for a unit root using a modified Dickey-Fuller regression 

in the second step. The null hypothesis is rejected if the t-statistic is larger in absolute value than 

the corresponding critical value (Harvin and Pahlavani, 2006).  

2.4 Cointegration 

This section describes how cointegrated non-stationary variables can be used to formulate and 

estimate a model with an error correction mechanism. Finance and Economic theory often suggests 

the existence of long run equilibrium relationships among non-stationary time series variables. If 

these variables are integrated of order 𝑑 (𝐼(𝑑)), then cointegration techniques can be used to model 

these long run relations. Two series 𝑋𝑡 and 𝑌𝑡, are said to be cointegrated of order 𝑑, 𝑏 where 𝑑 ≥

𝑏 ≥ 0, written as (𝑋𝑡, 𝑌𝑡)~𝐶𝐼(𝑑, 𝑏), if: 

(i) both series are 𝐼(𝑑) and,  

(ii) there exists a vector (𝛼1, 𝛼2) such that 𝛼1𝑋𝑡 + 𝛼2𝑌𝑡 is integrated of order 𝑑 − 𝑏. Engle and 

Granger (1987) referred to (𝛼1, 𝛼2) as the cointegrating vector. 

Therefore, unless the series are cointegrated, any random linear combination of 𝐼(𝑑) series will 

continue to be 𝐼(𝑑). If a valid error correction representation of 𝑋𝑡 and 𝑌𝑡 exists, then these 

variables are cointegrated and vice versa. That is, there must be some force or adjustment process 

which pulls the equilibrium error back to zero and, so that 𝑋𝑡 and 𝑌𝑡 have a long run relationship. 

This errors in the long run relationship is prevented from becoming increasingly larger by the 

adjustment process. Identifying cointegrated series allows for the improvement of long run forecast 

accuracy (Boero, 2009). 

Approaches to determine the cointegration between variables and estimate the long run 

relationship exist in the literature. These include the Engle and Granger approach, Johansen’s 

procedure and Phillips–Ouliaris cointegration method. The approaches determine the cointegration 

between variables, estimate the long run relationship, and thereafter specify an error correction 

model representing the short-run adjustment towards equilibrium (Koekemoer, 1999). The Phillips–

Ouliaris method does have a similar shortcoming to the Engle and Granger approach in that it can 

only estimate single cointegrating relationships. On the other hand, the Johansen’s procedure has 

the remedy to the limitation of the Engle and Granger approach and Phillips–Ouliaris method 

(Ssekuma, 2011). The Engle and Granger approach (a single equation cointegration technique) and 

Johansen’s procedure (a multivariate cointegration technique) will therefore be discussed next. 
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2.4.1 The Engle and Granger Cointegration approach 

Engle and Granger (1987) proposed a two-step procedure for cointegration analysis as follows: 

Step 1: Estimate the long run equilibrium equation 

Consider the long run relation for the bivariate case 

                                                                            𝑌𝑡 = 𝜑𝑋𝑡 + 𝜀𝑡 ,                                                                 (15) 

where 𝑋𝑡 and 𝑌𝑡 are 𝐼(1), and 𝜑 is an unknown coefficient. This first step entails estimating equation 

(15) using OLS and thereafter testing the stationarity of the residuals 𝜀�̂� = 𝑌𝑡 − �̂�𝑋𝑡. The null and 

alternative hypothesis are therefore 

𝐻0: 𝜀�̂�~𝐼(1) versus 𝐻1: 𝜀�̂�~𝐼(0) 

If the null hypothesis is rejected it implies that the 2 series are cointegrated (Koekemoer, 1999). 

Step 2: Estimation of the Error Correction Model  

Continuing from step one, if 𝑋𝑡 and 𝑌𝑡 are 𝐼(1) and for some coefficient 𝜑, 𝑌𝑡 − 𝜑𝑋𝑡 is 𝐼(0), then 

𝑋𝑡 and 𝑌𝑡 are said to be cointegrated. The coefficient 𝜑 is the integration coefficient. Equation (15) 

can be estimated replacing 𝜑 with the OLS estimated �̂� 

                                              ∆𝑌𝑡 = 𝛽1∆𝑌𝑡−1 + 𝛾1∆𝑋𝑡 + α(𝑌𝑡−1 − �̂�𝑋𝑡−1) + 𝜀𝑡 ,                                      (16) 

where 𝜀𝑡 is the error term and α is negative to ensure convergence of the model in the long run. 

∆𝑌𝑡, ∆𝑋𝑡 and (𝑌𝑡−1 − �̂�𝑋𝑡−1) are all 𝐼(0), and provided the model is properly specified, 𝜀𝑡 is also 

𝐼(0). The term 𝑌𝑡−1 − �̂�𝑋𝑡−1 is the error correction term. Equation (16) represents the error 

correction model which describes how 𝑋𝑡 and 𝑌𝑡 behave in the short run consistent with a long run 

cointegrating relationship. The 𝑉𝐸𝐶𝑀 is estimated using OLS as these equations have only 

𝐼(0) variables. The speed of adjustment towards equilibrium is indicated by the slope coefficient α 

in equation (16) (Koekemoer, 1999). 

In models where there is a unique cointegrating vector, the relative simplicity of Engle-Granger 

approach is an advantage. It also allows for the use of the super consistency property of OLS to 

obtain estimates of the coefficients of the cointegrating vector which are close to the true value of 

the coefficients (Koekemoer, 1999). However, with more than two series, there may be multiple 

cointegration vectors and this approach cannot determine how many exist. A further restriction is 

that the estimation of the long run equilibrium regression requires a variable assigned as the 

response variable and the other variable as the predictor variable. It also operates on the principle 

that irrespective of which variable is chosen for normalisation, the same results will be attained if 

variables are interchanged which does not generally hold in practice (Ssekuma, 2011).   
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2.4.2 Cointegration: the Johansen’s procedure 

An alternative approach to test for cointegration was introduced by Johansen (1988). This procedure 

avoids the fundamental problem discussed in the Engle-Granger approach of being unable to apply 

restrictions to the cointegrating vectors. It tests the number of cointegrating relations directly. The 

Johansen test is a multivariate generalisation of the ADF test. The generalisation is the examination 

of linear combinations of variables for unit roots. All variables are treated the same and none of 

them are influenced by factors internal or external to the model. The Johansen procedure has two 

steps. The first step is to determine the number of cointegrating vectors and the second step is to 

estimate the number of cointegrating relationships. 

Step 1: Determination of the number of Cointegrating Vectors 

Begin by considering the data generating process of a vector 𝒀𝑡 of 𝑛 potential endogenous variables, 

as an unrestricted  𝑉𝐴𝑅(𝑝) model involving up to 𝑝 lags of 𝒀𝑡: 

                                                      𝒀𝑡 =  𝐀1𝒀𝑡−1+ . . . + 𝐀𝑝𝒀𝑡−𝑝 + 𝜺𝑡 ,                                                    (17) 

where, 𝒀𝒕 is (𝑝×1) vector, each of the 𝐀𝒊 is a (𝑝×𝑝) matrix of parameters for 𝑖 = 1,2, … , 𝑝 and 𝜺𝑡 

is a (𝑝×1) vector. Subtracting 𝒀𝑡−1 from both sides of the system (17) of equations and, adding and 

subtracting 𝒀𝑡−𝑝+1 on the right-hand side yields: 

                                  ∆𝒀𝑡 = 𝚪1𝚫𝒀𝑡−1+ . . . + 𝚪𝑝−1𝚫𝒀𝑡−𝑝+1 +  𝚷𝒀𝒕−𝒑 + 𝜺𝑡 ,                                             (18) 

where 𝚷 = −(𝑰𝑝 − 𝐀1 − ⋯ − 𝐀𝑖), 𝑰𝑝 is an identity matrix, 𝚪𝑘 = −(𝑰𝑝 − 𝐀1 − ⋯ − 𝐀𝑘) and 𝑘 =

1, … , 𝑝 − 1. Expressed in this way system (18) contains information on both the short and long run 

adjustment to changes in 𝒀𝑡  by means of the estimates of �̂� and �̂�𝑘. In particular, it can be shown 

that 𝚷 = 𝛂𝛃′, where 𝛂 represents the speed of the adjustment to equilibrium and 𝛃 represents the 

matrix of long run coefficients. In the multivariate model, 𝜷′𝒀𝒕 represents up to (𝑛 − 1) 

cointegration relationships, which ensures that 𝒀𝒕 converges to equilibrium. Assuming, that 𝒀𝒕 is a 

vector of non-stationary 𝐼(1) variables, then all the terms in (18) which involve 𝒀𝒕−𝟏 are 𝐼(0), while 

𝚷𝒀𝒕−𝟏 must also be stationary for 𝜺𝑡~𝐼(0) to be white noise. Stationarity of 𝚷𝒀𝒕−𝟏 implies that the 

long run cointegrating relationships between the variables in levels is inherent. The number of 

cointegrating relationships present amongst variables in the model, as well as the nature of these 

relationships can be determined by the Johansen technique (Koekemoer, 1999). 

 

The number of linear combinations which exist amongst the variables is determined by the rank of 

the matrix 𝚷. 𝚷 will be an 𝑛×𝑛 matrix when the system has 𝑛 variables with a rank between zero 

and 𝑛. A rank of zero will indicate the variables are 𝐼(1) and that they are not cointegrated. A rank 

of 𝑛 will indicate that the matrix has full rank and therefore has 𝑛 independent stationary linear 
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combinations of the variables. Testing to identify the number of cointegrating vectors is equivalent 

to testing for the eigenvalues greater than zero in the matrix 𝚷. Johansen (1988), Johansen and 

Juselius (1990) calculated the critical values to test the rank of the matrix 𝚷. The maximum 

eigenvalue test and the trace test are used to determine the rank of 𝚷.  

Consider the arbitrary eigenvalues of the matrix 𝚷 ordered as: 𝜆1 ≥ 𝜆2 ≥. . . ≥ 𝜆𝑛. If there are 

𝑟 cointegrating vectors, then log(1 − 𝜆𝑗) = 0 for the smallest 𝑛 − 𝑟 eigenvalues for 𝑗 = 𝑟 + 1, 𝑟 +

2, … , 𝑛. The hypothesis of the cointegration test is effectively testing 𝜆𝑗 = 0 (no cointegrating 

vectors), against 𝜆𝑗 ≠ 0 (at least one cointegrating vector). The maximum eigenvalue test (ME) as 

well as the trace test (TT) use the estimated eigenvalues �̂�1 ≥ �̂�2 ≥. . . ≥ �̂�𝑛 to test the hypothesis 

about the rank of 𝚷. The tests are run sequentially, beginning from �̂�1 to �̂�𝑛 (Boero, 2009). 

 
The maximum eigenvalue test is used to test whether the estimated (𝑟 + 1)𝑡ℎ largest eigenvalue is 

significantly different from zero. The null and alternative hypothesis are therefore 

𝐻0: rank ≤ 𝑟 versus 𝐻1: rank = 𝑟 + 1. 

The test statistic is defined by 

𝜆𝑚𝑎𝑥 =  −𝑁 ln(1 – �̂�𝑟+1) , 𝑟 = 0,1, … , 𝑛 − 1                                    (19) 

where 𝑁 is the number of observations in sample of data and 𝑛 is the maximum number of possible 

cointegrating vectors. 

 
The trace test on the other hand tests whether the smallest 𝑛 − 𝑟 estimated eigenvalues are 

significantly different from zero. The null and alternative hypothesis are therefore 

     𝐻0: rank ≤ 𝑟 versus 𝐻1: rank ≥ 𝑟 + 1. 

The test statistic is defined by: 

𝜆𝑡𝑟𝑎𝑐𝑒 =  −𝑁 ∑ ln(1 – �̂�𝑖)
𝑛
𝑖=𝑟+1 , 𝑟 = 0,1, … , 𝑛 − 1 .                        (20) 

The number of cointegrating vectors, 𝑟 which have been determined will be an input in the next 

step. The  𝜆𝑚𝑎𝑥 and 𝜆𝑡𝑟𝑎𝑐𝑒 statistics are compared to the appropriate critical values which follow a 

non-standard distribution and is dependent on the deterministic terms (e.g. constants, dummies, 

trend etc.) in the equations.  
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Step 2: Estimation of Cointegrating Relationships 

The cointegrating relationships is determined in this step. The Reduced rank regression method is 

used to extract information and requires equation (7) in the form: 

∆𝒀𝑡 − 𝜶𝜷′𝒀𝑡−1 =  𝚪1𝚫𝒀𝑡−1+ . . . + 𝚪𝑝−1𝚫𝒀𝑡−𝑝+1 + 𝜺𝑡                                  (21) 

For 𝑟 cointegrating vectors, 𝚷 = 𝜶𝜷′, where 𝜶 and 𝜷 are 𝑛×𝑟 matrices. The maximum eigen value 

test and the trace test require the factorisation of 𝚷 by a calculation method using reduced rank 

regression and involving canonical correlation. The maximum likelihood estimate of 𝜷 are the 

eigenvectors corresponding to the 𝑟 highest eigenvalues. 

The Johansen’s procedure requires that the residuals 𝜺𝑡 be independent and identically distributed. 

Autocorrelation can be eliminated from the VAR by selecting sufficient lags using the information 

criteria procedures. The main advantage of this procedure over the Engle-Granger methodology is 

that it can be used to test a few hypotheses about the variables (Boero, 2009). If cointegration has 

been detected between variables, then there exists a long-term equilibrium relationship between 

them. Consequently, a 𝑉𝐸𝐶𝑀 can be applied to evaluate the short run properties of the 

cointegrated series.  

The Johansen’s procedure assumes that the cointegrating vector remains constant during the period 

of study. In practice however, long run relationships between the underlying variables change. The 

reason for this might be technological progress, economic crisis, changes in people’s preferences 

and behaviour, policy or regime alteration and institutional development. This limitation can only 

be experienced if the sample period under consideration is long (Ssekuma, 2011) and the susceptible 

nature of the variable to change (e.g. computer technology changes frequently and long-time period 

is greater than 12 months; people’s preferences change slower, and a long-time period could be 5 

years, etc). 

2.5 Granger Causality 

If past values of a time series, say {𝑋𝑡},  contain extra information that helps explain and predict 

another time series, say {𝑌𝑡}, then 𝑋𝑡 is said to Granger cause 𝑌𝑡. Otherwise, 𝑋𝑡 fails to Granger 

cause 𝑌𝑡 if ∀ 𝑠 = 1,2, … 

𝑀𝑆𝐸[Ê(𝑌t+s|𝑌𝑡, 𝑌𝑡−1, … )] = 𝑀𝑆𝐸[Ê(𝑌t+s|𝑌𝑡, 𝑌𝑡−1, … , 𝑋𝑡−1, 𝑋𝑡−2, … )]              (22) 

where, Ω𝑡 represents all knowledge in the universe at time 𝑡 and �̂�[𝑌t+s|Ω𝑡] is a linear forecast of 

𝑌t+s based on information at time 𝑡. 
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Granger causality between two variables cannot be interpreted as a real causal relationship but 

merely shows that one variable can help to predict the other one better. Two assumptions of 

Granger causality are that the future cannot predict the past and a cause contains unique 

information not available elsewhere about an effect. If a pair of series is cointegrated, then at least 

one of them must cause the other. 

2.5.1 Test for Granger causality 

Consider a bivariate 𝑉𝐸𝐶𝑀 model: 

∆𝑌𝑡 = 𝛽10 + 𝛽11∆𝑌𝑡−1 + ⋯ + 𝛽1𝑝∆𝑌𝑡−𝑝 + 𝛾11∆𝑋𝑡−1 + ⋯ + 𝛾1𝑝∆𝑋𝑡−𝑝 + α1(𝑌𝑡−1 − 𝜃𝑋𝑡−1) + 𝜀1𝑡            (23) 

∆𝑋𝑡 = 𝛽20 + 𝛽21∆𝑌𝑡−1 + ⋯ + 𝛽2𝑝∆𝑌𝑡−𝑝 + 𝛾21∆𝑋𝑡−1 + ⋯ + 𝛾2𝑞∆𝑋𝑡−𝑞 + α2(𝑌𝑡−1 − 𝜃𝑋𝑡−1) + 𝜀2𝑡              (24)  

• To determine if 𝑋𝑡 Granger causes 𝑌𝑡. That is, 

𝐻0: 𝛾11 =. . . = 𝛾1𝑝 = 0 versus 𝐻1: 𝛾1𝑖 ≠ 0 for any 𝑖 

• To determine if 𝑌𝑡 Granger causes 𝑋𝑡.  That is, 

𝐻0: 𝛽21 =. . . = 𝛽2𝑝 = 0 versus 𝐻1: 𝛽2j ≠ 0 for any 𝑗  

The first step of Granger causality test requires ∆𝑌𝑡 of (23) to be regressed on its past values 

excluding ∆𝑋𝑡 in the regressors. This is called the restricted regression, from which the restricted 

sum of squared residuals (𝑆𝑆𝑅𝑟) is obtained. The second step requires ∆𝑌𝑡 to be computed including 

the lagged ∆𝑋𝑡. This is called the unrestricted regression from which the unrestricted sum of squared 

residuals (𝑆𝑆𝑅𝑢) is obtained. The test statistic is defined as  

𝐹 =

(𝑆𝑆𝑅𝑟 − 𝑆𝑆𝑅𝑢)
𝑛

(𝑆𝑆𝑅𝑢)
Θ − (𝑝 + 𝑞 + 1)

                                                              (25) 

where Θ is the number of observations and, 𝑝 and 𝑞 are the number of lags determined for (23) 

using 𝐴𝐼𝐶 or 𝑆𝐵𝐶. The test statistic (25) will be compared with 𝐹𝑛,Θ−(𝑝+𝑞+1)(𝛼) to assess the null 

hypothesis. The same procedure is used to test for the inverse Granger-causality relation in (24) 

(Foresti, 2006). 

