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Abstract 

The baroreceptor is a stretch receptor which detects changes in pressure in arterial blood vessels. 

Baroreceptor nerves inform the brainstem of changes in blood pressure, which then influences 

sympathetic and parasympathetic nervous activity to counteract that change. Due to the relationship 

between essential hypertension, sympathetic nervous activity and the baroreflex, there is some debate 

in the literature about whether the baroreflex can act as a long-term controller of blood pressure. This 

debate has increased in recent years, due to the high prevalence of essential hypertension in all 

societies and the introduction of new technologies to counteract drug-resistance hypertension. The 

baroreflex has become a source of debate due to the complex physiological feedback control that 

regulates blood pressure and due to new stimulating electrical devices, which have shown promising 

results in reducing drug-resistant essential hypertension. 

This investigation studies the baroreceptor’s role as a sensor in a physiological feedback control 

system. This is done through a literature survey extending through experimental and modelling 

research, where selected mathematical models of the baroreceptor are then analysed and simulated to 

find the best performing model, so that they may be simulated for an extended frequency response 

than what would be experimentally possible. The purpose of this investigation is to determine, through 

simulation, what the sensor’s static and dynamic characteristics are. Through this characterisation of 

the sensor behaviour of the baroreceptor in the baroreflex control loop, it is then possible to infer 

whether the baroreflex can act as a long-term controller of blood pressure.  

An overview of experimental and analytical investigations on the baroreceptor over the last 70 years is 

summarised. This overview includes mathematical models, which predict experimental results. A 

subset of four models from Srinivasen et al., Bugenhagen et al., Beard et al. and Mahdi et al. are 

selected. These models are implemented in MATLAB and Simulink. The parameters and experimental 

conditions are integrated into the Simulink models, and the simulated results are compared to the 

reported experimental data. In this way, each mathematical model is evaluated using secondary data 

for its ability to simulate the expected behaviour. Thereafter, all simulated models are compared under 

the same input conditions (a 0-230 mmHg step input over 12 s). These results are used to select the 

best performing models, based on how well they were parameterised and validated for experimental 

tests. The best performing models are those of Beard et al. and Bugenhagen et al. They are tested for a 

wide range of artificial inputs at different frequencies, with sinusoidal inputs which have periods that 

range from 0.1 s to 10 days and have a 100 mmHg operating point with a 1 mmHg peak amplitude. 

All modelling techniques studied show that the baroreceptor firing response resets due to the rate of 

change in strain in the visco-elastic arterial wall. Both tested model frequency responses, although 

parameterised for different species and for different major vessels, show high sensitivity to inputs in 
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the range from 1 s to 1 min 36 s (0.01 Hz – 1Hz), and very low sensitivity for changes that are longer 

than 16 min 36s (0.001 Hz). This extrapolated simulation suggests a zero gain near DC. 

The simulated frequency response of the best performing baroreceptor models, which were validated 

against short-term experimental data, indicate that the baroreceptor is only able to sense changes that 

happen in less than 1 min 16s. The critical analysis of all the simulated baroreceptor models show that 

this characteristic of the baroreceptor is caused by the visco-elastic layers of the arterial wall, and is 

likely in all baroreceptors regardless of type or species. It also indicates that under electrical 

stimulation of the baroreceptor, the input signal from the electrical device bypasses the baroreceptor 

nerve ending (which is embedded in the arterial wall) and that the electrical signal of the baroreceptor 

is bypassed by the new stimulated electrical signal of the device. Furthermore, if the sensor can only 

detect short-term changes, then it is unlikely that the baroreceptor can inform the brainstem on long-

term changes to mean arterial blood pressure. Therefore, based on the models examined in this study, 

this suggests that the baroreceptor is unlikely to be involved in long-term blood pressure control. This 

analysis of the best performing model is presented to show the limitations of the baroreflex in long 

term control of blood pressure. It serves as a simulated experiment to rationalise the contentious debate 

around the role of the baroreflex in long term blood pressure control, and to allow for future 

improvements that can be made on the baroreceptor model to allow for more extended modelling on 

the baroreceptor’s sensor characteristics. An improvement that could be applied to the best performing 

baroreceptor models, implemented in this study, is to examine the effects of ageing and inter-species 

variability on carotid sinus dimensions and visco-elastic wall properties. 

 

 

  



iv 

 

Acknowledgements 

I would like to thank my supervisors, Martin Turner and David Rubin, for the conception of this work 

and their invaluable support. I would also like to thank them for their commitment to providing sound 

advice, feedback, and constant motivation. 

 

I would also like to thank Opti-Num Solutions for their support and funding of this research, for the 

MathWorks tools to work with, as well as for the time they let me use at the office. I would like to 

extend my gratitude to Grant Grobbelaar and Gareth Shaw for their encouragement and ongoing 

support when my attention was divided at work. A special thanks to Grant, for answering so many 

questions and helping me get the most value from the tools. 

 

Thank you to my husband Craig Smith for the unfailing support during my studies, for the many cups 

of tea, and for helping me reach my goals. Thank you to all of my family and friends for providing 

support, enthusiasm and encouragement throughout the course of my studies. 

 

Finally, many thanks to Daniel Beard from the Department of Molecular and Integrative Physiology at 

the University of Michigan, Ann Arbor, for providing supporting insight, MATLAB models and data 

from his research team’s mathematical model experiments.  

  



v 

 

TABLE OF CONTENTS 

            

Declaration i 

Abstract ii 

Acknowledgements iv 

List of Abbreviations vii 

List of Figures viii 

List of Tables xi 

List of Symbols xii 

1 Introduction and Background 1 

1.1 Background 1 

1.2 The Problem 4 

1.3 Objectives 4 

1.4 Approach 5 

1.5 Overview of this Dissertation 5 

2 Critical Review of Existing Models 7 

2.1 Overview 7 

3 Implementation and Analysis of Existing Models 23 

3.1 The King Pressure-Strain Model for Arterial Walls 23 

3.1.1 Model Context 23 

3.1.2 Model Equations and Description 23 

3.2 The Srinivasen and Nudelman Baroreceptor Model 24 

3.2.1 Model Context 24 

3.2.2 Model Equations and Description 24 

3.2.3 Model Behaviour Compared with Published Data 28 

3.3 Bugenhagen et al. Baroreceptor Model 30 

3.3.1 Model Context 30 

3.3.2 Model Equations and Description 31 



vi 

 

3.3.3 Model Behaviour Compared with Published Data 35 

3.4 Beard et al. Baroreceptor Model 37 

3.4.1 Model Context 37 

3.4.2 Model Equations and Description 38 

3.4.3 Model Behaviour Compared with Published Data 41 

3.5 Mahdi et al. Baroreceptor Model 46 

3.5.1 Model Context 46 

3.5.2 Model Equations and Description 47 

3.5.3 Model Behaviour Compared with Published Data 52 

4 Critical Comparison of Models 56 

4.1 Model Feature Comparison 56 

4.1.1 Arterial Wall Strain 56 

4.1.2 Voigt Body Arterial Wall Mechanics 58 

4.1.3 Signal Transmission and Firing Response 64 

4.2 Frequency Response 68 

4.2.1 Model Selection 68 

4.2.2 Simulation Methodology 69 

4.2.3 Simulation Test Results 71 

5 Key Findings and Considerations for the Role of the Baroreceptor 75 

5.1 Key Findings for the Role of the Baroreceptor 75 

5.2 Further Considerations for the Role of the Baroreceptor 76 

5.2.1 Carotid Sinus Distensibility 76 

5.2.2 Age-Related Effects 77 

6 Discussion and Conclusion 79 

7 References 85 

A. Appendix A 90 

B. Appendix B 99 

C. Appendix C 102 



vii 

 

List of Abbreviations 

BP Blood Pressure  

SBP  Systolic Blood Pressure 

DBP  Diastolic Blood Pressure 

SNA Sympathetic Nervous Activity  

SNS Sympathetic Nervous System  

PNS Parasympathetic Nervous System  

BR Baroreceptor  

BRs Baroreceptors  

CNS Central Nervous System  

SA Sino-Atrial  

BRX Baroreflex  

MAP Mean Arterial Pressure  

CS Carotid Sinus  

SAD Sino-Atrial Denervated  

PED Post-Excitatory Depression  

FBR Baroreceptor Firing Rate  

NIF Leaky Integrate-And-Fire Model  

NA Simplified Amplifier Model  

DC 

BV 

Direct Current  

Blood Volume 

  

  



viii 

 

List of Figures 

Figure 1.1: Illustration of baroreflex pathways from the baroreceptors to the central nervous system, and 

from the central nervous system to target organs for regulation of arterial blood pressure. Adapted 

from Hirooka [19] .................................................................................................................................... 3 

Figure 2.1: Block diagram describing the generic functional components used to model the baroreceptor. 

Adapted from Mahdi [2] ........................................................................................................................ 11 

Figure 2.2: Illustration to show how pressure forces at the arterial wall through the visco-elastic layers of the 

arterial wll, can be described using spring-damper networks (or Voigt bodies). Adapted from Mahdi [35]

 .............................................................................................................................................................. 14 

Figure 2.3: Illustrated dynamic Barorceptor model to further describe how spring-damper networks model 

strain, Adapted from Bugenhagen [22] .................................................................................................. 18 

Figure 3.1: Schematic outline of subsystems in the Srinivasen and Nudelman baroreceptor model [27]........ 26 

Figure 3.2: Conventional block diagram representing Srinivasen et al. baroreceptor model [27] ................... 27 

Figure 3.3: Simulink modelled states based on input pressure (A), static arterial strain (B), dynamic strain (C) 

and combined membrane strain (D) generated by Simulink implementation of the Srinivasen and 

Nudelman baroreceptor model [27] ...................................................................................................... 29 

Figure 3.4: Comparison between experimental and reported firing responses generated by Simulink 

implementation of the Srinivasen and Nudelman baroreceptor model [27] .......................................... 30 

Figure 3.5: Bugenhagen et al. baroreceptor model with model components shown as subsystems ............... 33 

Figure 3.6: Conventional block diagram representing the Bugenhagen et al. baroreceptor model [22]. ......... 34 

Figure 3.7: Simulink modelled states based on input pressure (A), static arterial strain (B), dynamic strain (C) 

and combined membrane strain (D) with 𝑲𝟏(𝒐𝒑𝒕𝒊𝒎𝒊𝒔𝒆𝒅). ................................................................. 36 

Figure 3.8: Comparison between firing responses simulated in this study, and published experimental and 

simulated data (Bugenhagen et al. [22]). Model parameters as in Table 3.3 .......................................... 36 

Figure 3.9: Comparison between firing responses simulated in this study, and published experimental and 

simulated data (Bugenhagen et al. [22]). Model parameters as in Table 3.3 (Optimised 𝑲𝟏) ................ 37 

Figure 3.10: Beard et al. baroreceptor model with model components shown as subsystems [14] ................ 39 

Figure 3.11: Conventional block diagram representing the Beard et al. baroreceptor model [14] .................. 40 

Figure 3.12: Simulink modelled states based on pressure (A), for differential input pressure (B), total 

membrane strain (C) and baroreceptor afferent fibre activity (D) .......................................................... 42 

Figure 3.13: Comparison of experimental firing from Chapleau et al. [43], reported firing from Beard et al. 

[14] and simulated firing following a step change of pressure. .............................................................. 43 

Figure 3.14: Aortic volume step infusion for Guyton et al. [45] experiment ................................................... 44 

Figure 3.15 Firing Rates calculated by the Beard et al. MATLAB model and the Simulink model of the present 

study. ..................................................................................................................................................... 44 

Figure 3.16: Aortic volume changes during the Quail et al. haemorrhage experiment [46] ............................ 45 



ix 

 

Figure 3.17: Firing Rates calculated by the Beard et al. MATLAB model and the Simulink model of the present 

study. ..................................................................................................................................................... 46 

Figure 3.18: Mahdi et al. baroreceptor model with model components shown as subsystems [2]. ................ 50 

Figure 3.19: Conventional block diagram representing the Mahdi et al. baroreceptor model [2]. .................. 51 

Figure 3.20: Firing response results for the square pulse input experiment for Mahdi et al. simplified-

amplifier model. .................................................................................................................................... 53 

Figure 3.21: Scaled and shifted firing response results for the square pulse input experiment for Mahdi et al. 

simplified-amplifier model. .................................................................................................................... 55 

Figure 4.1: Comparison of static wall strain model responses for a non-pulsatile step input pressure ........... 57 

Figure 4.2: Comparison of static wall strain model responses for a pulsatile step input pressure ................... 58 

Figure 4.3: Simulink results for the Srinivasen et al. strain model, based on a 230 mmHg step input Pressure 

(A), Static strain (B), Dynamic strain (C) and total strain at baroreceptor membrane (D). ...................... 60 

Figure 4.4: Simulink results for the Bugenhagen et al. strain model, based on a 230 mmHg step input Pressure 

(A), Static wall strain (B), Dynamic strain (C) and total strain at baroreceptor membrane (D). ............... 60 

Figure 4.5: Results from simulation of the Beard et al baroreceptor model, based on a pulsatile step input 

pressure. ................................................................................................................................................ 62 

Figure 4.6: Results from simulation of the Mahdi et al baroreceptor model, based on a pulsatile step input 

pressure. ................................................................................................................................................ 63 

Figure 4.7: Step input firing rates for different baroreceptor modelling techniques ....................................... 66 

Figure 4.8: Pulsatile step input firing rates for different baroreceptor modelling techniques ......................... 66 

Figure 4.9: Step input firing rates for different baroreceptor modelling techniques, as compared with 

experimental data from Bugenhagen et al. [22] ..................................................................................... 67 

Figure 4.10: Example of input sinusoidal pressure used to test frequency response ...................................... 70 

Figure 4.11: Input to Output Comparison for the Beard et al. model at Test Frequency 100 Hz, with portion of 

the last 0.04 s of the signals highlighted to show their sinusoidal nature ............................................... 71 

Figure 4.12: Frequency Response for the Beard et al. Baroreceptor Model [14]. ............................................ 72 

Figure 4.13: Frequency Response for the Bugenhagen et al. Baroreceptor Model [22] ................................... 73 

Figure C.7.1: Simulink block diagram representing Srinivasen et al Baroreceptor Model. ............................ 102 

Figure C.7.2: Simulink block diagram representing Bugenhagen et al arterial wall strain model. ................. 103 

Figure C.7.3: Simulink block diagram representing Bugenhagen et al dynamic strain model. ....................... 104 

Figure C.7.4: Simulink block diagram representing Bugenhagen et al simplified integrate-and-fire model. .. 105 

Figure C.7.5: Simulink block diagram representing Vessel Mechanics Subsystem for the Beard et al 

Baroreceptor Model............................................................................................................................. 106 

Figure C.7.6: Simulink block diagram representing Strain Dynamics Subsystem for the Beard et al 

Baroreceptor Model............................................................................................................................. 106 

Figure C.7.7: Simulink block diagram representing Afferent Nerve Fibre Recruitment Subsystem for the Beard 

et al Baroreceptor Model. .................................................................................................................... 107 



x 

 

Figure C.7.8: Simulink block diagram representing Firing Response Subsystem for the Beard et al 

Baroreceptor Model............................................................................................................................. 107 

Figure C.7.9: Simulink Block Diagram representing Arterial Wall Subsystem for the Mahdi et al. Baroreceptor 

Model. ................................................................................................................................................. 108 

Figure C.7.10: Simulink Block Diagram representing Strain Dynamics Subsystem for the Mahdi et al. 

Baroreceptor Model............................................................................................................................. 108 

Figure C.7.11: Simulink Block Diagram representing Simplified Amplifier Response Subsystem for the Mahdi 

et al. Baroreceptor Model. ................................................................................................................... 109 

Figure C.7.12: Simulink Block Diagram representing Leaky Integrate-and-Fire Response Subsystem for the 

Mahdi et al. Baroreceptor Model. ........................................................................................................ 109 

 

  



xi 

 

List of Tables 

Table 2.1: Summary for historical overview of baroreceptor research ............................................................. 8 

Table 3.1: Experimental and calculated values for human aortas of different ages [24]. ................................ 24 

Table 3.2: Parameter-Value pairs for Step Input (46 – 202 mmHg) Pressure Experiment [27] ........................ 28 

Table 3.3: Parameters for Step Input (0 – 230 mmHg) Pressure Experiment ................................................... 35 

Table 3.4: Parameters used to simulate the experiment of Chapleau et al. [14] ............................................. 41 

Table 3.5: Initial conditions required to model the Chapleau et al experiment .............................................. 42 

Table 3.6: Parameters as per Table 6 for Figure 8 of the Mahdi et al. paper [2]. ............................................. 52 

Table A.1: Historical Overview of Baroreceptor Research .............................................................................. 90 

  

  



xii 

 

List of Symbols 

Srinivasen et al. Model Symbols 

𝑟0 Unconstrained radius 

𝐴𝑟 Factor dependent on the arterial wall thickness 

β Factor for the unconstrained surface area of a 

cylinder 

ε Static arterial wall strain 

𝑃 Input pressure 

A Resting mean pressure 

𝜀𝑑 Dynamic wall strain 

ε The static wall strain 

δ Membrane strain 

x Transduced membrane signal 

y Nerve discharge signal,  

𝛿𝑡ℎ Membrain strain threshold 

𝐶𝐷 Dynamic viscosity coefficient 

C Viscosity coefficient 

𝜏 Time constant 

 

Bugenhagen et al. Model Symbols 

𝜀𝑤𝑎𝑙𝑙 Arterial wall strain 

P Pressure 

𝐶𝑤𝑎𝑙𝑙 Wall compliance 

𝑅0 Unstressed aorta radius 

𝐵𝑤𝑎𝑙𝑙 Viscosity of the artery wall 

𝜀1, 𝜀2, 𝜀3 Strain elements 



xiii 

 

𝐾1, 𝐾2, 𝐾3 Elastic constants 

𝐵1, 𝐵2, 𝐵3 Viscous constants 

𝐾𝑛𝑒 Elasticity of the baroreceptor nerve ending 

𝛿 Dynamic strain 

n Firing response 

𝛿𝑡ℎ Baroreceptor threshold strain 

S Strain sensitivity 

𝜁 Jump frequency parameter 

𝐾1(𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑒𝑑) Optimised elasticity constant 

 

Beard et al. Model Symbols 

𝑉𝐴𝑜 Aortic volume  

𝐶𝐴𝑜 Aortic compliance  

𝑉𝑆𝐴𝑜 Creep stress volume of the aorta  

𝜏𝐶𝐴𝑜 Time constant of stress relaxation  

𝑉𝑆𝐴𝑜
∞ Long-term/chronic creep stress volume  

𝛾𝐴𝑜 Ratio of the acute to the effective long-term 

compliance factor  

𝛿𝜀 Strain at the baroreceptor nerve ending  

𝜀 Strain at the arterial wall  

𝑉0 Unstressed volume  

𝜀̅̇ Average rate of change in strain  

𝜏𝑠  Time constant  

s Fraction baroreceptor afferent fibres in an active state 

for discharge  

a  Adjustable parameter  

b Adjustable parameter 



xiv 

 

𝑑0 Unstressed diameter 

𝑓0 Resting firing rate 

 

Mahdi et al. Model Symbols 

A Area of the artery  

𝐴0 Unstressed area  

𝐴𝑚 Maximum area  

α Saturation pressure  

k Vessel distensibility  

p Pressure  

𝛼1, 𝛼2, and 𝛼3 Nerve ending constants  

𝛽1, 𝛽2, and 𝛽3 Nerve ending relaxation rates  

𝜀𝑤 Strain directly applied to the inner side of the wall  

𝜀1, 𝜀2, 𝜀3 Tissue strain between arterial wall and nerve ending 

membrane  

𝜀𝑛𝑒 Strain at the nerve ending  

𝑓𝑁𝑎 Frequency of the baroreceptor firing rate for 

simplified-amplifier model  

𝑠1 Constant for a baroreceptor gain  

𝑠2 Baroreceptor shift  

𝑔𝑙𝑒𝑎𝑘 Leakage conductance of the membrane  

𝑉𝑡ℎ Threshold voltage  

𝑠1̅ Constant for gain of the stimulus  

𝑠2̅ Constant for shift of the stimulus  

𝑉𝑚 Voltage in the membrane  

𝐼𝑛𝑒 Generated current  



xv 

 

𝐶𝑚 Capacitance of the membrane  

𝑓𝑁𝐼𝐹  Frequency of the BR firing rate of the action potential 

for leaky integrate-and-fire model  

𝑡𝑟𝑒𝑓 Time taken for the membrane voltage to discharge and 

to recover  

𝑊𝑛𝑒𝑉2𝑁𝑎 Non-linear elastic arterial wall, two-Voigt body, 

simplified amplifier model  

𝑊𝑛𝑒𝑉2𝑁𝐼𝐹 Non-linear elastic arterial wall, two-Voigt body, 

integrate and fire model  

𝑊𝑒𝑉2𝑁𝑎 Elastic arterial wall, two-Voigt body, simplified 

amplifier model  



1 

 

1 Introduction and Background 

In healthy individuals “normal” resting systolic and diastolic arterial blood pressures (SBP and DBP) 

are usually considered to be 100–120 and 60–80 mm Hg respectively [1], although both SBP and DBP 

vary substantially both within and between individuals [1]. Hypertension, in which an individual’s 

usual blood pressure (BP) is above normal, is associated with increased risk of stroke and other 

cardiovascular diseases [2]. Hypertension that has no identifiable cause is termed “essential 

hypertension”. Many researchers suggest that increased sympathetic nervous activity (SNA) may play 

a role in essential hypertension [2], [3]. One mechanism which increases SNA is the baroreflex, which 

has been shown to adapt its firing rate to long-term stimuli [4].The baroreflex is a physiological 

feedback system which contributes to BP regulation [3]. The baroreceptors (BRs), which are 

transducers in the baroreflex, are stretch receptors that detect changes in arterial BP through 

deformation of the arterial wall [3]. Due to the relationships between essential hypertension, 

sympathetic nervous activity, and the baroreflex, baroreceptors have come under recent investigation 

[5]. Baroreceptors have been proven experimentally in a wide range of investigations to sense short-

term changes in BP but not respond well to long-term changes (ten minutes or longer [5]) a behaviour 

termed adaptation or resetting [4], [6]–[11].  

