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Abstract

The main goal of this dissertation is to construct a better understanding of the subtleties that arise in
the holographic computation of extremal correlators. It is well known that these computations, in the
gravitational description, suffer from divergences, but the interpretation and origin of these divergences
is unclear. The study starts with detailed computations of two- and three-point functions of a scalar field
minimally coupled to gravity on Euclidean AdSy space, three-point functions of two giant gravitons and
one light graviton, and three-point functions of the Kaluza-Klein gravitons, using supergravity theory.
Further, we also give the computation of these same correlators in the dual CFT. These involve novel
techniques in the matrix model, including methods that employ Schur polynomials in the dual gauge
theory analysis. By employing the usual AdS/CFT dictionary, we argue that extremal correlators are
naturally related to collinear particles. There are divergences that arise in collinear amplitudes as a
consequence of the fact that the particles momenta are parallel. We therefore reach the suggestive
idea that the divergences in extremal correlator computations are linked to collinear divergences. Much
remains to be done to really establish this connection.
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1. Introduction

Correlation functions are the basic observables of interest in quantum field theory (QFT) as well as in
string theory. Their computation is not an easy task. One significant complication is that correlation
functions are often divergent and this divergence must be understood and interpreted before the corre-
lation function can be determined. Another key difficulty is that most computations of correlators must
be performed using a weak coupling expansion. For this reason the computation of correlators in the
strongly coupled limit of QFT is usually not possible.

The idea of the holographic prlnC|p|e as realized in the Anti-de Sitter/Conformal Field Theory (AdS/CFT)
correspondence ( : ; , ; , ), has related correlators computed
in string theory to correlators computed in field theory. A weak coupling expansion in the string theory
then gives insight into the strong coupling limit of the QFT. However, the weak coupling string theory
computations are still plagued by divergences. Our principal motivation in this study is to give a general
understanding of the subtleties arising as a result of these divergences, in the holographic computations
of extremal correlation functions. These subtleties were first found in ( ),

(1999) and (2012).

This dissertation is organised as follows:

In Chapter 2, we introduce a matrix model with one Hermitian N x N matrix M that is needed in
Chapter 3 to construct a complex matrix model and and then extend it to a model with any number
of matrices. This first chapter will consider a free matrix model and then an interacting one. Different
approaches are used to compute the correlators in this model. First we use a generating function, then
we use the so called Schwinger-Dyson equations and finally we use the techniques of ribbons graphs
which are Feyman diagram techniques used to evaluate correlators in field theories. What makes the
study of the matrix model interesting is that it is related to the dynamics of strings. We will give an
argument that reaches this conclusion. We will show that the large NV limit gives the classical limit of
the string theory.

In Chapter 3, we present some basic group theory and representation theory that is used to compute the
correlators of a complex matrix model with field Z. The representations of the symmetric group S, using
Young tableau play a central role for this, so one section of this chapter is dedicated to the construction
of their matrix representations. The computation of correlators is achieved by working on the tensor
product of n copies of the vector space on which the complex matrix field Z acts. On this tensor vector
space the action of the symmetric group is defined naturally. The idea of projection operators in group
theory allows us to build a set of projection operators that are related to the construction of the Schur
polynomial operators. These polynomial operators are a complete set of orthogonal operators. Any
multi-trace structure can be written as a linear combination of them. Another section is used to show
how a complex matrix model can be obtained from a model with 2 Hermitian matrices M7 and Ms.

In Chapter 4, we will use the idea of holography to compute two-point functions of scalar fields from
supergravity on AdSg41. We will show that there is a subtlety in the computation since two different
results will be obtained using two approaches which should be equivalent. We will decide which is
correct by appealing to a Ward identity. The resulting two-point function is in agreement with the
gauge theory. We will also present the computation of three-point functions of the gravity scalar field.
All the ingredients that are developed in this chapter will be reused in Chapter 6.

In Chapter 5, the correlator of giant gravitons both on the S® and on the AdS5 are computed. We
perform the computations in the gauge theory using Schur polynomials and by using the D3-brane
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Dirac-Born-Infield action on the gravity side. Here again, the computation is subtle since the integrals
appearing in the computation are divergent. We present a regularization in which the values of the
correlators from gauge theory are in agreement with the computation from the gravity side. This
method of regularization is essentially chosen by comparison to the gauge theory. One may hope to do
better, by providing an understanding of how and why the divergence arises. With this understanding
one might be able to motivate what regularization should be chosen without appealing to the gauge
theory. This is a key motivation for our study.

In Chapter 6, we will discuss the computation of a three-point function of the scalar gravity field dual
to the chiral primary operators in gauge theory. Extremal and non-extremal correlators are considered
following ( ). The computation of the extremal correlators is achieved in two different
ways on the gravity side by considering an analytic continuation of the non-extremal case and secondly
by using the bulk-to-boundary propagator in Fourier space which involves a modified Bessel function as
we have seen in Chapter 4. Here however, its index is an integer.

In Chapter 7, motivated by the connection between R-charge of operators in gauge theory and angular
momentum of the dual particle states in string theory, we suggest that the divergences that appear in
extremal correlators maybe related to collinear divergences. We explain how the cancellation of IR- and
collinear-divergences (achieved by summing over degenerate states) may be useful for understanding the
divergences in extremal correlators. We conclude this work in Chapter 8.

Appendices A and B show how to contract the indices of symmetric traceless tensors, and give the
relevant properties of spherical harmonics that are needed for the analysis carried out in Chapter 6.



2. Correlation functions from Matrix model

2.1 Matrix model

The central set of ideas explored in this dissertation involve the duality between Yang-Mills theories and
string theories. This discussion can be carried out, in a simpler setting, by considering a matrix model
( : ; : ; , ) instead of Yang-Mills
theory.

In the following, we are going to give an argument supporting the idea that any matrix model is a theory
of strings. We start with a discussion of the computation of correlation functions in scalar quantum
field theory. With this discussion complete, we then enumerate the modifications to the quantum field
theory of a scalar field needed to build the matrix model. Then we will compute correlators using the
generating function as in field theories. After this we derive the Feyman rules, called ribbon graph
diagrams, from which we can explain the dynamics of the matrix model.

First of all, the generating function in field theories is defined as

7= / [dg) 'St [ d'aI(@)6() (2.1.1)
Using the functional derivative defined by
S =0 =), (212)
we easily obtain
Sy = [ ]St B, (213)

With the generating function we are able to compute the correlation function or correlator, which is
defined by

(..)= / [dp) ™. . .. (2.1.4)

In the above, ... stands for any product of observables. From (2.1.3), correlators are given by taking
derivatives of the generating function, evaluated at J = 0, as follows

(@(1) ... Ben)) = / d6] @5(a1) ... blan) (2.15)

o 0

= 57 5aan 2= (2.16)

To obtain the matrix model, we make the following modifications in the above discussion:
(1) Move to Euclidean space: iS — —S8S.

(2) Consider a matrix valued field: [d¢] — [dM] with M a Hermitian matrix such that M = MT. The
integral over the measure [dM] means we have to integrate over all possible Hermitian matrices.
So we have to integrate over
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e all possible diagonal elements m;;. This correspond to IV real integrals,

e all possible imaginary parts of the elements m% above the diagonal, which contributes a further
2N(N — 1) real integrals,

e all possible real parts of the elements m;; above the diagonal, corresponding to %N(N -1)
real integrals.

We thus have
N N ‘
[dM] = N [ [ dmii | [ dmi;dmi;, (2.1.7)
i i<j
where N is a normalization for the measure.
(3) Move to O-dimensions: we imagine the universe is a single point.

We will see that this toy model correctly captures the ideas of gauge/gravity duality.

2.2 Free matrix model

For free theory, the generating function takes the form

Zo[J] = / [dM] e~ 5 Tr(M*)+Tr (M) (2.2.1)
where
Z:;Z — 5 (22.2)
and
di(}gj] :/[dM] ERUCRARICER VN (2.2.3)

The correlation functions are given by
(Do :/[dM] e Tr(M?) (2.2.4)
The subscript 0 indicates that we are studying the free theory. Combining (2.2.4) and (2.2.3), we have

_w 2
(Miijl oMy >0 = / [dM]e s Tr(M )Miijl-~-Mmy

d d d
= 2] - 225
ATy dJy " dy, ol 10 (225)

Here, we have fixed the normalization of the measure by

(1o = 2ol o = [ lab)e 570 —1. (226)
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2.2.1 Computation of correlators using the generating function. According to (2.2.5), one way to
compute correlators is to determine Z[J]|. The correlators are equal to derivatives of Zy[.J] evaluated

at J = 0. Our first goal is to compute Zy[J].

We can perform the Gaussian integral in (2.2.3) by completing the square in the exponent. Towards

this end, note that

—%Tr (M?) +Tr(JM) = — [Tr (wM?) — 2Tr (JM))]

[Tr (wM? — JM — MJ)]

[ <M2_JM—MJ+J?_J?>]
w

w w
_ 2 2
Tr M2—7JM MJ+L + Tr S
w w? 2w

(b))

Therefore (in obtaining (2.2.8) we have used (2.2.6)))

=

O[E [E | E NN

ZolJ] = e <£)

When we differentiate the expression for Zy[J] in (2.2.8) with respect to J;;, we obtain

dZy[J] 1
= —J; ZplJ].
dJZ OJJ] O[J]
Now, let us determine some correlators:
o (M;j M),
d d
M, M, =——7
(Mij M), 05 A o] ;o

= [dii (iszZO[J]HJ:O

1 1
= — {(51'1(5ij0[¢]] + JMJZ‘]‘Z()[J]>:|
w w J=0

The second term in this expression vanishes when J = 0. Therefore it follows that

1
(M;j M), = ;5zl5jk-

[ <Miij:len>0:

(2.2.7)

(2.2.8)

(2.2.9)

(2.2.10)

(2.2.11)
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We use the result found in (2.2.10) to obtain

1 d 1
MMy Mpn)o = — | ——— | 0u6:120]J —JiJii ZolJ
(M;; My Yo w[dJnm<zgk 0[]+wklj0[ ])]JO

1 1
== |:<5il(5jk<]mn + 8nkbmiJij + JkiOniOmj + meanlJij) ZO[J]]

J=0
(2.2.12)
When J = 0, all terms in this expression vanish, so that
(Mg Myt M)y = 0. (2.2.13)

[J <MiijlenMpq>0:
We use the result we obtained in (2.2.12) to find

1 d 1
<MiijlenMpq>0 = 2|77 5il(5jkjmn + 5nk6ml<]ij + Jkl(sni(smj + *Jank:ZJij ZO[J]
w? [ dJdgp w J—0
(2.2.14)

The terms which do not vanish when J = 0 are the first three terms of this expression. The final
result is

1
<MiijlenMpq>0 = 2 (5il5jk5qm5pn + 6nk6ml5qi5pj + 5qk5pl5ni5mj)- (2.2.15)

Using (2.2.11) and (2.2.15), we can compute (Tr (M?)),, <Tr (]\/[)2>0 and (Tr (M?)),. The results
are

o (Tr(M?)),:

<Tr(M)2>O = (MiiMjj;),

1
= Eéij&-j

<Tr(M)2> — N (2.2.16)

<Tr(M)2> — 2 N2 (2.2.17)
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° <Tr (M4)>O:

(Te (M) = 5 (adig0adun + BnsSudidns + Sigdubuidy)
%( 810 N? + 660 N? + 6456,16ni015)
%(N + N? + 6,00,50;)
= (2N + dyy)
(Tr (M*)), = 5(21\73 +N). (2.2.18)

2.2.2 Computation of correlators using the Schwinger-Dyson equation. The Schwinger-Dyson
equation is obtained by using the fact that correlators are invariant under the change of variable M;; —
M;; + 6M;; in the path integral. To derive the Schwinger-Dyson equation, let O be an arbitrarily
observable, with correlator given by

(O0), = / [dM] e 2T (M) 0 = / [dM] F(M), (2.2.19)
where
F(M) =570, (2.2.20)
Now, consider the transformation M;; — Mi’j = M;; + 6M;;. Note that
M;ij = Mj; —6M;; and  [dM] = [dM'], (2.2.21)
so that

(0), = / [dM'| F(M' — 6M). (2.2.22)

In this expression, we can expand F(M' — 0M) as a Taylor series assuming that the ;s are small.

The result is
©)= [ [anr’ (F(M’) - wﬁi}‘“)

OF (M)
_ ! ! _ . /!
_/[dM]F(M) 6MU/[dM] o
OF (M’
= <(9>0—5Mij/[dM’] a](w). (2.2.23)
ij
Since this last expression is true for any §M;;, it follows that
OF (M)
M = 2.2.24
[ % <o (22.24)

which is the Schwinger-Dyson equation. This equation allows us to easily compute the correlators. For
example
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(a) <Tr(M)2> — N,

0

0= / [dM)] 8}‘\3@ [Tr (M) e*%Tf(MQ)}
_ / [dM] [ az@ﬁ“ (M) — %Tr (M)

1

- / [dM] [6:; — Tr (M) M) e~ 27 (M*

- <N T (M)2>0 . (2.2.25)

(b) (Tr(a)") =3N2,

Q

/[dM] ]?4 [Tr(M)?’ - T(Mz)}

9 1 3 0 2y | —LTr(M2)

36, Tr (M )2 Tr (M)? M] e 3 Tr(M?)

| —

- / aM]

- <3NTr (M)% — Tr (M)4>0

- <3N2 - Tr(M)4>0, (2.2.26)

—

(c) <Tr(M)6>O = 15N3,

0= /[dM] 0 [Tr(M) —im(ar)]

OM;
[5 ) M)yt - 1T (M)° 8]?4 Tr (M2) | e=2 (M%)
/ [55 Tr(M)4 Tr (M ]e 3Tr(M?)
- <5NTr (M)* = Tr (M) >0
- <15N3 T (M)6>0. (2.2.27)

(d) <Tr(M)2"+2>O — 20+ )NTr(M)? = (20 +1)(2n — 1)(2n — 3) --- 1 N™+L,

/ [dM] az@ [Tr (M)2+! e*%Tf(W)}
- / [dM)] [(2n+ 1) ( 6]?@ Tr (M)) Tr (M) — %Tr(M)Q"H 8]\84%? (M?) | e (M?)

— / [dM] {(Qn + 1)(5iiTr (M)4 — Tr (M)2n+1 Mu:| e—%Tr(MQ)

_ <(2n FONT(M)> — Tr (M)2"+2>0 . (2.2.28)
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(€) (Tr (112)), = N7,

/[dM] 3]?4@3 [Mije_%—rr(]\/p)}

= [0 [y S T ()] e

= / [dM] [043055 — M;; Mjj) 6_7T"(M2)

= (N> = Tr(M?)),. (2.2.29)

(f) <Tr (M2)2>0 — (N2 + 2)N?,

0:/[dM] a]\iij {Tr (Mz) Mije_%Tf(J\/ﬁ)}
— / [dM)] K a]\ijTr (M2)> M;; + Tr (M?) 8]\84” Tr (M?) Mija]\‘ljw (M?) | e 2T(M7)

- / [dM] [2M;;Mjji + 83655 Tr (M?) = Tr (M?) M My;] e” G

- <(2 + N2)Tr (M2) = Tr (M2)2>0 . (2.2.30)

(g) <Tr (MQ)H+1>O = (N2 +2n) <Tr (M2)n>0,

:/[dM] 8]\64“ [T (M?)" Mgem 3]

/[dM] [nTr (M2 <8J\Zijﬂ (M2)) My + Tr (M?)" 8]\84”]\4

1

ST ()" M”aj\af Tr (M2)} 2 Tr(a?)

2nTr M2 Miiji + 0405 Tr ( ) —Tr (MQ) Mmsz‘] €7%Tr(M2)

/\\

2n+N2 Tr(M2)" = Tr (a22)") (2.2.31)

(h) <Tr (M2)3>0 — (N2 + 4)(N? + 2)N?,

(i) <Tr (M2)4>0 = (N2 + 6)(N? + 4)(N? + 2)N?,

We have used the recursion relation in (g) to find (h) and (i).
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) (Tr(M*)), =2N*+ N,

:/[dM] az\a@- [(M3)ije—%Tr(M2)}

:/[dM] [ 0 (Mg)ij _ ;(Mg)wa]\i]“ (Mz)] Tr(M2)

aM,;
— 2 () Te (2% — (A3, ] o~ T (M12)
/[dM] LZOT (M%) T (a275) = (2504
= (2NTr (M?) +Tr (M)” = Tr (M%) . (22.32)

) (Tr(M)Tr(M?)), =3N?,

/ M) o [T (a2~

KaMW ) (M*)ij +Tr (M) 5 f}j (M?);5 - %Tr (M) (M) 5 ]?4” Tr (M2) | e~ 3T (V?)
/ | [5(M2);+ 2NTr (M) Te (M) — Tr (M) (M), 03] e TO)
< r (M?) + 2NTr (M Tr(M)Tr(M3)>O, (22.33)

) (Tr (MS)), = 5N* + 10N?,

0:/[dM] 0 (175~ 3T 00|

oM;,
= [ 1) | Gy 4% = G T (07| HO)
~ [ 1am [i T (30 T (¥ - <M5>ijMﬁ] b
_ <2NTr (AZ; +2Tr (M) Tr (M3) + Tr (M2)? = Tr (M6)>0 . (2.2.34)

(m) (Tr(M)>Tr(M*)) = 2N°+ N® +12N2,

Tr (M*))y = (N +4)(2N? + N),
(o) (Tr(M?)Tr(MO)), = (N?*+6)(5N*+10N?),
(p) (Tr (M*)*) =4NO+ 40N +61N7.
Here, the value of w was taken to be 1.

2.2.3 Computation of correlators using ribbon graphs. Yang-Mills theories are theories with local
gauge invariance. All physical observables must be invariant under the local gauge symmetry. For
the matrix model we declare that the local gauge symmetry is M — UMUT, where U is an unitary
matrix, and we require that all physical observables are invariant under this transformation. Therefore,
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observables are given by products of traces. We will now introduce ribbon graphs, which are diagrams
used to compute the correlators of observables in the matrix model, in the same way that we compute
correlators in scalar quantum field theory using Feynman diagrams. The rules to draw ribbon diagrams
are as follows:

e Each element M;; of the matrix becomes a pair of dots labeled i and j.

e Place the labeled pairs of dots on a line and join pairs of pairs of dots with a pair of lines, a
ribbon, without twisting the ribbon or crossing the line on which pairs live.

e Link dots which are labeled with same index by a solid line.
We state the following rules to compute the contribution from a particular ribbon graph
1. Each closed loop contributes a factor of V.

2. Each ribbon contributes a factor of %

Tr(M*)

Tr(M?) @ Tr(M)*

Figure 2.1: Ribbon graph diagrams used to compute <Tr (M)2> , <Tr (M2)>0 and <Tr (M4)>0.

0

We remark that the number of ribbon graphs is equal to (n — 1)!! if n is the total number of matrices
in the observables in the correlator. This rule is evident in the correlator computations illustrated in the
Figures (2.1) and (2.2). Of course, the correlator is only non-zero if n is even.
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Figure 2.2: Ribbon graph diagrams used to compute <Tr (M6)>0.

2.3 Interacting model

Above we have developed the ribbon graph rules that can be used to compute correlators in the free
(Gaussian) matrix model. In this section our goal is to give a set of rules that can be used to compute
correlators even when interactions are turned on. To obtain an interacting matrix model we add a term
quartic in M. The correlators are defined as follows

(.)= / [dM] e~ 5 Tr(M?)—gTr(a?) (2.3.1)
where g is the coupling constant. The generating function associated with this model takes the form

Z[J] = / [dM] e~ 5 Tr(M?)—gTr(M*)+Tr(JM) | (2.3.2)

The normalization of the generating function is fixed by requiring that (1) = 1. To achieve this we
introduce a new generating function called Z[J] such that

7l =24 (2.3.3)
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In this case, we have the normalized correlators defined as

_d d d
CdJyddy T Ay,

1 d d d
= VAR
Z[0)dJj dJy, dJye [ ”J:o

_ ;m / [dM] e‘%TV(M2)_9Tr(M4)Miijl-“Mwy' (2.3.4)

<Miijl S Mxy> Z[‘]] ‘J:O

It is not possible to evaluate (2.3.4) exactly. We can however develop a perturbative approach by
assuming that g is small and expanding (2.3.4) as a power series in g. Thus for any observable O we

have
|

e — (=9)" / [dM] o5 Tr(M?) [Tr (M4)]n o)

(0) dM] e~ 3 Tr(M?)—gTe(M*)

[0] nZ::O n!
L~ (9" 4y
= 700 > = ([T ()] 0),. (2.3.5)

Of course, the generating function itself can be expanded as

Z[J] = io (_ng!yl/[dM] e~ 8 T (M) HTHIM) [ (V4] ", (2.3.6)
n=0

which implies

Z[0] = f (_g)n/[dM] e 5T O) [T (M4)]"

= n!

(9" "

= ([T )], (2.3.7)
n=0

Finally, the correlator of any observable O can be written as

() = 20 S48 ([T (MY)]" 0)
oo GO ([T (M4)]™),

n=0 n!

0, (2.3.8)
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Starting from (2.3.8), we can use perturbation theory to compute any correlators, to any order in g.
For example at order g2, we have

(0) = g (Tr (M") O), + & ([Tr (M")]* 0) +0(g)

1= g (Tr(MY)g + 4 ([Te (M) +0(g?)
9

+ 2 {([r (r))?0) —2(Tr (a1%) ), (Tr (3)), = (O} ([Tr (M4)]*) } +O(g?).
(2.3.9)

Since we have expressed everything in terms of correlators of the Gaussian matrix model, we can proceed
as we did before. For @ = Tr (M)?, we have

(Tr(0)”) = (Tr (2)), = g {(Tr (M*) Tr (M2)), = (Tr (02)), (Tr (M*))} + O(5)
= N% — g(8N® +4N) + O(¢?), (2.3.10)

where we have used the results (e), (n) and (j) from Section (2.2.1).

2.3.1 Ribbon graphs rules in the interacting model. First, the following rules are added to the
existing rules, to obtain the ribbon graph diagrams for the interacting theory

1. Each matrix element M;; becomes a pair of dots. Indices that are summed are connected by a
line.

2. To compute the order n contribution to the correlator, include n vertices that allow four ribbons
to meet at a point (see Figure (2.3)).

Figure 2.3: Figure showing a vertex.

3. Join pairs of dots, as well as the open ends of the vertices, with ribbons, without twisting the
ribbon.

With these rules:
1. Each ribbon contributes a factor of %

2. Each closed loop contributes a factor of V.
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3. Each vertex contributes a factor of —g.
4. There is a factor of ; for any diagram with n vertices.
5. Drop all terms which include vacuum diagrams.

All diagrams constructed just by joining vertices with ribbons are called vacuum diagrams. The normal-
ization in (2.3.3) removes all vacuum diagrams as illustrated in (2.3.9).

We will give the ribbon graph diagrams for the order g-contribution to O = Tr (MQ) in the Figure
below. Without normalization, we have the diagrams shown in Figure (2.4) when we add one 4-vertex.

0y O
Ry =B

Figure 2.4: Ribbon graphs corresponding to Tr M2 without the normalization.

We see that the vacuum diagrams are subtracted in (2.3.10) by the terms with coefficient —g.

2.3.2 Large N limit of the theory and 't Hooft expansion. The computation of correlators using
a power series in g becomes problematic when N becomes large i.e when N — +4o00. In fact, for each
increasing power of g we have an increasing power of NV in the expansion. Thus the leading term is not
well determined. We can overcome this problem by setting gN = X which is held fixed when N — 400
and g — 0. This is known as the 't Hooft expansion. For every observable O, the correlators take the
following form

0) = f: fn(A)N2721, (2.3.11)
n=0

We will now argue that the power of IV in this expansion is related to the topology of some surface.
This further demonstrates how powerful ribbon graph techniques are for the study of matrix models. It
suggests that the summation is performed over all possible surfaces that we will identify as the worldsheet
of a string’s evolution. This gives an insight into the dynamics of the system modelled by our matrix
model.

To determine the N dependence of the ribbon graph diagram for large NV, it is convenient to set M to
be equal to vV NM'. The generating function is then given by

Z[J] = / [dM'] = "5 T (MP ) HANTH(M ")+ T (M) (2.3.12)
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From (2.3.12), we deduce that for each ribbon graph diagram:
1. Each ribbon contributes a factor of ﬁ
2. Each vertex contributes a factor of AN.
3. Each closed loop contributes a factor of V.

Therefore, if we denote by F the number of ribbons, by V' the number of vertices and F' the number
of closed loops, we have

1 1 _
W(AN)VNF = LTENFW EN\V, (2.3.13)

in which y = FF 4+ V — E is identified as the Euler characteristic of the topology of a surface. These
surfaces are triangulated by ribbon graphs. If each closed loop is considered as the boundary of a piece
of rubber then the surface is formed by gluing them together.

One can argue that smooth deformations leave x invariant. Under the continuous operation of shrinking
an edge to nothing, two distinct vertices have been joined to one vertex and the number of faces does
not change as shown in Figure (2.5). The number of edges becomes E' = E — 1, the number of vertices
becomes V/ =V — 1 with the number of faces unchanged F’ = F. This gives

F+V —-F=F+V-1)—(E-1)=x. (2.3.14)

Another continuous deformation is given by shrinking a face to nothing. If m is the number of edges
bounding the face, after we shrink the number of edges will be E/ = E — m. The number of vertices
will be reduced by m — 1 since we have to join m vertices into one. Thus there are V/ =V —m + 1
vertices. In this case, we have

F'4tVI-E=F-1)+V-m+1)—(E—-m)=x. (2.3.15)

An example of shrinking a face, with m = 5, is illustrated in Figure (2.6).
7 / N\ Shrinking an edge 7A<

Figure 2.5: Shrinking an edge to nothing.

