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Abstract 

The effects of low temperatures on the metabolic rates of Anopheles quadriannulatus were 

investigated by measuring the rate of carbon dioxide emission (VCO2) at different temperatures 

using a closed respirometry system. In general, the metabolic rates of A. quardiannulatus 

decreased with decreasing ambient temperatures. However, the decreases were not uniform over 

the temperature range of 30 °C and 10 °C. Mean VCO2 measured at 30 °C and sometimes at 25 

°C, were statistically different from those measured at other temperatures. Surprisingly, at 15 °C 

and 10 °C, the mean VCO2 were statistically similar. It was found that metabolic rates of the 

mosquitoes were affected differently if a 5 °C reduction in temperature occurred at 30 °C and when 

it occurred at 15 °C. Thus, a 5 °C drop in temperature at 30 °C and 15 °C did not yield similar 

percentage decrease in metabolic rates. Age was found not to impact on the metabolism of 

mosquitoes except at 10 °C and 15 °C in blood fed mosquitoes (both mated and unmated). Lack 

of a correlation between age and metabolic rates in these mosquitoes was a result of constant body 

masses as mosquitoes aged.  Mean VCO2 of four days old mosquitoes in different mating and 

feeding states were found to be significantly differently only at 10 °C. Mated and blood fed 

mosquitoes from this age group retained constant metabolic rates despite changes in temperature.  

The finding that A. quadriannulatus is not capable of significantly dropping its metabolic rates at 

low temperatures (15 °C-10 °C) is an indication that the species most probably lacks a 

physiological overwintering mechanism. Consequently, its survival and longevity is highly 

compromised during winter. Thus, it can be concluded that if adult A. quadriannulatus can 

overwinter in cooler parts of sub-Saharan regions, it does so using non-physiological mechanisms. 

Otherwise, this species and related members of Anopheles gambiae overwinters in developmental 
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stages other than adulthood. In this way, these mosquitoes are able perpetuate their populations 

post winter season. 

Key words: Anopheles quadriannulatus, Anopheles gambiae, metabolic rates, temperature, 

gonotrophic cycle 
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Chapter 1 

1.0 Introduction 

Historically, vector-borne diseases like malaria and yellow fever were responsible for more 

human disease and death in the 17th through the early 20th centuries than all other causes combined 

(Gubler and Casta-Valez, 1992). Malaria, a disease transmitted by mosquitoes, is responsible for 

more deaths and sickness than any other vector-borne disease (Gubler, 1998). This makes 

mosquito population dynamics an interesting and important subject within the medical community 

as well as for policy administrators.  

It was first discovered that mosquitoes transmit diseases to humans in 1877 (Coetzee et al., 

2013). Ever since then, medical entomologists have been studying the life cycle of the mosquito, 

hence its once cryptic life cycle is now well documented (Gubler, 1998). Though notorious for 

vectoring diseases like malaria, dengue fever and West Nile Virus (WNV), mosquitoes have other 

useful roles in ecosystems. For example, they feed on nectar and in doing so they help in flower 

pollination (Russell et al., 2013) and they also make up part of the diet of different bat species 

(Russell et al., 2013).  

The ability of mosquitoes to thrive in different climatic conditions is a key factor for their 

success as a species. They are extensively distributed, occurring in all ecosystems except in 

permanently frozen areas (Capinera, 2008). Their large geographical range has seen them being 

responsible for death and sickness in all continents except Antarctica (Capinera, 2008).  This 

ecological success is facilitated by the ability of their various developmental stages to inhabit 

different environmental niches. The egg, larvae and pupal stages are confined to stable aquatic 

habitats whilst the adult stage is terrestrial. This separation of niches reduces intra-specific 
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competition for ecological resources, ensuring greater chances of success for different 

developmental stages (Lehmann and Diabate, 2008).   

Even though mosquitoes are ubiquitous, the exact species composition, abundance and 

diversity vary across different geographical areas. Seventy-five percent of mosquito populations 

occur in tropical and subtropical areas where some species transmit diseases such as malaria and 

dengue fever (Capinera, 2008; Gillett, 1971). The remainder of the mosquito populations occurs 

in temperate and colder regions such as the northern hemisphere and African highlands. For 

example, Culex pipiens and Culex tarsalis are the dominant vectors of the WNV in North America 

(Gray, 2013). Anopheles quadrimaculatus was once a principal vector for human malaria in North 

America. Despite the successful eradication of malaria in that region, A. quadrimaculatus remains 

a major pest and potential malarial vector in the region (Wallace and Merritt, 1999).   

The global health hazards associated with mosquitoes are of interest to medical 

entomologists and hence the need to understand the biology, distribution and population dynamics 

of the associated vectors (Capinera, 2008). Studies have shown that on a local level, the long-term 

perpetuation and efficacy of mosquitoes as pathogen vectors is dependent on external factors such 

as climate, with temperature and humidity being the most important (Gillett, 1971).  Global climate 

change is expected to result in the increase of average temperatures and rainfall; hence some areas 

may get wetter and warmer than they are currently (Thomson, 2010). It has been modelled that 

these changes will result in extension of the areas endemic to most disease vectors, including 

mosquitoes. Boundaries and surrounds of endemic areas are likely to be invaded by the vectors. 

Thus some areas currently free of mosquitoes and associated diseases will get infested by the 

vector if predictions are true since the ecological success of mosquitoes is positively correlated 
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with temperature and humidity (Denlinger and Armbruster, 2014). These predictions are of great 

relevance to medical entomologists and policy makers alike.  

Changes in mosquito distributions mediated by a warming climate will result in mosquitoes 

infesting areas that are currently too cold or dry for them. As highlighted above, temperature and 

humidity play an important role in determining population dynamics of most vectors by impacting 

on their physiological processes and survival (Dao et al., 2014; Denlinger and Armbruster, 2014; 

Huestis et al., 2012; Lehmann et al., 2014; Lyons et al., 2012). It follows that warming or 

humidifying zones adjacent to infected areas will be conducive to vector breeding and 

perpetuation. It is well known that a decrease in temperature as altitude increases lessens the risk 

of malaria transmission in higher altitude areas (Maxwell et al., 2003; Reisen et al., 2006; Sanburg 

and Larsen, 1973). A global increase in temperatures therefore means areas at high altitudes and 

once free from mosquitoes may get warm enough for mosquitoes to proliferate.  Global warming 

may also result in changes in the duration of seasons. It is predicted that the length of summers 

will increase; hence the duration of winter will decrease (Yang et al., 2010). This will have dire 

consequences for areas in the tropics where malaria epidemics are seasonal (Coetzee et al., 2013; 

Roca-Feltrer et al., 2009). In most parts of Africa, for instance, malaria cases spike during the hot, 

wet summers and decline in winter. Lengthening of the summer season will increase the 

transmission window (TW) for malaria and other vector-borne diseases. 

During the 19th and 20th centuries, vector-mediated diseases prevented the development of 

vast areas of the tropics, especially in Africa (Gubler, 1998; Philip and Rozeboom, 1973). It can 

be postulated that the envisaged increase in malaria prevalence will mainly affect third world 

countries, many of which have poor health delivery and surveillance systems. Africa currently 

accounts for 90 % of world malaria related deaths (World Health Organization, 2016). Malaria's 



   4 
 

historic impact is evidenced inter alia in malaria antigen found in Egyptian remains dating from 

3200 and 1304 BC (Miller et al., 1994).  In South Africa, cases of deaths from malaria were 

initially recorded in 1837 and 1838.  The disease claimed the lives of twenty members of the Louis 

Trichardt trek to Maputo (Coetzee et al., 2013). More severe cases of malaria deaths were record 

in the years that followed. However, better medical care and effective vector programs has 

drastically reduced death tolls from malaria to about 0.01 percent of reported infection cases 

(Diseases et al., 2017). Currently, there has been a surge in malarial cases over the past months in 

2017 as compared to 2016 in South Africa (Diseases et al., 2017). In total, there were 675 recorded 

cases of malaria in April 2016 and 472 in May 2016 in South Africa. An upsurge of malaria cases 

was experienced in 2017 whereby 3463 and 2783 cases were recorded in April and May 

respectively. However, cooler temperatures experienced in June 2017 marked the end of malaria 

season as the number of malarial cases decreased (Diseases et al., 2017). It is speculated that the 

drought experienced in 2016 could have played a major role in reducing the number of malarial 

cases during that year (Diseases et al., 2017). 

Despite such a high percentage in malarial incidences, some parts of South Africa have 

been spared the impacts of mosquitoes because they are too dry, too cold or both for mosquitoes 

to survive (Afrane et al., 2012). Spread of malaria with raised temperature and humidity will put 

more pressure on already economically and administratively stretched governments. The 

discussion above clearly shows why there is concern over the future distribution and prevalence 

of malaria in light of the predicted increases in temperature and rainfall (Lyons et al., 2012).  

In Africa, the vectors of malaria are mainly female individuals of the Anopheles gambiae 

species complex and to a small extent females of A. funestus (Coetzee et al., 2000). In sub-Saharan 

Africa, A. gambiae species complex is studied more than any other because of its greater role in 
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malaria epidemics, wider spatial distribution and most importantly its ability to easily colonise 

new areas (Huestis et al., 2012; Lanzaro and Lee, 2013). This group is found extensively in Africa 

where it infests mostly desert-like areas with conditions characterised by hot days and cold nights 

(De Meillon, 1951).  Although the population dynamics of mosquitoes are a function of 

temperature and humidity (Bayoh, 2001; Beck-Johnson et al., 2013; Craig et al., 2004; Denlinger 

and Armbruster, 2014; Lehmann et al., 2014), the exact physiological responses responsible for 

this dependency are not well understood for some species of mosquito. Studies on this topic have 

been carried out in North America and Europe, but little research has been done in Africa. Nelms 

et al., (2014) indicated that adult Culex spp, responsible for the WNV in North America overwinter 

as female adults in reproductive arrest. However, this cannot be taken as true across all species 

considering that different species are known to have different strategies for surviving harsh 

conditions (Reisen and Brault, 2007).  This is particularly true considering that winters in North 

America are harsher than in Africa and as such species existing in these environments may have 

evolved different coping strategies.  

Temperature and humidity do not only influence distribution patterns of mosquitoes but 

also their physiology and behaviour too. The development of most immature stages depends on 

the presence of water. Breeding sites occur in temporal or permanent water bodies because juvenile 

stages are aquatic (Denlinger, 2002). If the surroundings are too dry, oviposition, embryonic 

development, egg hatching and larval development ceases (Kaiser et al., 2014). Temperature can 

slow down or speed up the rates of biological processes undertaken by mosquitoes such as 

embryonic and larval development, flight activity and reproduction. Understanding the 

physiological and behavioural changes that accompany variations in ambient temperature is 

critical in managing the vector (Denlinger and Armbruster, 2014).  For example, in countries such 



   6 
 

as South Africa where malaria control is carried out mainly in summer (Coetzee et al., 2013), these 

could be shifted to winter if it is found that mosquitoes have physiological characteristics which 

make control measures more effective at this time. 

This study was therefore motivated by the fact that mosquitoes and mosquito mediated 

diseases are absent during winter seasons and in areas with cool temperatures but are present once 

temperatures increase.  A trend has been observed in places endemic to malaria and whose seasons 

comprise hot and wet summers, paired with cold and dry winters (Diseases et al., 2017). During 

the cold seasons, it has been observed that adult mosquitoes are scarce and the incidence of malaria 

is low (Afrane et al., 2012; Coetzee et al., 2013; De Meillon, 1951; Leeson, 1931; Stuckenberg, 

1969) compared to the wet and warm seasons. Another striking feature is that these mosquitoes 

proliferate quickly at the onset of spring. The refuge of mosquitoes during the cold season which 

enables population proliferation immediately after the first rains has not been properly identified. 

Any attempt to explain this observation is inherently speculative. It can be speculated that due to 

constrained movement of mosquitoes arising from low temperatures, mosquitoes may be 

concentrated in microhabitats leading to uneven distribution in the ecosystem. Thus, their 

abundance and density could be perceived as low by observers (Lehmann et al., 2014). Or else 

adults die during winter and the populations which proliferate in the next season do so via 

overwintered embryonic stages that quickly develop once conditions become hospitable. However, 

this does not explain why the populations increase by ten-fold in a short time.  

Results of this study will shed light on how mosquitoes physiologically respond to lowered   

temperatures in their natural environment. These findings will provide baseline information on 

how mosquitoes manage to proliferate soon after the spring rains. If mosquitoes used in the 

experiment respond to reductions in temperature in a manner similar to that displayed by Culex 
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mosquitoes this could highlight the possibility that they can survive winter temperatures, hence re-

appear at the advent of spring. Most importantly is to know if lowered metabolic rates will sustain 

the mosquitoes throughout the winter period. The death of the mosquitoes under cold laboratory 

conditions could indicate that adult mosquitoes cannot cope with cold temperatures in their natural 

environment. Therefore, other overwintered life stages of mosquitoes would be responsible for the 

surge in mosquito population after winter. Knowledge on the exact temperature levels responsible 

for specific changes in physiology and behaviour of mosquitoes will explain how mosquitoes can 

manage to quickly re-appear on the onset of the wet, warm season (Koenraadt et al., 2003) 

preceded by a period of inhospitable conditions. Future studies can then do further research to 

characterise the survival mechanisms assisting mosquitoes to quickly re-establish after winter and 

persist within ecosystems.  

1.1 Response of mosquitoes to adverse conditions  

Adult mosquitoes are subjected to unpredictable and highly variable terrestrial surroundings 

(Gray, 2013). Unlike homeotherms, they cannot maintain a constant body temperature by internal 

mechanisms. If ambient surroundings are too cold and dry the continued survival of adult 

mosquitoes is threatened (Denlinger and Armbruster, 2014). Thus, a survival mechanism is 

required to see them through the winter temperatures. For heterodynamic insects such as  

mosquitoes (Roberts, 1978), behavioural change which is synchronised with that of the 

surroundings is required to facilitate longevity during adverse conditions.   