Baroreflex adaptation or resetting is evident in animals and humans, including patients with essential 

hypertension [3], [4], [12]. There is some disagreement in the literature as to whether adaptation 

occurs in the brainstem, or in the baroreceptor itself which, under prolonged increased strain, adapts its 

tonic firing rate to the new strain reference, or whether adaptation is related to the visco-elastic 

properties of the arterial wall [5], [9], [13]–[15].  

1.1 Background  

Compliant arterial blood vessels create resistance to the pulsatile flow of blood, and generate BP. 

Pressure in the arterial vessels is maintained through neuro-humoral mechanisms which vary the 

intravascular fluid volume and cardiac output, as well as the compliance and resistance of the vessels 

[16]. The pressure is maintained for delivery of nutrients to all parts of the body, and for the removal 

of metabolic waste products.  

Sympathetic nerve activity is maintained by the central nervous system through the cardio-pulmonary 

centres and other regulatory centres in the thoracolumbar spinal cord [17]. These cardio-pulmonary 

centres are influenced by the baroreceptor (BR) afferent nerves that transmit BR responses. The BRs 

are stretch receptors embedded in the compliant walls of the carotid artery and aorta. They transmit 

information associated with changes in arterial pressure to the central nervous system (CNS) [2]. 

These stretch receptors are nerve fibres that generate an electrical signal (action potential) at a firing 
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rate that increases with increasing pressure and rate of change of pressure across the arterial wall [18]. 

[3]. The firing rate is relayed to the medulla oblongata in the brainstem (cardio-regulatory and 

vasomotor centres), where under normal resting conditions it inhibits the sympathetic nervous system 

[3]. [19], [20].  

The baroreflex is made up of two arcs, namely the neural and the peripheral arc [2]. The neural arc 

transmits baroreceptor firing rate to the cardio-pulmonary centres in the brainstem [2]. The peripheral 

arc transmits sympathetic nervous activity to target organs and tissues to regulate BP based on changes 

in SNA [2]. 

Increased firing rate of baroreceptors is translated in the brainstem, and leads to a decreased 

stimulation of the sympathetic nervous system (SNS) and an increased stimulation of the 

parasympathetic nervous system (PNS) [20]. Decreased SNS activity reduces BP through vasodilation, 

decreasing heart rate and stroke volume, and also reduces production of renin which increases 

excretion of sodium by the kidneys [19], [20]. This is the peripheral arc of the baroreflex. Decreased 

baroreceptor firing rate results in an increase in sympathetic nervous activity, and a decrease in vagal 

tone at the sino-atrial (SA) node, so that heart rate is increased [19], [20]. The interaction between 

these different nervous systems and their target organs, is summarised in Figure 1.1. 
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Figure 1.1: Illustration of baroreflex pathways from the baroreceptors to the central nervous 

system, and from the central nervous system to target organs for regulation of arterial blood 

pressure. Adapted from Hirooka [19] 

The baroreceptor forms part of a feedback system for the regulation of BP, in which baroreceptors are 

the sensors, the brainstem is the controller, and the sympathetic and parasympathetic responses are the 

effectors [7]. These effectors act on the regulated variable which is BP or some function of BP [7]. 

This feedback is referred to as the baroreflex.  

Feedback systems for engineering applications have been modelled for a number of different fields, 

which range from hydraulic to chemical. The purpose of modelling such systems is to be able to gain 

insight into how all the components of a system operate, and how each component affects the 

regulated variable [21]. Such modelling can also be used for design in selecting sensors for regulated 

variables, such that the variable is measured accurately and with sufficient precision to achieve the 

frequency response of the system required [21]. By modelling the sensor characteristics of the 

baroreceptor, I hope to gain insight into the ability of the baroreflex to regulate pressure in the long-

term. 

Blood circulation and the physiological homeostasis of blood pressure and heart rate have been the 

subject of investigation since the 17th century [18]. According to Ottesen et al. [18, pp. 140–156], the 

baroreceptor response is divided into separate elements of response: 
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• Sensitivity to pressure of receptors across a frequency band of interest is based on the 

superposition of signals from the high-pressure receptors in the aortic arch and from 

the carotid sinus.  

• Sensitivity through ‘low-pressure receptors’ found in the heart and pulmonary veins. 

• Resultant control of heart rate through the ‘sympatho-vagal balance’ which is a 

combination of sympathetic and parasympathetic actions on the heart and vessels 

Historically, the adaptation/resetting property was used to exclude the baroreflex from being one of 

the possible mechanisms which may influence long-term control of blood pressure [9], [13]. However, 

recent research has shown that different baroreceptors have different thresholds, and different 

adaptation ranges, and that electrical stimulation of baroreceptors can lower BP in hypertensive 

patients [5], [14]. For these reasons, some researchers argue that the baroreflex is capable of 

participating in long-term control of blood pressure [5], [14], [22].  

1.2 The Problem 

For the baroreceptor to act as a primary sensor in a feedback loop controlling long-term BP, it is 

required to exhibit an adequate frequency response, particularly at very low frequencies [21]. The 

resetting behaviour of baroreceptors is not consistent with these structures playing a significant role in 

long-term BP regulation. However, recent studies suggest that there may be more subtle aspects of 

baroreceptor resetting. Resetting of different components of the baroreceptor (such as different fibres 

which detect absolute and relative pressure changes) may occur at different thresholds and at different 

resting pressures, and different baroreceptors fibres may terminate in different regions of the brainstem 

and control different reflex pathways [5]. Also, in-vivo findings show that although baroreceptors 

reset when exposed to prolonged BP changes, they appear not to reset when they are electrically 

stimulated [23]. Hence some researchers have suggested that because no resetting occurs during 

electrical stimulation, and baroreceptors affect blood pressure through sympathetic tone, baroreceptors 

may play a significant part in the long-term regulation of blood pressure. 

The issues investigated in this dissertation by mathematical modelling are the mechanisms whereby 

baroreceptors reset, and the frequency response of baroreceptors as transducers in a feedback control 

loop.  

1.3 Objectives 

The objectives of this research are to review published mathematical models of baroreceptors, and use 

selected models to investigate mechanisms of baroreceptor resetting, investigate baroreceptor 

responses to long-term inputs, and hence draw insights as to how the baroreceptor may affect long-
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term blood pressure regulation. The models are also used to investigate the frequency response of 

baroreceptors, particularly at very low frequencies. 

1.4 Approach 

Stages involved: 

1. Critically review how understanding in the field of the baroreceptor for long-term blood 

pressure control has developed. 

2. Implement key existing models of baroreceptor function in MATLAB and Simulink. 

3. Test these models against available data in the literature and assess their performance. 

4. Compare the different modelling techniques for the separate components in the mathematical 

models.  

5. Analyse the performance of different components of all the models to the same input. 

6. Test selected models using a range of artificial inputs to characterize their dynamic 

performance, particularly at low frequencies 

1.5 Overview of this Dissertation 

Chapter 1 provides the background to the subject of this study. This chapter contextualises the 

understanding of the baroreceptor, how it interacts with the CNS, as well as the physiology involved in 

the autonomic nervous systems actions on BP. 

Chapter 2 critically reviews published mathematical baroreceptor models used to investigate 

baroreceptor behaviour. The review covers the progress of research surrounding BR experimentation 

and modelling, as well as other BR literature reviews. This critical review is summarised to show how 

understanding developed over the last 70 years. The review shows how researchers grapple with the 

complexity around blood pressure regulation, how they have different views around long-term 

regulation, and how certain experiments have impacted the research.  

In Chapter 3, I simulate selected, published baroreceptor models according to the experiments which 

were used to validate them. I implement the BR models in MATLAB & Simulink, and evaluate them 

for different parameter values. I find parameter values that match the model data in the published 

findings, such that the model output result in Simulink reflects the model results reported by the 

researchers. I then compare the reported results to the simulated results (under the same 

parameterisation and input conditions).  

Chapter 4 compares models by running simulations with the same inputs. Furthermore, I evaluate a 

subset of the investigated baroreceptor models (in the time domain) to estimate behaviour (in the 

frequency domain). The technique uses two of the best performing simulated models, based on the 

results shown in Chapter 3, for frequency response tests at linearised operating points along the entire 
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frequency range. These models are tested with artificial long-term inputs in order to characterise how 

the baroreceptor models behave in the long-term. This allows me to draw some insight into what the 

baroreceptor’s dynamic characteristics are, based on the modelled dynamic characteristics. 

In Chapter 5 I describe recommendations for further investigation into the dynamic characteristics of 

the baroreceptor, through experimentation and modelling. These recommendations cover further 

modelling work which could potentially improve the models. Carotid sinus dispensability is the first 

model adaption, while the age-related effects of the arterial wall is the second adaption. These changes 

to the BR model will include features known to affect the physiology of blood pressure, and 

subsequently clarify how the BR dynamics are affected by them   

Chapter 6 covers a discussion on the critical review, and clarifies the understanding around the long-

term controller capabilities of the baroreflex (BRX). I also discuss the characteristics identified 

through the critical analysis of the modelling research, as well as some extrapolative insights into the 

response of baroreceptors at low frequencies. In this chapter, I discuss how some of the contention in 

the literature can be clarified by understanding the difference between a BP controller and a sensor 

that can affect BP. Furthermore, the critical evaluation of all the BR models, even when they come 

from researchers with different opinions, show a definitive explanation for BR resetting. I underline 

this reasoning by drawing on the low frequency response of the BR models.  

I then conclude this dissertation, by wrapping up the outcomes of the critical review of the literature 

with the insight from the critical analysis of the BR modelling. My conclusion points out some of the 

potential shortfalls of my research, and I make some recommendations for improving the modelling.  
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2 Critical Review of Existing Models 

2.1 Overview  

The role of the baroreceptor in detecting changes in arterial BP has been investigated for decades, 

however its role in long term regulation is still widely debated. Resetting of the baroreceptor has been 

investigated through a wide range of experimental techniques, and on a wide variety of species. 

Investigations have shown that the baroreceptor does reset under prolonged elevated BP. Experiments 

to investigate the extent of this resetting, as well as to what extent baroreceptors regulate BP through 

the CNS, have been widely modelled and discussed.  

Table 2.1 gives a summary of a historical overview of the research which has been conducted in this 

field over the past four decades. The full overview is available in Appendix A, Table A.1. 

The following points describe the development of understanding around BP regulation, the role of the 

baroreflex, and the dynamic behaviour of the baroreceptor. The overview covers the following main 

topics: 

• Experimental research, which investigates how the baroreceptor behaves 

• Physiology reviews, which discuss the understanding in the field and make assumptions 

about the role of the baroreflex 

• Modelling research, which tries to explain experimental behaviour in order to validate or 

clarify understanding around the role of the baroreceptor. 

The overview covers these topics, as investigated by a wide range of research, across the historical 

period since 1945. This overview does not presume to cover all research in this field, but rather to 

highlight specific examples from the literature which have made a significant contribution to 

understanding of the sensor characteristics of the baroreceptor and the role it may play in long-term 

arterial BP control.  
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Table 2.1: Summary for historical overview of baroreceptor research 

Year Authors Title  

1945 A.L King Pressure-Volume Relation for Cylindrical Tubes with Elastomeric Walls: The Human Aorta [24] 

1952 S. Landgren On the Excitation Mechanism of the Carotid Baroreceptors [6] 

1968 W.B. Clarke Static and Dynamic Characteristics of Carotid Sinus Baroreceptors [7] 

1970 E.M. Krieger Time Course of baroreceptor resetting in acute hypertension [8] 

1972 B.W. Knight Dynamics of Encoding in a Population of Neurons. [25] 

1972 A.C. Guyton Circulation: Overall Regulation [9] 

1972 R. Srinivasan et al. Modelling the Carotid Sinus [26] 

1973 R.Srinivasan et al. Theoretical Studies on the Behaviour of Carotid Sinus Baroreceptors [27] 

1978 A.M. Brown et al. Baroreceptor Dynamics and Their Relationship to Afferent Fiber Type and Hypertension [10] 

1980 H.M. Coleridge et al. Operational Sensitivity and Acute Resetting of Aortic Baroreceptors in Dogs [11] 

1983 P.A Munch et al. Rapid Resetting of Aortic Baroreceptors In Vitro [4] 

1990 A.C. Guyton The Surprising Kidney-Fluid Mechanism for Pressure Control – Its Infinite Gain! [28] 

1992 A.W Cowley Jr Long-Term Control of Arterial Blood Pressure [13] 
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1996 J.E. Hall et al. Pressure-Volume Regulation in Hypertension [29] 

1999 M. Ursino A Mathematical Model of the Carotid Baroregulation in pulsating conditions [30] 

2001 G.A. Head et al. Comparing Spectral and Invasive Estimates of Baroreflex Gain [31] 

2001 E. Petiot et al. Frequency Response of Renal Sympathetic Nervous Activity to Aortic Depressor Nerve Stimulation in the 

Anaesthetized Rat 

[32] 

2004 C.J. Barret et al. Problems, possibilities, and pitfalls in studying the arterial baroreflexes’ influence over long-term control of 

blood pressure. 

[5] 

2005 J.W. Osborn et al. A neural set point for the long-term control of arterial pressure: beyond the arterial baroreceptor reflex [33] 

2010 S.M. Bugenhagen et al. Identifying physiological origins of baroreflex dysfunction in salt-sensitive hypertension in the Dahl SS rat. [22] 

2013 D.A. Beard et al. A Computational Analysis of the Long-term Regulation of Arterial Pressure [14] 

2013 A. Mahdi et al. Modelling the Afferent Dynamics of the Baroreflex Control System [2] 

2014 H.M. Horsman et al. Cardiac baroreflex gain is frequency dependent: insights from repeated sit-to-stand manoeuvres and the 

modified Oxford method 

[12] 

2014 K.H. Pettersen et al. Arterial Stiffening Provides Sufficient Explanation for Primary Hypertension. [15] 
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In 1952 Landgren performed experiments on single fibre preparations of cat carotid sinuses [6]. By 

investigating the responses of the baroreceptor fibres, he aimed to contribute to the analysis of the 

discharge of the carotid sinus nerve, which had been found in previous studies to be affected by the 

vasocontraction of arterial walls under the influence of adrenalin [6]. His interest was also sparked by 

the differences in impulse discharge of the different fibres contained in the carotid sinus nerve. In his 

experiment on the baroreceptor fibres, he showed that larger fibres have higher firing rates, that 

different fibres have different sensitivities to inputs, and that the adaptation of the firing rate is 

strongly related to the rate of change of the pressure input [6]. In his discussion he noted that all fibres 

have a similar reaction to constant pressure or to pressure changes.  

Landgren also showed that baroreceptor fibres have a limited operating region in which the BR can 

respond to pressure changes. The lower bound of this operating region is explained to be the threshold 

pressure of the BR, and the upper bound is determined from the pressure where the firing response is 

within 10 % of its maximum value [6]. Based on these experiments from Landgren, an overview of the 

behaviour of the baroreceptor fibres under a wide range of input types is available [6]. Landgren 

concluded from his work that at pressures above the upper bound of the BR operating region, the 

firing response ‘asymptotically adapts’ towards a steady state discharge frequency [6]. At this point it 

was relevant for researchers to further their understanding about how this baroreceptor operating 

region could affect, and be affected by, hypertension. 

In 1968 Clarke prepared a mathematical model of the behaviour of the BR, based on 

experiments on dog carotid sinuses [7]. The model was prepared to reproduce the behaviour 

discovered through his experiments with step input, ramp input and triangular input waveforms. These 

experiments were able to show the characteristics of the baroreceptor when pressure increases and 

when pressure decreases [7]. His results and analysis clearly show that increase in pressure increases 

the firing rate of the BR, and decrease in pressure decreases the firing rate, but that the rates of change 

of firing rate are not the same for increasing and decreasing pressures. Clarke’s model introduced a 

previously unpublished feature, viz. that the sensitivity of the baroreceptor changes depending on the 

direction of change of the BP. Clarke mentions in his paper that his aim is to define the relationship of 

the firing response to pressure. His model is made up of three components, namely the relationships 

between intra-sinus pressure and receptor membrane strain, receptor membrane strain and generator 

potential, and the generator potential to the discharge frequency of the nerve [7]. These three 

components form the foundation of how researchers have mathematically modelled the baroreceptor. 

The interaction between these components on a fundamental level, is illustrated with the block 

diagram in Figure 2.1. A key observation made by Clarke is that the positive sensitivity of the BR is a 

non-linear function of strain. BR output is proportional to strain at low pressures but the relationship is 

non-linear at higher pressures. He makes the assumption that such behaviour is due to the visco-elastic 

coupling between the receptor terminal and the connective tissue in the vessel wall. This assumption is 
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also made by Coleridge et al., based on experiments involving short-term resetting and hysteresis. 

Coleridge et al. claim that the non-linear relationship between BR output and strain, at high pressures, 

is most likely caused by ‘visco-elastic relaxation and creep’ [11]. Clarke also discusses the role of the 

baroreceptor as a sensor in a feedback control system, in which the central nervous system acts as the 

controller but the regulated variable may be pressure or some function of pressure [7]. An important 

comment related to this is that the regulated variable is not the mean arterial pressure (MAP) as 

modelled by investigators before him, but rather an unknown function of pressure. He notes the work 

of other researchers which showed baroreceptor discharge to be a function of the sinus wall 

deformation and not the pressure itself. This proposed model is referenced and used as a basis for a 

number of more recent baroreceptor models, from authors such as Srinivasen and Nudelman, as well 

as Bugenhagen et al. [22], [26], [27].  

 

Figure 2.1: Block diagram describing the generic functional components used to model the 

baroreceptor. Adapted from Mahdi [2] 

The Guyton et al.  1972 paper [9] describes a model of the overall regulation of circulatory 

physiology and highlights three main factors which regulate pressure. These are autonomic reflexes, 

changes in body fluid volumes and electrolytes, and the renin-angiotensin system [9]. These 

autonomic reflexes and their interaction with the baroreceptors, are illustrated in Figure 1.1. Guyton et 

al. mention the role of autonomic mechanisms in arterial pressure regulation, which they says seem to 

operate only in the short-term (from seconds to hours), can have an effect on the long-term 

mechanisms [9]. Two controversial statements made in this paper are that 1) the ‘total peripheral 

resistance’ plays no role in regulating arterial pressure in the long-term, and 2) that chronic changes to 

BP can only be through changes to kidney function or fluid balance. This circulatory model and stand-

point have been the source of wide debate and research around the role of the baroreflex in long-term 

BP control [5], [9], [13], [14]. 

Some key contradictions to these statements are that increased peripheral resistance can affect the 

tonic firing rate of the baroreceptors in the aorta and carotid sinus walls, which does affect the 

sympathetic nervous system regulation of chronic BP [13], [34], and secondly that the electrical 

stimulation of the baroreceptor has been shown to affect chronic BP [5], [14], [15], [34]. A discussion 

of the problems in studying this reflex was published by Barret and Malpas in 2011 [5]. Guyton et al. 

note that, although carotid sinus and aortic baroreceptors behave similarly, aortic baroreceptors have a 
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higher pressure threshold above which firing starts [9]. In addition, Guyton et al. describe findings by 

Krieger [8], which suggest that the baroreceptor is a volume sensor and not a pressure sensor. The 

descriptions and assumptions made about what causes the baroreceptor to fire, reiterates the comments 

of many researchers [7], [14], [27] who have described the baroreceptor as interpreting a signal based 

on strain. Many of them consider the firing rate to be initiated by pressure through a change in strain, 

based on factors such as a change in compliance of the vessel wall or creep stress in the vessel wall 

[14]. 

Cowley discusses a number of theories and experiments regarding the long term control of BP in 

his physiology 1992 review [13]. In this review he highlights how mechanisms which can detect short 

term changes in BP may not have the ability to regulate BP in the long term. He tries to clarify the 

roles played by the nervous system in adjusting sympathetic tone, and the kidneys through fluid 

volume control. He notes that there is an interdependence between these systems, but that long-term 

BP must be regulated through some measurement and adjustment mechanism that can operate over a 

time-span of years. Cowley’s argument is that the baroreceptors cannot regulate BP in the long-term 

because they adapt, much like previously studied mechanoreceptors adapt to a constant stimulus [13]. 

Several experiments are highlighted in order to illustrate this point, where the MAP is found to be 

unchanged in the long-term when the baroreceptor afferent nerve fibres are removed [13]. Cowley also 

states that it is possible for the brain to change the long term operating point for arterial pressure 

control, but that there is not much evidence that the CNS can act as a long-term arterial pressure 

controller. Based on this the CNS seems to rely solely on the baroreceptor for detecting changes and 

so it cannot independently adapt to long term changes. His review is an extensive study on 

experiments surrounding BP control, in many different species, under a wide range of experimental 

conditions. He presents four main points of evidence for why the pressure-natriuresis mechanism is 

the main long-term controller of BP: 

• Chronically elevated BP can only be sustained by reducing the excretory ability of the kidney 

• Increased total peripheral resistance, such as in limb amputees, does not lead to a chronically 

elevated BP 

• The gain of the baroreceptor at very low frequencies is insufficient to reduce long-term 

increases in BP 

• The role of the brain in releasing factors which increase vascular tone and elevate BP 

(‘ouabain-like factors’), and the role of those factors, has not been shown to have any 

measurable natriuretic properties [13].  