Granger Causality test without considering the effect of other variables is subject to possible 

specification bias. A causality test is sensitive to model specification and the number of lags (Alimi 

and Ofonyelu, 2013). A complete understanding of the way the variables of the system interact with 

each other may also not be known using Granger causality. A system may contain several other 

variables and there may be interest in understanding how a variable responds to an impulse in 

another variable. This leads to the next section on impulse response functions. 
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2.6 Impulse Response Functions (IRFs) and Variance decomposition (VDC) 

Impulse response analysis (IRF) is a common tool for investigating the interrelationships among the 

variables in time series models. In terms of consumption, only the relationship with confidence is 

being considered in this research report. However, there are several economic and financial 

variables which may also impact consumption. In a system that involves several variables, IRFs 

model a variable’s response to an impulse in another variable (impulse response relationship). If 

one variable 𝑌𝑡 is affected due to an impulse (unpredictable event that affects an economy or 

innovation) in another variable 𝑋𝑡,  then 𝑋𝑡 is causal to 𝑌𝑡.   

 
A 𝑉𝐴𝑅(𝑝) process can be represented in the form of a vector moving average (𝑉𝑀𝐴) process 

                                                                      𝒀𝑡 = ∑ 𝚿𝑖  𝜺𝑡−𝑖
∞
𝒊=𝟎                                                                    (26) 

where, 𝚿0 = 𝐈𝐧 and 𝚿𝑖  is the 𝑖𝑡ℎ coefficient matrix of the moving average (MA) representation of a 

𝑉𝐴𝑅(1) process. The MA coefficient matrices contain the impulse responses of the system. The 

impulse-response function is defined as 

𝒀𝑡+𝑛 = ∑ 𝚿𝑖 𝜺𝑡+𝑛−𝑖

∞

𝒊=𝟎

                                                              (27) 

where {𝚿𝒏}𝑖,𝑗 =
𝜕𝑌𝑖,𝑡+𝑛

𝜕𝑌𝑗,𝑡
 represents the one-time impulse in 𝑌𝑗,𝑡 and the response 𝑌𝑖,𝑡+𝑛 which 

follows. This is assessed with all other variables in the system at period 𝑡 or earlier held constant. A 

unit impulse in variable j and the response variable 𝑖 is plotted on a graph to view the active 

interrelationships between the variables of the system. The responses to impulses are zero when 

one of the variables does not result in the Granger causality of the other variables taken in group 

(Rossi, 2009). 

A problematic assumption in impulse response analysis is that a shock occurs only in one variable at 

a time. Such an assumption may be reasonable if the shocks in different variables are independent. 

If the variables are not independent, then the error terms may consist of all the influences of 

variables that are not directly included in the set of VECM model. Alternatively, errors that are 

correlated could be an indication that an impulse to one variable may be followed by an impulse to 

another variable. To handle these two problems, the responses of impulses is analysed using the 

Moving Average representation called Cholesky decomposition (𝛀 = 𝑷𝑷′) where 𝑷 is a lower 

triangle (𝑛𝑥𝑛) matrix.  
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Equation 26 then takes the form  

                                                                     𝒀𝑡 = ∑ ⊖𝒊 𝒘𝒕−𝒊
∞
𝒊=𝟎                                                              (28) 

where  ⊖𝒊= 𝚿𝑖𝑷, 𝑤𝑡 = 𝑷−𝟏𝜺𝑡 and 𝐸[𝑤𝑡𝑤𝑡
′] = 𝐈𝐧. 

A change in one element of 𝒘𝒕 has no effect on the other elements as they are uncorrelated. The 

variances of the elements are one and therefore a single impulse is equivalent to an impulse of size 

one standard deviation. Elements of ⊖𝒊 represent the responses of the system to these impulses. 

The response on variable 𝑗 of a single impulse in the 𝑘-th variable which occurred 𝑖 periods ago is 

represented by {⊖𝒊}𝑗𝑘 (Rossi, 2009). 

 
Variance decomposition (VDC) assists in interpreting the 𝑉𝐴𝑅 model after its coefficients have been 

estimated. It indicates the information each variable contributes to the other variables in the 𝑉𝐴𝑅 

and assists in determining the amount of the forecast error variance of each of the variables which 

can be explained by external impulses to the other variables. The forecast VDC determines the 

proportion of the change in 𝑌𝑗𝑡 due to the shock 𝜖𝑗𝑡 versus shocks of other variables 𝜖𝑖𝑡 for 𝑖 ≠ 𝑗 

(Kozhan, 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Vimal Singh Masters Research Report 9801940E 
 

18 | P a g e  
 

Chapter 3: Literature Review 

The idea that changes in consumer and business confidence can be an important driver of economic 

and financial variables is an old but controversial one. It assumes that confidence reacts not only to 

movements in economic fundamentals but is itself an independent cause of economic fluctuations 

distinct from those fundamentals.  

The 2007-08 financial crisis and the subsequent recession has given a larger importance to the role 

of confidence as a key metric for economic development. Households have been found to increase 

their precautionary savings and, therefore reduce their consumption in reaction to higher 

uncertainty about their future income. Companies react to uncertainty by reducing capital 

investment and staff expansion plans. This results in reduced borrowing for capital investment or 

the purchase of tangible assets (ECB Monthly Bulletin, January 2013). Beaudry and Portier (2006) 

observed that during periods of increased confidence there was an expectation of higher 

productivity. This had substantial effects which included increased consumption, higher investment, 

real GDP increase, and share prices were pushed higher. Increases in confidence accounts for more 

than 40% of changes in consumption, investment, and hours worked (Leduc, 2010). This behaviour 

has resulted in the European Central Bank (ECB) finding that confidence indices are beneficial to 

track economic changes as they are timely and contain leading information relating to economic 

and financial variables.  

Confidence indices, however, do not necessarily imply a causal relationship with economic and 

financial variables. A common factor, like an economic or financial event (e.g. stock market crash) 

could explain the co-movements. The ECB have also found that when there are usual periods of 

economic activity, confidence indices provide minimal information in forecasting economic and 

financial variables. This was attributed to confidence indices already including information that is 

contained in economic or financial data. The ECB found that confidence indices contributed more 

to forecasting during periods of uncertainty which feature substantial changes in economic and 

financial variables (ECB Monthly Bulletin, January 2013). 

The evidence from existing research about the association between confidence and confidence 

measures is mixed but most find that they are significant (Dees and Brinca, 2011). Dees and Brinca 

(2011) assessed the role of confidence in explaining consumption of households. The data of two 

countries which were evaluated in this study was the United States (U.S) and the European Union 

(E.U), prior to the Brexit vote in June 2016. The study showed the extent of the additional 
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information confidence indicators brought to the predication of household consumption beyond 

variables usually found to have explanatory power (e.g. interest rates or wealth). The conditions 

which confidence indicators could be a good predictor of household consumption was also 

investigated. 

The results showed that in the U.S, confidence is Granger caused by financial wealth and equity 

prices, while in the E.U, unemployment rates, interest rates and foreign confidence are the only 

variables that Granger cause domestic confidence. The causality analysis was extended with a 

simple model where the change in consumption only depends on the change in confidence 

indicators. This analysis found that U.S confidence indicators did not Granger cause consumption 

expenditure but U.S confidence did Granger cause E.U consumption. 

Additionally, Dees and Brinca (2011) estimated a VAR model to analyse the impact a shock to 

confidence on consumption using impulse response functions. A shock to confidence was found to 

have an impact on consumption for E.U which was short term significant, while the U.S has no long 

run significant association between confidence and consumption growth. The analysis also found 

that shocks in economic and financial variables play a relatively larger role on average relative to 

shocks in confidence on consumption.  

The study by Dees and Brinca (2011) also raised an important caveat regarding the measurement of 

confidence indices. These indices are a subjective assessment of respondents to their circumstances 

and environment. Indices also suffer measurement error as survey questions may be ambiguous. As 

was done in previous research, confidence indices determined using survey data were regarded as 

adequate proxies of consumers’ perceptions about the economic environment and could be used 

as predictor variables of consumption. 

Özerkek and Çelik (2010) investigated the importance of consumer confidence and attempted to 

understand its relationship with fiscal spending and consumer consumption for emerging market 

countries. The first objective which was examined looked at whether a change in consumer 

confidence could give rise to a change in fiscal spending. The second objective was to determine 

whether fiscal spending and consumer consumption are determinants of consumer confidence.  

The study by Özerkek and Çelik (2010) found that a long run relationship existed between the three 

variables. The study found that when consumer confidence increased then households were 

optimistic that economic conditions would increase in the future, and the consumption of 

consumers increases. A rise in private consumption was found to have resulted in businesses leading 
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the economic cycle and government reducing the need to stimulate the economy. Özerkek and Çelik 

(2010) further found that the relationship between government spending and consumer 

consumption is highly influenced by the level of confidence consumers have in an economy. The 

study also concluded that in a dynamic world of information flows, economic agents should not fail 

to incorporate confidence expectations into consumption decisions. 

Khumalo (2014) used quarterly South African data to determine from a consumer perspective if any 

long run relationship existed between expenditure and confidence. He also included growth of GDP 

in the paper which was used as a variable to signify economic growth. The variables were found to 

be cointegrated which implied the existence of a long run relationship between them. He found that 

consumer confidence and economic growth affect consumer expenditure positively which results in 

increased expenditure in the economy. At most one cointegration vector was found between the 

variables. The VECM found that consumer expenditure adjusts towards equilibrium by thirty eight 

percent between quarters. The IRFs also supported the results of a positive relation between 

consumer expenditure and confidence. The study by Khumalo (2014) found consumer confidence 

had a positive and significant effect on consumer expenditure from a South African perspective. It 

also recommended that policy makers should take this outcome into consideration. 

Other studies which have also tried to establish this link include Fuhrer (1993), Carroll et al. (1994), 

Bram and Ludvigson (1998), Ludvigson (2004), Souleles (2004) and Lahiri et al (2012) with mixed 

outcomes. Fuhrer (1993) showed that consumer confidence does not cause economic conditions 

such as levels of income growth, inflation, unemployment, and interest rates but rather reflect these 

conditions.  Carroll et al. (1994) showed evidence that the lagged consumer confidence had some 

explanatory power for changes in household consumption. Bram and Ludvigson (1998) found that 

confidence data from difference universities had different economic and statistical significance on 

the prediction of consumer consumption. This is an indication of the subjectivity of the confidence 

index. Ludvigson (2004) showed evidence that confidence indicators contain some information 

about future consumer consumption growth but most of the information is also inherent in 

economic and financial indicators. He concluded that confidence indicators assist minimally in the 

prediction of consumer consumption. Souleles (2004) showed evidence that confidence does help 

in forecasting consumption growth. Lahiri et al (2012) found that confidence played a key role in 

improving the accuracy of consumption forecasts. They also found during the recession of 2007–

2009, sentiment had a more pervasive effect on aggregate consumption.  
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The studies by Dees and Brinca (2011), Özerkek and Çelik (2010) and Khumalo (2014) also found 

that including confidence when modelling outcomes may or may not improve forecasting results. 

“Animal Spirits” (Keynes, 1936) describes the irrational and non-economic motives of people which 

results in economic fluctuations. The results of this research report may therefore not necessarily 

find sentiment to have a relationship with consumption. 
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Chapter 4: Methodology  

This section outlines the steps to be followed to achieve the stated objectives. The existence of 
associations will be considered for the following 3 cases: 

i. consumer consumption and consumer confidence,  

ii. business consumption and business confidence, and  

iii. business confidence and consumer confidence.  

The data will be analysed using EViews 9 which is an econometric software commonly used for time 

series analysis. The analysis will begin by attempting to understand the data using timeseries plots 

of the following variable pairs: 

a) change in consumer confidence and the change in household consumption;  

b) the change in business confidence and the change in capital formation; and  

c) the change in business confidence and the change in consumer confidence.  

These time series plots assist in determining if relationships between the variables can be identified 

visually. It will also assist in identifying issues with structural breaks.  

 

Formal tests will be conducted next to determine if structural breaks exist and the period in which 

they exist. This will ensure that any relationships identified in this research report do not suffer from 

specification issues. The Augmented Dickey-Fuller tests, discussed in Section 2.3.3, will be 

performed thereafter to determine the integration order of the variables in the research report. 

 

Specifying a smaller lag length or using the incorrect deterministic components may affect model 

performance. The lag length will therefore need to be determined using AIC or SBC selection criteria. 

For the variable pairs under consideration to Granger cause each other (in either direction), they 

must be cointegrated. Several methods will be used to identify if the series are indeed cointegrated. 

These include: 

i. expert knowledge and economic theory about the data,  

ii. plotting the various series and  

iii. inspecting if there is a common stochastic trend or by performing statistical tests for 

cointegration.  

The Johansen procedure, discussed in Section 2.4.2, will be used to determine if a long run 

relationship exists between the variable pairs. 
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An appropriate error correction model (equations 30, 32, 34, 36, 38 and 40) with the appropriate 

deterministic components (i.e. no deterministic components, a constant and no trend term, 

constant and trend term) will be specified and estimated to understand the short and long run 

behaviour of the pair of variables. The residuals of these models will be analysed using the Jarque‐

Bera test for normality and the Breusch–Godfrey serial correlation LM test. The Jarque‐Bera test for 

normality tests if the residuals have a normal distribution with zero skewness and excess kurtosis. 

It is tested against the alternative hypothesis that the residuals have a non‐normal distribution. The 

analysis of the residual diagnostics ensures that the residuals are white noise, i.e. the residuals do 

not have autocorrelation inherent.   

 

Granger causality tests, outlined in Section 2.5, will be used to analyse the association between 

confidence and consumption. There are three possible outcomes (Awe, 2012) from these tests: 

i. unidirectional causality where there is a one direct causality between the pair of variables; 

ii. bidirectional causality where both variables cause each other, and  

iii. no causality. 

Granger causality provides an understanding about causal relationships between variables. It is 

often of interest to know the response of dependent variable to an impulse in an independent 

variable of a system that involves several other economic variables as well. This research report will 

also analyse this type of causality using VDC and IRFs. The VDC of each of the variables will be 

calculated and plotted to understand the amount of the forecast error which can be explained by 

exogenous shocks to one of the variable pairs. IRFs will be used to analyse the responsiveness of the 

dependent variables in the 𝑉𝐸𝐶𝑀 when a dependent variable in the model receives an impulse.  

Conclusions regarding the outcome of the tests and analysis will be made thereafter. 
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Chapter 5: Data Analysis and Results 

The following notation will be introduced to represent the variables in this analysis: 𝐶𝐶𝐼𝑡 (Consumer 

confidence index at time 𝑡); 𝐻𝐶𝑡 (Household consumption at time 𝑡); 𝐵𝐶𝐼𝑡 (Business Confidence 

index at time 𝑡) and 𝐶𝐹𝑡 (Capital Formation at time 𝑡). 

 

5.1 Time Series Plot of the Data 

 

Figure 5.1: Co-movement between changes in consumer confidence and changes in household 

consumption 

There are crucial events in South Africa’s history which may be observable in the time series plot of 

the data between June 1982 and March 2017. In 1985, confidence and consumption lows were 

experienced due to the country being in a state of emergency when hundreds of people were killed 

in political violence and thousands were detained in the ensuing year. The official start of the 

process of ending apartheid and unbanning of organisations that were banned by the government 

including the African National Congress, the South African Communist Party and the Pan Africanist 

Congress began in 1990. Political prisoners including Nelson Mandela were also released. Ahead of 
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the historic democratic elections, in 1993 South Africans lived in fear of civil war and popular leader 

Chris Hani was assassinated. The Truth and Reconciliation Commission began its formal hearings in 

1996 to assist in dealing with the violence and human rights abuses during apartheid. The 

constitution was amended by the Constitutional Assembly and new agreements relating to culture, 

taxation and tax evasion and defence equipment were also signed.  