Dormancy and long-distance migration have been proposed as the survival strategies used by 

mosquitoes in adverse conditions by a variety of authors such as Roberts (1978), Nelms et al. 

(2013) and Denlinger and Armbruster (2014). It is reported that only female mosquitoes adopt 
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survival mechanisms and males die soon after copulation (Russell et al., 2013). The survival 

mechanisms will be dealt with further in the following chapter.  

The life history of mosquitoes and many other insects is adaptive and allows them to exist in 

altered morphology at different times and in a variety of habitats (Roberts, 1978). It allows 

vulnerable juvenile stages to occupy more stable environments (larvae in aquatic sites) to increase 

their chances of survival, yet mature stages face adversities in more variable terrestrial habitats. 

Factors affecting each developmental stage will influence the survival of the following stage. For 

example, the dynamics of the development of immature stages impact on the physiology and 

population structure of the adults. The conditions in which juveniles are reared influence the 

characteristics of the adults (Beck-Johnson et al., 2013; Gray and Bradley, 2003; Kaiser et al., 

2014). For example, the time taken to hatch eggs in some Anopheles mosquitoes influence the 

body size of the adult (Gray and Bradley, 2003; Kaiser et al., 2014).  Therefore, the physiology of 

an adult mosquito can be understood better if the dynamics involved during maturation of juvenile 

stages are known. 

1.2 The life cycle of mosquitoes 

The life cycle of mosquitoes is divided into four major stages comprising adult, egg, larva 

and pupa. These developmental stages require different resources for their survival. For instance, 

unlike adult mosquitoes, most juvenile stages depend on aquatic habitat for their development. 

Depending on the species, the breeding sites can be on temporary or permanent water bodies. In 

A. gambiae, the selected larval sites are temporary waterbodies such as tyres and hoof prints 

(Gillies and Coetzee, 1987). Besides differences in habitats, the developmental stages of 

mosquitoes also vary significantly in morphology, modes of locomotion and food sources. 
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Adult mosquitoes usually emerge from the pupal stage in a few days’ time (Gillett, 1971) 

depending on the species and prevailing temperatures. Most female Anopheles mosquitoes begin 

to develop oocytes a few hours after emergence (Gillett, 1971). These species are non- autogenous 

(Gillett, 1971; Robert et al., 2011) and require a blood meal to mature and ripen their eggs 

otherwise maturity of eggs is arrested until such a time when a blood meal has been consumed 

(Gillett, 1971). Upon consuming a blood meal and depending on the ambient temperature, female 

mosquitoes take two days to mature eggs on warm days (Muirhead-Thomson, 1951) and 3-4 days 

(Kaiser et al., 2014; Muirhead-Thomson, 1951) when cold (Muirhead-Thomson, 1951). In natural 

environments, blood-fed females direct nutritional resources towards oogenesis when they are 

inseminated (Baldini et al., 2013).  

Female mosquitoes acquire sperm from males during copulation. The female then stores 

the sperm in its spermathecae waiting to fertilise matured eggs during oviposition (Lehmann et al., 

2010). The molecular interaction between males and females during copulation affects the 

reproductive behaviour and physiology of female mosquitoes (Baldini et al., 2013). The mating- 

dependent pathway of egg production in mosquitoes is regulated by a steroid hormone which is 

secreted by males during copulation (Baldini et al., 2013).  

 Fertilized eggs are oviposited in selected sites such as aquatic bodies, stagnant water sites 

and damp surfaces individually or as a group. Muirhead-Thomson, (1951) reported that Anopheles 

mosquitoes tend to lay their eggs singly on the surface of the water. Under optimal conditions, the 

eggs of A. gambiae hatches into larvae after 2-3 days’ post oviposition (Kaiser et al. 2014). 

Embryonic development can be delayed up to 18 days or more if the conditions are inhospitable 

(Kaiser et al., 2014). It has been demonstrated that even though embryonic development proceeds 

at the same rate in Anopheles eggs, a small proportion can delay hatching by entering diapause 
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(Kaiser et al., 2014) which is an important strategy for bridging inhospitable conditions. The larvae 

undergo four developmental stages before maturation into the pupae after 5-7 days (Kaiser et al., 

2014), the latter develops into an adult after 2-3 days. 

After emerging from the pupal stage, the young adult rests for a few hours and dries its 

wings before it can fly to the surrounding areas. Adults of female Anopheles mosquitoes can 

disperse up to 3 km from their breeding site (Russell et al., 2013). The female mosquitos spend 

their entire lives away from water sources but occasionally fly back to lay eggs or search for mating 

partners. On average, the adult female survives less than two month (Beier et al., 1990; Gillies and 

De Meillon, 1968; Koenraadt et al., 2003; Lehmann and Diabate, 2008) in the terrestrial 

environment which can include anthropogenic structures. Males do not disperse as far as females 

and they are usually found within a 200-metre radius of a breeding site (Russell et al., 2013). The 

male lives for a short period (≤ 7 days), and dies soon after copulation which takes place a few 

days past emergence, thus leaving behind inseminated females (Denlinger and Armbruster, 2014). 

Due to their vector role in malaria, longer lifespan, vulnerability to unpredictable weather 

conditions (Coetzee et al., 2000; Gray, 2013) and higher risks of mortality, adult female 

mosquitoes have been widely used in population dynamic models (Beck-Johnson et al., 2013). 

Again, concern over climate change has made them epidemiologically significant for modelling 

and forecasting mosquito population dynamics (Afrane et al., 2012). What is surprising about adult 

mosquitoes is that, despite exposure to highly variable conditions, they survive for more days than 

their immature stages which live in relatively stable environments.  
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1.3 Rationale 

Information on the life cycle of mosquitoes mainly applies to warm environments 

conducive for their survival and where each development stage leads to the next. However, there 

is limited information on how the cycle and time frame is adjusted during adverse conditions. 

Thus, information from life cycle does not make provision on how populations of mosquitoes 

persist in the absence of breeding sites and how development of different life stages is staggered 

due to adverse environmental conditions. This raises questions such as: “How do adult mosquitoes 

cope with high variability in temperature and manage to survive up to two months?” and “Where 

do adult mosquitoes which emerge at the end of summer disappear to during winter?”. It would 

also be interesting to know what happens to the juvenile stages developed at the end of summer, 

as this could explain sources of mosquitoes at the start of the new breeding season. Clearly, those 

mosquitoes which emerge at the end of summer and are present at the advent of the first spring 

rains must have survived up to three or more months of the cold weather. This would need to be 

explained by a special survival mechanism (Lehmann et al., 2014). Since winter seasons in cooler 

parts of southern Africa can last 3-4 months (Diseases et al., 2017), one would expect no 

mosquitoes to survive this lengthy period. Most mosquitoes would have exceeded their life span 

by that time and it would be too cold for them to search for food. Yet as previously indicated, 

mosquitoes become abundant soon after the first rains. Lehmann et al. (2014) suggests that newly 

developed adult mosquitoes emerge from overwintered juvenile stages a few days before the first 

rains, and or overwintered adult mosquitoes reappear. 

This study seeks to gain insight into possible overwintering strategies of A. quadriannulatus 

species. The metabolic rates themselves are influenced by multiple factors such as age, body size 

mating and feeding status of the mosquitoes, and hence these factors need to be accounted for. In 
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the current study, we hypothesize that A. quadriannulatus will lower its metabolic rate in response 

to reduction in ambient temperature. In this way, the mosquito will be able to conserve sufficient 

food reserves to survive winter. Therefore, the findings of this study will point to the possible 

effects of global changes in temperature on mosquito species abundance, distribution and the 

incidence of malaria.   

The questions which prompted the investigations forming the basis of this study are: 

1. Can adult female mosquitoes survive winter? 

2. How are their metabolic rates impacted by low temperatures? 

3. Do female mosquitoes respond similarly to effects of reducing temperature when they are 

in different mating and feeding states? 

This study sets out to investigate the temperature-metabolic rate relationship in A. 

quadriannulatus using proven methodology which indicates physiological changes in organisms 

(respirometry). This species was chosen because it is a member of the A. gambiae complex and 

does not transmit malaria.  

1.4 Aims and objectives  

The aim of this study was to determine the effect of temperature on the metabolic rate of 

laboratory bred A. quadriannulatus. The metabolic rate of female A. quadriannulatus were 

measured at temperatures ranging from 30 °C to 10 °C. Factors which influence metabolic rates 

such as age, mating, feeding and mass were also taken into consideration during the study. The 

study was conducted on female mosquitoes whose age ranged from 2 to 4 days.   
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1.4.1 Specific Objectives 

1. To determine the effects of lowering temperature on metabolic rates of unmated and 

sugar fed female mosquitoes. This was the control of the experiment and it gave 

reference information on the general effects of low temperatures on metabolic rates 

without any additional physiological conditions of the mosquito. 

2. To determine the effects of lowering temperature on mated sugar fed female 

mosquitoes. The results of this objective were compared with the control to see if 

mating influences metabolic rates when the temperatures are reduced. 

3.  To determine the effects of lowering temperature on metabolic rates of unmated 

females who have been given a blood meal. The objective seeks to find out if blood 

feeding female mosquitoes will influence their metabolic rates at lowered temperatures. 

A blood meal is likely to impact on metabolic rates due to blood digestion and 

development of eggs. 

4. To determine the effects of lowered temperatures on mated and blood-fed female 

mosquitoes. Mated mosquitoes which are blood-fed are most likely to develop and lay 

eggs. Eggs will however only be laid in the presence of a suitable oviposition site. If 

mated mosquitoes could overwinter in gravid state, then populations of A. 

quadriannulatus are most likely to recover very soon after the first spring rains. 
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Chapter 2 

2.0 Literature Review 

2.1 Anopheles gambiae species complex 

In sub-Saharan Africa, the A. gambiae  complex is the most widely studied and vital group 

of mosquitoes due to its profound contribution towards malaria transmission (Huestis et al., 2012; 

Lanzaro and Lee, 2013). This species complex consists of both vector and non-vector species 

(Coetzee et al., 2000). The most important and widespread malarial vectors of the A. gambiae 

complex have been reported from most African countries and their distribution reflects dependency 

on regional and seasonal climatic conditions. Breeding sites are usually along riverbeds, temporal 

pools, pans and anthropogenic stagnant water sources (Gillies and Coetzee, 1987). An estimated 90 

% of the one million malarial deaths per year occur in sub-Saharan Africa from transmissions 

associated with A. gambiae (Baber et al., 2010).  

Before 1962, A. gambiae species complex was regarded as a single species. This changed 

when Hugh Paterson demonstrated that at least three fresh water breeding species of A.gambiae 

could not mate naturally (Coetzee et al., 2013). In 1964, additional salt water breeding species were 

identified, bringing the total number of subspecies in the complex to five. A sixth species was later 

discovered in Uganda by Davidson and Hunt at a date not stipulated (Hunt et al., 2000). Up to that 

date, the complex was made up of the following six species; A. gambiae, A. arabiensis, A. 

quadriannulatus, A. bwambwe  A. merus and A. melas (Coetzee et al., 2000). The last two are East 

and West African salt water breeding species. In 1998, another species formerly named A. 

quadriannulatus species B from Ethiopia was discovered (Coetzee et al., 2000; Hunt et al., 2000). 

This was renamed A. amharicus  and resembles the same polytene chromosomal arrangement as 

that of the southern African A. quadriannulatus despite the large distance between their geographic 



   15 
 

location (Coetzee et al., 2013). The two locations differ in amount of annual rainfall, with greater 

than 1000 mm falling in southern Africa and approximately 700 mm falling in Ethiopia  (Coetzee 

et al., 2000). The southern African A. quadriannulatus was described and named by F Theobald in 

1911 (Coetzee et al., 2000) as a non-malarial vector, normal outdoor resting and cattle feeding 

(Bayoh, 2001; Coetzee et al., 2013, 2000; Lanzaro and Lee, 2013). According to Hunt et al. (2000), 

A. quadriannulatus is zoophilic and comprises allopatric taxa in Ethiopia and southern Africa. All 

species in this complex are morphologically indistinguishable and can only be characterised using 

the Polymerase Chain Reactions (PCR) (Lanzaro and Lee, 2013). The high genetic plasticity of A. 

gambiae complex has aided their wide geographic distribution, high tolerance and persistence 

throughout Africa (Huestis et al., 2012) creating a huge challenge in the control and eradication 

efforts of malaria within Africa. However, some areas in this region remain free of this complex.  

2.2 Physiological and behavioural survival strategies in mosquitoes 

Possible overwintering strategies employed by mosquitoes can be grouped into two main 

categories. They could be physiological or physical (behavioural) adaptations (Denlinger and 

Armbruster, 2014; Roberts, 1978). Exiting habitats with adverse conditions and resuming a normal 

life elsewhere or finding a suitable microhabitat to occupy are examples of behavioural adaptations. 

In contrast, physiological survival strategies usually depend on the manipulation of metabolic rates 

to alter the speed at which some biological processes proceed, thereby effectively conserving 

energy and prolonging the life span of the organisms, hopefully until condition become more 

favourable for foraging. Mosquitoes could adopt any of the following physiological and 

behavioural methods to overcome effects of low temperatures. 

Field Code Changed

Field Code Changed
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2.2.1 Cold torpor 

Torpor is defined as a temporal response induced by sudden short spells of adverse weather 

such as daily temperature changes (Roberts, 1978). The low temperature experienced may not kill 

the insect, but can halt its activity and development. Due to inactivity, the metabolic rates during 

this period become lower than usual. Cold torpor can occur at any time of the year and at any stage 

of the life cycle (Roberts, 1978). Torpor is therefore non-seasonal and thus can be regarded as a 

daily form of survival which enables the mosquitoes to overcome short-term adversities. This could 

be a survival strategy for mosquitoes that inhabit areas whose winters are interspersed with warm 

days. It means during times when it is very cold, the mosquitoes could then enter torpor, but as soon 

as temperatures pick up, normal activity is resumed.  