2.3.3 Planar limit as a classical limit. In the preceding section (2.2.2) we have only considered the
free theory. In this case, it is easy to check that if N is large (i.e. N — +00), the expectation value of
a product is equal to the product of the expectation values

<HTr(M”i)> =[[ @),  ni=2,4,6,...,2k (2.3.16)

0 i

This result holds for the large N limit of any matrix model. In this case, the only ribbon graph diagrams
that contribute to the value of the correlators are ribbon graph diagrams that can be drawn on the
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AN~

—

Shrinking a face

A
SIS

Figure 2.6: Shrinking a face to nothing

surface of a sphere. These diagrams are called planar diagrams. Consider the example of <Tr (M2)>
<Tr (M4)>0 and <Tr (M6)>0. We have

0’

(Tr (M7)), = N* (2.3.17)
(Tr(M*)), =2N?+ N — 2N? (2.3.18)
(Tr (M®)), = 5N* +10N? — 5N*. (2.3.19)

Consequently we can verify that factorization holds for (Tr (M?) Tr (M*)), and (Tr (M?) Tr (M")),:

(Tr (M%) Tr (M), = (N* +4)(2N? + N) — (Tr (M?)), (Tr (M*)), = 2N° (2.3.20)
(Tr (M?) Tr (M®)), = (N* + 6)(5N* + 10N?) — (Tr (M?)), (Tr (M®)), =5N°.  (2.3.21)

Factorization is a strong indication that the system is in a classical-like limit. To explain why factorization
is an indication that we are in a classical limit of the theory, we need to recall how correlators are
computed. Let O be an observable which takes the value O(i) when the system is in a given state i,
with a probability p;. Thus, the expectation value is given by

= ZuiO(z’) with Z“ =1, (2.3.22)

in which the sum is taken over all possible states of the system. Then, for any product of observables
Oj with j =1,2,...n, we have

(010,...0,) = Z‘”Ol (1)Oa(3) . .. O (3). (2.3.23)

Now, if factorization holds, the above equation is equal to

(01) (O, Zqul (i) ZH,QOQ (i2) Zﬂm in) Vn. (2.3.24)
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The equality of the Equations (2.3.23) and (2.3.24) implies that there exists only one state i’ of the
system such that

1 ifi=17
Hi _{ 0 otherwise ’ (2.3.25)

which means that only one configuration contributes to the value of the correlators. This corresponds
to the planar limit of our theory. Moreover, we have argued that corrections to the values of correlators
come from ribbon graphs that triangulate higher genus surfaces in the large N limit. These corrections
are due to fluctuations about the classical limit, so that we identify them with A corrections. In this

way we see that the matrix model suggests that we identify h = ﬁ

In summary, we have started by defining the generating function Z for our matrix model, in order to
compute correlators. There are different ways to evaluate correlators. For example, we can differentiate
the generating function, or use Schwinger-Dyson equations. In addition, we are able to draw diagrams
called ribbon graphs, to compute correlators. The description making use of ribbon graphs has suggested
an interpretation of the computation of correlation functions as a sum over surfaces. From this, we
have argued that our matrix model is related to a theory of strings with two parameters i = ﬁ and
the 't Hooft coupling A = gN where g and N are respectively the coupling constant and the rank of
the gauge group in the matrix model. The large N limit of the matrix model gives the classical limit of
the dual string theory.



3. Group representation theory and Schur
polynomials

In the previous chapter we have developed methods allowing us to compute correlation functions in a
matrix model ( , ). We have found that in the large N limit, correlators are correctly
reproduced by summing only the planar diagrams. In fact, this conclusion is only true when the number
of matrices A in our observable is held fixed as we take N — oco. If we scale A with N, the sums over
huge numbers of ribbon graphs implies that non-planar diagrams contribute ( , ).
In this case, ribbon graph techniques are ineffective. Therefore, we have to develop new techniques to
study this limit of the theory. These new techniques use some basic notions from group theory and
representation theory.

3.1 Background group theory

3.1.1 Definition. A group is a set G together with a map - : G x G — G called group composition,
which verifies the following axioms:

1. The group composition is closed

g1-92€9, Vg1,92€G. (3.1.1)

2. There exists an element e called the identity of G such that

e-g=g-e=g, Vgeqg. (3.1.2)

9.9 =g -g=e (3.1.3)
4. The group operation - is associative, which means

91-(92-93) = (91-92) - 93, Vg1,92,93 € G. (3.1.4)
3.1.2 Order of a group G. The order of the group G is the number of elements of G, denoted by |G|.
We say that the group G is finite if |G| is finite. Here are a few examples:
e S,: The group of permutations of n objects is a finite group of order |G| = n!.
e GL(n,K): The group of all n x n invertible matrices whose matrix elements belong to a field K.
e U(N): The group of N x N unitary matrices.

The last two groups listed are not finite.

19
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3.1.3 Multiplication Table. For any finite group G, we can construct a table which gives the compo-
sition of two elements belonging to the group.

3.1.4 Example. Sy: Group of permutations of 2 objects. In this case we have two group elements: we
can swap the two objects or we do nothing. These two operations that we have performed correspond
to the elements of Sy which are the identity element, denote by () and the swap operation by (1,2).
Thus, the group S5 can be written as

Sy =1{0,(1,2)}. (3.1.5)

Consider the multiplication table for So. It is obvious that if we perform the swap operation twice, we
obtain the same configuration. Moreover, if we do nothing and then swap the result is the same as just
swapping the elements. Following the same reasoning, we obtain the following table.

0 (12
0 10 (12
(1.2) | (1.2) ()

Table 3.1: Multiplication table of Ss.

The notation adopted here is the cycle notation. This notation is used to define any element of any
group of permutations of any number of objects. The notation o = (a, b, c) means b takes the position
of a, c takes the position b and a takes the position of ¢ and anything else does not change position.
Then, we can write

ola)=0b, ob)=c, o(c)=aand o(d)=d ford+#a,b,c. (3.1.6)

3.1.5 Example. Ss: Group of permutations of 3 objects. Using the cycle notation to write the elements
of the group S3, we obtain

Ss=1{0),(1,2),(1,2,3),(1,3,2),(2,3),(1,3)}. (3.1.7)

The multiplication table for this group is given by the following table.

0 (12 (123 (132) (23) (13)
0 10 (12 (123 132 (23) (13
(12) |12 0 (23 (@3 (123) (132)
(123) | 123) (13) (132 O (12) (23)
(132) | (132) (23) (0 (123 (13) (12)
(23) | (23) (132 (13) @2 (O  (123)
(L3) | (@3) (123 (12)  (23) (132 ()

Table 3.2: Multiplication table of S3.

3.2 Matrix representations of a group

We recall that GL(n, K) is the set of all invertible n x n matrices whose entries are elements of a given
field K.
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3.2.1 Definition. A matrix representation of a group G is map I'(:) : G — GL(n, K) such that:

(g1)T(g92) =T'(g192), VYg1,92 €G. (3.2.1)

The product on the right hand side of this formula is the usual matrix multiplication. The product on
the left had side is the composition law of the group G.

3.2.2 Equivalent representations. We say that I'(-) and I'g(-) are equivalent representations of the
group G if there exists an invertible matrix M such that

Tr(g) = MTs(g)M™" Vgeg. (3.2.2)
This implies that

Tr(Tr(g)) = Tr(T's(g9)) VYgeg. (3.2.3)

3.2.3 Characters of group elements. The character of group element g in representation R is given
by

xr(g9) = Tr(Ir(9)) . (3.2.4)

We point out that two representations are equivalent if and only if their characters are equal. To
prove that, let Ay, Ao, ..., Ay stand for the matrices which represent the elements of a group G in
representation R and A}, A, ..., A’y stand for the matrices of representation R'. If R and R’ are
equivalent representation, we know that A, = MA;M~" for i = 1 to N. We can see that the
characters in representation R and R’ are equal. To show that the equality of the characters in the two
representations is enough to prove the representations are equivalent, we need to argue that equality of
the characters is enough to prove that the trace of any product of matrices in representation R is equal
to the trace of any product of matrices in the representation R’. Indeed, this last statement is true if
and only if A; and A’ are related by A} = M A;M~" for i = 1 to N. But the product of matrices in a
given representation is the matrix which represents the product of the elements of the group. Thus this
proves that two representations are equivalent if and only if their characters are equal.

3.2.4 Direct sum of two representations. Let I'r(-) and I's(-) be two representations of the group
G. The direct sum of I'(-) and I's(+) is another representation I'(:) of G defined by

Fr(9) Od xds

I(g) = . VYgeg. 325
D=\ 0pra Ts(g) 9¢€6 (3.2.5)

We denote the direct sum of I'g(+) and I'g(-) by
I'(g) = Tr(g) ©Ts(g)- (3.2.6)

3.2.5 Reducible representation. Any representation that is equivalent to a block diagonal represen-
tation is called a reducible representation. Any representation that is not reducible is called irreducible.

Let V be a d-dimensional vector space and V; a subspace of V. We say that Vj is an invariant subspace
of G if

Vivy e Vi = I'(g) |v) € V1, VgeG. (3.2.7)

This means that I'() is block diagonal which implies that any irreducible representation has no invariant
proper subspaces.
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3.3 Fundamental orthogonality relation

The fundamental orthogonality relation will play an important role when we apply group representation
theory to matrix models. Schur’'s Lemmas play an important part in the proof of the fundamental
orthogonality relation. For that reason, we state (without proof) the two Lemmas in this section.

3.3.1 Schur lemma 1. Let R be an irreducible representation of G. If we have some matrix A satisfying
I'r(g)A = AT'g(g9),Yg € G , then A = Al with A € C.

3.3.2 Schur lemma 2. Let R and S be two inequivalent irreducible representations of G. The only
solution to I'g(g)A = AT's(g),Vg € Gis A=0.

3.3.3 Fundamental orthogonality relation. To derive the Fundamental orthogonality relation, we
start by studying the collection of matrices

[B(R7 S, b, a)]aﬁ = ZFR(gil)abFS(g%éﬁ' (331)
9eg

Choosing a specific value for R, S, b and « chooses a specific matrix from the collection. The row index
of this matrix is a and the column index is 3. First, let us multiply by I's(g1)s+ to obtain

[B(R,S,0,0)]45Ts(91)8y = Y _Tr(g™)aels(9)apT's (1) 8
9€eg
= Tr(g™al's(991)ary (33.2)
9eg
Now, change the summation variable from ¢ to § = gg1 or g~ = ¢15~'. Thus
[ (R S b a)]aﬂ FS gl ZFR 919 1 abFS(g)a'y
geg
= PR(gl)ac Z FR(gil)chS(g)a'y
geg
=Tr(91)ac [B(R, S, b, a)]cﬂ/. (3.3.3)

Using Schur's Lemmas, we conclude
[B(R, S,b,a)]., = drsdeyAb, o, R) (3.3.4)
where

A(b, o, R) = ’i‘(sRsaab. (3.3.5)

This last value is obtained by evaluating the trace Tr (B(R, S,b,«)) by using (3.3.1) and then by using
(3.3.4). We now have the fundamental orthogonality relation

_ g
> Trlg ™ al's(9)as = |d|5Rs5a55ab- (3.3.6)
geg R
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The fundamental orthogonality relation could be used to derive an orthogonality relation for characters.
To see this, we set b = a and 8 = « and sum over a and a to obtain

Z Z FR(Q_I)aaFS(g)aa = ngldRS ; 5aa5aa

ax geg
— £5Rsza:5aa. (3.3.7)
By identifying
> Talg Vaa=Tr(Trg™)) = xrlg™") (3.3.8)
and
D T5(9)aa = Tr(T's(9)) = xs(9), (3.3.9)
(3.3.7) becomes
> xrlg " xslg) = drslGl. (3.3.10)
geg

This is the orthogonality relation for characters. We can specialize this relation to a unitary representation
or to an orthogonal representation as follows

e For a unitary representation, Tr (Tz(g7")) = Tr (Tr(g9) ™) = Tr (Tr(g)") so that

> xh(9)xs(9) = drslGl. (3.3.11)
geg

e For an orthogonal representation, Tr (Tr(g71)) = Tr (Cr(9)™!) = Tr (Tr(9)") = Tr(Tr(g)) so
that

> " xrl9)xs(g) = drs|Gl. (3.3.12)
9g€eg

3.4 Matrix representations of the symmetric group 5,

3.4.1 Young diagrams. A Young diagram is a finite collection of boxes arranged in left-justified rows,
with the row lengths weakly decreasing. Young diagrams are used to label the complete set of inequiv-
alent irreducible representations of the symmetric group S, as well as the states in the carrier space of
these representations. With & = 6 boxes, the following diagrams are all of the valid Young diagrams

|

D:D:D:]H_I_LU H,_lll,iii, [, , H. ,

We immediately see that Sg has eleven inequivalent irreducible representations.

HEN
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3.4.2 Hook lengths. The hook length of a box x in Young diagram R, denoted by hook(x), is the
number of boxes that are in the same row to the right of x plus the number of boxes in the same column
below z plus one (for z itself).

3.4.3 The dimensions of an irrep of S,. The dimension of an irreducible representation R of the
symmetric group S, is given by

n!

[1er hook(z)

3.4.4 Young-Yamanouchi states. The Young-Yamanouchi states are obtained by decorating the Young
diagram. For a Young diagram with n boxes, the Young-Yamanouchi states are obtained by filling each
box in the Young diagram with an integer from 1 to n such that for each box the integers in the boxes
placed to the right and below it are less than the integer which labels the given box itself. These Young-
Yamanouchi states are basis vectors of the vector space in which we can construct the representation
of the symmetric group S,,. The Young-Yamanouchi states are a complete set, i.e. the number of
Young-Yamanouchi states is equal to the dimension of the irreducible representation.

dp = (3.4.1)

We will now study two examples which illustrate the labeling of Young-Yamanouchi states.

3.4.5 Example. Consider R = | which is an irreducible representation of S3. The dimension of this

representation is
d ik 2 (3.4.2)
P .
This matches the fact that there are two possible Young-Yamanouchi states, which are given by
3]1] 3]2]
2 /I /-
|

3.4.6 Example. Our second example considers R = which is an irreducible representation of Sg.

The dimension of this representation is
6!

d1m=
]

= 16. (3.4.3)

3[1
1]

[=]eo]en

There are indeed 16 possible Young-Yamanouchi states given by

6[3]1] 6[4]1] 6[5[1] 6[4]1] 6[5[1] 6[3]2] 6[4]2] 6[5]2] 6[4]3] 6[5[3]
5[2 . [5]2 . [[4]2 . [5]3 . 1[4]3 . [5]1 . [5]1 . 1[4]1 . [5]1 , 141 ,
B ) ) ) ) ) [BE) [gE) ) ) [)
6[5[4] 6[4]2] 6][5]2] 6[4[3] 6[5[3] 6[5[4]
3[1 . 11513 . 1[4]3 . 1[5]2 . [4]2 . 1[3]2 .
B ) B ) B )

3.4.7 Matrix representations of the adjacent 2-cycles of S,,. To build the matrix representation of
the symmetric group S, we only need to compute the matrix representations of the adjacent 2-cycles
(t,i4+1) fori=1,2,...(n—1) of S,,. This follows because any element of the group can be written as
a product of adjacent 2-cycles. To build the matrix representations I'r(.) we need the action of these
matrices on each basis vector of the corresponding vector space. The action of I'g((i,i + 1)) on the
Young-Yamanouchi state |YY) is given by:

. 1 1
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where [YY); ;. is the state obtained by permuting the labels ¢ and i + 1 in the state [Y'Y) and ¢;,
ci+1 are respectively the content of the box labelled by ¢ and the content of the box labelled by 7 + 1.
The content of each box is obtained as follows

e The content of the box in the left-top corner of the diagram is zero.

e The content of the box placed immediately on the right of a given box is equal to the content of
that box plus one.

e The content of the box placed immediately below a given box is equal to the content of that box
minus one.
3.4.8 Example. R = | , a representation of Sj3.

Basis: ); 1l>, “I’ 2[>.

Dimension of this space dr = 2.
Matrix representation of o; = {(1,2),(2,3)}:

?],m«m»{‘é o

o
LMD

2

FR((L 2)) = [

We know that (1,2)(1,2) = () so that the above matrices must square to the identity. It is easy to see
that this is indeed the case.

3.4.9 Example. R =[ | , a representation of Sy.

41]> ‘42[> ‘4 3[>
30 13 ) (12 .
12] 1] 1]

Dimension of this space dr = 3.

Matrix representation of o; = {(1,2),(2,3),(3,4)}:

Basis:

122 g -1 0 0 -1 00
Ta((1,2)=| 22 —L o |.Ta(@3)=| 0 % ¥ [[T@4)=| 0 -1 0
_ VERE 0 01

0 0 -1 0 ¥ -1

It is again easy to see that the above matrices square to the identity.

3.5 Complex matrix model and Schur polynomials

In this section, we start by introducing a model with one complex matrix Z. We will see that non-
vanishing correlators are of the form (Z;,j, Zi,j, - - ZininZ ity Z kgt - -+ ZTknln> i.e. the number of Z
fields must equal the number of ZT fields. We will demonstrate how group theory is implemented in the
computation of correlators. We will first write the correlator (Z;, j, Ziyjy =+ * Zinjn 2 kats Z kot + Z kot )
as a sum over all possible permutations of the symmetric group S,. This is achieved by considering a
tensor product of n copies of the vector space in which the matrix field Z is acting. In other words,
we work on the tensor vector space VJS?" if the matrix field Z is acting on Viy. Thereafter, we argue
that any multi-trace structure can be written as a single trace on Vﬁ”. After that, we introduce a
set of projectors on the irreducible subspaces of V]f?” that are related to the construction of the Schur
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polynomials. Next, we define the Schur polynomials and argue that we can compute any correlators
using their linear combinations.

3.5.1 Complex matrix model. Using two Hermitian matrices M7 and M, we can construct a free
complex matrix model. The model of two Hermitian matrices has the following generating function

ZC[Jl,JQ] — / dMl dM2€—%Tr(MIQ)—%TF(M§)+Tr(J1M1)+TI’(J2M2)‘ (351)

This generating function is, as usual, normalized so that

Zoly, Jo ~1. (3.5.2)

HJ1:J2:0

One can evaluate the integrations with respect to My and My independently. The use of the Gaussian
as we did in (2.2.8) gives

ZolJh, Ja] = Zo[ 1) Zo[ 2], (3.5.3)
where Zy[J] is the generating function for single matrix model. Since, we have

Zc [, 0] = Zo[J1] (3.5.4)
Zc|0, Ja] = Zo[J,] (3.5.5)

one can reproduce the value of the following correlator

(M)ij(Mr)g) = @;il)jiwci)lkzo[‘]ﬂbl_o
— Subin. (3.5.6)

Similarly for ((M2);;(Mz2)g), we find the same result

(Ma)i; (M) = (cz;;ﬁ(dznkzd‘m'w
— b (3.5.7)

From (3.5.3), we can show that correlators of any operator built from one matrix alone, either M; or
M>, agree with the correlators in the single matrix model.

Now consider operators involving the two matrices M and M. First, we have

() (Ma)ut) = = Zel T Bl
d

= (dJl)ji ZO[thJIZO WZO[JQ]\JQ:O
=0 (3.5.8)

which is expected. In fact, the correlator of any observable involving the two matrices is given by

((M1)iggy (M1)injs - - - (M) g (M2) iyt (M2) kgl - - - (M2) ki)
= ((M1)iyji (M1)igjo - - - (M1)i ) ((M2)ky1s (M2) kot - - - (M2) k1) » (3.5.9)
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for the free theory. Introduce the complex matrix field defined by
1 .
Z = 72(M1 + ZMQ), (3.5.10)
with Hermitian conjugate given by

ZV = — (M — iMy). (3.5.11)

Sl -

We will use (3.5.6), (3.5.8) and (3.5.7) to find

1
(ZijZu) = 5 ( (M + D), (M + o) )
1

1
= 5 ((M1)ij (M) — 5 ((Mz)ij (Mz)w)
= 0. (3.5.12)
Similarly, we have
<ZTZT>—0 (3.5.13)
ijekl) = 5.
<Zijz,jl> = 5 (3.5.14)
The evaluation of correlators using Wick's theorem proves that
(Zisji Zizia+ ZininZ bt Z st 2t ) =0 i A m. (3.5.15)

That is to say the number of Zs and Zs appearing in the correlator should be equal since the contractions
Z-Z or ZT-Z' vanish. Therefore we need to compute correlators of the form

<Zi1j12i2j2  Zinju Z it 2 gty - ZTknln> : (3.5.16)

The number of ways of contracting n of Z to n of ZT is equal to n!, which is exactly equal to the
number of ways of permuting n distinct objects. This already gives some insight into how we use group
theory in the computation of correlators. The next section will develop this idea to show how group
theory is used.

Another way of computing the correlators is using the generating function. From the two-matrix model
in (3.5.1), we obtain the generating function of the complex matrix model by changing fields from M;
and Mj to Z and Z' according to (3.5.10) and (3.5.11). In fact, we have

dMydMy = | J|dZdZT (3.5.17)

where 7 is the determinant of the Jacobian of the change of variables, which is a constant number.
Further, the integrand in (3.5.1) becomes

o s Tr(M?) =5 Tr(M3 )+ Tr(JA M)+ Tr(J2Ma) _ —~Tr(Z227)+Te(J12)+Tr(J27) (3.5.18)
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where the sources J and J' are given by

J=—=(J1+i2) (3.5.19)

Hg\H
[\

Jt=—(J1 —iJ). (3.5.20)

3

The generating function (3.5.1), written in terms of Z and Z7 is
Zo =19 [ azaz! e TETID) ), (35.21)
With this redefinition of fields, the correlators are given by
(0) = 7| / 47z dzte=T(22") o, (3.5.22)

These can be computed by taking appropriate derivatives of (3.5.21) with respect to .J and J where

d 1 ( d . d
a2 ((djl)ji - Z(sz)jZ) (3.5.23)
d _ 1 d . d

As an example, the correlators in (3.5.12), (3.5.14) and (3.5.13) are given by

(ZijZk1)
d d 1)\?2 d d d d
= ———Zo|,,= | = +i +i Zol v, Jal gy gam
aryarf,” <\/§> <(dJ1)ji (dJ2)jz‘> ((dJl)k, (dJ2)kz> ol Jal, e
(3.5.25)
<ZTijZTkl>
d d 1)\?2 d d d d
=" Zo_. =(— _ —i ZolJu, ol g e
dJyy dap == <\/§> <(dJ1)ji (dJZ)ji> <(dJ1)kl (dJZ)kl> clh 2]‘]1"](2 ’ |
3.5.26
<szZTkl>
d d 1\? d d d d
d.J); dJu Clo=o (\@) <(d<]1)ji+z(d<]2)ji> <(d<]1)kl Z(C”z)m) oln, Jaln,z=0,
(3.5.27)

where Z¢[Jy, J2] is the generating function for the two-matrix model in (3.5.1) and Z the generating
function for the complex matrix model in (3.5.3). Since we know how to obtain Zc[Ji, J2], any
correlators can be computed. In view of the number of derivatives we have to perform, this is a tedious
and long computation. Ribbon graphs can be used to obtain the correlators but it is also not practical
when the number of fields in the correlators increase.

As a remark, the generalization to the multi-matrix model (Bhattacharyya et al., 20082) can be achieved
using a similar approach. From a model with 2p Hermitian matrices M7, Mo, N1, No, - -+, we can define
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p complex fields Z, Y, --- such that

7 = \}5 (M, + M),  Z' = \}5 (M — My) (3.5.28)
Y = \}i (N1 +Np), Yi= \}5 (N1 — Ny), (3.5.29)
and so on. The generating function will be given by
Zo = || /dZ azt 6—Tr(ZZT)—Tr(YYT)+Tr(JTZ)+Tr(JZT)+Tr(RTY)+Tr(RYT)+--~ (3.5.30)
= Zc[J1, J2, R1, Ra, - - -], (3.5.31)

where 7 is the determinant of the Jacobian matrix from the change of variables and Z¢[J1, J2, R1, Ra, - - - |
is the generating function of the model with 2p Hermitian matrices. It is clear that

ZolJi, Ja, Ri, Ra, - -+ | = Zo[J1)Zo[J2) Zo[R1] Zo[R2] - - - (3.5.32)
with Zy[J] the generating function of a free matrix model with sources Ji, J2, R1, Ra, -+ which are
the sources for the fields My, Mo, N1, Na,---. We can also introduce sources for the complex fields as
follows

J = L(J1 +idy), Ji= i(J1 —iJ) (3.5.33)
V2 V2
1 1

R=—(Ri +iRy), RY'= —(R1 —iRs), 3.5.34
\/§( 1 2) \/5( 1 2) ( )

and similar equations for the other sources.

Using the identity (3.5.32) the computation of correlators is straightforward, by taking appropriate
derivatives with respect to J, J', R, R, ---.