 

Between 1998 and 2001, the South African rand was in crisis mode due to exchange rate 

overshooting which was possibly influenced by the peak of the AIDS pandemic at the time. South 

Africa had its third democratic election in 2004 and Nelson Mandela retired. The global financial 

crisis and recession began in 2008, and its effects lasted 3 years. South Africa hosted the soccer 

World Cup in 2010 and 20 million working days (determined by number of participants multiplied 

by the length of stoppage) lost during strikes (Mail and Guardian, 2012). In 2014 there was a one-

month long strike by Numsa members (Mail and Guardian, 2014). Political and economic turmoil in 

2015 was further exacerbated by political battles between Jacob Zuma and previous finance 

minister Pravin Gordhan; the president’s decision to reshuffle finance ministers the fourth time in 

his term and the calls for the president to step down amid corruption scandals (Chutel, 2017). It is 

expected that events with negative consequences will reduce the outlook of consumers and 

businesses about the future. As per the definition of consumer and business confidence, this will 

result in a lower confidence index. The opposite effect will be experience when there is a positive 

outlook about the future. 

 

Figure 5.1 does show periods where consumer confidence and consumer consumption follow 

similar paths. In 2005, there appears to be a larger increase in household consumption and 

incremental changes in confidence. This was after the 3rd democratic election. However, a different 

trend is visible prior to the 2008 financial crisis where there is a large increase in consumption 

despite a small increase in confidence. This increase in consumption however did seem to normalise 

to historical trends in 2014. Apart from these large deviations, it does appear that changes in 

household consumption do trigger changes in confidence. 
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Figure 5.2: Co-movement between changes in business confidence and changes in capital 

formation 

It does show periods where business confidence and capital formation follow similar paths (pre 1994 

elections and after 2004 to before the 2008 financial crisis), but there are also periods in which 

business confidence has larger swings for incremental changes in capital formation (post the 1994 

elections to prior to 2004, and prior to the 2008 financial crisis). Post 2013, the trend appears to 

have changed where capital formation has larger swings than business confidence which could have 

been a result of strikes and Jacob Zuma cabinet reshuffle. 
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Figure 5.3: Co-movement between changes in business confidence and changes in consumer 

confidence 

Business confidence and consumer confidence largely follow similar paths in figure 5.3 post the 2008 

financial crisis. There does seem to be larger swings in business confidence than consumer 

confidence between 1987 and prior to the 2008 financial crises. This suggests that businesses were 

more reactive than consumers prior to the financial crises. Apart from this outlier, the time series 

seem to follow similar paths. 

 

Overall, the three pairs of variables above do show some form of co-movement but there are also 

periods where the paths deviate. Structural breaks in the data will be tested next to determine if 

dummy variables will need to be included in the model formation owing to the discussed significant 

points in South Africa’s history. 
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5.2 Testing for Structural Breaks 

Structural breaks occur when the coefficients of the time series model changes over the period 

being considered for the analysis. These coefficients will not be valid in the short and long run. The 

diagnostic checks for models with breaks which arise due to exogenous shocks may also show that 

the residuals are not normally distributed.  These may be the result of unforeseen political changes 

(e.g. cabinet reshuffles), stock market crashes (e.g. 2008 financial crisis) and wars in countries which 

impact commodity prices (e.g. Gulf war). (Feridun, 2009). 

Multiple breakpoints at a 5% significance level were tested using the Bai-Perron tests of 

(𝑙 + 1) 𝑣𝑒𝑟𝑠𝑢𝑠. 𝑙 sequentially. The Bai-Perron methodology has two parts, the first one identifies 

any number of breaks in a time series, regardless of statistical significance and the second proposes 

a series of statistical tests to test for the statistical significance of these breaks, using asymptotic 

critical values (Antoshin et al, 2008). This test is used in a sequential way to estimate consistently 

the number of changes in a set of data. The test statistic is based on the difference between the 

optimal sum of squared residuals associated with 𝑙 breaks and the optimal sum of squared residuals 

associated with (𝑙 + 1) breaks (Jouini and Boutahar, 2005). Table 5.1 provides a summary of 

breakpoints identified with the 𝑅2 and Adjusted 𝑅2 providing an indication of the fit of the model 

with the inclusion of breaks. The detailed results can be found in Appendix B: Stability tests. 
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Table 5.1: Structural Breaks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The break points identified above are closely related to events identified earlier in South Africa’s 

past. These were further verified in the plots of the data. The events which appear prevalent as 

break points above are the 2008-2010 Financial Crisis, 2010 World Cup, the 2004 democratic 

elections, and the period between 1985 state of emergency to 1990 beginning to unban political 

parties. Dummy variables will be used to capture these shocks to improve model fit. The dummy 

variables will be set to equal zero for all observations except the period(s) in which a shock occurred 

Dependent 
Variable 

Independent 
Variable 

No. of 
Breaks 

Break Dates 𝑹𝟐 
Adjusted  

𝑹𝟐 

𝐻𝐶𝑡 

 

𝐶𝐶𝐼𝑡 

 
4 

6/01/1988 
6/01/1995 
6/01/2004 
3/01/2010 

75.19% 73.47% 

𝐶𝐶𝐼𝑡 

 

𝐻𝐶𝑡 

 
3 

3/01/1998 
6/01/2004 
6/01/2010 

42.94% 39.91% 

𝐶𝐹𝑡 

 

𝐵𝐶𝐼𝑡 

 
3 

6/01/1996 
12/01/2004 
3/01/2010 

68.11% 66.41% 

𝐵𝐶𝐼𝑡 

 

𝐶𝐹𝑡 

 
4 

9/01/1987 
6/01/1996 

12/01/2001 
3/01/2008 

55.83% 52.78% 

𝐵𝐶𝐼𝑡 

 

𝐶𝐶𝐼𝑡 

 
3 

9/01/1990 
12/01/2001 
3/01/2008 

62.94% 60.97% 

𝐶𝐶𝐼𝑡 

 

𝐵𝐶𝐼𝑡 

 
5 

3/01/1988 
9/01/1994 

12/01/1999 
3/01/2005 
3/01/2012 

71.30% 68.83% 

 

Notes: Dummy variables will be introduced to handle for the structural breaks identified above. 
These are in arranged in chronological order. The dummy variable is 1 from one break period to 
another and 0 thereafter. 𝐷𝑉𝐶𝐶𝑡

1, 𝐷𝑉𝐶𝐶𝑡
2, 𝐷𝑉𝐶𝐶𝑡

3 and 𝐷𝑉𝐶𝐶𝑡
4 for the 4 structural breaks 

identified in the relationship between 𝐶𝐶𝐼𝑡 and 𝐻𝐶𝑡; 𝐷𝑉𝐶𝐻𝑡
1, 𝐷𝑉𝐶𝐻𝑡

2 and 𝐷𝑉𝐶𝐻𝑡
3 for the 3 

structural breaks identified in the relationship between 𝐻𝐶𝑡 and 𝐶𝐶𝐼𝑡; 𝐷𝑉𝐵𝐶𝑡
1, 𝐷𝑉𝐵𝐶𝑡

2 and 
𝐷𝑉𝐵𝐶𝑡

3 for the 3 structural breaks identified in the relationship between 𝐵𝐶𝐼𝑡 and 𝐶𝐹𝑡; 𝐷𝑉𝐶𝐹𝑡
1, 

𝐷𝑉𝐶𝐹𝑡
2, 𝐷𝑉𝐶𝐹𝑡

3 and 𝐷𝑉𝐶𝐹𝑡
4 for the 4 structural breaks identified in the relationship between 𝐶𝐹𝑡 

and 𝐵𝐶𝐼𝑡; 𝐷𝑉𝐶𝐵𝑡
1, 𝐷𝑉𝐶𝐵𝑡

2 and 𝐷𝑉𝐶𝐵𝑡
3 for the 3 structural breaks identified in the relationship 

between 𝐵𝐶𝐼𝑡 and 𝐶𝐶𝐼𝑡; and 𝐷𝑉𝐵𝐶𝐶𝑡
1, 𝐷𝑉𝐵𝐶𝐶𝑡

2, 𝐷𝑉𝐵𝐶𝐶𝑡
3, 𝐷𝑉𝐵𝐶𝐶𝑡

4 and 𝐷𝑉𝐵𝐶𝐶𝑡
5 for the 5 

structural breaks identified in the relationship between 𝐶𝐶𝐼𝑡 and 𝐵𝐶𝐼𝑡. 
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where it will have a value one. Dummy variables included in the model should assist in ensuring that 

model residuals do not suffer from autocorrelation and heteroscedasticity (Feridun, 2009). 

5.3 Testing for Stationarity and Detecting Integration Order of the Variables 

Stationarity tests are first performed to determine if the variables are stationary and thereafter the 

integration order of the variables will be determined. Structural breaks which were suspected in 

figures 5.1, 5.2 and 5.3, were confirmed in the breakpoint tests in Table 5.1. Unit root tests are run 

considering the presence of these structural breaks to prevent obtaining test results which are 

possibly biased towards non-rejection of the null hypothesis of a unit root. Many of the changes in 

government policy or global economics are sudden rather than gradual changes. An additive outliers 

(AO) model is more appropriate for this model as it captures sudden changes in the mean of a series. 

The Dickey Fuller minimum 𝑡 test breakpoint selection, which is an application of the Perron’s unit 

root test to handle for structural breaks is applied. The trend and break point specification were 

based on the intercept only. The lag length was selected based on the Schwarz information criterion 

(see Table 5.14). 

Table 5.2 reports the results of the unit root tests. The null hypothesis 𝐻0: 𝛾 = 0 (𝑌𝑡 a unit root with 

structural break(s) in the series) is tested against the alternative 𝐻1: 𝛾 < 0 (𝑌𝑡 is stationary with 

break(s)).  

Table 5.2: ADF Test Results with no differencing 

Variable 
ADF Test 
Statistics 

At 99% 
Critical level 

Vogelsang (1993) asymptotic 
one-sided p-values 

𝐻𝐶𝑡 -1.598789 -4.949133 > 0.99 

𝐶𝐶𝐼𝑡 -3.514597 -4.949133 0.3789 

𝐶𝐹𝑡 -3.858679 -4.949133 0.2106 

𝐵𝐶𝐼𝑡 -3.088742 -4.949133 0.6342 

Looking at the p-values, the null hypothesis cannot be rejected and therefore all 4 variables have 

each a unit root. The first difference of the variables will be considered next to determine if the 

variables will become stationary.  
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Table 5.3: ADF Test Results with differencing of order 1 

 

 
 
 
 
 
 
 
 
 
 
 
 

Looking at the p-values for the first difference, the null hypothesis can be rejected for the first 

difference of all the variables at the 5% level. Since the integration order of the variables under 

consideration is the same, I(1) in this case, then the variables may potentially be cointegrated.   The 

lag lengths are required for cointegration testing and will be determined next.  

5.4 Lag Length Selection 

The lag length can be determined using several information criteria estimators. These include:  

• Sequential modified LR test statistic (LR),  

• Final prediction error (FPE),  

• Akaike information criterion (AIC),  

• Schwarz information criterion (SBC) and  

• Hannan-Quinn information criterion (HQ).  

As per the theory discussed earlier, the results of AIC and SBC will be used to determine the optimal 

lag length. 

Table 5.4 provides a summary of the Information criteria results and lags selected for each pair of 

variables. The detailed results of information criteria tests for each of pair of variables considered 

can be found in Appendix C: Lag Length Selection. 

 

 

 

 

 

 

Variable 
ADF Test 
Statistics 

At 99% 
Critical level 

At 95% 
Critical 

level 

Vogelsang 
asymptotic one-
sided p-values 

Order of 
Integration 

∆𝐻𝐶𝑡 -6.930298 -4.949133 -4.443649 < 0.01 𝐼(1) 

∆𝐶𝐶𝐼𝑡 -18.60499 -4.949133 -4.443649 < 0.01 𝐼(1) 

∆𝐶𝐹𝑡 -4.452339 -4.949133 -4.443649 0.0490 𝐼(1) 

∆𝐵𝐶𝐼𝑡 -12.39275 -4.949133 -4.443649 < 0.01 𝐼(1) 

 
Notes: Notation is introduced in the above table for the variables in the first difference: Δ𝐶𝐶𝐼𝑡 
(Change in consumer confidence index at time 𝑡); Δ𝐻𝐶𝑡 (Change in household consumption at 
time 𝑡); Δ𝐵𝐶𝐼𝑡 (Change in business Confidence index at time 𝑡) and Δ𝐶𝐹𝑡 (Change in capital 
Formation at time 𝑡). 
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Table 5.4: Lag Length Selection 

Dependent 

Variable 

Independent 

Variable 

Exogenous 

Variables 
AIC SBC Optimal Lag 

𝐻𝐶𝑡 

 

𝐶𝐶𝐼𝑡 

 

𝐷𝑉𝐶𝐶𝑡
1 

𝐷𝑉𝐶𝐶𝑡
2 

𝐷𝑉𝐶𝐶𝑡
3 

𝐷𝑉𝐶𝐶𝑡
4 

27.84077 28.23388 2 

𝐶𝐶𝐼𝑡 

 

𝐻𝐶𝑡 

 

𝐷𝑉𝐶𝐻𝑡
1 

𝐷𝑉𝐶𝐻𝑡
2 

𝐷𝑉𝐶𝐻𝑡
3 

27.84049 28.18992 2 

𝐶𝐹𝑡 

 

𝐵𝐶𝐼𝑡 

 

𝐷𝑉𝐵𝐶𝑡
1 

𝐷𝑉𝐵𝐶𝑡
2 

𝐷𝑉𝐵𝐶𝑡
3 

23.6529 23.91497 1 

𝐵𝐶𝐼𝑡 

 

𝐶𝐹𝑡 

 

𝐷𝑉𝐶𝐹𝑡
1 

𝐷𝑉𝐶𝐹𝑡
2 

𝐷𝑉𝐶𝐹𝑡
3 

𝐷𝑉𝐶𝐹𝑡
4 

23.67239 23.97814 1 

𝐵𝐶𝐼𝑡 

 

𝐶𝐶𝐼𝑡 

 

𝐷𝑉𝐶𝐵𝑡
1 

𝐷𝑉𝐶𝐵𝑡
2 

𝐷𝑉𝐶𝐵𝑡
3 

13.4172 13.76663 2 

𝐶𝐶𝐼𝑡 

 

𝐵𝐶𝐼𝑡 

 

𝐷𝑉𝐵𝐶𝐶𝑡
1  

𝐷𝑉𝐵𝐶𝐶𝑡
2  

𝐷𝑉𝐵𝐶𝐶𝑡
3  

𝐷𝑉𝐵𝐶𝐶𝑡
4  

𝐷𝑉𝐵𝐶𝐶𝑡
5 

13.47224 13.82167 1 

The lags identified in Table 5.4 show that households are unlikely to change consumption behaviour 

too quickly (2 lags) due to changes in consumer confidence and are likely to wait up to half a year 

(quarterly data) before reacting. In contrast, businesses appear to be more reactive (1 lag) to 

changes in capital expenditure as business confidence changes. This could be linked to businesses 

having to remain relevant and ahead of competitors. The confidence of businesses also appears to 

be more reactive to changes in consumer confidence than the confidence of consumers to changes 

in business confidence. 
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5.5 Cointegration Analysis 

The Johansen cointegration test is more appropriate as it allows for testing of hypotheses when 

dummy variables need to be considered in the model, which could not be done with the Engle-

Granger methodology. The 2-step Johansen cointegration methodology described earlier will be 

followed. The dummy variables for the pairs of variables identified earlier have been included as 

exogenous variables in the model. 

5.5.1 Household Consumption predicted by Consumer Confidence 

In the first step, cointegrating relationship is analysed where 𝐻𝐶 is the dependent variable, 𝐶𝐶𝐼 is a 

predictor variable and the exogenous variables 𝐷𝑉𝐶𝐶𝑡
1, 𝐷𝑉𝐶𝐶𝑡

2, 𝐷𝑉𝐶𝐶𝑡
3 and 𝐷𝑉𝐶𝐶𝑡

4 are the 4 

structural breaks. The results for the Trace test (TT) and Maximum Eigenvalue (ME) tests are given 

in Table 5.5 with the statistic applicable to each test, the Critical Value (CV) and p-Value (derived 

from MacKinnon-Haug-Michelis (1999)). The first column is the hypothesis testing the number 

cointegrating equation(s) (CE(s)) which exist. 

Table 5.5: Cointegration Tests: 𝑯𝑪 predicted by 𝑪𝑪𝑰 

Number of 

CE(s) 

Eigen 

value 

TT  ME 

 Statistic 5% CV p-Value Statistic 

5% 

CV 

p-Value 

None * 0.179992 27.53463 12.32090 0.0001 27.18650 11.22480 0.0000 

At most 1 0.002538 0.348126 4.129906 0.6179 0.348126 4.129906 0.6179 

 

The null hypothesis of no cointegrating vector is rejected using both tests and finds 𝑟 = 1 (one 

cointegrating vector) at a 5% level between 𝐻𝐶 and 𝐶𝐶𝐼. In the second step, the matrix of 

cointegrating coefficients 𝜷′ from fitting the error correction model in equation (7), is determined 

to be: 

𝜷′ = [
1.27E − 06  0.141268
 2.78E − 06 −0.004791

] . 