2.2.2 Quiescence 

This is a form of dormancy and persists longer than torpor. It is seasonal and is a result of 

extrinsic factors which determines its onset and termination (Roberts, 1978). Quiescence is initiated 

and terminated in response to the temperature fluctuations of the surroundings and the response is 

lowering of the metabolic rates. Nelms et al. (2013) describes quiescence as a period of 

temperature-induced inactivity which does not require a preparatory phase as is the case in diapause. 

This dormancy is, however, terminated as soon as conditions becomes favourable; hence it lacks 

the fixed latency and early programming found in the case of classical diapause (Denlinger and 

Armbruster, 2014). Depending on the severity of the cold, some mosquito species only use this type 

of dormancy to bridge cold seasons (Denlinger and Armbruster, 2014). Records of overwintering 

by quiescence have been documented for Culex annulirostris and C. tarsalis from southern parts of 

Australia and California respectively (Nelms et al., 2013). Another southern hemisphere member 

of the Culex complex called C. quinquefasciatus was found to overwinter using a temperature-
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induced quiescence (Eldridge, 1987). In temperate South African Highveld which experience 

change in day length, quiescence is reported to occur in Culex. pipiens and Culex theileri (Russell 

et al., 2013). 

2.2.3 Diapause 

To survive winter temperatures, some mosquito species undergo diapause which lowers their 

metabolic rates (Denlinger and Armbruster, 2014; Nelms et al., 2013). The difference between this 

strategy and the other two outlined above is that lowering of metabolic rates is triggered by external 

cues to which the insect is “programmed” to respond. Cues that indicate the arrival of winter, like 

shortening of day length are commonly used by insects to go into diapause (Denlinger and 

Armbruster, 2014). According to Eldridge (1987), the programming can originate from the 

immature stages of the adult mosquito. For example, short day-length and cooling water 

temperatures experienced by immature stages induce diapause in adult Culex females. Diapause is 

pre-determined hormonally and its duration is also programmed independent of what is happening 

in the surroundings. Thus, it does not terminate immediately when conditions become hospitable. 

Diapause is a well-known survival strategy typically found in mosquitoes endemic to temperate 

areas (Denlinger and Armbruster, 2014; Lehmann et al., 2010; Russell et al., 2013). Diapause can 

occur in stages linked to different behaviours namely pre-diapause, diapause and post-diapause.  

Pre-diapause is initiated at the end of autumn / beginning of winter and prepares the 

mosquito for diapause by prompting storage of energy reserves. Consequently, the mosquito 

becomes less active but bigger in size. Low temperatures and short daylengths are believed to be 

responsible for the initiation of diapause by enhancing photoperiodic response except in obligatory 

diapause (Denlinger and Armbruster, 2014). 
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Diapause is the phase when development is halted; hence the mosquito becomes 

unresponsive to environmental signals. Metabolic depression is the key characteristic of diapause 

(Denlinger and Armbruster, 2014), although reduced metabolic rates do not always mean that the 

organism is in diapause. Instead this could be a torpor or quiescent response to a brief cold spell  

(Gray and Bradley, 2005). In most instances, diapause is specific to a single life cycle stage at a 

time and occurs for a  restricted amount of time (Roberts, 1978). The period spent in diapause is 

reported by Denlinger (2002) to be determined by an internal clock which detects daylength and 

temperature. It is however still disputable whether temperature and daylength are the only inducers 

of diapause (Denlinger, 1974) or not. This is after discovering diapause in flesh flies living in East 

Africa at a latitude of 1° south despite the absence of photoperiodism in that area. These flesh flies 

experience a robust pupal diapause initiated by low temperatures during July and August 

(Denlinger, 1974). 

In mosquitoes species which undergo diapause, only females diapause and males die after 

mating, leaving behind inseminated females to overwinter (Denlinger and Armbruster, 2014). 

During this time, the females refrain from taking a blood meal and do not develop eggs until 

diapause has been completed. The termination of diapause is followed by post diapause quiescence 

which is indistinguishable from diapause except that the mosquito can respond to environmental 

signals that prompt development (Denlinger and Armbruster, 2014). However, suppression of 

development by low temperatures results in the build-up of individuals all primed to start 

developing. Thus when temperatures rise above a certain threshold, the whole population can 

initiate development simultaneously, leading to synchronous springtime emergence (Denlinger and 

Armbruster, 2014). 
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Zhou and Miesfeld, (2009) used radioactive tracers to track the metabolic fate and flux of 

glucose in C. pipiens adults reared under diapause and non-diapause conditions. Incubation 

temperatures and day lengths were used to differentiate between diapause (18 °C, short day) and 

non-diapause (27 °C long day) conditions. The study initially investigated the pre-diapause phase 

and it found that metabolic patterns of mosquitoes were not altered in both rearing conditions. The 

only difference noted was in lipid assimilation. The study conducted on one-day old mosquitoes 

found that after 72 h of labelling glucose, diapause-destined mosquitoes had converted 46 % more 

glucose into lipid than mosquitoes reared under non-diapause conditions. Sugar-feeding in adults 

could have initiated a metabolic shift that activated lipogenesis (Zhou and Miesfeld, 2009). The 

nulliparous and inseminated adults were discovered to enter diapause in response to reduced day 

length and low temperatures experienced during larval and pupal development (Zhou and Miesfeld, 

2009). It was revealed that mosquitoes in diapause were capable of sparing lipids generated during 

pre-diapause to enhance egg production. This was demonstrated by the ability to detect 33 % of the 

lipids synthesized during pre-diapause in newly developed eggs. According to, Mitchell and Briegel 

(1989), C. pipiens reserves 1.7 times more lipids and 2.3 times more carbohydrates in preparation 

for diapause. During this period of overwintering, females do not take blood meals and cannot 

transform the blood to generate lipid reserves for survival (Mitchell and Briegel, 1989),but increase 

their sugar feeding during the first few weeks (Bowen, 1992; Robich and Denlinger, 2005). 

Despite the widely studied insect diapause ecology in the temperate regions, there is lack of 

information on the underlying principles occurring in sub-Saharan mosquitoes during the cooler 

seasons (Canzano et al., 2006). The existence of diapause in A. gambiae is yet to be confirmed even 

though eleven Anopheles species have been discovered to diapause as adults, three as larvae and 

one as eggs (Denlinger and Armbruster, 2014).   
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2.2.4 Aestivation 

Aestivation is a more general type of dormancy usually utilised by mosquitoes in warmer 

regions to survive aridity during the dry season (Denlinger and Armbruster, 2014). Many studies  

(Denlinger and Armbruster, 2014; Lehmann et al., 2010; Roberts, 1978) repeatedly refer to 

aestivation as a summer dormancy typically characterized by suppressed reproduction. In addition, 

Roberts (1978), Yaro et al. (2012) and Huestis et al. (2012) refer to aestivation as summer or dry 

season diapause. Suppressed reproduction in aestivating mosquitoes is indicated by failure of the 

adult females to develop eggs despite feeding on blood in the early dry season (Lehmann et al., 

2010). Aestivation has recently been discovered in M-form A. gambiae  renamed  A. coluzzi during 

the fourth to eighth month dry season in the Sahel (Denlinger and Armbruster, 2014). Using a Mark-

Release-Recapture method, Lehmann et al. (2010) showed that one of the female mosquitoes used 

in their research was able to survive seven dry months after moving only 570 m from where they 

were released. The short distance between the release and recapture points indicate that the 

mosquitoes did not undergo any long-distance migration and as such aestivation was proposed as 

the most plausible explanation of the survival strategy used by the recaptured mosquito. 

2.2.5  Long distance migration 

Instead of being concealed locally, mosquitoes can escape inhospitable places by adopting 

long distance migration. This is common in some African adult mosquitoes which tend to fly to 

favourable regions. Such a move is beneficial to the insect as it enables continuous growth and 

development (Russell et al. 2013). For example, A. arabiensis is understood to disperse up to 20 

km away from the Nile valley during the dry season (Russell et al., 2013) Mosquitoes are reported 

to be able to migrate several kilometres a day (Nelms et al., 2013; Reisen and Reeves, 1990; Robert 
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et al., 2011) and can be transported even further by wind. Movement over short distances, viz 2 km, 

have been long known for A. gambiae although it was not tested between seasons (Baber et al., 

2010). However, the effectiveness and feasibility of migration as a seasonal survival strategy is  

questionable, because it is influenced by a variety of factors such as proximity of favourable 

microclimates, flight range, strength of prevailing wind and dispersal scale (Roberts, 1978). Russell 

et al. (2013) showed that only 20 % of A. funestus can disperse further than 0.8 km and only few 

females of A. gambiae can disperse further than 3 km. Logically, these distances are too short for 

these mosquitoes to escape adversity unless they can hide in microclimates.  Migration will most 

probably be possible in species such as A. pharoensis which can disperse 6 km and even 100 km if 

aided by wind (Russell et al., 2013). 

Evidence of migration in mosquitoes has been found in a study conducted by Baber et al. 

(2010) on the population size and movement of A. gambiae s.s. between two villages located in 

Mali. One of the villages called Fourda is a fishing area adjacent to the Niger River and has medium 

to high densities of A. gambiae s.s. The other village named Kenieroba is an agricultural site 12 km 

inland and experiences strong seasonal fluctuations in A. gambiae densities. Baber et al. (2010) 

used a Mark-Release-Recapture survey to observe population size and migration of A gambiae s.s. 

during the wet and dry seasons. Mosquitoes collected in Fourda, were marked and then released to 

the surroundings in March (dry season) and July (rainy season). The marked mosquitoes were 

searched for in the Keneiroba village during the same periods. No marked mosquitoes were 

captured in March while two were captured in July. Migration was expected to occur in March 

rather than July since March is a dry season in that area. The presence of a water body in Fourda 

could have been the reason why mosquitoes did not move in March, but they remained in Fourda 

close to water.  Although this comprises proof of migration between the two areas, the areas are too 
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close (2km apart) to simultaneously experience different weather conditions. Hence the movement 

of those marked mosquitoes recaptured in Keneiroba was not necessarily driven by adverse 

conditions in Fourda (Baber et al., 2010). 

A different investigation highlights the evidence of long distance migration in A. gambiae 

s.s as a survival strategy. Dao et al. (2014) investigated signatures of aestivation and migration in 

Sahelian malarial mosquito during the long dry season. The population growth of three malarial 

vectors including A. gambiae s.s. was observed using time series analyses to estimate their seasonal 

cycles. Unlike A. coluzzii which displayed population growth consistent with aestivation, long 

distance migration was deduced for A. gambiae s.s. and A. arabiensis. This was derived from the 

duration of population growth post the dry season. It was found that the population of A. coulozzii, 

grew immediately after the first rains yet in A. gambiae s.s. and A. arabiensis, there was a two-

month delay in population growth. The delay better fitted a long-distance migration explanation as 

opposed to local persistence from aestivating mosquitoes as it shadowed a window period for 

travelling. However, the findings of long distance migration in A. gambiae appear to flout the flight 

range highlighted previously (3 km). Based on this flight range, one would assume that wind 

facilitated the migration of these mosquito. Adamou et al. (2011) hypothesised that wind (jet 

streams) aid long distance migration in S-form A. gambiae. although it is not clear how far these 

mosquitoes can travel without the aid of jet streams.  

2.2.6 Hiding 

Wallace and Grimstad (2002) investigated physiological ecology of overwintering 

Anopheles mosquitoes in south-western Michigan. Their findings showed that A. quadrimaculatus 

had the capability to survive winter temperatures as low as -15 °C. This was achieved by hiding in 

anthropogenic and natural protected areas during winter, with feeding restricted to warm days. The 
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study did not specify the temperatures of the hiding places; however, it is assumed that the 

microhabitats in this case were warmer than the ambient surroundings. It is also not known whether 

the mosquitoes survived by merely hiding, or if they also adopted other physiological techniques 

during that time. 

2.3  The gonotrophic cycle in Anopheles mosquitoes  

Gonotrophic cycle of mosquitoes has a greater impact on their population dynamics. At the 

same time, its dependency on ambient temperatures has led to the season and climate related trend 

in their distribution and abundance. Several studies have been carried out on the life cycle of the 

mosquito. Researchers like Baldini et al. (2013), Gillett (1971), Klowden and Russell (2004), Mala 

et al. (2014) and Muirhead-Thomson (1951) have contributed a lot to our understanding of the 

reproductive or gonotrophic cycle of the Anopheles mosquito in relation to changes in temperature. 

Their research has focused on how temperature influence the gonotrophic cycle of the mosquito 

(Gillett, 1971; Muirhead-Thomson, 1951). Gonotrophic cycle of a mosquito is simply defined as 

the events that take place from the time a mosquito start seeking a blood meal until viable eggs are 

laid (Muirhead-Thomson, 1951). General, it takes about 48 h for some mosquito species to mature 

eggs once they acquire a blood meal (Gillett, 1971; Klowden and Russell, 2013; Muirhead-

Thomson ,1951). However, this duration can vary depending on the surrounding temperatures and 

species. For example, it takes 4.1 days for  A. gambiae to mature eggs  when average temperatures 

range between 7.59 °C  and 23.65 °C but  three days when average temperatures range between 

12.5 °C  and 28.4 °C (Mala et al., 2014). Despite the effects of ambient temperatures on the 

gonotrophic cycle of the mosquitoes, other factors such as the presence of a blood meal and sperm 

could interfere with the duration of the cycle. Thus, the interacting effects of age, status or sex of 

the mosquito can influence their response towards temperature changes (Lyons et al., 2014). For 
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example, for non-autogenous mosquitoes, egg development is arrested until a blood meal has been 

consumed (Gillett, 1971). Also, for the eggs to be laid, the mosquito needs to be inseminated so 

that fertilisation can take place (Mala et al., 2013). Because metabolic rates are an integral response 

to multifactorial variables, it was imperative for the present study to account for factors such as age, 

gonotrophic and mating status of the mosquitoes when assessing the effects of temperature on 

metabolic rates.  