Based on his investigation, Cowley explains that although the baroreceptors don’t have a sustained 

signal to match a sustained input, the changes to their firing rate needs to be investigated further. He 

makes the careful observation, that although the nervous system doesn’t regulate BP it still does 

influence BP through the compliance and hormonal effects of the sympathetic nervous system. In this 
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way, although the sensitivity of the pressure-diuresis mechanism is affected by neural and hormonal 

influences, it is still the primary regulator for maintaining BP within a sufficient range, and that it 

seems to have an infinite gain for long term control. Cowley also points out that, at that time, the long-

term changes to the compliance of arterial vessels under chronic hypertension were known only to be 

due to the signal transduction pathways which control vascular tone. This review by Cowley draws a 

number of insights into the complex systems of cardiovascular function, and is a useful overview of a 

number of opinions and experimental investigations in the field. He draws convincing conclusions 

based on a wide collection of studies, and notes areas of experimentation which are lacking or flawed. 

Some of his key findings are how investigation of long-term BP regulation is difficult as most methods 

compromise the interacting mechanisms of control. An example of this is the use of anaesthesia which 

alters sympathetic tone and subsequently changes vessel compliance and angiotensin levels. His 

review is a strong argument for pressure-natriuresis as the long-term controller of BP. 

In 1972 Srinivasen and Nudelman developed a mathematical model to describe how the carotid 

sinus (CS) BR discharge frequency is a result of change in intra-sinus pressure, with specific 

emphasis on the sensor characteristics of the BR. Their model is based on the visco-elastic properties 

due to the elastin and collagen of the arterial wall, and an encoding of the transduced signal into a 

firing rate [26]. The visco-elastic properties of the arterial wall are modelled using spring-damper 

networks (also referred to as Voigt bodies). The modelling of these properties is illustrated in Figure 

2.2 below. These linear viscous strain and non-linear elastic strain properties are modelled with a 

spring damper system [26]. One key feature of this model is how they used linear regression 

techniques to fit a curve to the relationship between the pressure and non-linear strain. This curve is 

based on King’s model for strain in elastomeric cylindrical walls, where the compliance of the wall is 

affected by age [24]. Their model was validated experimentally with data from Clarke, Landgren, and 

their own data [6], [7], [26], [27]. This model is discussed more thoroughly in Section 3.2 below, 

along with the modelling work from King which preceded it, and from Bugenhagen et al. who 

extended it [22], [24]. 
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Figure 2.2: Illustration to show how pressure forces at the arterial wall through the visco-elastic 

layers of the arterial wll, can be described using spring-damper networks (or Voigt bodies). 

Adapted from Mahdi [35] 

 

Experiments were conducted by Munch, Andresen and Brown [4], as well as by Krieger [8], with 

mechanically adjusted ramp pressure inputs (non-pulsatile) applied to in-vivo rat aortic arch 

baroreceptor nerves. These were slow pressure ramps, which were conditioned with 5-15 min of MAP 

before the ramps were applied [4]. Their findings show that the pressure response curve shifts along 

the pressure axis in the direction of the change, with hardly any change to the pressure-sensitivity 

(gain). Munch compares his findings with the results of a number of different experiments performed 

by a range of authors, in which BP is raised using different means in different species and in different 

time frames. He mentions that direct comparability is difficult based on all these factors. Their 

hypothesis is that the resetting may be due to decreases in vessel dispensability, changes in the 

receptor membrane characteristics as well as age-related effects on mechanical transduction properties. 

This 1985 paper provides a good description of in-vivo experimentation and comparative study results 

on baroreceptor firing rates. They note that: ‘the conditioning pressure is the primary if not sole 

determinant of resetting’, and that ‘efferent neural or hormonal influences on the baroreceptors are not 
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required for resetting’ [4]. In this way, the paper provides a thorough investigation into experimental 

findings and compares their results to other similar experiments, all without hypothesizing how 

resetting affects blood-pressure control. Munch et al. conclude that, according to their results, they 

cannot show that the baroreceptor ever completely resets. 

Guyton published a paper explaining his hypothesis around the infinite gain of the kidney-fluid 

mechanism of BP control, which re-iterates that in the long-term, BP can only be regulated by changes 

in sodium and water levels [28]. In this paper Guyton describes the many experiments and conclusions 

which show that BP can only be regulated by the kidneys, because in their model, and in other 

supporting experiments, they found that when they increase the total peripheral resistance, pressure 

returns to a baseline after a few days. After publication of this model of long-term pressure control, 

and Munch’s baroreceptor resetting results, it became generally accepted that the baroreceptor could in 

no way play a role in regulating BP in the long term. Guyton also argues that total peripheral 

resistance is shown to increase after volume-induced BP increases, and that the infinite gain of the 

kidney-fluid mechanism cannot be by-passed by any other controlling mechanism [28]. This is evident 

where other mechanisms which affect BP, such as sodium loading and angiotensin levels, shift the 

renal function curve. The work from Guyton and colleagues initiated much research into the dynamic 

characteristics of the baroreceptor; the role of the baroreflex in essential hypertension, and the role of 

the baroreceptor in affecting sympathetic control during hypertension [5], [22], [32]. 

Petiot et al. studied the neural and peripheral arcs of the baroreflex to characterise their 

dynamic behaviour at different frequencies. For the neural arc, which they define as being from 

arterial pressure to sympathetic nervous activity, they found the transfer gain to have high-pass filter 

properties [32]. This observation indicates that the baroreceptor firing rate, which relates BP to SNA, 

increases as the frequency of the pressure variation increase. This finding ties in with those of Franz et 

al.[36] and Brown et al. [37]. Franz et al show that the baroreceptor exhibits a high-pass dynamic 

response that amplifies inputs at frequencies above 0.1 Hz, and attenuates inputs between 0.01 Hz and 

0.1 Hz [36].  More recently Sato et al. also showed that baroreceptor sensitivity increased by a factor 

of between two and three in the frequency range 0.01–1 Hz [10], [32], [36], [38]. Sato’s experiments 

also show that the sensitivity (or gain) decreases above 2 Hz [38]. Franz suggests that because the step 

response contains many time-constants, there must be ‘viscoelastic relaxation and creep processes’ 

which cause the adaptation feature of the baroreceptor response [36]. 

In 2004 Barret and Malpas published a review article regarding the influence of the 

baroreceptor on long-term BP control [5]. They discuss the different studies and findings around the 

functionality of the baroreceptor for long-term control, and highlight the two main arguments that 

suggest that the baroreflex cannot play a role in long-term control of BP. They discuss the reasoning 

and pitfalls behind some of the assumptions that have been made about the baroreceptor. Their review 

is valuable because it introduces the reasoning that the baroreceptor may be made up of many different 
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parts and functions, which may have different thresholds and frequency responses under different 

situations. An example is where the baroreceptor afferent fibres are made up of A-fibre and C-fibres. 

A-fibres have a high firing rate and low pressure threshold, while C-fibres have a low firing rate and a 

high pressure threshold [5]. This collection of different fibres lends itself to a possible physiological 

function where the A-fibres can buffer quick changes in pressure and reset readily, while the C-fibres 

are more likely to act in the case of high pressures and are reset less readily. These different fibres 

could act as different triggers to the BR sensor transfer function, or the various fibres could control 

different feedback mechanisms at the brainstem [5]. 

The first argument suggesting that baroreceptors can’t contribute to long-term control is based on their 

resetting behaviour, in which baroreceptors are known to shift their operating range in the direction of 

the prevailing pressure change. Although this behaviour, experimentally reported by Munch et al. [4], 

is widely accepted, Barret and Malpas note that baroreceptors are composed of many different fibres 

which are known to have different operating regions and that it cannot be conclusively stated that all 

baroreceptor fibres reset at the same rate [5]. This observation is based on the A-fibre and C-fibre 

components of the baroreceptors, as well as in the characteristics of the terminal endings themselves, 

which suggest that the baroreceptor is capable of interpreting both absolute and relative pressure [5]. 

They note that findings have shown that even in established hypertension, the baroreceptors may still 

contribute to decreasing pressure [5].  

The second argument against the baroreceptor’s ability to control arterial pressure in the long-term, is 

based on experimental findings on sinoatrial denervated (SAD) rats and dogs. The interpretation of the 

results is that although there is generally an increased pressure variability at the onset, the long-term 

averaged MAP of the SAD subjects is relatively similar to the MAP of the intact subjects. Based on 

this result, many researchers such as Cowley [13]and Guyton [28] maintain that this is why the 

baroreceptor cannot set long term BP. According to these researchers, such a recovery in average 

mean arterial pressure implies a ‘resetting of central control’ of SNA when the high pressure spike 

settles over a period of days. Barret and Malpas’s response to this argument is that subjects with intact 

baroreceptors have less pressure variability, and lower maximum pressure spikes, factors that 

significantly affect organs and tissue function, therefore the baroreceptors must play some role in 

maintaining absolute and relative pressure [5]. Barret and Malpas state that because of the other 

neuronal and hormonal players which are capable of compensating for the loss of baroreceptor 

function, baroreceptor denervation is not an adequate experimental investigation to understand chronic 

MAP change [5].  

The roles played by the different types of fibres must affect the analysis of the baroreceptor 

characteristics deeply, as the frequency response depends on the type of receptors and the type of 

fibres which are built into the model. The variable threshold differential pressure, which affects the 

baroreceptor’s firing rate, shows that this system in non-linear. This property is based on the fact that 
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superposition does not hold, because a linear increase in pressure won’t result in the same linear 

increase in firing rate for the baroreceptor. It also implies that this system will be time-varying, based 

on the implication that the frequency of the change being applied affects the output. In order to 

investigate the role these fibres might play, and better understand the comments from Barret et al. [5], 

models will be investigated with simulated frequency response tests in section 4.2. 

In 2010, Bugenhagen et al. developed a model to describe the physiological behaviour of the 

baroreflex and how its dysfunction seems to be tied to hypertension [22]. By using experimental 

results from spontaneously hypertensive rats and Dahl salt sensitive rats, they parameterise a 

baroreflex model to draw conclusions about the relationships between salt sensitive hypertension and 

the baroreceptors.  Their model describes the baroreflex, from an input aortic BP transduced by the 

baroreceptors into a signal which is interpreted by the central nervous system to regulate heart rate at 

the SA node via the SNS and PNS [22]. The mathematical model of the transduction of aortic BP into 

a firing rate is of particular interest for this research, and is discussed more thoroughly in section 3.3 

below. This baroreceptor part of the model is an extension of the model from Srinivasen and 

Nudelman [26], [27], and was further investigated more recently by Mahdi [2]. Differences in fibre 

types, such as myelinated and unmyelinated fibres (Type I and Type II) are not accounted for in this 

model, nor is the effect of carotid sinus baroreceptors. Particular features of the model involve strain 

detection based on the rate of change of the vessel wall dimensions, under a non-linear function of 

compliance. The junction between the aortic wall and the baroreceptor nerve ending is modelled using 

a series of Voigt bodies [22], which are used to represent the different time constants at which the 

baroreceptor is known to reach steady-state after reaching its maximum firing rate (adaptation) [22]. 

This baroreceptor nerve ending strain, along with a strain sensitivity parameter and strain threshold 

parameter, results in an afferent baroreceptor firing rate. The method of modelling the junction 

between the strain at the arterial wall, and the strain at the nerve ending, was illustrated in Figure 2.2. 

This is further expanded in Figure 2.3 to show the mechanical model for the visco-elastic layers in a 

series of spring-damper systems (or Voigt bodies). Importantly, the authors point out that although this 

is the most mechanistically detailed available model, it has only been implemented and tested at 

constant heart rate and not with a fluctuating heart rate. Hence it is possible that this model may be 

further improved for simulating dynamic changes, by improving the model parameters [22]. The main 

value in this paper is their adaptation of the mechanical modelling of the pressure-response behaviour 

of the baroreceptor performed by Srinivasan and Nudelman [27], and their attempt to fit their model to 

datasets from rats.  
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Figure 2.3: Illustrated dynamic Barorceptor model to further describe how spring-damper 

networks model strain, Adapted from Bugenhagen [22] 

 

Beard et al. [14] expands on the models presented by Srinivasen et al. [27] and Bugenhagen et al. 

[22] to present an alternative to Guyton-based models [9] for arterial pressure regulation. Beard et al. 

argue that because the Guyton models assume that arterial pressure is regulated only by the kidneys, 

they cannot be used to investigate alternatives [14]. These alternatives include other complex 

relationships between neuronal and hormonal systems that are affected by the baroreceptors [14]. 

Their argument also highlights that there is no formal description or parametrisation of the Guyton 

models [14]. Based on these limitations, the Beard et al. model is presented as a “phenomenological” 

model of physiological interactions between components [14]. Beard’s goal is to present a practical 

model which relates the input-output behaviour of selected BP controller variables, based on general 

physiological principles which are supported by experimental data. In this way, he confirms that his 

model is a “data-driven phenomenological representation” of the physiology rather than a fundamental 

representation based on mechanical and physical relationships [14]. 

The components in the Beard et al. model include large artery mechanics for the baroreceptor [14], the 

dynamics of the baroreceptor firing rate, mechanics of the heart, the autonomic system as well as the 

renin-angiotensin system. It is interesting to note that their model relates the changes in sympathetic 

tone to changes in aortic compliance, as well as long-term mechanical creep volume, which are not 

accounted for in other open loop baroreceptor models. I investigate and analyse this closed loop model 
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for dynamic characteristics using open-loop Simulink modelling techniques in section 3.4 below. 

Beard et al. concluded the following [14]: the baroreflex arc and the renin-angiotensin system may 

interact in order to regulate long term BP; renal function (or dysfunction) is not the main determinant 

of long-term arterial pressure according to their model; chronic stimulation of the baroreflex can 

regulate BP through the baroreflex and the renin-angiotensin system; arterial stiffening contributes to 

long-term changes in arterial pressure that is related to aging [14]. Some of these conclusions directly 

contradict other researchers’ views on the reno-centric role of arterial BP regulation. One important 

distinction, which is not clearly discussed by Beard, is the difference between the normal 

physiological role of the baroreflex during long-term BP regulation and its role in the increase of BP 

with age and the development of hypertension. The ability of the baroreflex to adapt under chronic 

changes in compliance may affect sympathetic tone and renin-angiotensin levels and lead to essential 

hypertension [5], [13]. This observation is further investigated in section 4.2, when the frequency 

response of the Bugenhagen et al. and Beard et al. baroreceptor models are tested. 

The phenomenological model by Beard et al. [14] is very clearly described, along with clear 

parameterisation and experimental results, and compared against existing data from reliable sources. 

Interestingly Cowley [13] described the baroreceptor as incapable of acting as a sensor for long term 

control because of its frequency response and low gain (sensitivity), whereas Beard et al. [14] showed 

that electrical stimulation of the baroreceptor can affect the sympathetic nervous system when the 

arterial pressure baseline changes. One may argue that the contention in the literature can be clarified 

by separating the sensor characteristics of the baroreceptor from the ability of a system to 

control/regulate the measured variable (in this case some function of pressure). The difference 

between these two viewpoints is that although the baroreceptor can affect blood pressure over longer 

time periods (through stiffening walls or electrical stimulation), that does not infer that the 

baroreceptor can detect long-term changes or regulate blood pressure. 

Mahdi et al. presented a comparative analysis of baroreceptor models in their 2013 paper [2]. 

This study shows how different types of models perform according to the known features of 

baroreceptor dynamics. The afferent dynamics of the baroreflex are modelled in three stages:  

1. The arterial wall deforms to convert pressure inputs into an arterial wall strain [2] 

2. Arterial wall strain stimulates the mechanoreceptor nerve ending [2] 

3. Baroreceptor firing rate is encoded as a function of the mechanoreceptor nerve ending 

activity [2].  

Mahdi et al compares three types of models for arterial wall deformation, based on whether the wall is 

modelled as linearly-elastic, nonlinearly-elastic or visco-elastic [2]. Three different conditions are 

compared for the pairing of the strain at the arterial wall and the strain at the receptor nerve ending. 

These conditions are for modelling the coupling through different amounts of elastic and damping 
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elements (Voigt body elements). Thereafter Mahdi et al compares in two models the translation from a 

nerve ending strain to a firing rate, viz. the simple amplifier model and the leaky integrate-and-fire 

model.  

The features of these different types of models are compared for their ability to fit a range of 

experimental results based on sinusoidal and step inputs. These results are based on experiments from 

Brown et al. on rat aortas for baroreceptor firing rates [2], [10]. Features which are used to test the 

behaviour of the models under these different conditions are saturation and threshold, adaptation and 

overshoot; as well as post-excitatory depression (PED) and rectification. Using these methods, Mahdi 

at al. are able to compare a variety of different models by examining each of the components that 

describe the behaviour of the baroreceptor [2]. They first quantitatively evaluate the different models’ 

ability to fit experimental data, and then qualitatively investigates which combinations of models are 

capable of showing the features (saturation, threshold, and rectification) of the baroreceptor under 

different inputs  [2]. In the quantitative analysis he optimises the model parameters for arterial wall 

deformation in order to reduce the error between the model output and the expected result. Using the 

model which performs the best with optimised parameters, he then qualitatively investigates the 

performance of the mechanoreceptor stimulation [2].  

Mahdi et al’s qualitative comparisons [2] show that the non-linear arterial wall, two Voigt body, 

integrate-and-fire collection of models result in the best alignment between responses and data [2]. 

This preferred model shows response sufficiently in line with the expected behavioural properties for 

rectification, threshold and saturation, adaptation as well as asymmetry [2]. A more extensive 

description and analysis of this model is outlined in section 3.5 below. A far more elaborate discussion 

on models which discern between A-fibre and C-fibre baroreceptors is available in the work from 

Sturdy et al. [39]. 

Mahdi et al. [2] mention that to his knowledge this is the first comparative study that tries to identify a 

simple collection of generic BR models that characterise the features of the BR [2]. Their results show 

that linear wall models are insufficient for describing a BR response when the input has ‘multiple step-

pressure inputs’[2]. Furthermore, the use of two Voigt bodies to describe the mechanoreceptor 

stimulation is sufficient to describe the adaptation on multiple time scales [2]. They say that the reason 

this may be sufficient is because the first Voigt body describes the time constant responsible for the 

deformation at the arterial wall, and that the second time constant is responsible for the deformation at 

the receptor nerve ending [2]. Importantly, he notes that based on his knowledge this is the first study 

to show the importance of different time constants in BR models, and that more careful tests with data 

over longer time periods would be invaluable for such an analysis [2].  

In 2014, Petterson et al. [15] combined the age-related strain component from King [24], with 

the firing response component of the baroreceptor from Bugenhagen et al. [22] along with the 
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circulatory model from Smith [40] in order to ‘mechanogenically’ understand the physiology behind 

essential hypertension [15], [22], [24]. This model is similar to Beard et al.’s model [14], only with a 

more simplistic baroreceptor model and an updated model of the closed loop effects on the kidney. 

Petterson et al.’s model [15] shows how when the arterial wall stiffens over long periods of time, the 

baroreceptor has a diminished response. They discuss how the natural process of age-related arterial 

wall stiffening will gradually affect the strain interpreted by the baroreceptor, which means the 

baroreceptor receives inaccurate information about the pressure and responds inadequately [15]. 

Hence they hypothesise that the kidneys fail to restore BP to normal as arterial stiffening progresses, 

which could lead to essential hypertension [15]. By using Bugenhagen et al.’s model for central 

nervous system responses [22], and Smith et al.’s model for the renal changes to the pressure-

natriuresis curve [40], they present a closed loop model of an aging aorta [15]. They are able to show 

that as time progresses, and without any other pathological effects, BR sensitivity decreases over time 

[15]. This relates to the stiffening of the aorta in aging, and a decreased short term peak BR response 

[15]. This paper is interesting as it pulls in a number of different recognized models in order to achieve 

a result that does not contradict Guyton’s theory that the renal curve is the only controller of BP over 

time, but supports a different perspective on why the renal curve would shift without an observed renal 

pathology. Although the Bugenhagen model is available through virtualrat.org [22], it is described in 

the paper only by the governing mathematical equations [15], [22]. Pettersen et al. claim that their 

model is the first qualitative example to show that arterial stiffening sufficiently explains essential 

hypertension [15]. This is in contrast to Beard et al.’s similar statement [14] that the model from 

Averina et al. [41] was the only model known to show how the renal pressure-natriuresis curve adapts 

under long-term pressure changes [14]. One key distinction between all these models and their 

corresponding papers, is that they are used to analyse different topics. The models of the closed loop 

baroreflex, whether they include models of the kidney and the renin-angiotensin system or not, can be 

used to understand the effect of the baroreceptor in chronic hypertension as well as to understand the 

regulatory control mechanisms for arterial pressure. 

Another interesting note is that all the authors of this group (Beard [14], Pettersen [15] and 

Bugenhagen [22]) indicate that the mechanical suppression of arterial wall strain can lead to a 

sustained elevation in arterial BP, but that they do not all seem to state clearly whether this is directly 

in opposition to Guyton’s theory that the renal function curve and the salt-volume uptake rates are the 

only controllers of BP. Pettersen et al. state that their findings do not contradict Guyton’s view, but 

rather support a mechanism which affects the renal curve in the long-term [15]. Whereas Beard et al. 

[14] state that because the arterial stiffening can contribute substantially to the long-term control of 

BP, it contradicts the ‘renocentric’ Guyton view [14], [15]. Pettersen et al. [15] state in their paper that 

the dysfunction of the baroreceptor is not really a dysfunction at all, but really a misrepresentation of 

the arterial pressure through strain in a vessel with lower compliance[15].  
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Guyton’s model analyses BP regulation for mean BP only [9], where Clarke and others [7], [15] have 

shown that BRs are more sensitive to systolic BP peaks. Based on the physiology assumed by most 

authors that the BRs supress SNA to some extent [14], [15], [20], [22], Petterson et al. have shown 

how arterial stiffening can affect BR firing and subsequently decrease SNA suppression [15]. Based 

on these observations some further investigation is necessary. This investigation would be on the 

effect of intermittent stimulation of the BRs, preferably synchronised with systolic pressure, on 

suppression of SNA. This could help highlight new ways of resolving isolated systolic hypertension in 

aging subjects. 
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3 Implementation and Analysis of Existing Models 

This chapter discusses my implementation of four different models for the baroreceptor. In each 

section I give a short contextual background into each model, along with a description of the 

modelling equations. All modelling equations are also presented in Appendix B for review.  The 

models are implemented in Simulink R2016b (The MathWorks Inc, © 1994-2017, USA) and are 

validated with data from the experiments described by the model authors. All Simulink modelling 

diagrams are presented in Appendix C for review. The outputs of the models are compared with the 

reported model outputs, and with corresponding published experimental data. A critical comparison of 

how the different components of the models behave under the same input conditions is also discussed. 