3.5.2 Correlation functions using group theory. We will compute correlators using group theory,
following Corley et al. (2002). In the following, we use ZJ’: to denote the matrix element of Z in the ith
row and jth column. Let us also introduce the following notation

(Zz5™h5 =2} ...z (3.5.35)
ol = 8ty 0 s T E S, (3.5.36)

Using the above notation, the correlator <ZJ’1Z;:ZZT1MZZT§"> is expressed as a sum over all

possible permutations of 5,

(zp .. ziezlt .zl = (25521 ) = 3 el ™). (3.5.37)
0ESK

As an example, consider the case where n = 3. This computation uses the action of S5 on the space
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VJ%)S. Thus, for the correlators, we have

J17927 73

(Zpzpzi 7l zl 2l = (2921 )

(
= ) ( ) ((1 2))1( 3,
+((1,3,2)1((1,2,3)F + ((2,3))1((2,3))F + ((1,3))L((1,3)],

g)‘l] 5 2) 5 3 Sk’] Skz Sk‘3
! 113 J1 "J2 713

K

J

K i1 512 513 ck1 cko ck3
J 5 5 5155]2 5]1 6]3
K
J
K

5’15@2 503 §k1 gk sks

l17J3 “J1 " J2

5’15@2 503 5k gk sks

12772 "J3 "1
(2,3))F 5’15@25;;5;? gk2ghs
(1,3 5< = 0107203601652 6%,
This is an explicit demonstration that the sum over Wick contractions can be realized as a sum over
permutations. Now we give the argument that any multi-trace structure can be written as a single trace

on the space VJ{‘?". By allowing o € S, to permute the factors of Viy in V", we have

Tr(02°") = (0)5(2°")7
=0t o ]

) " e T
— Ji Jn
=z (3.5.39)

Consider the case where o = (1,2) = (1,2)(3). We have
Tr (02%%) = Tr (((1,2)(3))Z2%%)
- 7727
=Tr(Z2%) Tr (2). (3.5.40)
In general, for any permutation which belongs to conjugacy class with cycle structure
0=075074"075, Ji>1 (3.5.41)
where 0, is a J;-cycle (a permutation of length J;), we have
Tr(0Z%™) = Tr (Z27) Tr (Z27) -+ Tr (27F). (3.5.42)

Any multitrace structure can be written as a single trace in the tensor vector space VJ%Q" (Corley et al.,
2002).
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3.5.3 Remark. For any 0,7 € S,,, we have

ol = (ro)k. (3.5.43)
To prove this, note that
I_J _ i1 1o in J1 J2 Jn
OGTie = 00 02 ... )
J'K Jo(1) Jo(2) Jo(n) kT(l) k‘r(Z) kT(n)
_ 1q Jp
=1] 5 11 0 (3.5.44)
q=1 p=1
Now, let p = o(q). Then, we can write
n .
I_J _ ig  sJo(a)
OGTh = )
JIK Jo(a) Fr(o(a))
q=1
n .
= 5l
kr(o(a)
q=1

— 11 12 5171
k‘r(r(l) k‘ra(Q) e k‘ro'(n)

= (ro)k. (3.5.45)

3.5.4 Projection operators. Previously, by enlarging the space we work in from Vi to Vﬁ”, any multi-
trace structure could be written as a single trace structure. In addition, the sum over Wick contractions
can be written in terms of the action of the symmetric group S,, on VJ{‘?”. Now, we introduce a suitable
set of projection operators on the space V]f?" so that we can construct an orthogonal basis of operators,
known as the Schur polynomials, which can be used to compute the correlators of any observables. We
will give some properties of these projection operators. We will then compute their trace on V]f?".

The projection operators are given by

dr
(Pr)y=—7 > Xn(0)), (3.5.46)
" o€S,
and they satisfy the general properties of any complete set of projectors
PrPg = 6rsPs (3.5.47)

and

Y Pr=I (3.5.48)
R

in which the summation is taken over all possible inequivalent irreducible representations.

Besides the properties mentioned above, we also have the following the commutation relation

Prip = Pr, Yy € Sp. (3.5.49)
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These facts are proved as follows

(Pr)}( Psf(ZdRZXR UJ ZXS

s O'ESn ‘ TGST)
_ drds
Tl > xr(0)xs(r)ajmic
o,TESY
Using (3.5.43), we have
I J dr ds I
(Pr)j(Ps)x = ol ol Z Xr(0)xs(T)(T0) k-
T oreS,

(PR)J(PS){{:FW Z Xr(0)xs(Yo ) ()}
’ o,TES
= %% ¢Z:s T'r(0)il's(¥)jls(0™ k(W) k-

By the Fundamental Orthogonality Relation, we have

n
Z FR uFS' )kj = d 5RS6z351k
oESH

n:
= —O0RSO k-
dR RSOjk

Therefore, we obtain

(Pr);(Ps)i, = dS Z s (1) jk0rs0 (V) i

b jes,
ZFS Jekdrs (V)i
b s,
ds
=Ors—t =Y Ts()rr(¥) i
s,
= drsPs.

The commutation relation [Pg, 1] is proved as follows

Now, let us change the summation variable from o to 7 where

17 1_J
oK = VT

(3.5.50)

(3.5.51)

(3.5.52)

(3.5.53)

(3.5.54)

(3.5.55)

(3.5.56)



Section 3.5. Complex matrix model and Schur polynomials Page 33

or,
o =ik}
=1 (Y~ T)];
= (7)), (3.5.57)
Then

d
P50k = 23 xr@ ' ro)whrk
' TES’n

_dr
Z XR(T)VTic
' TGS’n

IdR Z XR

nl TESK
= 1 (Pr)% 3.5.58
=¥ (Pr)k- (3.5.58)
In the above equations, we have used the fact that two conjugate elements have the same character.

The trace of the operator Pg is given by:

Tr (PR) = dRDimR (3559)
where
) factorp
Dimp = Hooks:” (3.5.60)

To prove the result (3.5.59), we are using the fact that there are the commuting actions of the Symmetric
group S, and the Unitary group U(N) on V™. Thus we can simultaneously diagonalize the actions
of S, and U(N) in the space Vg”. Moreover, the space Vﬁ” decomposes into subspaces labelled
by Young diagrams R with at most [N rows, such that each subspace has basis vectors labelled by
a symmetric group label (i.e the Young-Yamanouchi symbols YY) and a unitary group label (i.e the
Gelfand-Tsetlin pattern GT). Thus each basis vector has the form |YY, GT). In the subspace labelled
by Young diagram R, the total number of Young-Yamanouchi symbols is dr, while the total number of
Gelfand-Tsetlin patterns is Dimg. Consequently, the dimension of the subspace labelled by R is dgDimp
and the number of states in V" is

Nstates = ZdRDimR, (3561)

which is equal to N, the dimension of the whole space Vﬁ". Secondly, the projection operator Pg is
projecting into the subspace labelled by R of V]f?" whose dimension is dgDimpg. Therefore, the trace
to Pg is equal to dgDimp. As an example, consider the actions of S4 and U(2) on V2®4. Then, the

subspaces are labelled by R = | [, and[ T [ [}

e For R= L
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N N+1|N+2

factorp= and Hooksp = 2|1[,

[~][+

1 1
Dimp = 3 (N+2)(N+1)(N—-1)N = 3 2+2)2+1)(2—-1)2 =3,
dr = 3. (3.5.62)
e For R=
N N+ 1
factorg= and Hooksg = g f
N-1 N
Dimp=—(N+1)(N —-1)N* = T 2+1)(2-1)2°=1,
dr = 2. (3.5.63)
e ForR=[T 1T}
factorp= N N+1|N+2|N-+3 |and Hooksp = [4]3]2]1],
_ 1 1
Dimg = o (N+3)(N+2)(N+1)N = 5 (2+3)(2+2)(2+1)2=5,
dr = 1. (3.5.64)
As a result, we have
> drDimgp=3x3+2x1+1x5= 16, (3.5.65)
R

which is equal to N" = 2 = 16.

3.5.5 Schur polynomials. We will define the Schur polynomials (Corley et al., 2002). We will then
compute their correlators. After that we will argue that any multi-trace structure can be written as a
linear combination of Schur polynomials.

For a single complex matrix model, the Schur polynomial is defined by

xw(Z) = 21 S xn(o) o)) (25
T o€S,

_ % S Xr(0)Tr (02°7). (3.5.66)
" 0E€Sy
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Using (3.5.46), the Schur polynomial can be written as a single trace

Xr(Z) = leTr (PrZ®™). (3.5.67)

Now, we can compute the following correlators

<XR(Z)XE(Z)> <dRTr (PrZ®™) dlsTr (PsZT®n)>

= ledls (Tr (Prz®") Tr (Pszto") )

_ ii<(PR)§(Z®n) (Ps)} (ZT@”) >

= - (PRS(P)E (2521 (3.5.68)
Using (3.5.37), we have

((zo1(Z'* k) = > oklo™F, (3.5.69)

O'GSn

so that (3.5.68) becomes

— Y Tr(ProPso). (3.5.70)

Now, we use the fact that P¢ commutes with ¢ to find

11
20x5(2)) = —— Y Tr(PrP
(xr(20i(2)) = o g 3 Te(Par)
Tr (PrP 571
de r(PrPs). (35.71)
Finally, (3.5.47) allows us to write
2)x5(2 SrsTr (P,
(X(ZNLD)) = S orsTr (Ps)
n!
drsdgDi 3.5.72
= Jpds RsdsDims, ( )
where Dimp, is given by (3.5.60). Thus, we obtain
n! factorg
<XR(Z)XTS(Z)> = 1P Hookss (3.5.73)

Now, using dr = (3.5.73) becomes

HooksR

Hooks
t . R
<XR(Z)XS(Z)> = dgrgfactorg Hookss

= dpgfactorg. (3.5.74)
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The following will show that any multi-trace operator can be written in terms of a linear combination
of Schur polynomials. This will use the orthogonality relation in group theory and the definition of the
Schur polynomials. We have

Z Z XR(U)XS Z Z I‘R mFS j]XR(Z)

R o€S, R o€eS,
n!
=D 7 0rs0i0iXn(Z)
R
R
= nlxs(Z)
= xs(o)Tr(a2%7). (3.5.75)
oc€Snh

This last identity shows that

Tr (02%") = xr(o)xr(2), (3.5.76)
R

which is combined with (3.5.42) to complete the argument that any multi-trace structure can be written
as a linear combination of Schur polynomials.

3.5.6 Example. To illustrate the results obtained above, consider the symmetric group Ss and the
gauge group U(3). The symmetric group Ss has three conjugacy classes whose representatives are
(),(1,2) and (1,2,3). There are three inequivalent irreducible representations associated to the groups

S3 and U(3). They are labelled by R = @ [T ]and || The correlators of the Schur polynomials
in these representation are -

< XT > N(N —1)(N —2) (3.5.77)

<ijj > = N(N + 1)(N +2) (3.5.78)

<XHj > N(N +1)(N —1). (3.5.79)

The table of characters is given below

R {0} [{(1,2),(2,3),(1,3)} | {(1,3,2),(1,2,3)}

u 1 1 1
[T 1 1 1
L] 9 0 —1

Table 3.3: Table of characters for S in a representation R
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Using the character table, the Schur polynomials are given by

X@(Z) = é (Tr(2%) = 3Tr (2) Tr (2%) + 2Tr (27)) (3.5.80)
XT(2) = é (Tr (Z%) +3Tr (2) Tr (22) + 2Tr (2%)) (3.5.81)
XHH(Z) = é (2Tr (2°) —2Tr (27)). (3.5.82)

The different multi-trace structures written as linear combinations of Schur polynomials are given by

Tr(2)® =Tr(() 2%?%)
=x(2) + x(Z) + 2XHj(Z) (3.5.83)

Tr(2)Tr(2%) = Tr((1,2) Z%°)
=—x(2)+ XI:\:D(Z) (3.5.84)

Tr(Z3) =Tr((1,2,3) Z%%)

With these linear combinations and the use of the orthogonality of the Schur polynomials, we find the
correlators of the different multi-trace structures given in the table below.

(/)1(’); Tr(Z)’ | Tr(2)Tr (22) Tr (Z23)
Tr(2)® 6 N? 6 N2 6N
Tr(2)Tr(Z%) | 6N? | 2(N?+2)N 6 N?
Tr (Z2°) 6N 6 N? 3(N*+1)N

Table 3.4: Correlators of multi-trace structures under the gauge group U(N = 3).

The results in this table are in agreement with the correlators of the Schur polynomials given in (3.5.79).
We can also find the results

(Te(27)Te(21)) = I <1 +0 (1\12)) (3.5.86)

(Te (27) Te (25) T (21745 ) = JK(J + K)NTHE <1 +0 <J\1[2>) (3.5.87)

even though, we have not considered N to be large. The general results for these correlators are stated
in Chapter (5). They will be used to compute correlators involving giant gravitons. It is also easy to
check that
J £\ J
Tr(2)” Tr (Z ) = JINY, (3.5.88)

as shown in Table (3.4).
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3.6 Two-matrix model and restricted Schur polynomials

In this section, we add a new matrix field Y, which is acting on the same vector space Vi as the previous
matrix field Z (Balasubramanian et al., 2005). We then consider observables of the form

Tr(ZmYy™ Z2my™ | 7MYy (3.6.1)

Let us study the case with n matrix fields Z and m matrix fields Y. For that, we work on Vg"*m and
we introduce the following notation:

Xn Xm I _ il ’i2 ’in 7;n+1 in+2 7;'nn&»rn
(ZEnY®mY = ZR 22 L ZinY Y Y (3.6.2)
We have also
Tr (pZ2nYy®@m) =zt giz  gin yinel yint2 o yindm 3.6.3
(p ) (1) p(2) tp(n) " tp(nt1) " Lp(n+2) tp(ntm)’ ( )

where p € Spm.

The observable above is invariant under the action of S,, x S, which follows because the Ys and Zs
are bosonic fields. Thus permutations of the Zs among each other and the Ys among each other is a
symmetry of the theory. We have

()5 (25 Y O™ (0™ E = (Z%"Y®™)1, 0 € S X Sm C Sugm. (3.6.4)

So
Tr (pZ€"Y®™) = Tr (po(Z2"Y )0 1) (3.6.5)
=Tr(c 7 po(Z2"Y®™)). (3.6.6)

This argument shows that p and o~ !po with o € S, x S,,, give rise to the same observable. In the
following, we say that g and h are restricted conjugate if

g=o0tho with g,h € Spym,0 € Sy X Sp. (3.6.7)

Consequently, the number of observables will equal the number of restricted conjugacy classes.

We know that after restricting to a subgroup, a given irreducible representation will decompose into a
number of irreducible representations of the subgroup in which more than one copy of a representation of
the subgroup may appear. We distinguish identical copies by adding a new label «, called the multiplicity
label. Moreover, to label the representation of S, 1,, we need a Young diagrams R with n + m boxes,
another Young diagram r with n boxes to label a representation of S, and another Young diagram s
with m boxes to label the representation of S;,. Thus the representation of S, x Sy, is labelled by
(r,s)a. Consequently, we denote states in the carrier space (r, s)a of the representation of S, x Sy,
by |R, (1, s)c,i) where the label i runs from 1 to d,ds in which d, and ds are the dimensions of the
representations labelled by s and r.

Now, we can define the restricted character of the group elements of S, 1., by (de Mello Koch et al,,
2007a)

drds

XR,(T,s)aﬁ(U) = Z (Rv (’I", S)Oé; Z| FR(U) |R7 (T, S)B; Z> , 0€ Sn+m7 (368)
i=1
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in which we restrict the trace by only summing over the indices that belong to the specific irreducible
representation of the subgroup S, X Sp,.

Next, we can define operators, the so called restricted Schur polynomials, which are single traces on
V@ntm by (Bhattacharyya et al., 2008a)

1 n m
XR,(r,s)aﬂ(Z; Y) = m Z XR7(T,S)Q5(O')TI” (O'Z® Yy® ) (369)
o Uesn+m
= Tr (P (re)apZ="Y ™) | (3.6.10)
where
1
Prrsjap = 1 D, XR(rs)as(0): (3.6.11)
’ ) UESn+m

The operators Pp (, a3 Satisfy

[0, PR (r.5)08] =0, o€ SnxSn (3.6.12)
PR (r,5)a8 P (tu)r6 = ORSOrt0su0py APR (r5)as: A€ K =R,C (3.6.13)
F(r,s)a(a)PR,(r,s)aﬂ = PR,(T,s)aﬁr(r,s)ﬁ(U)a o € Sp X S (3614)

Here, the correlation function ((Z®"Y ®m)L(Zi€nyT®m)K) can be written in terms of permutations as

((zemyempzionytemi) = 3 (o). (3.6.15)

o€SH X Sm

So, by setting A = R, (r,s)af and B =T, (t,u)vd, we have

<XA(Z,Y)XB(Z, Y)T> = Y Tr(PaoPgo) (3.6.16)
0ESRXSm
= n!m!Tr (P4Pp). (3.6.17)

Then using (3.6.13), we see that x4(Z,Y) and xp(Z,Y) are orthogonal. Thus the computation of
{(xa(Z,Y)xB(Z,Y)T) is easily achieved.

In conclusion, correlators involving operators constructed from order N fields were studied. In this
chapter we found that the correlation functions of any gauge theory operator can be computed exactly
using Schur polynomials. The orthogonality of these operators simplifies the computations. Further, we
can sum lots more than just the planar diagrams by using the new group theory methods.



4. Holographic computation of scalar field
correlation functions

In this chapter, we compute correlators of scalar fields using holography. The tools that are necessary for
these computations are introduced in the first section. We then consider two and three-point correlation
functions.

4.1 Holographic principle and the AdS/CFT correspondence

The AdS4.1/CFTy correspondence ( , ) is the correspondence between the theory of
gravity in (d + 1)-dimensional AdS space with conformal field theory on the d-dimensional space that
is the boundary of the AdS spacetime. The AdS;1/CFTy correspondence is a realization of the
holographic principle which postulates the exact equality of a theory of gravity in a (d + 1)-dimensional
bulk spacetime and quantum field theory on the d-dimensional boundary. Using the AdSy.1/CFT,
correspondence we can evaluate the correlation functions of the CF'T" side as follows:

a- Determine the bulk field ¢ dual to the operator O of dimension A. The boundary condition ¢q for
¢ plays the role of a source for O. Indeed, the generating function Z 445 in the quantum gravity and
Zopr in the CFT are related by ( , )

Zopr|0] = <eXp <2/ d%a ¢0(’)> >CFT = Zaas(¢0), (4.1.1)

where ¢ is the field configuration at the boundary of the AdS spacetime.
b- Minimize the action on the AdS side to obtain the equations of motion.
c- Solve the equations of motion for ¢ with boundary condition ¢g.
d- Insert the solution into the action on the AdS side.

e- Take variational derivatives with respect to the boundary configuration ¢g, which plays the role of a
source for the operator O.

Now, we may perform a Wick rotation and use the saddle point approximation to evaluate Z 445 so that

Z pas(¢o) ~ exp (—Spaas(¢o)), (4.1.2)

where Spaqs(¢o) is the Euclidean action on the AdS side evaluated at the solution of the equation of
motion for ¢ with boundary configuration ¢y. This approximation amounts to ignoring quantum gravity
corrections. In the dual C'F'T this corresponds to studying the N — oo limit. The correlation functions
of the C'F'T side are finally obtained as follows

1) 1) . )
dgo(1) 0go(w2)  dgo(n)

(O(21)O(x2) - O(an)) cpr = eXp<_SEAdS(¢0>)‘ . (413)

$0=0

40
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4.2 Two-point correlation functions from the AdS side

According to the recipe outlined above, to compute correlation functions from the gravity side using the
AdSg11/CFTy correspondence, we need the explicit expression for the action on the AdS side. Using
the action, we should derive the equations of motion and solve them. It will be useful to first consider
the metric on the AdS space. As a toy model, we couple one massive scalar field to gravity in the
(d + 1)-dimensional AdS background.

4.2.1 The metric of AdS space. (Witten, 1998; Freedman et al., 1999; D'Hoker and Freedman,
2002) The space in which we work is the Euclidean continuation of AdSg41, which can be written as
the surface

d
S ()R + 3 (i) = —%, Y.1>0 (4.2.1)

i=1
in a (d + 2)-dimensional embedding space with metric
d
ds® = —dY?| +dYg + ) _(dY);. (4.2.2)
i=1
This space has negative curvature
R = —d(d+ 1)d (4.2.3)

Now we change coordinates from Y; to z; as follows

Y,
- 424
Z’L (L(Y_l + }/0) ( )
1
e 4.2.
or, equivalently
Z_aY; fori#0 (4.2.6)
20
1
= — 4.2.
0= Ry, Y (4.2.7)
Differentiate to find
dz; — z;d
adY; = w (4.2.8)
0
and
_ dYp+ay;
Then

7 [28(dzi)? + 22(dz;)? — 2z02id20d %]
0

=<3 [z%(dzi)2 + 22(dz)? — zodzod(z?)] , (4.2.10)
0
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and
dY_1 + dYy)?
dzo)? = WYL AN sy 4 a2, 4.2.11
Thus, it follows that
d 1 d d d
Z(dY)ZZ = > [2(2) Zdz? + (dz;)? Zz? — zpdzod (Z zf)] . (4.2.12)
a’z,
i=1 0 i=1 i=1 i=1
Using
z = az0Y;, (4.2.13)
we obtain
d d d
Z(dY oy [zo Zdz + a?23(dz;)? ZYQ —a*z3dzod <Z 2) (4.2.14)
i=1 i=1 i=1
Now, from (4.2.1) it follows that
d 1
DoY) = - (Vo) — (V) (4.2.15)
i=1
d
d (Z(Yi)2> =2V 1dY | — 2YpdY. (4.2.16)
i=1

And hence, (4.2.14) becomes

d
1 1
Z(dYQ? = [ Zdz + a dzz) ( CL2 + (Y_1)2 _ (Yo)2> — 2a2z8d20 (Y_ldY_l — YodYb)

=1
d
1
=22 [Z dz)? + (dz)? 72 [(d2:)? ((Y=1)? — (Yo)?) — 229dz0 (Y_1dY_1 — YpdYp)] .
=1

20

(4.2.17)

Finally replace zy and dzg in the second term of the RHS of this equation with (4.2.5) and (4.2.9) to
obtain

—dY{ +dY?, (4.2.18)

d d
D@ = [Z(W + (dzo)?

i=1 =1

which gives the induced metric in the form of the Lobaschevsky upper half-space:

d
1
—— (D dz | (4.2.19)

ds®> = 5
z
a’zy \ 7=
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4.2.2 The wave equation. For a free scalar field, of mass m, in flat (d + 1)-dimensional Minkowski
spacetime, the action is given by

‘Szy/dwﬂxﬁ, (4.2.20)
where the Lagrangian density is
_ 1 HY 5 HO 1 242
L= 51 PO, P — 3™m o, (4.2.21)
with d%*lz = dzodz - - - dxg the measure and N = N = diag(1,—1,...,—1) corresponds to the

Lorentzian metric tensor.

For any theory in a curved space, we use the invariant measure dd“x\/g = dd“x\/det(guy), and we
replace the tensor metric 7, of the flat space by the metric tensor g, of the curved space. We have
to replace usual derivatives 8u by covariant derivatives V. Here, the usual derivative 8u coincides with
V. because we are considering a scalar field. Therefore, after a Wick rotation, we have the Euclidean
action for a massive scalar field given by (Freedman et al.,, 1999)

Sglé] = /dd+1$\/§£E = ;/ddﬂx\/ﬁ (9" 0,0, ¢ + m*¢?] . (4.2.22)

We derive the equations of motion from the Euler-Lagrange equation which is

o(9Le)] O0(/9Lle) _
@{ W@@)] 5o =0, (4.2.23)

with

9y [8(\@&;)] = [ J <\é§ (9" 0D + m2¢2]>]

=0, <\é§9uy (6,000 + 5Vpau¢]>
=0, (\gﬁ 9" 0y + gpuaud,])
=0, /99" 0, 9] (4.2.24)
O(\/gL 0
= \/gm?¢. (4.2.25)
In the curved space, the equation of motion is
\}gau (V99" 0,¢] —m2¢ = 0. (4.2.26)

Now, use the metric of the AdS spacetime,

-2
G =2 O — ..
{ g,uy — Z(%CS/U/ ) w, v = 07 17 7d (4227)
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to find
d
g = det (g,,) = det (25 20,,,) = H (20 260) = 20—2(d+1). (4.2.28)
n=0
The equation of motion becomes
ir1 9 | _4p1 0 - 5 O - 2 -
&) 3720 20 8720(]5(2072) +206?¢(20,2) —m“$(20, 2) =0, (4.2.29)
or, equivalently
z2ﬁ¢(z Z)+ (—=d+ 1)z i¢>(z 7) + 228—2(;5(2 Z) —m?¢(20,%) = 0 (4.2.30)
0823 05 082’0 05 Oagz 0 0 - L
and the Euclidean action Sg is
1 [ d%zdz
Sp = 3 / W (0,250,606 + m*¢?] . (4.2.31)

4.2.3 The solution of the wave equation. The bulk-to-boundary Green's function associated to the
equation of motion is given by (Witten, 1998)

o T'(A 2 A
Ka(z0,7,7) = — L&) . < _ 2) 7 (4.2.32)
7T§F(A — 5) ZO + (Z - y)
where
d d? 9

We will now verify that the above bulk-to-boundary Green's function exhibits the necessary singular
behaviour

A—d RN > = 0 If 5: {E
25 “Ka(20,7,7) zo——>>0 0(Z— %) —{ 0 otherwise ° (4.2.34)
Consider two cases
e For 2 #£ 7:
B F(A) ZQAfd
A—d - = 0
Z Ka(z0,2,7) = = — 0. 4.2.35
0 ( ) W%F(A_g) [ngr(fo)Q]A zo—0 ( )
o For Z =17
T'(A 1
257K A (20, 2, T) = _ra) 1 — 00. (4.2.36)



Section 4.2. Two-point correlation functions from the AdS side Page 45

Moreover, we have

m2l(A -4 22+ (Z-2)?)
d 7
- CA/d JOP N (4.2.37)
(8 + ()"
with
T'(A
S L CV (4.2.38)
r(a-9)

We obtain the last line by employing the change of variables z = Z — ¥, which leaves the measure

invariant. Now change to d-dimensional spherical coordinates such that

d% =dz ...dzg = v Vdr dQy_4 (4.2.39)
=24t 2=r (4.2.40)

where r is a radial coordinate and d{2;_1 is the measure for the angular variables. The integral over the
angular variables gives

2w
dQg-1 = — - (4.2.41)
/ r(5)
Thus, we have
d
(A 2 o) 2A—d
/ddz 25K A (20, 2, 7) = — () de / drzoiA. (4.2.42)
WiF(A—g)F(i) 0 (22 +72)
Now change coordinate, from r to u = ﬁ to find
0
d
(A 2rr2  [1
/ddz 28K A (20, 2, 7) = —; (2) W; / duugfl(l - u)Afgfl. (4.2.43)
DA - HT(3) Jo
Finally, using the identity
I'(p)I'(q) ! -1 -1
Bp,qzz/ duu?” " (1 —u)?™7, 4.2.44
00) = g gy = ) dm? 1) (42:44)
we find that
/ A% 25" KA (20, 2, %) = 1, (4.2.45)

which complete the proof that ZOA*dKA(zo, Z,Z) tends to the delta function §(Z — &) as zg — 0.