2.4  Temperature and mosquitoes 

Temperature influences the population dynamics of mosquitoes in space and time in 

different ways (Beck-Johnson et al., 2013). Firstly, it determines their ecological and seasonal 

distribution based on the geographic and climatic conditions. For example, in South Africa the 

abundance of mosquitoes is seasonal and vector mosquitoes are endemic to low lying areas such as 

Mpumalanga, Limpopo and KZN (Diseases et al., 2017). Secondly, temperature has a direct impact 

on the physiology of mosquitoes and as such it can enhance or hinder their survival (Lyons et al., 

2014). Since temperature is a function of both season and geography, mosquito populations are 

usually unevenly distributed across both temporal and spatial scales. This therefore explains why 

there are low mosquito densities in east African highlands or during colder months (Beck-Johnson 

et al., 2013). Thirdly, in general temperature directly affects the duration of the entire life cycle of 

most insects including mosquitoes. The development of both the embryo and larva depends on 

ambient temperatures. These stages may cease or delay development if ambient temperatures are 

unfavourable (Bayoh, 2001) and mortality rates of immature stages will be affected. This may 

consequently determine the number of larvae that successfully develop into adult mosquitoes, thus 

influencing the population structure of the adult mosquitoes. 
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Adult mosquitoes have the most pronounced ecological effects compared to other stages in 

the life cycle. This is because adult mosquitoes are responsible for the transmission of diseases and 

are easily detected macroscopically in the ecosystem. The physiology and survival of adult 

mosquitoes is dependent on temperature just as in juvenile stages. For example, the number of times 

an individual adult mosquito can lay eggs in its lifetime (gonotrophic age) depends on the ambient 

temperatures (Gillett, 1971).  This has an impact on the total number of eggs a mosquito can lay 

before it dies, thereby influencing mosquito abundance at any time (Klowden and Russell, 2004).  

Different developmental stages of the mosquito respond to changes in ambient temperature 

differently (Bayoh, 2001; Beck-Johnson et al., 2013). Immature stages usually occupy more 

thermally stable aquatic environments, so they tend to be buffered from changes in ambient 

temperatures of the surroundings. In contrast, adult mosquitoes are subjected to more thermally 

variable terrestrial environments. Thus, mortality rates of juvenile stages are lower than adults’ over 

smaller temperature changes (Beck-Johnson et al., 2013). Bayoh (2001) discovered an interesting 

relationship between temperature and survival of both larvae and adult mosquitoes. It was reported 

that larvae of A. gambiae sensu stricto survived for less than seven days if they were reared at 10 

°C, 12 °C, 38 °C and 40 °C but survived for more than five weeks without developing into adults 

if reared at temperatures between 14 °C and 18 °C. The larvae could only develop into adults if the 

temperatures were above 16 °C but lower than 34 °C and optimal larval development took place at 

28 °C. 

 Beck-Johnson et al. (2013) developed simulations of parameterised models (dependent 

delayed differential equations (DDE)) to predict the temperatures at which adult Anopheles 

mosquitoes could survive the best. Their model took into consideration the realisation that 

temperature relations are complex, nonlinear and persist throughout the life cycle of the mosquito. 
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Therefore, it accounted for all the developmental delays such as time to hatch and mortality rates 

which may impact on the physiology of adult mosquitoes to make the predictions. The models were 

performed at temperatures ranging from 16 °C to 40 °C and predicted that the abundance of 

mosquitoes will be greater than one at temperatures between 17 °C and 30 °C. Adult survivorship 

showed a sharp decrease at temperatures lower than 17 °C (Beck-Johnson et al., 2013). According 

to Bayoh (2001), optimal survival of adult mosquitoes occurs at temperatures ranging from 15 °C 

to 25 °C and humidity of 60 % - 100 %. It can be deduced from these studies that the population 

dynamics of mosquitoes strongly depends on ambient temperatures. Due to the correlation between 

temperature and seasons, the distribution of mosquitoes assumes a seasonal related pattern.   

2.4.1 Seasonality and distribution of mosquito populations  

Roberts (1978) found that insects can be classified into two distinct groups as per response 

to seasonality within their life cycle. Homodynamic insects can survive all seasons throughout the 

year without difficulties whereas heterodynamic insects must synchronize their behaviour and 

physiology with changes in seasons to survive. Thus, population sizes of heterodynamic insects 

such as malarial vectors fluctuate throughout the year as observed in most biomes of sub-Saharan 

Africa which experience strong seasonal climatic variability (Baber et al., 2010). The biomes of the 

sub-Saharan region vary climatically from extremely dry to wet and hot to cold. The vast of sub-

Saharan regions in Africa have seasons which alternate between wet and dry (Roberts, 1978). Only 

a small part of the region are temperate and experience periods of low and high temperatures. 

Surprisingly, gambiae s.l. is widely distributed throughout this region despite the high 

environmental variation across its range (Huestis et al., 2012). Even though this attribute of A. 

gambiae mosquitoes is understood to originate from their high genetic plasticity (Huestis et al., 

2012), this does not explain why then some regions are free of certain species of mosquitoes. For 
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example, for other unknown reasons, anopheline mosquitoes are reported to be absent in the 

Seychelles (Robert et al., 2011). According to Lanzaro and Lee, (2013), exposure to environmental 

variation can lead to adaptive radiation of populations in their local conditions resulting in 

speciation and differentiation of niches.  

Temperature and moisture vary with varying seasons (Lehmann et al., 2014) and as such 

population dynamics of mosquitoes are seasonal (Diseases et al., 2017). This has been confirmed 

by observations made over the years by several researchers such as Leeson (1931), Afrane et al. 

(2012) and Lehman et al. (2014). Climate is considered important in shaping observed mosquito 

distribution trends in sub-Saharan Africa (Huestis et al., 2012; Lehmann et al., 2010) and elsewhere. 

For example, malaria distribution exhibit both seasonal and regional patterns in response to 

prevailing temperature and rainfall in sub-Saharan region (Craig et al., 1999) including KwaZulu 

Natal (Craig et al., 2004). Low-lying areas such as Mpumalanga, KwaZulu Natal and Limpopo 

have higher populations of malarial vectors which are absent in the Highveld areas such as the 

Drakensberg Mountains and most parts of Gauteng Province (Disease et al., 2017). For those areas 

where malaria is endemic, malaria incidences have been found to be higher during warmer seasons 

than cold seasons (Coetzee et al., 2013, 2000; Craig et al., 2004). There are more malarial 

incidences during the rainy season (September to May) than in cold months (June-August) (Disease 

et al., 2017). Also, pointing to the influence of rainfall, A. gambiae s.s. could not be detected in the 

Sahel during the long dry season (Dao et al., 2014). Therefore, the spatial and season related 

temperature changes strongly impact on the distribution and abundance of mosquitoes. Variations 

in temperature and humidity influence the availability of breeding sites, behaviour and physiology 

of the mosquitoes resulting in seasonal population fluctuations (Coetzee et al., 2000; Roberts, 

1978).  
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Several authors such as Denlinger and Armbruster (2014), Huestis et al. (2011) and Wallace 

and Grimstad (2002) have noted that conditions most threatening to the survival of mosquitoes are 

low temperatures in temperate regions and long dry summers in the tropics.  Aridity and low 

temperatures have been found to impede the continuous development of blood feeding insects such 

as non- autogenous female mosquitoes (Denlinger and Armbruster, 2014). Under these conditions, 

food is either scarce and energy sources of the mosquito are limited leading to reduced fitness which 

in turn threatens their survival.  The ability of mosquitoes to survive these circumstances strongly 

depends on their capability to accordingly  adjust their behaviour and physiology (Roberts, 1978).  

Previous studies such as those undertaken by Craig et al. (2004), Canzaro et al. (2006), 

Barber et al. (2010), Lehman et al. (2014) and Dao et al. (2014) have all provided evidence of 

seasonal survival mechanisms in mosquitoes. According to Russell et al. (2013), female mosquitoes 

survive colder climates by hibernating or remaining quiescent in safer areas. Wallace and Grimstad 

(2002) and Denlinger and Armbruster (2014) suggest that mosquito species found in the northern 

hemisphere such as C. tarsalis and C. pipiens overwinter by undergoing diapause.  

  Strategies to survive adverse conditions have been reported in several mosquito species 

and specific strategies vary with respective species. A few factors such as species, geographical 

location, and stress tolerance could possibly influence the nature of a survival strategy employed 

by mosquitoes. A good example is the difference in stress tolerance levels in A. quadriammalatus 

and Anopheles gambiae sensu stricto mosquitoes. The former can survive temperatures as low as -

15 °C in the northern hemisphere (Capinera, 2008) whereas the latter survives in temperatures from 

15 °C and 25 °C (Bayoh, 2001). Consequently, the two species employ different strategies to 

survive adverse conditions. For example, C. pipiens (North America) refrain from blood feeding 

and seek dark humid hibernaculum at the onset of diapause but A. gambiae s.s aestivates in the 
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Sahel  (Denlinger and Armbruster, 2014). The seasonal distribution and abundance of adult A. 

gambiae and A. arabiensis in the dry tropical areas is often justified by desiccation tolerance and 

aestivation (Gray and Bradley, 2005). In temperate regions, Culex mosquitoes are understood to 

overwinter using diapause (Nelms et al., 2013). Long distance migration, hibernacula, reduced 

activity and alteration of metabolic rates are some of the strategies found to be employed by 

mosquitoes to overwinter (Adamou et al., 2011; Dao et al., 2014; Denlinger and Armbruster, 2014; 

Huestis et al., 2011; Lehmann et al., 2010; Mitchell and Briegel, 1989; Wallace and Grimstad, 

2002).  

There is a dearth of information with regards to how Anopheles mosquitoes in cooler sub-

Saharan areas survive winters. Most of the work by researchers such as Huestis et al. (2011; 2012), 

Dao et al. (2014) and Lyons et al. (2012; 2014) focused more on how the mosquitoes addressed 

desiccation problems associated with the long dry and hot season. The general limitation of 

breeding sites during winter raises the question of how mosquitoes persist in ecosystems during and 

past this season. Logically, one expects minimal / no breeding to occur if there is a limitation / lack 

of breeding sites. Consequently, one would expect, at best, a slow increase in the population of 

mosquitoes the next rain season. Surprisingly, a ten-fold mosquito population within five days after 

the first summer rains in sub-Saharan Africa (including temperate areas) has been reported (Dao et 

al., 2014; Huestis et al., 2012; Lehmann et al., 2010). It remains to be explained how this dramatic 

increase in adult A. gambiae populations occurs despite low populations and low malarial 

incidences in winter (Denlinger and Armbruster 2014). However, since each individual female 

mosquito can lay multiple eggs at a time, this can then account for the observed population 

explosion. Similar observations have been made in South Africa (per personal communication 

Maria Kaiser from National Institute for Communicable Diseases).  The time taken for the 
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population to re-establish is usually too short to accommodate a window period for development of 

a new generation of young adults which would take at least nine days under optimum conditions 

(Dao et al., 2014).  

2.5  Metabolic rates in mosquitoes 

Metabolic rates have been measured in mosquitoes for over a decade (Table 2.1) and are 

used to monitor the physiological changes in organisms as they give an indication of an animal’s 

behaviour and fitness (Gray and Bradley, 2003; Hahn and Denlinger, 2011; Huestis et al., 2011) 

which influences the energy expenditure of an organism per unit time. In general the lower the 

metabolic rate, the less energy is being spent (Canzano et al., 2006). Based on the outcome of the 

studies conducted by several authors (Table 2.1) who have investigated metabolic rates of 

Anopheles mosquitoes, it appears as if their metabolic rate measurements are relatively similar 

(Table 2.1). According to Denlinger 1979 the metabolic rates of mosquitoes are similar regardless 

of their species name. This is partly supported by the findings of Huestis et al. (2011) and Gray and 

Bradley (2005). Both authors found no statistically significant difference in the resting metabolic 

rates of A. gambiae and A. arabiensis. For this reason, the findings of the present study, could be 

used to infer other members of the gambiae complex especially the malarial vectors since they are 

closely related.  

One of the crucial factors influencing metabolic rates investigated in this study is 

temperature. Denlinger and Armbruster (2014) showed that metabolic rates of mosquitoes are 

positively correlated to ambient temperatures especially in areas which experience negative daily 

temperatures. Lowering of metabolic rates in response to decreased temperatures is common in 

these mosquitoes during diapause. However, lowered metabolic rates do not always infer that an 

insect is in diapause (Denlinger and Armbruster, 2014; Gullan and Cranston, 2010). For example, 
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in the Sahel, although A. gambiae and A. arabiensis were not in diapause, it was found that their 

metabolic rates were lower at 25.1 °C than they were at 32.4 °C (Huestis et al., 2011). This is an 

indication that change in temperature affects the metabolic rates of the mosquitoes in the absence 

of diapause. Changes in behaviour, flight and feeding activity of the mosquito due to temperature 

differences were found to have contributed towards the outcome of the study (Huestis et al., 2011). 

Other physiological states that result in lower metabolic rates include quiescence, cold torpor or 

general inactiveness in response to falling external temperatures for example Culex mosquitoes 

from temperate southern hemisphere were found to lower their metabolic rates using quiescence 

not diapause (Eldridge, 1987; Eldridge and Bailey, 1979; Reisen, 1995). 

Other than temperature, factors such as body size, blood digestion, egg development and 

larval acclimation could impact on the nature of metabolic rates of mosquitoes (Gray, 2003, 2013; 

Lancheincht et al., 2010; Niehaus et al., 2012; Terblanche et al., 2015). Blood digestion increases 

the metabolic rates of mosquitoes due to extra energy spent digesting a blood meal (Gray and 

Bradley, 2003, Houk et al., 1979).  
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Table 2. 1. Measurements of metabolic rates from different species of female mosquitoes from previous studies. 