This comparison elaborates on the strengths and limitations of different ways of modelling the main 

features of the baroreceptor. 

3.1 The King Pressure-Strain Model for Arterial Walls 

3.1.1 Model Context 

King developed a model of the pressure-strain relationship in elastomeric arteries [24]. This model 

was expanded by Srinivasen et al. [27]. Srinivasen extended King’s arterial wall model for the 

baroreceptor by including a dynamic strain model component. Later, Bugenhagen et al. developed a 

model of the complete baroreflex to study the physiology behind salt sensitive hypertension in rats 

[22]. Bugenhagen et al. also used the elastomeric model of the arterial wall, but adapted and linearised 

his model of the wall strain using a curve fitted across experimental results for a rat aorta pressure-

radius relationship. 

King’s model of cylindrical tubes of elastomeric materials is described briefly in the next section, to 

provide context for the baroreceptor models described later in this chapter. Simulation of this model’s 

behaviour is not presented here, as it is simulated in the model from Srinivasen et al. 

3.1.2 Model Equations and Description 

King investigates and describes the visco-elastic properties of the arterial wall to find out how large 

systemic arteries might be able to regulate pulsatile blood flow. Based on his investigations, he models 

the arterial wall as a uniform elastomeric cylinder. In this way the strain experienced by the arterial 

wall is determined using the non-linear sigmoidal Langevin function [24]. This function approximates 

rubber-like stress-strain behaviour as a function of variables such as age, arterial wall thickness and 

arterial wall radius. This model of the pressure to strain relationship is known as a non-linear elastic 

wall model, and a similar model with a non-linear sigmoidal pressure response curve is extensively 

tested and compared to other wall models by Mahdi et al. [2]. 

King’s paper gives a number of useful parameters for the human aorta, under different pressures and at 

different ages [24]. Table 3.1 below is based on the data reported by King, for the ranges of 
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parameters β, A and the unconstrained radius (𝑟0) [24]. A is a factor dependent on the arterial wall 

thickness, undistorted radius and initial pressure. β is a factor for the unconstrained surface area of the 

cylinder, which represents the level of twisting of the molecular chains at the periphery of the arterial 

wall. 

Table 3.1: Experimental and calculated values for human aortas of different ages [24]. 

Age (years) β A (mmHg) 𝑟0 (𝑚𝑚) 

20-24 0.302 88 5.8 

36-42 0.462 70 6.4 

71-78 0.640 44.5 7.9 

3.2 The Srinivasen and Nudelman Baroreceptor Model 

3.2.1 Model Context 

Srinivasen and Nudelman base their baroreceptor model on the transmission from pressure to strain at 

the arterial wall [27]. The model is comprised of an arterial wall strain based on the non-linear strain 

characteristics of elastomeric cylinders (as adapted from King) [24], [26]. King’s model parameters 

are based on experimental data collected from human aortas, whereas Srinivasen et al. model 

parameters are fitted for cat and dog carotid sinus experimental data. This strain model at the arterial 

wall is further extended to include a dynamic strain component, based on the coupling between the 

membranes and connective tissue layered between the arterial wall and the baroreceptor nerve ending 

membrane. 

3.2.2 Model Equations and Description 

This section describes the model presented by Srinivasen and Nudelman, which relates changes in 

pressure at the carotid sinus arterial wall to the baroreceptor firing response [27]. The dynamic strain 

model includes the frictional coupling between the arterial wall and the baroreceptor nerve ending 

membrane. Together, the combined static and dynamic strains are transduced into a combined strain 

signal, which is only propagated to the output if the combined signal exceeds a threshold. Thereafter 

the strain signal is transduced into firing response based on an integrate-and-fire model of the nerve 

discharge firing pattern.  

The following set of equations summarises the model presented by Srinivasen and Nudelman [26], 

[27]. 

The Langevin function (Eq. 3.1), used to model the non-linear elastomeric behaviour of the arterial 

wall, is included in the model of the static arterial wall strain (ε) in Eq. (3.2) [24]. In Eq 3.2 the rate of 

change of the static wall strain is a function of the input pressure (𝑃) [26]. The elastomeric behaviour 

of the strain depends on resting mean pressure (A) and a factor for unconstrained surface area (β) [26]. 
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 ℒ(𝑧) =  coth 𝑧 −
1

𝑧
 

 

 (3.1) 

 
𝜀̇ =

𝑃

𝐶
−

𝐴

𝐶√(𝜀 + 1)
[
ℒ−1{𝛽(𝜀 − 1)}

ℒ−1(𝛽)
−

1

𝜀 + 1
] 

(3.2) 

 

The dynamic strain (𝜀𝑑) is modelled with a single Voigt body (a nonlinear spring in parallell with a 

linear damping element for viscosity). 

 𝜀𝑑̇ =
𝜎

𝐶𝐷
|𝑃̇| −

1

𝐶𝐷
(𝜀𝑑)

2 
(3.3) 

 

Note that the static wall strain (ε) is the series viscoelastic coupling of the nerve terminal to the arterial 

vessel wall, whereas the dynamic wall strain (𝜀𝑑) is the coupling caused by the different layers of the 

arterial wall around the nerve ending which slip past each other and cause friction. These two types of 

strain are combined into a membrane strain (δ in Eq. (3.4)). The membrane strain is then transformed 

into a transduced signal (x), which is generated if the combined membrane strain exceeds the strain 

threshold for the baroreceptor (Eq 3.5). The response signal generated is a nerve discharge signal, y 

(firing response in Figure 3.2). The firing response is modelled using a simple integrate-and-fire 

model, which triggers a depolarisation as soon as the threshold is reached, resets the transduced signal, 

and whose response slowly decays as the transduced signal is maintained. In this way, Eq. (3.5 – 3.6) 

model a response which is initiated for transduced strains that exceed the minimum threshold, for 

changes to the arterial pressure.  

 𝛿 = 𝜀 + 𝜀𝑑 (3.4) 

 
𝑥 =  {

0 𝑖𝑓 𝛿 < 𝛿𝑡ℎ
𝛿 𝑖𝑓 𝛿 ≥  𝛿𝑡ℎ

 
(3.5) 

 𝑖𝑓 𝑦 >  𝑦𝑡ℎ, 

𝑡ℎ𝑒𝑛 ∫ 𝑦(𝑡)𝑑𝑡 = 𝐴𝑟

𝑡𝑖+1

𝑡𝑖

 

(3.6) 

In this model, the authors introduced a function h(x)  (Eqs. 3.7 – 3.8) to relate the transducer signal to 

the response signal, which is not a physical model but rather a fitted model for different trapezoidal 

input pressures so that the modelled firing response matches the expected experimental firing response 

[27]. In this way the transduction mechanism of the actual baroreceptor is not physically modelled.  
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 𝜏𝑦̇ + 𝑦 = 𝑔(𝑥, 𝑥̇) (3.7) 

 𝑔(𝑥, 𝑥̇) = 𝑥 + ℎ(𝑥)𝑥̇ (3.8) 

 ℎ(𝑥) =  𝑤1 +𝑤2𝑥 (3.9) 

Figure 3.1 shows how each of the model components relate the pressure to the baroreceptor firing 

response. 

 

Figure 3.1: Schematic outline of subsystems in the Srinivasen and Nudelman baroreceptor 

model [27]. 

The conventional block diagram representation of the Srinivasen and Nudelman model is shown in 

Figure 3.2. The conventional block diagram represented in Figure 3.2, is modelled in Simulink. The 

Simulink block diagram is available in Appendix C, Figure C.7.1. 



 

 

2
7

 

 

 

Figure 3.2: Conventional block diagram representing Srinivasen et al. baroreceptor model [27]  
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3.2.3 Model Behaviour Compared with Published Data 

I implement this model in Simulink to assess its performance according to the reported behaviour. I 

then compare the Simulink outputs to results reported by Srinivasen et al. [26], [27]. The parameters 

used in the experiment described in their 1973 paper [27] are outlined in Table 3.2, and simulation 

outputs are shown in Figure 3.3 and Figure 3.4 below. The input pressure is a step at 0.01s from 46 

mmHg to 202 mmHg at a rate of 1730 mmHg/sec. The initial conditions for this simulated experiment 

are as per the reported experiment in the Srinivasen et al. 1973 paper [27].  Note that I scaled the 

simulated firing response plotted in Figure 3.4 to show the maximum expected firing response, as per 

the reported results. In the Srinivasen et al. model, the firing response of the BR is highly sensitive to 

the rate of change of the step increase in pressure. Review of figure 5 in Srinivasen and Nudelman’s 

experimental tests shows this feature of the model clearly [27]. Due to the nature of the model 

implementation in Simulink, each pressure change is implemented based on a defined time step. Based 

on the differential solver used to evaluate the model output at each time step, the rate of change of the 

pressure is averaged over time steps which are more granular than one second. This results in a small 

artifact in the summed number of pulses per second. In this way, scaling is necessary to remove the 

slight difference in the sum of BR pulses per second (simulated response for firing rate), caused by the 

simulated time steps for the experiment.  

 

Table 3.2: Parameter-Value pairs for Step Input (46 – 202 mmHg) Pressure Experiment [27] 

Parameter Value Units Parameter Value Units 

A 195.5000 mmHg 𝑤1 -0.0660 unitless 

𝛽 0.4000 unitless 𝑤2 0.2600 unitless 

𝐴𝑟 0.0072 unitless 𝜎 0.0004 N/𝑚2 

𝛿𝑡ℎ 0.1210 unitless 𝐶𝐷 0.1100 unitless 

C 2.0000 unitless 𝜏 0.0400 s 
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Figure 3.3: Simulink modelled states based on input pressure (A), static arterial strain (B), 

dynamic strain (C) and combined membrane strain (D) generated by Simulink implementation 

of the Srinivasen and Nudelman baroreceptor model [27] 



30 

 

 

Figure 3.4: Comparison between experimental and reported firing responses generated by 

Simulink implementation of the Srinivasen and Nudelman baroreceptor model [27] 

3.3 Bugenhagen et al. Baroreceptor Model 

3.3.1 Model Context 

Bugenhagen et al. adapted their non-linear elastomeric model of the strain in the arterial wall from a 

similar model based on a pressure-area relationship [22]. This similar model is a 3-parameter 

empirical model, which Bugenhagen explains is from the pressure-area relationship proposed by 

Langewouters et al. [22]. In this model the non-linearity is modelled with an inverse tangent curve, 

whereas Srinivasen et al used the functional inverse of the hyperbolic cotangent. Bugenhagen 

linearises the 3-parameter model into a 2-parameter model, using a fitted curve which approximates 

rat experimental data. Using this method, he shows that a linearised relationship between pressure and 

strain is adequate in the normal pressure range, but inadequate at extreme pressure ranges. 

Bugenhagen also extends the dynamic strain model from Srinivasen’s single Voigt body to three Voigt 

bodies for modelling viscoelastic coupling between the arterial wall and the baroreceptor nerve ending 

membrane. Mahdi et al. evaluates the effect of using different numbers of Voigt bodies in a 
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baroreceptor model based on its dynamic strain response to pressure [2] (discussed further in section 

4.1.2).  

The firing response generated by Bugenhagen et al.’s model is not a fitted response, but is the output 

of a physiological model based on the membrane strain, by adapting and simplifying Srinivasen’s 

‘integrate and fire’ model [22], [27]. This firing rate is the baroreceptor nerve discharge which is a 

function of the transduced strain at the baroreceptor nerve ending.  

3.3.2 Model Equations and Description 

This section describes the components of the model from Bugenhagen et al. of the baroreceptor 

response to pressure changes [22]. The model relates changes in pressure to the baroreceptor nerve 

through a static (elastomeric) strain and a dynamic strain (frictional coupling between arterial wall 

membranes). The total strain in the wall is transduced at the baroreceptor nerve ending using a specific 

sensitivity and pressure threshold, which initiates a firing response from the baroreceptor [22].  
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The model used for the strain at the arterial wall is altered from Srinivasen’s more complex non-linear 

elastomeric model, to rather be represented by a three-parameter ‘static empirical pressure-area 

relationship’ based on experimental data [22]. Thereafter a dynamic strain model is included, based on 

the rate of change of that area. Although the three parameter non-linear model is shown by 

Bugenhagen et al. to compare well with experimental data from Andresen et al. [42], they further 

confirm that a two-parameter linearized model of the pressure-area relationship performs suitably well 

within the physiological range [22]. It is this linearised model that is used in this analysis, and 

presented here. Equations (3.10-3.12) show how arterial wall strain (𝜀𝑤𝑎𝑙𝑙) is related to pressure (P), 

through wall compliance (𝐶𝑤𝑎𝑙𝑙) and the unstressed aorta radius (𝑅0), as well as the viscosity of the 

artery wall (𝐵𝑤𝑎𝑙𝑙). 

 𝐴 =  𝜋(𝑅0 + 𝐶𝑤𝑎𝑙𝑙𝑃)
2 (3.10) 

 

𝐴̇ =  

(

 
−√
𝐴
𝜋 + 𝑅0

𝐵𝑤𝑎𝑙𝑙𝐶𝑤𝑎𝑙𝑙
)

 +
𝑃

𝐵𝑤𝑎𝑙𝑙
 (3.11) 

 

𝜀𝑤𝑎𝑙𝑙 =
√𝐴
𝜋
− 𝑅0

𝑅0
 

(3.12) 

 

The dynamic model of the artery mechanics due to the frictional coupling of the arterial wall 

membrane is comprised of Voigt bodies. According to Bugenhagen et al., Voigt bodies model the 

different time constants of the resetting phases in the transduced strain.  Physiologically, each element 

represents the mechanics associated with elasticity and viscosity in the arterial wall, the baroreceptor 

nerve ending, as well as in the connective tissue surrounding that nerve ending [22]. These elements 

are modelled by Eq. (3.13 – 3.16) in which the strain elements (𝜀1, 𝜀2, 𝜀3) are functions of the 

respective elastic (𝐾1, 𝐾2, 𝐾3) and viscous (𝐵1, 𝐵2, 𝐵3) constants, and in which the elasticity of the 

baroreceptor nerve ending is represented as 𝐾𝑛𝑒 [22]. In this way the dynamic strain (𝛿) detected at the 

baroreceptor nerve ending is a function of the difference between the strain at the arterial wall (𝜀𝑤𝑎𝑙𝑙) 

and the strain from the coupling across the different tissues and membranes. 

 𝜀1̇ = (
𝐾𝑛𝑒
𝐵1
) 𝜀𝑤𝑎𝑙𝑙 − (

𝐾𝑛𝑒 + 𝐾1
𝐵1

) 𝜀1 +
𝐾1
𝐵1
𝜀2 + 𝜀2̇ (3.13) 

 
𝜀2̇ = (

𝐾1
𝐵1 +𝐵2

) 𝜀1 − (
𝐾1 + 𝐾2
𝐵1 + 𝐵2

) 𝜀2 + (
𝐾2

𝐵1 + 𝐵2
) 𝜀3 + (

𝐵1
𝐵1 + 𝐵2

) 𝜀1̇ + (
𝐵2

𝐵1 + 𝐵2
) 𝜀3̇ (3.14) 
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𝜀3̇ = (

𝐾2
𝐵2 + 𝐵3

) 𝜀2 − (
𝐾2 +𝐾3
𝐵2 +𝐵3

) 𝜀3 + (
𝐵2

𝐵2 + 𝐵3
) 𝜀2̇ (3.15) 

 𝛿 = 𝜀𝑤𝑎𝑙𝑙 − 𝜀1 (3.16) 

Thereafter the firing response of the baroreceptor nerve is modelled with a simplified integrate and fire 

model, as seen in Eq. (3.17). The firing response (n) initiated if the strain at the baroreceptor nerve 

ending (𝛿) exceeds the baroreceptor threshold strain (𝛿𝑡ℎ), is a function of the strain sensitivity (S) and 

the jump frequency parameter (𝜁) [22]. 

 𝑛 =  {
0 , 𝑖𝑓 𝛿 < 𝛿𝑡ℎ

𝑆(𝛿 − 𝜁𝛿𝑡ℎ) , 𝑖𝑓 𝛿 ≥  𝛿𝑡ℎ
 (3.17) 

The subsystems shown below in Figure 3.5 show the relationships between the model subsystems. The 

block diagram for the expanded subsections of the model is shown in Figure 3.6, where the colours 

highlight the separate subsystems. The equations above are described with reference to the variables in 

Figure 3.6. 

 

Figure 3.5: Bugenhagen et al. baroreceptor model with model components shown as subsystems 

[22]
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Figure 3.6: Conventional block diagram representing the Bugenhagen et al. baroreceptor model 

[22]. 

The block diagram of the implementation of the model components in Simulink, as per the subsystems 

shown in Figure 3.6 are available in Appendix C, Figure C.7.2 to Figure C.7.4.  
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3.3.3 Model Behaviour Compared with Published Data 

I implement this model in Simulink and compare its performance with simulated and experimental 

data from WKY rats published by Bugenhagen et al. [22].  

The parameters for one of the experiments described in the Bugenhagen paper [22] are presented in 

Table 3.3. Plots of simulated static arterial strain, dynamic strain and membrane (combined) strain are 

presented in Figure 3.7. Simulated firing response based on the parameters as reported by Bugenhagen 

is shown in Figure 3.8, while the result after optimising one parameter (𝐾1(𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑒𝑑)) is shown in 

Figure 3.9. The input is a step in pressure from 0 mmHg to 230 mmHg at 3.0 s. The initial conditions 

for the differential states in this simulation are determined from simulating the model at 0 mmHg for 

3 s. 

Note that I have scaled the magnitude of the firing response in Figure 3.8 and Figure 3.9 to remove the 

slight difference in the sum of BR pulses per second (simulated response for firing rate), caused by the 

simulated time steps for the experiment. 

Table 3.3: Parameters for Step Input (0 – 230 mmHg) Pressure Experiment 

Parameter Value Units Parameter Value Units 

𝐾𝑛𝑒 1.000 mmHg/mm S 255.000 Hz 

𝐾1 1.500 mmHg/mm 𝛿𝑡ℎ 0.200 unitless 

𝐾2 3.750 mmHg/mm 𝜁 1.000 unitless 

𝐾3 1.050 mmHg/mm 𝜀1𝑖𝑛𝑖𝑡𝑖𝑎𝑙  0.204 unitless 

𝐵1 1.000 mmHg x s/mm 𝜀2𝑖𝑛𝑖𝑡𝑖𝑎𝑙  0.232 unitless 

𝐵2 10.000 mmHg x s/mm 𝜀3𝑖𝑛𝑖𝑡𝑖𝑎𝑙  0.149 unitless 

𝐵3 300.000 mmHg x s/mm 𝑅0 1.600 mm 

𝐵𝑤𝑎𝑙𝑙 1.000 mmHg x s/mm 𝐾1(𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑒𝑑) 1.950 mmHg/mm 

𝐶𝑤𝑎𝑙𝑙 0.006 mm/mmHg    
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Figure 3.7: Simulink modelled states based on input pressure (A), static arterial strain (B), 

dynamic strain (C) and combined membrane strain (D) with 𝑲𝟏(𝒐𝒑𝒕𝒊𝒎𝒊𝒔𝒆𝒅). 

 

Figure 3.8: Comparison between firing responses simulated in this study, and published 

experimental and simulated data (Bugenhagen et al. [22]). Model parameters as in Table 3.3 
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Figure 3.9: Comparison between firing responses simulated in this study, and published 

experimental and simulated data (Bugenhagen et al. [22]). Model parameters as in Table 3.3 

(Optimised 𝑲𝟏) 

3.4 Beard et al. Baroreceptor Model 

3.4.1 Model Context 

This model of the baroreceptor is based on how a changing pressure in a thin walled and compliant 

cylinder, affects the rate of change of strain in the vessel wall [14]. This model of the pressure-strain 

relationship is an alternative to the combined membrane strain (from static and dynamic strain 

elements), and includes a time constant for relaxation as well as factors for acute and chronic 

compliance in the vessel wall [14]. The firing of the baroreceptor is a function of how quickly the 

strain changes at the arterial wall, a saturating static non-linearity for that change, and how many 

baroreceptor afferent fibres are available for discharge [14]. This model is found to be more adept at 

handling experimental data from different species than the model from Srinivasen et al. or from 

Bugenhagen et al. Essentially, this model is an alternative to the techniques from Srinivasen et al [27]; 

Bugenhagen et al [22]; and Mahdi et al [2]. Parameterisation, initial conditions, and experimental test 

data are explicitly defined in the paper. This allows a more thorough analysis of the model behaviour.   
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3.4.2 Model Equations and Description 

As shown in Eq. (3.18), the rate of change of the aortic volume (𝑉𝐴𝑜) is a function of the aortic 

compliance (𝐶𝐴𝑜) and the effective rate of change of the creep stress volume of the aorta (𝑉̇𝑠𝐴𝑜). 

 𝑉̇𝐴𝑜 = 𝐶𝐴𝑜𝑃̇𝐴𝑜 + 𝑉̇𝑠𝐴𝑜 (3.18) 

Eq. (3.19-3.20) show the creep mechanics for the creep stress aorta volume (𝑉𝑆𝐴𝑜), as parameterised 

with a time constant of stress relaxation (𝜏𝐶𝐴𝑜) and a long-term/chronic creep stress volume (𝑉𝑆𝐴𝑜
∞).  