 
Similarly, the matrix of error correction coefficients measuring the speed of convergence to the long 
run equilibrium is: 

𝜶 = [
1134.127  443.6557

 − 2.720797 0.160092
] . 
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It is determined that the coefficient of 𝐶𝐶𝐼, in the time series model (29), to predict 𝐻𝐶 in the long 

run is 111286.6. This coefficient indicates that as 𝐶𝐶𝐼 increases in the long run, 𝐻𝐶 will increase. 

Similarly, the adjustment coefficient is calculated to be 0.001440. A value between 0 and -1 is an 

indication of the convergence of the series in the next lag period. A positive adjustment coefficient 

implies that the process is not converging in the long run and there may be some instabilities. This 

output implies there could be model specification problems by only including 𝐶𝐶𝐼 as the dependent 

variable.  

5.5.2 Consumer Confidence predicted by Household Consumption 

Since the causal direction is not known in advance, the roles of the variables are reversed. That is, 

𝐶𝐶𝐼 is now the dependent variable while 𝐻𝐶 is the predictor variable and the exogenous variables 

𝐷𝑉𝐶𝐻𝑡
1, 𝐷𝑉𝐶𝐻𝑡

2 and 𝐷𝑉𝐶𝐻𝑡
3 are the 3 structural breaks. The results for the Trace test (TT) and 

Maximum Eigenvalue (ME) tests are given in Table 5.6 with the statistic applicable to each test, the 

Critical Value (CV) and p-Value (derived from MacKinnon-Haug-Michelis (1999)). 

Table 5.6: Cointegration Tests: 𝑪𝑪𝑰 predicted by 𝑯𝑪 

Number of 

CE(s) 

Eigen 

value 

TT  ME 

 Statistic 5% CV p-Value Statistic 
5% 

CV 
p-Value 

None * 0.202733 34.64232 12.32090 0.0000 31.03949 11.22480 0.0000 

At most 1 0.025955 3.602831 4.129906 0.0684 3.602831 4.129906 0.0684 

The null hypothesis of no cointegrating vector is rejected using both tests and finds 𝑟 = 1 (one 

cointegrating vector) at a 5% level between 𝐶𝐶𝐼 and 𝐻𝐶. 

The matrix of cointegrating coefficients is: 

𝜷′ = [
 −0.137914 −7.03E − 07
 0.025061 −1.70E − 06

] . 

 
The matrix of error correction coefficients measuring the speed of convergence to the long run 
equilibrium is: 

𝜶 = [
 2.746739 −0.600544

 − 1592.017 −1391.208
] . 

 
The coefficient of 𝐻𝐶 in the time series model (31) to predict 𝐶𝐶𝐼 in the long run is 5.10E-06 which 

indicates that as 𝐻𝐶 increases in the long run, 𝐶𝐶𝐼 will increase. The adjustment coefficient is  

-0.378814 which indicates that the deviation from the long-term growth in 𝐶𝐶𝐼 is corrected by 

37.88% in the next quarter.  
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5.5.3 Capital Formation predicted by Business Confidence 

The cointegrating relationship of business variables is analysed next. In this first case, 𝐶𝐹 is the 

dependent variable, 𝐵𝐶𝐼 is a predictor variable and the exogenous variables 𝐷𝑉𝐵𝐶𝑡
1, 𝐷𝑉𝐵𝐶𝑡

2 and 

𝐷𝑉𝐵𝐶𝑡
3 are the 3 structural breaks. The results for the Trace test (TT) and Maximum Eigenvalue (ME) 

tests are given in Table 5.7 with the statistic applicable to each test, the Critical Value (CV) and p-

Value (derived from MacKinnon-Haug-Michelis (1999)). 

Table 5.7: Cointegration Tests: 𝑪𝑭 predicted by 𝑩𝑪𝑰 

Number of 

CE(s) 

Eigen 

value 

TT  ME 

 Statistic 5% CV p-Value Statistic 
5% 

CV 
p-Value 

None * 0.135208 20.05501 12.32090 0.0021 20.04670 11.22480 0.0011 

At most 1 6.02E-05 0.008306 4.129906 0.9406 0.008306 4.129906 0.9406 

The null hypothesis of no cointegrating vector is rejected using both tests and finds 𝑟 = 1 (one 

cointegrating vector) at a 5% level between 𝐶𝐹 and 𝐵𝐶𝐼. 

 
The matrix of cointegrating coefficients is: 

𝜷′ = [
 −0.000169  0.061823
 9.15E − 05 0.005834

] . 

 
The matrix of error correction coefficients measuring the speed of convergence to the long run 
equilibrium is: 

𝜶 = [
 376.8436  3.038013

 − 1.084207  0.053907
] . 

 

The coefficient of 𝐵𝐶𝐼 in the time series model (33) to predict 𝐶𝐹 in the long run is -366.3454 which 

indicates that as 𝐵𝐶𝐼 increases, 𝐶𝐹 will decrease in the long run. This result seems unlikely and could 

be an indication that other variables need to be included in the model specification to predict 𝐶𝐹. 

The adjustment coefficient is -0.063594. This indicates that deviation from the long-term growth in 

𝐶𝐹 is corrected by 6.36% in the next quarter. The small adjustment coefficient also indicates there 

may be additional variables with more information which are involved in the prediction of 𝐶𝐹. 

 

5.5.4 Business Confidence predicted by Capital Formation 

The roles of the business variables are reversed next. That is, 𝐵𝐶𝐼 is the dependent variable, 𝐶𝐹 is 

a predictor variable and the exogenous variables 𝐷𝑉𝐶𝐹𝑡
1, 𝐷𝑉𝐶𝐹𝑡

2, 𝐷𝑉𝐶𝐹𝑡
3 and 𝐷𝑉𝐶𝐹𝑡

4 are the 4 

structural breaks. The results for the Trace test (TT) and Maximum Eigenvalue (ME) tests are given 
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in Table 5.8 with the statistic applicable to each test, the Critical Value (CV) and p-Value (derived 

from MacKinnon-Haug-Michelis (1999)). 

Table 5.8: Cointegration Tests: 𝑩𝑪𝑰 predicted by 𝑪𝑭 

Number of 

CE(s) 

Eigen 

value 

TT  ME 

 Statistic 5% CV p-Value Statistic 
5% 

CV 
p-Value 

None * 0.142547 24.86402 12.32090 0.0003 21.22284 11.22480 0.0007 

At most 1 0.026040 3.641177 4.129906 0.0669 3.641177 4.129906 0.0669 

The null hypothesis of no cointegrating vector is rejected using both tests and finds 𝑟 = 1 (one 

cointegrating vector) at a 5% level between 𝐵𝐶𝐼 and 𝐶𝐹. 

The matrix of cointegrating coefficients is: 

𝜷′ = [
 −0.080111 0.000152
 0.007356 −0.000160

] . 

The matrix of error correction coefficients measuring the speed of convergence to the long run 
equilibrium is: 

𝜶 = [
  2.232254  0.775574

 − 276.9439 125.6688
] . 

The coefficient of 𝐶𝐹 in the time series model (35) to predict 𝐵𝐶𝐼 in the long run is -0.001898. This 

indicates that as 𝐶𝐹 increases, 𝐵𝐶𝐼 will decrease in the long run. Similar to the results in Section 

5.5.3, this result seems unlikely and could be an indication that additional variables need to be 

included in the model specification to predict 𝐵𝐶𝐼. The adjustment coefficient is -0.178828. This 

indicates that deviation from the long-term growth rate in 𝐵𝐶𝐼 is corrected by 17.88% in the next 

quarter. The small adjustment coefficient also indicates there may be other variables with more 

information which are involved in the prediction of 𝐵𝐶𝐼. 

5.5.5 Business Confidence predicted by Consumer Confidence 

The cointegrating relationship between the confidence variables is analysed next. In this first case, 

𝐵𝐶𝐼 is the dependent variable, 𝐶𝐶𝐼 is a predictor variable and the exogenous variables 𝐷𝑉𝐶𝐵𝑡
1, 

𝐷𝑉𝐶𝐵𝑡
2 and 𝐷𝑉𝐶𝐵𝑡

3 are the 3 structural breaks. The results for the Trace test (TT) and Maximum 

Eigenvalue (ME) tests are given in Table 5.9 with the statistic applicable to each test, the Critical 

Value (CV) and p-Value (derived from MacKinnon-Haug-Michelis (1999)). 
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Table 5.9: Cointegration Tests: 𝑩𝑪𝑰 predicted by 𝑪𝑪𝑰 

Number of 

CE(s) 

Eigen 

value 

TT  ME 

 Statistic 5% CV p-Value Statistic 
5% 

CV 
p-Value 

None * 0.129174 20.45546 12.32090 0.0018 18.94891 11.22480 0.0019 

At most 1 0.010936 1.506543 4.129906 0.2576 1.506543 4.129906 0.2576 

The null hypothesis of no cointegrating vector is rejected using both tests and finds 𝑟 = 1 (one 

cointegrating vector) at a 5% level between 𝐵𝐶𝐼 and 𝐶𝐶𝐼. 

The matrix of cointegrating coefficients is: 

𝜷′ = [
 0.010029 0.094766
  0.042156 −0.063588

] . 

 
The matrix of error correction coefficients measuring the speed of convergence to the long run 
equilibrium is: 

𝜶 = [
−2.026627  −0.426538

 − 1.907073  0.459083
] . 

The coefficient of 𝐶𝐶𝐼 in the time series model (37) to predict 𝐵𝐶𝐼 in the long run is 9.449097 which 

indicates that as 𝐶𝐶𝐼 increases, 𝐵𝐶𝐼 will increase in the long run. The adjustment coefficient is  

-0.020325 which indicates that deviation from the long-term growth in 𝐵𝐶𝐼 is corrected by 2.03% 

in the next quarter.  The small adjustment coefficient indicates there may be additional variables 

with more information which are involved in the prediction of 𝐵𝐶𝐼.  

 

5.5.6 Consumer Confidence predicted by Business Confidence 

The roles of the business variables are reversed next. That is, 𝐶𝐶𝐼 is the dependent variable, 𝐵𝐶𝐼 is 

a predictor variable and the exogenous variables 𝐷𝑉𝐵𝐶𝐶𝑡
1, 𝐷𝑉𝐵𝐶𝐶𝑡

2, 𝐷𝑉𝐵𝐶𝐶𝑡
3, 𝐷𝑉𝐵𝐶𝐶𝑡

4 and 

𝐷𝑉𝐵𝐶𝐶𝑡
5 are the 5 structural breaks. The results for the Trace test (TT) and Maximum Eigenvalue 

(ME) tests are given in Table 5.10 with the statistic applicable to each test, the Critical Value (CV) 

and p-Value (derived from MacKinnon-Haug-Michelis (1999)). 
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Table 5.10: Cointegration Tests: 𝑪𝑪𝑰 predicted by 𝑩𝑪𝑰 

Number of 

CE(s) 

Eigen 

value 

TT  ME 

 Statistic 5% CV p-Value Statistic 
5% 

CV 
p-Value 

None * 0.138992 20.70524 12.32090 0.0016 20.65185 11.22480 0.0009 

At most 1 0.000387 0.053380 4.129906 0.8498 0.053380 4.129906 0.8498 

The null hypothesis of no cointegrating vector is rejected using both tests and finds 𝑟 = 1 (one 

cointegrating vector) at a 5% level between 𝐶𝐶𝐼 and 𝐵𝐶𝐼. 

 

The matrix of cointegrating coefficients is: 

𝜷′ = [
−0.131905  0.009171
 0.023036 −0.048799

] . 

 
The matrix of error correction coefficients measuring the speed of convergence to the long run 
equilibrium is: 

𝜶 = [
 2.557763   0.018498
 0.258386 0.141274

] . 

The coefficient of 𝐵𝐶𝐼 in the time series model (39) to predict 𝐶𝐶𝐼 in the long run is -0.069526 which 

indicates that as 𝐵𝐶𝐼 increases, 𝐶𝐶𝐼 will decrease in the long run. The adjustment coefficient is  

-0.337380 which indicates that deviation from the long-term growth in 𝐶𝐶𝐼 is corrected by 33.74% 

in the next quarter.  
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5.6 VECM 

This section further explores the relationship between the pairs of variables by specifying VECM; 

estimating and analysing the VECM coefficients and analysing the residuals. 

 

5.6.1 Household Consumption predicted by Consumer Confidence using a VECM 

The 𝑉𝐸𝐶𝑀 is specified with 𝐻𝐶 as the dependent variable, 𝐶𝐶𝐼 as the predictor variable and the 

exogenous variables 𝐷𝑉𝐶𝐶𝑡
1, 𝐷𝑉𝐶𝐶𝑡

2, 𝐷𝑉𝐶𝐶𝑡
3 and 𝐷𝑉𝐶𝐶𝑡

4 with no intercepts and trends. The lag 

length of 2 which was determined in Table 5.4 will be applied. The coefficient of 𝐶𝐶𝐼 in the time 

series model to predict 𝐻𝐶 in the long run was calculated in section 5.5.1. The VECM therefore takes 

the following form: 

Δ𝐻�̂� =  𝐶(1) ∗ ( 𝐻𝐶𝑡−1 + 111286.638𝐶𝐶𝐼𝑡−1) + 𝐶(2) ∗ Δ𝐻𝐶𝑡−1 + 𝐶(3) ∗ Δ𝐻𝐶𝑡−2 + 𝐶(4) ∗ Δ𝐶𝐶𝐼𝑡−1 +

𝐶(5) ∗ Δ𝐶𝐶𝐼𝑡−2 + 𝐶(6) ∗ 𝐷𝑉𝐶𝐶𝑡
1 + 𝐶(7) ∗ 𝐷𝑉𝐶𝐶𝑡

2 + 𝐶(8) ∗ 𝐷𝑉𝐶𝐶𝑡
3 + 𝐶(9) ∗ 𝐷𝑉𝐶𝐶𝑡

4                               (29) 

Table 5.11: VECM Coefficients: 𝑯𝑪 predicted by 𝑪𝑪𝑰 

Coefficient Estimate SE t-Statistic p-value 

𝐶(1) 0.00144 0.001025 1.404871 0.1625 

𝐶(2) 0.321089 0.090231 3.558521 0.0005 

𝐶(3) 0.203593 0.093648 2.174032 0.0315 

𝐶(4) 50.05652 130.9204 0.382343 0.7028 

𝐶(5) 36.06885 117.6911 0.306471 0.7597 

𝐶(6) 760.7758 1971.251 0.385935 0.7002 

𝐶(7) 2487.678 1975.846 1.259044 0.2103 

𝐶(8) 1688.478 3188.949 0.529478 0.5974 

𝐶(9) 2629.856 2387.26 1.101621 0.2727 

Substituting the coefficients in Table 5.11 into the VECM in equation (29) yields: 

Δ𝐻�̂� =  0.001( 𝐻𝐶𝑡−1 + 111286.638𝐶𝐶𝐼𝑡−1) + 0.321Δ𝐻𝐶𝑡−1 + 0.204Δ𝐻𝐶𝑡−2 + 50.057Δ𝐶𝐶𝐼𝑡−1

+ 36.069Δ𝐶𝐶𝐼𝑡−2 + 760.776𝐷𝑉𝐶𝐶𝑡
1 + 2487.678𝐷𝑉𝐶𝐶𝑡

2 + 1688.478𝐷𝑉𝐶𝐶𝑡
3

+ 2629.856𝐷𝑉𝐶𝐶𝑡
4                                                                                                           (30) 

𝐶(1) is the adjustment coefficient for the VECM and is the speed of adjustment towards equilibrium 

in the long run. The p-value of 𝐶(1) shows that it is not significant in Table 5.11 at a 5% level and its 

estimate is non-negative as calculated in section 5.5.1. This indicates that these is no long run 

cointegrating relationship between 𝐶𝐶𝐼 and 𝐻𝐶. 𝐶(2), 𝐶(3), 𝐶(4) and 𝐶(5) are the coefficients of 

the short-run variables. The p-value of these variables are not assessed individually. The Wald test 

is therefore used to test if a short run relationship exists. That is, if these variables are significantly 

different from zero. The null hypothesis of the Wald test is such that 𝐶(2) = 𝐶(3) = 𝐶(4) =
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𝐶(5) = 0. The F-statistic from the Wald test is 6.273423 with a p-value of 0.0001. Therefore, a short 

run relationship does exist between 𝐻𝐶 and 𝐶𝐶𝐼 as the null hypothesis is rejected at a 5% level 

which indicates the short run coefficients are significantly different from zero. The coefficients of 

the variables to handle for breakpoints (𝐶(7), 𝐶(8) and 𝐶(9)) are not significant at a 5% level and 

this indicates that breakpoints have limited impact on the model. The VECM model has an 𝑅2 =

32.84% which is low and indicates that the model only explains 32.84% of the variability in 𝐻𝐶. 