The solution to the equation of motion can be written using the bulk-to-boundary Green's functions as
follows

$(20,7) = / d* 2K A (20, Z, ) o (£)
T o w N
=1 )/d (Zg 4_@2) bo(). (4.2.46)
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To demonstrate that this is a solution, we plug this expression into the wave equation. We need to
compute

a‘ZOKA( %.%) = Kz, 7,7) {A;m] (4.2.47)
;;KA(ZO,;;, %) = Ka(z0,7,7) {Aio [;m] 4 [A;mr} (4.2.48)
;ZZKA(ZO, %.7) = Kz, 7,7) [AM] (4.2.49)
:;KA(zO,E, 7) = Kal(z0, 7, 7) {A;; {M} + [Amr} _ (4.2.50)

After evaluating each derivative, we have

, 2 Al —42(Z2— 8?2 — (-4 + A2 [ —222(7 — 8)2 + (2 — &)%)
0 QKA—KA . o012
9z (22 + (Z— &)?]
(4.2.51)
> 4 A4
(—d+ 1)0-L Ka = Kn d A—d+1)-E=) 0 (4.2.52)
Dz (22 + (Z - ©)?]
d 92 A [—24 > 2\2 422(7 — 7)2 AN222(5 — )2
gZ%KA_KA [—2d (2 + 25(7 — ©)*) +425(2 295”4? 75 (Z7 — T) (4.2.53)
— 0z; (22 + (- )7
4 9,2(7_ 22 > =4
Ky = Ka 4 2l T 20CE D) i il (4.2.54)
(22 + (Z - ©)?]
Combining these terms we have
)
(—d+1)z05— KAJran QKAJrZOZa QKA m2Ka
- Ka 2{23[A+A2—A(—d+1)—2m—m2]
(22 + (Z - ©)?]
+z§(2—:€')2[—4A—2A2—2dA+4A+4A2—2m2]
+ (Z-2)! { — A+ AT A(=d+1) - mQ] } . (4.2.55)

The RHS of this equation vanishes after we replace m? by A% — dA as dictated by (4.2.33). Therefore
KA is a solution to (4.2.29).

4.2.4 The two-point correlation function in position space. Given the classical solution we can
evaluate the action and, thanks to (4.1.1) and (4.1.2), compute correlation functions of the C'FT.
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They are given by taking derivatives of the generating function Z445. Thus, we now have

S ) )
O(X)oy —Z 4.2.56
(oo = 5005 3007, (2.0

o ]
560(%) 600(7) exp (— EAdS(¢0))‘¢0:0 ( )

J 0

= — . 4.2.58
3o(X) 660(Y) (%)‘450:0 ( :
To evaluate this last expression, plug the solution ¢(20,7) = [ d%xKa(z,%)¢o(Z), where z = (20, Z)

denotes the coordinates in the AdS;.1, into the classical action to obtain

5=y [ o o ([ derstemn) o ([ durat )

0

+m? / dYx KA (2, Z)do(Z) / ddyKA(z,g’)qﬁo(g’)]. (4.2.59)

We then need

B 1 [dizd , )
MO(?)SE = / %f(){aum(z,m <z§0u / Ay KAz, 7)o (i) + 220, / A KA (2, 7)o (Z ))

poKale V) ([ dykate o+ [ dekaz o)

and

o ) 1 [d% dz 9
500 () 6¢o(?)SE =3 /zg” [20,Ka(2, X)230,Ka(2,Y) + 2m*Ka (2, X)Ka(2,Y)].

Finally, the 2-point correlator is given by
s —a ddz dZO s 2 a 2 N s
(O(.’E)O(y)> = - W (auKA(va)ZO@uKA(Zay) +m KA(va)KA(Z’y)) : (4260)
0

In this equation the variables X and Y are replaced by & and 3. This can be rewritten as
@O =~ [ ats g (bl 30K (1)

d
+ ) 0KA(z,B)250:Ka (2, §) + m*Ka(z, £)Kal(z, Zf))- (4.2.61)
=1

To evaluate the above expression, it proves useful to perform an integration by parts, to obtain
/ddz dzozadflﬁoKA(z,f)z%@DKA(z,g’) = /ddz dzoﬁoKA(z,:f)zgd+180KA(z7gj’)
d d+1 °°
= /d z [KA(z,a_c')zO_ + 80KA(z,y_’)}
zo=e—0

/d zdzoKa(z, )0 [ 19K a(z, y)] (4.2.62)
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and

/ddz dzozo_d_l(?iKA(z,f)zgaiKA(z,gj) = /ddz dzoaiKA(z,a?)zO_dHaiKA(z,g’)
2;=-400

2;=—00

= /dd_lzdzo [KA(z,f)zo_dHé?iKA(z,g’)
— /ddz dzon_dHKA(z,f)@iaiKA(z,gj’)
= —/ddz d20Ka (2, )29 T 0:0, KA (2, 7). (4.2.63)

Using these results the correlators become

zo=e—0

O@OW) = - [ ' [Kale 2z oKl )]

+/ddzdzoKA(z,aE’) ( 80[ d+180KA (z y} Zz““ 0;0; Ka(z y)+m 2 —d- 1KA(2 y))

:ll_:()% ddzflidKA(e757‘%’)8720KA(207Z’ _‘)}ZOZE
d —d—1 - i1 9 | 41 0 - 0 2
+ [ d%%2dz 2z T Ka(2,T) | —2 9 R G—ZOKA(z,y) ZOa—QKA(Z ¥) + m*Ka(z,9)
(4.2.64)
Using the free equation of motion for KA, we have
N . - L 0 S
(O@)O() = lim d?z€! dKA(e,z,w)a—ZOKA(zo,z,y)}zO:e- (4.2.65)
Given
o INUS ) ( 20 )A
—Ka(z0,2,Y) = —F/———F——— -
dzo ale0, 59) 7iT(A — &) 020 { 7+ (7 - 9)?
@A a{ 2 } ( 2 )Al
TiT(A — 9) 020 L5+ (Z =) ) \2f + (F-9)?
St gy e >A—1 (0266
7i0(A — 4) \[§ + (Z=9)°1?) \ 2§+ (F-9)? ’

we can write

2)O(7)) = TA+1) im | diae KA (e 7 7 (Z—9)? —¢€ ¢ A-1
owow) - g i [ e Rse =9 (G (av—)

I'A+1 7— )% — € A=l
= g(iwlim ddzeA_dKA(e,Z,f)< (22 y_,)_ _,62 2) < 5 }, q2> .
T2l (A — 4) =0 [+ (EF-9)?2) \e€+(Z-7)

)
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Now, we use the fact that ZOA*dKA(ZO, Z,Z) — 0(Z — &) when zgp — 0. We finally obtain

e WFA s 1)3 4 <[e(2g+_ 32})62?2) < T é g>2>A1
(7
1

(A +1) 1 Al
= lim 2]2 2 (72
WQF %i e—0 e+ (Z—7)
DA+ (4.2:68)
= ﬂ.ir(A %l) ’.’B y’2A L.

This is precisely the form expected for the two point function of a scalar primary operators of dimension
A in CFT, that we have reproduced from a supergravity computation.

4.2.5 The two-point correlation function in momentum space. First, Fourier transform the variable
Zin (4.2.29), as follows (Witten, 1998)

/ dk %2 (20, ). (4.2.69)

This gives

ol ,.,0 1 / Lol
d+1 d+1 ik-Z
z ——— | dke 20, k
“0 820 [ 820 (27[-)% ¢( 0 )

2 1 ik-Z
_ dk —
m (271’)% / e 2 p( 2o, ) 0

0 0o 1
d+1 —d+1_ Y ik-Z
0 9z |0 9% (27)% /dke #z0-F)

2_1 /dke”kng(z k)=0

1 0 7 ikZ 7
ta——7 Y o | dke™F(z0, k)

/ dk; ¢’ [ a1 0 z(;dﬂigb(zo, k) — 22K24(20, k) —m2¢(z0,E)] =0, (4.2.70)
(27)2 02 020
which implies
zg+1£ [zo_dﬂaa¢(20, )} — (22K* + m®) (20, k) = 0. (4.2.71)
0

The solution of this equation is given by
- d
(20, k) = 25 F, (ik 20), (4.2.72)
where F,, is the solution of the Bessel equation of index

2
v= dZ +m?2=A- g (4.2.73)

To see this, begin by rewriting the Fourier space equation of motion (4.2.71) as

g 0 - _ 0? - -
6”1 (—d+ 1)z da—zogb(zo, k) + 2, dﬂﬁgb(zo, k‘)} — (zgk2 + m2)¢(zo, k) =0. (4.2.74)
0
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Using the explicit form of the solution given in (4.2.72), we have

O a0 By = 28 B ik 20) + ik 2 —0— B ik 20) (4.2.75)
6Z0 0 N 2 0 v 0 0 (Zk‘Zo) Y 0 o
0? - d{d d_g d i1 0
— ky===—-1])22 "F,(ik 2ik =22 F,(ik
Ak k) = 3 (2 )ZO (ik20) +20k525 Ggzg) v =0)
+ (ik)2z%872F (ik z0) (4.2.76)
0 D(ikz)2 vV O -
The Fourier space equation of motion becomes
d - . d41 4
5(—d + 1)20 FV(Z]C Z()) + Zkf (—d + 1)20 mFy(Zk’ Z(])
d(d g .. . 441 .
+ [2 (2 — 1) 25 Fy(ik z0) + ik d 25 mFy(zk 20)
d 2
1 R —— o (7
+ (Z ) 20 8(@'14:20)2 (Z ZO):|
d
— (25K + m?)23 F, (ik 20) = 0. (4.2.77)
d
Finally, regroup terms, and factor out z; to get
(ikz )ZLF (ik 20) + (ikz )LF (ik 20) + |(ik20)? — d—2+m2 F,(ik 29) = 0
0 0(zkzo)2 v 0 0 8(’Lk‘Zo) v 0 0 4 v 0) — Y

(4.2.78)

which is the Bessel equation of index v = 4/ % +m?2=A-— %. For what follows it will be useful to

write the action in terms of Fourier components. The Fourier space action is

_ L a7 i -2 o0 VLot B 4+ (124 T Doz, i
S = Q/dzodkdk 2y Ok + K [8zo¢(z0,k)azoq§(z0,k)+ k* + = &(20,k)P(20,K") | -

0
(4.2.79)
Integrate by parts with respect to zy and use the solution of the wave equation to get
1 AN M ANRE —d+1 - 0 Il
S =< [ dkdk'6(k+ k') lim 2 d(z0, k) =— (20, k") | (4.2.80)
2 zo—e 0z
The solution to the classical equation of motion can be written as
¢ (20, k) = K(20, k) pp(K), (4.2.81)
with
do(k) = ¢(e, k) (4.2.82)
and
d
=, 20\ 2 ICV(]{?ZO)
K* k)y=— . 4.2.
(z0:F) = () K, (ke) (4.2:83)
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The function K, is the modified Bessel function which vanishes as zg — 0. The boundary conditions
for the field imply that

e (4.2.84)

The two-point correlator in momentum space becomes

<0(1€)0(1€')> C e SE 4 ) lim -0 K (20, F). (4.2.85)

Z0—€ 820
To evaluate this limit, we need the expansion of I, near-the boundary, which is

Ky(u) =u"(ao + agu’® + .. )+ ¥ (bo + bou® + .. ) (4.2.86)
K (u) =u""! [—vao+ (2— v)agu® + .. 4+ u’ ™! [vbo+ (24 v)bou® + .. - (4.2.87)

In this expansion, we only need ag and by, which are

ap = 2""'T(v) (4.2.88)
bo = A U (4.2.89)

14

We also need the expansion, valid for small zg

8820 {zj ICZ,(/{:,ZO)] . [;lle(kz()) + kzoic;(kzo)} (4.2.90)
- z(;g_l {(k:zo)_” K;l _ u) ao -+ (2 T g - u> as(kzo)® + .. ]
+ (kz)” <‘2i + u> bo + <2 + g + 1/) ba(kzp)* + .. } } . (4.2.91)

Using the above expansion we find

0 - [d b
€ Jim o (z0,k) =€ < B v+ co(ke) + ] + (ke) 2 [ v+ do(ke)” + ,
(4.2.92)

where ¢; and d; are constants. The final expression for the correlator in the momentum space is obtained
by dropping terms of integer power of k2 since they will be proportional to the delta function §(Z — %)
and its derivatives in position space. These contact terms will not contribute to our correlator since we
only consider fields at non-coincident points. Only the first terms of the series of non-integer power of
k determine the physical correlator. Keeping only the leading term as ¢ — 0,

et Zloige &KE(ZO, k) = e_d(kze)QVZZZV

oy, (T
) <2> RIE (4.2.93)

Thus the correlator is

2v
<0(E)0(E')> = §(k + Ke2A=Day (];) m (4.2.94)
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which can be written in position space as
] FEARG [ Py T
(O@)O(F)) = (%)d/ddkddk’ek +F y<(9(k)(’)(k’)>

1 ca (K T(1—v
_ 2(A-d) dy. ik (Z—7) v
€ (27r)d/d ke 21/<2> 7“1_’_1/)

1 (2A-ar@a) 1
Cat T(A-9) (@-g

(4.2.95)

To obtain this result we have used the inverse Fourier transform identity

1 RX 22T (v+§) 1
_ / i P X g2 = 2 v+3) 1 (4.2.96)
(2m) x5 T(-v) | X |2v+d

and we have replaced v by A — %. Comparing the two results obtained in (4.2.68) and (4.2.95), they
differ by a factor

A
20 —d

(4.2.97)

Different results are also obtained if we evaluate the limit € — 0 of the expression of the propagator in
(4.2.83) before we evaluate the derivative in (4.2.85). In this case we have

d
€ ™ (R0 2 ,CV(kZO)
K<(20,k) = ( : ) b (4.2.98)
Then the correlator in the momentum space takes the form
L . d\ (E\*T(1-v)
N\ _ 1 (2(A—d) ay(Ey Y 4.2,
<(’)(k)(’)(k)> 5(k +K)e <y+ 2) <2> T (4.2.99)

This result again differs by a factor of V;—yg = ﬁ when compared to (4.2.95).

In summary, we have computed the two-point function in two different ways. The results differ by a
factor of ﬁ. This difference is explained by the way we drop terms when we evaluate the limit ¢ — 0.
This is a convincing demonstration that the computation of the two point function is indeed subtle.
Subtle means here we have to be careful on doing the computations. In fact, we have extracted the
value of two-point function from the subtraction of two divergent integrals.

4.2.6 The correct value of the two-point correlation function. It can be argued that the correct
value of the two point correlation function is given by (Freedman et al., 1999)

(O@OW) =

L@A-dI@A) 1 _— (4.2.100)

(CT)

Sl
[N]SR
:
g
|
NI

Computations in Fourier space and in position space gave a different answer. We want to better
understand the origin of this subtlety when we evaluate the relevant integrals.

First, we can see that the computation of the two-point function in position space required the in-
troduction of a cutoff (4.2.62) to regulate the divergence of z; %™ at the boundary. In addition, the
bulk-to-boundary Green's function KA has a singular behaviour as described in (4.2.34). The compu-

tation of the two-point correlation function in momentum space, is also subtle, due to the cutoff.
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One can extract the two-point function from the Ward Identity for the three-point correlation function
of the conserved current J;(Z) with the scalar operators O(Z) and O(%) both of which are operators of
scale dimension A. The computation of the three-point function is not divergent and so can be carried
out without ever introducing a cut off. The Ward identity relating the three and two point correlation
functions (J7;(2)O(Z)O(y)) and (O(Z)O(y)) confirms the result (4.2.100).

—

The three-point correlation function (7;(2)O(Z)O(%)) will be computed from the AdS supergravity
side. The sources for the conserved flavor currents J(Z) are the boundary values A%(Z) of the gauge
potentials AZ(xo, ¥). After coupling to the background gauge field, the action for the scalar becomes

S[e', A% = % / ™2 \/g (9" 10"V, +mPel ¢ (4.2.101)
with
Vud' = 08" —iAL(T) g7 (4.2.102)

In the equation above, (T%)!7 are the generators in a real representation of the SO(6) flavor group.
They are imaginary antisymmetric matrices.

In order to evaluate correlators from the gravity side, we again have to use the bulk-to-boundary Green's
function K in (4.2.32) for the two scalar operators O!(Z) and O”(#). We also need the Green's
functions G i(z, &) which are the bulk-to-boundary Green's functions for the gauge field. Using these
bulk-to-boundary Green's functions, we will be able to write down gauge field solutions to the equation
of motion with boundary values A¢(Z). They are given by (Freedman et al., 1999)

( o )
Gui(z, %) = Cy iz — 7
5 + (- 9)?]
—o d_2a _ ()i (4.2.103)
N\ E-9?) M\FrE-2) -
with
Cy= %. (4.2.104)
27T§F(g)
Using the AdS;y1/CFT, correspondence, we have
) ) )
THRONDON () = o= S —-exp (=S
< ) ) 0AF (%) 694(T) 3y (9) )|¢5=¢3=Ag:0
) )
=— — — —S5 : 4.2.105
5A9(2) 600(7) DGR lup oo (42.109)

Expanding VM(bKde)K we have
V" V" = (00" — il (T F6"7) (0,6 —iAL(T0) M oM)
= 0ud™ 0,0™ — 00" AL(T) MM
— i AL (T K E gl o, ¢ — AL (TP) KLl AL (T KM M (4.2.106)
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The only terms which contribute to (4.2.105) are the cubic vertices in (4.2.106), so that we obtain

d%w dw . L. 0 o
70Gm(w, z)w% [KA(w, T)—Ka(w, )

(@0 @0’ @) =y [ T S
— Ka(w, g’)(;;LKA(w,f)} : (4.2.107)
To evaluate this integral we set first Z = 0 and perform an inversion. The result is
0 R, i) = i) K 0.
—/ddu;filvocd 2 :U_g:z]d = Jyi(w)wg [KA(w,a;)azuKA(w J) — KA(w’g)(‘)aquA(w’f)]
_ Cd/%wéd 17;’0 F20 520 [KA( ! *’)gz;ai;JKA(w 7) — KA(w/’i)gﬁ8i;KA(w,’f/)}
BSILINTCIN / (MZ;;M)J i(w) T (w) [KA(w',f')ai;)KA(w,y) — Ka(w', g )8w’pKA(w,’f,)]
~ noes | ddw@;jwo(;m A ) ai,pxw,g) - Kaw,7) afu;)m(w',f»]
! Ka(w', f’)} . (4.2.108)

Cy d%w’ dw), 0 .
/ ’UJ[/) 0 |:KA(U)/,.’I}/)KA(U),?J) - KA(U) 7:&#)810;

T PApA o/
We now integrate the first term of the integral above by parts with respect to w! to obtain
0 . . . Cy d%w' dw! 0 .
(20" @0 ) = 2T s [ AW ) o KW #)
C d%w’ dw, 0 .
d / OKA( )8 KA( / /)

_ a\ I
=2(T%) 725 2 o
Ca 0 [ d%W dw)
=2T") sxox 7 | —Ka(',§)Ka(w', &), (4.2.109)
B2APPA O wj)
where we have used the following identity
0 0 .

The above integral can be evaluated using Feynman parameter methods. For example (Freedman et al

1999)
a
“0 _ = I(a,b,c,d) [& — gt Tord e (4.2.111)

with
I)F(%+%+%—b)r(%+%+g_c) (42112)
F(a+1—|—d—b—c) ' B
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Therefore, according to (4.2.111), the integral in (4.2.109) becomes

(0" @0’ ) =20 S4BT [ atut s wi=
z PR Ou C[wf + @ — @) P [l + (@ - )2
C4C3 0
avIJ “dYA = d—2A
=2(T*) ﬂAy_QAI@A 1AAd)8 7 — 7|
CyC3
a\IJ_“dYA _y|d—2A—2
= —2(T%) ﬂAng(m LA A, d)(2A — d)(2; — ) |[& — 7|
C C T . i:d—QA—Z ——2A\—2
a\[J _“dYA i Yi Y
—2(T) ﬂAgMI@A LA A, d)(2A - d) <;z25> EETET
(4.2.113)
The last line is obtained by performing an inversion using the identity
1 Py
= ——. (4.2.114)

@ —-g)>?  (@—9)
Now, perform a translation such that ¥ — # — Z and ¥ — ¢ — 2" to find

a( AN (M (7 a ( )CdCiI(QA—lAAd) Ti— 2 Yi— %
<JL (2)0°(2)O0 (y)> —2(T ) (7 — )d 2(j — )d 27— ) d2A+2 ((f_g)Z (@7—5)2>
(

M(A‘@
T — Zj Yi — Zi

! - ) . (4.2.115)

e e (o o

where we have evaluated 1(2A —1, A, A, d) using (4.2.112). Compare this result with the computation
from the C'F'T side, which is given by

—(T)!

X

<-7za(g) > = - Sa IJ vavg)
a 1 T, — 24 i — Zi
(d—2)(T)" (T — 2)42(j] — 2)d-2(3 — ) ar2A+2 ((f_ 92 (g_ 5)2) (4.2.116)
We find
B (AT (%) d
€= pry 2)r(§ m—y <A — 2>. (4.2.117)
Now, use the Ward identity relating (J(2)O!(2)O’ (%)) and (O!(Z)O7(§)) which is
T (TA0 @O )
= 6(Z = 2)(T)"F (O (@O () + 8(5 — 2)(T)"F (01 (H)O* (7))
_Ew NI r5(7— ) — §(i7 — 7 1
() (T*) 7 16(F = 2) — 6(y — 2)] -7 (4.2.118)

This Ward identity is satisfied if the two-point correlator is given by (4.2.100) with the same constant
€ given in (4.2.117).
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To derive the Ward identity above, consider

[0l exp (iS6)6! @007 )~ [ (D) exp i516)" (@) (9) = (4.2.119)
where in the second term above we have made a change of variables
o' — ¢ =o' + ¢ (4.2.120)

Assume that the path integral measure is invariant under this change of variables. The change in the
action is

S[¢']) = S[4] + 654 (4.2.121)

Thus we can write
/ [Dg] exp (iS[9]) { ' (x)¢” (y) — (1 +i0S[P])[¢" () + 66" (2)][¢”7 () + 667 (y)]} = 0.  (4.2.122)

From the first order variation, we have
/ (Do) exp (iS[¢]) {i0S[8]¢" (2)¢” (y) + 56" (2)¢” (y) + &' (2)0¢” (y) } = 0. (4.2.123)

For the transformation we consider, d¢ is generated using the SU(4) R-symmetry of the CFT. Thus
we have

059 = / d'wda " J = — / dwa 0, T}, (4.2.124)
and
6! (2) = ia(z)(T*) K 5 (1), (4.2.125)

where (T%)K are the generators of the Lie algebra of SU(4). They are antisymmetric. Therefore,
(4.2.123) becomes

i [ dtwat a2 16! (210 1) ) = 1T (@0 ()6 ) + T (0] (@) (1)K (1)
(4.2.126)
We finally choose a® to be
a(x) = B%(z — 2), (4.2.127)
where 5 is a small constant parameter. We find then the following Ward identity
(0:.T7(2)0" (2)” () = (T)K6(x — 2) (¢" (2)¢” (1)) + (T")K6(y — 2) (¢ (2)¢™ () . (4.2.128)

To obtain (4.2.118), we use the antisymmetric property of the generators (7%)!” and the conformal
form of the two-point correlators.

Note that we determined the correct normalization for the current ji] using the fact that the associated
charge Q' generates the symmetry transformation

¢! (z) = €@ ¢! (2)e7Q". (4.2.129)
The variation of the field ¢! is given by
6" (x) = i[Q", ¢' ()] (4.2.130)

for an infinitesimal transformation.
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4.3 Three-point correlation functions from the AdS side

Consider three scalar fields ¢;, I = 1,2,3 in the supergravity theory with mass m; and interaction
vertices of the form £ = ¢1¢2¢3 and Lo = ¢19" 0,20, ¢3. The corresponding three-point amplitudes
are

Lo dw dw . . .
A1(Z,7,2) = —/dHOKAl(w,x)KAQ(w,y)KA3(w,z) (4.3.1)
Wo
o dw dw . » _
Ay (7, 9,7) = —/wdHOKAl(w,x)B#KAQ(w,y)w%@uKA3(w,z), (4.3.2)
0

where Kz, are the Green's functions given in (4.2.32). The above correlators are conformally covariant
and are of the form required by conformal symmetry

S L a;
Ay(Z,9,7) = :

|£I_f — g’|A1+A2*A3|g’_ —’|A2+A3*A1 |g_ :L‘J|A3+A17A2 > (433)

with
_ F(l[Al—FAQ—Ag]) (l[AQ—FAg—Aﬂ)F(l[Ag—I—Al—Az]) 1
a] = — 2 27TdF(A1 2 7) . ) ™ _2%) I (2[A1 + Ag + A3z — d])
(4.3.4)
as = a1 |AgAs + = (d A1 — Ay — Ag) (AQ + Az — Al):| . (4.3.5)

Use the translation symmetry to set one boundary point to 0, say 2= 0. Then use inversion symmetry,

z;L = i—‘; which is a discrete symmetry, to determine the three-point amplitudes. The measure in the

integral is invariant under translation and inversion. The bulk-to-boundary propagators transform as

K, (w, %) = K, (W', @) 7| (4.3.6)
Kn,(w, ) = Ka, (W', 7[5 |2 (4.3.7)
K, (w,0) = Ca,w ’Af*». (4.3.8)

Thus we obtain

. d%w’ dw! . A
AE5.0) = |27 120, [ I 0, ) Ko, 7

IA3+A1+Ao—d—1
Wo
/2 —’/_—*/2A1 2 —’/_—vQAQ
[wi + (W — )] 7" [wf + (& — 7)?]