Mosquito 

species 

Mosquito 

status 

Age 

(days) 

Temperature 

(°C) 

Mass 

(mg) 

Rate of CO2 

production nl.min-1 
Reference 

A. gambiae 
sucrose fed 

female 
0 28 

 

23.33 Gray and Bradley (2005) 

  2 28  28.33  

  4 28  36.67  

  8 28  18.33  

  10 28  30  

M-form A. 

gambiae 
unfed female 25.1-32.8 

 

16 Huestis et al., 2011 

 unfed female 25.1-32.8  35  

 unfed female 25.1-32.8  20  

A. arabiensis unfed female 25.1-32.8 

 

15 Huestis et al., 2011 

 blood fed female 25.1-32.8  40  

 gravid   25.1-32.8  25  

 sucrose fed 

female 
0 28 

 

23.33 Gray and Bradley (2005) 

  2 28  28.33  

  4 28  41.67  

  8 28  26.66  

  10 28  31.67  
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C. tarsalis   4 25 

 

55.5 Gray and Bradley (2003) 

 unmated 

female 
4 25 1.73 53.79 Gray and Bradley (2005) 

 

unmated 

female 
8 25 1.92 52.76  

 

unmated 

female 
12 25 2.18 60.39  

 

unmated 

female 
16 25 2.23 58.51  

 

mated 

female 
4 25 1.8 53.34  

 

mated 

female 
8 25 1.85 51.34  

 

mated 

female 
12 25 2.11 54.63  

 

mated 

female 
16 25 2.12 51.72  

A. 

quadriannulatus 

 

4 

  

59-70 

Lanciami and Anderson 

(1993) 
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Based on the findings of relevant studies described above, A. quadriannulatus was expected 

to respond in a similar way to temperature changes. Since it has been stipulated that metabolic rates 

of different mosquito species are relatively similar, at constant temperatures, measurements of 

metabolic rates of A. quadriannulatus should be comparable to those measurements summarised in 

Table 2.1.  Discrepancies in the measurements of metabolic rates of A. quadriannulatus are however 

anticipated due to differences in methodology used by the previous studies. 

One of the important questions this investigation seeks to answer is whether adult A. 

quadriannulatus is capable of overwintering in the Sub- Saharan region. In the northern 

hemisphere, temperatures regularly fall below 0 °C (Capinera, 2008; Wallace and Grimstad, 2002) 

and Culex mosquitoes in these areas overwinter by diapause, quiescence, hibernation and 

sometimes migration. The exact survival mechanism adopted by respective species differs and  

probably depends on latitude  which dictates environmental cues like ambient temperatures and 

photoperiod (Reisen et al., 1995). For instance, the temperate southern hemisphere Culex  

overwinter by temperature-induced quiescence, yet their northern counterparts undergo diapause 

(Eldridge and Bailey, 1979; Reisen et al., 1995). 

For vector control purposes, similar research is yet to be undertaken for A. gambiae 

mosquitoes, given their importance as potential malarial vectors in temperate parts of Africa. The 

projected effects of climate change require the need for investigating physiological effects of 

temperature on mosquitoes, especially in areas which are currently free of malarial vectors, as 

warming up those places could become conducive for invasion by vectors. According to Russell et 

al. (2013), mosquitoes in the subtropics and adjacent areas of warmer temperate regions respond to 

low temperatures by lowering their biological processes. For example, ovarian development may 

take 10-14 days under low temperatures as opposed to 2-3 days which occurs in optimum conditions 



   35 
 

and it may take up to 2-3 months for the eggs to develop into adults (Russell et al., 2013). Otherwise 

they simply escape areas of adversity (Russell et al., 2013) by flying off to areas with more tolerable 

environmental conditions. However, because A. gambiae mosquitoes can only disperse three km at 

most (Russell et al., 2013). The population size of overwintered mosquitoes influences their 

abundance in the following wet season since they act as reservoirs for propagating the next 

generations (Denlinger and Armbruster, 2014).  

Suppose mosquitoes migrate long distances to evade adverse conditions as they do in S-

form A. gambiae (Adamou et al., 2011), one would expect a window period before they can recover 

once the conditions become ideal (Dao et al., 2014; Lehmann et al., 2014).  For example, in the 

Sahel, A. arabiensis immigrated back from places of refuge, two months after the first rains (Dao 

et al., 2014). In this way, mosquito populations will not be expected to increase rapidly within five 

days after the first rains unless the mosquitoes were locally concealed in overwintered forms either 

as adults or other immature stages. The ability of mosquito populations to reappear within the first 

five days of spring infers an adult or pupal overwintering. This is because only the pupae can emerge 

into adults within that time frame.  

In cases where mosquitoes overwinter as adults, the gonotrophic state of those mosquitoes 

could strongly influence their abundance in the following season. If non-autogenous mosquitoes 

such as A. quadriannulatus overwinter in a gravid state, these individuals will be ready to lay viable 

eggs immediately when the conditions become sufficiently favourable. Thus, at the advent of spring 

rains, the 10-fold population structure could possibly be a result of overwintered adults together 

with newly emerged adults developed from the eggs laid by overwintered adults. In instances where 

juvenile forms are capable of overwintering e.g A. gambiae embryonic diapause, additional adults 

could emerge from the development of overwintered juvenile forms which were generated at the 
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end of the previous breeding season. If these assumptions are true, this could explain the 10-fold 

multiplication in populations of mosquitoes soon after the spring rains. Contrary, if non-autogenous 

female mosquitoes overwintered as virgins and without blood meals, one would not expect a 

population explosion at the beginning of spring but rather a gradual increase as the population builds 

up from a much smaller founder population. 
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Chapter 3 

3.0 Methods and Materials 

3.1 Study species  

Laboratory reared adult female mosquitoes of A. quadriannulatus were used for all 

measurements of metabolic rates. The species was chosen based on the reasons described in section 

1.3. Male adult mosquitoes were only used for mating purposes. These mosquitoes were collected 

from colonies maintained in the Botha de Meillon Insectary at the Vector Control Reference Unit 

(VCRU) in Johannesburg. The laboratory strains were established from the Sangwe field colonies 

originally collected from Zimbabwe and colonised in 1998. At the insectary, the colonies are 

maintained at 25 °C ± 1 °C and 75 - 80 % relative humidity.  

3.2 Maintenance of mosquito samples 

Pre-arranged dates for collection of mosquitoes were organised. Newly emerged adult 

mosquitoes were collected from the insectary on their day of emergence. Once they had emerged, 

mosquitoes were sorted into males and females in separate plastic cages. Mosquitoes used for 

testing the effects of blood feeding were given a blood meal before they could be transported to 

research laboratory at the University of Witwatersrand, Johannesburg. At the research laboratory, 

the mosquitoes were fed with 10 % sugar solution. This was done by placing cotton wool buds 

dampened with 10 % sugar solution on top of the mosquito cages. The cotton wool buds were 

moistened every three days. 

3.3 Experimental treatments 

The four treatments were: 

Treatment 1 = control group was unmated and sugar fed  
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Treatment 2 = mated and sugar fed  

Treatment 3 = unmated and blood fed   

Treatment 4 = mated and blood fed   

3.4 Mating mosquitoes 

Female mosquitoes were transferred into a cage with male mosquitoes for mating to take 

place. This was done at the research laboratory on the day of collection before dusk because 

mosquitoes mate at dawn or dusk (Muirhead-Thomson, 1951). It is difficult to mate Anopheles 

mosquitoes under laboratory conditions (Muirhead-Thomson, 1951). Mixing / swarming male and 

female mosquitoes together in cages therefore does not guarantee mating of all female mosquitoes 

(Muirhead-Thomson, 1951). Thus, at the end of the experiment, possibly mated mosquitoes were 

stored in eppendorf tubes and kept in a freezer. They were later taken back to the VCRU for 

dissection to confirm mating. Mating was confirmed by the presence of a sperm in female 

spermathecae after dissections. If found unmated, the results were added to the results of 

corresponding unmated groups.  

3.5 Blood feeding mosquitoes 

Female mosquitoes used in treatment three and four were fed with human blood on their 

day of emergence at the VCRU before collection. Each blood fed mosquito was checked for 

presence of blood in the abdomen using naked eye to confirm feeding. Those mosquitoes that had 

not blood fed or were not fully fed were discarded and not used for measurements.   

3.6  Aging of mosquitoes 

Age of the mosquito was determined by the number of days past their emergence day. I 

took the day of emergence for mosquitoes as day one. For this experiment, I only used mosquitoes 



   39 
 

aged two, three and four days. Younger mosquitoes were preferably used to reduce experimental 

variability.   

3.7 Respirometry 

A closed respirometry system was used to indirectly determine the metabolic rates of 

mosquitoes. This was done by estimating the rates of carbon dioxide emitted by the mosquitoes 

(VCO2). Thus, VCO2 is used as a proxy for metabolic rates. This method was more feasible for 

this study than the open respirometry system. 

The amount of CO2 released by mosquitoes was measured using a CO2 analyser (Li – 7000 

CO2 / H2O Analyzer, Li – Cor, Licoln, NE, USA) in a way similar to that described by Kambule 

et al. (2011) and Kaiser et al. (2014).  Three 30 ml glass syringes (Becton Dickson, Franklin Lakes, 

NJ, USA) were used as respirometry chambers (Kambule et al., 2011). Each of the syringes had a 

small hole drilled through its wall closer to the top end (plunger’s side). The other end of the 

syringes was attached to a needle which was secured by a three-way stopcock. The first syringe 

was left empty and served as a control i.e. to detect CO2 leakage into the system. Individual 

mosquitoes were each inserted into the remaining two syringes. After inserting the test mosquitoes, 

the syringes were flushed one at a time through the drilled hole with humid CO2 free air for three 

minutes. Humid carbon dioxide free air was obtained by pumping room air through a soda lime 

scrubber and humidifier. The soda lime scrubber removed carbon dioxide present in pumped air. 

To humidify the air, it was bubbled through distilled water in a flask. After flushing, the plunger 

of the syringe was brought down to a 25-ml mark, thereby flushing out all the purged air through 

the needle and blocking the hole. The stopcock was closed and the three syringes were incubated 

at a desired temperature (10°C, 15°C, 25°C, 30°C) inside a labcon low temperature incubator 

(Model L.T.I.E, LABEX, Orange Grove) for 20 minutes.   
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Air scrubbed of carbon dioxide and water using soda lime and magnesium perchlorate was 

drawn through the analyser at a flow rate of 100 ml. min -1. The flow of air was controlled using a 

mass flow meter (SABLE - SYSTEMS 2-CHANNEL MASS FLOW CONTROLLER v1.0).   

After incubation, respiratory chambers were connected to the air system through ports before the 

water scrubber. Air boluses of 10 ml were consecutively released from the syringes into the air 

system and recorded one at a time. This was repeated twice i.e. two measurements per syringe. 

The amount of CO2 injected into the air stream as measured by the CO2 analyser was recorded 

using Expedata software (Sable Systems, Las Vegas, USA). The software recorded the amount of 

CO2 in ppm together with the time lapse between consecutive air injections. On completion of the 

measurements, the mosquitoes were taken to the deep freezer for 10 -15 minutes to make them 

inactive before they were weighed using a mass scale (Libror AEG-45SM). 

Measurements of metabolic rates were conducted randomly on selected days, temperature 

and treatment group. Each experimental measurement was replicated four times and used two 

mosquitoes at a time. Individual female mosquitoes were randomly selected for each experiment 

and used only once. 

3.8 Data analysis 

3.8.1 Calculations 

The amount of CO2 produced was transformed from parts per million (ppm) to ml. min-1 

using equation (3.1).  

VCO2 (ml. min--1) in bolus of air = (C1 / 1 000 000) x 100 ml min-1)   (3.1) 

   where: C1 is ppm CO2 

100 ml min-1 is the flow rate 
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To remove leakage from the system, we used the following equation: 

ml CO2 = volume of CO2 recorded from test syringe - volume CO2 recorded from control syringe 

   (3.2) 

Integration was used to measure the area under the CO2 curve using the expedata software. This 

gave the volume of CO2 (ml) in each bolus of air sent to the analyser. 

The volume of CO2 in each bolus of air was scaled up to the volume of the chamber and the total 

CO2 emitted (ml) was calculated using the following equation: 

Total CO2 (ml) = ml CO2 x (volume of container (ml) / Volume injected (ml))  (3.3) 

Volume of container (ml) = volume of syringe in which the mosquito was confined = 25 ml 

Volume injected (ml) = volume of bolus injected = 10 ml 

The emission rate of CO2 in ml.min-1 was calculated as following: 

Emission rate CO2 (ml.min-1) = Total CO2 emitted ÷ Time enclosed (minutes) 

Total CO2 emitted was calculated using equation      (3.4) 

Time enclosed = incubation time before injection 

The units of volume were then converted to nanoliter per minute (nl.min -1). To calculate mass 

specific CO2 emission rate (nl.min -1mg -1), the result was divided by the mass of the mosquito.  

3.9 Statistical Analysis 

Statistical tests were performed using the SPSS program. I randomized the experiments 

and assumed normal distribution hence there was no need to transform the data. The effects of the 



   42 
 

variables on the response factor were tested at 95 % confidence interval and considered significant 

if the P value was less than or equal to 0.05 (Nunes et al., 2015). To test effects of continuous 

explanatory variables (temperature and age) on rate of carbon dioxide emission (response), linear 

regression analysis was used to detect a relationship between variables and response. Thereafter, 

if a significant correlation was detected, analysis of variance (ANOVA) was run to compare if the 

mean VCO2 released at different temperatures was significantly different. If the effects of the 

explanatory variables (mean VCO2) differed significantly, a multiple mean comparisons test 

(Bonferroni) was conducted to determine at which temperatures the mean VCO2 were significantly 

different (Kao and Green, 2008). Because status or treatment type of the mosquitoes is categorical 

data, one-way ANOVA was used to compare the mean VCO2 for treatment groups. Two-way and 

three-way factorial ANOVA were used to compare the significance of the interactions of 

independent factors used in this experiment.  