Similarly, the Durbin-Watson (DW) statistic in the output was 1.928399. A general rule of thumb is 

if 𝑅2 > 𝐷𝑊, then there may be spurious results in the time series model. For this model 𝐷𝑊 > 𝑅2 

which indicates the results are not spurious.  

The Jarque-Bera statistic is 917.650 with a p-value of 0.00000. Consequently, the residuals do not 

follow a normal distribution. The Breusch–Godfrey test is a test for the existence of autocorrelation 

in the error terms. For this pair of variables, the null hypothesis of no autocorrelation in the error 

terms cannot be rejected as the F-statistic for the Breusch-Godfrey test is 0.154428 with a p-value 

of 0.8571.  

In summary, this model assists in predicting 32.84% of HC. CCI does not assist in the prediction of 

𝐻𝐶 in the long run but does seem to assist in the prediction in the short run. The residuals of the 

model do not follow a normal distribution which implies that the results of this model do not appear 

to be reliable. This outcome supports the results in the cointegration tests which found the 

adjustment coefficient to be divergent. 

 

5.6.2 Consumer Confidence predicted by Household Consumption VECM 

The 𝑉𝐸𝐶𝑀 is specified with 𝐶𝐶𝐼 as the dependent variable, 𝐻𝐶 as the predictor variable and the 

exogenous variables 𝐷𝑉𝐶𝐻𝑡
1, 𝐷𝑉𝐶𝐻𝑡

2 and 𝐷𝑉𝐶𝐻𝑡
3 , and with no intercepts and trends. The lag length 

of 2 which was determined earlier in Table 5.4 will be applied. The coefficient of 𝐻𝐶 for the time 

series model to predict 𝐶𝐶𝐼 in the long run was calculated in section 5.5.2. The VECM will therefore 

take the following form: 

∆𝐶𝐶�̂� = 𝐶(1) ∗ ( 𝐶𝐶𝐼 𝑡−1 + 0.000005 ∗ 𝐻𝐶𝑡−1) + 𝐶(2) ∗ ∆𝐶𝐶𝐼 𝑡−1 + 𝐶(3) ∗ ∆𝐶𝐶𝐼𝑡−2 + 𝐶(4) ∗

∆𝐻𝐶𝑡−1 + 𝐶(5) ∗ ∆𝐻𝐶𝑡−2 + 𝐶(6) ∗ 𝐷𝑉𝐶𝐻𝑡
1 + 𝐶(7) ∗ 𝐷𝑉𝐶𝐻𝑡

2 + 𝐶(8) ∗ 𝐷𝑉𝐶𝐻𝑡
3                              (31)                                           
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Table 5.12: VECM Coefficients: 𝑪𝑪𝑰 predicted by 𝑯𝑪 

Coefficient Value SE t-Statistic p-value 

𝐶(1) -0.378814 0.080146 -4.726542 0.0000 

𝐶(2) -0.209964 0.091846 -2.286037 0.0239 

𝐶(3) 0.078735 0.083119 0.947250 0.3453 

𝐶(4) 0.000205 6.48E-05 3.170895 0.0019 

𝐶(5) 3.28E-05 6.72E-05 0.487557 0.6267 

𝐶(6) -1.060655 1.474227 -0.719466 0.4732 

𝐶(7) 4.350350 1.866601 2.330626 0.0213 

𝐶(8) -0.226195 1.480250 -0.152809 0.8788 

Substituting the coefficients in Table 5.12 into the VECM in equation (11) yields: 

∆𝐶𝐶�̂� = −0.379( 𝐶𝐶𝐼 𝑡−1 + 0.000005 ∗ 𝐻𝐶𝑡−1) − 0.21 ∗ ∆𝐶𝐶𝐼 𝑡−1 + 0.079∆𝐶𝐶𝐼𝑡−2

+ 0.0002∆𝐻𝐶𝑡−1 + 0.00003∆𝐻𝐶𝑡−2 − 1.061𝐷𝑉𝐶𝐻𝑡
1 + 4.350𝐷𝑉𝐶𝐻𝑡

2  

− 0.226𝐷𝑉𝐶𝐻𝑡
3                                                                                                                  (32) 

𝐶(1) is the adjustment coefficient for the VECM. The p-value of 𝐶(1) shows that it is significant at 

a 5% level in Table 5.12 and is negative as was calculated in section 5.5.2. This validates a long run 

cointegrating relationship between 𝐻𝐶 and 𝐶𝐶𝐼. 𝐶(2), 𝐶(3), 𝐶(4) and 𝐶(5) are the coefficients of 

the short run variables. The null hypothesis of the Wald test is such that 𝐶(2) = 𝐶(3) = 𝐶(4) =

𝐶(5) = 0. The F-statistic from the Wald test is 6.655985 with a p-value of 0.0001. Therefore, a short 

run relationship does exist between 𝐶𝐶𝐼 and 𝐻𝐶 at a 5% level as the null hypothesis is rejected. The 

coefficients of the variables to handle for breakpoints (𝐶(6) and 𝐶(8)) are not significant at a 5% 

level and this indicates that these breakpoints have limited impact on the model. Breakpoint 

coefficient 𝐶(7) is significant at a 5% level. This VECM model has an 𝑅2 = 30.36%  which is low and 

indicates that the model only explains for 30.36% of the variability in 𝐶𝐶𝐼. The 𝐷𝑊 statistic is 

2.022502. The 𝐷𝑊 > 𝑅2 which indicates the results are not spurious.  

The Jarque-Bera statistic is 1.252893 with a p-value of 0.534488 which is an indication that the 

residuals follow a normal distribution. The null hypothesis of the residuals having no autocorrelation 

cannot be rejected as the F-statistic for the Breusch-Godfrey test is 0.793297 with a p-value of 

0.4546. 

In summary, the model assists in predicting 30.36% of 𝐶𝐶𝐼, 𝐻𝐶 seems to assist in the prediction of 

𝐶𝐶𝐼 in the long and short run.  The low predictive power of the model indicates that other variables 

may exist which may assist in predicting 𝐶𝐶𝐼. The model is adequate as the residuals have a normal 

distribution and were not autocorrelated. This outcome further supports the finding of the 
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cointegration tests which found that the model will adjust itself in the next lag. These results also 

support the observations in Figure 5.1 where changes 𝐻𝐶 did seem to result in changes in 𝐶𝐶𝐼. 

5.6.3 Capital Formation predicted by Business Confidence VECM 

The 𝑉𝐸𝐶𝑀 is specified with 𝐶𝐹 as the dependent variable, 𝐵𝐶𝐼 as the predictor variable and the 

exogenous variables 𝐷𝑉𝐵𝐶𝑡
1, 𝐷𝑉𝐵𝐶𝑡

2 and 𝐷𝑉𝐵𝐶𝑡
3, and with no intercepts and trends. The lag length 

of 1 which was determined earlier in Table 5.4 will be applied. The coefficient of 𝐵𝐶𝐼 in the time 

series model to predict 𝐶𝐹 in the long run was calculated in section 5.5.3. The VECM will therefore 

take the following form: 

Δ𝐶�̂� =  𝐶(1) ∗ ( 𝐶𝐹𝑡−1 − 366.345𝐵𝐶𝐼𝑡−1) + 𝐶(2) ∗ Δ𝐶𝐹𝑡−1 + 𝐶(3) ∗ Δ𝐵𝐶𝐼𝑡−1 + 𝐶(4) ∗ 𝐷𝑉𝐵𝐶𝑡
1 + 𝐶(5) ∗

𝐷𝑉𝐵𝐶𝑡
2 + 𝐶(6) ∗ 𝐷𝑉𝐵𝐶𝑡

3                                                                                                                                              (33) 

Table 5.13: VECM Coefficients: 𝑪𝑭 predicted by 𝑩𝑪𝑰 

Coefficient Value SE t-Statistic p-value 

𝐶(1) -0.063594 0.015134 -4.201992 0.0000 

𝐶(2) -0.116626 0.081855 -1.424795 0.1566 

𝐶(3) 10.54052 12.47796 0.844731 0.3998 

𝐶(4) 339.1616 186.8694 1.814966 0.0718 

𝐶(5) 613.9429 248.4348 2.471243 0.0147 

𝐶(6) 347.5373 233.4755 1.488539 0.1390 

Substituting the coefficients in Table 5.13 into the VECM in equation (12) yields: 

Δ𝐶�̂� = −0.064( 𝐶𝐹 𝑡−1 − 366.345𝐵𝐶𝐼𝑡−1) − 0.117Δ𝐶𝐹𝑡−1 + 10.54Δ𝐵𝐶𝐼𝑡−1 + 339.162𝐷𝑉𝐵𝐶𝑡
1

+ 613.943𝐷𝑉𝐵𝐶𝑡
2 + 347.537 𝐷𝑉𝐵𝐶𝑡

3                                                                       (34) 

𝐶(1) is the adjustment coefficient for the VECM. The p-value of 𝐶(1) show that it is significant in 

Table 5.13 and is negative as was calculated in section 5.5.3. This validates a long run cointegrating 

relationship between 𝐵𝐶𝐼 and 𝐶𝐹. 𝐶(2) and 𝐶(3) are the coefficients of the short run variables. 

The null hypothesis of the Wald test is such that 𝐶(2) = 𝐶(3) = 0. The F-statistic from the Wald 

test is 1.520638 with a p-value of 0.2224. Therefore, there is no short run relationship between 𝐵𝐶𝐼 

and 𝐶𝐹 as the null hypothesis cannot be rejected. The coefficients of the variables to handle for 

breakpoints (𝐶(4) and 𝐶(6)) are not significant at a 5% level and this indicates that these 

breakpoints have limited impact on the model. Breakpoint coefficient 𝐶(5) is significant at a 5% 

level.  This VECM model has an 𝑅2 = 16.77% which is low and indicates that the model only explains 

16.77% of the variability in 𝐶𝐹. The 𝐷𝑊 statistic is 2.098617. The 𝐷𝑊 > 𝑅2 which indicates the 

results are not spurious.  
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The Jarque-Bera statistic is 28.62410 with a p-value of 0.000001 which is an indication that the 

residuals are not normally distributed which is an indication that the model predictive results may 

inaccurate. The null hypothesis of the residuals having no autocorrelation is rejected as the F-

statistic for the Breusch-Godfrey test is 11.77043 with a p-value of 0.0008. 

In summary, this model assists in predicting 16.77% of 𝐶𝐹. The low predictive power of the model 

indicates that other variables may exist which may assist in predicting 𝐶𝐹. 𝐵𝐶𝐼 does seem to assist 

in the prediction of 𝐶𝐹 in the long run but does not seem to assist in prediction in the short run. The 

residual diagnostic tests showed that the residuals were not normally distributed which is an 

indication the model needs to be re-specified by including other variables before running further 

analysis. These results are supported by Figure 5.2 which did show periods where both series had 

no co-movements. 

5.6.4 Business Confidence predicted by Capital Formation VECM 

The 𝑉𝐸𝐶𝑀 is specified with 𝐵𝐶𝐼 as the dependent variable, 𝐶𝐹 as the predictor variable and the 

exogenous variables 𝐷𝑉𝐶𝐹𝑡
1, 𝐷𝑉𝐶𝐹𝑡

2, 𝐷𝑉𝐶𝐹𝑡
3 and 𝐷𝑉𝐶𝐹𝑡

4, and with no intercepts and trends. The 

lag length of 1 which was determined earlier in Table 5.4 will be applied. The coefficient of 𝐶𝐹 in 

the time series model to predict 𝐵𝐶𝐼 in the long run was calculated in section 5.5.4. The VECM will 

therefore take the following form: 

Δ𝐵𝐶�̂� =  𝐶(1) ∗ ( 𝐵𝐶𝐼𝑡−1 − 0.002𝐶𝐹𝑡−1) + 𝐶(2) ∗ Δ𝐵𝐶𝐼𝑡−1 + 𝐶(3) ∗ Δ𝐶𝐹𝑡−1 + 𝐶(4) ∗ 𝐷𝑉𝐶𝐹𝑡
1 +

𝐶(5) ∗ 𝐷𝑉𝐶𝐹𝑡
2 + 𝐶(6) ∗ 𝐷𝑉𝐶𝐹𝑡

3 + 𝐶(7) ∗ 𝐷𝑉𝐶𝐹𝑡
4                                                                                  (35)                                                                                                                       

Table 5.14: VECM Coefficients: 𝑩𝑪𝑰 predicted by 𝑪𝑭 

Coefficient Value SE t-Statistic p-value 

𝐶(1) -0.178828 0.050991 -3.507051 0.0006 

𝐶(2) 0.068315 0.087579 0.780044 0.4368 

𝐶(3) 0.000783 0.000589 1.330148 0.1858 

𝐶(4) 3.537268 1.553037 2.277645 0.0244 

𝐶(5) -0.470362 1.637542 -0.287237 0.7744 

𝐶(6) 5.526409 2.025938 2.727828 0.0073 

𝐶(7) -1.679646 1.276106 -1.316227 0.1904 

𝐶(8) -0.226195 1.480250 -0.152809 0.8788 

Substituting the coefficients in Table 5.14 into the VECM in equation (13) yields: 

Δ𝐵𝐶�̂� =  −0.179(𝐵𝐶𝐼𝑡−1 − 0.002𝐶𝐹𝑡−1) + 0.068Δ𝐵𝐶𝐼𝑡−1 + 0.001Δ𝐶𝐹𝑡−1 + 3.537𝐷𝑉𝐶𝐹𝑡
1

− 0.470𝐷𝑉𝐶𝐹𝑡
2 + 5.526𝐷𝑉𝐶𝐹𝑡

3 − 1.680𝐷𝑉𝐶𝐹𝑡
4                                                       (36) 
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𝐶(1) is the adjustment coefficient for the VECM. The p-value of 𝐶(1) show that it is significant in 

Table 5.14 and is negative as was calculated in section 5.5.4. This validates a long run cointegrating 

relationship between 𝐶𝐹 and 𝐵𝐶𝐼. 𝐶(2) and 𝐶(3) are the coefficients of the short run variables. 

The null hypothesis of the Wald test is such that 𝐶(2) = 𝐶(3) = 0. The F-statistic from the Wald 

test is 1.082838 with a p-value of 0.3416. Therefore, there is no short run relationship between 𝐶𝐹 

and 𝐵𝐶𝐼 as the null hypothesis cannot be rejected. The coefficients of the variables to handle for 

breakpoints (𝐶(5), 𝐶(7) and 𝐶(8)) are not significant at a 5% level and this indicates that these 

breakpoints have limited impact on the model. Breakpoint coefficient 𝐶(6) is significant at a 5% 

level.  This VECM model has an 𝑅2 = 10.12% which is low and indicates that the model only explains 

for 10.12% of the variability in 𝐵𝐶𝐼. The 𝐷𝑊 statistic is 2.057599. The 𝐷𝑊 > 𝑅2 which indicates 

the results are not spurious.  

The Jarque-Bera statistic is 0.636118 with a p-value of 0.727560 which is an indication that the 

residuals have a normal distribution. The null hypothesis of the residuals having no autocorrelation 

cannot be rejected as the F-statistic for the Breusch-Godfrey test is 1.750112 with a p-value of 

0.1882. 

In summary, this model assists in predicting 10.12% of 𝐵𝐶𝐼. The low predictive power of the model 

indicates that other variables may exist which may assist in predicting 𝐵𝐶𝐼. 𝐶𝐹 does seem to assist 

in the prediction of 𝐵𝐶𝐼 in the long run but does not seem to assist in prediction in the short run. As 

was summarised in section 5.6.3, these results support the observations in Figure 5.2. 