= —[&|21 72200, Ca, Cay I(Ag — Ay — Ay — d — 1, A1, Ag, d) [T — |37 A1 52,
(4.3.9)

= —|7[%17|** Ca3Ca, COa, /ddw’ dwy,

Use the expression for (A3 — Ay — Ay —d — 1,A1, Ay, d) given in (4.2.112) and for Ca, given in
(4.2.38) and perform an inversion such that (D'Hoker and Freedman, 2002)

1 1?9
- == 4.3.10
TP |- gP (4.3.10)
1
=2
- 4.3.11
|| B ( )
|2 1
71" = =3 (4.3.12)
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After a translation to bring the boundary point back to Z, we obtain the three-point amplitude Aj.
To compute Ay we can proceed similarly by knowing that 9, K, (w, 7)w3d,Ka,(w, Z) is an invariant
contraction under inversion so that

auKAz (wa g)wgauKAg (wv O)
= |g"|2A28:LKA2 (w', gj")w{)QaLKAS (w',0)

A

= ’g"|2A2CA Ca 9 w6 Zw/2 9 w!ds
2T 0wl (w4 (W — )2 0 Guy °

1 2wy,

W + @ =P [+ @ =R

= Ao 3|7 |*22Cp, CpywP A3 [ (4.3.13)

After using (4.2.112) we obtain the quoted result for As.

In conclusion, the holographic principle is used to compute correlation functions in the strong coupling
limit of the CFT, by using supergravity on AdSs x S°. The computation of two-point functions from
the gravity side is subtle due to divergences. The answer that was obtained is ambiguous. Using a Ward
Identity, we decided on the correct result. The origin of these divergences is still to be understood with
the hope that we can provide a well motivated regularization procedure. Indeed, we have already seen
that these divergences are boundary effects that require a cutoff near the boundary of the AdS space to
regulate the divergences. The result of the computation depends on the way this cutoff is manipulated.



5. Correlation functions of the giant gravitons

Previously, a divergence was found in the two-point function of operators with dimension of order 1. In
this chapter, we will see that there are also divergences in correlators of operators with dimension of
order N. Thus, these divergences are a rather general feature of the theory. Here we are considering
three-point function of two giant gravitons, both on the five-sphere and in the 5-dimensional Anti-de
Sitter space, and one point-like graviton. We use the D3-brane Dirac-Born-Infeld (DBI) actions on the
gravity side, and Schur polynomials and a single trace chiral primary in the gauge theory computation
( , ). The gauge theory and the string theory results in ( ) do not match
since there were divergences as ( ) pointed out in his paper. The extremal correlators of Schur
polynomials and single trace operators match exactly with string theory computations using analytic
continuation from non-extremal correlators to extremal correlators (Lin, ).

5.1 Correlation functions of giant gravitons from the CFT side

5.1.1 Giant gravitons and Schur polynomials. As we know, Schur polynomial operators, introduced
in Chapter (3), are specific combinations of traces of the N' = 4 SYM scalars. Their correlation functions
are given by

< rR(Z)xr(Z! >—5Rs [T ™ —i+3j)=0rstr (5.1.1)
1,jER
(xu(2)xs(Z)xx(2D) = g(R, S.T) [ (N =i+ ) = g(R, S.T)fr, (5.1.2)
1,7€T

where g(R,S,T) is the Littlewood-Richardson coefficient which counts the multiplicity with which the
representation 1" appears in the tensor product of the representation R and S ( ) ). The
product HMGR goes over all boxes of the Young tableau of the representation R with i denoting the
row number and j the column number. This product is defined as the product of the factors, denoted
by fr, of the Young tableau of the representation R.

The S° giant gravitons of dimension k& < N are mapped to Schur polynomials in the representations
labelled by Young diagrams with one column of length k, known as the antisymmetric representation
with k boxes, while the dual AdSs giants map to Schur polynomials in the representations labelled by
Young dlagrams with one row of length k, known as the symmetric representation with & boxes (

: ; , ). It is useful to note the following results obtained directly from (5.1.1)

59
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and (5.1.2),
(xe(2pa(2h) = f[luv ~1+7) (5.13)
<Mdmmdﬂw:ny—Hﬂ) (5.1.4)
(o @i-a(Z)n(21)) = f[luv ~1+)) (5.1.5)
(x1s(@xae-a(2xan(2h)) = 1f[1<N —it1) (5.16)

5.1.2 Single trace chiral primaries. Single-trace operators built from a single complex scalar field Z
are dual to point-like strings moving along an equator of S° with angular momentum .J. The simplest
example of a chiral primary operator is

Oj(z)=Tr (ZJ(a:)) : (5.1.7)

In zero-dimensions, their two-point and three-point functions are given by

<Tr(ZJ)Tr(ZTJ>> 1 {I‘(N+J+1) B F(N+1)}

T J+1 I'(N) (N —J)
:JNJ[l—F(JIl)]\lﬂ—i—..l, (5.1.8)

and
(Tr (27) Te (25) T (2175 )

B 1 T(N+J+K+1) T(N+J+1)
_J+K+1[ T'(N) ~ I(N-K)

I'(N +1) F(N+K+1)]

(N —J-K) (N —J)
:JK(J+K)NJ+K1{1+<J+[2(_1 > K “27>+<I2(>—1} 3!§v2+”'}‘ (5.1.9)

The structure constant is given by

<OJOKO]‘J+K>
<(9J(9TJ> <OKOTK> <OJ+KOTJ+K>

:\/m[lJrO(]\;ﬂ (5.1.10)

CrrKky) = 7

N

To compute these correlators, it is helpful to note that

Tr(02%") = > xr(0)xr(Z). (5.1.11)
RFn
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We take o0 € S as an element of the conjugacy class of J-cycles so that
Tr(02%7) =Tr (Z7). (5.1.12)

Therefore

(Te (27)Te (27)) = 3 xnlo) D xso < 2)xs(21))

REJ SkHJ

= > xr(0)xs(0)drsfr

REJSEHJ

= Ixr(@)Pfr. (5.1.13)

REJ

For a J-cycle o € Sy, the character xg(o) is only non-zero for the representations R + J corresponding
to Young tableaux with row length k£ and column length J — k for k = 1 to J. These are called hook
representations. The character of a J-cycle is either plus one or negative one for any hook representation

Xr(0) = xr(o™!) = £1, (5.1.14)

and the corresponding product of factors fr for this representation is given by

k J—k
fr=JIN+i-1 ] —i)(-1)"F. (5.1.15)
j=1 i=1

We finally deduce that the correlator (Tr (Z”) Tr (Z1/)) is equal to the sum of products of factors fg
over all representations R corresponding to Young tableaux with row length k& and column length J — k
for k=1to J. Thus,

<Tr(ZJ) Tr (ZTJ)> i:f[ (N+j—1) ﬁ(z\f—z), (5.1.16)

which gives (5.1.8) after evaluating the summation over the index k. The three-point correlation function
in (5.1.9) is obtained with very similar manipulations.

5.1.3 The three-point correlation functions with two giant gravitons. The structure constant cor-
responding to a three-point function involving two giant gravitons moving on S® with angular momenta
k — J and k wrapping an S® C AdSs, and one light string dual to a chiral primary operator of the type
Tr (ZJ) is given by

<OJ J>gauge i <Tr (ZJ) ka](Z)Xk(ZT)> .
V(2 xk(Z1)) (x—a(Z)xk—s (Z1)) (T (27) Tr (217))

Similarly, the structure constant corresponding to a three-point function involving two giant gravitons
moving on S° with angular momenta k — J and k wrapping an S% C S°, and one light string dual to a
chiral primary operator of the type Tr (ZJ) is given by

(5.1.17)

)
A Va2 (ZD) (ar-1(Z)xar-0(21) (Tr (27) Tr (Z17))

<OJ7J>gauge . <Tr (ZJ) Xlk*J(Z)Xlk (ZT) (5118)
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In order to compute these structure constants, we expand Tr (ZJ) in the basis of Schur polynomials
using

T (Z27) =Tr(02%7) = xrl(o) (5.1.19)
REJ

where o is a J-cycle permutation. Then, we have

(T (27) 3 (2pa2h) = 32 xnlo) {(xr(Z)as(2au(2)) (5.1.20)
REJ

<Tr(Z")X1k—f( X1 Z*> > xalo < Z)X k- z(Z)Xlk(ZT)>. (5.1.21)
REJ

In these two equations above, only the completely symmetric representation (Young diagram with one
row of length J) and the completely antisymmetric representation (Young diagram of one column of
length J) contribute respectively in the first correlation function and the second one. With

xs(o) =1 (5.1.22)
x1s(0) = (~1)° (5.1.23)
we obtain
k
<Tr (27) xe—s(Z)x1(2Z1) > [TV —1+35) (5.1.24)
J=1
k
<Tr (z”) xlka(Z)Xlk(ZT)> = () [V =i+ ). (5.1.25)
i=1

Using these results, we have

[ (N —1+)

<OJ7J>gauge _
T VI (N S e DI (V- 1) (Tr (29) Tr(21)
_ H§—1(N —1+7)
NI (V=14 5) (Tr (27) Tr (21))
I 1+ )
_\/ T gfl Tr ZTJ)>] ’ (5.126)
and
<OJ,J>9‘W96 _ Hf I(N — 1+ 1)
RIS —z+1> [T (N — i 1) (Tr (27) Tr (219))
(N =i 1)

TN — i+ 1) (Tr (27) Tr (21Y))

Iy (N =i+ 1)
. 12
\/ (Tr(27)Tr (217)) (5.0.27)




Section 5.2. Correlation functions of giant gravitons from the string theory side Page 63

We finally obtain the structure constants as

J
1 k\?2
J.J\ gauge
’ =—(1+— 1.2
= 5 (14 3) 5129
J
1 k\?2
J,J\gauge J—1
, — (-1 (1= = 1.2
(0"), <>ﬁ( N>, (5.1.29)
where we have used the following limits
k.. .
N — o k — oo N finite J <L k. (5.1.30)

These limits correspond to large Young tableaux and a small chiral primary operator.

5.2 Correlation functions of giant gravitons from the string theory side

5.2.1 Giant graviton on the five-sphere S°. The two-point function of a giant graviton can be
computed holographically at large IV, by using a classical D-brane solution in string theory. We will
review the relevant solution in this section.

On AdSs x S5, the metric gy, is

ds? = — cosh? pdt® + dp® + sinh? p dQ2 + d6? + sin® 6 d¢? + cos? Q2. (5.2.1)

The action for the D3-brane is

N

Sps=—53 d'o(v/—=g — P[C4)), (5.2.2)

where 0% = (0%, 0,02, 03) are the worldvolume coordinates and P[C4] is the pull back of the 4-form

potential of the D3-brane (Grisaru et al.,, 2000). If we denote by z* for = 0 to 9 the coordinates on
the target spacetime, we have

i v
g:det< Oz 83:)7 a,b=0,...,3

iy

 9oa Hob

g Oxt Ox¥ g OxH Ox¥ g OxH Ox¥ g oxH Ox¥
v 0 0 v 0 1 v 0 2 v 0 3
K Qo Qv 1 gau fay, MY Bay Gay Y Gal Gay

=det | mgoroar Imgoroal Gmggt ez Givgal gat | (5.2.3)
w552 950 9952 9o I 902 502 Inv 552 503
H ox” H ox¥ gz“ i g:c“ g
Iur 553 950 I 553 90T I 953 902 I 553 03

The giant graviton on S® has a worldvolume evolving on (R C AdS;) x (S C S%). The wordvolume
coordinates o are chosen as follows (Grisaru et al., 2000)

o=t o'=v;i=123 (5.2.4)
where ; are angles covering the S3 C S°. We also have

p=0, ¢=0ot). (5.2.5)
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The 4-form potential Cy is proportional to the volume element Vol({23)
Conrxaxs = c0s® OVol(23). (5.2.6)

In to order to write the action, we need the expression for g which is obtained by considering (5.2.4)
and (5.2.5). With

dQ% = dx3 +sin”® ; (dx% + sin? ngxg) (5.2.7)
as a metric on S3 where
X1, X2 € [0,71’}, X3 € [0, 27‘(‘], (5.2.8)
we obtain
r Oxt dzv Oz oz¥ ozt dx¥ ozH dx¥
Juww ot ot 9wt o 9ot axa  In ot Oxs
g oxh dx¥ g ozt dx¥ g oxF dxz¥ g ozt oxz¥
_ 1225 ot HY Ox1 O HY Ox1 O Y 9x1 Ox:
g = det gk oz oah oxt | dah Ox® |, Oah Onb
9w ono ot Iwons oy I oxe oxa I dxz oxs
Ozt Jx¥ ozt Jx” ozt Jx¥ 9z 9x”
L I oxs ot 9oz oxi Iwoxs oxa I oxs oxs
[ —14 ¢%sin®6 0 0 0
0 cos? @ 0 0
= det 2 )
0 0 cos” 0sin” x1 0
| 0 0 0 cos? 0 sin? 1 sin? xo
= —(1 — ¢?sin” ) cos® A sin* y; sin® ya. (5.2.9)

The action is then

N ; .
S = dt dx1 dx2 dxs ( cos® 0sin? y1 sin x21/1 — ¢2sin? 0 — ¢ cos 0 sin? x1 sin X2>
S3

)
2T Rx S¢

= —N/dt [COS?’ 0\/1 — $2sin® 0 — ¢ cos? 9] . (5.2.10)
The conserved angular momentum is

_ 6£ N b cos3 Osin? 0
0¢ V1 — ¢2sin® 6

We want to rewrite the action in terms of [ = % Towards this end, we need to express cZ) as a function
of I. From (5.2.11), we have

k +cos? O] . (5.2.11)

$? cos® fsin? 0

- 5.2.12
1 — ¢2sin’6 ( )

(l — cos? 9)2 =

which gives

4
[—cos 0 (5.2.13)

¢ = .
sin 0\/(l — cos? 9)2 + sin2 0 cosb 6
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Therefore the action becomes

4 2
5= /dtcc_)s 99 [—cos? . (5.2.14)
S \/(l — cost 9)2 + sin? 0 cosb 6

The energy is defined as

E = ¢k —L. (5.2.15)
We replace <b k and L by their expressions as functions of [, to obtain
N 2
= — 4 in2 6
E g~ (I = cos*6)” + sin® 6 cosb 4. (5.2.16)

We can see that the energy is minimized for

cos’ =1 (5.2.17)
and that
Emin =k,  Smin = 0. (5.2.18)
Further, we have
¢=1. (5.2.19)

5.2.2 Giant graviton on AdSs. The giant graviton on AdSs has worldvolume on R x S embedded in
the AdS5. The worldvolume coordinates o are choosen as follows

o=t o'=x; i=123 (5.2.20)
where Y; are angles covering the S C AdS5. We also have
p = constant, ¢ = ¢(t). (5.2.21)

The action of the anti-D3-brane is given by

Sps = —2—]7\:2 d*o(v/=g + P[C4]). (5.2.22)

The 4-form potential Cy is proportional to the volume element Vol((~23) on S? embedded in the AdS,
such that

04&1&2,%3 = - sinh4 pVO|(§~23). (5.2.23)
The metric on the three-sphere S? is the same as in (5.2.7) after replacing the x; by X;. In this case,
we obtain

r ozt dz¥ ozt dz¥ ozt dz¥ ozt dx¥

I "o 9w o oxn I ot o I Tar o
oxk dx¥ ozt dx¥ g ozt dx¥ g oxH Jz¥
1vox: oxz I oxg ox
Ok Da? Oak Ot

9oy ot Invoaxy ox
g = det ok D ot 9

Iy, ot Iwavs o I oxs o Invaxs ox
L 9oz ot Iwosoxs Iwosoxa 9w oxs oxs
[ —cosh?p+¢> 0 0 0
0 sinh? p 0 0
= det . 2 .9~
0 0 sinh” psin“ x1 0
0 0 0 sinh? psin® X1 sin? X2

=— (cosh2 p— ¢2> sinh® psin? ¥ sin? Xo. (5.2.24)
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The action becomes

N SO - ~ : - -
S = dt dx1 dxz2 dxs < sinh® psin? X1 sin Y21/ cosh? p — 2 — sinh* psin® Y, sin X2>

27T2 RxS3

= —N/dt [Sinh?’ py/ cosh? p — ¢2 — sinh* p} . (5.2.25)

The conserved angular momentum is

~ ; 1 3
L — oL _ Nw (5.2.26)

6 \/costh—g'b?.

Following our treatment of the giant graviton on S° we rewrite the action in terms of I = % by
expressing ¢ as a function of I. From (5.2.26), we have

: I cosh
$=——01P (5.2.27)

\/sinh6p+2v2

The action is now

sinh? p cosh p

\/sinh® p + 12
with the energy defined as
E = gb% — L= N[coshp\/ sinh® P —|—l~2 — sinh? p] . (5.2.29)

The minimum of the energy is realized with

S = —N/dt sinh? p 1 (5.2.28)

sinh?p =1 (5.2.30)
such that
Emin =k, Smin = 0. (5.2.31)
Finally, we plug (5.2.30) into (5.2.27) to have
Tcoshp

¢=— = 1. (5.2.32)
12(sinh? p 4 1)

5.2.3 Structure constant of the antisymmetric giant graviton. The DBI part of the Euclidean
supergravity action is given by

N

Sppr =5 do\/g. (5.2.33)

We will need the variation

1 1
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where we have used the identity

6g = ddet gap = g g0 gap- (5.2.35)
With
g = 5gu,,§xz gxb’ a,b=0,1,2,3 pv=0,1,...,9 (5.2.36)
we find
0SpBr = 2N/ fgabfsgab
2ﬂ / abgff gfcb 5 (5.2.37)

Since the induced metric g, is diagonal, the inverse ¢ will also be diagonal. Thus we have
g g g g

N aa 8‘/1:
with
OxH OxV 0\ 2
" ot ggn 9 = 9" O+ (;) %] = 9" (891 = 3945), (5:2.39)
oxt dz”
118 Ry 159“1, gllégmxn (5.2.40)
oxt dz”
22@@5%” 9092 (5.2.41)
ozt dz”
3303 oo 5309w = 97°89xaxs- (5.2.42)
Here, after the Wick rotation into Euclidean AdS5, we have
gttdtZ — —gttdtQE = gtEtEdt2E' (5243)
8¢ (9(;5 - _%% (5.2.44)

ot ot Ot Otg

Thus, with %—f = ¢ =1 and p = 0, one finds

gap = diag( cos? 0, cos?0, cos? O sin® x1, cos? 0 sin? x1 sin? X2) (5.2.45)
1 1 1 1
ab :
= dia , , , . 5.2.46
& <cos2 0 cos?0’ cos? Osin? x1’ cos? §sin? 1 sin® XQ) ( )

The fluctuation of the metric and the 4-form potential are given by (Lee et al., 1998; Arutyunov and
Frolov, 2000; Zarembo, 2010; Bissi et al., 2011)

Sgu = | —22 1
Juw = I T AT
09ap = 208gaps™ (X)Ya(9) (5.2.48)
0Cu popsps = _46u1#2u3#4u5V%SA(X)YA(Q) (5.2.49)
0Carazasar = 4€arazagasass™ (X)VYA(Q) (5.2.50)

v(uvy)] A(X)Ya() (5.2.47)
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where the indices p, v are AdS5 and «a, 3 are S° indices. s*(X) is a scalar field propagating on AdS;
with mass squared equal to A(A —4) and YA(Q2) are spherical harmonics on the five-sphere S°. The
traceless symmetric double covariant derivative is defined by

1
Vo) = 5(ViuVo + Vi) = 209” V,Vo. (5.2.51)

| =

The variation of the DBI part of the Euclidean action is
N 2 ) .
0Sppr = —= dt dx1 dxa dxs cos” 0sin” y; sin x2Ya ()
272 Jrxss
6A 4 . 92 2 A
X *?gtt + mV(tvt) — 2Asin“ 6 + 6A cos“f|s ()()7 (5252)

where t is now the time coordinate in the Euclidean AdS5. To compute the double traceless symmetric
covariant derivative V(; V), we use the metric of the Euclidean AdSj; given by

A5 15, = %[(de)Q b (da")? 4 (da?)? + (da®)? + (d=2)?]. (5.2.53)

From (5.2.51), we have

V (Vs (X) = V, 7,53 (X) — égttg““V#VHSA(X), (5.2.54)
with
0"V V™ (X) = g% (0% = T2:,40.) 5™ (X) = 2° (82 - 18) s8(X), i=0,1,2,3 (5.2.55)
97V s8(X) = g7 (02, —T2,0,)s™(X) = 22 (az + iaz) s2(X). (5.2.56)
In addition,
9,52 (X) = 0, (5.2.57)

since the bulk-to-boundary propagator s2(X) is function only of z. It is given by

A+1 22 apnz? A+1
SA(X) = T 5 A . 2A == N an — ﬁ (5258)
NA22°72 2 Ty NAz2272
It follows from (5.2.55) and (5.2.56) that
1
Vi Vis®(X) = [af - 5gu( —3A +A(A — 1))] sAX), g =1 (5.2.59)
Therefore, (5.2.52) becomes
_N e 4 o 28(A-1) .2 A
0Sppr = 2cos H/thA(Q)<A+18t N 8Asin® 6 + 6A ) s7(X)
2
— NCOSQQ/dt YA(Q) <A+1(8t2 — AQ) +4A cos® 0) SA(X) (5.2.60)
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with
A g iAg A
0 ~ ~ 0
Ya(@) =70 _yett, y, =Y (5.2.61)
272 272
We have z = Wﬁlt' Thus we find
A _ Sinht A
s~ (X) = Aicoshts (X) (5.2.62)
1
2B (X) = [M — A(A+ 1)2} s2(X). (5.2.63)
cosh“t

After evaluating the second derivatives of s (X) with respect to ¢ and substituting the expressions for
Ya(Q) and s2(X) into (5.2.60), we obtain

) N
cosh® ¢ cosh®t2¢

A AL _ A AL
RTe R7e ) (5.2.64)

0Sppr = aa c0329/dt <40082 Q?A

The variation of the W Z part in the action is

N [ 4
5SWZ = —2271_2/61 O'P[504]

N
= _iﬁ / dtdx1dx2dxs <2543A(X)69YA(Q)> sin @ cos® #sin? x; sin xo

= — N cos? G/dt <4 sinGCoseﬁgYA(Q)> s2(X)

RA eAt
cosh® ¢

= —aaN cosZG/dt <4 sin900s9851~/A> (5.2.65)

where the fluctuation of the 4-form potential is given in (5.2.50). The total variation in the action is

0S = 5SDBI + 5SWZ

) 9 . RAeAt 5 )= RAeAt
= 4dapa cos“ 0 | dt (cos OYA — sinf cos 6 9yY, )7 — 2ap cos“0Y, /dt.
A / A oA cosh™ t A A cosh®t2¢
(5.2.66)
In Bissi et al. (2011), the following terms was dropped
. . RAeAt
0S4 = 4an cos? Q/dt (0052 YA — sinOcosG@eYA> — (5.2.67)
cosh™t
since
(sin @ cos 09 — A cos® 0) YA =0, (5.2.68)

for Y given in (5.2.61). They keep

08 =

_COS2 0 sin® (A +1)vVA / i@t RAA
2 cosh®+2¢
= —(2R)? cos? 6 sin® VA (5.2.69)
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which is computed using the integral

> At A421—1 > et A 271
/;oodt COShA+2lt =2 /_Oodt (1+€2t> (6 )

1
— 2A+2l—1 / du uA+l—1<1 _ U)l_l
0

= 2AT2A-IB(A 4+ 1,1)

_ oas2—1 DA+ D)

T(A +21) (5:2.70)

The second line of this equation is obtained by performing the change of variable from ¢ to u = %@tgt

Therefore Bissi et al. (2011) found the structure constant of the three-point function equal to

J
J,J string E B E 2
(OMy" = \/7N (1 N> (5.2.71)

which does not match with the computation from the gauge theory side. We will see in the following
section that this mismatch is due to the subtleties in the computation of the extremal correlators. There
are divergences that need to be regularized carefully.

5.2.4 Regularization procedure for the extremal correlators . Lin (2012) noticed that the integral
appearing in the variation of the action is subtle. In fact, the integral in (5.2.70) is divergent when the
limit { — 0 is taken, since there is the factor I'({). Since the term (sin 6 cos 09y — A cos? §) Y vanishes
in (5.2.68), it is clear that the total variation of the action 6.5 = §Spp; + dSwz contains a term of the
form 0 - cc.

Lin (2012) computed the extremal correlators as the limit of the non-extremal correlators (Buchbinder
and Tseytlin, 2012). Instead of YA, he has used spherical harmonics (Appendix of Skenderis and Taylor
(2007)) that are expressed in terms of the hypergeometric function o F1,

YA = ca;sin’ 09y Fy(~1,j+ 14 2,7+ 1;sin?0)
=cnj€9%Fp ,  Fay=sin? 0oF(~1,j +1+2,j + 1;sin® 0) (5.2.72)

where the constant of normalization is given by

. TG+ )G )+ 1278
AT T T+ TG+ )G+ 2+ 12

with 1 =0,1,2,3,... and 7 = A —2[. In this case, we notice that Y ; tends to the spherical harmonic
given in (5.2.61) as I — 0 and

(5.2.73)

<A cos? § — sin @ cos 989) Faj

142
pl Tt

— oF (=1 +1,5+1+3,j+2;sin%6) |, (5.2.74)

= 2l cos® § [FAJ + sin/ T2
where the following property of the hypergeometric function has been used

d b
@QFl(CL,b,C;QZ‘) = %gFl(a—l—l,b—i— l,e+ 1;2). (5.2.75)
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The integral in (5.2.67) that has been dropped in the calculation of Bissi et al. (2011) contributes

0S4, = 4danc 'COSQH(ACOS29—SHI000898)F -/dtRAejt
div = ACA,j 0 A,j COShj+2lt o
j
1 k k\2
=R —=(14j—=](1- = 5.2.76
( )ﬂ<+]N>< N)’ ( )
where we have used
oFi (=1 j+1+2,j+1;sin®0)|,_ =1 (5.2.77)
. . . 1 [j+1 1
Fi(-l+1 l 2:sin? 0 = 2.7
2F1 (= 1,5+ 13,5+ 2sin )‘l_’o Jj+2 {cos2c9+cos49] (5.2.78)
()|, =1 (5.2.79)

with

. . : in’ 6 (1 + j cos? 0)
Fi(—l4+1,j+1 2 sin ¢ _ . (5.2
2 1( + 5] + 1+ 37] + ; S111 ):| 0 COS4 0(] + 1) (5 80)

j 2
6‘7%[4—

Fa i J 12
A,j T sin 1

Adding (5.2.76) to (5.2.71), Lin (2012) found the structure constant

J
J,J string _ L _ E 2
(OM), 7 = 77 <1 N) (5.2.81)

which is in perfect agreement with the gauge theory computation using Schur polynomials.