This long-term creep stress volume (𝑉𝑆𝐴𝑜
∞) is related to the aorta volume (𝑉𝐴𝑜) by a factor (𝛾𝐴𝑜). This 

factor represents a ratio of the acute to the effective long-term compliance in the vessel. 

 

𝑉̇𝑠𝐴𝑜 =
1

𝜏𝐶𝐴𝑜
(𝑉𝑠𝐴𝑜

∞ − 𝑉𝑠𝐴𝑜) 

𝑉̇𝑠𝐴𝑜 =
1

𝜏𝐶𝐴𝑜
(𝛾𝐴𝑜𝑉𝐴𝑜 − 𝑉𝑠𝐴𝑜) 

(3.19) 

(3.20) 

The strain at the baroreceptor nerve ending (𝛿𝜀) is related to the strain at the arterial wall (𝜀) as a 

function of the aortic volume (𝑉𝐴𝑜), the unstressed volume (𝑉0), the average rate of change in that 

strain (𝜀̅̇) and an adjustable time constant (𝜏𝑠). These relationships are expressed in Eq. (3.21-3.23) 

 𝜀̇ =
1

2
(

1

√𝑉𝐴𝑜𝑉0
) (3.21) 

 𝜀̅̇ =
1

𝜏𝑠
(𝜀 − 𝜀)̅ (3.22) 

 𝛿𝜀 = 𝜏𝑠𝜀̅̇ (3.23) 

The fraction of the baroreceptor afferent fibres (s), which are in an active state for discharge, is 

determined through the dynamic relationship between adjustable parameters (a and b) and the 

effective change in the membrane strain (𝛿𝜀). The rate of change of that fraction. Eq. (3.24) is 

physiologically analogous to muscle fibre recruitment during exercise [14]. Eq. (3.25) shows how the 

baroreceptor firing response is therefore a function of the available baroreceptor afferent fibres, the 

changing membrane strain, and the existing firing rate. 

 

 𝑠̇ = 𝑎(1 − 𝑠) − 𝑏𝑠 (
𝛿𝜀

𝛿𝜀 + 𝛿0
) (3.24) 

 𝑓𝐵𝑅 = 𝑓0𝑠 (
𝛿𝜀

𝛿𝜀 + 𝛿0
) (3.25) 
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The subsystems in Figure 3.10 show the relationships between the model components.  

 

Figure 3.10: Beard et al. baroreceptor model with model components shown as subsystems [14] 

The block diagram for the expanded subsections of the model is shown in Figure 3.11. The equations 

above are described with reference to the variables in Figure 3.11. 

The block diagram for the implementation of the model components in Simulink, as per the 

subsystems shown in Figure 3.10 is in Appendix C, Figure C.7.5 to Figure C.7.8.  



 

 

4
0

 

 

Figure 3.11: Conventional block diagram representing the Beard et al. baroreceptor model [14]
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3.4.3 Model Behaviour Compared with Published Data 

Beard et al. used many different experiments on different species to test and evaluate this model [14]. 

Initially, the large artery mechanics component was parameterised on dog aortic pulsatile pressure (for 

the pressure-radius relationship) [14]. Thereafter adjustable parameters were determined from non-

pulsatile step input pressure experiments on dog carotid sinuses [43] and then again from in-vivo 

pulsatile ramp input pressure experiments on dog aortas [14], [44].  

Beard et al. modelled the closed loop baroreflex in MATLAB, and made the source code available 

through ‘https://zenodo.org/record/7126’ [14]. In the current study, I have adapted the baroreceptor 

subsystems from Beard et al’s closed-loop model to simulate an open-loop baroreceptor in Simulink.  

I use the parameters shown in Table 3.4 to model the experiment, as reported by Chapleau et al. [43]. 

These parameters were reported by Beard et al., and were used for open-loop simulation in Simulink 

[14]. The parameters are slightly adjusted to compensate for Beard et al’s MATLAB closed loop 

baroreflex model [14]. This experiment involved a step input pressure from 46 – 93 mmHg at a rate of 

53 mmHg/s from 1s. I simulated the resting conditions in MATLAB to determine initial conditions, 

before running the Simulink model with experimental conditions. These are listed in Table 3.5. 

Table 3.4: Parameters used to simulate the experiment of Chapleau et al. [14] 

Parameter Value Units Parameter Value Units 

𝑑0 12.0000 mm 𝜏𝑠 251.5250 sec 

L 30.0000 mm a 0.0651 /sec 

𝑉0 0.6875 ml b 0.2004 /sec 

𝐶𝐴𝑜 0.0070 ml/mmHg 𝛿0 0.4965 unitless 

𝛾𝐴𝑜 0.4000 unitless 𝑓0 299.7511 /sec 

𝜏𝐶𝐴𝑜 0.1200 sec    
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Table 3.5: Initial conditions required to model the Chapleau et al experiment 

Parameter Value Units Comments 

𝑉𝑆𝐴𝑜𝑖𝑛𝑖𝑡𝑖𝑎𝑙 0.1867 ml Initial condition (calculated) 

𝑉𝐴𝑜𝑖𝑛𝑖𝑡𝑖𝑎𝑙 0.4667 ml Initial condition (calculated) 

𝜀𝑖̅𝑛𝑖𝑡𝑖𝑎𝑙 0.8239 unitless Initial condition (calculated) 

𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙 1.0000 unitless Initial condition (assumed) 

 

In the Chapleau experiment, the input variable is not pressure but the rate of change of pressure. 

Therefore my Simulink model is updated to use the rate of change of input pressure for this 

experiment. Beard et al made use of a stiff variable step solver in MATLAB (ode23s), which was 

matched in the Simulink model. Results of simulating the Chapleau experiment are shown in Figure 

3.12 and Figure 3.13. 

 

Figure 3.12: Simulink modelled states based on pressure (A), for differential input pressure (B), 

total membrane strain (C) and baroreceptor afferent fibre activity (D) 
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Figure 3.13: Comparison of experimental firing from Chapleau et al. [43], reported firing from 

Beard et al. [14] and simulated firing following a step change of pressure. 

 

A step increase volume input for an in-vivo experiment was used to test the model by Beard et al., as 

shown in Figure 3.14. The results in Figure 3.15 highlight how well the open-loop Simulink model, 

when adjusted for a volume input, predicts the results from Beard’s closed loop MATLAB model. 

Beard et al. use experimental results from Guyton and colleagues, in which large volumes of blood 

where infused into an anaesthetised dog’s aorta for 5 min, followed by a recovery period of 30min 

[14]. 

 



44 

 

 

Figure 3.14: Aortic volume step infusion for Guyton et al. [45] experiment 

 

Figure 3.15 Firing Rates calculated by the Beard et al. MATLAB model and the Simulink model 

of the present study. 



45 

 

Beard et al. used their model to simulate the experiments of Quail et al. on rabbits [14]. The animals 

underwent a 17.5 min haemorrhage, starting at time t = 0, from a baseline MAP of 100 mmHg. Aortic 

volume measured during haemorrhage (shown in Figure 3.16 was used as model input. Simulated 

firing rates calculated by the closed-loop MATLAB model of Beard at al. and my open-loop Simulink 

model are shown in Figure 3.17.  This simulation shows the model’s ability to perform under pulsatile 

haemorrhage conditions.  

 

Figure 3.16: Aortic volume changes during the Quail et al. haemorrhage experiment [46] 
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Figure 3.17: Firing Rates calculated by the Beard et al. MATLAB model and the Simulink 

model of the present study. 

3.5 Mahdi et al. Baroreceptor Model 

3.5.1 Model Context 

Mahdi et al. present a number of different combinations for the composition of a baroreceptor model. 

They investigate different methods for modelling the arterial wall strain, the transmission of strain 

from the arterial wall to the baroreceptor nerve ending membrane, and for calculating the firing 

response from the transduced strain at the nerve ending. Their findings show that the combination of a 

non-linear elastic wall model for arterial wall deformation (𝑊𝑛𝑒), a two Voigt body model for 

mechanoreceptor stimulation (𝑉2), and a leaky integrate-and-fire model for the baroreceptor firing rate 

(𝑁𝐼𝐹), produces the best quantitative and qualitative response [2]. Two of the models presented by 

Mahdi et al. [2] are investigated in the present study: the simplified amplifier model (𝑊𝑛𝑒𝑉2𝑁𝑎) and 

the integrate-and-fire model (𝑊𝑛𝑒𝑉2𝑁𝐼𝐹). These two models are made up of the same equations for 

arterial wall strain (𝑊𝑛𝑒) and Voigt body arterial wall mechanics (𝑉2), but differ in their equations for 

signal transmission and firing response. I compare both the simplified amplifier model and the 

integrate-and-fire model to the other researchers’ model components for signal transmission and firing 

response (see section 4.1).  

In context, the arterial wall deformation component in the integrate-and-fire model from Mahdi et al. 

aligns with similar techniques for modelling arterial wall deformation in the Srinivasen et al. and 

Bugenhagen et al. models [2], [22], [27]. The main difference being that parametrisation of the 
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pressure-radius curve in the Mahdi et al. model isn’t species specific. The mechanoreceptor 

stimulation, associated with dynamic strain or transmission of stress across the membranes in the 

arterial wall, is modelled with two Voigt bodies instead of three as in the Bugenhagen et al. model. 

The leaky integrate-and-fire model of the baroreceptor firing response in the Mahdi et al. model is 

much more sophisticated than the version in the Srinivasen et al. model [2], [27]. This is apparent 

because in the Srinivasen et al. model, a polynomial needed to be fitted to match a certain expected 

firing response [27]. In the Bugenhagen et al. model the technique is similar to Mahdi’s simplified 

amplifier model, where the sensitivity and gain are linearly applied to the strain at the baroreceptor 

membrane when it is above threshold [22]. Lastly, although the Beard et al. model uses a different 

technique for baroreceptor afferent fibre recruitment combined with a static non-linearity for a 

saturating response, it does not make use of any fitted functions and the parameterisation of the 

function is not species dependent [14].  

3.5.2 Model Equations and Description 

The Mahdi models discussed here are based on three main subsystems, the arterial wall subsystem; the 

strain dynamics subsystem; and the firing response subsystem [2]. The behaviour of both types of 

firing response models, the simplified amplifier and the integrate-and-fire, are discussed here. 
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Mahdi et al have selected a non-linear elastic model for the arterial wall strain component of their 

baroreceptor model. This non-linear elastic model (𝑊𝑛𝑒) is represented in Eq. (3.26) and Eq. (3.27) 

below, where the area of the artery (A) is a function of the unstressed area (𝐴0) and the maximum area 

(𝐴𝑚). The area of the artery is also characterised by the saturation pressure (α) and the vessel 

distensibility (k) under pressure (p) [2]. 

 𝐴 = (𝐴𝑚 − 𝐴0)
𝑝𝑘

𝛼𝑘 + 𝑝𝑘
+ 𝐴0 (3.26) 

 𝜀𝑤 = 1 −√
𝐴0(𝛼

𝑘 + 𝑝𝑘)

𝐴0𝛼
𝑘 + 𝐴𝑚𝑝

𝑘
 (3.27) 

Mahdi et al have also shown that two Voigt bodies are sufficient to capture the dynamics of the 

transmission through the connective tissue and baroreceptor membrane [2]. Based on this, their best 

model for the strain dynamics is represented with the coupling of strain through two spring-damper 

bodies (𝑉2). These spring damping bodies are modelled with elastic and viscous constants that are 

captured as nerve ending constants (𝛼1, 𝛼2, and 𝛼3) and nerve ending relaxation rates (𝛽1, 𝛽2, and 𝛽3) 

[2]. In this way, the strain at the nerve ending (𝜀𝑛𝑒), will be the strain directly applied to the inner side 

of the wall (𝜀𝑤), less the strain encountered through the different tissues between the inner side of the 

wall and the outer-most side of the wall where the nerve ending rests (𝜀1) [2].  The relationship 

between these different elements is captured in Eq. (3.28) to Eq. (3.30). 

 𝜀1̇ = −(𝛼1 + 𝛼2 + 𝛽1)𝜀1 + (𝛽1 − 𝛽2)𝜀2 + (𝛼1 + 𝛼2)𝜀𝑤 (3.28) 

 𝜀2̇ = −𝛼2𝜀1 − 𝛽2𝜀2 + 𝛼2𝜀𝑤 (3.29) 

 𝜀𝑛𝑒 = 𝜀𝑤 − 𝜀1 (3.30) 

The baroreceptor firing rate is modelled in two ways, one with a simplified amplifier (𝑁𝑎 − Eq. 

(3.31)) and the other with a ‘leaky integrate-and-fire model’ (𝑁𝐼𝐹 − Eq. (3.32-3.34)). Mahdi et al show 

in their paper that the integrate-and-fire model has the best response for post-excitatory depression and 

for qualitative responses such as rectification, saturation, adaptation and asymmetry [2]. Both these 

models were simulated in Simulink and were used to compare different features of other models. The 

simplified amplifier model of the firing rate is later used to compare the dynamic strain of other 

models, whereas the integrate-and-fire model is used to extend the comparison of the firing rate 

responses of the other models.  

The simple amplifier model relates the frequency of the baroreceptor (𝑓𝑁𝑎) to the strain at the nerve 

ending (𝜀𝑛𝑒) through one constant for a baroreceptor gain (𝑠1) and another for the baroreceptor shift 

(𝑠2). 
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 𝑓𝑁𝑎 = 𝑠1𝜀𝑛𝑒 − 𝑠2 (3.31) 

The integrate-and-fire model for baroreceptor is based on an analogy for a membrane which is 

electrically excitable, where the nerve action potential is modelled as the discharge of voltage through 

a capacitor circuit. This voltage discharge is based on whether the current generated from the strain at 

the nerve ending exceeds an expected threshold. Eq. (3.32-3.33) show that if the current generated 

exceeds the threshold (𝑔𝑙𝑒𝑎𝑘𝑉𝑡ℎ), it is related to the strain in the nerve ending (𝜀𝑛𝑒) through constants 

for gain and shift of the stimulus (𝑠1̅, 𝑠2̅). The voltage in the membrane (𝑉𝑚), is a function of the 

generated current (𝐼𝑛𝑒), based on model parameters such as capacitance (𝐶𝑚) and leakage conductance 

(𝑔𝑙𝑒𝑎𝑘) of the membrane. In this way, the firing rate of the action potential (𝑓𝑁𝐼𝐹) is calculated from 

the time taken for the membrane voltage to discharge and to recover (𝑡𝑟𝑒𝑓) before another discharge is 

possible. For a more extensive explanation, please see the model description in the research from 

Mahdi et al [2]. 

 𝐼𝑛𝑒 = 𝑠1̅𝜀𝑛𝑒 + 𝑠2̅ (3.32) 

 𝑉̇𝑚 =
1

𝐶𝑚
(𝐼𝑛𝑒 − 𝑔𝑙𝑒𝑎𝑘𝑉𝑚) (3.33) 

  𝑓𝑁𝐼𝐹 = {
[
𝐶𝑚
𝑔𝑙𝑒𝑎𝑘

[𝑙𝑛 (
𝐼𝑛𝑒 − 𝑔𝑙𝑒𝑎𝑘𝑉𝑡ℎ

𝐼𝑛𝑒
)] + 𝑡𝑟𝑒𝑓]

−1

0

 𝑖𝑓 𝐼𝑛𝑒 > 𝑔𝑙𝑒𝑎𝑘𝑉𝑡ℎ
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(3.34) 

The subsystems shown below in Figure 3.18 show the relationships between the Mahdi et al. model 

components, along with the two alternate firing response models as separate subsystems. The block 

diagram for the expanded subsections of the model is shown in Figure 3.19, in which the colours 

highlight the separate subsystems. The equations above are described with reference to the variables in 

Figure 3.19. The block diagram for the implementation of the model components in Simulink, as per 

the subsystems shown in Figure 3.18 are available in Appendix C, Figure C.7.9 to Figure C.7.12.  
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Figure 3.18: Mahdi et al. baroreceptor model with model components shown as subsystems [2]. 

  



 

 

5
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Figure 3.19: Conventional block diagram representing the Mahdi et al. baroreceptor model [2].
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3.5.3 Model Behaviour Compared with Published Data 

The analysis performed by Mahdi et al. shows that the integrate-and-fire model for the baroreceptor is 

the best model for capturing all the dynamics associated with their qualitative tests [2]. However, 

inconsistencies with the results reported by Mahdi et al., based on the parameters reportedly used and 

experimental inputs defined, are not explained. The comparative study by Mahdi and colleagues, are 

for a wide range of experiments for a selection of different models. In their paper, they do not report 

the parameter values used to confirm the qualitative responses for the simplified amplifier 

model (𝑊𝑛𝑒𝑉2𝑁𝑎) or the integrate and fire model (𝑊𝑛𝑒𝑉2𝑁𝐼𝐹) [2]. 

Subsequently, the parameters used to produce the experimental results in Figure 10 of their paper [2], 

which shows an array of outputs of the integrate-and-fire model (𝑊𝑛𝑒𝑉2𝑁𝐼𝐹) under different stimuli 

(sinusoidal, step-increase, ramp-increase and triangular inputs) were not available to me. This means 

that I could not simulate an experiment to successfully reproduce the reported results.  

However, output data and parameters for their step input experiment on an elastic arterial wall, two 

Voigt body, simple amplifier model (based on Figure 8 of their paper for 𝑊𝑒𝑉2𝑁𝑎) is available [2]. 

The parameters I used are shown below in Table 3.6, with the direct comparison of the simulated 

results shown in Figure 3.20. For comparisons of how this model performed to step and step-pulsatile 

inputs with its integrate-and-fire counterpart, and with the other models, please see sections 4.1.2 and 

4.1.3. 

Table 3.6: Parameters as per Table 6 for Figure 8 of the Mahdi et al. paper [2]. 

Parameter Value Units 

alpha1  0.4490 mm 

alpha2 0.3666 mm 

beta1 0.4850 ml 

beta2 1.9226 ml/mmHg 

s1 1041.5000 unitless 

s2 342.4934 sec 
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Figure 3.20: Firing response results for the square pulse input experiment for Mahdi et al. 

simplified-amplifier model. 

 

Based on the discrepancies in the Simulink results and the Mahdi et al. results, for the 𝑊𝑒𝑉2𝑁𝑎 model, 

I have low confidence in the parametric values presented by Mahdi et al. Parameters for the models of 

interest in this research, (𝑊𝑛𝑒𝑉2𝑁𝑎 and 𝑊𝑛𝑒𝑉2𝑁𝐼𝐹), were reported by Mahdi et al. for the same 

experimental input (square-pulse input), but the output of the model experiments using these 

parameters were not presented.  

Based on the unexplained discrepancies between parameters provided and experimental results 

provided, the following summary outlines the limitations of the model-parameter results: 

• Square-pulse experiment for 𝑊𝑒𝑉2𝑁𝑎 

o Parameters available 

o Output experimental data available 

o Simulated results don’t match reported results without a scaled and shifted firing 

response (as shown in Figure 3.20 and Figure 3.21) 

• Square-pulse experiment 𝑊𝑛𝑒𝑉2𝑁𝑎/𝑊𝑛𝑒𝑉2𝑁𝐼𝐹:  

o Parameters available  
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o No output experimental data 

• Qualitative experiments 𝑊𝑛𝑒𝑉2𝑁𝑎/𝑊𝑛𝑒𝑉2𝑁𝐼𝐹:  

o Parameters unavailable 

o input and output experimental data is available 

Based on the lack of output experimental data for the square-pulse experiments for the models of 

interest in this research (𝑊𝑛𝑒𝑉2𝑁𝑎 and 𝑊𝑛𝑒𝑉2𝑁𝐼𝐹), it was not possible to compare the simulated results 

using available parameter values.  

Without the actual parameters required for these models of interest, or the initial conditions required to 

get the same response, none of my parameter estimation or optimisation techniques were able to find 

parameters which would approximate the results reported by Mahdi et al. for the qualitative tests.  

However, to qualify whether the shape of the firing response in the Simulink model compared well 

with the Mahdi et al. reported results I scaled the simulated results against Mahdi et al.’s reported 

experimental results. To do this, I followed these steps: 

1. Found the Simulated Firing Rate as a fraction of the peak Simulink Firing Rate value 

2. Found the product of this fractioned Firing Rate with the peak Firing Rate value from the 

Mahdi experimental data 

The scaled simulated result is shown in Figure 3.21 below. 



55 

 

 

Figure 3.21: Scaled and shifted firing response results for the square pulse input experiment for 

Mahdi et al. simplified-amplifier model. 

 

These discrepancies limit my ability to further critically analyse how these models behave under long-

term inputs, and so have not been tested for long-term dynamics.  These models do show valuable 

responses to different qualitative inputs, and so are compared to the other models investigated here. 

The parameter values used for those analysis are the parameters listed by Mahdi et al. for the square-

pulse experiment [2]. This is possible because all comparative results from the other models’ firing 

responses are shifted and scaled to align with the experimental data. This is explained in more detail in 

section 4.1. 
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4 Critical Comparison of Models 

4.1 Model Feature Comparison 

4.1.1 Arterial Wall Strain  

For this component of the baroreceptor model, it is clear that the Srinivasen et al. mathematical 

function for the arterial wall strain (Langevin function for non-linear elastomeric properties) [27] will 

have more generic results across different species and at different ages than the Bugenhagen et al. 

fitted experimental function (based on rat aortas of rats at a certain age) [22]. In this way the approach 

of King and Srinivasen is better suited for modelling baroreceptor sensor characteristics across 

different species, and for modelling how those characteristics change with age. This is significant for 

the purpose of understanding how adaptation of sensor characteristics in the long term can affect 

hypertension. 