Metabolic rates (VCO2) are given as mean ± standard error for different temperatures. To 

compare the reduction of metabolic rates between temperature ranges, I determined percentage 

decreases using mean differences. Percentage decrease was calculated as follows: 

Percentage decrease = (Mean T2 – Mean T1 / Mean T2) x 100 

where Mean T2 – Mean T1 is mean difference in VCO2 between two temperatures 
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Chapter 4 

4.0 Results 

4.1  Effects of temperature on VCO2 without accounting for age, feeding and mating 

status of mosquito 

As temperature increased, the volume of carbon dioxide produced by mosquitoes also 

increased after pooling all groups of age and state (r2 = 0.34, F = 17.4, P = 0.0001, Fig. 4.1). 

Performing, an ANOVA indicated that changes in temperature significantly varied metabolism of 

the mosquitoes in all age and status groups (F= 87.47, P = 0.0001, Table 4.1). Post hoc 

comparisons using the Bonferroni test indicated that the mean VCO2 (rate of CO2 emission) 

measured at 30 °C (mean = 151.6 ±SE 10 nl.min-1 mg -1) were significantly higher (approximately 

an 88 % increase) than that measured at 25 °C (mean = 80.4 ±SE 4.4 nl.min -1mg -1). The two 

means were also significantly different from the rest of the means even though very high variance 

was recorded at 30 °C. Surprisingly, this was not the same at cooler temperatures. The metabolic 

rate of carbon dioxide produced by mosquitoes at 15 °C and 10 °C were statistically similar (Table 

4.1). These observations indicate that the impacts of temperature on corresponding metabolic rates 

were not uniform from 30 °C to 10 °C. Instead, the decreases in VCO2 became smaller as 

temperatures were lower (Table 1). 
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Figure 4.1. Change in mass specific VCO2 with an increase in temperature (r2 = 0.34; F = 

17.4; P = 0.0001; VCO2 = 5.20 temperature – 25.56). 

 

 

 

 

 

Table 4. 1. Mean VCO2 of all mosquitoes measured at different temperatures. 

Temperature (°C) Mean mass ±SE(mg) Mean VCO2 ±SE (nl.min -1 mg -1) 

30 °C 1.28 ±0.03 151.62a ±10 

25 °C 1.26 ±0.03 80.43b ±4.37 

15 °C 1.46 ±0.04 48.35c ±3.42 

10 °C 1.44 ±0.03 33.91c ±3.12 

Means with different superscript letters are significantly different using Bonferroni test 
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4.2 The effects of temperature on VCO2 from unmated and sugar fed mosquitoes 

(Treatment 1) 

Unmated sugar fed mosquitoes were considered the control group. After pooling all ages 

in the group, a linear regression indicated that these mosquitoes responded positively to increases 

in temperature (r2 = 0.39, F = 50.9, P = 0.000).  After performing a two - way ANOVA, it was 

discovered that age alone did not impact VCO2 (F = 0.19, P = 0.83) neither did its interaction with 

temperature (F = 1.056, P = 0.389).    

Since age had no effects on metabolic rates of unmated-sugar fed mosquitoes, the 

metabolic rate of mosquitoes for all three age groups measured at each temperature were averaged 

(Table 4.2). A one-way ANOVA indicated a statistical significant difference in mean VCO2 

produced by mosquitoes when measured at different temperatures (F = 17.35, P = 0.00, Table 4.2). 

At lower temperatures (15 °C, 10 °C), the mosquitoes ceased to significantly alter their metabolic 

rates like they did at higher temperatures (30 °C, 25 °C, Table 4.2). Even though mean VCO2 at 

15 °C was at par with the mean VCO2 at 10 °C, the percentage decrease in metabolism between 

the two temperatures was higher than when the temperature had decreased from 30 °C to 25 °C 

(Table 4.7). 
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Table 4. 2.  Mean VCO2 of unmated sugar fed mosquitoes at different temperatures. 

Temperature (℃) Mean mass ±SE (mg) Mean VCO2 ±SE (nl. min -1 mg -1) 

30 °C 1.24 ±0.07 141.700a±22.00 

25 °C 1.17 ±0.04 94.00b ±2.41 

15 °C 1.60 ±0.09 47.62c±6.44 

10 °C 1.40 ±0.05 24.24c ±2.68 

Means with different superscript letters are significantly different using Bonferroni test 

4.3 The effects of temperature on volume of carbon dioxide when mosquitoes were 

mated and sugar fed (Treatment 2) 

Metabolic rates of mated sugar fed mosquitoes decreased with decreasing temperatures (r2 

= 0.42, F = 76.78, P = 0.000). This trend was the same regardless of the age of mosquitoes (2 day 

old: r2 = 0.40, P = 0.0001; 3 days old: r2 = 0.57, P = 0.0001; 4 days old: r2 = 0.33, P = 0.0003). 

Therefore, the mean VCO2 was averaged across all age groups for each temperature (Table 4.3). 

The mosquitoes significantly changed their metabolic rates as temperature dropped from 30 °C to 

25 °C (Table 4.3). Thereafter, further reductions in temperature did not result in significantly 

different metabolic rates. Surprisingly, a five-degree Celsius reduction in temperature at both 

cooler (10 – 15 °C) and hotter (30 – 25°C) extremes yielded a relatively similar percentage 

decrease in metabolic rates i.e.  59.20 % and 51.50 % (Table 4.7). Compared to the control group, 

mated sugar fed mosquitoes indicated a smaller difference in percentage decreases between hotter 

and cooler temperatures (Table 4.7). However, the trend in percentage decreases was similar in the 
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two treatments.  Thus, both treatments had higher percentage decreases in metabolic rates at lower 

extreme temperature intervals.   

Table 4. 3. Mean VCO2 of mated and sugar fed mosquitoes at different temperatures. 

Temperature (°C) Mean mass ±SE (mg) Mean VCO2 ±SE (nl.min -1mg-1) 

30 °C 1.16 ±0.05 174.07a ±20.17 

25 °C 1.14 ±0.03 84.37b ±6.74 

15 °C 1.56 ±0.07 52.22b,c ±10.44 

10 °C 1.31 ±0.07 21.36c±1.83 

Means with different superscript letters are significantly different using Bonferroni test 

4.4 The effects of temperature on emission rates of carbon dioxide when mosquitoes are 

unmated and blood fed (Treatment 3) 

Metabolic rates for unmated blood fed mosquitoes decreased with decreasing temperatures 

(r2 = 0.24, F = 30.37, P = 0.00). After comparing the mean VCO2 measured at different 

temperatures, it was found that mean VCO2 recorded at 30 °C was significantly higher than the 

rest of the measurements (Table 4.4). This was true for all ages except in three-day old mosquitoes. 

The metabolic rates of unmated blood fed three-day old mosquitoes were independent of 

temperature (r2 = 0.08, P = 0.10). No correlation between age and mean VCO2 was detected after 

pooling results from all temperatures (r2 = 0.03, F = 3.00, P = 0.09). However, it was found that 

only at 10 °C was there a positive correlation between age and metabolic rates (30 °C: r2 = 0.09, P 

= 0.0; 25 °C: r2 = 0.00, P = 0.94; 15 °C: r2 = 0.04, P = 0.60; 10 °C: r2 = 0.17, P = 0.02). At this 

temperature, mean VCO2 increased with the age of mosquitoes (Fig. 4.2).  
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Dropping the temperature from 30 °C to 25 °C resulted in 53 % reduction in metabolic 

rates whilst reducing the temperature from 15 °C to 10 °C yielded a 5.48 % reduction in mean 

VCO2. Unmated blood fed mosquitoes reduced their metabolic rates more (53 %) than unmated 

sugar fed (33.7 %) at warm temperatures. However, the trend was reversed at low temperatures. 

At low temperatures, unmated blood fed mosquitoes reduced their metabolic rates by 5.48 % 

whilst unmated sugar fed mosquitoes reduced their metabolic rates by 49.2 % (Table 4.7).  

 

 

 

Figure 4. 2.  Change in mass specific VCO2 for unmated blood fed mosquitoes measured at 10 

°C (r2 = 0.17, F = 5.62; P = 0.02; VCO2 = 8.31 temperature + 9.14). 
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Table 4. 4. Mean VCO2 of unmated and blood fed mosquitoes at different temperatures. 

Temperature (°C) Mean mass ±SE (mg) Mean VCO2 (nl.min -1 mg -1) 

30  °C 1.40 ±1.34 141.72a±20.00 

25 °C 1.46 ±1.46 66.64b ±5.00 

15 °C 1.27 ±1.27 49.23b±4.49 

10 °C 1.48 ±1.48 46.55b±9.46 

Means with different superscript letters are significantly different using Bonferroni test 

4.5 The effects of temperature on emission rate of carbon dioxide released when 

mosquitoes were both mated and blood fed (Treatment 4) 

Lowering of temperature significantly reduced metabolic rates for two and three-day old 

mated blood fed mosquitoes (Table 4.5). For two and three-day old mosquitoes, metabolic rates 

were significantly different only at 30 °C and 25 °C (Table 4.5).  

Mated and blood fed fours day old mosquitoes maintained constant metabolic rates 

regardless of ambient temperatures (F= 5.03, P = 0.21). Compared to results from other groups, 

four-day old mated and blood fed mosquitoes had lowest metabolic rates at 30 °C (Table 4.9). At 

10 °C, this group also had the highest metabolic rates if compared to all other groups except for 

three-day old unmated blood fed mosquitoes (Table 4.9). Diet and mating status of the mosquitoes 

impacted metabolic rates of fours day old mosquitoes only at 10 °C (F = 5.45, P = 0.037, Table 

4.9). Age had no effects on metabolic rates of mated and blood fed mosquitoes except at 15 °C 

whereby metabolism increased with age (r2 = 0.37, P = 0.08, Figure 4.3).  
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Figure 4. 3. Change in mass specific VCO2 of mosquitoes measured at 15 °C (r2 = 0.37, P = 

0.008; VCO2 = 15.42 temperature + 4.61). 
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Table 4. 5. Mean VCO2 for mated and blood fed mosquitoes at each age and temperature 

group. 

Age (days) Temperature (°C) Mean mass ±SE (mg) Mean VCO2 ±SE (nl.min -1 mg -1) 

2 30 1.33 ±0.11 100a ±22.7 

 

25 1.15 ± 0.06 66.6b ±5.7 

 

15 1.29 ±0.14 33.2c ±6.5 

 

10 1.43 ±0.06 30.2c ±3.6 

3 30 1.46 ±0.07 213.2a ±35.7 

 

25 1.44 ±0.13 84.8b ±24.3 

 

15 1.42 ±0.10 57.7c ±4.47 

 

10 1.69 ±0.12 48.1c ±12.8 

4 30 1.32 ±0.13 87.3b ±19.0 

 

25 1.36 ±0.07 76.4b ±10.2 

 

15 1.36 ±0.13 63.5b ±5.5 

 

10 1.57 ±0.09 54.4b ±10.5 

Means with different superscript letters are significantly different 

 

4.6 Comparison of metabolic rates across treatments, age and temperature 

Overall, it was discovered that change in temperature was the only factor which had a 

significant effect on the metabolic rates of A. quadriannulatus.  Changing the ambient temperature 

did not impact the metabolic rates of mosquitoes of different ages or status. However, differences 

were noted if all the three factors acted on an individual mosquito (Table 4.6).    
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Table 4. 6. Effects of interacting age, temperature and status of the mosquito on VCO2  

Source of variation d.f S.S F P 

Age 2 2149.25 0.198 0.821 

Temp 3 955065.1 58.611 0 

Mosstatus 3 4656.298 0.286 0.836 

Age*Temp 6 35059.56 1.076 0.376 

Age * Mosstatus 6 22340.86 0.686 0.661 

Temp* Mosstatus 9 42846.53 0.876 0.546 

Age*Temp* Mosstatus 18 161934.5 1.656 0.045 

S.S = sum of squares, d.f = degrees of freedom 

4.7 Comparison of percentage decreases in metabolic rates across treatments 

As previously mentioned, mosquitoes decreased their metabolism unevenly based on the 

level of ambient temperature. Comparing percentage decreases of metabolic rates in all treatment 

groups (Table 4.7) indicated a diet dependant trend whereby blood fed mosquitoes (both unmated 

and mated) decreased their metabolism more when the temperatures decreased from 30 °C to 25 

°C than when temperatures were reduced from 15 °C to 10°C. Sugar fed mosquitoes did the 

opposite. They reduced their metabolism more at cold temperatures than at warm temperatures 

even though there was very little difference.  

 In four-day old mosquitoes, sugar fed females (both mated and unmated) reduced their 

metabolism in a similar way regardless of where the temperature was reduced from (Table 4.8). 

Mated and blood fed four days old mosquitoes indicated a similar trend, only that its percentage 
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decrease was the least in both temperature interval. Unmated and blood fed mosquitoes had a huge 

percentage decrease in VCO2 at warm temperatures and far less at cold temperatures. Blood fed 

mosquitoes (both mated and unmated) had the lowest percentage decreases at cold temperatures.  

 

Table 4.7. Average percentage decreases in metabolic rates for different treatments with the 

ages combined. 

 

 

 

  

  

 

Percentage decrease (%) in mean VCO2 

Change in Temperature (°C) Treatment 1 Treatment 2 Treatment 3 Treatment 4 

30 – 25 33.7 51.5 53 43.3 

15 - 10 49.2 59.2 5.48 15.7 
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Table 4. 8. Percentage decrease in metabolic rates of fours day old mosquitoes from all 

treatments. 

 

Percentage decrease in mean VCO2 (%) 

Change in Temperature (°C) Treatment 1 Treatment 2 Treatment 3 Treatment 4 

30 -25 56.9 55.6 68.1 12.5 

15-10 55 53 29.1 14.5 

 

A summary of the results is presented in Table 4.9. The table shows emission rates 

calculated as an average of all the replicates per age group per temperature per state of mosquito. 