5.2.5 Structure constant of the symmetric giant graviton. For the symmetric giant graviton, the
variation of the DBI part of the action is again given by (5.2.60) but with the induced metric given by

Jap = diag( sinh? p, sinh? p, sinh? p cos? ¥, sinh? p sin? ). (5.2.82)
We are working on the Euclidean AdSs x S® space with metric
dsF aqs, = cosh? pdt® + dp* + sinh? p(dv® + cos® Id¢T + sin® ¥d¢3). (5.2.83)

The coordinates on the worldvolume of the D3-brane are

o=t ort=9, o*=¢1, o°=p. (5.2.84)
We also mention that
06\ ?
) = 5.2.85
(%) (5.2.85)

because we have performed a Wick rotation and we must obey the constraint on the motion of the
giant graviton given in (5.2.32). With these results in hand, we find

Vg = sinh?* p cos ¥ sin ¥, (5.2.86)
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and
oxH 0x”
00
909 90 5gul/ = g (597&15 - 5g¢¢)’ (5.2.87)
oxH 0x”
ot 5 00m = 9" 0900, (5.2.88)
oxH 0x”
2 802 Ho2 6-9#“’ 92259¢1¢17 (5.2.89)
oxt dx”
3 50300 = 9709026, (5.2.90)

The fluctuation of the metric is given in (5.2.47) and (5.2.48) such that

6 4
Ogit = 7gtt + AL 1v(tvt) s
2
A 1 [QVtVt A(A — 1)gtt] S = htta (5291)

where we have used the definition of the traceless symmetric double covariant derivative in (5.2.51) in
which we compute the trace on the EAdSs using the Poincare coordinate in (5.2.53) so that

977V, Vo5 = [A(A 1) = 3A]s, s=s2(X)Ya(Q). (5.2.92)

Using the same approach as above, we have
2
) =—12 —AA -1 =h 2.
oo = A 1[ VoV ( )g99] s = hoy, (5.2.93)
2
096160 = A7 2V, Vg, — A(A = 1)g416,] 5 = by 4 (5.2.94)
2
59952(152 - A +1 [2v¢2v¢2 A(A - 1)g¢2¢2} s = h¢2¢2' (5-2-95)

Therefore the variation of the DBI part of the action is

N 0q Ot 0¥
05081 = 5.3 f 9o o I
N

1 1
d40§ sinh? p cos ¥ sin ¥ [ — [htt - ZAS]

T or2 sinh” p

1
gy + ————— g + ——5——5—
sin h2 o sinh? pcos? o101 nn? psin? ¥ ¢2¢2]

N 2T 27 h h
dt/ dqﬁl/ d¢2/ dVYsinh? pcosVsin ¥ | —2As + hy + hgg + Lo _¢22¢2
= 4n? cos2d | sin2 9
(5.2.96)
where we have set
by = 2V, V, — A(A = 1)guw] s. (5.2.97)

A+1
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To compute the double covariant derivative we use the metric in (5.2.83) to determine the Christoffel
connection and we obtain

Vi Vis = (87 + cosh psinh pd,)s, (5.2.98)
VyVys = (819 + cosh psinh pd))s, (5.2.99)
Ve Vs = ( , +cos %9 cosh psinh pd, — cos ¥ sin ¥dy)s, (5.2.100)
V¢, Vg,s = ( , +sin? ¥ cosh psinh pd), + cos ¥ sin ¥y)s. (5.2.101)
Here we have
oAt

Ya(Q) = vy (5.2.102)
sB(X) = Afié RZ ——, R%= <§>A (5.2.103)

NAz22°72 (coshpcosht—cosﬂsmgblsmhp) TR

A+1 RAA

s =s2(X)YaA(Q) = (5.2.104)

22\/AN (cosh pcosht — cos ¥ sin ¢y sinh p) A

Using the fluctuation of the 4-form potential in (5.2.49), the variation of the W Z part of the action is
given by

8Swz = —22 5 | doP[6Cy]
2 2
= ﬁ dt/ d¢51/ dd)g/ d9(—i4VP s> (X)Ya(Q)) cosh psinh® p cos 9 sin 9
2 27
2/ dt/ dgf)l/ dgbg/ dv cosh psinh?® p cos ¥ sin ¥0,s. (5.2.105)
—00 0 0 0

Now we want to obtain the total variation. For this we need

d; 5™ = —As™ cosh psintz, (5.2.106)
9% & = As? ((A +1)(cosh psinh ¢ 2)% — cosh pcosh z), (5.2.107)
dy s° = —As™ sin¥sin ¢y sinh p z, (5.2.108)
9% s& = As? ((A +1)(sin ¥ sin ¢1 sinh p 2)% — cos ¥ sin ¢, sinh p z), (5.2.109)
dp s% = As®(cos¥sinh ¢y cosh p z — sinh pcosh t z), (5.2.110)
Dy, s~ = As™ cos) cos ¢y sinh p z, (5.2.111)
83)1 B = As? ((A +1)(cos ¥ cos ¢y sinh p 2)% — cos ¥ sin ¢, sinh p z), (5.2.112)

93, s =0. (5.2.113)

2
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Then we obtain

2
hy = A—H{2A [(A + 1)(cosh pcosht 2)* — (A + 1)(cosh p z)? — cosh pcosh t 2]
+2cosh psinh p 9, — A(A — 1) cosh? p ps (5.2.114)
2
hgy = ALl {2A [(A +1)(sin ¢ sinh p 2)% — (A + 1)(cos ¥ sin ¢y sinh p z)? — cos ¥ sin ¢y sinh p z]
+ 2cosh psinh p 9, — A(A — 1) sinh? p}s (5.2.115)
P, ¢, 2 . 9 singisinhp z sin v/
= 2A |(A+1 h -
cos?9y  A+1 (A 1)(cos gysinhp 2) cos v 2 0819819
+ 2cosh psinh p 9, — A(A — 1) sinh? p}s (5.2.116)
hgpgy 2 cos v . 9
Gl ATl 2cosh psinh p d, +2 879—A(A— 1) sinh p* ¢ s.

Using these results we now easily find

h¢>1¢>1 + h¢>2¢2
cos2v = sin?¢

2
= —2As+ A—F{QA [(A + 1)(cosh pcosht z)? — (A + 1)(cos ¥ sin ¢y sinh p 2)? — (A + 1)(cosh p z)?

— 2As + hyy + hgy +

. b
+ (A + 1)(cos ¢y sinh p 2)? — cosh pcosht z — cos ¥sin ¢y sinh p 2z — smgf)lsmpz}

costV

209 2
-2 (MCOSﬁ> 0y + 8cosh psinh p 0, — A(A — 1)[cosh2p+3sinhp]}s

siny cos U
2 . . 9 singpsinhp z
= —2As+ ATl 2A (A +1)coshpcosht z+ (A +1)cosdsing; sinhp z — (A + 1)z — eosd
cos

1
+2A ( 5~ 2cosq9> sin ¢ sinh p 2 4+ 8 cosh psinh p 9, — A(A — 1)[cosh2p+3sinhp]}s

COS

2
= —2As+ A+{2A [A +2(A = 2) cos ¥sin ¢y sinh pz — (A + 1)22]
+ 8 cosh psinh pd, — A(A —1)[1 + 4 sinh? Pl }s

2 . .
= A—H{QA [2(A — 2) cos ¥ sin ¢y sinh pz — (A + 1)27]

+ 8 cosh psinh pd, — 4A(A — 1) sinh? p}s.
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The sum of the variation of the DBI part and the W Z part is

N 2
0L = = sinh? p cos 9 sin ¥ [A—H{QA [2(A — 2) cos ¥ sin ¢y sinh pz — (A + 1)22]

+ 8cosh psinh pd, —4A(A - 1) sinh? p}s — 8 cosh psinh p@,,s]

N 2
=13 sinthcosﬁsinﬁA 1 {QA [2(A — 2) cos ¥ sin ¢ sinh pz — (A + 1)22]
T

— 4(A — 1) cosh psinh pd, — 4A(A — 1) sinh? p}s

N
= — sinh? pcos ¥ sin 9

e {QA [2(A — 2) cos ¥ sin ¢y sinh pz — (A + 1)27]
7r

2
A+1
—4A(A -1) [cosh2 pcos ¥ sinh ¢ sinh pz — cosh psinh? p cosh tz] —4A(A - 1) sinh? p}s

N
=2 sinh? p cos ¥ sin 9
T

2 . .
ATl {QA [2(A — 2) cos ¥ sin ¢y sinh pz — (A +1)27]
— 4(A — 1) cosh psinh pd, — 4A(A — 1) sinh? p}s

2
= — sinh2pcosz9$i]m9A . {QA [2(A — 2) cos ¥ sin ¢ sinh pz — (A + 1)22]

472

—4A(A-1)[ - cosh? p 4 cosh p cosh tz] —4A(A - 1) sinh? p}s

N
= — sinh? pcos ¥ sin ¥

472

ALl {ZA [2(A — 2) cos ¥'sin ¢y sinh pz — (A + 1)27]

— 4(A — 1) cosh psinh pd, — 4A(A — 1) sinh? p}s

N
=12 sinh? p cos ¥ sin ¥
™

2 2
A+1{2A[—2(A—2) — (A +1)27]
+4A(A — 1) cosh? p — 4A(A — 1) sinth}s

N
=2 sinh? p cos ¥ sin 9 4Az%s
T

VAA +1)

RA At
= sinh? p cos ¥ sin ¥ ¢
4m ( cosh pcosht — cos ¥ sin ¢ sinh p

= (5.2.117)
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Therefore the variation of the action becomes

/ dt /%d(pl/%d@/ o
LA+ DVA

472

RA At
cos ¥ sin v smh2

cosh pcosht — cos ¥ sin ¢ sinh p) Atz

A 1 2w
= ( + smh2 / dt/ dgbl/ (cos )

RA At
X cos v

( cosh p cosht — cos ¥ sin ¢1 sinh p) At2

(A+1)VA sinh?p / /% RAA /1 A
= — dt d dX . (5.2.118
2 coshA"'2 1 oD cosh®t2¢ ( _ )\sind; tanh p) A+2 ( )

cosht

Now, we use the fact that

K T(a+ k)
=0 K Zmuk (5.2.119)

to find

B (A—l—l)\/Z sinh2p > RAeA 2
08 = — 5 hA+2 / hA+2/ dgzﬁl/ d\

cos oo COS

A+k+2) sin ¢ tanh p\ ¥
k—i—l
XZA JT(A + 2) ( cosht

L (A + 1)\/Z sinh? p /OO RAeAt 27 dé
N 27 cosh®2p cosh®t2¢ Jo !
DA +Ek+2) sin ¢y tanh p\ "
k+2Fk+1) (A—|—2)< cosht )

(5.2.120)

Using the integral

(5.2.121)

2 0 k=2p+1
dx sin® z = { (2p P N.
0

S
22;;())277 k = 2p, P

we obtain

59 — _(A—i—l)\/Z sinh? p /OO RAA
2 cosh®t2 pJ - cosh®12¢

o0

‘3 1 T(A+2k+2) T(2k+1) [tanhp\>*
=~ 2k +2T'(2k + )I'(A +2) 22kT'(k 4+ 1)% \ cosht

(A + 1)\F sinh? P

- e Va Sy z / dt

1 (A+2k‘+2) ok
XQWF(A—FQ) Tk +2)T (k+1)tanh p- (5.2.122)

RA At

COShA+2k+2 t
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Now we need to evaluate

> et A+2k+2 > e At 2t\k+1
/_oo dt cosh®12k+2y =2 /_oo di <1 + e2t> (e™™)

1
— 2A+2k+1 / du ’U,A+k(1 o U)k
0

=28 BA £ k4 1,k +1)

_oatert DA+ E+DI(k+1)
(A + 2k + 2)

(5.2.123)

in which we have again used the change of variable u = The variation of the action becomes

1+ 112t

58 = —

(A +1)VA sinh?p ZRA2A+2k+1F(A +k+ DDk +1)
2 cosh®*2 p — I'(A+2k+2)
1 T'(A+ 2k +2)

= t th
2H F(A+2)F(k:+2) aniep

(k+1)
A+kz+1 o
Z T(k+2) tanh

= —(2R)% (5.2.124)

VA coshA

Using the identity

1 A+ E)

2A 2k
Y = = nh
o8 ( ) LAT(kE+1) ta v

T'A+k
:1+Z(++)tanh2kx

—~ T(A+k+1)
=1+> FAT12) tanh? 2 ¢, (5.2.125)

we obtain

(coshA p — cosh™® p). (5.2.126)

The structure constant of the symmetric giant graviton is (Bissi et al., 2011)

<0J J>stmng i 2

> (1 . ;)5 - <1 n ]]ir)_] . (5.2.127)

This result perfectly matches the gauge theory computations in (5.1.29) when £ — oo. For ~ =0,
the result tends to (5.1.10).

[

In conclusion, divergences are also found in extremal correlators of giant gravitons on AdSs. Thus
divergences appear in correlators of operators of scale dimensions A of the order of the gauge parameter
N. Thus, the divergences appear to be a rather general feature of correlators of the theory. The
regularization that was chosen is the analytic continuation of the non-extremal correlators to the extremal
cases. This regularization allows to us extract the finite parts from the divergent integrals and with this
prescription the gauge theory and gravity side computations are in agreement. However, this is not yet
satisfactory since we do not have an independent way of fixing the regularization.



6. Correlation functions of Kaluza-Klein
gravitons

In this chapter, we will find divergences in higher point functions which again suggests that these
divergences are a general feature of the theory. A harmonic expansion in supergravity to determine the
Kaluza-Klein modes will be performed. Using these modes, we find that the calculation of extremal
correlators in supergravity is subject to the same subtlety of regularization.

6.1 Supergravity computation of (Oi;@f@f)

Starting from a theory of gravity in D = 10 dimensions, we compactify five of the dimensions on a
five-sphere to obtain a theory of gravity in 5 dimensions, such that the background metric is that of
AdS space. This dimensional reduction is achieved using a spherical harmonic decomposition of the
fluctuations of the background fields. We obtain the scalar Kaluza-Klein modes ¢* of the dilaton ¢ and
other scalar Kaluza-Klein modes t* and s* arising from the 4-form and the graviton with indices on the
sphere. Thereafter, we compute the three-point correlation functions <Ofl(9§20§3> and ((951(95)20;3),

using the AdS5/CFT, correspondence, where O,’f, OE, (93;)3 are the SY M operators respectively dual
to the supergravity scalar fields ¢*, t* and s*. The calculation of ((’)51022023>, for the non-extremal
case k1 < ko + k3 and the extremal case k; = ko + k3 are performed following ( ).

The metric Gy, of the whole 10-dimensional manifold, with a background metric g, and a fluctuation

Ronn, is given by ( : ; : ; , )
where
ho af
hag = h(aﬁ) + Egaﬁ, g h(a,B) =0, (6.1.2)
B = 1, — 2 h., =h W =0 6.1.3
py — Mppy — ?.g,ullv py T () + g.g,ullv g (uv) — ( s )
F=F+ OF, 5Fijklm = 5V[iajklm]. (6.1.4)
Here the Latin indices i, j, k, - - - are used for the 10-dimensional manifold. Indices o, 3,7 are S indices,

while 1, v, X are AdSs indices, F is the background value of the F-field. The S° and AdSs scales are
set to 1. The choice of gauge is

vahaﬂ = Vahﬂa = vaaaulmgmgnul = 0. (615)
The expansions in terms of spherical harmonics of the fluctuations are
ki tk
D T (6.1.6)
hy =Y Y*nf, (6.1.7)
Aoy azagay = Z vaykeaa1a2a3a4bka (618)
(

¢ = YhpF.

78

6.1.9)
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The spherical harmonics obey

VaoVeY* = —k(k + 4)Y*. (6.1.10)

The modes k% and b* have coupled linear equations of motion (Kim et al, 1985; Lee et al., 1998;
D'Hoker et al., 1999),

1 4
[vambk + <2h’k — 3h’§>] Y* =0, (6.1.11)
16
[(vmvm — 32) hk + 80V, VU + V,V* <h'k - 15h’§>] Yk =0, (6.1.12)
with three constraint equations
Lo 8.k k
S = hs ) VeV Y* =0, (6.1.13)
v v 8 8 14
{vuh”w ~-V (h'k - he t 86’“) ~ 4 #wwwmﬁwww} VaY* =0, (6.1.14)
a® + e VHRE | VYR =0 (6.1.15)
1 2 3 g M1 23 4 s @ . -1

The constraint between h% and A% in (6.1.13) can also be rewritten as

16

Wk = —h% 11
and so we find the following equations of motions,
4
Vi V" — ghg =0, (6.1.17)
(Vi Vb — 32) hg + 80V, Vb = 0. (6.1.18)

The fields 2 and h,,,
given in (6.1.16). The traceless part of h

are not independent. The trace part of h:L

:W is related to ho by

, and hy are related by the equation

/ _ 2 E_ k
") —V(uvu><5(k+1)(k+3) (h — 306%) ). (6.1.19)

Using the property of spherical harmonics Y* in (6.1.10), the equations of motions for h5 and b* take
the following forms

4
V. VRO = k(k + 4)b% + 5115, (6.1.20)
V, VHRE = k(k + 4)[80b" + h5] + 325, (6.1.21)

The diagonal combinations are

sF = M[h’; —10(k + 4)b"], (6.1.22)

1

TR

hE + 10kb¥), (6.1.23)
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which satisfy
V, VFs* = k(k —4)s", (6.1.24)
V. VP = (k4 4)(k + 8)t*. (6.1.25)

To prove these equations, we compute V, V#s* and V, V#bF using (6.1.21) and (6.1.20). We have

1
20(k + 2)
1

= 20(k12) { [k(k +4)[800" + h5] + 321#5} —10(k + 4) [k(k +4)bE ;‘hg] }

— k(k — 4)

vV, VHsh = [V, VFhs —10(k + 4)V, V"]

1 k k
) { 10k(k + 4)b +h2}

= k(k —4)s*, (6.1.26)
and

Mtk —
V.V 20

1
wik urk
20 3y (V7 1069, 9]

— 20(kl+2) { [k(k + 4)[80b" + hE] + 32h’5} + 10k [k(k: +4)bF + éh’;} }

= (k +4)(k +8) {15+ 1080}

1
20(k + 2)
= (k+4)(k +8)t". (6.1.27)

6.1.1 Cubic Action. The cubic vertices needed for the computation of the three-point function come
from the kinetic term for the dilaton in the 10-dimensional action, which is given by

S = Q;/dlox\/a;Gmnﬁm¢6H¢. (6.1.28)
10

The excitations related to the two-form fields and the axion can be ignored by setting

hua =0 hiag) =0. (6.1.29)

Let us now expand this part of the action in terms of the fluctuations. The determinant of the metric is

G = det(Gmn) = det(gmn + hmn) = det(gmn) det(1 + g™ hmp). (6.1.30)

Using the identity
In(det M) = Tr(In M), (6.1.31)
it follows that

\/a _ det G 6% Indet(14+9g™"hmn)

=9 6%Tr(ln(l—i—g’""hmn))

mn 2
%Tr((gm"hmn—(g gmn) +))

:\/ge

1
= /gTr <1 + 59" i+ - ) . (6.1.32)
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Now use g"" hynn = gH hyw + go‘ﬁhw and /g = \/g1,/92 to find

1 1

1, h 1, h
= Vaiv/g Tr (1 + 59" (P — EZQW) +59 *(hiap) + 329&6) T )
1 1
:\/g*l,ﬁg2[1—§h2+§h’+---} (6.1.33)

where g1, go indicate the determinant of the background metric on AdS5 and S® respectively. Here the
previous choice h(,3) = 0 is being used. The action can now be written as

S = 2/{10 40z /g~ (1 - %hz FRETY ) (gmn P+ - )amqsa%

2
1 1, v
-5 d02, /g~ < —§h2—|—§h +"'>((9/w— Py )" 60" b + (G — hap) 0D + -- )
1
2

10 _1 N " o 0oaay a 1 af
2Km/d Vg (1= Sha o ) (0,606 + 006076 — 060" 6 — hasd %6 + -+ ).

(6.1.34)
Next, use the decomposition given in (6.1.2) and (6.1.3) to write
1 1
10 - ! L. o leo'
S = 2% 4z, /g~ ( Sha+5h + ) (840606 + 0000”6
— Iy, 090" ¢ + g@uqba”d) - %aaqb@"‘gb + - ) (6.1.35)
which implies
1
S = / dl%f[ VudVFp + VoV
2/@10 2
I N 67 1 !/ wo 1 / )2 v ..
+ <4h 15h2> VoV + 4h V,oVHe QhWV oV )+ . (6.1.36)

6.1.2 Dimensional Reduction. The spherical harmonics (Appendix B.4.2) are normalized as

/Y’“Y’” = z2(k)okike | (6.1.37)
/Y’“Y’“?Y’“S = a(ky, ko, k3)(CF1C*2Cks) | (6.1.38)
where
(k) ! (6.1.39)
z = L.
21k +1)(k+2)’
a(ky, ko, ks) = 5 (6.1.40)

(X4 2)12% Loy laglasg!
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Here
1
= 5(1{22—}—]{3—]{1), (6141)
1
= §(k:1 + k3 — ko), (6.1.42)
1
as = i(kl + ko — kg), (6.1.43)
1
= i(kl + ko — k3), (6.1.44)

and ws = 73 is the area of a unit five-sphere.

To compute the 3—point functions (Ofl (95)2 (’)5)‘"’) we need to consider excitations for which the fields s*

are zero. From the definition of s* and t* given in (6.1.23), and the decomposition in (6.1.2), we find

hs = 10(k + 4)b",
hE = 10(k + 4)t*

The field h)f;, can then be written as

h/k h ;kg
() T 5 I
k

(hk — 30b’f)} + %%gw

30 N\ 16 h’f
10(k + 4) 2) 15 5 7
16 h%
15 5 I

5k+1 )(k + 3)

VuV) (h2

2
5k + 1)(k 1 3)
2

— hk
5k B) (k4 d) LVt

By definition, the symmetric traceless covariant derivative of h'§ is given by

1
V. Voyhs =V, V,hh — 3ngpvph'g,

which gives
2 16 hk
wE = V.V, hE — —g,,10(k +4)V,Vrtk 2
n 5(k+3)(k+4)[ 59“ (k+4) }+15 5 Ik
2
= V. Vuh — — g 10(k + 4)(k + 4) (k + 8)t*
Sl 50w 100k + )06+ )k + )1
2 2(k + 8) A 16h’<f
= V.V, h - =g,
Bk +3)(k+4) #2953y Iz T 5 R
2 2k
v vVh h/ 178
5(k+ 3)(k 1 4) 2t 5132

Here, (6.1.46) and (6.1.25) were used.

v

6h2
15 5 I

(6.1.45)
(6.1.46)

(6.1.47)

(6.1.48)

(6.1.49)

Next evaluate the integral over the five-sphere in (6.1.36) to reduce the theory to 5-dimensions, using

the normalization of the spherical harmonics introduced earlier.
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The first term in (6.1.36) is

/ dlox\ﬁ\ﬁ VuVHe = / dlox\ﬁ\ﬁ Y yhyky,ef et

k1k2

= [ @iy Y eb,0h v

klkg

= / d%\/gig)vmkwqﬁ’f. (6.1.50)
The second term in (6.1.36) is

/ dl%\ﬁ\/j2 V6V = / dl%f\ﬁ > VL YRyt gk gh

k1k2

:/dloxm@QZkZ(k2+4)Yk1Yk2¢kl¢k2

k1ko

- / Py S bala +4)2(K) s, 04 0"

ki1ko

= /d%\/giz(;)kz(kg +4)9t " . (6.1.51)

In this computation, we performed an integration by parts of V,Y*1V*Y*2 as follows

VoYhveyhks — / Yhv,veyhk: = / ko (kg + 4) YRy k2 (6.1.52)
S5 5 S5
where the identity given in (6.1.10) has been used. The third term in (6.1.36) is
10 k1 k k k k k
/d x\ﬁf ARV /d x\ﬁf 215Y1hlzy2v¢2§:y3v“¢3

ks

— / dlox\/gT@B > vhyRyRi0(k + 4tV 0P v ek

k1,k2,k3
8
= a(ky, ko, k3) / d5x\/gT§(k1 +4)thy gk vHgks | (6.1.53)
The fourth term in (6.1.36) is
1 v
/dlox\/gT@ (—2> h'”,,V%V 10)
2V, V, h5! 2 ki

h5 g | YF2VH @R Y R0 gl

:/dloaj\/ﬁ\/g? (-i) > vk

k1,k2,ks

+ J—
5(k1 +3)(k1+4) 15k +3

1 4 2 Kk
— 10 _ - k1 1 4 k1 Yk1Yk’2Yk3 w keov ks
/d :L\ﬁg1\/92< 2) > [(k1+3)v V,t +15k1+3 0(ky + 4)t g#] VHEk2 v ¢

k1,k2,k3

3k1+3

—a(ky, ko, k3) / ddz\/g1 [ © )v AV e VoL (ky +4)tk1V“q§k2vﬂ¢k3} .