King tested his model for strain on data from Human aortas, and showed that the calculated values for 

pressure-volume relationships compare well with experimental values for all ages [24]. Although they 

compare well, King notes that the age parameter (A) and the factor for the unconstrained twisting of 

the molecular chains at the periphery of the wall (β) had to be adjusted to fit the curves, and that the 

function was considerably sensitive to β [24]. Srinivasen et al. tested their model for strain on the 

arterial wall using Landgren’s experimental data from cat carotid sinuses and from Clarke’s 

experimental data from dog carotid sinuses [27]. One major limitation in the Srinivasen et al. model is 

that the model parameters need to be fitted optimally in order to match the experimental data, which 

means that there is no single set of optimised parameter values which will give the correct response at 

different input pressures. Another limitation is that their model was only tested on steady-state stepped 

pressure inputs and not on pulsatile pressure inputs [27]. Bugenhagen et al. tested their model for 

strain at the arterial wall against experimental results from rat aortas, and showed that both their 

linearised and non-linearised models (with fitted parameter values) compare well to the experimental 

data [22]. The non-linear model compares better to the experimental data in the extreme pressure 

ranges [22]. In order to compare how the different models respond to the same pressure input, I have 

simulated the different Simulink models with the same input pressure, as shown below in Figure 4.1 

and Figure 4.2. Note that because the model parameters used by the researchers were fitted to different 

species (cat carotid sinuses and rat aortas), the strain values do not compare. This is based on the 

different radii for the differently sized vessels. The figures are presented only to show how the 

different models behave under the same conditions. The results show that the Bugenhagen et al. model 

has a slower response for high frequency changes, and that the Srinivasen et al. model is a better 

approximation given that it is more generic across vessel types and more descriptive for effects from 

age [22], [27]. Furthermore, the three different ways of modelling arterial wall strain which were 
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analysed by Mahdi et al. are also presented [2]. These models are the elastic (𝑊𝑒), visco-elastic (𝑊𝑣𝑒), 

and non-linear elastic (𝑊𝑛𝑒) arterial wall models from Mahdi et al. [2]. The model from Beard et al. is 

not compared here because their dynamic arterial wall strain model is not directly comparable to these 

static wall strain models [14]. This is because the Beard et al. model does not have separated 

components for the arterial wall and the arterial membrane [14]. 

 

 

Figure 4.1: Comparison of static wall strain model responses for a non-pulsatile step input 

pressure 
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Figure 4.2: Comparison of static wall strain model responses for a pulsatile step input pressure 

 

4.1.2 Voigt Body Arterial Wall Mechanics 

In the Srinivasen et al. model, the dynamic strain is modelled using a single Voigt body [27]. 

According to Srinivasen et al., this is sufficient to model pressure responses at low pressures but 

inadequate at the non-linear high pressure range [27]. Subsequently, many researchers have shown 

that a single Voigt body is unable to capture the full response with a first order differential equation 

[2], [22].  

Bugenhagen et al. have extended the dynamic strain model from the Srinivasen et al. single Voigt 

body representation to a three Voigt body representation [22], [27]. Similarly Mahdi et al. modelled 

baroreceptor behaviour with a different number of Voigt bodies, and came to the conclusion that two 

Voigt bodies are sufficient to capture all the dynamic characteristics of the strain transmission through 

the arterial wall [2]. The response differences between models which contain a different number of 

Voigt bodies for modelling the dynamic strain, are not discussed here as this investigation has been 

captured adequately by Mahdi et al [2]. 



59 

 

There are two different trends displayed in the subset of models simulated in this research, one where 

strain dynamics are modelled using Voigt-bodies (Srinivasen et al., Bugenhagen et al., Mahdi et al.) 

and one where strain dynamics are a function of creep volume changes [2], [14], [22], [27]. Two 

comparisons are made, based on the same simulated experiment. The first is a comparison between the 

Srinivasen et al. model (single Voigt-body) and the Bugenhagen et al. model (two Voigt-body) [22], 

[27]. The second comparison is with the non-linear elastic wall strain and two-Voigt body model 

(from Mahdi et al.) against the creep volume to strain model (from Beard et al.) [2], [14]. I have 

implemented all these models in Simulink with the same pulsatile step pressure input from 20 to 250 

mmHg, with a 20 mmHg pulsatile pressure amplitude. The pulsatile pressure amplitude was selected 

as 20 mmHg based on the aortic pulsatile experimental tests used by Beard et al. [14] based on the 

Coleridge experiments on dog aortas. The pressure step increase of 230 mmHg was selected based on 

the experimental data from the Bugenhagen et al. [22] results, which are used in section 4.1.3 to 

highlight models which perform best.  

The way Mahdi et al. model the baroreceptor strain through coupling between visco-elastic layers of 

the arterial wall and membranes is also implemented by Srinivasen et al and Bugenhagen et al. [2], 

[22], [27]. Strain results are shown for the Srinivasen et al. and Bugenhagen et al. models in Figure 4.3 

and Figure 4.4 respectively [22], [27]. These results highlight the differences between their models, 

and show that the Langevin function used by Srinivasen et al. to model the non-linearity of the arterial 

wall introduces a false artefact for exponential decrease of strain sensitivity as strain becomes static 

[27]. The Bugenhagen et al. model has a more reliable response for the long term adaptation of a 

prolonged strain, but is limited by the linearised model for the pressure-area relationship he used for 

the operating range of the rat aortic arch. 
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Figure 4.3: Simulink results for the Srinivasen et al. strain model, based on a 230 mmHg step 

input Pressure (A), Static strain (B), Dynamic strain (C) and total strain at baroreceptor 

membrane (D). 

 

 

 

Figure 4.4: Simulink results for the Bugenhagen et al. strain model, based on a 230 mmHg step 

input Pressure (A), Static wall strain (B), Dynamic strain (C) and total strain at baroreceptor 

membrane (D). 

 

Figure 4.5 and Figure 4.6 below show the different model responses between the Beard et al. model 

and the Mahdi et al. WneV2Na model [2], [14]. I needed to include the firing rate components in order 
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to compare the dynamic strain models, because the Beard et al. model for strain has an extra feature 

for baroreceptor afferent nerve activity [14] which is not modelled in the other researchers’ models. 

The Mahdi et al. simplified amplifier model was chosen to compare with the Beard et al. model 

because the simplified amplifier model highlights the non-linear wall strain and strain dynamic 

behaviour best [2], [14]. Note that the firing rates differ significantly quantitatively because the models 

are parameterised for different species and for different initial conditions.  
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Figure 4.5: Results from simulation of the Beard et al baroreceptor model, based on a pulsatile 

step input pressure. 
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Figure 4.6: Results from simulation of the Mahdi et al baroreceptor model, based on a pulsatile 

step input pressure. 

 

It can be seen from these results that the Beard et al. model is more adept at capturing dynamic 

variations in pressure [14], but that the firing rate is found to reset far more slowly than the firing rate 

from the Mahdi et al. model [2]. It is clear that the Beard et al. model does not capture any resetting of 

the strain at the arterial wall or at the nerve ending, and rather uses the state of activity of the 

baroreceptor afferent fibres (s) to model the resetting behaviour of the baroreceptor firing rate [14]. In 

the Mahdi et al. model, the strain at the nerve ending is found to already show resetting behaviour 

before the baroreceptor transmits the strain signal as an afferent firing rate [2].  

Interestingly, the Mahdi et al. model is not sensitive to the pulsatility of the input whereas the Beard et 

al. model reflects the pulsatility of the input even when the MAP is constant [2], [14]. The behaviour 

of these different models and their firing rate responses will be discussed in further detail in the next 

section. 

Overall, modelling the coupling between different layers between the arterial wall and the nerve 

ending shows that the resetting behaviour is an inherent property of the coupling between the 
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baroreceptor and the arterial wall. This way of modelling the arterial wall mechanics has been used in 

most of the models investigated here (Srinivasen et al, Bugenhagen et al, and Mahdi et al) [2], [22], 

[27]. Although these authors have modelled the baroreceptor this way, the Beard et al. model 

introduces a different technique (using the baroreceptor active state) which may provide more insight 

into the behaviour of the baroreceptor itself [14]. In order to investigate the performance of these 

models further, the firing rate responses are compared in the following section. 

4.1.3 Signal Transmission and Firing Response 

I have compared all models in this section, for their ability to interpret the same pulsatile step input. I 

compare the following five models that are summarised as follows: 

• Srinivasen et al. used a simplified integrate-and-fire model for the baroreceptor firing rate, which 

is triggered if the membrane strain exceeds a threshold [27] 

• Bugenhagen et al. used a linear sensitivity scaling and jump frequency shift for the membrane 

strain to model the baroreceptor firing rate [22] 

• Beard et al. used a combination of afferent fibre recruitment and the changing membrane strain to 

model the baroreceptor firing rate [14] 

• Mahdi et al. initially used a simplified amplifier model which scales and shifts the membrane 

strain directly to model the baroreceptor firing rate [2] 

• Mahdi et al. also used a leaky integrate-and-fire model which is based on a gradual ‘charging up’ 

of the membrane voltage until it reaches a threshold which then discharges the membrane and 

models an action potential of a baroreceptor afferent fibre [2] 

Each model is compared in its entirety, including wall strain and strain dynamics, because the arterial 

wall and the layers between it and the baroreceptor afferent fibre are all part of the sensor function of 

the baroreceptor. This reasoning is based on the principle that states that the material which a sensor is 

attached to forms part of that sensor itself. An example of this is the piezo-resistive effect in certain 

semiconductor materials or in a strain gauge, where the sensed strain is directly related to the strain 

characteristics of the material within the sensor [47].  

The models from Bugenhagen et al. and the simplified amplifier model from Mahdi et al. are similar 

in that they both use Voigt bodies to model the strain dynamics in the layers of the arterial wall, and 

use scaling or amplification of the strain signal to produce a firing rate [2], [22]. These two models 

differ in the modelling of the static arterial wall strain, where Mahdi et al. use a non-linear elastic 

model while Bugenhagen et al. used a linearised elastic model [2], [22]. 

Figure 4.7 and Figure 4.8 show the comparable firing rate outputs of the different models, simulated 

with a step input pressure and a pulsatile step input pressure respectively. The step input highlights the 
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model responses to known experimental results, and the pulsatile step input exercises the models for 

their higher frequency dynamics. Figure 4.9 has extra points plotted to show how the expected 

experimental results compare to the model responses for a step input. The experimental secondary data 

was retrieved from the analysis presented by Bugenhagen et al. based on the similar experiments 

performed by Brown et al. on rats [22], [37] for a non-pulsatile step response in the range of 0-230 

mmHg. The experimental data curve has been scaled to compare with the maximum firing rate output 

from each model. This was done to compare all the different modelled firing responses, which are 

parameterised differently, to the experimental results.  
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Figure 4.7: Step input firing rates for different baroreceptor modelling techniques 

 

 

Figure 4.8: Pulsatile step input firing rates for different baroreceptor modelling techniques 
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Comparing the model responses in Figure 4.8 and Figure 4.9, the Bugenhagen model and the Mahdi 

integrate-and-fire models have similar responses. The Mahdi simplified amplifier model (Mahdi Na 

Fbr) is incorrectly scaled to accommodate the range of the input, and indicates a negative firing rate 

which is not physiologically possible. The Srinivasen et al. and Beard et al. models firing responses 

are different from the responses of Bugenhagen et al. and Mahdi et al. The Srinivasen model has an 

extremely fast decay of firing rate after the initial stimulus and where the Beard model has a much 

slower decay of firing rate. The Srinivasen and Beard models also have a non-zero firing response 

before the step increase. 

 

Figure 4.9: Step input firing rates for different baroreceptor modelling techniques, as compared 

with experimental data from Bugenhagen et al. [22] 

 

The results in Figure 4.9 show that the Mahdi et al. leaky integrate-and-fire model (NIF) model 

matches the expected experimental data best, followed by the Bugenhagen et al. and the Beard et al. 

models [2], [14], [22]. This indicates that the integrate-and-fire (NIF) model characterises the expected 

behaviour best, but that using a simplified amplifier model (NA) such as used by Bugenhagen et al. 

will approximate the response well [22]. The pulsatile step responses also show that the NIF model 

performs the best. This statement is based on the fact that the NIF firing rate is not pulsatile before 

stimulus and does not mimic the pulsatility of the pressure input after stimulus. This validates the 
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known physiology where the firing rate of the baroreceptor will increase as the pressure increases and 

decreases as the pressure decreases, but not with every pulsatile heart cycle [7]. Similarly, the major 

strength of the Mahdi et al. model is that the difference in response to step input stimulus compared to 

pulsatile step stimulus is not significantly different, as would be expected from the biological system 

which inherently has a pulsatile environment [20]. 

However, although the Mahdi et al. NIF model behaves the best under these conditions I have low 

confidence in the parametrisation defined for the modelling experiments in the Mahdi et al. paper [2]. 

To expand on the frequency response of the Mahdi et al. model, more information on the 

parameterisation of the model is required. For more detail on the inconsistencies discovered in the 

reported model results for the parameters described, please see section 3.5.3 

4.2 Frequency Response 

The comparative results in section 4.1 highlight how the different model components contribute to the 

characteristics of the firing response. In order to evaluate the dynamic sensor characteristics of the 

baroreceptor, I investigate the frequency response of the two most reliable models (as identified in 

section 4.1) in Simulink. This investigation is based on frequency response tests, where I linearise over 

certain operating points in the frequency range in order to estimate the whole frequency range of a 

non-linear system.  

4.2.1 Model Selection 

I conduct the experimental tests for frequency response using simulations of the Beard et al. and 

Bugenhagen et al. Simulink models. These models have been shown to model experimental data well 

for input pressure that undergoes short-term changes, for a wide range of different experimental 

conditions. In order to study how the baroreceptor behaves under long-term pressure changes, these 

high frequency models are extrapolated to lower frequencies. This allows for some insight on how 

these baroreceptor models behave under long-term inputs, and draw conclusions on what the 

baroreceptor frequency response might look like. In this way, it is possible to experiment on the 

baroreceptor models for changes in pressure over a much longer time frame than would have been 

physically feasible in an in-vitro or in-vivo experimental test.  

The models used to test frequency responses for the baroreceptor were selected based on their ability 

to match experimental data and their contrasting ways of modelling the baroreceptor. In this way, the 

Beard et al. model of the baroreceptor is used for its characterisation of stress mechanics in the aorta 

and of baroreceptor afferent fibre recruitment for firing rate [48]. The Beard et al. model also is very 

clearly parameterised and presented with clear model results for a wide range of experiments. This 

allows for a high level of confidence in my Simulink representation of the model, because my 
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simulated results match the presented results and the experimental results. However the Beard et al. 

model only has an input for the rate of change of pressure, and not for the absolute level of pressure 

[48]. This introduces a differentiating characteristic into the model dynamics, leading to a very low 

sensitivity (or zero gain) at low frequencies (for long periods). In order to investigate whether this 

behaviour is an inherent property of the baroreceptor, a second model with a different modelling 

technique was investigated. The Bugenhagen et al. model was selected based on its simplicity and my 

confidence in the simulation results based on the reported results for the many experiments used to 

parameterise it [22].  

The Bugenhagen et al. model is very similar to the Mahdi et al. simplified amplifier baroreceptor 

model [2], [22]. The Mahdi et al. reported model parameterisation for their presented results were 

found to be inconsistent, and could not be reproduced or optimised in my Simulink simulations. For 

more information on the reported inconsistencies, please refer to section 3.5.3. Based on these 

inconsistencies with experimental data for validating the Mahdi et al. models in the short-term, these 

models were not selected for testing frequency response in the long-term.  

4.2.2 Simulation Methodology 

To determine the frequency response of the non-linear baroreceptor models, it is necessary to linearise 

the models over a broad range of frequencies. To do this, each model is simulated with a sinusoidal 

input of a specific frequency. For each of these frequencies, I analyse the output to determine the gain 

and phase shift of that sinusoidal input.  

 The frequency range used for the ‘simulated experiments’ is from 10 Hz to 0.000001 Hz. This 

corresponds to sinusoidal inputs which have periods that range from 0.1 s to 10 days. My approach is 

to test the output firing response with an input sinusoidal pressure, based on a 100 mmHg operating 

point with a 1 mmHg peak amplitude. The operating point was selected based on an average mean 

blood pressure in humans. The peak amplitude was chosen to be 1mmHg to keep the pulsatile 

properties of an arterial signal, but greatly reduced from the human peak amplitude of 20 mmHg due 

to the need for long term simulation of frequency response (which would result in a simulated step 

increase of 20 mmHg over short periods). I vary the frequency of the sinusoidal input at logarithmic 

points within the frequency range of interest. See Figure 4.10 for an example of the inputs used. 



70 

 

 

Figure 4.10: Example of input sinusoidal pressure used to test frequency response 

 

The input sinusoids were sampled at a frequency which was always well above the required Nyquist 

sampling rate [21]. I thoroughly checked this sampling rate for every simulation in order to prevent 

aliasing effects into the recorded frequency response. Each model was always run for a much longer 

settling time than the period of the sinusoidal input, until the output reflected the input without any 

transient disturbances.  

The methodology used to test each model, at each frequency of interest is as follows: 

1. Prepare sinusoidal input for frequency of interest 

a. Check sampling frequency and settling time doesn’t cause too many or too few data 

points (for simulation in Simulink) 

2. Inspect sinusoidal input to validate sufficient sampling 

3. Run the Simulink model with this input, under the same parameterisation and solver as the 

model validation tests 

4. Inspect the simulated outputs for transient behaviour. The output sinusoid must not reflect any 

change in the base line, especially near the end of the settling time. 
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5. Check that the period of the output is constant (must be a whole number of cycles) 

6. Check that the sample times of the input and output sinusoids match 

7. Check that the output sinusoid periods are constant 

8. Calculate the Gain of the output sinusoid  

a. Output sinusoid less the output mean, divided by the Input sinusoid less the input 

mean 

9. Calculate the Phase Difference of the output sinusoid 

a. Time for last peak of the input sinusoid less the time for the last peak of the output 

sinusoid 

b. 360° x test frequency x time difference 

An example of the input and output results is shown below in Figure 4.11. 

 

Figure 4.11: Input to Output Comparison for the Beard et al. model at Test Frequency 100 Hz, 

with portion of the last 0.04 s of the signals highlighted to show their sinusoidal nature 

 

4.2.3 Simulation Test Results 

The gain is measured as the change in amplitude from the input sinusoid to the output sinusoid. The 

units of such a gain (for firing rate based on pressure) are arbitrary, as in this case they would be 
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Hz.𝑚𝑚𝐻𝑔−1. The gain is used to indicate how the sensitivity of the firing rate changes as the 

frequency of the input changes. The phase is the fraction of the output wave cycle which has elapsed 

relative to the input wave cycle (sinusoid). This phase difference is represented in degrees, and 

represents the cyclical shift of the output based on the frequency of the two waves (input and output) 

and the difference in time between two identical points along each wave [21]. Using phase difference 

as a metric for frequency response is valuable because it indicates how the input is translated through 

the arterial wall and membranes in time. The frequency response of the Beard et al. model and the 

Bugenhagen et al. model, are reflected in Figure 4.12 and Figure 4.13 respectively. Each frequency 

response figure shows a gain (sensitivity) and phase difference (distortion in time).  

 

Figure 4.12: Frequency Response for the Beard et al. Baroreceptor Model [14]. 

The frequency response simulated from the Beard et al. implementation has characteristics which 

distinguish it as a high pass filter [21]. This is based on the very low gain at low frequencies, which 

increase at higher frequencies. The gain (or sensitivity) of the baroreceptor for this model reaches a 

maximum around 0.1 Hz, and immediately begins slowly decreasing. The gain across this frequency 

range is as physiologically expected for a baroreceptor, which would have very low sensitivity at very 

low frequencies (approximating zero gain under DC conditions) with a non-infinite band of higher 

sensitivity at higher frequencies. The response shows that the sensitivity significantly decreases at 
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frequencies between 1 Hz and 10 Hz (1 s to 0.1s) which is realistic for a practical sensor which cannot 

translate changes in pressure that happen infinitely fast. The phase difference from the Beard et al. 

model is in line with expected high-pass filter and band-pass filter responses, and is expected to occur 

based on the differentiating nature of the input, where the only input is the rate of change of pressure 

which immediately shifts the phase of any input outside its frequency band of positive sensitivity by 

90° [21]. 

 

Figure 4.13: Frequency Response for the Bugenhagen et al. Baroreceptor Model [22] 

The sensitivity frequency response for the Bugenhagen et al. model of the baroreceptor is similar to 

the model from Beard et al. The sensitivity is shown to be significantly lower in the lower frequency 

range, and unchanging in the range from 1e-6 Hz to 1e-4 Hz. Thereafter the sensitivity increases to a 

maximum sensitivity at 1 Hz, where it then immediately begins to decrease. Regarding the phase shift, 

the Bugenhagen et al. model also experiences a 90° phase shift over the frequency range, but here the 

shift occurs between 1e-1 Hz and 1 Hz.  

In both model frequency responses, it is evident that the maximum sensitivity of the baroreceptor lies 

in the frequency range from 0.01 Hz to 1 Hz, and that the phase difference is zero in the frequency 

range between 0.01 Hz to 0.1 Hz. In both models the baroreceptor sensitivity is shown to decrease 

significantly at the lower frequency ranges. In both models the sensitivity decreases after 1Hz, this 
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supports the physiology because the baroreceptor would become less sensitive to changes that occur 

faster than 0.1s. 

The Bugenhagen et al. model has a narrower band of sensitivity than the Beard et al. This is reflected 

by both the gain and the phase difference results. Furthermore, the Beard et al. model response shows 

a zero gain at very low frequencies whereas the Bugenhagen model response clearly shows an 

unchanging non-zero gain at these frequencies. The reason behind these differences are most likely 

based in the differentiating component of the Beard model, which is more pronounced than the 

Bugenhagen model because its input is really the rate of change of pressure and not the pressure itself.  