 

5.6.5 Business Confidence predicted by Consumer Confidence VECM 

The 𝑉𝐸𝐶𝑀 is specified with 𝐵𝐶𝐼 as the dependent variable, 𝐶𝐶𝐼 as the predictor variable and the 

exogenous variables 𝐷𝑉𝐶𝐵𝑡
1, 𝐷𝑉𝐶𝐵𝑡

2 and 𝐷𝑉𝐶𝐵𝑡
3, and with no intercepts and trends. The lag length 

of 2 which was determined earlier in Table 5.4 will be applied. The coefficient of 𝐶𝐶𝐼 in the time 

series model to predict 𝐵𝐶𝐼 in the long run was calculated in section 5.5.5. The VECM will therefore 

take the following form: 

Δ𝐵𝐶�̂� = 𝐶(1) ∗ ( 𝐵𝐶𝐼𝑡−1 + 9.449𝐶𝐶𝐼 𝑡−1) + 𝐶(2) ∗ ∆𝐵𝐶𝐼 𝑡−1 + 𝐶(3) ∗ ∆𝐵𝐶𝐼 𝑡−2 + 𝐶(4) ∗ ∆𝐶𝐶𝐼𝑡−1 +

𝐶(5) ∗ ∆𝐶𝐶𝐼𝑡−2 + 𝐶(6) ∗ 𝐷𝑉𝐶𝐵𝑡
1 + 𝐶(7) ∗ 𝐷𝑉𝐶𝐵𝑡

2 + 𝐶(8) ∗ 𝐷𝑉𝐶𝐵𝑡
3                                                                (37)  
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Table 5.15: VECM Coefficients: 𝑩𝑪𝑰 predicted by 𝑪𝑪𝑰 

Coefficient Value SE t-Statistic p-value 

𝐶(1) -0.020325 0.005879 -3.457381 0.0007 

𝐶(2) -0.154087 0.081571 -1.888993 0.0611 

𝐶(3) 0.160425 0.080303 1.997742 0.0478 

𝐶(4) 0.461834 0.092998 4.966050 0.0000 

𝐶(5) 0.351354 0.090248 3.893197 0.0002 

𝐶(6) 1.032862 1.071358 0.964069 0.3368 

𝐶(7) 3.373156 1.612853 2.091422 0.0385 

𝐶(8) 0.880293 1.181924 0.744797 0.4577 

Substituting the coefficients in Table 5.15 into the VECM in equation (14) yields: 

Δ𝐵𝐶�̂� = −0.020( 𝐵𝐶𝐼𝑡−1 + 9.449𝐶𝐶𝐼 𝑡−1) − 0.154∆𝐵𝐶𝐼 𝑡−1 + 0.160∆𝐵𝐶𝐼 𝑡−2 + 0.462∆𝐶𝐶𝐼𝑡−1

+ 0.351∆𝐶𝐶𝐼𝑡−2 + 1.033𝐷𝑉𝐶𝐵𝑡
1 + 3.373𝐷𝑉𝐶𝐵𝑡

2 + 0.880𝐷𝑉𝐶𝐵𝑡
3                     (38) 

 

𝐶(1) is the adjustment coefficient for the VECM. The p-value of 𝐶(1) show that it is significant in 

Table 5.15 and is negative as was calculated in section 5.5.5. This validates a long run cointegrating 

relationship between 𝐶𝐶𝐼 and 𝐵𝐶𝐼. 𝐶(2), 𝐶(3), 𝐶(4) and 𝐶(5) are the coefficients of the short run 

variables. The null hypothesis of the Wald test is such that 𝐶(2) = 𝐶(3) = 𝐶(4) = 𝐶(5) = 0. The 

F-statistic from the Wald test is 9.763827 with a p-value of 0.0000. Therefore, there is a short run 

relationship between 𝐶𝐶𝐼 and 𝐵𝐶𝐼 as the null hypothesis is rejected. The coefficients of the 

variables to handle for breakpoints (𝐶(6) and 𝐶(8)) are not significant at a 5% level and this 

indicates that these breakpoints have limited impact on the model. Breakpoint coefficient 𝐶(7) is 

significant at a 5% level.  This VECM model has an 𝑅2 = 24.35% which is low and indicates that the 

model only explains 24.35% of the variability in 𝐵𝐶𝐼. The 𝐷𝑊 statistic is 2.065577. The 𝐷𝑊 > 𝑅2 

which indicates the results are not spurious.  

The Jarque-Bera statistic is 0.824646 with a p-value of 0.662110 which is an indication that the 

residuals follow a normal distribution. The null hypothesis of the residuals having no autocorrelation 

cannot be rejected as the F-statistic for the Breusch-Godfrey test is 2.674902 with a p-value of 

0.0728. 

In summary, this model assists in predicting 24.35% of 𝐵𝐶𝐼. The low predictive power of the model 

indicates that other variables may exist which may assist in predicting 𝐵𝐶𝐼. 𝐶𝐶𝐼 does seem to assist 

in the prediction of 𝐵𝐶𝐼 in the short and long run. The model is stable as the residuals have a normal 

distribution and are not autocorrelated. These results support the observations in Figure 5.3 where 

there appeared to be co-movement between the variables.  
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5.6.6 Consumer Confidence predicted by Business Confidence Index VECM 

The 𝑉𝐸𝐶𝑀 is specified with 𝐶𝐶𝐼 as the dependent variable), 𝐵𝐶𝐼 as the predictor variable and the 

exogenous variables 𝐷𝑉𝐵𝐶𝐶𝑡
1, 𝐷𝑉𝐵𝐶𝐶𝑡

2, 𝐷𝑉𝐵𝐶𝐶𝑡
3, 𝐷𝑉𝐵𝐶𝐶𝑡

4 and 𝐷𝑉𝐵𝐶𝐶𝑡
5, and with no intercepts 

and trends. The lag length of 1 which was determined earlier in Table 5.4 will be applied. The 

coefficient of 𝐵𝐶𝐼 in the time series model to predict 𝐶𝐶𝐼 in the long run was calculated in section 

5.5.6. The VECM will therefore take the following form: 

∆𝐶𝐶�̂� = 𝐶(1) ∗ ( 𝐶𝐶𝐼𝑡−1 − 0.0695𝐵𝐶𝐼𝑡−1) + 𝐶(2) ∗ ∆𝐶𝐶𝐼𝑡−1 + 𝐶(3) ∗ ∆𝐵𝐶𝐼𝑡−1 + 𝐶(4) ∗ 𝐷𝑉𝐵𝐶𝐶𝑡
1 +

𝐶(5) ∗ 𝐷𝑉𝐵𝐶𝐶𝑡
2 + 𝐶(6) ∗ 𝐷𝑉𝐵𝐶𝐶𝑡

3 + 𝐶(7) ∗ 𝐷𝑉𝐵𝐶𝐶𝑡
4 + 𝐶(8) ∗ 𝐷𝑉𝐵𝐶𝐶𝑡

5                                                     (39) 

 

Table 5.16: VECM Coefficients: 𝑪𝑪𝑰 predicted by 𝑩𝑪𝑰  

Coefficient Value SE t-Statistic p-value 

𝐶(1) -0.337380 0.074447 -4.531822 0.0000 

𝐶(2) -0.247976 0.081183 -3.054548 0.0027 

𝐶(3) 0.288091 0.074317 3.876495 0.0002 

𝐶(4) -1.256689 1.345732 -0.933833 0.3521 

𝐶(5) 1.502599 1.520050 0.988520 0.3247 

𝐶(6) -2.160946 1.574387 -1.372564 0.1723 

𝐶(7) 3.122701 1.412758 2.210359 0.0288 

𝐶(8) -3.062232 1.534297 -1.995853 0.0480 

Substituting the coefficients in Table 5.16 into the VECM in equation (15) yields: 

∆𝐶𝐶�̂� = −0.337( 𝐶𝐶𝐼𝑡−1 − 0.0695𝐵𝐶𝐼𝑡−1) − 0.248∆𝐶𝐶𝐼𝑡−1 + 0.288∆𝐵𝐶𝐼𝑡−1 − 1.257𝐷𝑉𝐵𝐶𝐶𝑡
1

+ 1.503𝐷𝑉𝐵𝐶𝐶𝑡
2 − 2.161𝐷𝑉𝐵𝐶𝐶𝑡

3 + 3.123𝐷𝑉𝐵𝐶𝐶𝑡
4 − 3.062𝐷𝑉𝐵𝐶𝐶𝑡

5              (40) 

𝐶(1) is the adjustment coefficient for the VECM. The p-value of 𝐶(1) is significant in Table 5.16 and 

is negative as was calculated in section 5.5.6. This validates a long run cointegrating relationship 

between 𝐵𝐶𝐼 and 𝐶𝐶𝐼. 𝐶(2) and 𝐶(3) are the coefficients of the short run variables. The null 

hypothesis of the Wald test is such that 𝐶(2) = 𝐶(3) = 0. The F-statistic from the Wald test is 

11.81631 with a p-value of 0.0000. Therefore, there is a short run relationship between 𝐵𝐶𝐼 and 

𝐶𝐶𝐼 as the null hypothesis is rejected. The coefficients of the variables to handle for breakpoints 

(𝐶(4), 𝐶(5)  and 𝐶(6)) are not significant at a 5% level and this indicates that these breakpoints 

have limited impact on the model. Breakpoint coefficients (𝐶(7) and 𝐶(8)) is significant at a 5% 

level. This VECM model has an 𝑅2 = 33.44% which is low and indicates that the model only explains 

33.44% of the variability in 𝐶𝐶𝐼. The 𝐷𝑊 statistic is 2.172333. The 𝐷𝑊 > 𝑅2 which indicates the 

results are not spurious.  
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The Jarque-Bera statistic is 4.738552 with a p-value of 0.093548 which is an indication that the 

residuals follow a normal distribution. The null hypothesis of the residuals having no autocorrelation 

cannot be rejected as the F-statistic for the Breusch-Godfrey test is 1.305596 with a p-value of 

0.2553.  

In summary, this model assists in predicting 33.44% of 𝐶𝐶𝐼. The low predictive power of the model 

indicates that other variables may exist which may assist in predicting 𝐶𝐶𝐼. 𝐵𝐶𝐼 does seem to assist 

in the prediction of 𝐶𝐶𝐼 in the short and long run. These results are similar to section 5.6.5 and 

support the co-movement observed in Figure 5.3. The residual diagnostic tests show that the model 

is adequate. 

The next section provides the results of the Granger causality tests between the pairs of variables. 

These results will determine if the co-movement of variables observed in section 5.6 is due to 

Granger causal relationships between the variables. 
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5.7 Granger Causality 

The results from the Granger causality test for the pairs of variables being considered in this research 

report are given in Table 5.17. These results were obtained after incorporating the exogenous 

variables which were determined in section 5.2. The null hypothesis being tested is that of one 

variable not Granger causing the other variable.  

Table 5.17 Granger causality Results 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
Granger causality results in Table 5.17 supports some of the observations made in the plots of the 

data in section 5.1, the results of the cointegration tests in Section 5.5 and the VECM results in 

Section 5.6. The result that  ∆𝐶𝐶𝐼 does not Granger cause ∆𝐻𝐶 is consistent with the results of the 

VECM which showed no long run relationship between this pair of variables. Rather, it is ∆𝐻𝐶 that 

Granger causes ∆𝐶𝐶𝐼. This outcome is consistent with the results of the VECM which showed that 

∆𝐻𝐶 assists in the prediction of ∆𝐶𝐶𝐼 in the short and long run. This was also visible in Figure 5.1 

where ∆𝐻𝐶 resulted in ∆𝐶𝐶𝐼 for observed time periods. 

 
There was no observable causal relationship between ∆𝐵𝐶𝐼 and ∆𝐶𝐹. This supports the 

observations in figure 5.2 where it was difficult to identify any variable influencing the other. These 

results support the cointegration tests which did not find meaningful results and showed that the 

Null Hypothesis Chi-sq Statistic P-value Decision 
Type for 

Causality 

∆𝐶𝐶𝐼 ↗ ∆𝐻𝐶 0.166170 0.9203 Do not reject 
𝐻0 

No causality 

∆𝐻𝐶 ↗ ∆𝐶𝐶𝐼 12.54073 0.0019 Reject 𝐻0 
Uni-directional 

causality 

∆𝐵𝐶𝐼 ↗ ∆𝐶𝐹 0.713571 0.3983 Do not reject 
𝐻0 

No causality 

∆𝐶𝐹 ↗ ∆𝐵𝐶𝐼 1.769292 0.1835 
Do not reject 

𝐻0 
No causality 

∆𝐶𝐶𝐼 ↗ ∆𝐵𝐶𝐼 27.19170 0.0000 Reject 𝐻0 
Bi-directional 

causality 

∆𝐵𝐶𝐼 ↗ ∆𝐶𝐶𝐼 15.02721 0.0001 Reject 𝐻0 
Bi-directional 

causality 

 
Notation: ↗ does not Granger cause. 
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variables negatively influence each other which is unlikely. The VECM analysis thereafter also 

showed that these variables did not contribute much in explaining the variability in each other. 

The bi-directional Granger causality relationship between ∆𝐵𝐶𝐼 and ∆𝐶𝐶𝐼 is consistent with the 

results of the VECM in section 5.6.5 and 5.6.6 which found that these variables influence each other 

in the long and short run.  

To gain further insight into the causal relationship between the pairs of variables, VDCs and IRFs are 

analysed next.  
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5.8 Variance Decomposition 

The Variance Decomposition (VDC) indicates the amount of information each variable contributes 

to the other variables in the 𝑉𝐸𝐶𝑀. Below are results from the VDC for the 𝑉𝐸𝐶𝑀 models specified 

in section 5.6 (equations 30, 32, 38 and 40). The variance decomposition and impulse response 

function (section 5.9) for capital formation and business confidence specified in section 5.6 

(equations 34 and 36) will not be considered as the model residuals were found to be not normally 

distributed and autocorrelated. These models (equations 34 and 36) may therefore result in 

erroneous forecasts. The first column provides the period being evaluated. The second column, is 

the standard error (SE) which is the forecast error of the dependent variable at the given period. 

The source of this forecast error is the variation in the current and future values of the shocks to 

each endogenous variable in the model. The last two columns indicate the percentage of the 

forecast variance due to each shock for each dependent variable. The impact of the shock in the 

short run (period 3 or less) and the long run (period 6 or larger) will be evaluated. 

5.8.1 Variance Decomposition of Household Consumption predicted by Consumer Confidence  

Table 5.18 shows that in the short run (period 3 for example), a shock in 𝐻𝐶 will account for a 98.6% 

change in 𝐻𝐶 and in contrast a shock in 𝐶𝐶𝐼 will only result in a 1.4% change in 𝐻𝐶. There is not 

much of a change in the long run (period 6 for example), where a shock in 𝐻𝐶 will account for a 

96.7% change in 𝐻𝐶 and a shock in 𝐶𝐶𝐼 will only result in a 3.27% change in 𝐻𝐶. These results are 

supported by the Granger causality tests which found that ∆𝐶𝐶𝐼 does not Granger Cause ∆𝐻𝐶. 

Figure 5.4 is a graphical representation of the results from Table 5.18. 

Table 5.18: VDC of 𝑯𝑪 for 𝑯𝑪 predicted by 𝑪𝑪𝑰 
 

VDC of 𝑯𝑪 

Period S.E. (R’mil) 𝑯𝑪 (%) 𝑪𝑪𝑰 (%) 

1 9448.996 100.0000 0.000000 

2 15994.17 99.23231 0.767685 

3 22989.74 98.58004 1.419964 

4 29735.60 97.85780 2.142195 

5 36259.68 97.25728 2.742715 

6 42492.14 96.72861 3.271386 

7 48434.75 96.28588 3.714118 

8 54091.20 95.90922 4.090775 
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Figure 5.4: VDC: Household Consumption predicted Consumer Confidence 

5.8.2 Variance Decomposition of Consumer Confidence predicted by Household Consumption  

Table 5.19 shows that in the short run (period 3 for example), a shock in 𝐶𝐶𝐼 will account for 91.9% 

change in 𝐶𝐶𝐼, and a shock in 𝐻𝐶 will only result in an 8.1% change in 𝐶𝐶𝐼. In the long run (period 

6 for example), a shock in 𝐶𝐶𝐼 will account for 84.6% change in 𝐶𝐶𝐼 and a shock in 𝐻𝐶 will result in 

a 15.4% change in 𝐻𝐶. The Granger causality tests which found 𝐻𝐶 to Granger cause 𝐶𝐶𝐼 is further 

support by this outcome. Figure 5.5 is a graphical representation of the results from Table 5.19. 

Table 5.19: VDC of 𝑪𝑪𝑰 for 𝑪𝑪𝑰 predicted by 𝑯𝑪 

VDC of 𝑪𝑪𝑰 

Period S.E. (Index) 𝑪𝑪𝑰 (%) 𝑯𝑪 (%) 

1 6.801960 100.0000 0.000000 

2 7.776636 94.22435 5.775648 

3 8.839057 91.91518 8.084825 

4 9.394770 88.27529 11.72471 

5 9.827354 86.30685 13.69315 

6 10.10680 84.61698 15.38302 

7 10.30789 83.58386 16.41614 

8 10.44396 82.82805 17.17195 

 



Vimal Singh Masters Research Report 9801940E 
 

52 | P a g e  
 

 

Figure 5.5: VDC: Consumer Confidence predicted Household Consumption 

5.8.3 Variance Decomposition of Business Confidence predicted Consumer Confidence  

Table 5.22 shows that in the short run (period 3 for example), a shock in 𝐵𝐶𝐼 will account for a 96.1% 

change in 𝐵𝐶𝐼 and a shock in 𝐶𝐶𝐼 will only result in a 3.9% change in 𝐵𝐶𝐼. There is not much of a 

change in the long run (period 6 for example), where a shock in 𝐵𝐶𝐼 will account for a 97% change 

in 𝐵𝐶𝐼 and a shock in 𝐶𝐶𝐼 will only result in a 3% change in 𝐵𝐶𝐼. These results show that previous 

values 𝐵𝐶𝐼 are more likely to affect values after a shock rather than 𝐶𝐶𝐼. These results support the 

small adjustment coefficient (2%) observed in the cointegration tests (section 5.5.5). Figure 5.8 is a 

graphical representation of the results from Table 5.22. 