Across the table is a comparison of mean VCO2 with state of the mosquitoes per age group at 

different temperatures. A temperature - VCO2 relationship per age and status is indicated down 

the table.   
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Table 4. 9. Mean VCO2 measured at different temperatures for mosquitoes varying in age and status. 

Age (Days) 

Temperature (°C) Mean VCO2 ±SE (nl.min -1mg -1)  

Test values 

  

 

Non-Blood fed Blood Fed 

 
  Unmated Mated Unmated Mated F-Value P-value   

2 30 °C 161.6 ±35.0 160.9 ±33.4 116.8 ±23.2 100 ±22.7 0.94 0.45 

 

 

25 °C 96.1 ±18.2 98.9±10.1 66.6 ±12.2 66.6±5.7 0.95 0.43 

 

 

15 °C 50.2 ±7.0 64.0 ±27.3 35.9 ±5.8 33.2±6.5 0.91 0.45 

 

 

10 °C 25.4 ±3.6  19.3 ±3.4 23.3 ±3.0 30.2±3.6 1.8 0.16 

 

F value  

 

 

8.64 8.38 11.10 11.58 

   
 

P value 

 

0.0002 0.0003 0.0001 0.0001 

   
3 30 °C 139.5±17.5 217.0±34.8 118.3 ±26.2 213.±35.7 2.52 0.08 

 

 

25 °C 90.9±15.6 82.1 ±13.4 67.53 ±7.3 84.8 ±24.3 0.33 0.8 

 

 

15 °C 45.2±10.8 38.1±9.1 56.8 ±7.2 55.7 ±4.47 0.7 0.56 

 

 

10 °C 23.0 ±4.1 18.5 ±3.0 67.3 ±20.0 48.1 ±12.8 2.55 0.07 
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F value 

 

8.73 22.28 1.78 12.59 

   
P value 

 

0.0002 0.0001 0.17 0.0001 

   
 

4 30 °C 157.40 ±34.8 150.3±35.3 206.1±51.4 87.3 ±19.0 1.24 0.31 

 

 

25 °C 67.8 ±4.9 66.7 ±10.1 65.8±8.9 76.4±10.2 0.21 0.89 

 

 

15 °C 52.5 ±13.6 54.9±12.1 55.9±8.7 63.6±5.5 0.27 0.84 

 
  10 °C 23.6±3.2 25.8±2.7 39.3±7.3 54.4 ±10.5 5.45 0.037   

F value 

P value  

7.8 

0.0004 

7.13 

0.0008 

10.19 

0.0002 

1.60 

0.21    

         

Mean ± SE across rows is a comparison of mean VCO2 from different states of mosquitoes at a specific age and temperature 

Mean ± SE vertical down is a comparison of VCO2 as temperature decreases at each age and status 

Test values indicate difference in means 
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Chapter 5 

5.0 Discussion 

5.1 Effects of temperature on metabolic rates without accounting for age, mating and 

feeding status. 

This study found evidence of a direct effect of temperature on the metabolic rates of A. 

quadriannulatus mosquitoes which resembled the general trend found in most insects (Canzano et 

al., 2006; Denlinger and Armbruster, 2014; Reisen et al., 2006; Roberts, 1978). In addition, the 

metabolic rates of mosquitoes were affected differently during a 5 °C drop in temperature at both 

hot and cold temperature levels. These findings concur with measurements made by researchers 

on mosquitoes, such as Huestis et al. (2012), Lehman et al. (2014), Yaro et al. (2012), Lyons et 

al., (2012) and Denlinger and Armbruster, 2014. Changes in ambient temperatures affect the 

metabolic rates of mosquitoes resulting in change in their behaviour and fitness (Bayoh, 2001; 

Beck-Johnson et al., 2013; Denlinger and Armbruster, 2014; Lehmann et al., 2014). 

  The metabolic rates of A. quadriannulatus measured at 30 °C and 25 °C differed 

significantly from each other and the rest of the measurements. This was not the same at colder 

temperatures, whereby there was less variation in metabolic rates as temperature dropped from 15 

°C to 10 °C. According to, Beck-Johnson et al. (2013), mosquito populations are predicted to 

persist between 17 °C and 33 °C and they are more abundant in ecosystems at temperatures 

between 20 °C and 30 °C. Bayoh (2001) discovered that adult mosquitoes survive better when 

ambient temperature prevails between 15 °C and 25 °C and are most abundant in areas where 

temperatures range from 22 °C to 26 °C. These findings are in the range predicted by simulation 
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models conducted by Beck-Johnson et al. (2013). The findings of the present study display a trend 

similar to the outcomes of the two studies above.  

The metabolic rates of A. quadriannulatus were always highest at temperatures between 

25 °C and 30 °C except in mated and blood fed four-day old mosquitoes (Table 4.9).  Due to the 

high metabolic rates at 25 °C and 30 °C, development and survival rates of the mosquitoes at those 

temperatures are high too. Thus, there are more mosquitoes in summer than in winter.  Even though 

high metabolic rates associated with high temperatures could explain why there are more 

mosquitoes in summer than winter they do not explain the short recovery time of mosquitoes at 

the beginning of spring (Lehman et al., 2014). However, the reason why there are few mosquitoes 

in winter is probably due to low metabolic rates recorded at 10 °C and 15 °C. The metabolic rates 

of mosquitoes recorded at 10 °C and 15 °C were always statistically similar and lowest in all 

treatment groups (Table 4.9). Personal observations indicated that the test mosquitoes were very 

inactive at these temperatures. This was expected since it is common in most insects to lower their 

metabolic rates in response to low temperatures (Russell et al., 2013). It was however surprising 

for the metabolic rates measured at 10 °C to be found statistically similar to those measured at 15 

°C. Based on relevant literature such as Wallace and Grimstad (2002), Gray and Bradley (2003, 

2005), Zhou and Miesfeld, (2009) and Denlinger (2014), mosquitoes that can overwinter must be 

able to significantly lower their metabolism in response to a decline in temperatures. Because 

Table 2.1 shows that the intrinsic metabolic rates of different species of mosquitoes are relatively 

similar at equal temperatures, it was expected that A. quadriannulatus would respond to lowered 

temperature in a manner displayed by Culex mosquitoes. Culex mosquitoes found in northern 

hemisphere survive winter temperatures by significantly reducing their metabolism during 
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diapause. If A. quadriannulatus was able to overwinter physiologically, metabolic rates recorded 

at 10 °C were expected to be significantly lower than those measured at 15 °C. 

According to Beck-Johnson et al., (2013) population densities of Anopheles mosquitoes 

fall sharply when temperatures drop below 17 °C because low temperatures reduce their activity 

and development. Due to this inactivity, the distribution of mosquitoes becomes uneven and their 

abundance in ecosystems could be perceived as minimal especially during winter (Lehmann et al., 

2014). Prolonged mosquito inactivity during periods of low temperatures hinders the mosquitoes 

from accessing food. Thus, the survival of the mosquito at the time is highly threatened especially 

in the absence of an energy conserving mechanism. This could mean that the mosquitoes die in 

the cold and hence fewer mosquitoes, if any, are found in cooler areas like the East African 

highlands and in winter (Beck-Johnson et al., 2013).  

Findings of this study concur with this suggestion. The failure of the mosquitoes to reduce 

metabolic rates when temperatures dropped from 15 °C suggests that they lack a physiological 

adaptation to cope with low temperatures. Since metabolic rates were similar at 15 °C and 10 °C, 

it means the mosquitoes will need to find food to maintain their metabolism. This may not be 

possible if there is prolonged flight inactivity caused by reductions in temperatures therefore the 

mosquitoes will most probably die. However, if the winter is interceded by days of warmer 

temperatures, mosquitoes could probably fly out to replenish their food reserves. Leeson (1931) 

reported that in Zimbabwe, A. gambiae s.l, disappear completely from the ecosystem when 

absolute minimum temperature falls below 5 ° C. The present study however, did not investigate 

metabolic rates below 5 °C, because winter temperatures in South Africa rarely reach 5 °C in the 

mosquito’s habitat. 
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Under optimal circumstances, it would be expected that a minimum of nine days will be 

required to generate new adults from supposedly overwintered adults, but the A. gambiae 

populations proliferate within five days of the onset of rains (Lehmann et al., 2010).  Lack of a 

window period for reestablishment of mosquitoes in those areas has raised questions on sources 

of mosquitoes at the advent of spring. Mosquito infestations come earlier than expected i.e. before 

a new generation can be produced or immigrants could arrive.  It is therefore important to decipher 

the source of this founder population for the effective control of the vector.  The speculation of 

lack of a physiological overwintering mechanism in A. quadriannulatus gathered from the findings 

of the current study is however not conclusive due to a variety of reasons. Firstly, the study subjects 

were exposed to cold temperatures for only 20 minutes under laboratory conditions which could 

not have been adequate for the mosquito to fully express its intended response to lowered 

temperatures. Twenty minutes is too short for the mosquito to substantially show the signs of 

overwintering due to change in temperature. Thus, further experiments could look at the effects of 

exposing A. quadriannulatus to low temperatures for longer periods. Secondly, diapausing insects 

are hormonally “preprogrammed” to enter into diapause by some environmental cues. For 

instance, shortening of days signalling the arrival of winter is a reliable cue for many insects which 

go into diapause (Denlinger and Armbruster, 2014).  This factor was not accounted for in the 

current experiment and hence it was not possible to detect the ability of the mosquito to enter 

diapause. There is little information about diapause in sub Saharan A. gambiae species. Lehmann 

et al. (2010) suggested that aestivation is used in A. gambiae species as a survival mechanism in 

the long dry and hot areas.  

Winter seasons in temperate Africa are not as cold as in the northern hemisphere and are 

usually interrupted by periods of warm temperatures. It follows that A. gambiae mosquitoes in 
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sub-Saharan Africa could physiologically overwinter by mechanisms other than diapause. Cold 

torpor could be utilised to counteract non-life threatening daily reductions in temperature (Roberts, 

1978) since it is short termed. Because quiescence is seasonal, lasts longer than cold torpor 

(Roberts, 1978) and is associated with lowered metabolic rates in the cold (Nelms et al., 2013), it 

follows that A. gambiae species could overwinter by quiescence in temperate African highlands. 

The findings of the current study however do not infer on this mechanism either. This is because 

A. quadriannulatus failed to significantly reduce its metabolic rates at cold temperatures. This 

leaves the gap in the characterisation of overwintering strategies in A. gambiae unresolved. 

Even though some of these possibilities are somehow not supported by the findings of my 

study, I would think that temperate A. quadriannulatus and other members of A. gambiae species 

are thermally opportunistic. That is, depending on the levels of temperature during winter, they 

can adopt a combination of non-physiological strategies to meet the high unpredictability of 

ambient temperature. For example, during short spells of low temperatures, A. quadriannulatus 

could maintain their metabolic rates, until the time when temperatures are warm enough for them 

to replenish their energy sources. Similarly, the mosquitoes could hide in microhabitats when it is 

cold and occasionally fly out on warmer days (Russell et al., 2013). In this way, by adopting any 

of these possibilities, A. quadriannulatus and its A. gambiae relatives can manage to overwinter 

as adults in temperate regions of Africa. However, more research is required to explain the sources 

of mosquitoes and short recovery periods experienced soon after the first spring rains.  

To compare whether mosquitoes dropped their metabolism by a similar magnitude in cold 

and warm temperature ranges, we determined the percentage decreases in metabolic rate over a 5 

°C range. Huestis et al. (2011) reported that a 1 °C change in ambient temperature between 25.1 

°C and 32.8 °C altered metabolic rates of Sahelian A. gambiae by six percent. In this study, we 
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found an overall 30 % percent over a 5 ºC drop at the cooler temperatures of 15 – 10 ºC while over 

a 5 ºC drop at the warmer temperatures, 30 – 25 ºC, there was an overall 47 % percent decrease in 

metabolic rate.  This is a clear indication that a 1 °C change in temperatures does not yield equal 

percentage drop in metabolic rates. 

The physiological state of mosquitoes can have significant impacts on their metabolic rates. 

For this reason, it was imperative for the present study to assess if mosquitoes responded similarly 

to changes in temperature when their age, mating and feeding status were manipulated.  Most 

important is knowing how the physiological state of a mosquito affects its metabolic response to 

changes in temperature. This will highlight whether the mosquito is capable of overwintering in 

that state or not. The physiological state in which the mosquito overwinters as, could have 

significant impact on the population dynamics of the following season.  For example, adult 

mosquitoes which overwinter in gravid state, will lay their eggs as soon as the breeding sites are 

available. In this way, the population of mosquitoes could proliferate quickly. 

5.2 Effect of age on metabolic rates  

Both unmated and mated female mosquitoes which did not receive a blood meal (sugar fed 

only) did not show any correlation between age and metabolic rates at all temperatures. A 

correlation was however detected in some blood fed mosquitoes at specific temperatures. Lack of 

an age-metabolic rates correlation in sugar fed mosquitoes suggests the mosquitoes did not 

undergo any form of tissue development as they aged four days past emergence. Gray and Bradley 

(2003) found that the resting metabolic rates of C. tarsalis measured at 25 °C increased as the 

mosquitoes aged from emergence to four days and ceased thereafter. This could be explained by 

the fact that C. tarsalis is autogenous and therefore C. tarsalis commenced egg development 

without a blood meal (Gray and Bradley, 2003). In A. gambiae a blood meal is required to mature 
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and rippen eggs even though oogenesis commences a few hours after emergence (Gillett, 1971). 

It is possible that in the sugar fed sample of A. quadriannulatus oogenesis did not take place during 

the period highlighted by Gillett (1971) but it only commenced when the mosquitoes had taken a 

blood meal. Again, without taking a blood meal, the changes in growth due to oogenesis were most 

likely too small to impact on the metabolic rates of unmated and mated sugar fed mosquitoes.  

Age played a role in two cases in my study. Both blood fed mated and unmated mosquitoes 

produced more CO2 as they aged from two to four days old at 15 °C and 10 °C respectively. 