Both models show band pass dynamics for different sections of the same frequency band. A possible 

reason for this is that each of these models were parameterised for different experiments, for different 

species. Beard et al. used dog and rabbit aortic baroreceptors, while Bugenhagen et al. used rat aortic 

baroreceptors. Such parametric differences introduce an interesting question to this simulated data, 

which is whether the differences in the frequency response of the models is due to the modelling 

technique or due to the different size/lifespan of the species which parameterised the model. Such 

species specific parameterisation may affect the time constants of the arterial wall mechanics, which 

although used in the models in different ways, produce the same effect.   
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5 Key Findings and Considerations for the Role of the Baroreceptor 

5.1 Key Findings for the Role of the Baroreceptor 

The contentious debate around the ability of the baroreflex to act as a long-term controller of blood 

pressure, has resulted in many experiments trying to find the operating range that the baroreceptor can 

detect changes in blood pressure. These experiments are limited in their ability to draw conclusions on 

the long-term behaviour of the baroreceptor, due to the sensitive and limited time constraints on very 

sensitive tissues and very interconnected physiological systems. Based on this challenge, many 

researchers have produced mathematical models to prove that their interpretation of the baroreceptor’s 

behaviour is valid. All their research aims to elucidate the static and dynamic characteristics of the 

baroreceptor, so that they may better understand the role the baroreceptor plays in the baroreflex and 

better understand how the baroreflex can act as a controller of blood pressure.  

The key findings of this research are as follows: 

• A subset of baroreceptor mathematical models have been implemented in Simulink and 

simulated results validate experimental data for short-term changes in blood pressure. 

o Each model is shown to translate the rate of change of arterial pressure as a rate of 

change in strain at the arterial wall  

o The adaptation characteristics of the baroreceptor occur due to the decay of a dynamic 

strain across the visco-elastic layers of the arterial wall 

o Each model has a consistent response, even though parameterised for different 

baroreceptor types, from different experimental conditions and from different species 

• The best performing models have been simulated to an extrapolated range of frequencies, 

testing how baroreceptors behave under inputs that have different rates of change.  

o Both models are found to have high sensitivity to changes that occur over a timeframe 

between 1s and 1min 36s 

o Both models are found to have very low sensitivity to changes that occur over a 

timeframe longer than 16 min 36s 

o Both models highlight the role of the visco-elastic layer model components in 

producing ‘low-pass’ frequency responses. 

The outcome of the critical analysis of the baroreceptor, for modelling and simulating a long-term 

frequency response, is a new approach to solving many experimental and theoretical questions around 

the physiology of blood pressure regulation. These findings have presented two baroreceptor models 

which are good candidates for further modelling and improvements. These findings have highlighted 
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that the short-term range of the baroreceptor as a sensor, means that the baroreflex cannot have an 

impact on long-term blood pressure regulation.  

5.2 Further Considerations for the Role of the Baroreceptor 

Based on the frequency response results, it is clear that these baroreceptor models do not have infinite 

gain, and could not directly influence long-term blood pressure control. However, in an effort to clear 

up some misconceptions about how the baroreceptor could influence long-term control two subjects of 

debate are discussed. The first is the carotid sinus distensibility, which could directly influence the 

sensitivity of the baroreceptor through the peripheral baroreflex arc (sympathetic response to arterial 

walls) by dilating the carotid sinus and changing the strain transduction properties of the wall [2]. The 

second is the effect that age has on the elasticity of the arterial walls, and whether the variation in 

strain sensitivity over time to a less elastic vessel can influence the baroreceptor sensor characteristics 

[24].  

5.2.1 Carotid Sinus Distensibility 

An artery experiences pressure on the surface of its vessels. In the models included in this study, all of 

these vessels are cylindrical. The force exerted on the arterial wall (tension in the wall), is modelled as 

a pressure on the surface area of the wall. The radius and thickness of the wall are directly related to 

the pressure. King modelled this pressure-strain relationship as a force which is exerted on the surface 

of the arterial wall by a cylindrical mesh of molecular chains, which changes radius to accommodate 

the pressure under the visco-elastic properties of the arterial wall [24]. 

This model is part of the general theory of elastomers [24], and describes how the force exerted at 

right angles to a surface 𝑦𝑧 (𝑖. 𝑒. 𝐹𝑥),  by a mesh of molecular chains, which has an unstrained wall 

thickness of 𝑒0, an unstrained undistorted area 𝑦0𝑧0, will be described by 

 𝐹𝑥 = 𝐵𝑥𝑦0𝑧0ℒ
−1(𝑘𝑥𝑥) (5.1) 

Where 𝐵𝑥 is a coefficient which is directly proportional to the absolute pressure, and 𝑘𝑥 is a property 

that depends inversely on the maximum length of the molecular chains [24]. 

The first topic for consideration, is that the distensibility of the carotid sinus may be able to directly 

change the sensitivity of the carotid sinus baroreceptors. By distending the radius of the arterial wall 

the carotid sinus experiences decreased wall thickness and increased tension in the wall [24]. Under 

these conditions the visco-elastic properties of the arterial wall still contribute to the change in radius, 

but under a different geometrical relationship than for a cylindrical vessel. This may affect the 

pressure-strain transduced across the arterial wall and baroreceptor membrane, and allow for different 

information about transient pressure to be conveyed through the baroreceptors. 
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It is also unclear from the physiology whether the baroreceptor afferent firing rate could directly 

change the distensibility of the carotid sinus at high pressures. The possibility of such an elasticity 

feedback feature, or the increased sensitivity to pressure in the carotid sinus, has not been discussed 

thoroughly in the literature.  

Further investigation is required in order to fully understand how the physiology adapts to an 

increased pressure at the carotid sinus, and whether the baroreceptors there would be able to give a 

more complex translation of absolute and relative pressure levels to the brainstem. Such an 

investigation would give a clearer indication as to whether the baroreceptor is capable of influencing 

long-term control of blood pressure through this pathway.  In order to extend this investigation, the 

baroreceptor model from Srinivasen et al. or Bugenhagen et al. should be adapted and parameterised 

for a bulbous carotid sinus with an enlarged resting radius from the aortic arch cylindrical model [22], 

[27]. This would require a new adaptation from King’s mathematical model for arterial wall strain in 

an elastomeric cylindrical vessel [24]. The Mahdi et al. model could be adapted for the non-linear 

elastic strain based on the increased area of a dilated elastomeric cylindrical vessel, but the model 

would not translate the increased surface area of sinus in the vessel as well as the updated geometrical 

model from King et al. would [2], [24]. The Beard et al. model would not be as easily adapted, 

because their model is parameterised for volume and creep stresses in the aortic arch [48].  

5.2.2 Age-Related Effects 

In the second case, the age of the subject is known to influence the visco-elastic properties of the 

arterial wall, as demonstrated by King [24]. As mentioned by Pettersen et al. the adaptation of the 

baroreceptor firing rate in essential hypertension may be the result of the brainstem reacting to the 

baroreceptor’s interpretation of strain in a less elastic arterial wall [15]. The age related effects of the 

visco-elastic properties of the arterial wall are expected to shift the frequency response of the 

baroreceptor. This is expected to be due to a new relationship between pressure at the wall to strain 

detected at the baroreceptor membrane. 

From the equations in Srinivasen’s model, as described in section 3.2.2, it can be seen that the 

membrane strain is a function of parameters A, β and 𝑟0. These parameters are all shown to vary with 

age [24], as shown in 3.1.2. In this way, it is clear that the strain threshold at the membrane must also 

change, to allow the adapted elastomeric properties to transduce a stain and cause a firing response. 

Munch et al. show that a prolonged shift to MAP changes the threshold point that initiates a firing 

response [4].  

In order to conclusively model the effect of age on the baroreceptor firing rate, more experimental data 

is required in order to adapt the baroreceptor model to reflect the elastomeric properties of the arterial 

wall as parameters that are functions of time. When the membrane threshold and the elastomeric 
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parameters are functions of time, the model can be exercised across a longer time span, to highlight 

how the baroreceptor sensitivity changes over a lifetime.  
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6 Discussion and Conclusion 

I have outlined the contentious debate surrounding the ability of the baroreflex to act as a long-term 

controller, through the critical review of existing models and experiments in chapter 2. Although many 

researchers have modelled the baroreceptor in order to investigate the baroreflex, the purpose behind 

their investigations is not the same. Some researchers have argued that because the baroreceptor is 

capable of resetting, it cannot effect long-term control [13], [45]. While others argue that because the 

baroreceptor firing rate can influence other physiological systems through the baroreflex it must be 

acting as a controller [5], [32], [48]. The purpose of this investigation is not to make a conclusive 

study on the baroreflex, and how it might be capable of effecting different physiological systems to 

control blood pressure in the long-term, but rather to investigate the baroreceptor’s sensor role in the 

control feedback system, and identify the full extent of its behaviour over time to different kinds of 

stimuli.  

The static characteristics of the BR with respect to long-term control of BP, are described by the 

mathematical models which interpret BR behaviour. The models which characterise the 

baroreceptor sensor behaviour best are made up of three model components for strain at the arterial 

wall, dynamic strain in the arterial wall and firing response. In each of these components, different 

researchers’ modelling techniques have been compared. The best performing models have a non-linear 

elastomeric strain model for the arterial wall, with two or more Voigt bodies to model the visco-elastic 

mechanics within the arterial wall, and a firing response based on either nerve fibre recruitment or on a 

leaky integrate-and-fire model.  

I have implemented the mathematical models from Srinivasen et al., Bugenhagen et al., Beard et al., 

and Mahdi et al. in Simulink and validated them against reported experimental data [2], [22], [27], 

[48]. All the models, which have been compared, show that the firing response to a step input will 

decay primarily due to the visco-elastic mechanical properties in the arterial wall. This means that all 

baroreceptors, as modelled here for aortic and carotid sinus baroreceptors, will only be able to transmit 

signals based on short term changes to strain. This is because prolonged strain signals are reduced over 

time in the different visco-elastic layers between the surface of the arterial wall and the inner 

membrane surrounding the baroreceptor nerve ending, which is embedded in the arterial wall. It is 

important to note that these dynamics in the different layers of the arterial wall are inherently the 

dynamics of the baroreceptor itself, and not a separate property of the baroreceptors environment. 

The experiments and models presented by many of the researchers analysed in chapter 3, suggest that 

the baroreceptor interprets a signal based on strain. Whether this strain is a function of pressure, 

volume, chronic changes to the compliance of the arterial wall, or due to a creep stress change in 

volume, the strain in the tissue of the arterial wall is a fundamental component of the baroreceptor 
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which cannot be ignored. Assumptions and conclusions made by many of the researchers presented, 

aim to deduce the role the baroreceptor plays in the baroreflex, and more importantly how that role 

changes under chronically elevated arterial pressure conditions.  

Based on my study, it is clear that although there is much debate on the ability of the baroreceptor to 

influence blood pressure control, there is an agreement that the baroreceptor transduces strain at the 

arterial wall. In addition, although the purpose of experimental studies and modelling techniques may 

differ, the components of models for the baroreceptor are generally similar. Although this may seem 

trivial, none of the baroreceptor models presented here have components which model an inherent 

ability of the baroreceptor nerve to adapt the signal detected for a different response based on the rate 

of change of the signal. If we reflect on how well the models predict actual results for short term 

experiments, and if we extrapolate that those models will behave in the same way in the long-term, 

then the models show that the baroreceptor is not be capable of resetting its own threshold for a 

different response.  

My comparative analysis in section 4, for different dominant models in the literature, show that the 

adaptation characteristics of the baroreceptor occur due to the decay of a dynamic strain across the 

visco-elastic layers of the arterial wall. All the baroreceptor models investigated show that the 

baroreceptor transduces a strain based on pressure, into a firing rate. It is clear then, that the adaptation 

of the baroreceptor firing rate does not occur at the brainstem, but rather as an inherent property of the 

layers between the arterial wall and the sensor nerve ending. The visco-elastic properties of the arterial 

wall will remove all low frequency components from the strain transduced at the nerve ending, 

meaning that any long term pressure changes will not be transduced to the BR nerve ending. 

Guyton also argued that total peripheral resistance, as potentially modulated through the baroreflex, 

does not play a role in regulating arterial pressure [9]. This is further expressed by Guyton and 

Cowley’s statements that the primary controller of chronic blood pressure levels is only through 

kidney function or through fluid balance [9], [13]. Other researchers have shown that the SNS can 

shift the renal function curve, and such a shift can be based on the baroreflex. This implies causality, 

on the basis that because the BR can affect the renal curve through the SNS, and the renal curve 

regulates BP, then the BR indirectly regulates BP. However Guyton and Cowley’s arguments still 

hold, because the shift of the renal curve (as the primary regulator) only occurs under long-term 

changes to SNS, which may be affected by the baroreflex but which is also affected by other sensors 

and control mechanisms which contribute to blood pressure regulation. 

This reiterates statements from other researchers, and from this analysis, that the baroreceptor acts as a 

sensor which contributes to a control mechanism to regulate blood pressure (BRX) in the short-term, 

but does not necessarily constitute the whole control feedback mechanism (SNS) in the long term. 
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The dynamic characteristics of the BR with respect to long-term control of BP are described by 

the frequency response tests on the BR models. The frequency response tests which I conducted on 

the baroreceptor models show a high sensitivity to inputs within the frequency range from 0.01 Hz to 1 

Hz, and a very low sensitivity for frequencies below 0.001 Hz. This means that the baroreceptor is 

most sensitive to changes in pressure which occur within the period of 1 s to 1 min 36 s, and are not 

sensitive to changes in pressure with a period greater than 16 min 36. These frequency sensitivities 

suggest that the baroreceptor has approximately zero gain (change in sensitivity) at DC conditions (i.e. 

for frequencies which approximate steady state).  Such a frequency response characteristic suggests 

that the baroreceptor cannot give the brainstem any information on changes that occur slower than 20 

min. Even if all the baroreceptor afferent fibres had different thresholds and their signals are 

superimposed at the brainstem, they will all be influenced by the visco-elastic properties of an 

elastomeric arterial wall. Based on this, this research suggests that it is unlikely that the baroreflex is 

capable of acting as a long-term controller of blood pressure.  

The implication suggested by authors, such as Guyton and Cowley, is that the limited response of the 

baroreceptor over longer time periods means that it can’t play a direct role in long-term blood pressure 

control [9], [13]. This is plausible because my simulation tests used to extrapolate baroreceptor model 

behaviour for inputs of a wide range of frequencies show that these baroreceptor models do not have 

an infinite bandwidth for high sensitivity. The models used to show the frequency response were 

validated against their authors’ reported results as well as to experimental data. Although these models 

were parameterised for a specific species of animal, at a specific region in the arterial vessel, and for a 

specific type of fibre, comparisons between the models show that the parameterisation doesn’t 

significantly change the shape of the firing response or change the sensitivity of the frequency 

response. Furthermore, the Beard et al. model has been extensively tested on a range of experimental 

data from dog carotid sinuses, dog aortas and rabbits, and so its frequency response should translate to 

all these species.  

Other researchers argue that the baroreflex can act as a long-term controller because baroreceptor 

afferents can be of different types; have different thresholds and sensitivities; and may reset at 

different rates to absolute and relative pressure changes. In addition the baroreceptor afferents for 

these different types may terminate in different regions of the brainstem, causing a wide range of 

subtle effects to other physiological systems. 

 All of these arguments are possible, but as outlined by Cowley, solving these questions with 

experimentation is very difficult [13]. The critical review of the baroreceptor characteristics in this 

study show that although this is possible, it is highly unlikely. An example of this is the significant 
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drop off in sensitivity of the baroreceptor for changes in pressure over longer durations, as shown for 

both the Beard et al. and Bugenhagen et al. models (which are parameterised for different vessel types 

and different thresholds) in section 4.2.3.  

This study shows that the sensitivity approaches zero in the Beard et al. model, and has an unchanging 

low sensitivity in the Bugenhagen et al. model. The sensitivities shown for the frequency response in 

both models indicate that there is a significant drop in sensitivity for inputs which have periods longer 

than 2.78 hours (0.0001 Hz).  

Based on these results, even if a small number of fibres which had a different threshold were able to 

send signals to the brainstem, and the termination of those fibres were in a location which allowed for 

some alternate response, the baroreflex would still not be primarily responsible for regulating pressure 

in the system.  

Furthermore, all baroreceptor fibre types measure strain. An example of this is in Beard’s model, 

where regardless of all the different fibre types available, they must all act on some change to the 

strain, which is based on physical mechanical properties for the elasticity of the vessel wall. These 

mechanical properties are based on the elastomeric material of the physical vessel wall, which are not 

infinitely elastic, and so the strain signal must eventually reset.  

Another common argument which has linked much of the research on this topic, has been the 

experimental results which show that electrically stimulated baroreceptors don’t reset, and will 

decrease SNS levels through the baroreflex to reduce a hypertensive arterial pressure [34]. These 

results have been used as evidence that even when the baroreceptor firing response is very low they do 

influence the SNS, and can be used as a long-term controller [5].  

In response to this, it should be clarified that an electrically stimulated baroreceptor has actually had 

its sensor function bypassed, so that the electrical signal is directly transmitted through the 

baroreceptor afferent nerve fibre to the brainstem [15]. Here, the response to electrical stimulation of 

the baroreceptor gives us no information about the baroreceptor. It only shows that by bypassing the 

sensor the brainstem is sent false information about the state of the blood pressure, and that it adjusts 

its physiological response to counteract the change in the signal received.  

The blood pressure in essential hypertensive patients who undergo this treatment is known to decrease 

to normal levels while they undergo electrical stimulation of their baroreceptors on one set of carotid 

sinus baroreceptors [34]. Their short-term baroreflex control for pressure changes around their new 

operating pressure continues as normal [34]. This makes sense because as long as the electrical signal 

is maintained on one set of BRs for one of the carotid sinuses, the brainstem will recognise the 

prolonged firing response as a new corresponding absolute pressure signal. While this takes place, the 
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baroreceptor signals from the carotid sinus on the other side and the aortic arch can continue to 

transduce short-term pressure changes around the operating pressure.  

It is suspected that the pathology of essential hypertension and a non-responsive baroreflex are not due 

to any pathology of the baroreceptor per se, but rather a misinterpretation of strain signals from a less 

elastic baroreceptor environment. This is not in contradiction of the experimental studies that show 

arterial blood pressure returns to normal from a chronic hypertensive state when electrically 

stimulated, but rather that the electrical stimulation bypasses the sensor function of the baroreceptor 

for interpreting the strain through a less elastic arterial wall. 

Lastly, one of the final arguments which suggest the baroreceptor may be able to control pressure in 

the long term is that different fibres may have different feedback mechanisms at the brainstem.  

The baroreceptor system is non-linear, because the threshold differential pressure which initiates a 

firing response can change over time. The analysis in this study for the frequency response of the 

baroreceptor is based on models which have been linearised for a specific threshold. If the 

baroreceptor was able to update its own thresholds in the short term, then the firing rate wouldn’t 

reset. Whether the threshold can reset in the long term is outside the scope of this investigation, and I 

can only suggest that if such behaviour were true then the models wouldn’t tie so closely to such a 

wide range of experiments. In addition, Cowley also reported that although this could be possible, he 

found no evidence of such behaviour [13].  

Further considerations for the role of the baroreceptor in long-term control of blood pressure have 

been suggested in this study, with regards to the effect that carotid sinus dilatation or age would affect 

the frequency response of the baroreceptor. Possible future work in this regard include an adaptation to 

existing geometry models for the carotid sinus to include a dilatation in the cylindrical surface area of 

the arterial wall, and to investigate the subsequent effect on the baroreceptor sensitivity to absolute and 

relative pressure changes. The other modelling enhancement is to evaluate the frequency response of a 

baroreceptor model which has parameters for visco-elastic properties as functions of time. This will 

allow for further extrapolation to the frequency response of the baroreceptor as the subject ages and 

the properties of the arterial wall compliance change.  

Published mathematical models of baroreceptors have been reviewed in order to understand how 

different researchers interpret the relationship between the baroreceptor and long term blood pressure 

control. A subset of them have been investigated in MATLAB and Simulink, for their mechanism of 

resetting. The four simulated models are from Srinivasen et al.[26], Bugenhagen et al.[22], Beard et 

al.[48] and Mahdi et al [2]. The performance of these models have been evaluated using available data 

in the literature, and further compared to each other under the same input and experimental data (0-

230 mmHg step input over 12 s).  
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Similarities between the different techniques for modelling the components of baroreceptor behaviour 

have been identified, which highlight the role of visco-elastic coupling in the arterial wall mechanics 

and how it leads to baroreceptor resetting. The baroreceptor models were also tested with the same 

inputs, to highlight the differences in their modelling techniques. By investigating two of the models 

that performed well under short-term experiments (the Beard et al.[48] and Bugenhagen et al[22] 

models), these baroreceptor models’ responses to long-term inputs have been investigated with 

sinusoidal inputs which have periods that range from 0.1 s to 10 days and have a 100 mmHg operating 

point with a 1 mmHg peak amplit 

Through the critical analysis of a range of baroreceptor models, in the short-term and the long-term, 

insights on the ability of the baroreceptor to affect long-term blood pressure regulation have been 

discussed. The mathematical modelling presented and validated by other researchers has been 

extended to simulate their frequency response. This is a new approach to critically analysing the 

mathematical models and interpreting the dynamic characteristics of the baroreceptor. Key findings 

show that baroreceptor resetting is a function of the strain detected at the arterial wall and the visco-

elastic properties of the arterial wall. This suggests that baroreceptor sensitivity is closely tied to the 

elasticity of the arterial wall, and would thus not be able to inform the brainstem on long-term changes 

to MAP.
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A. Appendix A 

Table A.1: Historical Overview of Baroreceptor Research 

Year Authors Title Description Species Experiment/ 

Model 

 

1945 A.L King Pressure-Volume 

Relation for 

Cylindrical Tubes with 

Elastomeric Walls: 

The Human Aorta 

Theory for elastomeric walls of 

aortas used in Srinivasen’s model 

Human 

aortas 

Pressure-strain relationships of elastomeric 

walls 

[24] 

1952 S. Landgren On the Excitation 

Mechanism of the 

Carotid Baroreceptors 

Experimentation for different 

sizes of baroreceptor fibres in 

order to analyse operating 

behaviour  

Cat 

carotid 

sinuses 

Single fibre in-vivo baroreceptor firing 

response (for different nerve fibre sizes). 