Table 5.20: VDC of 𝑩𝑪𝑰 for 𝑩𝑪𝑰 predicted by 𝑪𝑪𝑰 

VDC of 𝑩𝑪𝑰 

Period S.E. (Index) 𝑩𝑪𝑰 (%) 𝑪𝑪𝑰 (%) 

1 6.860992 100.0000 0.000000 

2 9.295082 96.21658 3.783422 

3 12.11229 96.09558 3.904421 

4 13.88770 96.99375 3.006249 

5 15.34273 97.51005 2.489946 

6 16.48967 97.04649 2.953508 

7 17.45102 95.85698 4.143024 

8 18.32908 93.78355 6.216447 
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Figure 5.6: VDC: Business Confidence predicted Consumer Confidence 
 
 

5.8.4 Variance Decomposition of Consumer Confidence predicted by Business Confidence  

In the short run (period 3 for example), a shock in 𝐶𝐶𝐼 will account for a 91.8% change in 𝐶𝐶𝐼, while 

a shock in 𝐵𝐶𝐼 will result in 8.1% change in 𝐶𝐶𝐼. There is not much of a change in the long run 

(period 6 for example), where a shock in 𝐶𝐶𝐼 will account for 89.3% change in 𝐶𝐶𝐼 and a shock in 

𝐵𝐶𝐼 will only result in a 10.7% change in 𝐶𝐶𝐼. These results show that previous values 𝐶𝐶𝐼 are more 

likely to affect values after a shock rather than 𝐵𝐶𝐼. A shock of 𝐵𝐶𝐼 on 𝐶𝐶𝐼 has minimal or marginal 

increases after 1 lag. Figure 5.9 is a graphical representation of the results from Table 5.23. 

Table 5.21: VDC of 𝑪𝑪𝑰 for 𝑪𝑪𝑰 predicted by 𝑩𝑪𝑰 

VDC of 𝑪𝑪𝑰 

Period S.E. (Index) 𝑪𝑪𝑰 (%) 𝑩𝑪𝑰 (%) 

1 6.630205 100.0000 0.000000 

2 7.736502 91.53449 8.465510 

3 8.551388 91.83631 8.163690 

4 8.876370 90.28760 9.712401 

5 9.085312 89.92457 10.07543 

6 9.193836 89.30145 10.69855 

7 9.263390 88.93427 11.06573 

8 9.307678 88.54588 11.45412 

 



Vimal Singh Masters Research Report 9801940E 
 

54 | P a g e  
 

 
Figure 5.7: VDC: Consumer Confidence predicted Business Confidence 
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5.9 Impulse Response Function 

The impulse response function analyses the responsiveness of the dependent variables in the 

𝑉𝐸𝐶𝑀, specified in section 5.6 (equations 30, 32, 38 and 40), when a dependent variable in the 

model receives an impulse.  

5.9.1 Impulse Response Function of Household Consumption predicted by Consumer 

Confidence 

Consider the VECM specified in (30) where 𝜖𝑡 is the error term: 

Δ𝐻𝐶 =  0.001( 𝐻𝐶𝑡−1 + 111286.638𝐶𝐶𝐼𝑡−1) + 0.321Δ𝐻𝐶𝑡−1 + 0.204Δ𝐻𝐶𝑡−2 + 50.057Δ𝐶𝐶𝐼𝑡−1

+ 36.069Δ𝐶𝐶𝐼𝑡−2 + 760.776𝐷𝑉𝐶𝐶𝑡
1 + 2487.678𝐷𝑉𝐶𝐶𝑡

2 + 1688.478𝐷𝑉𝐶𝐶𝑡
3

+ 2629.856𝐷𝑉𝐶𝐶𝑡
4 + 𝜖𝑡 

Table 5.24 shows the impulse response of 𝐻𝐶 to impulses in 𝐻𝐶 and 𝐶𝐶𝐼. When the impulse is in 

𝐻𝐶, the response of 𝐻𝐶 at each response period is large and positive. When the impulse is in 𝐶𝐶𝐼, 

the response of 𝐻𝐶 at each response period is positive but smaller than the impulses caused by 𝐻𝐶. 

These results show that previous values 𝐻𝐶 are more likely to affect values after a shock.  In order 

to display the response function clearer, a graphical representation is provided in Figure 5.10. 

Table 5.22: IRF of 𝑯𝑪 for 𝑯𝑪 predicted by 𝑪𝑪𝑰 

Response of 𝑯𝑪 

Period 𝑯𝑪 (R’mil) 𝑪𝑪𝑰 (R’mil) 

1 9448.996 0.000000 

2 12828.33 1401.371 

3 16345.45 2353.948 

4 18553.73 3381.789 

5 20333.21 4137.490 

6 21628.93 4796.596 

7 22633.61 5297.439 

8 23395.99 5706.123 
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Figure 5.8: IRF: Household Consumption predicted Consumer Consumption 

5.9.2 Impulse Response Function of Consumer Confidence predicted by Household 

Consumption  

Consider the VECM specified in (32) where 𝜖𝑡 is the error term: 

∆𝐶𝐶𝐼 = −0.379( 𝐶𝐶𝐼 𝑡−1 + 0.000005 ∗ 𝐻𝐶𝑡−1) − 0.21 ∗ ∆𝐶𝐶𝐼 𝑡−1 + 0.079∆𝐶𝐶𝐼𝑡−2 + 0.0002∆𝐻𝐶𝑡−1

+ 0.00003∆𝐻𝐶𝑡−2 − 1.061𝐷𝑉𝐶𝐻𝑡
1 + 4.350𝐷𝑉𝐶𝐻𝑡

2  − 0.226𝐷𝑉𝐶𝐻𝑡
3 + 𝜖𝑡 

Table 5.25 shows the impulse response of 𝐶𝐶𝐼 to impulses in 𝐶𝐶𝐼 and 𝐻𝐶. When the impulse is in 

𝐶𝐶𝐼, the response of 𝐶𝐶𝐼 is positive across the response periods with fluctuations. The highest effect 

is in the first period and lowest effect in period eight. When the impulse is in 𝐻𝐶, the response of 

𝐶𝐶𝐼 is zero in the first response period. This is followed by smaller positive values over the remaining 

response periods as compared to impulses in 𝐶𝐶𝐼. The low 𝐶𝐶𝐼 impulse responses for impulses in 

𝐶𝐶𝐼 and 𝐻𝐶 is an indication that 𝐶𝐶𝐼 cannot be shocked into increasing and may be largely 

dependent on the perception of people which takes time to change. The response function is 

graphically represented in Figure 5.11. 
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Table 5.23: IRF of 𝑪𝑪𝑰 for 𝑪𝑪𝑰 predicted by 𝑯𝑪 

Response of 𝑪𝑪𝑰 

Period 𝑪𝑪𝑰 (Index) 𝑯𝑪 (Index) 

1 6.801960 0.000000 

2 3.273609 1.868926 

3 3.850864 1.680387 

4 2.470010 2.007944 

5 2.332208 1.695874 

6 1.755434 1.577638 

7 1.541403 1.314992 

8 1.239319 1.134892 

 

 
Figure 5.9: IRF: Household Consumption predicted Consumer Consumption 

 

5.9.3 Impulse Response Function of Business Confidence predicted by Consumer Confidence 

Consider the VECM specified in (38) where 𝜖𝑡 is the error term: 

𝐷(𝐵𝐶𝐼) = −0.020( 𝐵𝐶𝐼𝑡−1 + 9.449𝐶𝐶𝐼𝑡−1) − 0.154∆𝐵𝐶𝐼𝑡−1 + 0.160∆𝐵𝐶𝐼𝑡−2 + 0.462∆𝐶𝐶𝐼𝑡−1

+ 0.351∆𝐶𝐶𝐼𝑡−2 + 1.033𝐷𝑉𝐶𝐵𝑡
1 + 3.373𝐷𝑉𝐶𝐵𝑡

2  + 0.880𝐷𝑉𝐶𝐵𝑡
3 + 𝜖𝑡 

Table 5.28 shows the impulse response of 𝐵𝐶𝐼 to impulses in 𝐵𝐶𝐼 and 𝐶𝐶𝐼. When the impulse is in 

𝐵𝐶𝐼, the response of 𝐵𝐶𝐼 is positive across eight response periods with fluctuations. The highest 

effect is in the third period and lowest effect in period eight. When the impulse is in 𝐶𝐶𝐼 the 

response of 𝐵𝐶𝐼 is zero in the first response period and positive for the next three periods. Negative 

effects are observed thereafter. The response function is graphically represented in Figure 5.14. 
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Table 5.24: IRF of 𝑩𝑪𝑰 for 𝑩𝑪𝑰 predicted by 𝑪𝑪𝑰 

Response of 𝑩𝑪𝑰 

Period 𝑩𝑪𝑰 (Index) 𝑪𝑪𝑰 (Index) 

1 6.860992 0.000000 

2 6.004707 1.807988 

3 7.605907 1.568204 

4 6.789000 0.264600 

5 6.516755 -0.251442 

6 5.860054 -1.472936 

7 5.295540 -2.141549 

8 4.811405 -2.875306 

 

Figure 5.10: IRF: Business Confidence predicted Consumer Confidence 
 

5.9.4 Impulse Response Function of Consumer Confidence predicted by Business Confidence  

Consider the VECM specified in (40) where 𝜖𝑡 is the error term: 

𝐷(𝐶𝐶𝐼) = −0.337( 𝐶𝐶𝐼𝑡−1 − 0.0695𝐵𝐶𝐼𝑡−1) − 0.248∆𝐶𝐶𝐼𝑡−1 + 0.288∆𝐵𝐶𝐼𝑡−1 − 1.257𝐷𝑉𝐵𝐶𝐶𝑡
1

+ 1.503𝐷𝑉𝐵𝐶𝐶𝑡
2 − 2.161𝐷𝑉𝐵𝐶𝐶𝑡

3 + 3.123𝐷𝑉𝐵𝐶𝐶𝑡
4 − 3.062𝐷𝑉𝐵𝐶𝐶𝑡

5 + 𝜖𝑡 

Table 5.29 shows the impulse response of 𝐶𝐶𝐼 to impulses in 𝐶𝐶𝐼 and B𝐶𝐼. When the impulse is in 

𝐶𝐶𝐼, the response of 𝐶𝐶𝐼 is positive across the response periods with fluctuations. The highest effect 

is in the first period and lowest effect in period eight. When the impulse is in 𝐶𝐶𝐼 the response of 



Vimal Singh Masters Research Report 9801940E 
 

59 | P a g e  
 

𝐵𝐶𝐼 is zero in the first response period and positive for the rest of the periods. Both effects have 

similar values in period eight. The response function is graphically represented in Figure 5.15. 

Table 5.25: IRF of 𝑪𝑪𝑰 for 𝑪𝑪𝑰 predicted by 𝑩𝑪𝑰 

Response of 𝑪𝑪𝑰 

Period 𝑪𝑪𝑰 (Index) 𝑩𝑪𝑰 (Index) 

1 6.630205 0.000000 

2 3.290431 2.250978 

3 3.517084 0.950210 

4 1.995272 1.297149 

5 1.757498 0.814956 

6 1.121228 0.852391 

7 0.911787 0.672628 

8 0.628479 0.653826 

 

 

Figure 5.11: IRF: Consumer Confidence predicted Business Confidence 
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Chapter 6: Conclusion 

6.1 Summary 

This research report explored the Granger causality relationship between confidence and 

consumption using South Africa data between June 1982 and March 2017.  The plots of data did 

show periods where the pairs of variables considered moved together but, also showed periods 

where there were large swings in the data. These large swings were an indication of structural 

breaks due to changes in the political and economic nature of the country as evidence of the tests 

carried out. The structural breaks were included as exogenous variables in the models to ensure the 

model results were not biased or suffered from model misspecification. The variables were tested 

for stationarity and the number of times they must be differenced before they become stationary 

was determined. The lag length for each of the pairs of variables considered was calculated and a 

decision of the lag length was based on the SBC information criteria. The Johansen procedure was 

used thereafter to determine if the variables had a cointegrating relationship. VECMs determined 

the short and long run dynamics of the variable pairs. Finally, the causal relationship between the 

variables was further explored using decomposition functions, which determine the amount each 

variable contributes to each other, and the IRFs, which assess the impact on the dependent variable 

given a shock to the system. 

6.2 Conclusions and recommendations 

Figure 5.1 did show periods were a change in household consumption resulted in changes in 

consumer confidence.  The AIC and SBC information criteria results showed that the variables 

impacted each other up to two lags. These variables were found to be integrated of the same order 

and therefore cointegration analysis was performed. A cointegration relationship did exist for 𝐶𝐶𝐼 

predicting 𝐻𝐶 and 𝐻𝐶 predicting 𝐶𝐶𝐼. The VECM results for 𝐶𝐶𝐼 predicting 𝐻𝐶 found no converging 

long run relationship between these variables but did find a short run relationship. The residual 

diagnostics for 𝐶𝐶𝐼 predicting 𝐻𝐶 found that the residuals were not normally distributed and 

autocorrelated which indicates that other variables may need to be included to improve model 

specification. The VECM results for 𝐻𝐶 predicting 𝐶𝐶𝐼, found a long and short run relationship 

between these variables. No issues could be identified with the residual diagnostics for 𝐻𝐶 

predicting 𝐶𝐶𝐼.  The Granger causality results confirm these observations by only finding that 𝐻𝐶 

Granger causes 𝐶𝐶𝐼.  The VDC found that a shock to 𝐶𝐶𝐼 in the long and short run will account for 

the largest percentage change on 𝐶𝐶𝐼. 𝐻𝐶 will account for a larger percentage of the change in 𝐶𝐶𝐼 



Vimal Singh Masters Research Report 9801940E 
 

61 | P a g e  
 

in the long run. The IRF showed that impulses to 𝐶𝐶𝐼 and 𝐻𝐶 do not result in a significant response 

in 𝐶𝐶𝐼 for the response period.  

Figure 5.2 did show periods of large swings in one variable which did not correspond to the changes 

in the other variable.  The information criteria results showed that the variables impacted each other 

up to one lag. These variables were found to be integrated by the same order and therefore 

cointegration analysis was performed. The VECM analysis found no relationship in the short run 

between the variable pairs however one in the long run did exist. The residual diagnostics showed 

that both these models were not normally distributed. The results from both these models indicate 

that additional variables may need to be included to improve the model specification. 

 

Figure 5.3 did show periods of large swings in one variable which did not correspond with the 

changes in the other variable, but overall both variables seemed to move close together.  The 

information criteria results showed that for 𝐶𝐶𝐼 predicting 𝐵𝐶𝐼, the variables impact each other for 

up to two lags, while for 𝐵𝐶𝐼 predicting 𝐶𝐶𝐼 the variables impacted each other for up to one lag. 

These variables were found to be integrated by the same order and therefore cointegration analysis 

was performed. The diagnostic tests found the residuals to be normally distributed and not 

autocorrelated for of both VECM models. The Granger causality tests found bi-direction Granger 

causality between the variables. The VDC found that a shock to 𝐵𝐶𝐼 in the long and short run will 

account for the largest percentage change on 𝐵𝐶𝐼. The IRF showed that impulses to 𝐵𝐶𝐼 remain 

positive over the response period while 𝐶𝐶𝐼 results in negative responses from lag period 5.  The 

VDC found that a shock to 𝐶𝐶𝐼 in the long and short run will account for the largest percentage 

change on 𝐶𝐶𝐼. 𝐵𝐶𝐼 will account for a consistent percentage after the first lag when predicting 𝐶𝐶𝐼. 

The IRF showed that impulses to 𝐶𝐶𝐼 are significant in the first lag period and while 𝐵𝐶𝐼 only moves 

from zero in the second lag period when predicting 𝐶𝐶𝐼. 

 

In summary, the three Granger causality relationships were observed in this research report. That 

is, 𝐻𝐶 Granger causes 𝐶𝐶𝐼, 𝐶𝐶𝐼 Granger causes 𝐵𝐶𝐼 and 𝐵𝐶𝐼 Granger causes 𝐶𝐶𝐼. These results 

seem plausible. As households consume more, there would be an expectation that the confidence 

of consumers increases. As business confidence increases, consumers become more optimistic 

about the future of the country and their confidence increases. The opposite also holds true. As 

consumer confidence increases, business become more optimistic about expansion of the country 

and their confidence increases.  The rest of the relationships explored may require additional 

variables to improve model specification. In order to model consumers, variables like income, 
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interest rates, inflation and consumer price index (CPI) may need to be considered. A model for 

businesses may need to similarly include inflation, GDP, interest rates, average employee salaries, 

CPI and Trade volume statistics.  These variables may also improve the model fit of the VECM models 

defined in this report. 
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Appendix 

Appendix A: Data Description 

a) Consumption 

GDP is one of the primary indicators of a country's economic performance. There are three ways in 

which it can be measured - by the value of production, by the total income generated or by the 

value of expenditure on goods and services produced. The last measure is an indication of the 

consumption in the economy and is called the expenditure-based gross domestic product GDP(E). 