(6.1.54)



Section 6.1. Supergravity computation of <(’)§15(9§20§)3> Page 84

Combining these terms, the dimensionally reduced form of (6.1.36) is
1 z(k
S=57 / &/gr {g)(vm’fvw’f — k(k +4)0" o)
5

k1 + 4)?
((kll":—;)tlﬁ Vud)kzvud)kg _ " BVMV,,t’“ Vﬂ¢k2vl’¢k3):| . (6.1.55)

+ a(kla k27 k3) (2

The gravitational coupling constant «2 is related to the SY M parameter N by (D'Hoker and Freedman,
2002)

]2

(6.1.56)

6.1.3 Evaluation of the Action. The first cubic term can be manipulated as follows
/ tF VM ¢k2 vH ¢k3
AdSs

= / tkl} [V“V“(qﬁk?gbk?’) _ V“VM(qSkz)qﬁl% _ V”Vu(d)k?’)qf)k?’]
AdSs 2
_ ko L ko ikay 17, 2 ey ko ks
= [ e = [ S (k) mi k) )
= /AdS5 % [V“ Vutk1gh gks + VE[V, (¢F29"3)] — V[V R 672 k3] — (mi(kg) +m§(k3)>tk1 e ¢k3}

— 1 2 2 2 k1 ko (k3 1 k1 ka tks\ _ ko tks Ky
_/AdSSQ(mt(kl) m¢(k2) m¢(1€3)>t oo} +2/8(Ads5) <t D, (¢™¢") — ¢ ™ Dyt >

(6.1.57)

where D,, indicates the outward normal derivative to the boundary and mé(k‘) and m?(k) denote the
masses of the fields ¢* and t*, given by

mi(k) =k(k+4)  mi(k) = (k+4)(k+8). (6.1.58)

These masses appear from the equations of motion of ¢* and t*. Using the divergence theorem, integrals
of a total derivative are written as boundary integrals. Following the argument given in D'Hoker et al.
(1999), the boundary integrals found in (6.1.57) cannot contributes to the three-point function for three
points that are disjoint. Consequently, these integrals can always be dropped in our computations.

The second terms in (6.1.55) is computed as follows. Defining the quantity

1 1
Puw =5 (Vu¢kzvv¢k3 + Vu¢k2vu¢k3> = S0V OVt (6.1.59)
that satisfies the relation
1
VP = 5 (mg (ks) 9"V 6" + mi (ka) 6V, 6), (6.1.60)
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we can write

1
V.V R gkegy ghs = AVt [PW + QQWV)‘qkaV A(;S’“]
AdSs5 AdS5

1
- / [V” (Vi P, — VRV P, + 2V“v#t’f1vA¢k2vA¢’“3}
AdSs
1
=5 / [m?(h)t’“vwvw’% - (mi<k3>v“t’“¢k3vu¢’” + mi<k2>v“t’“¢’f2vu¢’“3)]
AdSs

+ /8(Ads )V“tklP,m. (6.1.61)
5

The first term in the integral is computed in (6.1.57), with the result

1
1 /,4d55 mi (k1) (m?(kl) —mg (k) — m;(k3)>tk1¢kz¢k3 (6.1.62)

The terms in parentheses can be written as
m3(ks) VAR ¢F % ,0F2 + m3 (ko) VAR 672V ks
=V [mi(/ﬁs)t’“ "V 0™ + %(@)t’%’@%ﬁﬂ - (mi(i@) + mi(kg,))t’“ VHh V¢
— tF1m3 (ko)™ VIV 67 — tFrm3 (k) VAV ,0F2 0. (6.1.63)

Using the equations of motion for ¢* and the divergence theorem, the contribution from the terms in
parentheses is

i /A . [_ <m§,(k:2) + m§<k3>) (m§<k1> — my(ka) — mi%s))

— 4mi(k2)mg(k3)]tkl¢k2¢’f3. (6.1.64)

Thus, combining (6.1.62) and (6.1.64), (6.1.61) yields

Y,V th gk gy gks
AdSs

= —i /A s ((m30k2) = m3(ks))* = mihr) ) £ 626

1

_ 2/ (— Dn¢k3vu¢k1VH¢k2 o anskzvuqshvﬂqskg + Dn¢k1v>\¢k2vA¢k3)' (6165)
O(AdS5)

The total contribution from the action in (6.1.55) is

K2 S e — / Ak, ko, k) 641 62 s
AdSs

k1 + 4)? 1
|:<k11—|-3) (m?(kl) - mi)(kﬁ) - mi(k?;)) + m((?ﬂé(k‘z) — mi(k‘g))Q - mf(k‘l))}
M _ k3 k1 ko ko kivp ks Ky koo ks
" /8(Ads5) ki1 +3 ( Dn¢™V " VEG™ — Dpg™V ¢ VEG™ + D™ Vg™ V76 )

(6.1.66)
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Using the expressions for the masses, the action is

(E + 4)&1(042 + 2)(0&3 + 2)

2’{§Scubic = -8 kl T3

/ a(k, ko, kg9 g2 s 1
AdSs

alky, k2, ks) ks pkigH gk ko ki gk ki k2o ok
———= = — D, 0"V IWHEGke — D, d*2 vy 1VHGRs 1 D, dF1 V2 Y 5)
/B(Ads5) ki+3 ( Vo ¢ PV Lo O™ + D™ Vo ¢ )

(6.1.67)
6.1.4 The three—point function for &k < ko + k3. In this case, the three-point function for the
boundary CF'T comes from the bulk integral contributing to (6.1.67). The contribution of this term to
the value of the three-point function is performed in (4.3.3) and is determined in terms of the conformal

dimensions of the fields. From (4.2.33) and (6.1.58), the conformal dimensions A; of t¥1 | ¢*2 and ¢*3
are found to be

A=k +8 Ag=ko+4 A3=Fk3+4. (6168)

Substituting the A;'s into (4.3.3), we find (D'Hoker et al., 1999)

1 4 a(kl,kg,kg)

Okl Tl OkQ ) Oks I3 >: 5 1
(O @0 @05 @) = 555 w7

L (Bt 9)(a2+2)(as +2) T(on + Dl (az + 4 (az + OIS +6)

6.1.69
A Dk + )L (ko + 6L (ks +2) (6.1.69)
There is a smooth limit as k1 — ko + k3,
] 1 4 a(k’Q + k3, ko kg)
k k k _ L4 s k2,
ot (08 @O @0 (@) = 555 e, o

k ko +2)2(k ks + 2)2(ko + ks + 4

o (B2 +3) (ks +2)% (ks + 3) (ks + 2)* (ko + ks + 4) (6.1.70)
(kz + k3 +3)

6.1.5 The extremal case k; = ky + k3. For this case, the contribution to the three-point correlation
function comes from the boundary term of (6.1.67). The regulation of the boundary integral is achieved
by introducing a cutoff zy = € near the boundary. The bulk-to-boundary propagator K4 (2, x), satisfying
the Dirichlet boundary value problem, gives the solution for each field in the form

$h(2) = / A K (2 2) P (2) (6.1.71)

where t*(z) is the boundary source for t*(z). A similar equation holds for ¢¥(z) but with different
conformal dimensions. The three-point correlation function will be obtained by plugging these solutions
into (6.1.67) and then using the holographic dictionary.

The three-point correlation function is computed using the Fourier transform of K§ (z, z), which is given
by

Ki(p) = —4—2+—, (6.1.72)
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where K, is the modified Bessel function of index v, and d is the dimension of the boundary of AdSy, 1.
We notice that v is an integer for this case. The power series expansion of the modified Bessel function
of index v =n € N is given by

n—1
Kul@) Zm'n—l—m—i—l) n2+2m§_:0 2 m!
[ee) m-+n m
e (z/2)n+2m 1 1
= 2C — - — —. 1.7
2220 m!(n +m)! ¢ k:lk ;k (6.1.73)
Thus, we have
K 1)A-5+1 PZO/2 )rAss pro 1o (pro\ At itam (A 2—m-1)
a-gP0) = Z Aty e 2 (%) -
00 d m+A—2 m
a1 (pZO/Q)Af§+2m 2 1 1
+ (=1)A72H o S N (6.1.74)
2%m!(A—g+m)! — k ;k
which implies
4.5 g P
o . 428K a(020) + 76 (070) gy Ko 4 (070)
2087KA(17) = i
0 Zo=¢€ 62K:A_g(p€ Zo=¢€
2 0
B g pTOa(pZO)ICA_g(pZO)
=— 192 (6.1.75)
2 ,CA—%(pe) Z0=€
Introducing
_1\A-441
An=[mrg(a- )] S
2 2/ ml(A-=§+m+1)! 2
m+A—2 m
+[ +1<A d)] 1 (—1)A-5H e —’1 Zl n 2(—1)A 7zt
ma+—(A—=2)]= - _ il
2 2/ 2mli(A -4 +m)! — k =k mi(A — 4 +m+1)
1 d\]1(A =42 —m—1)!
Bu=[m-L(a- 2] 1A= ,
[m 2 2 ]2 ml
m+A—¢ m
" 2 m(A—94m+ 1) 2 2mi(A— 2 +m) ~ k =k ’

Dy = = 2 : (6.1.76)
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we can rewrite (6.1.75) as

g KA
[P (ot 4 (5) )+ B+ By () + )]
2ol ) ) o D (g) )
B[ BE) >+<z€>2<“2><gg+§;(f’;>+--->]
R Y R R C R R Y COR
d B [ By /pe pe\2(a+3) A pe
:2+2D§_1+B(1](2>+”+(2> (Bz+§;(5)+"')
Dy /pe pe 2(a+4) ¢ C /pe
()BT TG (5) ) (61.77)

We will not consider the terms with a positive integer power of p or the terms containing In(pe) times
higher powers of p. These term are either contact terms or are subleading. Thus, we only consider

ZO;ZOKEA(p)Lo:E = g + 2113‘; +o2 (p;)Q(Mg) gz oo
:g+(—A+j)+-~—2(2€)2(A+g)m+--
=d-A)+-+ 22@_(;)1_)2?_(3;1_ %)2 (pE)Q(A 5) In(pe) +
=d-A)+--- aA(pﬁ)Q(A*%) In(p) +--- (6.1.78)
Here aA(pe)g(A_%) In(p) leads to the value of the two-point amplitude given in (4.2.95), namely

1 (2A—d)T(A)
(x—y)** rip(A—9)

(6.1.79)

The derivatives (6.1.67) wich are parallel to the boundary vanish faster than those in the normal direction

when € — 0 (D'Hoker et al., 1999). Therefore the relevant term in the product of three propagators is
given by

D K&, 2, (1) DK, (p2) D K&, (p5)

= [(d— Ay — Az) +- ..aA2+A3(p16)2(A2+A3—%) n(p1) + - -]
x [(d— Ag) + - - an, (p2e)2@2= ) In(py) + - - ]
x [(d— Dg) + - ang (p3e)2 232 In(pg) + - -]

_d _d
= PR Ay — Agdan,an,pa 2 In(pa)pa Y2 In(ps) + - (6.1.80)
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We finally find, for the three-point function

1 a(ky, ke, k
(0 ()0} (12108 (a)) = =51 A2
5

1 <2A2—d>r<A2>” 1 (205 - AT(As)

|7y — Zo|?52 W%F(AQ — %l) |7 — T3]25s W%F(Ag — %)

(d— Ay — Az)

(6.1.81)

Now, substitute k1 by ko + k3 and use the expressions (6.1.68) for the A;. Thus with d = 4, we obtain

(OF 5 (1) 082 (22)O) (w3) )

_ iia(kz + ks, ko, k3) (ko + 3) (ke + 2)2(l€3 +3)(ks + 2)2(74:2 + ks +4) (6.1.82)

2:‘4}% 7T4 x§;2k2$§§_2k3 (kQ + k3 + 3)

This result is in agreement with the value of the three-point function obtained by analytic continuation,
given in (6.1.70). In D'Hoker et al. (1999), it is mentioned that there is a regularization that may give
a different result. This confirms the subtlety in the computation of the extremal correlators. D'Hoker
et al. (1999) show that the Ward identity of a current and an extremal combination of scalar operators
agrees with the extremal three-point correlation function.

6.2 Correlation functions from the gauge theory side

In this section, the corresponding correlation functions in the gauge theory are computed.

6.2.1 Chiral primary operators. The chiral primary operators (CPO) of SY M, are operators of the
form

of =cf ., Tr(¢h---¢™) (6.2.1)
where i1, - - - i), are SO(6) vector indices, ¢' are six N x N matrices transforming in the adjoint of U(N),
and Cl]llk are totally symmetric traceless rank k tensors of SO(6). Here the trace is taken over the
U(N) indices.

6.2.2 The propagator. The action is

1 1
S:/d4x —Tr (F2)+---:/d4xQFSVF“W—i----. (6.2.2)
29y mr 49y m

The Yang-Mills coupling gy s and the string coupling g, are related by

G = 4mgs. (6.2.3)
In this theory, the propagator is given by
2 ij
i j 9y 10ab0"
&t (z1) @] (o) ) = =20 — (6.2.4)
< b > (2m)222,

where a, b, --- are U(N) color indices.
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6.2.3 Correlators at large N. The correlators are computed using Wick's theorem. In the large N
limit we only need to sum the planar diagrams. For the correlator of a product of two traces, we have

(Tr (" (1) - @™ (1)) Tr (¢ (w2) - - - ¢ (22)))
B ng%/kM (511j15i2j2 B LV cycIic)
a (2m)%ats

. (6.2.5)

The complete set of planar diagrams follow by contracting the i's and j's in the same cyclic order in
which they appear in the traces.

Let O't and O'2 be two CPO specified by the tensors C{ll__ik and Cff]k The correlator of the product
of these two operators is zero if their scaling dimensions are not equal. For ky = k9 = k, we have
(O (21)0"(22))
I I ' ik j i
= Cl Citgy (Tr (8" (21) - ¢ (1)) Tr (¢ (22) - - @7 (22)))
11t J1 Ik (271.)%1:%12@

12 ng%/kM k

k
_ (choty (%A)Qfx%g (6.2.6)
where the t'"Hooft coupling is given by
A= Ngiy (6.2.7)
and
(chelby=ch ok, . (6.2.8)

There are k possible cyclic permutations with k& pairs of indices which is why we obtain the factor k
in the correlator above. The correlator of the 3-point function of CPOs is specified by three tensors of
rank k1, ko and k3, as follows

<(’)Il(x1)(912(:v2)012(x3)>
= Ol OF gy Ol (T (07 (1) -+ 6% () T (67 () -+~ 7% (22) Tr (01 () -~ 6P ) ) )

(AR lilgg
> k1koks

= (chchc's
< N

(6.2.9)

where the contraction of the indices of the three symmetric traceless tensors is considered in Appendix
A1
(chchols)y =ch cP ch (6.2.10)

i1 iag 1 day i1 oyl lag g1 dag e lay

and

1
2= §(k1+k2+k3). (6.2.11)
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The number of planar diagram is kikoks.
Rescaling the CPOs
2m)F
o = o1 6.2.12
T ( )
gives a normalized 2-point function,
1
(0" (21)0" (x2)) = (CTCP) —, (6.2.13)
12
and the 3-point function becomes
Vkikok
(ON (1) 0% (22) O (23)) = (ChClol) 1200 (6.2.14)
Nay*rys'o3)”
Notice that we can choose the C! such that
(choty = Ml (6.2.15)
The CPOs become orthonormal operators. The large N counting gives us
= i >
<OI1012012> { 0 ifky >ko+ k3 (6.2.16)

L‘:—:% if k1 <ko+ ks

In summary, the computation of extremal correlators is subtle and divergences appear in higher point

correlation functions.



7. Extremal correlators

In this chapter, we want to explore the subtlety in the computation of the extremal correlators. We will
suggest that there maybe a connection to divergences in collinear amplitudes in quantum field theory.
The comments we make in this chapter are simply suggestive. We have not had time to pursue them
to their logical conclusion.

7.1 Extremal three- and n-point functions

Let Oa and Op,;, i = 1,2 to n, be half-BPS chiral primary operators (CPOs) with dimension A and
A;. The extremal three-point function is of the form

(On,(21)Oa, (22)Ons(23)) (7.1.1)

with A1 = Ay + As. The supergravity coupling constant for the three-point interaction vanishes as
G(A1; A9, As) =~ A1 — Ay — Ag and the AdSs5 bulk integral has a "pole” at the extremal dimension

( ),

Pz 2B 1
— - R . (7.1.2)
/AdS5 2(5) 11:11 (Zg + (27— fi)Q)Al Ay — Ay —Ag

The generalization of the extremal three-point function is of the form

(Oa(7)O0a, (21)O0n, (22) - - - Oa,, (1)) (7.1.3)

with A = A; + Ay +---+ A,,. There is a conjecture (
) that the associated supergravity bulk coupling must vanish as

and the bulk integral exhibits a " pole”

n

/ 752 5 =11 : A~ : (7.1.5)
adss 20 (B4 (Z-2)%)" o (B+(EF-)2)" A=A A== Ay

The pole in the z-integration and the zero of the supergravity coupling compensate one another and
consequently the analytic continuation in the dimension can be used to derive the value of the extremal
correlators. A careful analysis establishes that while the bulk contribution vanishes, there remains a
boundary contribution, as shown in the previous chapter 6. This provides a second way to compute
extremal correlators from the gravity side.

7.2 Mapping between R-charge and angular momentum

This section will explain why we expect that extremal correlators are related to collinear amplitudes. This
idea is based on a basic feature of the AdS/CFT correspondence which states that global symmetries
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in CFT are matched to isometries in the dual gravity. For example, the SO(4,2) conformal symmetry
maps to the isometry group of AdSs; the SU(4) R-symmetry maps to the isometry group of S°. In
fact, the SU(4) R-symmetry group is a double cover of the special orthogonal group SO(6), which
is an isometry of S°. This means that SU(4) also has spinor representations. Thus, when there are
fermions, we should use SU(4) rather than SO(6). The conserved charge associated with the isometry
of the sphere is angular momentum. This leads to the conclusion that R-charge of an operator in the
CFT maps to angular momentum of a state in the string theory. Using this correspondence, we can put
the modes arising from an expansion in spherical harmonics on the S° into one-to-one correspondence
with operators of definite R-charge. Of course, if there are degeneracies this will complicate things.
As an example, chiral primary operators on the gauge theory side correspond to spherical harmonics
obtained from Klein-Kaluza reduction (appendix B of Semenoff and Young (2006)). This correspondence
between chiral primary operators and spherical harmonics was used (Chapters 5 and 6) where we compute
correlators involving giant gravitons and Klein-Kaluza gravitons.

With this picture in mind, we can now explain why we think extremal correlators are linked to the
scattering of particle states with parallel momenta. First, we can define three complex matrices using
the six scalars ¢;, with ¢ = 1 to 6, of the SYM theory, transforming in the vector representation of the
SO(6) R symmetry group. These matrices, from which chiral primary operators can be formed, are
given by

Z=¢1+ide, Z'=¢1—idy (7.2.1)

Y =g¢3+ids, Y'=g3—ig (7.2.2)

X =¢s5+igs, X' =¢s—ide (7.2.3)

We can label the generators (=angular momenta) of SO(6) as L;; with i, j = 1,2,...,6. The generator

Lij = —Lj; perform an infinitesimal rotation in the ij-plane. These generators close the SO(6) Lie
algebra

[Lij, Lit) = 65 Lay — 10k Ljy — 101 Li + 16 Lji- (7.2.4)

There is a basis of states in which Lys, L34 and Lsg are simultaneously diagonal. Indeed, this follows
because

[L12, L34] = 0 = [L12, Lsg] = [L34, Lse]. (7.2.5)

Collect these three quantum numbers into a vector L= (L12, L34, Lsg). We will now compute the L
quantum numbers of X, Y and Z. Under a rotation in the 12-plane

[ o) ] cosf sinf 0 0 0 O7 [ ¢1 ]
& —sinf cosf 0 0 0 O b2
el | o 0 100 0|/ ¢
1 1 o 0 01006l (7.2.6)
&L 0 0 001 0] s
| 95 | L O 0 00 0 1]1] ¢

Thus
Z' = ¢} +id)
= cos O¢1 + sin 0o + i(cos f¢o — sin 9¢1)
=e (1 +igy) =e 2 (7.2.7)
Y =5 +i¢y =3 +igs=Y (7.2.8)
X' = ¢ +igs = ¢5 +ige = X (7.2.9)
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Similarly, under a rotation in the 34-plane we have
Z'=27, Y=Yy, X'=X (7.2.10)

and under a rotation in the 56-plane we have

Z'=27 Y=Y, X =e"X. (7.2.11)
For this we read off
L=(1,0,00 forZ (7.2.12)
L=1(0,1,0) forY (7.2.13)
L=(0,0,1) forX (7.2.14)

An operator such as Tr (Z™) Tr (Y"2) Tr (X"3) is mapped to a three-particle state with the momenta
of the three particles given by (n1,0,0), (0,72,0) and (0,0,n3). The three particles are moving in
different directions. The multi-trace operator of the form Tr (Z™) Tr (Z™2) Tr (Z™3), which participates
in extremal correlators, corresponds to a three-particle state with momenta, (n1,0,0), (n2,0,0) and
(n3,0,0). Thus, the particles in this state are moving collinearly. Clearly then, extremal correlators, for
example

(Te (Z) T (272) Te (279) Te (2 trens ) )
map to processes with collinear particles. Non-extremal correlators
(Te (Z™) Te(v™) Te (X™) Tr (2Pt xins ) )

are not related to states with collinear amplitudes. Having establish this connection, we will now explore
properties of collinear amplitudes in QFT.

7.3 Collinear and soft divergences

We have just argued that extremal correlators are closely related to collinear amplitudes. These am-
plitudes are associated to processes where the momentum of the particles that are being described are
parallel. In fact, it is well known that there are divergences associated with collinear amplitudes. This
suggests the very attractive possibility that perhaps the divergences associated with extremal correlators
can be interpreted as collinear singularities.

Collinear singularities are usually accompanied by soft or IR divergences. In this section our goal is to
give a brief description of these divergences, how they are interpreted and how they are cancelled out.
We hope that a similar approach to extremal correlators will resolve the subtleties we are studying in
this dissertation.

Feynman diagrams are known to produce various divergent (infinite) expressions. What do they mean?
Here, it is important to note that there are different sources of divergences and their meaning is very
different for the different sources.

"Infrared divergences” is the name for the infinities that emerge because we have to integrate over
arbitrarily long-wavelength (or low-energy) virtual particles (or quanta). They are produced when we
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send the minimum allowed momentum or energy of virtual particles to zero. In this case, loop diagrams
are infinite. What does it mean? To answer this question it is helpful to start by recalling that ultraviolet
(short-distance or high-energy) divergences usually imply that a quantum field theory is incomplete and
should be thought of as a limit of a more accurate theory. Infrared divergences are quite different. The
asymmetry between the two kinds of divergences arises because physics at long distances is derived from
the physics at short distances.

How should we interpret infrared divergences? It is important to know that quantum field theory has
two kinds of questions (with a whole continuum in between): questions that are are directly linked to the
results of measurements, that are easily interpreted experimentally as well as questions that are natural
and simple from a theoretical viewpoint, questions that are connected with fundamental concepts and
quantities in the theory. It is the second type of question that suggests calculations that may produce
infrared divergences.

A classic example in which IR divergences enter is in Quantum Electrodynamics, when we calculate
the cross section for the scattering of two charged particles. Perturbative quantum field theory will
produce a cross section that is a Taylor expansion in the fine-structure constant (or the electric charge).
The first term in this expansion comes from a tree diagram. The particles simply exchange one virtual
photon and it reproduces the predictions you could make using classical physics. Loop corrections
provide quantum corrections to the classical prediction. Already the one-loop corrections suffers from
infrared divergences. The amplitude includes a term proportional to In(E,,:,) - where E,,;, is the
minimum allowed energy of a virtual photon in the loop. We should set this limit, E,,;,, to zero which
produces a divergence. Remarkably, this divergences is canceled if we do the computation carefully.
The quantity that will be compared with experiment is the cross section of an observable process,
which is obtained by squaring the amplitude the Feynman diagram computes. The squared amplitude,
[finite + In(Eynin)]?, will produce terms like (finite? + 2 finite In(Fi,) + ...). The dots contain higher
powers of the fine-structure constant. To see how the term proportional to In(E,,;,) be canceled, note
that a real experiment can't observe photons of arbitrarily low energies. We must actually compute the
inclusive cross section in which we allow an arbitrary number of low energy photons, that are invisible
to the experiment’s detectors. These photons have such a low energy that they can never be observed
by an detector. Thus, we must include diagrams with extra external low-energy (soft) photons. It's so
soft that your device cannot see it. This extra diagram is also infrared divergent but, remarkably the
sum is finite. This method of dealing with soft divergences is called the Bloch and Nordsieck Theorem
( , ). It says that as long as you sum over degenerate final states (the final
state plus other versions of it in which soft photons are included), the answer you get for any physical
quantity is free of infrared divergences.

The collinear divergences are a new effect, in which infinities are produced as a consequence of the fact
that the momenta of particles in the amplitude are parallel. The treatment of these divergences is very
similar to the treatment of soft divergences. Again by summing the correct classes of Feynman diagrams
one obtains a result that is free of any divergences. The theorem stating the result is due to

( ) ( ). The theorem proves that if you sum over both degenerate final and
initial states, the answer you get for any physical quantity is free of infrared divergences.

To summarize the discussion, all the divergences ultimately cancel as long as you properly calculate
quantities that can be observed. In the cases we considered here, there are many degenerate states that
can’t be resolved and so to get a physical quantity you must sum over these degenerate possibilities.
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7.4 Extremal correlators and collinear divergences

To summarize our discussion in this chapter, we have established a close correspondence between
collinear amplitudes and extremal correlators. Further, we have reviewed the fact that collinear am-
plitudes display extra divergences, intimately related to the fact that the particles participating are
collinear. This immediately suggests that the singularities present in extremal correlators may be related
to collinear singularities. Assuming this is the case, what do we learn about the divergences in extremal
correlators?