These are based on impulse, step, square 

and steady state sinusoidal inputs. Actual 

values of firing rates range from 250 

impulses/sec (large fibre) to 50 

impulses/sec (small fibre). 

[6] 
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1968 W.B. Clarke Static and Dynamic 

Characteristics of 

Carotid Sinus 

Baroreceptors 

Modelling the behaviour of the 

baroreceptor through 

experimentation and comparison 

with other models 

Dog 

carotid 

sinuses 

Experimental responses of single fibre 

baroreceptors are determined with positive 

and negative step inputs, ramp inputs, 

triangular waveforms as well as recurrent 

triangular waveforms.  

[7] 

1970 E.M. Krieger Time Course of 

baroreceptor resetting 

in acute hypertension 

Experimenting with the resetting 

behaviour of the aortic 

baroreceptor based on pulsatile 

changes in pressure. Findings are 

consistent with Munch et al. [4] 

Rat aortas Multi-fibre Aortic pulsatile perfusion and 

constriction for in-vivo study of the 

resetting behaviour of the baroreceptor 

during hypertension. 

[8] 

1972 B.W. Knight Dynamics of Encoding 

in a Population of 

Neurons. 

Theory for neuron encoding firing 

patterns based on the input 

stimulus  

Horse-

shoe crab 

limulus 

eccentric 

cell 

(visual 

neurons) 

Comparisons between a deterministic 

impulse encoding model, a ‘forgetful 

integrate-and-fire’ model and a 

probabilistic encoder model 

[25] 

1972 A.C. Guyton Circulation: Overall 

Regulation 

An overview of an extensive 

circulatory regulation system 

model which aims to use systems 

analysis to define the principles 

which govern circulatory 

Many  [9] 
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physiology. Also an overview of 

existing studies which experiment 

with circulatory regulation. 

1972 R. Srinivasan 

and H.B. 

Nudelman 

Modelling the Carotid 

Sinus 

Overview of modelling 

components for intra-sinus 

pressure to carotid sinus 

baroreceptor firing response 

Cat and 

Dog 

carotid 

sinuses 

Mathematical modelling of the 

baroreceptor based on fitting one set of 

parameters for the model to Landgren’s 

data [6] and Clarke’s data [7]. 

[26] 

1973 R.Srinivasan 

and H.B. 

Nudelman 

Theoretical Studies on 

the Behaviour of 

Carotid Sinus 

Baroreceptors 

Extended description of the 

modelling components for intra-

sinus pressure to carotid sinus 

baroreceptor firing response 

Dog 

carotid 

sinuses 

Mathematical modelling of the 

baroreceptor based on fitting a set of 

parameters for the model to the authors’ 

data and to Clarke’s data [7]. 

[27] 

1978 A.M. Brown, 

W.R. Saum, S. 

Yasui 

Baroreceptor 

Dynamics and Their 

Relationship to 

Afferent Fiber Type 

and Hypertension 

Frequency response 

experimentation for baroreceptors 

for myelinated/un-myelinated 

types and for 

normotensive/hypertensive rats. 

Hysteresis and short-term 

resetting discussed as due to 

visco-elastic wall characteristics. 

Rat aortic-

arch nerve 

In-vitro, pressure steps and pulsatile 

pressure. Flat frequency response found 

within the frequency range of 0.1 – 20 Hz 

[10] 
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1980 H.M. 

Coleridge, J.C. 

Coleridge, 

M.P. Kaufman 

and A. Dangel 

Operational Sensitivity 

and Acute Resetting of 

Aortic Baroreceptors 

in Dogs 

Hysteresis in the firing rate of the 

baroreceptors show that it 

increases as pressure increases 

and decreases when pressure 

decreases (but not at the same 

rate). 

Dog aortic 

nerve, 

single 

fibres 

In-vivo experimentation with extreme 

levels of MAP, both below and above 

normal.  

[11] 

1983 P.A Munch, 

M.C. 

Andresen and 

A.M. Brown 

Rapid Resetting of 

Aortic Baroreceptors 

In Vitro 

Analysis and comparison of the 

resetting time and curve shift of 

the baroreceptor under different 

MAP 

Rat aortic-

arch 

nerve, 

single 

fibres 

In-vitro experimentation with ramp 

increases in pressure at different resting 

MAP levels. 

[4] 

1990 A.C. Guyton The Surprising 

Kidney-Fluid 

Mechanism for 

Pressure Control – Its 

Infinite Gain! 

Discussion surrounding the 

findings from simulations with the 

Overall Circulation model, which 

surmises that kidney-fluid control 

of blood pressure has infinite 

gain. 

 Model simulations show that increased 

total peripheral resistance does cause 

hypertension, but blood pressure regulates 

back to normal after a few days. 

[28] 

1992 A.W Cowley 

Jr 

Long-Term Control of 

Arterial Blood 

Pressure 

A comprehensive summary of a 

number of experiments and 

conclusions surrounding the 

Dogs, 

Rabbits, 

Rats, 

Humans 

Wide range of experiments are discussed. [13] 
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controversy around long term 

control of blood pressure.  

1996 J.E. Hall, A.C. 

Guyton, M.W. 

Brands 

Pressure-Volume 

Regulation in 

Hypertension 

A review of experiments carried 

out to understand the role of 

pressure natriuresis in essential 

hypertension. Their aim is to 

discuss whether pressure-

natriuresis is secondary to 

hypertension or a primary cause 

of hypertension. 

Dog, rat 

and 

human 

kidneys 

Wide range of experiments aimed to test 

the pressure-natriuresis curve under chronic 

hypertension, under hormones angiotensin, 

vasopressin, and norepinephrine. 

[29] 

1999 M. Ursino A Mathematical 

Model of the Carotid 

Baroregulation in 

pulsating conditions 

The pressure-nerve activity for the 

carotid sinus is described as 

having a sigmoidal shape in non-

pulsatile conditions, and a less 

sensitive ”quasilinear” shape in 

pulsatile conditions 

Dog 

carotid 

sinus 

nerve 

(Vagotom

ised 

subjects) 

Mathematical model of nerve activity of the 

carotid sinus nerve after pressure changes 

(both pulsatile and non-pulatile) is 

corroborated by the experimental data from 

Chapleau and Abboud. 

[30] 

2001 G.A. Head, 

E.V. 

Lukoshkova, 

S.L. Burke, 

S.C. Malpas, 

Comparing Spectral 

and Invasive Estimates 

of Baroreflex Gain 

Different baroreflex gain 

estimation techniques are tested 

on rabbits under different 

experimental conditions. The 

baroreflex gain is defined as the 

Rabbits  In-vivo experimentation on normal and 

SAD subjects, for normotensive and 

hypertensive subjects, under phenylephrine 

and nitroprusside, under balloon 

constriction, and under infusion of 

[31] 
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E.A. Lambert 

and B.J. 

Janssen 

sensitivity based on a BP input 

and a HR output. In this way this 

paper discusses the short-comings 

and strengths of estimating the 

baroreflex gain in different ways. 

Results show that spectral or 

traditional estimation methods are 

best depending on the situation.  

angiotensin. Comparison of spectral and 

invasive methods of estimating baroreflex 

gain. 

2001 E. Petiot, C. 

Barres, B. 

Chapuis and 

C. Julien 

Frequency Response 

of Renal Sympathetic 

Nervous Activity to 

Aortic Depressor 

Nerve Stimulation in 

the Anaesthetized Rat 

The frequency response of the 

baroreceptor gain shows high-

pass characteristics with 

increasing gain for frequencies 

between 0.03 Hz – 1 Hz, 

Thereafter the gain is shown to 

decrease (but stay above the static 

gain) for frequencies below 12Hz. 

Rat aortic 

depressor 

nerve, 

multi-

fibre 

In-vivo experimentation with sinusoidal 

stimulation of the aortic depressor nerve in 

a frequency range from 0.03 Hz to 20 Hz. 

[32] 

2004 C.J. Barret, 

S.C. Malpas 

Problems, possibilities, 

and pitfalls in studying 

the arterial 

baroreflexes’ influence 

over long-term control 

of blood pressure. 

A review of studies done on the 

baroreceptor characteristics in the 

past. 

  [5] 



 

 

9
6
 

 

2005 J.W. Osborn, 

F. Jacob, and 

P. Guzan 

A neural set point for 

the long-term control 

of arterial pressure: 

beyond the arterial 

baroreceptor reflex 

An invited review of studies and 

hypotheses surrounding the 

contention around long-term 

control of blood pressure. 

Examples of experiments are used 

to show that the baroreflex can 

affect systems and cause 

hypertension, but that the set-

point for arterial pressure 

regulation is maintained in the 

CNS and is independent of 

“arterial baroreceptor reflex” [33].  

Overview 

of 

experimen

ts on rats, 

rabbits, 

dogs and 

baboons. 

Experimental results for the level of SNA 

in SAD animals show that rat levels return 

to normal (for both indirect and direct 

assessment) but that in baboons the SNA 

levels remain elevated (even after 3 weeks 

of monitoring).  

[33] 

2010 S.M. 

Bugenhagen, 

A.W. Cowley 

Jr, D.A. Beard 

Identifying 

physiological origins 

of baroreflex 

dysfunction in salt-

sensitive hypertension 

in the Dahl SS rat. 

A mathematical model of the 

baroreflex is described, and used 

to investigate baroreflex 

dysfunction based on 

experimental results with salt-

sensitive hypertension in the Dahl 

rat. 

Salt-

sensitive 

and non 

salt-

sensitive 

rats, aortic 

arch 

 [22] 

2013 D.A. Beard, 

K.H. 

Pettersen, B.E. 

A Computational 

Analysis of the Long-

A mathematical model is 

presented in order to describe the 

regulation of blood pressure. The 

Dog aortic 

barorecept

ors and 

Model tested on data from experiments 

with dog in-vivo pulsatile aortic ramp 

pressure inputs, dog in-vivo non-pulsatile 

[14] 
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Carlson, S.W. 

Omholt, S.M. 

Bugenhagen 

term Regulation of 

Arterial Pressure 

model is presented as a 

description of physiological 

responses, along with the data 

used to test the model behaviour. 

The developed and tested model 

shows that long-term control of 

arterial blood pressure is possible 

through both the baroreflex arc 

and the angiotensin system. 

rabbit 

cardiac 

and 

arterial 

barorecept

ors. 

carotid sinus step pressure inputs, as well as 

with hemorrhage on rabbits. 

2013 A. Mahdi, J. 

Sturdy, J. 

Ottesen, M. 

Olufsen 

Modelling the Afferent 

Dynamics of the 

Baroreflex Control 

System 

Systematic evaluation of different 

combinations of models, which 

describe the baroreceptor, and 

their ability to successfully exhibit 

the behavioural properties for 

rectification; threshold;  

saturation; overshoot; post-

excitatory depression (PED); 

adaptation as well as asymmetry. 

Tested on 

experimen

tal data 

for rat 

aortic 

barorecept

ors 

Model tested on experimental data from 

sinusoidal and step input stimuli as well as 

artificial stimuli of different types 

(sinusoidal, step, square, ramp and 

triangle). Model parameters are optimised 

for closest fit to the experimental data 

(quantitative analysis) and then investigated 

for behavioural properties of the output 

firing rate under artificial stimuli 

(qualitative analysis). 

[2] 

2014 H.M. 

Horsman, K.C. 

Peebles, D.C. 

Cardiac baroreflex 

gain is frequency 

dependent: insights 

Experiments on heart rate changes 

to blood pressure, considering 

how the rate of change on blood 

Human 

sit-stand 

manoeuvr

Experiments where subjects perform the 

sit-stand manoeuvre at different frequencies 

(0.03 Hz, 0.05 Hz, 0.07 Hz and 0.1 Hz) 

[12] 
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Galletly, Y.C. 

Tzeng 

from repeated sit-to-

stand manoeuvres and 

the modified Oxford 

method 

pressure affects the estimated gain 

of the baroreflex. Gain estimation 

of the baroreflex is based on the 

reflex alteration in heart rate 

based on changing input blood 

pressure. 

es and the 

modified 

Oxford 

method 

show that the gain changes at different 

frequencies of oscillation for the input 

blood pressure, which validates the non-

linearity of the baroreflex. In addition, gain 

estimates from the oxford method do not 

align with the sit-stand manoeuvre results, 

which challenges convention that 

baroreceptor sensitivity is constant across 

different experimental techniques.  

2014 K.H. 

Pettersen, 

S.M. 

Bugenhagen, 

J. Nauman, 

D.A. Beard, 

S.W. Omholt 

Arterial Stiffening 

Provides Sufficient 

Explanation for 

Primary Hypertension. 

A new model based on a 

combination of models from 

King, Bugenhagen and Smith, is 

used to highlight how the 

baroreceptor may be able cause 

age-related hypertension due to 

less compliant vessels, and 

subsequently affect the pressure-

natriuresis regulation of blood 

pressure.  

Tested on 

experimen

tal data 

for rats. 

Model parameterised using age-related data 

for arterial distensibility, investigated under 

Valsalva conditions, and tested against 

experimental data from normotensive and 

spontaneously hypertensive rats. 

[15] 
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B. Appendix B 

List of Equations 

Srinivasen et al. Model Equations 

 ℒ(𝑧) =  coth 𝑧 −
1

𝑧
 

 

 (3.1) 

 
𝜀̇ =

𝑃

𝐶
−

𝐴

𝐶√(𝜀 + 1)
[
ℒ−1{𝛽(𝜀 − 1)}

ℒ−1(𝛽)
−

1

𝜀 + 1
] (3.2) 

 𝜀𝑑̇ =
𝜎

𝐶𝐷
|𝑃̇| −

1

𝐶𝐷
(𝜀𝑑)

2 
(3.3) 

 𝛿 = 𝜀 + 𝜀𝑑 (3.4) 

 
𝑥 =  {

0 𝑖𝑓 𝛿 < 𝛿𝑡ℎ
𝛿 𝑖𝑓 𝛿 ≥  𝛿𝑡ℎ

 
(3.5) 

 𝑖𝑓 𝑦 >  𝑦𝑡ℎ, 

𝑡ℎ𝑒𝑛 ∫ 𝑦(𝑡)𝑑𝑡 = 𝐴𝑟

𝑡𝑖+1

𝑡𝑖

 

(3.6) 

 𝜏𝑦̇ + 𝑦 = 𝑔(𝑥, 𝑥̇) (3.7) 

 𝑔(𝑥, 𝑥̇) = 𝑥 + ℎ(𝑥)𝑥̇ (3.8) 

 ℎ(𝑥) =  𝑤1 +𝑤2𝑥 (3.9) 

Bugenhagen et al. Model Equations 

 𝐴 =  𝜋(𝑅0 + 𝐶𝑤𝑎𝑙𝑙𝑃)
2 (3.10) 

 

𝐴̇ =  

(

 
−√
𝐴
𝜋 + 𝑅0

𝐵𝑤𝑎𝑙𝑙𝐶𝑤𝑎𝑙𝑙
)

 +
𝑃

𝐵𝑤𝑎𝑙𝑙
 (3.11) 

 

𝜀𝑤𝑎𝑙𝑙 =
√𝐴
𝜋 − 𝑅0

𝑅0
 

(3.12) 
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 𝜀1̇ = (
𝐾𝑛𝑒
𝐵1
) 𝜀𝑤𝑎𝑙𝑙 − (

𝐾𝑛𝑒 + 𝐾1
𝐵1

) 𝜀1 +
𝐾1
𝐵1
𝜀2 + 𝜀2̇ 

(3.13) 

 
𝜀2̇ = (

𝐾1
𝐵1 + 𝐵2

) 𝜀1 − (
𝐾1 +𝐾2
𝐵1 +𝐵2

) 𝜀2 + (
𝐾2

𝐵1 + 𝐵2
) 𝜀3 + (

𝐵1
𝐵1 + 𝐵2

) 𝜀1̇

+ (
𝐵2

𝐵1 + 𝐵2
) 𝜀3̇ 

(3.14) 

 
𝜀3̇ = (

𝐾2
𝐵2 + 𝐵3

) 𝜀2 − (
𝐾2 + 𝐾3
𝐵2 + 𝐵3

) 𝜀3 + (
𝐵2

𝐵2 + 𝐵3
) 𝜀2̇ 

(3.15) 

 𝛿 = 𝜀𝑤𝑎𝑙𝑙 − 𝜀1 (3.16) 

 𝑛 =  {
0 , 𝑖𝑓 𝛿 < 𝛿𝑡ℎ

𝑆(𝛿 − 𝜁𝛿𝑡ℎ) , 𝑖𝑓 𝛿 ≥  𝛿𝑡ℎ
 

(3.17) 

Beard et al. Model Equations 

 𝑉̇𝐴𝑜 = 𝐶𝐴𝑜𝑃̇𝐴𝑜 + 𝑉̇𝑠𝐴𝑜 (3.18) 

 𝑉̇𝑠𝐴𝑜 =
1

𝜏𝐶𝐴𝑜
(𝑉𝑠𝐴𝑜

∞ − 𝑉𝑠𝐴𝑜) (3.19) 

 𝑉̇𝑠𝐴𝑜 =
1

𝜏𝐶𝐴𝑜
(𝛾𝐴𝑜𝑉𝐴𝑜 − 𝑉𝑠𝐴𝑜) (3.20) 

 
𝜀̇ =

1

2
(

1

√𝑉𝐴𝑜𝑉0
) 

(3.21) 

 
𝜀̅̇ =

1

𝜏𝑠
(𝜀 − 𝜀)̅ 

(3.22) 

 𝛿𝜀 = 𝜏𝑠𝜀̅̇ (3.23) 

 𝑠̇ = 𝑎(1 − 𝑠) − 𝑏𝑠 (
𝛿𝜀

𝛿𝜀 + 𝛿0
) 

(3.24) 

 
𝑓𝐵𝑅 = 𝑓0𝑠 (

𝛿𝜀
𝛿𝜀 + 𝛿0

) 
(3.25) 

Mahdi et al. Model Equations 

 𝐴 = (𝐴𝑚 − 𝐴0)
𝑝𝑘

𝛼𝑘 + 𝑝𝑘
+ 𝐴0 (3.26) 

 𝜀𝑤 = 1 − √
𝐴0(𝛼

𝑘 + 𝑝𝑘)

𝐴0𝛼
𝑘 + 𝐴𝑚𝑝

𝑘
 (3.27) 
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 𝜀1̇ = −(𝛼1 + 𝛼2 + 𝛽1)𝜀1 + (𝛽1 − 𝛽2)𝜀2 + (𝛼1 + 𝛼2)𝜀𝑤 (3.28) 

 𝜀2̇ = −𝛼2𝜀1 − 𝛽2𝜀2 + 𝛼2𝜀𝑤 (3.29) 

 𝜀𝑛𝑒 = 𝜀𝑤 − 𝜀1 (3.30) 

 𝑓𝑁𝑎 = 𝑠1𝜀𝑛𝑒 − 𝑠2 (3.31) 

 𝐼𝑛𝑒 = 𝑠1̅𝜀𝑛𝑒 + 𝑠2̅ (3.32) 

 𝑉̇𝑚 =
1

𝐶𝑚
(𝐼𝑛𝑒 − 𝑔𝑙𝑒𝑎𝑘𝑉𝑚) (3.33) 

  𝑓𝑁𝐼𝐹 = {
[
𝐶𝑚
𝑔𝑙𝑒𝑎𝑘

[𝑙𝑛 (
𝐼𝑛𝑒 − 𝑔𝑙𝑒𝑎𝑘𝑉𝑡ℎ

𝐼𝑛𝑒
)] + 𝑡𝑟𝑒𝑓]

−1

0

 𝑖𝑓 𝐼𝑛𝑒 > 𝑔𝑙𝑒𝑎𝑘𝑉𝑡ℎ
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(3.34) 
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C. Appendix C 

1. Srinivasen et al Model of the Baroreceptor 

 

Figure C.7.1: Simulink block diagram representing Srinivasen et al Baroreceptor Model. 
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2. Bugenhagen et al Model of the Baroreceptor 

 

Figure C.7.2: Simulink block diagram representing Bugenhagen et al arterial wall strain model. 
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Figure C.7.3: Simulink block diagram representing Bugenhagen et al dynamic strain model. 
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Figure C.7.4: Simulink block diagram representing Bugenhagen et al simplified integrate-and-fire 

model. 
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3. Beard et al Model of the Baroreceptor 

 

Figure C.7.5: Simulink block diagram representing Vessel Mechanics Subsystem for the Beard et al 

Baroreceptor Model. 

 

Figure C.7.6: Simulink block diagram representing Strain Dynamics Subsystem for the Beard et al 

Baroreceptor Model. 
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Figure C.7.7: Simulink block diagram representing Afferent Nerve Fibre Recruitment Subsystem for 

the Beard et al Baroreceptor Model. 

 

Figure C.7.8: Simulink block diagram representing Firing Response Subsystem for the Beard et al 

Baroreceptor Model. 
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4. Mahdi et al Model of the Baroreceptor 

 

Figure C.7.9: Simulink Block Diagram representing Arterial Wall Subsystem for the Mahdi et al. 

Baroreceptor Model. 

 

Figure C.7.10: Simulink Block Diagram representing Strain Dynamics Subsystem for the Mahdi et al. 

Baroreceptor Model. 
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Figure C.7.11: Simulink Block Diagram representing Simplified Amplifier Response Subsystem for the 

Mahdi et al. Baroreceptor Model. 

 

Figure C.7.12: Simulink Block Diagram representing Leaky Integrate-and-Fire Response Subsystem 

for the Mahdi et al. Baroreceptor Model. 

 

 

 