The Household final consumption expenditure (HFCE) is the largest part of the GDP(E) and is a 

representation of consumer consumption which is used in this research report.  

The HFCE consists of the market value of all tangible and intangible goods and services purchased 

anywhere in the world by households. It excludes purchases of residences but includes the 

opportunity cost of not renting the residence. Costs incurred to obtain permits and licenses from 

government is included. The total expenditure of all households in the economy on consumer goods 

and services is called total or aggregate consumption expenditure, or simply total consumption. 

Consumption expenditure by households is the largest component of expenditure in South Africa 

and include both spending on domestic goods and foreign goods. It is usually between 60% to 63% 

of total expenditure in the economy and is therefore significantly influences GDP. HFCE is based on 

local currency. 

Most of the source data used in the compilation of the HFCE originates from statistical surveys 

conducted by Statistics SA. The Retail Trade Sales (RTS), Motor Trade Sales (MTS) surveys, the 

Quarterly Financial Statements (QFS) surveys of the formal business sector, the QFS survey of 

municipalities, and the Large Sample Survey (LSS) of the retail trade industry are included in the data 

source (Statistics South Africa). 

Gross fixed capital formation (GFCF) by private enterprises is a component of GDP that groups 

transactions on the net acquisitions of capital assets, both existing and new. This is an indication of 

consumption behaviour of businesses to keep operating and is referred to as capital formation (CF) 

in this research report. 

The compilation of GFCF estimates is based on official data which is compiled and published by Stats 

SA, and data produced by other government organisations and compiled as part of those 

organisations’ administrative duties, e.g. building plans passed and completed. Data compiled by 
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the SARB for national accounting purposes replaces data from Statistics South Africa as the data 

becomes available (Statistics South Africa). 

b) Confidence Index 

The quarterly FNB/BER Consumer Confidence Index (CCI) and Business Confidence Index (BCI), 

published by BER, will be used as measures of confidence for consumers and businesses, 

respectively.  The CCI is an assessment of individuals expected attitudes and expectations of the 

economy, the expected financial position of households and the rating of the appropriateness to 

buy durable goods (such as furniture, appliances and electronic equipment). The FNB/BER CCI is 

measured on a scale between –100 (lack of confidence) and 100 (extreme confidence). The BCI is 

an assessment of the level of optimism that senior executives in the companies have about current 

and expected developments regarding sales, orders, employment, inventories and selling prices. 

The index is measured on a scale of 0 (lack of confidence) to 100 (extreme confidence) (Kershoff, 

2000).  
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Appendix B: Stability tests 

Below are the results of running the least squares with breakpoints. The method used was Bai-

Perron tests of L+1 breaks vs. L sequential determined breaks. Error distributions were allowed to 

be different across breaks. A 5% significance level was specified. 

a) Consumer Confidence predicting Household Consumption 

Table A.1: Stability tests for 𝐻𝐶 predicted by 𝐶𝐶𝐼 

Variable Coefficient SE t-statistic p-value 

6/01/1982 - 3/01/1988 -- 24 obs 

𝐶𝐶𝐼 767.9005 354.3489 2.167075 0.0321 

𝐶 755280.5 4964.574 152.1340 0.0000 

6/01/1988 - 3/01/1995 -- 28 obs 

𝐶𝐶𝐼 634.0120 4095.148 0.154820 0.8772 

𝐶 855992.3 34445.52 24.85061 0.0000 

6/01/1995 - 3/01/2004 -- 36 obs 

𝐶𝐶𝐼 -6170.547 4576.908 -1.348191 0.1799 

𝐶 1087612. 37424.76 29.06131 0.0000 

6/01/2004 - 12/01/2009 -- 23 obs 

𝐶𝐶𝐼 -3542.414 7904.970 -0.448125 0.6548 

𝐶 1532292. 119888.7 12.78096 0.0000 

3/01/2010 - 3/01/2017 -- 29 obs 

𝐶𝐶𝐼 -8465.945 828.5973 -10.21720 0.0000 

𝐶 1774837. 7061.277 251.3478 0.0000 

 
     Adjusted R2 0.734702     AIC 27.31839 
S.E. of regression 199962.3     SBC 27.52851 
p-value 0.000000     DW statistic 1.908504 
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b) Household Consumption predicting Consumer Confidence 

Table A.2: Stability tests for 𝐶𝐶𝐼 predicted by 𝐻𝐶 

Variable Coefficient SE t-Statistic p-value 

6/01/1982 - 12/01/1997 -- 63 obs 

𝐻𝐶 6.33E-05 1.41E-05 4.483789 0.0000 

𝐶 -53.26418 11.93116 -4.464291 0.0000 

3/01/1998 - 3/01/2004 -- 25 obs 

𝐻𝐶 -9.13E-06 1.96E-05 -0.465372 0.6424 

𝐶 7.078135 22.15950 0.319418 0.7499 

6/01/2004 - 3/01/2010 -- 24 obs 

𝐻𝐶 -2.47E-05 1.74E-05 -1.420085 0.1579 

𝐶 48.80747 26.02249 1.875588 0.0629 

6/01/2010 - 3/01/2017 -- 28 obs 

𝐻𝐶 -9.83E-05 1.03E-05 -9.540914 0.0000 

𝐶 174.5372 18.40510 9.483085 0.0000 

 
Adjusted R2 0.399175     AIC 7.146232 
S.E. of regression 8.385088     SBC 7.314326 
p-value 0.000000     DW statistic 0.905916 
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c) Business Confidence predicting Capital Formation 

Table A.3: Stability tests for 𝐶𝐹 predicted by 𝐵𝐶𝐼 

Variable Coefficient SE t-Statistic p-value 

6/01/1982 - 3/01/1996 -- 56 obs 

𝐵𝐶𝐼 31.52862 9.854330 3.199469 0.0017 

𝐶 12753.29 422.4491 30.18895 0.0000 

6/01/1996 - 9/01/2004 -- 34 obs 

𝐵𝐶𝐼 59.72227 41.09647 1.453221 0.1485 

𝐶 14450.33 1873.479 7.713100 0.0000 

12/01/2004 - 12/01/2009 -- 21 obs 

𝐵𝐶𝐼 -28.84460 59.22388 -0.487043 0.6270 

𝐶 31590.11 3971.308 7.954587 0.0000 

3/01/2010 - 3/01/2017 -- 29 obs 

𝐵𝐶𝐼 21.20889 44.35150 0.478200 0.6333 

𝐶 22996.17 1932.225 11.90140 0.0000 

 
Adjusted R2 0.664140     AIC 19.20369 
S.E. of regression 3481.382     SBC 19.37179 
p-value 0.000000     DW statistic 1.785476 
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d) Capital Formation predicting Business Confidence 

Table A.4: Stability tests for 𝐵𝐶𝐼 predicted by 𝐶𝐹 

Variable Coefficient SE t-Statistic p-value 

6/01/1982 - 6/01/1987 -- 21 obs 

𝐶𝐹 0.000338 0.001607 0.210159 0.8339 

𝐶 23.97337 23.01244 1.041757 0.2995 

9/01/1987 - 3/01/1996 -- 35 obs 

𝐶𝐹 0.010272 0.002080 4.938815 0.0000 

𝐶 -97.26754 28.84992 -3.371501 0.0010 

6/01/1996 - 9/01/2001 -- 22 obs 

𝐶𝐹 0.002316 0.003236 0.715446 0.4756 

𝐶 -6.931114 52.38937 -0.132300 0.8950 

12/01/2001 - 12/01/2007 -- 25 obs 

𝐶𝐹 0.001774 0.000544 3.258899 0.0014 

𝐶 29.71313 13.51928 2.197834 0.0297 

3/01/2008 - 3/01/2017 -- 37 obs 

𝐶𝐹 -0.000885 0.000401 -2.205915 0.0291 

𝐶 63.40415 10.22533 6.200692 0.0000 
 

Adjusted R2 0.527789     AIC 8.115750 
S.E. of regression 13.52530     SBC 8.325867 
p-value 0.000000     DW statistic 1.245326 
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e) Consumer Confidence predicting Business Confidence 

Table A.5: Stability tests for 𝐵𝐶𝐼 predicted by 𝐶𝐶𝐼 

Variable Coefficient SE t-Statistic p-value 

6/01/1982 - 6/01/1990 -- 33 obs 

𝐶𝐶𝐼 1.252718 0.180804 6.928587 0.0000 

𝐶 44.35336 2.236204 19.83422 0.0000 

9/01/1990 - 9/01/2001 -- 45 obs 

𝐶𝐶𝐼 1.136354 0.216619 5.245867 0.0000 

𝐶 31.48930 1.957043 16.09024 0.0000 

12/01/2001 - 12/01/2007 -- 25 obs 

𝐶𝐶𝐼 0.803908 0.273029 2.944401 0.0038 

𝐶 65.11649 4.017476 16.20831 0.0000 

3/01/2008 - 3/01/2017 -- 37 obs 

𝐶𝐶𝐼 0.142564 0.158263 0.900807 0.3693 

𝐶 40.99462 1.264383 32.42262 0.0000 

 
Adjusted R2 0.609732     AIC 7.911854 
S.E. of regression 12.29590     SBC 8.079948 
p -value 0.000000     DW statistic 1.379925 
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f) Business Confidence predicting Consumer Confidence 

Table A.6: Stability tests for 𝐶𝐶𝐼 predicted by 𝐵𝐶𝐼 

Variable Coefficient SE t-Statistic p-value 

6/01/1982 - 12/01/1987 -- 23 obs 

𝐵𝐶𝐼 0.743469 0.116271 6.394296 0.0000 

𝐶 -29.32263 4.003470 -7.324304 0.0000 

3/01/1988 - 6/01/1994 -- 26 obs 

𝐵𝐶𝐼 0.244883 0.053428 4.583424 0.0000 

𝐶 -10.13958 2.371500 -4.275597 0.0000 

9/01/1994 - 9/01/1999 -- 21 obs 

𝐵𝐶𝐼 0.337705 0.046222 7.306104 0.0000 

𝐶 -6.231960 1.935137 -3.220422 0.0016 

12/01/1999 - 12/01/2004 -- 21 obs 

𝐵𝐶𝐼 0.221895 0.111852 1.983828 0.0494 

𝐶 -13.58856 6.264728 -2.169059 0.0319 

3/01/2005 - 12/01/2011 -- 28 obs 

𝐵𝐶𝐼 0.304519 0.044009 6.919540 0.0000 

𝐶 -5.156143 2.661474 -1.937326 0.0549 

3/01/2012 - 3/01/2017 -- 21 obs 

𝐵𝐶𝐼 0.562411 0.176235 3.191267 0.0018 

𝐶 -28.86683 7.639249 -3.778752 0.0002 

     
     Adjusted R2 0.688340     AIC 6.516213 
S.E. of regression 6.039127     SBC 6.768353 
p-value 0.000000     DW statistic 1.976704 
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Appendix C: Lag Length Selection 

The * indicates the lag with the lowest information criteria. 

Table A.7: Information Criteria results for Lag Selection: 𝑯𝑪 predicted by 𝑪𝑪𝑰 

Household Consumption predicted by Consumer Confidence 

Lag LogL LR FPE AIC SBC HQ 

0 -2199.68 NA 1.19E+12 33.47993 33.69833 33.56868 

1 -1834.93 690.8062 5.03E+09 28.01409 28.31984 28.13833 

2 -1819.49 28.77259 4.23E+09 27.84077 28.23388* 28.00051* 

3 -1817.55 3.556359 4.37E+09 27.87199 28.35245 28.06723 

4 -1813.83 6.705885 4.39E+09 27.87624 28.44406 28.10698 

5 -1807.19 11.78116* 4.22e+09* 27.83615* 28.49133 28.10239 

6 -1804.49 4.701148 4.30E+09 27.85588 28.59842 28.15761 

7 -1801.59 4.964552 4.38E+09 27.87255 28.70245 28.20978 

8 -1796.1 9.238928 4.29E+09 27.84992 28.76718 28.22265 

 
Table A.8: Information Criteria results for Lag Selection: 𝑪𝑪𝑰 predicted by 𝑯𝑪 

Consumer Confidence predicted by Household Consumption 

Lag LogL LR FPE AIC SBC HQ 

0 -2205.8 NA 1.27E+12 33.54239 33.7171 33.61338 

1 -1838.32 7.02E+02 5.14E+09 28.03515 28.29722 28.14164 

2 -1821.47 3.17E+01 4.23E+09 27.84049 28.18992* 27.98249* 

3 -1819.09 4.41E+00 4.33E+09 27.86499 28.30177 28.04248 

4 -1815.61 6.32E+00 4.37E+09 27.8729 28.39705 28.08589 

5 -1808.72 12.32223* 4.19e+09* 27.82908* 28.44059 28.07757 

6 -1806.3 4.25E+00 4.29E+09 27.85307 28.55193 28.13706 

7 -1803.92 4.11E+00 4.40E+09 27.87762 28.66384 28.1971 

8 -1798.54 9.13E+00 4.32E+09 27.85668 28.73026 28.21166 

 

Table A.9: Information Criteria results for Lag Selection: 𝑪𝑭 predicted by 𝑩𝑪𝑰 

Capital Formation predicted by Business Confidence 

Lag LogL LR FPE AIC SBC HQ 

0 -1798.12 NA 2.63E+09 27.36541 27.54013 27.43641 

1 -1549.09 475.4135 6.42E+07 23.6529 23.91497* 23.75939 

2 -1546.21 5.408694 6.53E+07 23.66988 24.01931 23.81188 

3 -1531.35 27.47451 5.54E+07 23.50529 23.94208 23.68278 

4 -1524.36 12.70566 5.30E+07 23.46001 23.98416 23.673 

5 -1512.82 20.63607* 47279450* 23.34574* 23.95724 23.59423* 

6 -1511.28 2.696861 4.91E+07 23.3831 24.08196 23.66708 

7 -1509.62 2.881511 5.09E+07 23.41843 24.20464 23.73791 

8 -1504.86 8.074485 5.04E+07 23.40694 24.28051 23.76192 
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Table A.10: Information Criteria results for Lag Selection: 𝑩𝑪𝑰 predicted by 𝑪𝑭 

Business Confidence predicted by Capital Formation 

Lag LogL LR FPE AIC SBC HQ 

0 -1786.12 NA 2.26E+09 27.21394 27.43233 27.30268 

1 -1548.38 4.50E+02 6.55E+07 23.67239 23.97814* 23.79663 

2 -1545.85 4.71E+00 6.69E+07 23.69467 24.08778 23.85442 

3 -1530.7 2.78E+01 5.66E+07 23.5257 24.00617 23.72094 

4 -1523.68 1.27E+01 5.41E+07 23.48 24.04782 23.71073 

5 -1511.93 20.83429* 48097857* 23.36253* 24.01771 23.62877* 

6 -1510.01 3.35E+00 4.97E+07 23.39403 24.13657 23.69577 

7 -1508.45 2.66E+00 5.16E+07 23.43112 24.26101 23.76835 

8 -1503.23 8.79E+00 5.07E+07 23.41249 24.32975 23.78523 

 
Table A.11: Information Criteria results for Lag Selection:  𝑩𝑪𝑰 predicted by 𝑪𝑪𝑰 

Business Confidence predicted by Consumer Confidence 

Lag LogL LR FPE AIC SBC HQ 

0 -996.56 NA 13973.02 15.2206 15.39532 -996.56 

1 -882.969 2.17E+02 2655.807 13.56013 13.82221 -882.969 

2 -873.168 1.84E+01 2432.767 13.47224 13.82167* -873.168 

3 -863.641 1.76E+01 2237.99 13.38851 13.82529 -863.641 

4 -863.079 1.02E+00 2358.647 13.44059 13.96474 -863.079 

5 -854.506 15.32799* 2202.055 13.3713 13.9828 -854.506 

6 -849.931 8.04E+00 2184.693* 13.36259* 14.06145 -849.931 

7 -849.435 8.57E-01 2306.177 13.41568 14.2019 -849.435 

8 -847.194 3.80E+00 2371.508 13.44233 14.31591 -847.194 

 
Table A.12: Information Criteria results for Lag Selection: 𝑪𝑪𝑰 predicted by 𝑩𝑪𝑰 

Consumer Confidence predicted by Business Confidence 

Lag LogL LR FPE AIC SBC HQ 

0 -1002.01 NA 16126.57 15.36385 15.62593 -1002.01 

1 -869.535 2.49E+02 2302.491 13.4172 13.76663* -869.535 

2 -859.943 1.77E+01 2116.026 13.33247 13.76926 -859.943 

3 -852.374 1.38E+01 2005.482* 13.27839* 13.80253 -852.374 

4 -851.455 1.64E+00 2102.572 13.32507 13.93657 -851.455 

5 -845.655 10.19356* 2047.636 13.2978 13.99666 -845.655 

6 -842.827 4.88E+00 2086.463 13.31556 14.10178 -842.827 

7 -842.152 1.15E+00 2197.073 13.36593 14.23951 -842.152 

8 -840.686 2.44E+00 2286.682 13.40433 14.36527 -840.686 
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