Although the temperatures were different, the positive correlation observed in both unmated and 

mated blood fed mosquitoes suggest that blood feeding impacts on the physiology of the mosquito 

regardless of its mating status. Even though Klowden and Russell (2004) found the presence of 

small post emergence growth (between 0-60 h) in both unmated and mated blood fed female 

mosquitoes, the difference in size of their accessory glands was only significant at 36 h after 

emergence. Because the 0-60 h growth was more rapid in mated than unmated mosquitoes, follows 

that mated mosquitoes were undergoing egg development at that time which was optimal at 36 h. 

According to Gillett (1971), distention of the abdomen of a mosquito after consuming a blood 

meal, causes the mosquito to develop ovaries beyond resting stage. Therefore, a blood meal was 

sufficient to trigger maturation of oocytes in mated A. quadriannulatus at 15 °C. Because unmated 

blood fed females also indicated correlation between age and metabolic rates at 10 °C, it follows 

that either there was post emergence growth as indicated by Klowden and Russell (2004) or the 

increases in metabolic rates was a mere result from blood digestion. According to Gray and 

Bradley (2003), at 25 °C blood digestion commenced 20-24 h post blood feeding and lasted for 

approximately 55 h. The 20-24 h duration coincides with the time taken by C. tarsalis to develop 

its peritrophic matrix (Houk et al., 1979). This could have been the reason why unmated 
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mosquitoes increased their metabolic rates with age at 10 °C. The rate of blood digestion could 

have been slower though at this temperature and hence the process could have taken more than 55 

h. Because blood digestion and egg development are dependent on time and temperature , (Gillett, 

1971, Klowden and Russell, 2004, Mala et al., 2014 ), it can be deduced that these processes were 

underway at the time of measurements in either of the treatments.  

5.3 Effects of mating and blood feeding on metabolic rates at constant temperature and 

age 

 5.3.1 Mating only 

Sugar fed only mosquitoes (both unmated and mated) test mosquitoes responded to 

changes in temperature differently. Dropping the temperature by 5 °C from 30 °C, yielded a 

percentage reduction in metabolic rates which were lower than if temperature was reduced from 

15 °C to 10 °C (Table 4.7) in both treatments. Even though such a trend was observed, sugar fed 

mosquitoes yielded relatively similar percentage decreases in metabolic rates at both cold and 

warm temperature changes (Table 4.7). Because the mosquitoes were not given a blood meal to 

prompt blood digestion or egg development, cold temperatures appear to have induced inactivity 

in A. quadriannulatus. In this way, there was not much variation in metabolic rates as temperatures 

were reduced from 15 °C to 10 °C. 

Results of the current study indicate that an additional effect other than temperature was 

induced by mating.  The percentage decrease in metabolic rates for mated sugar fed mosquitoes 

were relatively higher than those for unmated mosquitoes measured at both cold and warm 

temperatures intervals. This observed difference in response to temperature changes between 

mated and unmated mosquitoes could have resulted from the effects of molecular interaction on 

reproductive behaviour and physiology of females during copulation (Baldini et al., 2013). For 
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monoandrous mosquitoes such as A. gambiae, multiple copulations are prevented by restricting 

the movement of female mosquitoes using substances secreted by male mosquitoes during 

copulation Klowden (1999). Thus, mated mosquitoes had lowered metabolic rates due to reduced 

activity induced by copulation with male mosquitoes. After discovering that virgin female 

mosquitoes live longer than their inseminated counterparts, the sexual activity in mosquitoes could 

accelerate the process of senescence (Collatz, 2003).  

The role of mating in mosquitoes involves merely the laying of eggs and not their 

development (Gillett, 1971; Yaro et al., 2012). This idea is supported by Klowden and Russell 

(2004) who found no evidence of significant impacts of mating on the size of unmated and mated 

female accessory glands in A. gambiae between emergence and 36 h post emergence. Gray and 

Bradley (2005) also found that at 25 °C, mating had no significant effects on the metabolic rates 

of C. tarsalis as mosquitoes aged from emergence to 12 days old. Based on these findings, the 

impacts of mating on metabolic rates observed in A. quadriannulatus, could have resulted from 

sources other than egg development.  

5.3.2 Blood feeding only 

Unexpectedly high metabolic rates were measured at 10 °C (Table 4.9) in unmated blood 

fed three days old mosquitoes. There are two possible processes which could have resulted in this 

outcome, namely blood digestion and egg development. Both blood digestion and egg 

development consume relatively large amounts of energy. Thus, to sustain these processes, the 

mosquitoes had to maintain relatively high metabolic rates at this temperature. Because unmated 

Anopheles mosquitoes are capable of resuming egg development without insemination, it follows 

that egg development was underway in unmated three days old mosquitoes at 10 °C.  According 

to, Baldini et al. (2013) A. gambiae mosquitoes would choose to use the blood meal for oogenesis, 
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if the mosquito is inseminated, otherwise the meal would be digested and used as an energy source. 

Contrary Gillett, (1971) and Yaro et al., (2012), indicates that oogenesis would commence in 

Anopheles mosquitoes regardless of mating.  

Since this observation was made at relatively low temperatures, one would think that 

gonotrophic dissociation rather than egg development was underway during the outcome.  

Muirhead-Thomson (1951) suggested that in cold temperatures, mosquitoes are most likely to 

invest their blood meals towards gonotrophic dissociation rather than egg development. According 

to Gray and Bradley, (2003), it takes more energy to digest one molecule of a blood meal than it 

does for a sugar meal. It is however, difficult to differentiate whether the observed outcome was a 

result of blood digestion or egg development. This is because blood digestion would still take place 

whether eggs were formed or not. What is different and could not be detected in this study was the 

fate of the digested blood meal. If the mosquitoes underwent gonotrophic dissociation, the digested 

blood meal was used to store energy and the mosquitoes did not develop eggs. But if egg 

development commenced then the mosquitoes became gravid thereafter.   

The drop in metabolic rates when temperature decreased from 30 °C to 25 °C was higher 

than when temperature decreased from 15 °C to 10 °C for both unmated and mated blood fed 

mosquitoes. This was different in sugar fed mosquitoes (both mated and unmated) whereby the 

percentage decreases were relatively similar at those changes in temperature. Because A. 

quadriannulatus is non-autogenous, this explains why sugar fed mosquitoes did not indicate any 

differences in reducing their metabolic rates when temperatures were decreased from 30 °C to 25 

°C and when they were reduced from 15 °C. Thus, a blood meal initiated blood digestion and egg 

development resulting in observed outcome. In blood fed mosquitoes (both unmated and mated), 

the mean VCO2 were relatively higher at hot temperature intervals than at the lower temperature 
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intervals. This is because at higher temperatures, the mean VCO2 were always significantly 

different and higher whereas at lower temperatures the mosquitoes retained constant and lower 

metabolic rates. Gonotrophic processes and duration are dependent on ambient temperatures and 

are quicker at higher temperatures (Gillett, 1971). This is one of the reasons why metabolic rates 

of blood fed A. quadriannulatus were higher at high temperatures. Blood digestion and egg 

development in mosquitoes are positively correlated to temperature (Mala et al., 2014).  

5.3.3 Mating and blood feeding 

Two and three day old mated and blood fed mosquitoes followed the general temperature-

metabolic rate trend observed in other treatments. Surprising results obtained from four days old 

mosquitoes were different as these mosquitoes maintained relatively steady metabolic rates across 

all temperatures. Since blood digestion commences 20-24 h after a blood meal (Houk et al., 1979, 

Gray and Bradley, 2003), it follows that A. quadriannulatus mosquitoes commenced blood 

digestion on day two as they were blood fed on their day of emergence. At the end of day two, it 

means the mosquitoes were half gravid and gravid (ready to lay eggs) on day three (egg 

development and maturation was completed). Eggs should have been laid on the night of day three. 

Therefore, metabolic rates were lower on day four to mark the end of egg production. This explains 

why at 30 °C, metabolic rates increased to a peak on three days old but subsequently decreased on 

four days old (Table 4.5, Table 4.9).  

Speculated egg production in this treatment could have been confirmed by checking for 

eggs in the cages on day four but this activity was out of the scope of this study. However, because 

A. gambiae mosquitoes can only oviposition their eggs after finding a suitable site (Kaiser et al., 

2014), we assume mosquitoes from this treatment were unable to lay eggs as the experiment did 

not make provision for oviposition site. According to Muirhead-Thomson (1951), under optimal 
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conditions, a female mosquito which receives a blood meal on Monday night will be half gravid 

on Tuesday night and fully gravid by Wednesday night before it disappears to find a suitable 

oviposition site where it can lay its eggs the following morning at dusk. Based on the findings of 

the present study, A. quadriannulatus most probably underwent similar procedure at time frames 

similar to those stipulated by Muirhead-Thomson (1951). However, this could only be true at 

comparable temperatures such as 30 °C and 25 °C. A similar process could have commenced at 

low temperatures but at much slower rates resulting in the extension of the gonotrophic cycle. 

Also, due to egg development the mosquitoes needed to maintain high metabolic rates as described 

in section 5.3.2. Thus, metabolic rates remained relatively higher at 10 °C for four days old 

mosquitoes.  

 Four day old mated and blood fed mosquitoes maintained similar metabolic rates at 

temperature range of 30 °C to 10 °C. This is because at 30 °C, metabolic rates were lower than 

expected most probably due to completion of egg development. At the same time, metabolic rates 

at 10 °C were also higher than expected because egg development was still underway hence more 

energy was required to maintain the process at that temperature. Because the rates of blood 

digestion and egg development strongly depend on ambient temperature (Baldini et al., 2013; Mala 

et al., 2014), it is possible that duration of gonotrophic cycle was less at 30 °C than was at 10 °C. 

But because the test mosquitoes were only exposed to these temperatures for twenty minutes. this 

effect could not be accounted for in this experiment. 

Another reason for steady metabolic rates at different temperatures could be gravidity of 

the female mosquitoes. Female A. gambiae mosquitoes become gravid only when mated and blood 

fed (Klowden, 1999). Gravid A. gambiae mosquitoes are sedentary during the day and become 

more active at dawn or dusk when they seek oviposition sites (Muirhead-Thomson, 1951). Since 
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metabolic rates of all mosquitoes were measured during day time when the gravid-semi gravid 

mosquitoes were all sedentary, it logically follows that their metabolic rates were similar at all 

temperatures.  

Four day old mated and blood fed mosquitoes decreased their metabolic rates more at the 

colder temperature interval than at the warmer temperature interval (Table 4.9). This shows the 

strong dependence of blood digestion and egg production on temperature. Both processes could 

be retarded at cold temperatures resulting in steadier rates of reaction than when the temperatures 

are higher. This is also demonstrated by one of the outcomes of this study, whereby only at 10 °C, 

the metabolic rates for four days old mosquitoes with different mating and feeding state were 

significantly different from each other. 

5.5 Future research / recommendations 

My experiment has been able to answer some questions regarding factors that may affect 

the dynamics of mosquito populations across season. However, there are some aspects that can be 

improved from this experiment as well as some grey areas with regards to population dynamics 

and ecology of A. quadriannulatus that still needs to be researched. The first improvement I would 

recommend from the current experimental setup is increasing the incubation time of respective 

mosquitoes to assimilate the exposure time experienced by wild caught mosquitoes. Instead of 

using different individual mosquitoes to measure metabolic rates at different temperatures, 

metabolic rates can be monitored continually on a sampled group of mosquitoes as temperatures 

are decreased. This will allow each mosquito to be exposed to a variety of temperatures and 

indicate a better trend of change in metabolism with decrease in temperature (Lyons et al., 2012). 

If we are to infer on overwintering strategies such as diapause, it would be necessary to incorporate 
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all the aspect of day length in the experimental set up. The experiment can be redesigned in a way 

that mimics natural light regime in both length of exposure and quality.  

Future research should incorporate oviposition sites to allow gravid mosquitoes to lay eggs. 

This will help differentiate if mosquitoes underwent gonotrophic dissociation or egg development. 

Presence of eggs in the cages will confirm egg development.  Again, monitoring the presence of 

black faeces caused by blood digestion can help to differentiate the fate of blood meal. Therefore, 

presence of black faeces and lack of eggs in the cage will confirm gonotrophic dissociation.  If 

both methods are incorporated into the whole system, mosquitoes which only undertook 

gonotrophic dissociation at low temperatures, could be differentiated from those that developed 

eggs. Because the duration of gonotrophic cycle is dependent on temperature, it will be imperative 

for future studies to use older mosquitoes to accommodate delays in egg production due to 

temperature changes.  

Another possible source of mosquitoes at the beginning of spring could be overwintered 

pupae. It takes 2-3 days for pupae to develop into an adult. If the pupae which emerge at the end 

of summer, overwinter as pupal stage throughout winter it is possible that young adults will be 

produced within the first 2-3 days in spring. Thus, mosquitoes will be able to re-establish their 

populations earlier than expected. This is therefore an important research area whose findings can 

even help in crafting of more effective malaria control measures. 

 

5.6 Conclusions 

The main finding of this study was that despite being inactive at low temperatures, A. 

quadriannulatus mosquitoes failed to significantly lower their metabolic rates. Instead, they 

maintained constant metabolism as required for blood digestion and egg development regardless 
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of the cooler temperatures.  This indicates that they are unable to overwinter using survival 

strategies such as diapause and quiescence. Therefore, if these mosquitoes are to survive low 

temperatures and still maintain high metabolic rates, they can only do so over short cold periods. 

This appears to be possible especially in sub-Saharan regions where winter seasons do not reach 

temperatures below freezing and are usually interceded by warm days.  Thus, the mosquitoes will 

maintain constant metabolisms when temperatures are unbearably low but will be able to replenish 

their energy resources on warm days. The results of the present study could have implications on 

the future distribution of most mosquitoes due to climate change. The predicted rise in temperature 

and increased rainfall might prolong and intensify breeding in mosquitoes resulting in increased 

abundance and invasion of new habitats.  
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