The divergences in collinear amplitudes are eliminated once one sums over degenerate initial and final
states. One possible approach to the divergences in extremal correlators would entail exploring precisely
what degenerate states are relevant for the correlator, and then exploring the sum over these. What
effect would these sums have? An aspect that one would need to explore here would be the existence or
nonexistence of threshold bound states, which would definitely have implications for the precise nature
of the sets of degenerate states. Sadly, due to a lack of time, these interesting questions must be left
for the future



8. Conclusions

We have motivated the AdS/CFT correspondence by exploring the planar limit of matrix models in
Chapter 2. In Chapter 3 we have extended this analysis to explore the correlation functions of operators
with a dimension of order NV in the matrix model. This was achieved by employing techniques that exploit
group representation theory, effectively allowing a study of finite NV effects in the CFT. In Chapter 4
holographic methods of computing correlation functions have been introduced. These techniques allow
a study of CF'T correlators in the strong coupling and large N limit of the CF'T'. There are divergences
that appear in the holographic evaluation of correlators, for the case of two point functions. For extremal
correlators the divergences are more severe, as has been review in Chapter 5 and 6. As we have reviewed
in these chapters, the correct values for the extremal correlators are obtained by performing an analytic
continuation of the non-extremal correlators to the extremal case. In this way it is possible to obtain a
perfect match of the gauge theory and gravity results.

This is however, far from a satisfactory understanding of the physics that is involved in these divergences.
We have not understood the origin of these divergences and without this, it is difficult to motivate the
analytic continuation that has been used. The key question we have explored in this MSc is an attempt
to develop an understanding of these divergences in order that we can provide a complete understanding
of these divergences.

In Chapter 7, exploiting the identification of R-charge in the C' F'T" with angular momentum in the string
theory, we have suggested that extremal correlators are mapped to amplitudes involving particles with
parallel momenta. It is well known that collinear particles give rise to divergences so it is somewhat
natural to identify these divergences with the divergences in extremal correlators. The Kinoshita-Lee-
Nauenberg Theorem ( , ; , ) states that all collinear divergences
are removed by summing over degenerate initial and final states. Our identification suggests that,
perhaps, by summing over degenerate initial and final states we can remove the divergences that appear
in the extremal correlators. Future work should explore these preliminary ideas and establish a rigorous
correspondence between the divergences that appear in extremal correlators and collinear divergences.
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AppendixA. Contractions of indices of three
symmetric traceless tensors
Consider the problem of contracting an arbitrary number of symmetric traceless tensors. Let n,, be the

number of indices of the tensor C%» of rank k, contracted with the indices of Ca of rank k,. These
numbers satisfy the relations

Mipg = Tgp; (A.0.1)
npp = 0, (A.0.2)
Npt + npa + -+ = k. (A.0.3)

Specializing to three tensors, we have the constraints

ni2 +niz = ki, (A.0.4)
ni2 + ngz = k, (A.0.5)
nis + n2g = ks, (A.0.6)
which have a unique solution given by ( , )
1
n12 = ngp = §(k1 + ko — k3) = as, (A.0.7)
1
ni3 = N3y = i(k':} + ki — k?) = (3, (A08)
1
Nno3 = N3z = i(kQ + kg — kl) = 1. (AOQ)

We will denote this contraction of three tensors by <ChC’IlCh> with
(chcholsy = of ch chs : (A.0.10)

Zl“'iag,jl"'jaz il"'iagll"'lal jl"‘jagll”'lal

Here any repeated index is summed from 1 to 6.
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AppendixB. Five-dimensional sphere and
spherical harmonics

B.1 System of coordinates and symmetries on the n-sphere

A parametrisation of the n-dimensional sphere is given by ( , )
z! = cos by, (B.1.1)
2% = sin 6; cos 6o, (B.1.2)
23 = sin 6y sin O, cos O3, (B.1.3)
z* = sin 6 sin B sin O3 cos b4, (B.1.4)
2% = sin 6, sin 0, sin O3 sin 0,4 cos b5, (B.1.5)
2% = sin 6; sin A5 sin 05 sin O, sin 5 cos b, (B.1.6)
= (B.1.7)
2" = sin 6 sin 6y sin 03 sin 04 sin O, - - - sin 6,,_1 cos 6,,, (B.1.8)
2" = sin 6 sin O sin O3 sin B4 sin O - - - sin 6,,_1 sin 6,,, (B.1.9)
with 61, ,0,_1 € [0,7] and 6,, € [0,27]. These coordinates satisfy
n+1
> @) =1 (B.1.10)
k=1

The metric on the n-sphere is obtained from the metric of the (n + 1)-dimensional Euclidean space. It
is given by

oxt Ox*
ds?s‘n = axezaxe]dezdej = g@-deide (B.l.ll)
where
[ 1 0 0 0 ]
0 sin?6, 0 0
gsn = gij = 0 0 sin? @y sin®f0y - 0 ) (B.1.12)
0 0 0 -+ sin?6y sin? 6y - - -sin? 0,1 |

Rotations are symmetries of the sphere. Further we can reparametrise the sphere using 8; + 60,9, fori =1
to n, where ;9 are constant. For example, the parametrisation obtained by changing 6,, into 0, + 7
changes the coordinate 2"t into —z"*!. The measure d),, = df; - - - df,\/det ggn is invariant under
all of these transformations. Any permutation of the coordinates (x!,---  2"*!) leaves df2, invariant
which follows immediately from the definition of the metric on the sphere.
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B.2 Volume and Area of an n-dimensional sphere

The volume V,, and the area .S,, of an n-dimensional sphere are given by

n+1
2 n
5, =2 (B2.1)
P57)
ntl n—+1
v=T (B.22)
L(%3%)
where R is the radius of the n-sphere.
0] So=2 Vo=2R
1|5 =27R Vi =R
2| So=47R? | Va=;7R®
3] 8;3=2n?R> | V3=57R!
418 =57R" |Vi=37R
5| S5 =m°R° Vs = %TFSRG
6|5 =12mR5 | V5 =10 R’
7S =327'R" | V; =5 n'R"
B.3 Integrals of polynomials on the five-sphere
Let # = (x!, - ,2%) be coordinates on RS. Let df2; be the measure on the 5-sphere. The area of the
unit 5-sphere is
/ dQs = Q5 = 7. (B.3.1)
S5
We also have ( , )
x dQsz'™t - - gp2m = ;[all possible contractions]. (B.3.2)
Qs Jgs 2m=1(m + 2)! o
This integral can be evaluated by using
/ dQsz™ - x2m = 52m/ dQs e’ ® (B.3.3)
g5 0Jiy -+ 0Jiy,. Js5 ) o
We will prove (B.3.2) by recursion. First notice that
/ dQzz™ - x4t = Ay g = 0. (B.3.4)
S5

This is true because the measure on the S° is invariant under the transformation P; (see section (B.1))
which maps x = (--- ,2",---) into 2’ = (--- ,—a",---). Therefore we have

Ay :/ d95xi:—/ dQs (B.3.5)
S5 S5
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which implies A; = 0. Similarly, As,,,1 vanishes since the product z%' - --- - z2m+1 will be mapped to
—gt x%2m+1 under the transformation P; which maps z = (--- ,2%,---) into 2’ = (--- , —a*,---)

such that 2% appears in the integrand an odd number of times.

We want to use the same reasoning for the evaluation of fSS dQsx 2. We see that if i1 # io we can
perform a transformation F;, so that 2*'z"? is mapped to —x'*z*2. Therefore the integral vanishes. For
i1 = 19, using the symmetry properties of the sphere, we have

/ dQs ()% = Ay = constant, (B.3.6)
S5
with 43 = 1,2,--- ;6. This constant can be computed using the fact that
6 .
Z (CBZk)2 1
ir=1
Thus, we obtain
1< 1 1
Ay = = dQs (2%)? = ~ Q5 = —————— Q. B.3.
? 6;:1/5 5 (@) = 58 2-T(1+2)l (B.3.7)
o=
Therefore we can write
/ dQsxi ™ = Aysh®2, (B.3.8)
S5

Let us now consider the integral [ dQsz" z’2z"32% . This integral will be proportional to the following
contraction of indices.

/ dQszz2 gt = Ay ((5i1i25i3i4 + ¢l gizia 4 5i1"4512i3). (B.3.9)
S5
For i1 = i = i3 = 14 = k, we have
/ dQsa*akaF ek = 3A4. (B.3.10)
S5
For i1 =49 = k # i3 = i4 = [, we have
/ dQsaFaFalal = Ay (B.3.11)
g5

These two equations are true for any k. Thus we can combine them to find
6
> / dQsaFabalat = 544 + 344 = 8A,. (B.3.12)
S5
k=1

Using the defining equations of the sphere we now find

8A4:/ dQszlat (B.3.13)

= Ay, (B.3.14)
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which implies

Az 1

Azizi
TR T 212+ 2)!

Qs. (B.3.15)

To proceed further we will derive a recursion relation between As,, and A, 2. These quantities are
given by

dQsz’t - glemeiglem — Ay [Contraction of the indices iy, - - - ,iQm], (B.3.16)
S5
/ dQsatt - . glemiiglame — Ay o [Contraction of the indices i1, - ,i2m+g]. (B.3.17)
S5
For iy = -+ = i9my2 = k, the last integral equals to Agp,2(2m + 2)!I1. If 4 = -+ = dgy, =1 #

19m+1 = G2m+2 = k it will be equal to Agpm42(2m)!l. Thus, we obtain

6
Z/ dQs(2H)?™(2%)? = 5 A9, 10(2m)!! + Agpio(2m + 2. (B.3.18)
k=1"5°
Again using the defining equation for the sphere we obtain
2(m + 3) Agmao(2m)!! = / dQs(2H)?™ = Agpn (2m)1, (B.3.19)
S5
which implies
A2m
Aomio = —————. B.3.20
2m+-2 2(m+3) ( )

Solving this recursion relation, we find

1

Agp = —
2 gm=1(m 4 2)]

Qs. (B.3.21)

This completes the proof of (B.3.2).

B.4 Spherical harmonics on the five sphere

B.4.1 Definitions. By construction, the spherical harmonics on the n-sphere are homogeoneous har-
monic polynomials of the (n+1)-dimensional Euclidean space restricted to the n-sphere. Any polynomial
of the form

yik =l | ot ah (B.4.1)
where C’ZIIZ]c is a traceless symmetric tensor of rank k, defines a spherical harmonic on the n-sphere.
There are

k k k n!
di = Cpyp — Crigr—os Cn = Wn — k) (B.4.2)

linearly independent spherical harmonics Y/ defined in this way (Lee et al, 1998). Here CF is the
binomial coefficient. The label I is used to distinguish the different harmonics. The dimension of the
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subspace spanned by these spherical harmonics is exactly the number of linearly independent homo-
geneous harmonic polynomial of degree k restricted to the n-sphere. They are eigenfunctions of the
Laplacian operator V%, on the n-sphere

Vi.YIF = vov Yk = —k(k 4 n - 1)YTF (B.4.3)

The set of spherical harmonics is an infinite dimensional space of continuous functions since any contin-
uous function can be approximated by polynomials. This fact allows us to perform the decomposition
of any continuous function into an infinite sum of spherical harmonics.

B.4.2 Integrals of Spherical harmonics . The integral of two spherical harmonics is given by

/ dQs Yikiyke = ol o
S5

Uiy T J1 Tk

S5

We perfom this integral using (B.3.2). We obtain zero if the two tensors are not of the same rank i.e
if k1 # ka. In fact, the contraction of two indices belonging to the same tensor will vanish because our
tensors are traceless. Thus, we only consider the case where k; = ko = k. In this case we have

InkyIok _ o~ 1P (SR 7Y, | R | 3
/55 dQs YIUPY = Cilmiijy--jk /55 dQs x Tk T

1 . . . .. .
= C{ll,,,ikafmjka5 [all possible contractions of 41, , ik, j1, " , k]

= Ci111~~~ikcjf~--jkm95 [all possible contractions of iy, --- ,i; with jq,--- ,jk}
1
1
2k=1(k +1)(k + 2)

_ 1P
= Ci1~~~ik011 k!Qs

/ dQs YIokylzk — (ch o) Qs, (B.4.5)
S5

where we have used the fact that the tensors C'/t and C!2 are symmetric and traceless. We have
introduced the notation

(chehy=ch , of

(AR SR

(B.4.6)
In the above expressions, there are sums over i1, - -i; from 1 to 6.
The integral of three spherical harmonics Y151 Y12:k2 and Y13:F3 is performed in a similar way. We

find

/ dQ5 Yfl,klyfg,lmyfg,kg — 011 012 CIS
S5

C2 dQs 2™ - It gk gl gles
U1l Il Jhy L1t lig g5

(B.4.7)
Use (B.3.2) with m defined by ¥ = ki + ko + ks = 2m we obtain
/ dQs ylukry Ia.kay I3,ks
S5
1
=ch o ch [all possible constractions of @1 - - - 4,51 - - JkyJ1 - lkd]

Bty g1 Jhy Ll 2%271 (%24—2)!
(B.4.8)
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Making use of Appendix A we have
I I I . . . . oo
C’Z-llmik1 ij...ij Clﬁ'-lkg [aII possible constractions of 1 - - i, 51+ Jr,Ji - - - lkgj

=ch ¢k ¢ [all possible ways by contracting « indices between C'2 and C'%2,
(R P PRy gt SRR 98

a9 indices between C® and C'', o indices between C'' and CIQ}

= (chcheh) M (B.4.9)
041!042!0&3!
Therefore, the integral of three spherical harmonics is given by
kolks! 1
dQy Yhkyloheylaks — (clhighioh) Fitkolks Q5. (B.4.10)

55 aglaglag! 9351 (3= +2)!



References

O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz. Large N field theories, string theory
and gravity. Phys. Rept., 323:183-386, 2000.

J. Ambjorn, C. F. Kristjansen, and Yu. M. Makeenko. Higher genus correlators for the complex matrix
model. Mod. Phys. Lett., A7:3187-3202, 1992.

G. Arutyunov and S. Frolov. Scalar quartic couplings in type 1IB supergravity on AdSs x S°. Nucl.
Phys., B579:117-176, 2000.

V. Balasubramanian, M. Berkooz, A. Naqvi, and M. J. Strassler. Giant gravitons in conformal field
theory. JHEP, 04:034, 2002. doi: 10.1088/1126-6708/2002/04/034.

V. Balasubramanian, D. Berenstein, B. Feng, and M.-x. Huang. D-branes in Yang-Mills theory and
emergent gauge symmetry. JHEP, 03:006, 2005.

D. Bekker, R. de Mello Koch, and M. Stephanou. Giant Gravitons - with Strings Attached. Ill. JHEP,
02:029, 2008.

R. Bhattacharyya, S. Collins, and R. de Mello Koch. Exact Multi-Matrix Correlators. JHEP, 03:044,
2008a.

R. Bhattacharyya, R. de Mello Koch, and M. Stephanou. Exact Multi-Restricted Schur Polynomial
Correlators. JHEP, 06:101, 2008b.

A. Bissi, C. Kristjansen, D. Young, and K. Zoubos. Holographic three-point functions of giant gravitons.
JHEP, 06:085, 2011.

F. Bloch and A. Nordsieck. Note on the radiation field of the electron. Phys. Rev., 52:54-59, Jul 1937.
URL http://link.aps.org/doi/10.1103/PhysRev.52.54.

T. W. Brown. Half-BPS SU(N) correlators in N=4 SYM. JHEP, 07:044, 2008.

T. W. Brown, P. J. Heslop, and S. Ramgoolam. Diagonal multi-matrix correlators and BPS operators
in N=4 SYM. JHEP, 02:030, 2008.

T. W. Brown, P. J. Heslop, and S. Ramgoolam. Diagonal free field matrix correlators, global symmetries
and giant gravitons. JHEP, 04:089, 2009.

E. I. Buchbinder and A. A. Tseytlin. Semiclassical correlators of three states with large S° charges in
string theory in AdSs x S° . Phys. Rev., D85:026001, 2012.

P. Caputa, R. d. M. Koch, and K. Zoubos. Extremal versus Non-Extremal Correlators with Giant
Gravitons. JHEP, 08:143, 2012.

P. Caputa, R. de Mello Koch, and P. Diaz. A basis for large operators in N=4 SYM with orthogonal
gauge group. JHEP, 03:041, 2013.

S. Corley, A. Jevicki, and S. Ramgoolam. Exact correlators of giant gravitons from dual N=4 SYM
theory. Adv. Theor. Math. Phys., 5:809-839, 2002.

R. Corrado, B. Florea, and R. McNees. Correlation functions of operators and Wilson surfaces in the d
= 6, (0,2) theory in the large N limit. Phys. Rev., D60:085011, 1999.

106


http://link.aps.org/doi/10.1103/PhysRev.52.54

REFERENCES Page 107

S. Cremonini, R. de Mello Koch, and A. Jevicki. Matrix Model Maps and Reconstruction of AdS SUGRA
Interactions. Phys. Rev., D77:105005, 2008.

R. de Mello Koch. Geometries from Young Diagrams. JHEP, 11:061, 2008.

R. de Mello Koch and R. Gwyn. Giant graviton correlators from dual SU(N) super Yang-Mills theory.
JHEP, 11:081, 2004.

R. de Mello Koch, A. Jevicki, and J. P. Rodrigues. Collective string field theory of matrix models in the
BMN limit. Int. J. Mod. Phys., A19:1747-1770, 2004.

R. de Mello Koch, J. Smolic, and M. Smolic. Giant Gravitons - with Strings Attached (I1). JHEP, 09:
049, 2007a.

R. de Mello Koch, J. Smolic, and M. Smolic. Giant Gravitons - with Strings Attached (I). JHEP, 06:
074, 2007b.

R. de Mello Koch, T. K. Dey, N. lves, and M. Stephanou. Correlators Of Operators with a Large
R-charge. JHEP, 08:083, 20009.

R. de Mello Koch, D. Gossman, L. Nkumane, and L. Tribelhorn. Eigenvalue Dynamics for Multimatrix
Models. 2016.

E. D'Hoker and D. Z. Freedman. Supersymmetric gauge theories and the AdS / CFT correspondence.
In Strings, Branes and Extra Dimensions: TASI 2001: Proceedings, pages 3—158, 2002.

E. D'Hoker, D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli. Extremal correlators in the
AdS/CFT correspondence. 1999.

P. Di Francesco, P. H. Ginsparg, and J. Zinn-Justin. 2-D Gravity and random matrices. Phys. Rept.,
254:1-133, 1995.

R. Dijkgraaf and C. Vafa. Matrix models, topological strings, and supersymmetric gauge theories. Nucl.
Phys., B644:3-20, 2002.

A. Donos, A. Jevicki, and J. P. Rodrigues. Matrix model maps in AdS/CFT. Phys. Rev., D72:125009,
2005.

N. Drukker and J. Plefka. Superprotected n-point correlation functions of local operators in N=4 super
Yang-Mills. JHEP, 04:052, 2009.

S. Ferrara, C. Fronsdal, and A. Zaffaroni. On N=8 supergravity on AdSs and N=4 superconformal
Yang-Mills theory. Nucl. Phys., B532:153-162, 1998a.

S. Ferrara, M. A. Lledo, and A. Zaffaroni. Born-Infeld corrections to D3-brane action in AdS5 x S° and
N=4, d = 4 primary superfields. Phys. Rev., D58:105029, 1998b.

D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli. Correlation functions in the CFT(d) /
AdS(d+1) correspondence. Nucl. Phys., B546:96-118, 1999.

D. Garner, S. Ramgoolam, and C. Wen. Thresholds of large N factorization in CFT4: exploring bulk
spacetime in AdS5;. JHEP, 11:076, 2014.



REFERENCES Page 108

P. H. Ginsparg and G. W. Moore. Lectures on 2-D gravity and 2-D string theory. In Theoretical Advanced
Study Institute (TASI 92): From Black Holes and Strings to Particles Boulder, Colorado, June 3-28,
1992, pages 277-469, 1993. URL https://inspirehep.net/record/36050/files/arXiv:hep-th_9304011.
pdf. [,277(1993)].

M. T. Grisaru, R. C. Myers, and O. Tafjord. SUSY and goliath. JHEP, 08:040, 2000.

S. S. Gubser, I. R. Klebanov, and A. M. Polyakov. Gauge theory correlators from noncritical string
theory. Phys. Lett., B428:105-114, 1998. doi: 10.1016/S0370-2693(98)00377-3.

H. J. Kim, L. J. Romans, and P. van Nieuwenhuizen. The Mass Spectrum of Chiral N=2 D=10
Supergravity on S, Phys. Rev., D32:389, 1985.

Y. Kimura. Non-holomorphic multi-matrix gauge invariant operators based on Brauer algebra. JHEP,
12:044, 2009.

Y. Kimura. Correlation functions and representation bases in free N=4 Super Yang-Mills. Nucl. Phys.,
B865:568-594, 2012.

Y. Kimura and S. Ramgoolam. Branes, anti-branes and brauer algebras in gauge-gravity duality. JHEP,
11:078, 2007.

T. Kinoshita. Mass singularities of feynman amplitudes. Journal of Mathematical Physics, 3(4):650-677,
1962. URL http://dx.doi.org/10.1063/1.1724268.

C. Kristjansen, J. Plefka, G. W. Semenoff, and M. Staudacher. A New double scaling limit of N=4
superYang-Mills theory and PP wave strings. Nucl. Phys., B643:3-30, 2002.

C. Kristjansen, S. Mori, and D. Young. On the Regularization of Extremal Three-point Functions
Involving Giant Gravitons. Phys. Lett., B750:379-383, 2015.

S. Lee, S. Minwalla, M. Rangamani, and N. Seiberg. Three point functions of chiral operators in D =
4, N=4 SYM at large N. Adv. Theor. Math. Phys., 2:697-718, 1998.

T. D. Lee and M. Nauenberg. Degenerate systems and mass singularities. Phys. Rev., 133:B1549-B1562,
Mar 1964. URL http://link.aps.org/doi/10.1103/PhysRev.133.B1549.

H. Lin. Giant gravitons and correlators. JHEP, 12:011, 2012.

H. Liu and A. A. Tseytlin. Dilaton - fixed scalar correlators and AdSs x S® - SYM correspondence.
JHEP, 10:003, 1999.

J. M. Maldacena. The Large N limit of superconformal field theories and supergravity. Int. J. Theor.
Phys., 38:1113-1133, 1999. [Adv. Theor. Math. Phys.2,231(1998)].

K. Okuyama. 1/2 BPS correlator and free fermion. JHEP, 01:021, 2006.

G. W. Semenoff and D. Young. Exact 1/4 BPS Loop: Chiral primary correlator. Phys. Lett., B643:
195-204, 2006.

K. Skenderis and M. Taylor. Anatomy of bubbling solutions. JHEP, 09:019, 2007.

A. A. Tseytlin. Selfduality of Born-Infeld action and Dirichlet three-brane of type I1B superstring theory.
Nucl. Phys., B469:51-67, 1996.


https://inspirehep.net/record/36050/files/arXiv:hep-th_9304011.pdf
https://inspirehep.net/record/36050/files/arXiv:hep-th_9304011.pdf
http://dx.doi.org/10.1063/1.1724268
http://link.aps.org/doi/10.1103/PhysRev.133.B1549

REFERENCES Page 109

E. Witten. Anti-de Sitter space and holography. Adv. Theor. Math. Phys., 2:253-291, 1998.

K. Zarembo. Holographic three-point functions of semiclassical states. JHEP, 09:030, 2010.



	Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Correlation functions from Matrix model  
	Matrix model
	Free matrix model
	 Computation of correlators using the generating function. 
	 Computation of correlators using the Schwinger-Dyson equation. 
	 Computation of correlators using ribbon graphs. 

	Interacting model
	 Ribbon graphs rules in the interacting model. 
	 Large N limit of the theory and 't Hooft expansion. 
	 Planar limit as a classical limit. 


	Group representation theory and Schur polynomials 
	Background group theory
	 Definition. 
	 Order of a group G. 
	 Multiplication Table. 

	Matrix representations of a group
	 Definition. 
	 Equivalent representations. 
	 Characters of group elements. 
	 Direct sum of two representations. 
	 Reducible representation. 

	Fundamental orthogonality relation
	 Schur lemma 1. 
	 Schur lemma 2. 
	 Fundamental orthogonality relation. 

	Matrix representations of the symmetric group Sn
	 Young diagrams. 
	 Hook lengths. 
	 The dimensions of an irrep of Sn. 
	 Young-Yamanouchi states. 
	 Matrix representations of the adjacent 2-cycles of Sn. 

	Complex matrix model and Schur polynomials
	 Complex matrix model. 
	 Correlation functions using group theory. 
	 Projection operators. 
	 Schur polynomials. 

	Two-matrix model and restricted Schur polynomials

	Holographic computation of scalar field correlation functions
	Holographic principle and the AdS/CFT correspondence
	Two-point correlation functions from the AdS side
	 The metric of AdS space. 
	 The wave equation. 
	 The solution of the wave equation. 
	 The two-point correlation function in position space. 
	 The two-point correlation function in momentum space. 
	 The correct value of the two-point correlation function. 

	Three-point correlation functions from the AdS side

	Correlation functions of the giant gravitons 
	Correlation functions of giant gravitons from the CFT side 
	 Giant gravitons and Schur polynomials. 
	 Single trace chiral primaries. 
	 The three-point correlation functions with two giant gravitons. 

	Correlation functions of giant gravitons from the string theory side 
	 Giant graviton on the five-sphere S5. 
	 Giant graviton on AdS5. 
	 Structure constant of the antisymmetric giant graviton. 
	 Regularization procedure for the extremal correlators . 
	 Structure constant of the symmetric giant graviton. 


	Correlation functions of Kaluza-Klein gravitons  
	Supergravity computation of "426830A Ok1t,sOk2Ok3"526930B 
	 Cubic Action. 
	 Dimensional Reduction. 
	 Evaluation of the Action. 
	 The three–point function for k1 < k2 + k3. 
	 The extremal case k1 = k2 + k3. 

	Correlation functions from the gauge theory side
	 Chiral primary operators. 
	 The propagator. 
	 Correlators at large N. 


	Extremal correlators 
	Extremal three- and n-point functions
	Mapping between R-charge and angular momentum
	Collinear and soft divergences
	Extremal correlators and collinear divergences

	Conclusions
	Appendices
	Contractions of indices of three symmetric traceless tensors 
	Five-dimensional sphere and spherical harmonics 
	System of coordinates and symmetries on the n-sphere 
	Volume and Area of an n-dimensional sphere
	Integrals of polynomials on the five-sphere
	Spherical harmonics on the five sphere
	 Definitions. 
	 Integrals of Spherical harmonics . 


	References

